WorldWideScience

Sample records for reducing pm emissions

  1. Non-exhaust PM emissions from electric vehicles

    Science.gov (United States)

    Timmers, Victor R. J. H.; Achten, Peter A. J.

    2016-06-01

    Particulate matter (PM) exposure has been linked to adverse health effects by numerous studies. Therefore, governments have been heavily incentivising the market to switch to electric passenger cars in order to reduce air pollution. However, this literature review suggests that electric vehicles may not reduce levels of PM as much as expected, because of their relatively high weight. By analysing the existing literature on non-exhaust emissions of different vehicle categories, this review found that there is a positive relationship between weight and non-exhaust PM emission factors. In addition, electric vehicles (EVs) were found to be 24% heavier than equivalent internal combustion engine vehicles (ICEVs). As a result, total PM10 emissions from EVs were found to be equal to those of modern ICEVs. PM2.5 emissions were only 1-3% lower for EVs compared to modern ICEVs. Therefore, it could be concluded that the increased popularity of electric vehicles will likely not have a great effect on PM levels. Non-exhaust emissions already account for over 90% of PM10 and 85% of PM2.5 emissions from traffic. These proportions will continue to increase as exhaust standards improve and average vehicle weight increases. Future policy should consequently focus on setting standards for non-exhaust emissions and encouraging weight reduction of all vehicles to significantly reduce PM emissions from traffic.

  2. Scenario Study on PM emission Reduction in Cement Industry

    Science.gov (United States)

    Tang, Qian; Chen, Xiaojun; Xia, Xin; Wang, Lijuan; Wang, Huili; Jin, Ling; Yan, Zhen

    2018-01-01

    Cement industry is one of the high pollution industries in China. Evaluation of the primary particulate matter (PM) emission status and the reduction potential is not only important for our understanding of the effectiveness of current pollution control measures but also vital for future policy design. In this study, PM emitted from cement producing process in 2014 was calculated using an emission factor method. Three PM emission control scenarios were set up considering source control, process management and end-of-pipe treatment, and the PM emission reduction by 2020 under the three scenarios was predicted, respectively. In 2014, the primary PM emission from cement industry was 1.95 million tons. By 2020, the productions of cement and clinker were expected to increase by 12% and 7%, respectively, and the PM emission would increase by about 10%. By implementation of GB4915-2013 and comprehensive control of fugitive PM emission, the PM emission would probably be reduced by 34%. Another 7% decrease would be expected from source control. The second scenario can be considered as an assessment of the effectiveness of the revised emission standard, and this research can be used as a technical support to the environmental management authorities to make relevant policies.

  3. Will PM control undermine China's efforts to reduce soil acidification?

    International Nuclear Information System (INIS)

    Zhao Yu; Duan Lei; Lei Yu; Xing Jia; Nielsen, Chris P.; Hao Jiming

    2011-01-01

    China's strategies to control acidifying pollutants and particulate matter (PM) may be in conflict for soil acidification abatement. Acidifying pollutant emissions are estimated for 2005 and 2020 with anticipated control policies. PM emissions including base cations (BCs) are evaluated with two scenarios, a base case applying existing policy to 2020, and a control case including anticipated tightened measures. Depositions of sulfur (S), nitrogen (N) and BCs are simulated and their acidification risks are evaluated with critical load (CL). In 2005, the area exceeding CL covered 15.6% of mainland China, with total exceedance of 2.2 Mt S. These values decrease in the base scenario 2020, implying partial recovery from acidification. Under more realistic PM control, the respective estimates are 17.9% and 2.4 Mt S, indicating increased acidification risks due to abatement of acid-neutralizing BCs. China's anthropogenic PM abatement will have potentially stronger chemical implications for acidification than developed countries. - Highlights: → We model the emission and deposition of base cations and acid precursors in China. → Soil acidification in China is analyzed with exceedance of critical load. → China's PM control increases the acidification risk even with reduced SO 2 emission. → The impact of PM for acidification is stronger than that in developed countries. - The control of anthropogenic PM emission in China will increase the risk of soil acidification even with reduced SO 2 emission. Such implication is stronger than that in developed countries.

  4. Tracing Primary PM2.5 emissions via Chinese supply chains

    Science.gov (United States)

    Meng, Jing; Liu, Junfeng; Xu, Yuan; Tao, Shu

    2015-05-01

    In this study, we examine a supply-chain approach to more effectively mitigate primary PM2.5 emissions in China from the perspectives of production, consumption and their linkages using structural path analysis. We identify the pattern of all supply chain paths using principal component analysis. To address the severe haze problems in China, it is important to understand how final demand purchase initiates production processes and ultimately leads to primary PM2.5 emission. We found that consumers’ demands on power and transportation mainly induce direct emissions, quite different from the demands on construction, industry and service products which largely drive emissions in upstream activities. We also found that nearly 80% of the economic sectors in China follow a similar pattern in generating primary PM2.5 emissions in electricity, cement and the ferrous metal industries; but only the construction sector increases the release of PM2.5 due to the production of non-metallic mineral products. These findings indicate that further reduction of end-of-pipe emissions in the power and transportation sectors will facilitate cleaner production in almost all the economic sectors. However, for urbanization induced emissions, China should mitigate PM2.5 emissions through the supply chain of construction, either severely reducing its life-cycle intensity or carefully planning to avoid extensive, unnecessary building activity.

  5. Tracing Primary PM2.5 emissions via Chinese supply chains

    International Nuclear Information System (INIS)

    Meng, Jing; Liu, Junfeng; Tao, Shu; Xu, Yuan

    2015-01-01

    In this study, we examine a supply-chain approach to more effectively mitigate primary PM 2.5 emissions in China from the perspectives of production, consumption and their linkages using structural path analysis. We identify the pattern of all supply chain paths using principal component analysis. To address the severe haze problems in China, it is important to understand how final demand purchase initiates production processes and ultimately leads to primary PM 2.5 emission. We found that consumers’ demands on power and transportation mainly induce direct emissions, quite different from the demands on construction, industry and service products which largely drive emissions in upstream activities. We also found that nearly 80% of the economic sectors in China follow a similar pattern in generating primary PM 2.5 emissions in electricity, cement and the ferrous metal industries; but only the construction sector increases the release of PM 2.5 due to the production of non-metallic mineral products. These findings indicate that further reduction of end-of-pipe emissions in the power and transportation sectors will facilitate cleaner production in almost all the economic sectors. However, for urbanization induced emissions, China should mitigate PM 2.5 emissions through the supply chain of construction, either severely reducing its life-cycle intensity or carefully planning to avoid extensive, unnecessary building activity. (letter)

  6. Control of fine particulate (PM2.5) emissions from restaurant operations.

    Science.gov (United States)

    Whynot, J; Quinn, G; Perryman, P; Votlucka, P

    1999-09-01

    This paper describes efforts to reduce particulate matter (PM) emissions from restaurant operations, including application of an existing control method to a new equipment type. Commercial charbroiling in the South Coast Air Basin results in emissions of approximately 10 tons/day of fine particulate matter (PM2.5) and 1.3 tons/day of volatile organic compounds (VOCs). Over a seven-year period, the South Coast Air Quality Management District worked with industry to develop test methods for measuring emissions from various cooking operations, evaluate control technologies, and develop a rule to reduce these emissions. Of the two basic types of charbroilers--chain-driven and underfired--underfired produce four times the emissions when equivalent amounts of product are cooked. Cost-effective control technology is currently available only for chain-driven charbroilers. The application of flameless catalytic oxidizers to chain-driven charbroilers was found to effectively reduce emissions by at least 83% and is cost-effective. The catalysts have been used worldwide at restaurants for several years. Research efforts are underway to identify control options for underfired charbroilers. Implementation of Rule 1138, Control of Emissions from Restaurant Operations, adopted November 14, 1997, will result in reductions of 0.5 tons/day of PM2.5 and 0.2 tons/day of VOCs. Future rules will result in reductions from underfired charbroilers and possibly other restaurant equipment when cost-effective solutions are available.

  7. Danish emission inventory for particular matter (PM)

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, M; Winther, M; Illerup, J B; Hjort Mikkelsen, M

    2003-11-01

    The first Danish emission inventory that was reported in 2002 was a provisional-estimate based on data presently available. This report documents methodology, emission factors and references used for an improved Danish emission inventory for particulate matter. Further results of the improved emission inventory for the year 2000 are shown. The particulate matter emission inventory includes TSP, PM,, and PM, The report covers emission inventories for transport and stationary combustion. An appendix covering emissions from agriculture is also included. For the transport sector, both exhaust and non-exhaust emission such as tyre and break wear and road abrasion are included. (au)

  8. Emissions of NO, NO2 and PM from inland shipping

    Directory of Open Access Journals (Sweden)

    R. Kurtenbach

    2016-11-01

    Full Text Available Particulate matter (PM and nitrogen oxides NOx (NOx =  NO2+ NO are key species for urban air quality in Europe and are emitted by mobile sources. According to European recommendations, a significant fraction of road freight should be shifted to waterborne transport in the future. In order to better consider this emission change pattern in future emission inventories, in the present study inland water transport emissions of NOx, CO2 and PM were investigated under real world conditions on the river Rhine, Germany, in 2013. An average NO2 ∕ NOx emission ratio of 0.08 ± 0.02 was obtained, which is indicative of ship diesel engines without exhaust gas aftertreatment systems. For all measured motor ship types and operation conditions, overall weighted average emission indices (EIs, as emitted mass of pollutant per kg burnt fuel of EINOx =  54 ± 4 g kg−1 and a lower limit EIPM1 ≥  2.0 ± 0.3 g kg−1, were obtained. EIs for NOx and PM1 were found to be in the range of 20–161 and  ≥  0.2–8.1 g kg−1 respectively. A comparison with threshold values of national German guidelines shows that the NOx emissions of all investigated motor ship types are above the threshold values, while the obtained lower limit PM1 emissions are just under. To reduce NOx emissions to acceptable values, implementation of exhaust gas aftertreatment systems is recommended.

  9. Monitoring of PM10 and PM2.5 around primary particulate anthropogenic emission sources

    Science.gov (United States)

    Querol, Xavier; Alastuey, Andrés; Rodriguez, Sergio; Plana, Felicià; Mantilla, Enrique; Ruiz, Carmen R.

    Investigations on the monitoring of ambient air levels of atmospheric particulates were developed around a large source of primary anthropogenic particulate emissions: the industrial ceramic area in the province of Castelló (Eastern Spain). Although these primary particulate emissions have a coarse grain-size distribution, the atmospheric transport dominated by the breeze circulation accounts for a grain-size segregation, which results in ambient air particles occurring mainly in the 2.5-10 μm range. The chemical composition of the ceramic particulate emissions is very similar to the crustal end-member but the use of high Al, Ti and Fe as tracer elements as well as a peculiar grain-size distribution in the insoluble major phases allow us to identify the ceramic input in the bulk particulate matter. PM2.5 instead of PM10 monitoring may avoid the interference of crustal particles without a major reduction in the secondary anthropogenic load, with the exception of nitrate. However, a methodology based in PM2.5 measurement alone is not adequate for monitoring the impact of primary particulate emissions (such as ceramic emissions) on air quality, since the major ambient air particles derived from these emissions are mainly in the range of 2.5-10 μm. Consequently, in areas characterised by major secondary particulate emissions, PM2.5 monitoring should detect anthropogenic particulate pollutants without crustal particulate interference, whereas PM10 measurements should be used in areas with major primary anthropogenic particulate emissions.

  10. Local PM10 and PM2.5 emission inventories from agricultural tillage and harvest in northeastern China.

    Science.gov (United States)

    Chen, Weiwei; Tong, Daniel Q; Zhang, Shichun; Zhang, Xuelei; Zhao, Hongmei

    2017-07-01

    Mineral particles or particulate matters (PMs) emitted during agricultural activities are major recurring sources of atmospheric aerosol loading. However, precise PM inventory from agricultural tillage and harvest in agricultural regions is challenged by infrequent local emission factor (EF) measurements. To understand PM emissions from these practices in northeastern China, we measured EFs of PM 10 and PM 2.5 from three field operations (i.e., tilling, planting and harvesting) in major crop production (i.e., corn and soybean), using portable real-time PM analyzers and weather station data. County-level PM 10 and PM 2.5 emissions from agricultural tillage and harvest were estimated, based on local EFs, crop areas and crop calendars. The EFs averaged (107±27), (17±5) and 26mg/m 2 for field tilling, planting and harvesting under relatively dry conditions (i.e., soil moisture agricultural dust emissions to regional air quality in northeastern China. Copyright © 2016. Published by Elsevier B.V.

