WorldWideScience

Sample records for reducing pore fluid

  1. Lennard-Jones fluids in two-dimensional nano-pores. Multi-phase coexistence and fluid structure

    Science.gov (United States)

    Yatsyshin, Petr; Savva, Nikos; Kalliadasis, Serafim

    2014-03-01

    We present a number of fundamental findings on the wetting behaviour of nano-pores. A popular model for fluid confinement is a one-dimensional (1D) slit pore formed by two parallel planar walls and it exhibits capillary condensation (CC): a first-order phase transition from vapour to capillary-liquid (Kelvin shift). Capping such a pore at one end by a third orthogonal wall forms a prototypical two-dimensional (2D) pore. We show that 2D pores possess a wetting temperature such that below this temperature CC remains of first order, above it becomes a continuous phase transition manifested by a slab of capillary-liquid filling the pore from the capping wall. Continuous CC exhibits hysteresis and can be preceded by a first-order capillary prewetting transition. Additionally, liquid drops can form in the corners of the 2D pore (remnant of 2D wedge prewetting). The three fluid phases, vapour, capillary-liquid slab and corner drops, can coexist at the pore triple point. Our model is based on the statistical mechanics of fluids in the density functional formulation. The fluid-fluid and fluid-substrate interactions are dispersive. We analyze in detail the microscopic fluid structure, isotherms and full phase diagrams. Our findings also suggest novel ways to control wetting of nano-pores. We are grateful to the European Research Council via Advanced Grant No. 247031 for support.

  2. Fluids in micropores. II. Self-diffusion in a simple classical fluid in a slit pore

    International Nuclear Information System (INIS)

    Schoen, M.; Cushman, J.H.; Diestler, D.J.; Rhykerd, C.L. Jr.

    1988-01-01

    Self-diffusion coefficients D are computed for a model slit pore consisting of a rare-gas fluid confined between two parallel face-centered cubic (100) planes (walls) of rigidly fixed rare-gas atoms. By means of an optimally vectorized molecular-dynamics program for the CYBER 205, the dependence of D on the thermodynamic state (specified by the chemical potential μ, temperature T, and the pore width h) of the pore fluid has been explored. Diffusion is governed by Fick's law, even in pores as narrow as 2 or 3 atomic diameters. The diffusion coefficient oscillates as a function of h with fixed μ and T, vanishing at critical values of h, where fluid--solid phase transitions occur. A shift of the pore walls relative to one another in directions parallel with the walls can radically alter the structure of the pore fluid and consequently the magnitude of D. Since the pore fluid forms distinct layers parallel to the walls, a local diffusion coefficient D/sup (//sup i//sup )//sub parallel/ associated with a given layer i can be defined. D/sup (//sup i//sup )//sub parallel/ is least for the contact layer, even for pores as wide as 30 atomic diameters (∼100 A). Moreover, D/sup (//sup i//sup )//sub parallel/ increases with increasing distance of the fluid layer from the wall and, for pore widths between 16 and 30 atomic diameters, D/sup (//sup i//sup )//sub parallel/ is larger in the center of the pore than in the bulk fluid that is in equilibrium with the pore fluid. The opposite behavior is observed in corresponding smooth-wall pores, in which the discrete fluid--wall interactions have been averaged by smearing the wall atoms over the plane of the wall

  3. Effect of pore geometry on the compressibility of a confined simple fluid

    Science.gov (United States)

    Dobrzanski, Christopher D.; Maximov, Max A.; Gor, Gennady Y.

    2018-02-01

    Fluids confined in nanopores exhibit properties different from the properties of the same fluids in bulk; among these properties is the isothermal compressibility or elastic modulus. The modulus of a fluid in nanopores can be extracted from ultrasonic experiments or calculated from molecular simulations. Using Monte Carlo simulations in the grand canonical ensemble, we calculated the modulus for liquid argon at its normal boiling point (87.3 K) adsorbed in model silica pores of two different morphologies and various sizes. For spherical pores, for all the pore sizes (diameters) exceeding 2 nm, we obtained a logarithmic dependence of fluid modulus on the vapor pressure. Calculation of the modulus at saturation showed that the modulus of the fluid in spherical pores is a linear function of the reciprocal pore size. The calculation of the modulus of the fluid in cylindrical pores appeared too scattered to make quantitative conclusions. We performed additional simulations at higher temperature (119.6 K), at which Monte Carlo insertions and removals become more efficient. The results of the simulations at higher temperature confirmed both regularities for cylindrical pores and showed quantitative difference between the fluid moduli in pores of different geometries. Both of the observed regularities for the modulus stem from the Tait-Murnaghan equation applied to the confined fluid. Our results, along with the development of the effective medium theories for nanoporous media, set the groundwork for analysis of the experimentally measured elastic properties of fluid-saturated nanoporous materials.

  4. Pore Fluid Effects on Shear Modulus for Sandstones with Soft Anisotropy

    International Nuclear Information System (INIS)

    Berryman, J G

    2004-01-01

    A general analysis of poroelasticity for vertical transverse isotropy (VTI) shows that four eigenvectors are pure shear modes with no coupling to the pore-fluidmechanics. The remaining two eigenvectors are linear combinations of pure compression and uniaxial shear, both of which are coupled to the fluid mechanics. After reducing the problem to a 2x2 system, the analysis shows in a relatively elementary fashion how a poroelastic system with isotropic solid elastic frame, but with anisotropy introduced through the poroelastic coefficients, interacts with the mechanics of the pore fluid and produces shear dependence on fluid properties in the overall mechanical system. The analysis shows, for example, that this effect is always present (though sometimes small in magnitude) in the systems studied, and can be quite large (up to a definite maximum increase of 20 per cent) in some rocks--including Spirit River sandstone and Schuler-Cotton Valley sandstone

  5. Microtomography and pore-scale modeling of two-phase Fluid Distribution

    Energy Technology Data Exchange (ETDEWEB)

    Silin, D.; Tomutsa, L.; Benson, S.; Patzek, T.

    2010-10-19

    Synchrotron-based X-ray microtomography (micro CT) at the Advanced Light Source (ALS) line 8.3.2 at the Lawrence Berkeley National Laboratory produces three-dimensional micron-scale-resolution digital images of the pore space of the reservoir rock along with the spacial distribution of the fluids. Pore-scale visualization of carbon dioxide flooding experiments performed at a reservoir pressure demonstrates that the injected gas fills some pores and pore clusters, and entirely bypasses the others. Using 3D digital images of the pore space as input data, the method of maximal inscribed spheres (MIS) predicts two-phase fluid distribution in capillary equilibrium. Verification against the tomography images shows a good agreement between the computed fluid distribution in the pores and the experimental data. The model-predicted capillary pressure curves and tomography-based porosimetry distributions compared favorably with the mercury injection data. Thus, micro CT in combination with modeling based on the MIS is a viable approach to study the pore-scale mechanisms of CO{sub 2} injection into an aquifer, as well as more general multi-phase flows.

  6. Fines Classification Based on Sensitivity to Pore-Fluid Chemistry

    KAUST Repository

    Jang, Junbong

    2015-12-28

    The 75-μm particle size is used to discriminate between fine and coarse grains. Further analysis of fine grains is typically based on the plasticity chart. Whereas pore-fluid-chemistry-dependent soil response is a salient and distinguishing characteristic of fine grains, pore-fluid chemistry is not addressed in current classification systems. Liquid limits obtained with electrically contrasting pore fluids (deionized water, 2-M NaCl brine, and kerosene) are combined to define the soil "electrical sensitivity." Liquid limit and electrical sensitivity can be effectively used to classify fine grains according to their fluid-soil response into no-, low-, intermediate-, or high-plasticity fine grains of low, intermediate, or high electrical sensitivity. The proposed methodology benefits from the accumulated experience with liquid limit in the field and addresses the needs of a broader range of geotechnical engineering problems. © ASCE.

  7. Fines classification based on sensitivity to pore-fluid chemistry

    Science.gov (United States)

    Jang, Junbong; Santamarina, J. Carlos

    2016-01-01

    The 75-μm particle size is used to discriminate between fine and coarse grains. Further analysis of fine grains is typically based on the plasticity chart. Whereas pore-fluid-chemistry-dependent soil response is a salient and distinguishing characteristic of fine grains, pore-fluid chemistry is not addressed in current classification systems. Liquid limits obtained with electrically contrasting pore fluids (deionized water, 2-M NaCl brine, and kerosene) are combined to define the soil “electrical sensitivity.” Liquid limit and electrical sensitivity can be effectively used to classify fine grains according to their fluid-soil response into no-, low-, intermediate-, or high-plasticity fine grains of low, intermediate, or high electrical sensitivity. The proposed methodology benefits from the accumulated experience with liquid limit in the field and addresses the needs of a broader range of geotechnical engineering problems.

  8. Validation of model predictions of pore-scale fluid distributions during two-phase flow

    Science.gov (United States)

    Bultreys, Tom; Lin, Qingyang; Gao, Ying; Raeini, Ali Q.; AlRatrout, Ahmed; Bijeljic, Branko; Blunt, Martin J.

    2018-05-01

    Pore-scale two-phase flow modeling is an important technology to study a rock's relative permeability behavior. To investigate if these models are predictive, the calculated pore-scale fluid distributions which determine the relative permeability need to be validated. In this work, we introduce a methodology to quantitatively compare models to experimental fluid distributions in flow experiments visualized with microcomputed tomography. First, we analyzed five repeated drainage-imbibition experiments on a single sample. In these experiments, the exact fluid distributions were not fully repeatable on a pore-by-pore basis, while the global properties of the fluid distribution were. Then two fractional flow experiments were used to validate a quasistatic pore network model. The model correctly predicted the fluid present in more than 75% of pores and throats in drainage and imbibition. To quantify what this means for the relevant global properties of the fluid distribution, we compare the main flow paths and the connectivity across the different pore sizes in the modeled and experimental fluid distributions. These essential topology characteristics matched well for drainage simulations, but not for imbibition. This suggests that the pore-filling rules in the network model we used need to be improved to make reliable predictions of imbibition. The presented analysis illustrates the potential of our methodology to systematically and robustly test two-phase flow models to aid in model development and calibration.

  9. Fluid flow behaviour of gas-condensate and near-miscible fluids at the pore scale

    Energy Technology Data Exchange (ETDEWEB)

    Dawe, Richard A. [Department of Chemical Engineering, University of West Indies, St. Augustine (Trinidad and Tobago); Grattoni, Carlos A. [Department of Earth Science and Engineering, Imperial College, London, SW7 2BP (United Kingdom)

    2007-02-15

    Retrograde condensate reservoir behaviour is complex with much of the detailed mechanisms of the multiphase fluid transport and mass transfer between the phases within the porous matrix still speculative. Visual modelling of selected processes occurring at the pore level under known and controlled boundary conditions can give an insight to fluid displacements at the core scale and help the interpretation of production behaviour at reservoir scale. Visualisation of the pore scale two-phase flow mechanisms has been studied experimentally at low interfacial tensions, < 0.5 mN/m, using a partially miscible fluid system in glass visual micro models. As the interfacial tension decreases the balance between fluid-fluid forces (interfacial, spreading and viscous) and fluid-solid interactions (wettability and viscous interactions) changes. Data measurements in the laboratory, particularly relative permeability, will therefore always be difficult especially for condensate fluids just below their dew point. What is certain is that gas production from a gas-condensate leads to condensate dropout when pressure falls below the dew point, either within the wellbore or, more importantly, in the reservoir. This paper illustrates some pore scale physics, particularly interfacial phenomena at low interfacial tension, which has relevance to appreciating the flow of condensate fluids close to their dew point either near the wellbore (which affects well productivity) or deep inside the reservoir (which affects condensate recovery). (author)

  10. Lattice Boltzmann simulation of immiscible fluid displacement in porous media: Homogeneous versus heterogeneous pore network

    International Nuclear Information System (INIS)

    Liu, Haihu; Zhang, Yonghao; Valocchi, Albert J.

    2015-01-01

    Injection of anthropogenic carbon dioxide (CO 2 ) into geological formations is a promising approach to reduce greenhouse gas emissions into the atmosphere. Predicting the amount of CO 2 that can be captured and its long-term storage stability in subsurface requires a fundamental understanding of multiphase displacement phenomena at the pore scale. In this paper, the lattice Boltzmann method is employed to simulate the immiscible displacement of a wetting fluid by a non-wetting one in two microfluidic flow cells, one with a homogeneous pore network and the other with a randomly heterogeneous pore network. We have identified three different displacement patterns, namely, stable displacement, capillary fingering, and viscous fingering, all of which are strongly dependent upon the capillary number (Ca), viscosity ratio (M), and the media heterogeneity. The non-wetting fluid saturation (S nw ) is found to increase nearly linearly with logCa for each constant M. Increasing M (viscosity ratio of non-wetting fluid to wetting fluid) or decreasing the media heterogeneity can enhance the stability of the displacement process, resulting in an increase in S nw . In either pore networks, the specific interfacial length is linearly proportional to S nw during drainage with equal proportionality constant for all cases excluding those revealing considerable viscous fingering. Our numerical results confirm the previous experimental finding that the steady state specific interfacial length exhibits a linear dependence on S nw for either favorable (M ≥ 1) or unfavorable (M < 1) displacement, and the slope is slightly higher for the unfavorable displacement

  11. Lattice Boltzmann simulation of immiscible fluid displacement in porous media: Homogeneous versus heterogeneous pore network

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Haihu, E-mail: haihu.liu@mail.xjtu.edu.cn [School of Energy and Power Engineering, Xi’an Jiaotong University, 28 West Xianning Road, Xi’an 710049 (China); James Weir Fluids Laboratory, Department of Mechanical and Aerospace Engineering, University of Strathclyde, Glasgow G1 1XJ (United Kingdom); Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Zhang, Yonghao [James Weir Fluids Laboratory, Department of Mechanical and Aerospace Engineering, University of Strathclyde, Glasgow G1 1XJ (United Kingdom); Valocchi, Albert J. [Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States)

    2015-05-15

    Injection of anthropogenic carbon dioxide (CO{sub 2}) into geological formations is a promising approach to reduce greenhouse gas emissions into the atmosphere. Predicting the amount of CO{sub 2} that can be captured and its long-term storage stability in subsurface requires a fundamental understanding of multiphase displacement phenomena at the pore scale. In this paper, the lattice Boltzmann method is employed to simulate the immiscible displacement of a wetting fluid by a non-wetting one in two microfluidic flow cells, one with a homogeneous pore network and the other with a randomly heterogeneous pore network. We have identified three different displacement patterns, namely, stable displacement, capillary fingering, and viscous fingering, all of which are strongly dependent upon the capillary number (Ca), viscosity ratio (M), and the media heterogeneity. The non-wetting fluid saturation (S{sub nw}) is found to increase nearly linearly with logCa for each constant M. Increasing M (viscosity ratio of non-wetting fluid to wetting fluid) or decreasing the media heterogeneity can enhance the stability of the displacement process, resulting in an increase in S{sub nw}. In either pore networks, the specific interfacial length is linearly proportional to S{sub nw} during drainage with equal proportionality constant for all cases excluding those revealing considerable viscous fingering. Our numerical results confirm the previous experimental finding that the steady state specific interfacial length exhibits a linear dependence on S{sub nw} for either favorable (M ≥ 1) or unfavorable (M < 1) displacement, and the slope is slightly higher for the unfavorable displacement.

  12. Separating attoliter-sized compartments using fluid pore-spanning lipid bilayers.

    Science.gov (United States)

    Lazzara, Thomas D; Carnarius, Christian; Kocun, Marta; Janshoff, Andreas; Steinem, Claudia

    2011-09-27

    Anodic aluminum oxide (AAO) is a porous material having aligned cylindrical compartments with 55-60 nm diameter pores, and being several micrometers deep. A protocol was developed to generate pore-spanning fluid lipid bilayers separating the attoliter-sized compartments of the nanoporous material from the bulk solution, while preserving the optical transparency of the AAO. The AAO was selectively functionalized by silane chemistry to spread giant unilamellar vesicles (GUVs) resulting in large continuous membrane patches covering the pores. Formation of fluid single lipid bilayers through GUV rupture could be readily observed by fluorescence microscopy and further supported by conservation of membrane surface area, before and after GUV rupture. Fluorescence recovery after photobleaching gave low immobile fractions (5-15%) and lipid diffusion coefficients similar to those found for bilayers on silica. The entrapment of molecules within the porous underlying cylindrical compartments, as well as the exclusion of macromolecules from the nanopores, demonstrate the barrier function of the pore-spanning membranes and could be investigated in three-dimensions using confocal laser scanning fluorescence imaging. © 2011 American Chemical Society

  13. Effect of pore fluid on the cyclic behavior of laterally loaded offshore piles modelled in centrifuge

    NARCIS (Netherlands)

    Askarinejad, A.; Philia Boru Sitanggang, Anggi; Schenkeveld, Ferry; Lee, W.; Lee, J-S.; Kim, H-K.; kim, D-S.

    The common practice in centrifuge modelling of dynamic processes is to use high-viscosity pore fluids to unify the time scaling factors for the generation and dissipation of pore pressures. This paper focuses on the effects of the density and viscosity of the pore fluid on the behaviour of an

  14. Pore Structure Model for Predicting Elastic Wavespeeds in Fluid-Saturated Sandstones

    Science.gov (United States)

    Zimmerman, R. W.; David, E. C.

    2011-12-01

    During hydrostatic compression, in the elastic regime, ultrasonic P and S wave velocities measured on rock cores generally increase with pressure, and reach asymptotic values at high pressures. The pressure dependence of seismic velocities is generally thought to be due to the closure of compliant cracks, in which case the high-pressure velocities must reflect only the influence of the non-closable, equant "pores". Assuming that pores can be represented by spheroids, we can relate the elastic properties to the pore structure using an effective medium theory. Moreover, the closure pressure of a thin crack-like pore is directly proportional to its aspect ratio. Hence, our first aim is to use the pressure dependence of seismic velocities to invert the aspect ratio distribution. We use a simple analytical algorithm developed by Zimmerman (Compressibility of Sandstones, 1991), which can be used for any effective medium theory. Previous works have used overly restrictive assumptions, such as assuming that the stiff pores are spherical, or that the interactions between pores can be neglected. Here, we assume that the rock contains an exponential distribution of crack aspect ratios, and one family of stiff pores having an aspect ratio lying somewhere between 0.01 and 1. We develop our model in two versions, using the Differential Scheme, and the Mori-Tanaka scheme. The inversion is done using data obtained in dry experiments, since pore fluids have a strong effect on velocities and tend to mask the effect of the pore geometry. This avoids complicated joint inversion of dry and wet data, such as done by Cheng and Toksoz (JGR, 1979). Our results show that for many sets of data on sandstones, we can fit very well the dry velocities. Our second aim is to predict the saturated velocities from our pore structure model, noting that at a given differential stress, the pore structure should be the same as for a dry test. Our results show that the Biot-Gassmann predictions always

  15. A two-phase debris-flow model that includes coupled evolution of volume fractions, granular dilatancy, and pore-fluid pressure

    Science.gov (United States)

    George, David L.; Iverson, Richard M.

    2011-01-01

    Pore-fluid pressure plays a crucial role in debris flows because it counteracts normal stresses at grain contacts and thereby reduces intergranular friction. Pore-pressure feedback accompanying debris deformation is particularly important during the onset of debrisflow motion, when it can dramatically influence the balance of forces governing downslope acceleration. We consider further effects of this feedback by formulating a new, depth-averaged mathematical model that simulates coupled evolution of granular dilatancy, solid and fluid volume fractions, pore-fluid pressure, and flow depth and velocity during all stages of debris-flow motion. To illustrate implications of the model, we use a finite-volume method to compute one-dimensional motion of a debris flow descending a rigid, uniformly inclined slope, and we compare model predictions with data obtained in large-scale experiments at the USGS debris-flow flume. Predictions for the first 1 s of motion show that increasing pore pressures (due to debris contraction) cause liquefaction that enhances flow acceleration. As acceleration continues, however, debris dilation causes dissipation of pore pressures, and this dissipation helps stabilize debris-flow motion. Our numerical predictions of this process match experimental data reasonably well, but predictions might be improved by accounting for the effects of grain-size segregation.

  16. Influence of pore fluid and frequency on elastic properties of greensand as interpreted using NMR data

    DEFF Research Database (Denmark)

    Hossain, Zakir; Mukerj, Tapan; Fabricius, Ida Lykke

    2011-01-01

    dispersion. However, Biot’s theory does not fully explain the frequency dispersion of sedimentary rocks. Greensands are composed of a mixture of quartz and micro-porous glauconite grains. In greensand, it is possible that the contrast between flow in macro-pores and micro-pores within glauconites gives rise....... Biot’s critical frequency and NMR (nuclear magnetic resonance) T2 spectrum were combined to describe the differences in fluid flow within macro-pores and within micro-pores. NMR data show that Biot’s flow should occur only in large pores in the greensand while, Biot’s flow should not occur in micro-pores....... Differences of fluid flow in macro-pores and micro-pores pores are described as high frequency squirt flow in greensand....

  17. Fines Classification Based on Sensitivity to Pore-Fluid Chemistry

    KAUST Repository

    Jang, Junbong; Santamarina, Carlos

    2015-01-01

    The 75-μm particle size is used to discriminate between fine and coarse grains. Further analysis of fine grains is typically based on the plasticity chart. Whereas pore-fluid-chemistry-dependent soil response is a salient and distinguishing

  18. The effect of the pore-fluid factor on strength and failure mechanism of Wilkeson sandstone

    Science.gov (United States)

    Kätker, A. K.; Rempe, M.; Renner, J.

    2016-12-01

    The effective stress law, σn,eff = σn - αpf, is a central tool in analysing phenomena related to hydromechanical coupling, such as fluid-induced seismicity or aftershock activity. The effective-stress coefficient α assumes different values for specific physical properties and may deviate from 1. The limited number of studies suggest that brittle compressive strength obeys an effective-stress law when effective drainage is achieved. Yet, open questions remain regarding, e.g., the role of the loading path. We performed suites of triaxial compression tests on samples of Wilkeson sandstone at a range of pore-fluid pressures but identical effective confining pressure (60, 100, and 120 MPa) maintaining the pore-fluid factor λ = pf / pc constant (0.05, 0.2, 0.4, 0.55) during the isostatic loading stage to ensure uniform loading paths. Samples were shortened with a strain rate of 4×10-7 s-1 yielding drained conditions. All tests were terminated at a total axial strain of 4.5% for comparability of microstructures. The tests also included continuous permeability determination and ultrasonic p-wave-velocity measurements to monitor microstructural evolution. Results from experiments conducted at peff = 100 MPa show that dry samples exhibit a higher peak strength and brittle failure while water-saturated samples tend to deform at lower stress by cataclastic flow indicating physico-chemical weakening. Regardless of pore-fluid factor, the saturated experiments exhibit similar peak and residual strength. Differences in failure mechanism (degree of macroscopic localization) and volumetric strain evolution are however noticed, albeit without systematic relation to pore-fluid factor. Microstructure analyses by optical and scanning electron microscopy revealed an evolution from localized shear zones in dry experiments and experiments with a low pore-fluid factor to rather distributed cataclastic flow for experiments with high pore fluid factors. Yet, mechanical and structural

  19. Connection Between Thermodynamics and Dynamics of Simple Fluids in Pores: Impact of Fluid-Fluid Interaction Range and Fluid-Solid Interaction Strength.

    Science.gov (United States)

    Krekelberg, William P; Siderius, Daniel W; Shen, Vincent K; Truskett, Thomas M; Errington, Jeffrey R

    2017-08-03

    Using molecular simulations, we investigate how the range of fluid-fluid (adsorbate-adsorbate) interactions and the strength of fluid-solid (adsorbate-adsorbent) interactions impact the strong connection between distinct adsorptive regimes and distinct self-diffusivity regimes reported in [Krekelberg, W. P.; Siderius, D. W.; Shen, V. K.; Truskett, T. M.; Errington, J. R. Langmuir 2013 , 29 , 14527-14535]. Although increasing the fluid-fluid interaction range changes both the thermodynamics and the dynamic properties of adsorbed fluids, the previously reported connection between adsorptive filling regimes and self-diffusivity regimes remains. Increasing the fluid-fluid interaction range leads to enhanced layering and decreased self-diffusivity in the multilayer-formation regime but has little effect on the properties within film-formation and pore-filling regimes. We also find that weakly attractive adsorbents, which do not display distinct multilayer formation, are hard-sphere-like at super- and subcritical temperatures. In this case, the self-diffusivity of the confined and bulk fluid has a nearly identical scaling-relationship with effective density.

  20. Dynamics of snap-off and pore-filling events during two-phase fluid flow in permeable media.

    Science.gov (United States)

    Singh, Kamaljit; Menke, Hannah; Andrew, Matthew; Lin, Qingyang; Rau, Christoph; Blunt, Martin J; Bijeljic, Branko

    2017-07-12

    Understanding the pore-scale dynamics of two-phase fluid flow in permeable media is important in many processes such as water infiltration in soils, oil recovery, and geo-sequestration of CO 2 . The two most important processes that compete during the displacement of a non-wetting fluid by a wetting fluid are pore-filling or piston-like displacement and snap-off; this latter process can lead to trapping of the non-wetting phase. We present a three-dimensional dynamic visualization study using fast synchrotron X-ray micro-tomography to provide new insights into these processes by conducting a time-resolved pore-by-pore analysis of the local curvature and capillary pressure. We show that the time-scales of interface movement and brine layer swelling leading to snap-off are several minutes, orders of magnitude slower than observed for Haines jumps in drainage. The local capillary pressure increases rapidly after snap-off as the trapped phase finds a position that is a new local energy minimum. However, the pressure change is less dramatic than that observed during drainage. We also show that the brine-oil interface jumps from pore-to-pore during imbibition at an approximately constant local capillary pressure, with an event size of the order of an average pore size, again much smaller than the large bursts seen during drainage.

  1. Post-processing of polymer foam tissue scaffolds with high power ultrasound: A route to increased pore interconnectivity, pore size and fluid transport

    International Nuclear Information System (INIS)

    Watson, N.J.; Johal, R.K.; Glover, Z.; Reinwald, Y.; White, L.J.; Ghaemmaghami, A.M.; Morgan, S.P.; Rose, F.R.A.J.; Povey, M.J.W.; Parker, N.G.

    2013-01-01

    The aim of this work is to demonstrate that the structural and fluidic properties of polymer foam tissue scaffolds, post-fabrication but prior to the introduction of cells, can be engineered via exposure to high power ultrasound. Our analysis is supported by measurements of fluid uptake during insonification and imaging of the scaffold microstructure via X-ray computed tomography, scanning electron microscopy and acoustic microscopy. The ultrasonic treatment is performed with a frequency of 30 kHz, average intensities up to 80,000 Wm −2 and exposure times up to 20 h. The treatment is found to increase the mean pore size by over 10%. More striking is the improvement in fluid uptake: for scaffolds with only 40% water uptake via standard immersion techniques, we can routinely achieve full saturation of the scaffold over approximately one hour of exposure. These desirable modifications occur with negligible loss of scaffold integrity and mass, and are optimized when the ultrasound treatment is coupled to a pre-wetting stage with ethanol. Our findings suggest that high power ultrasound is highly targeted towards flow obstructions in the scaffold architecture, thereby providing an efficient means to promote pore interconnectivity and fluid transport in thick foam tissue scaffolds. - Highlights: • We expose thick PLA foam tissue scaffolds to high power ultrasound. • This treatment both accelerates and enhances the uptake of fluid into the scaffold. • It leads to significant increases in the mean pore size, pore interconnectivity and porosity. • The ultrasonic treatment is most effective when the scaffold is pre-wet with ethanol. • We demonstrate the use of acoustic microscopy to characterize the scaffold microstructure

  2. How Pore-Fluid Pressure due to Heavy Rainfall Influences Volcanic Eruptions, Example of 1998 and 2008 Eruptions of Cerro Azul (Galapagos)

    Science.gov (United States)

    Albino, F.; Amelung, F.; Gregg, P. M.

    2016-12-01

    About 30 worldwide seismic studies have shown a strong correlation between rainfall and earthquakes in the past 22 years (e.g. Costain and Bollinger, 2010). Such correlation has been explained by the phenomenon of hydro-seismicity via pore pressure diffusion: an increase of pore-fluid in the upper crust reduces the normal stress on faults, which can trigger shear failure. Although this pore pressure effect is widely known for earthquakes, this phenomenon and more broadly poro-elasticity process are not widely studied on volcanoes. However, we know from our previous works that tensile failures that open to propagate magma through the surface are also pore pressure dependent. We have demonstrated that an increase of pore pressure largely reduces the overpressure required to rupture the magma reservoir. We have shown that the pore pressure has more influence on reservoir stability than other parameters such as the reservoir depth or the edifice loading. Here, we investigate how small pore-fluid changes due to hydrothermal or aquifer refill during heavy rainfall may perturb the conditions of failure around magma reservoirs and, what is more, if these perturbations are enough to trigger magma intrusions. We quantify the pore pressure effect on magmatic system by combining 1) 1D pore pressure diffusion model to quantify how pore pressure changes from surface to depth after heavy rainfall events and 2) 2D poro-elastic numerical model to provide the evolution of failure conditions of the reservoir as a consequence of these pore pressure changes. Sensitivity analysis is also performed to characterize the influence on our results of the poro-elastic parameters (hydraulic diffusivity, permeability and porosity) and the geometry of the magma reservoir and the aquifer (depth, size, shape). Finally, we apply our methodology to Cerro Azul volcano (Galapagos) where both last eruptions (1998 and 2008) occurred just after heavy rainfall events, without any pre-eruptive inflation. In

  3. An inverse-source problem for maximization of pore-fluid oscillation within poroelastic formations

    KAUST Repository

    Jeong, C.; Kallivokas, L. F.

    2016-01-01

    This paper discusses a mathematical and numerical modeling approach for identification of an unknown optimal loading time signal of a wave source, atop the ground surface, that can maximize the relative wave motion of a single-phase pore fluid within fluid-saturated porous permeable (poroelastic) rock formations, surrounded by non-permeable semi-infinite elastic solid rock formations, in a one-dimensional setting. The motivation stems from a set of field observations, following seismic events and vibrational tests, suggesting that shaking an oil reservoir is likely to improve oil production rates. This maximization problem is cast into an inverse-source problem, seeking an optimal loading signal that minimizes an objective functional – the reciprocal of kinetic energy in terms of relative pore-fluid wave motion within target poroelastic layers. We use the finite element method to obtain the solution of the governing wave physics of a multi-layered system, where the wave equations for the target poroelastic layers and the elastic wave equation for the surrounding non-permeable layers are coupled with each other. We use a partial-differential-equation-constrained-optimization framework (a state-adjoint-control problem approach) to tackle the minimization problem. The numerical results show that the numerical optimizer recovers optimal loading signals, whose dominant frequencies correspond to amplification frequencies, which can also be obtained by a frequency sweep, leading to larger amplitudes of relative pore-fluid wave motion within the target hydrocarbon formation than other signals.

  4. An inverse-source problem for maximization of pore-fluid oscillation within poroelastic formations

    KAUST Repository

    Jeong, C.

    2016-07-04

    This paper discusses a mathematical and numerical modeling approach for identification of an unknown optimal loading time signal of a wave source, atop the ground surface, that can maximize the relative wave motion of a single-phase pore fluid within fluid-saturated porous permeable (poroelastic) rock formations, surrounded by non-permeable semi-infinite elastic solid rock formations, in a one-dimensional setting. The motivation stems from a set of field observations, following seismic events and vibrational tests, suggesting that shaking an oil reservoir is likely to improve oil production rates. This maximization problem is cast into an inverse-source problem, seeking an optimal loading signal that minimizes an objective functional – the reciprocal of kinetic energy in terms of relative pore-fluid wave motion within target poroelastic layers. We use the finite element method to obtain the solution of the governing wave physics of a multi-layered system, where the wave equations for the target poroelastic layers and the elastic wave equation for the surrounding non-permeable layers are coupled with each other. We use a partial-differential-equation-constrained-optimization framework (a state-adjoint-control problem approach) to tackle the minimization problem. The numerical results show that the numerical optimizer recovers optimal loading signals, whose dominant frequencies correspond to amplification frequencies, which can also be obtained by a frequency sweep, leading to larger amplitudes of relative pore-fluid wave motion within the target hydrocarbon formation than other signals.

  5. Movement of fossil pore fluids in granite basement, Illinois

    International Nuclear Information System (INIS)

    Couture, R.A.; Seitz, M.G.

    1986-01-01

    The compositions of pore fluids in granite cores from the Precambrian basement in northern Illinois were determined. The estimated chloride concentration in the aqueous phase increases from near zero at the upper contact with sandstone to 2.7 M at 624 m below the contact. Traces of aliphatic oil are present in the overlying sandstone and the upper 516 m of granite, and oil occupies most of the pore space in one sample of unaltered granite 176 m below the contact. The oil has a Δ 13 C of -25%, about the same as average petroleum. The high concentrations of salt more than 500 m below the contact imply that little or no fresh water has reached these levels of the granite by flow. Lower concentrations near the contact are consistent with replacement of brine in the sandstone by fresh water at least 11 m.y. ago and subsequent upward diffusion of salt from the granite. Geologic data suggest that the time of replacement was about 130 Ma. The purpose of the investigation is to study the record of movement of intergranular fluids within a granite pluton. The composition and movement of ground waters can determine the extent that hazardous or radioactive wastes disposed in igneous rock will remain isolated

  6. Pore-Scale Investigation on Stress-Dependent Characteristics of Granular Packs and Their Impact on Multiphase Fluid Distribution

    Science.gov (United States)

    Torrealba, V.; Karpyn, Z.; Yoon, H.; Hart, D. B.; Klise, K. A.

    2013-12-01

    The pore-scale dynamics that govern multiphase flow under variable stress conditions are not well understood. This lack of fundamental understanding limits our ability to quantitatively predict multiphase flow and fluid distributions in natural geologic systems. In this research, we focus on pore-scale, single and multiphase flow properties that impact displacement mechanisms and residual trapping of non-wetting phase under varying stress conditions. X-ray micro-tomography is used to image pore structures and distribution of wetting and non-wetting fluids in water-wet synthetic granular packs, under dynamic load. Micro-tomography images are also used to determine structural features such as medial axis, surface area, and pore body and throat distribution; while the corresponding transport properties are determined from Lattice-Boltzmann simulations performed on lattice replicas of the imaged specimens. Results are used to investigate how inter-granular deformation mechanisms affect fluid displacement and residual trapping at the pore-scale. This will improve our understanding of the dynamic interaction of mechanical deformation and fluid flow during enhanced oil recovery and geologic CO2 sequestration. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  7. Small fractures in deep sea sediments: indicators of pore fluid migration along compaction faults

    International Nuclear Information System (INIS)

    Buckley, D.E.

    1989-01-01

    A long piston core taken from the Southern Nares Abyssal Plain, intersected four fractures in plastic sediments between 17 and 25 m below the sea floor. Faults have been identified from seismic reflection surveys of sediments in this area. The sampled fractures all occurred in oxidized brown clays. Each fracture consisted of a simple plane having apparent dips ranging from 52-63 0 . One fracture had a well developed pale brown alteration halo extending out to 1.5 cm along this plane. Two fractures had no apparent alteration halo, but one fracture appeared to have fine-scale anastomosing features surrounding the main slip plane. Selective chemical tests for labile metal content in sediments surrounding the fractures revealed that about 70% of the reducible manganese, and 40% of the reducible iron had been leached from the sediments in the alteration halo surrounding the fracture plane. These results suggest that reducing pore fluids had migrated along the fracture plane to cause the observed effects. Implications of this study are that compaction faults may act as episodic conduits for vertical advection of pore water during dewatering of unconsolidated sediments. This may be a significant factor to be considered in assessing the effectiveness of deep sea sediment barriers for radioactive waste disposal. (author)

  8. Phase transitions of fluids in heterogeneous pores

    Directory of Open Access Journals (Sweden)

    A. Malijevský

    2016-03-01

    Full Text Available We study phase behaviour of a model fluid confined between two unlike parallel walls in the presence of long range (dispersion forces. Predictions obtained from macroscopic (geometric and mesoscopic arguments are compared with numerical solutions of a non-local density functional theory. Two capillary models are considered. For a capillary comprising two (differently adsorbing walls we show that simple geometric arguments lead to the generalized Kelvin equation locating very accurately capillary condensation, provided both walls are only partially wet. If at least one of the walls is in complete wetting regime, the Kelvin equation should be modified by capturing the effect of thick wetting films by including Derjaguin's correction. Within the second model, we consider a capillary formed of two competing walls, so that one tends to be wet and the other dry. In this case, an interface localized-delocalized transition occurs at bulk two-phase coexistence and a temperature T*(L depending on the pore width L. A mean-field analysis shows that for walls exhibiting first-order wetting transition at a temperature T_{w}, T_{s} > T*(L > T_{w}, where the spinodal temperature Ts can be associated with the prewetting critical temperature, which also determines a critical pore width below which the interface localized-delocalized transition does not occur. If the walls exhibit critical wetting, the transition is shifted below Tw and for a model with the binding potential W(l=A(Tl-2+B(Tl-3+..., where l is the location of the liquid-gas interface, the transition can be characterized by a dimensionless parameter κ=B/(AL, so that the fluid configuration with delocalized interface is stable in the interval between κ=-2/3 and κ ~ -0.23.

  9. Reduced abrasion drilling fluid

    NARCIS (Netherlands)

    2010-01-01

    A reduced abrasion drilling fluid system and method of drilling a borehole by circulating the reduced abrasion drilling fluid through the borehole is disclosed. The reduced abrasion drilling fluid comprises a drilling fluid, a first additive and a weighting agent, wherein the weighting agent has a

  10. Reduced abrasion drilling fluid

    NARCIS (Netherlands)

    2012-01-01

    A reduced abrasion drilling fluid system and method of drilling a borehole by circulating the reduced abrasion drilling fluid through the borehole is disclosed. The reduced abrasion drilling fluid comprises a drilling fluid, a first additive and a weighting agent, wherein the weighting agent has a

  11. Geochemical and geological constraints on the composition of marine sediment pore fluid: Possible link to gas hydrate deposits

    Digital Repository Service at National Institute of Oceanography (India)

    Mazumdar, A.; Joao, H.M.; Peketi, A.; Dewangan, P.; Kocherla, M.; Joshi, R.K.; Ramprasad, T.

    Pore water sulfate consumption in marine sediments is controlled by microbially driven sulfate reduction via organo-clastic and methane oxidation processes. In this work, we present sediment pore fluid compositions of 10 long sediment cores and high...

  12. Pore-scale simulation of fluid flow and solute dispersion in three-dimensional porous media

    KAUST Repository

    Icardi, Matteo; Boccardo, Gianluca; Marchisio, Daniele L.; Tosco, Tiziana; Sethi, Rajandrea

    2014-01-01

    In the present work fluid flow and solute transport through porous media are described by solving the governing equations at the pore scale with finite-volume discretization. Instead of solving the simplified Stokes equation (very often employed

  13. Pore Characterization of Shale Rock and Shale Interaction with Fluids at Reservoir Pressure-Temperature Conditions Using Small-Angle Neutron Scattering

    Science.gov (United States)

    Ding, M.; Hjelm, R.; Watkins, E.; Xu, H.; Pawar, R.

    2015-12-01

    Oil/gas produced from unconventional reservoirs has become strategically important for the US domestic energy independence. In unconventional realm, hydrocarbons are generated and stored in nanopores media ranging from a few to hundreds of nanometers. Fundamental knowledge of coupled thermo-hydro-mechanical-chemical (THMC) processes that control fluid flow and propagation within nano-pore confinement is critical for maximizing unconventional oil/gas production. The size and confinement of the nanometer pores creates many complex rock-fluid interface interactions. It is imperative to promote innovative experimental studies to decipher physical and chemical processes at the nanopore scale that govern hydrocarbon generation and mass transport of hydrocarbon mixtures in tight shale and other low permeability formations at reservoir pressure-temperature conditions. We have carried out laboratory investigations exploring quantitative relationship between pore characteristics of the Wolfcamp shale from Western Texas and the shale interaction with fluids at reservoir P-T conditions using small-angle neutron scattering (SANS). We have performed SANS measurements of the shale rock in single fluid (e.g., H2O and D2O) and multifluid (CH4/(30% H2O+70% D2O)) systems at various pressures up to 20000 psi and temperature up to 150 oF. Figure 1 shows our SANS data at different pressures with H2O as the pressure medium. Our data analysis using IRENA software suggests that the principal changes of pore volume in the shale occurred on smaller than 50 nm pores and pressure at 5000 psi (Figure 2). Our results also suggest that with increasing P, more water flows into pores; with decreasing P, water is retained in the pores.

  14. Biot Critical Frequency Applied as Common Friction Factor for Chalk with Different Pore Fluids and Temperatures

    DEFF Research Database (Denmark)

    Andreassen, Katrine Alling; Fabricius, Ida Lykke

    2010-01-01

    Injection of water into chalk hydrocarbon reservoirs has lead to mechanical yield and failure. Laboratory experiments on chalk samples correspondingly show that the mechanical properties of porous chalk depend on pore fluid and temperature. Water has a significant softening effect on elastic...... and we propose that the fluid effect on mechanical properties of highly porous chalk may be the result of liquid‐solid friction. Applying a different strain or stress rate is influencing the rock strength and needs to be included. The resulting function is shown to relate to the material dependent...... and rate independent b-factor used when describing the time dependent mechanical properties of soft rock or soils. As a consequence it is then possible to further characterize the material constant from the porosity and permeability of the rock as well as from pore fluid density and viscosity which...

  15. Helium measurements of pore fluids obtained from the San Andreas Fault Observatory at Depth (SAFOD, USA) drill cores

    Science.gov (United States)

    Ali, S.; Stute, M.; Torgersen, T.; Winckler, G.; Kennedy, B. M.

    2011-02-01

    4He accumulated in fluids is a well established geochemical tracer used to study crustal fluid dynamics. Direct fluid samples are not always collectable; therefore, a method to extract rare gases from matrix fluids of whole rocks by diffusion has been adapted. Helium was measured on matrix fluids extracted from sandstones and mudstones recovered during the San Andreas Fault Observatory at Depth (SAFOD) drilling in California, USA. Samples were typically collected as subcores or from drillcore fragments. Helium concentration and isotope ratios were measured 4-6 times on each sample, and indicate a bulk 4He diffusion coefficient of 3.5 ± 1.3 × 10-8 cm2 s-1 at 21°C, compared to previously published diffusion coefficients of 1.2 × 10-18 cm2 s-1 (21°C) to 3.0 × 10-15 cm2 s-1 (150°C) in the sands and clays. Correcting the diffusion coefficient of 4Hewater for matrix porosity (˜3%) and tortuosity (˜6-13) produces effective diffusion coefficients of 1 × 10-8 cm2 s-1 (21°C) and 1 × 10-7 (120°C), effectively isolating pore fluid 4He from the 4He contained in the rock matrix. Model calculations indicate that <6% of helium initially dissolved in pore fluids was lost during the sampling process. Complete and quantitative extraction of the pore fluids provide minimum in situ porosity values for sandstones 2.8 ± 0.4% (SD, n = 4) and mudstones 3.1 ± 0.8% (SD, n = 4).

  16. Influence of Pore-Fluid Pressure on Elastic Wave Velocity and Electrical Conductivity in Water-Saturated Rocks

    Science.gov (United States)

    Higuchi, A.; Watanabe, T.

    2013-12-01

    Pore-fluid pressure in seismogenic zones can play a key role in the occurrence of earthquakes (e.g., Sibson, 2009). Its evaluation via geophysical observations can lead to a good understanding of seismic activities. The evaluation requires a thorough understanding of the influence of the pore-fluid pressure on geophysical observables like seismic velocity and electrical conductivity. We have studied the influence of pore-fluid pressure on elastic wave velocity and electrical conductivity in water-saturated rocks. Fine grained (100-500μm) biotite granite (Aji, Kagawa pref., Japan) was used as rock samples. The density is 2.658-2.668 g/cm3, and the porosity 0.68-0.87%. The sample is composed of 52.8% plagioclase, 36.0% Quartz, 3.0% K-feldspar, 8.2% biotite. SEM images show that a lot of grain boundaries are open. Few intracrystalline cracks were observed. Following the method proposed by David and Zimmerman (2012), the distribution function of crack aspect ratio was evaluated from the pressure dependence of compressional and shear wave velocities in a dry sample. Cylindrical sample has dimensions of 25 mm in diameter and 30 mm in length, and saturated with 0.01 mol/l KCl aqueous solution. Compressional and shear wave velocities were measured with the pulse transmission technique (PZT transducers, f=2 MHz), and electrical conductivity the two-electrode method (Ag-AgCl electrodes, f=1 Hz-100 kHz). Simultaneous measurements of velocities and conductivity were made using a 200 MPa hydrostatic pressure vessel, in which confining and pore-fluid pressures can be separately controlled. The pore-fluid is electrically insulated from the metal work of the pressure vessel by using a newly designed plastic device (Watanabe and Higuchi, 2013). The confining pressure was progressively increased up to 25 MPa, while the pore-fluid pressure was kept at 0.1 MPa. It took five days or longer for the electrical conductivity to become stationary after increasing the confining pressure

  17. Diagenesis in tephra-rich sediments from the Lesser Antilles Volcanic Arc: Pore fluid constraints

    Science.gov (United States)

    Murray, Natalie A.; McManus, James; Palmer, Martin R.; Haley, Brian; Manners, Hayley

    2018-05-01

    We present sediment pore fluid and sediment solid phase results obtained during IODP Expedition 340 from seven sites located within the Grenada Basin of the southern Lesser Antilles Volcanic Arc region. These sites are generally characterized as being low in organic carbon content and rich in calcium carbonate and volcanogenic material. In addition to the typical reactions related to organic matter diagenesis, pore fluid chemistry indicates that the diagenetic reactions fall within two broad categories; (1) reactions related to chemical exchange with volcanogenic material and (2) reactions related to carbonate dissolution, precipitation, or recrystallization. For locations dominated by reaction with volcanogenic material, these sites exhibit increases in dissolved Ca with coeval decreases in Mg. We interpret this behavior as being driven by sediment-water exchange reactions from the alteration of volcanic material that is dispersed throughout the sediment package, which likely result in formation of Mg-rich secondary authigenic clays. In contrast to this behavior, sediment sequences that exhibit decreases in Ca, Mg, Mn, and Sr with depth suggest that carbonate precipitation is an active diagenetic process affecting solute distributions. The distributions of pore fluid 87Sr/86Sr reflect these competitive diagenetic reactions between volcanic material and carbonate, which are inferred by the major cation distributions. From one site where we have solid phase 87Sr/86Sr (site U1396), the carbonate fraction is found to be generally consistent with the contemporaneous seawater isotope values. However, the 87Sr/86Sr of the non-carbonate fraction ranges from 0.7074 to 0.7052, and these values likely represent a mixture of local arc volcanic sources and trans-Atlantic eolian sources. Even at this site where there is clear evidence for diagenesis of volcanogenic material, carbonate diagenesis appears to buffer pore fluid 87Sr/86Sr from the larger changes that might be

  18. Biot Critical Frequency Applied to Description of Failure and Yield of Highly Porous Chalk with Different Pore Fluids

    DEFF Research Database (Denmark)

    Andreassen, Katrine Alling; Fabricius, Ida Lykke

    2010-01-01

    Injection of water into chalk hydrocarbon reservoirs has led to mechanical yield and failure. Laboratory experiments on chalk samples correspondingly show that the mechanical properties of porous chalk depend on pore fluid and temperature. In case of water-saturated samples, the concentration...... is controlled by solid-fluid friction. The reference frequency is thus a measure of this friction, and we propose that the fluid effect on mechanical properties of chalk may be the result of liquid-solid friction. We reviewed 622 published experiments on mechanical properties of porous chalk. The data include...... chalk samples that were tested at temperatures from 20 °C to 130 °C with the following pore fluids: fresh water, synthetic seawater, glycol, and oil of varying viscosity. The critical frequency is calculated for each experiment. For each specimen, we calculate the thickness to the slipping plane outside...

  19. The use of paleo-thermo-barometers and coupled thermal, fluid flow and pore fluid pressure modelling for hydrocarbon and reservoir prediction in fold and thrust belts

    NARCIS (Netherlands)

    Roure, F.; Andriessen, P.A.M.; Callot, J.P.; Ferket, H.; Gonzales, E.; Guilhaumou, N.; Hardebol, N.J.; Lacombe, O.; Malandain, J.; Mougin, P.; Muska, K.; Ortuno, S.; Sassi, W.; Swennen, R.; Vilasi, N.

    2010-01-01

    Basin modelling tools are now more efficient to reconstruct palinspastic structural cross sections and compute the history of temperature, pore-fluid pressure and fluid flow circulations in complex structural settings. In many cases and especially in areas where limited erosion occurred, the use of

  20. Adsorption of fluids in slitlike pores containing a small amount of mobile ions.

    Science.gov (United States)

    Borówko, M; Bucior, K; Sokołowski, S; Staszewski, T

    2005-11-01

    We apply density functional theory to investigate changes in the phase behavior of a fluid caused by the presence of mobile ions inside the pore. The approach has been based on the fundamental measure density functional theory and on the theory of nonuniform electrolytes developed recently by O. Pizio, A. Patrykiejew, S. Sokołowski [J. Chem. Phys. 121 (2005) 11,957]. We have evaluated capillary condensation phase diagrams for pores of different widths and for different concentrations of confined ions. The calculations have demonstrated that the presence of ions leads to lowering the critical temperature and to an increase of the value of the chemical potential at the capillary condensation point.

  1. Direct Numerical Simulation of Low Capillary Number Pore Scale Flows

    Science.gov (United States)

    Esmaeilzadeh, S.; Soulaine, C.; Tchelepi, H.

    2017-12-01

    The arrangement of void spaces and the granular structure of a porous medium determines multiple macroscopic properties of the rock such as porosity, capillary pressure, and relative permeability. Therefore, it is important to study the microscopic structure of the reservoir pores and understand the dynamics of fluid displacements through them. One approach for doing this, is direct numerical simulation of pore-scale flow that requires a robust numerical tool for prediction of fluid dynamics and a detailed understanding of the physical processes occurring at the pore-scale. In pore scale flows with a low capillary number, Eulerian multiphase methods are well-known to produce additional vorticity close to the interface. This is mainly due to discretization errors which lead to an imbalance of capillary pressure and surface tension forces that causes unphysical spurious currents. At the pore scale, these spurious currents can become significantly stronger than the average velocity in the phases, and lead to unphysical displacement of the interface. In this work, we first investigate the capability of the algebraic Volume of Fluid (VOF) method in OpenFOAM for low capillary number pore scale flow simulations. Afterward, we compare VOF results with a Coupled Level-Set Volume of Fluid (CLSVOF) method and Iso-Advector method. It has been shown that the former one reduces the VOF's unphysical spurious currents in some cases, and both are known to capture interfaces sharper than VOF. As the conclusion, we will investigate that whether the use of CLSVOF or Iso-Advector will lead to less spurious velocities and more accurate results for capillary driven pore-scale multiphase flows or not. Keywords: Pore-scale multiphase flow, Capillary driven flows, Spurious currents, OpenFOAM

  2. Laboratory triggering of stick-slip events by oscillatory loading in the presence of pore fluid with implications for physics of tectonic tremor

    Science.gov (United States)

    Bartlow, Noel M.; Lockner, David A.; Beeler, Nicholas M.

    2012-01-01

    The physical mechanism by which the low-frequency earthquakes (LFEs) that make up portions of tectonic (also called non-volcanic) tremor are created is poorly understood. In many areas of the world, tectonic tremor and LFEs appear to be strongly tidally modulated, whereas ordinary earthquakes are not. Anomalous seismic wave speeds, interpreted as high pore fluid pressure, have been observed in regions that generate tremor. Here we build upon previous laboratory studies that investigated the response of stick-slip on artificial faults to oscillatory, tide-like loading. These previous experiments were carried out using room-dry samples of Westerly granite, at one effective stress. Here we augment these results with new experiments on Westerly granite, with the addition of varying effective stress using pore fluid at two pressures. We find that raising pore pressure, thereby lowering effective stress can significantly increase the degree of correlation of stick-slip to oscillatory loading. We also find other pore fluid effects that become important at higher frequencies, when the period of oscillation is comparable to the diffusion time of pore fluid into the fault. These results help constrain the conditions at depth that give rise to tidally modulated LFEs, providing confirmation of the effective pressure law for triggering and insights into why tremor is tidally modulated while earthquakes are at best only weakly modulated.

  3. Pore-scale observation and 3D simulation of wettability effects on supercritical CO2 - brine immiscible displacement in drainage

    Science.gov (United States)

    Hu, R.; Wan, J.; Chen, Y.

    2016-12-01

    Wettability is a factor controlling the fluid-fluid displacement pattern in porous media and significantly affects the flow and transport of supercritical (sc) CO2 in geologic carbon sequestration. Using a high-pressure micromodel-microscopy system, we performed drainage experiments of scCO2 invasion into brine-saturated water-wet and intermediate-wet micromodels; we visualized the scCO2 invasion morphology at pore-scale under reservoir conditions. We also performed pore-scale numerical simulations of the Navier-Stokes equations to obtain 3D details of fluid-fluid displacement processes. Simulation results are qualitatively consistent with the experiments, showing wider scCO2 fingering, higher percentage of scCO2 and more compact displacement pattern in intermediate-wet micromodel. Through quantitative analysis based on pore-scale simulation, we found that the reduced wettability reduces the displacement front velocity, promotes the pore-filling events in the longitudinal direction, delays the breakthrough time of invading fluid, and then increases the displacement efficiency. Simulated results also show that the fluid-fluid interface area follows a unified power-law relation with scCO2 saturation, and show smaller interface area in intermediate-wet case which suppresses the mass transfer between the phases. These pore-scale results provide insights for the wettability effects on CO2 - brine immiscible displacement in geologic carbon sequestration.

  4. Theory of vibratory mobilization and break-up of non-wetting fluids entrapped in pore constrictions

    Science.gov (United States)

    Beresnev, I.; Li, W.; Vigil, D.

    2006-12-01

    Quantitative dynamics of a non-wetting (e. g., NAPL) ganglion entrapped in a pore constriction and subjected to vibrations can be approximated by the equation of motion of an oscillator moving under the effect of the external pressure gradient, inertial oscillatory force, and restoring capillary force. The solution of the equation provides the conditions under which the droplet experiences forced oscillations without being mobilized or is liberated upon the acceleration of the wall exceeding an "unplugging" threshold. This solution provides a quantitative tool for the estimation of the parameters of vibratory fields needed to liberate entrapped non-wetting fluids. For typical pore sizes encountered in reservoirs and aquifers, wall accelerations must exceed at least several m/sec2 and even higher levels to mobilize the droplets of NAPL; however, in the populations of ganglia entrapped in natural porous environments, many may reside very near their mobilization thresholds and may be mobilized by extremely low accelerations as well. For given acceleration, lower seismic frequencies are more efficient. The ganglia may also break up into smaller pieces when passing through pore constrictions. The snap-off is governed by the geometry only; for constrictions with sinusoidal profile (spatial wavelength of L and maximum and minimum radii of rmax and rmin, the break-up occurs if L > 2π(rmin rmax)1/2. Computational fluid dynamics shows the details of the break-up process.

  5. Fast intraslab fluid-flow events linked to pulses of high pore fluid pressure at the subducted plate interface

    Science.gov (United States)

    Taetz, Stephan; John, Timm; Bröcker, Michael; Spandler, Carl; Stracke, Andreas

    2018-01-01

    A better understanding of the subduction zone fluid cycle and its chemical-mechanical feedback requires in-depth knowledge about how fluids flow within and out of descending slabs. Relicts of fluid-flow systems in exhumed rocks of fossil subduction zones allow for identification of the general relationships between dehydration reactions, fluid pathway formation, the dimensions and timescales of distinct fluid flow events; all of which are required for quantitative models for fluid-induced subduction zone processes. Two types of garnet-quartz-phengite veins can be distinguished in an eclogite-facies mélange block from the Pouébo Eclogite Mélange, New Caledonia. These veins record synmetamorphic internal fluid release by mineral breakdown reactions (type I veins), and infiltration of an external fluid (type II veins) with the associated formation of a reaction selvage. The dehydration and fluid migration documented by the type I veins likely occurred on a timescale of 105-106 years, based on average subduction rates and metamorphic conditions required for mineral dehydration and fluid flow. The timeframe of fluid-rock interaction between the external fluid and the wall-rock of the type II veins is quantified using a continuous bulk-rock Li-diffusion profile perpendicular to a vein and its metasomatic selvage. Differences in Li concentration between the internal and external fluid reservoirs resulted in a distinct diffusion profile (decreasing Li concentration and increasing δ7 Li) as the reaction front propagated into the host rock. Li-chronometric constraints indicate that the timescales of fluid-rock interaction associated with type II vein formation are on the order of 1 to 4 months (0.150-0.08+0.14 years). The short-lived, pulse-like character of this process is consistent with the notion that fluid flow caused by oceanic crust dehydration at the blueschist-to-eclogite transition contributes to or even dominates episodic pore fluid pressure increases at the

  6. Research on the porous flow of the mechanism of viscous-elastic fluids displacing residual oil droplets in micro pores

    Science.gov (United States)

    Dong, Guanyu

    2018-03-01

    In order to analyze the microscopic stress field acting on residual oil droplets in micro pores, calculate its deformation, and explore the hydrodynamic mechanism of viscous-elastic fluids displacing oil droplets, the viscous-elastic fluid flow equations in micro pores are established by choosing the Upper Convected Maxwell constitutive equation; the numerical solutions of the flow field are obtained by volume control and Alternate Direction Implicit methods. From the above, the velocity field and microscopic stress field; the forces acting on residual oil droplets; the deformations of residual oil droplets by various viscous-elastic displacing fluids and at various Wiesenberg numbers are calculated and analyzed. The result demonstrated that both the normal stress and horizontal force acting on the residual oil droplets by viscous-elastic fluids are much larger compared to that of inelastic fluid; the distribution of normal stress changes abruptly; under the condition of the same pressure gradient in the system under investigation, the ratio of the horizontal forces acting on the residual oil droplets by different displacing fluids is about 1:8:20, which means that under the above conditions, the driving force on a oil droplet is 20 times higher for a viscous-elastic fluid compared to that of a Newtonian Fluid. The conclusions are supportive of the mechanism that viscous-elastic driving fluids can increase the Displacement Efficiency. This should be of help in designing new chemicals and selecting Enhanced Oil Recovery systems.

  7. Pore scale simulations for the extension of the Darcy-Forchheimer law to shear thinning fluids

    Science.gov (United States)

    Tosco, Tiziana; Marchisio, Daniele; Lince, Federica; Boccardo, Gianluca; Sethi, Rajandrea

    2014-05-01

    Flow of non-Newtonian fluids through porous media at high Reynolds numbers is often encountered in chemical, pharmaceutical and food as well as petroleum and groundwater engineering and in many other industrial applications (1 - 2). In particular, the use of shear thinning polymeric solutions has been recently proposed to improve colloidal stability of micro- and nanoscale zerovalent iron particles (MZVI and NZVI) for groundwater remediation. In all abovementioned applications, it is of paramount importance to correctly predict the pressure drop resulting from non-Newtonian fluid flow through the porous medium. For small Reynolds numbers, usually up to 1, typical of laboratory column tests, the extended Darcy law is known to be applicable also to non Newtonian fluids, provided that all non-Newtonian effects are lumped together into a proper viscosity parameter (1,3). For higher Reynolds numbers (eg. close to the injection wells) non linearities between pressure drop and flow rate arise, and the Darcy-Forchheimer law holds for Newtonian fluids, while for non-Newtonian fluids, it has been demonstrated that, at least for simple rheological models (eg. power law fluids) a generalized Forchheimer law can be applied, even if the determination of the flow parameters (permeability K, inertial coefficient β, and equivalent viscosity) is not straightforward. This work (co-funded by European Union project AQUAREHAB FP7 - Grant Agreement Nr. 226565) aims at proposing an extended formulation of the Darcy-Forchheimer law also for shear-thinning fluids, and validating it against results of pore-scale simulations via computational fluid dynamics (4). Flow simulations were performed using Fluent 12.0 on four different 2D porous domains for Newtonian and non-Newtonian fluids (Cross, Ellis and Carreau models). The micro-scale flow simulation results are analyzed in terms of 'macroscale' pressure drop between inlet and outlet of the model domain as a function of flow rate. The

  8. Pore Fluid Evolution Influenced by Volcanic Activities and Related Diagenetic Processes in a Rift Basin: Evidence from the Paleogene Medium-Deep Reservoirs of Huanghekou Sag, Bohai Bay Basin, China

    Directory of Open Access Journals (Sweden)

    Zhongheng Sun

    2017-01-01

    Full Text Available Volcanic activities exert a significant influence on pore fluid property and related diagenetic processes that substantially controlled reservoirs quality. Analysis of Paleogene medium-deep sandstones on the Huanghekou Sag provides insight into relating the diagenetic processes to pore fluid property evolution influenced by volcanic activities. Three distinct types of pore fluids were identified on the basis of an integrated and systematic analysis including core and thin section observation, XRD, SEM, CL, and trace element. Alkaline aqueous medium environment occurred in E2s1+2 where volcanic activities have insignificant influence on pore fluids, evidenced by typical alkaline diagenetic events such as K-feldspar albitization, quartz dissolution, feldspar dissolution, and carbonate cementation. During the deposition of E3d3, influx of terrestrial freshwater and alteration of ferromagnesian-rich pore water result in the formation of mixing aqueous medium environment through volcanic eruption dormancy causing zeolite dissolution, clay mineral transformation, and K-feldspar albitization. Ferromagnesian-rich aqueous medium environment developed resulting from the intensive hydrolysis of the unstable ferromagnesian minerals formed due to intense volcanic activities during E3d1+2 and corresponding predominant diagenetic processes were characterized by the precipitation and dissolution of low-silica zeolites. Therefore, the differential properties of pore fluids caused various diagenetic processes controlling reservoir quality.

  9. Material Exchange and Migration between Pore Fluids and Sandstones during Diagenetic Processes in Rift Basins: A Case Study Based on Analysis of Diagenetic Products in Dongying Sag, Bohai Bay Basin, East China

    Directory of Open Access Journals (Sweden)

    W. Meng

    2018-01-01

    Full Text Available The exchange and migration of basin materials that are carried by pore fluids are the essence of diagenesis, which can alter physical properties of clastic rocks as well as control formation and distribution of favorable reservoirs of petroliferous basins. Diagenetic products and pore fluids, resulting from migration and exchange of basin materials, can be used to deduce those processes. In this study, 300 core samples from 46 wells were collected for preparation of casting thin sections, SEM, BSE, EDS, inclusion analysis, and isotope analysis in Dongying Sag, Bohai Bay Basin, East China. Combined with geochemical characteristics of pore fluids and geological background of the study area, the source and exchange mechanisms of materials in the pore fluids of rift basins were discussed. It was revealed that the material exchange of pore fluids could be divided into five stages. The first stage was the evaporation concentration stage during which mainly Ca2+, Mg2+, and CO32- precipitated as high-Mg calcites. Then came the shale compaction stage, when mainly Ca2+ and CO32- from shale compaction water precipitated as calcites. The third stage was the carboxylic acid dissolution stage featured by predominant dissolution of plagioclases, during which Ca2+ and Na+ entered pore fluids, and Si and Al also entered pore fluids and then migrated as clathrates, ultimately precipitating as kaolinites. The fourth stage was the organic CO2 stage, mainly characterized by the kaolinization of K-feldspar as well as dissolution of metamorphic lithic fragments and carbon cements. During this stage, K+, Fe2+, Mg2+, Ca2+, HCO3-, and CO32- entered pore fluids. The fifth stage was the alkaline fluid stage, during which the cementation of ferro-carbonates and ankerites as well as illitization or chloritization of kaolinites prevailed, leading to the precipitation of K+, Fe2+, Mg2+, Ca2+, and CO32- from pore fluids.

  10. Round robin test for define an accurate protocol to measure the pore fluid pH of low-pH cementitious materials

    International Nuclear Information System (INIS)

    Alonso, M.C.; Garcia Calvo, J.L.; Pettersson, S.; Puigdomenech, I.; Cunado, M.A.; Vuorio, M.; Weber, H.; Ueda, H.; Naito, M.; Walker, C.; Takeshi, Y.; Cau Dit Coumes, C.

    2012-01-01

    The present research belongs to an international project where several of the main nuclear waste management agencies have been involved. The main objective is the development of agreed procedures or protocols for measuring the pH value using low-pH cementitious products (LopHC). The Pore Fluid Expression (PFE) has been identified as reference method and Ex-situ Leaching methods (ELS) with two variants (filtering and without filtering the obtained suspension) have been identified as routine methods. Both methodologies are based on the extraction of the pore solution of the concrete before pH determination. The protocols employed were based on a broad literature review and in fitting the more critical parameters, such as the sample size, the carbonation affection, the leaching of cement hydrates during the measurement, etc. Moreover, the routine methods were validated with respect to the pore fluid expression results. It appears that the repeatability of the 3 pH measurement protocols is very good and that the results obtained with both ESL procedures agree well with the results given by the PFE technique in the case of low-pH cementitious materials and are acceptable in the case of cementitious materials with high pore fluid pH values, in that case some corrections considering the Ca content of the solution may be needed

  11. The charge effect on the hindrance factors for diffusion and convection of a solute in pores: II

    Energy Technology Data Exchange (ETDEWEB)

    Akinaga, Takeshi; O-tani, Hideyuki; Sugihara-Seki, Masako, E-mail: r091077@kansai-u.ac.jp [Department of Pure and Applied Physics, Kansai University, Yamate-cho, Suita, Osaka 564-8680 (Japan)

    2012-10-15

    The diffusion and convection of a solute suspended in a fluid across porous membranes are known to be reduced compared to those in a bulk solution, owing to the fluid mechanical interaction between the solute and the pore wall as well as steric restriction. If the solute and the pore wall are electrically charged, the electrostatic interaction between them could affect the hindrance to diffusion and convection. In this study, the transport of charged spherical solutes through charged circular cylindrical pores filled with an electrolyte solution containing small ions was studied numerically by using a fluid mechanical and electrostatic model. Based on a mean field theory, the electrostatic interaction energy between the solute and the pore wall was estimated from the Poisson-Boltzmann equation, and the charge effect on the solute transport was examined for the solute and pore wall of like charge. The results were compared with those obtained from the linearized form of the Poisson-Boltzmann equation, i.e. the Debye-Hueckel equation. (paper)

  12. A thermodynamically consistent model for granular-fluid mixtures considering pore pressure evolution and hypoplastic behavior

    Science.gov (United States)

    Hess, Julian; Wang, Yongqi

    2016-11-01

    A new mixture model for granular-fluid flows, which is thermodynamically consistent with the entropy principle, is presented. The extra pore pressure described by a pressure diffusion equation and the hypoplastic material behavior obeying a transport equation are taken into account. The model is applied to granular-fluid flows, using a closing assumption in conjunction with the dynamic fluid pressure to describe the pressure-like residual unknowns, hereby overcoming previous uncertainties in the modeling process. Besides the thermodynamically consistent modeling, numerical simulations are carried out and demonstrate physically reasonable results, including simple shear flow in order to investigate the vertical distribution of the physical quantities, and a mixture flow down an inclined plane by means of the depth-integrated model. Results presented give insight in the ability of the deduced model to capture the key characteristics of granular-fluid flows. We acknowledge the support of the Deutsche Forschungsgemeinschaft (DFG) for this work within the Project Number WA 2610/3-1.

  13. A study to investigate viscous coupling effects on the hydraulic conductance of fluid layers in two-phase flow at the pore level.

    Science.gov (United States)

    Shams, Mosayeb; Raeini, Ali Q; Blunt, Martin J; Bijeljic, Branko

    2018-07-15

    This paper examines the role of momentum transfer across fluid-fluid interfaces in two-phase flow. A volume-of-fluid finite-volume numerical method is used to solve the Navier-Stokes equations for two-phase flow at the micro-scale. The model is applied to investigate viscous coupling effects as a function of the viscosity ratio, the wetting phase saturation and the wettability, for different fluid configurations in simple pore geometries. It is shown that viscous coupling effects can be significant for certain pore geometries such as oil layers sandwiched between water in the corner of mixed wettability capillaries. A simple parametric model is then presented to estimate general mobility terms as a function of geometric properties and viscosity ratio. Finally, the model is validated by comparison with the mobilities computed using direct numerical simulation. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Condensation pressures in small pores: An analytical model based on density functional theory

    International Nuclear Information System (INIS)

    Nilson, R.H.; Griffiths, S.K.

    1999-01-01

    Integral methods are used to derive an analytical expression describing fluid condensation pressures in slit pores bounded by parallel plane walls. To obtain this result, the governing equations of density functional theory (DFT) are integrated across the pore width assuming that fluid densities within adsorbed layers are spatially uniform. The thickness, density, and free energy of these layers are expressed as composite functions constructed from asymptotic limits applicable to small and large pores. By equating the total free energy of the adsorbed layers to that of a liquid-full pore, we arrive at a closed-form expression for the condensation pressure in terms of the pore size, surface tension, and Lennard-Jones parameters of the adsorbent and adsorbate molecules. The resulting equation reduces to the Kelvin equation in the large-pore limit. It further reproduces the condensation pressures computed by means of the full DFT equations for all pore sizes in which phase transitions are abrupt. Finally, in the limit of extremely small pores, for which phase transitions may be smooth and continuous, this simple analytical expression provides a good approximation to the apparent condensation pressure indicated by the steepest portion of the adsorption isotherm computed via DFT. copyright 1999 American Institute of Physics

  15. Modeling seismic stimulation: Enhanced non-aqueous fluid extraction from saturated porous media under pore-pressure pulsing at low frequencies

    Science.gov (United States)

    Lo, Wei-Cheng; Sposito, Garrison; Huang, Yu-Han

    2012-03-01

    Seismic stimulation, the application of low-frequency stress-pulsing to the boundary of a porous medium containing water and a non-aqueous fluid to enhance the removal of the latter, shows great promise for both contaminated groundwater remediation and enhanced oil recovery, but theory to elucidate the underlying mechanisms lag significantly behind the progress achieved in experimental research. We address this conceptual lacuna by formulating a boundary-value problem to describe pore-pressure pulsing at seismic frequencies that is based on the continuum theory of poroelasticity for an elastic porous medium permeated by two immiscible fluids. An exact analytical solution is presented that is applied numerically using elasticity parameters and hydraulic data relevant to recent proof-of-principle laboratory experiments investigating the stimulation-induced mobilization of trichloroethene (TCE) in water flowing through a compressed sand core. The numerical results indicated that significant stimulation-induced increases of the TCE concentration in effluent can be expected from pore-pressure pulsing in the frequency range of 25-100 Hz, which is in good agreement with what was observed in the laboratory experiments. Sensitivity analysis of our numerical results revealed that the TCE concentration in the effluent increases with the porous medium framework compressibility and the pulsing pressure. Increasing compressibility also leads to an optimal stimulation response at lower frequencies, whereas changing the pulsing pressure does not affect the optimal stimulation frequency. Within the context of our model, the dominant physical cause for enhancement of non-aqueous fluid mobility by seismic stimulation is the dilatory motion of the porous medium in which the solid and fluid phases undergo opposite displacements, resulting in stress-induced changes of the pore volume.

  16. TIG Dressing Effects on Weld Pores and Pore Cracking of Titanium Weldments

    Directory of Open Access Journals (Sweden)

    Hui-Jun Yi

    2016-10-01

    Full Text Available Weld pores redistribution, the effectiveness of using tungsten inert gas (TIG dressing to remove weld pores, and changes in the mechanical properties due to the TIG dressing of Ti-3Al-2.5V weldments were studied. Moreover, weld cracks due to pores were investigated. The results show that weld pores less than 300 μm in size are redistributed or removed via remelting due to TIG dressing. Regardless of the temperature condition, TIG dressing welding showed ductility, and there was a loss of 7% tensile strength of the weldments. Additionally, it was considered that porosity redistribution by TIG dressing was due to fluid flow during the remelting of the weld pool. Weld cracks in titanium weldment create branch cracks around pores that propagate via the intragranular fracture, and oxygen is dispersed around the pores. It is suggested that the pore locations around the LBZ (local brittle zone and stress concentration due to the pores have significant effects on crack initiation and propagation.

  17. Charge effects on hindrance factors for diffusion and convection of solute in pores I

    Energy Technology Data Exchange (ETDEWEB)

    O-tani, Hideyuki [Graduate School of Science and Engineering, Kansai University, Yamate-cho, Suita, Osaka 564-8680 (Japan); Akinaga, Takeshi; Sugihara-Seki, Masako, E-mail: ga8d002@kansai-u.ac.jp [Department of Pure and Applied Physics, Kansai University, Yamate-cho, Suita, Osaka 564-8680 (Japan)

    2011-12-01

    The transport of a spherical solute through a long circular cylindrical pore filled with an electrolyte solution is studied numerically, in the presence of constant surface charge on the solute and the pore wall. Fluid dynamic analyses were carried out to calculate the flow field around the solute in the pore to evaluate the drag coefficients exerted on the solute. Electrical potentials around the solute in the electrolyte solution were computed based on a mean-field theory to provide the interaction energy between the charged solute and the pore wall. Combining the results of the fluid dynamic and electrostatic analyses, we estimated the rate of the diffusive and convective transport of the solute across the pore. Although the present estimates of the drag coefficients on the solute suggest more than 10% difference from existing studies, depending on the radius ratio of the solute relative to the pore and the radial position of the solute center in the pore, this difference leads to a minor effect on the hindrance factors. It was found that even at rather large ion concentrations, the repulsive electrostatic interaction between the charged solute and the pore wall of like charge could significantly reduce the transport rate of the solute.

  18. Filtering reducer of flushing fluid

    Energy Technology Data Exchange (ETDEWEB)

    Secu, P; Apostu, M; Basarabescu, T; Popescu, F

    1981-02-28

    This is a patent of a filtering reducer of flushing fluid on a water base with low content of solid particles used at temperatures of roughly 200/sup 0/C. With the use of the proposed filtering reducer, there is no excessive increase in viscosity and gelatinization of the flushing fluids without restriction in the quantity of reducer needed to guarantee the required filtering. There is a possibility of recovering the polyalkylphenol vat residues obtained in the production of nonyl phenol. It is possible to reduce the time of treatment and dissolving of the product; there is no danger of plugging of the productive oil beds. The process of hydration of clay is excluded.

  19. Pore-scale uncertainty quantification with multilevel Monte Carlo

    KAUST Repository

    Icardi, Matteo

    2014-01-06

    Computational fluid dynamics (CFD) simulations of pore-scale transport processes in porous media have recently gained large popularity. However the geometrical details of the pore structures can be known only in a very low number of samples and the detailed flow computations can be carried out only on a limited number of cases. The explicit introduction of randomness in the geometry and in other setup parameters can be crucial for the optimization of pore-scale investigations for random homogenization. Since there are no generic ways to parametrize the randomness in the porescale structures, Monte Carlo techniques are the most accessible to compute statistics. We propose a multilevel Monte Carlo (MLMC) technique to reduce the computational cost of estimating quantities of interest within a prescribed accuracy constraint. Random samples of pore geometries with a hierarchy of geometrical complexities and grid refinements, are synthetically generated and used to propagate the uncertainties in the flow simulations and compute statistics of macro-scale effective parameters.

  20. Porous media fluid transport and pore structure

    CERN Document Server

    Dullien, F A L

    1992-01-01

    This book examines the relationship between transport properties and pore structure of porous material. Models of pore structure are presented with a discussion of how such models can be used to predict the transport properties of porous media. Portions of the book are devoted to interpretations of experimental results in this area and directions for future research. Practical applications are given where applicable, and are expected to be useful for a large number of different fields, including reservoir engineering, geology, hydrogeology, soil science, chemical process engineering, biomedica

  1. Condensation pressures in small pores: An analytical model based on density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    R. H. Nilson; S. K. Griffiths

    1999-02-01

    Adsorption and condensation are critical to many applications of porous materials including filtration, separation, and the storage of gases. Integral methods are used to derive an analytical expression describing fluid condensation pressures in slit pores bounded by parallel plane walls. To obtain this result, the governing equations of Density Functional Theory (DFT) are integrated across the pore width assuming that fluid densities within adsorbed layers are spatially uniform. The thickness, density, and energy of these layers are expressed as composite functions constructed from asymptotic limits applicable to small and large pores. By equating the total energy of the adsorbed layers to that of a liquid-full pore, the authors arrive at a closed-form expression for the condensation pressure in terms of the pore size, surface tension, and Lennard-Jones parameters of the adsorbent and adsorbate molecules. The resulting equation reduces to the Kelvin equation in the large-pore limit. It further reproduces the condensation pressures computed by means of the full DFT equations for all pore sizes in which phase transitions are abrupt. Finally, in the limit of extremely small pores, for which phase transitions may be smooth and continuous, this simple analytical expression provides a good approximation to the apparent condensation pressure indicated by the steepest portion of the adsorption isotherm computed via DFT.

  2. Estimation of adsorption-induced pore pressure and confinement in a nanoscopic slit pore by a density functional theory

    Science.gov (United States)

    Grégoire, David; Malheiro, Carine; Miqueu, Christelle

    2018-03-01

    This study aims at characterising the adsorption-induced pore pressure and confinement in nanoscopic pores by molecular non-local density functional theory (DFT). Considering its important potential industrial applications, the adsorption of methane in graphitic slit pores has been selected as the test case. While retaining the accuracy of molecular simulations at pore scale, DFT has a very low computational cost that allows obtaining highly resolved pore pressure maps as a function of both pore width and thermodynamic conditions. The dependency of pore pressure on these parameters (pore width, pressure and temperature) is carefully analysed in order to highlight the effect of each parameter on the confined fluid properties that impact the solid matrix.

  3. AqSo_NaCl: Computer program to calculate p-T-V-x properties in the H2O-NaCl fluid system applied to fluid inclusion research and pore fluid calculation

    Science.gov (United States)

    Bakker, Ronald J.

    2018-06-01

    The program AqSo_NaCl has been developed to calculate pressure - molar volume - temperature - composition (p-V-T-x) properties, enthalpy, and heat capacity of the binary H2O-NaCl system. The algorithms are designed in BASIC within the Xojo programming environment, and can be operated as stand-alone project with Macintosh-, Windows-, and Unix-based operating systems. A series of ten self-instructive interfaces (modules) are developed to calculate fluid inclusion properties and pore fluid properties. The modules may be used to calculate properties of pure NaCl, the halite-liquidus, the halite-vapourus, dew-point and bubble-point curves (liquid-vapour), critical point, and SLV solid-liquid-vapour curves at temperatures above 0.1 °C (with halite) and below 0.1 °C (with ice or hydrohalite). Isochores of homogeneous fluids and unmixed fluids in a closed system can be calculated and exported to a.txt file. Isochores calculated for fluid inclusions can be corrected according to the volumetric properties of quartz. Microthermometric data, i.e. dissolution temperatures and homogenization temperatures, can be used to calculated bulk fluid properties of fluid inclusions. Alternatively, in the absence of total homogenization temperature the volume fraction of the liquid phase in fluid inclusions can be used to obtain bulk properties.

  4. Micro-CT Pore Scale Study Of Flow In Porous Media: Effect Of Voxel Resolution

    Science.gov (United States)

    Shah, S.; Gray, F.; Crawshaw, J.; Boek, E.

    2014-12-01

    In the last few years, pore scale studies have become the key to understanding the complex fluid flow processes in the fields of groundwater remediation, hydrocarbon recovery and environmental issues related to carbon storage and capture. A pore scale study is often comprised of two key procedures: 3D pore scale imaging and numerical modelling techniques. The essence of a pore scale study is to test the physics implemented in a model of complicated fluid flow processes at one scale (microscopic) and then apply the model to solve the problems associated with water resources and oil recovery at other scales (macroscopic and field). However, the process of up-scaling from the pore scale to the macroscopic scale has encountered many challenges due to both pore scale imaging and modelling techniques. Due to the technical limitations in the imaging method, there is always a compromise between the spatial (voxel) resolution and the physical volume of the sample (field of view, FOV) to be scanned by the imaging methods, specifically X-ray micro-CT (XMT) in our case In this study, a careful analysis was done to understand the effect of voxel size, using XMT to image the 3D pore space of a variety of porous media from sandstones to carbonates scanned at different voxel resolution (4.5 μm, 6.2 μm, 8.3 μm and 10.2 μm) but keeping the scanned FOV constant for all the samples. We systematically segment the micro-CT images into three phases, the macro-pore phase, an intermediate phase (unresolved micro-pores + grains) and the grain phase and then study the effect of voxel size on the structure of the macro-pore and the intermediate phases and the fluid flow properties using lattice-Boltzmann (LB) and pore network (PN) modelling methods. We have also applied a numerical coarsening algorithm (up-scale method) to reduce the computational power and time required to accurately predict the flow properties using the LB and PN method.

  5. Systematics of Alkali Metals in Pore Fluids from Serpentinite Mud Volcanoes: IODP Expedition 366

    Science.gov (United States)

    Wheat, C. G.; Ryan, J.; Menzies, C. D.; Price, R. E.; Sissmann, O.

    2017-12-01

    IODP Expedition 366 focused, in part, on the study of geo­chemical cycling, matrix alteration, material and fluid transport, and deep biosphere processes within the subduction channel in the Mariana forearc. This was accomplished through integrated sampling of summit and flank regions of three active serpentinite mud volcanoes (Yinazao (Blue Moon), Asùt Tesoro (Big Blue), and Fantangisña (Celestial) Seamounts). These edifices present a transect of depths to the Pacific Plate, allowing one to characterize thermal, pressure and compositional effects on processes that are associated with the formation of serpentinite mud volcanoes and continued activity below and within them. Previous coring on ODP Legs 125 and 195 at two other serpentinite mud volcanoes (Conical and South Chamorro Seamounts) and piston, gravity, and push cores from several other Mariana serpentinite mud volcanoes add to this transect of sites where deep-sourced material is discharged at the seafloor. Pore waters (149 samples) were squeezed from serpentinite materials to determine the composition of deep-sourced fluid and to assess the character, extent, and effect of diagenetic reactions and mixing with seawater on the flanks of the seamounts as the serpentinite matrix weathers. In addition two Water Sampler Temperature Tool (WSTP) fluid samples were collected within two of the cased boreholes, each with at least 30 m of screened casing that allows formations fluids to discharge into the borehole. Shipboard results for Na and K record marked seamount-to-seamount differences in upwelling summit fluids, and complex systematics in fluids obtained from flank sites. Here we report new shore-based Rb and Cs measurements, two elements that have been used to constrain the temperature of the deep-sourced fluid. Data are consistent with earlier coring and drilling expeditions, resulting in systematic changes with depth (and by inference temperature) to the subduction channel.