  11. Comparison of PM emissions from a commercial jet engine burning conventional, biomass, and Fischer-Tropsch fuels.

    Science.gov (United States)

    Lobo, Prem; Hagen, Donald E; Whitefield, Philip D

    2011-12-15

    Rising fuel costs, an increasing desire to enhance security of energy supply, and potential environmental benefits have driven research into alternative renewable fuels for commercial aviation applications. This paper reports the results of the first measurements of particulate matter (PM) emissions from a CFM56-7B commercial jet engine burning conventional and alternative biomass- and, Fischer-Tropsch (F-T)-based fuels. PM emissions reductions are observed with all fuels and blends when compared to the emissions from a reference conventional fuel, Jet A1, and are attributed to fuel properties associated with the fuels and blends studied. Although the alternative fuel candidates studied in this campaign offer the potential for large PM emissions reductions, with the exception of the 50% blend of F-T fuel, they do not meet current standards for aviation fuel and thus cannot be considered as certified replacement fuels. Over the ICAO Landing Takeoff Cycle, which is intended to simulate aircraft engine operations that affect local air quality, the overall PM number-based emissions for the 50% blend of F-T fuel were reduced by 34 ± 7%, and the mass-based emissions were reduced by 39 ± 7%.

  12. PM 10, PM 2.5 and PM 1.0—Emissions from industrial plants—Results from measurement programmes in Germany

    Science.gov (United States)

    Ehrlich, C.; Noll, G.; Kalkoff, W.-D.; Baumbach, G.; Dreiseidler, A.

    Emission measurement programmes were carried out at industrial plants in several regions of Germany to determine the fine dust in the waste gases; the PM 10, PM 2.5 and PM 1.0 fractions were sampled using a cascade impactor technique. The installations tested included plants used for: combustion (brown coal, heavy fuel oil, wood), cement production, glass production, asphalt mixing, and processing plants for natural stones and sand, ceramics, metallurgy, chemical production, spray painting, wood processing/chip drying, poultry farming and waste treatment. In addition waste gas samples were taken from small-scale combustion units, like domestic stoves, firing lignite briquettes or wood. In total 303 individual measurement results were obtained during 106 different measurement campaigns. In the study it was found that in more than 70% of the individual emission measurement results from industrial plants and domestic stoves the PM 10 portion amounted to more than 90% and the PM 2.5 portion between 50% and 90% of the total PM (particulate matter) emission. For thermal industrial processes the PM 1.0 portion constituted between 20% and 60% of the total PM emission. Typical particle size distributions for different processes were presented as cumulative frequency distributions and as frequency distributions. The particle size distributions determined for the different plant types show interesting similarities and differences depending on whether the processes are thermal, mechanical, chemical or mixed. Consequently, for the groups of plant investigated, a major finding of this study has been that the particle size distribution is a characteristic of the industrial process. Attempts to correlate particle size distributions of different plants to different gas cleaning technologies did not lead to usable results.

  13. Evaluation of the Contribution of the Building Sector to PM2.5 Emissions in China

    Energy Technology Data Exchange (ETDEWEB)

    Khanna, Nina [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Zhou, Nan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ke, Jing [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Fridley, David [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2014-11-01

    In this study, we quantify the current and potential contribution of China’s building sector to direct primary and indirect PM2.5 emissions and co-benefits of key pollution reduction strategies of energy efficiency, fuel switching and pollution control technologies on PM2.5 emissions reduction. We use a bottom-up end-use accounting model to model residential and commercial buildings’ coal demand for heating and electricity demand in China’s Northern and Transition climate zones from 2010 to 2030. The model is then used to characterize the current coal-based heating (e.g., district heating, combined heat and power generation, small-scale coal-fired boilers) and power generation technologies to estimate direct and indirect PM2.5 emissions. Model scenarios are developed to evaluate and compare the potential co-benefits of efficiency improvements, fuel switching and pollution control technologies in reducing building-related direct and indirect PM2.5 emissions. An alternative pathway of development in which district heating is introduced to China’s Transition zone to meet growing demand for heat is also modeled to evaluate and quantify the potential impact on PM2.5 emissions.

  14. Primary and Aggregate Size Distributions of PM in Tail Pipe Emissions form Diesel Engines

    Science.gov (United States)

    Arai, Masataka; Amagai, Kenji; Nakaji, Takayuki; Hayashi, Shinji

    Particulate matter (PM) emission exhausted from diesel engine should be reduced to keep the clean air environment. PM emission was considered that it consisted of coarse and aggregate particles, and nuclei-mode particles of which diameter was less than 50nm. However the detail characteristics about these particles of the PM were still unknown and they were needed for more physically accurate measurement and more effective reduction of exhaust PM emission. In this study, the size distributions of solid particles in PM emission were reported. PMs in the tail-pipe emission were sampled from three type diesel engines. Sampled PM was chemically treated to separate the solid carbon fraction from other fractions such as soluble organic fraction (SOF). The electron microscopic and optical-manual size measurement procedures were used to determine the size distribution of primary particles those were formed through coagulation process from nuclei-mode particles and consisted in aggregate particles. The centrifugal sedimentation method was applied to measure the Stokes diameter of dry-soot. Aerodynamic diameters of nano and aggregate particles were measured with scanning mobility particle sizer (SMPS). The peak aggregate diameters detected by SMPS were fallen in the same size regime as the Stokes diameter of dry-soot. Both of primary and Stokes diameters of dry-soot decreased with increases of engine speed and excess air ratio. Also, the effects of fuel properties and engine types on primary and aggregate particle diameters were discussed.

  15. PM EMISSIONS PRODUCED BY AIRCRAFT UNDER THE OPERATIONS AT THE AIRPORT

    Directory of Open Access Journals (Sweden)

    Oleksandr Zaporozhets

    2016-12-01

    Full Text Available Purpose: The effects of aircraft engine emissions within the planetary boundary layer under the landing/ take-off operations contribute sufficiently to deterioration of air pollution in the vicinity of the airports and nearby residential areas. Currently the primary object of airport air quality are the nitrogen oxides and particle matter (PM10, PM2.5 and ultrafine PM emissions from aircraft engine exhausts as initiators of photochemical smog and regional haze, which may further impact on human health. Analysis of PM emission inventory results at major European airports highlighted on sufficiently high contribution of aircraft engines and APU. The paper aims to summarize the knowledge on particle size distributions, particle effective density, morphology and internal structure of aircraft PM, these properties are critical for understanding of the fate and potential health impact of PM. It also aims to describe the basic methods for calculation of emission and dispersion of PM, produced by aircrafts under the LTO operations. Methods: analytical solution of the atmospheric diffusion equation is used to calculate the maximum PM concentration from point emission source. The PM concentration varies inversely proportional to the wind velocity u1 and directly proportional to the vertical component of the turbulent exchange coefficient k1/u1. The evaluation of non-volatile PM concentration includes the size and shape of PM. PolEmiCa calculates the distributions of PM fractions for aircraft and APU exhausts (height of installation was given H=4,5m like for Tupolev-154. Results: The maximum concentration of PM in exhaust from APU is higher and appropriate distance is less than in case for gas. PM polydispersity leads to the separation of maximums concentration in space for individual fractions on the wind direction and therefore it contributes to the reduction of maximum total concentration. Discussion:But although the APU has contributed significantly to

  16. Fine particulate matter (PM) and organic speciation of fireplace emissions

    International Nuclear Information System (INIS)

    Purvis, C.R.; McCrillis, R.C.; Kariher, P.H.

    2000-01-01

    This paper presents a summary of fireplace particle size and organic speciation data gathered to date in an ongoing project. Tests are being conducted in a residential wood combustion (RWC) laboratory on three factory-built fireplaces. RWC wood smoke particles <10 microm (PM10) consist primarily of a mixture of organic compounds that have condensed into droplets; therefore, the size distribution and total mass are influenced by temperature of the sample during its collection. During the series 1 tests (15 tests), the dilution tunnel used to cool and dilute the stack gases gave an average mixed gas temperature of 47.3 C and an average dilution ration of 4.3. Averages for the PM2.5 (particles <2.5 microm) and PM10 fractions were 74 and 84%, respectively. For the series 2 tests, the dilution tunnel was modified, reducing the average mixed gas temperatures to 33.8 C and increasing the average dilution ratio to 11.0 in tests completed to date. PM2.5 and PM10 fractions were 83 and 91%, respectively. Since typical winter-time mixed gas temperatures would usually be less than 10 C, these size fraction results probably represent the lower bound; the PM10 and PM2.5 size fraction results might be higher at typical winter temperatures. The particles collected on the first stage were light gray and appeared to include inorganic ash. Particles collected on the remainder of the stages were black and appeared to be condensed organics because there was noticeable lateral bleeding of the collected materials into the filter substrate. Total particulate emission rates ranged from 10.3 to 58.4 g/h; corresponding emission factors ranged from 3.3 to 14.9 g/kg of dry wood burned. A wide range of Environmental Protection Agency (EPA) Method 8270 semivolatile organic compounds were found in the emissions; of the 17 target compounds quantified, major constituents are phenol, 2-methylphenol, 4-methylphenol, 2,4-dimethylphenol, and naphthalene

  17. Effect of DMDF on the PM emission from a turbo-charged diesel engine with DDOC and DPOC

    International Nuclear Information System (INIS)

    Geng, Peng; Yao, Chunde; Wang, Quangang; Wei, Lijiang; Liu, Junheng; Pan, Wang; Han, Guopeng

    2015-01-01

    Highlights: • A new technical route on the reductions of smoke emissions and PM was introduced. • Smoke emissions and PM from turbo-charged diesel engine with DMDF were measured. • Interior relation on dry-soot, smoke opacity and PM was analyzed. • Effects of DMDF, DDOC and DPOC on smoke emissions and PM were investigated. • Particle number and mass concentrations and size contribution with DMDF were realized. - Abstract: This study is aimed to investigate the combined application of diesel methanol dual fuel (DMDF) and a simple after-treatment for reducing particulate matter (PM) emissions of a diesel engine. The effects of DMDF, a double diesel oxidation catalyst (DDOC) and a DOC closely coupled with a particulate oxidation catalyst (POC) in series (DPOC) on smoke emissions, particulate mass and number concentrations and size distributions were analyzed. Tests were conducted on a 4-cylinder turbo-charged, inter-cooling, mechanical in-line fuel injection pump diesel engine modified to DMDF combustion mode. Testing results showed that, before the DDOC and the DPOC, the dry-soot and smoke opacity efficiency decreases with the increase of substitution ratio of methanol at high engine load. There is a significant decrease of smoke opacity in DMDF mode after the DDOC, while the DPOC has a significant effect on the reduction in dry-soot emission. There is an average reduction in dry-soot by 25% in pure diesel fuel mode after the DDOC, while in DMDF mode, the average reduction is more than 60%, and the maximum reduction in dry-soot is up to 96%. There is a slightly reduction in PM emissions at low substitution ratio of methanol, while the high substitution ratio of methanol leads to more reduction in PM emissions. After the DDOC and the DPOC, particulate number and mass concentrations, especially nuclear particles, can be significantly reduced when the exhaust gas temperature is enough high

  18. PM, carbon, and PAH emissions from a diesel generator fuelled with soy-biodiesel blends

    International Nuclear Information System (INIS)

    Tsai, Jen-Hsiung; Chen, Shui-Jen; Huang, Kuo-Lin; Lin, Yuan-Chung; Lee, Wen-Jhy; Lin, Chih-Chung; Lin, Wen-Yinn

    2010-01-01

    Biodiesels have received increasing attention as alternative fuels for diesel engines and generators. This study investigates the emissions of particulate matter (PM), total carbon (TC), e.g., organic/elemental carbons, and polycyclic aromatic hydrocarbons (PAHs) from a diesel generator fuelled with soy-biodiesel blends. Among the tested diesel blends (B0, B10 (10 vol% soy-biodiesel), B20, and B50), B20 exhibited the lowest PM emission concentration despite the loads (except the 5 kW case), whereas B10 displayed lower PM emission factors when operating at 0 and 10 kW than the other fuel blends. The emission concentrations or factors of EC, OC, and TC were the lowest when B10 or B20 was used regardless of the loading. Under all tested loads, the average concentrations of total-PAHs emitted from the generator using the B10 and B20 were lower (by 38% and 28%, respectively) than those using pure petroleum diesel fuel (B0), while the emission factors of total-PAHs decreased with an increasing ratio of biodiesel to premium diesel. With an increasing loading, although the brake specific fuel consumption decreased, the energy efficiency increased despite the bio/petroleum diesel ratio. Therefore, soy-biodiesel is promising for use as an alternative fuel for diesel generators to increase energy efficiency and reduce the PM, carbon, and PAH emissions.

  19. PM2.5 and PM10 Emission from agricultural soils by wind erosion

    Science.gov (United States)

    Soil tillage and wind erosion are a major source of particulate matter less than 2.5 and 10 µm (PM2.5 and PM10) emission from cultivated soil. Fifteen cultivated soils collected from 5 states were tested as crushed (<2.0 mm) and uncrushed (natural aggregation) at 8, 10, and 13 m s-1 wind velocity in...

  20. Reduction of PM emissions from specific sources reflected on key components concentrations of ambient PM10

    Science.gov (United States)

    Minguillon, M. C.; Querol, X.; Monfort, E.; Alastuey, A.; Escrig, A.; Celades, I.; Miro, J. V.