  6. Capillary pressure across a pore throat in the presence of surfactants

    KAUST Repository

    Jang, Junbong

    2016-11-22

    Capillarity controls the distribution and transport of multiphase and immiscible fluids in soils and fractured rocks; therefore, capillarity affects the migration of nonaqueous contaminants and remediation strategies for both LNAPLs and DNAPLs, constrains gas and oil recovery, and regulates CO2 injection and geological storage. Surfactants alter interfacial tension and modify the invasion of pores by immiscible fluids. Experiments are conducted to explore the propagation of fluid interfaces along cylindrical capillary tubes and across pore constrictions in the presence of surfactants. Measured pressure signatures reflect the interaction between surface tension, contact angle, and the pore geometry. Various instabilities occur as the interface traverses the pore constriction, consequently, measured pressure signatures differ from theoretical trends predicted from geometry, lower capillary pressures are generated in advancing wetting fronts, and jumps are prone to under-sampling. Contact angle and instabilities are responsible for pronounced differences between pressure signatures recorded during advancing and receding tests. Pressure signatures gathered with surfactant solutions suggest changes in interfacial tension at the constriction; the transient surface tension is significantly lower than the value measured in quasi-static conditions. Interface stiffening is observed during receding fronts for solutions near the critical micelle concentration. Wetting liquids tend to form plugs at pore constrictions after the invasion of a nonwetting fluid; plugs split the nonwetting fluid into isolated globules and add resistance against fluid flow.

  7. The Effect of the Pore Entrance on Particle Motion in Slit Pores: Implications for Ultrathin Membranes.

    Science.gov (United States)

    Delavari, Armin; Baltus, Ruth

    2017-08-10

    Membrane rejection models generally neglect the effect of the pore entrance on intrapore particle transport. However, entrance effects are expected to be particularly important with ultrathin membranes, where membrane thickness is typically comparable to pore size. In this work, a 2D model was developed to simulate particle motion for spherical particles moving at small Re and infinite Pe from the reservoir outside the pore into a slit pore. Using a finite element method, particles were tracked as they accelerated across the pore entrance until they reached a steady velocity in the pore. The axial position in the pore where particle motion becomes steady is defined as the particle entrance length (PEL). PELs were found to be comparable to the fluid entrance length, larger than the pore size and larger than the thickness typical of many ultrathin membranes. Results also show that, in the absence of particle diffusion, hydrodynamic particle-membrane interactions at the pore mouth result in particle "funneling" in the pore, yielding cross-pore particle concentration profiles focused at the pore centerline. The implications of these phenomena on rejection from ultrathin membranes are examined.

  8. Effect of Pore Geometry on Gas Adsorption: Grand Canonical Monte Carlo Simulation Studies

    International Nuclear Information System (INIS)

    Lee, Eon Ji; Chang, Rak Woo; Han, Ji Hyung; Chung, Taek Dong

    2012-01-01

    In this study, we investigated the pure geometrical effect of porous materials in gas adsorption using the grand canonical Monte Carlo simulations of primitive gas-pore models with various pore geometries such as planar, cylindrical, and random pore geometries. Although the model does not possess atomistic level details of porous materials, our simulation results provided many insightful information in the effect of pore geometry on the adsorption behavior of gas molecules. First, the surface curvature of porous materials plays a significant role in the amount of adsorbed gas molecules: the concave surface such as in cylindrical pores induces more attraction between gas molecules and pore, which results in the enhanced gas adsorption. On the contrary, the convex surface of random pores gives the opposite effect. Second, this geometrical effect shows a nonmonotonic dependence on the gas-pore interaction strength and length. Third, as the external gas pressure is increased, the change in the gas adsorption due to pore geometry is reduced. Finally, the pore geometry also affects the collision dynamics of gas molecules. Since our model is based on primitive description of fluid molecules, our conclusion can be applied to any fluidic systems including reactant-electrode systems

  9. Blood and interstitial flow in the hierarchical pore space architecture of bone tissue.

    Science.gov (United States)

    Cowin, Stephen C; Cardoso, Luis

    2015-03-18

    There are two main types of fluid in bone tissue, blood and interstitial fluid. The chemical composition of these fluids varies with time and location in bone. Blood arrives through the arterial system containing oxygen and other nutrients and the blood components depart via the venous system containing less oxygen and reduced nutrition. Within the bone, as within other tissues, substances pass from the blood through the arterial walls into the interstitial fluid. The movement of the interstitial fluid carries these substances to the cells within the bone and, at the same time, carries off the waste materials from the cells. Bone tissue would not live without these fluid movements. The development of a model for poroelastic materials with hierarchical pore space architecture for the description of blood flow and interstitial fluid flow in living bone tissue is reviewed. The model is applied to the problem of determining the exchange of pore fluid between the vascular porosity and the lacunar-canalicular porosity in bone tissue due to cyclic mechanical loading and blood pressure. These results are basic to the understanding of interstitial flow in bone tissue that, in turn, is basic to understanding of nutrient transport from the vasculature to the bone cells buried in the bone tissue and to the process of mechanotransduction by these cells. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Position-Dependent Dynamics Explain Pore-Averaged Diffusion in Strongly Attractive Adsorptive Systems.

    Science.gov (United States)

    Krekelberg, William P; Siderius, Daniel W; Shen, Vincent K; Truskett, Thomas M; Errington, Jeffrey R

    2017-12-12

    Using molecular simulations, we investigate the relationship between the pore-averaged and position-dependent self-diffusivity of a fluid adsorbed in a strongly attractive pore as a function of loading. Previous work (Krekelberg, W. P.; Siderius, D. W.; Shen, V. K.; Truskett, T. M.; Errington, J. R. Connection between thermodynamics and dynamics of simple fluids in highly attractive pores. Langmuir 2013, 29, 14527-14535, doi: 10.1021/la4037327) established that pore-averaged self-diffusivity in the multilayer adsorption regime, where the fluid exhibits a dense film at the pore surface and a lower density interior pore region, is nearly constant as a function of loading. Here we show that this puzzling behavior can be understood in terms of how loading affects the fraction of particles that reside in the film and interior pore regions as well as their distinct dynamics. Specifically, the insensitivity of pore-averaged diffusivity to loading arises from the approximate cancellation of two factors: an increase in the fraction of particles in the higher diffusivity interior pore region with loading and a corresponding decrease in the particle diffusivity in that region. We also find that the position-dependent self-diffusivities scale with the position-dependent density. We present a model for predicting the pore-average self-diffusivity based on the position-dependent self-diffusivity, which captures the unusual characteristics of pore-averaged self-diffusivity in strongly attractive pores over several orders of magnitude.

  11. Pore-fluid effects on seismic waves in vertically fractured earth with orthotropic symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Berryman, J.G.

    2010-05-15

    For elastically noninteracting vertical-fracture sets at arbitrary orientation angles to each other, a detailed model is presented in which the resulting anisotropic fractured medium generally has orthorhombic symmetry overall. Some of the analysis methods and ideas of Schoenberg are emphasized, together with their connections to other similarly motivated and conceptually related methods by Sayers and Kachanov, among others. Examples show how parallel vertical-fracture sets having HTI (horizontal transversely isotropic) symmetry transform into orthotropic fractured media if some subsets of the vertical fractures are misaligned with the others, and then the fractured system can have VTI (vertical transversely isotropic) symmetry if all of the fractures are aligned randomly or half parallel and half perpendicular to a given vertical plane. An orthotropic example having vertical fractures in an otherwise VTI earth system (studied previously by Schoenberg and Helbig) is compared with the other examples treated and it is finally shown how fluids in the fractures affect the orthotropic poroelastic system response to seismic waves. The key result is that fracture-influence parameters are multiplied by a factor of (1-B), where 0 {le} B < 1 is Skempton's second coefficient for poroelastic media. Skempton's B coefficient is itself a measurable characteristic of fluid-saturated porous rocks, depending on porosity, solid moduli, and the pore-fluid bulk modulus. For heterogeneous porous media, connections between the present work and earlier related results of Brown and Korringa are also established.

  12. Interaction between Proppant Packing, Reservoir Depletion, and Fluid Flow in Pore Space

    Science.gov (United States)

    Fan, M.; McClure, J. E.; Han, Y.; Chen, C.

    2016-12-01

    In the oil and gas industry, the performance of proppant pack in hydraulically created fractures has a significant influence on fracture conductivity. A better understanding of proppant transport and deposition pattern in a hydraulic fracture is vital for effective and economical production within oil and gas reservoirs. In this research, a numerical modeling approach, combining Particle Flow Code (PFC) and GPU-enhanced lattice Boltzmann simulator (GELBS), is adopted to advance the understanding of the interaction between proppant particle packing, depletion of reservoir formation, and transport of reservoir flow through the pore space. In this numerical work flow, PFC is used to simulate effective stress increase and proppant particle movement and rearrangement under increasing mechanical loading. The pore structure of the proppant pack evolves subsequently and the geometrical data are output for lattice Boltzmann (LB) simulation of proppant pack permeability. Three different proppant packs with fixed particle concentration and 12/18, 16/30, and 20/40 mesh sizes are generated. These proppant packs are compressed with specified loading stress and their subsequent geometries are used for fluid flow simulations. The simulation results are in good agreement with experimental observations, e.g., the conductivity of proppant packs decreases with increasing effective stress. Three proppant packs with the same average diameter were generated using different coefficients of variation (COVs) for the proppant diameter (namely cov5%, cov20%, and cov30%). By using the coupled PFC-LBM work flow, the proppant pack permeability as functions of effective stress and porosity is investigated. The results show that the proppant pack with a higher proppant diameter COV has lower permeability and porosity under the same effective stress, because smaller particles fill in the pore space between bigger particles. The relationship between porosity and permeability is also consistent with

  13. Studies of in Situ Pore Pressure Fluctuations At Various Scales Études des fluctuations in situ de la pression de pore à différentes échelles

    Directory of Open Access Journals (Sweden)

    Kümpel H. J.

    2006-12-01

    Full Text Available Pore pressure fluctuations in fluid saturated geological formations, either of natural or anthropogenic origin, can be observed at different scales. Natural fluctuations, e. g. , due to tidal, barometric or seismogenic forcing, or man-made effects as through use of underground fluid reservoirs, or initial filling and cyclic loading of lake reservoirs may have wavelengths from meters to kilometers. In situ monitoring of processes, in which both rock deformation and pore pressure changes are significant, improves our knowledge on the mechanical behaviour and the role of pore pressure in porous rocks and sedimentary layers. Pressure transducers for continuous recording of fluid level variations in wells, reflecting pore pressure changes at depth, or borehole tiltmeters that are sensitive to ground deformation caused by gradients of pore pressure fluctuations are relatively simple means to trace the dynamics of such rock-fluid interactions. The obtained data series are usually interpreted in two ways: by application of analytical solutions-adopting homogeneous poroelastic conditions or single fracture models in a uniform, elastic medium-and by simulation through numerical calculations allowing for some heterogeneity in the model volume. Field cases presented in this article include tilt measurements in the vicinity of pumped wells (1 to 100 m scale, fluid level monitoring in wells (borehole scale, and studies of pore pressure effects induced by seismic events (1 to 100 km scale. Specific rock parameters that can be constrained are the Skempton ratio, the hydraulic diffusivity, and the type of the effective rheology. In cases of tiltmeter studies, anisotropy of pore fluid flow can also be detected. Keywords: fluids in rocks, pore pressure, poroelasticity, hydrology. Les fluctuations de la pression de pore dans les formations géologiques saturées en fluides, d'origine naturelle ou anthropogéniques, peuvent être observées à différentes

  14. Heat flow, morphology, pore fluids and hydrothermal circulation in a typical Mid-Atlantic Ridge flank near Oceanographer Fracture Zone

    Science.gov (United States)

    Le Gal, V.; Lucazeau, F.; Cannat, M.; Poort, J.; Monnin, C.; Battani, A.; Fontaine, F.; Goutorbe, B.; Rolandone, F.; Poitou, C.; Blanc-Valleron, M.-M.; Piedade, A.; Hipólito, A.

    2018-01-01

    Hydrothermal circulation affects heat and mass transfers in the oceanic lithosphere, not only at the ridge axis but also on their flanks, where the magnitude of this process has been related to sediment blanket and seamounts density. This was documented in several areas of the Pacific Ocean by heat flow measurements and pore water analysis. However, as the morphology of Atlantic and Indian ridge flanks is generally rougher than in the Pacific, these regions of slow and ultra-slow accretion may be affected by hydrothermal processes of different regimes. We carried out a survey of two regions on the eastern and western flanks of the Mid-Atlantic Ridge between Oceanographer and Hayes fracture zones. Two hundred and eight new heat flow measurements were obtained along six seismic profiles, on 5 to 14 Ma old seafloor. Thirty sediment cores (from which porewaters have been extracted) have been collected with a Kullenberg corer equipped with thermistors thus allowing simultaneous heat flow measurement. Most heat flow values are lower than those predicted by purely conductive cooling models, with some local variations and exceptions: heat flow values on the eastern flank of the study area are more variable than on the western flank, where they tend to increase westward as the sedimentary cover in the basins becomes thicker and more continuous. Heat flow is also higher, on average, on the northern sides of both the western and eastern field regions and includes values close to conductive predictions near the Oceanographer Fracture Zone. All the sediment porewaters have a chemical composition similar to that of bottom seawater (no anomaly linked to fluid circulation has been detected). Heat flow values and pore fluid compositions are consistent with fluid circulation in volcanic rocks below the sediment. The short distances between seamounts and short fluid pathways explain that fluids flowing in the basaltic aquifer below the sediment have remained cool and unaltered

  15. Effect of pore structure on capillary condensation in a porous medium.

    Science.gov (United States)

    Deinert, M R; Parlange, J-Y

    2009-02-01

    The Kelvin equation relates the equilibrium vapor pressure of a fluid to the curvature of the fluid-vapor interface and predicts that vapor condensation will occur in pores or irregularities that are sufficiently small. Past analyses of capillary condensation in porous systems with fractal structure have related the phenomenon to the fractal dimension of the pore volume distribution. Recent work, however, suggests that porous systems can exhibit distinct fractal dimensions that are characteristic of both their pore volume and the surfaces of the pores themselves. We show that both fractal dimensions have an effect on the thermodynamics that governs capillary condensation and that previous analyses can be obtained as limiting cases of a more general formulation.

  16. Pore fluids from the argillaceous rocks of the Harwell region

    International Nuclear Information System (INIS)

    Brightman, M.A.; Bath, A.H.; Cave, M.R.; Darling, W.G.

    1985-06-01

    The aim of this work was to obtain samples of pore water from argillaceous formations in the Harwell area for chemical analysis to provide a background for radionuclide migration studies and regional groundwater flow pattern. This report describes the samples, development of a pore-water squeezing cell and its operation. Chemical and analytical studies are summarized. (UK)

  17. Pore pressure control on faulting behavior in a block-gouge system

    Science.gov (United States)

    Yang, Z.; Juanes, R.

    2016-12-01

    Pore fluid pressure in a fault zone can be altered by natural processes (e.g., mineral dehydration and thermal pressurization) and industrial operations involving subsurface fluid injection/extraction for the development of energy and water resources. However, the effect of pore pressure change on the stability and slip motion of a preexisting geologic fault remain poorly understood; yet they are critical for the assessment of seismic risk. In this work, we develop a micromechanical model to investigate the effect of pore pressure on faulting behavior. The model couples pore network fluid flow and mechanics of the solid grains. We conceptualize the fault zone as a gouge layer sandwiched between two blocks; the block material is represented by a group of contact-bonded grains and the gouge is composed of unbonded grains. A pore network is extracted from the particulate pack of the block-gouge system with pore body volumes and pore throat conductivities calculated rigorously based on the geometry of the local pore space. Pore fluid exerts pressure force onto the grains, the motion of which is solved using the discrete element method (DEM). The model updates the pore network regularly in response to deformation of the solid matrix. We study the fault stability in the presence of a pressure inhomogeneity (gradient) across the gouge layer, and compare it with the case of homogeneous pore pressure. We consider both normal and thrust faulting scenarios with a focus on the onset of shear failure along the block-gouge interfaces. Numerical simulations show that the slip behavior is characterized by intermittent dynamics, which is evident in the number of slipping contacts at the block-gouge interfaces and the total kinetic energy of the gouge particles. Numerical results also show that, for the case of pressure inhomogeneity, the onset of slip occurs earlier for the side with higher pressure, and that this onset appears to be controlled by the maximum pressure of both sides

  18. Prediction of the low-velocity distribution from the pore structure in simple porous media

    Science.gov (United States)

    de Anna, Pietro; Quaife, Bryan; Biros, George; Juanes, Ruben

    2017-12-01

    The macroscopic properties of fluid flow and transport through porous media are a direct consequence of the underlying pore structure. However, precise relations that characterize flow and transport from the statistics of pore-scale disorder have remained elusive. Here we investigate the relationship between pore structure and the resulting fluid flow and asymptotic transport behavior in two-dimensional geometries of nonoverlapping circular posts. We derive an analytical relationship between the pore throat size distribution fλ˜λ-β and the distribution of the low fluid velocities fu˜u-β /2 , based on a conceptual model of porelets (the flow established within each pore throat, here a Hagen-Poiseuille flow). Our model allows us to make predictions, within a continuous-time random-walk framework, for the asymptotic statistics of the spreading of fluid particles along their own trajectories. These predictions are confirmed by high-fidelity simulations of Stokes flow and advective transport. The proposed framework can be extended to other configurations which can be represented as a collection of known flow distributions.

  19. Unusual mechanism of capillary condensation in pores modified with chains forming pillars.

    Science.gov (United States)

    Borówko, M; Patrykiejew, A; Sokołowski, S

    2011-08-07

    Density functional approach is applied to study the phase behavior of Lennard-Jones(12,6) fluid in pillared slit-like pores. Our focus is in the evaluation of phase transitions in fluid adsorbed in the pore of a fixed width. If the length of pillars is sufficiently large, we observe additional phase transitions of the first and second order due to the symmetry breaking of the distribution of chain segments and fluid species with respect to the slit-like pore center. Re-entrant symmetry changes and additional critical, critical end points and tricritical points then are observed. The scenario of phase changes is sensitive to the energy of fluid-solid interaction, the amount, and the length of the pillars. Quantitative trends and qualitative changes of the phase diagrams topology are examined depending on the values of these parameters.

  20. effect of post-precipitation treatment on the pore-structure stability of sol-gel derived lanthanum zirconate

    NARCIS (Netherlands)

    Nair, Jalajakumari; Kumar, K.N.P.; Nair, P.; van Ommen, J.G.; Ross, J.R.H.; Ross, Julian R.H.; Burggraaf, Anthonie J.; Burggraaf, Anthonie

    1998-01-01

    The importance of post-precipitation treatments (pore-fluid exchange and its removal) on the evolution of the texture of coprecipitated lanthanum zirconate has been investigated. The nature of the pore fluid and the type of fluid-removal (drying) process have shown a profound effect on the aggregate

  1. Capillary condensation hysteresis in overlapping spherical pores: a Monte Carlo simulation study.

    Science.gov (United States)

    Gor, Gennady Yu; Rasmussen, Christopher J; Neimark, Alexander V

    2012-08-21

    The mechanisms of hysteretic phase transformations in fluids confined to porous bodies depend on the size and shape of pores, as well as their connectivity. We present a Monte Carlo simulation study of capillary condensation and evaporation cycles in the course of Lennard-Jones fluid adsorption in the system of overlapping spherical pores. This model system mimics pore shape and connectivity in some mesoporous materials obtained by templating cubic surfactant mesophases or colloidal crystals. We show different mechanisms of capillary hysteresis depending on the size of the window between the pores. For the system with a small window, the hysteresis cycle is similar to that in a single spherical pore: capillary condensation takes place upon achieving the limit of stability of adsorption film and evaporation is triggered by cavitation. When the window is large enough, the capillary condensation shifts to a pressure higher than that of the isolated pore, and the possibility for the equilibrium mechanism of desorption is revealed. These finding may have important implications for practical problems of assessment of the pore size distributions in mesoporous materials with cagelike pore networks.

  2. Reducing pressure oscillations in discrete fluid power systems

    DEFF Research Database (Denmark)

    Hansen, Anders Hedegaard; Pedersen, Henrik Clemmensen

    2016-01-01

    Discrete fluid power systems featuring transmission lines inherently include pressure oscillations. Experimental verification of a discrete fluid power power take off system for wave energy converters has shown the cylinder pressure to oscillate as force shifts are performed. This article investi...... investigates how cylinder pressure oscillations may be reduced by shaping the valve opening trajectory without the need for closed loop pressure feedback. Furthermore the energy costs of reducing pressure oscillations are investigated....

  3. The Effect of Heat Transfer and Polymer Concentration on Non-Newtonian Fluid from Pore-Scale Simulation of Rock X-ray Micro-CT

    Directory of Open Access Journals (Sweden)

    Moussa Tembely

    2017-10-01

    Full Text Available Most of the pore-scale imaging and simulations of non-Newtonian fluid are based on the simplifying geometry of network modeling and overlook the fluid rheology and heat transfer. In the present paper, we developed a non-isothermal and non-Newtonian numerical model of the flow properties at pore-scale by simulation of the 3D micro-CT images using a Finite Volume Method (FVM. The numerical model is based on the resolution of the momentum and energy conservation equations. Owing to an adaptive mesh generation technique and appropriate boundary conditions, rock permeability and mobility are accurately computed. A temperature and concentration-dependent power-law viscosity model in line with the experimental measurement of the fluid rheology is adopted. The model is first applied at isothermal condition to 2 benchmark samples, namely Fontainebleau sandstone and Grosmont carbonate, and is found to be in good agreement with the Lattice Boltzmann method (LBM. Finally, at non-isothermal conditions, an effective mobility is introduced that enables to perform a numerical sensitivity study to fluid rheology, heat transfer, and operating conditions. While the mobility seems to evolve linearly with polymer concentration in agreement with a derived theoretical model, the effect of the temperature seems negligible by comparison. However, a sharp contrast is found between carbonate and sandstone under the effect of a constant temperature gradient. Besides concerning the flow index and consistency factor, a master curve is derived when normalizing the mobility for both the carbonate and the sandstone.

  4. Generalized reduced fluid model with finite ion-gyroradius effects

    International Nuclear Information System (INIS)

    Hsu, C.T.; Hazeltine, R.D.; Morrison, P.J.

    1985-04-01

    Reduced fluid models have become important tools for studying the nonlinear dynamics of plasma in a large aspect-ratio tokamak. A self-consistent nonlinear reduced fluid model, with finite ion-gyroradius effects is presented. The model is distinctive in allowing for arbitrary beta and in satisfying an exact, relatively simple energy conservation law

  5. On the Peculiar Molecular Shape and Size Dependence of the Dynamics of Fluids confined in a Small-Pore Metal-Organic Framework

    KAUST Repository

    Skarmoutsos, Ioannis

    2018-05-15

    Force field based-Molecular dynamics simulations were deployed to systematically explore the dynamics of confined molecules of different shapes and sizes, i.e. linear (CO2 and N2) and spherical (CH4) fluids, in a model small pore system, i.e. the Metal-Organic Framework SIFSIX-2-Cu-i. These computations unveil an unprecedented molecular symmetry dependence of the translational and rotational dynamics of fluids confined in channel-like nanoporous materials. In particular this peculiar behaviour is reflected by the extremely slow decay of the Legendre reorientational correlation functions of even-parity order for the linear fluids which is associated to jump-like orientation flips, while the spherical fluid shows a very fast decay taking place in a sub-picosecond time scale. Such a fundamental understanding is relevant to diverse disciplines such as in chemistry, physics, biology and materials science where diatomic or polyatomic molecules of different shapes/sizes diffuse through nanopores.

  6. Numerical simulation of pore size dependent anhydrite precipitation in geothermal reservoirs

    Science.gov (United States)

    Mürmann, Mario; Kühn, Michael; Pape, Hansgeorg; Clauser, Christoph

    2013-04-01

    Porosity and permeability of reservoirs are key parameters for an economical use of hot water from geothermal installations and can be significantly reduced by precipitation of minerals, such as anhydrite. The borehole Allermöhe 1 near Hamburg (Germany) represents a failed attempt of geothermal heat mining due to anhydrite precipitation (Baermann et al. 2000). For a risk assessment of future boreholes it is essential to understand how and when anhydrite cementation occurred under reservoir conditions. From core samples of the Allermöhe borehole it was determined that anhydrite precipitation took place in regions of relatively high porosity while regions of low porosity remained uncemented (Wagner et al. 2005). These findings correspond to the fact that e.g. halite precipitation in porous media is found only in relatively large pores (Putnis and Mauthe 2001). This study and others underline that pore size controls crystallization and that it is therefore necessary to establish a relation between pore size and nucleation. The work presented here is based on investigations of Emmanuel and Berkowitz (2007) who present such a relation by applying a thermodynamic approach. However this approach cannot explain the heterogeneous precipitation observed in the Allermöhe core samples. We chose an advanced approach by considering electric system properties resulting in another relation between pore size and crystallization. It is well known that a high fluid supersaturation can be maintained in porous rocks (Putnis and Mauthe 2001). This clearly indicates that a supersaturation threshold exists exceeding thermodynamic equilibrium considerably. In order to quantify spatially heterogeneous anhydrite cementation a theoretical approach was chosen which considered the electric interaction between surface charges of the matrix and calcium and sulphate ions in the fluid. This approach was implemented into the numerical code SHEMAT (Clauser 2003) and used to simulate anhydrite

  7. Localization and Instability in Sheared Granular Materials: Role of Pore Fluids and Non-monotonic Rate Dependent Rheology

    Science.gov (United States)

    Ma, X.; Elbanna, A. E.; Kothari, K.

    2017-12-01

    Fault zone dynamics hold the key to resolving many outstanding geophysical problems including the heat flow paradox, discrepancy between fault static and dynamic strength, and energy partitioning. Most fault zones that generate tectonic events are gouge filled and fluid saturated posing the need for formulating gouge-specific constitutive models that capture spatially heterogeneous compaction and dilation, non-monotonic rate dependence, and transition between localized and distributed deformation. In this presentation, we focus primarily on elucidating microscopic underpinnings for shear banding and stick-slip instabilities in sheared saturated granular materials and explore their implications for earthquake dynamics. We use a non-equilibrium thermodynamics model, the Shear Transformation Zone theory, to investigate the dynamics of strain localization and its connection to stability of sliding in the presence and absence of pore fluids. We also consider the possible influence of self-induced mechanical vibrations as well as the role of external acoustic vibrations as analogue for triggering by a distant event. For the dry case, our results suggest that at low and intermediate strain rates, persistent shear bands develop only in the absence of vibrations. Vibrations tend to fluidize the granular network and de-localize slip at these rates. Stick-slip is only observed for rough grains and it is confined to the shear band. At high strain rates, stick-slip disappears and the different systems exhibit similar stress-slip response. Changing the vibration intensity, duration or time of application alters the system response and may cause long-lasting rheological changes. The presence of pore fluids modifies the stick slip pattern and may lead to both loss and development of slip instability depending on the value of the confining pressure, imposed strain rate and hydraulic parameters. We analyze these observations in terms of possible transitions between rate

  8. Matrix coatings based on anodic alumina with carbon nanostructures in the pores

    Science.gov (United States)

    Gorokh, G. G.; Pashechko, M. I.; Borc, J. T.; Lozovenko, A. A.; Kashko, I. A.; Latos, A. I.

    2018-03-01

    The nanoporous anodic alumina matrixes thickness of 1.5 mm and pore sizes of 45, 90 and 145 nm were formed on Si substrates. The tubular carbon nanostructures were synthesized into the matrixes pores by pyrolysis of fluid hydrocarbon xylene with 1% ferrocene. The structure and composition of the matrix coatings were examined by scanning electron microscopy, Auger analysis and Raman spectroscopy. The carbon nanostructures completely filled the pores of templates and uniformly covered the tops. The structure of carbon nanostructures corresponded to the structure of multiwall carbon nanotubes. Investigations of mechanical and tribological properties of nanostructured oxide-carbon composite performed by scratching and nanoindentation showed nonlinear dependencies of the frictional force, penetration depth of the cantilever, hardness and plane strain modulus on the load. It was found that the microhardness of the samples increases with reduced of alumina pore diameter, and the penetration depth of the cantilever into the film grows with carbon nanostructures size. The results showed the high mechanical strength of nanostructured oxide-carbon composite.

  9. The Impact of Solid Surface Features on Fluid-Fluid Interface Configuration

    Science.gov (United States)

    Araujo, J. B.; Brusseau, M. L. L.

    2017-12-01

    Pore-scale fluid processes in geological media are critical for a broad range of applications such as radioactive waste disposal, carbon sequestration, soil moisture distribution, subsurface pollution, land stability, and oil and gas recovery. The continued improvement of high-resolution image acquisition and processing have provided a means to test the usefulness of theoretical models developed to simulate pore-scale fluid processes, through the direct quantification of interfaces. High-resolution synchrotron X-ray microtomography is used in combination with advanced visualization tools to characterize fluid distributions in natural geologic media. The studies revealed the presence of fluid-fluid interface associated with macroscopic features on the surfaces of the solids such as pits and crevices. These features and respective fluid interfaces, which are not included in current theoretical or computational models, may have a significant impact on accurate simulation and understanding of multi-phase flow, energy, heat and mass transfer processes.

  10. Using BIB-SEM to determine pore morphology and pore size distributions in coal macerals

    Energy Technology Data Exchange (ETDEWEB)

    Giffin, S.; Littke, R. [RWTH Aachen Univ. (Germany). Inst. of Geology and Geochemistry of Petroleum and Coal; Klaver, J.; Urai, J.L. [RWTH Aachen Univ. (Germany). Structural Geology, Tectonics and Geomechanics

    2013-08-01

    The composition of coalbeds is considerably heterogeneous, affecting the transport pathways for fluids within the coal. Transport pathways include cleats and larger pores. However, only a few clues exist as the nature of these pores. This study examines the morphology and distribution of macro- and mesopores in coal samples, using broad ion beam (BIB) milling to prepare relief- and damage-free polished surfaces of coal samples for high-resolution SEM imaging. Broad ion beam milling is advantageous to focused ion beam milling in that a larger surface area can be milled. Combining that with SEM imaging results in a useful tool to study pore morphology and distributions in the size range between 10 nm and 10 {mu}m. Since BIB-sections of a few square millimeters are not large enough to be statistically representative, results cannot be easily interpreted from a coal seam standpoint. Therefore, porosity was investigated as a function of maceral type to characterize pore morphologies. Macerals from the vitrinite and inertinite groups were selected with a known relationship to bedding. BIB-sections were milled parallel to bedding and perpendicular to bedding, and the pores were evaluated in each section. The goal of this study is to (1) qualitatively describe pore morphology with respect to maceral type and (2) quantitatively characterize pore size distributions with respect to maceral and in relationship to bedding. Our results lead to a better understanding of bulk coal porosity due to the visual, spatial representation and quantification of pores in individual macerals. (orig.)

  11. Matrix fluid chemistry experiment. Final report June 1998 - March 2003

    International Nuclear Information System (INIS)

    Smellie, John A.T.; Waber, H. Niklaus; Frape, Shaun K.

    2003-06-01

    The Matrix Fluid Chemistry Experiment set out to determine the composition and evolution of matrix pore fluids/waters in low permeable rock located at repository depths in the Aespoe Hard Rock Laboratory (HRL). Matrix pore fluids/waters can be highly saline in composition and, if accessible, may influence the near-field groundwater chemistry of a repository system. Characterising pore fluids/waters involved in-situ borehole sampling and analysis integrated with laboratory studies and experiments on rock matrix drill core material. Relating the rate of in-situ pore water accumulation during sampling to the measured rock porosity indicated a hydraulic conductivity of 10 -14 -10 -13 m/s for the rock matrix. This was in accordance with earlier estimated predictions. The sampled matrix pore water, brackish in type, mostly represents older palaeo- groundwater mixtures preserved in the rock matrix and dating back to at least the last glaciation. A component of matrix pore 'fluid' is also present. One borehole section suggests a younger groundwater component which has accessed the rock matrix during the experiment. There is little evidence that the salinity of the matrix pore waters has been influenced significantly by fluid inclusion populations hosted by quartz. Crush/leach, cation exchange, pore water diffusion and pore water displacement laboratory experiments were carried out to compare extracted/calculated matrix pore fluids/waters with in-situ sampling. Of these the pore water diffusion experiments appear to be the most promising approach and a recommended site characterisation protocol has been formulated. The main conclusions from the Matrix Fluid Chemistry Experiment are: Groundwater movement within the bedrock hosting the experimental site has been enhanced by increased hydraulic gradients generated by the presence of the tunnel, and to a much lesser extent by the borehole itself. Over experimental timescales ∼4 years) solute transport through the rock matrix

  12. Matrix fluid chemistry experiment. Final report June 1998 - March 2003

    Energy Technology Data Exchange (ETDEWEB)

    Smellie, John A.T. [Conterra AB, Luleaa (Sweden); Waber, H. Niklaus [Univ. of Bern (Switzerland). Inst. of Geology; Frape, Shaun K. [Univ. of Waterloo (Canada). Dept. of Earth Sciences

    2003-06-01

    The Matrix Fluid Chemistry Experiment set out to determine the composition and evolution of matrix pore fluids/waters in low permeable rock located at repository depths in the Aespoe Hard Rock Laboratory (HRL). Matrix pore fluids/waters can be highly saline in composition and, if accessible, may influence the near-field groundwater chemistry of a repository system. Characterising pore fluids/waters involved in-situ borehole sampling and analysis integrated with laboratory studies and experiments on rock matrix drill core material. Relating the rate of in-situ pore water accumulation during sampling to the measured rock porosity indicated a hydraulic conductivity of 10{sup -14}-10{sup -13} m/s for the rock matrix. This was in accordance with earlier estimated predictions. The sampled matrix pore water, brackish in type, mostly represents older palaeo- groundwater mixtures preserved in the rock matrix and dating back to at least the last glaciation. A component of matrix pore 'fluid' is also present. One borehole section suggests a younger groundwater component which has accessed the rock matrix during the experiment. There is little evidence that the salinity of the matrix pore waters has been influenced significantly by fluid inclusion populations hosted by quartz. Crush/leach, cation exchange, pore water diffusion and pore water displacement laboratory experiments were carried out to compare extracted/calculated matrix pore fluids/waters with in-situ sampling. Of these the pore water diffusion experiments appear to be the most promising approach and a recommended site characterisation protocol has been formulated. The main conclusions from the Matrix Fluid Chemistry Experiment are: Groundwater movement within the bedrock hosting the experimental site has been enhanced by increased hydraulic gradients generated by the presence of the tunnel, and to a much lesser extent by the borehole itself. Over experimental timescales {approx}4 years) solute transport

  13. Syncrude`s highway berm: part 3 of 5 - Soil parameters (pore pressure parameters and settlement from inundation)

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, R.; Fong, V.; Ashton, C.; Strueby, B. [Syncrude Canada Ltd., Edmonton, AB (Canada)

    1995-12-31

    Difficulties in predicting pore fluid pressures in the fills composing the highway berm were discussed. The pore water pressures in the in-situ clay foundation units were expected to be very sensitive to water content. Over 200 piezometer tips were installed into fill and in situ soil units, and results of the measurements were reported. The in situ basal foundation clays and sands were found to have a similar pore pressure ratio of typically less than 0.25. Fill pore fluid pressure ratios determined in the field varied according to density when loose fills were compared to very dense fills. To illustrate, when the fill was 86% to 91% of maximum Standard Proctor Density, the pore pressure ratio value was not dependent on fluid content. When the fill was densely compacted to 98% Standard Proctor Density, the pore pressure ratio was largely dependent on the fluid content as it related to the optimum fluid content determined from Standard Proctor testing. Significant first-time wetting settlement was observed to occur with fills at initial densities of around 90% of maximum Standard Proctor dry density. Settlements for fills placed initially above 97% Standard Proctor Density generally had inundation settlements of less than 0.3% of fill thickness predicted from laboratory testing. 4 refs., 10 figs., 1 tab.

  14. The effects of inserting a tiny sphere in the center of a nanospherical pore on the structure, adsorption, and capillary condensation of a confined fluid (a DFT study).

    Science.gov (United States)

    Keshavarzi, Ezat; Helmi, Abbas

    2015-02-26

    The modified fundamental measure theory (MFMT) has been employed to investigate the effects of inserting a tiny sphere in the center of a nanospherical pore on the structure, adsorption, and capillary condensation of fluids confined in it. In the first part of this Article, we have solved the weighted density integrals for all pores with spherical symmetries, including spherical and bispherical pores. In the second part, we show that the structure, amount of adsorption, and position of the fluid's capillary condensation change drastically when even a very thin sphere, R(s) = 0.01σ, is inserted into the center of a spherical pore (SP). In fact, the existence of a forbidden region around the inner sphere for the case of bispherical pores, even when R(s) = 0.01σ, causes a remarkable shift in both the amount of adsorption and the bulk density at which the capillary condensation occurs. Moreover, the insertion causes a sudden increase in the value of the contact density of the liquid, or the liquid in equilibrium with its vapor, at the wall of the outer sphere compared to that for an SP. In other words, the insertion of a tiny sphere in an SP causes the liquid droplet, which is formed in the center of the SP, to sprinkle throughout the whole nanopore. Also, we have demonstrated that the critical temperature and densities decrease with decreasing radius of the inner sphere.

  15. Pore-scale modeling of capillary trapping in water-wet porous media: A new cooperative pore-body filling model

    Science.gov (United States)

    Ruspini, L. C.; Farokhpoor, R.; Øren, P. E.

    2017-10-01

    We present a pore-network model study of capillary trapping in water-wet porous media. The amount and distribution of trapped non-wetting phase is determined by the competition between two trapping mechanisms - snap-off and cooperative pore-body filling. We develop a new model to describe the pore-body filling mechanism in geologically realistic pore-networks. The model accounts for the geometrical characteristics of the pore, the spatial location of the connecting throats and the local fluid topology at the time of the displacement. We validate the model by comparing computed capillary trapping curves with published data for four different water-wet rocks. Computations are performed on pore-networks extracted from micro-CT images and process-based reconstructions of the actual rocks used in the experiments. Compared with commonly used stochastic models, the new model describes more accurately the experimental measurements, especially for well connected porous systems where trapping is controlled by subtleties of the pore structure. The new model successfully predicts relative permeabilities and residual saturation for Bentheimer sandstone using in-situ measured contact angles as input to the simulations. The simulated trapped cluster size distributions are compared with predictions from percolation theory.

  16. Pressure Enhancement in Confined Fluids: Effect of Molecular Shape and Fluid-Wall Interactions.

    Science.gov (United States)

    Srivastava, Deepti; Santiso, Erik E; Gubbins, Keith E

    2017-10-24

    Recently, several experimental and simulation studies have found that phenomena that normally occur at extremely high pressures in a bulk phase can occur in nanophases confined within porous materials at much lower bulk phase pressures, thus providing an alternative route to study high-pressure phenomena. In this work, we examine the effect on the tangential pressure of varying the molecular shape, strength of the fluid-wall interactions, and pore width, for carbon slit-shaped pores. We find that, for multisite molecules, the presence of additional rotational degrees of freedom leads to unique changes in the shape of the tangential pressure profile, especially in larger pores. We show that, due to the direct relationship between the molecular density and the fluid-wall interactions, the latter have a large impact on the pressure tensor. The molecular shape and pore size have a notable impact on the layering of molecules in the pore, greatly influencing both the shape and scale of the tangential pressure profile.

  17. Capillary condensation and orientational ordering of confined polar fluids.

    Science.gov (United States)

    Gramzow, Matthias; Klapp, Sabine H L

    2007-01-01

    The phase behavior and the orientational structure of polar model fluids confined to slit pores is investigated by means of density functional theory in a modified mean-field approximation. We focus on fluid states and further assume a uniform number density throughout the pore. Our results for spherical dipolar particles with additional van der Waals-like interactions (Stockmayer fluids) reveal complex fluid-fluid phase behavior involving condensation and first- and second-order isotropic-to-ferroelectric phase transitions, where the ferroelectric ordering occurs parallel to the confining walls. The relative importance of these phase transitions depends on two "tuning" parameters, that is the strength of the dipolar interactions (relative to the isotropic attractive ones) between fluid particles, and on the pore width. In particular, in narrow pores the condensation transition seen in bulk Stockmayer fluids is entirely suppressed. For dipolar hard spheres, on the other hand, the impact of confinement consists in a decrease of the isotropic-to-ferroelectric transition temperatures. We also demonstrate that the local orientational structure is inhomogeneous and anisotropic even in globally isotropic systems, in agreement with computer simulation results.

  18. Three dimensional reduced graphene hydrogels with tunable pore sizes using thiourea dioxide for electrode materials in supercapacitors

    International Nuclear Information System (INIS)

    Xing, Ling-Bao; Zhang, Jing-Li; Zhang, Juan; Hou, Shu-Fen; Zhou, Jin; Si, Weijiang; Cui, Hongyou; Zhuo, Shuping

    2015-01-01

    Graphical abstract: Three-dimensional porous reduced graphene hydrogels with tunable pore size distribution are prepared by using thiourea dioxide in GO suspension with ammonia. - Highlights: • Three-dimensional reduced graphene hydrogels (RGHs) were prepared. • Thiourea dioxide was used as reducing agent with ammonia. • RGHs showed tunable pore size distribution by thiourea dioxide. • RGHs exhibited relatively good electrochemical properties in supercapacitor. - Abstract: In present work, we demonstrate a rapid and easy approach to fabricate three-dimensional (3D) reduced graphene hydrogels (RGHs) by using thiourea dioxide as reducing agents in an aqueous solution of graphene oxide (GO) with ammonia. The transformation of GO suspension to the hydrogels can be confirmed by X-ray powder diffraction, Raman spectroscopy, and Fourier transform infrared spectroscopy. The hierarchical porosity, structure and surface chemical properties can be demonstrated by N 2 sorption experiments, scanning electron microscopy and X-ray photoelectron spectroscopy. With adding different amounts of thiourea dioxide, the obtained RGHs behave different degree of reduction, controlled specific surface area and pore size distribution, and unlike performances in supercapacitors. Benefiting from well-defined and cross-linked 3D porous network architectures, the supercapacitors based on the RGHs in KOH electrolyte exhibited a high specific capacitance of 258.6, 167.3 and 198.3 F g −1 at 0.1 A g −1 for RGHs-1, RGHs-2 and RGHs-5, respectively. Furthermore, this capacitance also showed good electrochemical stability and a high degree of reversibility in the repetitive charge/discharge cycling test

  19. Simulations of skin barrier function: free energies of hydrophobic and hydrophilic transmembrane pores in ceramide bilayers.

    Science.gov (United States)

    Notman, Rebecca; Anwar, Jamshed; Briels, W J; Noro, Massimo G; den Otter, Wouter K

    2008-11-15

    Transmembrane pore formation is central to many biological processes such as ion transport, cell fusion, and viral infection. Furthermore, pore formation in the ceramide bilayers of the stratum corneum may be an important mechanism by which penetration enhancers such as dimethylsulfoxide (DMSO) weaken the barrier function of the skin. We have used the potential of mean constraint force (PMCF) method to calculate the free energy of pore formation in ceramide bilayers in both the innate gel phase and in the DMSO-induced fluidized state. Our simulations show that the fluid phase bilayers form archetypal water-filled hydrophilic pores similar to those observed in phospholipid bilayers. In contrast, the rigid gel-phase bilayers develop hydrophobic pores. At the relatively small pore diameters studied here, the hydrophobic pores are empty rather than filled with bulk water, suggesting that they do not compromise the barrier function of ceramide membranes. A phenomenological analysis suggests that these vapor pores are stable, below a critical radius, because the penalty of creating water-vapor and tail-vapor interfaces is lower than that of directly exposing the strongly hydrophobic tails to water. The PMCF free energy profile of the vapor pore supports this analysis. The simulations indicate that high DMSO concentrations drastically impair the barrier function of the skin by strongly reducing the free energy required for pore opening.

  20. Two sides of a fault: Grain-scale analysis of pore pressure control on fault slip.

    Science.gov (United States)

    Yang, Zhibing; Juanes, Ruben

    2018-02-01

    Pore fluid pressure in a fault zone can be altered by natural processes (e.g., mineral dehydration and thermal pressurization) and industrial operations involving subsurface fluid injection and extraction for the development of energy and water resources. However, the effect of pore pressure change on the stability and slip motion of a preexisting geologic fault remains poorly understood; yet, it is critical for the assessment of seismic hazard. Here, we develop a micromechanical model to investigate the effect of pore pressure on fault slip behavior. The model couples fluid flow on the network of pores with mechanical deformation of the skeleton of solid grains. Pore fluid exerts pressure force onto the grains, the motion of which is solved using the discrete element method. We conceptualize the fault zone as a gouge layer sandwiched between two blocks. We study fault stability in the presence of a pressure discontinuity across the gouge layer and compare it with the case of continuous (homogeneous) pore pressure. We focus on the onset of shear failure in the gouge layer and reproduce conditions where the failure plane is parallel to the fault. We show that when the pressure is discontinuous across the fault, the onset of slip occurs on the side with the higher pore pressure, and that this onset is controlled by the maximum pressure on both sides of the fault. The results shed new light on the use of the effective stress principle and the Coulomb failure criterion in evaluating the stability of a complex fault zone.

  1. Two sides of a fault: Grain-scale analysis of pore pressure control on fault slip

    Science.gov (United States)

    Yang, Zhibing; Juanes, Ruben

    2018-02-01

    Pore fluid pressure in a fault zone can be altered by natural processes (e.g., mineral dehydration and thermal pressurization) and industrial operations involving subsurface fluid injection and extraction for the development of energy and water resources. However, the effect of pore pressure change on the stability and slip motion of a preexisting geologic fault remains poorly understood; yet, it is critical for the assessment of seismic hazard. Here, we develop a micromechanical model to investigate the effect of pore pressure on fault slip behavior. The model couples fluid flow on the network of pores with mechanical deformation of the skeleton of solid grains. Pore fluid exerts pressure force onto the grains, the motion of which is solved using the discrete element method. We conceptualize the fault zone as a gouge layer sandwiched between two blocks. We study fault stability in the presence of a pressure discontinuity across the gouge layer and compare it with the case of continuous (homogeneous) pore pressure. We focus on the onset of shear failure in the gouge layer and reproduce conditions where the failure plane is parallel to the fault. We show that when the pressure is discontinuous across the fault, the onset of slip occurs on the side with the higher pore pressure, and that this onset is controlled by the maximum pressure on both sides of the fault. The results shed new light on the use of the effective stress principle and the Coulomb failure criterion in evaluating the stability of a complex fault zone.

  2. Effects of the soil pore network architecture on the soil's physical functionalities

    Science.gov (United States)

    Smet, Sarah; Beckers, Eléonore; Léonard, Angélique; Degré, Aurore

    2017-04-01

    The soil fluid movement's prediction is of major interest within an agricultural or environmental scope because many processes depend ultimately on the soil fluids dynamic. It is common knowledge that the soil microscopic pore network structure governs the inner-soil convective fluids flow. There isn't, however, a general methodthat consider the pore network structure as a variable in the prediction of thecore scale soil's physical functionalities. There are various possible representations of the microscopic pore network: sample scale averaged structural parameters, extrapolation of theoretic pore network, or use of all the information available by modeling within the observed pore network. Different representations implydifferent analyzing methodologies. To our knowledge, few studies have compared the micro-and macroscopic soil's characteristics for the same soil core sample. The objective of our study is to explore the relationship between macroscopic physical properties and microscopic pore network structure. The saturated hydraulic conductivity, the air permeability, the retention curve, and others classical physical parameters were measured for ten soil samples from an agricultural field. The pore network characteristics were quantified through the analyses of X-ray micro-computed tomographic images(micro-CT system Skyscan-1172) with a voxel size of 22 µm3. Some of the first results confirmed what others studies had reported. Then, the comparison between macroscopic properties and microscopic parameters suggested that the air movements depended mostly on the pore connectivity and tortuosity than on the total porosity volume. We have also found that the fractal dimension calculated from the X-ray images and the fractal dimension calculated from the retention curve were significantly different. Our communication will detailthose results and discuss the methodology: would the results be similar with a different voxel size? What are the calculated and measured

  3. An Evaluation of Models of Bentonite Pore Water Evolution

    Energy Technology Data Exchange (ETDEWEB)

    Savage, David; Watson, Claire; Wilson, James (Quintessa Ltd, Henley-on-Thames (United Kingdom)); Arthur, Randy (Monitor Scientific LLC, Denver, CO (United States))

    2010-01-15

    The determination of a bentonite pore water composition and understanding its evolution of with time underpins many radioactive waste disposal issues, such as buffer erosion, canister corrosion, and radionuclide solubility, sorption, and diffusion, inter alia. The usual approach to modelling clay pore fluids is based primarily around assumed chemical equilibrium between Na+, K+, Ca2+, and Mg2+ aqueous species and ion exchange sites on montmorillonite, but also includes protonation- deprotonation of clay edge surface sites, and dissolution-precipitation of the trace mineral constituents, calcite and gypsum. An essential feature of this modelling approach is that clay hydrolysis reactions (i.e. dissolution of the aluminosilicate octahedral and tetrahedral sheets of montmorillonite) are ignored. A consequence of the omission of clay hydrolysis reactions from bentonite pore fluid models is that montmorillonite is preserved indefinitely in the near-field system, even over million-year timescales. Here, we investigate the applicability of an alternative clay pore fluid model, one that incorporates clay hydrolysis reactions as an integral component and test it against well-characterised laboratory experimental data, where key geochemical parameters, Eh and pH, have been measured directly in compacted bentonite. Simulations have been conducted using a range of computer codes to test the applicability of this alternative model. Thermodynamic data for MX-80 smectite used in the calculations were estimated using two different methods. Simulations of 'end-point' pH measurements in batch bentonite-water slurry experiments showed different pH values according to the complexity of the system studied. The most complete system investigated revealed pH values were a strong function of partial pressure of carbon dioxide, with pH increasing with decreasing PCO{sub 2} (log PCO{sub 2} values ranging from -3.5 to -7.5 bars produced pH values ranging from 7.9 to 9.6). A second

  4. A computational geometry approach to pore network construction for granular packings

    Science.gov (United States)

    van der Linden, Joost H.; Sufian, Adnan; Narsilio, Guillermo A.; Russell, Adrian R.; Tordesillas, Antoinette

    2018-03-01

    Pore network construction provides the ability to characterize and study the pore space of inhomogeneous and geometrically complex granular media in a range of scientific and engineering applications. Various approaches to the construction have been proposed, however subtle implementational details are frequently omitted, open access to source code is limited, and few studies compare multiple algorithms in the context of a specific application. This study presents, in detail, a new pore network construction algorithm, and provides a comprehensive comparison with two other, well-established Delaunay triangulation-based pore network construction methods. Source code is provided to encourage further development. The proposed algorithm avoids the expensive non-linear optimization procedure in existing Delaunay approaches, and is robust in the presence of polydispersity. Algorithms are compared in terms of structural, geometrical and advanced connectivity parameters, focusing on the application of fluid flow characteristics. Sensitivity of the various networks to permeability is assessed through network (Stokes) simulations and finite-element (Navier-Stokes) simulations. Results highlight strong dependencies of pore volume, pore connectivity, throat geometry and fluid conductance on the degree of tetrahedra merging and the specific characteristics of the throats targeted by the merging algorithm. The paper concludes with practical recommendations on the applicability of the three investigated algorithms.

  5. Multiple Approaches to Characterizing Pore Structure in Natural Rock

    Science.gov (United States)

    Hu, Q.; Dultz, S.; Hamamoto, S.; Ewing, R. P.

    2012-12-01

    Microscopic characteristics of porous media - pore shape, pore-size distribution, and pore connectivity - control fluid flow and chemical transport, and are important in hydrogeological studies of rock formations in the context of energy, environmental, and water resources management. This presentation discusses various approaches to investigating pore structure of rock, with a particular focus on the Barnett Shale in north Texas used for natural gas production. Approaches include imbibition, tracer diffusion, porosimetry (MIP, vapor adsorption/desorption isotherms, NMR cyroporometry), and imaging (μ-tomography, Wood's metal impregnation, FIB/SEM). Results show that the Barnett Shale pores are predominantly in the nm size range, with a measured median pore-throat diameter of 6.5 nm. But small pore size is not the major contributor to low gas recovery; rather, the low gas diffusivity appears to be caused by low pore connectivity. Chemical diffusion in sparsely-connected pore spaces is not well described by classical Fickian behavior; anomalous behavior is suggested by percolation theory, and confirmed by results of imbibition tests. Our evolving complementary approaches, with their several advantages and disadvantages, provide a rich toolbox for tackling the pore structure characteristics in the Barnett Shale and other natural rocks.

  6. Micro-computed tomography pore-scale study of flow in porous media: Effect of voxel resolution

    Science.gov (United States)

    Shah, S. M.; Gray, F.; Crawshaw, J. P.; Boek, E. S.

    2016-09-01

    A fundamental understanding of flow in porous media at the pore-scale is necessary to be able to upscale average displacement processes from core to reservoir scale. The study of fluid flow in porous media at the pore-scale consists of two key procedures: Imaging - reconstruction of three-dimensional (3D) pore space images; and modelling such as with single and two-phase flow simulations with Lattice-Boltzmann (LB) or Pore-Network (PN) Modelling. Here we analyse pore-scale results to predict petrophysical properties such as porosity, single-phase permeability and multi-phase properties at different length scales. The fundamental issue is to understand the image resolution dependency of transport properties, in order to up-scale the flow physics from pore to core scale. In this work, we use a high resolution micro-computed tomography (micro-CT) scanner to image and reconstruct three dimensional pore-scale images of five sandstones (Bentheimer, Berea, Clashach, Doddington and Stainton) and five complex carbonates (Ketton, Estaillades, Middle Eastern sample 3, Middle Eastern sample 5 and Indiana Limestone 1) at four different voxel resolutions (4.4 μm, 6.2 μm, 8.3 μm and 10.2 μm), scanning the same physical field of view. Implementing three phase segmentation (macro-pore phase, intermediate phase and grain phase) on pore-scale images helps to understand the importance of connected macro-porosity in the fluid flow for the samples studied. We then compute the petrophysical properties for all the samples using PN and LB simulations in order to study the influence of voxel resolution on petrophysical properties. We then introduce a numerical coarsening scheme which is used to coarsen a high voxel resolution image (4.4 μm) to lower resolutions (6.2 μm, 8.3 μm and 10.2 μm) and study the impact of coarsening data on macroscopic and multi-phase properties. Numerical coarsening of high resolution data is found to be superior to using a lower resolution scan because it

  7. Understanding chemical-potential-related transient pore-pressure response to improve real-time borehole (in)stability predictions

    Energy Technology Data Exchange (ETDEWEB)

    Tare, U. A.; Mody, F. K.; Mese, A. I. [Haliburton Energy Services, TX (United States)

    2002-07-01

    In order to develop a real-time wellbore (in)stability modelling capability, experimental work was carried out to investigate the role of the chemical potential of drilling fluids on transient pore pressure and time-dependent rock property alterations of shale formations. Time-dependent alterations in the pore pressure, acoustic and rock properties of formations subjected to compressive tri-axial test were recorded during the experiments involving the Pore Pressure Transmission (PPT) test. Based on the transient pore pressure of shale exposed to the test fluid presented here, the 20 per cent calcium chloride showed a very low membrane efficiency of 4.45 per cent. The need for a thorough understanding of the drilling fluid/shale interaction prior to applying any chemical potential wellbore (in)stability model to real-time drilling operations was emphasized. 9 refs., 5 figs.

  8. Enhancement of plasma generation in catalyst pores with different shapes

    Science.gov (United States)

    Zhang, Yu-Ru; Neyts, Erik C.; Bogaerts, Annemie

    2018-05-01

    Plasma generation inside catalyst pores is of utmost importance for plasma catalysis, as the existence of plasma species inside the pores affects the active surface area of the catalyst available to the plasma species for catalytic reactions. In this paper, the electric field enhancement, and thus the plasma production inside catalyst pores with different pore shapes is studied with a two-dimensional fluid model. The results indicate that the electric field will be significantly enhanced near tip-like structures. In a conical pore with small opening, the strongest electric field appears at the opening and bottom corners of the pore, giving rise to a prominent ionization rate throughout the pore. For a cylindrical pore, the electric field is only enhanced at the bottom corners of the pore, with lower absolute value, and thus the ionization rate inside the pore is only slightly enhanced. Finally, in a conical pore with large opening, the electric field is characterized by a maximum at the bottom of the pore, yielding a similar behavior for the ionization rate. These results demonstrate that the shape of the pore has a significantly influence on the electric field enhancement, and thus modifies the plasma properties.

  9. Application of x-ray microtomography to environmental fluid flow problems

    International Nuclear Information System (INIS)

    Wildenschild, D.; Culligan, K.A.; Christensen, B.S.B.

    2005-01-01

    Many environmental processes are controlled by the micro-scale interaction of water and air with the solid phase (soils, sediments, rock) in pore spaces within the subsurface. The distribution in time and space of fluids in pores ultimately controls subsurface flow and contaminant transport relevant to groundwater resource management, contaminant remediation, and agriculture. Many of these physical processes operative at the pore-scale cannot be directly investigated using conventional hydrologic techniques, however recent developments in synchrotron-based micro-imaging have made it possible to observe and quantify pore-scale processes non-invasively. Micron-scale resolution makes it possible to track fluid flow within individual pores and therefore facilitates previously unattainable measurements. We report on experiments performed at the GSECARS** (Advanced Photon Source) microtomography facility and have measured properties such as porosity, fluid saturation and distribution within the pore space, as well as interfacial characteristics of the fluids involved (air, water, contaminant). Different image processing techniques were applied following mathematical reconstruction to produce accurate measurements of the physical flow properties. These new micron-scale measurements make it possible to test existing and new theory, as well as emerging numerical modeling schemes aimed at the pore scale.

  10. Pore Network Modeling: Alternative Methods to Account for Trapping and Spatial Correlation

    KAUST Repository

    De La Garza Martinez, Pablo

    2016-05-01

    Pore network models have served as a predictive tool for soil and rock properties with a broad range of applications, particularly in oil recovery, geothermal energy from underground reservoirs, and pollutant transport in soils and aquifers [39]. They rely on the representation of the void space within porous materials as a network of interconnected pores with idealised geometries. Typically, a two-phase flow simulation of a drainage (or imbibition) process is employed, and by averaging the physical properties at the pore scale, macroscopic parameters such as capillary pressure and relative permeability can be estimated. One of the most demanding tasks in these models is to include the possibility of fluids to remain trapped inside the pore space. In this work I proposed a trapping rule which uses the information of neighboring pores instead of a search algorithm. This approximation reduces the simulation time significantly and does not perturb the accuracy of results. Additionally, I included spatial correlation to generate the pore sizes using a matrix decomposition method. Results show higher relative permeabilities and smaller values for irreducible saturation, which emphasizes the effects of ignoring the intrinsic correlation seen in pore sizes from actual porous media. Finally, I implemented the algorithm from Raoof et al. (2010) [38] to generate the topology of a Fontainebleau sandstone by solving an optimization problem using the steepest descent algorithm with a stochastic approximation for the gradient. A drainage simulation is performed on this representative network and relative permeability is compared with published results. The limitations of this algorithm are discussed and other methods are suggested to create a more faithful representation of the pore space.

  11. Pore Network Modeling: Alternative Methods to Account for Trapping and Spatial Correlation

    KAUST Repository

    De La Garza Martinez, Pablo

    2016-01-01

    Pore network models have served as a predictive tool for soil and rock properties with a broad range of applications, particularly in oil recovery, geothermal energy from underground reservoirs, and pollutant transport in soils and aquifers [39]. They rely on the representation of the void space within porous materials as a network of interconnected pores with idealised geometries. Typically, a two-phase flow simulation of a drainage (or imbibition) process is employed, and by averaging the physical properties at the pore scale, macroscopic parameters such as capillary pressure and relative permeability can be estimated. One of the most demanding tasks in these models is to include the possibility of fluids to remain trapped inside the pore space. In this work I proposed a trapping rule which uses the information of neighboring pores instead of a search algorithm. This approximation reduces the simulation time significantly and does not perturb the accuracy of results. Additionally, I included spatial correlation to generate the pore sizes using a matrix decomposition method. Results show higher relative permeabilities and smaller values for irreducible saturation, which emphasizes the effects of ignoring the intrinsic correlation seen in pore sizes from actual porous media. Finally, I implemented the algorithm from Raoof et al. (2010) [38] to generate the topology of a Fontainebleau sandstone by solving an optimization problem using the steepest descent algorithm with a stochastic approximation for the gradient. A drainage simulation is performed on this representative network and relative permeability is compared with published results. The limitations of this algorithm are discussed and other methods are suggested to create a more faithful representation of the pore space.

  12. Effect of Pore Pressure on Slip Failure of an Impermeable Fault: A Coupled Micro Hydro-Geomechanical Model

    Science.gov (United States)

    Yang, Z.; Juanes, R.

    2015-12-01

    The geomechanical processes associated with subsurface fluid injection/extraction is of central importance for many industrial operations related to energy and water resources. However, the mechanisms controlling the stability and slip motion of a preexisting geologic fault remain poorly understood and are critical for the assessment of seismic risk. In this work, we develop a coupled hydro-geomechanical model to investigate the effect of fluid injection induced pressure perturbation on the slip behavior of a sealing fault. The model couples single-phase flow in the pores and mechanics of the solid phase. Granular packs (see example in Fig. 1a) are numerically generated where the grains can be either bonded or not, depending on the degree of cementation. A pore network is extracted for each granular pack with pore body volumes and pore throat conductivities calculated rigorously based on geometry of the local pore space. The pore fluid pressure is solved via an explicit scheme, taking into account the effect of deformation of the solid matrix. The mechanics part of the model is solved using the discrete element method (DEM). We first test the validity of the model with regard to the classical one-dimensional consolidation problem where an analytical solution exists. We then demonstrate the ability of the coupled model to reproduce rock deformation behavior measured in triaxial laboratory tests under the influence of pore pressure. We proceed to study the fault stability in presence of a pressure discontinuity across the impermeable fault which is implemented as a plane with its intersected pore throats being deactivated and thus obstructing fluid flow (Fig. 1b, c). We focus on the onset of shear failure along preexisting faults. We discuss the fault stability criterion in light of the numerical results obtained from the DEM simulations coupled with pore fluid flow. The implication on how should faults be treated in a large-scale continuum model is also presented.

  13. Symmetry breaking in fluid dynamics: Lie group reducible motions for real fluids

    International Nuclear Information System (INIS)

    Holm, D.D.

    1976-07-01

    The physics of fluids is based on certain kinematical invariance principles, which refer to coordinate systems, dimensions, and Galilean reference frames. Other, thermodynamic, symmetry principles are introduced by the material description. In the present work, the interplay between these two kinds of invariance principles is used to solve for classes of one-dimensional non-steady isentropic motions of a fluid whose equation of state is of Mie-Gruneisen type. Also, the change in profile and attenuation of weak shock waves in a dissipative medium is studied at the level of Burgers' approximation from the viewpoint of its underlying symmetry structure. The mathematical method of approach is based on the theory of infinitesimal Lie groups. Fluid motions are characterized according to inequivalent subgroups of the full invariance group of the flow description and exact group reducible solutions are presented

  14. Symmetry breaking in fluid dynamics: Lie group reducible motions for real fluids

    Energy Technology Data Exchange (ETDEWEB)

    Holm, D.D.

    1976-07-01

    The physics of fluids is based on certain kinematical invariance principles, which refer to coordinate systems, dimensions, and Galilean reference frames. Other, thermodynamic, symmetry principles are introduced by the material description. In the present work, the interplay between these two kinds of invariance principles is used to solve for classes of one-dimensional non-steady isentropic motions of a fluid whose equation of state is of Mie-Gruneisen type. Also, the change in profile and attenuation of weak shock waves in a dissipative medium is studied at the level of Burgers' approximation from the viewpoint of its underlying symmetry structure. The mathematical method of approach is based on the theory of infinitesimal Lie groups. Fluid motions are characterized according to inequivalent subgroups of the full invariance group of the flow description and exact group reducible solutions are presented.

  15. Development of an accurate pH measurement methodology for the pore fluids of low pH cementitious materials

    International Nuclear Information System (INIS)

    Alonso, M. C.; Garcia Calvo, J. L.; Walker, C.

    2012-08-01

    The main objective of this project has been the development of an agreed set of protocols for the pH measurement of the pore fluid of a low pH cementitious material. Three protocols have been developed (Chapter 2), a reference method, based on pore fluid expression (PFE), and two routine methods with and without filtering, based on Ex Situ Leaching (ESL) procedures. Templates have been designed on which to record details of the pH measurement for the reference (PFE) method (Appendix C) and the routine (ESL) methods without and with filtering (Appendix D). Preliminary protocols were based on a broad review of the literature (Appendix A) and refined through a series of test experiments of the more critical parameters (Appendix B). After definition of the preliminary protocols, two phases of interlaboratory tests were performed. The first phase (Chapter 3) used the same low pH cement paste and enabled the nine participating laboratories to use, become familiar with and to identify any problems/uncertainties in the preliminary protocols. The reported pH values were subjected to a statistical analysis of the (within laboratory) repeatability and (between-laboratory) reproducibility and so provided a reliability test of the preliminary protocols. The second phase (Chapter 4) of interlaboratory tests used four different candidate low pH cementitious materials in the same nine laboratories, which allowed testing, validation and comparison of the reported pH values, which were obtained using the final protocols for the reference (PFE) and routine (ESL) methods by statistical analysis. The proposed final protocols (Chapter 2) have resulted in the reported pH values having low deviation and high reproducibility and repeatability. This will allow confidence in the pH value when selecting a candidate low pH cementitious material to be used in the engineered component of a high-level nuclear waste repository

  16. Development of an accurate pH measurement methodology for the pore fluids of low pH cementitious materials

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, M. C.; Garcia Calvo, J. L. [The Spanish National Research Council (CSIC), Madrid (Spain); Walker, C. [Japan Atomic Energy Agency (JAEA), Ibaraki (Japan)] [and others

    2012-08-15

    The main objective of this project has been the development of an agreed set of protocols for the pH measurement of the pore fluid of a low pH cementitious material. Three protocols have been developed (Chapter 2), a reference method, based on pore fluid expression (PFE), and two routine methods with and without filtering, based on Ex Situ Leaching (ESL) procedures. Templates have been designed on which to record details of the pH measurement for the reference (PFE) method (Appendix C) and the routine (ESL) methods without and with filtering (Appendix D). Preliminary protocols were based on a broad review of the literature (Appendix A) and refined through a series of test experiments of the more critical parameters (Appendix B). After definition of the preliminary protocols, two phases of interlaboratory tests were performed. The first phase (Chapter 3) used the same low pH cement paste and enabled the nine participating laboratories to use, become familiar with and to identify any problems/uncertainties in the preliminary protocols. The reported pH values were subjected to a statistical analysis of the (within laboratory) repeatability and (between-laboratory) reproducibility and so provided a reliability test of the preliminary protocols. The second phase (Chapter 4) of interlaboratory tests used four different candidate low pH cementitious materials in the same nine laboratories, which allowed testing, validation and comparison of the reported pH values, which were obtained using the final protocols for the reference (PFE) and routine (ESL) methods by statistical analysis. The proposed final protocols (Chapter 2) have resulted in the reported pH values having low deviation and high reproducibility and repeatability. This will allow confidence in the pH value when selecting a candidate low pH cementitious material to be used in the engineered component of a high-level nuclear waste repository.

  17. Influence of the pore fluid on the phase velocity in bovine trabecular bone In Vitro: Prediction of the biot model

    Science.gov (United States)

    Lee, Kang Il

    2013-01-01

    The present study aims to investigate the influence of the pore fluid on the phase velocity in bovine trabecular bone in vitro. The frequency-dependent phase velocity was measured in 20 marrow-filled and water-filled bovine femoral trabecular bone samples. The mean phase velocities at frequencies between 0.6 and 1.2 MHz exhibited significant negative dispersions for both the marrow-filled and the water-filled samples. The magnitudes of the dispersions showed no significant differences between the marrow-filled and the water-filled samples. In contrast, replacement of marrow by water led to a mean increase in the phase velocity of 27 m/s at frequencies from 0.6 to 1.2 MHz. The theoretical phase velocities of the fast wave predicted by using the Biot model for elastic wave propagation in fluid-saturated porous media showed good agreements with the measurements.

  18. Effect of Pore Size and Pore Connectivity on Unidirectional Capillary Penetration Kinetics in 3-D Porous Media using Direct Numerical Simulation

    Science.gov (United States)

    Fu, An; Palakurthi, Nikhil; Konangi, Santosh; Comer, Ken; Jog, Milind

    2017-11-01

    The physics of capillary flow is used widely in multiple fields. Lucas-Washburn equation is developed by using a single pore-sized capillary tube with continuous pore connection. Although this equation has been extended to describe the penetration kinetics into porous medium, multiple studies have indicated L-W does not accurately predict flow patterns in real porous media. In this study, the penetration kinetics including the effect of pore size and pore connectivity will be closely examined since they are expected to be the key factors effecting the penetration process. The Liquid wicking process is studied from a converging and diverging capillary tube to the complex virtual 3-D porous structures with Direct Numerical Simulation (DNS) using the Volume-Of-Fluid (VOF) method within the OpenFOAM CFD Solver. Additionally Porous Medium properties such as Permeability (k) , Tortuosity (τ) will be also analyzed.

  19. Methods of conveying fluids and methods of sublimating solid particles

    Science.gov (United States)

    Turner, Terry D; Wilding, Bruce M

    2013-10-01

    A heat exchanger and associated methods for sublimating solid particles therein, for conveying fluids therethrough, or both. The heat exchanger includes a chamber and a porous member having a porous wall having pores in communication with the chamber and with an interior of the porous member. A first fluid is conveyed into the porous member while a second fluid is conveyed into the porous member through the porous wall. The second fluid may form a positive flow boundary layer along the porous wall to reduce or eliminate substantial contact between the first fluid and the interior of the porous wall. The combined first and second fluids are conveyed out of the porous member. Additionally, the first fluid and the second fluid may each be conveyed into the porous member at different temperatures and may exit the porous member at substantially the same temperature.

  20. Pore-scale mechanisms of gas flow in tight sand reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Silin, D.; Kneafsey, T.J.; Ajo-Franklin, J.B.; Nico, P.

    2010-11-30

    Tight gas sands are unconventional hydrocarbon energy resource storing large volume of natural gas. Microscopy and 3D imaging of reservoir samples at different scales and resolutions provide insights into the coaredo not significantly smaller in size than conventional sandstones, the extremely dense grain packing makes the pore space tortuous, and the porosity is small. In some cases the inter-granular void space is presented by micron-scale slits, whose geometry requires imaging at submicron resolutions. Maximal Inscribed Spheres computations simulate different scenarios of capillary-equilibrium two-phase fluid displacement. For tight sands, the simulations predict an unusually low wetting fluid saturation threshold, at which the non-wetting phase becomes disconnected. Flow simulations in combination with Maximal Inscribed Spheres computations evaluate relative permeability curves. The computations show that at the threshold saturation, when the nonwetting fluid becomes disconnected, the flow of both fluids is practically blocked. The nonwetting phase is immobile due to the disconnectedness, while the permeability to the wetting phase remains essentially equal to zero due to the pore space geometry. This observation explains the Permeability Jail, which was defined earlier by others. The gas is trapped by capillarity, and the brine is immobile due to the dynamic effects. At the same time, in drainage, simulations predict that the mobility of at least one of the fluids is greater than zero at all saturations. A pore-scale model of gas condensate dropout predicts the rate to be proportional to the scalar product of the fluid velocity and pressure gradient. The narrowest constriction in the flow path is subject to the highest rate of condensation. The pore-scale model naturally upscales to the Panfilov's Darcy-scale model, which implies that the condensate dropout rate is proportional to the pressure gradient squared. Pressure gradient is the greatest near the

  1. SU-E-J-61: Electrodynamics and Nano-Scale Fluid Dynamics in Protein Localization of Nuclear Pore Complexes

    Energy Technology Data Exchange (ETDEWEB)

    Cunningham, J; Gatenby, R [Moffitt Cancer Research Institute, Tampa, FL (United States)

    2014-06-01

    Purpose: To develop a simulation to catalyze a reevaluation of common assumptions about 3 dimensional diffusive processes and help cell biologists gain a more nuanced, intuitive understanding of the true physical hurdles of protein signaling cascades. Furthermore, to discuss the possibility of intracellular electrodynamics as a critical, unrecognized component of cellular biology and protein dynamics that is necessary for optimal information flow from the cell membrane to the nucleus. Methods: The Unity 3D gaming physics engine was used to build an accurate virtual scale model of the cytoplasm within a few hundred nanometers of the nuclear membrane. A cloud of simulated pERK proteins is controlled by the physics simulation, where diffusion is based on experimentally measured values and the electrodynamics are based on theoretical nano-fluid dynamics. The trajectories of pERK within the cytoplasm and through the 1250 nuclear pores on the nuclear surface is recorded and analyzed. Results: The simulation quickly demonstrates that pERKs moving solely by diffusion will rarely locate and come within capture distance of a nuclear pore. The addition of intracellular electrodynamics between charges on the nuclear pore complexes and on pERKs increases the number of successful translocations by allowing the electro-physical attractive effects to draw in pERKs from the cytoplasm. The effects of changes in intracellular shielding ion concentrations allowed for estimation of the “capture radius” under varying conditions. Conclusion: The simulation allows a shift in perspective that is paramount in attempting to communicate the scale and dynamics of intracellular protein cascade mechanics. This work has allowed researchers to more fully understand the parameters involved in intracellular electrodynamics, such as shielding anion concentration and protein charge. As these effects are still far below the spatial resolution of currently available measurement technology this

  2. SU-E-J-61: Electrodynamics and Nano-Scale Fluid Dynamics in Protein Localization of Nuclear Pore Complexes

    International Nuclear Information System (INIS)

    Cunningham, J; Gatenby, R

    2014-01-01

    Purpose: To develop a simulation to catalyze a reevaluation of common assumptions about 3 dimensional diffusive processes and help cell biologists gain a more nuanced, intuitive understanding of the true physical hurdles of protein signaling cascades. Furthermore, to discuss the possibility of intracellular electrodynamics as a critical, unrecognized component of cellular biology and protein dynamics that is necessary for optimal information flow from the cell membrane to the nucleus. Methods: The Unity 3D gaming physics engine was used to build an accurate virtual scale model of the cytoplasm within a few hundred nanometers of the nuclear membrane. A cloud of simulated pERK proteins is controlled by the physics simulation, where diffusion is based on experimentally measured values and the electrodynamics are based on theoretical nano-fluid dynamics. The trajectories of pERK within the cytoplasm and through the 1250 nuclear pores on the nuclear surface is recorded and analyzed. Results: The simulation quickly demonstrates that pERKs moving solely by diffusion will rarely locate and come within capture distance of a nuclear pore. The addition of intracellular electrodynamics between charges on the nuclear pore complexes and on pERKs increases the number of successful translocations by allowing the electro-physical attractive effects to draw in pERKs from the cytoplasm. The effects of changes in intracellular shielding ion concentrations allowed for estimation of the “capture radius” under varying conditions. Conclusion: The simulation allows a shift in perspective that is paramount in attempting to communicate the scale and dynamics of intracellular protein cascade mechanics. This work has allowed researchers to more fully understand the parameters involved in intracellular electrodynamics, such as shielding anion concentration and protein charge. As these effects are still far below the spatial resolution of currently available measurement technology this

  3. Fluids and the evolution of rock mechanical properties

    International Nuclear Information System (INIS)

    Reuschle, Thierry

    1989-01-01

    This research thesis reports the study of the various phenomena of fluid-solid interaction (mechanical or chemical interaction with fracturing by fluid overpressure, slow crack propagation, and pore deformation by transfer in solution) which may occur in the interaction of fluids with rocks. The author first presents the formalism of slow crack propagation based on the generalisation of the Griffith criterion. The model results are compared with experimental results obtained on four materials (glass, quartz, sandstone, and micrite) by using the double-torsion test. In the second part, the author addresses the issue of pore deformation by transfer in solution: dissolution and crystallisation under stress. The Gibbs chemical potential equation is firstly generalised to the case of a circular pore, and a formalism combining mechanics and thermodynamics is then proposed. A set of simulations highlights important parameters. In the third part, the author addresses the problem of fluid-rock mechanical interaction by studying the mechanical role of fluid pressure in crack initiation and propagation [fr

  4. Pore-scale simulation of fluid flow and solute dispersion in three-dimensional porous media

    KAUST Repository

    Icardi, Matteo

    2014-07-31

    In the present work fluid flow and solute transport through porous media are described by solving the governing equations at the pore scale with finite-volume discretization. Instead of solving the simplified Stokes equation (very often employed in this context) the full Navier-Stokes equation is used here. The realistic three-dimensional porous medium is created in this work by packing together, with standard ballistic physics, irregular and polydisperse objects. Emphasis is placed on numerical issues related to mesh generation and spatial discretization, which play an important role in determining the final accuracy of the finite-volume scheme and are often overlooked. The simulations performed are then analyzed in terms of velocity distributions and dispersion rates in a wider range of operating conditions, when compared with other works carried out by solving the Stokes equation. Results show that dispersion within the analyzed porous medium is adequately described by classical power laws obtained by analytic homogenization. Eventually the validity of Fickian diffusion to treat dispersion in porous media is also assessed. © 2014 American Physical Society.

  5. Capillary filling rules and displacement mechanisms for spontaneous imbibition of CO2 for carbon storage and EOR using micro-model experiments and pore scale simulation

    Science.gov (United States)

    Chapman, E.; Yang, J.; Crawshaw, J.; Boek, E. S.

    2012-04-01

    In the 1980s, Lenormand et al. carried out their pioneering work on displacement mechanisms of fluids in etched networks [1]. Here we further examine displacement mechanisms in relation to capillary filling rules for spontaneous imbibition. Understanding the role of spontaneous imbibition in fluid displacement is essential for refining pore network models. Generally, pore network models use simple capillary filling rules and here we examine the validity of these rules for spontaneous imbibition. Improvement of pore network models is vital for the process of 'up-scaling' to the field scale for both enhanced oil recovery (EOR) and carbon sequestration. In this work, we present our experimental microfluidic research into the displacement of both supercritical CO2/deionised water (DI) systems and analogous n-decane/air - where supercritical CO2 and n-decane are the respective wetting fluids - controlled by imbibition at the pore scale. We conducted our experiments in etched PMMA and silicon/glass micro-fluidic hydrophobic chips. We first investigate displacement in single etched pore junctions, followed by displacement in complex network designs representing actual rock thin sections, i.e. Berea sandstone and Sucrosic dolomite. The n-decane/air experiments were conducted under ambient conditions, whereas the supercritical CO2/DI water experiments were conducted under high temperature and pressure in order to replicate reservoir conditions. Fluid displacement in all experiments was captured via a high speed video microscope. The direction and type of displacement the imbibing fluid takes when it enters a junction is dependent on the number of possible channels in which the wetting fluid can imbibe, i.e. I1, I2 and I3 [1]. Depending on the experiment conducted, the micro-models were initially filled with either DI water or air before the wetting fluid was injected. We found that the imbibition of the wetting fluid through a single pore is primarily controlled by the

  6. Pore REconstruction and Segmentation (PORES) method for improved porosity quantification of nanoporous materials

    Energy Technology Data Exchange (ETDEWEB)

    Van Eyndhoven, G., E-mail: geert.vaneyndhoven@uantwerpen.be [iMinds-Vision Lab, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk (Belgium); Kurttepeli, M. [EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Van Oers, C.J.; Cool, P. [Laboratory of Adsorption and Catalysis, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk (Belgium); Bals, S. [EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Batenburg, K.J. [iMinds-Vision Lab, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk (Belgium); Centrum Wiskunde and Informatica, Science Park 123, NL-1090 GB Amsterdam (Netherlands); Mathematical Institute, Universiteit Leiden, Niels Bohrweg 1, NL-2333 CA Leiden (Netherlands); Sijbers, J. [iMinds-Vision Lab, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk (Belgium)

    2015-01-15

    Electron tomography is currently a versatile tool to investigate the connection between the structure and properties of nanomaterials. However, a quantitative interpretation of electron tomography results is still far from straightforward. Especially accurate quantification of pore-space is hampered by artifacts introduced in all steps of the processing chain, i.e., acquisition, reconstruction, segmentation and quantification. Furthermore, most common approaches require subjective manual user input. In this paper, the PORES algorithm “POre REconstruction and Segmentation” is introduced; it is a tailor-made, integral approach, for the reconstruction, segmentation, and quantification of porous nanomaterials. The PORES processing chain starts by calculating a reconstruction with a nanoporous-specific reconstruction algorithm: the Simultaneous Update of Pore Pixels by iterative REconstruction and Simple Segmentation algorithm (SUPPRESS). It classifies the interior region to the pores during reconstruction, while reconstructing the remaining region by reducing the error with respect to the acquired electron microscopy data. The SUPPRESS reconstruction can be directly plugged into the remaining processing chain of the PORES algorithm, resulting in accurate individual pore quantification and full sample pore statistics. The proposed approach was extensively validated on both simulated and experimental data, indicating its ability to generate accurate statistics of nanoporous materials. - Highlights: • An electron tomography reconstruction/segmentation method for nanoporous materials. • The method exploits the porous nature of the scanned material. • Validated extensively on both simulation and real data experiments. • Results in increased image resolution and improved porosity quantification.

  7. The Controls of Pore-Throat Structure on Fluid Performance in Tight Clastic Rock Reservoir: A Case from the Upper Triassic of Chang 7 Member, Ordos Basin, China

    Directory of Open Access Journals (Sweden)

    Yunlong Zhang

    2018-01-01

    Full Text Available The characteristics of porosity and permeability in tight clastic rock reservoir have significant difference from those in conventional reservoir. The increased exploitation of tight gas and oil requests further understanding of fluid performance in the nanoscale pore-throat network of the tight reservoir. Typical tight sandstone and siltstone samples from Ordos Basin were investigated, and rate-controlled mercury injection capillary pressure (RMICP and nuclear magnetic resonance (NMR were employed in this paper, combined with helium porosity and air permeability data, to analyze the impact of pore-throat structure on the storage and seepage capacity of these tight oil reservoirs, revealing the control factors of economic petroleum production. The researches indicate that, in the tight clastic rock reservoir, largest throat is the key control on the permeability and potentially dominates the movable water saturation in the reservoir. The storage capacity of the reservoir consists of effective throat and pore space. Although it has a relatively steady and significant proportion that resulted from the throats, its variation is still dominated by the effective pores. A combination parameter (ε that was established to be as an integrated characteristic of pore-throat structure shows effectively prediction of physical capability for hydrocarbon resource of the tight clastic rock reservoir.

  8. Nanoscale Pore Features and Associated Fluid Behavior in Shale

    Science.gov (United States)

    Cole, D. R.; Striolo, A.

    2017-12-01

    Unconventional hydrocarbons occurring in economic abundance require greater than industry-standard levels of technology or investment to exploit. Geological formations that host unconventional oil and gas are extraordinarily heterogeneous and exhibit a wide range of physical and chemical features that can vary over many orders of magnitude in length scale. The size, distribution and connectivity of these confined geometries, the chemistry of the solid, the chemistry of the fluids and their physical properties collectively dictate how fluids migrate into and through these micro- and nano-environments, wet and ultimately react with the solid surfaces. Our current understanding of the rates and mechanisms of fluid and mass transport and interaction within these multiporosity systems at the molecular scale is far less robust than we would like. This presentation will take a two-fold approach to this topic area. First, a brief overview is provided that highlights the use of advanced electron microscopy and neutrons scattering methods to quantify the nature of the nanopore system that hosts hydrocarbons in representative gas shale formations such as the Utica, Marcellus and Eagle Ford. Second, results will be presented that leverage the application of state-of-the-art experimental, analytical and computational tools to assess key features of the fluid-matrix interaction relevant to shale settings. The multidisciplinary approaches highlighted will include neutron scattering and NMR experiments, thermodynamic measurements and molecular-level simulations to quantitatively assess molecular properties of C-O-H fluids confined to well-characterized porous media, subjected to temperatures and pressures relevant to subsurface energy systems. These studies conducted in concert are beginning to provide a fundamental understanding at the molecular level of how intrinsically different hydrocarbon-bearing fluids behave in confined geometries compared to bulk systems, and shed light

  9. Thermostating highly confined fluids.

    Science.gov (United States)

    Bernardi, Stefano; Todd, B D; Searles, Debra J

    2010-06-28

    In this work we show how different use of thermostating devices and modeling of walls influence the mechanical and dynamical properties of confined nanofluids. We consider a two dimensional fluid undergoing Couette flow using nonequilibrium molecular dynamics simulations. Because the system is highly inhomogeneous, the density shows strong fluctuations across the channel. We compare the dynamics produced by applying a thermostating device directly to the fluid with that obtained when the wall is thermostated, considering also the effects of using rigid walls. This comparison involves an analysis of the chaoticity of the fluid and evaluation of mechanical properties across the channel. We look at two thermostating devices with either rigid or vibrating atomic walls and compare them with a system only thermostated by conduction through vibrating atomic walls. Sensitive changes are observed in the xy component of the pressure tensor, streaming velocity, and density across the pore and the Lyapunov localization of the fluid. We also find that the fluid slip can be significantly reduced by rigid walls. Our results suggest caution in interpreting the results of systems in which fluid atoms are thermostated and/or wall atoms are constrained to be rigid, such as, for example, water inside carbon nanotubes.

  10. An investigation into the effects of pore connectivity on T2 NMR relaxation

    Science.gov (United States)

    Ghomeshi, Shahin; Kryuchkov, Sergey; Kantzas, Apostolos

    2018-04-01

    Nuclear Magnetic Resonance (NMR) is a powerful technique used to characterize fluids and flow in porous media. The NMR relaxation curves are closely related to pore geometry, and the inversion of the NMR relaxometry data is known to give useful information with regards to pore size distribution (PSD) through the relative amplitudes of the fluids stored in the small and large pores. While this information is crucial, the main challenge for the successful use of the NMR measurements is the proper interpretation of the measured signals. Natural porous media patterns consist of complex pore structures with many interconnected or "coupled" regions, as well as isolated pores. This connectivity along the throats changes the relaxation distribution and in order to properly interpret this data, a thorough understanding of the effects of pore connectivity on the NMR relaxation distribution is warranted. In this paper we address two main points. The first pertains to the fact that there is a discrepancy between the relaxation distribution obtained from experiments, and the ones obtained from solving the mathematical models of diffusion process in the digitized images of the pore space. There are several reasons that may attribute to this such as the lack of a proper incorporation of surface roughness into the model. However, here we are more interested in the effects of pore connectivity and to understand why the typical NMR relaxation distribution obtained from experiments are wider, while the numerical simulations predict that a wider NMR relaxation distribution may indicate poor connectivity. Secondly, by not taking into account the pore coupling effects, from our experience in interpreting the data, we tend to underestimate the pore volume of small pores and overestimate the amplitudes in the large pores. The role of pore coupling becomes even more prominent in rocks with small pore sizes such as for example in shales, clay in sandstones, and in the microstructures of

  11. Physically based model for extracting dual permeability parameters using non-Newtonian fluids

    Science.gov (United States)

    Abou Najm, M. R.; Basset, C.; Stewart, R. D.; Hauswirth, S.

    2017-12-01

    Dual permeability models are effective for the assessment of flow and transport in structured soils with two dominant structures. The major challenge to those models remains in the ability to determine appropriate and unique parameters through affordable, simple, and non-destructive methods. This study investigates the use of water and a non-Newtonian fluid in saturated flow experiments to derive physically-based parameters required for improved flow predictions using dual permeability models. We assess the ability of these two fluids to accurately estimate the representative pore sizes in dual-domain soils, by determining the effective pore sizes of macropores and micropores. We developed two sub-models that solve for the effective macropore size assuming either cylindrical (e.g., biological pores) or planar (e.g., shrinkage cracks and fissures) pore geometries, with the micropores assumed to be represented by a single effective radius. Furthermore, the model solves for the percent contribution to flow (wi) corresponding to the representative macro and micro pores. A user-friendly solver was developed to numerically solve the system of equations, given that relevant non-Newtonian viscosity models lack forms conducive to analytical integration. The proposed dual-permeability model is a unique attempt to derive physically based parameters capable of measuring dual hydraulic conductivities, and therefore may be useful in reducing parameter uncertainty and improving hydrologic model predictions.

  12. Pore-scale simulation of wettability and interfacial tension effects on flooding process for enhanced oil recovery.

    Science.gov (United States)

    Zhao, Jin; Wen, Dongsheng

    2017-08-27

    For enhanced oil recovery (EOR) applications, the oil/water flow characteristics during the flooding process was numerically investigated with the volume-of-fluid method at the pore scale. A two-dimensional pore throat-body connecting structure was established, and four scenarios were simulated in this paper. For oil-saturated pores, the wettability effect on the flooding process was studied; for oil-unsaturated pores, three effects were modelled to investigate the oil/water phase flow behaviors, namely the wettability effect, the interfacial tension (IFT) effect, and the combined wettability/IFT effect. The results show that oil saturated pores with the water-wet state can lead to 25-40% more oil recovery than with the oil-wet state, and the remaining oil mainly stays in the near wall region of the pore bodies for oil-wet saturated pores. For oil-unsaturated pores, the wettability effects on the flooding process can help oil to detach from the pore walls. By decreasing the oil/water interfacial tension and altering the wettability from oil-wet to water-wet state, the remaining oil recovery rate can be enhanced successfully. The wettability-IFT combined effect shows better EOR potential compared with decreasing the interfacial tension alone under the oil-wet condition. The simulation results in this work are consistent with previous experimental and molecular dynamics simulation conclusions. The combination effect of the IFT reducation and wettability alteration can become an important recovery mechanism in future studies for nanoparticles, surfactant, and nanoparticle-surfactant hybrid flooding process.

  13. Fluid adsorption in ordered mesoporous solids determined by in situ small-angle X-ray scattering.

    Science.gov (United States)

    Findenegg, Gerhard H; Jähnert, Susanne; Müter, Dirk; Prass, Johannes; Paris, Oskar

    2010-07-14

    The adsorption of two organic fluids (n-pentane and perfluoropentane) in a periodic mesoporous silica material (SBA-15) is investigated by in situ small-angle X-ray scattering (SAXS) using synchrotron radiation. Structural changes are monitored as the ordered and disordered pores in the silica matrix are gradually filled with the fluids. The experiments yield integrated peak intensities from up to ten Bragg reflections from the 2D hexagonal pore lattice, and additionally diffuse scattering contributions arising from disordered (mostly intrawall) porosity. The analysis of the scattering data is based on a separation of these two contributions. Bragg scattering is described by adopting a form factor model for ordered pores of cylindrical symmetry which accounts for the filling of the microporous corona, the formation of a fluid film at the pore walls, and condensation of the fluid in the core. The filling fraction of the disordered intrawall pores is extracted from the diffuse scattering intensity and its dependence on the fluid pressure is analyzed on the basis of a three-phase model. The data analysis introduced here provides an important generalisation of a formalism presented recently (J. Phys. Chem. C, 2009, 13, 15201), which was applicable to contrast-matching fluids only. In this way, the adsorption behaviour of fluids into ordered and disordered pores in periodic mesoporous materials can be analyzed quantitatively irrespective of the fluid density.

  14. Fluid Interfaces of Triangular Containers in Reduced Gravity Environments

    Science.gov (United States)

    Guttromson, Jayleen; Manning, Robert; Collicott, Steven H.

    2002-01-01

    Capillary dominated fluid dynamics will be examined in a reduced-gravity environment onboard the KC-135; in particular, the behavior of the lower portion of the meniscus in triangular tank geometries. Seven clear acrylic tanks were constructed to view seven angles of the four geometries. Silicon oil with two different viscosities, 2cs and 5cs silicon oil, were used on different days of the flight. Six tanks and one control tank are filled with a certain viscosity fluid for each flight day. During each parabola, three tanks are tested at time. The experimental tanks are exchanged between parabola sets on the KC-135. The 60deg -60deg -60deg control tank is viewed throughout the flight. To gather data, two digital video cameras and one digital still camera are placed perpendicular the viewing surface. To provide a greater contrast in the meniscus, an EL backlighting sheet was used to backlight the tanks. These images and video are then digitized, passed through NASA's mini-tracker software, and compared to a theory published my M. M. Weislogel, "Fluid Interface Phenomena in a Low-Gravity Environment: Recent Results from Drop Tower Experimentation." By focusing on a lower portion of the meniscus and using longer periods of reduced gravity, this experiment may confirm that a stationary point exists on the fluid surface. This information will enable better designing of propellant management devices, especially satellite propellant refilling and gas venting. Also, biological and material processing systems in reduced gravity environments will benefit from this data.

  15. Localized fluid discharge in subduction zones: Insights from tension veins around an ancient megasplay fault (Nobeoka Thrust, SW Japan)

    Science.gov (United States)

    Otsubo, M.; Hardebeck, J.; Miyakawa, A.; Yamaguchi, A.; Kimura, G.

    2017-12-01

    Fluid-rock interactions along seismogenic faults are of great importance to understand fault mechanics. The fluid loss by the formation of mode I cracks (tension cracks) increases the fault strength and creates drainage asperities along the plate interface (Sibson, 2013, Tectonophysics). The Nobeoka Thrust, in southwestern Japan, is an on-land example of an ancient megasplay fault and provides an excellent record of deformation and fluid flow at seismogenic depths of a subduction zone (Kondo et al., 2005, Tectonics). We focus on (1) Pore fluid pressure loss, (2) Amount of fault strength recovery, and (3) Fluid circulation by the formation of mode I cracks in the post-seismic period around the fault zone of the Nobeoka Thrust. Many quartz veins that filled mode I crack at the coastal outcrops suggest a normal faulting stress regime after faulting of the Nobeoka Thrust (Otsubo et al., 2016, Island Arc). We estimated the decrease of the pore fluid pressure by the formation of the mode I cracks around the Nobeoka Thrust in the post-seismic period. When the pore fluid pressure exceeds σ3, veins filling mode I cracks are constructed (Jolly and Sanderson, 1997, Jour. Struct. Geol.). We call the pore fluid pressure that exceeds σ3 "pore fluid over pressure". The differential stress in the post-seismic period and the driving pore fluid pressure ratio P* (P* = (Pf - σ3) / (σ1 - σ3), Pf: pore fluid pressure) are parameters to estimate the pore fluid over pressure. In the case of the Nobeoka Thrust (P* = 0.4, Otsubo et al., 2016, Island Arc), the pore fluid over pressure is up to 20 MPa (assuming tensile strength = 10 MPa). 20 MPa is equivalent to fluid pressure around the Nobeoka Thrust (depth = 10 km, density = 2.7 kg/m3). When the pore fluid pressure decreases by 4%, the normalized pore pressure ratio λ* (λ* = (Pf - Ph) / (Pl - Ph), Pl: lithostatic pressure; Ph: hydrostatic pressure) changes from 0.95 to 0.86. In the case of the Nobeoka Thrust, the fault strength can

  16. Episodic Tremor and Slip Explained by Fluid-Enhanced Microfracturing and Sealing

    Science.gov (United States)

    Bernaudin, M.; Gueydan, F.

    2018-04-01

    Episodic tremor and slow-slip events at the deep extension of plate boundary faults illuminate seismic to aseismic processes around the brittle-ductile transition. These events occur in volumes characterized by overpressurized fluids and by near failure shear stress conditions. We present a new modeling approach based on a ductile grain size-sensitive rheology with microfracturing and sealing, which provides a mechanical and field-based explanation of such phenomena. We also model pore fluid pressure variation as a function of changes in porosity/permeability and strain rate-dependent fluid pumping. The fluid-enhanced dynamic evolution of microstructures defines cycles of ductile strain localization and implies increase in pore fluid pressure. We propose that slow-slip events are ductile processes related to transient strain localization, while nonvolcanic tremor corresponds to fracturing of the whole rock at the peak of pore fluid pressure. Our model shows that the availability of fluids and the efficiency of fluid pumping control the occurrence and the P-T conditions of episodic tremor and slip.

  17. Impact of pore-water freshening on clays and the compressibility of hydrate-bearing reservoirs during production

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Junbong [U.S. Geological Survey, Woods Hole, MA; Cao, Shuang [Louisiana State University, Baton Rouge, LA; Waite, William [U.S. Geological Survey, Woods Hole, MA; Jung, Jongwon [Chungbuk National University, Cheongju-si, Chungbuk, South Korea

    2017-06-25

    Gas production efficiency from natural hydrate-bearing sediments depends in part on geotechnical properties of fine-grained materials, which are ubiquitous even in sandy hydrate-bearing sediments. The responses of fine-grained material to pore fluid chemistry changes due to freshening during hydrate dissociation could alter critical sediment characteristics during gas production activities. We investigate the electrical sensitivity of fine grains to pore fluid freshening and the implications of freshening on sediment compression and recompression parameters.

  18. Study of pore pressure reaction on hydraulic fracturing

    Science.gov (United States)

    Trimonova, Mariia; Baryshnikov, Nikolay; Turuntaev, Sergey; Zenchenko, Evgeniy; Zenchenko, Petr

    2017-04-01

    We represent the results of the experimental study of the hydraulic fracture propagation influence on the fluid pore pressure. Initial pore pressure was induced by injection and production wells. The experiments were carried out according to scaling analysis based on the radial model of the fracture. All required geomechanical and hydrodynamical properties of a sample were derived from the scaling laws. So, gypsum was chosen as a sample material and vacuum oil as a fracturing fluid. The laboratory setup allows us to investigate the samples of cylindrical shape. It can be considered as an advantage in comparison with standard cubic samples, because we shouldn't consider the stress field inhomogeneity induced by the corners. Moreover, we can set 3D-loading by this setting. Also the sample diameter is big enough (43cm) for placing several wells: the fracturing well in the center and injection and production wells on two opposite sides of the central well. The experiment consisted of several stages: a) applying the horizontal pressure; b) applying the vertical pressure; c) water solution injection in the injection well with a constant pressure; d) the steady state obtaining; e) the oil injection in the central well with a constant rate. The pore pressure was recorded in the 15 points along bottom side of the sample during the whole experiment. We observe the pore pressure change during all the time of the experiment. First, the pore pressure changed due to water injection. Then we began to inject oil in the central well. We compared the obtained experimental data on the pore pressure changes with the solution of the 2D single-phase equation of pore-elasticity, and we found significant difference. The variation of the equation parameters couldn't help to resolve the discrepancy. After the experiment, we found that oil penetrated into the sample before and after the fracture initiation. This fact encouraged us to consider another physical process - the oil

  19. Pore-scale studies of multiphase flow and reaction involving CO2 sequestration in geologic formations

    Science.gov (United States)

    Kang, Q.; Wang, M.; Lichtner, P. C.

    2008-12-01

    In geologic CO2 sequestration, pore-scale interfacial phenomena ultimately govern the key processes of fluid mobility, chemical transport, adsorption, and reaction. However, spatial heterogeneity at the pore scale cannot be resolved at the continuum scale, where averaging occurs over length scales much larger than typical pore sizes. Natural porous media, such as sedimentary rocks and other geological media encountered in subsurface formations, are inherently heterogeneous. This pore-scale heterogeneity can produce variabilities in flow, transport, and reaction processes that take place within a porous medium, and can result in spatial variations in fluid velocity, aqueous concentrations, and reaction rates. Consequently, the unresolved spatial heterogeneity at the pore scale may be important for reactive transport modeling at the larger scale. In addition, current continuum models of surface complexation reactions ignore a fundamental property of physical systems, namely conservation of charge. Therefore, to better understand multiphase flow and reaction involving CO2 sequestration in geologic formations, it is necessary to quantitatively investigate the influence of the pore-scale heterogeneity on the emergent behavior at the field scale. We have applied the lattice Boltzmann method to simulating the injection of CO2 saturated brine or supercritical CO2 into geological formations at the pore scale. Multiple pore-scale processes, including advection, diffusion, homogeneous reactions among multiple aqueous species, heterogeneous reactions between the aqueous solution and minerals, ion exchange and surface complexation, as well as changes in solid and pore geometry are all taken into account. The rich pore scale information will provide a basis for upscaling to the continuum scale.

  20. Persistent Homology to describe Solid and Fluid Structures during Multiphase Flow

    Science.gov (United States)

    Herring, A. L.; Robins, V.; Liu, Z.; Armstrong, R. T.; Sheppard, A.

    2017-12-01

    The question of how to accurately and effectively characterize essential fluid and solid distributions and structures is a long-standing topic within the field of porous media and fluid transport. For multiphase flow applications, considerable research effort has been made to describe fluid distributions under a range of conditions; including quantification of saturation levels, fluid-fluid pressure differences and interfacial areas, and fluid connectivity. Recent research has effectively used topological metrics to describe pore space and fluid connectivity, with researchers demonstrating links between pore-scale nonwetting phase topology to fluid mobilization and displacement mechanisms, relative permeability, fluid flow regimes, and thermodynamic models of multiphase flow. While topology is clearly a powerful tool to describe fluid distribution, topological metrics by definition provide information only on the connectivity of a phase, not its geometry (shape or size). Physical flow characteristics, e.g. the permeability of a fluid phase within a porous medium, are dependent on the connectivity of the pore space or fluid phase as well as the size of connections. Persistent homology is a technique which provides a direct link between topology and geometry via measurement of topological features and their persistence from the signed Euclidean distance transform of a segmented digital image (Figure 1). We apply persistent homology analysis to measure the occurrence and size of pore-scale topological features in a variety of sandstones, for both the dry state and the nonwetting phase fluid during two-phase fluid flow (drainage and imbibition) experiments, visualized with 3D X-ray microtomography. The results provide key insights into the dominant topological features and length scales of a media which control relevant field-scale engineering properties such as fluid trapping, absolute permeability, and relative permeability.

  1. Seismic attributes and advanced computer algorithm to predict formation pore pressure: Qalibah formation of Northwest Saudi Arabia

    Science.gov (United States)

    Nour, Abdoulshakour M.

    Oil and gas exploration professionals have long recognized the importance of predicting pore pressure before drilling wells. Pre-drill pore pressure estimation not only helps with drilling wells safely but also aids in the determination of formation fluids migration and seal integrity. With respect to the hydrocarbon reservoirs, the appropriate drilling mud weight is directly related to the estimated pore pressure in the formation. If the mud weight is lower than the formation pressure, a blowout may occur, and conversely, if it is higher than the formation pressure, the formation may suffer irreparable damage due to the invasion of drilling fluids into the formation. A simple definition of pore pressure is the pressure of the pore fluids in excess of the hydrostatic pressure. In this thesis, I investigated the utility of advance computer algorithm called Support Vector Machine (SVM) to learn the pattern of high pore pressure regime, using seismic attributes such as Instantaneous phase, t*Attenuation, Cosine of Phase, Vp/Vs ratio, P-Impedance, Reflection Acoustic Impedance, Dominant frequency and one well attribute (Mud-Weigh) as the learning dataset. I applied this technique to the over pressured Qalibah formation of Northwest Saudi Arabia. The results of my research revealed that in the Qalibah formation of Northwest Saudi Arabia, the pore pressure trend can be predicted using SVM with seismic and well attributes as the learning dataset. I was able to show the pore pressure trend at any given point within the geographical extent of the 3D seismic data from which the seismic attributes were derived. In addition, my results surprisingly showed the subtle variation of pressure within the thick succession of shale units of the Qalibah formation.

  2. Closure to “Fines Classification Based on Sensitivity to Pore-Fluid Chemistry” by Junbong Jang and J. Carlos Santamarina

    KAUST Repository

    Jang, Junbong

    2017-03-16

    The proposed new fines classification system is an attempt to address the demands of geotechnical engineers who require a methodology that systematically characterizes fines for diverse geotechnical applications. We received six official discussions, three direct contributions, and several other personal communications regarding procedures and data analysis. Overall, contributors welcomed the proposed methodology for its repeatability, its enhanced discrimination and clustering capabilities, and its ability to identify differences in particle-particle interaction associated with pore-fluid changes. This closure benefits from the input provided by all of these contributions, and is organized in three sections: data, test procedure, and interpretation. - See more at: http://ascelibrary.org/doi/10.1061/%28ASCE%29GT.1943-5606.0001694#sthash.IMgJt2FU.dpuf

  3. Imaging techniques applied to the study of fluids in porous media

    Energy Technology Data Exchange (ETDEWEB)

    Tomutsa, L.; Doughty, D.; Mahmood, S.; Brinkmeyer, A.; Madden, M.P.

    1991-01-01

    A detailed understanding of rock structure and its influence on fluid entrapment, storage capacity, and flow behavior can improve the effective utilization and design of methods to increase the recovery of oil and gas from petroleum reservoirs. The dynamics of fluid flow and trapping phenomena in porous media was investigated. Miscible and immiscible displacement experiments in heterogeneous Berea and Shannon sandstone samples were monitored using X-ray computed tomography (CT scanning) to determine the effect of heterogeneities on fluid flow and trapping. The statistical analysis of pore and pore throat sizes in thin sections cut from these sandstone samples enabled the delineation of small-scale spatial distributions of porosity and permeability. Multiphase displacement experiments were conducted with micromodels constructed using thin slabs of the sandstones. The combination of the CT scanning, thin section, and micromodel techniques enables the investigation of how variations in pore characteristics influence fluid front advancement, fluid distributions, and fluid trapping. Plugs cut from the sandstone samples were investigated using high resolution nuclear magnetic resonance imaging permitting the visualization of oil, water or both within individual pores. The application of these insights will aid in the proper interpretation of relative permeability, capillary pressure, and electrical resistivity data obtained from whole core studies. 7 refs., 14 figs., 2 tabs.

  4. Can ash clog soil pores?

    Science.gov (United States)

    Stoof, Cathelijne; Stoof, Cathelijne; Gevaert, Anouk; Gevaert, Anouk; Baver, Christine; Baver, Christine; Hassanpour, Bahareh; Hassanpour, Bahareh; Morales, Veronica; Morales, Veronica; Zhang, Wei; Zhang, Wei; Martin, Deborah; Martin, Deborah; Steenhuis, Tammo; Steenhuis, Tammo

    2015-04-01

    Wildfire can greatly increase a landscape's vulnerability to flooding and erosion events, and ash is thought to play a large role in controlling runoff and erosion processes after wildfire. Although ash can store rainfall and thereby reduce runoff and erosion for a limited period after wildfires, it has also been hypothesized to clog soil pores and reduce infiltration. Several researchers have attributed the commonly observed increase in runoff and erosion after fire to the potential pore-clogging effect of ash. Evidence is however incomplete, as to date, research has solely focused on identifying the presence of ash in the soil, with the actual flow processes associated with the infiltration and pore-clogging of ash remaining a major unknown. In several laboratory experiments, we tested the hypothesis that ash causes pore clogging to the point that infiltration is hampered and ponding occurs. We first visualized and quantified pore-scale infiltration of water and ash in sand of a range of textures and at various infiltration rates, using a digital bright field microscope capturing both photo and video. While these visualization experiments confirm field and lab observation of ash washing into soil pores, we did not observe any clogging of pores, and have not been able to create conditions for which this does occur. Additional electrochemical analysis and measurement of saturated hydraulic conductivity indicate that pore clogging by ash is not plausible. Electrochemical analysis showed that ash and sand are both negatively charged, showing that attachment of ash to sand and any resulting clogging is unlikely. Ash also had quite high saturated conductivity, and systems where ash was mixed in or lying on top of sand had similarly high hydraulic conductivity. Based on these various experiments, we cannot confirm the hypothesis that pore clogging by ash contributes to the frequently observed increase in post-fire runoff, at least for the medium to coarse sands

  5. Multiscale modeling of fluid flow and mass transport

    Science.gov (United States)

    Masuoka, K.; Yamamoto, H.; Bijeljic, B.; Lin, Q.; Blunt, M. J.

    2017-12-01

    In recent years, there are some reports on a simulation of fluid flow in pore spaces of rocks using Navier-Stokes equations. These studies mostly adopt a X-ray CT to create 3-D numerical grids of the pores in micro-scale. However, results may be of low accuracy when the rock has a large pore size distribution, because pores, whose size is smaller than resolution of the X-ray CT may be neglected. We recently found out by tracer tests in a laboratory using a brine saturated Ryukyu limestone and inject fresh water that a decrease of chloride concentration took longer time. This phenomenon can be explained due to weak connectivity of the porous networks. Therefore, it is important to simulate entire pore spaces even those of very small sizes in which diffusion is dominant. We have developed a new methodology for multi-level modeling for pore scale fluid flow in porous media. The approach is to combine pore-scale analysis with Darcy-flow analysis using two types of X-ray CT images in different resolutions. Results of the numerical simulations showed a close match with the experimental results. The proposed methodology is an enhancement for analyzing mass transport and flow phenomena in rocks with complicated pore structure.

  6. Investigating Multiphase Flow Phenomena in Fine-Grained Reservoir Rocks: Insights from Using Ethane Permeability Measurements over a Range of Pore Pressures

    Directory of Open Access Journals (Sweden)

    Eric Aidan Letham

    2018-01-01

    Full Text Available The ability to quantify effective permeability at the various fluid saturations and stress states experienced during production from shale oil and shale gas reservoirs is required for efficient exploitation of the resources, but to date experimental challenges prevent measurement of the effective permeability of these materials over a range of fluid saturations. To work towards overcoming these challenges, we measured effective permeability of a suite of gas shales to gaseous ethane over a range of pore pressures up to the saturated vapour pressure. Liquid/semiliquid ethane saturation increases due to adsorption and capillary condensation with increasing pore pressure resulting in decreasing effective permeability to ethane gas. By how much effective permeability to ethane gas decreases with adsorption and capillary condensation depends on the pore size distribution of each sample and the stress state that effective permeability is measured at. Effective permeability decreases more at higher stress states because the pores are smaller at higher stress states. The largest effective permeability drops occur in samples with dominant pore sizes in the mesopore range. These pores are completely blocked due to capillary condensation at pore pressures near the saturated vapour pressure of ethane. Blockage of these pores cuts off the main fluid flow pathways in the rock, thereby drastically decreasing effective permeability to ethane gas.

  7. Analysis of the effect of pore geometry in the physical properties of rocks

    Directory of Open Access Journals (Sweden)

    Luiz Alberto Oliveira Lima Roque

    2012-12-01

    Full Text Available Pore geometry is one of the main factors influencing the flow of reservoir fluids under pressure. Pores with narrower formats are more easily compressed when subject to pressure. Pressure modifies pore geometry by opening or closing cracks, causing increase or decrease in the elastic modulus, porosity, permeability, and other parameters. Rock physical properties depend on the size and shape of pores. Thus, in order to analyze changes on the physical properties behavior according to the pores geometry, it is necessary to study and improve mathematical models of the porous media by taking into account the pore shape factor for estimating rock elastic properties. Differential effective medium model (DEM, Hertz-Mindlin theory and coherent potential approximation (CPA are some of the theoretical paradigms that take into account pore geometry in changes in elastic moduli. Given the importance of the pore structure effect on the behavior of physical parameters, this article proposes an analysis of some mathematical models that consider the influence of pore shapes in the physical properties of rocks.

  8. Understanding the microscopic moisture migration in pore space using DEM simulation

    Directory of Open Access Journals (Sweden)

    Yuan Guo

    2015-04-01

    Full Text Available The deformation of soil skeleton and migration of pore fluid are the major factors relevant to the triggering of and damages by liquefaction. The influence of pore fluid migration during earthquake has been demonstrated from recent model experiments and field case studies. Most of the current liquefaction assessment models are based on testing of isotropic liquefiable materials. However the recent New Zealand earthquake shows much severer damages than those predicted by existing models. A fundamental cause has been contributed to the embedded layers of low permeability silts. The existence of these silt layers inhibits water migration under seismic loads, which accelerated liquefaction and caused a much larger settlement than that predicted by existing theories. This study intends to understand the process of moisture migration in the pore space of sand using discrete element method (DEM simulation. Simulations were conducted on consolidated undrained triaxial testing of sand where a cylinder sample of sand was built and subjected to a constant confining pressure and axial loading. The porosity distribution was monitored during the axial loading process. The spatial distribution of porosity change was determined, which had a direct relationship with the distribution of excess pore water pressure. The non-uniform distribution of excess pore water pressure causes moisture migration. From this, the migration of pore water during the loading process can be estimated. The results of DEM simulation show a few important observations: (1 External forces are mainly carried and transmitted by the particle chains of the soil sample; (2 Porosity distribution during loading is not uniform due to non-homogeneous soil fabric (i.e. the initial particle arrangement and existence of particle chains; (3 Excess pore water pressure develops differently at different loading stages. At the early stage of loading, zones with a high initial porosity feature higher

  9. Disposing of fluid wastes

    International Nuclear Information System (INIS)

    Bradley, J.S.

    1984-01-01

    Toxic liquid waste, eg liquid radioactive waste, is disposed of by locating a sub-surface stratum which, before removal of any fluid, has a fluid pressure in the pores thereof which is less than the hydrostatic pressure which is normal for a stratum at that depth in the chosen area, and then feeding the toxic liquid into the stratum at a rate such that the fluid pressure in the stratum never exceeds the said normal hydrostatic pressure. (author)

  10. Fluid Effects on Shear Waves in Finely Layered Porous Media

    International Nuclear Information System (INIS)

    Berryman, J G

    2004-01-01

    Although there are five effective shear moduli for any layered VTI medium, one and only one effective shear modulus for the layered system contains all the dependence of pore fluids on the elastic or poroelastic constants that can be observed in vertically polarized shear waves. Pore fluids can increase the magnitude the shear energy stored by this modulus by a term that ranges from the smallest to the largest shear moduli of the VTI system. But, since there are five shear moduli in play, the increase in shear energy overall is reduced by a factor of about 5 in general. We can therefore give definite bounds on the maximum increase of shear modulus, being about 20% of the permitted range, when gas is fully replaced by liquid. An attendant increase of density (depending on porosity and fluid density) by approximately 5 to 10% partially offsets the effect of this shear modulus increase. Thus, an increase of shear wave speed on the order of 5 to 10% is shown to be possible when circumstances are favorable - i.e., when the shear modulus fluctuations are large (resulting in strong anisotropy), and the medium behaves in an undrained fashion due to fluid trapping. At frequencies higher than seismic (such as sonic and ultrasonic waves for well-logging or laboratory experiments), short response times also produce the requisite undrained behavior and, therefore, fluids also affect shear waves at high frequencies by increasing rigidity

  11. Use of intradermal botulinum toxin to reduce sebum production and facial pore size.

    Science.gov (United States)

    Shah, Anil R

    2008-09-01

    Review the safety profile and subjective efficacy of intradermal botulinum toxin type A in facial pore size and sebum production. Retrospective analysis of 20 patients. Twenty consecutive patients with a single application of intradermal botulinum toxin type A were examined: Patients (17/20) noted an improvement in sebum production and a decrease in pores size at 1 month after injection. No complications were observed, and 17/20 patients were satisfied with the procedure. Preliminary data suggests that intradermal botulinum toxin may play a role in decreasing sebum production. Further quantitive study may be necessary to determine effects of intradermal botulinum toxin on pore size.

  12. A lattice Boltzmann investigation of steady-state fluid distribution, capillary pressure and relative permeability of a porous medium: Effects of fluid and geometrical properties

    Science.gov (United States)

    Li, Zi; Galindo-Torres, Sergio; Yan, Guanxi; Scheuermann, Alexander; Li, Ling

    2018-06-01

    Simulations of simultaneous steady-state two-phase flow in the capillary force-dominated regime were conducted using the state-of-the-art Shan-Chen multi-component lattice Boltzmann model (SCMC-LBM) based on two-dimensional porous media. We focused on analyzing the fluid distribution (i.e., WP fluid-solid, NP fluid-solid and fluid-fluid interfacial areas) as well as the capillary pressure versus saturation curve which was affected by fluid and geometrical properties (i.e., wettability, adhesive strength, pore size distribution and specific surface area). How these properties influenced the relative permeability versus saturation relation through apparent effective permeability and threshold pressure gradient was also explored. The SCMC-LBM simulations showed that, a thin WP fluid film formed around the solid surface due to the adhesive fluid-solid interaction, resulting in discrete WP fluid distributions and reduction of the WP fluid mobility. Also, the adhesive interaction provided another source of capillary pressure in addition to capillary force, which, however, did not affect the mobility of the NP fluid. The film fluid effect could be enhanced by large adhesive strength and fine pores in heterogeneous porous media. In the steady-state infiltration, not only the NP fluid but also the WP fluid were subjected to the capillary resistance. The capillary pressure effect could be alleviated by decreased wettability, large average pore radius and improved fluid connectivity in heterogeneous porous media. The present work based on the SCMC-LBM investigations elucidated the role of film fluid as well as capillary pressure in the two-phase flow system. The findings have implications for ways to improve the macroscopic flow equation based on balance of force for the steady-state infiltration.

  13. On Laminar Flow of Non-Newtonian Fluids in Porous Media

    KAUST Repository

    Fayed, Hassan E.

    2015-10-20

    Flow of generalized Newtonian fluids in porous media can be modeled as a bundle of capillary tubes or a pore-scale network. In general, both approaches rely on the solution of Hagen–Poiseuille equation using power law to estimate the variations in the fluid viscosity due to the applied shear rate. Despite the effectiveness and simplicity, power law tends to provide unrealistic values for the effective viscosity especially in the limits of zero and infinite shear rates. Here, instead of using power law, Carreau model (bubbles, drops, and particles in non-Newtonian fluids. Taylor & Francis Group, New York, 2007) is used to determine the effective viscosity as a function of the shear strain rate. Carreau model can predict accurately the variation in the viscosity at all shear rates and provide more accurate solution for the flow physics in a single pore. Using the results for a single pore, normalized Fanning friction coefficient has been calculated and plotted as a function of the newly defined Reynolds number based on pressure gradient. For laminar flow, the variation in the friction coefficient with Reynolds number has been plotted and scaled. It is observed that generalized Newtonian fluid flows show Newtonian nature up to a certain Reynolds number. At high Reynolds number, deviation from the Newtonian behavior is observed. The main contribution of this paper is to present a closed-form solution for the flow in a single pore using Carreau model, which allows for fast evaluation of the relationship between flux and pressure gradient in an arbitrary pore diameter. In this way, we believe that our development will open the perspectives for using Carreau models in pore-network simulations at low computational costs to obtain more accurate prediction for generalized Newtonian fluid flows in porous media.

  14. On Laminar Flow of Non-Newtonian Fluids in Porous Media

    KAUST Repository

    Fayed, Hassan E.; Sheikh, Nadeem A.; Iliev, Oleg

    2015-01-01

    Flow of generalized Newtonian fluids in porous media can be modeled as a bundle of capillary tubes or a pore-scale network. In general, both approaches rely on the solution of Hagen–Poiseuille equation using power law to estimate the variations in the fluid viscosity due to the applied shear rate. Despite the effectiveness and simplicity, power law tends to provide unrealistic values for the effective viscosity especially in the limits of zero and infinite shear rates. Here, instead of using power law, Carreau model (bubbles, drops, and particles in non-Newtonian fluids. Taylor & Francis Group, New York, 2007) is used to determine the effective viscosity as a function of the shear strain rate. Carreau model can predict accurately the variation in the viscosity at all shear rates and provide more accurate solution for the flow physics in a single pore. Using the results for a single pore, normalized Fanning friction coefficient has been calculated and plotted as a function of the newly defined Reynolds number based on pressure gradient. For laminar flow, the variation in the friction coefficient with Reynolds number has been plotted and scaled. It is observed that generalized Newtonian fluid flows show Newtonian nature up to a certain Reynolds number. At high Reynolds number, deviation from the Newtonian behavior is observed. The main contribution of this paper is to present a closed-form solution for the flow in a single pore using Carreau model, which allows for fast evaluation of the relationship between flux and pressure gradient in an arbitrary pore diameter. In this way, we believe that our development will open the perspectives for using Carreau models in pore-network simulations at low computational costs to obtain more accurate prediction for generalized Newtonian fluid flows in porous media.

  15. Phase behaviour of symmetric binary mixtures with partially miscible components in slit-like pores. Application of the fundamental measure density functional approach

    CERN Document Server

    Martínez, A; Patrykiejew, A; Sokolowski, S

    2003-01-01

    We investigate adsorption in slit-like pores of model symmetric binary mixtures exhibiting demixing in bulk phase, by using a density functional approach. Our focus is on the evaluation of the first-order phase transitions in adsorbed fluids and the lines separating mixed and demixed phases. The scenario for phase transitions is sensitive to the pore width and to the energy of adsorption. Both these parameters can change the phase diagrams of the confined fluid. In particular, for relatively wide pores and for strong wall-fluid interactions, the demixing line can precede the first-order transition. Moreover, a competition between layering transitions and demixing within particular layers also leads to further enrichment of the phase diagram.

  16. The Rapid Formation of Localized Compaction Bands Under Hydrostatic Load Leading to Pore-pressure Transients in Compacting Rocks

    Science.gov (United States)

    Faulkner, D.; Leclere, H.; Bedford, J. D.; Behnsen, J.; Wheeler, J.

    2017-12-01

    Compaction of porous rocks can occur uniformly or within localized deformation bands. The formation of compaction bands and their effects on deformation behaviour are poorly understood. Porosity may be primary and compaction can occur with burial, or it can be produced by metamorphic reactions with a solid volume reduction, that can then undergo collapse. We report results from hydrostatic compaction experiments on porous bassanite (CaSO4.0.5H2O) aggregates. Gypsum (CaSO4.2H2O) is first dehydrated under low effective pressure, 4 MPa, to produce a bassanite aggregate with a porosity of 27%. Compaction is induced by increasing confining pressure at rates from 0.001 MPa/s to 0.02 MPa/s while the sample is maintained at a temperature of 115°C. At slow compaction rates, porosity collapse proceeds smoothly. At higher compaction rates, sudden increases in the pore-fluid pressure occur with a magnitude of 5 MPa. Microstructural investigations using X-ray microtomography and SEM observations show that randomly oriented localized compaction features occur in all samples, where the bulk porosity of 18% outside the band is reduced to 5% inside the band. Previous work on deformation bands has suggested that localized compactive features only form under an elevated differential stress and not under a hydrostatic stress state. The magnitude of the pore-pressure pulses can be explained by the formation of compaction bands. The results indicate that the compaction bands can form by rapid (unstable) propagation across the sample above a critical strain rate, or quasi-statically at low compaction rates without pore-fluid pressure bursts. The absence of pore-fluid pressure bursts at slow compaction rates can be explained by viscous deformation of the bassanite aggregate around the tip of a propagating compaction band, relaxing stress, and promoting stable propagation. Conversely, at higher compaction rates, viscous deformation cannot relax the stress sufficiently and unstable

  17. Surface wave propagation in a fluid-saturated incompressible ...

    Indian Academy of Sciences (India)

    dilatational and one rotational elastic waves in fluid-saturated porous solids. Biot theory ..... If the pore liquid is absent or gas is filled in the pores, then ρF ..... Biot M A (1962) Mechanics of deformation and acoustic propagation in porous media.

  18. Cold seeps in Monterey Bay, California: Geochemistry of pore waters and relationship to benthic foraminiferal calcite

    International Nuclear Information System (INIS)

    Gieskes, Joris; Rathburn, Anthony E.; Martin, Jonathan B.; Perez, M. Elena; Mahn, Chris; Bernhard, Joan M.; Day, Shelley

    2011-01-01

    Highlights: → We describe the geochemistry of pore waters in the Clam Flats area of Monterey Bay. → The geochemical data are compared with the δ 13 C chemistry of benthic foraminifera. → Living foraminifera indicate little effects of pore water low δ 13 C (DIC) in the clam bed. → This phenomenon and its implications are discussed in detail. → Implications with regards to paleo-methane seepage are discussed. - Abstract: An extensive geochemical and biogeochemical examination of CH 4 seeps in the Clam Flats area of Monterey Bay provides insight into the character of relationships between seep geochemistry and benthic foraminiferal geochemistry. The area is characterized by sulfide-rich fluids. Sulfide increases are associated with large increases in alkalinity, as well as small decreases in dissolved Ca and Mg. In addition, only small increases in NH 4 are observed, but values of δ 13 C of dissolved inorganic C are as low as -60 per mille at shallow depths ( 4 , which is transported upward by slow seepage of pore fluids. The geochemistry of the pore fluids should be relevant to the geochemistry of the carbonate tests of living and dead foraminifera. However, a profound disequilibrium of approximately an order of magnitude occurs between the δ 13 C values of stained (cytoplasm-containing) foraminiferal carbonate and the C isotope values of ambient pore water dissolved inorganic C. Reasons are unclear for this isotopic disequilibrium, but have important implications for interpretations of foraminiferal carbonate as a paleoenvironmental proxy. Much fine scale work is needed to fully understand the relationships between the biogeochemistry of benthic foraminifera and the geochemistry of the pore waters where they live.

  19. Numerical modeling of pore-scale phenomena during CO2 sequestration in oceanic sediments

    International Nuclear Information System (INIS)

    Kang, Qinjun; Tsimpanogiannis, Ioannis N.; Zhang, Dongxiao; Lichtner, Peter C.

    2005-01-01

    Direct disposal of liquid CO 2 on the ocean floor is one of the approaches considered for sequestering CO 2 in order to reduce its concentration in the atmosphere. At oceanic depths deeper than approximately 3000 m, liquid CO 2 density is higher than the density of seawater and CO 2 is expected to sink and form a pool at the ocean floor. In addition to chemical reactions between CO 2 and seawater to form hydrate, fluid displacement is also expected to occur within the ocean floor sediments. In this work, we consider two different numerical models for hydrate formation at the pore scale. The first model consists of the Lattice Boltzmann (LB) method applied to a single-phase supersaturated solution in a constructed porous medium. The second model is based on the Invasion Percolation (IP) in pore networks, applied to two-phase immiscible displacement of seawater by liquid CO 2 . The pore-scale results are upscaled to obtain constitutive relations for porosity, both transverse and for the entire domain, and for permeability. We examine deposition and displacement patterns, and changes in porosity and permeability due to hydrate formation, and how these properties depend on various parameters including a parametric study of the effect of hydrate formation kinetics. According to the simulations, the depth of CO 2 invasion in the sediments is controlled by changes in the pore-scale porosity close to the hydrate formation front. (author)

  20. Polystyrene-Divinylbenzene-Based Adsorbents Reduce Endothelial Activation and Monocyte Adhesion Under Septic Conditions in a Pore Size-Dependent Manner.

    Science.gov (United States)

    Eichhorn, Tanja; Rauscher, Sabine; Hammer, Caroline; Gröger, Marion; Fischer, Michael B; Weber, Viktoria

    2016-10-01

    Endothelial activation with excessive recruitment and adhesion of immune cells plays a central role in the progression of sepsis. We established a microfluidic system to study the activation of human umbilical vein endothelial cells by conditioned medium containing plasma from lipopolysaccharide-stimulated whole blood or from septic blood and to investigate the effect of adsorption of inflammatory mediators on endothelial activation. Treatment of stimulated whole blood with polystyrene-divinylbenzene-based cytokine adsorbents (average pore sizes 15 or 30 nm) prior to passage over the endothelial layer resulted in significantly reduced endothelial cytokine and chemokine release, plasminogen activator inhibitor-1 secretion, adhesion molecule expression, and in diminished monocyte adhesion. Plasma samples from sepsis patients differed substantially in their potential to induce endothelial activation and monocyte adhesion despite their almost identical interleukin-6 and tumor necrosis factor-alpha levels. Pre-incubation of the plasma samples with a polystyrene-divinylbenzene-based adsorbent (30 nm average pore size) reduced endothelial intercellular adhesion molecule-1 expression to baseline levels, resulting in significantly diminished monocyte adhesion. Our data support the potential of porous polystyrene-divinylbenzene-based adsorbents to reduce endothelial activation under septic conditions by depletion of a broad range of inflammatory mediators.

  1. Buoyancy-driven chaotic regimes during solute dispersion in pore networks

    International Nuclear Information System (INIS)

    Tsakiroglou, C.D.; Theodoropoulou, M.A.; Karoutsos, V.

    2005-01-01

    In an attempt to investigate gravity effects on solute dispersion at the scale of a pore network, single source-solute transport visualization experiments are performed on glass-etched pore networks of varying morphology and degree of pore-scale heterogeneities. The (lighter) low solute concentration aqueous solution flows steadily through the porous medium and the (heavier) high solute concentration solution is injected at a very low and constant flow rate through an inner port. The transient evolution of the solute concentration distribution over various regions of the pore network is determined at different scales by capturing and video-recording snapshots of the dispersion on PC, measuring automatically the spatial variation of the color intensity of the solution, and transforming the color intensities to solute concentrations. Without the action of gravity, the steady-state dispersion regime changes with Peclet (Pe) number, and the longitudinal and transverse dispersivities are estimated by fitting the experimental datasets to approximate analytic solutions of the advection-dispersion equation. Under the action of gravity, multiple of steady-state solute dispersion regimes is developed at each Pe value, and lobe-shaped instabilities of the solute concentration are observed across the pore network, as the downward flow of the denser (higher solute concentration) fluid is counterbalanced by the upward flow of the less dense (lower solute concentration) fluid. The steady-state dispersion regimes may be periodic, quasi-periodic or chaotic depending on the system parameters. The nature of the transient fluctuations of the average solute concentration is analyzed by identifying the periodicity of the fluctuations, determining the autocorrelation function and the statistical moments of the time series, and inspecting the FFT (fast Fourier transform) power spectra. It is found that the mixing zone tends to be stabilized at higher values of the Peclet (Pe) number

  2. Dynamics of phase ordering of nematics in a pore

    International Nuclear Information System (INIS)

    Bhattacharya, A.; Chakrabarti, A.

    1994-06-01

    We study the kinetics of phase ordering of a nematic liquid crystal, modeled by a spin-rotor Hamiltonian, confined within a parallel piped pore. The dynamics of the rotor obeys the time-dependent Ginzburg-Landau equation. We study the generation and evolution of a variety of defect structures, and the growth of domains, with different anchoring conditions at the pore surface. Unlike in binary fluids, mere confinement with no anchoring field, does not result in slow dynamics. Homeotropic anchoring, however, leads to slow logarithmic growth. Interestingly, homogeneous anchoring dynamically generates wall defects, resulting in an Ising like structure factor at late times. (author). 27 refs, 4 figs

  3. Effect of sub-pore scale morphology of biological deposits on porous media flow properties

    Science.gov (United States)

    Ghezzehei, T. A.

    2012-12-01

    Biological deposits often influence fluid flow by altering the pore space morphology and related hydrologic properties such as porosity, water retention characteristics, and permeability. In most coupled-processes models changes in porosity are inferred from biological process models using mass-balance. The corresponding evolution of permeability is estimated using (semi-) empirical porosity-permeability functions such as the Kozeny-Carman equation or power-law functions. These equations typically do not account for the heterogeneous spatial distribution and morphological irregularities of the deposits. As a result, predictions of permeability evolution are generally unsatisfactory. In this presentation, we demonstrate the significance of pore-scale deposit distribution on porosity-permeability relations using high resolution simulations of fluid flow through a single pore interspersed with deposits of varying morphologies. Based on these simulations, we present a modification to the Kozeny-Carman model that accounts for the shape of the deposits. Limited comparison with published experimental data suggests the plausibility of the proposed conceptual model.

  4. A density functional perturbative approach for simple fluids: the structure of a nonuniform Lennard-Jones fluid at interfaces

    International Nuclear Information System (INIS)

    Kim, Soon-Chul; Lee, Song Hi

    2004-01-01

    A density functional perturbation approximation (DFPT), which is based both on the fundamental-measure theory (FMT) to the hard-sphere repulsion and on the weighted-density approximations (WDAs) to the attractive contribution, has been proposed for studying the structural properties of model fluids with an attractive part of the potential. The advantage of the present theory is the simplicity of the calculation of the weight function due to the attractive contribution. It has been applied to predict the equilibrium particle density distributions and adsorption isotherms of Lennard-Jones fluids at interfaces. The theoretical results show that the present theory describes quite well the adsorption isotherms of a Lennard-Jones ethane in a graphite slit pore as well as the equilibrium particle density distributions of a Lennard-Jones fluid near a planar slit pore

  5. Wettability effect on capillary trapping of supercritical CO2 at pore-scale: micromodel experiment and numerical modeling

    Science.gov (United States)

    Hu, R.; Wan, J.

    2015-12-01

    Wettability of reservoir minerals along pore surfaces plays a controlling role in capillary trapping of supercritical (sc) CO2 in geologic carbon sequestration. The mechanisms controlling scCO2 residual trapping are still not fully understood. We studied the effect of pore surface wettability on CO2 residual saturation at the pore-scale using engineered high pressure and high temperature micromodel (transparent pore networks) experiments and numerical modeling. Through chemical treatment of the micromodel pore surfaces, water-wet, intermediate-wet, and CO2-wet micromodels can be obtained. Both drainage and imbibition experiments were conducted at 8.5 MPa and 45 °C with controlled flow rate. Dynamic images of fluid-fluid displacement processes were recorded using a microscope with a CCD camera. Residual saturations were determined by analysis of late stage imbibition images of flow path structures. We performed direct numerical simulations of the full Navier-Stokes equations using a volume-of-fluid based finite-volume framework for the primary drainage and the followed imbibition for the micromodel experiments with different contact angles. The numerical simulations agreed well with our experimental observations. We found that more scCO2 can be trapped within the CO2-wet micromodel whereas lower residual scCO2 saturation occurred within the water-wet micromodels in both our experiments and the numerical simulations. These results provide direct and consistent evidence of the effect of wettability, and have important implications for scCO2 trapping in geologic carbon sequestration.

  6. X-ray pore optic developments

    Science.gov (United States)

    Wallace, Kotska; Bavdaz, Marcos; Collon, Maximilien; Beijersbergen, Marco; Kraft, Stefan; Fairbend, Ray; Séguy, Julien; Blanquer, Pascal; Graue, Roland; Kampf, Dirk

    2017-11-01

    In support of future x-ray telescopes ESA is developing new optics for the x-ray regime. To date, mass and volume have made x-ray imaging technology prohibitive to planetary remote sensing imaging missions. And although highly successful, the mirror technology used on ESA's XMM-Newton is not sufficient for future, large, x-ray observatories, since physical limits on the mirror packing density mean that aperture size becomes prohibitive. To reduce telescope mass and volume the packing density of mirror shells must be reduced, whilst maintaining alignment and rigidity. Structures can also benefit from a modular optic arrangement. Pore optics are shown to meet these requirements. This paper will discuss two pore optic technologies under development, with examples of results from measurement campaigns on samples. One activity has centred on the use of coated, silicon wafers, patterned with ribs, that are integrated onto a mandrel whose form has been polished to the required shape. The wafers follow the shape precisely, forming pore sizes in the sub-mm region. Individual stacks of mirrors can be manufactured without risk to, or dependency on, each other and aligned in a structure from which they can also be removed without hazard. A breadboard is currently being built to demonstrate this technology. A second activity centres on glass pore optics. However an adaptation of micro channel plate technology to form square pores has resulted in a monolithic material that can be slumped into an optic form. Alignment and coating of two such plates produces an x-ray focusing optic. A breadboard 20cm aperture optic is currently being built.

  7. Silver Nanoparticle Transport Through Soil: Illuminating the Pore-Scale Processes

    Science.gov (United States)

    Molnar, I. L.; Willson, C. S.; Gerhard, J.; O'Carroll, D. M.

    2015-12-01

    For nanoparticle transport through soil, the pore-scale (i.e., tens to hundreds of grains and pores) is a crucial intermediate scale which links nanoparticle-surface interactions with field-scale transport behaviour. However, very little information exists on how nanoparticles behave within real three-dimensional pore spaces. As a result, pore-scale processes are poorly characterized for nanoparticle systems and, subsequently, continuum-scale transport models struggle to describe commonly observed 'anomalous' behaviour such as extended tailing. This knowledge gap is due to two primary factors: an inability to experimentally observe nanoparticles within real pore spaces, and the computationally expensive models required to simulate nanoparticle movement. However, due to recent advances in Synchrotron X-Ray Computed Microtomography (SXCMT), it is now possible to quantify in-situ pore-scale nanoparticle concentrations during transport through real 3-dimensional porous media [1]. Employing this SXCMT quantification method to examine real nanoparticle/soil transport experiments has yielded new insights into the pore-scale processes governing nanoparticle transport. By coupling SXCMT nanoparticle quantification method with Computational Fluid Dynamics (CFD) simulations we are able to construct a better picture of how nanoparticles flow through real pore spaces. This talk presents SXCMT/CFD analyses of three silver nanoparticle transport experiments. Silver nanoparticles were flushed through three different sands to characterize the influence of grain distribution and retention rates on pore-scale flow and transport processes. These CFD/SXCMT analyses illuminate how processes such as temporary hydraulic retention govern nanoparticle transport. In addition, the observed distributions of pore water velocities and nanoparticle mass flow rates challenge the standard conceptual model of nanoparticle transport, suggesting that pore-scale processes require explicit consideration

  8. Invasion percolation of single component, multiphase fluids with lattice Boltzmann models

    International Nuclear Information System (INIS)

    Sukop, M.C.; Or, Dani

    2003-01-01

    Application of the lattice Boltzmann method (LBM) to invasion percolation of single component multiphase fluids in porous media offers an opportunity for more realistic modeling of the configurations and dynamics of liquid/vapor and liquid/solid interfaces. The complex geometry of connected paths in standard invasion percolation models arises solely from the spatial arrangement of simple elements on a lattice. In reality, fluid interfaces and connectivity in porous media are naturally controlled by the details of the pore geometry, its dynamic interaction with the fluid, and the ambient fluid potential. The multiphase LBM approach admits realistic pore geometry derived from imaging techniques and incorporation of realistic hydrodynamics into invasion percolation models

  9. Earthquakes, fluid pressures and rapid subduction zone metamorphism

    Science.gov (United States)

    Viete, D. R.

    2013-12-01

    High-pressure/low-temperature (HP/LT) metamorphism is commonly incomplete, meaning that large tracts of rock can remain metastable at blueschist- and eclogite-facies conditions for timescales up to millions of years [1]. When HP/LT metamorphism does take place, it can occur over extremely short durations (the role of fluids in providing heat for metamorphism [2] or catalyzing metamorphic reactions [1]. Earthquakes in subduction zone settings can occur to depths of 100s of km. Metamorphic dehydration and the associated development of elevated pore pressures in HP/LT metamorphic rocks has been identified as a cause of earthquake activity at such great depths [3-4]. The process of fracturing/faulting significantly increases rock permeability, causing channelized fluid flow and dissipation of pore pressures [3-4]. Thus, deep subduction zone earthquakes are thought to reflect an evolution in fluid pressure, involving: (1) an initial increase in pore pressure by heating-related dehydration of subduction zone rocks, and (2) rapid relief of pore pressures by faulting and channelized flow. Models for earthquakes at depth in subduction zones have focussed on the in situ effects of dehydration and then sudden escape of fluids from the rock mass following fracturing [3-4]. On the other hand, existing models for rapid and incomplete metamorphism in subduction zones have focussed only on the effects of heating and/or hydration with the arrival of external fluids [1-2]. Significant changes in pressure over very short timescales should result in rapid mineral growth and/or disequilibrium texture development in response to overstepping of mineral reaction boundaries. The repeated process of dehydration-pore pressure development-earthquake-pore pressure relief could conceivably produce a record of episodic HP/LT metamorphism driven by rapid pressure pulses. A new hypothesis is presented for the origins of HP/LT metamorphism: that HP/LT metamorphism is driven by effective pressure

  10. Advanced Technologies for Monitoring CO2 Saturation and Pore Pressure in Geologic Formations: Linking the Chemical and Physical Effects to Elastic and Transport Properties

    Energy Technology Data Exchange (ETDEWEB)

    Mavko, G.; Vanorio, T.; Vialle, S.; Saxena, N.

    2014-03-31

    advection: because of an efficient mass transfer of reactants and products, the fluid remains acidic, far from thermodynamical equilibrium and the dissolution of calcite is important. These conclusions are consistent with the lab observations. Sandstones from the Tuscaloosa formation in Mississippi were also subjected to injection under representative in situ stress and pore pressure conditions. Again, both P- and S-wave velocities decreased with injection. Time-lapse SEM images indicated permanent changes induced in the sandstone microstructure by chamosite dissolution upon injection of CO2-rich brine. After injection, the sandstone showed an overall cleaner microstructure. Two main changes are involved: (a) clay dissolution between grains and at the grain contact and (b) rearrangement of grains due to compaction under pressure Theoretical and empirical models were developed to quantify the elastic changes associated with injection. Permanent changes to the rock frame resulted in seismic velocity-porosity trends that mimic natural diagenetic changes. Hence, when laboratory measurments are not available for a candidate site, these trends can be estimated from depth trends in well logs. New theoretical equations were developed to predict the changes in elastic moduli upon substitution of pore-filling material. These equations reduce to Gassmann’s equations for the case of constant frame properties, low seismic frequencies, and fluid changes in the pore space. The new models also predict the change dissolution or precipitation of mineral, which cannot be described with the conventional Gassmann theory.

  11. Theory and computer simulation of structure, transport, and flow of fluid in micropores

    International Nuclear Information System (INIS)

    Davis, H.T.; Bitsanis, I.; Vanderlick, T.K.; Tirrell, M.V.

    1987-01-01

    An overview is given of recent progress made in our laboratory on this topic. The density profiles of fluid in micropores are found by solving numerically an approximate Yvon-Born-Green equation. A related local average density model (LADM) allows prediction of transport and flow in inhomogeneous fluids from density profiles. A rigorous extension of the Enskog theory of transport is also outlined. Simple results of this general approach for the tracer diffusion and Couette flow between planar micropore walls are presented. Equilibrium and flow (molecular dynamics) simulations are compared with the theoretical predictions. Simulated density profiles of the micropore fluid exhibit substantial fluid layering. The number and sharpness of fluid layers depend sensitively on the pore width. The solvation force and the pore average density and diffusivity are oscillating functions of the pore width. The theoretical predictions for these quantities agree qualitatively with the simulation results. The flow simulations indicate that the flow does not affect the fluid structure and diffusivity even at extremely high shear rates (10/sup 10/s/sup -1/). The fluid structure induces large deviations of the shear stress and the effective viscosity from the bulk fluid values. The flow velocity profiles are correlated with the density profiles and differ from those of a bulk fluid. The LADM and extended Enskog theory predictions for the velocity profiles and the pore average diffusivity agree very well with each other and with the simulation results. The LADM predictions for the shear stress and the effective viscosity agrees fairly well with the simulation results

  12. Cold seeps in Monterey Bay, California: Geochemistry of pore waters and relationship to benthic foraminiferal calcite

    Energy Technology Data Exchange (ETDEWEB)

    Gieskes, Joris, E-mail: jgieskes@ucsd.edu [Scripps Institution of Oceanography, IOD-0208, 9500 Gilman Drive, La Jolla, CA 92093-0208 (United States); Rathburn, Anthony E. [Scripps Institution of Oceanography, IOD-0208, 9500 Gilman Drive, La Jolla, CA 92093-0208 (United States)] [Indiana State University, Department of Earth and Environmental Systems, Terre Haute, IN 47809 (United States); Martin, Jonathan B. [University of Florida, Department of Geological Sciences, Gainesville, FL 32611-2120 (United States); Perez, M. Elena [Indiana State University, Department of Earth and Environmental Systems, Terre Haute, IN 47809 (United States)] [The Natural History Museum, Department of Palaeontology, Cromwell Road, London SW7 5BD (United Kingdom); Mahn, Chris [Scripps Institution of Oceanography, IOD-0208, 9500 Gilman Drive, La Jolla, CA 92093-0208 (United States); Bernhard, Joan M. [Woods Hole Oceanographic Institution, Geology and Geophysics Department, MS52, Woods Hole, MA 02543 (United States); Day, Shelley [University of Florida, Department of Geological Sciences, Gainesville, FL 32611-2120 (United States)

    2011-05-15

    Highlights: > We describe the geochemistry of pore waters in the Clam Flats area of Monterey Bay. > The geochemical data are compared with the {delta}{sup 13}C chemistry of benthic foraminifera. > Living foraminifera indicate little effects of pore water low {delta}{sup 13}C (DIC) in the clam bed. > This phenomenon and its implications are discussed in detail. > Implications with regards to paleo-methane seepage are discussed. - Abstract: An extensive geochemical and biogeochemical examination of CH{sub 4} seeps in the Clam Flats area of Monterey Bay provides insight into the character of relationships between seep geochemistry and benthic foraminiferal geochemistry. The area is characterized by sulfide-rich fluids. Sulfide increases are associated with large increases in alkalinity, as well as small decreases in dissolved Ca and Mg. In addition, only small increases in NH{sub 4} are observed, but values of {delta}{sup 13}C of dissolved inorganic C are as low as -60 per mille at shallow depths (<3 cm). These observations indicate that all these processes are related to the bacterial oxidation of CH{sub 4}, which is transported upward by slow seepage of pore fluids. The geochemistry of the pore fluids should be relevant to the geochemistry of the carbonate tests of living and dead foraminifera. However, a profound disequilibrium of approximately an order of magnitude occurs between the {delta}{sup 13}C values of stained (cytoplasm-containing) foraminiferal carbonate and the C isotope values of ambient pore water dissolved inorganic C. Reasons are unclear for this isotopic disequilibrium, but have important implications for interpretations of foraminiferal carbonate as a paleoenvironmental proxy. Much fine scale work is needed to fully understand the relationships between the biogeochemistry of benthic foraminifera and the geochemistry of the pore waters where they live.

  13. Understanding chemical-potential-related transient pore-pressure response to improve real-time borehole (in)stability predictions

    Energy Technology Data Exchange (ETDEWEB)

    Tare, U.A.; Mody, F.K.; Mese, A.I. [Halliburton Energy Services, Cairo (Egypt)

    2000-11-01

    Experimental studies were conducted to explain the concept of a real-time wellbore (in)stability logging methodology. The role of the chemical potential of drilling fluids on transient pore pressure and time-dependent rock property alterations of shale formations was examined by providing details about a pore pressure transmission (PPT) test. The PPT experiments exposed formation (shale) cores under simulated downhole conditions to various salt solutions and drilling fluids. The main objective was to translate the results of the PPT tests to actual drilling conditions. A 20 per cent w/w calcium chloride solution was exposed to a Pierre II shale under high pressure in the PPT apparatus. The PPT test was used to estimate the impact of a drilling fluid on shale pore pressure. The efficiency of the salt solution/shale system was also estimated. Estimates of the dynamic rock properties were made based on the obtained acoustic data. It was determined that in order to accurately model time-dependent wellbore (in)stability in the field, it is important to calibrate representative shale core response to drilling fluids under realistic in-situ conditions. The 20 per cent w/w calcium chloride solution showed very low membrane efficiency of 4.45 per cent. It was concluded that changes in the shale dynamic rock properties as a function of test fluid exposure can be obtained from the simultaneous acquisition of sonic compression and shear wave velocity data. 12 refs., 5 figs.

  14. Deformation of a Volcanic Edifice by Pore Pressurization: An Analog Approach

    Science.gov (United States)

    Hyman, D.; Bursik, M. I.

    2015-12-01

    Volcanic flank destabilization, preceded by pressurization-induced surface deformation or weakening, presents a significant hazard at stratovolcanoes with ample supply of magmatic volatiles or preexisting hydrothermal systems as in Bezymianny- and Bandai-type eruptions, respectively. Deformation is also an important sign of the nature of unrest at large calderas such as Long Valley, USA. Previous studies of volcanic inflation have focused primarily on the role of ascending magma. Relatively few studies have centered on surface deformation caused by pressurization from other volcanic fluids, including exsolved volatiles and pressurized hydrothermal systems. Most investigations of pore-pressurization have focused on numerical modelling of pore pressure transients. In analog experiments presented here, pore-filling fluids are injected into the base of a damp sand medium without exceeding dike propagating pressures, simulating the pressurization and bulk-permeable flow of volatile fluids through volcanic systems. The experiments examine surface deformation from a range of source depths and pressures as well as edifice geometries. 3D imaging is possible through use of the Microsoft® Kinect™ sensor, which allows for the generation of high-resolution, high frame rate, lab-scale Digital Elevation Models (DEMs). After initial processing to increase signal-to-noise ratio, surface deformation is measured using the DEM time-series generated by the Kinect™. Analysis of preliminary experiments suggests that inflation is possible up to approx. 10 % of pressure source depth. We also show that the Kinect™ sensor is useful in analog volcanological studies, an environment to which it is well-suited.

  15. Real-Time Pore Pressure Detection: Indicators and Improved Methods

    Directory of Open Access Journals (Sweden)

    Jincai Zhang

    2017-01-01

    Full Text Available High uncertainties may exist in the predrill pore pressure prediction in new prospects and deepwater subsalt wells; therefore, real-time pore pressure detection is highly needed to reduce drilling risks. The methods for pore pressure detection (the resistivity, sonic, and corrected d-exponent methods are improved using the depth-dependent normal compaction equations to adapt to the requirements of the real-time monitoring. A new method is proposed to calculate pore pressure from the connection gas or elevated background gas, which can be used for real-time pore pressure detection. The pore pressure detection using the logging-while-drilling, measurement-while-drilling, and mud logging data is also implemented and evaluated. Abnormal pore pressure indicators from the well logs, mud logs, and wellbore instability events are identified and analyzed to interpret abnormal pore pressures for guiding real-time drilling decisions. The principles for identifying abnormal pressure indicators are proposed to improve real-time pore pressure monitoring.

  16. Reduced Numerical Approximation of Reduced Fluid-Structure Interaction Problems With Applications in Hemodynamics

    Directory of Open Access Journals (Sweden)

    Claudia M. Colciago

    2018-06-01

    Full Text Available This paper deals with fast simulations of the hemodynamics in large arteries by considering a reduced model of the associated fluid-structure interaction problem, which in turn allows an additional reduction in terms of the numerical discretisation. The resulting method is both accurate and computationally cheap. This goal is achieved by means of two levels of reduction: first, we describe the model equations with a reduced mathematical formulation which allows to write the fluid-structure interaction problem as a Navier-Stokes system with non-standard boundary conditions; second, we employ numerical reduction techniques to further and drastically lower the computational costs. The non standard boundary condition is of a generalized Robin type, with a boundary mass and boundary stiffness terms accounting for the arterial wall compliance. The numerical reduction is obtained coupling two well-known techniques: the proper orthogonal decomposition and the reduced basis method, in particular the greedy algorithm. We start by reducing the numerical dimension of the problem at hand with a proper orthogonal decomposition and we measure the system energy with specific norms; this allows to take into account the different orders of magnitude of the state variables, the velocity and the pressure. Then, we introduce a strategy based on a greedy procedure which aims at enriching the reduced discretization space with low offline computational costs. As application, we consider a realistic hemodynamics problem with a perturbation in the boundary conditions and we show the good performances of the reduction techniques presented in the paper. The results obtained with the numerical reduction algorithm are compared with the one obtained by a standard finite element method. The gains obtained in term of CPU time are of three orders of magnitude.

  17. Diffusion in porous structures containing three fluid phases

    International Nuclear Information System (INIS)

    Galani, A.N.; Kainourgiakis, M.E.; Stubos, A.K.; Kikkinides, E.S.

    2005-01-01

    In the present study, the tracer diffusion in porous media filled by three fluid phases (a non-wetting, an intermediate wetting and a wetting phase) is investigated. The disordered porous structure of porous systems like random sphere packing and the North Sea chalk, is represented by three-dimensional binary images. The random sphere pack is generated by a standard ballistic deposition procedure, while the chalk matrix by a stochastic reconstruction technique. Physically sound spatial distributions of the three phases filling the pore space are determined by the use of a simulated annealing algorithm, where those phases are initially randomly distributed in the pore space and trial-and-error swaps are performed in order to attain the global minimum of the total interfacial energy. The acceptance rule for a trial move during the annealing is modified properly improving the efficiency of the technique. The diffusivities of the resulting domains are computed by a random walk method. A parametric study with respect to the pore volume fraction occupied by each fluid phase and the ratio of the diffusivities in the fluid phases is performed. (authors)

  18. Automatic facial pore analysis system using multi-scale pore detection.

    Science.gov (United States)

    Sun, J Y; Kim, S W; Lee, S H; Choi, J E; Ko, S J

    2017-08-01

    As facial pore widening and its treatments have become common concerns in the beauty care field, the necessity for an objective pore-analyzing system has been increased. Conventional apparatuses lack in usability requiring strong light sources and a cumbersome photographing process, and they often yield unsatisfactory analysis results. This study was conducted to develop an image processing technique for automatic facial pore analysis. The proposed method detects facial pores using multi-scale detection and optimal scale selection scheme and then extracts pore-related features such as total area, average size, depth, and the number of pores. Facial photographs of 50 subjects were graded by two expert dermatologists, and correlation analyses between the features and clinical grading were conducted. We also compared our analysis result with those of conventional pore-analyzing devices. The number of large pores and the average pore size were highly correlated with the severity of pore enlargement. In comparison with the conventional devices, the proposed analysis system achieved better performance showing stronger correlation with the clinical grading. The proposed system is highly accurate and reliable for measuring the severity of skin pore enlargement. It can be suitably used for objective assessment of the pore tightening treatments. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. On the feasibility of inducing oil mobilization in existing reservoirs via wellbore harmonic fluid action

    KAUST Repository

    Jeong, Chanseok

    2011-03-01

    Although vibration-based mobilization of oil remaining in mature reservoirs is a promising low-cost method of enhanced oil recovery (EOR), research on its applicability at the reservoir scale is still at an early stage. In this paper, we use simplified models to study the potential for oil mobilization in homogeneous and fractured reservoirs, when harmonically oscillating fluids are injected/produced within a well. To this end, we investigate first whether waves, induced by fluid pressure oscillations at the well site, and propagating radially and away from the source in a homogeneous reservoir, could lead to oil droplet mobilization in the reservoir pore-space. We discuss both the fluid pore-pressure wave and the matrix elastic wave cases, as potential agents for increasing oil mobility. We then discuss the more realistic case of a fractured reservoir, where we study the fluid pore-pressure wave motion, while taking into account the leakage effect on the fracture wall. Numerical results show that, in homogeneous reservoirs, the rock-stress wave is a better energy-delivery agent than the fluid pore-pressure wave. However, neither the rock-stress wave nor the pore-pressure wave is likely to result in any significant residual oil mobilization at the reservoir scale. On the other hand, enhanced oil production from the fractured reservoir\\'s matrix zone, induced by cross-flow vibrations, appears to be feasible. In the fractured reservoir, the fluid pore-pressure wave is only weakly attenuated through the fractures, and thus could induce fluid exchange between the rock formation and the fracture space. The vibration-induced cross-flow is likely to improve the imbibition of water into the matrix zone and the expulsion of oil from it. © 2011 Elsevier B.V.

  20. Thermodynamics phase changes of nanopore fluids

    KAUST Repository

    Islam, Akand W.

    2015-07-01

    The van der Waals (vdW) equation (Eq.) is modified to describe thermodynamic of phase behavior of fluids confined in nanopore. Our aim is to compute pressures exerted by the fluid molecules and to investigate how they change due to pore proximity by assuming the pore wall is inert. No additional scaling of model parameters is imposed and original volume and energy parameters are used in the calculations. Our results clearly show the phase changes due to confinement. The critical shifts of temperatures and pressures are in good agreement compared to the laboratory data and molecular simulation. Peng-Robinson (PR) equation-of-state (EOS) has resulted in different effect than the vdW. This work delivers insights into the nature of fluid behavior in extremely low-permeability nanoporous media, especially in the tight shale reservoirs, below the critical temperatures. © 2015 Elsevier B.V.

  1. Thermodynamics phase changes of nanopore fluids

    KAUST Repository

    Islam, Akand W.; Patzek, Tadeusz; Sun, Alexander Y.

    2015-01-01

    The van der Waals (vdW) equation (Eq.) is modified to describe thermodynamic of phase behavior of fluids confined in nanopore. Our aim is to compute pressures exerted by the fluid molecules and to investigate how they change due to pore proximity by assuming the pore wall is inert. No additional scaling of model parameters is imposed and original volume and energy parameters are used in the calculations. Our results clearly show the phase changes due to confinement. The critical shifts of temperatures and pressures are in good agreement compared to the laboratory data and molecular simulation. Peng-Robinson (PR) equation-of-state (EOS) has resulted in different effect than the vdW. This work delivers insights into the nature of fluid behavior in extremely low-permeability nanoporous media, especially in the tight shale reservoirs, below the critical temperatures. © 2015 Elsevier B.V.

  2. Mixed Fluid Conditions: Capillary Phenomena

    KAUST Repository

    Santamarina, Carlos

    2017-07-06

    Mixed fluid phenomena in porous media have profound implications on soil-atmosphere interaction, energy geotechnology, environmental engineering and infrastructure design. Surface tension varies with pressure, temperature, solute concentration, and surfactant concentration; on the other hand, the contact angle responds to interfacial tensions, surface topography, invasion velocity, and chemical interactions. Interfaces are not isolated but interact through the fluid pressure and respond to external fields. Jumps, snap-offs and percolating wetting liquids along edges and crevices are ubiquitous in real, non-cylindrical porous networks. Pore- and macroscale instabilities together with pore structure variability-and-correlation favor fluid trapping and hinder recovery efficiency. The saturation-pressure characteristic curve is affected by the saturation-history, flow-rate, the mechanical response of the porous medium, and time-dependent reactive and diffusive processes; in addition, there are salient differences between unsaturation by internal gas nucleation and gas invasion. Capillary forces add to other skeletal forces in the porous medium and can generate open-mode discontinuities when the capillary entry pressure is high relative to the effective stress. Time emerges as an important variable in mixed-fluid conditions and common quasi-static analyses may fail to capture the system response.

  3. The Applicability of Different Fluid Media to Measure Effective Stress Coefficient for Rock Permeability

    Directory of Open Access Journals (Sweden)

    Ying Wang

    2015-01-01

    Full Text Available Effective stress coefficient for permeability (ESCK is the key parameter to evaluate the properties of reservoir stress sensitivity. So far, little studies have clarified which ESCK is correct for a certain reservoir while rock ESCK is measured differently by different fluid media. Thus, three different fluids were taken to measure a fine sandstone sample’s ESCK, respectively. As a result, the ESCK was measured to be the smallest by injecting nitrogen, the largest by injecting water, and between the two by brine. Besides, those microcharacteristics such as rock component, clay mineral content, and pore structure were further analyzed based on some microscopic experiments. Rock elastic modulus was reduced when water-sensitive clay minerals were encountered with aqua fluid media so as to enlarge the rock ESCK value. Moreover, some clay minerals reacting with water can spall and possibly block pore throats. Compared with water, brine can soften the water sensitivity; however, gas has no water sensitivity effects. Therefore, to choose which fluid medium to measure reservoir ESCK is mainly depending on its own exploitation conditions. For gas reservoirs using gas to measure ESCK is more reliable than water or brine, while using brine is more appropriate for oil reservoirs.

  4. Pore facies analysis: incorporation of rock properties into pore geometry based classes in a Permo-Triassic carbonate reservoir in the Persian Gulf

    International Nuclear Information System (INIS)

    Rahimpour-Bonab, H; Aliakbardoust, E

    2014-01-01

    Pore facies analysis is a useful method for the classification of reservoir rocks according to pore geometry characteristics. The importance of this method is related to the dependence of the dynamic behaviour of the reservoir rock on the pore geometry. In this study, pore facies analysis was performed by the quantification and classification of the mercury injection capillary pressure (MICP) curves applying the multi-resolution graph-based clustering (MRGC) method. Each pore facies includes a limited variety of rock samples with different depositional fabrics and diagenetic histories, which are representative of one type of pore geometry. The present pore geometry is the result of the interaction between the primary rock fabric and its diagenetic overprint. Thus the variations in petrographic properties can be correlated with the pore geometry characteristics. Accordingly, the controlling parameters in the pore geometry characteristics were revealed by detailed petrographic analysis in each pore facies. The reservoir rock samples were then classified using the determined petrographic properties which control the pore system quality. This method is proposed for the classification of reservoir rocks in complicated carbonate reservoirs, in order to reduce the incompatibility of traditional facies analysis with pore system characteristics. The method is applicable where enough capillary pressure data is not available. (papers)

  5. Generation and maintenance of low effective pressures due to fluid flow in fractured rocks

    Science.gov (United States)

    Garagash, D.; Brantut, N.; Schubnel, A.; Bhat, H. S.

    2017-12-01

    The pore fluid pressure is expected to increase with increasing depth in the crust, primarily due to gravity forces. Because direct measurements are impossible beyond a few kilometers depths, the pore pressure gradient is often assumed to be linear (e.g., hydrostatic). However, a number of processes can severely modify the fluid pressure distribution in the crust. Here, we investigate the effect of fluid flow coupled to nonlinear permeability-effective pressure relationship. We performed a set of laboratory fluid flow experiments on thermally cracked Westerly granite at confining pressures up to 200 MPa and pore fluid pressures up to 120 MPa. Fluid flow was generated by imposing very strong pore pressure differences, up to 120 MPa, between the ends of the sample. The vertical fluid pressure distribution inside the sample was inferred by a set of 8 radial strain gauges, and an array of 10 P- and S-wave transducers. When the effective stress is kept near zero at one end of the sample and maintained high at the other end, the steady-state pore pressure profile is nonlinear. The effective stress, as inferred from the strain gauge array, remains close to zero through 2/3 of the sample, and increases sharply near the drained end of the sample. The ultrasonic data are used to build a vertical P- and S-wave velocity structure. The wave velocity profiles are consistent with a nonlinear relationship between wave velocity and effective pressure, as expected in thermally cracked granite. Taken together, our experimental data confirm the theoretical prediction that near zero effective stress can be generated through significant sections of rocks as a response to an imposed fluid flow. This has strong implications for the state of stress of the Earth's crust, especially around major continental transform faults that act as conduits for deep volatiles.

  6. Observation of a new surface mode on a fluid-saturated permeable solid

    International Nuclear Information System (INIS)

    Nagy, P.B.

    1992-01-01

    Almost ten years ago, S. Feng and D. L. Johnson predicted the presence of a new surface mode on a fluid/fluid-saturated porous solid interface with closed surface pores [J. Acoust. Soc. Am. 74, 906 (1983)]. We found that, due to surface tension, practically closed-pore boundary conditions can prevail at an interface between a nonwetting fluid (e.g., air) and a porous solid saturated with a wetting fluid (e.g., water or alcohol). Surface wave velocity and attenuation measurements were made on alcohol-saturated porous sintered glass at 100 kHz. The experimental results show clear evidence of the new ''slow'' surface mode predicted by Feng and Johnson

  7. The Pore-scale modeling of multiphase flows in reservoir rocks using the lattice Boltzmann method

    Science.gov (United States)

    Mu, Y.; Baldwin, C. H.; Toelke, J.; Grader, A.

    2011-12-01

    Digital rock physics (DRP) is a new technology to compute the physical and fluid flow properties of reservoir rocks. In this approach, pore scale images of the porous rock are obtained and processed to create highly accurate 3D digital rock sample, and then the rock properties are evaluated by advanced numerical methods at the pore scale. Ingrain's DRP technology is a breakthrough for oil and gas companies that need large volumes of accurate results faster than the current special core analysis (SCAL) laboratories can normally deliver. In this work, we compute the multiphase fluid flow properties of 3D digital rocks using D3Q19 immiscible LBM with two relaxation times (TRT). For efficient implementation on GPU, we improved and reformulated color-gradient model proposed by Gunstensen and Rothmann. Furthermore, we only use one-lattice with the sparse data structure: only allocate memory for pore nodes on GPU. We achieved more than 100 million fluid lattice updates per second (MFLUPS) for two-phase LBM on single Fermi-GPU and high parallel efficiency on Multi-GPUs. We present and discuss our simulation results of important two-phase fluid flow properties, such as capillary pressure and relative permeabilities. We also investigate the effects of resolution and wettability on multiphase flows. Comparison of direct measurement results with the LBM-based simulations shows practical ability of DRP to predict two-phase flow properties of reservoir rock.