    2009-04-01

    The relationship between specific particulate emission control and ambient levels of some PM10 components (Zn, As, Pb, Cs, Tl) was evaluated. To this end, the industrial area of Castellón (Eastern Spain) was selected, where around 40% of the EU glazed ceramic tiles and a high proportion of EU ceramic frits (middle product for the manufacture of ceramic glaze) are produced. The PM10 emissions from the ceramic processes were calculated over the period 2000 to 2007 taking into account the degree of implementation of corrective measures throughout the study period. Abatement systems (mainly bag filters) were implemented in the majority of the fusion kilns for frit manufacture in the area as a result of the application of the Directive 1996/61/CE, leading to a marked decrease in PM10 emissions. On the other hand, ambient PM10 sampling was carried out from April 2002 to July 2008 at three urban sites and one suburban site of the area and a complete chemical analysis was made for about 35 % of the collected samples, by means of different techniques (ICP-AES, ICP-MS, Ion Chromatography, selective electrode and elemental analyser). The series of chemical composition of PM10 allowed us to apply a source contribution model (Principal Component Analysis), followed by a multilinear regression analysis, so that PM10 sources were identified and their contribution to bulk ambient PM10 was quantified on a daily basis, as well as the contribution to bulk ambient concentrations of the identified key components (Zn, As, Pb, Cs, Tl). The contribution of the sources identified as the manufacture and use of ceramic glaze components, including the manufacture of ceramic frits, accounted for more than 65, 75, 58, 53, and 53% of ambient Zn, As, Pb, Cs and Tl levels, respectively (with the exception of Tl contribution at one of the sites). The important emission reductions of these sources during the study period had an impact on ambient key components levels, such that there was a high

  1. Enhanced PM10 bounded PAHs from shipping emissions

    Science.gov (United States)

    Pongpiachan, S.; Hattayanone, M.; Choochuay, C.; Mekmok, R.; Wuttijak, N.; Ketratanakul, A.

    2015-05-01

    Earlier studies have highlighted the importance of maritime transport as a main contributor of air pollutants in port area. The authors intended to investigate the effects of shipping emissions on the enhancement of PM10 bounded polycyclic aromatic hydrocarbons (PAHs) and mutagenic substances in an industrial area of Rayong province, Thailand. Daily PM10 speciation data across two air quality observatory sites in Thailand during 2010-2013 were collected. Diagnostic binary ratios of PAH congeners, analysis of variances (ANOVA), and principal component analysis (PCA) were employed to evaluate the enhanced genotoxicity of PM10 during the docking period. Significant increase of PAHs and mutagenic index (MI) of PM10 were observed during the docking period in both sampling sites. Although stationary sources like coal combustions from power plants and vehicular exhausts from motorway can play a great role in enhancing PAH concentrations, regulating shipping emissions from diesel engine in the port area like Rayong is predominantly crucial.

  2. Fugitive emission rates assessment of PM2.5 and PM10 from open storage piles in China

    Science.gov (United States)

    Cao, Yiqi; Liu, Tao; He, Jiao

    2018-03-01

    An assessment of the fugitive emission rates of PM2.5 and PM10 from an open static coal and mine storage piles. The experiment was conducted at a large union steel enterprises in the East China region to effectively control the fugitive particulate emissions pollution on daily work and extreme weather conditions. Wind tunnel experiments conducted on the surface of static storage piles, and it generated specific fugitive emission rates (SERs) at ground level of between ca.10-1 and ca.102 (mg/m2·s) for PM2.5 and between ca.101 and ca.103 (mg/m2·s) for PM10 under the u*(wind velocity) between ca.3.0 (m/s) and 10.0 (m/s). Research results show that SERs of different materials differ a lot. Material particulate that has lower surface moisture content generate higher SER and coal material generate higher SER than mine material. For material storage piles with good water infiltrating properties, aspersion is a very effective measure for control fugitive particulate emission.

  3. [Emission characteristics of PM10 from coal-fired industrial boiler].

    Science.gov (United States)

    Li, Chao; Li, Xing-Hua; Duan, Lei; Zhao, Meng; Duan, Jing-Chun; Hao, Ji-Ming

    2009-03-15

    Through ELPI (electrical low-pressure impactor) based dilution sampling system, the emission characteristics of PM10 and PM2.5 was studied experimentally at the inlet and outlet of dust catchers at eight different coal-fired industrial boilers. Results showed that a peak existed at around 0.12-0.20 microm of particle size for both number size distribution and mass size distribution of PM10 emitted from most of the boilers. Chemical composition analysis indicated that PM2.5 was largely composed of organic carbon, elementary carbon, and sulfate, with mass fraction of 3.7%-21.4%, 4.2%-24.6%, and 1.5%-55.2% respectively. Emission factors of PM10 and PM2.5 measured were 0.13-0.65 kg x t(-1) and 0.08-0.49 kg x t(-1) respectively for grate boiler using raw coal, and 0.24 kg x t(-1) and 0.22 kg x t(-1) for chain-grate boiler using briquette. In comparison, the PM2.5 emission factor of fluidized bed boiler is 1.14 kg x t(-1), much her than that of grate boiler. Due to high coal consumption and low efficiency of dust separator, coal-fired industrial boiler may become the most important source of PM10, and should be preferentially controlled in China.

  4. TSP, PM10, and PM2.5 emissions from a beef cattle feedlot using the flux-gradient technique

    Science.gov (United States)

    Emissions data on air pollutants from large open-lot beef cattle feedlots are limited. This research was conducted to determine emissions of total suspended particulates (TSP) and particulate matter (PM10 and PM2.5) from a commercial beef cattle feedlot in Kansas (USA). Vertical particulate concentr...

  5. Influence of pavement macrotexture on PM10 emissions from paved roads: A controlled study

    Science.gov (United States)

    China, Swarup; James, David E.

    2012-12-01

    This paper investigates influence of pavement macrotexture on paved road PM10 emissions. This study was conducted on different paved roadway types (local, collector and minor arterial) in the Las Vegas Valley, Nevada. Pavement macrotexture was measured using the ASTM E 965 sand patch method and the Digital Surface Roughness Meter™ (DSRM™). A controlled constant soil loading with known PM10 fraction was applied to cleaned road surfaces. The Desert Research Institute's (DRI) Mini-PI-SWERL™ (Portable In-Situ Wind ERosion Lab) was used to estimate PM10 mass emissions and cumulative mass emitted from pavement surfaces. PM10 mass emissions using controlled applied soil loadings generally declined with increasing pavement macrotexture at all applied shear levels. The relationships were statistically significant, and indicate that pavement macrotexture may need to be included in future development of revised paved road PM10 emissions factors. A change in the slope of emitted PM10 mass and pavement macrotexture occurred between 0.8 and 0.9 mm mean texture depth (MTD). Anomalies in PM10 mass emissions were observed at MTDs exceeding 1.2 mm. Two-way frequency distributions of pavement surface features obtained from DSRM measurements were analyzed to explain the observed anomalies. Results showed that pavement surface feature size distributions may influence on PM10 emissions from paved roads at similar MTDs. PM10 mass emissions were found to linearly depend on adjusted mode size of the pavement surface aggregate. A sharp decrease in friction velocities, computed from wind erosion theory, at MTDs above 0.9 mm matched an observed sharp decrease in PM10 emissions rates at MTDs above 0.9 mm, indicating that classical wind erosion theory could be adapted for non-erodible pavement surfaces and linearly relate PM10 emissions rates to applied shear stress at an aerodynamic roughness height of 0.075 mm.

  6. Development and testing of technical measures for the abatement of PM10 emissions from poultry housings

    Energy Technology Data Exchange (ETDEWEB)

    Ogink, N.W.M.; Aarnink, A.J.A.; Mosquera, J.; Winkel, A. [Wageningen UR Livestock Research, Wageningen (Netherlands)

    2010-07-01

    In order to comply with the European Union's ambient air quality standards, the Netherlands must reduce emissions of PM10. As a contributor to PM10, the poultry industry must implement mitigation measures before 2012. An extensive research and development program was launched in 2008 to provide abatement technology for broiler and layer houses. This paper presented results from studies carried out in 2008 and 2009 by Wageningen UR Livestock Research. The supply industry and poultry farmers participated in the study in which different methods and approaches were examined, including bedding material, light schedules, oil spraying systems, ionization systems, water scrubbers, combined scrubbers, electrostatic filters, and dry filters. Most methods were first tested and optimized in small units at an experimental poultry facility Lelystad. Several methods were validated in a next step on poultry farms, where PM10 emissions were measured to establish official emission factors. The oil spraying system and ionization system were tested in broiler houses and are nearing implementation. Reductions in PM10 emissions by different methods ranged from no effect to levels of 60 per cent. An outlook on adequate dust abatement measures for poultry housings was also provided.

  7. PM 10 emission inventory of industrial and road transport vehicles in ...

    African Journals Online (AJOL)

    Rapid development in industrial and road transportation sector in developing countries has contributing the environmental issue. Determining the estimated PM10 emission in Klang Valley, Malaysia is based on the best available resources. Emission of PM10 from both sources was estimated particularly from numbers of ...

  8. Tillage and straw management affect PM10 emission potential in subarctic Alaska

    Science.gov (United States)

    Emission of PM10 (particulates =10 um in diameter regulated by many nations as an air pollutant) from agricultural soils can impact regional air quality. Little information exists that describes the potential for PM10 and airborne dust emissions from subarctic soils or agricultural soils subject to ...

  9. Globalization and pollution: tele-connecting local primary PM2.5 emissions to global consumption.

    Science.gov (United States)

    Meng, Jing; Liu, Junfeng; Xu, Yuan; Guan, Dabo; Liu, Zhu; Huang, Ye; Tao, Shu

    2016-11-01

    Globalization pushes production and consumption to geographically diverse locations and generates a variety of sizeable opportunities and challenges. The distribution and associated effects of short-lived primary fine particulate matter (PM 2.5 ), a representative of local pollution, are significantly affected by the consumption through global supply chain. Tele-connection is used here to represent the link between production and consumption activity at large distances. In this study, we develop a global consumption-based primary PM 2.5 emission inventory to track primary PM 2.5 emissions embodied in the supply chain and evaluate the extent to which local PM 2.5 emissions are triggered by international trade. We further adopt consumption-based accounting and identify the global original source that produced the emissions. We find that anthropogenic PM 2.5 emissions from industrial sectors accounted for 24 Tg globally in 2007; approximately 30% (7.2 Tg) of these emissions were embodied in export of products principally from Brazil, South Africa, India and China (3.8 Tg) to developed countries. Large differences (up to 10 times) in the embodied emissions intensity between net importers and exporters greatly increased total global PM 2.5 emissions. Tele-connecting production and consumption activity provides valuable insights with respect to mitigating long-range transboundary air pollution and prompts concerted efforts aiming at more environmentally conscious globalization.

  10. Globalization and pollution: tele-connecting local primary PM2.5 emissions to global consumption

    Science.gov (United States)

    Meng, Jing; Xu, Yuan; Guan, Dabo; Liu, Zhu; Huang, Ye; Tao, Shu

    2016-01-01

    Globalization pushes production and consumption to geographically diverse locations and generates a variety of sizeable opportunities and challenges. The distribution and associated effects of short-lived primary fine particulate matter (PM2.5), a representative of local pollution, are significantly affected by the consumption through global supply chain. Tele-connection is used here to represent the link between production and consumption activity at large distances. In this study, we develop a global consumption-based primary PM2.5 emission inventory to track primary PM2.5 emissions embodied in the supply chain and evaluate the extent to which local PM2.5 emissions are triggered by international trade. We further adopt consumption-based accounting and identify the global original source that produced the emissions. We find that anthropogenic PM2.5 emissions from industrial sectors accounted for 24 Tg globally in 2007; approximately 30% (7.2 Tg) of these emissions were embodied in export of products principally from Brazil, South Africa, India and China (3.8 Tg) to developed countries. Large differences (up to 10 times) in the embodied emissions intensity between net importers and exporters greatly increased total global PM2.5 emissions. Tele-connecting production and consumption activity provides valuable insights with respect to mitigating long-range transboundary air pollution and prompts concerted efforts aiming at more environmentally conscious globalization. PMID:27956874

  11. Globalization and pollution: tele-connecting local primary PM2.5 emissions to global consumption

    Science.gov (United States)

    Meng, Jing; Liu, Junfeng; Xu, Yuan; Guan, Dabo; Liu, Zhu; Huang, Ye; Tao, Shu

    2016-11-01

    Globalization pushes production and consumption to geographically diverse locations and generates a variety of sizeable opportunities and challenges. The distribution and associated effects of short-lived primary fine particulate matter (PM2.5), a representative of local pollution, are significantly affected by the consumption through global supply chain. Tele-connection is used here to represent the link between production and consumption activity at large distances. In this study, we develop a global consumption-based primary PM2.5 emission inventory to track primary PM2.5 emissions embodied in the supply chain and evaluate the extent to which local PM2.5 emissions are triggered by international trade. We further adopt consumption-based accounting and identify the global original source that produced the emissions. We find that anthropogenic PM2.5 emissions from industrial sectors accounted for 24 Tg globally in 2007; approximately 30% (7.2 Tg) of these emissions were embodied in export of products principally from Brazil, South Africa, India and China (3.8 Tg) to developed countries. Large differences (up to 10 times) in the embodied emissions intensity between net importers and exporters greatly increased total global PM2.5 emissions. Tele-connecting production and consumption activity provides valuable insights with respect to mitigating long-range transboundary air pollution and prompts concerted efforts aiming at more environmentally conscious globalization.

  12. Spatio-temporal variations of PM2.5 emission in China from 2005 to 2014.

    Science.gov (United States)

    Jin, Qiang; Fang, Xinyue; Wen, Bo; Shan, Aidang

    2017-09-01

    With the rapid development of economy, air pollution has become increasingly serious nowadays in China, especially for the PM2.5. In this paper, the Spatio-temporal variations of PM2.5 emission over the past decade, from 2005 to 2014, were researched by cartograms. Meanwhile, a complex network technology was adopted to study the spatial auto-correlation of PM2.5 emission. The results showed that every province in China suffered a disparate increment in PM2.5 emission during the past ten years and also indicated that provinces in the same region had a huge influence on each other. There were three sectors including the thermal power, biomass burning and building materials that constituted the major sources of PM2.5 emission and they had different changing trends. There existed a dramatic difference in the east and west of China considering that the amount of PM2.5 was closely related to gross domestic product (GDP) and population. With higher GDP and population, eastern provinces emitted the most amount of PM2.5. Normalization results proposed that most of the provinces were PM2.5 exporting provinces in the southeast of China while most in the northwest were importing provinces. This study can help the policy-makers understand the distribution characteristics of PM2.5 emission and propose the effective strategy to mitigate the pollution of haze. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Trends in PM2.5 emissions, concentrations and apportionments in Detroit and Chicago

    Science.gov (United States)

    Milando, Chad; Huang, Lei; Batterman, Stuart

    2016-03-01

    PM2.5 concentrations throughout much of the U.S. have decreased over the last 15 years, but emissions and concentration trends can vary by location and source type. Such trends should be understood to inform air quality management and policies. This work examines trends in emissions, concentrations and source apportionments in two large Midwest U.S. cities, Detroit, Michigan, and Chicago, Illinois. Annual and seasonal trends were investigated using National Emission Inventory (NEI) data for 2002 to 2011, speciated ambient PM2.5 data from 2001 to 2014, apportionments from positive matrix factorization (PMF) receptor modeling, and quantile regression. Over the study period, county-wide data suggest emissions from point sources decreased (Detroit) or held constant (Chicago), while emissions from on-road mobile sources were constant (Detroit) or increased (Chicago), however changes in methodology limit the interpretation of inventory trends. Ambient concentration data also suggest source and apportionment trends, e.g., annual median concentrations of PM2.5 in the two cities declined by 3.2-3.6%/yr (faster than national trends), and sulfate concentrations (due to coal-fired facilities and other point source emissions) declined even faster; in contrast, organic and elemental carbon (tracers of gasoline and diesel vehicle exhaust) declined more slowly or held constant. The PMF models identified nine sources in Detroit and eight in Chicago, the most important being secondary sulfate, secondary nitrate and vehicle emissions. A minor crustal dust source, metals sources, and a biomass source also were present in both cities. These apportionments showed that the median relative contributions from secondary sulfate sources decreased by 4.2-5.5% per year in Detroit and Chicago, while contributions from metals sources, biomass sources, and vehicles increased from 1.3 to 9.2% per year. This first application of quantile regression to trend analyses of speciated PM2.5 data reveals

  14. Chemical composition of ambient PM2. 5 over China and relationship to precursor emissions during 2005-2012

    Science.gov (United States)

    Geng, Guannan; Zhang, Qiang; Tong, Dan; Li, Meng; Zheng, Yixuan; Wang, Siwen; He, Kebin

    2017-07-01

    , growth of energy consumption and lack of control measures for NOx resulted in a persistent increase in NOx emissions until the installation of denitrification devices on power plants late in 2011, which began to take effect in 2012. The results of this work indicate that the synchronized abatement of emissions for multipollutants is necessary for reducing ambient PM2. 5 concentrations over China.

  15. Update on the development of cotton gin PM10 emission factors for EPA's AP-42

    Science.gov (United States)

    A cotton ginning industry-supported project was initiated in 2008 to update the U.S. Environmental Protection Agency’s (EPA) Compilation of Air Pollution Emission Factors (AP-42) to include PM10 emission factors. This study develops emission factors from the PM10 emission factor data collected from ...

  16. Compilation of Published PM2.5 Emission Rates for Cooking, Candles and Incense for Use in Modeling of Exposures in Residences

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Tianchao [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Singer, Brett C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Logue, Jennifer M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-08-01

    recent analysis of health impacts from air pollutant inhalation in homes found that PM2.5 is the most damaging at the population level. Chronic exposure to elevated PM2.5 has the potential to damage human respiratory systems, and may result in premature death. PM2.5 exposures in homes can be mitigated through various approaches including kitchen exhaust ventilation, filtration, indoor pollutant source reduction and designing ventilation systems to reduce the entry of PM2.5 from outdoors. Analysis of the potential benefits and costs of various approaches can be accomplished using computer codes that simulate the key physical processes including emissions, dilution and ventilation. The largest sources of PM2.5 in residences broadly are entry from outdoors and emissions from indoor combustion. The largest indoor sources are tobacco combustion (smoking), cooking and the burning of candles and incense. Data on the magnitude of PM2.5 and other pollutant emissions from these events and processes are required to conduct simulations for analysis. The goal of this study was to produce a database of pollutant emission rates associated with cooking and the burning of candles and incense. The target use of these data is for indoor air quality modeling.

  17. Quantification of vehicle fleet PM_1_0 particulate matter emission factors from exhaust and non-exhaust sources using tunnel measurement techniques

    International Nuclear Information System (INIS)

    Lawrence, Samantha; Sokhi, Ranjeet; Ravindra, Khaiwal

    2016-01-01

    Road tunnels act like large laboratories; they provide an excellent environment to quantify atmospheric particles emission factors from exhaust and non-exhaust sources due to their known boundary conditions. Current work compares the High Volume, Dichotomous Stacked Filter Unit and Partisol Air Sampler for coarse, PM_1_0 and PM_2_._5 particle concentration measurement and found that they do not differ significantly (p = 95%). PM_2_._5 fraction contributes 66% of PM_1_0 proportions and significantly influenced by traffic (turbulence) and meteorological conditions. Mass emission factors for PM_1_0 varies from 21.3 ± 1.9 to 28.8 ± 3.4 mg/vkm and composed of Motorcycle (0.0003–0.001 mg/vkm), Cars (26.1–33.4 mg/vkm), LDVs (2.4–3.0 mg/vkm), HDVs (2.2–2.8 mg/vkm) and Buses (0.1 mg/vkm). Based on Lawrence et al. (2013), source apportionment modelling, the PM_1_0 emission of brake wear (3.8–4.4 mg/vkm), petrol exhaust (3.9–4.5 mg/vkm), diesel exhaust (7.2–8.3 mg/vkm), re-suspension (9–10.4 mg/vkm), road surface wear (3.9–4.5 mg/vkm), and unexplained (7.2 mg/vkm) were also calculated. The current study determined that the combined non-exhaust fleet PM_1_0 emission factor (16.7–19.3 mg/vkm) are higher than the combined exhaust emission factor (11.1–12.8 mg/vkm). Thus, highlight the significance of non-exhaust emissions and the need for legislation and abatement strategies to reduce their contributions to ambient PM concentrations. - Highlights: • Calculations of exhaust/non-exhaust particulate emission factors using tunnel sampling and source apportionment techniques. • Non-exhaust emission dominates in the fine particle fraction, considered responsible for adverse human health impacts. • Emission factors for non-exhaust sources (e.g. tyre and brake) were calculated. • Fleet source PM_1_0 emission factor were also calculated, which can be used in dispersion modelling and health risk assessment. • Tukey mean

  18. The influence of PM2.5 coal power plant emissions on environment PM2.5 in Jilin Province, China

    Science.gov (United States)

    Sun, Ye; Li, Zhi; Zhang, Dan; Zhang, He; Zhang, Huafei

    2018-02-01

    In recent years, in the Northeast of China, the heating period comes with large range of haze weather. All the units of coal power plants in Jilin Province have completed the cogeneration reformation; they provide local city heat energy. Many people believe that coal power plants heating caused the heavy haze. In is paper, by compared concentration of PM2.5 in environment in heating period and non heating period, meanwhile the capacity of local coal power plants, conclude that the PM2.5 emission of coal power plants not directly cause the heavy haze in Changchun and Jilin in the end of October and early November. In addition, the water-soluble iron composition of PM2.5 coal power plant emissions is compared with environment, which further proves that the heating supply in coal power plants is not the cause of high concentration of PM2.5 in Jilin province.

  19. Impacts of Energy Sector Emissions on PM2.5 Air Quality in Northern India

    Science.gov (United States)

    Karambelas, A. N.; Kiesewetter, G.; Heyes, C.; Holloway, T.

    2015-12-01

    India experiences high concentrations of fine particulate matter (PM2.5), and several Indian cities currently rank among the world's most polluted cities. With ongoing urbanization and a growing economy, emissions from different energy sectors remain major contributors to air pollution in India. Emission sectors impact ambient air quality differently due to spatial distribution (typical urban vs. typical rural sources) as well as source height characteristics (low-level vs. high stack sources). This study aims to assess the impacts of emissions from three distinct energy sectors—transportation, domestic, and electricity—on ambient PM2.5­­ in northern India using an advanced air quality analysis framework based on the U.S. EPA Community Multi-Scale Air Quality (CMAQ) model. Present air quality conditions are simulated using 2010 emissions from the Greenhouse Gas-Air Pollution Interaction and Synergies (GAINS) model. Modeled PM2.5 concentrations are compared with satellite observations of aerosol optical depth (AOD) from the Moderate Imaging Spectroradiometer (MODIS) for 2010. Energy sector emissions impacts on future (2030) PM2.5 are evaluated with three sensitivity simulations, assuming maximum feasible reduction technologies for either transportation, domestic, or electricity sectors. These simulations are compared with a business as usual 2030 simulation to assess relative sectoral impacts spatially and temporally. CMAQ is modeled at 12km by 12km and include biogenic emissions from the Community Land Model coupled with the Model of Emissions of Gases and Aerosols in Nature (CLM-MEGAN), biomass burning emissions from the Global Fires Emissions Database (GFED), and ERA-Interim meteorology generated with the Weather Research and Forecasting (WRF) model for 2010 to quantify the impact of modified anthropogenic emissions on ambient PM2.5 concentrations. Energy sector emissions analysis supports decision-making to improve future air quality and public health in

  20. PM2.5 and Carbon Emissions from Prescribed Fire in a Longleaf Pine Ecosystem

    Science.gov (United States)

    Strenfel, S. J.; Clements, C. B.; Hiers, J. K.; Kiefer, C. M.

    2008-12-01

    Prescribed fires are a frequently utilized land-management tool in the Southeastern US. In order to better characterize emissions and impacts from prescribed fire in longleaf pine ecosystems, in situ data were obtained within the burn perimeter using a 10-m instrumented flux tower. Turbulence and temperature data at 10-m were sampled at 10 Hz using a sonic anemometer and fine-wire thermocouples respectively. Measurements of PM2.5, CO and CO2 emissions were sampled at 10-m within the burn perimeter and PM2.5 and Black Carbon PM2.5 were sampled 0.5 km downwind of the fire front using a 2-m instrumented tripod. Preliminary results indicate PM2.5 and carbon emissions significantly increased during the fire-front passage, and downwind PM concentrations were amplified beyond pre-fire ambient concentrations. In addition, the considerable amount a heat release and flux data gathered from these prescribed fires suggests that near surface atmospheric conditions were directly impacted by increased turbulence generation.

  1. Effects of olive tree branches burning emissions on PM2.5 concentrations

    Science.gov (United States)

    Papadakis, G. Z.; Megaritis, A. G.; Pandis, S. N.

    2015-07-01

    An olive tree branches burning emission inventory for Greece is developed based on recently measured emission factors and the spatial distribution of olive trees. A three-dimensional chemical transport model (CTM), PMCAMx, is used to estimate the corresponding impact on PM2.5 concentrations during a typical winter period. Assuming that burning of olive tree branches takes place only during days with low wind speed and without precipitation, the contribution of olive tree branches burning emissions on PM2.5 levels is more significant during the most polluted days. Increases of hourly PM2.5 exceeding 50% and locally reaching up to 150% in Crete are predicted during the most polluted periods. On a monthly-average basis, the corresponding emissions are predicted to increase PM2.5 levels up to 1.5 μg m-3 (20%) in Crete and Peloponnese, where the largest fraction of olive trees is located, and by 0.4 μg m-3 (5%) on average over Greece. OA and EC levels increase by 20% and 13% respectively on average over Greece, and up to 70% in Crete. The magnitude of the effect is quite sensitive to burning practices. Assuming that burning of olive tree branches takes place during all days results in a smaller effect of burning on PM2.5 levels (9% increase instead of 20%). These results suggest that this type of agricultural waste burning is a major source of particulate pollution in the Mediterranean countries where this practice is prevalent during winter.