  8. High-flux membrane separation using fluid skimming dominated convective fluid flow

    NARCIS (Netherlands)

    Dinther, van A.M.C.; Schroën, C.G.P.H.; Boom, R.M.

    2011-01-01

    We here report on the separation of yeast cells, with micro-engineered membranes having pores that are typically five times larger than the cells. The separation is due to neither shear-induced diffusion, nor initial lift, but to an effect similar to fluid skimming. The separation performance is

  9. Direct detection of illicit drugs from biological fluids by desorption/ionization mass spectrometry with nanoporous silicon microparticles.

    Science.gov (United States)

    Guinan, T M; Kirkbride, P; Della Vedova, C B; Kershaw, S G; Kobus, H; Voelcker, N H

    2015-12-07

    Surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) is a high throughput analytical technique capable of detecting low molecular weight analytes, including illicit drugs, and with potential applications in forensic toxicology as well as athlete and workplace testing, particularly for biological fluids (oral fluids, urine and blood). However, successful detection of illicit drugs using SALDI-MS often requires extraction steps to reduce the inherent complexity of biological fluids. Here, we demonstrate an all-in-one extraction and analytical system consisting of hydrophobically functionalized porous silicon microparticles (pSi-MPs) for affinity SALDI-MS of prescription and illicit drugs. This novel approach allows for the analysis of drugs from multiple biological fluids without sample preparation protocols. The effect of pSi-MP size, pore diameter, pore depth and functionalization on analytical performance is investigated. pSi-MPs were optimized for the rapid and high sensitivity detection of methadone, cocaine and 3,4-methylenedioxymethamphetamine (MDMA). This optimized system allowed extraction and detection of methadone from spiked saliva and clinical urine samples. Furthermore, by detecting oxycodone in additional clinical saliva and plasma samples, we were able to demonstrate the versatility of the pSi-MP SALDI-MS technique.

  10. Fast Laplace solver approach to pore-scale permeability

    Science.gov (United States)

    Arns, C. H.; Adler, P. M.

    2018-02-01

    We introduce a powerful and easily implemented method to calculate the permeability of porous media at the pore scale using an approximation based on the Poiseulle equation to calculate permeability to fluid flow with a Laplace solver. The method consists of calculating the Euclidean distance map of the fluid phase to assign local conductivities and lends itself naturally to the treatment of multiscale problems. We compare with analytical solutions as well as experimental measurements and lattice Boltzmann calculations of permeability for Fontainebleau sandstone. The solver is significantly more stable than the lattice Boltzmann approach, uses less memory, and is significantly faster. Permeabilities are in excellent agreement over a wide range of porosities.

  11. Combined use of rheometry and microscopy to understand pore structure development during coal carbonisation

    Energy Technology Data Exchange (ETDEWEB)

    John J. Duffy; Miguel Castro Diaz; Colin E. Snape; Merrick R. Mahoney; Karen M. Steel [University of Nottingham, Nottingham (United Kingdom). Nottingham Fuel and Energy Centre

    2007-07-01

    The viscoelastic behaviour of coal during carbonisation plays a role in the formation, growth and coalescence of pores. While viscosity is considered to govern pore formation and growth, the coalescence of pores or stabilisation of pores is considered to be governed by elasticity, and these two factors need to be considered in tandem when investigating pore network formation. The properties of the pore network, such as the connectivity of the pores, is hypothesised to be a factor controlling the degree of pressure that the carbonising mass exerts on its surrounding walls, called oven wall pressure (OWP). When volatiles are unable to pass out through the newly formed semi-coke due to low permeability, they travel instead to the centre of the charge, possibly condense as it is cooler, and build-up to high levels, causing high OWPs. Possible causes for low permeability on the semi-coke side could include poor connectivity between pores in the resolidifying material due to lack of connections, tortuous flow paths or narrow necks between pores. Low OWPs are thought to be largely due to a reduction in the elasticity of the fluid phase which allows a greater degree of pore coalescence and ultimately pore connectivity. This paper presents viscoelastic measurements for coals exhibiting different OWPs and scanning electron microscopy (SEM) images of the coal, quenched at various temperatures during carbonisation to show the development of their pore networks. 12 refs., 5 figs., 1 tab.

  12. Thermophysical properties of a fluid-saturated sandstone

    International Nuclear Information System (INIS)

    Abid, Muhammad; Hammerschmidt, Ulf; Koehler, Juergen

    2014-01-01

    Thermophysical properties of a fluid-saturated stone are presented that are obtained by using the transient hot-bridge technique (THB) at ambient conditions. Measurements are succeedingly done each after having filled the porous stone structure first with six different fluids of distinct thermal conductivities and next with six different gases also having different thermal conductivities. Variations in thermal conductivity, thermal diffusivity and volumetric specific heat due to liquid or gas saturations are discussed. Internal pore structure of the stone is studied by using Scanning Electron Microscopy (SEM), Mercury Intrusion Porosimetry (MIP) and other standardized density methods at ambient conditions. Effect of interstitial pore pressure on thermophysical properties are also discussed in the context of Knudsen effect. (authors)

  13. Modelling of Cortical Bone Tissue as a Fluid Saturated Double-Porous Material - Parametric Study

    Directory of Open Access Journals (Sweden)

    Jana TURJANICOVÁ

    2013-06-01

    Full Text Available In this paper, the cortical bone tissue is considered as a poroelastic material with periodic structure represented at microscopic and mesoscopic levels. The pores of microscopic scale are connected with the pores of mesoscopic scale creating one system of connected network filled with compressible fluid. The method of asymptotic homogenization is applied to upscale the microscopic model of the fluid-solid interaction under a static loading. Obtained homogenized coefficients describe material properties of the poroelastic matrix fractured by fluid-filled pores whose geometry is described at the mesoscopic level. The second-level upscaling provides homogenized poroelastic coefficients relevant on the macroscopic scale. Furthermore, we study the dependence of these coefficients on geometrical parameters on related microscopic and macroscopic scales.

  14. Fluid Behavior and Fluid-Solid Interactions in Nanoporous Media

    Science.gov (United States)

    Xu, H.

    2015-12-01

    Although shale oil/gas production in the US has increased exponentially, the low energy recovery is a daunting problem needed to be solved for its sustainability and continued growth, especially in light of the recent oil/gas price decline. This is apparently related to the small porosity (a few to a few hundred nm) and low permeability (10-16-10-20 m2) of tight shale formations. The fundamental question lies in the anomalous behavior of fluids in nanopores due to confinement effects, which, however, remains poorly understood. In this study, we combined experimental characterization and observations, particularly using small-angle neutron scattering (SANS), with pore-scale modeling using lattice Boltzmann method (LBM), to examine the fluid behavior and fluid-solid interactions in nanopores at reservoir conditions. Experimentally, we characterized the compositions and microstructures of a shale sample from Wolfcamp, Texas, using a variety of analytical techniques. Our analyses reveal that the shale sample is made of organic-matter (OM)-lean and OM-rich layers that exhibit different chemical and mineral compositions, and microstructural characteristics. Using the hydrostatic pressure system and gas-mixing setup we developed, in-situ SANS measurements were conducted at pressures up to 20 kpsi on shale samples imbibed with water or water-methane solutions. The obtained results indicate that capillary effect plays a significant role in fluid-nanopore interactions and the associated changes in nanopore structures vary with pore size and pressure. Computationally, we performed LBM modeling to simulate the flow behavior of methane in kerogen nanoporous structure. The correction factor, which is the ratio of apparent permeability to intrinsic permeability, was calculated. Our results show that the correction factor is always greater than one (non-continuum/non-Darcy effects) and increases with decreasing nanopore size, intrinsic permeability and pressure. Hence, the

  15. Pore Pressure Distribution and Flank Instability in Hydrothermally Altered Stratovolcanoes

    Science.gov (United States)

    Ball, J. L.; Taron, J.; Hurwitz, S.; Reid, M. E.

    2015-12-01

    Field and geophysical investigations of stratovolcanoes with long-lived hydrothermal systems commonly reveal that initially permeable regions (such as brecciated layers of pyroclastic material) can become both altered and water-bearing. Hydrothermal alteration in these regions, including clay formation, can turn them into low-permeability barriers to fluid flow, which could increase pore fluid pressures resulting in flank slope instability. We examined elevated pore pressure conditions using numerical models of hydrothermal flow in stratovolcanoes, informed by geophysical data about internal structures and deposits. Idealized radially symmetric meshes were developed based on cross-sectional profiles and alteration/permeability structures of Cascade Range stratovolcanoes. We used the OpenGeoSys model to simulate variably saturated conditions in volcanoes heated only by regional heat fluxes, as well as 650°C intrusions at two km depth below the surface. Meteoric recharge was estimated from precipitation rates in the Cascade Range. Preliminary results indicate zones of elevated pore pressures form: 1) where slopes are underlain by continuous low-permeability altered layers, or 2) when the edifice has an altered core with saturated, less permeable limbs. The first scenario might control shallow collapses on the slopes above the altered layers. The second could promote deeper flank collapses that are initially limited to the summit and upper slopes, but could progress to the core of an edifice. In both scenarios, pore pressures can be further elevated by shallow intrusions, or evolve over longer time scales under forcing from regional heat flux. Geometries without confining low-permeability layers do not show these pressure effects. Our initial scenarios use radially symmetric models, but we are also simulating hydrothermal flow under real 3D geometries with asymmetric subsurface structures (Mount Adams). Simulation results will be used to inform 3D slope

  16. Capillary condensation in porous materials. Hysteresis and interaction mechanism without pore blocking/percolation process.

    Science.gov (United States)

    Grosman, Annie; Ortega, Camille

    2008-04-15

    We have performed measurements of boundary hysteresis loops, reversal curves, and subloops in p+-type porous silicon, a porous material composed of straight non-interconnected pores. These data show that a strong interaction mechanism exists between the pores. The pores of porous silicon are non-independent, whereas they are not interconnected. This hysteretic behavior is very similar to that observed in porous glass, which consists of cavities connected to each other by constrictions. This questions the so-called pore blocking/percolation model developed to explain the behavior of fluid in porous glass. More generally, if we disregard the shape of the boundary hysteresis loops which depends on the porous material (H1 for MCM-41 and SBA-15, H2 for porous glass and p+-type porous silicon), the hysteretic features inside the main loop are qualitatively the same for all these porous systems. This shows that none of these systems are composed of independent pores. A coupling between the pores is always present whether they are interconnected or not and whatever the shape of the main loop is.

  17. Unstable Pore-Water Flow in Intertidal Wetlands

    Science.gov (United States)

    Barry, D. A.; Shen, C.; Li, L.

    2014-12-01

    Salt marshes are important intertidal wetlands strongly influenced by interactions between surface water and groundwater. Bordered by coastal water, the marsh system undergoes cycles of inundation and exposure driven by the tide. This leads to dynamic, complex pore-water flow and solute transport in the marsh soil. Pore-water circulations occur over vastly different spatial and temporal scales with strong link to the marsh topography. These circulations control solute transport between the marsh soil and the tidal creek, and ultimately affect the overall nutrient exchange between the marsh and coastal water. The pore-water flows also dictate the soil condition, particularly aeration, which influences the marsh plant growth. Numerous studies have been carried out to examine the pore-water flow process in the marsh soil driven by tides, focusing on stable flow with the assumption of homogeneity in soil and fluid properties. This assumption, however, is questionable given the actual inhomogeneous conditions in the field. For example, the salinity of surface water in the tidal creek varies temporally and spatially due to the influence of rainfall and evapotranspiration as well as the freshwater input from upland areas to the estuary, creating density gradients across the marsh surface and within the marsh soil. Many marshes possess soil stratigraphy with low-permeability mud typically overlying high-permeability sandy deposits. Macropores such as crab burrows are commonly distributed in salt marsh sediments. All these conditions are prone to the development of non-uniform, unstable preferential pore-water flow in the marsh soil, for example, funnelling and fingering. Here we present results from laboratory experiments and numerical simulations to explore such unstable flow. In particular, the analysis aims to address how the unstable flow modifies patterns of local pore-water movement and solute transport, as well as the overall exchange between the marsh soil and

  18. Hamiltonian structure of reduced fluid models for plasmas obtained from a kinetic description

    International Nuclear Information System (INIS)

    Guillebon, L. de; Chandre, C.

    2012-01-01

    We consider the Hamiltonian structure of reduced fluid models obtained from a kinetic description of collisionless plasmas by Vlasov–Maxwell equations. We investigate the possibility of finding Poisson subalgebras associated with fluid models starting from the Vlasov–Maxwell Poisson algebra. In this way, we show that the only possible Poisson subalgebra involves the moments of zeroth and first order of the Vlasov distribution, meaning the fluid density and the fluid velocity. We find that the bracket derived in [B.A. Shadwick, G.M. Tarkenton, E.H. Esarey, Phys. Rev. Lett. 93 (2004) 175002] which involves moments of order 2 is not a Poisson bracket since it does not satisfy the Jacobi identity. -- Highlights: ► We investigate fluid reductions from the Vlasov–Maxwell Poisson bracket. ► The only Poisson subalgebra involves fluid density and fluid velocity. ► The bracket derived in [B.A. Shadwick, G.M. Tarkenton, E.H. Esarey, Phys. Rev. Lett. 93 (2004) 175002] is not Hamiltonian.

  19. Pore volume is most highly correlated with the visual assessment of skin pores.

    Science.gov (United States)

    Kim, S J; Shin, M K; Back, J H; Koh, J S

    2014-11-01

    Many studies have been focused on evaluating assessment techniques for facial pores amid growing attention on skin care. Ubiquitous techniques used to assess the size of facial pores include visual assessment, cross-section images of the skin surface, and profilometric analysis of silicone replica of the facial skin. In addition, there are indirect assessment methods, including observation of pores based on confocal laser scanning microscopy and the analysis of sebum secretion and skin elasticity. The aim of this study was to identify parameters useful in estimating pore of surface in normal skin. The severity of pores on the cheek area by frontal optical images was divided on a 0-6 scale with '0' being faint and small pore and '6' being obvious and large pore. After the photos of the frontal cheek of 32 women aged between 35 and 49 were taken, the size of their pores was measured on a 0-6 scale; and the correlation between visual grading of pore and various evaluations (pore volume by 3-D image, pore area and number by Optical Image Analyzer) contributing to pore severity investigated using direct, objective, and noninvasive evaluations. The visual score revealed that the size of pores was graded on a 1-6 scale. Visual grading of pore was highly correlated with pore volume measured from 3-D images and pore area measured from 2-D optical images in the order (P pore was also slightly correlated with the number of pores in size of over 0.04 mm(2) (P pore score and pore volume can be explained by 3-D structural characteristics of pores. It is concluded that pore volume and area serve as useful parameters in estimating pore of skin surface. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Discrimination of reservoir fluid contacts using compressional and ...

    African Journals Online (AJOL)

    Improved fluid detection and lithology discrimination using rock properties and attributes cross plots have been attempted using well log data in an Onshore Niger Delta field. Rock properties and attributes were extracted using empirical rock physics models on well logs and used to validate their potentials as pore fluid ...

  1. Biogeochemical cycles at the sulfate-methane transition zone (SMTZ) and geochemical characteristics of the pore fluids offshore southwestern Taiwan

    Science.gov (United States)

    Hu, Ching-Yi; Frank Yang, Tsanyao; Burr, George S.; Chuang, Pei-Chuan; Chen, Hsuan-Wen; Walia, Monika; Chen, Nai-Chen; Huang, Yu-Chun; Lin, Saulwood; Wang, Yunshuen; Chung, San-Hsiung; Huang, Chin-Da; Chen, Cheng-Hong

    2017-11-01

    In this study, we used pore water dissolved inorganic carbon (DIC), SO42-, Ca2+ and Mg2+ gradients at the sulfate-methane transition zone (SMTZ) to estimate biogeochemical fluxes for cored sediments collected offshore SW Taiwan. Net DIC flux changes (ΔDIC-Prod) were applied to determine the proportion of sulfate consumption by organic matter oxidation (heterotrophic sulfate reduction) and anaerobic oxidation of methane (AOM), and to determine reliable CH4 fluxes at the SMTZ. Our results show that SO42- profiles are mainly controlled by AOM rather than heterotrophic sulfate reduction. Refinement of CH4 flux estimates enhance our understanding of methane abundance from deep carbon reservoirs to the SMTZ. Concentrations of chloride (Cl-), bromide (Br-) and iodide (I-) dissolved in pore water were used to identify potential sources that control fluid compositions and the behavior of dissolved ions. Constant Cl- concentrations throughout ∼30 m sediment suggest no influence of gas hydrates for the compositions within the core. Bromide (Br-) and Iodine (I-) concentrations increase with sediment depth. The I-/Br- ratio appears to reflect organic matter degradation. SO42- concentrations decrease with sediment depth at a constant rate, and sediment depth profiles of Br- and I- concentrations suggests diffusion as the main transport mechanism. Therefore diffusive flux calculations are reasonable. Coring sites with high CH4 fluxes are more common in the accretionary wedge, amongst thrust faults and fractures, than in the passive continental margin offshore southwestern Taiwan. AOM reactions are a major sink for CH4 passing upward through the SMTZ and prevent high methane fluxes in the water column and to the atmosphere.

  2. Reduced viscosity interpreted for fluid/gas mixtures

    Science.gov (United States)

    Lewis, D. H.

    1981-01-01

    Analysis predicts decrease in fluid viscosity by comparing pressure profile of fluid/gas mixture with that of power-law fluid. Fluid is taken to be viscous, non-Newtonian, and incompressible; the gas to be ideal; the flow to be inertia-free, isothermal, and one dimensional. Analysis assists in design of flow systems for petroleum, coal, polymers, and other materials.

  3. Finite-difference method Stokes solver (FDMSS) for 3D pore geometries: Software development, validation and case studies

    Science.gov (United States)

    Gerke, Kirill M.; Vasilyev, Roman V.; Khirevich, Siarhei; Collins, Daniel; Karsanina, Marina V.; Sizonenko, Timofey O.; Korost, Dmitry V.; Lamontagne, Sébastien; Mallants, Dirk

    2018-05-01

    Permeability is one of the fundamental properties of porous media and is required for large-scale Darcian fluid flow and mass transport models. Whilst permeability can be measured directly at a range of scales, there are increasing opportunities to evaluate permeability from pore-scale fluid flow simulations. We introduce the free software Finite-Difference Method Stokes Solver (FDMSS) that solves Stokes equation using a finite-difference method (FDM) directly on voxelized 3D pore geometries (i.e. without meshing). Based on explicit convergence studies, validation on sphere packings with analytically known permeabilities, and comparison against lattice-Boltzmann and other published FDM studies, we conclude that FDMSS provides a computationally efficient and accurate basis for single-phase pore-scale flow simulations. By implementing an efficient parallelization and code optimization scheme, permeability inferences can now be made from 3D images of up to 109 voxels using modern desktop computers. Case studies demonstrate the broad applicability of the FDMSS software for both natural and artificial porous media.

  4. Finite-difference method Stokes solver (FDMSS) for 3D pore geometries: Software development, validation and case studies

    KAUST Repository

    Gerke, Kirill M.

    2018-01-17

    Permeability is one of the fundamental properties of porous media and is required for large-scale Darcian fluid flow and mass transport models. Whilst permeability can be measured directly at a range of scales, there are increasing opportunities to evaluate permeability from pore-scale fluid flow simulations. We introduce the free software Finite-Difference Method Stokes Solver (FDMSS) that solves Stokes equation using a finite-difference method (FDM) directly on voxelized 3D pore geometries (i.e. without meshing). Based on explicit convergence studies, validation on sphere packings with analytically known permeabilities, and comparison against lattice-Boltzmann and other published FDM studies, we conclude that FDMSS provides a computationally efficient and accurate basis for single-phase pore-scale flow simulations. By implementing an efficient parallelization and code optimization scheme, permeability inferences can now be made from 3D images of up to 109 voxels using modern desktop computers. Case studies demonstrate the broad applicability of the FDMSS software for both natural and artificial porous media.

  5. Nucleation of frictional instability caused by fluid pressurization in subducted blueschist

    NARCIS (Netherlands)

    Sawai, M.; Niemeijer, A.R.; Plümper, O.; Hirose, T.; Spiers, C.J.

    2016-01-01

    Pore pressure is an important factor in controlling the slip instability of faults and thus the generation of earthquakes. Particularly slow earthquakes are widespread in subduction zones and usually linked to the occurrence of high pore pressure. Yet the influence of fluid pressure and effective

  6. In-situ, real time micro-CT imaging of pore scale processes, the next frontier for laboratory based micro-CT scanning

    OpenAIRE

    Boone, Marijn; Bultreys, Tom; Masschaele, Bert; Van Loo, Denis; Van Hoorebeke, Luc; Cnudde, Veerle

    2016-01-01

    Over the past decade, laboratory based X-ray computed micro-tomography (micro-CT) has given unique insights in the internal structure of complex reservoir rocks, improving the understanding of pore scale processes and providing crucial information for pore scale modelling. Especially in-situ imaging using X-ray optimized Hassler type cells has enabled the direct visualization of fluid distributions at the pore scale under reservoir conditions. While sub-micrometre spatial resolutions are achi...

  7. Isolating the effect of pore size distribution on electrochemical double-layer capacitance using activated fluid coke

    Science.gov (United States)

    Zuliani, Jocelyn E.; Tong, Shitang; Kirk, Donald W.; Jia, Charles Q.

    2015-12-01

    Electrochemical double-layer capacitors (EDLCs) use physical ion adsorption in the capacitive electrical double layer of high specific surface area (SSA) materials to store electrical energy. Previous work shows that the SSA-normalized capacitance increases when pore diameters are less than 1 nm. However, there still remains uncertainty about the charge storage mechanism since the enhanced SSA-normalized capacitance is not observed in all microporous materials. In previous studies, the total specific surface area and the chemical composition of the electrode materials were not controlled. The current work is the first reported study that systematically compares the performance of activated carbon prepared from the same raw material, with similar chemical composition and specific surface area, but different pore size distributions. Preparing samples with similar SSAs, but different pores sizes is not straightforward since increasing pore diameters results in decreasing the SSA. This study observes that the microporous activated carbon has a higher SSA-normalized capacitance, 14.1 μF cm-2, compared to the mesoporous material, 12.4 μF cm-2. However, this enhanced SSA-normalized capacitance is only observed above a threshold operating voltage. Therefore, it can be concluded that a minimum applied voltage is required to induce ion adsorption in these sub-nanometer micropores, which increases the capacitance.

  8. Capillary condensation in cylindrical pores: Monte Carlo study of the interplay of surface and finite size effects.

    Science.gov (United States)

    Winkler, A; Wilms, D; Virnau, P; Binder, K

    2010-10-28

    When a fluid that undergoes a vapor to liquid transition in the bulk is confined to a long cylindrical pore, the phase transition is shifted (mostly due to surface effects at the walls of the pore) and rounded (due to finite size effects). The nature of the phase coexistence at the transition depends on the length of the pore: for very long pores, the system is axially homogeneous at low temperatures. At the chemical potential where the transition takes place, fluctuations occur between vapor- and liquidlike states of the cylinder as a whole. At somewhat higher temperatures (but still far below bulk criticality), the system at phase coexistence is in an axially inhomogeneous multidomain state, where long cylindrical liquid- and vaporlike domains alternate. Using Monte Carlo simulations for the Ising/lattice gas model and the Asakura-Oosawa model of colloid-polymer mixtures, the transition between these two different scenarios is characterized. It is shown that the density distribution changes gradually from a double-peak structure to a triple-peak shape, and the correlation length in the axial direction (measuring the equilibrium domain length) becomes much smaller than the cylinder length. The (rounded) transition to the disordered phase of the fluid occurs when the axial correlation length has decreased to a value comparable to the cylinder diameter. It is also suggested that adsorption hysteresis vanishes when the transition from the simple domain state to the multidomain state of the cylindrical pore occurs. We predict that the difference between the pore critical temperature and the hysteresis critical temperature should increase logarithmically with the length of the pore.

  9. Propagation of a plasma streamer in catalyst pores

    Science.gov (United States)

    Zhang, Quan-Zhi; Bogaerts, Annemie

    2018-03-01

    Although plasma catalysis is gaining increasing interest for various environmental applications, the underlying mechanisms are still far from understood. For instance, it is not yet clear whether and how plasma streamers can propagate in catalyst pores, and what is the minimum pore size to make this happen. As this is crucial information to ensure good plasma-catalyst interaction, we study here the mechanism of plasma streamer propagation in a catalyst pore, by means of a two-dimensional particle-in-cell/Monte Carlo collision model, for various pore diameters in the nm-range to μm-range. The so-called Debye length is an important criterion for plasma penetration into catalyst pores, i.e. a plasma streamer can penetrate into pores when their diameter is larger than the Debye length. The Debye length is typically in the order of a few 100 nm up to 1 μm at the conditions under study, depending on electron density and temperature in the plasma streamer. For pores in the range of ∼50 nm, plasma can thus only penetrate to some extent and at very short times, i.e. at the beginning of a micro-discharge, before the actual plasma streamer reaches the catalyst surface and a sheath is formed in front of the surface. We can make plasma streamers penetrate into smaller pores (down to ca. 500 nm at the conditions under study) by increasing the applied voltage, which yields a higher plasma density, and thus reduces the Debye length. Our simulations also reveal that the plasma streamers induce surface charging of the catalyst pore sidewalls, causing discharge enhancement inside the pore, depending on pore diameter and depth.

  10. Restricted primitive model for electrolyte solutions in slit-like pores with grafted chains: microscopic structure, thermodynamics of adsorption, and electric properties from a density functional approach.

    Science.gov (United States)

    Pizio, Orest; Sokołowski, Stefan

    2013-05-28

    We apply a density functional theory to describe properties of a restricted primitive model of an ionic fluid in slit-like pores. The pore walls are modified by grafted chains. The chains are built of uncharged or charged segments. We study the influence of modification of the pore walls on the structure, adsorption, ion selectivity, and the electric double layer capacitance of ionic fluid under confinement. The brush built of uncharged segments acts as a collection of obstacles in the walls vicinity. Consequently, separation of charges requires higher voltages, in comparison to the models without brushes. At high grafting densities the formation of crowding-type structure is inhibited. The double layer structure becomes more complex in various aspects, if the brushes are built of charged segments. In particular, the evolution of the brush height with the bulk fluid density and with the charge on the walls depends on the length of the blocks of charged spheres as well as on the distribution of charged species along chains. We also investigated how the dependence of the double layer capacitance on the electrostatic potential (or on the charge on the walls) changes with grafting density, the chain length, distribution of charges along the chain, the bulk fluid density, and, finally, with the pore width. The shape of the electric double layer capacitance vs. voltage changes from a camel-like to bell-like shape, if the bulk fluid density changes from low to moderate and high. If the bulk density is appropriately chosen, it is possible to alter the shape of this curve from the double hump to single hump by changing the grafting density. Moreover, in narrow pores one can observe the capacitance curve with even three humps for a certain set of parameters describing brush. This behavior illustrates how strong the influence of brushes on the electric double layer properties can be, particularly for ionic fluids in narrow pores.

  11. Adsorption of short-chain fluids at solid substrates from density functional theory

    International Nuclear Information System (INIS)

    Bryk, P.; Bucior, K.; Sokolowski, S.; Zukocinski, G.

    2005-01-01

    We use microscopic density functional theory to investigate the adsorption of short-chains at solid surfaces. The fluid is modeled as freely-jointed tangent spheres that interact via a short-ranged attractive potential. Within the framework of fundamental measure theory we study how the structure and surface phase behaviour of adsorbed fluid changes when the chain length is increased. We observe that the wetting temperature rescaled by the bulk critical temperature decreases with an increase of the chain length. For longer chains this temperature reaches a plateau. For the surface critical temperature an inverse effect is observed, i.e. the surface critical temperature increases with the chain length and then attains a plateau. Furthermore, we analyze how the layering transitions change with the change of the chain length and with relative strength of the fluid-solid interaction. The critical temperature of the first layering transition, rescaled by the bulk critical temperature increases slightly with an increase of the chain length. We have found that for longer chains the layering transitions within consecutive layers are shifted towards very low temperatures and that their sequence is finally replaced by a single transition. Finally we investigate capillary condensation of chain fluid in slit-like pores. We find that for a fluid of chains consisting of a larger number of segments we observe an inversion effect. Namely, the critical temperature of capillary condensation decreases with increasing pore width for a certain interval of values of the pore width. This anomalous behavior is also influenced by the interaction between molecules and pore walls. (author)

  12. Nucleation speed limit on remote fluid induced earthquakes

    Science.gov (United States)

    Parsons, Thomas E.; Akinci, Aybige; Malignini, Luca

    2017-01-01

    Earthquakes triggered by other remote seismic events are explained as a response to long-traveling seismic waves that temporarily stress the crust. However, delays of hours or days after seismic waves pass through are reported by several studies, which are difficult to reconcile with the transient stresses imparted by seismic waves. We show that these delays are proportional to magnitude and that nucleation times are best fit to a fluid diffusion process if the governing rupture process involves unlocking a magnitude-dependent critical nucleation zone. It is well established that distant earthquakes can strongly affect the pressure and distribution of crustal pore fluids. Earth’s crust contains hydraulically isolated, pressurized compartments in which fluids are contained within low-permeability walls. We know that strong shaking induced by seismic waves from large earthquakes can change the permeability of rocks. Thus, the boundary of a pressurized compartment may see its permeability rise. Previously confined, overpressurized pore fluids may then diffuse away, infiltrate faults, decrease their strength, and induce earthquakes. Magnitude-dependent delays and critical nucleation zone conclusions can also be applied to human-induced earthquakes.

  13. Free surface modelling with two-fluid model and reduced numerical diffusion of the interface

    International Nuclear Information System (INIS)

    Strubelj, Luka; Tiselj, Izrok

    2008-01-01

    Full text of publication follows: The free surface flows are successfully modelled with one of existing free surface models, such as: level set method, volume of fluid method (with/without surface reconstruction), front tracking, two-fluid model (two momentum equations) with modified interphase force and others. The main disadvantage of two-fluid model used for simulations of free surface flows is numerical diffusion of the interface, which can be significantly reduced using the method presented in this paper. Several techniques for reduction of numerical diffusion of the interface have been implemented in the volume of fluid model and are based on modified numerical schemes for advection of volume fraction near the interface. The same approach could be used also for two-fluid method, but according to our experience more successful reduction of numerical diffusion of the interface can be achieved with conservative level set method. Within the conservative level set method, continuity equation for volume fraction is solved and after that the numerical diffusion of the interface is reduced in such a way that the thickness of the interface is kept constant during the simulation. Reduction of the interface diffusion can be also called interface sharpening. In present paper the two-fluid model with interface sharpening is validated on Rayleigh-Taylor instability. Under assumptions of isothermal and incompressible flow of two immiscible fluids, we simulated a system with the fluid of higher density located above the fluid of smaller density in two dimensions. Due to gravity in the system, fluid with higher density moves below the fluid with smaller density. Initial condition is not a flat interface between the fluids, but a sine wave with small amplitude, which develops into a mushroom-like structure. Mushroom-like structure in simulation of Rayleigh-Taylor instability later develops to small droplets as result of numerical dispersion of interface (interface sharpening

  14. Positive and negative feedback in the earthquake cycIe: the role of pore fluids on states of criticality in the crust

    Directory of Open Access Journals (Sweden)

    P. R. Sammonds

    1994-06-01

    Full Text Available Fluids exert a strong physical and chemical control on local processes of rock fracture and friction. For example they may accelerate fracture by stress corrosion reactions or the development of overpressure (a form of positive feedback, or retard fracture by time-dependent stress relaxation or dilatant hardening (negative feed-back, thereby introducing a variable degree of local force conservation into the process. In particular the valve action of dynamic faulting may be important in tuning the Earth to a metastable state of incipient failure on all scales over several cycles, similar to current models of Self-Organised Criticality (SOC as a paradigm for eartiquakes However laboratory results suggest that ordered fluctuations about this state may occur in a single cycle due to non conservative processes involving fluids which have the potential to be recognised, at least in the short term, in the scaling properties of earthquake statistics. Here we describe a 2-D cellular automaton which uses local rules of positive and negative feedback to model the effect of fluids on failure in a heterogeneous medium in a single earthquake cycle. The model successfully predicts the observed fractal distribution of fractures, with a negative correlation between the predicted seismic b-value and the local crack extension force G. Such a negative correlation is found in laboratory tests involving (a fluid-assisted crack growth in tension (b water-saturated compressional deformation, and (c in field results on an intermediate scale from hydraulic mining-induced seismicity all cases where G can be determined independently, and where the physical and chemical action of pore fluids is to varying degrees a controlled variable. For a finite local hardening mechanism (negative feedback, the model exhibits a systematic increase followed by a decrease in the seismic b-value as macroscopic failure is approached, similar to that found in water-saturated laboratory tests

  15. Fusion Pore Diameter Regulation by Cations Modulating Local Membrane Anisotropy

    Directory of Open Access Journals (Sweden)

    Doron Kabaso

    2012-01-01

    Full Text Available The fusion pore is an aqueous channel that is formed upon the fusion of the vesicle membrane with the plasma membrane. Once the pore is open, it may close again (transient fusion or widen completely (full fusion to permit vesicle cargo discharge. While repetitive transient fusion pore openings of the vesicle with the plasma membrane have been observed in the absence of stimulation, their frequency can be further increased using a cAMP-increasing agent that drives the opening of nonspecific cation channels. Our model hypothesis is that the openings and closings of the fusion pore are driven by changes in the local concentration of cations in the connected vesicle. The proposed mechanism of fusion pore dynamics is considered as follows: when the fusion pore is closed or is extremely narrow, the accumulation of cations in the vesicle (increased cation concentration likely leads to lipid demixing at the fusion pore. This process may affect local membrane anisotropy, which reduces the spontaneous curvature and thus leads to the opening of the fusion pore. Based on the theory of membrane elasticity, we used a continuum model to explain the rhythmic opening and closing of the fusion pore.

  16. Permeability and fluid chemistry studies of the Topopah Spring Member of the Paintbrush Tuff, Nevada Test Site: Part II

    International Nuclear Information System (INIS)

    Moore, D.E.; Morrow, C.A.; Byerlee, J.D.

    1985-03-01

    The Topopah Spring Member of the Paintbrush Tuff is being considered as a possible emplacement horizon for the disposal of nuclear waste. The permeability and pore-fluid chemistry of the Topopah Spring Member have been investigated experimentally. The work reported here represents a continuation of previous permeability studies on the Topopah Spring Member. Three experiments were run, to test the effect of pore pressure, sample orientation, and flow direction on permeability and pore fluid chemistry. In the experiments, water flowed either up or down a temperature gradient established across the tuff sample in response to a small pore pressure gradient. The maximum temperature of the gradient was 150 0 C, and the minimum was 43 to 45 0 C. The confining pressure was 100 bars, corresponding to a disposal depth of 400 meters. J13 water was the starting pore fluid. The heated tuff samples showed few changes in permeability from their initial, room-temperature values. In addition, the fluids discharged from both the low and high-temperature sides of the tuff samples were dilute, nearly neutral solutions whose compositions did not differ greatly from the starting J13 compositions. 16 refs., 14 figs., 4 tabs

  17. Pore-scale and Continuum Simulations of Solute Transport Micromodel Benchmark Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Oostrom, Martinus; Mehmani, Yashar; Romero Gomez, Pedro DJ; Tang, Y.; Liu, H.; Yoon, Hongkyu; Kang, Qinjun; Joekar Niasar, Vahid; Balhoff, Matthew; Dewers, T.; Tartakovsky, Guzel D.; Leist, Emily AE; Hess, Nancy J.; Perkins, William A.; Rakowski, Cynthia L.; Richmond, Marshall C.; Serkowski, John A.; Werth, Charles J.; Valocchi, Albert J.; Wietsma, Thomas W.; Zhang, Changyong

    2016-08-01

    Four sets of micromodel nonreactive solute transport experiments were conducted with flow velocity, grain diameter, pore-aspect ratio, and flow focusing heterogeneity as the variables. The data sets were offered to pore-scale modeling groups to test their simulators. Each set consisted of two learning experiments, for which all results was made available, and a challenge experiment, for which only the experimental description and base input parameters were provided. The experimental results showed a nonlinear dependence of the dispersion coefficient on the Peclet number, a negligible effect of the pore-aspect ratio on transverse mixing, and considerably enhanced mixing due to flow focusing. Five pore-scale models and one continuum-scale model were used to simulate the experiments. Of the pore-scale models, two used a pore-network (PN) method, two others are based on a lattice-Boltzmann (LB) approach, and one employed a computational fluid dynamics (CFD) technique. The learning experiments were used by the PN models to modify the standard perfect mixing approach in pore bodies into approaches to simulate the observed incomplete mixing. The LB and CFD models used these experiments to appropriately discretize the grid representations. The continuum model use published non-linear relations between transverse dispersion coefficients and Peclet numbers to compute the required dispersivity input values. Comparisons between experimental and numerical results for the four challenge experiments show that all pore-scale models were all able to satisfactorily simulate the experiments. The continuum model underestimated the required dispersivity values and, resulting in less dispersion. The PN models were able to complete the simulations in a few minutes, whereas the direct models needed up to several days on supercomputers to resolve the more complex problems.

  18. Effect of pore size distribution and flow segregation on dispersion in porous media

    International Nuclear Information System (INIS)

    Carbonell, R.G.

    1978-11-01

    In order to study the effect of the pore size distribution and flow segregation on dispersion in a porous media, the dispersion of solute in an array of parallel pores is considered. Equations are obtained for the dispersion coefficient in laminar and turbulent flow, as a function of the particle Peclet number. The theory fits quite well cumulative experimental data from various researchers in the Peclet number range from 10 -3 to 10 6 . The model also predicts some trends, backed by experimental data, regarding the effect of particle size, particle size distribution and fluid velocity on dispersion

  19. Fault reactivation by fluid injection considering permeability evolution in fault-bordering damage zones

    Science.gov (United States)

    Yang, Z.; Yehya, A.; Rice, J. R.; Yin, J.

    2017-12-01

    Earthquakes can be induced by human activity involving fluid injection, e.g., as wastewater disposal from hydrocarbon production. The occurrence of such events is thought to be, mainly, due to the increase in pore pressure, which reduces the effective normal stress and hence the strength of a nearby fault. Change in subsurface stress around suitably oriented faults at near-critical stress states may also contribute. We focus on improving the modeling and prediction of the hydro-mechanical response due to fluid injection, considering the full poroelastic effects and not solely changes in pore pressure in a rigid host. Thus we address the changes in porosity and permeability of the medium due to the changes in the local volumetric strains. Our results also focus on including effects of the fault architecture (low permeability fault core and higher permeability bordering damage zones) on the pressure diffusion and the fault poroelastic response. Field studies of faults have provided a generally common description for the size of their bordering damage zones and how they evolve along their direction of propagation. Empirical laws, from a large number of such observations, describe their fracture density, width, permeability, etc. We use those laws and related data to construct our study cases. We show that the existence of high permeability damage zones facilitates pore-pressure diffusion and, in some cases, results in a sharp increase in pore-pressure at levels much deeper than the injection wells, because these regions act as conduits for fluid pressure changes. This eventually results in higher seismicity rates. By better understanding the mechanisms of nucleation of injection-induced seismicity, and better predicting the hydro-mechanical response of faults, we can assess methodologies and injection strategies to avoid risks of high magnitude seismic events. Microseismic events occurring after the start of injection are very important indications of when injection

  20. Water weakening of chalk explaied from a fluid-solid friction factor

    DEFF Research Database (Denmark)

    Andreassen, Katrine Alling; Fabricius, Ida Lykke

    2010-01-01

    to where it is dominated by inertial forces, i.e. when the pore fluid motion lags behind the applied frequency. It is therefore a measure of the internal surface friction between solid and fluid which can be interpreted as a friction factor on the pore scale and we propose it can be extrapolated...... using the Biot critical frequency as a single reference. Other viscoplastic parameters were investigated in the same manner to verify the range of the functioning of the friction factor. The findings show that the Biot critical frequency can be used as a common friction factor and is useful in combining...... laboratory results. It is also inferred that the observed water weakening phenomenon may be attributed to the friction between solid and fluid....

  1. Using quality improvement methods to reduce clear fluid fasting times in children on a preoperative ward.

    Science.gov (United States)

    Newton, Richard J G; Stuart, Grant M; Willdridge, Daniel J; Thomas, Mark

    2017-08-01

    We applied quality improvement (QI) methodology to identify the different aspects of why children fasted for prolonged periods in our institution. Our aim was for 75% of all children to be fasted for clear fluid for less than 4 hours. Prolonged fasting in children can increase thirst and irritability and have adverse effects on haemodynamic stability on induction. By reducing this, children may be less irritable, more comfortable and more physiologically stable, improving the preoperative experience for both children and carers. We conducted a QI project from January 2014 until August 2016 at a large tertiary pediatric teaching hospital. Baseline data and the magnitude of the problem were obtained from pilot studies. This allowed us to build a key driver diagram, a process map and conduct a failure mode and effects analysis. Using a framework of Plan-Do-Study-Act cycles our key interventions primarily focused on reducing confusion over procedure start times, giving parents accurate information, empowering staff and reducing variation by allowing children to drink on arrival (up to one hour) before surgery. Prior to this project, using the 6,4,2 fasting rule for solids, breast milk, and clear fluids, respectively, 19% of children were fasted for fluid for less than 4 hours, mean fluid fasting time was 6.3 hours (SD 4.48). At the conclusion 72% of patients received a drink within 4 hours, mean fluid fasting reduced to 3.1 hours (SD 2.33). The secondary measures of aspiration (4.14:10 000) and cancellations have not increased since starting this project. By using established QI methodology we reduced the mean fluid fasting time for day admissions at our hospital to 3.1 hours and increased the proportion of children fasting for less than 4 hours from 19% to 72%. © 2017 John Wiley & Sons Ltd.

  2. Toward multiscale modelings of grain-fluid systems

    Science.gov (United States)

    Chareyre, Bruno; Yuan, Chao; Montella, Eduard P.; Salager, Simon

    2017-06-01

    Computationally efficient methods have been developed for simulating partially saturated granular materials in the pendular regime. In contrast, one hardly avoid expensive direct resolutions of 2-phase fluid dynamics problem for mixed pendular-funicular situations or even saturated regimes. Following previous developments for single-phase flow, a pore-network approach of the coupling problems is described. The geometry and movements of phases and interfaces are described on the basis of a tetrahedrization of the pore space, introducing elementary objects such as bridge, meniscus, pore body and pore throat, together with local rules of evolution. As firmly established local rules are still missing on some aspects (entry capillary pressure and pore-scale pressure-saturation relations, forces on the grains, or kinetics of transfers in mixed situations) a multi-scale numerical framework is introduced, enhancing the pore-network approach with the help of direct simulations. Small subsets of a granular system are extracted, in which multiphase scenario are solved using the Lattice-Boltzman method (LBM). In turns, a global problem is assembled and solved at the network scale, as illustrated by a simulated primary drainage.

  3. Using Neutron Scattering and Mercury Intrusion Techniques to Characterize Micro- and Nano-Pore Structure of Shale

    Science.gov (United States)

    Zhang, Y.; Barber, T.; Hu, Q.; Bleuel, M.

    2017-12-01

    The micro- and nano-pore structure of oil shale plays a critical role in hydrocarbon storage and migration. This study aims to characterize the pore structure of three Bakken members (i.e., upper organic-rich shale, middle silty/sandy dolomites, and lower organic-rich shale), through small and ultra-small angle neutron scattering (SANS and USANS) techniques, as well as mercury injection capillary pressure (MICP) analyses. SANS/USANS have the capabilities of measuring total porosity (connected and closed porosity) across nm-mm spectrum, not measurable than other fluid-invasion approaches, such as MICP which obtains connected porosity and pore-throat size distribution. Results from both techniques exhibit different features of upper/lower Bakken and middle Bakken, as a result of various mineral composition and organic matter contents. Middle Bakken is primarily dominated by the mineral pores, while in the upper and lower Bakken, organic pores contribute a significant portion of total porosity. A combination of USANS/SANS and MICP techniques gives a comprehensive picture of shale micro- and nano-pore structure.

  4. Experimental Quantification of Pore-Scale Flow Phenomena in 2D Heterogeneous Porous Micromodels: Multiphase Flow Towards Coupled Solid-Liquid Interactions

    Science.gov (United States)

    Li, Y.; Kazemifar, F.; Blois, G.; Christensen, K. T.

    2017-12-01

    Geological sequestration of CO2 within saline aquifers is a viable technology for reducing CO2 emissions. Central to this goal is accurately predicting both the fidelity of candidate sites pre-injection of CO2 and its post-injection migration. Moreover, local fluid pressure buildup may cause activation of small pre-existing unidentified faults, leading to micro-seismic events, which could prove disastrous for societal acceptance of CCS, and possibly compromise seal integrity. Recent evidence shows that large-scale events are coupled with pore-scale phenomena, which necessitates the representation of pore-scale stress, strain, and multiphase flow processes in large-scale modeling. To this end, the pore-scale flow of water and liquid/supercritical CO2 is investigated under reservoir-relevant conditions, over a range of wettability conditions in 2D heterogeneous micromodels that reflect the complexity of a real sandstone. High-speed fluorescent microscopy, complemented by a fast differential pressure transmitter, allows for simultaneous measurement of the flow field within and the instantaneous pressure drop across the micromodels. A flexible micromodel is also designed and fabricated, to be used in conjunction with the micro-PIV technique, enabling the quantification of coupled solid-liquid interactions.

  5. Single- and two-phase flow simulation based on equivalent pore network extracted from micro-CT images of sandstone core.

    Science.gov (United States)

    Song, Rui; Liu, Jianjun; Cui, Mengmeng

    2016-01-01

    Due to the intricate structure of porous rocks, relationships between porosity or saturation and petrophysical transport properties classically used for reservoir evaluation and recovery strategies are either very complex or nonexistent. Thus, the pore network model extracted from the natural porous media is emphasized as a breakthrough to predict the fluid transport properties in the complex micro pore structure. This paper presents a modified method of extracting the equivalent pore network model from the three-dimensional micro computed tomography images based on the maximum ball algorithm. The partition of pore and throat are improved to avoid tremendous memory usage when extracting the equivalent pore network model. The porosity calculated by the extracted pore network model agrees well with the original sandstone sample. Instead of the Poiseuille's law used in the original work, the Lattice-Boltzmann method is employed to simulate the single- and two- phase flow in the extracted pore network. Good agreements are acquired on relative permeability saturation curves of the simulation against the experiment results.

  6. Thickened water-based hydraulic fluid with reduced dependence of viscosity on temperature

    Energy Technology Data Exchange (ETDEWEB)

    Deck, C. F.

    1985-01-01

    Improved hydraulic fluids or metalworking lubricants, utilizing mixtures of water, metal lubricants, metal corrosion inhibitors, and an associative polyether thickener, have reduced dependence of the viscosity on temperature achieved by the incorporation therein of an ethoxylated polyether surfactant.

  7. Fluid Assisted Compaction and Deformation of Reservoir Lithologies; FINAL

    International Nuclear Information System (INIS)

    Kronenberg, A.K.; Chester, F.M.; Chester, J.S.; Hajash, A.; He, W.; Karner, S.; Lenz, S.

    2002-01-01

    The compaction and diagenesis of sandstones that form reservoirs to hydrocarbons depend on mechanical compaction processes, fluid flow at local and regional scales, and chemical processes of dissolution, precipitation and diffusional solution transport. The compaction and distortional deformation of quartz aggregates exposed to reactive aqueous fluids have been investigated experimentally at varying critical and subcritical stress states and time scales. Pore fluid compositions and reaction rates during deformation have been measured and compared with creep rates. Relative contributions of mechanical and chemical processes to deformation and pore structure evolution have been evaluated using acoustic emission (AE) measurements and scanning electron microscope (SEM) observations. At the subcritical conditions investigated, creep rates and acoustic emission rates fit transient logarithmic creep laws. Based on AE and SEM observations, we conclude that intragranular cracking and grain rearrangement are the dominant strain mechanisms. Specimens show little evidence of stress-enhanced solution transfer. At long times under wet conditions, the dominant strain mechanism gradually shifts from critical cracking at grain contacts with high stress concentrations to fluid-assisted sub-critical cracking

  8. Dynamic mean field theory for lattice gas models of fluid mixtures confined in mesoporous materials.

    Science.gov (United States)

    Edison, J R; Monson, P A

    2013-11-12

    We present the extension of dynamic mean field theory (DMFT) for fluids in porous materials (Monson, P. A. J. Chem. Phys. 2008, 128, 084701) to the case of mixtures. The theory can be used to describe the relaxation processes in the approach to equilibrium or metastable equilibrium states for fluids in pores after a change in the bulk pressure or composition. It is especially useful for studying systems where there are capillary condensation or evaporation transitions. Nucleation processes associated with these transitions are emergent features of the theory and can be visualized via the time dependence of the density distribution and composition distribution in the system. For mixtures an important component of the dynamics is relaxation of the composition distribution in the system, especially in the neighborhood of vapor-liquid interfaces. We consider two different types of mixtures, modeling hydrocarbon adsorption in carbon-like slit pores. We first present results on bulk phase equilibria of the mixtures and then the equilibrium (stable/metastable) behavior of these mixtures in a finite slit pore and an inkbottle pore. We then use DMFT to describe the evolution of the density and composition in the pore in the approach to equilibrium after changing the state of the bulk fluid via composition or pressure changes.

  9. Modeling of carbonate reservoir variable secondary pore space based on CT images

    Science.gov (United States)

    Nie, X.; Nie, S.; Zhang, J.; Zhang, C.; Zhang, Z.

    2017-12-01

    Digital core technology has brought convenience to us, and X-ray CT scanning is one of the most common way to obtain 3D digital cores. However, it can only provide the original information of the only samples being scanned, and we can't modify the porosity of the scanned cores. For numerical rock physical simulations, a series of cores with variable porosities are needed to determine the relationship between the physical properties and porosity. In carbonate rocks, the secondary pore space including dissolution pores, caves and natural fractures is the key reservoir space, which makes the study of carbonate secondary porosity very important. To achieve the variation of porosities in one rock sample, based on CT scanned digital cores, according to the physical and chemical properties of carbonate rocks, several mathematical methods are chosen to simulate the variation of secondary pore space. We use the erosion and dilation operations of mathematical morphology method to simulate the pore space changes of dissolution pores and caves. We also use the Fractional Brownian Motion model to generate natural fractures with different widths and angles in digital cores to simulate fractured carbonate rocks. The morphological opening-and-closing operations in mathematical morphology method are used to simulate distribution of fluid in the pore space. The established 3D digital core models with different secondary porosities and water saturation status can be used in the study of the physical property numerical simulations of carbonate reservoir rocks.

  10. Evaluating the hydraulic and transport properties of peat soil using pore network modeling and X-ray micro computed tomography

    Science.gov (United States)

    Gharedaghloo, Behrad; Price, Jonathan S.; Rezanezhad, Fereidoun; Quinton, William L.

    2018-06-01

    Micro-scale properties of peat pore space and their influence on hydraulic and transport properties of peat soils have been given little attention so far. Characterizing the variation of these properties in a peat profile can increase our knowledge on the processes controlling contaminant transport through peatlands. As opposed to the common macro-scale (or bulk) representation of groundwater flow and transport processes, a pore network model (PNM) simulates flow and transport processes within individual pores. Here, a pore network modeling code capable of simulating advective and diffusive transport processes through a 3D unstructured pore network was developed; its predictive performance was evaluated by comparing its results to empirical values and to the results of computational fluid dynamics (CFD) simulations. This is the first time that peat pore networks have been extracted from X-ray micro-computed tomography (μCT) images of peat deposits and peat pore characteristics evaluated in a 3D approach. Water flow and solute transport were modeled in the unstructured pore networks mapped directly from μCT images. The modeling results were processed to determine the bulk properties of peat deposits. Results portray the commonly observed decrease in hydraulic conductivity with depth, which was attributed to the reduction of pore radius and increase in pore tortuosity. The increase in pore tortuosity with depth was associated with more decomposed peat soil and decreasing pore coordination number with depth, which extended the flow path of fluid particles. Results also revealed that hydraulic conductivity is isotropic locally, but becomes anisotropic after upscaling to core-scale; this suggests the anisotropy of peat hydraulic conductivity observed in core-scale and field-scale is due to the strong heterogeneity in the vertical dimension that is imposed by the layered structure of peat soils. Transport simulations revealed that for a given solute, the effective

  11. Estimating pore-space gas hydrate saturations from well log acoustic data

    Science.gov (United States)

    Lee, Myung W.; Waite, William F.

    2008-07-01

    Relating pore-space gas hydrate saturation to sonic velocity data is important for remotely estimating gas hydrate concentration in sediment. In the present study, sonic velocities of gas hydrate-bearing sands are modeled using a three-phase Biot-type theory in which sand, gas hydrate, and pore fluid form three homogeneous, interwoven frameworks. This theory is developed using well log compressional and shear wave velocity data from the Mallik 5L-38 permafrost gas hydrate research well in Canada and applied to well log data from hydrate-bearing sands in the Alaskan permafrost, Gulf of Mexico, and northern Cascadia margin. Velocity-based gas hydrate saturation estimates are in good agreement with Nuclear Magneto Resonance and resistivity log estimates over the complete range of observed gas hydrate saturations.

  12. Proinflammatory tissue response and recovery of adipokines during 4 days of subcutaneous large-pore microdialysis

    DEFF Research Database (Denmark)

    Clausen, Trine Schnedler; Kaastrup, Peter; Stallknecht, Bente

    2009-01-01

    was originally designed for sampling of small molecules but recently the availability of catheters with large-pore membranes has made it possible to recover larger molecules such as adipokines. The present study investigated tissue response towards large-pore microdialysis catheters inserted into human SAT for 4......INTRODUCTION: Subcutaneous adipose tissue (SAT) is increasingly being recognized as a highly active tissue secreting adipokines involved in many physiological and pathophysiological processes. Microdialysis is a technique used for in vivo sampling of interstitial fluid from e.g. SAT. The technique......: Insertion of a large-pore microdialysis catheter into human SAT results in tissue trauma leading to changes in the interstitial concentrations of IL-1beta, IL-6, IL-8, MCP-1, TNF-alpha and adiponectin....

  13. Numerical study of viscoelastic polymer flow in simplified pore structures using stabilised finite element model

    Energy Technology Data Exchange (ETDEWEB)

    Qi, M.; Wegner, J.; Ganzer, L. [Technische Univ. Clausthal, Clausthal-Zellerfeld (Germany). ITE

    2013-08-01

    Polymer flooding, as an EOR method, has become one of the most important driving forces after water flooding. The conventional believe is that polymer flooding can only improve sweep efficiency, but it has no contribution to residual oil saturation reduction. However, experimental studies indicated that polymer solution can also improve displacement efficiency and decrease residual oil saturation. To get a better understanding of the mechanism to increase the microscopic sweep efficiency and the displacement efficiency, theoretical studies are required. In this paper, we studied the viscoelasticity effect of polymer by using a numerical simulator, which is based on Finite Element Analysis. Since it is showed experimentally that the first normal stress difference of viscoelastic polymer solution is higher than the second stress difference, the Oldroyd-B model was selected as the constitutive equation in the simulation. Numerical modelling of Oldroyd-B viscoelastic fluids is notoriously difficult. Standard Galerkin finite element methods are prone to numerical oscillations, and there is no convergence as the elasticity of fluid increases. Therefore, we use a stabilised finite element model. In order to verify our model, we first built up a model with the same geometry and fluid properties as presented in literature and compared the results. Then, with the tested model we simulated the effect of viscoelastic polymer fluid on dead pores in three simplified pore structures, which are contraction structure, expansion structure and expansion-contraction structure. Correspondingly, the streamlines and velocity contours of polymer solution, with different Reynolds numbers (Re) and Weissenberg numbers (We), flowing in these three structures are showed. The simulation results indicate that the viscoelasticity of polymer solution is the main contribution to increase the micro-scale sweep efficiency. With higher elasticity, the velocity of polymer solution is getting bigger at

  14. Isotopic composition of pore water in the Tournemire argilites (Aveyron, France): inter-comparison study of analytical methods and relations with petrophysical parameters

    International Nuclear Information System (INIS)

    Altinier, M.V.

    2006-06-01

    Stable isotope profiles of pore water in argillaceous rocks are used to characterize fluid migration through these rocks. However, the very low water contents, less than 5% by wet weight, and the small pore sizes (<10 nm) make difficult the access to pore water. In order to assess the representativeness of stable isotopes data in pore water from Tournemire shale (IRSN experimental facility), we made a comparative study by using vacuum distillation at 50 deg. C and 150 deg. C, diffusion in liquid phase and diffusive exchange in vapour phase, together with a study of petrophysical and mineralogical properties of the rock. The results show a good agreement between the water contents determined by heating and vacuum distillation at 150 deg. C and by equilibration techniques. On the other hand, vacuum distillation at 50 deg. C allows to extract less than 90% of the extractable water by heating at 150 deg. C; leading to a depletion in heavy isotopes of extracted water, which can be corrected by using a Rayleigh-type model. Finally, we studied a perpendicular profile to a fracture in order to determine the origin of heavy isotope enrichment of pore water that was observed, in previous works, in the vicinity of fractures (less than one meter). It seems that water content, which increases near the fracture, associated with a more important proportion of bigger pores (φ ∼ 10 - 180 nm), would be at the origin of the isotopic anomalies determined by vacuum distillation at 50 deg. C. Preponderance of bigger pores near the fractures would facilitate mobilization of pore water and its extraction by vacuum distillation at 50 deg. C, reducing the effects of incomplete distillation. (author)

  15. Distribution of B, Cl and Their Isotopes in Pore Waters Separated from Gas Hydrate Potential Areas, Offshore Southwestern Taiwan

    Directory of Open Access Journals (Sweden)

    Hung-Chun Chao Chen-Feng You

    2006-01-01

    Full Text Available Boron (B and chlorine (Cl are widely distributed on the Earth’s surface and show distinctive geochemical behaviors. Cl behaves rather conservatively in oceanic environments while B is an excess-volatile and its distribution is sensitive to sediment absorption and organic matter degradation. The distribution of B, Cl and their isotopes in pore waters provide useful information for distinguishing between shallow circulation and deep origin fluid sources. Thirty-six sediment cores 0 - 5 m in length were sampled from a foreland accretionary prism offshore Southwestern Taiwan where strong bottom simulating reflectors (BSRs and an abundance of mud diapirs were discovered. More than 350 pore water samples were separated and analyzed for B, Cl and other major ions. Four long cores were selected for B and Cl isotopic analysis. We found that the Cl in all cores varied less than 10%, suggesting no major hydrate dissolution or formation involvement at shallow depths in the study area. However, the B concentration changed greatly, ranging between 360 and 650 μM, indicating a possible sedimentary contribution during the early diagenesis stage. The B isotopic compositions were relatively depleted (~25 to 37‰ in these pore waters, implying the addition of sedimentary exchangeable B with low δ11B. The Cl isotopes showed rather large variations, more than 8‰, possibly related to the addition of deep situated fluids. In summary, the chemical and isotopic characteristics of pore waters separated from piston cores off Southwestern Taiwan suggest strong influence from organic matter degradation during diagenesis at shallow depths and the possible addition of deep fluids advecting through mud diapir channels at greater depths, causing a minor degree of hydrate dissolution / formation to occur at shallow depths. Further systematic investigation of pore waters δ18O and δD are needed in a future study.

  16. Nucleation speed limit on remote fluid-induced earthquakes

    Science.gov (United States)

    Parsons, Tom; Malagnini, Luca; Akinci, Aybige

    2017-01-01

    Earthquakes triggered by other remote seismic events are explained as a response to long-traveling seismic waves that temporarily stress the crust. However, delays of hours or days after seismic waves pass through are reported by several studies, which are difficult to reconcile with the transient stresses imparted by seismic waves. We show that these delays are proportional to magnitude and that nucleation times are best fit to a fluid diffusion process if the governing rupture process involves unlocking a magnitude-dependent critical nucleation zone. It is well established that distant earthquakes can strongly affect the pressure and distribution of crustal pore fluids. Earth’s crust contains hydraulically isolated, pressurized compartments in which fluids are contained within low-permeability walls. We know that strong shaking induced by seismic waves from large earthquakes can change the permeability of rocks. Thus, the boundary of a pressurized compartment may see its permeability rise. Previously confined, overpressurized pore fluids may then diffuse away, infiltrate faults, decrease their strength, and induce earthquakes. Magnitude-dependent delays and critical nucleation zone conclusions can also be applied to human-induced earthquakes. PMID:28845448

  17. Topical application of a cleanser containing extracts of Diospyros kaki folium, Polygonum cuspidatum and Castanea crenata var. dulcis reduces skin oil content and pore size in human skin.

    Science.gov (United States)

    Lee, Bo Mi; An, Sungkwan; Kim, Soo-Yeon; Han, Hyun Joo; Jeong, Yu-Jin; Lee, Kyoung-Rok; Roh, Nam Kyung; Ahn, Kyu Joong; An, In-Sook; Cha, Hwa Jun

    2015-05-01

    The effects of skin pores on skin topographic features can be reduced by decreasing excessive production and accumulation of sebum and elimination of comedones. Therefore, a cosmetic cleanser that regulates sebum homeostasis is required. In the present study, the effects of a cosmetic cleanser that contained Diospyros kaki folium, Polygonum cuspidatum and Castanea crenata var. dulcis (DPC) was examined on the removal of sebum and on skin pore size. Healthy volunteers (n=23) aged 20-50 years were asked to apply the test materials to the face. Skin oil content, pore size, pore number and extracted sebum surface area were measured using various measurement methods. All the measurements were performed at pre- and post-application of the test materials. When the cosmetic cleanser containing DPC was applied to the skin, the oil content decreased by 77.3%, from 6.19 to 1.40. The number of skin pores decreased by 24.83%, from 125.39 to 94.23. Skin pore size decreased from 0.07 to 0.02 µm 3 (71.43% decrease). The amount of extracted sebum increased by 335% when the DPC cleanser was used. Compared to the control cleanser, skin oil content was significantly decreased when the cleanser that contained DPC was used. The cleanser containing DPC also decreased pore size and number. Finally, the DPC cleanser easily removed solidified sebum from the skin.

  18. Dynamic fluid connectivity during steady-state multiphase flow in a sandstone.

    Science.gov (United States)

    Reynolds, Catriona A; Menke, Hannah; Andrew, Matthew; Blunt, Martin J; Krevor, Samuel

    2017-08-01

    The current conceptual picture of steady-state multiphase Darcy flow in porous media is that the fluid phases organize into separate flow pathways with stable interfaces. Here we demonstrate a previously unobserved type of steady-state flow behavior, which we term "dynamic connectivity," using fast pore-scale X-ray imaging. We image the flow of N 2 and brine through a permeable sandstone at subsurface reservoir conditions, and low capillary numbers, and at constant fluid saturation. At any instant, the network of pores filled with the nonwetting phase is not necessarily connected. Flow occurs along pathways that periodically reconnect, like cars controlled by traffic lights. This behavior is consistent with an energy balance, where some of the energy of the injected fluids is sporadically converted to create new interfaces.

  19. Dual pore-connectivity and flow-paths affect shale hydrocarbon production

    Science.gov (United States)

    Hu, Q.; Barber, T.; Zhang, Y.; Md Golam, K.

    2017-12-01

    Aided with integrated characterization approaches of droplet contact angle measurement, mercury intrusion capillary pressure, low-pressure gas physisorption, scanning electron microscopy, and small angle neutron scattering, we have systematically studied how pore connectivity and wettability are associated with mineral and organic matter phases of shales (Barnett, Bakken, Eagle Ford), as well as their influence on macroscopic fluid flow and hydrocarbon movement, from the following complementary tests: vacuum saturation with vacuum-pulling on dry shale followed with tracer introduction and high-pressure intrusion, tracer diffusion into fluid-saturated shale, fluid and tracer imbibition into partially-saturated shale, and Wood's metal intrusion followed with imaging and elemental mapping. The first three tests use tracer-bearing fluids (hydrophilic API brine and hydrophobic n-decane) fluids with a suite of wettability tracers of different sizes and reactivities developed in our laboratory. These innovative and integrated approaches indicate a Dalmatian wettability behavior at a scale of microns, limited connectivity (50-100 nm), which is linked to the steep initial decline and low overall recovery because of the limited connection of hydrocarbon molecules in the shale matrix to the stimulated fracture network.

  20. Recent advances of pore system construction in zeolite-catalyzed chemical industry processes.

    Science.gov (United States)

    Shi, Jing; Wang, Yangdong; Yang, Weimin; Tang, Yi; Xie, Zaiku

    2015-12-21

    The kaleidoscopic applications of zeolite catalysts (zeo-catalysts) in petrochemical processes has been considered as one of the major accomplishments in recent decades. About twenty types of zeolite have been industrially applied so far, and their versatile porous architectures have contributed their most essential features to affect the catalytic efficiency. This review depicts the evolution of pore models in zeolite catalysts accompanied by the increase in industrial and environmental demands. The indispensable roles of modulating pore models are outlined for zeo-catalysts for the enhancement of their catalytic performances in various industrial processes. The zeolites and related industrial processes discussed range from the uni-modal micropore system of zeolite Y (12-ring micropore, 12-R) in fluid catalytic cracking (FCC), zeolite ZSM-5 (10-R) in xylene isomerization and SAPO-34 (8-R) in olefin production to the multi-modal micropore system of MCM-22 (10-R and 12-R pocket) in aromatic alkylation and the hierarchical pores in FCC and catalytic cracking of C4 olefins. The rational construction of pore models, especially hierarchical features, is highlighted with a careful classification from an industrial perspective accompanied by a detailed analysis of the theoretical mechanisms.

  1. Electrokinetic effects and fluid permeability

    International Nuclear Information System (INIS)

    Berryman, J.G.

    2003-01-01

    Fluid permeability of porous media depends mainly on connectivity of the pore space and two physical parameters: porosity and a pertinent length-scale parameter. Electrical imaging methods typically establish connectivity and directly measure electrical conductivity, which can then often be related to porosity by Archie's law. When electrical phase measurements are made in addition to the amplitude measurements, information about the pertinent length scale can then be obtained. Since fluid permeability controls the ability to flush unwanted fluid contaminants from the subsurface, inexpensive maps of permeability could improve planning strategies for remediation efforts. Detailed knowledge of fluid permeability is also important for oil field exploitation, where knowledge of permeability distribution in three dimensions is a common requirement for petroleum reservoir simulation and analysis, as well as for estimates on the economics of recovery

  2. Motion of an Oil Droplet Through a Water-Filled Uneven Pore Déplacement d'une gouttelette d'huile à travers un pore irrégulier rempli d'eau

    Directory of Open Access Journals (Sweden)

    Singhal A. K.

    2006-11-01

    Full Text Available The need to understand various mechanisms governing fluid-fluid displacements associated with enhanced oil recovery provides the motivation for this study. The observation of apparently linear dependence of flow rates upon pressure gradients during multiphase flow through porous media conceals the true nature of displacement phenomena such as Haine's jumps, droplet break-up, coalescence, etc. Most of these phenomena are understood only qualitatively. This study is on attempt to quantitatively describe them for a specific idealized pore geometry using approximate quasi steady-state calculations. The progress of a non-wetting oil droplet down a periodically convergent-divergent pore, the basic unit of which is a truncated bicone, shows a fluctuating, piecewise continuous track that resembles Haine's jumps. In addition to Haine's jumps, variations in the motion of droplets may also occur due to their break-up, coolescence or the instability of their interfacial configurations. Different parts of a droplet may be required to adjust to different curvatures and sometimes it may fail to maintain a constant mean curvature throughout its interface. Consequently, while flowing through constrictions, a droplet may break-up. Some portions of broken droplets may then travel in the middle of the pore and sometimes may coalesce with each other in different portions of the pore. The droplets become immobilized whevener the pressure gradients available across them are insufficient to overcome the threshold pressure offered by their interfaces. Possible implications of these phenomena in the entrapment of residual oil, hystereses in capillary pressure and relative permeability curves, and fluctuations in the multiphase flovv of fluids through porous media are discussed. Le besoin de comprendre les divers mécanismes régissant les déplacements de certains fluides par d'autres, déplacements rencontrés dans la récupération assistée du pétrole, constitue la

  3. Numerical investigations of the fluid flows at deep oceanic and arctic permafrost-associated gas hydrate deposits

    Science.gov (United States)

    Frederick, Jennifer Mary

    Methane hydrate is an ice-like solid which sequesters large quantities of methane gas within its crystal structure. The source of methane is typically derived from organic matter broken down by thermogenic or biogenic activity. Methane hydrate (or more simply, hydrate) is found around the globe within marine sediments along most continental margins where thermodynamic conditions and methane gas (in excess of local solubility) permit its formation. Hydrate deposits are quite possibly the largest reservoir of fossil fuel on Earth, however, their formation and evolution in response to changing thermodynamic conditions, such as global warming, are poorly understood. Upward fluid flow (relative to the seafloor) is thought to be important for the formation of methane hydrate deposits, which are typically found beneath topographic features on the seafloor. However, one-dimensional models predict downward flow relative to the seafloor in compacting marine sediments. The presence of upward flow in a passive margin setting can be explained by fluid focusing beneath topography when sediments have anisotropic permeability due to sediment bedding layers. Even small slopes (10 degrees) in bedding planes produce upward fluid velocity, with focusing becoming more effective as slopes increase. Additionally, focusing causes high excess pore pressure to develop below topographic highs, promoting high-angle fracturing at the ridge axis. Magnitudes of upward pore fluid velocity are much larger in fractured zones, particularly when the surrounding sediment matrix is anisotropic in permeability. Enhanced flow of methane-bearing fluids from depth provides a simple explanation for preferential accumulation of hydrate under topographic highs. Models of fluid flow at large hydrate provinces can be constrained by measurements of naturally-occurring radioactive tracers. Concentrations of cosmogenic iodine, 129-I, in the pore fluid of marine sediments often indicate that the pore fluid is much

  4. Étude de la mouillabilité des roches réservoir à l'échelle du pore par cryomicroscopie électronique à balayage Wettability of Reservoir Rock At the Pore Scale: Contribution of Cryo-Scanning Electron Microscopy

    Directory of Open Access Journals (Sweden)

    Fassi-Fihri O.

    2006-11-01

    naturally water wet. Some of them were treated with alkyltrichlorosilane so as to become oil wet. - The analysis of the relative distribution of fluids within the pore space enables conclusions to be drawn about the wettability of the pore walls. The residual non wetting fluid appears as globules trapped in the center of the pores, while the irreducible wetting fluid appears as films surrounding some grains. Films observed were rather thick (1 to 5 microns and rare, but this does not exclude the systematic presence of a film less than 0. 1 micron thick, this being the limit resolution in the operating conditions. - The porous media made of spherical glass beads, eroded quartz grains or silica overgrowth with no or low content of clays, have a comparable behavior. - Quartz and feldspars are naturally water-wet; the wettability of the quartz grains is efficiently reversed by silanation. - Illite has a marked affinity for brine even after silanation. - The presence of small size minerals (weathered feldspars and clays enhances oil entrapment by reducing the pore throats. Experiments were then conducted on actual field cores with intermediate wettability (i. e. spontaneously imbibing both brine and oil, a sandstone and a limestone. Both led to interesting conclusions concerning the origin of their behavior. The main results concerning a sandstone from the North Sea (Brent formation composed of quartz and feldspar grains, and a high content of clay minerals (mainly kaolinite and some illite are as follows :- residual oil is systematically associated with kaolinite,- illite and weathered feldspars are always observed associated with brine,- quartz and feldspar grains are preferentially water-wet. In some cases, detrital feldspar grains were observed partially covered by oil. Dissolution roughness then seems to play a role in oil entrapment. The hydrophobic character of this sandstone can then be attributed mainly to the presence of kaolinite and its affinity for oil. Spontaneous

  5. Correlation between pore fluid pressures and DInSAR post-seismic deformation of the May 20, 2012 Emilia-Romagna (Italy) earthquake

    Science.gov (United States)

    Moro, M.; Stramondo, S.; Albano, M.; Barba, S.; Solaro, G.; Saroli, M.; Bignami, C.

    2015-12-01

    The present work focuses on the detection and analysis of the postseismic surface deformations following the two earthquakes that hit the Emilia Romagna region (Italy) on May 20 and 29, 2012. The 2012 Emilia earthquake sequence struck the central sector of the Ferrara arc, which represents the external fold-and-thrust system of the Northern Apennines thrust belt buried below the Po plain. The May 20 event occurred on the Ferrara basal thrust at depth, at about 6-7 km, while, during the May 29 event, the rupture jumped on an inner splay of the Ferrara system. The analysis of the postseismic displacements was carried out thanks to a dataset of SAR COSMO­ SkyMed images covering a time span of about one year (May 20, 2012 - May 11, 2013) after the May 20 event. The DInSAR results revealed the presence of two deformation patches: the first one is located in the area that experienced the coseismic uplift. Here the postseismic displacements point out a further ground uplift occurring along the first three months after the 20 May event. The second deformation patch is located in the villages of San Carlo and Mirabello, where ground subsidence lasting about four months was detected. We hypothesized that both the observed phenomena are related to the pore pressure perturbation caused by the coseismic deformation. In particular, the ground uplift is due to the deep crustal deformations caused by the pore fluid diffusion at depth to re-establish the initial hydrostatic stresses. Instead, the ground subsidence is related to the compaction of the shallow sandy layers caused by the liquefaction phenomena, which widely affected the San Carlo and Mirabello area. Preliminary numerical analyses performed with the Finite Element Method and empirical relations confirmed our hypothesis.

  6. Thermal effects on fluid flow and hydraulic fracturing from wellbores and cavities in low-permeability formations

    Energy Technology Data Exchange (ETDEWEB)

    Yarlong Wang [Petro-Geotech Inc., Calgary, AB (Canada); Papamichos, Euripides [IKU Petroleum Research, Trondheim (Norway)

    1999-07-01

    The coupled heat-fluid-stress problem of circular wellbore or spherical cavity subjected to a constant temperature change and a constant fluid flow rate is considered. Transient analytical solutions for temperature, pore pressure and stress are developed by coupling conductive heat transfer with Darcy fluid flow in a poroelastic medium. They are applicable to lower permeability porous media suitable for liquid-waste disposal and also simulating reservoir for enhanced oil recovery, where conduction dominates the heat transfer process. A full range of solutions is presented showing separately the effects of temperature and fluid flow on pore pressure and stress development. It is shown that injection of warm fluid can be used to restrict fracture development around wellbores and cavities and generally to optimise a fluid injection operation. Both the limitations of the solutions and the convective flow effect are addressed. (Author)

  7. Topical application of a cleanser containing extracts of Diospyros kaki folium, Polygonum cuspidatum and Castanea crenata var. dulcis reduces skin oil content and pore size in human skin

    OpenAIRE

    LEE, BO MI; AN, SUNGKWAN; KIM, SOO-YEON; HAN, HYUN JOO; JEONG, YU-JIN; LEE, KYOUNG-ROK; ROH, NAM KYUNG; AHN, KYU JOONG; AN, IN-SOOK; CHA, HWA JUN

    2015-01-01

    The effects of skin pores on skin topographic features can be reduced by decreasing excessive production and accumulation of sebum and elimination of comedones. Therefore, a cosmetic cleanser that regulates sebum homeostasis is required. In the present study, the effects of a cosmetic cleanser that contained Diospyros kaki folium, Polygonum cuspidatum and Castanea crenata var. dulcis (DPC) was examined on the removal of sebum and on skin pore size. Healthy volunteers (n=23) aged 20–50 years w...

  8. Lattice density functional theory investigation of pore shape effects. I. Adsorption in single nonperiodic pores.

    Science.gov (United States)

    Malanoski, A P; van Swol, Frank

    2002-10-01

    A fully explicit in three dimensions lattice density functional theory is used to investigate adsorption in single nonperiodic pores. The effect of varying pore shape from the slits and cylinders that are normally simulated was our primary interest. A secondary concern was the results for pores with very large diameters. The shapes investigated were square pores with or without surface roughness, cylinders, right triangle pores, and trapezoidal pores. It was found that pores with very similar shape factors gave similar results but that the introduction of acute angled corners or very large side ratio lengths in rectangular pores gave results that were significantly different. Further, a rectangular pore going towards the limit of infinite side ratio does not approach the results of a slit pore. In all of these cases, the importance of features that are present for only a small portion of the pore is demonstrated.

  9. Pore growth in U-Mo/Al dispersion fuel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeon Soo, E-mail: yskim@anl.gov [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Jeong, G.Y.; Sohn, D.-S. [Ulsan National Institute of Science and Technology, 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan, 689-798 (Korea, Republic of); Jamison, L.M. [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States)

    2016-09-15

    U-Mo/Al dispersion fuel is currently under development in the DOE’s Material Management and Minimization program to convert HEU-fueled research reactors to LEU-fueled reactors. In some demanding conditions in high-power and high-performance reactors, large pores form in the interaction layers between the U-Mo fuel particles and the Al matrix, which pose a potential to cause fuel failure. In this study, comprehension of the formation and growth of these pores was explored. As a product, a model to predict pore growth and porosity increase was developed. The model includes three major topics: fission gas release from the U-Mo and the IL to the pores, stress evolution in the fuel meat, and the effect of amorphous IL growth. Well-characterized in-pile data from reduced-size plates were used to fit the model parameters. A data set from full-sized plates, independent and distinctively different from those used to fit the model parameters, was used to examine the accuracy of the model. The model showed fair agreement with the measured data. The model suggested that the growth of the IL has a critical effect on pore growth, as both its material properties and energetics are favorable to pore formation. Therefore, one area of the current effort, focused on suppressing IL growth, appears to be on the right track to improve the performance of this fuel.

  10. QUASI-ONE DIMENSIONAL CLASSICAL FLUIDS

    Directory of Open Access Journals (Sweden)

    J.K.Percus

    2003-01-01

    Full Text Available We study the equilibrium statistical mechanics of simple fluids in narrow pores. A systematic expansion is made about a one-dimensional limit of this system. It starts with a density functional, constructed from projected densities, which depends upon projected one and two-body potentials. The nature of higher order corrections is discussed.

  11. Characterization of the CO2 fluid adsorption in coal as a function of pressure using neutron scattering techniques (SANS and USANS)

    Science.gov (United States)

    Melnichenko, Y.B.; Radlinski, A.P.; Mastalerz, Maria; Cheng, G.; Rupp, J.

    2009-01-01

    Small angle neutron scattering techniques have been applied to investigate the phase behavior of CO2 injected into coal and possible changes in the coal pore structure that may result from this injection. Three coals were selected for this study: the Seelyville coal from the Illinois Basin (Ro = 0.53%), Baralaba coal from the Bowen Basin (Ro = 0.67%), and Bulli 4 coal from the Sydney Basin (Ro = 1.42%). The coals were selected from different depths to represent the range of the underground CO2 conditions (from subcritical to supercritical) which may be realized in the deep subsurface environment. The experiments were conducted in a high pressure cell and CO2 was injected under a range of pressure conditions, including those corresponding to in-situ hydrostatic subsurface conditions for each coal. Our experiments indicate that the porous matrix of all coals remains essentially unchanged after exposure to CO2 at pressures up to 200??bar (1??bar = 105??Pa). Each coal responds differently to the CO2 exposure and this response appears to be different in pores of various sizes within the same coal. For the Seelyville coal at reservoir conditions (16????C, 50??bar), CO2 condenses from a gas into liquid, which leads to increased average fluid density in the pores (??pore) with sizes (r) 1 ?? 105 ??? r ??? 1 ?? 104???? (??pore ??? 0.489??g/cm3) as well as in small pores with size between 30 and 300???? (??pore ??? 0.671??g/cm3). These values are by a factor of three to four higher than the density of bulk CO2 (??CO2) under similar thermodynamic conditions (??CO2 ??? 0.15??g/cm3). At the same time, in the intermediate size pores with r ??? 1000???? the average fluid density is similar to the density of bulk fluid, which indicates that adsorption does not occur in these pores. At in situ conditions for the Baralaba coal (35 OC, 100??bar), the average fluid density of CO2 in all pores is lower than that of the bulk fluid (??pore / ??CO2 ??? 0.6). Neutron scattering from the

  12. Diffusion of Supercritical Fluids through Single-Layer Nanoporous Solids: Theory and Molecular Simulations.

    Science.gov (United States)

    Oulebsir, Fouad; Vermorel, Romain; Galliero, Guillaume

    2018-01-16

    With the advent of graphene material, membranes based on single-layer nanoporous solids appear as promising devices for fluid separation, be it liquid or gaseous mixtures. The design of such architectured porous materials would greatly benefit from accurate models that can predict their transport and separation properties. More specifically, there is no universal understanding of how parameters such as temperature, fluid loading conditions, or the ratio of the pore size to the fluid molecular diameter influence the permeation process. In this study, we address the problem of pure supercritical fluids diffusing through simplified models of single-layer porous materials. Basically, we investigate a toy model that consists of a single-layer lattice of Lennard-Jones interaction sites with a slit gap of controllable width. We performed extensive equilibrium and biased molecular dynamics simulations to document the physical mechanisms involved at the molecular scale. We propose a general constitutive equation for the diffusional transport coefficient derived from classical statistical mechanics and kinetic theory, which can be further simplified in the ideal gas limit. This transport coefficient relates the molecular flux to the fluid density jump across the single-layer membrane. It is found to be proportional to the accessible surface porosity of the single-layer porous solid and to a thermodynamic factor accounting for the inhomogeneity of the fluid close to the pore entrance. Both quantities directly depend on the potential of mean force that results from molecular interactions between solid and fluid atoms. Comparisons with the simulations data show that the kinetic model captures how narrowing the pore size below the fluid molecular diameter lowers dramatically the value of the transport coefficient. Furthermore, we demonstrate that our general constitutive equation allows for a consistent interpretation of the intricate effects of temperature and fluid loading

  13. Pore-scale analysis of the minimum liquid film thickness around elongated bubbles in confined gas-liquid flows

    Science.gov (United States)

    Magnini, M.; Beisel, A. M.; Ferrari, A.; Thome, J. R.