  2. Comparison of economic instruments to reduce PM_2_._5 from industrial and residential sources

    International Nuclear Information System (INIS)

    Mardones, Cristian; Saavedra, Andrés

    2016-01-01

    In the literature, it is possible to find different studies that compare economic instruments performance applied to the industrial sources regulation; however, evidence about pollution from residential sources is scarce. For this reason, the present study simulates and compares an emission permit system (EPS) and an ambient permit system (APS) when fine particulate matter pollution (PM_2_._5) is generated from industrial and residential sources. Thus, this research contributes to the spatial, economic and environmental assessment of industrial and residential emissions. The options to reduce pollution include replacement of heating devices in residential sources and installing end-of-pipe technologies in industrial sources. The results in terms of total cost and technological chosen options are similar under an APS and EPS for targets lesser to 80%. This is explained because it is more cost-effective to reduce emissions in residential sources than in industrial sources, and additionally, residential pollution has only local impact. However, some industrial sources should install abatement technologies for more demanding targets; in this case as industrial pollution are scattered in different areas, the total cost of an APS are lower than the total cost of an EPS. - Highlights: • The impact of wood burning on air quality can be significant in urban areas. • Residential and industrial sources in regulatory schemes to PM_2_._5 are analyzed. • Wood smoke pollution can be reduced by changing to more efficient heating devices. • Wood heater replacement is more cost-effective than abatement technologies. • The results are similar under APS and EPS for targets lesser to 80%.

  3. Emissions of CO2, CO, NOx, HC, PM, HFC-134a, N2O and CH4 from the global light duty vehicle fleet

    Directory of Open Access Journals (Sweden)

    Timothy J. Wallington

    2008-04-01

    Full Text Available Vehicles emit carbon dioxide (CO2, carbon monoxide (CO, nitrogen oxides (NOx, hydrocarbons (HC, particulate matter (PM, hydrofluorocarbon 134a (HFC-134a, methane (CH4, and nitrous oxide (N2O. An understanding of these emissions is needed in discussions of climate change and local air pollution issues. To facilitate such discussions an overview of past, present, and likely future emissions from light duty vehicles is presented. Emission control technologies have reduced the emissions of CO, VOCs, PM, HFC-134a, CH4, and N2O from modern vehicles to very low levels.

  4. Assessment of biomass burning emissions and their impacts on urban and regional PM2.5: a Georgia case study.

    Science.gov (United States)

    Tian, Di; Hu, Yongtao; Wang, Yuhang; Boylan, James W; Zheng, Mei; Russell, Armistead G

    2009-01-15

    Biomass burning is a major and growing contributor to particulate matter with an aerodynamic diameter less than 2.5 microm (PM2.5). Such impacts (especially individual impacts from each burning source) are quantified using the Community Multiscale Air Quality (CMAQ) Model, a chemical transport model (CTM). Given the sensitivity of CTM results to uncertain emission inputs, simulations were conducted using three biomass burning inventories. Shortcomings in the burning emissions were also evaluated by comparing simulations with observations and results from a receptor model. Model performance improved significantly with the updated emissions and speciation profiles based on recent measurements for biomass burning: mean fractional bias is reduced from 22% to 4% for elemental carbon and from 18% to 12% for organic matter; mean fractional error is reduced from 59% to 50% for elemental carbon and from 55% to 49% for organic matter. Quantified impacts of biomass burning on PM2.5 during January, March, May, and July 2002 are 3.0, 5.1, 0.8, and 0.3 microg m(-3) domainwide on average, with more than 80% of such impacts being from primary emissions. Impacts of prescribed burning dominate biomass burning impacts, contributing about 55% and 80% of PM2.5 in January and March, respectively, followed by land clearing and agriculture field burning. Significant impacts of wildfires in May and residential wood combustion in fireplaces and woodstoves in January are also found.

  5. Spatial estimation of air PM2.5 emissions using activity data, local emission factors and land cover derived from satellite imagery

    Science.gov (United States)

    Gibe, Hezron P.; Cayetano, Mylene G.

    2017-09-01

    Exposure to particulate matter (PM) is a serious environmental problem in many urban areas on Earth. In the Philippines, most existing studies and emission inventories have mainly focused on point and mobile sources, while research involving human exposures to particulate pollutants is rare. This paper presents a method for estimating the amount of fine particulate (PM2.5) emissions in a test study site in the city of Cabanatuan, Nueva Ecija, in the Philippines, by utilizing local emission factors, regionally procured data, and land cover/land use (activity data) interpreted from satellite imagery. Geographic information system (GIS) software was used to map the estimated emissions in the study area. The present results suggest that vehicular emissions from motorcycles and tricycles, as well as fuels used by households (charcoal) and burning of agricultural waste, largely contribute to PM2.5 emissions in Cabanatuan. Overall, the method used in this study can be applied in other small urbanizing cities, as long as on-site specific activity, emission factor, and satellite-imaged land cover data are available.

  6. Public health benefits of strategies to reduce greenhouse-gas emissions: low-carbon electricity generation.

    Science.gov (United States)

    Markandya, Anil; Armstrong, Ben G; Hales, Simon; Chiabai, Aline; Criqui, Patrick; Mima, Silvana; Tonne, Cathryn; Wilkinson, Paul

    2009-12-12

    In this report, the third in this Series on health and climate change, we assess the changes in particle air pollution emissions and consequent effects on health that are likely to result from greenhouse-gas mitigation measures in the electricity generation sector in the European Union (EU), China, and India. We model the effect in 2030 of policies that aim to reduce total carbon dioxide (CO(2)) emissions by 50% by 2050 globally compared with the effect of emissions in 1990. We use three models: the POLES model, which identifies the distribution of production modes that give the desired CO(2) reductions and associated costs; the GAINS model, which estimates fine particulate matter with aerodynamic diameter 2.5 microm or less (PM(2.5)) concentrations; and a model to estimate the effect of PM(2.5) on mortality on the basis of the WHO's Comparative Risk Assessment methods. Changes in modes of production of electricity to reduce CO(2) emissions would, in all regions, reduce PM(2.5) and deaths caused by it, with the greatest effect in India and the smallest in the EU. Health benefits greatly offset costs of greenhouse-gas mitigation, especially in India where pollution is high and costs of mitigation are low. Our estimates are approximations but suggest clear health gains (co-benefits) through decarbonising electricity production, and provide additional information about the extent of such gains.

  7. Feasibility of including fugitive PM-10 emissions estimates in the EPA emissions trends report

    International Nuclear Information System (INIS)

    Barnard, W.; Carlson, P.

    1990-09-01

    The report describes the results of Part 2 of a two part study. Part 2 was to evaluate the feasibility of developing regional emission trends for PM-10. Part 1 was to evaluate the feasibility of developing VOC emission trends, on a regional and temporal basis. These studies are part of the effort underway to improve the national emission trends. Part 1 is presented in a separate report. The categories evaluated for the feasibility of developing regional emissions estimates were: unpaved roads, paved roads, wind erosion, agricultural tilling, construction activities, feedlots, burning, landfills, mining and quarrying unpaved parking lots, unpaved airstrips and storage piles

  8. Demonstration of Novel Sampling Techniques for Measurement of Turbine Engine Volatile and Non-Volatile Particulate Matter (PM) Emissions

    Science.gov (United States)

    2015-12-30

    emissions demonstration . 46 6 Figure 24. T63 engine with extension pipe to direct exhaust outside of the test cell for exhaust sampling with tip...to assess their effectiveness in conditioning turbine engine exhaust for total PM emissions measurements. Both were designed to promote the... effectively control and mitigate PM emissions. Aircraft PM is formed in the engine combustor due to incomplete combustion of fuel, and in the

  9. Distinguishing the roles of meteorology, emission control measures, regional transport, and co-benefits of reduced aerosol feedbacks in ;APEC Blue;

    Science.gov (United States)

    Gao, Meng; Liu, Zirui; Wang, Yuesi; Lu, Xiao; Ji, Dongsheng; Wang, Lili; Li, Meng; Wang, Zifa; Zhang, Qiang; Carmichael, Gregory R.

    2017-10-01

    Air quality are strongly influenced by both emissions and meteorological conditions. During the Asia Pacific Economic Cooperation (APEC) week (November 5-11, 2014), the Chinese government implemented unprecedented strict emission control measures in Beijing and surrounding provinces, and then a phenomenon referred to as ;APEC Blue; (rare blue sky) occurred. It is challenging to quantify the effectiveness of the implemented strict control measures solely based on observations. In this study, we use the WRF-Chem model to distinguish the roles of meteorology, emission control measures, regional transport, and co-benefits of reduced aerosol feedbacks during APEC week. In general, meteorological variables, PM2.5 concentrations and PM2.5 chemical compositions are well reproduced in Beijing. Positive weather conditions (lower temperature, lower relative humidity, higher wind speeds and enhanced boundary layer heights) play important roles in ;APEC Blue;. Applying strict emission control measures in Beijing and five surrounding provinces can only explain an average decrease of 17.7 μg/m3 (-21.8%) decreases in PM2.5 concentrations, roughly more than half of which is caused by emission controls that implemented in the five surrounding provinces (12.5 μg/m3). During the APEC week, non-local emissions contributed to 41.3% to PM2.5 concentrations in Beijing, and the effectiveness of implementing emission control measures hinges on dominant pathways and transport speeds. Besides, we also quantified the contribution of reduced aerosol feedbacks due to strict emission control measures in this study. During daytime, co-benefits of reduced aerosol feedbacks account for about 10.9% of the total decreases in PM2.5 concentrations in urban Beijing. The separation of contributions from aerosol absorption and scattering restates the importance of controlling BC to accelerate the effectiveness of aerosol pollution control.

  10. Related Rules and Programs that Help States Attain PM Standards

    Science.gov (United States)

    EPA’s national and regional rules to reduce emissions of pollutants that form particle pollution will help state and local governments meet the PM NAAQS. A number of voluntary programs also are helping areas reduce fine PM pollution.

  11. Comprehensive Characterization Of Ultrafine Particulate Emission From 2007 Diesel Engines: PM Size Distribution, Loading And Indidividual Particle Size And Composition.

    Science.gov (United States)

    Zelenyuk, A.; Cuadra-Rodriguez, L. A.; Imre, D.; Shimpi, S.; Warey, A.

    2006-12-01

    The strong absorption of solar radiation by black carbon (BC) impacts the atmospheric radiative balance in a complex and significant manner. One of the most important sources of BC is vehicular emissions, of which diesel represents a significant fraction. To address this issue the EPA has issues new stringent regulations that will be in effect in 2007, limiting the amount of particulate mass that can be emitted by diesel engines. The new engines are equipped with aftertreatments that reduce PM emissions to the point, where filter measurements are subject to significant artifacts and characterization by other techniques presents new challenges. We will present the results of the multidisciplinary study conducted at the Cummins Technical Center in which a suite of instruments was deployed to yield comprehensive, temporally resolved information on the diesel exhaust particle loadings and properties in real-time: Particle size distributions were measured by Engine Exhaust Particle Sizer (EEPS) and Scanning Mobility Particle Sizer (SMPS). Total particle diameter concentration was obtained using Electrical Aerosol Detector (EAD). Laser Induced Incandescence and photoacoustic techniques were used to monitor the PM soot content. Single Particle Laser Ablation Time-of- flight Mass Spectrometer (SPLAT) provided the aerodynamic diameter and chemical composition of individual diesel exhaust particles. Measurements were conducted on a number of heavy duty diesel engines operated under variety of operating conditions, including FTP transient cycles, ramped-modal cycles and steady states runs. We have also characterized PM emissions during diesel particulate filter regeneration cycles. We will present a comparison of PM characteristics observed during identical cycles, but with and without the use of aftertreatment. A total of approximately 100,000 individual particles were sized and their composition characterized by SPLAT. The aerodynamic size distributions of the characterized

  12. PM10 emissions and PAHs: The importance of biomass type and combustion conditions.

    Science.gov (United States)

    Zosima, Angela T; Tzimou-Tsitouridou, Roxani D; Nikolaki, Spyridoula; Zikopoulos, Dimitrios; Ochsenkühn-Petropoulou, Maria Th

    2016-01-01

    The aim of the present work was to investigate the impact of biomass combustion with respect to conditions and fuel types on particle emissions (PM10) and their PAHs content. Special concern was on sampling, quantification and characterization of PM using different appliances, fuels and operating procedures. For this purpose different lab-scale burning conditions, two pellets stoves (8.5 and 10 kW) and one open fireplace were tested by using eight fuel types of biomass. An analytical method is described for the quantitative determination of 16 PAHs using liquid-liquid extraction and subsequent measurement by gas chromatography coupled to a mass spectrometer (GC-MS). Average PM10 emissions ranged from about 65 to 170 mg/m(3) at lab-scale combustions with flow oxygen at 13% in the exhaust gas, 85-220 mg/m(3) at 20% O2, 47-83 mg/m(3) at pellet stove of 10 kW, 34-69 mg/m(3) at pellet stove of 8.5 kW and 106-194 mg/m(3) at the open fireplace. The maximum permitted particle emission limit is 150 mg/m(3). Pellets originated from olive trees and from nonmixture trees were found to emit the lowest particulate matter in relation to the others, so they are considered healthiest and suitable for domestic heating reasons. In general, the results show that biomass open burning is an important PM10 and PAHs emission source.

  13. PM, NOx and butane emissions from on-road vehicle fleets in Hong Kong and their implications on emission control policy

    Science.gov (United States)

    Ning, Zhi; Wubulihairen, Maimaitireyimu; Yang, Fenhuan

    2012-12-01

    Vehicular emissions are the major sources of air pollution in urban areas. For metropolitan cities with large population working and living in environments with direct traffic impact, emission control is of great significance to protect public health. Implementation of more stringent emission standards, retrofitting fleet with emission control devices and switching to clearer fuel has been commonly practiced in different cities including Hong Kong. The present study employed a new plume chasing method for effective and quick evaluation of on-road fleet emission factors of particulate matter (PM), nitrogen oxides (NOx), and butane from heavy duty diesel trucks, diesel buses and liquefied petroleum gas (LPG) vehicles. The results showed distinct profiles of the emissions from different fleets with excessive butane emissions from LPG fleet and contrasting PM and NOx emissions from diesel trucks and buses fleets. A cross comparison was also made with emission data from other cities and from historic local studies. The implications of the observed difference on the effectiveness of emission control measures and policy are discussed with recommendations of direction for future research and policy making.

  14. PM4 crystalline silica emission factors and ambient concentrations at aggregate-producing sources in California.

    Science.gov (United States)

    Richards, John R; Brozell, Todd T; Rea, Charles; Boraston, Geoff; Hayden, John

    2009-11-01

    The California Construction and Industrial Minerals Association and the National Stone, Sand, & Gravel Association have sponsored tests at three sand and gravel plants in California to compile crystalline silica emission factors for particulate matter (PM) of aerodynamic diameter of 4 microm or less (PM4) and ambient concentration data. This information is needed by industrial facilities to evaluate compliance with the Chronic Reference Exposure Level (REL) for ambient crystalline silica adopted in 2005 by the California Office of Environmental Health Hazard Assessment. The REL applies to PM4 respirable PM. Air Control Techniques, P.C. sampled for PM4 crystalline silica using a conventional sampler for PM of aerodynamic diameter of 2.5 microm or less (PM2.5), which met the requirements of 40 Code of Federal Regulations Part 50, Appendix L. The sample flow rate was adjusted to modify the 50% cut size to 4 microm instead of 2.5 microm. The filter was also changed to allow for crystalline silica analyses using National Institute for Occupational Safety and Health (NIOSH) Method 7500. The particle size-capture efficiency curve for the modified Appendix L instrument closely matched the performance curve of NIOSH Method 0600 for PM4 crystalline silica and provided a minimum detection limit well below the levels attainable with NIOSH Method 0600. The results of the tests indicate that PM4 crystalline silica emissions range from 0.000006 to 0.000110 lb/t for screening operations, tertiary crushers, and conveyor transfer points. The PM4 crystalline silica emission factors were proportional to the crystalline silica content of the material handled in the process equipment. Measured ambient concentrations ranged from 0 (below detectable limit) to 2.8 microg/m3. All values measured above 2 microg/m3 were at locations upwind of the facilities being tested. The ambient PM4 crystalline silica concentrations measured during this study were below the California REL of 3 microg/m3

  15. Spatial estimation of PM2.5 emissions from straw open burning in Tianjin from 2001 to 2012

    Science.gov (United States)

    Chen, Guanyi; Guan, Yanan; Tong, Ling; Yan, Beibei; Hou, Li'an

    2015-12-01

    Straw open burning in suburban areas contributes to an important proportion of air pollution threatening air quality of neighbouring highways and airports. This paper presents the characteristics of straw open burning-derived air pollution to understand its impact mechanism and take effective control measurements. In this study, PM2.5 emissions inventory from straw open burning was established at a high spatial resolution of 0.1° × 0.1° in Tianjin using geographic information systems (GIS) for the period of 2001-2012. PM2.5 emissions increased by 209.15% in the past nine years at an annual average rate of 23.24% from 2.95 Gg in 2002 to 6.17 Gg in 2010. WuQing District covering 13.17% of Tianjin land contributed to PM2.5 emission of 28.21% of total PM2.5 emissions from straw open burning.

  16. Health and economic benefits of building ventilation interventions for reducing indoor PM2.5 exposure from both indoor and outdoor origins in urban Beijing, China.

    Science.gov (United States)

    Yuan, Ye; Luo, Zhiwen; Liu, Jing; Wang, Yaowu; Lin, Yaoyu

    2018-06-01

    China is confronted with serious PM 2.5 pollution, especially in the capital city of Beijing. Exposure to PM 2.5 could lead to various negative health impacts including premature mortality. As people spend most of their time indoors, the indoor exposure to PM 2.5 from both indoor and outdoor origins constitutes the majority of personal exposure to PM 2.5 pollution. Different building interventions have been introduced to mitigate indoor PM 2.5 exposure, but always at the cost of energy expenditure. In this study, the health and economic benefits of different ventilation intervention strategies for reducing indoor PM 2.5 exposure are modeled using a representative urban residence in Beijing, with consideration of different indoor PM 2.5 emission strengths and outdoor pollution. Our modeling results show that the increase of envelope air-tightness can achieve significant economic benefits when indoor PM 2.5 emissions are absent; however, if an indoor PM 2.5 source is present, the benefits only increase slightly in mechanically ventilated buildings, but may show negative benefit without mechanical ventilation. Installing mechanical ventilation in Beijing can achieve annual economic benefits ranging from 200yuan/capita to 800yuan/capita if indoor PM 2.5 sources exist. If there is no indoor emission, the annual benefits above 200yuan/capita can be achieved only when the PM 2.5 filtration efficiency is no urban Beijing will increase the indoor PM 2.5 exposure and result in excess costs to the residents. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Phytoremediation Reduces Dust Emissions from Metal(loid)-Contaminated Mine Tailings.

    Science.gov (United States)

    Gil-Loaiza, Juliana; Field, Jason P; White, Scott A; Csavina, Janae; Felix, Omar; Betterton, Eric A; Sáez, A Eduardo; Maier, Raina M

    2018-04-27

    Environmental and health risk concerns relating to airborne particles from mining operations have focused primarily on smelting activities. However, there are only three active copper smelters and less than a dozen smelters for other metals compared to an estimated 500000 abandoned and unreclaimed hard rock mine tailings in the US that have the potential to generate dust. The problem can also extend to modern tailings impoundments, which may take decades to build and remain barren for the duration before subsequent reclamation. We examined the impact of vegetation cover and irrigation on dust emissions and metal(loid) transport from mine tailings during a phytoremediation field trial at the Iron King Mine and Humboldt Smelter Superfund (IKMHSS) site. Measurements of horizontal dust flux following phytoremediation reveals that vegetated plots with 16% and 32% canopy cover enabled an average dust deposition of 371.7 and 606.1 g m -2 y -1 , respectively, in comparison to the control treatment which emitted dust at an average rate of 2323 g m -2 y -1 . Horizontal dust flux and dust emissions from the vegetated field plots are comparable to emission rates in undisturbed grasslands. Further, phytoremediation was effective at reducing the concentration of fine particulates, including PM 1 , PM 2.5 , and PM 4 , which represent the airborne particulates with the greatest health risks and the greatest potential for long-distance transport. This study demonstrates that phytoremediation can substantially decrease dust emissions as well as the transport of windblown contaminants from mine tailings.

  18. Development of cotton gin PM10 emission factors for EPA’s AP-42

    Science.gov (United States)

    The Compilation of Air Pollution Emission Factors (AP-42) emission factors are assigned ratings, from A (Excellent) to E (Poor), based on the quality of data used to develop them. All current PM10 cotton gin emission factors received quality ratings of D or lower. In an effort to improve these ratin...

  19. Effect of turbulence intensity on PM emission of heavy duty diesel trucks - Wind tunnel studies

    Science.gov (United States)

    Littera, D.; Cozzolini, A.; Besch, M.; Carder, D.; Gautam, M.

    2017-08-01

    Stringent emission regulations have forced drastic technological improvements in diesel aftertreatment systems, particularly in reducing Particulate Matter (PM) emissions. The formation and evolution of PM from modern engines are more sensitive to overall changes in the dilution process, such as rapidity of mixing, background PM present in the air. These technological advancements were made in controlled laboratory environments compliant with measurement standards (i.e. Code of Federal Regulation CFR in the USA) and are not fully representative of real-world emissions from these engines or vehicles. In light of this, a specifically designed and built wind tunnel by West Virginia University (WVU) is used for the study of the exhaust plume of a heavy-duty diesel vehicle, providing a better insight in the dilution process and the representative nanoparticles emissions in a real-world scenario. The subsonic environmental wind tunnel is capable of accommodating a full-sized heavy-duty truck and generating wind speeds in excess of 50mph. A three-dimensional gantry system allows spanning the test section and sample regions in the plume with accuracy of less than 5 mm. The gantry system is equipped with engine exhaust gas analyzers and PM sizing instruments. The investigation involves three different heavy-duty Class-8 diesel vehicles representative of three emission regulation standards, namely a US-EPA 2007 compliant, a US-EPA 2010 compliant, and a baseline vehicle without any aftertreatment technologies as a pre US-EPA 2007, respectively. The testing procedure includes three different vehicle speeds: idling, 20mph, and 35mph. The vehicles were tested on WVU's medium-duty chassis dynamometer, with the load applied to the truck reflecting the road load equation at the corresponding vehicle test speeds. Wind tunnel wind speed and vehicle speed were maintained in close proximity to one another during the entire test. Results show that the cross-sectional plume area

  20. Development of an angled Si-PM-based detector unit for positron emission mammography (PEM) system

    Energy Technology Data Exchange (ETDEWEB)

    Nakanishi, Kouhei, E-mail: nakanishi.kouhei@c.mbox.nagoya-u.ac.jp; Yamamoto, Seiichi

    2016-11-21

    Positron emission mammography (PEM) systems have higher sensitivity than clinical whole body PET systems because they have a smaller ring diameter. However, the spatial resolution of PEM systems is not high enough to detect early stage breast cancer. To solve this problem, we developed a silicon photomultiplier (Si-PM) based detector unit for the development of a PEM system. Since a Si-PM's channel is small, Si-PM can resolve small scintillator pixels to improve the spatial resolution. Also Si-PM based detectors have inherently high timing resolution and are able to reduce the random coincidence events by reducing the time window. We used 1.5×1.9×15 mm LGSO scintillation pixels and arranged them in an 8×24 matrix to form scintillator blocks. Four scintillator blocks were optically coupled to Si-PM arrays with an angled light guide to form a detector unit. Since the light guide has angles of 5.625°, we can arrange 64 scintillator blocks in a nearly circular shape (a regular 64-sided polygon) using 16 detector units. We clearly resolved the pixels of the scintillator blocks in a 2-dimensional position histogram where the averages of the peak-to-valley ratios (P/Vs) were 3.7±0.3 and 5.7±0.8 in the transverse and axial directions, respectively. The average energy resolution was 14.2±2.1% full-width at half-maximum (FWHM). By including the temperature dependent gain control electronics, the photo-peak channel shifts were controlled within ±1.5% with the temperature from 23 °C to 28 °C. With these results, in addition to the potential high timing performance of Si-PM based detectors, our developed detector unit is promising for the development of a high-resolution PEM system.

  1. A probabilistic approach to examine the impacts of mitigation policies on future global PM emissions from on-road vehicles

    Science.gov (United States)

    Yan, F.; Winijkul, E.; Bond, T. C.; Streets, D. G.

    2012-12-01

    There is deficiency in the determination of emission reduction potential in the future, especially with consideration of uncertainty. Mitigation measures for some economic sectors have been proposed, but few studies provide an evaluation of the amount of PM emission reduction that can be obtained in future years by different emission reduction strategies. We attribute the absence of helpful mitigation strategy analysis to limitations in the technical detail of future emission scenarios, which result in the inability to relate technological or regulatory intervention to emission changes. The purpose of this work is to provide a better understanding of the potential benefits of mitigation policies in addressing global and regional emissions. In this work, we introduce a probabilistic approach to explore the impacts of retrofit and scrappage on global PM emissions from on-road vehicles in the coming decades. This approach includes scenario analysis, sensitivity analysis and Monte Carlo simulations. A dynamic model of vehicle population linked to emission characteristics, SPEW-Trend, is used to estimate future emissions and make policy evaluations. Three basic questions will be answered in this work: (1) what contribution can these two programs make to improve global emissions in the future? (2) in which regions are such programs most and least effective in reducing emissions and what features of the vehicle fleet cause these results? (3) what is the level of confidence in the projected emission reductions, given uncertain parameters in describing the dynamic vehicle fleet?