    2017-11-01

    The fluid mechanics of elongated bubbles in confined gas-liquid flows in micro-geometries is important in pore-scale flow processes for enhanced oil recovery and mobilization of colloids in unsaturated soil. The efficiency of such processes is traditionally related to the thickness of the liquid film trapped between the elongated bubble and the pore's wall, which is assumed constant. However, the surface of long bubbles presents undulations in the vicinity of the rear meniscus, which may significantly decrease the local thickness of the liquid film, thus impacting the process of interest. This study presents a systematic analysis of these undulations and the minimum film thickness induced in the range Ca = 0.001- 0.5 and Re = 0.1- 2000 . Pore-scale Computational Fluid Dynamics (CFD) simulations are performed with a self-improved version of the opensource solver ESI OpenFOAM which is based on a Volume of Fluid method to track the gas-liquid interface. A lubrication model based on the extension of the classical axisymmetric Bretherton theory is utilized to better understand the CFD results. The profiles of the rear meniscus of the bubble obtained with the lubrication model agree fairly well with those extracted from the CFD simulations. This study shows that the Weber number of the flow, We = Ca Re , is the parameter that best describes the dynamics of the interfacial waves. When We 0.1, a larger number of wave crests becomes evident on the surface of the rear meniscus of the bubble. The liquid film thickness at the crests of the undulations thins considerably as the Reynolds number is increased, down to less than 60% of the value measured in the flat film region. This may significantly influence important environmental processes, such as the detachment and mobilization of micron-sized pollutants and pathogenic micro-organisms adhering at the pore's wall in unsaturated soil.

  14. Determination of Pore Pressure from Sonic Log: a Case Study on One of Iran Carbonate Reservoir Rocks

    Directory of Open Access Journals (Sweden)

    Morteza Azadpour

    2015-07-01

    Full Text Available Pore pressureis defined as the pressure of the fluid inside the pore space of the formation, which is also known as the formation pressure. When the pore pressure is higher than hydrostatic pressure, it is referred to as overpressure. Knowledge of this pressure is essential for cost-effective drilling, safe well planning, and efficient reservoir modeling. The main objective of this study is to estimate the formation pore pressure as a reliable mud weight pressure using well log data at one of oil fields in the south of Iran. To obtain this goal, the formation pore pressure is estimated from well logging data by applying Eaton’s prediction method with some modifications. In this way, sonic transient time trend line is separated by lithology changes and recalibrated by Weakley’s approach. The created sonic transient time is used to create an overlay pore pressure based on Eaton’s method and is led to pore pressure determination. The results are compared with the pore pressure estimated from commonly used methods such as Eaton’s and Bowers’s methods. The determined pore pressure from Weakley’s approach shows some improvements in comparison with Eaton’s method. However, the results of Bowers’s method, in comparison with the other two methods, show relatively better agreement with the mud weight pressure values.

  15. pH controlled gating of toxic protein pores by dendrimers

    Science.gov (United States)

    Mandal, Taraknath; Kanchi, Subbarao; Ayappa, K. G.; Maiti, Prabal K.

    2016-06-01

    Designing effective nanoscale blockers for membrane inserted pores formed by pore forming toxins, which are expressed by several virulent bacterial strains, on a target cell membrane is a challenging and active area of research. Here we demonstrate that PAMAM dendrimers can act as effective pH controlled gating devices once the pore has been formed. We have used fully atomistic molecular dynamics (MD) simulations to characterize the cytolysin A (ClyA) protein pores modified with fifth generation (G5) PAMAM dendrimers. Our results show that the PAMAM dendrimer, in either its protonated (P) or non-protonated (NP) states can spontaneously enter the protein lumen. Protonated dendrimers interact strongly with the negatively charged protein pore lumen. As a consequence, P dendrimers assume a more expanded configuration efficiently blocking the pore when compared with the more compact configuration adopted by the neutral NP dendrimers creating a greater void space for the passage of water and ions. To quantify the effective blockage of the protein pore, we have calculated the pore conductance as well as the residence times by applying a weak force on the ions/water. Ionic currents are reduced by 91% for the P dendrimers and 31% for the NP dendrimers. The preferential binding of Cl- counter ions to the P dendrimer creates a zone of high Cl- concentration in the vicinity of the internalized dendrimer and a high concentration of K+ ions in the transmembrane region of the pore lumen. In addition to steric effects, this induced charge segregation for the P dendrimer effectively blocks ionic transport through the pore. Our investigation shows that the bio-compatible PAMAM dendrimers can potentially be used to develop therapeutic protocols based on the pH sensitive gating of pores formed by pore forming toxins to mitigate bacterial infections.Designing effective nanoscale blockers for membrane inserted pores formed by pore forming toxins, which are expressed by several virulent

  16. In situ pore-pressure evolution during dynamic CPT measurements in soft sediments of the western Baltic Sea

    Science.gov (United States)

    Seifert, Annedore; Stegmann, Sylvia; Mörz, Tobias; Lange, Matthias; Wever, Thomas; Kopf, Achim

    2008-08-01

    We present in situ strength and pore-pressure measurements from 57 dynamic cone penetration tests in sediments of Mecklenburg ( n = 51), Eckernförde ( n = 2) and Gelting ( n = 4) bays, western Baltic Sea, characterised by thick mud layers and partially free microbial gas resulting from the degradation of organic material. In Mecklenburg and Eckernförde bays, sediment sampling by nine gravity cores served sedimentological characterisation, analyses of geotechnical properties, and laboratory shear tests. At selected localities, high-resolution echo-sounder profiles were acquired. Our aim was to deploy a dynamic cone penetrometer (CPT) to infer sediment shear strength and cohesion of the sea bottom as a function of fluid saturation. The results show very variable changes in pore pressure and sediment strength during the CPT deployments. The majority of the CPT measurements ( n = 54) show initially negative pore-pressure values during penetration, and a delayed response towards positive pressures thereafter. This so-called type B pore-pressure signal was recorded in all three bays, and is typically found in soft muds with high water contents and undrained shear strengths of 1.6-6.4 kPa. The type B signal is further affected by displacement of sediment and fluid upon penetration of the lance, skin effects during dynamic profiling, enhanced consolidation and strength of individual horizons, the presence of free gas, and a dilatory response of the sediment. In Mecklenburg Bay, the remaining small number of CPT measurements ( n = 3) show a well-defined peak in both pore pressure and cone resistance during penetration, i.e. an initial marked increase which is followed by exponential pore-pressure decay during dissipation. This so-called type A pore-pressure signal is associated with normally consolidated mud, with indurated clay layers showing significantly higher undrained shear strength (up to 19 kPa). In Eckernförde and Gelting bays pore-pressure response type B is

  17. Self-assembled isoporous block copolymer membranes with tuned pore sizes

    KAUST Repository

    Yu, Haizhou

    2014-07-23

    The combination of nonsolvent-induced phase separation and the self-assembly of block copolymers can lead to asymmetric membranes with a thin highly ordered isoporous skin layer. The effective pore size of such membranes is usually larger than 15 nm. We reduced the pore size of these membranes by electroless gold deposition. We demonstrate that the pore sizes can be controlled precisely between 3 and 20 nm leading to a tunable sharp size discrimination in filtration processes. Besides fractionation of nanoparticles and biomaterials, controlled drug delivery is an attractive potential application. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Self-assembled isoporous block copolymer membranes with tuned pore sizes

    KAUST Repository

    Yu, Haizhou; Qiu, Xiaoyan; Nunes, Suzanapereira; Peinemann, Klaus-Viktor

    2014-01-01

    The combination of nonsolvent-induced phase separation and the self-assembly of block copolymers can lead to asymmetric membranes with a thin highly ordered isoporous skin layer. The effective pore size of such membranes is usually larger than 15 nm. We reduced the pore size of these membranes by electroless gold deposition. We demonstrate that the pore sizes can be controlled precisely between 3 and 20 nm leading to a tunable sharp size discrimination in filtration processes. Besides fractionation of nanoparticles and biomaterials, controlled drug delivery is an attractive potential application. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Rock Physics of Reservoir Rocks with Varying Pore Water Saturation and Pore Water Salinity

    DEFF Research Database (Denmark)

    Katika, Konstantina

    experiments, the rock is subjected to high external stresses that resemble the reservoir stresses; 2) the fluid distribution within the pore space changes during the flow through experiments and wettability alterations may occur; 3) different ions, present in the salt water injected in the core, interact......Advanced waterflooding (injection of water with selective ions in reservoirs) is a method of enhanced oil recovery (EOR) that has attracted the interest of oil and gas companies that exploit the Danish oil and gas reservoirs. This method has been applied successfully in oil reservoirs...... and in the Smart Water project performed in a laboratory scale in order to evaluate the EOR processes in selected core plugs. A major step towards this evaluation is to identify the composition of the injected water that leads to increased oil recovery in reservoirs and to define changes in the petrophysical...

  20. Highly Aminated Mesoporous Silica Nanoparticles with Cubic Pore Structure

    KAUST Repository

    Suteewong, Teeraporn; Sai, Hiroaki; Cohen, Roy; Wang, Suntao; Bradbury, Michelle; Baird, Barbara; Gruner, Sol M.; Wiesner, Ulrich

    2011-01-01

    Mesoporous silica with cubic symmetry has attracted interest from researchers for some time. Here, we present the room temperature synthesis of mesoporous silica nanoparticles possessing cubic Pm3n symmetry with very high molar ratios (>50%) of 3-aminopropyl triethoxysilane. The synthesis is robust allowing, for example, co-condensation of organic dyes without loss of structure. By means of pore expander molecules, the pore size can be enlarged from 2.7 to 5 nm, while particle size decreases. Adding pore expander and co-condensing fluorescent dyes in the same synthesis reduces average particle size further down to 100 nm. After PEGylation, such fluorescent aminated mesoporous silica nanoparticles are spontaneously taken up by cells as demonstrated by fluorescence microscopy.

  1. Highly Aminated Mesoporous Silica Nanoparticles with Cubic Pore Structure

    KAUST Repository

    Suteewong, Teeraporn

    2011-01-19

    Mesoporous silica with cubic symmetry has attracted interest from researchers for some time. Here, we present the room temperature synthesis of mesoporous silica nanoparticles possessing cubic Pm3n symmetry with very high molar ratios (>50%) of 3-aminopropyl triethoxysilane. The synthesis is robust allowing, for example, co-condensation of organic dyes without loss of structure. By means of pore expander molecules, the pore size can be enlarged from 2.7 to 5 nm, while particle size decreases. Adding pore expander and co-condensing fluorescent dyes in the same synthesis reduces average particle size further down to 100 nm. After PEGylation, such fluorescent aminated mesoporous silica nanoparticles are spontaneously taken up by cells as demonstrated by fluorescence microscopy.

  2. Deformation of volcanic materials by pore pressurization: analog experiments with simplified geometry

    Science.gov (United States)

    Hyman, David; Bursik, Marcus

    2018-03-01

    The pressurization of pore fluids plays a significant role in deforming volcanic materials; however, understanding of this process remains incomplete, especially scenarios accompanying phreatic eruptions. Analog experiments presented here use a simple geometry to study the mechanics of this type of deformation. Syrup was injected into the base of a sand medium, simulating the permeable flow of fluids through shallow volcanic systems. The experiments examined surface deformation over many source depths and pressures. Surface deformation was recorded using a Microsoft® Kinect™ sensor, generating high-spatiotemporal resolution lab-scale digital elevation models (DEMs). The behavior of the system is controlled by the ratio of pore pressure to lithostatic loading (λ =p/ρ g D). For λ 10, fluid expulsion from the layer was much faster, vertically fracturing to the surface with larger pressure ratios yielding less deformation. The temporal behavior of deformation followed a characteristic evolution that produced an approximately exponential increase in deformation with time until complete layer penetration. This process is distinguished from magmatic sources in continuous geodetic data by its rapidity and characteristic time evolution. The time evolution of the experiments compares well with tilt records from Mt. Ontake, Japan, in the lead-up to the deadly 2014 phreatic eruption. Improved understanding of this process may guide the evolution of magmatic intrusions such as dikes, cone sheets, and cryptodomes and contribute to caldera resurgence or deformation that destabilizes volcanic flanks.

  3. Predicting Reactive Transport Dynamics in Carbonates using Initial Pore Structure

    Science.gov (United States)

    Menke, H. P.; Nunes, J. P. P.; Blunt, M. J.

    2017-12-01

    Understanding rock-fluid interaction at the pore-scale is imperative for accurate predictive modelling of carbon storage permanence. However, coupled reactive transport models are computationally expensive, requiring either a sacrifice of resolution or high performance computing to solve relatively simple geometries. Many recent studies indicate that initial pore structure many be the dominant mechanism in determining the dissolution regime. Here we investigate how well the initial pore structure is predictive of distribution and amount of dissolution during reactive flow using particle tracking on the initial image. Two samples of carbonate rock with varying initial pore space heterogeneity were reacted with reservoir condition CO2-saturated brine and scanned dynamically during reactive flow at a 4-μm resolution between 4 and 40 times using 4D X-ray micro-tomography over the course of 1.5 hours using μ-CT. Flow was modelled on the initial binarized image using a Navier-Stokes solver. Particle tracking was then run on the velocity fields, the streamlines were traced, and the streamline density was calculated both on a voxel-by-voxel and a channel-by-channel basis. The density of streamlines was then compared to the amount of dissolution in subsequent time steps during reaction. It was found that for the flow and transport regimes studied, the streamline density distribution in the initial image accurately predicted the dominant pathways of dissolution and gave good indicators of the type of dissolution regime that would later develop. This work suggests that the eventual reaction-induced changes in pore structure are deterministic rather than stochastic and can be predicted with high resolution imaging of unreacted rock.

  4. Fluid-injection and the mechanics of frictional stability of shale-bearing faults

    Science.gov (United States)

    Scuderi, Marco Maria; Collettini, Cristiano; Marone, Chris

    2017-04-01

    Fluid overpressure is one of the primary mechanisms for triggering tectonic fault slip and human-induced seismicity. This mechanism is appealing because fluids lubricate the fault and reduce the effective normal stress that holds the fault in place. However, current models of earthquake nucleation, based on rate- and state- friction, imply that stable sliding is favored by the increase of pore fluid pressure. Despite this apparent dilemma, there are a few studies on the role of fluid pressure in frictional stability under controlled, laboratory conditions. Here, we describe laboratory experiments on shale fault gouge, conducted in the double direct shear configuration in a true-triaxial machine. To characterize frictional stability and hydrological properties we performed three types of experiments: 1) stable sliding shear experiment to determine the material failure envelope resulting in fault strength of µ=0.28 and fault zone permeability (k 10-19m2); 2) velocity step experiments to determine the rate- and state- frictional properties, characterized by a velocity strengthening behavior with a negative rate parameter b, indicative of stable aseismic creep; 3) creep experiment to study fault slip evolution with increasing pore-fluid pressure. In these creep experiments fault slip history can be divided in three main stages: a) for low fluid pressure the fault is locked and undergoes compaction; b) with increasing fluid pressurization, we observe aseismic creep (i.e. v=0.0001 µm/s) associated with fault dilation, with maintained low permeability; c) As fluid pressure is further increased and we approach the failure criteria fault begins to accelerate, the dilation rate increases causing an increase in permeability. Following the first acceleration we document complex fault slip behavior characterized by periodic accelerations and decelerations with slip velocity that remains slow (i.e. v 200 µm/s), never approaching dynamic slip rates. Surprisingly, this complex

  5. The effect of fluids on the frictional behavior of calcite gouge

    Science.gov (United States)

    Rempe, M.; Di Toro, G.; Mitchell, T. M.; Hirose, T.; Smith, S. A. F.; Renner, J.

    2016-12-01

    The presence of fluids in fault zones affects the faults' strength and the nucleation and propagation of earthquakes due to mechanical or physico-chemical weakening effects. To better understand the effect of pore fluids on the frictional behavior of gouge-bearing faults, a series of intermediate- to high-velocity experiments was conducted using the Phv rotary-shear apparatus (Kochi Core Center, Japan) equipped with a servo-controlled pore-fluid pressure system. Calcite gouge was sheared up to several meters displacement at room-humidity (dry) and water-saturated conditions. The pore-fluid factor, λ=pf/σn, ranged from 0.15 to 0.7 and the effective normal stress, σn,eff=σn-pf, from 1 to 12 MPa. Sheared samples were analyzed using scanning electron microscopy and Raman spectroscopy. The steady-state shear stress is lower for saturated than for dry gouges sliding at V=1 mm/s, possibly due to higher intergranular lubrication and/or accelerated subcritical crack growth, as evidenced also by the observed higher degree of compaction. At V=1 m/s, dry gouges show a pronounced strengthening phase preceding the onset of dynamic weakening; saturated gouges weaken abruptly. The higher λ, the lower the peak and steady-state shear stress, but -counterintuitively- the less localized deformation. Degree of weakening and localization might be influenced by insufficient drainage at high λ. In undrained experiments, the shear stress is slightly decreased likely due to thermal pressurization of the pore fluid, but the onset of dynamic weakening is not accelerated, indicating that dynamic weakening is due to more efficient mechanisms. For example, amorphous carbon may lubricate the slip surfaces of dry and saturated calcite gouges and cause dynamic weakening, yet Raman spectra only show the presence of disordered carbon on the principal slip surface. Furthermore, the presence of small recrystallized grains suggests that strain accommodation during steady-state slip might occur by

  6. Conceptual models of microseismicity induced by fluid injection

    Science.gov (United States)

    Baro Urbea, J.; Lord-May, C.; Eaton, D. W. S.; Joern, D.

    2017-12-01

    Variations in the pore pressure due to fluid invasion are accountable for microseismic activity recorded in geothermal systems and during hydraulic fracturing operations. To capture this phenomenon on a conceptual level, invasion percolation models have been suggested to represent the flow network of fluids within a porous media and seismic activity is typically considered to be directly related to the expansion of the percolated area. Although such models reproduce scale-free frequency-magnitude distributions, the associated b-values of the Gutenberg-Richter relation do not align with observed data. Here, we propose an alternative conceptual invasion percolation model that decouples the fluid propagation from the microseismic events. Instead of a uniform pressure, the pressure is modeled to decay along the distance from the injection site. Wet fracture events are simulated with a stochastic spring block model exhibiting stick-slip dynamics as a result of the variations of the pore pressure. We show that the statistics of the stick-slip events are scale-free, but now the b-values depend on the level of heterogeneity in the local static friction coefficients. Thus, this model is able to reproduce the wide spectrum of b-values observed in field catalogs associated with fluid induced microseismicity. Moreover, the spatial distribution of microseismic events is also consistent with observations.

  7. Minimum requirements for predictive pore-network modeling of solute transport in micromodels

    Science.gov (United States)

    Mehmani, Yashar; Tchelepi, Hamdi A.

    2017-10-01

    Pore-scale models are now an integral part of analyzing fluid dynamics in porous materials (e.g., rocks, soils, fuel cells). Pore network models (PNM) are particularly attractive due to their computational efficiency. However, quantitative predictions with PNM have not always been successful. We focus on single-phase transport of a passive tracer under advection-dominated regimes and compare PNM with high-fidelity direct numerical simulations (DNS) for a range of micromodel heterogeneities. We identify the minimum requirements for predictive PNM of transport. They are: (a) flow-based network extraction, i.e., discretizing the pore space based on the underlying velocity field, (b) a Lagrangian (particle tracking) simulation framework, and (c) accurate transfer of particles from one pore throat to the next. We develop novel network extraction and particle tracking PNM methods that meet these requirements. Moreover, we show that certain established PNM practices in the literature can result in first-order errors in modeling advection-dominated transport. They include: all Eulerian PNMs, networks extracted based on geometric metrics only, and flux-based nodal transfer probabilities. Preliminary results for a 3D sphere pack are also presented. The simulation inputs for this work are made public to serve as a benchmark for the research community.

  8. On the predictivity of pore-scale simulations: estimating uncertainties with multilevel Monte Carlo

    KAUST Repository

    Icardi, Matteo

    2016-02-08

    A fast method with tunable accuracy is proposed to estimate errors and uncertainties in pore-scale and Digital Rock Physics (DRP) problems. The overall predictivity of these studies can be, in fact, hindered by many factors including sample heterogeneity, computational and imaging limitations, model inadequacy and not perfectly known physical parameters. The typical objective of pore-scale studies is the estimation of macroscopic effective parameters such as permeability, effective diffusivity and hydrodynamic dispersion. However, these are often non-deterministic quantities (i.e., results obtained for specific pore-scale sample and setup are not totally reproducible by another “equivalent” sample and setup). The stochastic nature can arise due to the multi-scale heterogeneity, the computational and experimental limitations in considering large samples, and the complexity of the physical models. These approximations, in fact, introduce an error that, being dependent on a large number of complex factors, can be modeled as random. We propose a general simulation tool, based on multilevel Monte Carlo, that can reduce drastically the computational cost needed for computing accurate statistics of effective parameters and other quantities of interest, under any of these random errors. This is, to our knowledge, the first attempt to include Uncertainty Quantification (UQ) in pore-scale physics and simulation. The method can also provide estimates of the discretization error and it is tested on three-dimensional transport problems in heterogeneous materials, where the sampling procedure is done by generation algorithms able to reproduce realistic consolidated and unconsolidated random sphere and ellipsoid packings and arrangements. A totally automatic workflow is developed in an open-source code [2015. https://bitbucket.org/micardi/porescalemc.], that include rigid body physics and random packing algorithms, unstructured mesh discretization, finite volume solvers

  9. Investigating the correlation between residual nonwetting phase liquids and pore-scale geometry and topology using synchrotron x-ray tomography

    International Nuclear Information System (INIS)

    Willson, C.S.; Ham, K.; Thompson, K.A.

    2005-01-01

    The entrapment of nonwetting phase fluids in unconsolidated porous media systems is strongly dependent on the pore-scale geometry and topology. Synchrotron X-ray tomography allows us to nondestructively obtain high-resolution (on the order of 1-10 micron), three-dimensional images of multiphase porous media systems. Over the past year, a number of multiphase porous media systems have been imaged using the synchrotron X-ray tomography station at the GeoSoilEnviroCARS beamline at the Advanced Photon Source. For each of these systems, we are able to: (1) obtain the physically-representative network structure of the void space including the pore body and throat distribution, coordination number, and aspect ratio; (2) characterize the individual nonwetting phase blobs/ganglia (e.g., volume, sphericity, orientation, surface area); and (3) correlate the porous media and fluid properties. The images, data, and network structure obtained from these experiments provide us with a better understanding of the processes and phenomena associated with the entrapment of nonwetting phase fluids. Results from these experiments will also be extremely useful for researchers interested in interphase mass transfer and those utilizing network models to study the flow of multiphase fluids in porous media systems.

  10. Dispersion of extensional waves in fluid-saturated porous cylinders at ultrasonic frequencies

    International Nuclear Information System (INIS)

    Berryman, J.G.

    1983-01-01

    Ultrasonic dispersion of extensional waves in fluid-saturated porous cylinders is studied by analyzing generalized Pochhammer equations derived using Biot's theory. Cases with open-pore surface and closed-pore surface boundary conditions are considered. For both cases, the dispersion of the fast extensional wave does not differ much qualitatively from the dispersion expected for extensional waves in isotropic elastic cylinders. A slow extensional wave propagates in the case with a closed-pore surface but not in the case with an open-pore surface. The propagating slow wave has very weak dispersion and its speed is always lower than, but close to, the bulk slow wave speed

  11. Modeling Stokes flow in real pore geometries derived by high resolution micro CT imaging

    Science.gov (United States)

    Halisch, M.; Müller, C.

    2012-04-01

    Meanwhile, numerical modeling of rock properties forms an important part of modern petrophysics. Substantially, equivalent rock models are used to describe and assess specific properties and phenomena, like fluid transport or complex electrical properties. In recent years, non-destructive computed X-ray tomography got more and more important - not only to take a quick and three dimensional look into rock samples but also to get access to in-situ sample information for highly accurate modeling purposes. Due to - by now - very high resolution of the 3D CT data sets (micron- to submicron range) also very small structures and sample features - e.g. micro porosity - can be visualized and used for numerical models of very high accuracy. Special demands even arise before numerical modeling can take place. Inappropriate filter applications (e.g. improper type of filter, wrong kernel, etc.) may lead to a significant corruption of spatial sample structure and / or even sample or void space volume. Because of these difficulties, especially small scale mineral- and pore space textures are very often lost and valuable in-situ information is erased. Segmentation of important sample features - porosity as well as rock matrix - based upon grayscale values strongly depends upon the scan quality and upon the experience of the application engineer, respectively. If the threshold for matrix-porosity separation is set too low, porosity can be quickly (and even more, due to restrictions of scanning resolution) underestimated. Contrary to this, a too high threshold over-determines porosity and small void space features as well as interfaces are changed and falsified. Image based phase separation in close combination with "conventional" analytics, as scanning electron microscopy or thin sectioning, greatly increase the reliability of this preliminary work. For segmentation and quantification purposes, a special CT imaging and processing software (Avizo Fire) has been used. By using this

  12. Numerical investigation of micro-pore formation during substrate impact of molten droplets in spraying processes

    International Nuclear Information System (INIS)

    Liu, H.; Lavernia, E.J.; Rangel, R.H.; Muehlberger, E.; Sickinger, A.

    1994-01-01

    The porosity that is commonly associated with discrete droplet processes, such as plasma spraying and spray deposition, effectively degrades the quality of the sprayed material. In the present study, micro-pore formation during the deformation and interaction of molten tungsten droplets impinging onto a flat substrate in spraying processes is numerically investigated. The numerical simulation is accomplished on the basis of the full Navier-Stokes equations and the Volume Of Fluid (VOF) function by using a 2-domain method for the thermal field and solidification problem and a two-phase flow continuum model for the flow problem with a growing solid layer. The possible mechanisms governing the formation of micro-pores are discussed. The effects of important processing parameters, such as droplet impact velocity, droplet temperature, substrate temperature, and droplet viscosity, on the micro-pore formation are addressed

  13. Lattice Boltzmann Simulations of Fluid Flow in Continental Carbonate Reservoir Rocks and in Upscaled Rock Models Generated with Multiple-Point Geostatistics

    Directory of Open Access Journals (Sweden)

    J. Soete

    2017-01-01

    Full Text Available Microcomputed tomography (μCT and Lattice Boltzmann Method (LBM simulations were applied to continental carbonates to quantify fluid flow. Fluid flow characteristics in these complex carbonates with multiscale pore networks are unique and the applied method allows studying their heterogeneity and anisotropy. 3D pore network models were introduced to single-phase flow simulations in Palabos, a software tool for particle-based modelling of classic computational fluid dynamics. In addition, permeability simulations were also performed on rock models generated with multiple-point geostatistics (MPS. This allowed assessing the applicability of MPS in upscaling high-resolution porosity patterns into large rock models that exceed the volume limitations of the μCT. Porosity and tortuosity control fluid flow in these porous media. Micro- and mesopores influence flow properties at larger scales in continental carbonates. Upscaling with MPS is therefore necessary to overcome volume-resolution problems of CT scanning equipment. The presented LBM-MPS workflow is applicable to other lithologies, comprising different pore types, shapes, and pore networks altogether. The lack of straightforward porosity-permeability relationships in complex carbonates highlights the necessity for a 3D approach. 3D fluid flow studies provide the best understanding of flow through porous media, which is of crucial importance in reservoir modelling.

  14. Self-assembled isoporous block copolymer membranes with tuned pore sizes.

    Science.gov (United States)

    Yu, Haizhou; Qiu, Xiaoyan; Nunes, Suzana P; Peinemann, Klaus-Viktor

    2014-09-15

    The combination of nonsolvent-induced phase separation and the self-assembly of block copolymers can lead to asymmetric membranes with a thin highly ordered isoporous skin layer. The effective pore size of such membranes is usually larger than 15 nm. We reduced the pore size of these membranes by electroless gold deposition. We demonstrate that the pore sizes can be controlled precisely between 3 and 20 nm leading to a tunable sharp size discrimination in filtration processes. Besides fractionation of nanoparticles and biomaterials, controlled drug delivery is an attractive potential application. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Metal-Organic Frameworks in Adsorption-Driven Heat Pumps: The Potential of Alcohols as Working Fluids.

    Science.gov (United States)

    de Lange, Martijn F; van Velzen, Benjamin L; Ottevanger, Coen P; Verouden, Karlijn J F M; Lin, Li-Chiang; Vlugt, Thijs J H; Gascon, Jorge; Kapteijn, Freek

    2015-11-24

    A large fraction of global energy is consumed for heating and cooling. Adsorption-driven heat pumps and chillers could be employed to reduce this consumption. MOFs are often considered to be ideal adsorbents for heat pumps and chillers. While most published works to date on this topic have focused on the use of water as a working fluid, the instability of many MOFs to water and the fact that water cannot be used at subzero temperatures pose certain drawbacks. The potential of using alcohol-MOF pairs in adsorption-driven heat pumps and chillers is investigated. To this end, 18 different selected MOF structures in combination with either methanol or ethanol as a working fluid are considered, and their potential is assessed on the basis of adsorption measurements and thermodynamic efficiencies. If alcohols are used instead of water, then (1) adsorption occurs at lower relative pressures for methanol and even lower pressure for ethanol, (2) larger pores can be utilized efficiently, as hysteresis is absent for pores smaller than 3.4 nm (2 nm for water), (3) larger pore sizes need to be employed to ensure the desired stepwise adsorption, (4) the effect of (polar/apolar) functional groups in the MOF is far less pronounced, (5) the energy released or taken up per cycle is lower, but heat and mass transfer may be enhanced, (6) stability of MOFs seems to be less of an issue, and (7) cryogenic applications (e.g., ice making) become feasible. From a thermodynamic perspective, UiO-67, CAU-3, and ZIF-8 seem to be the most promising MOFs for both methanol and ethanol as working fluids. Although UiO-67 might not be completely stable, both CAU-3 and ZIF-8 have the potential to be applied, especially in subzero-temperature adsorption chillers (AC).

  16. Flow rate through microfilters: Influence of the pore size distribution, hydrodynamic interactions, wall slip, and inertia

    DEFF Research Database (Denmark)

    Jensen, Kaare Hartvig; Valente, Andre X. C. N.; Stone, Howard A.

    2014-01-01

    We examine the fluid mechanics of viscous flow through filters consisting of perforated thin plates. We classify the effects that contribute to the hydraulic resistance of the filter. Classical analyses assume a single pore size and account only for filter thickness. We extend these results to ob...

  17. Swelling and gas release of grain-boundary pores in uranium dioxide

    International Nuclear Information System (INIS)

    Schrire, D.I.

    1983-12-01

    The swelling and gas release of overpressured grain boundary pores is sintered unirradiated uranium dioxide were investigated under isothermal conditions. The pores became overpressured when the ambient pressure was reduced, and the excess pressure driving force caused growth and interconnection of the pores, leading to eventual gas release. Swelling was measured continuously by a linear variable differential transformer, and open and closed porosity fractions were determined after the tests by immersion density and quantitative microscopy measurements. The sinter porosity consisted of pores situated on grain faces, grain edges, and grain corners. Isolated pores maintained their equilibrium shape while growing, without any measurable change in dihedral angle. Interconnection occurred predominantly along grain edges, without any evidence of pore sharpening or crack propagation at low driving forces. Extensive open porosity occurred at a threshold density of about 85% TD. There was an almost linear dependence of the initial swelling rate on the driving force, with an activation energy of 200+- 8 kJ/mole, in good agreement with published values of the activation energy for grain boundary diffusion

  18. Effective equations for fluid-structure interaction with applications to poroelasticity

    KAUST Repository

    Brown, Donald; Popov, Peter V.; Efendiev, Yalchin R.

    2012-01-01

    Modeling of fluid-solid interactions in porous media is a challenging and computationally demanding task. Due to the multiscale nature of the problem, simulating the flow and mechanics by direct numerical simulation is often not feasible and an effective model is preferred. In this work, we formally derive an effective model for Fluid-Structure Interaction (FSI). In earlier work, assuming infinitesimal pore-scale deformations, an effective poroelastic model of Biot was derived. We extend this model to a nonlinear Biot model that includes pore-scale deformation into the effective description. The main challenge is the difference in coordinate systems of the fluid and solid equations. This is circumvented by utilizing the Arbitrary Lagrange-Eulerian (ALE) formulation of the FSI equations, giving a unified frame in which to apply two-scale asymptotic techniques. In the derived nonlinear Biot model, the local cell problem are coupled to the macroscopic equations via the effective coefficients. These coefficients may be viewed as tabular functions of the macroscopic parameters. After simplifying this dependence, we assume the coefficients depend on macroscopic pressure only. Using a three dimensional pore geometry we calculate, as a proof-of-concept example, the effective permeability and Biot coefficients for various values or pressure. We observe that, for this geometry, a stronger pressure dependence on flow quantities than on mechanically based effective quantities. © 2014 Taylor & Francis Group, LLC.

  19. Effective equations for fluid-structure interaction with applications to poroelasticity

    KAUST Repository

    Brown, Donald

    2012-11-05

    Modeling of fluid-solid interactions in porous media is a challenging and computationally demanding task. Due to the multiscale nature of the problem, simulating the flow and mechanics by direct numerical simulation is often not feasible and an effective model is preferred. In this work, we formally derive an effective model for Fluid-Structure Interaction (FSI). In earlier work, assuming infinitesimal pore-scale deformations, an effective poroelastic model of Biot was derived. We extend this model to a nonlinear Biot model that includes pore-scale deformation into the effective description. The main challenge is the difference in coordinate systems of the fluid and solid equations. This is circumvented by utilizing the Arbitrary Lagrange-Eulerian (ALE) formulation of the FSI equations, giving a unified frame in which to apply two-scale asymptotic techniques. In the derived nonlinear Biot model, the local cell problem are coupled to the macroscopic equations via the effective coefficients. These coefficients may be viewed as tabular functions of the macroscopic parameters. After simplifying this dependence, we assume the coefficients depend on macroscopic pressure only. Using a three dimensional pore geometry we calculate, as a proof-of-concept example, the effective permeability and Biot coefficients for various values or pressure. We observe that, for this geometry, a stronger pressure dependence on flow quantities than on mechanically based effective quantities. © 2014 Taylor & Francis Group, LLC.

  20. On the role of thermal fluid dynamics into the evolution of porosity during selective laser melting

    International Nuclear Information System (INIS)

    Panwisawas, C.; Qiu, C.L.; Sovani, Y.; Brooks, J.W.; Attallah, M.M.; Basoalto, H.C.

    2015-01-01

    Thermal fluid dynamics and experiments have been used to study the evolution of pores during selective laser melting of Ti-6Al-4V. Scanning electron micrographs show that the morphology of pores changed from near-spherical to elongated shape as the laser scan speed increased. Computational fluid dynamics suggests that this is caused by the change of flow pattern in the melt pool which is dictated by forces such as vapour pressure, gravitational force, capillary and thermal capillary forces exerted on the metallic/gaseous interface

  1. Modelling Transcapillary Transport of Fluid and Proteins in Hemodialysis Patients.

    Directory of Open Access Journals (Sweden)

    Mauro Pietribiasi

    Full Text Available The kinetics of protein transport to and from the vascular compartment play a major role in the determination of fluid balance and plasma refilling during hemodialysis (HD sessions. In this study we propose a whole-body mathematical model describing water and protein shifts across the capillary membrane during HD and compare its output to clinical data while evaluating the impact of choosing specific values for selected parameters.The model follows a two-compartment structure (vascular and interstitial space and is based on balance equations of protein mass and water volume in each compartment. The capillary membrane was described according to the three-pore theory. Two transport parameters, the fractional contribution of large pores (αLP and the total hydraulic conductivity (LpS of the capillary membrane, were estimated from patient data. Changes in the intensity and direction of individual fluid and solute flows through each part of the transport system were analyzed in relation to the choice of different values of small pores radius and fractional conductivity, lymphatic sensitivity to hydraulic pressure, and steady-state interstitial-to-plasma protein concentration ratio.The estimated values of LpS and αLP were respectively 10.0 ± 8.4 mL/min/mmHg (mean ± standard deviation and 0.062 ± 0.041. The model was able to predict with good accuracy the profiles of plasma volume and serum total protein concentration in most of the patients (average root-mean-square deviation < 2% of the measured value.The applied model provides a mechanistic interpretation of fluid transport processes induced by ultrafiltration during HD, using a minimum of tuned parameters and assumptions. The simulated values of individual flows through each kind of pore and lymphatic absorption rate yielded by the model may suggest answers to unsolved questions on the relative impact of these not-measurable quantities on total vascular refilling and fluid balance.

  2. Osmotic generation of 'anomalous' fluid pressures in geological environments

    Science.gov (United States)

    Neuzii, C.E.

    2000-01-01

    Osmotic pressures are generated by differences in chemical potential of a solution across a membrane. But whether osmosis can have a significant effect on the pressure of fluids in geological environments has been controversial, because the membrane properties of geological media are poorly understood. 'Anomalous' pressures - large departures from hydrostatic pressure that are not explicable in terms of topographic or fluid-density effects are widely found in geological settings, and are commonly considered to result from processes that alter the pore or fluid volume, which in turn implies crustal changes happening at a rate too slow to observe directly. Yet if osmosis can explain some anomalies, there is no need to invoke such dynamic geological processes in those cases. Here I report results of a nine- year in situ measurement of fluid pressures and solute concentrations in shale that are consistent with the generation of large (up to 20 MPa) osmotic-pressure anomalies which could persist for tens of millions of years. Osmotic pressures of this magnitude and duration can explain many of the pressure anomalies observed in geological settings. The require, however, small shale porosity and large contrasts in the amount of dissolved solids in the pore waters - criteria that may help to distinguish between osmotic and crystal-dynamic origins of anomalous pressures.

  3. 3-D pore-scale resolved model for coupled species/charge/fluid transport in a vanadium redox flow battery

    International Nuclear Information System (INIS)

    Qiu Gang; Joshi, Abhijit S.; Dennison, C.R.; Knehr, K.W.; Kumbur, E.C.; Sun Ying

    2012-01-01

    The vanadium redox flow battery (VRFB) has emerged as a viable grid-scale energy storage technology that offers cost-effective energy storage solutions for renewable energy applications. In this paper, a novel methodology is introduced for modeling of the transport mechanisms of electrolyte flow, species and charge in the VRFB at the pore scale of the electrodes; that is, at the level where individual carbon fiber geometry and electrolyte flow are directly resolved. The detailed geometry of the electrode is obtained using X-ray computed tomography (XCT) and calibrated against experimentally determined pore-scale characteristics (e.g., pore and fiber diameter, porosity, and surface area). The processed XCT data is then used as geometry input for modeling of the electrochemical processes in the VRFB. The flow of electrolyte through the pore space is modeled using the lattice Boltzmann method (LBM) while the finite volume method (FVM) is used to solve the coupled species and charge transport and predict the performance of the VRFB under various conditions. An electrochemical model using the Butler–Volmer equations is used to provide species and charge coupling at the surfaces of the carbon fibers. Results are obtained for the cell potential distribution, as well as local concentration, overpotential and current density profiles under galvanostatic discharge conditions. The cell performance is investigated as a function of the electrolyte flow rate and external drawing current. The model developed here provides a useful tool for building the structure–property–performance relationship of VRFB electrodes.

  4. Cyclic deformation-induced solute transport in tissue scaffolds with computer designed, interconnected, pore networks: experiments and simulations.

    Science.gov (United States)

    Den Buijs, Jorn Op; Dragomir-Daescu, Dan; Ritman, Erik L

    2009-08-01

    Nutrient supply and waste removal in porous tissue engineering scaffolds decrease from the periphery to the center, leading to limited depth of ingrowth of new tissue into the scaffold. However, as many tissues experience cyclic physiological strains, this may provide a mechanism to enhance solute transport in vivo before vascularization of the scaffold. The hypothesis of this study was that pore cross-sectional geometry and interconnectivity are of major importance for the effectiveness of cyclic deformation-induced solute transport. Transparent elastic polyurethane scaffolds, with computer-programmed design of pore networks in the form of interconnected channels, were fabricated using a 3D printing and injection molding technique. The scaffold pores were loaded with a colored tracer for optical contrast, cyclically compressed with deformations of 10 and 15% of the original undeformed height at 1.0 Hz. Digital imaging was used to quantify the spatial distribution of the tracer concentration within the pores. Numerical simulations of a fluid-structure interaction model of deformation-induced solute transport were compared to the experimental data. The results of experiments and modeling agreed well and showed that pore interconnectivity heavily influences deformation-induced solute transport. Pore cross-sectional geometry appears to be of less relative importance in interconnected pore networks. Validated computer models of solute transport can be used to design optimal scaffold pore geometries that will enhance the convective transport of nutrients inside the scaffold and the removal of waste, thus improving the cell survivability deep inside the scaffold.

  5. Estimating multi-phase pore-scale characteristics from X-ray tomographic data using cluster analysis-based segmentation

    DEFF Research Database (Denmark)

    Wildenschild, D.; Culligan, K.A.; Christensen, Britt Stenhøj Baun

    2006-01-01

    present in grey-scale X-ray tomographic images. The approach is based on a cluster analysis technique, used in combination with various other filtering and skeletonization schemes. We apply this segmentation algorithm to analyze multiphase pore-scale flow subjects such as hysteresis and interfacial...... characterization. The results clearly illustrate the advantage of using X-ray tomography together with cluster analysis-based image processing techniques. We were able to obtain detailed information on pore scale distribution of air and water phases, as well as quantitative measures of air bubble size and air...... of individual pores and interfaces. However, separation of the various phases (fluids and solids) in the grey-scale tomographic images has posed a major problem to quantitative analysis of the data. We present an image processing technique that facilitates identification and separation of the various phases...

  6. Mechanics of layered anisotropic poroelastic media with applications to effective stress for fluid permeability

    Energy Technology Data Exchange (ETDEWEB)

    Berryman, J.G.

    2010-06-01

    The mechanics of vertically layered porous media has some similarities to and some differences from the more typical layered analysis for purely elastic media. Assuming welded solid contact at the solid-solid interfaces implies the usual continuity conditions, which are continuity of the vertical (layering direction) stress components and the horizontal strain components. These conditions are valid for both elastic and poroelastic media. Differences arise through the conditions for the pore pressure and the increment of fluid content in the context of fluid-saturated porous media. The two distinct conditions most often considered between any pair of contiguous layers are: (1) an undrained fluid condition at the interface, meaning that the increment of fluid content is zero (i.e., {delta}{zeta} = 0), or (2) fluid pressure continuity at the interface, implying that the change in fluid pressure is zero across the interface (i.e., {delta}p{sub f} = 0). Depending on the types of measurements being made on the system and the pertinent boundary conditions for these measurements, either (or neither) of these two conditions might be directly pertinent. But these conditions are sufficient nevertheless to be used as thought experiments to determine the expected values of all the poroelastic coefficients. For quasi-static mechanical changes over long time periods, we expect drained conditions to hold, so the pressure must then be continuous. For high frequency wave propagation, the pore-fluid typically acts as if it were undrained (or very nearly so), with vanishing of the fluid increment at the boundaries being appropriate. Poroelastic analysis of both these end-member cases is discussed, and the general equations for a variety of applications to heterogeneous porous media are developed. In particular, effective stress for the fluid permeability of such poroelastic systems is considered; fluid permeabilities characteristic of granular media or tubular pore shapes are treated

  7. Pore-Scale Investigation of Micron-Size Polyacrylamide Elastic Microspheres (MPEMs) Transport and Retention in Saturated Porous Media

    KAUST Repository

    Yao, Chuanjin

    2014-05-06

    Knowledge of micrometer-size polyacrylamide elastic microsphere (MPEM) transport and retention mechanisms in porous media is essential for the application of MPEMs as a smart sweep improvement and profile modification agent in improving oil recovery. A transparent micromodel packed with translucent quartz sand was constructed and used to investigate the pore-scale transport, surface deposition-release, and plugging deposition-remigration mechanisms of MPEMs in porous media. The results indicate that the combination of colloidal and hydrodynamic forces controls the deposition and release of MPEMs on pore-surfaces; the reduction of fluid salinity and the increase of Darcy velocity are beneficial to the MPEM release from pore-surfaces; the hydrodynamic forces also influence the remigration of MPEMs in pore-throats. MPEMs can plug pore-throats through the mechanisms of capture-plugging, superposition-plugging, and bridge-plugging, which produces resistance to water flow; the interception with MPEM particulate filters occurring in the interior of porous media can enhance the plugging effect of MPEMs; while the interception with MPEM particulate filters occurring at the surface of low-permeability layer can prevent the low-permeability layer from being damaged by MPEMs. MPEMs can remigrate in pore-throats depending on their elasticity through four steps of capture-plugging, elastic deformation, steady migration, and deformation recovery. © 2014 American Chemical Society.

  8. Ordering transitions of weakly anisotropic hard rods in narrow slitlike pores.

    Science.gov (United States)

    Aliabadi, Roohollah; Gurin, Péter; Velasco, Enrique; Varga, Szabolcs

    2018-01-01

    The effect of strong confinement on the positional and orientational ordering is examined in a system of hard rectangular rods with length L and diameter D (L>D) using the Parsons-Lee modification of the second virial density-functional theory. The rods are nonmesogenic (L/Dlayers is allowed to form in the pore. In the extreme confinement limit of H≤2D, where only one-layer structures appear, we observe a structural transition from a planar to a homeotropic fluid layer with increasing density, which becomes sharper as L→H. In wider pores (2Dlayers, homeotropic order, and even combined bilayer structures (one layer is homeotropic, while the other is planar) can be stabilized at high densities. Moreover, first-order phase transitions can be seen between different structures. One of them emerges between a monolayer and a bilayer with planar orders at relatively low packing fractions.

  9. Numerical Modeling of Porous Structure of Biomaterial and Fluid Flowing Through Biomaterial

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    A Cellular Automata model of simulating body fluid flowing into porous bioceramic implants generated with stochastic methods is described, of which main parameters and evolvement rule are determined in terms of flow behavior of body fluid in porous biomaterials. The model is implemented by GUI( Graphical User Interface) program in MATLAB, and the results of numerical modeling show that the body fluid percolation is related to the size of pores and porosity.

  10. Scaling of two-phase flow transients using reduced pressure system and simulant fluid

    International Nuclear Information System (INIS)

    Kocamustafaogullari, G.; Ishii, M.

    1987-01-01

    Scaling criteria for a natural circulation loop under single-phase flow conditions are derived. Based on these criteria, practical applications for designing a scaled-down model are considered. Particular emphasis is placed on scaling a test model at reduced pressure levels compared to a prototype and on fluid-to-fluid scaling. The large number of similarty groups which are to be matched between modell and prototype makes the design of a scale model a challenging tasks. The present study demonstrates a new approach to this clasical problen using two-phase flow scaling parameters. It indicates that a real time scaling is not a practical solution and a scaled-down model should have an accelerated (shortened) time scale. An important result is the proposed new scaling methodology for simulating pressure transients. It is obtained by considerung the changes of the fluid property groups which appear within the two-phase similarity parameters and the single-phase to two-phase flow transition prameters. Sample calculations are performed for modeling two-phase flow transients of a high pressure water system by a low-pressure water system or a Freon system. It is shown that modeling is possible for both cases for simulation pressure transients. However, simulation of phase change transitions is not possible by a reduced pressure water system without distortion in either power or time. (orig.)

  11. Can pore-clogging by ash explain post-fire runoff?

    Science.gov (United States)

    Stoof, Cathelijne R.; Gevaert, Anouk I.; Baver, Christine; Hassanpour, Bahareh; Morales, Veronica L.; Zhang, Wei; Martin, Deborah; Giri, Shree K.; Steenhuis, Tammo S.

    2016-01-01

    Ash plays an important role in controlling runoff and erosion processes after wildfire and has frequently been hypothesised to clog soil pores and reduce infiltration. Yet evidence for clogging is incomplete, as research has focussed on identifying the presence of ash in soil; the actual flow processes remain unknown. We conducted laboratory infiltration experiments coupled with microscope observations in pure sands, saturated hydraulic conductivity analysis, and interaction energy calculations, to test whether ash can clog pores (i.e. block pores such that infiltration is hampered and ponding occurs). Although results confirmed previous observations of ash washing into pores, clogging was not observed in the pure sands tested, nor were conditions found for which this does occur. Clogging by means of strong attachment of ash to sand was deemed unlikely given the negative surface charge of the two materials. Ponding due to washing in of ash was also considered improbable given the high saturated conductivity of pure ash and ash–sand mixtures. This first mechanistic step towards analysing ash transport and attachment processes in field soils therefore suggests that pore clogging by ash is unlikely to occur in sands. Discussion is provided on other mechanisms by which ash can affect post-fire hydrology.

  12. Episodic tremor and slip explained by fluid-enhanced microfracturing and sealing

    Science.gov (United States)

    Bernaudin, M.; Gueydan, F.

    2017-12-01

    A combination of non-volcanic tremor and transient slow slip events behaviors is commonly observed at plate interface, between locked/seismogenic zone at low depths and stable/ductile creep zone at larger depths. This association defines Episodic Tremor and Slip, systematically highlighted by over-pressurized fluids and near failure shear stress conditions. Here we propose a new mechanical approach that provides for the first time a mechanical and field-based explanation of the observed association between non-volcanic tremor and slow slip events. In contrast with more classical rate-and-state models, this physical model uses a ductile rheology with grain size sensitivity, fluid-driven microfracturing and sealing (e.g. grain size reduction and grain growth) and related pore fluid pressure fluctuations. We reproduce slow slip events by transient ductile strain localization as a result of fluid-enhanced microfracturing and sealing. Moreover, occurrence of macrofracturing during transient strain localization and local increase in pore fluid pressure well simulate non-volcanic tremor. Our model provides therefore a field-based explanation of episodic tremor and slip and moreover predicts the depth and temperature ranges of their occurrence in subduction zones. It implies furthermore that non-volcanic tremor and slow slip events are physically related.

  13. Active pore space utilization in nanoporous carbon-based supercapacitors: Effects of conductivity and pore accessibility

    Science.gov (United States)

    Seredych, Mykola; Koscinski, Mikolaj; Sliwinska-Bartkowiak, Malgorzata; Bandosz, Teresa J.

    2012-12-01

    Composites of commercial graphene and nanoporous sodium-salt-polymer-derived carbons were prepared with 5 or 20 weight% graphene. The materials were characterized using the adsorption of nitrogen, SEM/EDX, thermal analysis, Raman spectroscopy and potentiometric titration. The samples' conductivity was also measured. The performance of the carbon composites in energy storage was linked to their porosity and electronic conductivity. The small pores (<0.7) were found as very active for double layer capacitance. It was demonstrated that when double layer capacitance is a predominant mechanism of charge storage, the degree of the pore space utilization for that storage can be increased by increasing the conductivity of the carbons. That active pore space utilization is defined as gravimetric capacitance per unit pore volume in pores smaller than 0.7 nm. Its magnitude is affected by conductivity of the carbon materials. The functional groups, besides pseudocapacitive contribution, increased the wettability and thus the degree of the pore space utilization. Graphene phase, owing to its conductivity, also took part in an insitu increase of the small pore accessibility and thus the capacitance of the composites via enhancing an electron transfer to small pores and thus imposing the reduction of groups blocking the pores for electrolyte ions.

  14. Comparison of Pore-scale CO2-water-glass System Wettability and Conventional Wettability Measurement on a Flat Plate for Geological CO2 Sequestration

    Science.gov (United States)

    Jafari, M.; Cao, S. C.; Jung, J.

    2017-12-01

    Goelogical CO2 sequestration (GCS) has been recently introduced as an effective method to mitigate carbon dioxide emission. CO2 from main producer sources is collected and then is injected underground formations layers to be stored for thousands to millions years. A safe and economical storage project depends on having an insight of trapping mechanisms, fluids dynamics, and interaction of fluids-rocks. Among different forces governing fluids mobility and distribution in GCS condition, capillary pressure is of importance, which, in turn, wettability (measured by contact angel (CA)) is the most controversial parameters affecting it. To explore the sources of discrepancy in the literature for CA measurement, we conducted a series of conventional captive bubble test on glass plates under high pressure condition. By introducing a shape factor, we concluded that surface imperfection can distort the results in such tests. Since the conventional methods of measuring the CA is affected by gravity and scale effect, we introduced a different technique to measure pore-scale CA inside a transparent glass microchip. Our method has the ability to consider pore sizes and simulate static and dynamics CA during dewetting and imbibition. Glass plates shows a water-wet behavior (CA 30° - 45°) by a conventional experiment consistent with literature. However, CA of miniature bubbles inside of the micromodel can have a weaker water-wet behavior (CA 55° - 69°). In a more realistic pore-scale condition, water- CO2 interface covers whole width of a pore throats. Under this condition, the receding CA, which is used for injectability and capillary breakthrough pressure, increases with decreasing pores size. On the other hand, advancing CA, which is important for residual or capillary trapping, does not show a correlation with throat sizes. Static CA measured in the pores during dewetting is lower than static CA on flat plate, but it is much higher when measured during imbibition implying

  15. The effect of pore-scale geometry and wettability on two-phase relative permeabilities within elementary cells

    Science.gov (United States)

    Bianchi Janetti, Emanuela; Riva, Monica; Guadagnini, Alberto

    2017-04-01

    We study the relative role of the complex pore space geometry and wettability of the solid matrix on the quantification of relative permeabilities characterizing steady state immiscible two-phase flow in porous media. We do so by considering elementary cells, which are typically employed in upscaling frameworks based on, e.g., homogenization or volume averaging. In this context one typically relies on the solution of pore-scale physics at a scale which is much smaller than that of an investigated porous system. Pressure-driven two-phase flow following simultaneous co-current injection of water and oil is numerically solved for a suite of regular and stochastically generated two-dimensional explicit elementary cells with fixed porosity and sharing main topological/morphological features. We show that relative permeabilities of the randomly generated elementary cells are significantly influenced by the formation of preferential percolation paths (principal pathways), giving rise to a strongly nonuniform distribution of fluid fluxes. These pathways are a result of the spatially variable resistance that the random pore structures exert on the fluid. The overall effect on relative permeabilities of the diverse organization of principal pathways, as driven by a given random realization at the scale of the unit cell, is significantly larger than that of the wettability of the host rock. In contrast to what can be observed for the random cells analyzed, relative permeabilities of regular cells display a clear trend with contact angle at the investigated scale. Our findings suggest the need to perform systematic upscaling studies in a stochastic context, to propagate the effects of uncertain pore space geometries to a probabilistic description of relative permeability curves at the continuum scale.

  16. A pore water study of plutonium in a seasonally anoxic lake

    International Nuclear Information System (INIS)

    Buesseler, K.O.; Benoit, G.; Sholkovitz, E.R.

    1985-01-01

    Data are presented on the distribution of sup(239,240)Pu in the pore waters of two cores taken from a seasonally anoxic lake. The pore water sup(239,240)Pu profile exhibits a subsurface activity maximum of 230 +- 30 μBq kg -1 in the 3-6 cm interval in June, as compared to an activity of 5 +- 3 μBq kg -1 in the overlying water. The pore water sup(239,240)Pu profile in June follows the solid phase distribution pattern of sup(239,240)Pu and also the pore water distributions of Fe and Mn. Under more reducing conditions in August, pore water sup(239,240)Pu activities drop off to undetectable levels at all depths. This rapid change in the pore water sup(239,240)Pu activity reflects the dynamic nature of Pu diagenesis in these sediments. Potential diffusional fluxes of sup(239,240)Pu into the lake's hypolimnion in June are calculated to be on the order of 2.5 μBq cm -2 y -1 . This flux would not be significant in altering the solid phase sup(239,240)Pu inventory (2.8 x 10 4 μBq cm -2 ). (author)

  17. Optimal Pile Arrangement for Minimizing Excess Pore Water Pressure Build-Up

    DEFF Research Database (Denmark)

    Barari, Amin; Saadati, Meysam; Ibsen, Lars Bo

    2013-01-01

    Numerical analysis of pile group in a liquefiable soil was considered to investigate the influence of pile spacing on excess pore pressure distribution and liquefaction potential. The analysis is conducted using a two-dimensional plain strain finite difference program considering a nonlinear...... constitutive model for sandy soil, strength and stiffness reduction, and pile-soil interaction. The Mohr-Coulomb constitutive model coupled with Byrne pore pressure build-up model have been employed in the analysis. Numerical analysis results show that pile groups have significant influence on the dynamic...... response of sandy soil as they reduce the amount of excess pore pressure development during seismic shaking and may even prevent liquefaction....

  18. Effect of deformability on fluid flow through a fractured-porous medium

    International Nuclear Information System (INIS)

    Tsang, C.F.; Noorishad, J.; Witherspoon, P.A.

    1985-01-01

    A permeable geologic medium containing interstitial fluids generally undergoes deformation as the fluid pressure changes. Depending on the nature of the medium, the strain ranges from infinitesimal to finite quantities. This response is the result of a coupled hydraulic-mechanical phenomenon which can basically be formulated in the generalized three-dimensional theory of consolidation. Dealing mainly with media of little deformability, traditional hydrogeology accounts for medium deformability as far as it affects the volume of pore spaces, through the introduction of a coefficient of specific storage in the fluid flow equation. This treatment can be justified on the basis of a one-dimensional effective stress law and the assumption of homogeneity of the total stress field throughout the medium. The present paper uses a numerical model called ROCMAS (Noorishad et al., 1982; Noorishad e al., 1984) which was developed to calculate fluid flow through a deformable fractured-porous medium. The code employs the Finite Element Method based on a variational approach. It has been verified against a number of simple analytic solutions. In this work, the code is used to address the role of medium deformability in continuous and pulse testing techniques. The errors that may result because of application of traditional fluid flow methods are discussed. It is found that low pressure continuous well testing or pulse testing procedures can reduce such errors. 16 references, 9 figures, 1 table

  19. Pore-size distribution and compressibility of coarse sandy subsoil with added biochar

    DEFF Research Database (Denmark)

    Petersen, C. T.; Hansen, E.; Larsen, H. H.

    2016-01-01

    Sustainable agricultural production on coarse sandy soil is constrained by the restricted growth of roots, and poor water and nutrient retention. Amending the soil with biochar can reduce these problems, but the processes involved are not known in detail. We investigated in the laboratory...... the effects of two fine-grained gasification biochars made of straw (LTST) and other materials (LTSN) and of one fast pyrolysis straw biochar (FPST) on pore-size distribution and soil compressibility when added to coarse sandy subsoil. Water retention and therefore pore-size distribution were affected...... systematically. All biochars converted drainable pore space with pore diameters in the range 60–300 µm into water-retaining pores of size 0.2–60 µm, which was taken as an estimate of available water capacity (AWC). Effects were linear over the whole range of biochar (0–4% by mass). The effect of LTST and LTSN...

  20. Mathematical modeling of deformation of a porous medium, considering its strengthening due to pore collapse

    Energy Technology Data Exchange (ETDEWEB)

    Sadovskii, V. M., E-mail: sadov@icm.krasn.ru; Sadovskaya, O. V., E-mail: o-sadov@icm.krasn.ru [Institute of Computational Modeling, SB RAS, Akademgorodok 50/44, 660036 Krasnoyarsk (Russian Federation)

    2015-10-28

    Based on the generalized rheological method, the mathematical model describing small deformations of a single-phase porous medium without regard to the effects of a fluid or gas in pores is constructed. The change in resistance of a material to the external mechanical impacts at the moment of pore collapse is taken into account by means of the von Mises–Schleicher strength condition. In order to consider irreversible deformations, alongside with the classical yield conditions by von Mises and Tresca– Saint-Venant, the special condition modeling the plastic loss of stability of a porous skeleton is used. The random nature of the pore size distribution is taken into account. It is shown that the proposed mathematical model satisfies the principles of thermodynamics of irreversible processes. Phenomenological parameters of the model are determined on the basis of the approximate calculation of the problem on quasi-static loading of a cubic periodicity cell with spherical voids. In the framework of the obtained model, the process of propagation of plane longitudinal waves of the compression in a homogenous porous medium, accompanied by the plastic deformation of a skeleton and the collapse of pores, is analyzed.

  1. High Fidelity Computational Analysis of CO2 Trapping at Pore Scales

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Vinod

    2013-07-13

    With an alarming rise in carbon dioxide (CO2) emission from anthropogenic sources, CO2 sequestration has become an attractive choice to mitigate the emission. Some popular storage media for CO{sub 2} are oil reservoirs, deep coal-bed, and deep oceanic-beds. These have been used for the long term CO{sub 2} storage. Due to special lowering viscosity and surface tension property of CO{sub 2}, it has been widely used for enhanced oil recovery. The sites for CO{sub 2} sequestration or enhanced oil recovery mostly consist of porous rocks. Lack of knowledge of molecular mobility under confinement and molecule-surface interactions between CO2 and natural porous media results in generally governed by unpredictable absorption kinetics and total absorption capacity for injected fluids, and therefore, constitutes barriers to the deployment of this technology. Therefore, it is important to understand the flow dynamics of CO{sub 2} through the porous microstructures at the finest scale (pore-scale) to accurately predict the storage potential and long-term dynamics of the sequestered CO{sub 2}. This report discusses about pore-network flow modeling approach using variational method and analyzes simulated results this method simulations at pore-scales for idealized network and using Berea Sandstone CT scanned images. Variational method provides a promising way to study the kinetic behavior and storage potential at the pore scale in the presence of other phases. The current study validates variational solutions for single and two-phase Newtonian and single phase non-Newtonian flow through angular pores for special geometries whose analytical and/or empirical solutions are known. The hydraulic conductance for single phase flow through a triangular duct was also validated against empirical results derived from lubricant theory.

  2. Reduced-Order Direct Numerical Simulation of Solute Transport in Porous Media

    Science.gov (United States)

    Mehmani, Yashar; Tchelepi, Hamdi

    2017-11-01

    Pore-scale models are an important tool for analyzing fluid dynamics in porous materials (e.g., rocks, soils, fuel cells). Current direct numerical simulation (DNS) techniques, while very accurate, are computationally prohibitive for sample sizes that are statistically representative of the porous structure. Reduced-order approaches such as pore-network models (PNM) aim to approximate the pore-space geometry and physics to remedy this problem. Predictions from current techniques, however, have not always been successful. This work focuses on single-phase transport of a passive solute under advection-dominated regimes and delineates the minimum set of approximations that consistently produce accurate PNM predictions. Novel network extraction (discretization) and particle simulation techniques are developed and compared to high-fidelity DNS simulations for a wide range of micromodel heterogeneities and a single sphere pack. Moreover, common modeling assumptions in the literature are analyzed and shown that they can lead to first-order errors under advection-dominated regimes. This work has implications for optimizing material design and operations in manufactured (electrodes) and natural (rocks) porous media pertaining to energy systems. This work was supported by the Stanford University Petroleum Research Institute for Reservoir Simulation (SUPRI-B).

  3. Antera 3D capabilities for pore measurements.

    Science.gov (United States)

    Messaraa, C; Metois, A; Walsh, M; Flynn, J; Doyle, L; Robertson, N; Mansfield, A; O'Connor, C; Mavon, A

    2018-04-29

    The cause of enlarged pores remains obscure but still remains of concern for women. To complement subjective methods, bioengineered methods are needed for quantification of pores visibility following treatments. The study objective was to demonstrate the suitability of pore measurements from the Antera 3D. Pore measurements were collected on 22 female volunteers aged 18-65 years with the Antera 3D, the DermaTOP and image analysis on photographs. Additionally, 4 raters graded pore size on photographs on a scale 0-5. Repeatability of Antera 3D parameters was ascertained and the benefit of a pore minimizer product on the cheek was assessed on a sub panel of seven female volunteers. Pore parameters using the Antera were shown to depict pore severity similar to raters on photographs, except for Max Depth. Mean pore volume, mean pore area and count were moderately correlated with DermaTOP parameters (up to r = .50). No relationship was seen between the Antera 3D and pore visibility analysis on photographs. The most repeatable parameters were found to be mean pore volume, mean pore area and max depth, especially for the small and medium filters. The benefits of a pore minimizer product were the most striking for mean pore volume and mean pore area when using the small filter for analysis, rather than the medium/large ones. Pore measurements with the Antera 3D represent a reliable tool for efficacy and field studies, with an emphasis of the small filter for analysis for the mean pore volume/mean pore area parameters. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Beyond the single-file fluid limit using transfer matrix method: Exact results for confined parallel hard squares

    International Nuclear Information System (INIS)

    Gurin, Péter; Varga, Szabolcs

    2015-01-01

    We extend the transfer matrix method of one-dimensional hard core fluids placed between confining walls for that case where the particles can pass each other and at most two layers can form. We derive an eigenvalue equation for a quasi-one-dimensional system of hard squares confined between two parallel walls, where the pore width is between σ and 3σ (σ is the side length of the square). The exact equation of state and the nearest neighbor distribution functions show three different structures: a fluid phase with one layer, a fluid phase with two layers, and a solid-like structure where the fluid layers are strongly correlated. The structural transition between differently ordered fluids develops continuously with increasing density, i.e., no thermodynamic phase transition occurs. The high density structure of the system consists of clusters with two layers which are broken with particles staying in the middle of the pore

  5. Earthworm-Derived Pore-Forming Toxin Lysenin and Screening of Its Inhibitors

    Directory of Open Access Journals (Sweden)

    Neelanun Sukumwang

    2013-08-01

    Full Text Available Lysenin is a pore-forming toxin from the coelomic fluid of earthworm Eisenia foetida. This protein specifically binds to sphingomyelin and induces erythrocyte lysis. Lysenin consists of 297 amino acids with a molecular weight of 41 kDa. We screened for cellular signal transduction inhibitors of low molecular weight from microorganisms and plants. The purpose of the screening was to study the mechanism of diseases using the obtained inhibitors and to develop new chemotherapeutic agents acting in the new mechanism. Therefore, our aim was to screen for inhibitors of Lysenin-induced hemolysis from plant extracts and microbial culture filtrates. As a result, we isolated all-E-lutein from an extract of Dalbergia latifolia leaves. All-E-lutein is likely to inhibit the process of Lysenin-membrane binding and/or oligomer formation rather than pore formation. Additionally, we isolated tyrosylproline anhydride from the culture filtrate of Streptomyces as an inhibitor of Lysenin-induced hemolysis.

  6. Electroosmotic pore transport in human skin.

    Science.gov (United States)

    Uitto, Olivia D; White, Henry S

    2003-04-01

    To determine the pathways and origin of electroosmotic flow in human skin. Iontophoretic transport of acetaminophen in full thickness human cadaver skin was visualized and quantified by scanning electrochemical microscopy. Electroosmotic flow in the shunt pathways of full thickness skin was compared to flow in the pores of excised stratum corneum and a synthetic membrane pore. The penetration of rhodamine 6G into pore structures was investigated by laser scanning confocal microscopy. Electroosmotic transport is observed in shunt pathways in full thickness human skin (e.g., hair follicles and sweat glands), but not in pore openings of freestanding stratum corneum. Absolute values of the diffusive and iontophoretic pore fluxes of acetaminophen in full thickness human skin are also reported. Rhodamine 6G is observed to penetrate to significant depths (approximately 200 microm) along pore pathways. Iontophoresis in human cadaver skin induces localized electroosmotic flow along pore shunt paths. Electroosmotic forces arise from the passage of current through negatively charged mesoor nanoscale pores (e.g., gap functions) within cellular regions that define the pore structure beneath the stratum corneum.

  7. Seismic properties of fluid bearing formations in magmatic geothermal systems: can we directly detect geothermal activity with seismic methods?

    Science.gov (United States)

    Grab, Melchior; Scott, Samuel; Quintal, Beatriz; Caspari, Eva; Maurer, Hansruedi; Greenhalgh, Stewart

    2016-04-01

    Seismic methods are amongst the most common techniques to explore the earth's subsurface. Seismic properties such as velocities, impedance contrasts and attenuation enable the characterization of the rocks in a geothermal system. The most important goal of geothermal exploration, however, is to describe the enthalpy state of the pore fluids, which act as the main transport medium for the geothermal heat, and to detect permeable structures such as fracture networks, which control the movement of these pore fluids in the subsurface. Since the quantities measured with seismic methods are only indirectly related with the fluid state and the rock permeability, the interpretation of seismic datasets is difficult and usually delivers ambiguous results. To help overcome this problem, we use a numerical modeling tool that quantifies the seismic properties of fractured rock formations that are typically found in magmatic geothermal systems. We incorporate the physics of the pore fluids, ranging from the liquid to the boiling and ultimately vapor state. Furthermore, we consider the hydromechanics of permeable structures at different scales from small cooling joints to large caldera faults as are known to be present in volcanic systems. Our modeling techniques simulate oscillatory compressibility and shear tests and yield the P- and S-wave velocities and attenuation factors of fluid saturated fractured rock volumes. To apply this modeling technique to realistic scenarios, numerous input parameters need to be indentified. The properties of the rock matrix and individual fractures were derived from extensive literature research including a large number of laboratory-based studies. The geometries of fracture networks were provided by structural geologists from their published studies of outcrops. Finally, the physical properties of the pore fluid, ranging from those at ambient pressures and temperatures up to the supercritical conditions, were taken from the fluid physics

  8. Optimization of hybrid laser arc welding of 42CrMo steel to suppress pore formation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yan [Hunan University, State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Changsha (China); Hunan Institute of Science and Technology, College of Mechanical Engineering, Yueyang (China); Chen, Genyu; Mao, Shuai; Zhou, Cong; Chen, Fei [Hunan University, State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Changsha (China)

    2017-06-15

    The hybrid laser arc welding (HLAW) of 42CrMo quenched and tempered steel was conducted. The effect of the processing parameters, such as the relative positions of the laser and the arc, the shielding gas flow rate, the defocusing distance, the laser power, the wire feed rate and the welding speed, on the pore formation was analyzed, the morphological characteristics of the pores were analyzed using scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The results showed that the majority of the pores were invasive. The pores formed at the leading a laser (LA) welding process were fewer than those at the leading a arc (AL) welding process. Increasing the shielding gas flow rate could also facilitate the reduction of pores. The laser power and the welding speed were two key process parameters to reduce the pores. The flow of the molten pool, the weld cooling rate and the pore escaping rate as a result of different parameters could all affect pore formation. An ideal pore-free weld was obtained for the optimal welding process parameters. (orig.)

  9. Laboratory characterization of shale pores

    Science.gov (United States)

    Nur Listiyowati, Lina

    2018-02-01

    To estimate the potential of shale gas reservoir, one needs to understand the characteristics of pore structures. Characterization of shale gas reservoir microstructure is still a challenge due to ultra-fine grained micro-fabric and micro level heterogeneity of these sedimentary rocks. The sample used in the analysis is a small portion of any reservoir. Thus, each measurement technique has a different result. It raises the question which methods are suitable for characterizing pore shale. The goal of this paper is to summarize some of the microstructure analysis tools of shale rock to get near-real results. The two analyzing pore structure methods are indirect measurement (MIP, He, NMR, LTNA) and direct observation (SEM, TEM, Xray CT). Shale rocks have a high heterogeneity; thus, it needs multiscale quantification techniques to understand their pore structures. To describe the complex pore system of shale, several measurement techniques are needed to characterize the surface area and pore size distribution (LTNA, MIP), shapes, size and distribution of pore (FIB-SEM, TEM, Xray CT), and total porosity (He pycnometer, NMR). The choice of techniques and methods should take into account the purpose of the analysis and also the time and budget.

  10. Facial Pores: Definition, Causes, and Treatment Options.

    Science.gov (United States)

    Lee, Sang Ju; Seok, Joon; Jeong, Se Yeong; Park, Kui Young; Li, Kapsok; Seo, Seong Jun

    2016-03-01

    Enlarged skin pores refer to conditions that present with visible topographic changes of skin surfaces. Although not a medical concern, enlarged pores are a cosmetic concern for a large number of individuals. Moreover, clear definition and possible causes of enlarged pores have not been elucidated. To review the possible causes and treatment options for skin pores. This article is based on a review of the medical literature and the authors' clinical experience in investigating and treating skin pores. There are 3 major clinical causes of enlarged facial pores, namely high sebum excretion, decreased elasticity around pores, and increased hair follicle volume. In addition, chronic recurrent acne, sex hormones, and skin care regimen can affect pore size. Given the different possible causes for enlarged pores, therapeutic modalities must be individualized for each patient. Potential factors that contribute to enlarged skin pores include excessive sebum, decreased elasticity around pores, and increased hair follicle volume. Because various factors cause enlarged facial pores, it might be useful to identify the underlying causes to be able to select the appropriate treatment.

  11. Geochemistry of mud volcano fluids in the Taiwan accretionary prism

    International Nuclear Information System (INIS)

    You Chenfeng; Gieskes, Joris M.; Lee, Typhoon; Yui Tzenfu; Chen Hsinwen

    2004-01-01

    Taiwan is located at the collision boundary between the Philippine Sea Plate and the Asian Continental Plate and is one of the most active orogenic belts in the world. Fluids sampled from 9 sub-aerial mud volcanoes distributed along two major geological structures in southwestern Taiwan, the Chishan fault and the Gutingkeng anticline, were analyzed to evaluate possible sources of water and the degree of fluid-sediment interaction at depth in an accretionary prism. Overall, the Taiwanese mud volcano fluids are characterized by high Cl contents, up to 347 mM, suggesting a marine origin from actively de-watering sedimentary pore waters along major structures on land. The fluids obtained from the Gutingkeng anticline, as well as from the Coastal Plain area, show high Cl, Na, K, Ca, Mg and NH 4 , but low SO 4 and B concentrations. In contrast, the Chishan fault fluids are much less saline (1/4 seawater value), but show much heavier O isotope compositions (δ 18 O=5.1-6.5 %o). A simplified scenario of mixing between sedimentary pore fluids and waters affected by clay dehydration released at depth can explain several crucial observations including heavy O isotopes, radiogenic Sr contents ( 87 Sr/ 86 Sr=0.71136-0.71283), and relatively low salinities in the Chishan fluids. Gases isolated from the mud volcanoes are predominantly CH 4 and CO 2 , where the CH 4 -C isotopic compositions show a thermogenic component of δ 13 C=-38 %o. These results demonstrate that active mud volcano de-watering in Taiwan is a direct product of intense sediment accretion and plate collision in the region

  12. Percolation properties of 3-D multiscale pore networks: how connectivity controls soil filtration processes

    Science.gov (United States)

    Perrier, E. M. A.; Bird, N. R. A.; Rieutord, T. B.

    2010-10-01

    Quantifying the connectivity of pore networks is a key issue not only for modelling fluid flow and solute transport in porous media but also for assessing the ability of soil ecosystems to filter bacteria, viruses and any type of living microorganisms as well inert particles which pose a contamination risk. Straining is the main mechanical component of filtration processes: it is due to size effects, when a given soil retains a conveyed entity larger than the pores through which it is attempting to pass. We postulate that the range of sizes of entities which can be trapped inside soils has to be associated with the large range of scales involved in natural soil structures and that information on the pore size distribution has to be complemented by information on a critical filtration size (CFS) delimiting the transition between percolating and non percolating regimes in multiscale pore networks. We show that the mass fractal dimensions which are classically used in soil science to quantify scaling laws in observed pore size distributions can also be used to build 3-D multiscale models of pore networks exhibiting such a critical transition. We extend to the 3-D case a new theoretical approach recently developed to address the connectivity of 2-D fractal networks (Bird and Perrier, 2009). Theoretical arguments based on renormalisation functions provide insight into multi-scale connectivity and a first estimation of CFS. Numerical experiments on 3-D prefractal media confirm the qualitative theory. These results open the way towards a new methodology to estimate soil filtration efficiency from the construction of soil structural models to be calibrated on available multiscale data.

  13. Percolation properties of 3-D multiscale pore networks: how connectivity controls soil filtration processes

    Directory of Open Access Journals (Sweden)

    E. M. A. Perrier

    2010-10-01

    Full Text Available Quantifying the connectivity of pore networks is a key issue not only for modelling fluid flow and solute transport in porous media but also for assessing the ability of soil ecosystems to filter bacteria, viruses and any type of living microorganisms as well inert particles which pose a contamination risk. Straining is the main mechanical component of filtration processes: it is due to size effects, when a given soil retains a conveyed entity larger than the pores through which it is attempting to pass. We postulate that the range of sizes of entities which can be trapped inside soils has to be associated with the large range of scales involved in natural soil structures and that information on the pore size distribution has to be complemented by information on a critical filtration size (CFS delimiting the transition between percolating and non percolating regimes in multiscale pore networks. We show that the mass fractal dimensions which are classically used in soil science to quantify scaling laws in observed pore size distributions can also be used to build 3-D multiscale models of pore networks exhibiting such a critical transition. We extend to the 3-D case a new theoretical approach recently developed to address the connectivity of 2-D fractal networks (Bird and Perrier, 2009. Theoretical arguments based on renormalisation functions provide insight into multi-scale connectivity and a first estimation of CFS. Numerical experiments on 3-D prefractal media confirm the qualitative theory. These results open the way towards a new methodology to estimate soil filtration efficiency from the construction of soil structural models to be calibrated on available multiscale data.

  14. Using Neutrons to Study Fluid-Rock Interactions in Shales

    Science.gov (United States)

    DiStefano, V. H.; McFarlane, J.; Anovitz, L. M.; Gordon, A.; Hale, R. E.; Hunt, R. D.; Lewis, S. A., Sr.; Littrell, K. C.; Stack, A. G.; Chipera, S.; Perfect, E.; Bilheux, H.; Kolbus, L. M.; Bingham, P. R.

    2015-12-01

    Recovery of hydrocarbons by hydraulic fracturing depends on complex fluid-rock interactions that we are beginning to understand using neutron imaging and scattering techniques. Organic matter is often thought to comprise the majority of porosity in a shale. In this study, correlations between the type of organic matter embedded in a shale and porosity were investigated experimentally. Selected shale cores from the Eagle Ford and Marcellus formations were subjected to pyrolysis-gas chromatography, Differential Thermal Analysis/Thermogravimetric analysis, and organic solvent extraction with the resulting affluent analyzed by gas chromatography-mass spectrometry. The pore size distribution of the microporosity (~1 nm to 2 µm) in the Eagle Ford shales was measured before and after solvent extraction using small angle neutron scattering. Organics representing mass fractions of between 0.1 to 1 wt.% were removed from the shales and porosity generally increased across the examined microporosity range, particularly at larger pore sizes, approximately 50 nm to 2 μm. This range reflects extraction of accessible organic material, including remaining gas molecules, bitumen, and kerogen derivatives, indicating where the larger amount of organic matter in shale is stored. An increase in porosity at smaller pore sizes, ~1-3 nm, was also present and could be indicative of extraction of organic material stored in the inter-particle spaces of clays. Additionally, a decrease in porosity after extraction for a sample was attributed to swelling of pores with solvent uptake. This occurred in a shale with high clay content and low thermal maturity. The extracted hydrocarbons were primarily paraffinic, although some breakdown of larger aromatic compounds was observed in toluene extractions. The amount of hydrocarbon extracted and an overall increase in porosity appeared to be primarily correlated with the clay percentage in the shale. This study complements fluid transport neutron

  15. Advanced Fluid Reduced Order Models for Compressible Flow.

    Energy Technology Data Exchange (ETDEWEB)

    Tezaur, Irina Kalashnikova [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Fike, Jeffrey A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Carlberg, Kevin Thomas [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Barone, Matthew F. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Maddix, Danielle [Stanford Univ., CA (United States); Mussoni, Erin E. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Balajewicz, Maciej [Univ. of Illinois, Urbana-Champaign, IL (United States)

    2017-09-01

    This report summarizes fiscal year (FY) 2017 progress towards developing and implementing within the SPARC in-house finite volume flow solver advanced fluid reduced order models (ROMs) for compressible captive-carriage flow problems of interest to Sandia National Laboratories for the design and qualification of nuclear weapons components. The proposed projection-based model order reduction (MOR) approach, known as the Proper Orthogonal Decomposition (POD)/Least- Squares Petrov-Galerkin (LSPG) method, can substantially reduce the CPU-time requirement for these simulations, thereby enabling advanced analyses such as uncertainty quantification and de- sign optimization. Following a description of the project objectives and FY17 targets, we overview briefly the POD/LSPG approach to model reduction implemented within SPARC . We then study the viability of these ROMs for long-time predictive simulations in the context of a two-dimensional viscous laminar cavity problem, and describe some FY17 enhancements to the proposed model reduction methodology that led to ROMs with improved predictive capabilities. Also described in this report are some FY17 efforts pursued in parallel to the primary objective of determining whether the ROMs in SPARC are viable for the targeted application. These include the implemen- tation and verification of some higher-order finite volume discretization methods within SPARC (towards using the code to study the viability of ROMs on three-dimensional cavity problems) and a novel structure-preserving constrained POD/LSPG formulation that can improve the accuracy of projection-based reduced order models. We conclude the report by summarizing the key takeaways from our FY17 findings, and providing some perspectives for future work.

  16. Mineralogy and pore water chemistry of a boiler ash from a MSW fluidized-bed incinerator.

    Science.gov (United States)

    Bodénan, F; Guyonnet, D; Piantone, P; Blanc, P

    2010-07-01

    This paper presents an investigation of the mineralogy and pore water chemistry of a boiler ash sampled from a municipal solid waste fluidized-bed incinerator, subject to 18 months of dynamic leaching in a large percolation column experiment. A particular focus is on the redox behaviour of Cr(VI) in relation to metal aluminium Al(0), as chromium may represent an environmental or health hazard. The leaching behaviour and interaction between Cr(VI) and Al(0) are interpreted on the basis of mineralogical evolutions observed over the 18-month period and of saturation indices calculated with the geochemical code PhreeqC and reviewed thermodynamic data. Results of mineralogical analyses show in particular the alteration of mineral phases during leaching (e.g. quartz and metal aluminium grains), while geochemical calculations suggest equilibria of percolating fluids with respect to specific mineral phases (e.g. monohydrocalcite and aluminium hydroxide). The combination of leaching data on a large scale and mineralogical analyses document the coupled leaching behaviour of aluminium and chromium, with chromium appearing in the pore fluids in its hexavalent and mobile state once metal aluminium is no longer available for chromium reduction. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  17. Mineralogy and pore water chemistry of a boiler ash from a MSW fluidized-bed incinerator

    International Nuclear Information System (INIS)

    Bodenan, F.; Guyonnet, D.; Piantone, P.; Blanc, P.

    2010-01-01

    This paper presents an investigation of the mineralogy and pore water chemistry of a boiler ash sampled from a municipal solid waste fluidized-bed incinerator, subject to 18 months of dynamic leaching in a large percolation column experiment. A particular focus is on the redox behaviour of Cr(VI) in relation to metal aluminium Al 0 , as chromium may represent an environmental or health hazard. The leaching behaviour and interaction between Cr(VI) and Al 0 are interpreted on the basis of mineralogical evolutions observed over the 18-month period and of saturation indices calculated with the geochemical code PhreeqC and reviewed thermodynamic data. Results of mineralogical analyses show in particular the alteration of mineral phases during leaching (e.g. quartz and metal aluminium grains), while geochemical calculations suggest equilibria of percolating fluids with respect to specific mineral phases (e.g. monohydrocalcite and aluminium hydroxide). The combination of leaching data on a large scale and mineralogical analyses document the coupled leaching behaviour of aluminium and chromium, with chromium appearing in the pore fluids in its hexavalent and mobile state once metal aluminium is no longer available for chromium reduction.