  2. PM2.5 emissions and source profiles from open burning of crop residues

    Science.gov (United States)

    Ni, Haiyan; Tian, Jie; Wang, Xiaoliang; Wang, Qiyuan; Han, Yongming; Cao, Junji; Long, Xin; Chen, L.-W. Antony; Chow, Judith C.; Watson, John G.; Huang, Ru-Jin; Dusek, Ulrike

    2017-11-01

    Wheat straw, rice straw, and corn stalks, the major agricultural crop residues in China, were collected from six major crop producing regions, and burned in a laboratory combustion chamber to determine PM2.5 source profiles and speciated emission factors (EFs). Organic carbon (OC) and water-soluble ions (the sum of NH4+, Na+, K+, Mg2+, Ca2+, Cl-, NO3- and SO42-) are major constituents, accounting for 43.1 ± 8.3% and 27.4 ± 14.6% of PM2.5, respectively. Chloride (Cl-) and water-soluble potassium (K+) are the dominant ionic species, with an average abundance of 14.5 ± 8.2% and 6.4 ± 4.4% in PM2.5, respectively. The average K+/Cl- ratio is ∼0.4, lower than 2.8-5.4 for wood combustion. Similarity measures (i.e., Student's t-test, coefficient of divergence, correlations, and residual to uncertainty ratios) show the crop profiles are too similar for the species measured to be resolved from one another by receptor modeling. The largest difference was found between rice straw and corn stalk emissions, with higher OC and lower Cl- and K+ abundances (50%, 8%, and 3% of PM2.5, respectively) for corn stalks; lower OC, and higher Cl- and K+ abundances (38%, 21%, and 10% of PM2.5, respectively) for rice straw. Average EFs were 4.8 ± 3.1 g kg-1 for OC, 1.3 ± 0.8 g kg-1 for Cl- and 0.59 ± 0.56 g kg-1 for K+. Flaming and smoldering combustions resulted in an average modified combustion efficiency (MCE) of 0.92 ± 0.03, and low elemental carbon (EC) EFs (0.24 ± 0.12 g kg-1). OC/EC ratios from individual source profiles ranged from 12.9 ± 4.3 for rice straw to 24.1 ± 13.5 for wheat straw. The average K+/EC ratio was 2.4 ± 1.5, an order of magnitude higher than those from residential wood combustion (0.2-0.76). Elevated emission rates were found for OC (387 Gg yr-1) and Cl- (122 Gg yr-1), accounting for 44% and 14% of 2008 PM2.5 emissions in China.

  3. Elemental characterization and source apportionment of PM{sub 10} and PM{sub 2.5} in the western coastal area of central Taiwan

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Chin-Yu; Chiang, Hung-Che [National Environmental Health Research Center, National Health Research Institutes, 35 Keyan Road, Zhunan Town, Miaoli 35053, Taiwan (China); Lin, Sheng-Lun [Super Micro Mass Research and Technology Center, Cheng Shiu University, No. 840, Chengcing Rd., Kaohsiung 83347, Taiwan (China); Chen, Mu-Jean; Lin, Tzu-Yu [National Environmental Health Research Center, National Health Research Institutes, 35 Keyan Road, Zhunan Town, Miaoli 35053, Taiwan (China); Chen, Yu-Cheng, E-mail: yucheng@nhri.org.tw [National Environmental Health Research Center, National Health Research Institutes, 35 Keyan Road, Zhunan Town, Miaoli 35053, Taiwan (China); Department of Occupational Safety and Health, China Medical University, 91 Hsueh-Shih Road, Taichung 40402, Taiwan (China)

    2016-01-15

    ABSTRACT: This study investigated seasonal variations in PM{sub 10} and PM{sub 2.5} mass and associated trace metal concentrations in a residential area in proximity to the crude oil refinery plants and industrial parks of central Taiwan. Particle measurements were conducted during winter, spring and summer in 2013 and 2014. Twenty-six trace metals in PM{sub 10} and PM{sub 2.5} were analyzed using ICP-MS. Multiple approaches of the backward trajectory model, enrichment factor (EF), Lanthanum enrichment and positive matrix fraction (PMF) were used to identify potential sources of particulate metals. Mean concentrations of PM{sub 10} in winter, spring and summer were 76.4 ± 22.6, 33.2 ± 9.9 and 37.4 ± 17.0 μg m{sup −3}, respectively, while mean levels of PM{sub 2.5} in winter, spring and summer were 47.8 ± 20.0, 23.9 ± 11.2 and 16.3 ± 8.2 μg m{sup −3}, respectively. The concentrations of carcinogenic metals (Ni, As and adjusted Cr(VI)) in PM{sub 10} and PM{sub 2.5} exceeded the guideline limits published by WHO. The result of EF analysis confirmed that Mo, Sb, Cd, Zn, Mg, Cr, As, Pb, Cu, Ni and V were attributable to anthropogenic emission. PMF analysis demonstrated that trace metals in PM{sub 10} and PM{sub 2.5} were from the similar sources, such as coal combustion, oil combustion and traffic-related emission, except for soil dust and crustal element emissions only observed in PM{sub 10} and secondary aluminum smelter only observed in PM{sub 2.5}. Considering health-related particulate metals, the traffic-related emission and coal combustion for PM{sub 10} and PM{sub 2.5}, respectively, are important to control for reducing potential carcinogenic risk. The results could aid efforts to clarify the impact of source-specific origins on human health. - Highlights: • Multiple approaches to identify sources of PM{sub 10} and PM{sub 2.5} metals were used. • Four similar sources contributed to metals in PM{sub 10} and PM{sub 2.5} in the study area. • Six

  4. Re-entrained road dust PM10 emission from selected streets of Krakow and its impact on air quality

    Directory of Open Access Journals (Sweden)

    Bogacki Marek

    2018-01-01

    Full Text Available Scientific research studies conducted in various parts of the world confirm that PM10 concentrations in urban air depend to a great extent on the resuspension processes of the dust deposited on the road surface. The paper presents the results of the study related to the determination of the re-entrained PM10 emissions from four selected streets of Krakow (Southern Poland together with the assessment of its impact on air quality. Examined streets are characterised by different traffic intensity (from 500 to over 20 000 vehicles per day and individual vehicle structure. Dust material sampling and estimation of the PM10 emission were conducted according to the U.S. EPA methodology (AP 42 Fifth Edition. Two variants of sample collection were applied: from the road surface including the area at the curb (4 streets and from the road surface alone (1 street. The estimates of resuspended road dust emission as well as the reference values derived from the U.S. EPA guidelines were used to assess the impact of this emission on the PM10 levels in the air at the location of one of the analysed streets. This assessment was conducted using the CALINE4 mathematical model. The study showed that the PM10 emissions from the re-entrained road dust can be responsible for up to 25 % in the winter and 50 % in the summer of the total PM10 concentrations in the air near the roads.

  5. Re-entrained road dust PM10 emission from selected streets of Krakow and its impact on air quality

    Science.gov (United States)

    Bogacki, Marek; Mazur, Marian; Oleniacz, Robert; Rzeszutek, Mateusz; Szulecka, Adriana

    2018-01-01

    Scientific research studies conducted in various parts of the world confirm that PM10 concentrations in urban air depend to a great extent on the resuspension processes of the dust deposited on the road surface. The paper presents the results of the study related to the determination of the re-entrained PM10 emissions from four selected streets of Krakow (Southern Poland) together with the assessment of its impact on air quality. Examined streets are characterised by different traffic intensity (from 500 to over 20 000 vehicles per day) and individual vehicle structure. Dust material sampling and estimation of the PM10 emission were conducted according to the U.S. EPA methodology (AP 42 Fifth Edition). Two variants of sample collection were applied: from the road surface including the area at the curb (4 streets) and from the road surface alone (1 street). The estimates of resuspended road dust emission as well as the reference values derived from the U.S. EPA guidelines were used to assess the impact of this emission on the PM10 levels in the air at the location of one of the analysed streets. This assessment was conducted using the CALINE4 mathematical model. The study showed that the PM10 emissions from the re-entrained road dust can be responsible for up to 25 % in the winter and 50 % in the summer of the total PM10 concentrations in the air near the roads.

  6. Real-time particle monitor calibration factors and PM2.5 emission factors for multiple indoor sources.

    Science.gov (United States)

    Dacunto, Philip J; Cheng, Kai-Chung; Acevedo-Bolton, Viviana; Jiang, Ruo-Ting; Klepeis, Neil E; Repace, James L; Ott, Wayne R; Hildemann, Lynn M

    2013-08-01

    Indoor sources can greatly contribute to personal exposure to particulate matter less than 2.5 μm in diameter (PM2.5). To accurately assess PM2.5 mass emission factors and concentrations, real-time particle monitors must be calibrated for individual sources. Sixty-six experiments were conducted with a common, real-time laser photometer (TSI SidePak™ Model AM510 Personal Aerosol Monitor) and a filter-based PM2.5 gravimetric sampler to quantify the monitor calibration factors (CFs), and to estimate emission factors for common indoor sources including cigarettes, incense, cooking, candles, and fireplaces. Calibration factors for these indoor sources were all significantly less than the factory-set CF of 1.0, ranging from 0.32 (cigarette smoke) to 0.70 (hamburger). Stick incense had a CF of 0.35, while fireplace emissions ranged from 0.44-0.47. Cooking source CFs ranged from 0.41 (fried bacon) to 0.65-0.70 (fried pork chops, salmon, and hamburger). The CFs of combined sources (e.g., cooking and cigarette emissions mixed) were linear combinations of the CFs of the component sources. The highest PM2.5 emission factors per time period were from burned foods and fireplaces (15-16 mg min(-1)), and the lowest from cooking foods such as pizza and ground beef (0.1-0.2 mg min(-1)).

  7. Effect of ethanol fuel additive on diesel emissions.; TOPICAL

    International Nuclear Information System (INIS)

    Cole, R. L.; Poola, R. B.; Sekar, R.; Schaus, J. E.; McPartlin, P.

    2001-01-01

    Engine-out emissions from a Volkswagen model TDI engine were measured for three different fuels: neat diesel fuel, a blend of diesel fuel and additives containing 10% ethanol, and a blend of diesel fuel and additives containing 15% ethanol. The test matrix covered five speeds from 1,320 to 3,000 rpm, five torques from 15 Nm to maximum plus the 900-rpm idle condition, and most of the points in the FTP-75 and US-06 vehicle tests. Emissions of particulate matter (PM), nitrogen oxides (NO(sub x)), unburned hydrocarbons (HCs), and carbon monoxide (CO) were measured at each point, as were fuel consumption, exhaust oxygen, and carbon dioxide output. PM emissions were reduced up to 75% when ethanol-diesel blends were used instead of neat diesel fuel. Significant reductions in PM emissions occurred over one-half to two-thirds of the test matrix. NO(sub x) emissions were reduced by up to 84%. Although the regions of reduced NO(sub x) emissions were much smaller than the regions of reduced PM emissions, there was considerable overlap between the two regions where PM emissions were reduced by up to 75% and NO(sub x) emissions were reduced by up to 84%. Such simultaneous reduction of both PM and NO(sub x) emissions would be difficult to achieve by any other means. HC and CO emissions were also reduced in the regions of reduced PM and NO(sub x) emissions that overlapped. Because the ethanol-diesel blends contain less energy on both a per-unit-mass basis and a per-unit-volume basis, there was a reduction in maximum torque of up to 10% and an increase in brake-specific fuel consumption of up to 7% when these blends were used

  8. Anomalous elevated radiocarbon measurements of PM2.5

    International Nuclear Information System (INIS)

    Buchholz, Bruce A.; Fallon, Stewart J.; Zermeño, Paula; Bench, Graham; Schichtel, Bret A.

    2013-01-01

    Two-component models are often used to determine the contributions made by fossil fuel and natural sources of carbon in airborne particulate matter (PM). The models reduce thousands of actual sources to two end members based on isotopic signature. Combustion of fossil fuels produces PM free of carbon-14 ( 14 C). Wood or charcoal smoke, restaurant fryer emissions, and natural emissions from plants produce PM with the contemporary concentration of 14 C approximately 1.2 × 10 −1214 C/C. Such data can be used to estimate the relative contributions of fossil fuels and biogenic aerosols to the total aerosol loading and radiocarbon analysis is becoming a popular source apportionment method. Emissions from incinerators combusting medical or biological wastes containing tracer 14 C can skew the 14 C/C ratio of PM, however, so critical analysis of sampling sites for possible sources of elevated PM needs to be completed prior to embarking on sampling campaigns. Results are presented for two ambient monitoring sites in different areas of the United States where 14 C contamination is apparent. Our experience suggests that such contamination is uncommon but is also not rare (∼10%) for PM sampling sites.

  9. Modeling the contributions of emission, meteorology, and chemistry to high PM2.5 levels over China

    Science.gov (United States)

    Wang, Y.; Zhang, Q.; Jia, B.; Jiang, J.; Zhou, W.; Wang, B.