  18. Behaviour of cellular structures with fluid fillers under impact loading

    Directory of Open Access Journals (Sweden)

    Matej Vesenjak

    2007-03-01

    Full Text Available The paper investigates the behaviour of closed- and open-cell cellular structures under uniaxial impact loading by means of computational simulations using the explicit nonlinear finite element code LS-DYNA. Simulations also consider the influence of pore fillers and the base material strain rate sensitivity. The behaviour of closed-cell cellular structure has been evaluated with use of the representative volume element, where the influence of residual gas inside the closed pores has been studied. Open- cell cellular structure was modelled as a whole to properly account for considered fluid flow through the cells, which significantly influences macroscopic behaviour of the cellular structure. The fluid has been modelled by applying a meshless Smoothed Particle Hydrodynamics (SPH method. Parametric computational simulations provide grounds for optimization of cellular structures to satisfy different requirements, which makes them very attractive for use in general engineering applications.

  19. The effect of pore size and porosity on thermal management performance of phase change material infiltrated microcellular metal foams

    International Nuclear Information System (INIS)

    Sundarram, Sriharsha S.; Li, Wei

    2014-01-01

    The effect of pore size and porosity on the performance of phase change material (PCM) infiltrated metal foams, especially when the pore size reduces to less than 100 μm, is investigated in this study. A three dimensional finite element model was developed to consider both the metal and PCM domains, with heat exchange between them. The pore size and porosity effects were studied along with other system variables including heat generation and dissipation of the PCM-based thermal management system. It is shown that both porosity and pore size have strong effects on the heating of PCM. At a fixed porosity, a smaller pore size results in a lower temperature at the heat source for a longer period of time. The effects of pore size and porosity were more pronounced at high heat generation and low convective cooling conditions, representing the situation of portable electronics. There is an optimal porosity for the PCM-metal foam system; however, the optimal value only occurs at high cooling conditions. The net effective thermal conductivity of a PCM-microcellular metal foam system could be doubled by reducing the pore size from 100 μm to 25 μm. - Highlights: •Pore size and porosity of phase change material-microcellular metal foam were investigated. •A smaller pore size results in a lower temperature at the heat source for a longer period of time. •The effects were more pronounced at high heating and low cooling conditions. •Net thermal conductivity doubled by reducing the pore size from 100 μm to 25 μm

  20. Characterizing the hydraulic properties of a paper coating layer using FIB-SEM tomography and 3D pore-scale modeling

    NARCIS (Netherlands)

    Aslannejad, H.; Hassanizadeh, S.M.; Raoof, A.; de Winter, D.A.M.; Tomozeu, N.; van Genuchten, M.T.

    2017-01-01

    Paper used in the printing industry generally contains a relatively thin porous coating covering a thicker fibrous base layer. The three-dimensional pore structure of coatings has a major effect on fluid flow patterns inside the paper medium. Understanding and quantifying the flow properties of thin

  1. Effect of Fluid Dynamic Viscosity on the Strength of Chalk

    DEFF Research Database (Denmark)

    Hedegaard, K.; Fabricius, Ida Lykke

    The mechanical strength of high porosity and weakly cemented chalk is affected by the fluid in the pores. In this study, the effect of the dynamic viscosity of non-polar fluids has been measured on outcrop chalk from Sigerslev Quarry, Stevns, Denmark. The outcome is that the measured strength...... of the chalk decreases with increasing dynamic viscosity. The proposed qualitative explanation is that pressure difference supports and enhances the generation of microscopic shear and tensile failures....

  2. Cerebrospinal fluid leakage during transsphenoidal surgery: postoperative external lumbar drainage reduces the risk for meningitis

    NARCIS (Netherlands)

    van Aken, M. O.; Feelders, R. A.; de Marie, S.; van de Berge, J. H.; Dallenga, A. H. G.; Delwel, E. J.; Poublon, R. M. L.; Romijn, J. A.; van der Lely, A. J.; Lamberts, S. W. J.; de Herder, W. W.

    2004-01-01

    Postoperative meningitis is a well known complication of transsphenoidal surgery (TSS). The objective of this study was to evaluate whether postoperative external cerobrospinal fluid (CSF) drainage in case of intraoperative CSF-leakage, reduces the risk of postoperative meningitis. We

  3. Influence of pore structure on solute transport in degraded and undegraded fen peat soils

    Directory of Open Access Journals (Sweden)

    C. Kleimeier

    2017-10-01

    Full Text Available In peat soils, decomposition and degradation reduce the proportion of large pores by breaking down plant debris into smaller fragments and infilling inter-particle pore spaces. This affects water flow and solute migration which, in turn, influence reactive transport processes and biogeochemical functions. In this study we conducted flow-through reactor experiments to investigate the interplay between pore structure and solute transport in samples of undegraded and degraded peat collected in Canada and Germany, respectively. The pore size distributions and transport parameters were characterised using the breakthrough curve and two-region non-equilibrium transport model analyses for a non-reactive solute. The results of transport characterisation showed a higher fraction of immobile pores in the degraded peat with higher diffusive exchanges of solutes between the mobile and immobile pores associated with the dual-porosity structure. The rates of steady-state potential nitrate reduction were compared with pore fractions and exchange coefficients to investigate the influence of pore structure on the rates of nitrate reduction. The results indicated that the degraded peat has potential to provide the necessary boundary conditions to support nitrate removal and serves as a favourable substrate for denitrification, due to the nature of its pore structure and its lower organic carbon content compared to undegraded peat.

  4. Growth of sulfate reducers in deep-subseafloor sediments stimulated by crustal fluids

    Directory of Open Access Journals (Sweden)

    Katja eFichtel

    2012-02-01

    Full Text Available On a global scale, crustal fluids fuel a substantial part of the deep subseafloor biosphere by providing electron acceptors for microbial respiration. In this study, we examined bacterial cultures from a sediment column of the Juan de Fuca Ridge, Northeast Pacific (IODP Site U1301 which is divided into three distinctive compartments: an upper sulfate-containing zone, formed by bottom-seawater diffusion, a sulfate-depleted zone and a second (~140 m thick sulfate-containing zone influenced by fluid diffusion from the basaltic aquifer. Sulfate reducers were isolated from near-surface and near-basement sediments. All initial enrichments harboured specific communities of heterotrophic microorganisms. Among those, the number of isolated spore-forming Firmicutes decreased from 60% to 21% with sediment depth. Strains affiliated to Desulfosporosinus lacus, Desulfotomaculum sp. and Desulfovibrio aespoeensis were recovered from the upper sediment layers (1.3-9.1 meters below seafloor, mbsf. Several strains of Desulfovibrio indonesiensis and one relative of Desulfotignum balticum were isolated from near-basement sediments (240-262 mbsf. The physiological investigation of strains affiliated to D. aespoeensis, D. indonesiensis and D. balticum indicated that they were all able to use sulfate, thiosulfate and sulfite as electron acceptors. In the presence of sulfate, they grew strain-specifically on a few short-chain n-alcohols and fatty acids, only. The strains fermented either ethanol, pyruvate or betaine. Interestingly, all strains utilized hydrogen and the isolate affiliated to D. indonesiensis even exhibited an autotrophic life-mode. Thus, in the deep subseafloor where organic substrates are limited or hardly degradable, hydrogen might become an essential electron donor. The isolation of non-sporeforming sulfate reducers from fluid-influenced layers indicates that they have survived the long-term burial as active populations even after the separation from

  5. Multiscale Pore Throat Network Reconstruction of Tight Porous Media Constrained by Mercury Intrusion Capillary Pressure and Nuclear Magnetic Resonance Measurements

    Science.gov (United States)

    Xu, R.; Prodanovic, M.

    2017-12-01

    Due to the low porosity and permeability of tight porous media, hydrocarbon productivity strongly depends on the pore structure. Effective characterization of pore/throat sizes and reconstruction of their connectivity in tight porous media remains challenging. Having a representative pore throat network, however, is valuable for calculation of other petrophysical properties such as permeability, which is time-consuming and costly to obtain by experimental measurements. Due to a wide range of length scales encountered, a combination of experimental methods is usually required to obtain a comprehensive picture of the pore-body and pore-throat size distributions. In this work, we combine mercury intrusion capillary pressure (MICP) and nuclear magnetic resonance (NMR) measurements by percolation theory to derive pore-body size distribution, following the work by Daigle et al. (2015). However, in their work, the actual pore-throat sizes and the distribution of coordination numbers are not well-defined. To compensate for that, we build a 3D unstructured two-scale pore throat network model initialized by the measured porosity and the calculated pore-body size distributions, with a tunable pore-throat size and coordination number distribution, which we further determine by matching the capillary pressure vs. saturation curve from MICP measurement, based on the fact that the mercury intrusion process is controlled by both the pore/throat size distributions and the connectivity of the pore system. We validate our model by characterizing several core samples from tight Middle East carbonate, and use the network model to predict the apparent permeability of the samples under single phase fluid flow condition. Results show that the permeability we get is in reasonable agreement with the Coreval experimental measurements. The pore throat network we get can be used to further calculate relative permeability curves and simulate multiphase flow behavior, which will provide valuable

  6. Electroseismic characterization of lithology and fluid type in the shallow subsurface. Final report, January 15, 1995--January 14, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Haartsen, M.W.; Mikhailov, O.V.; Queen, J.H. [and others

    1997-07-01

    The U.S. Department of Energy funded the M.I.T. Earth Resources Laboratory to investigate electroseismic phenomena. Because electroseismic phenomena in fluid-saturated porous media provide geophysicists with a unique opportunity to detect a seismic-wave-generated flow of pore fluid with respect to the porous matrix. The term {open_quotes}electroseismic{close_quotes} describes phenomena in which a seismic wave induces an electrical field or causes radiation of an electromagnetic wave. Electroseismic phenomena take place in fluid-saturated porous rocks, because the pore fluid carries an excess electrical charge. When the charged pore fluid is forced to flow through the rock by pressure gradients within a seismic wave, a streaming electrical current is generated. This electrical current results in charge separation, which induces an electrical field. Measuring this seismic-wave-induced electrical field allows detection of the fluid flow generated by the wave in the porous medium. In turn, detecting the fluid flow allows characterization of fluid transport properties of the medium. The major contribution of our research is in the following three areas: (1) Theory. Theoretical models of various electroseismic phenomena in fluid-saturated porous media were developed. Numerical algorithms were developed for modeling electroseismic measurements in surface (Paper 1 in this report) and VSP (Paper 2) geometries. A closed-form analytical expression was obtained for the logging geometry (Paper 8). The major result is the theoretical models` prediction that porosity, permeability, and fluid chemistry can be characterized using electroseismic measurements; (2) Laboratory Experiments. A number of laboratory experiments were performed in surface (Paper 4), VSP (Paper 4), and logging (Paper 5) geometries. In addition, conversion of electrical energy into seismic energy was investigated (Paper 6), and (3) Field Measurements.

  7. Understanding the mechanisms behind coking pressure: Relationship to pore structure

    Energy Technology Data Exchange (ETDEWEB)

    John J. Duffy; M. Castro Diaz; Colin E. Snape; Karen M. Steel; Merrick R. Mahoney [University of Nottingham, Nottingham (United Kingdom). Nottingham Fuel and Energy Centre, School of Chemical, Environmental and Mining Engineering

    2007-09-15

    Three low volatile coals A, B and C with oven wall pressures of 100 kPa, 60 kPa and 20 kPa respectively were investigated using high-temperature rheometry, {sup 1}H NMR, thermogravimetric analysis and SEM, with the primary aim to better understand the mechanisms behind the coking pressure phenomenon. Rheometer plate displacement measurements ({Delta}L) have shown differences in the expansion and contraction behaviour of the three coals, which seem to correlate with changes in rheological properties; while SEM images have shown that the expansion process coincides with development of pore structure. It is considered that the point of maximum plate height ({Delta}L{sub max}) prior to contraction may be indicative of a cell opening or pore network forming process, based on analogies with other foam systems. Such a process may be considered important for coking pressure since it provides a potential mechanism for volatile escape, relieving internal gas pressure and inducing charge contraction. For coal C, which has the highest fluidity {delta}L{sub max} occurs quite early in the softening process and consequently a large degree of contraction is observed; while for the lower fluidity coal B, the process is delayed since pore development and consequently wall thinning progress at a slower rate. When {Delta}L{sub max} is attained, a lower degree of contraction is observed because the event occurs closer to resolidification where the increasing viscosity/elasticity can stabilise the expanded pore structure. For coal A which is relatively high fluidity, but also high coking pressure, a greater degree of swelling is observed prior to cell rupture, which may be due to greater fluid elasticity during the expansion process. This excessive expansion is considered to be a potential reason for its high coking pressure. 58 refs., 15 figs., 1 tab.

  8. Tremor-tide correlations and near-lithostatic pore pressure on the deep San Andreas fault.

    Science.gov (United States)

    Thomas, Amanda M; Nadeau, Robert M; Bürgmann, Roland

    2009-12-24

    Since its initial discovery nearly a decade ago, non-volcanic tremor has provided information about a region of the Earth that was previously thought incapable of generating seismic radiation. A thorough explanation of the geologic process responsible for tremor generation has, however, yet to be determined. Owing to their location at the plate interface, temporal correlation with geodetically measured slow-slip events and dominant shear wave energy, tremor observations in southwest Japan have been interpreted as a superposition of many low-frequency earthquakes that represent slip on a fault surface. Fluids may also be fundamental to the failure process in subduction zone environments, as teleseismic and tidal modulation of tremor in Cascadia and Japan and high Poisson ratios in both source regions are indicative of pressurized pore fluids. Here we identify a robust correlation between extremely small, tidally induced shear stress parallel to the San Andreas fault and non-volcanic tremor activity near Parkfield, California. We suggest that this tremor represents shear failure on a critically stressed fault in the presence of near-lithostatic pore pressure. There are a number of similarities between tremor in subduction zone environments, such as Cascadia and Japan, and tremor on the deep San Andreas transform, suggesting that the results presented here may also be applicable in other tectonic settings.

  9. Pore-scale dynamics of salt transport and distribution in drying porous media

    International Nuclear Information System (INIS)

    Shokri, Nima

    2014-01-01

    Understanding the physics of water evaporation from saline porous media is important in many natural and engineering applications such as durability of building materials and preservation of monuments, water quality, and mineral-fluid interactions. We applied synchrotron x-ray micro-tomography to investigate the pore-scale dynamics of dissolved salt distribution in a three dimensional drying saline porous media using a cylindrical plastic column (15 mm in height and 8 mm in diameter) packed with sand particles saturated with CaI 2 solution (5% concentration by mass) with a spatial and temporal resolution of 12 μm and 30 min, respectively. Every time the drying sand column was set to be imaged, two different images were recorded using distinct synchrotron x-rays energies immediately above and below the K-edge value of Iodine. Taking the difference between pixel gray values enabled us to delineate the spatial and temporal distribution of CaI 2 concentration at pore scale. Results indicate that during early stages of evaporation, air preferentially invades large pores at the surface while finer pores remain saturated and connected to the wet zone at bottom via capillary-induced liquid flow acting as evaporating spots. Consequently, the salt concentration increases preferentially in finer pores where evaporation occurs. Higher salt concentration was observed close to the evaporating surface indicating a convection-driven process. The obtained salt profiles were used to evaluate the numerical solution of the convection-diffusion equation (CDE). Results show that the macro-scale CDE could capture the overall trend of the measured salt profiles but fail to produce the exact slope of the profiles. Our results shed new insight on the physics of salt transport and its complex dynamics in drying porous media and establish synchrotron x-ray tomography as an effective tool to investigate the dynamics of salt transport in porous media at high spatial and temporal resolution

  10. Origins of saline fluids at convergent margins

    Science.gov (United States)

    Martin, Jonathan B.; Kastner, Miriam; Egeberg, Per Kr.

    The compositions of pore and venting fluids at convergent margins differ from seawater values, reflecting mixing and diagenesis. Most significantly, the concentration of Cl-, assumed to be a conservative ion, differs from its seawater value. Chloride concentrations could be elevated by four processes, although two, the formation of gas hydrate and ion filtration by clay membranes, are insignificant in forming saline fluids at convergent margins. During the formation of gas hydrate, the resulting Cl--rich fluids, estimated to contain an average excess of ˜140 mM Cl- over seawater value, probably would be flushed from the sediment when the pore fluids vent to seawater. Ion filtration by clay membranes requires compaction pressures typical of >2 km burial depths. Even at these depths, the efficiency of ion filtration will be negligible because (1) fluids will flow through fractures, thereby bypassing clay membranes, (2) concentrations of clay minerals are diluted by other phases, and (3) during burial, smectite converts to illite, which has little capacity for ion filtration. A third process, mixing with subaerially evaporated seawater, elevates Cl- concentrations to 1043 mM in forearc basins along the Peru margin. Evaporation of seawater, however, will be important only in limited geographic regions that are characterized by enclosed basins, arid climates, and permeable sediments. At the New Hebrides and Izu-Bonin margins, Cl- concentrations are elevated to a maximum of 1241 mM. The process responsible for this increase is the alteration of volcanic ash to hydrous clay and zeolite minerals. Mass balance calculations, based on the decrease in δ18O values to -9.5‰ (SMOW), suggest that the Cl- concentrations could increase solely from the formation of smectite in a closed system. The diagenesis of volcanic ash also alters the concentrations of most dissolved species in addition to Cl-. Depending on the volume of this altered fluid, it could influence seawater

  11. Peritoneal Fluid Transport rather than Peritoneal Solute Transport Associates with Dialysis Vintage and Age of Peritoneal Dialysis Patients

    Directory of Open Access Journals (Sweden)

    Jacek Waniewski

    2016-01-01

    Full Text Available During peritoneal dialysis (PD, the peritoneal membrane undergoes ageing processes that affect its function. Here we analyzed associations of patient age and dialysis vintage with parameters of peritoneal transport of fluid and solutes, directly measured and estimated based on the pore model, for individual patients. Thirty-three patients (15 females; age 60 (21–87 years; median time on PD 19 (3–100 months underwent sequential peritoneal equilibration test. Dialysis vintage and patient age did not correlate. Estimation of parameters of the two-pore model of peritoneal transport was performed. The estimated fluid transport parameters, including hydraulic permeability (LpS, fraction of ultrasmall pores (αu, osmotic conductance for glucose (OCG, and peritoneal absorption, were generally independent of solute transport parameters (diffusive mass transport parameters. Fluid transport parameters correlated whereas transport parameters for small solutes and proteins did not correlate with dialysis vintage and patient age. Although LpS and OCG were lower for older patients and those with long dialysis vintage, αu was higher. Thus, fluid transport parameters—rather than solute transport parameters—are linked to dialysis vintage and patient age and should therefore be included when monitoring processes linked to ageing of the peritoneal membrane.

  12. Peritoneal Fluid Transport rather than Peritoneal Solute Transport Associates with Dialysis Vintage and Age of Peritoneal Dialysis Patients

    Science.gov (United States)

    Waniewski, Jacek; Antosiewicz, Stefan; Baczynski, Daniel; Poleszczuk, Jan; Pietribiasi, Mauro; Lindholm, Bengt; Wankowicz, Zofia

    2016-01-01

    During peritoneal dialysis (PD), the peritoneal membrane undergoes ageing processes that affect its function. Here we analyzed associations of patient age and dialysis vintage with parameters of peritoneal transport of fluid and solutes, directly measured and estimated based on the pore model, for individual patients. Thirty-three patients (15 females; age 60 (21–87) years; median time on PD 19 (3–100) months) underwent sequential peritoneal equilibration test. Dialysis vintage and patient age did not correlate. Estimation of parameters of the two-pore model of peritoneal transport was performed. The estimated fluid transport parameters, including hydraulic permeability (LpS), fraction of ultrasmall pores (α u), osmotic conductance for glucose (OCG), and peritoneal absorption, were generally independent of solute transport parameters (diffusive mass transport parameters). Fluid transport parameters correlated whereas transport parameters for small solutes and proteins did not correlate with dialysis vintage and patient age. Although LpS and OCG were lower for older patients and those with long dialysis vintage, αu was higher. Thus, fluid transport parameters—rather than solute transport parameters—are linked to dialysis vintage and patient age and should therefore be included when monitoring processes linked to ageing of the peritoneal membrane. PMID:26989432

  13. Simulating single-phase and two-phase non-Newtonian fluid flow of a digital rock scanned at high resolution

    Science.gov (United States)

    Tembely, Moussa; Alsumaiti, Ali M.; Jouini, Mohamed S.; Rahimov, Khurshed; Dolatabadi, Ali

    2017-11-01

    Most of the digital rock physics (DRP) simulations focus on Newtonian fluids and overlook the detailed description of rock-fluid interaction. A better understanding of multiphase non-Newtonian fluid flow at pore-scale is crucial for optimizing enhanced oil recovery (EOR). The Darcy scale properties of reservoir rocks such as the capillary pressure curves and the relative permeability are controlled by the pore-scale behavior of the multiphase flow. In the present work, a volume of fluid (VOF) method coupled with an adaptive meshing technique is used to perform the pore-scale simulation on a 3D X-ray micro-tomography (CT) images of rock samples. The numerical model is based on the resolution of the Navier-Stokes equations along with a phase fraction equation incorporating the dynamics contact model. The simulations of a single phase flow for the absolute permeability showed a good agreement with the literature benchmark. Subsequently, the code is used to simulate a two-phase flow consisting of a polymer solution, displaying a shear-thinning power law viscosity. The simulations enable to access the impact of the consistency factor (K), the behavior index (n), along with the two contact angles (advancing and receding) on the relative permeability.

  14. Pore-scale modeling of phase change in porous media

    Science.gov (United States)

    Juanes, Ruben; Cueto-Felgueroso, Luis; Fu, Xiaojing

    2017-11-01

    One of the main open challenges in pore-scale modeling is the direct simulation of flows involving multicomponent mixtures with complex phase behavior. Reservoir fluid mixtures are often described through cubic equations of state, which makes diffuse interface, or phase field theories, particularly appealing as a modeling framework. What is still unclear is whether equation-of-state-driven diffuse-interface models can adequately describe processes where surface tension and wetting phenomena play an important role. Here we present a diffuse interface model of single-component, two-phase flow (a van der Waals fluid) in a porous medium under different wetting conditions. We propose a simplified Darcy-Korteweg model that is appropriate to describe flow in a Hele-Shaw cell or a micromodel, with a gap-averaged velocity. We study the ability of the diffuse-interface model to capture capillary pressure and the dynamics of vaporization/condensation fronts, and show that the model reproduces pressure fluctuations that emerge from abrupt interface displacements (Haines jumps) and from the break-up of wetting films.

  15. A New Equivalent Statistical Damage Constitutive Model on Rock Block Mixed Up with Fluid Inclusions

    Directory of Open Access Journals (Sweden)

    Xiao Chen

    2018-01-01

    Full Text Available So far, there are few studies concerning the effect of closed “fluid inclusions” on the macroscopic constitutive relation of deep rock. Fluid-matrix element (FME is defined based on rock element in statistical damage model. The properties of FME are related to the size of inclusions, fluid properties, and pore pressure. Using FME, the equivalent elastic modulus of rock block containing fluid inclusions is obtained with Eshelby inclusion theory and the double M-T homogenization method. The new statistical damage model of rock is established on the equivalent elastic modulus. Besides, the porosity and confining pressure are important influencing factors of the model. The model reflects the initial damage (void and fluid inclusion and the macroscopic deformation law of rock, which is an improvement of the traditional statistical damage model. Additionally, the model can not only be consistent with the rock damage experiment date and three-axis compression experiment date of rock containing pore water but also describe the locked-in stress experiment in rock-like material. It is a new fundamental study of the constitutive relation of locked-in stress in deep rock mass.

  16. PBO Borehole Strainmeters and Pore Pressure Sensors: Recording Hydrological Strain Signals

    Science.gov (United States)

    Gottlieb, M. H.; Hodgkinson, K. M.; Mencin, D.; Henderson, D. B.; Johnson, W.; Van Boskirk, E.; Pyatt, C.; Mattioli, G. S.

    2017-12-01

    UNAVCO operates a network of 75 borehole strainmeters along the west coast of the United States and Vancouver Island, Canada as part of the Plate Boundary Observatory (PBO), the geodetic component of the NSF-funded Earthscope program. Borehole strainmeters are designed to detect variations in the strain field at the nanostrain level and can easily detect transient strains caused by aseismic creep events, Episodic Tremor and Slip (ETS) events and seismically induced co- and post-seimic signals. In 2016, one strainmeter was installed in an Oklahoma oil field to characterize in-situ deformation during CO2 injection. Twenty-three strainmeter sites also have pore pressure sensors to measure fluctuations in groundwater pressure. Both the strainmeter network and the pore pressure sensors provide unique data against which those using water-level measurements, GPS time-series or InSAR data can compare possible subsidence signals caused by groundwater withdrawal or fluid re-injection. Operating for 12 years, the PBO strainmeter and pore pressure network provides a long-term, continuous, 1-sps record of deformation. PBO deploys GTSM21 tensor strainmeters from GTSM Technologies, which consist of four horizontal strain gauges stacked vertically, at different orientations, within a single 2 m-long instrument. The strainmeters are typically installed at depths of 200 to 250 m and grouted into the bottom of 15 cm diameter boreholes. The pore pressure sensors are Digiquartz Depth Sensors from Paros Scientific. These sensors are installed in 2" PVC, sampling groundwater through a screened section 15 m above the co-located strainmeter. These sensors are also recording at 1-sps with a resolution in the hundredths of hPa. High-rate local barometric pressure data and low-rate rainfall data also available at all locations. PBO Strainmeter and pore pressure data are available in SEED, SAC-ASCII and time-stamped ASCII format from the IRIS Data Managements Center. Strainmeter data are

  17. Can The Pore Scale Geometry Explain Soil Sample Scale Hydrodynamic Properties?

    Directory of Open Access Journals (Sweden)

    Sarah Smet

    2018-04-01

    also showed a link between pores of different sizes. Identifying the key geometrical indicators that induce soil hydrodynamic behavior is of major interest for the generation of phenomenological pore network models. These models are useful to test physical equations of fluid transport that ultimately depend on a multitude of processes, and induce numerous biological processes.

  18. Pore formation and occurrence in the organic-rich shales of the Triassic Chang-7 Member, Yanchang Formation, Ordos Basin, China

    Directory of Open Access Journals (Sweden)

    Chuang Er

    2016-12-01

    Full Text Available Shale-reservoir appraisal depends greatly on its pore characteristics (e.g., diameter, geometry, connectivity. Using a new pore-classification scheme based on the matrix type and occurrence state, four types of pores are identified in the organic-rich shales of the Triassic Chang-7 Member: intergranular, intragranular, organic pore, and microfracture. The intergranular pores are subdivided into primary pores between clastic grains, clay-mineral aggregates, and secondary dissolution pores between clastic grains or clay-mineral aggregates based on their origins, respectively. The intragranular pores are subdivided into secondary dissolved pores in feldspars, intra-clay-mineral aggregates and inter-pyrite. Organic pores include primarily microfractures in the organic matter and isolated organic pores. Microfracture is mainly developed along sandy and muddy laminations. Analysis by integration of data from pore imaging, low-temperature liquid nitrogen absorption, relationships between pore geometry and mineral components and between TOC and maturity of organic matter indicates that depositional environment, diagenesis, and thermal evolution of organic matter controlled the formation and preservation of pores. Organic-rich shales deposited in a deep and semi-deep lake environment contains thinly bedded turbidite sandstones, which are characterized by high content of clastic particles and thus favor the development of primary intergranular and intragranular pores, as well as microfractures along sandy laminations. During the early diagenesis process, precipitation of pyrite favors the development of inter-pyrite pores. However, compaction reduced the diameter and bulk pore volume. Organic pore has been greatly reduced under compaction. Dissolution led to formation of both inter and intra-feldspar pores, which has improved reservoir quality to some extent. Organic pore started to develop after shale maturity reaches a threshold (RO = 0

  19. [A photographic scale for evaluating facial pores and analysis of factors associated with pore widening in Chengdu].

    Science.gov (United States)

    Wang, Qing; Zhou, Cheng-xia; Meng, Hui-min; Wang, Xi; Li, Li

    2010-09-01

    To develop a photographic scale for grading widening of pores, and to identify the factors associated with pore widening. People with widened pores were recruited, with photographs taken on their nasal tips, nasal alas and cheeks. A questionnaire survey was undertaken by dermatologists to assess the severity of pore widening. A Cumulative Logit Model was established to identify factors that were associated with pore widening. A total of 115 people participated in the study and 562 photographs were taken. The photographic scale was highly consistent with the clinical judgment. Another 1011 residents aged from 18 to 70 years old in Chengdu were surveyed. The logit model revealed that facial pore widening were associated with gender, age, oily skin, sun protection and anti-aging cosmetic. The photographic scale is reliable and easy to use. Gender, age and oily skin are risk factors, and sun protection and anti-aging cosmetic are protective factors with related to pore widening.

  20. Hydrologic mechanisms governing fluid flow in partially saturated, fractured, porous tuff at Yucca Mountain

    International Nuclear Information System (INIS)

    Wang, J.S.Y.; Narasimhan, T.N.

    1984-10-01

    In contrast to the saturated zone where fluid moves rapidly along fractures, the fractures (with apertures large relative to the size of matrix pores) will desaturate first during drainage process and the bulk of fluid flow would be through interconnected pores in the matrix. Within a partially drained fracture, the presence of a relatively continuous air phase will produce practically an infinite resistance to liquid flow in the direction parallel to the fracture. The residual liquid will be held by capillary force in regions around fracture contact areas where the apertures are small. Normal to the fracture surfaces, the drained portion of the fractures will reduce the effective area for liquid flow from one matrix block to another matrix block. A general statistical theory is constructed for flow along the fracture and for flow between the matrix blocks to the fractures under partially saturated conditions. Results are obtained from an aperture distribution model for fracture saturation, hydraulic conductivity, and effective matrix-fracture flow areas as functions of pressure. Drainage from a fractured tuff column is simulated. The parameters for the simulations are deduced from fracture surface characteristics, spacings and orientations based on core analyses, and from matrix characteristics curve based on laboratory measurements. From the cases simulated for the fractured, porous column with discrete vertical and horizontal fractures and porous matrix blocks explicitly taken into account, it is observed that the highly transient changes from fully saturated conditions to partially saturated conditions are extremely sensitive to the fracture properties. However, the quasi-steady changes of the fluid flow of a partially saturated, fractured, porous system could be approximately simulated without taking the fractures into account. 22 references, 16 figures

  1. Climate-driven flushing of pore water in peatlands

    Science.gov (United States)

    Siegel, D. I.; Reeve, A. S.; Glaser, P. H.; Romanowicz, E. A.

    1995-04-01

    NORTHERN peatlands can act as either important sources or sinks for atmospheric carbon1,2. It is therefore important to understand how carbon cycling in these regions will respond to a changing climate. Existing carbon balance models for peatlands assume that fluid flow and advective mass transport are negligible at depth3,4, and that the effects of climate change should be essentially limited to the near-surface. Here we report the response of groundwater flow and porewater chemistry in the Glacial Lake Agassiz peat-lands of northern Minnesota to the regional drought cycle. Comparison of field observations and numerical simulations indicates that climate fluctuations of short duration may temporarily reverse the vertical direction of fluid flow through the peat, although this has little effect on water chemistry5. On the other hand, periods of drought persisting for at least 3-5 years produce striking changes in the chemistry of the pore water. These longer-term changes in hydrology influence the flux of nutrients and dissolved organic matter through the deeper peat, and therefore affect directly the rates of fermentation and methanogenesis, and the export of dissolved carbon compounds from the peatland.

  2. Numerical study on the influence of entrapped air bubbles on the time-dependent pore pressure distribution in soils due to external changes in water level

    Directory of Open Access Journals (Sweden)

    Ausweger Georg M.

    2016-01-01

    Full Text Available In practical geotechnical engineering soils below the groundwater table are usually regarded as a two-phase medium, consisting of solids and water. The pore water is assumed to be incompressible. However, under certain conditions soils below the groundwater table may exhibit a liquid phase consisting of water and air. The air occurs in form of entrapped air bubbles and dissolved air. Such conditions are named quasi-saturated and the assumption of incompressibility is no longer justified. In addition the entrapped air bubbles influence the hydraulic conductivity of soils. These effects are usually neglected in standard problems of geotechnical engineering. However, sometimes it is required to include the pore fluid compressibility when modelling the hydraulic behaviour of soils in order to be able to explain certain phenomena observed in the field. This is for example true for fast fluctuating water levels in reservoirs. In order to study these phenomena, numerical investigations on the influence of the pore fluid compressibility on the pore water pressure changes in a soil layer beneath a reservoir with fast fluctuating water levels were performed. Preliminary results of this study are presented and it could be shown that numerical analysis and field data are in good agreement.

  3. A statistical image analysis framework for pore-free islands derived from heterogeneity distribution of nuclear pore complexes.

    Science.gov (United States)

    Mimura, Yasuhiro; Takemoto, Satoko; Tachibana, Taro; Ogawa, Yutaka; Nishimura, Masaomi; Yokota, Hideo; Imamoto, Naoko

    2017-11-24

    Nuclear pore complexes (NPCs) maintain cellular homeostasis by mediating nucleocytoplasmic transport. Although cyclin-dependent kinases (CDKs) regulate NPC assembly in interphase, the location of NPC assembly on the nuclear envelope is not clear. CDKs also regulate the disappearance of pore-free islands, which are nuclear envelope subdomains; this subdomain gradually disappears with increase in homogeneity of the NPC in response to CDK activity. However, a causal relationship between pore-free islands and NPC assembly remains unclear. Here, we elucidated mechanisms underlying NPC assembly from a new perspective by focusing on pore-free islands. We proposed a novel framework for image-based analysis to automatically determine the detailed 'landscape' of pore-free islands from a large quantity of images, leading to the identification of NPC intermediates that appear in pore-free islands with increased frequency in response to CDK activity. Comparison of the spatial distribution between simulated and the observed NPC intermediates within pore-free islands showed that their distribution was spatially biased. These results suggested that the disappearance of pore-free islands is highly related to de novo NPC assembly and indicated the existence of specific regulatory mechanisms for the spatial arrangement of NPC assembly on nuclear envelopes.

  4. Small scale laboratory studies of flow and transport phenomena in pores and fractures: Phase II. Progress report, 3rd year continuation proposal, and work plan

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, J.L.

    1994-05-01

    Small scale laboratory experiments, equipped with an ability to actually observe behavior on the pore level using microscopy, provide an economical and easily understood scientific tool to help us validate concepts and assumptions about the transport of contaminants, and offers the propensity to discover heretofore unrecognized phenomena or behavior. The main technique employs etched glass micromodels, composed of two etched glass plates, sintered together, to form a two dimensional network of three dimensional pores. Flow and transport behavior is observed on a pore or pore network level, and recorder on film and video tape. This technique is coupled with related column studies. These techniques have been used to study multiphase flow, colloid transport and most recently bacteria transport. The project has recently moved to the Bacteria Transport Subprogram, and efforts have been redirected to support that Subprogram and its collaborative field experiment. We proposed to study bacteria transport factors of relevance to the field experiment, using micromodels and other laboratory techniques. Factors that may be addressed include bacteria characteristics (eg, hydrophobicity), pore size and shape, permeability heterogeneity, surface chemistry (eg, iron oxide coatings), surface chemistry heterogeneity, active versus resting cell bacteria, and mixed bacteria populations. In other work we will continue to examine the effects of fluid-fluid interfaces on bacteria transport, and develop a new assay for bacteria hydrophobicity. Finally we will collaborate on characterization of the field site, and the design, operation, and interpretation of the field experiment.

  5. Pore-scale study on flow and heat transfer in 3D reconstructed porous media using micro-tomography images

    International Nuclear Information System (INIS)

    Liu, Zhenyu; Wu, Huiying

    2016-01-01

    Highlights: • The complex porous domain has been reconstructed with the micro CT scan images. • Pore-scale numerical model based on LB method has been established. • The correlations for flow and heat transfer were derived from the predictions. • The numerical approach developed in this work is suitable for complex porous media. - Abstract: This paper presents the numerical study on fluid flow and heat transfer in reconstructed porous media at the pore-scale with the double-population thermal lattice Boltzmann (LB) method. The porous geometry was reconstructed using micro-tomography images from micro-CT scanner. The thermal LB model was numerically tested before simulation and a good agreement was achieved by compared with the existing results. The detailed distributions of velocity and temperature in complex pore spaces were obtained from the pore-scale simulation. The correlations for flow and heat transfer in the specific porous media sample were derived based on the numerical results. The numerical method established in this work provides a promising approach to predict pore-scale flow and heat transfer characteristics in reconstructed porous domain with real geometrical effect, which can be extended for the continuum modeling of the transport process in porous media at macro-scale.

  6. Transmembrane helical interactions in the CFTR channel pore.

    Directory of Open Access Journals (Sweden)

    Jhuma Das

    2017-06-01

    Full Text Available Mutations in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR gene affect CFTR protein biogenesis or its function as a chloride channel, resulting in dysregulation of epithelial fluid transport in the lung, pancreas and other organs in cystic fibrosis (CF. Development of pharmaceutical strategies to treat CF requires understanding of the mechanisms underlying channel function. However, incomplete 3D structural information on the unique ABC ion channel, CFTR, hinders elucidation of its functional mechanism and correction of cystic fibrosis causing mutants. Several CFTR homology models have been developed using bacterial ABC transporters as templates but these have low sequence similarity to CFTR and are not ion channels. Here, we refine an earlier model in an outward (OWF and develop an inward (IWF facing model employing an integrated experimental-molecular dynamics simulation (200 ns approach. Our IWF structure agrees well with a recently solved cryo-EM structure of a CFTR IWF state. We utilize cysteine cross-linking to verify positions and orientations of residues within trans-membrane helices (TMHs of the OWF conformation and to reconstruct a physiologically relevant pore structure. Comparison of pore profiles of the two conformations reveal a radius sufficient to permit passage of hydrated Cl- ions in the OWF but not the IWF model. To identify structural determinants that distinguish the two conformations and possible rearrangements of TMHs within them responsible for channel gating, we perform cross-linking by bifunctional reagents of multiple predicted pairs of cysteines in TMH 6 and 12 and 6 and 9. To determine whether the effects of cross-linking on gating observed are the result of switching of the channel from open to close state, we also treat the same residue pairs with monofunctional reagents in separate experiments. Both types of reagents prevent ion currents indicating that pore blockage is primarily responsible.

  7. Mineral transformation controls speciation and pore-fluid transmission of contaminants in waste-weathered Hanford sediments

    Science.gov (United States)

    Perdrial, Nicolas; Thompson, Aaron; O'Day, Peggy A.; Steefel, Carl I.; Chorover, Jon

    2014-09-01

    Portions of the Hanford Site (WA, USA) vadose zone were subjected to weathering by caustic solutions during documented releases of high level radioactive waste (containing Sr, Cs and I) from leaking underground storage tanks. Previous studies have shown that waste-sediment interactions can promote variable incorporation of contaminants into neo-formed mineral products (including feldspathoids and zeolites), but processes regulating the subsequent contaminant release from these phases into infiltrating background pore waters remain poorly known. In this paper, reactive transport experiments were conducted with Hanford sediments previously weathered for one year in simulated hyper-alkaline waste solutions containing high or low 88Sr, 127I, and 133Cs concentrations, with or without CO2(aq). These waste-weathered sediments were leached in flow-through column experiments with simulated background pore water (characteristic of meteoric recharge) to measure contaminant release from solids formed during waste-sediment interaction. Contaminant sorption-desorption kinetics and mineral transformation reactions were both monitored using continuous-flow and wet-dry cycling regimes for ca. 300 pore volumes. Less than 20% of contaminant 133Cs and 88Sr mass and less than 40% 127I mass were released over the course of the experiment. To elucidate molecular processes limiting contaminant release, reacted sediments were studied with micro- (TEM and XRD) and molecular- (Sr K-edge EXAFS) scale methods. Contaminant dynamics in column experiments were principally controlled by rapid dissolution of labile solids and competitive exchange reactions. In initially feldspathoidic systems, time-dependent changes in the local zeolitic bonding environment observed with X-ray diffraction and EXAFS are responsible for limiting contaminant release. Linear combination fits and shell-by-shell analysis of Sr K-edge EXAFS data revealed modification in Sr-Si/Al distances within the zeolite cage. Wet

  8. Measuring kinetic drivers of pneumolysin pore structure.

    Science.gov (United States)

    Gilbert, Robert J C; Sonnen, Andreas F-P

    2016-05-01

    Most membrane attack complex-perforin/cholesterol-dependent cytolysin (MACPF/CDC) proteins are thought to form pores in target membranes by assembling into pre-pore oligomers before undergoing a pre-pore to pore transition. Assembly during pore formation is into both full rings of subunits and incomplete rings (arcs). The balance between arcs and full rings is determined by a mechanism dependent on protein concentration in which arc pores arise due to kinetic trapping of the pre-pore forms by the depletion of free protein subunits during oligomerization. Here we describe the use of a kinetic assay to study pore formation in red blood cells by the MACPF/CDC pneumolysin from Streptococcus pneumoniae. We show that cell lysis displays two kinds of dependence on protein concentration. At lower concentrations, it is dependent on the pre-pore to pore transition of arc oligomers, which we show to be a cooperative process. At higher concentrations, it is dependent on the amount of pneumolysin bound to the membrane and reflects the affinity of the protein for its receptor, cholesterol. A lag occurs before cell lysis begins; this is dependent on oligomerization of pneumolysin. Kinetic dissection of cell lysis by pneumolysin demonstrates the capacity of MACPF/CDCs to generate pore-forming oligomeric structures of variable size with, most likely, different functional roles in biology.

  9. Viscoelastic gravel-pack carrier fluid

    International Nuclear Information System (INIS)

    Nehmer, W.L.

    1988-01-01

    The ability of a fluid to flow adequately into the formation during gravel-pack treatments is critical to achieving a good pack. Recent studies have indicated ''fish-eyes'' and/or ''microgels'' present in many polymer gelled carrier fluids will plug pore throats, leading to impaired leakoff and causing formation damage. Intensive manipulation of the polymer gelled fluid using shear and filter devices will help remove the particles, but it adds to the cost of the treatment in terms of equipment and manpower. Excessive shear will degrade the polymer leading to poor gravel suspension, while too little shear will cause filtration problems. A gelled carried fluid using a viscoelastic surfactant system has been found to leak off very efficiently to the formation, and cause no formation damage, without the use of shear/filter devices. Viscoelastic surfactant-base gelled fluids develop viscosity because of the association of surfactant moloecules into large rod-shaped aggregates. There is no hydration of polymer involved, so fish-eyes and microgels will not be formed in the viscoelastic fluid. A surfactant-base system having a yield point allows the gravel carrying properties to be much better than fluids gelled with conventional polymer systems (hydroxyethylcellulose [HEC]). For example, a gravel carried fluid gelled with 80 lb HEC/1,000 gal has a viscosity of about 400 cp at 170 sec/sup -1/; a viscoelastic surfactant-base system having only one-half the viscosity still flows into cores about four times more efficiently than the HEC-base fluid. The rheology, leakoff, formation damage and mixing properties of a viscoelastic, surfactant-base, gravel-pack carrier fluid are discussed

  10. The role and effect of residual stress on pore generation during anodization of aluminium thin films

    International Nuclear Information System (INIS)

    Liao, M.W.; Chung, C.K.

    2013-01-01

    Highlights: •Al films of varying residual stress were prepared by sputtering. •Variation of the residual stress in the Al films influences pore growth during anodization. •The change in average pore size with residual stress is fairly small. •Interaction of residual stress with oxide growth stress leads to change in structure. •Residual tensile stress increases the pore density of porous alumina. -- Abstract: The role and effect of residual stress on pore generation of anodized aluminium oxide (AAO) have been investigated into anodizing the various-residual-stresses aluminium films. The plane stresses were characterised by X-ray diffraction with sin 2 ψ method. The pore density roughly linearly increased with residual stress from 64.6 (−132.5 MPa) to 90.5 pores/μm 2 (135.9 MPa). However, the average pore size around 40 nm was not changed significantly except for the rougher film. The tensile residual stress lessened the compressive oxide growth stress to reduce AAO plastic deformation for higher pore density. The findings provide new foundations for realizing AAO films on silicon

  11. Investigation of pore-scale flow physics in porous media burners

    Science.gov (United States)

    Sobhani, Sadaf; Muhunthan, Priyanka; Boigne, Emeric; Mohaddes, Danyal; Ihme, Matthias; Stanford University Team

    2017-11-01

    Porous media burners (PMBs) operate on the principle that the solid porous matrix serves as a means of internally recirculating heat from the combustion products upstream to the reactants, enabling a reduction of the lean-flammability limit, higher power dynamic range, and lower NOx and CO emissions as compared to conventional systems. Accurate predictions of the flow features and properties such as pressure loss in reticulated ceramic foams is an important step in the characterization and optimization of combustion in porous media. In this work, an integrated framework is proposed from obtaining the porous sample to performing a computational fluid dynamics simulation, including X-ray microtomography scanning, digital topology rendering, and volume meshing. Three-dimensional numerical simulations of the flow in the complex geometries of porous foams are obtained by solution of the Navier-Stokes equations using an unstructured, finite-volume solver. This capability enables the investigation of pore-scale flow physics in a wide range of porous materials used in PMBs. In this talk, results obtained at pore-scale Reynolds numbers of order 10 to 100 in a Silicone Carbide foam are presented to demonstrate this capability.

  12. Initial geochemical characteristics of fluid fine tailings in an oil sands end pit lake

    Energy Technology Data Exchange (ETDEWEB)

    Dompierre, Kathryn A. [Department of Civil and Geological Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5A9 (Canada); Lindsay, Matthew B.J., E-mail: matt.lindsay@usask.ca [Department of Geological Sciences, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2 (Canada); Cruz-Hernández, Pablo [Department of Geology, University of Huelva, Campus ‘El Carmen’, E-21071 Huelva (Spain); Halferdahl, Geoffrey M. [Environmental Research and Development, Syncrude Canada Limited, Edmonton, Alberta T6N 1H4 (Canada)

    2016-06-15

    Geochemical characteristics of fluid fine tailings (FFT) were examined in Base Mine Lake (BML), which is the first full-scale demonstration oil sands end pit lake (EPL) in northern Alberta, Canada. Approximately 186 Mm{sup 3} of FFT was deposited between 1994 and 2012, before BML was established on December 31, 2012. Bulk FFT samples (n = 588) were collected in July and August 2013 at various depths at 15 sampling sites. Temperature, solid content, electrical conductivity (EC), pH, Eh and alkalinity were measured for all samples. Detailed geochemical analyses were performed on a subset of samples (n = 284). Pore-water pH decreased with depth by approximately 0.5 within the upper 10 m of the FFT. Major pore-water constituents included Na (880 ± 96 mg L{sup −1}) and Cl (560 ± 95 mg L{sup −1}); Ca (19 ± 4.1 mg L{sup −1}), Mg (11 ± 2.0 mg L{sup −1}), K (16 ± 2.3 mg L{sup −1}) and NH{sub 3} (9.9 ± 4.7 mg L{sup −1}) were consistently observed. Iron and Mn concentrations were low within FFT pore water, whereas SO{sub 4} concentrations decreased sharply across the FFT–water interface. Geochemical modeling indicated that FeS{sub (s)} precipitation was favoured under SO{sub 4}-reducing conditions. Pore water was also under-saturated with respect to gypsum [CaSO{sub 4}·2H{sub 2}O], and near saturation with respect to calcite [CaCO{sub 3}], dolomite [CaMg(CO{sub 3}){sub 2}] and siderite [FeCO{sub 3}]. X-ray diffraction (XRD) suggested that carbonate-mineral dissolution largely depleted calcite and dolomite. X-ray absorption near edge structure (XANES) spectroscopy revealed the presence of FeS{sub (s)}, pyrite [FeS{sub 2}], and siderite. Carbonate-mineral dissolution and secondary mineral precipitation have likely contributed to FFT dewatering and settlement. However, the long-term importance of these processes within EPLs remains unknown. These results provide a reference for assessing the long-term geochemical evolution of oil sands EPLs, and offer

  13. Geometry-driven cell organization determines tissue growths in scaffold pores: consequences for fibronectin organization.

    Directory of Open Access Journals (Sweden)

    Pascal Joly

    Full Text Available To heal tissue defects, cells have to bridge gaps and generate new extracellular matrix (ECM. Macroporous scaffolds are frequently used to support the process of defect filling and thus foster tissue regeneration. Such biomaterials contain micro-voids (pores that the cells fill with their own ECM over time. There is only limited knowledge on how pore geometry influences cell organization and matrix production, even though it is highly relevant for scaffold design. This study hypothesized that 1 a simple geometric description predicts cellular organization during pore filling at the cell level and that 2 pore closure results in a reorganization of ECM. Scaffolds with a broad distribution of pore sizes (macroporous starPEG-heparin cryogel were used as a model system and seeded with primary fibroblasts. The strategies of cells to fill pores could be explained by a simple geometrical model considering cells as tensioned chords. The model matched qualitatively as well as quantitatively by means of cell number vs. open cross-sectional area for all pore sizes. The correlation between ECM location and cell position was higher when the pores were not filled with tissue (Pearson's coefficient ρ = 0.45±0.01 and reduced once the pores were closed (ρ = 0.26±0.04 indicating a reorganization of the cell/ECM network. Scaffold pore size directed the time required for pore closure and furthermore impacted the organization of the fibronectin matrix. Understanding how cells fill micro-voids will help to design biomaterial scaffolds that support the endogenous healing process and thus allow a fast filling of tissue defects.

  14. Using pore-scale imaging and modeling to provide new insights in multi-phase flow, transport and reaction phenomena in porous media (Invited)

    Science.gov (United States)

    Bijeljic, B.; Andrew, M. G.; Menke, H. P.; Blunt, M. J.

    2013-12-01

    Advances in X ray imaging techniques made it possible not only to accurately describe solid and fluid(s) distributions in the pore space but also to study dynamics of multi-phase flow and reactive transport in-situ. This has opened up a range of new opportunities to better understand fundamental physics at the pore scale by experiment, and test and validate theoretical models in order to develop predictive tools at the pore scale and use it for upscaling. Firstly, we illustrate this concept by describing a new methodology for predicting non-Fickian transport in millimeter-sized three-dimensional micro-CT images of a beadpack, a sandstone, and a carbonate, representing porous media with an increasing degree of pore-scale complexity. The key strategy is to retain the full information on flow and transport signature of a porous medium by using probability distribution functions (PDFs) of voxel velocities for flow, and both PDFs of particle displacements and PDFs of particle transit times between voxels for transport. For this purpose, direct-simulation flow and transport model is used to analyse the relationship between pore structure, velocity, and the dynamics of the evolving plume. The model predictions for PDFs of particle displacements obtained by the model are in excellent agreement with those measured on similar cores in nuclear magnetic resonance experiments. A key determinant for non-Fickian transport is the spread in velocity distribution in the pore space. Further, we present micro-CT imaging of capillary trapping of scCO2 at reservoir conditions in a range of carbonates and sandstones having different pore structure and demonstrate that substantial quantities of scCO2 can be trapped in the pore space. Higher residual scCO2 saturations are found in sandstones compared to carbonates. The trapped ganglia exhibit different distribution of size, related to the inherent structure of pore space. Pore structures with large, open pores that are well connected lead

  15. Ethylene glycol as bore fluid for hollow fiber membrane preparation

    KAUST Repository

    Le, Ngoc Lieu

    2017-03-31

    We proposed the use of ethylene glycol and its mixture with water as bore fluid for the preparation of poly(ether imide) (PEI) hollow fiber membranes and compared their performance and morphology with membranes obtained with conventional coagulants (water and its mixture with the solvent N-methylpyrrolidone (NMP)). Thermodynamics and kinetics of the systems were investigated. Water and 1:1 water:EG mixtures lead to fast precipitation rates. Slow precipitation is observed for both pure EG and 9:1 NMP:water mixture, but the reasons for that are different. While low osmotic driving force leads to slow NMP and water transport when NMP:water is used, the high EG viscosity is the reason for the slow phase separation when EG is the bore fluid. The NMP:water mixture produces fibers with mixed sponge-like and finger-like structure with large pores in the inner and outer layers; and hence leading to a high water permeance and a high MWCO suitable for separation of large-sized proteins. As compared to NMP:water, using EG as bore fluid provides fibers with a finger-like bilayered structure and sponge-like layers near the surfaces, and hence contributing to the higher water permeance. It also induces small pores for better protein rejection.

  16. Ethylene glycol as bore fluid for hollow fiber membrane preparation

    KAUST Repository

    Le, Ngoc Lieu; Nunes, Suzana Pereira

    2017-01-01

    We proposed the use of ethylene glycol and its mixture with water as bore fluid for the preparation of poly(ether imide) (PEI) hollow fiber membranes and compared their performance and morphology with membranes obtained with conventional coagulants (water and its mixture with the solvent N-methylpyrrolidone (NMP)). Thermodynamics and kinetics of the systems were investigated. Water and 1:1 water:EG mixtures lead to fast precipitation rates. Slow precipitation is observed for both pure EG and 9:1 NMP:water mixture, but the reasons for that are different. While low osmotic driving force leads to slow NMP and water transport when NMP:water is used, the high EG viscosity is the reason for the slow phase separation when EG is the bore fluid. The NMP:water mixture produces fibers with mixed sponge-like and finger-like structure with large pores in the inner and outer layers; and hence leading to a high water permeance and a high MWCO suitable for separation of large-sized proteins. As compared to NMP:water, using EG as bore fluid provides fibers with a finger-like bilayered structure and sponge-like layers near the surfaces, and hence contributing to the higher water permeance. It also induces small pores for better protein rejection.

  17. Dissolution at porous interfaces VI: Multiple pore systems.

    Science.gov (United States)

    Grijseels, H; Crommelin, D J; De Blaey, C J

    1984-12-01

    With the aid of rapidly dissolving sodium chloride particles, cubic pores were made in the surface of a theophylline tablet. The influence of the pores on the dissolution rate of the surface was investigated in a rotating disk apparatus. Like the drilled pores used in earlier studies, downstream on the surface they caused a turbulent flow regimen with the development of a trough due to enhanced erosion. The phenomenon of a critical pore diameter, discovered with single, drilled pores, seems to be applicable to the cubic pores investigated in this study, although a higher degree of surface coverage with pores caused complications, probably due to particles bordering one another and forming larger pores. The behavior of the porous surfaces at different rotation speeds was studied. Due to the presence of pores the laminar character of the boundary layer flow changes to turbulent, which induces locally an increased dissolution flux in the wake of a pore.

  18. Available states and available space: static properties that predict self-diffusivity of confined fluids

    International Nuclear Information System (INIS)

    Goel, Gaurav; Krekelberg, William P; Pond, Mark J; Truskett, Thomas M; Mittal, Jeetain; Shen, Vincent K; Errington, Jeffrey R

    2009-01-01

    Although classical density functional theory provides reliable predictions for the static properties of simple equilibrium fluids under confinement, a theory of comparative accuracy for the transport coefficients has yet to emerge. Nonetheless, there is evidence that knowledge of how confinement modifies static behavior can aid in forecasting dynamics. Specifically, recent molecular simulation studies have shown that the relationship between excess entropy and self-diffusivity of a bulk equilibrium fluid changes only modestly when the fluid is isothermally confined, indicating that knowledge of the former might allow semi-quantitative predictions of the latter. Do other static measures, such as those that characterize free or available volume, also strongly correlate with single-particle dynamics of confined fluids? Here, we investigate this question for both the single-component hard-sphere fluid and hard-sphere mixtures. Specifically, we use molecular simulations and fundamental measure theory to study these systems at approximately 10 3 equilibrium state points. We examine three different confining geometries (slit pore, square channel, and cylindrical pore) and the effects of particle packing fraction and particle–boundary interactions. Although average density fails to predict some key qualitative trends for the self-diffusivity of confined fluids, we provide strong empirical evidence that a new generalized measure of available volume for inhomogeneous fluids correlates excellently with self-diffusivity across a wide parameter space in these systems, approximately independently of the degree of confinement. An important consequence, which we demonstrate here, is that density functional theory predictions of this static property can be used together with knowledge of bulk fluid behavior to semi-quantitatively estimate the self-diffusion coefficient of confined fluids under equilibrium conditions

  19. Straight-chain halocarbon forming fluids for TRISO fuel kernel production – Tests with yttria-stabilized zirconia microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Baker, M.P. [Nuclear Science and Engineering Program, Metallurgical and Materials Engineering Department, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401 (United States); King, J.C., E-mail: kingjc@mines.edu [Nuclear Science and Engineering Program, Metallurgical and Materials Engineering Department, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401 (United States); Gorman, B.P. [Metallurgical and Materials Engineering Department, Colorado Center for Advanced Ceramics, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401 (United States); Braley, J.C. [Nuclear Science and Engineering Program, Chemistry and Geochemistry Department, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401 (United States)

    2015-03-15

    Highlights: • YSZ TRISO kernels formed in three alternative, non-hazardous forming fluids. • Kernels characterized for size, shape, pore/grain size, density, and composition. • Bromotetradecane is suitable for further investigation with uranium-based precursor. - Abstract: Current methods of TRISO fuel kernel production in the United States use a sol–gel process with trichloroethylene (TCE) as the forming fluid. After contact with radioactive materials, the spent TCE becomes a mixed hazardous waste, and high costs are associated with its recycling or disposal. Reducing or eliminating this mixed waste stream would not only benefit the environment, but would also enhance the economics of kernel production. Previous research yielded three candidates for testing as alternatives to TCE: 1-bromotetradecane, 1-chlorooctadecane, and 1-iodododecane. This study considers the production of yttria-stabilized zirconia (YSZ) kernels in silicone oil and the three chosen alternative formation fluids, with subsequent characterization of the produced kernels and used forming fluid. Kernels formed in silicone oil and bromotetradecane were comparable to those produced by previous kernel production efforts, while those produced in chlorooctadecane and iodododecane experienced gelation issues leading to poor kernel formation and geometry.

  20. Carbon sequestration potential of the Habanero reservoir when carbon dioxide is used as the heat exchange fluid

    Directory of Open Access Journals (Sweden)

    Chaoshui Xu

    2016-02-01

    Full Text Available The use of sequestered carbon dioxide (CO2 as the heat exchange fluid in enhanced geothermal system (EGS has significant potential to increase their productivity, contribute further to reducing carbon emissions and increase the economic viability of geothermal power generation. Coupled CO2 sequestration and geothermal energy production from hot dry rock (HDR EGS were first proposed 15 years ago but have yet to be practically implemented. This paper reviews some of the issues in assessing these systems with particular focus on the power generation and CO2 sequestration capacity. The Habanero geothermal field in the Cooper Basin of South Australia is assessed for its potential CO2 storage capacity if supercritical CO2 is used as the working fluid for heat extraction. The analysis suggests that the major CO2 sequestration mechanisms are the storage in the fracture-stimulation damaged zone followed by diffusion into the pores within the rock matrix. The assessment indicates that 5% of working fluid loss commonly suggested as the storage capacity might be an over-estimate of the long-term CO2 sequestration capacity of EGS in which supercritical CO2 is used as the circulation fluid.

  1. Cellular-automation fluids: A model for flow in porous media

    International Nuclear Information System (INIS)

    Rothman, D.H.

    1987-01-01

    Because the intrinsic inhomogeneity of porous media makes the application of proper boundary conditions difficult, fluid flow through microgeometric models has typically been achieved with idealized arrays of geometrically simple pores, throats, and cracks. The author proposes here an attractive alternative, capable of freely and accurately modeling fluid flow in grossly irregular geometries. This new method numerically solves the Navier-Stokes equations using the cellular-automation fluid model introduced by Frisch, Hasslacher, and Pomeau. The cellular-automation fluid is extraordinarily simple - particles of unit mass traveling with unit velocity reside on a triangular lattice and obey elementary collisions rules - but capable of modeling much of the rich complexity of real fluid flow. The author shows how cellular-automation fluids are applied to the study of porous media. In particular, he discusses issues of scale on the cellular-automation lattice and present the results of 2-D simulations, including numerical estimation of permeability and verification of Darcy's law

  2. EFFECTS OF PORE STRUCTURE CHANGE AND MULTI-SCALE HETEROGENEITY ON CONTAMINANT TRANSPORT AND REACTION RATE UPSCALING

    Energy Technology Data Exchange (ETDEWEB)

    Lindquist, W. Brent; Jones, Keith W.; Um, Wooyong; Rockhold, mark; Peters, Catherine A.; Celia, Michael A.

    2013-02-15

    This project addressed the scaling of geochemical reactions to core and field scales, and the interrelationship between reaction rates and flow in porous media. We targeted reactive transport problems relevant to the Hanford site - specifically the reaction of highly caustic, radioactive waste solutions with subsurface sediments, and the immobilization of 90Sr and 129I through mineral incorporation and passive flow blockage, respectively. We addressed the correlation of results for pore-scale fluid-soil interaction with field-scale fluid flow, with the specific goals of (i) predicting attenuation of radionuclide concentration; (ii) estimating changes in flow rates through changes of soil permeabilities; and (iii) estimating effective reaction rates. In supplemental work, we also simulated reactive transport systems relevant to geologic carbon sequestration. As a whole, this research generated a better understanding of reactive transport in porous media, and resulted in more accurate methods for reaction rate upscaling and improved prediction of permeability evolution. These scientific advancements will ultimately lead to better tools for management and remediation of DOE’s legacy waste problems. We established three key issues of reactive flow upscaling, and organized this project in three corresponding thrust areas. 1) Reactive flow experiments. The combination of mineral dissolution and precipitation alters pore network structure and the subsequent flow velocities, thereby creating a complex interaction between reaction and transport. To examine this phenomenon, we conducted controlled laboratory experimentation using reactive flow-through columns. Results and Key Findings: Four reactive column experiments (S1, S3, S4, S5) have been completed in which simulated tank waste leachage (STWL) was reacted with pure quartz sand, with and without Aluminum. The STWL is a caustic solution that dissolves quartz. Because Al is a necessary element in the formation of

  3. Multiscale pore networks and their effect on deformation and transport property alteration associated with hydraulic fracturing

    Science.gov (United States)

    Daigle, Hugh; Hayman, Nicholas; Jiang, Han; Tian, Xiao; Jiang, Chunbi

    2017-04-01

    clusters of organic-hosted pores prevents the overpressure from dissipating, resulting in localized overpressure at the micron scale. When the rock is subjected to a hydraulic fracture stimulation, the rock surrounding the main induced fracture experiences shear deformation. Those parts of the rock that contain overpressured fluids in the organic-hosted pores will be more likely to experience dilatancy in the form of brittle deformation; the portions of the rock lacking in organic-hosted pores will tend to experience compactive shear failure since the effective normal stresses are larger. The microcrack networks that propagate into the regions of organic-hosted porosity allow the hydrocarbons resident in those pores to migrate to the main induced tensile fractures. The disconnected nature of the microcrack networks causes only a slight increase in permeability, which is consistent with other observations. Our work illustrates how multiscale pore networks in shale interact with in situ stresses to affect the bulk shale rheology.

  4. Pore-Scale Simulation for Predicting Material Transport Through Porous Media

    International Nuclear Information System (INIS)

    Goichi Itoh; Jinya Nakamura; Koji Kono; Tadashi Watanabe; Hirotada Ohashi; Yu Chen; Shinya Nagasaki

    2002-01-01

    Microscopic models of real-coded lattice gas automata (RLG) method with a special boundary condition and lattice Boltzmann method (LBM) are developed for simulating three-dimensional fluid dynamics in complex geometry. Those models enable us to simulate pore-scale fluid dynamics that is an essential part for predicting material transport in porous media precisely. For large-scale simulation of porous media with high resolution, the RLG and LBM programs are designed for parallel computation. Simulation results of porous media flow by the LBM with different pressure gradient conditions show quantitative agreements with macroscopic relations of Darcy's law and Kozeny-Carman equation. As for the efficiency of parallel computing, a standard parallel computation by using MPI (Message Passing Interface) is compared with the hybrid parallel computation of MPI-node parallel technique. The benchmark tests conclude that in case of using large number of computing node, the parallel performance declines due to increase of data communication between nodes and the hybrid parallel computation totally shows better performance in comparison with the standard parallel computation. (authors)

  5. Is trabecular bone permeability governed by molecular ordering-induced fluid viscosity gain? Arguments from re-evaluation of experimental data in the framework of homogenization theory.

    Science.gov (United States)

    Abdalrahman, T; Scheiner, S; Hellmich, C

    2015-01-21

    It is generally agreed on that trabecular bone permeability, a physiologically important quantity, is governed by the material׳s (vascular or intertrabecular) porosity as well as by the viscosity of the pore-filling fluids. Still, there is less agreement on how these two key factors govern bone permeability. In order to shed more light onto this somewhat open issue, we here develop a random homogenization scheme for upscaling Poiseuille flow in the vascular porosity, up to Darcy-type permeability of the overall porous medium "trabecular bone". The underlying representative volume element of the macroscopic bone material contains two types of phases: a spherical, impermeable extracellular bone matrix phase interacts with interpenetrating cylindrical pore channel phases that are oriented in all different space directions. This type of interaction is modeled by means of a self-consistent homogenization scheme. While the permeability of the bone matrix equals to zero, the permeability of the pore phase is found through expressing the classical Hagen-Poiseuille law for laminar flow in the format of a "micro-Darcy law". The upscaling scheme contains pore size and porosity as geometrical input variables; however, they can be related to each other, based on well-known relations between porosity and specific bone surface. As two key results, validated through comprehensive experimental data, it appears (i) that the famous Kozeny-Carman constant (which relates bone permeability to the cube of the porosity, the square of the specific surface, as well as to the bone fluid viscosity) needs to be replaced by an again porosity-dependent rational function, and (ii) that the overall bone permeability is strongly affected by the pore fluid viscosity, which, in case of polarized fluids, is strongly increased due to the presence of electrically charged pore walls. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Fluid substitution studies for North Sea chalk logging data

    DEFF Research Database (Denmark)

    Gommesen, Lars; Mavko, G.; Mukerji, T.

    2002-01-01

    We have tested the application of respectively the Kuster-Toksöz and the Gassmann theory as a tool for predicting pore fluid from the elastic properties of brine-saturated North Sea reservoir chalk. We confirm that the Kuster-Toksöz model predicts a larger fluid effect thant the Gassmann model......, and show that the Kuster-Toksöz model fails to predict the presence of hydrocarbons. The Gassmann prediction for the near and potentially invaded zone corresponds more closely to logging data, than the Gassmann prediction for the far, virgin zone. We hereby conclude that the Gassmann theory predicts...

  7. The contribution of free water transport and small pore transport to the total fluid removal in peritoneal dialysis

    NARCIS (Netherlands)

    Parikova, Alena; Smit, Watske; Struijk, Dirk G.; Zweers, Machteld M.; Krediet, Raymond T.

    2005-01-01

    BACKGROUND: Water transport in peritoneal dialysis (PD) patients is across the small pores and water channels, the latter allowing free water transport. The objective of the study was to investigate the contribution of each transport route on transcapillary ultrafiltration (TCUF). METHODS: Standard

  8. Complex resistivity spectra in relation to multiscale pore geometry in carbonates and mixed-siliciclastic rocks

    Science.gov (United States)

    Norbisrath, Jan Henrik

    Carbonate rocks are known to have complex and heterogeneous pore structures, which result from their biogenic origin and strong affinity for diagenetic processes that change their pore structure after burial. The combination of sheer endless variations of precursor biogenic material, depositional environments, and diagenetic effects results in rocks that are interesting to study but intricate to understand. Many schemes to categorize the diversity of carbonate rocks are in use today; most are based on the macropore structure and qualitative thin-section analysis. Many studies, however, acknowledge that micropores have a significant influence on the macroscopic petrophysical rock properties, which are essential to determine reservoir quality. Micropores are, by definition, smaller than the thickness of a thin-section (four major carbonate microporosity types: (1) small intercrystalline, (2) large inter-crystalline, (3) intercement, and (4) micromoldic. Each microporosity type shows a distinct capacity to conduct electrical charge, which largely controls the magnitude and range of cementation factors (m) in rocks with such microporosity type. The BIB-SEM method is also used on a dataset of mixed carbonate-siliciclastic (mudrock) samples with high kerogen and pyrite content. Results show that the nanopore geometry here has little influence on cementation factors, and instead porosity is the main control on m in mudrocks. Cementation factors are crucial for estimates of oil-in-place and water saturation in a wireline application, and a slight change of (assumed) cementation factor can change the interpreter's evaluation from dry hole to discovery. Therefore, accurate determination of cementation factors is a critical task in formation evaluation, similar to accurate estimates of permeability. To achieve this goal, this dissertation utilizes a new approach of using complex resistivity spectra (CRS) to assess the pore geometry and its resulting electrical and fluid flow

  9. Experimental study on the response characteristics of coal permeability to pore pressure under loading and unloading conditions

    Science.gov (United States)

    Ye, Zhiwei; Zhang, Lei; Hao, Dingyi; Zhang, Cun; Wang, Chen

    2017-10-01

    In order to study the response characteristics of coal permeability to pore pressure, seepage experiments under different simulated in situ stresses on loading and unloading paths are carried out using the self-developed Gas Flow and Displacement Testing Apparatus (GFDTA) system. Based on the analysis of the experimental data, the relationship between average pore pressure and permeability is found to basically obey the function distribution of a two degree polynomial. In this paper, two aspects of the relationship between permeability and pore pressure are explained: the Klinbenberg effect and expansion, and the penetration of the initial fracture. Under low pore pressure, the decrease in the Klinbenberg effect is the main reason for the decrease in permeability with increased pore pressure. Under relatively high pore pressure, the increase in pore pressure leads to the initial fracture expansion and penetration of the coal sample, which causes an increase in permeability. In order to evaluate the sensitivity of the permeability response to pore pressure changes, the permeability dispersion and pore pressure sensitivity coefficients are defined. After the sensitivity analysis, it was concluded that the loading history changed the fracture structure of the original coal sample and reduced its permeability sensitivity to pore pressure. Under low pore pressure, the Klinbenberg effect is the reason for the decrease in pore pressure sensitivity. Lastly, the permeability-pore pressure relationship is divided into three stages to describe the different response characteristics individually.

  10. Microfluidic Experiments Studying Pore Scale Interactions of Microbes and Geochemistry

    Science.gov (United States)

    Chen, M.; Kocar, B. D.

    2016-12-01

    Understanding how physical phenomena, chemical reactions, and microbial behavior interact at the pore-scale is crucial to understanding larger scale trends in groundwater chemistry. Recent studies illustrate the utility of microfluidic devices for illuminating pore-scale physical-biogeochemical processes and their control(s) on the cycling of iron, uranium, and other important elements 1-3. These experimental systems are ideal for examining geochemical reactions mediated by microbes, which include processes governed by complex biological phenomenon (e.g. biofilm formation, etc.)4. We present results of microfluidic experiments using a model metal reducing bacteria and varying pore geometries, exploring the limitations of the microorganisms' ability to access tight pore spaces, and examining coupled biogeochemical-physical controls on the cycling of redox sensitive metals. Experimental results will provide an enhanced understanding of coupled physical-biogeochemical processes transpiring at the pore-scale, and will constrain and compliment continuum models used to predict and describe the subsurface cycling of redox-sensitive elements5. 1. Vrionis, H. A. et al. Microbiological and geochemical heterogeneity in an in situ uranium bioremediation field site. Appl. Environ. Microbiol. 71, 6308-6318 (2005). 2. Pearce, C. I. et al. Pore-scale characterization of biogeochemical controls on iron and uranium speciation under flow conditions. Environ. Sci. Technol. 46, 7992-8000 (2012). 3. Zhang, C., Liu, C. & Shi, Z. Micromodel investigation of transport effect on the kinetics of reductive dissolution of hematite. Environ. Sci. Technol. 47, 4131-4139 (2013). 4. Ginn, T. R. et al. Processes in microbial transport in the natural subsurface. Adv. Water Resour. 25, 1017-1042 (2002). 5. Scheibe, T. D. et al. Coupling a genome-scale metabolic model with a reactive transport model to describe in situ uranium bioremediation. Microb. Biotechnol. 2, 274-286 (2009).

  11. Quantification of pore size distribution in reservoir rocks using MRI logging: A case study of South Pars Gas Field.

    Science.gov (United States)

    Ghojogh, Jalal Neshat; Esmaili, Mohammad; Noruzi-Masir, Behrooz; Bakhshi, Puyan

    2017-12-01

    Pore size distribution (PSD) is an important factor for controlling fluid transport through porous media. The study of PSD can be applicable in areas such as hydrocarbon storage, contaminant transport, prediction of multiphase flow, and analysis of the formation damage by mud infiltration. Nitrogen adsorption, centrifugation method, mercury injection, and X-ray computed tomography are commonly used to measure the distribution of pores. A core sample is occasionally not available because of the unconsolidated nature of reservoirs, high cost of coring operation, and program limitations. Magnetic resonance imaging logging (MRIL) is a proper logging technique that allows the direct measurement of the relaxation time of protons in pore fluids and correlating T 2 distribution to PSD using proper mathematical equations. It is nondestructive and fast and does not require core samples. In this paper, 8 core samples collected from the Dalan reservoir in South Pars Gas Field were studied by processing MRIL data and comparing them by PSD determined in the laboratory. By using the MRIL method, variation in PSD corresponding to the depth for the entire logged interval was determined. Moreover, a detailed mineralogical composition of the reservoir samples related to T 2 distribution was obtained. A good correlation between MRIL and mercury injection data was observed. High degree of similarity was also observed between T 2 distribution and PSD (R 2 = 0.85 to 0.91). Based on the findings from the MRIL method, the obtained values for clay bond water varied between 1E-6 and 1E-3µm, a range that is comprehended from an extra peak on the PSD curve. The frequent pore radius was determined to be 1µm. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Nanofluidic Devices with Two Pores in Series for Resistive-Pulse Sensing of Single Virus Capsids

    DEFF Research Database (Denmark)

    Harms, Zachary D.; Mogensen, Klaus Bo; Rodrigues de Sousa Nunes, Pedro André

    2011-01-01

    We report fabrication and characterization of nanochannel devices with two nanopores in series for resistive-pulse sensing of hepatitis B virus (HBV) capsids. The nanochannel and two pores are patterned by electron beam lithography between two microchannels and etched by reactive ion etching....... The two nanopores are 50-nm wide, 50-nm deep, and 40-nm long and are spaced 2.0-μm apart. The nanochannel that brackets the two pores is 20 wider (1 μm) to reduce the electrical resistance adjacent to the two pores and to ensure the current returns to its baseline value between resistive-pulse events...

  13. Effect analysis of intradermal hyaluronic acid injection to treat enlarged facial pores.

    Science.gov (United States)

    Qian, Wei; Zhang, Yan-Kun; Hou, Ying; Lyu, Wei; Cao, Qian; Li, Yan-Qi; Fan, Ju-Feng

    2017-08-08

    To investigate the clinical application and efficacy of intradermal injection of low molecular weight hyaluronic acid (LMW-HA) for treating enlarged facial pores. From January 2015 to May 2016, 42 subjects who sought aesthetic treatment underwent intradermal injection of LMW-HA to improve enlarged facial pores. For each treatment, 2.5 mL (25 mg) of LMW-HA was injected into the skin of the full face. The treatment was repeated 2-5 times with an interval of 1 to 1.5 months between consecutive treatments. The postoperative follow-up period was 1 to 6 months. Statistical analysis was used to compare the degree of enlargement of facial pores before and after injection. The clinical efficacy and adverse effects were recorded. The enlarged facial pores before and after treatment were categorized and subjected to the Wilcoxon matched-pairs signed-rank test. The difference was statistically significant (Pinjection sites in the subjects who sought aesthetic treatment. The overall satisfaction rate was 92.8%. Intradermal injection of LMW-HA can significantly improve skin texture, reduce pore size, and enhance skin radiance. The injection technique was simple, safe, and effective and could easily be extended to clinical practice. © 2017 Wiley Periodicals, Inc.

  14. Dynamics of capillary condensation in lattice gas models of confined fluids: a comparison of dynamic mean field theory with dynamic Monte Carlo simulations.

    Science.gov (United States)

    Edison, John R; Monson, Peter A

    2013-06-21

    This article addresses the accuracy of a dynamic mean field theory (DMFT) for fluids in porous materials [P. A. Monson, J. Chem. Phys. 128, 084701 (2008)]. The theory is used to study the relaxation processes of fluids in pores driven by step changes made to a bulk reservoir in contact with the pore. We compare the results of the DMFT to those obtained by averaging over large numbers of dynamic Monte Carlo (DMC) simulation trajectories. The problem chosen for comparison is capillary condensation in slit pores, driven by step changes in the chemical potential in the bulk reservoir and involving a nucleation process via the formation of a liquid bridge. The principal difference between the DMFT results and DMC is the replacement of a distribution of nucleation times and location along the pore for the formation of liquid bridges by a single time and location. DMFT is seen to yield an otherwise qualitatively accurate description of the dynamic behavior.

  15. Transport upscaling from pore- to Darcy-scale: Incorporating pore-scale Berea sandstone Lagrangian velocity statistics into a Darcy-scale transport CTRW model

    Science.gov (United States)

    Puyguiraud, Alexandre; Dentz, Marco; Gouze, Philippe

    2017-04-01

    ), Dual control of flow field heterogeneity and immobile porosity on non-Fickian transport in Berea sandstone, Water Resour. Res., 51, 8273-8293, doi:10.1002/2015WR017645. [2] Mostaghimi, P., Bijeljic, B., Blunt, M. (2012). Simulation of Flow and Dispersion on Pore-Space Images. Society of Petroleum Engineers. doi:10.2118/135261-PA. [3] Dentz, M., P. K. Kang, A. Comolli, T. Le Borgne, and D. R. Lester, Continuous time random walks for the evolution of Lagrangian velocities, Phys. Rev. Fluids, 2016. Keywords: Porescale, particle tracking, transport, Lagrangian velocity, ergodicity, Markovianity, continuous time random walks, upscaling.

  16. FINGERPRINT MATCHING BASED ON PORE CENTROIDS

    Directory of Open Access Journals (Sweden)

    S. Malathi

    2011-05-01

    Full Text Available In recent years there has been exponential growth in the use of bio- metrics for user authentication applications. Automated Fingerprint Identification systems have become popular tool in many security and law enforcement applications. Most of these systems rely on minutiae (ridge ending and bifurcation features. With the advancement in sensor technology, high resolution fingerprint images (1000 dpi pro- vide micro level of features (pores that have proven to be useful fea- tures for identification. In this paper, we propose a new strategy for fingerprint matching based on pores by reliably extracting the pore features The extraction of pores is done by Marker Controlled Wa- tershed segmentation method and the centroids of each pore are con- sidered as feature vectors for matching of two fingerprint images. Experimental results shows that the proposed method has better per- formance with lower false rates and higher accuracy.

  17. Evaluation of the influence of sulfur-based functional groups on the embedding of silver nanoparticles into the pores of MCM-41

    International Nuclear Information System (INIS)

    Oliveira, Roselaine da S.; Camilo, Fernanda F.; Bizeto, Marcos A.

    2016-01-01

    The incorporation of noble metals in the pores of mesoporous silicas might produce materials with interesting catalytic and sensing capabilities, but the proper control of pore filling and the avoidance of nanoparticles migration to outside the pores are processes not yet completely understood. In this work, we evaluated the role of –SH and –SO_3H groups post-grafted into MCM-41 on the production of silver nanoparticles by using 1-butanol as reducing agent. Thiol groups were the most efficient on promoting the formation of nanoparticles within the pores. Conversely, sulfonic groups establish electrostatic interactions with silver cations that preclude the formation of nanoparticle in yields comparable to thiol groups. MCM-41 without functional groups did not have good affinity to silver and the nanoparticles are produced outside the pores. This study showed the importance on selecting an adequate surface functional group in order to obtain silver nanoparticles filling the pores of MCM-41. - Graphical abstract: Silver nanoparticles formation inside the pores of sulfur-groups functionalized mesoporous silica. - Highlights: • Silver nanoparticles formation inside the pores of mesoporous silica. • n-butanol as reducing agent of impregnated silver cations. • Tuning the silica surface properties by grafting sulfur-based functional groups. • Influence on the loading and distribution of the nanoparticles through the pores.

  18. Cavitation and pore blocking in nanoporous glasses.

    Science.gov (United States)

    Reichenbach, C; Kalies, G; Enke, D; Klank, D

    2011-09-06

    In gas adsorption studies, porous glasses are frequently referred to as model materials for highly disordered mesopore systems. Numerous works suggest that an accurate interpretation of physisorption isotherms requires a complete understanding of network effects upon adsorption and desorption, respectively. The present article deals with nitrogen and argon adsorption at different temperatures (77 and 87 K) performed on a series of novel nanoporous glasses (NPG) with different mean pore widths. NPG samples contain smaller mesopores and significantly higher microporosity than porous Vycor glass or controlled pore glass. Since the mean pore width of NPG can be tuned sensitively, the evolution of adsorption characteristics with respect to a broadening pore network can be investigated starting from the narrowest nanopore width. With an increasing mean pore width, a H2-type hysteresis develops gradually which finally transforms into a H1-type. In this connection, a transition from a cavitation-induced desorption toward desorption controlled by pore blocking can be observed. Furthermore, we find concrete hints for a pore size dependence of the relative pressure of cavitation in highly disordered pore systems. By comparing nitrogen and argon adsorption, a comprehensive insight into adsorption mechanisms in novel disordered materials is provided. © 2011 American Chemical Society

  19. Active Lubrication for Reducing Wear and Vibration: A combination of Fluid Power Control and Tribology

    DEFF Research Database (Denmark)

    Nicoletti, Rodrigo; Santos, Ilmar

    2002-01-01

    The use of fluid power to reduce and control rotor vibration in rotating machines is investigated. An active hybrid bearing is studied, whose main objective is to reduce wear and vibration between rotating and stationary machinery parts. By injecting pressurised oil into the oil film, through...... orifices machined in the bearing pads, one can alter the machine dynamic characteristics, thus enhancing its operational range. A mathematical model of the rotor-bearing system, as well as of the hydraulic system, is presented. Numerical results of the system frequency response show good agreement...

  20. The Arabidopsis Nuclear Pore and Nuclear Envelope

    OpenAIRE

    Meier, Iris; Brkljacic, Jelena

    2010-01-01

    The nuclear envelope is a double membrane structure that separates the eukaryotic cytoplasm from the nucleoplasm. The nuclear pores embedded in the nuclear envelope are the sole gateways for macromolecular trafficking in and out of the nucleus. The nuclear pore complexes assembled at the nuclear pores are large protein conglomerates composed of multiple units of about 30 different nucleoporins. Proteins and RNAs traffic through the nuclear pore complexes, enabled by the interacting activities...

  1. Bioactive glass-poly (ε-caprolactone) composite scaffolds with 3 dimensionally hierarchical pore networks

    International Nuclear Information System (INIS)

    Yun, Hui-suk; Kim, Seung-eon; Park, Eui Kyun

    2011-01-01

    Hierarchically mesoporous-macroporous-giant-porous bioactive glass/poly ε-caprolactone (PCL) composite scaffolds were prepared using a combination of the sol-gel method, evaporation-induced self-assembly process in the presence of nonionic triblock copolymer, EO 100 PO 65 EO 100 (F127), as template, salt leaching method, and rapid prototyping techniques. F127 acts as a template, inducing the formation of mesopores, NaCl with sizes between 25 and 33 μm provides macro-pores after leaching, and rapid prototyping produces giant-pores. The structure and morphology of the scaffolds were characterized by the field emission scanning electron microscopy, transmission electron microscopy, and Hg porosimetry. The mechanical properties of the scaffolds were examined by the dynamic mechanical analysis. Their in vitro bioactivities were confirmed by immersing the scaffolds in simulated body fluid. Their biocompatibilities were also evaluated by culturing human bone marrow stromal cells on the scaffolds. The scaffolds show good molding capabilities, mechanical properties, 3 dimensionally well-interconnected pore structures, bioactivities, and biocompatibilities in vitro. Depending on the amount of NaCl, the scaffolds also show unique sponge-like properties, but still retain better mechanical properties than general salt leaching derived PCL scaffolds. All of the data provide good evidence that the obtained scaffolds possess excellent potential for applications in the fields of tissue engineering and drug storage.

  2. Stress dependent fluid flow in porous rock: experiments and network modelling

    Energy Technology Data Exchange (ETDEWEB)

    Flornes, Olav

    2005-07-01

    During the lifetime of a hydrocarbon reservoir, the pore pressure decreases because fluids are drained. Changed pore pressure causes a deformation of the reservoir rock, and the flow channels may be narrowed by the increased weight carried by the rock matrix. Knowledge of how the rocks ability to transport fluids, the permeability, is changed by increased stress can be important for effective reservoir management. In this work, we present experimental results for how permeability changes with applied stress. The materials tested are several different sandstones and one limestone, all having porosities higher than 19 percent. Application of stress is done in a number of different ways. We subject the sample to an isotropic stress, and see how changing this applied stress affects permeability as opposed to changing the pore fluid pressure. This allows for investigating the effective stress law for permeability. Permeability decreased by 10 to 20 percent, when we deformed the materials hydro statically within the elastic regime. For all of our samples, we observed a higher permeability change than predicted by a conventional model for relating porosity and permeability, the Kozeny Carman model. For Red Wildmoor, a sandstone having some clay content, we observed that a change in pore pressure was slightly more important for permeability than a change in the applied stress with the same amount. A sandstone with no clay content, Bad Durckheim, showed the opposite behavior, with applied stress slightly more important than pore pressure. We present a new method for measuring permeability in two directions in the same experiment. We apply different anisotropic stresses, and see if a high stress in one direction causes a difference in permeability changes parallel and perpendicular to maximum stress. We observe that deforming the sample axially, causes a larger decrease in axial permeability than in the radial at low confining pressure. At high confining pressure, the

  3. Differential equations governing slip-induced pore-pressure fluctuations in a water-saturated granular medium

    Science.gov (United States)

    Iverson, R.M.

    1993-01-01

    Macroscopic frictional slip in water-saturated granular media occurs commonly during landsliding, surface faulting, and intense bedload transport. A mathematical model of dynamic pore-pressure fluctuations that accompany and influence such sliding is derived here by both inductive and deductive methods. The inductive derivation shows how the governing differential equations represent the physics of the steadily sliding array of cylindrical fiberglass rods investigated experimentally by Iverson and LaHusen (1989). The deductive derivation shows how the same equations result from a novel application of Biot's (1956) dynamic mixture theory to macroscopic deformation. The model consists of two linear differential equations and five initial and boundary conditions that govern solid displacements and pore-water pressures. Solid displacements and water pressures are strongly coupled, in part through a boundary condition that ensures mass conservation during irreversible pore deformation that occurs along the bumpy slip surface. Feedback between this deformation and the pore-pressure field may yield complex system responses. The dual derivations of the model help explicate key assumptions. For example, the model requires that the dimensionless parameter B, defined here through normalization of Biot's equations, is much larger than one. This indicates that solid-fluid coupling forces are dominated by viscous rather than inertial effects. A tabulation of physical and kinematic variables for the rod-array experiments of Iverson and LaHusen and for various geologic phenomena shows that the model assumptions commonly are satisfied. A subsequent paper will describe model tests against experimental data. ?? 1993 International Association for Mathematical Geology.

  4. Permeabilization assay for antimicrobial peptides based on pore-spanning lipid membranes on nanoporous alumina.

    Science.gov (United States)

    Neubacher, Henrik; Mey, Ingo; Carnarius, Christian; Lazzara, Thomas D; Steinem, Claudia

    2014-04-29

    Screening tools to study antimicrobial peptides (AMPs) with the aim to optimize therapeutic delivery vectors require automated and parallelized sampling based on chip technology. Here, we present the development of a chip-based assay that allows for the investigation of the action of AMPs on planar lipid membranes in a time-resolved manner by fluorescence readout. Anodic aluminum oxide (AAO) composed of cylindrical pores with a diameter of 70 nm and a thickness of up to 10 μm was used as a support to generate pore-spanning lipid bilayers from giant unilamellar vesicle spreading, which resulted in large continuous membrane patches sealing the pores. Because AAO is optically transparent, fluid single lipid bilayers and the underlying pore cavities can be readily observed by three-dimensional confocal laser scanning microscopy (CLSM). To assay the membrane permeabilizing activity of the AMPs, the translocation of the water-soluble dyes into the AAO cavities and the fluorescence of the sulforhodamine 101 1,2-dihexadecanoyl-sn-glycero-3-phosphoethanol-l-amine triethylammonium salt (Texas Red DHPE)-labeled lipid membrane were observed by CLSM in a time-resolved manner as a function of the AMP concentration. The effect of two different AMPs, magainin-2 and melittin, was investigated, showing that the concentrations required for membrane permeabilization and the kinetics of the dye entrance differ significantly. Our results are discussed in light of the proposed permeabilization models of the two AMPs. The presented data demonstrate the potential of this setup for the development of an on-chip screening platform for AMPs.

  5. Pore surface engineering in covalent organic frameworks.

    Science.gov (United States)

    Nagai, Atsushi; Guo, Zhaoqi; Feng, Xiao; Jin, Shangbin; Chen, Xiong; Ding, Xuesong; Jiang, Donglin

    2011-11-15

    Covalent organic frameworks (COFs) are a class of important porous materials that allow atomically precise integration of building blocks to achieve pre-designable pore size and geometry; however, pore surface engineering in COFs remains challenging. Here we introduce pore surface engineering to COF chemistry, which allows the controlled functionalization of COF pore walls with organic groups. This functionalization is made possible by the use of azide-appended building blocks for the synthesis of COFs with walls to which a designable content of azide units is anchored. The azide units can then undergo a quantitative click reaction with alkynes to produce pore surfaces with desired groups and preferred densities. The diversity of click reactions performed shows that the protocol is compatible with the development of various specific surfaces in COFs. Therefore, this methodology constitutes a step in the pore surface engineering of COFs to realize pre-designed compositions, components and functions.

  6. Force Triggers YAP Nuclear Entry by Regulating Transport across Nuclear Pores.

    Science.gov (United States)

    Elosegui-Artola, Alberto; Andreu, Ion; Beedle, Amy E M; Lezamiz, Ainhoa; Uroz, Marina; Kosmalska, Anita J; Oria, Roger; Kechagia, Jenny Z; Rico-Lastres, Palma; Le Roux, Anabel-Lise; Shanahan, Catherine M; Trepat, Xavier; Navajas, Daniel; Garcia-Manyes, Sergi; Roca-Cusachs, Pere

    2017-11-30

    YAP is a mechanosensitive transcriptional activator with a critical role in cancer, regeneration, and organ size control. Here, we show that force applied to the nucleus directly drives YAP nuclear translocation by decreasing the mechanical restriction of nuclear pores to molecular transport. Exposure to a stiff environment leads cells to establish a mechanical connection between the nucleus and the cytoskeleton, allowing forces exerted through focal adhesions to reach the nucleus. Force transmission then leads to nuclear flattening, which stretches nuclear pores, reduces their mechanical resistance to molecular transport, and increases YAP nuclear import. The restriction to transport is further regulated by the mechanical stability of the transported protein, which determines both active nuclear transport of YAP and passive transport of small proteins. Our results unveil a mechanosensing mechanism mediated directly by nuclear pores, demonstrated for YAP but with potential general applicability in transcriptional regulation. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Synthesis of battery grade reduced silver powder

    International Nuclear Information System (INIS)

    Qadeer, R.; Hameed, M.; Ikram, S.; Munir, A.

    2002-01-01

    Process for production of battery grade reduced silver powder, an active positive material for zinc-silver oxide batteries, having specific characteristics has been optimized and the synthesized reduced silver powder was characterized. Results reveal that the values of bulk density (1.25 0.1 g/cm3) and activity (73.27 %) of synthesized reduced silver powder lies within the recommended range for use as battery material. It has purity ≥ 98% and contains Fe and Cu as traces in the concentration range of 30 5 ppm and 15 7 ppm respectively. Others determined values of surface and pores parameters are: surface area 2.6 .4 m2/g: pore volume 3.10 cm3/g: pore diameter 0.043 mu m and porosity 20%. XRD studies reveal that reduced silver powder has a cubic structure. (author)

  8. A Three-Dimensional Pore-Scale Model for Non-Wetting Phase Mobilization with Ferrofluid

    Science.gov (United States)

    Wang, N.; Prodanovic, M.

    2017-12-01

    Ferrofluid, a stable dispersion of paramagnetic nanoparticles in water, can generate a distributed pressure difference across the phase interface in an immiscible two-phase flow under an external magnetic field. In water-wet porous media, this non-uniform pressure difference may be used to mobilize the non-wetting phase, e.g. oil, trapped in the pores. Previous numerical work by Soares et al. of two-dimensional single-pore model showed enhanced non-wetting phase recovery with water-based ferrofluid under certain magnetic field directions and decreased recovery under other directions. However, the magnetic field selectively concentrates in the high magnetic permeability ferrofluid which fills the small corners between the non-wetting phase and the solid wall. The magnetic field induced pressure is proportional to the square of local magnetic field strength and its normal component, and makes a significant impact on the non-wetting phase deformation. The two-dimensional model omitted the effect of most of these corners and is not sufficient to compute the magnetic-field-induced pressure difference or to predict the non-wetting blob deformation. Further, it is not clear that 3D effects on magnetic field in an irregular geometry can be approximated in 2D. We present a three-dimensional immiscible two-phase flow model to simulate the deformation of a non-wetting liquid blob in a single pore filled with a ferrofluid under a uniform external magnetic field. The ferrofluid is modeled as a uniform single phase because the nanoparticles are 104 times smaller than the pore. The open source CFD solver library OpenFOAM is used for the simulations based on the volume of fluid method. Simulations are performed in a converging-diverging channel model on different magnetic field direction, different initial oil saturations, and different pore shapes. Results indicate that the external magnetic field always stretches the non-wetting blob away from the solid channel wall. A magnetic

  9. Relationship between pore structure and compressive strength

    Indian Academy of Sciences (India)

    Properties of concrete are strongly dependent on its pore structure features, porosity being an important one among them. This study deals with developing an understanding of the pore structure-compressive strength relationship in concrete. Several concrete mixtures with different pore structures are proportioned and ...

  10. Pore channel surface modification for enhancing anti-fouling membrane distillation

    Science.gov (United States)

    Qiu, Haoran; Peng, Yuelian; Ge, Lei; Villacorta Hernandez, Byron; Zhu, Zhonghua

    2018-06-01

    Membrane surface modification by forming a functional layer is an effective way to improve the anti-fouling properties of membranes; however, the additional layer and the potential blockage of bulk pores may increase the mass transfer resistance and reduce the permeability. In this study, we applied a novel method of preparing anti-fouling membranes for membrane distillation by dispersing graphene oxide (GO) on the channel surface of polyvinylidene fluoride membranes. The surface morphology and properties were characterized by scanning electron microscopy, atomic force microscope, and Fourier transform infrared spectrometry. Compared to the membrane surface modification by nanoparticles (e.g. SiO2), GO was mainly located on the pore surface of the membrane bulk, rather than being formed as an individual layer onto the membrane surface. The performance was evaluated via a direct-contact membrane distillation process with anionic and cationic surfactants as the foulants, separately. Compared to the pristine PVDF membrane, the anti-fouling behavior and distillate flux of the GO-modified membranes were improved, especially when using the anionic surfactant as the foulant. The enhanced anti-fouling performance can be attributed to the oxygen containing functional groups in GO and the healing of the membrane pore defects. This method may provide an effective route to manipulate membrane pore surface properties for anti-fouling separation without increasing mass transfer resistance.

  11. A pore water conductivity sensor

    NARCIS (Netherlands)

    Hilhorst, M.A.

    2001-01-01

    The electrical permittivity and conductivity of the bulk soil are a function of the permittivity and conductivity of the pore water. For soil water contents higher than 0.10 both functions are equal, facilitating in situ conductivity measurements of the pore water. A novel method is described, based

  12. A novel method to measure conspicuous facial pores using computer analysis of digital-camera-captured images: the effect of glycolic acid chemical peeling.

    Science.gov (United States)

    Kakudo, Natsuko; Kushida, Satoshi; Tanaka, Nobuko; Minakata, Tatsuya; Suzuki, Kenji; Kusumoto, Kenji

    2011-11-01

    Chemical peeling is becoming increasingly popular for skin rejuvenation in dermatological esthetic surgery. Conspicuous facial pores are one of the most frequently encountered skin problems in women of all ages. This study was performed to analyze the effectiveness of reducing conspicuous facial pores using glycolic acid chemical peeling (GACP) based on a novel computer analysis of digital-camera-captured images. GACP was performed a total of five times at 2-week intervals in 22 healthy women. Computerized image analysis of conspicuous, open, and darkened facial pores was performed using the Robo Skin Analyzer CS 50. The number of conspicuous facial pores decreased significantly in 19 (86%) of the 22 subjects, with a mean improvement rate of 34.6%. The number of open pores decreased significantly in 16 (72%) of the subjects, with a mean improvement rate of 11.0%. The number of darkened pores decreased significantly in 18 (81%) of the subjects, with a mean improvement rate of 34.3%. GACP significantly reduces the number of conspicuous facial pores. The Robo Skin Analyzer CS 50 is useful for the quantification and analysis of 'pore enlargement', a subtle finding in dermatological esthetic surgery. © 2011 John Wiley & Sons A/S.

  13. Mesoscale Simulations of Pore Migration in a Nuclear Fuel

    International Nuclear Information System (INIS)

    Radhakrishnan, Balasubramaniam; Gorti, Sarma B.

    2010-01-01

    The evolution of pore and grain structure in a nuclear fuel environment is strongly influenced by the local temperature, and the temperature gradient. The evolution of pore and grain structure in an externally imposed temperature gradient is simulated for a hypothetical material using a Potts model approach that allows for porosity migration by mechanisms similar to surface, grain boundary and volume diffusion, as well as the interaction of migrating pores with stationary grain boundaries. First, the migration of a single pore in a single crystal in the presence of the temperature gradient is simulated. Next, the interaction of a pore moving in a temperature gradient with a grain boundary that is perpendicular to the pore migration direction is simulated in order to capture the force exerted by the pore on the grain boundary. The simulations reproduce the expected variation of pore velocity with pore size as well as the variation of the grain boundary force with pore size.

  14. Instrument modifications that produced reduced plate heights supercritical fluid chromatography.

    Science.gov (United States)

    Berger, Terry A

    2016-04-29

    The concept of peak fidelity was shown to be helpful in modeling tubing and detector cell dimensions. Connection tubing and flow cell variances were modeled to determine appropriate internal ID's, lengths, and volumes. A low dispersion plumbing configuration, based on these calculations, was assembled to replace the standard plumbing and produced the reported results. The modifications made were straightforward using commercially available parts. The full theoretical efficiency of a 3×100 mm column packed with 1.8 μm totally porous particles was achieved for the first time in supercritical fluid chromatography (SFC). Peak fidelity of >0.95 was maintained to below k=2. A reduced plate height as low as 1.87 was measured. Thus, true "ultra high performance" SFC was achieved, with the results a major improvement from all previous SFC reports. Since there were no efficiency losses, none could be attributed to thermal gradients caused by the expansion of the fluid over large pressure drops, under the conditions used. Similarly, changes in diffusion coefficients caused by significant decreases in density during expansion are apparently balanced by the increase in linear velocity, keeping the ratio between the diffusion coefficient and the linear velocity a constant. Changing modifier concentration to change retention was shown to not be a significant problem. All these issues have been a concern in the past. Diffusion coefficients, and viscosity data needs to be collected at high pressures before the actual limits of SFC can be discovered. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. On the effective stress law for rock-on-rock frictional sliding, and fault slip triggered by means of fluid injection

    Science.gov (United States)

    Rutter, Ernest; Hackston, Abigail

    2017-08-01

    Fluid injection into rocks is increasingly used for energy extraction and for fluid wastes disposal, and can trigger/induce small- to medium-scale seismicity. Fluctuations in pore fluid pressure may also be associated with natural seismicity. The energy release in anthropogenically induced seismicity is sensitive to amount and pressure of fluid injected, through the way that seismic moment release is related to slipped area, and is strongly affected by the hydraulic conductance of the faulted rock mass. Bearing in mind the scaling issues that apply, fluid injection-driven fault motion can be studied on laboratory-sized samples. Here, we investigate both stable and unstable induced fault slip on pre-cut planar surfaces in Darley Dale and Pennant sandstones, with or without granular gouge. They display contrasting permeabilities, differing by a factor of 105, but mineralogies are broadly comparable. In permeable Darley Dale sandstone, fluid can access the fault plane through the rock matrix and the effective stress law is followed closely. Pore pressure change shifts the whole Mohr circle laterally. In tight Pennant sandstone, fluid only injects into the fault plane itself; stress state in the rock matrix is unaffected. Sudden access by overpressured fluid to the fault plane via hydrofracture causes seismogenic fault slips. This article is part of the themed issue 'Faulting, friction and weakening: from slow to fast motion'.

  16. On the effective stress law for rock-on-rock frictional sliding, and fault slip triggered by means of fluid injection.

    Science.gov (United States)

    Rutter, Ernest; Hackston, Abigail

    2017-09-28

    Fluid injection into rocks is increasingly used for energy extraction and for fluid wastes disposal, and can trigger/induce small- to medium-scale seismicity. Fluctuations in pore fluid pressure may also be associated with natural seismicity. The energy release in anthropogenically induced seismicity is sensitive to amount and pressure of fluid injected, through the way that seismic moment release is related to slipped area, and is strongly affected by the hydraulic conductance of the faulted rock mass. Bearing in mind the scaling issues that apply, fluid injection-driven fault motion can be studied on laboratory-sized samples. Here, we investigate both stable and unstable induced fault slip on pre-cut planar surfaces in Darley Dale and Pennant sandstones, with or without granular gouge. They display contrasting permeabilities, differing by a factor of 10 5 , but mineralogies are broadly comparable. In permeable Darley Dale sandstone, fluid can access the fault plane through the rock matrix and the effective stress law is followed closely. Pore pressure change shifts the whole Mohr circle laterally. In tight Pennant sandstone, fluid only injects into the fault plane itself; stress state in the rock matrix is unaffected. Sudden access by overpressured fluid to the fault plane via hydrofracture causes seismogenic fault slips.This article is part of the themed issue 'Faulting, friction and weakening: from slow to fast motion'. © 2017 The Authors.

  17. The one-dimensional compression method for extraction of pore water from unsaturated tuff and effects on pore-water chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Higgins, J.D.; Burger, P.A. [Colorado School of Mines, Golden, CO (United States); Yang, L.C. [Geological Survey, Denver, CO (United States)

    1997-12-31

    Study of the hydrologic system at Yucca Mountain, Nevada, requires extraction of pore-water samples from unsaturated tuff bedrock. Two generations of compression cells have been designed and tested for extracting representative, unaltered pore-water samples from unsaturated tuff cores. The one-dimensional compression cell has a maximum compressive stress rating of 552 MPa. Results from 86 tests show that the minimum degree of saturation for successful extraction of pore water was about 14% for non welded tuff and about 61% for densely welded tuff. The high-pressure, one-dimensional compression cell has a maximum compressive stress rating of 827 MPa. Results from 109 tests show that the minimum degree of saturation for successful extraction of pore water was about 7.5% for non welded tuff and about 34% for densely welded tuff. Geochemical analyses show that, in general, there is a decrease in ion concentration of pore waters as extraction pressures increase. Only small changes in pore-water composition occur during the one-dimensional extraction test.

  18. Manipulation of fluids in three-dimensional porous photonic structures with patterned surface properties

    Energy Technology Data Exchange (ETDEWEB)

    Aizenberg, Joanna; Burgess, Ian; Mishchenko, Lidiya; Hatton, Benjamin; Loncar, Marko

    2017-12-26

    A three-dimensional porous photonic structure, whose internal pore surfaces can be provided with desired surface properties in a spatially selective manner with arbitrary patterns, and methods for making the same are described. When exposed to a fluid (e.g., via immersion or wicking), the fluid can selectively penetrate the regions of the structure with compatible surface properties. Broad applications, for example in security, encryption and document authentication, as well as in areas such as simple microfluidics and diagnostics, are anticipated.

  19. Influence of Shrinkage-Reducing Admixtures on the Development of Plastic Shrinkage Cracks

    DEFF Research Database (Denmark)

    Lura, Pietro; Pease, Bradley Justin; Mazzotta, Guy

    2007-01-01

    The term plastic shrinkage cracking is generally used to describe cracks that form between the time when concrete is placed and the time when concrete sets. This paper discusses how the evaporation of water causes concave menisci to form on the surface of fresh concrete. These menisci cause both...... settlement of the concrete and tensile stress development in the surface of the concrete, which increase the potential for development of plastic shrinkage cracks. Specifically, this paper studies the development of plastic shrinkage cracks in mortars containing a commercially available shrinkage-reducing...... admixture (SRA). Mortars containing SRA show fewer and narrower plastic shrinkage cracks than plain mortars when exposed to the same environmental conditions. It is proposed that the lower surface tension of the pore fluid in the mortars containing SRA results in less evaporation, reduced settlement...

  20. Facial skin pores: a multiethnic study.

    Science.gov (United States)

    Flament, Frederic; Francois, Ghislain; Qiu, Huixia; Ye, Chengda; Hanaya, Tomoo; Batisse, Dominique; Cointereau-Chardon, Suzy; Seixas, Mirela Donato Gianeti; Dal Belo, Susi Elaine; Bazin, Roland

    2015-01-01

    Skin pores (SP), as they are called by laymen, are common and benign features mostly located on the face (nose, cheeks, etc) that generate many aesthetic concerns or complaints. Despite the prevalence of skin pores, related literature is scarce. With the aim of describing the prevalence of skin pores and anatomic features among ethnic groups, a dermatoscopic instrument, using polarized lighting, coupled to a digital camera recorded the major features of skin pores (size, density, coverage) on the cheeks of 2,585 women in different countries and continents. A detection threshold of 250 μm, correlated to clinical scorings by experts, was input into a specific software to further allow for automatic counting of the SP density (N/cm(2)) and determination of their respective sizes in mm(2). Integrating both criteria also led to establishing the relative part of the skin surface (as a percentage) that is actually covered by SP on cheeks. The results showed that the values of respective sizes, densities, and skin coverage: 1) were recorded in all studied subjects; 2) varied greatly with ethnicity; 3) plateaued with age in most cases; and 4) globally refected self-assessment by subjects, in particular those who self-declare having "enlarged pores" like Brazilian women. Inversely, Chinese women were clearly distinct from other ethnicities in having very low density and sizes. Analyzing the present results suggests that facial skin pore's morphology as perceived by human eye less result from functional criteria of associated appendages such as sebaceous glands. To what extent skin pores may be viewed as additional criteria of a photo-altered skin is an issue to be further addressed.

  1. Visualization of enzyme activities inside earthworm pores

    Science.gov (United States)

    Hoang, Duyen; Razavi, Bahar S.

    2015-04-01

    In extremely dynamic microhabitats as bio-pores made by earthworm, the in situ enzyme activities are assumed as a footprint of complex biotic interactions. Our study focused on the effect of earthworm on the enzyme activities inside bio-pores and visualizing the differences between bio-pores and earthworm-free soil by zymography technique (Spohn and Kuzyakov, 2013). For the first time, we aimed at quantitative imaging of enzyme activities in bio-pores. Lumbricus terrestris L. was placed into transparent box (15×20×15cm). After two weeks when bio-pore systems were formed by earthworms, we visualized in situ enzyme activities of five hydrolytic enzymes (β-glucosidase, cellobiohydrolase, chitinase, xylanase, leucine-aminopeptidase, and phosphatase. Zymography showed higher activity of β-glucosidase, chitinase, xylanase and phosphatase in biopores comparing to bulk soil. However, the differences in activity of cellobiohydrolase and leucine aminopeptidase between bio-pore and bulk soil were less pronounced. This demonstrated an applicability of zymography approach to monitor and to distinguish the in situ activity of hydrolytic enzymes in soil biopores.

  2. Pore architecture and cell viability on freeze dried 3D recombinant human collagen-peptide (RHC)-chitosan scaffolds.

    Science.gov (United States)

    Zhang, Jing; Zhou, Aimei; Deng, Aipeng; Yang, Yang; Gao, Lihu; Zhong, Zhaocai; Yang, Shulin

    2015-04-01

    Pore architecture of 3D scaffolds used in tissue engineering plays a critical role in the maintenance of cell survival, proliferation and further promotion of tissue regeneration. We investigated the pore size and structure, porosity, swelling as well as cell viability of a series of recombinant human collagen-peptide-chitosan (RHCC) scaffolds fabricated by lyophilization. In this paper, freezing regime containing a final temperature of freezing (Tf) and cooling rates was applied to obtain scaffolds with pore size ranging from 100μm to 120μm. Other protocols of RHC/chitosan suspension concentration and ratio modification were studied to produce more homogenous and appropriate structural scaffolds. The mean pore size decreased along with the decline of Tf at a slow cooling rate of 0.7°C/min; a more rapid cooling rate under 5°C/min resulted to a smaller pore size and more homogenous microstructure. High concentration could reduce pore size and lead to thick well of scaffold, while improved the ratio of RHC, lamellar and fiber structure coexisted with cellular pores. Human umbilical vein endothelial cells (HUVECs) were seeded on these manufactured scaffolds, the cell viability represented a negative correlation to the pore size. This study provides an alternative method to fabricate 3D RHC-chitosan scaffolds with appropriate pores for potential tissue engineering. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Wettability alteration properties of fluorinated silica nanoparticles in liquid-loaded pores: An atomistic simulation

    Energy Technology Data Exchange (ETDEWEB)

    Sepehrinia, Kazem; Mohammadi, Aliasghar, E-mail: amohammadi@sharif.edu

    2016-05-15

    Highlights: • Properties of fluorinated silica nanoparticles were investigated in water or decane-loaded pores of mineral silica using molecular dynamics simulation. • The water or decane-loaded pores represent liquid bridging. • Addition of nanoparticles to liquid-loaded pores results in weakening of the liquid bridge. • The hydrophobicity of the pore wall increases in the presence of adsorbed fluorinated silica nanoparticles. - Abstract: Control over the wettability of reservoir rocks is of crucial importance for enhancing oil and gas recovery. In order to develop chemicals for controlling the wettability of reservoir rocks, we present a study of functionalized silica nanoparticles as candidates for wettability alteration and improved gas recovery applications. In this paper, properties of fluorinated silica nanoparticles were investigated in water or decane-loaded pores of mineral silica using molecular dynamics simulation. Trifluoromethyl groups as water and oil repellents were placed on the nanoparticles. Simulating a pore in the presence of trapped water or decane molecules leads to liquid bridging for both of the liquids. Adsorption of nanoparticles on the pore wall reduces the density of liquid molecules adjacent to the wall. The density of liquid molecules around the nanoparticles decreases significantly with increasing the number of trifluoromethyl groups on the nanoparticles’ surfaces. An increased hydrophobicity of the pore wall was observed in the presence of adsorbed fluorinated silica nanoparticles. Also, it is observed that increasing the number of the trifluoromethyl groups results in weakening of liquid bridges. Moreover, the free energy of adsorption on mineral surface was evaluated to be more favorable than that of aggregation of nanoparticles, which suggests nanoparticles adsorb preferably on mineral surface.

  4. Wettability alteration properties of fluorinated silica nanoparticles in liquid-loaded pores: An atomistic simulation

    International Nuclear Information System (INIS)

    Sepehrinia, Kazem; Mohammadi, Aliasghar

    2016-01-01

    Highlights: • Properties of fluorinated silica nanoparticles were investigated in water or decane-loaded pores of mineral silica using molecular dynamics simulation. • The water or decane-loaded pores represent liquid bridging. • Addition of nanoparticles to liquid-loaded pores results in weakening of the liquid bridge. • The hydrophobicity of the pore wall increases in the presence of adsorbed fluorinated silica nanoparticles. - Abstract: Control over the wettability of reservoir rocks is of crucial importance for enhancing oil and gas recovery. In order to develop chemicals for controlling the wettability of reservoir rocks, we present a study of functionalized silica nanoparticles as candidates for wettability alteration and improved gas recovery applications. In this paper, properties of fluorinated silica nanoparticles were investigated in water or decane-loaded pores of mineral silica using molecular dynamics simulation. Trifluoromethyl groups as water and oil repellents were placed on the nanoparticles. Simulating a pore in the presence of trapped water or decane molecules leads to liquid bridging for both of the liquids. Adsorption of nanoparticles on the pore wall reduces the density of liquid molecules adjacent to the wall. The density of liquid molecules around the nanoparticles decreases significantly with increasing the number of trifluoromethyl groups on the nanoparticles’ surfaces. An increased hydrophobicity of the pore wall was observed in the presence of adsorbed fluorinated silica nanoparticles. Also, it is observed that increasing the number of the trifluoromethyl groups results in weakening of liquid bridges. Moreover, the free energy of adsorption on mineral surface was evaluated to be more favorable than that of aggregation of nanoparticles, which suggests nanoparticles adsorb preferably on mineral surface.

  5. Evaluating facial pores and skin texture after low-energy nonablative fractional 1440-nm laser treatments.

    Science.gov (United States)

    Saedi, Nazanin; Petrell, Kathleen; Arndt, Kenneth; Dover, Jeffrey

    2013-01-01

    The fractionated nonablative 1440-nm laser creates microscopic thermal wounds within the epidermis and the dermis and is used clinically to improve tone, texture, and color of skin. We sought to investigate the use of this device to treat facial pores and to improve skin texture. Twenty patients received 6 treatments at the highest tolerable energy level performed 2 weeks apart. Photographic assessments using the VISIA-CR (Canfield Scientific Inc, Fairfield, NJ) imaging system were performed. The pore score was calculated, which is the percentage of the skin surface that has detected pores. Subjective measurements (0-4 scale) were recorded by both the subject and investigator regarding pore appearance, skin texture, and overall skin appearance. Treatment discomfort was scored by patients (1-10 scale). After 6 treatments there was a significant reduction in pore score (P pore score at baseline was 2.059 ± 0.8 and 2 weeks after the final treatment it was 1.700 ± 0.8, resulting in a 17% average reduction in pore score. Study investigators reported average scores being 1.95 ± 0.3 for improved pore appearance and 2.75 ± 0.2 for improved overall appearance (0-4 scale). Subjects noted average scores of 1.9 ± 0.5 for improvement of the appearance of pores and 2.85 ± 0.4 for improvement of overall appearance (0-4 scale). The average discomfort score during treatments was reported to be 4.6 ± 0.1 (1-10 scale). There were no serious adverse effects or long-term side effects. Small sample size and limited follow-up are study limitations. A series of treatments with the nonablative low-energy fractional 1440-nm laser appears to be safe and effective for reducing detectable pores and improving overall skin appearance. Copyright © 2012 American Academy of Dermatology, Inc. Published by Mosby, Inc. All rights reserved.

  6. Effect of rock rheology on fluid leak- off during hydraulic fracturing

    Science.gov (United States)

    Yarushina, V. M.; Bercovici, D.; Oristaglio, M. L.

    2012-04-01

    In this communication, we evaluate the effect of rock rheology on fluid leak­off during hydraulic fracturing of reservoirs. Fluid leak-off in hydraulic fracturing is often nonlinear. The simple linear model developed by Carter (1957) for flow of fracturing fluid into a reservoir has three different regions in the fractured zone: a filter cake on the fracture face, formed by solid additives from the fracturing fluid; a filtrate zone affected by invasion of the fracturing fluid; and a reservoir zone with the original formation fluid. The width of each zone, as well as its permeability and pressure drop, is assumed to remain constant. Physical intuition suggests some straightforward corrections to this classical theory to take into account the pressure dependence of permeability, the compressibility or non-Newtonian rheology of fracturing fluid, and the radial (versus linear) geometry of fluid leak­off from the borehole. All of these refinements, however, still assume that the reservoir rock adjacent to the fracture face is non­deformable. Although the effect of poroelastic stress changes on leak-off is usually thought to be negligible, at the very high fluid pressures used in hydraulic fracturing, where the stresses exceed the rock strength, elastic rheology may not be the best choice. For example, calculations show that perfectly elastic rock formations do not undergo the degree of compaction typically seen in sedimentary basins. Therefore, pseudo-elastic or elastoplastic models are used to fit observed porosity profiles with depth. Starting from balance equations for mass and momentum for fluid and rock, we derive a hydraulic flow equation coupled with a porosity equation describing rock compaction. The result resembles a pressure diffusion equation with the total compressibility being a sum of fluid, rock and pore-space compressibilities. With linear elastic rheology, the bulk formation compressibility is dominated by fluid compressibility. But the possibility

  7. Effect of wettability on two-phase quasi-static displacement: validation of two pore scale modeling approaches

    KAUST Repository

    Verma, Rahul

    2018-01-06

    Understanding of pore-scale physics for multiphase flow in porous media is essential for accurate description of various flow phenomena. In particular, capillarity and wettability strongly influence capillary pressure-saturation and relative permeability relationships. Wettability is quantified by the contact angle of the fluid-fluid interface at the pore walls. In this work we focus on the non-trivial interface equilibria in presence of non-neutral wetting and complex geometries. We quantify the accuracy of a volume-of-fluid (VOF) formulation, implemented in a popular open-source computational fluid dynamics code, compared with a new formulation of a level set (LS) method, specifically developed for quasi-static capillarity-dominated displacement. The methods are tested in rhomboidal packings of spheres for a range of contact angles and for different rhomboidal configurations and the accuracy is evaluated against the semi-analytical solutions obtained by Mason and Morrow (1994). While the VOF method is implemented in a general purpose code that solves the full Navier-Stokes (NS) dynamics in a finite volume formulation, with additional terms to model surface tension, the LS method is optimised for the quasi-static case and, therefore, less computationally expensive. To overcome the shortcomings of the finite volume NS-VOF system for low capillary number flows, and its computational cost, we introduce an overdamped dynamics and a local time stepping to speed up the convergence to the steady state, for every given imposed pressure gradient (and therefore saturation condition). Despite these modifications, the methods fundamentally differ in the way they capture the interface, as well as in the number of equations solved and in the way the mean curvature (or equivalently capillary pressure) is computed. This study is intended to provide a rigorous validation study and gives important indications on the errors committed by these methods in solving more complex geometry

  8. Effect of wettability on two-phase quasi-static displacement: validation of two pore scale modeling approaches

    KAUST Repository

    Verma, Rahul; Icardi, Matteo; Prodanović, Maša

    2018-01-01

    Understanding of pore-scale physics for multiphase flow in porous media is essential for accurate description of various flow phenomena. In particular, capillarity and wettability strongly influence capillary pressure-saturation and relative permeability relationships. Wettability is quantified by the contact angle of the fluid-fluid interface at the pore walls. In this work we focus on the non-trivial interface equilibria in presence of non-neutral wetting and complex geometries. We quantify the accuracy of a volume-of-fluid (VOF) formulation, implemented in a popular open-source computational fluid dynamics code, compared with a new formulation of a level set (LS) method, specifically developed for quasi-static capillarity-dominated displacement. The methods are tested in rhomboidal packings of spheres for a range of contact angles and for different rhomboidal configurations and the accuracy is evaluated against the semi-analytical solutions obtained by Mason and Morrow (1994). While the VOF method is implemented in a general purpose code that solves the full Navier-Stokes (NS) dynamics in a finite volume formulation, with additional terms to model surface tension, the LS method is optimised for the quasi-static case and, therefore, less computationally expensive. To overcome the shortcomings of the finite volume NS-VOF system for low capillary number flows, and its computational cost, we introduce an overdamped dynamics and a local time stepping to speed up the convergence to the steady state, for every given imposed pressure gradient (and therefore saturation condition). Despite these modifications, the methods fundamentally differ in the way they capture the interface, as well as in the number of equations solved and in the way the mean curvature (or equivalently capillary pressure) is computed. This study is intended to provide a rigorous validation study and gives important indications on the errors committed by these methods in solving more complex geometry

  9. Pore structure of natural and regenerated soil aggregates

    DEFF Research Database (Denmark)

    Naveed, Muhammad; Arthur, Emmanuel; de Jonge, Lis Wollesen

    2014-01-01

    Quantitative characterization of aggregate pore structure can reveal the evolution of aggregates under different land use and management practices and their effects on soil processes and functions. Advances in X-ray Computed Tomography (CT) provide powerful means to conduct such characterization....... This study examined aggregate pore structure of three differently managed same textured Danish soils (mixed forage cropping, MFC; mixed cash cropping, MCC; cereal cash cropping, CCC) for (i) natural aggregates, and (ii) aggregates regenerated after 20 months of incubation. In total, 27 aggregates (8-16 mm...... pore diameter of 200 and 170 Hm, respectively. Pore shape analysis indicated that CCC and MFC aggregates had an abundance of rounded and elongated pores, respectively, and those of MCC were in-between CCC and MFC. Aggregate pore structure development in the lysimeters was nearly similar irrespective...

  10. Review and limitations of 3D plasma blob modeling with reduced collisional fluid equations

    Energy Technology Data Exchange (ETDEWEB)

    Angus, Justin R., E-mail: jangus@ucsd.edu [University of California, San Diego, La Jolla, CA (United States); Umansky, Maxim V. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Krashenninikov, Sergei I. [University of California, San Diego, La Jolla, CA (United States)

    2013-07-15

    Recent 3D studies on plasma blobs (coherent structures found in the edge region of magnetic confinement devices) have demonstrated that the drift wave instability can strongly limit the blob’s coherency and cross field convective nature that is predicted by 2D theory. However, the dominant unstable drift wave modes that effect plasma blobs were found to exist in parameter regimes that only marginally satisfied several of the major assumptions considered for the validity of the reduced collisional fluid equations used in the study. Namely, the neglect of electron heat flow, finite electron mean free path effects, and thermal ions. A follow up study demonstrated how the drift wave instability might change if a set of equations that does not suffer from the limitations mentioned above were considered. In the present paper, the results of this later work are used to discuss the limitations on using the collisional fluid equations for 3D studies of plasma blobs.

  11. Pore Pressure Evolution in Shallow Subduction Earthquake Sequences and Effects on Aseismic Slip Transients -- Numerical Modeling With Rate and State Friction

    Science.gov (United States)

    Liu, Y.; Rice, J. R.

    2005-12-01

    In 3D modeling of long tectonic loading and earthquake sequences on a shallow subduction fault [Liu and Rice, 2005], with depth-variable rate and state friction properties, we found that aseismic transient slip episodes emerge spontaneously with only a simplified representation of effects of metamorphic fluid release. That involved assumption of a constant in time but uniformly low effective normal stress in the downdip region. As suggested by observations in several major subduction zones [Obara, 2002; Rogers and Dragert, 2003; Kodaira et al, 2004], the presence of fluids, possibly released from dehydration reactions beneath the seismogenic zone, and their pressurization within the fault zone may play an important role in causing aseismic transients and associated non-volcanic tremors. To investigate the effects of fluids in the subduction zone, particularly on the generation of aseismic transients and their various features, we develop a more complete physical description of the pore pressure evolution (specifically, pore pressure increase due to supply from dehydration reactions and shear heating, decrease due to transport and dilatancy during slip), and incorporate that into the rate and state based 3D modeling. We first incorporated two important factors, dilatancy and shear heating, following Segall and Rice [1995, 2004] and Taylor [1998]. In the 2D simulations (slip varies with depth only), a dilatancy-stabilizing effect is seen which slows down the seismic rupture front and can prevent rapid slip from extending all the way to the trench, similarly to Taylor [1998]. Shear heating increases the pore pressure, and results in faster coseismic rupture propagation and larger final slips. In the 3D simulations, dilatancy also stabilizes the along-strike rupture propagation of both seismic and aseismic slips. That is, aseismic slip transients migrate along the strike faster with a shorter Tp (the characteristic time for pore pressure in the fault core to re

  12. Effect of oxygen potential on sulphur dioxide activation of oil sands fluid coke and characteristics of activated coke in mercury adsorption

    International Nuclear Information System (INIS)

    Morris, E.A.; Jia, C.Q.; Tong, S.

    2007-01-01

    A sulphur-impregnated activated carbon (SIAC) technology was modified for use in copper smelters in order to mitigate mercury and sulphur dioxide (SO 2 ) emissions. Elemental sulphur was captured as a co-product. The study examined the feasibility of reducing levels of SO 2 using fluid coke in the copper smelter flue. SIAC properties were optimized in order to capture vapour phase mercury. Raw fluid coke samples were used to measure SO 2 flow rates. Gas composition was varied to mimic concentrations found during normal operation of copper converters. Gas chromatography was used to analyze reactions products and to prove the hypothesis that mercury capacity is influenced by the oxygen potential of the activation gas due to changes in surface sulphur types developed from reduced sulphur species. Results of the study showed that oxygen levels at 5 per cent did not play a significant role in pore development. It was concluded that increased residence times contributed to reductions in SO 2 and elemental S yields. 13 refs., 1 tab., 7 figs

  13. Fluid flow simulation and permeability computation in deformed porous carbonate grainstones

    Science.gov (United States)

    Zambrano, Miller; Tondi, Emanuele; Mancini, Lucia; Lanzafame, Gabriele; Trias, F. Xavier; Arzilli, Fabio; Materazzi, Marco; Torrieri, Stefano

    2018-05-01

    In deformed porous carbonates, the architecture of the pore network may be modified by deformation or diagenetic processes altering the permeability with respect to the pristine rock. The effects of the pore texture and morphology on permeability in porous rocks have been widely investigated due to the importance during the evaluation of geofluid reservoirs. In this study, these effects are assessed by combining synchrotron X-ray computed microtomography (SR micro-CT) and computational fluid dynamics. The studied samples pertain to deformed porous carbonate grainstones highly affected by deformation bands (DBs) exposed in Northwestern Sicily and Abruzzo regions, Italy. The high-resolution SR micro-CT images of the samples, acquired at the SYRMEP beamline of the Elettra - Sincrotrone Trieste laboratory (Italy), were used for simulating a pressure-driven flow by using the lattice-Boltzmann method (LBM). For the experiments, a multiple relaxation time (MRT) model with the D3Q19 scheme was used to avoid viscosity-dependent results of permeability. The permeability was calculated using Darcy's law once steady conditions were reached. After the simulations, the pore-network properties (effective porosity, specific surface area, and geometrical tortuosity) were calculated using 3D images of the velocity fields. These images were segmented considering a velocity threshold value higher than zero. The study showed that DBs may generate significant heterogeneity and anisotropy of the permeability of the evaluated rock samples. Cataclasis and cementation process taking place within the DBs reduce the effective porosity and therefore the permeability. Contrary to this, pressure dissolution and faulting may generate connected channels which contribute to the permeability only parallel to the DB.

  14. 3D Textural and Geochemical Analyses on Carbonado Diamond: Insights from Pores and the Minerals within Them

    Science.gov (United States)

    Eckley, S. A.; Ketcham, R. A.

    2017-12-01

    Carbonado is an enigmatic variety of polycrystalline diamond found only in placer deposits and Proterozoic metaconglomerates in Brazil and the Central African Republic with unknown primary origin. These highly porous black nodules possess a narrow range of isotopically light carbon (δ13C -31 to -24 ‰), a primarily crustal inclusion suite unusually enriched in REEs and actinides filling the pore spaces, a crystallization age from 2.6 to 3.8 Ga, and other atypical features which have led to a variety of formation theories from extra-solar to deep mantle. We have completed the first multi-sample 3D textural analysis on nine carbonados using high resolution X-ray CT (XCT), with follow-up geochemical work. We have documented a variety of textures in both pore structure and mineralogy within pores. All pore textures feature a preferred orientation. Spatial coherence in pore fillings in some specimens suggest that secondary minerals formed by in-situ breakdown of primary inclusion phases. This, combined with the presence of pseudomorphs, support the hypothesis that elements comprising the secondary minerals within the pore spaces are actually primary. SEM-EDS analysis of one carbonado's exterior revealed the presence of zircon; XCT analysis of the complete volume indicates zircon is present only on the exterior of that specimen, but may be interior to others. Anticipated follow-up work will include LA-ICP-MS U-Pb dating and REE analysis of the zircon, and step-leaching and ICP analysis of some specimens. Periodic XCT imaging will allow us to trace leaching progress and effectiveness. To provide further context for our observed pore fabrics, we also analyzed a framesite, a less porous polycrystalline diamond found in kimberlites thought to crystallize shortly before eruption. Both diamond varieties have bladed/elongated pores forming a foliation with a moderate lineation. The similarity in fabrics suggests a similar process could have formed both carbonados and

  15. Surfactant-enhanced control of track-etch pore morphology

    International Nuclear Information System (INIS)

    Apel', P.Yu.; Blonskaya, I.V.; Didyk, A.Yu.; Dmitriev, S.N.; Orelovich, O.L.; Samojlova, L.I.; Vutsadakis, V.A.; Root, D.

    2000-01-01

    The influence of surfactants on the process of chemical development of ion tracks in polymers is studied. Based on the experimental data, a mechanism of the surfactant effect on the track-etch pore morphology is proposed. In the beginning of etching the surfactant is adsorbed on the surface and creates a layer that is quasi-solid and partially protects the surface from the etching agent. However, some etchant molecules diffuse through the barrier and react with the polymer surface. This results in the formation of a small hole at the entrance to the ion track. After the hole has attained a few annometers in diameter, the surfactant molecules penetrate into the track and cover its walls. Further diffusion of the surfactant into the growing pore is hindered. The adsorbed surfactant layer is not permeable for large molecules. In contrast, small alkali molecules and water molecules diffuse into the track and provide the etching process enlarging the pore. At this stage the transport of the surfactant into the pore channel can proceed only due to the lateral diffusion in the adsorbed layer. The volume inside the pore is free of surfactant molecules and grows at a higher rate than pore entrance. After a more prolonged etching the bottle-like (or 'cigar-like') pore channels are formed. The bottle-like shape of the pore channels depends on the etching conditions such as alkali and surfactant concentration, temperature, and type of the surfactant. The use of surfactants enables one to produce track-etch membranes with improved flow rate characteristics compared with those having cylindrical pores with the same nominal pore diameters

  16. Seismoelectric Effects based on Spectral-Element Method for Subsurface Fluid Characterization

    Science.gov (United States)

    Morency, C.

    2017-12-01

    Present approaches for subsurface imaging rely predominantly on seismic techniques, which alone do not capture fluid properties and related mechanisms. On the other hand, electromagnetic (EM) measurements add constraints on the fluid phase through electrical conductivity and permeability, but EM signals alone do not offer information of the solid structural properties. In the recent years, there have been many efforts to combine both seismic and EM data for exploration geophysics. The most popular approach is based on joint inversion of seismic and EM data, as decoupled phenomena, missing out the coupled nature of seismic and EM phenomena such as seismoeletric effects. Seismoelectric effects are related to pore fluid movements with respect to the solid grains. By analyzing coupled poroelastic seismic and EM signals, one can capture a pore scale behavior and access both structural and fluid properties.Here, we model the seismoelectric response by solving the governing equations derived by Pride and Garambois (1994), which correspond to Biot's poroelastic wave equations and Maxwell's electromagnetic wave equations coupled electrokinetically. We will show that these coupled wave equations can be numerically implemented by taking advantage of viscoelastic-electromagnetic mathematical equivalences. These equations will be solved using a spectral-element method (SEM). The SEM, in contrast to finite-element methods (FEM) uses high degree Lagrange polynomials. Not only does this allow the technique to handle complex geometries similarly to FEM, but it also retains exponential convergence and accuracy due to the use of high degree polynomials. Finally, we will discuss how this is a first step toward full coupled seismic-EM inversion to improve subsurface fluid characterization. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  17. A method of evaluating facial pores using optical 2D images and analysis of age-dependent changes in facial pores in Koreans.

    Science.gov (United States)

    Jang, S I; Kim, E J; Lee, H K

    2018-05-01

    Enlarged facial pores and changes in pore area are of concern for cosmetic reasons. To evaluate pores, measuring tools based on 3D methodology are used. Yet, these methods are limited by their measuring ranges. In this study, we performed pore analysis by measuring the whole face using 2D optical images. We further sought to understand how the pores of Korean women change with age. One hundred sixteen Korean female subjects aged 20-60 years were recruited for this study. Facial images were taken using the VISIA-CR ® adjusted light source. Images were processed using Image-Pro Plus 9.2. Statistical significance was assumed when P pore area, as indicated by pixel count, gradually increased in patients through their 40s, but decreased through their 50s and 60s. Facial pores generally exhibited directionality through the patients' 30s, but this isotropic feature was more prominent in their 50s. Pore elongation increased stepwise. The first increase occurred during the transition from patients' 30s to their 40s and the second increase occurred during the transition from patients' 50s to their 60s. This indicated that the pores deformed from a circular shape to a long elliptic shape over time. A new evaluation method using 2D optical images facilitates the analysis of pore distribution and elongation throughout the entire cheek. This is an improvement over an analysis of pores over a narrow region of interest. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Pore formation by actinoporins, cytolysins from sea anemones.

    Science.gov (United States)

    Rojko, Nejc; Dalla Serra, Mauro; Maček, Peter; Anderluh, Gregor

    2016-03-01

    Actinoporins (APs) from sea anemones are ~20 kDa pore forming toxins with a β-sandwich structure flanked by two α-helices. The molecular mechanism of APs pore formation is composed of several well-defined steps. APs bind to membrane by interfacial binding site composed of several aromatic amino acid residues that allow binding to phosphatidylcholine and specific recognition of sphingomyelin. Subsequently, the N-terminal α-helix from the β-sandwich has to be inserted into the lipid/water interphase in order to form a functional pore. Functional studies and single molecule imaging revealed that only several monomers, 3-4, oligomerise to form a functional pore. In this model the α-helices and surrounding lipid molecules build toroidal pore. In agreement, AP pores are transient and electrically heterogeneous. On the contrary, crystallized oligomers of actinoporin fragaceatoxin C were found to be composed of eight monomers with no lipids present between the adjacent α-helices. This article is part of a Special Issue entitled: Pore-Forming Toxins edited by Maur Dalla Serra and Franco Gambale. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Nuclear Pore-Like Structures in a Compartmentalized Bacterium.

    Directory of Open Access Journals (Sweden)

    Evgeny Sagulenko

    Full Text Available Planctomycetes are distinguished from other Bacteria by compartmentalization of cells via internal membranes, interpretation of which has been subject to recent debate regarding potential relations to Gram-negative cell structure. In our interpretation of the available data, the planctomycete Gemmata obscuriglobus contains a nuclear body compartment, and thus possesses a type of cell organization with parallels to the eukaryote nucleus. Here we show that pore-like structures occur in internal membranes of G.obscuriglobus and that they have elements structurally similar to eukaryote nuclear pores, including a basket, ring-spoke structure, and eight-fold rotational symmetry. Bioinformatic analysis of proteomic data reveals that some of the G. obscuriglobus proteins associated with pore-containing membranes possess structural domains found in eukaryote nuclear pore complexes. Moreover, immunogold labelling demonstrates localization of one such protein, containing a β-propeller domain, specifically to the G. obscuriglobus pore-like structures. Finding bacterial pores within internal cell membranes and with structural similarities to eukaryote nuclear pore complexes raises the dual possibilities of either hitherto undetected homology or stunning evolutionary convergence.

  20. Numerical estimates of the maximum sustainable pore pressure in anticline formations using the tensor based concept of pore pressure-stress coupling

    Directory of Open Access Journals (Sweden)

    Andreas Eckert

    2015-02-01

    Full Text Available The advanced tensor based concept of pore pressure-stress coupling is used to provide pre-injection analytical estimates of the maximum sustainable pore pressure change, ΔPc, for fluid injection scenarios into generic anticline geometries. The heterogeneous stress distribution for different prevailing stress regimes in combination with the Young's modulus (E contrast between the injection layer and the cap rock and the interbedding friction coefficient, μ, may result in large spatial and directional differences of ΔPc. A single value characterizing the cap rock as for horizontal layered injection scenarios is not obtained. It is observed that a higher Young's modulus in the cap rock and/or a weak mechanical coupling between layers amplifies the maximum and minimum ΔPc values in the valley and limb, respectively. These differences in ΔPc imposed by E and μ are further amplified by different stress regimes. The more compressional the stress regime is, the larger the differences between the maximum and minimum ΔPc values become. The results of this study show that, in general compressional stress regimes yield the largest magnitudes of ΔPc and extensional stress regimes provide the lowest values of ΔPc for anticline formations. Yet this conclusion has to be considered with care when folded anticline layers are characterized by flexural slip and the friction coefficient between layers is low, i.e. μ = 0.1. For such cases of weak mechanical coupling, ΔPc magnitudes may range from 0 MPa to 27 MPa, indicating imminent risk of fault reactivation in the cap rock.

  1. Fluid mechanics in fluids at rest.

    Science.gov (United States)

    Brenner, Howard

    2012-07-01

    Using readily available experimental thermophoretic particle-velocity data it is shown, contrary to current teachings, that for the case of compressible flows independent dye- and particle-tracer velocity measurements of the local fluid velocity at a point in a flowing fluid do not generally result in the same fluid velocity measure. Rather, tracer-velocity equality holds only for incompressible flows. For compressible fluids, each type of tracer is shown to monitor a fundamentally different fluid velocity, with (i) a dye (or any other such molecular-tagging scheme) measuring the fluid's mass velocity v appearing in the continuity equation and (ii) a small, physicochemically and thermally inert, macroscopic (i.e., non-Brownian), solid particle measuring the fluid's volume velocity v(v). The term "compressibility" as used here includes not only pressure effects on density, but also temperature effects thereon. (For example, owing to a liquid's generally nonzero isobaric coefficient of thermal expansion, nonisothermal liquid flows are to be regarded as compressible despite the general perception of liquids as being incompressible.) Recognition of the fact that two independent fluid velocities, mass- and volume-based, are formally required to model continuum fluid behavior impacts on the foundations of contemporary (monovelocity) fluid mechanics. Included therein are the Navier-Stokes-Fourier equations, which are now seen to apply only to incompressible fluids (a fact well-known, empirically, to experimental gas kineticists). The findings of a difference in tracer velocities heralds the introduction into fluid mechanics of a general bipartite theory of fluid mechanics, bivelocity hydrodynamics [Brenner, Int. J. Eng. Sci. 54, 67 (2012)], differing from conventional hydrodynamics in situations entailing compressible flows and reducing to conventional hydrodynamics when the flow is incompressible, while being applicable to both liquids and gases.

  2. The use of nylon and glass fiber filter separators with different pore sizes in air-cathode single-chamber microbial fuel cells

    KAUST Repository

    Zhang, Xiaoyuan

    2010-01-01

    Separators are needed in microbial fuel cells (MFCs) to reduce electrode spacing and preventing electrode short circuiting. The use of nylon and glass fiber filter separators in single-chamber, air-cathode MFCs was examined for their effect on performance. Larger pore nylon mesh were used that had regular mesh weaves with pores ranging from 10 to 160 μm, while smaller pore-size nylon filters (0.2-0.45 μm) and glass fiber filters (0.7-2.0 μm) had a more random structure. The pore size of both types of nylon filters had a direct and predictable effect on power production, with power increasing from 443 ± 27 to 650 ± 7 mW m-2 for pore sizes of 0.2 and 0.45 μm, and from 769 ± 65 to 941 ± 47 mW m-2 for 10 to 160 μm. In contrast, changes in pore sizes of the glass fiber filters resulted in a relatively narrow change in power (732 ± 48 to 779 ± 43 mW m-2) for pore sizes of 0.7 to 2 μm. An ideal separator should increase both power density and Coulombic efficiency (CE). However, CEs measured for the different separators were inversely correlated with power production, demonstrating that materials which reduced the oxygen diffusion into the reactor also hindered proton transport to the cathode, reducing power production through increased internal resistance. Our results highlight the need to develop separators that control oxygen transfer and facilitate proton transfer to the cathode. © 2010 The Royal Society of Chemistry.

  3. Increasing fluid intake and reducing dehydration risk in older people living in long-term care: a systematic review.

    Science.gov (United States)

    Bunn, Diane; Jimoh, Florence; Wilsher, Stephanie Howard; Hooper, Lee

    2015-02-01

    To assess the efficacy of interventions and environmental factors on increasing fluid intake or reducing dehydration risk in older people living in long-term care facilities. Systematic review of intervention and observational studies. Thirteen electronic databases were searched from inception until September 2013 in all languages. References of included papers and reviews were checked. Intervention and observational studies investigating modifiable factors to increase fluid intake and/or reduce dehydration risk in older people (≥65 years) living in long-term care facilities who could drink orally. Two reviewers independently screened, selected, abstracted data, and assessed risk of bias from included studies; narrative synthesis was performed. A total of 4328 titles and abstracts were identified, 325 full-text articles were obtained and 23 were included in the review. Nineteen intervention and 4 observational studies from 7 countries investigated factors at the resident, institutional, or policy level. Overall, the studies were at high risk of bias due to selection and attrition bias and lack of valid outcome measures of fluid intake and dehydration assessment. Reported findings from 6 of the 9 intervention studies investigating the effect of multicomponent strategies on fluid intake or dehydration described a positive effect. Components included greater choice and availability of beverages, increased staff awareness, and increased staff assistance with drinking and toileting. Implementation of the US Resident Assessment Instrument reduced dehydration prevalence from 3% to 1%, P = .01. Two smaller studies reported positive effects: one on fluid intake in 9 men with Alzheimer disease using high-contrast red cups, the other involved supplementing 13 mildly dehydrated residents with oral hydration solution over 5 days to reduce dehydration. Modifications to the dining environment, advice to residents, presentation of beverages, and mode of delivery (straw vs beaker

  4. Pore-water evolution and solute-transport mechanisms in Opalinus Clay at Mont Terri and Mont Russelin (Canton Jura, Switzerland)

    Energy Technology Data Exchange (ETDEWEB)

    Mazurek, M. [Institute of Geological Sciences, University of Berne, Berne (Switzerland); Haller de, A. [Earth and Environmental Sciences, University of Geneva, Geneva (Switzerland)

    2017-04-15

    Data pertinent to pore-water composition in Opalinus Clay in the Mont Terri and Mont Russelin anticlines have been collected over the last 20 years from long-term in situ pore-water sampling in dedicated boreholes, from laboratory analyses on drill cores and from the geochemical characteristics of vein infills. Together with independent knowledge on regional geology, an attempt is made here to constrain the geochemical evolution of the pore-waters. Following basin inversion and the establishment of continental conditions in the late Cretaceous, the Malm limestones acted as a fresh-water upper boundary leading to progressive out-diffusion of salinity from the originally marine pore-waters of the Jurassic low-permeability sequence. Model calculations suggest that at the end of the Palaeogene, pore-water salinity in Opalinus Clay was about half the original value. In the Chattian/Aquitanian, partial evaporation of sea-water occurred. It is postulated that brines diffused into the underlying sequence over a period of several Myr, resulting in an increase of salinity in Opalinus Clay to levels observed today. This hypothesis is further supported by the isotopic signatures of SO{sub 4}{sup 2-} and {sup 87}Sr/{sup 86}Sr in current pore-waters. These are not simple binary mixtures of sea and meteoric water, but their Cl{sup -} and stable water-isotope signatures can be potentially explained by a component of partially evaporated sea-water. After the re-establishment of fresh-water conditions on the surface and the formation of the Jura Fold and Thrust Belt, erosion caused the activation of aquifers embedding the low-permeability sequence, leading to the curved profiles of various pore-water tracers that are observed today. Fluid flow triggered by deformation events during thrusting and folding of the anticlines occurred and is documented by infrequent vein infills in major fault structures. However, this flow was spatially focussed and of limited duration and so did not

  5. A Two-Phase Solid/Fluid Model for Dense Granular Flows Including Dilatancy Effects

    Science.gov (United States)

    Mangeney, Anne; Bouchut, Francois; Fernandez-Nieto, Enrique; Narbona-Reina, Gladys

    2015-04-01

    We propose a thin layer depth-averaged two-phase model to describe solid-fluid mixtures such as debris flows. It describes the velocity of the two phases, the compression/dilatation of the granular media and its interaction with the pore fluid pressure, that itself modifies the friction within the granular phase (Iverson et al., 2010). The model is derived from a 3D two-phase model proposed by Jackson (2000) based on the 4 equations of mass and momentum conservation within the two phases. This system has 5 unknowns: the solid and fluid velocities, the solid and fluid pressures and the solid volume fraction. As a result, an additional equation inside the mixture is necessary to close the system. Surprisingly, this issue is inadequately accounted for in the models that have been developed on the basis of Jackson's work (Bouchut et al., 2014). In particular, Pitman and Le replaced this closure simply by imposing an extra boundary condition at the surface of the flow. When making a shallow expansion, this condition can be considered as a closure condition. However, the corresponding model cannot account for a dissipative energy balance. We propose here an approach to correctly deal with the thermodynamics of Jackson's equations. We close the mixture equations by a weak compressibility relation involving a critical density, or equivalently a critical pressure. Moreover, we relax one boundary condition, making it possible for the fluid to escape the granular media when compression of the granular mass occurs. Furthermore, we introduce second order terms in the equations making it possible to describe the evolution of the pore fluid pressure in response to the compression/dilatation of the granular mass without prescribing an extra ad-hoc equation for the pore pressure. We prove that the energy balance associated with this Jackson closure is dissipative, as well as its thin layer associated model. We present several numerical tests for the 1D case that are compared to the

  6. Radiative magnetohydrodynamic simulations of solar pores

    NARCIS (Netherlands)

    Cameron, R.; Schuessler, M.; Vögler, A.; Zakharov, V.

    2007-01-01

    Context. Solar pores represent a class of magnetic structures intermediate between small-scale magnetic flux concentrations in intergranular lanes and fully developed sunspots with penumbrae. Aims. We study the structure, energetics, and internal dynamics of pore-like magnetic structures by means of

  7. MD simulation of organics adsorption from aqueous solution in carbon slit-like pores. Foundations of the pore blocking effect

    International Nuclear Information System (INIS)

    Gauden, Piotr A; Terzyk, Artur P; Furmaniak, Sylwester; Zieliński, Wojciech; Włoch, Jerzy; Kowalczyk, Piotr

    2014-01-01

    The results of systematic studies of organics adsorption from aqueous solutions (at the neutral pH level) in a system of slit-like carbon pores having different sizes and oxygen groups located at the pore mouth are reported. Using molecular dynamics simulations (GROMACS package) the properties of adsorbent–adsorbate (benzene, phenol or paracetamol) as well as adsorbent–water systems are discussed. After the introduction of surface oxygen functionalities, adsorption of organic compounds decreases (in accordance with experimental data) and this is caused by the accumulation of water molecules at pore entrances. The pore blocking effect decreases with the diameter of slits and practically vanishes for widths larger than approx. 0.68 nm. We observed the increase in phenol adsorption with the rise in temperature. Moreover, adsorbed molecules occupy the external surface of the slit pores (the entrances) in the case of oxidized adsorbents. Among the studied molecules benzene, phenol and paracetamol prefer an almost flat orientation and with the rise in the pore width the number of molecules oriented in parallel decreases. The decrease or increase in temperature (with respect to 298 K) leads to insignificant changes of angular orientation of adsorbed molecules. (paper)

  8. Pore network modeling of drainage process in patterned porous media: a quasi-static study

    KAUST Repository

    Zhang, Tao

    2015-04-17

    This work represents a preliminary investigation on the role of wettability conditions on the flow of a two-phase system in porous media. Since such effects have been lumped implicitly in relative permeability-saturation and capillary pressure-saturation relationships, it is quite challenging to isolate its effects explicitly in real porous media applications. However, within the framework of pore network models, it is easy to highlight the effects of wettability conditions on the transport of two-phase systems. We employ quasi-static investigation in which the system undergo slow movement based on slight increment of the imposed pressure. Several numerical experiments of the drainage process are conducted to displace a wetting fluid with a non-wetting one. In all these experiments the network is assigned different scenarios of various wettability patterns. The aim is to show that the drainage process is very much affected by the imposed pattern of wettability. The wettability conditions are imposed by assigning the value of contact angle to each pore throat according to predefined patterns.

  9. Change of microstructure of clays due to the presence of heavy metal ions in pore water

    Directory of Open Access Journals (Sweden)

    Saiyouri N.

    2010-06-01

    Full Text Available The compressibility of engineered barrier clays is, to a large extent, controlled by microstructure change due to the presence of chemical ions in clay-water system. This paper aims to investigate the change of microstructure of clays due to the presence of heavy metal ions in pore water. We use two pure clays (kaolinite and bentonite in the study. One-dimensional consolidation tests were performed on reconstituted samples, which are prepared with distilled water and three types of heavy metal solutions (Pb(NO32, Cu(NO32, Zn(NO32,. In order to better understand the impact of chemical pore fluid on microstructure of the two clays, following the consolidation test, scanning electron microscope (SEM observations and mercury intrusion pore size distribution measurements (MIP were conducted. Due to the measurement range of MIP, which is only allowed to measure the minimal pore size 20 Å, BET method by gas sorption, whose measurement pore size range is from 3.5 Å to 500 Å, is used to measure the micropore size distribution. By this method, specific surface area of the soils can be also determined. It can be employed to demonstrate the difference of creep performance between the soils. Furthermore, a series of batch equilibrium tests were conducted to better understand the physical-chemical interactions between the particles of soils and the heavy metal ions. With the further consideration of the interparticle electrical attractive and repulsive force, an attempt has been made to predict the creep behaviour by using the modified Gouy-Chapman double layer theory. The results of calculation were compared with that of tests. The comparison shows that the prediction of compressibility of the clays according to the modified double diffuse layer theory can be reasonably agreement with the experimental data.

  10. The Effect of adding pore formers on the microstructure of NiO-YSZ ceramic composite

    International Nuclear Information System (INIS)

    Silva, F.S.; Santos, F.S.; Medeiros, L.M.; Yoshito, W.K.; Lazar, D.R.R.; Ussui, V.

    2011-01-01

    The ceramic composite of nickel oxide (NiO) with zirconium stabilized with 8 mol% yttria (8-YSZ) is the most employed material for use as anode for solid oxide fuel cells (SOFC). The nickel oxide in the composite is reduced to metallic nickel and this result in a 15% of porosity although the porosity needed to a proper function of an anode is about 30%, demanding the use of a pore former. In this work, NiO-YSZ composite powders were synthesized by a combustion process with urea as fuel, and the effect of the addition of carbon black and corn and rice starch as pore former were investigated. Powders were pressed as cylindrical pellets, sintered at 1350 °C for 60 minutes and density were measured by an immersion method and microstructure were observed by scanning electron microscopy. Results showed that ceramic composite has homogeneous microstructure and pores have different morphology and size depending on the kind of the pore former employed. (author)

  11. Mesoporous ethanesilica materials with bimodal and trimodal pore-size distributions synthesised in the presence of cobalt ions

    Directory of Open Access Journals (Sweden)

    Alufelwi M. Tshavhungwe

    2010-07-01

    Full Text Available Mesoporous organosilica materials containing ethane groups in their framework were formed with two and three pore sizes (i.e. bimodal and trimodal pores when synthesised by the sol-gel method in the presence of cobalt ions. The compounds 1,2-bistrimethoxysilylethane and tetraethylorthosilicate were used as silicon sources and the reactions were done in the presence of a surfactant, which served as a template. Diffuse reflectance infrared Fourier transform spectroscopy revealed that organic functional groups were incorporated into the ethanesilica. Powder X-ray diffraction and nitrogen adsorption data indicated that the mesophase and textural properties (surface area, pore volume, pore diameter of the materials were dependent on the ageing temperature, the amount/ratio of silica precursors and cobalt ion incorporation. Secondary mesopores were drastically reduced by changing the ratio of silicon precursors.

  12. Role of medium heterogeneity and viscosity contrast in miscible flow regimes and mixing zone growth: A computational pore-scale approach

    Science.gov (United States)

    Afshari, Saied; Hejazi, S. Hossein; Kantzas, Apostolos

    2018-05-01

    Miscible displacement of fluids in porous media is often characterized by the scaling of the mixing zone length with displacement time. Depending on the viscosity contrast of fluids, the scaling law varies between the square root relationship, a sign for dispersive transport regime during stable displacement, and the linear relationship, which represents the viscous fingering regime during an unstable displacement. The presence of heterogeneities in a porous medium significantly affects the scaling behavior of the mixing length as it interacts with the viscosity contrast to control the mixing of fluids in the pore space. In this study, the dynamics of the flow and transport during both unit and adverse viscosity ratio miscible displacements are investigated in heterogeneous packings of circular grains using pore-scale numerical simulations. The pore-scale heterogeneity level is characterized by the variations of the grain diameter and velocity field. The growth of mixing length is employed to identify the nature of the miscible transport regime at different viscosity ratios and heterogeneity levels. It is shown that as the viscosity ratio increases to higher adverse values, the scaling law of mixing length gradually shifts from dispersive to fingering nature up to a certain viscosity ratio and remains almost the same afterwards. In heterogeneous media, the mixing length scaling law is observed to be generally governed by the variations of the velocity field rather than the grain size. Furthermore, the normalization of mixing length temporal plots with respect to the governing parameters of viscosity ratio, heterogeneity, medium length, and medium aspect ratio is performed. The results indicate that mixing length scales exponentially with log-viscosity ratio and grain size standard deviation while the impact of aspect ratio is insignificant. For stable flows, mixing length scales with the square root of medium length, whereas it changes linearly with length during

  13. Warming intravenous fluids reduces perioperative hypothermia in women undergoing ambulatory gynecological surgery.

    Science.gov (United States)

    Smith, C E; Gerdes, E; Sweda, S; Myles, C; Punjabi, A; Pinchak, A C; Hagen, J F

    1998-07-01

    We evaluated whether warming i.v. fluids resulted in less hypothermia (core temperature 30 min were randomized to two groups: fluid warming at 42 degrees C or control (room temperature fluids at approximately 21 degrees C). All patients received general anesthesia with isoflurane, tracheal intubation, standard operating room blankets and surgical drapes, and passive humidification of inspired gases. Tympanic membrane (core) temperatures were measured at baseline and at 15-min intervals after induction. The incidence of shivering and postoperative requirement for meperidine and/or radiant heat were evaluated. Core temperatures were lower in the control compared with the warm fluid group at the end of surgery (35.6 +/- 0.1 degrees C vs 36.2 +/- 0.1 degrees C; P unit or the incidence of shivering between the groups. We conclude that fluid warming, in conjunction with standard heat conservation measures, was effective in maintaining normothermia during outpatient gynecological surgery; however, there was no improvement in patient outcome. Women who received i.v. fluid at body temperature had significantly higher core temperatures during and after outpatient gynecological surgery compared with women who received i.v. fluids at the temperature of the operating room.

  14. Measurements of pore-scale flow through apertures

    Energy Technology Data Exchange (ETDEWEB)

    Chojnicki, Kirsten [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    Pore-scale aperture effects on flow in pore networks was studied in the laboratory to provide a parameterization for use in transport models. Four cases were considered: regular and irregular pillar/pore alignment with and without an aperture. The velocity field of each case was measured and simulated, providing quantitatively comparable results. Two aperture effect parameterizations were considered: permeability and transmission. Permeability values varied by an order of magnitude between the cases with and without apertures. However, transmission did not correlate with permeability. Despite having much greater permeability the regular aperture case permitted less transmission than the regular case. Moreover, both irregular cases had greater transmission than the regular cases, a difference not supported by the permeabilities. Overall, these findings suggest that pore-scale aperture effects on flow though a pore-network may not be adequately captured by properties such as permeability for applications that are interested in determining particle transport volume and timing.

  15. Assessment of fluid distribution and flow properties in two phase fluid flow using X-ray CT technology

    Science.gov (United States)

    Jiang, Lanlan; Wu, Bohao; Li, Xingbo; Wang, Sijia; Wang, Dayong; Zhou, Xinhuan; Zhang, Yi

    2018-04-01

    To study on microscale distribution of CO2 and brine during two-phase flow is crucial for understanding the trapping mechanisms of CO2 storage. In this study, CO2-brine flow experiments in porous media were conducted using X-ray computed tomography. The porous media were packed with glass beads. The pore structure (porosity/tortuosity) and flow properties at different flow rates and flow fractions were investigated. The results showed that porosity of the packed beads differed at different position as a result of heterogeneity. The CO2 saturation is higher at low injection flow rates and high CO2 fractions. CO2 distribution at the pore scale was also visualized. ∅ Porosity of porous media CT brine_ sat grey value of sample saturated with brine CT dry grey value of sample saturated with air CT brine grey value of pure brine CT air grey value of pure air CT flow grey values of sample with two fluids occupying the pore space {CT}_{CO_2_ sat} grey value of sample saturated with CO2 {f}_{CO_2}({S}_{CO_2}) CO2 fraction {q}_{CO_2} the volume flow rate for CO2 q brine the volume flow rate for brine L Thickness of the porous media, mm L e a bundle of capillaries of equal length, mm τ Tortuosity, calculated from L e / L.

  16. Nuclear pore protein NUP88 activates anaphase-promoting complex to promote aneuploidy

    NARCIS (Netherlands)

    Naylor, R.M.; Jeganathan, K.B.; Cao, X.; Deursen, J.M. van

    2016-01-01

    The nuclear pore complex protein NUP88 is frequently elevated in aggressive human cancers and correlates with reduced patient survival; however, it is unclear whether and how NUP88 overexpression drives tumorigenesis. Here, we show that mice overexpressing NUP88 are cancer prone and form intestinal

  17. High Structural Stability of Textile Implants Prevents Pore Collapse and Preserves Effective Porosity at Strain

    Directory of Open Access Journals (Sweden)

    Uwe Klinge

    2015-01-01

    Full Text Available Reinforcement of tissues by use of textiles is encouraged by the reduced rate of recurrent tissue dehiscence but for the price of an inflammatory and fibrotic tissue reaction to the implant. The latter mainly is affected by the size of the pores, whereas only sufficiently large pores are effective in preventing a complete scar entrapment. Comparing two different sling implants (TVT and SIS, which are used for the treatment of urinary incontinence, we can demonstrate that the measurement of the effective porosity reveals considerable differences in the textile construction. Furthermore the changes of porosity after application of a tensile load can indicate a structural instability, favouring pore collapse at stress and questioning the use for purposes that are not “tension-free.”

  18. Magmatic Vapor Phase Transport of Copper in Reduced Porphyry Copper-Gold Deposits: Evidence From PIXE Microanalysis of Fluid Inclusions

    Science.gov (United States)

    Rowins, S. M.; Yeats, C. J.; Ryan, C. G.

    2002-05-01

    Nondestructive proton-induced X-ray emission (PIXE) studies of magmatic fluid inclusions in granite-related Sn-W deposits [1] reveal that copper transport out of reduced felsic magmas is favored by low-salinity vapor and not co-existing high-salinity liquid (halite-saturated brine). Copper transport by magmatic vapor also has been documented in oxidized porphyry Cu-Au deposits, but the magnitude of Cu partitioning into the vapor compared to the brine generally is less pronounced than in the reduced magmatic Sn-W systems [2]. Consideration of these microanalytical data leads to the hypothesis that Cu and, by inference, Au in the recently established "reduced porphyry copper-gold" (RPCG) subclass should partition preferentially into vapor and not high-salinity liquid exsolving directly from fluid-saturated magmas [3-4]. To test this hypothesis, PIXE microanalysis of primary fluid inclusions in quartz-sulfide (pyrite, pyrrhotite & chalcopyrite) veins from two RPCG deposits was undertaken using the CSIRO-GEMOC nuclear microprobe. PIXE microanalysis for the ~30 Ma San Anton deposit (Mexico) was done on halite-saturated aqueous brine (deposit (W. Australia) was done on halite-saturated "aqueous" inclusions, which contain a small (deposits of the new RPCG subclass demonstrate the greater potential of these systems, compared to the classically oxidized porphyry Cu-Au systems, to transport Cu and probably precious metals in a magmatic aqueous vapor phase. These PIXE data also support the possibility that Cu partitions preferentially into an immiscible CO2-rich magmatic fluid. References: [1] Heinrich, C.A. et al. (1992) Econ. Geol., 87, 1566-1583. [2] Heinrich, C.A. et al. (1999) Geology, 27, 755-758. [3] Rowins, S.M. (2000) Geology, 28, 491-494. [4] Rowins, S.M. (2000) The Gangue, GAC-MDD Newsletter, 67, 1-7 (www.gac.ca). [5] Rowins, S.M. et al. (1993) Geol. Soc. Australia Abs., 34, 68-70.

  19. Intra-operative intravenous fluid restriction reduces perioperative red blood cell transfusion in elective cardiac surgery, especially in transfusion-prone patients: a prospective, randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Georgopoulou Stavroula

    2010-02-01

    Full Text Available Abstract Background Cardiac surgery is a major consumer of blood products, and hemodilution increases transfusion requirements during cardiac surgery under CPB. As intraoperative parenteral fluids contribute to hemodilution, we evaluated the hypothesis that intraoperative fluid restriction reduces packed red-cell (PRC use, especially in transfusion-prone adults undergoing elective cardiac surgery. Methods 192 patients were randomly assigned to restrictive (group A, 100 pts, or liberal (group B, 92 pts intraoperative intravenous fluid administration. All operations were conducted by the same team (same surgeon and perfusionist. After anesthesia induction, intravenous fluids were turned off in Group A (fluid restriction patients, who only received fluids if directed by protocol. In contrast, intravenous fluid administration was unrestricted in group B. Transfusion decisions were made by the attending anesthesiologist, based on identical transfusion guidelines for both groups. Results 137 of 192 patients received 289 PRC units in total. Age, sex, weight, height, BMI, BSA, LVEF, CPB duration and surgery duration did not differ between groups. Fluid balance was less positive in Group A. Fewer group A patients (62/100 required transfusion compared to group B (75/92, p Conclusions Our data suggest that fluid restriction reduces intraoperative PRC transfusions without significantly increasing postoperative transfusions in cardiac surgery; this effect is more pronounced in transfusion-prone patients. Trial registration NCT00600704, at the United States National Institutes of Health.

  20. Pore-Level Investigation of Heavy Oil Recovery using Steam Assisted Gravity Drainage (SAGD Étude à l’échelle des pores de la récupération d’huiles lourdes par drainage gravitaire assisté par injection de vapeur (SAGD

    Directory of Open Access Journals (Sweden)

    Mohammadzadeh O.

    2010-12-01

    Full Text Available Successful application of gravity drainage process, facilitated with steam injection, using horizontal wells in various field tests, especially within Canada, indicates that high recovery factor and also economical steam to oil ratios are achievable. Steam Assisted Gravity Drainage recovery scheme was theoretically developed, pilot tested, and commercialized in Canada; however, there are still several technical challenges to be solved in this process. The pore-scale events of heavy oil recovery in SAGD process are not yet well understood to the extent of incorporating pore-level physics of the process into mathematical models. Investigation of the physics of fluid distribution and flow behavior in porous media for SAGD process at the pore-scale is expected to result in significant improvement in understanding the macroscopic phenomena observed in either laboratory or field scale. The main objective of this paper is to visually investigate and to document the pore-scale events of the SAGD process using glass micromodel type of porous media. SAGD experiments were carried out in micromodels of capillary networks etched on glass plates which were initially saturated with heavy oil. Experiments were conducted in a vacuum chamber in order to reduce the excessive heat loss to the surrounding environment. Initial results indicate that when the heavy oil-steam interface is established, gravity drainage process takes place through a layer of pores, with a thickness of 1-6 pores, in the direction perpendicular to the interface. The interplay between gravity and capillarity forces results in the drainage of mobilized oil. The visualization results demonstrate the phenomenon of water in oil emulsification at the interface due to the local steam condensation. The extent of emulsification depends directly to the temperature gradient between the steam phase and cold bitumen. Other pore-scale phenomena such as film-flow drainage type of mobilized oil, localized

  1. Capillary pressure-saturation relationships for porous granular materials: Pore morphology method vs. pore unit assembly method

    Science.gov (United States)

    Sweijen, Thomas; Aslannejad, Hamed; Hassanizadeh, S. Majid

    2017-09-01

    In studies of two-phase flow in complex porous media it is often desirable to have an estimation of the capillary pressure-saturation curve prior to measurements. Therefore, we compare in this research the capability of three pore-scale approaches in reproducing experimentally measured capillary pressure-saturation curves. To do so, we have generated 12 packings of spheres that are representative of four different glass-bead packings and eight different sand packings, for which we have found experimental data on the capillary pressure-saturation curve in the literature. In generating the packings, we matched the particle size distributions and porosity values of the granular materials. We have used three different pore-scale approaches for generating the capillary pressure-saturation curves of each packing: i) the Pore Unit Assembly (PUA) method in combination with the Mayer and Stowe-Princen (MS-P) approximation for estimating the entry pressures of pore throats, ii) the PUA method in combination with the hemisphere approximation, and iii) the Pore Morphology Method (PMM) in combination with the hemisphere approximation. The three approaches were also used to produce capillary pressure-saturation curves for the coating layer of paper, used in inkjet printing. Curves for such layers are extremely difficult to determine experimentally, due to their very small thickness and the presence of extremely small pores (less than one micrometer in size). Results indicate that the PMM and PUA-hemisphere method give similar capillary pressure-saturation curves, because both methods rely on a hemisphere to represent the air-water interface. The ability of the hemisphere approximation and the MS-P approximation to reproduce correct capillary pressure seems to depend on the type of particle size distribution, with the hemisphere approximation working well for narrowly distributed granular materials.

  2. Pore-Width-Dependent Preferential Interaction of sp2 Carbon Atoms in Cyclohexene with Graphitic Slit Pores by GCMC Simulation

    Directory of Open Access Journals (Sweden)

    Natsuko Kojima

    2011-01-01

    Full Text Available The adsorption of cyclohexene with two sp2 and four sp3 carbon atoms in graphitic slit pores was studied by performing grand canonical Monte Carlo simulation. The molecular arrangement of the cyclohexene on the graphitic carbon wall depends on the pore width. The distribution peak of the sp2 carbon is closer to the pore wall than that of the sp3 carbon except for the pore width of 0.7 nm, even though the Lennard-Jones size of the sp2 carbon is larger than that of the sp3 carbon. Thus, the difference in the interactions of the sp2 and sp3 carbon atoms of cyclohexene with the carbon pore walls is clearly observed in this study. The preferential interaction of sp2 carbon gives rise to a slight tilting of the cyclohexene molecule against the graphitic wall. This is suggestive of a π-π interaction between the sp2 carbon in the cyclohexene molecule and graphitic carbon.

  3. Veins in Paleo-reservoir as a Natural Indication of Coupled Changes in Pore Pressure and Stress, Salt Wash Graben of SE Utah, USA

    Science.gov (United States)

    Gwon, S.; Edwards, P.; Kim, Y. S.

    2015-12-01

    Hydrofracturing associated with elevated fluid pressure coupled with changes in stress has been crucial in enhancing the production and recovery of hydrocarbons. Furthermore, it is also an important issue to access the efficiency and stability of long-term CO2 geologic storage reservoirs. Veins are mineral-filled extension fractures developed along the plane of σ1-σ2 and perpendicular to σ3, and the fluid pressure must exceed σ3applied to the plane when the vein opens. Therefore, vein is a well-known natural analogue for fluid migration in a paleo-reservoir. In the Salt Wash Graben of SE Utah, CO2-charged vein systems hosted in the bleached Entrada Formation are well developed and examined to understand the conditions of fluid pressure and stress during the injections of CO2-charged fluid. Based on color and relative cross-cutting relationship in the field, veins are subdivided into two sets; sub-vertical black mineral-rich veins and orthogonal calcite veins that have previously been described as 'grid-lock fractures'. The vein distribution and fluid leakage along through-going fractures in mechanic units allow us to determine the stress regime and driving stress condition through 3D-Mohr circle reconstruction. The results of this statistical analysis for the veins show that the orthogonal veins indicate a 'stress transition' with maximum principal stress direction changing from vertical to NNW-SSE sub-horizontal which coincides with the current regional stress regime. The possible causes of the stress transition can be considered. The process of repeated sealing, reactivation and localization of veins within the bleached zone is a natural indication of a coupled change in pore pressure and stress in the reservoir. Thus, an understanding of the effect of stress changes due to the volumetric injection of CO2 in the subsurface as well as a knowledge of how pre-existing fractures affect fluid flow with respect to elevated pore pressures in layered rocks are

  4. Elucidating the mechanical effects of pore water pressure increase on the stability of unsaturated soil slopes

    Science.gov (United States)

    Buscarnera, G.

    2012-12-01

    The increase of the pore water pressure due to rain infiltration can be a dominant component in the activation of slope failures. This paper shows an application of the theory of material stability to the triggering analysis of this important class of natural hazards. The goal is to identify the mechanisms through which the process of suction removal promotes the initiation of mechanical instabilities. The interplay between increase in pore water pressure, and failure mechanisms is investigated at material point level. In order to account for multiple failure mechanisms, the second-order work criterion is used and different stability indices are devised. The paper shows that the theory of material stability can assess the risk of shear failure and static liquefaction in both saturated and unsaturated contexts. It is shown that the combined use of an enhanced definition of second-order work for unsaturated porous media and a hydro-mechanical constitutive framework enables to retrieve bifurcation conditions for water-infiltration processes in unsaturated deposits. This finding discloses the importance of the coupling terms that incorporate the interaction between the solid skeleton and the pore fluids. As a consequence, these theoretical results suggest that some material properties that are not directly associated with the shearing resistance (e.g., the potential for wetting compaction) can play an important role in the initiation of slope failures. According to the proposed interpretation, the process of pore pressure increase can be understood as a trigger of uncontrolled strains, which at material point level are reflected by the onset of bifurcation conditions.

  5. Polymer Microstructures: Modification and Characterization by Fluid Sorption

    Science.gov (United States)

    Boyer, S. A. E.; Baba, M.; Nedelec, J.-M.; Grolier, Jean-Pierre E.

    2008-12-01

    Polymer micro-organization can be modified by a combination of three constraints, thermal, hydrostatic, and fluid sorption. In selecting the fluid’s nature, chemically active or inert, and its physical state, liquid or supercritical, new “materials” can be generated. In addition, the interplay of temperature and pressure allows tailoring the obtained material structure for specific applications. Several complementary techniques have been developed to modify, analyze, and characterize the end products: scanning transitiometry, vibrating-wire (VW)-PVT coupling, thermoporosimetry, and temperature-modulated DSC (TMDSC). The great variety of possible applications in materials science is illustrated with different polymers which can produce materials from soft gel to rigid foams when submitted to fluid sorption, typical fluids being methane or a simple gas (CO2 or N2). Absorption of an appropriate fluid in a cross-linked polymer leads to a swelling phenomenon. Thermoporosimetry is a calorimetric technique developed to measure the shift by confinement of thermal-transition temperatures of the swelling fluids, which can be currently used solvents or mercury. Application of thermoporosimetry to a swollen cross-linked polymer allows calculation of the mesh size distribution and evaluation of the degree of reticulation of the polymer. The same technique can be applied to characterize the pore size distribution in a foamed polymer.

  6. Pore structure and function of synthetic nanopores with fixed charges: tip shape and rectification properties

    Energy Technology Data Exchange (ETDEWEB)

    RamIrez, Patricio [Departament de Fisica Aplicada, Universitat Politecnica de Valencia, E-46022 Valencia (Spain); Apel, Pavel Yu [Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, Joliot-Curie street 6, 141980 Dubna (Russian Federation); Cervera, Javier; Mafe, Salvador [Departament de Fisica de la Terra i Termodinamica, Universitat de Valencia, E-46100 Burjassot (Spain)], E-mail: patraho@fis.upv.es

    2008-08-06

    We present a complete theoretical study of the relationship between the structure (tip shape and dimensions) and function (selectivity and rectification) of asymmetric nanopores on the basis of previous experimental studies. The theoretical model uses a continuum approach based on the Nernst-Planck equations. According to our results, the nanopore transport properties, such as current-voltage (I-V) characteristics, conductance, rectification ratio, and selectivity, are dictated mainly by the shape of the pore tip (we have distinguished bullet-like, conical, trumpet-like, and hybrid shapes) and the concentration of pore surface charges. As a consequence, the nanopore performance in practical applications will depend not only on the base and tip openings but also on the pore shape. In particular, we show that the pore opening dimensions estimated from the pore conductance can be very different, depending on the pore shape assumed. The results obtained can also be of practical relevance for the design of nanopores, nanopipettes, and nanoelectrodes, where the electrical interactions between the charges attached to the nanostructure and the mobile charges confined in the reduced volume of the inside solution dictate the device performance in practical applications. Because single tracks are the elementary building blocks for nanoporous membranes, the understanding and control of their individual properties should also be crucial in protein separation, water desalination, and bio-molecule detection using arrays of identical nanopores.

  7. Pore structure and function of synthetic nanopores with fixed charges: tip shape and rectification properties

    International Nuclear Information System (INIS)

    RamIrez, Patricio; Apel, Pavel Yu; Cervera, Javier; Mafe, Salvador

    2008-01-01

    We present a complete theoretical study of the relationship between the structure (tip shape and dimensions) and function (selectivity and rectification) of asymmetric nanopores on the basis of previous experimental studies. The theoretical model uses a continuum approach based on the Nernst-Planck equations. According to our results, the nanopore transport properties, such as current-voltage (I-V) characteristics, conductance, rectification ratio, and selectivity, are dictated mainly by the shape of the pore tip (we have distinguished bullet-like, conical, trumpet-like, and hybrid shapes) and the concentration of pore surface charges. As a consequence, the nanopore performance in practical applications will depend not only on the base and tip openings but also on the pore shape. In particular, we show that the pore opening dimensions estimated from the pore conductance can be very different, depending on the pore shape assumed. The results obtained can also be of practical relevance for the design of nanopores, nanopipettes, and nanoelectrodes, where the electrical interactions between the charges attached to the nanostructure and the mobile charges confined in the reduced volume of the inside solution dictate the device performance in practical applications. Because single tracks are the elementary building blocks for nanoporous membranes, the understanding and control of their individual properties should also be crucial in protein separation, water desalination, and bio-molecule detection using arrays of identical nanopores

  8. Pore structure and function of synthetic nanopores with fixed charges: tip shape and rectification properties.

    Science.gov (United States)

    Ramírez, Patricio; Apel, Pavel Yu; Cervera, Javier; Mafé, Salvador

    2008-08-06

    We present a complete theoretical study of the relationship between the structure (tip shape and dimensions) and function (selectivity and rectification) of asymmetric nanopores on the basis of previous experimental studies. The theoretical model uses a continuum approach based on the Nernst-Planck equations. According to our results, the nanopore transport properties, such as current-voltage (I-V) characteristics, conductance, rectification ratio, and selectivity, are dictated mainly by the shape of the pore tip (we have distinguished bullet-like, conical, trumpet-like, and hybrid shapes) and the concentration of pore surface charges. As a consequence, the nanopore performance in practical applications will depend not only on the base and tip openings but also on the pore shape. In particular, we show that the pore opening dimensions estimated from the pore conductance can be very different, depending on the pore shape assumed. The results obtained can also be of practical relevance for the design of nanopores, nanopipettes, and nanoelectrodes, where the electrical interactions between the charges attached to the nanostructure and the mobile charges confined in the reduced volume of the inside solution dictate the device performance in practical applications. Because single tracks are the elementary building blocks for nanoporous membranes, the understanding and control of their individual properties should also be crucial in protein separation, water desalination, and bio-molecule detection using arrays of identical nanopores.

  9. Mud extrusion and ring-fault gas seepage - upward branching fluid discharge at a deep-sea mud volcano.

    Science.gov (United States)

    Loher, M; Pape, T; Marcon, Y; Römer, M; Wintersteller, P; Praeg, D; Torres, M; Sahling, H; Bohrmann, G

    2018-04-19

    Submarine mud volcanoes release sediments and gas-rich fluids at the seafloor via deeply-rooted plumbing systems that remain poorly understood. Here the functioning of Venere mud volcano, on the Calabrian accretionary prism in ~1,600 m water depth is investigated, based on multi-parameter hydroacoustic and visual seafloor data obtained using ship-borne methods, ROVs, and AUVs. Two seepage domains are recognized: mud breccia extrusion from a summit, and hydrocarbon venting from peripheral sites, hosting chemosynthetic ecosystems and authigenic carbonates indicative of long-term seepage. Pore fluids in freshly extruded mud breccia (up to 13 °C warmer than background sediments) contained methane concentrations exceeding saturation by 2.7 times and chloride concentrations up to five times lower than ambient seawater. Gas analyses indicate an underlying thermogenic hydrocarbon source with potential admixture of microbial methane during migration along ring faults to the peripheral sites. The gas and pore water analyses point to fluids sourced deep (>3 km) below Venere mud volcano. An upward-branching plumbing system is proposed to account for co-existing mud breccia extrusion and gas seepage via multiple surface vents that influence the distribution of seafloor ecosystems. This model of mud volcanism implies that methane-rich fluids may be released during prolonged phases of moderate activity.

  10. Effect of pore structure on chemico-osmotic, diffusion and hydraulic properties of mud-stones

    International Nuclear Information System (INIS)

    Takeda, M.; Manaka, M.; Ito, K.; Miyoshi, S.; Tokunaga, T.

    2012-01-01

    Document available in extended abstract form only. An in-situ experiment by Neuzil (2000) has obtained the substantial proof of chemical osmosis in natural clayey formation. Chemical osmosis in clayey formations has thus received attention in recent years in the context of geological disposal of radioactive waste. Chemical osmosis is the diffusion of water through a semi-permeable membrane driven by the difference of chemical potentials between solutions to compensate the difference of water potentials, increasing the other potential differences, such as the pressure difference. Accordingly, the chemical osmosis could generate localized, abnormal fluid pressures in geological formations where formation media act as semi-permeable membranes and groundwater salinity is not uniform. Without taking account of the chemical osmosis, groundwater flow modeling may mislead the prediction of the groundwater flow direction. Therefore the possibility of chemical osmosis needs to be identified for potential host formations for radioactive waste repositories. The chemico-osmotic property of formation media is an essential parameter to identify the possibility of chemical osmosis in the formation; however, the diffusion and hydraulic properties are also fundamental parameters to estimate the duration of chemical osmosis since they control the spatial variation of salinity and the dissipation of osmotically induced pressures. In order to obtain the chemico-osmotic, diffusion and hydraulic parameters from a rock sample, this study developed a laboratory experimental system capable of performing chemical osmosis and permeability experiments. A series of experiments were performed on mud-stones. The chemico-osmotic parameter of each rock sample was further interpreted by the osmotic efficiency model proposed by Bresler (1973) to examine the pore structure inherent in rocks. Diatomaceous and siliceous mud-stone samples were obtained from drill cores taken from the Koetoi and Wakkanai

  11. The equivalent pore aspect ratio as a tool for pore type prediction in carbonate reservoirs

    OpenAIRE

    FOURNIER , François; Pellerin , Matthieu; Villeneuve , Quentin; Teillet , Thomas; Hong , Fei; Poli , Emmanuelle; Borgomano , Jean; Léonide , Philippe; Hairabian , Alex

    2018-01-01

    International audience; The equivalent pore aspect ratios (EPAR) provide a tool to detect pore types by combining P-and S-wave velocities, porosity, bulk density and mineralogical composition of carbonate rocks. The integration of laboratory measurements, well log data and petrographic analysis of 468 carbonate samples from various depositional and diagenetic settings (Lower Cretaceous pre-salt non-marine carbonates from offshore Brazil, Lower Cretaceous shallow-water platform carbonates from...

  12. An instrument to measure differential pore pressures in deep ocean sediments: Pop-Up-Pore-Pressure-Instrument (PUPPI)

    International Nuclear Information System (INIS)

    Schultheiss, P.J.; McPhail, S.D.; Packwood, A.R.; Hart, B.

    1985-01-01

    A Pop-Up-Pore-Pressure-Instrument (PUPPI) has been developed to measure differential pore pressures in sediments. The differential pressure is the pressure above or below normal hydrostatic pressure at the depth of the measurement. It is designed to operate in water depths up to 6000 metres for periods of weeks or months, if required, and measures differential pore pressures at depths of up to 3 metres into the sediments with a resolution of 0.05 kPa. It is a free-fall device with a lance which penetrates the sediments. This lance and the ballast weight is disposed when the PUPPI is acoustically released from the sea floor. When combined with permeability and porosity values of deep-sea sediments the pore pressure measurements made using the PUPPI suggest advection velocities as low as 8.8 mm/yr. The mechanical, electrical and acoustic systems are described together with data obtained from both shallow and deep water trials. (author)

  13. Confocal Raman Microscopy for in Situ Measurement of Octanol-Water Partitioning within the Pores of Individual C18-Functionalized Chromatographic Particles.

    Science.gov (United States)

    Kitt, Jay P; Harris, Joel M

    2015-05-19

    Octanol-water partitioning is one of the most widely used predictors of hydrophobicity and lipophilicity. Traditional methods for measuring octanol-water partition coefficients (K(ow)), including shake-flasks and generator columns, require hours for equilibration and milliliter quantities of sample solution. These challenges have led to development of smaller-scale methods for measuring K(ow). Recent advances in microfluidics have produced faster and smaller-volume approaches to measuring K(ow). As flowing volumes are reduced, however, separation of water and octanol prior to measurement and detection in small volumes of octanol phase are especially challenging. In this work, we reduce the receiver volume of octanol-water partitioning measurements from current practice by six-orders-of-magnitude, to the femtoliter scale, by using a single octanol-filled reversed-phase, octadecylsilane-modified (C18-silica) chromatographic particle as a collector. The fluid-handling challenges of working in such small volumes are circumvented by eliminating postequilibration phase separation. Partitioning is measured in situ within the pore-confined octanol phase using confocal Raman microscopy, which is capable of detecting and quantifying a wide variety of molecular structures. Equilibration times are fast (less than a minute) because molecular diffusion is efficient over distance scales of micrometers. The demonstrated amount of analyte needed to carry out a measurement is very small, less than 50 fmol, which would be a useful attribute for drug screening applications or testing of small quantities of environmentally sensitive compounds. The method is tested for measurements of pH-dependent octanol-water partitioning of naphthoic acid, and the results are compared to both traditional shake-flask measurements and sorption onto C18-modified silica without octanol present within the pores.

  14. References and benchmarks for pore-scale flow simulated using micro-CT images of porous media and digital rocks

    Science.gov (United States)

    Saxena, Nishank; Hofmann, Ronny; Alpak, Faruk O.; Berg, Steffen; Dietderich, Jesse; Agarwal, Umang; Tandon, Kunj; Hunter, Sander; Freeman, Justin; Wilson, Ove Bjorn

    2017-11-01

    We generate a novel reference dataset to quantify the impact of numerical solvers, boundary conditions, and simulation platforms. We consider a variety of microstructures ranging from idealized pipes to digital rocks. Pore throats of the digital rocks considered are large enough to be well resolved with state-of-the-art micro-computerized tomography technology. Permeability is computed using multiple numerical engines, 12 in total, including, Lattice-Boltzmann, computational fluid dynamics, voxel based, fast semi-analytical, and known empirical models. Thus, we provide a measure of uncertainty associated with flow computations of digital media. Moreover, the reference and standards dataset generated is the first of its kind and can be used to test and improve new fluid flow algorithms. We find that there is an overall good agreement between solvers for idealized cross-section shape pipes. As expected, the disagreement increases with increase in complexity of the pore space. Numerical solutions for pipes with sinusoidal variation of cross section show larger variability compared to pipes of constant cross-section shapes. We notice relatively larger variability in computed permeability of digital rocks with coefficient of variation (of up to 25%) in computed values between various solvers. Still, these differences are small given other subsurface uncertainties. The observed differences between solvers can be attributed to several causes including, differences in boundary conditions, numerical convergence criteria, and parameterization of fundamental physics equations. Solvers that perform additional meshing of irregular pore shapes require an additional step in practical workflows which involves skill and can introduce further uncertainty. Computation times for digital rocks vary from minutes to several days depending on the algorithm and available computational resources. We find that more stringent convergence criteria can improve solver accuracy but at the expense

  15. Understanding, Classifying, and Selecting Environmentally Acceptable Hydraulic Fluids

    Science.gov (United States)

    2016-08-01

    traditional mineral oil; therefore, the life cycle costs over time may be reduced . REPLACEMENT OF EXISTING HYDRAULIC FLUIDS: Hydraulic fluids in existing...properly maintaining the fluid can extend the time interval between fluid changes, thus reducing the overall operating cost of the EA hydraulic fluid. It...Environmentally Acceptable Hydraulic Fluids by Timothy J. Keyser, Robert N. Samuel, and Timothy L. Welp INTRODUCTION: On a daily basis, the United States Army

  16. Pore network properties of sandstones in a fault damage zone

    Science.gov (United States)

    Bossennec, Claire; Géraud, Yves; Moretti, Isabelle; Mattioni, Luca; Stemmelen, Didier

    2018-05-01

    The understanding of fluid flow in faulted sandstones is based on a wide range of techniques. These depend on the multi-method determination of petrological and structural features, porous network properties and both spatial and temporal variations and interactions of these features. The question of the multi-parameter analysis on fluid flow controlling properties is addressed for an outcrop damage zone in the hanging wall of a normal fault zone on the western border of the Upper Rhine Graben, affecting the Buntsandstein Group (Early Triassic). Diagenetic processes may alter the original pore type and geometry in fractured and faulted sandstones. Therefore, these may control the ultimate porosity and permeability of the damage zone. The classical model of evolution of hydraulic properties with distance from the major fault core is nuanced here. The hydraulic behavior of the rock media is better described by a pluri-scale model including: 1) The grain scale, where the hydraulic properties are controlled by sedimentary features, the distance from the fracture, and the impact of diagenetic processes. These result in the ultimate porous network characteristics observed. 2) A larger scale, where the structural position and characteristics (density, connectivity) of the fracture corridors are strongly correlated with both geo-mechanical and hydraulic properties within the damage zone.

  17. Effects of fractal pore on coal devolatilization

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yongli; He, Rong [Tsinghua Univ., Beijing (China). Dept. of Thermal Engineering; Wang, Xiaoliang; Cao, Liyong [Dongfang Electric Corporation, Chengdu (China). Centre New Energy Inst.

    2013-07-01

    Coal devolatilization is numerically investigated by drop tube furnace and a coal pyrolysis model (Fragmentation and Diffusion Model). The fractal characteristics of coal and char pores are investigated. Gas diffusion and secondary reactions in fractal pores are considered in the numerical simulations of coal devolatilization, and the results show that the fractal dimension is increased firstly and then decreased later with increased coal conversions during devolatilization. The mechanisms of effects of fractal pores on coal devolatilization are analyzed.

  18. Nanometer-Scale Pore Characteristics of Lacustrine Shale, Songliao Basin, NE China.

    Directory of Open Access Journals (Sweden)

    Min Wang

    Full Text Available In shale, liquid hydrocarbons are accumulated mainly in nanometer-scale pores or fractures, so the pore types and PSDs (pore size distributions play a major role in the shale oil occurrence (free or absorbed state, amount of oil, and flow features. The pore types and PSDs of marine shale have been well studied; however, research on lacustrine shale is rare, especially for shale in the oil generation window, although lacustrine shale is deposited widely around the world. To investigate the relationship between nanometer-scale pores and oil occurrence in the lacustrine shale, 10 lacustrine shale core samples from Songliao Basin, NE China were analyzed. Analyses of these samples included geochemical measurements, SEM (scanning electron microscope observations, low pressure CO2 and N2 adsorption, and high-pressure mercury injection experiments. Analysis results indicate that: (1 Pore types in the lacustrine shale include inter-matrix pores, intergranular pores, organic matter pores, and dissolution pores, and these pores are dominated by mesopores and micropores; (2 There is no apparent correlation between pore volumes and clay content, however, a weak negative correlation is present between total pore volume and carbonate content; (3 Pores in lacustrine shale are well developed when the organic matter maturity (Ro is >1.0% and the pore volume is positively correlated with the TOC (total organic carbon content. The statistical results suggest that oil in lacustrine shale mainly occurs in pores with diameters larger than 40 nm. However, more research is needed to determine whether this minimum pore diameter for oil occurrence in lacustrine shale is widely applicable.

  19. Pore size determination from charged particle energy loss measurement

    International Nuclear Information System (INIS)

    Brady, F.P.; Armitage, B.H.

    1977-01-01

    A new method aimed at measuring porosity and mean pore size in materials has been developed at Harwell. The energy width or variance of a transmitted or backscattered charged particle beam is measured and related to the mean pore size via the assumption that the variance in total path length in the porous material is given by (Δx 2 )=na 2 , where n is the mean number of pores and a the mean pore size. It is shown on the basis of a general and rigorous theory of total path length distribution that this approximation can give rise to large errors in the mean pore size determination particularly in the case of large porosities (epsilon>0.5). In practice it is found that it is not easy to utilize fully the general theory because accurate measurements of the first four moments are required to determine the means and variances of the pore and inter-pore length distributions. Several models for these distributions are proposed. When these are incorporated in the general theory the determinations of mean pore size from experimental measurements on powder samples are in good agreement with values determined by other methods. (Auth.)

  20. Accurate relations between pore size and the pressure of capillary condensation and the evaporation of nitrogen in cylindrical pores.

    Science.gov (United States)

    Morishige, Kunimitsu; Tateishi, Masayoshi

    2006-04-25

    To examine the theoretical and semiempirical relations between pore size and the pressure of capillary condensation or evaporation proposed so far, we constructed an accurate relation between the pore radius and the capillary condensation and evaporation pressure of nitrogen at 77 K for the cylindrical pores of the ordered mesoporous MCM-41 and SBA-15 silicas. Here, the pore size was determined from a comparison between the experimental and calculated X-ray diffraction patterns due to X-ray structural modeling recently developed. Among the many theoretical relations that differ from each other in the degree of theoretical improvements, a macroscopic thermodynamic approach based on Broekhoff-de Boer equations was found to be in fair agreement with the experimental relation obtained in the present study.

  1. Pore Scale Dynamics of Microemulsion Formation.

    Science.gov (United States)

    Unsal, Evren; Broens, Marc; Armstrong, Ryan T

    2016-07-19

    Experiments in various porous media have shown that multiple parameters come into play when an oleic phase is displaced by an aqueous solution of surfactant. In general, the displacement efficiency is improved when the fluids become quasi-miscible. Understanding the phase behavior oil/water/surfactant systems is important because microemulsion has the ability to generate ultralow interfacial tension (microemulsion formation and the resulting properties under equilibrium conditions. However, the majority of applications where microemulsion is present also involve flow, which has received relatively less attention. It is commonly assumed that the characteristics of an oil/water/surfactant system under flowing conditions are identical to the one under equilibrium conditions. Here, we show that this is not necessarily the case. We studied the equilibrium phase behavior of a model system consisting of n-decane and an aqueous solution of olefin sulfonate surfactant, which has practical applications for enhanced oil recovery. The salt content of the aqueous solution was varied to provide a range of different microemulsion compositions and oil-water interfacial tensions. We then performed microfluidic flow experiments to study the dynamic in situ formation of microemulsion by coinjecting bulk fluids of n-decane and surfactant solution into a T-junction capillary geometry. A solvatochromatic fluorescent dye was used to obtain spatially resolved compositional information. In this way, we visualized the microemulsion formation and the flow of it along with the excess phases. A complex interaction between the flow patterns and the microemulsion properties was observed. The formation of microemulsion influenced the flow regimes, and the flow regimes affected the characteristics of the microemulsion formation. In particular, at low flow rates, slug flow was observed, which had profound consequences on the pore scale mixing behavior and resulting microemulsion properties.

  2. Mud-filtrate correction of sonic logs by fluid substitution

    DEFF Research Database (Denmark)

    Sørensen, Morten Kanne

    structures. Making reliable discoveries in challenging conditions requires an increasing level of detail in seismic interpretation. Advanced seismic processing as Amplitude-Versus-Offset (AVO) analysis, have become commonplace in seismic interpretation. These techniques involves comparison with synthetic...... of wetting phase saturation, and the clay content. When the water saturation is at the irreducible water saturation or higher only the effect of clay on the elastic velocities have a differential effect on the elastic velocities. Mixed saturations are fluid substituted using effective fluid moduli formulated...... as a set of bounds by Mavko and Mukerji (1998). Ultrasonic velocity data from the literature shows that these bounds applies most accurately to sandstones with a simple pore-space, as reflected in a high permeability and low clay fraction....

  3. X-ray CT analysis of pore structure in sand

    Science.gov (United States)

    Mukunoki, Toshifumi; Miyata, Yoshihisa; Mikami, Kazuaki; Shiota, Erika

    2016-06-01

    The development of microfocused X-ray computed tomography (CT) devices enables digital imaging analysis at the pore scale. The applications of these devices are diverse in soil mechanics, geotechnical and geoenvironmental engineering, petroleum engineering, and agricultural engineering. In particular, the imaging of the pore space in porous media has contributed to numerical simulations for single-phase and multiphase flows or contaminant transport through the pore structure as three-dimensional image data. These obtained results are affected by the pore diameter; therefore, it is necessary to verify the image preprocessing for the image analysis and to validate the pore diameters obtained from the CT image data. Moreover, it is meaningful to produce the physical parameters in a representative element volume (REV) and significant to define the dimension of the REV. This paper describes the underlying method of image processing and analysis and discusses the physical properties of Toyoura sand for the verification of the image analysis based on the definition of the REV. On the basis of the obtained verification results, a pore-diameter analysis can be conducted and validated by a comparison with the experimental work and image analysis. The pore diameter is deduced from Young-Laplace's law and a water retention test for the drainage process. The results from previous study and perforated-pore diameter originally proposed in this study, called the voxel-percolation method (VPM), are compared in this paper. In addition, the limitations of the REV, the definition of the pore diameter, and the effectiveness of the VPM for an assessment of the pore diameter are discussed.

  4. Formation of the bottom-simulating reflector and its link to vertical fluid flow

    Energy Technology Data Exchange (ETDEWEB)

    Haacke, R.R.; Hyndman, R.D. [Natural Resources Canada, Sidney, BC (Canada). Geological Survey of Canada, Pacific Geoscience Centre; Westbrook, G.K. [Birmingham Univ., Edgbaston (United Kingdom). Dept. of Geography, Earth and Environmental Sciences

    2008-07-01

    Natural gas hydrates typically occur with a bottom-simulating reflector (BSR) marking the base of its hydrate stability field. This paper outlined the 2 most important mechanisms that produce free gas beneath the gas hydrate stability zone (GHSZ), consequently producing the BSR. It discussed the importance of hydrate recycling and the solubility-curvature mechanisms in different tectonic environments. It also explained why some areas, such as the Mackenzie Delta in the Canadian Arctic or the northern Gulf of Mexico, have natural gas hydrates without an underlying free-gas zone (FGZ) and associated BSR. The BSR is created primarily by the presence of low-velocity free gas in the pore space under the stability field. This paper focused on the widespread, diffuse distribution of natural gas hydrate in relatively low concentrations that is produced by the vertical migration of gas-rich fluids. The FGZ that occurs under the BSR achieves a steady-state thickness that depends on the diffuse, vertical fluid flux in the system. The opposite is also true, notably if the steady-state thickness of the FGZ can be measured, then the diffuse vertical fluid flux can be estimated. The presence of free gas is easier to detect than gas hydrate because of its very low seismic velocity. This enables the measurement of vertical fluid flux using geophysical methods. The regional hydrate concentration can then be predicted. This study showed that if the gas-water solubility decreases downward beneath the GHSZ, low rates of upward fluid flow enable pore water to become saturated in a thick layer beneath the GHSZ. The FGZ that this produces achieves a steady-state thickness that is sensitive to the rate of upward fluid flow. Geophysical observations that constrain the thickness of sub-BSR FGZs can therefore be used to estimate the regional, diffuse, upward fluid flux through natural gas-hydrate systems. 23 refs., 6 figs.

  5. Changes on the mineralogical and physico-chemical properties of a compacted bentonite in contact with hyperalkaline pore fluids

    International Nuclear Information System (INIS)

    Fernandez, A.M.; Melon, A.; Sanchez, D.M.

    2010-01-01

    Document available in extended abstract form only. In high-level radioactive waste disposal (HLW) concepts, compacted bentonites are being considered in many countries as a sealing material because of their low permeability, high swelling capacity and high plasticity. In the case of the geological disposal of nuclear wastes in argillaceous host formations, concrete will be also used as support of tunnels and galleries and as waste containment material. Therefore, the bentonite barrier will become saturated with the water resulting from the host-rock/concrete interaction. An understanding of the rate and nature of the bentonite alteration, as well as the evolution of the bentonite pore water in the long-term is important for performance assessment. In this work the behaviour of the bentonite has been simulated in a laboratory test. A concrete-bentonite interaction experiment has been performed at a high solid to liquid ratio with FEBEX bentonite. The aim of the experiment was to analyse the buffering capacity of the bentonite and the clay mineral stability in a high-pH environment over a long contact period. The rate of pH buffering capacity of the bentonite is related to its surface hydroxyl sites (≡SOH) located along the edges of the clay platelets (fast reaction), and the montmorillonite crystal lattice itself (governed by reaction kinetics). Two infiltration tests with hyper-alkaline water were performed with FEBEX bentonite compacted at a dry density of 1.65 g/cm 3 with a hygroscopic water content (w.c.) of 13.4% in small-scale hermetic cells (50- mm diameter and 25-mm high). The experiments were running for 1.65 years under anoxic conditions inside an anoxic glove (< 1 ppm O 2 ) box and at temperature of 30-35 deg. C. The type of alkaline solution was a Na-K-OH water in equilibrium with portlandite, Ca(OH) 2 , at pH 13.5. This water is representative of an average pore water of a mortar made with CEM-I-SR type Portland cement (sulphate-resistant) at a 0

  6. Phase Behaviors of Reservoir Fluids with Capillary Eff ect Using Particle Swarm Optimization

    KAUST Repository

    Ma, Zhiwei

    2013-05-06

    The study of phase behavior is important for the oil and gas industry. Many approaches have been proposed and developed for phase behavior calculation. In this thesis, an alternative method is introduced to study the phase behavior by means of minimization of Helmholtz free energy. For a system at fixed volume, constant temperature and constant number of moles, the Helmholtz free energy reaches minimum at the equilibrium state. Based on this theory, a stochastic method called Particle Swarm Optimization (PSO) algorithm, is implemented to compute the phase diagrams for several pure component and mixture systems. After comparing with experimental and the classical PT-ash calculation, we found the phase diagrams obtained by minimization of the Helmholtz Free Energy approach match the experimental and theoretical diagrams very well. Capillary effect is also considered in this thesis because it has a significant influence on the phase behavior of reservoir fluids. In this part, we focus on computing the phase envelopes, which consists of bubble and dew point lines. Both fixed and calculated capillary pressure from the Young-Laplace equation cases are introduced to study their effects on phase envelopes. We found that the existence of capillary pressure will change the phase envelopes. Positive capillary pressure reduces the dew point and bubble point temperatures under the same pressure condition, while the negative capillary pressure increases the dew point and bubble point temperatures. In addition, the change of contact angle and pore radius will affect the phase envelope. The effect of the pore radius on the phase envelope is insignificant when the radius is very large. These results may become reference for future research and study. Keywords: Phase Behavior; Particle Swarm Optimization; Capillary Pressure; Reservoir Fluids; Phase Equilibrium; Phase Envelope.

  7. Phase Behaviors of Reservoir Fluids with Capillary Eff ect Using Particle Swarm Optimization

    KAUST Repository

    Ma, Zhiwei

    2013-01-01

    The study of phase behavior is important for the oil and gas industry. Many approaches have been proposed and developed for phase behavior calculation. In this thesis, an alternative method is introduced to study the phase behavior by means of minimization of Helmholtz free energy. For a system at fixed volume, constant temperature and constant number of moles, the Helmholtz free energy reaches minimum at the equilibrium state. Based on this theory, a stochastic method called Particle Swarm Optimization (PSO) algorithm, is implemented to compute the phase diagrams for several pure component and mixture systems. After comparing with experimental and the classical PT-ash calculation, we found the phase diagrams obtained by minimization of the Helmholtz Free Energy approach match the experimental and theoretical diagrams very well. Capillary effect is also considered in this thesis because it has a significant influence on the phase behavior of reservoir fluids. In this part, we focus on computing the phase envelopes, which consists of bubble and dew point lines. Both fixed and calculated capillary pressure from the Young-Laplace equation cases are introduced to study their effects on phase envelopes. We found that the existence of capillary pressure will change the phase envelopes. Positive capillary pressure reduces the dew point and bubble point temperatures under the same pressure condition, while the negative capillary pressure increases the dew point and bubble point temperatures. In addition, the change of contact angle and pore radius will affect the phase envelope. The effect of the pore radius on the phase envelope is insignificant when the radius is very large. These results may become reference for future research and study. Keywords: Phase Behavior; Particle Swarm Optimization; Capillary Pressure; Reservoir Fluids; Phase Equilibrium; Phase Envelope.

  8. Topology optimization of fluid-structure-interaction problems in poroelasticity

    DEFF Research Database (Denmark)

    Andreasen, Casper Schousboe; Sigmund, Ole

    2013-01-01

    This paper presents a method for applying topology optimization to fluid-structure interaction problems in saturated poroelastic media. The method relies on a multiple-scale method applied to periodic media. The resulting model couples the Stokes flow in the pores of the structure with the deform...... by topology optimization in order to optimize the performance of a shock absorber and test the pressure loading capabilities and optimization of an internally pressurized lid. © 2013 Published by Elsevier B.V....

  9. Experimental Characterization of Dielectric Properties in Fluid Saturated Artificial Shales

    Directory of Open Access Journals (Sweden)

    Roman Beloborodov

    2017-01-01

    Full Text Available High dielectric contrast between water and hydrocarbons provides a useful method for distinguishing between producible layers of reservoir rocks and surrounding media. Dielectric response at high frequencies is related to the moisture content of rocks. Correlations between the dielectric permittivity and specific surface area can be used for the estimation of elastic and geomechanical properties of rocks. Knowledge of dielectric loss-factor and relaxation frequency in shales is critical for the design of techniques for effective hydrocarbon extraction and production from unconventional reservoirs. Although applicability of dielectric measurements is intriguing, the data interpretation is very challenging due to many factors influencing the dielectric response. For instance, dielectric permittivity is determined by mineralogical composition of solid fraction, volumetric content and composition of saturating fluid, rock microstructure and geometrical features of its solid components and pore space, temperature, and pressure. In this experimental study, we investigate the frequency dependent dielectric properties of artificial shale rocks prepared from silt-clay mixtures via mechanical compaction. Samples are prepared with various clay contents and pore fluids of different salinity and cation compositions. Measurements of dielectric properties are conducted in two orientations to investigate the dielectric anisotropy as the samples acquire strongly oriented microstructures during the compaction process.

  10. Gas transport and subsoil pore characteristics

    DEFF Research Database (Denmark)

    Berisso, Feto Esimo; Schjønning, Per; Keller, Thomas

    2013-01-01

    Arrangements of elementary soil particles during soil deposition and subsequent biological and physical processes in long-term pedogenesis are expected to lead to anisotropy of the non-tilled subsoil pore system. Soil compaction by agricultural machinery is known to affect soil pore characteristics...... were sampled in vertical and horizontal directions from 0.3, 0.5, 0.7 and 0.9 m depth (the two lower depths only in Sweden). In the laboratory, water retention, air permeability (ka) and gas diffusivity (Ds/D0) were determined. For the sandy clay loam, morphological characteristics of pores (effective......). In the sandy clay loam soil, dB and nB displayed significant anisotropy (FAcharacteristics because of its origin...

  11. Changing composition of microbial communities indicates seepage fluid difference of the Thuwal Seeps in the Red Sea

    KAUST Repository

    Yang, Bo

    2015-06-10

    © Springer International Publishing Switzerland 2015. Cold seeps are unique ecosystems that are generally characterized by high salinity and reducing solutions. Seepage fluid, the major water influx of this system, contains hypersaline water, sediment pore water, and other components. The Thuwal cold seeps were recently discovered on the continental margin of the Red Sea. Using 16S rRNA gene pyro-sequencing technology, microbial communities were investigated by comparing samples collected in 2011 and 2013. The results revealed differences in the microbial communities between the two sampling times. In particular, a significantly higher abundance of Marine Group I (MGI) Thaumarchaeota was coupled with lower salinity in 2013. In the brine pool, the dominance of Desulfobacterales in 2011 was supplanted byMGI Thaumarchaeota in 2013, perhaps due to a reduced supply of hydrogen sulfide from the seepage fluid. Collectively, this study revealed a difference in water components in this ecosystem between two sampling times. The results indicated that the seawater in this cold seep displayed a greater number of characteristics of normal seawater in 2013 than in 2011, which might represent the dominant driving force for changes in microbial community structures. This is the first study to provide a temporal comparison of the microbial biodiversity of a cold seep ecosystem in the Red Sea.

  12. Changing composition of microbial communities indicates seepage fluid difference of the Thuwal Seeps in the Red Sea

    KAUST Repository

    Yang, Bo; Zhang, Weipeng; Tian, Renmao; Wang, Yong; Qian, Pei-Yuan

    2015-01-01

    © Springer International Publishing Switzerland 2015. Cold seeps are unique ecosystems that are generally characterized by high salinity and reducing solutions. Seepage fluid, the major water influx of this system, contains hypersaline water, sediment pore water, and other components. The Thuwal cold seeps were recently discovered on the continental margin of the Red Sea. Using 16S rRNA gene pyro-sequencing technology, microbial communities were investigated by comparing samples collected in 2011 and 2013. The results revealed differences in the microbial communities between the two sampling times. In particular, a significantly higher abundance of Marine Group I (MGI) Thaumarchaeota was coupled with lower salinity in 2013. In the brine pool, the dominance of Desulfobacterales in 2011 was supplanted byMGI Thaumarchaeota in 2013, perhaps due to a reduced supply of hydrogen sulfide from the seepage fluid. Collectively, this study revealed a difference in water components in this ecosystem between two sampling times. The results indicated that the seawater in this cold seep displayed a greater number of characteristics of normal seawater in 2013 than in 2011, which might represent the dominant driving force for changes in microbial community structures. This is the first study to provide a temporal comparison of the microbial biodiversity of a cold seep ecosystem in the Red Sea.

  13. Enlarged facial pores: an update on treatments.

    Science.gov (United States)

    Dong, Joanna; Lanoue, Julien; Goldenberg, Gary

    2016-07-01

    Enlarged facial pores remain a common dermatologic and cosmetic concern from acne and rosacea, among other conditions, that is difficult to treat due to the multifactorial nature of their pathogenesis and negative impact on patients' quality of life. Enlarged facial pores are primarily treated through addressing associative factors, such as increased sebum production and cutaneous aging. We review the current treatment modalities for enlarged or dense facial pores, including topical retinoids, chemical peels, oral antiandrogens, and lasers and devices, with a focus on newer therapies.

  14. Mesoporous Silica Gel-Based Mixed Matrix Membranes for Improving Mass Transfer in Forward Osmosis: Effect of Pore Size of Filler.

    Science.gov (United States)

    Lee, Jian-Yuan; Wang, Yining; Tang, Chuyang Y; Huo, Fengwei

    2015-11-23

    The efficiency of forward osmosis (FO) process is generally limited by the internal concentration polarization (ICP) of solutes inside its porous substrate. In this study, mesoporous silica gel (SG) with nominal pore size ranging from 4-30 nm was used as fillers to prepare SG-based mixed matrix substrates. The resulting mixed matrix membranes had significantly reduced structural parameter and enhanced membrane water permeability as a result of the improved surface porosity of the substrates. An optimal filler pore size of ~9 nm was observed. This is in direct contrast to the case of thin film nanocomposite membranes, where microporous nanoparticle fillers are loaded to the membrane rejection layer and are designed in such a way that these fillers are able to retain solutes while allowing water to permeate through them. In the current study, the mesoporous fillers are designed as channels to both water and solute molecules. FO performance was enhanced at increasing filler pore size up to 9 nm due to the lower hydraulic resistance of the fillers. Nevertheless, further increasing filler pore size to 30 nm was accompanied with reduced FO efficiency, which can be attributed to the intrusion of polymer dope into the filler pores.

  15. Mesoporous Silica Gel–Based Mixed Matrix Membranes for Improving Mass Transfer in Forward Osmosis: Effect of Pore Size of Filler

    Science.gov (United States)

    Lee, Jian-Yuan; Wang, Yining; Tang, Chuyang Y.; Huo, Fengwei

    2015-01-01

    The efficiency of forward osmosis (FO) process is generally limited by the internal concentration polarization (ICP) of solutes inside its porous substrate. In this study, mesoporous silica gel (SG) with nominal pore size ranging from 4–30 nm was used as fillers to prepare SG-based mixed matrix substrates. The resulting mixed matrix membranes had significantly reduced structural parameter and enhanced membrane water permeability as a result of the improved surface porosity of the substrates. An optimal filler pore size of ~9 nm was observed. This is in direct contrast to the case of thin film nanocomposite membranes, where microporous nanoparticle fillers are loaded to the membrane rejection layer and are designed in such a way that these fillers are able to retain solutes while allowing water to permeate through them. In the current study, the mesoporous fillers are designed as channels to both water and solute molecules. FO performance was enhanced at increasing filler pore size up to 9 nm due to the lower hydraulic resistance of the fillers. Nevertheless, further increasing filler pore size to 30 nm was accompanied with reduced FO efficiency, which can be attributed to the intrusion of polymer dope into the filler pores. PMID:26592565

  16. Pore volume and pore size distribution of cement samples measured by a modified mercury intrusion porosimeter

    International Nuclear Information System (INIS)

    Zamorani, E.; Blanchard, H.

    1987-01-01

    Important parameters for the characterization of cement specimens are mechanical properties and porosity. This work is carried out at the Ispra Establishment of the Joint Research Centre in the scope of the Radioactive Waste Management programme. A commercial Mercury Intrusion Porosimeter was modified in an attempt to improve the performance of the instrument and to provide fast processing of the recorded values: pressure-volume of pores. The dead volume of the instrument was reduced and the possibility of leakage from the moving parts eliminated. In addition, the modification allows an improvement of data acquisition thus increasing data accuracy and reproducibility. In order to test the improved performance of the modified instrument, physical characterizations of cement forms were carried out. Experimental procedures and results are reported

  17. Energy conversion device with support member having pore channels

    Science.gov (United States)

    Routkevitch, Dmitri [Longmont, CO; Wind, Rikard A [Johnstown, CO

    2014-01-07

    Energy devices such as energy conversion devices and energy storage devices and methods for the manufacture of such devices. The devices include a support member having an array of pore channels having a small average pore channel diameter and having a pore channel length. Material layers that may include energy conversion materials and conductive materials are coaxially disposed within the pore channels to form material rods having a relatively small cross-section and a relatively long length. By varying the structure of the materials in the pore channels, various energy devices can be fabricated, such as photovoltaic (PV) devices, radiation detectors, capacitors, batteries and the like.

  18. Mesoporous templated silicas: stability, pore size engineering and catalytic activation

    International Nuclear Information System (INIS)

    Vansant, Etienne

    2003-01-01

    structural characterization techniques (XRD and N2-adsorption-desorption) to insure that the crystallinity and the porosity of the structure are still intact. Also the catalytic evaluation of the synthesized materials is an essential part of the characterization. The activity and product selectivity are compared with commercial and conventional catalysts, initially by using a simple probe reaction. Hereby the characteristics of the catalyst, such as leaching, hydrothermal stability, regeneration and mechanical strength are evaluated. Most MTS materials exhibit a rather poor mechanical and hydrothermal stability. The intrinsic stability of these materials can be improved by either optimizing the synthesis conditions, yielding more stable structures, or by introducing a post-synthesis modification step with a stabilizing reagent. This post synthesis modification step consists of silylation procedures, that are either aiming at a thickening of the pore wall (mechanical stability) or at a partial hydrophobization of the surface (improving both mechanical and hydrothermal stability). Hereby, secondary anchoring groups are created which are interesting for catalytic activation. Furthermore, with this treatment the leaching of the active centers (metal oxides) is reduced to almost zero, even in liquid water. Recently, we have developed an entirely new material, called PHMTS (Plugged Hexagonal Mesoporous Templated Silica). The material consists of hexagonally packed cylindrical pores, with large pore widths (6-8 nm) and thick pore walls (3-4 nm). The pore walls themselves are perforated with micropores. Moreover, microporous silica plugs exist inside the mesopores, resulting in a unique nitrogen desorption isotherm and unprecedented possibilities for adsorption (controlled desorption), encapsulation and catalysis. (author)

  19. Effect of pore size and cross-linking of a novel collagen-elastin dermal substitute on wound healing.

    Science.gov (United States)

    Boekema, Bouke K H L; Vlig, Marcel; Olde Damink, Leon; Middelkoop, Esther; Eummelen, Lizette; Bühren, Anne V; Ulrich, Magda M W

    2014-02-01

    Collagen-elastin (CE) scaffolds are frequently used for dermal replacement in the treatment of full-thickness skin defects such as burn wounds. But little is known about the optimal pore size and level of cross-linking. Different formulations of dermal substitutes with unidirectional pores were tested in porcine full-thickness wounds in combination with autologous split skin mesh grafts (SSG). Effect on wound healing was evaluated both macro- and microscopically. CE scaffolds with a pore size of 80 or 100 μm resulted in good wound healing after one-stage grafting. Application of scaffolds with a larger average pore size (120 μm) resulted in more myofibroblasts and more foreign body giant cells (FBGC). Moderate crosslinking impaired wound healing as it resulted in more wound contraction, more FBGC and increased epidermal thickness compared to no cross-linking. In addition, take rate and redness were negatively affected compared to SSG only. Vascularization and the number of myofibroblasts were not affected by cross-linking. Surprisingly, stability of cross-linked scaffolds was not increased in the wound environment, in contrast to in vitro results. Cross-linking reduced the proliferation of fibroblasts in vitro, which might explain the reduced clinical outcome. The non-cross-linked CE substitute with unidirectional pores allowed one-stage grafting of SSG, resulting in good wound healing. In addition, only a very mild foreign body reaction was observed. Cross-linking of CE scaffolds negatively affected wound healing on several important parameters. The optimal non-cross-linked CE substitute is a promising candidate for future clinical evaluation.

  20. Pore Scale Analysis of Oil Shale/Sands Pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chen-Luh [Univ. of Utah, Salt Lake City, UT (United States); Miller, Jan [Univ. of Utah, Salt Lake City, UT (United States)

    2011-03-01

    There are important questions concerning the quality and volume of pore space that is created when oil shale is pyrolyzed for the purpose of producing shale oil. In this report, 1.9 cm diameter cores of Mahogany oil shale were pyrolyzed at different temperatures and heating rates. Detailed 3D imaging of core samples was done using multiscale X-ray computed tomography (CT) before and after pyrolysis to establish the pore structure. The pore structure of the unreacted material was not clear. Selected images of a core pyrolyzed at 400oC were obtained at voxel resolutions from 39 microns (Οm) to 60 nanometers (nm). Some of the pore space created during pyrolysis was clearly visible at these resolutions and it was possible to distinguish between the reaction products and the host shale rock. The pore structure deduced from the images was used in Lattice Boltzmann simulations to calculate the permeability in the pore space. The permeabilities of the pyrolyzed samples of the silicate-rich zone were on the order of millidarcies, while the permeabilities of the kerogen-rich zone after pyrolysis were very anisotropic and about four orders of magnitude higher.

  1. Protein crystal nucleation in pores.

    Science.gov (United States)

    Nanev, Christo N; Saridakis, Emmanuel; Chayen, Naomi E

    2017-01-16

    The most powerful method for protein structure determination is X-ray crystallography which relies on the availability of high quality crystals. Obtaining protein crystals is a major bottleneck, and inducing their nucleation is of crucial importance in this field. An effective method to form crystals is to introduce nucleation-inducing heterologous materials into the crystallization solution. Porous materials are exceptionally effective at inducing nucleation. It is shown here that a combined diffusion-adsorption effect can increase protein concentration inside pores, which enables crystal nucleation even under conditions where heterogeneous nucleation on flat surfaces is absent. Provided the pore is sufficiently narrow, protein molecules approach its walls and adsorb more frequently than they can escape. The decrease in the nucleation energy barrier is calculated, exhibiting its quantitative dependence on the confinement space and the energy of interaction with the pore walls. These results provide a detailed explanation of the effectiveness of porous materials for nucleation of protein crystals, and will be useful for optimal design of such materials.

  2. Investigation of thermal transfers in super-fluid helium in porous media

    International Nuclear Information System (INIS)

    Allain, H.

    2009-10-01

    Particle accelerators are requiring increased magnetic fields for which niobium tin superconducting magnets are considered. This entails electric insulation and cooling problems. Porous ceramic insulations are potential candidates for cable insulation. As they are permeable to helium, they could allow a direct cooling by super-fluid helium. Therefore, this research thesis deals with the investigation of thermal transfers in superfluid helium in porous media. After a description of an accelerator's superconducting magnet, of its thermodynamics and its various cooling modes, the author describes the physical properties of super-fluid helium, its peculiarities with respect to conventional fluids as well as its different phases (fluid and super-fluid), its dynamics under different regimes (the Landau regime which is similar to the laminar regime for a conventional fluid, and the Gorter-Mellink regime which is the super-fluid turbulent regime). He determines the macroscopic equations governing the He II dynamics in porous media by applying the volume averaging method developed by Whitaker. Theoretical results are validated by comparison with a numerical analysis performed with a numerical code. Then, the author presents the various experimental setups which have been developed for the measurement of the intrinsic permeability, one at room temperature and another at high temperature. Experimental results are discussed, notably with respect to pore size and porosity

  3. Fluid flow in a porous medium with transverse permeability discontinuity

    Science.gov (United States)

    Pavlovskaya, Galina E.; Meersmann, Thomas; Jin, Chunyu; Rigby, Sean P.

    2018-04-01

    Magnetic resonance imaging (MRI) velocimetry methods are used to study fully developed axially symmetric fluid flow in a model porous medium of cylindrical symmetry with a transverse permeability discontinuity. Spatial mapping of fluid flow results in radial velocity profiles. High spatial resolution of these profiles allows estimating the slip in velocities at the boundary with a permeability discontinuity zone in a sample. The profiles are compared to theoretical velocity fields for a fully developed axially symmetric flow in a cylinder derived from the Beavers-Joseph [G. S. Beavers and D. D. Joseph, J. Fluid Mech. 30, 197 (1967), 10.1017/S0022112067001375] and Brinkman [H. C. Brinkman, Appl. Sci. Res. A 1, 27 (1947), 10.1007/BF02120313] models. Velocity fields are also computed using pore-scale lattice Boltzmann modeling (LBM) where the assumption about the boundary could be omitted. Both approaches give good agreement between theory and experiment, though LBM velocity fields follow the experiment more closely. This work shows great promise for MRI velocimetry methods in addressing the boundary behavior of fluids in opaque heterogeneous porous media.

  4. Pore architecture and cell viability on freeze dried 3D recombinant human collagen-peptide (RHC)–chitosan scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jing; Zhou, Aimei; Deng, Aipeng [School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Yang, Yang [Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD (United Kingdom); Gao, Lihu; Zhong, Zhaocai [School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Yang, Shulin, E-mail: yshulin@njust.edu.cn [School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China)

    2015-04-01

    Pore architecture of 3D scaffolds used in tissue engineering plays a critical role in the maintenance of cell survival, proliferation and further promotion of tissue regeneration. We investigated the pore size and structure, porosity, swelling as well as cell viability of a series of recombinant human collagen-peptide–chitosan (RHCC) scaffolds fabricated by lyophilization. In this paper, freezing regime containing a final temperature of freezing (T{sub f}) and cooling rates was applied to obtain scaffolds with pore size ranging from 100 μm to 120 μm. Other protocols of RHC/chitosan suspension concentration and ratio modification were studied to produce more homogenous and appropriate structural scaffolds. The mean pore size decreased along with the decline of T{sub f} at a slow cooling rate of 0.7 °C/min; a more rapid cooling rate under 5 °C/min resulted to a smaller pore size and more homogenous microstructure. High concentration could reduce pore size and lead to thick well of scaffold, while improved the ratio of RHC, lamellar and fiber structure coexisted with cellular pores. Human umbilical vein endothelial cells (HUVECs) were seeded on these manufactured scaffolds, the cell viability represented a negative correlation to the pore size. This study provides an alternative method to fabricate 3D RHC–chitosan scaffolds with appropriate pores for potential tissue engineering. - Highlights: • Fabrication of recombinant human collagen-chitosan scaffolds by freezing drying • Influence of freeze drying protocols on lyophilized scaffolds • Pore size, microstructure, porosity, swelling and cell viability were compared. • The optimized porous scaffold is suitable for cell (HUVEC) seeding.

  5. Pore architecture and cell viability on freeze dried 3D recombinant human collagen-peptide (RHC)–chitosan scaffolds

    International Nuclear Information System (INIS)

    Zhang, Jing; Zhou, Aimei; Deng, Aipeng; Yang, Yang; Gao, Lihu; Zhong, Zhaocai; Yang, Shulin

    2015-01-01

    Pore architecture of 3D scaffolds used in tissue engineering plays a critical role in the maintenance of cell survival, proliferation and further promotion of tissue regeneration. We investigated the pore size and structure, porosity, swelling as well as cell viability of a series of recombinant human collagen-peptide–chitosan (RHCC) scaffolds fabricated by lyophilization. In this paper, freezing regime containing a final temperature of freezing (T f ) and cooling rates was applied to obtain scaffolds with pore size ranging from 100 μm to 120 μm. Other protocols of RHC/chitosan suspension concentration and ratio modification were studied to produce more homogenous and appropriate structural scaffolds. The mean pore size decreased along with the decline of T f at a slow cooling rate of 0.7 °C/min; a more rapid cooling rate under 5 °C/min resulted to a smaller pore size and more homogenous microstructure. High concentration could reduce pore size and lead to thick well of scaffold, while improved the ratio of RHC, lamellar and fiber structure coexisted with cellular pores. Human umbilical vein endothelial cells (HUVECs) were seeded on these manufactured scaffolds, the cell viability represented a negative correlation to the pore size. This study provides an alternative method to fabricate 3D RHC–chitosan scaffolds with appropriate pores for potential tissue engineering. - Highlights: • Fabrication of recombinant human collagen-chitosan scaffolds by freezing drying • Influence of freeze drying protocols on lyophilized scaffolds • Pore size, microstructure, porosity, swelling and cell viability were compared. • The optimized porous scaffold is suitable for cell (HUVEC) seeding

  6. Evaluation of Colloid Retention Site Dominance in Variably Saturated Porous Media: An All Pores Pore-Scale Analysis

    Science.gov (United States)

    Morales, Veronica; Perez-Reche, Francisco; Holzner, Markus; Kinzelbach, Wolfgang

    2016-04-01

    It is well accepted that colloid and nanoparticle transport processes in porous media differ substantially between water saturated and unsaturated conditions. Differences are frequently ascribed to particle immobilization by association with interfaces with the gas, as well as to restrictions of the liquid medium through which colloids are transported. Yet, the current understanding of the importance of particle retention at gas interfaces is based on observations of single pores or two-dimensional pore network representations, leaving open the question of their statistical significance when all pores in the medium are considered. In order to address this question, column experiments were performed using a model porous medium of glass beads through which Silver particles were transported for conditions of varying water content and water chemistry. X-ray microtomography was subsequently employed as a non-destructive imaging technique to obtain pore-scale information of the entire column regarding: i) the presence and distribution of the main locations where colloids can become retained (interfaces with the water-solid, air-water, air-solid, and air-water-solid, grain-grain contacts, and the bulk liquid), ii) deposition profiles of colloids along the column classified by the available retention location, and iii) channel widths of 3-dimensional pore-water network representations. The results presented provide a direct statistical evaluation on the significance of colloid retention by attachment to interfaces or by strainig at contact points where multiple interfaces meet.

  7. HYDROXYETHYL METHACRYLATE BASED NANOCOMPOSITE HYDROGELS WITH TUNABLE PORE ARCHITECTURE

    Directory of Open Access Journals (Sweden)

    Erhan Bat

    2016-10-01

    Full Text Available Hydroxyethyl methacrylate (HEMA based hydrogels have found increasing number of applications in areas such as chromatographic separations, controlled drug release, biosensing, and membrane separations. In all these applications, the pore size and pore interconnectivity are crucial for successful application of these materials as they determine the rate of diffusion through the matrix. 2-Hydroxyethyl methacrylate is a water soluble monomer but its polymer, polyHEMA, is not soluble in water. Therefore, during polymerization of HEMA in aqueous media, a porous structure is obtained as a result of phase separation. Pore size and interconnectivity in these hydrogels is a function of several variables such as monomer concentration, cross-linker concentration, temperature etc. In this study, we investigated the effect of monomer concentration, graphene oxide addition or clay addition on hydrogel pore size, pore interconnectivity, water uptake, and thermal properties. PolyHEMA hydrogels have been prepared by redox initiated free radical polymerization of the monomer using ethylene glycol dimethacrylate as a cross-linker. As a nanofiller, a synthetic hectorite Laponite® XLG and graphene oxide were used. Graphene oxide was prepared by the Tour Method. Pore morphology of the pristine HEMA based hydrogels and nanocomposite hydrogels were studied by scanning electron microscopy. The formed hydrogels were found to be highly elastic and flexible. A dramatic change in the pore structure and size was observed in the range between 22 to 24 wt/vol monomer at 0.5 % of cross-linker. In this range, the hydrogel morphology changes from typical cauliflower architecture to continuous hydrogel with dispersed water droplets forming the pores where the pores are submicron in size and show an interconnected structure. Such controlled pore structure is highly important when these hydrogels are used for solute diffusion or when there’s flow through monolithic hydrogels

  8. Pore Pressure and Field stress variation from Salt Water Injection; A case Study from Beaver Lodge Field in Williston Basin

    Science.gov (United States)

    Mohammed, R. A.; Khatibi, S.

    2017-12-01

    One of the major concerns in producing from oil and gas reservoirs in North American Basins is the disposal of high salinity salt water. It is a misconception that Hydro frack triggers Earthquakes, but due to the high salinity and density of water being pumped to the formation that has pore space of the rock already filled, which is not the case in Hydro-frack or Enhanced Oil Recovery in which fracturing fluid is pumped into empty pore space of rocks in depleted reservoirs. A review on the Bakken history showed that the concerns related to induce seismicity has increased over time due to variations in Pore pressure and In-situ stress that have shown steep changes in the region over the time. In this study, we focused on Pore pressure and field Stress variations in lower Cretaceous Inyan Kara and Mississippian Devonian Bakken, Inyan Kara is the major source for class-II salt-water disposal in the basin. Salt-water disposal is the major cause for induced seismicity. A full field study was done on Beaver Lodge Field, which has many salt-water disposal wells Adjacent to Oil and Gas Wells. We analyzed formation properties, stresses, pore-pressure, and fracture gradient profile in the field and. The constructed Mechanical Earth Model (MEM) revealed changes in pore pressure and stresses over time due to saltwater injection. Well drilled in the past were compared to recently drilled wells, which showed much stress variations. Safe mud weight Window of wells near proximity of injection wells was examined which showed many cases of wellbore instabilities. Results of this study will have tremendous impact in studying environmental issues and the future drilling and Fracking operations.

  9. Mechanical Weakening during Fluid Injection in Critically Stressed Sandstones with Acoustic Monitoring

    Science.gov (United States)

    David, C.; Dautriat, J. D.; Sarout, J.; Macault, R.; Bertauld, D.

    2014-12-01

    Water weakening is a well-known phenomenon which can lead to subsidence during the production of hydrocarbon reservoirs. The example of the Ekofisk oil field in the North Sea has been well documented for years. In order to assess water weakening effects in reservoir rocks, previous studies have focused on changes in the failure envelopes derived from mechanical tests conducted on rocks saturated either with water or with inert fluids. However, little attention has been paid so far on the mechanical behaviour during the fluid injection stage, like in enhanced oil recovery operations. We studied the effect of fluid injection on the mechanical behaviour of Sherwood sandstone, a weakly-consolidated sandstone sampled at Ladram Bay in UK. In order to highlight possible weakening effects, water and inert oil have been injected into critically-loaded samples to assess their effect on strength and elastic properties and to derive the acoustic signature of the saturation front for each fluid. The specimens were instrumented with 16 ultrasonic P-wave transducers for both passive and active acoustic monitoring during fluid injection and loading. After conducting standard triaxial tests on three samples saturated with air, water and oil respectively, mechanical creep tests were conducted on dry samples loaded at 80% of the compressive strength of the dry rock. While these conditions are kept constant, a fluid is injected at the bottom end of the sample with a low back pressure (0.5 MPa) to minimize effective stress variations during injection. Both water and oil were used as the injected pore fluid in two experiments. As soon as the fluids start to flow into the samples, creep is taking place with a much higher strain rate for water injection compared to oil injection. A transition from secondary creep to tertiary creep is observed in the water injection test whereas in the oil injection test no significant creep acceleration is observed after one pore volume of oil was

  10. Geology, mineralization, and fluid inclusion characteristics of the Skrytoe reduced-type W skarn and stockwork deposit, Sikhote-Alin, Russia

    Science.gov (United States)

    Soloviev, Serguei G.; Kryazhev, Sergey G.

    2017-08-01

    The Skrytoe deposit (>145 Kt WO3, average grade 0.449% WO3) in the Sikhote-Alin orogenic system (Eastern Russia) is situated in a metallogenic belt of W, Sn-W, Au, and Au-W deposits formed in a late to post-collisional tectonic environment after cessation of active subduction. It is localized within a mineralized district of reduced-type skarn W and veined Au (±W) deposits and occurrences related to the Early Cretaceous ilmenite-series plutonic suite. The deposit incorporates large stockworks of scheelite-bearing veinlets related to propylitic (amphibole, chlorite, quartz) and phyllic (quartz, sericite, albite, apatite, and carbonate) hydrothermal alteration. The stockwork cuts flat-lying mafic volcanic rocks and limestone partially replaced by pyroxene skarn that host the major W orebodies. Scheelite is associated with pyrrhotite and/or arsenopyrite, with minor chalcopyrite and other sulfide minerals; the late phyllic stage assemblages hosts Bi and Au mineralization. The fluid evolution included low-salinity moderate-temperature, moderate-pressure (˜370-390 °C, ˜800 bars) methane-dominated carbonic-aqueous fluids that formed post-skarn propylitic alteration assemblages. Then, at the phyllic stage, there has been an evolution from methane-dominated, moderate-temperature (330-360 °C), low-salinity (<12.3 wt% NaCl equiv.) fluids forming the early quartz-sericite-albite-arsenopyrite assemblage, through lower temperature (290-330 °C) methane-dominated, low-salinity (˜9-10 wt% NaCl equiv.) fluids forming the intermediate quartz-sericite-albite-scheelite-pyrrhotite assemblage, to yet lower temperature (245-320 °C) CO2-dominated carbonic-aqueous low-salinity (˜1-7 wt% NaCl equiv.) fluids forming the late quartz-sericite-sulfide-Bi-Au assemblage. Recurrent fluid immiscibility (phase separation) and cooling probably affected W solubility and promoted scheelite deposition. The stable isotope data support a sedimentary source of carbon (δ13Cfluid = ˜-21 to -10

  11. In situ Raman-based detections of the hydrothermal vent and cold seep fluids

    Science.gov (United States)

    Zhang, Xin; Du, Zengfeng; Zheng, Ronger; Luan, Zhendong; Qi, Fujun; Cheng, Kai; Wang, Bing; Ye, Wangquan; Liu, Xiaorui; Chen, Changan; Guo, Jinjia; Li, Ying; Yan, Jun

    2016-04-01

    Hydrothermal vents and cold seeps, and their associated biological communities play an important role in global carbon and sulphur biogeochemical cycles. Most of the studies of fluid composition geochemistry are based on recovered samples, both with gas-tight samplers and as open specimens, but the in situ conditions are difficult to maintain in recovered samples. Determination in situ of the chemical signals of the emerging fluids are challenging due to the high pressure, often strongly acidic and temperature in which few sensors can survive. Most of those sensors used so far are based on electrochemistry, and can typically detect only a few chemical species. Here we show that direct measurement of critical chemical species of hydrothermal vents and cold seeps can be made rapidly and in situ by means of a new hybrid version of earlier deep-sea pore water Raman probe carried on the ROV (Remote Operated Vehicle) Faxian. The fluid was drawn through the probe by actuating a hydraulic pump on the ROV, and measured at the probe optical cell through a sapphire window. We have observed the concentrations of H2S, HS-, SO42-, HSO4-, CO2, and H2 in hydrothermal vent fluids from the Pacmanus and Desmos vent systems in the Manus back-arc basin, Papua New Guinea. Two black smokers (279° C and 186° C) at the Pacmanus site showed the characteristic loss of SO42-, and the increase of CO2 and well resolved H2S and HS- peaks. At the white smoker of Onsen site the strong HSO4-peak observed at high temperature quickly dropped with strong accompanying increase of SO42-and H2 peaks when the sample contained in the Raman sensing cell was removed from the hot fluid due to rapid thermal deprotonation. We report here also the finding of a new lower temperature (88° C) white smoker "Kexue" field at the Desmos site with strong H2S, HS- and CO2 signals. We also have detected the concentrations of CH4,H2S, HS-, SO42-, and S8 in cold seep fluids and the surrounding sediment pore water from

  12. Reasons for the low flowback rates of fracturing fluids in marine shale

    Directory of Open Access Journals (Sweden)

    Yongjun Lu

    2018-02-01

    Full Text Available In this paper, marine shale cores taken from Zhaotong, Changning and Weiyuan Blocks in South China were used as samples to investigate the interaction between fracturing fluids and shale and the retention mechanisms. Firstly, adsorption, swelling, dissolution pore, dissolution fluid mineralization degree and ionic composition were experimentally studied to reveal the occurrence of water in shale and the reason for a high mineralization degree. Then, the mechanisms of water retention and mineralization degree increase were simulated and calculated. The scanning electron microscopy (SEM analysis shows that there are a large number of micro fractures originated from clay minerals in the shale. Mineral dissolution rates of shale immersed in ultrasonic is around 0.5–0.7%. The ionic composition is in accordance with that of formation water. The clay minerals in core samples are mainly composed of chlorites and illites with a small amount of illites/smectites, but no montmorillonites (SS, and its content is between 18% and 20%. It is verified by XRD and infrared spectroscopy that the fracturing fluid doesn't flow into the space between clay mineral layers, so it can't lead to shale swelling. Thus, the retention of fracturing fluids is mainly caused by the adsorption at the surface of the newly fractured micro fractures in shale in a mode of successive permeation, and its adsorptive saturation rates is proportional to the pore diameters. It is concluded that the step-by-step extraction of fracturing fluids to shale and the repulsion of nano-cracks to ion are the main reasons for the abrupt increase of mineralization degree in the late stage of flowing back. In addition, the liquid carrying effect of methane during the formation of a gas reservoir is also a possible reason. Based on the experimental and field data, fracturing fluid flowback rates and gas production rates of 9 wells were analyzed. It is indicated that the same block follows an overall

  13. The pore space scramble

    Science.gov (United States)

    Gormally, Alexandra; Bentham, Michelle; Vermeylen, Saskia; Markusson, Nils

    2015-04-01

    Climate change and energy security continue to be the context of the transition to a secure, affordable and low carbon energy future, both in the UK and beyond. This is reflected in for example, binding climate policy targets at the EU level, the introduction of renewable energy targets, and has also led to an increasing interest in Carbon Capture and Storage (CCS) technology with its potential to help mitigate against the effects of CO2 emissions from fossil fuel burning. The UK has proposed a three phase strategy to integrate CCS into its energy system in the long term focussing on off-shore subsurface storage (DECC, 2014). The potential of CCS therefore, raises a number of challenging questions and issues surrounding the long-term storage of CO2 captured and injected into underground spaces and, alongside other novel uses of the subsurface, contributes to opening a new field for discussion on the governance of the subsurface. Such 'novel' uses of the subsurface have lead to it becoming an increasingly contested space in terms of its governance, with issues emerging around the role of ownership, liability and property rights of subsurface pore space. For instance, questions over the legal ownership of pore space have arisen with ambiguity over the legal standpoint of the surface owner and those wanting to utilise the pore space for gas storage, and suggestions of whether there are depths at which legal 'ownership' becomes obsolete (Barton, 2014). Here we propose to discuss this 'pore space scramble' and provide examples of the competing trajectories of different stakeholders, particularly in the off-shore context given its priority in the UK. We also propose to highlight the current ambiguity around property law of pore space in the UK with reference to approaches currently taken in different national contexts. Ultimately we delineate contrasting models of governance to illustrate the choices we face and consider the ethics of these models for the common good

  14. Preparation of micro-pored silicone elastomer through radiation crosslinking

    International Nuclear Information System (INIS)

    Gao Xiaoling; Gu Mei; Xie Xubing; Huang Wei

    2013-01-01

    The radiation crosslinking was adopted to prepare the micro-pored silicone elastomer, which was performed by vulcanization and foaming respectively. Radiation crosslinking is a new method to prepare micro-pored material with high performance by use of radiation technology. Silicon dioxide was used as filler, and silicone elastomer was vulcanized by electron beams, then the micro-pored material was made by heating method at a high temperature. The effects of absorbed dose and filler content on the performance and morphology were investigated. The structure and distribution of pores were observed by SEM. The results show that the micro-pored silicon elastomer can be prepared successfully by controlling the absorbed dose and filler content. It has a smooth surface similar to a rubber meanwhile the pores are round and unconnected to each other with the minimum size of 14 μm. And the good mechanical performance can be suitable for further uses. (authors)

  15. Convex hull approach for determining rock representative elementary volume for multiple petrophysical parameters using pore-scale imaging and Lattice-Boltzmann modelling

    Science.gov (United States)

    Shah, S. M.; Crawshaw, J. P.; Gray, F.; Yang, J.; Boek, E. S.

    2017-06-01

    In the last decade, the study of fluid flow in porous media has developed considerably due to the combination of X-ray Micro Computed Tomography (micro-CT) and advances in computational methods for solving complex fluid flow equations directly or indirectly on reconstructed three-dimensional pore space images. In this study, we calculate porosity and single phase permeability using micro-CT imaging and Lattice Boltzmann (LB) simulations for 8 different porous media: beadpacks (with bead sizes 50 μm and 350 μm), sandpacks (LV60 and HST95), sandstones (Berea, Clashach and Doddington) and a carbonate (Ketton). Combining the observed porosity and calculated single phase permeability, we shed new light on the existence and size of the Representative Element of Volume (REV) capturing the different scales of heterogeneity from the pore-scale imaging. Our study applies the concept of the 'Convex Hull' to calculate the REV by considering the two main macroscopic petrophysical parameters, porosity and single phase permeability, simultaneously. The shape of the hull can be used to identify strong correlation between the parameters or greatly differing convergence rates. To further enhance computational efficiency we note that the area of the convex hull (for well-chosen parameters such as the log of the permeability and the porosity) decays exponentially with sub-sample size so that only a few small simulations are needed to determine the system size needed to calculate the parameters to high accuracy (small convex hull area). Finally we propose using a characteristic length such as the pore size to choose an efficient absolute voxel size for the numerical rock.

  16. Pelvic endometriosis with peritoneal fluid reduces pregnancy rates in women undergoing intrauterine insemination.

    Science.gov (United States)

    Wu, Hong-Ming; Tzeng, Chii-Ruey; Chen, Chi-Hung; Chen, Pi-Hua

    2013-12-01

    This study investigated the occurrence of peritoneal fluid in women undergoing intrauterine insemination (IUI) and its correlation with the stage of pelvic endometriosis and its influence on pregnancy outcomes. A retrospective case-control design was used to recruit 272 infertile women with pelvic endometriosis. The treatment protocol consisted of controlled ovarian hyperstimulation with downregulation and gonadotropin for IUI treatment following ultrasound and laparoscopic intervention. The amount and color of the peritoneal fluid were determined during laparoscopy. The mean amount of peritoneal fluid with pelvic endometriosis that was detected using transvaginal ultrasound was ~ 15.1 mL. Women whose cycles contained more peritoneal fluid had significantly lower pregnancy rates (17.2% and 31.3%, respectively). The total clinical pregnancy rate was not significantly different between the two groups with reddish and yellowish peritoneal fluid who had pelvic endometriosis. Pelvic endometriosis and peritoneal fluid, detected through vaginal ultrasound, have negative effects on the pregnancy outcome of IUI treatment. Copyright © 2013. Published by Elsevier B.V.

  17. Stability of fault submitted to fluid injections

    Science.gov (United States)

    Brantut, N.; Passelegue, F. X.; Mitchell, T. M.

    2017-12-01

    Elevated pore pressure can lead to slip reactivation on pre-existing fractures and faults when the coulomb failure point is reached. From a static point of view, the reactivation of fault submitted to a background stress (τ0) is a function of the peak strength of the fault, i.e. the quasi-static effective friction coefficient (µeff). However, this theory is valid only when the entire fault is affected by fluid pressure, which is not the case in nature, and during human induced-seismicity. In this study, we present new results about the influence of the injection rate on the stability of faults. Experiments were conducted on a saw-cut sample of westerly granite. The experimental fault was 8 cm length. Injections were conducted through a 2 mm diameter hole reaching the fault surface. Experiments were conducted at four different order magnitudes fluid pressure injection rates (from 1 MPa/minute to 1 GPa/minute), in a fault system submitted to 50 and 100 MPa confining pressure. Our results show that the peak fluid pressure leading to slip depends on injection rate. The faster the injection rate, the larger the peak fluid pressure leading to instability. Wave velocity surveys across the fault highlighted that decreasing the injection-rate leads to an increase of size of the fluid pressure perturbation. Our result demonstrate that the stability of the fault is not only a function of the fluid pressure requires to reach the failure criterion, but is mainly a function of the ratio between the length of the fault affected by fluid pressure and the total fault length. In addition, we show that the slip rate increases with the background effective stress and with the intensity of the fluid pressure pertubation, i.e. with the excess shear stress acting on the part of the fault pertubated by fluid injection. Our results suggest that crustal fault can be reactivated by local high fluid overpressures. These results could explain the "large" magnitude human-induced earthquakes

  18. Effect of heating and pore water salinity on the swelling characteristics of bentonite buffer

    International Nuclear Information System (INIS)

    Dhawan, Sarita; Rao, M. Sudhakar

    2010-01-01

    Document available in extended abstract form only. Changes in swell potential of bentonite-sand mixture as a function of temperature and pore water salinity were measured. Bentonite dried at 105 deg. C and sand was mixed in 50:50 ratio by weight for study. The bentonite sand mix was compacted to 1.83 Mg/m 3 dry density and 13.8% water content (mixed with distilled water) obtained from Modified proctor compaction test for all test conditions. For the first series, the mix was prepared using distilled water as molding fluid. The compacted samples were dried at temperatures 50 deg. C and 80 deg. C for time periods 2 to 45 days. Dried samples were assembled in oedometer cells and allowed to swell under load of 6.25 kPa. In second series, bentonite sand mixes were prepared with 1000 ppm Na, 1000 ppm K, 1000 ppm Ca and 1000 ppm Mg solutions using chloride salts to achieve water content of 13.8%. The mixes were then compacted and dried at 80 deg. C for 15 days and allowed to swell in oedometer assembly. In third series of experiments, bentonite sand mix were compacted with distilled water as molding fluid and heated at 80 deg. C for 15 days. The dried samples were then swollen inundating with solutions simulating less saline granitic ground water and a moderately saline groundwater. The swell behavior is compared with samples without heating treatment. For samples prepared with distilled water and heated, the swell potential reduced up to 10-28% on heating compared to sample without any heating. The swell reduction varied depending on temperature and time period. The volumetric shrinkage varied from 1.4 to 3.3% of original volume of compacted sample on heating. Addition of sand was found effective in controlling shrinkage caused by heating. For samples prepared with salt solutions with no heating and inundated with distilled water for swell, the swell potential reduced from 12-20% compared to sample mixed and inundated with distilled water. The reduction in swell

  19. Toxicity of sediments and pore water from Brunswick Estuary, Georgia

    Science.gov (United States)

    Winger, Parley V.; Lasier, Peter J.; Geitner, Harvey

    1993-01-01

    A chlor-alkali plant in Brunswick, Georgia, USA, discharged >2 kg mercury/d into a tributary of the Turtle River-Brunswick Estuary from 1966 to 1971. Mercury concentrations in sediments collected in 1989 along the tributary near the chlor-alkali plant ranged from 1 to 27 μg/g (dry weight), with the highest concentrations found in surface (0–8 cm) sediments of subtidal zones in the vicinity of the discharge site. Toxicity screening in 1990 using Microtox® bioassays on pore water extracted on site from sediments collected at six stations distributed along the tributary indicated that pore water was highly toxic near the plant discharge. Ten-day toxicity tests on pore water from subsequent sediment samples collected near the plant discharge confirmed high toxicity to Hyalella azteca, and feeding activity was significantly reduced in whole-sediment tests. In addition to mercury in the sediments, other metals (chromium, lead, and zinc) exceeded 50 μg/g, and polychlorobiphenyl (PCB) concentrations ranged from 67 to 95 μg/g. On a molar basis, acid-volatile sulfide concentrations (20–45 μmol/g) in the sediments exceeded the metal concentrations. Because acid-volatile sulfides bind with cationic metals and form metal sulfides, which are generally not bioavailable, toxicities shown by these sediments were attributed to the high concentrations of PCBs and possibly methylmercury.

  20. Electrohydrodynamic channeling effects in narrow fractures and pores

    Science.gov (United States)

    Bolet, Asger; Linga, Gaute; Mathiesen, Joachim

    2018-04-01

    In low-permeability rock, fluid and mineral transport occur in pores and fracture apertures at the scale of micrometers and below. At this scale, the presence of surface charge, and a resultant electrical double layer, may considerably alter transport properties. However, due to the inherent nonlinearity of the governing equations, numerical and theoretical studies of the coupling between electric double layers and flow have mostly been limited to two-dimensional or axisymmetric geometries. Here, we present comprehensive three-dimensional simulations of electrohydrodynamic flow in an idealized fracture geometry consisting of a sinusoidally undulated bottom surface and a flat top surface. We investigate the effects of varying the amplitude and the Debye length (relative to the fracture aperture) and quantify their impact on flow channeling. The results indicate that channeling can be significantly increased in the plane of flow. Local flow in the narrow regions can be slowed down by up to 5 % compared to the same geometry without charge, for the highest amplitude considered. This indicates that electrohydrodynamics may have consequences for transport phenomena and surface growth in geophysical systems.