    2014-12-01

    PM2.5 is known to harm health and public welfare. In recent years, regional haze with PM2.5 levels exceeding ten folds of WHO's air quality guideline has become the largest air quality concern in China. To better protect the health of millions of people, the key question is whether we understand the formation mechanism of high PM2.5 episodes well enough to guide the formation of effective control strategies. Here we present a modeling analysis in conjunction of observational constraints to estimate the contribution of emissions, meteorology, and secondary chemical formation to changes in PM2.5 levels over China. Certain meteorological conditions are found particularly conducive to trigger fast increases of secondary PM under current emissions mixtures in China. While the nested-grid GEOS-Chem model reproduces the distribution of PM2.5 and simulates up to ~400 μg/m3 of daily maximum PM2.5, it fails to capture the large sulfate enhancement during haze. We propose heterogeneous oxidation of SO2 on deliquesced aerosols as an additional source of sulfate under high relative humidity conditions. Parameterizing this process in the model improves the simulated spatial distribution and results in significant increases of sulfate enhancement ratio and sulfate fraction in PM2.5 during haze episodes. Implications of our modeling analysis for PM2.5 pollution control policies will also be discussed.

  10. 76 FR 72404 - Adequacy Status of Motor Vehicle Emissions Budgets in Submitted PM10

    Science.gov (United States)

    2011-11-23

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9495-4] Adequacy Status of Motor Vehicle Emissions Budgets in Submitted PM 10 Maintenance Plan for Sacramento County; CA AGENCY: Environmental Protection Agency (EPA... found that the motor vehicle emissions budgets (MVEBs) for particulate matter with an aerodynamic...

  11. Reducing the negative human-health impacts of bioenergy crop emissions through region-specific crop selection

    International Nuclear Information System (INIS)

    Porter, William C; Rosenstiel, Todd N; Barsanti, Kelley; Guenther, Alex; Lamarque, Jean-Francois

    2015-01-01

    An expected global increase in bioenergy-crop cultivation as an alternative to fossil fuels will have consequences on both global climate and local air quality through changes in biogenic emissions of volatile organic compounds (VOCs). While greenhouse gas emissions may be reduced through the substitution of next-generation bioenergy crops such as eucalyptus, giant reed, and switchgrass for fossil fuels, the choice of species has important ramifications for human health, potentially reducing the benefits of conversion due to increases in ozone (O 3 ) and fine particulate matter (PM 2.5 ) levels as a result of large changes in biogenic emissions. Using the Community Earth System Model we simulate the conversion of marginal and underutilized croplands worldwide to bioenergy crops under varying future anthropogenic emissions scenarios. A conservative global replacement using high VOC-emitting crop profiles leads to modeled population-weighted O 3 increases of 5–27 ppb in India, 1–9 ppb in China, and 1–6 ppb in the United States, with peak PM 2.5 increases of up to 2 μg m −3 . We present a metric for the regional evaluation of candidate bioenergy crops, as well as results for the application of this metric to four representative emissions profiles using four replacement scales (10–100% maximum estimated available land). Finally, we assess the total health and climate impacts of biogenic emissions, finding that the negative consequences of using high-emitting crops could exceed 50% of the positive benefits of reduced fossil fuel emissions in value. (letter)

  12. PM2.5 and tropospheric ozone in China: overview of situation and responses

    Science.gov (United States)

    Zhang, Hua

    This work reviewed the observational status of PM2.5 and tropospheric ozone in China. It told us the observational facts on the ratios of typical types of aerosol components to the total PM2.5/PM10, and daily and seasonal change of near surface ozone concentration at different cities of China; the global concentration distribution of tropospheric ozone observed by satellite in 2010-2013 was also given for comparison; the PM2.5 concentration distribution and their seasonal change in China region were simulated by an aerosol chemistry-global climate modeling system. Different contribution from five kinds of aerosols to the simulated PM2.5 was analyzed. Then, it linked the emissions of aerosol and greenhouse gases and their radiative forcing and thus gave their climatic effect by reducing their emissions on the basis of most recently published IPCC AR5. Finally it suggested policies on reducing emissions of short-lived climate pollutants (SLCPs) (such as PM2.5 and tropospheric ozone) in China from protecting both climate and environment.

  13. Performance of a Retrofitted Multicyclone for PM2.5 Emission Control

    Science.gov (United States)

    Dewika, M.; Rashid, M.; Ammar, M. R.

    2018-03-01

    This paper presents on the performance of a retrofitted multicyclone system, which aims to increase the collection efficiency of PM2.5 (i.e. particulate size fraction ≤ 2.5 μm) emission. The multicyclone was retrofitted by extracting 15% and 20% of the total volumetric air flow rate at the dust hopper of the unit using an additional Induced Draft Fan. The total collection efficiency with and without the extraction was measured at various air volumetric flow rates and particulate mass inlet concentration. The results showed that there was a reduction of 12% to 54% depending on the inlet concentration of PM2.5 emission in the stack with compared to without extraction increasing the collection efficiency of the retrofitted multicyclone. The finding suggests that a simple technique of applying gas extraction at the dust hopper of a multicyclone as reported in this study able to increase the overall performance in fine particulate collection.

  14. Source influence on emission pathways and ambient PM2.5 pollution over India (2015-2050)

    Science.gov (United States)

    Venkataraman, Chandra; Brauer, Michael; Tibrewal, Kushal; Sadavarte, Pankaj; Ma, Qiao; Cohen, Aaron; Chaliyakunnel, Sreelekha; Frostad, Joseph; Klimont, Zbigniew; Martin, Randall V.; Millet, Dylan B.; Philip, Sajeev; Walker, Katherine; Wang, Shuxiao

    2018-06-01

    India is currently experiencing degraded air quality, and future economic development will lead to challenges for air quality management. Scenarios of sectoral emissions of fine particulate matter and its precursors were developed and evaluated for 2015-2050, under specific pathways of diffusion of cleaner and more energy-efficient technologies. The impacts of individual source sectors on PM2.5 concentrations were assessed through systematic simulations of spatially and temporally resolved particulate matter concentrations, using the GEOS-Chem model, followed by population-weighted aggregation to national and state levels. We find that PM2.5 pollution is a pan-India problem, with a regional character, and is not limited to urban areas or megacities. Under present-day emissions, levels in most states exceeded the national PM2.5 annual standard (40 µg m-3). Sources related to human activities were responsible for the largest proportion of the present-day population exposure to PM2.5 in India. About 60 % of India's mean population-weighted PM2.5 concentrations come from anthropogenic source sectors, while the remainder are from other sources, windblown dust and extra-regional sources. Leading contributors are residential biomass combustion, power plant and industrial coal combustion and anthropogenic dust (including coal fly ash, fugitive road dust and waste burning). Transportation, brick production and distributed diesel were other contributors to PM2.5. Future evolution of emissions under regulations set at current levels and promulgated levels caused further deterioration of air quality in 2030 and 2050. Under an ambitious prospective policy scenario, promoting very large shifts away from traditional biomass technologies and coal-based electricity generation, significant reductions in PM2.5 levels are achievable in 2030 and 2050. Effective mitigation of future air pollution in India requires adoption of aggressive prospective regulation, currently not formulated

  15. Procedures for identifying reasonably available control technology for stationary sources of PM-10. Final report

    International Nuclear Information System (INIS)

    Fitzpatrick, M.J.; Ellefson, R.

    1992-09-01

    The guidance document sets forth procedures and identifies sources of information that will assist State and local air pollution control agencies in determining Reasonably Available Control Technology (RACT) for PM-10 (particulate matter having a nominal aerometric diameter of 10 microns or less) emission from existing stationary sources on a case-by-case basis. It provides an annotated bibliography of documents to aid in identifying the activities that cause PM-10 emissions as well as applicable air pollution control measures and their effectiveness in reducing emissions. The most stringent state total particulate matter (PM) emission limits are identified for several categories of PM-10 sources and compared to available emission test data. Finally, guidance is provided on procedures for estimating total capital investment and total annual cost of the control measures which are generally used to control PM-10 emissions

  16. Characteristics and source apportionment of PM1 emissions at a roadside station.

    Science.gov (United States)

    Cheng, Y; Zou, S C; Lee, S C; Chow, J C; Ho, K F; Watson, J G; Han, Y M; Zhang, R J; Zhang, F; Yau, P S; Huang, Y; Bai, Y; Wu, W J

    2011-11-15

    The mass concentrations of PM(1) (particles less than 1.0 μm in aerodynamic diameter), organic carbon (OC), elemental carbon (EC), water-soluble ions, and up to 25 elements were reported for 24h aerosol samples collected every sixth day at a roadside sampling station in Hong Kong from October 2004 to September 2005. Annual average PM(1) mass concentration was 44.5 ± 19.5 μg m(-3). EC, OM (organic matter, OC × 1.2), and SO(4)(=) were the dominant components, accounting for ∼ 36%, ∼ 26%, and ∼ 24% of PM(1), respectively. Other components, i.e., NO(3)(-), NH(4)(+), geological material, trace elements and unidentified material, comprised the remaining ∼ 14%. Annual average OC/EC ratio (0.6 ± 0.3) was low, indicating that primary vehicle exhaust was the major source of carbonaceous aerosols. The seasonal variations of pollutants were due to gas-particle partitioning processes or a change in air mass rather than secondary aerosol produced locally. Vehicle exhaust, secondary aerosols, and waste incinerator/biomass burning were dominant air pollution sources, accounting for ∼ 38%, ∼ 22% and ∼ 16% of PM(1), respectively. Pollution episodes during summer (May-August) which were frequently accompanied by tropical storms or typhoons were dominated by vehicle emissions. During winter (November-February) pollution episodes coincided with northeasterly monsoons were characterized by secondary aerosols and incinerator/biomass burning emissions. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Battery condenser system PM2.5 emission factors and rates for cotton gins: Method 201A combination PM10 and PM2.5 sizing cyclones

    Science.gov (United States)

    This report is part of a project to characterize cotton gin emissions from the standpoint of stack sampling. In 2006, EPA finalized and published a more stringent standard for particulate matter with nominal diameter less than or equal to 2.5 µm (PM2.5). This created an urgent need to collect additi...

  18. Challenges in evaluating PM concentration levels, commuting exposure, and mask efficacy in reducing PM exposure in growing, urban communities in a developing country.

    Science.gov (United States)

    Patel, Disa; Shibata, Tomoyuki; Wilson, James; Maidin, Alimin

    2016-02-01

    Particulate matter (PM) contributes to an increased risk of respiratory and cardiovascular illnesses, cancer, and preterm birth complications. This project assessed PM exposure in Eastern Indonesia's largest city, where air quality has not been comprehensively monitored. We examined the efficacy of wearing masks as an individual intervention effort to reduce in-transit PM exposures. Handheld particulate counters were used to investigate ambient air quality for spatial analysis, as well as the differences in exposure to PM2.5 and PM10 (μg/m(3)) by different transportation methods [e.g. motorcycle (n=97), pete-pete (n=53), and car (n=55); note: n=1 means 1m(3) of air sample]. Mask efficacy to reduce PM exposure was evaluated [e.g. surgical masks (n=39), bandanas (n=52), and motorcycle masks (n=39)]. A Monte Carlo simulation was used to provide a range of uncertainty in exposure assessment. Overall PM10 levels (91±124 μg/m(3)) were elevated compared to the World Health Organization (WHO)'s 24-hour air quality guideline (50 μg/m(3)). While average PM2.5 levels (9±14 μg/m(3)) were below the WHO's guideline (25 μg/m(3)), measurements up to 139 μg/m(3) were observed. Compared to cars, average motorcycle and pete-pete PM exposures were four and three times higher for PM2.5, and 13 and 10 times higher for PM10, respectively. Only surgical masks were consistent in lowering PM2.5 and PM10 (pmasks. Individual interventions can effectively reduce individual PM exposures; however, policy interventions will be needed to improve the overall air quality and create safer transportation. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Revealing driving factors of China's PM2.5 pollution

    Science.gov (United States)

    Zheng, Y.; Zhao, H.; Zhang, Q.; Geng, G.; Tong, D.; Peng, L.; He, K.

    2017-12-01

    China's rapid economic development and intensive energy consumption are deteriorating the air quality significantly. Understanding the key driving factors behind China's growing emissions of air pollutants and the accompanying PM2.5 pollution is critical for the development of China's clean air policies and also provides insight into how other emerging economies may develop a clear sky future. Here we reveal the socioeconomic drivers of the variations of China's PM2.5 concentrations during 2002-2012 by using an interdisciplinary framework that integrates an emission inventory model, an index decomposition analysis model, and a regional air quality model. The decomposition results demostrate that the improvements in emission efficiency and energy efficiency failed to offset the increased emissions of both primary PM2.5 and gaseous PM2.5 precursors (including SO2 NOx, and volatile organic compounds) triggered by the surging economic growth during 2002-2012. During the same time, the effects of energy structure, production structure and population growth were relatively less significant to all pollutants, which indicates the potential of large emission abatements through energy structure and production structure adjustment. Sensitivity simulations by the air quality model based on the provincial decomposition results also show that the economic growth have outpaced efficiency improvements in the increments of PM2.5 concentrations during the study years. As China continues to develop rapidly, future policies should promote further improvements in efficiency and accelerate the adjustments toward clean energy and production structures, which are critical for reducing China's emissions and alleviating the severe PM2.5 pollution.

  20. PM10 emission efficiency for agricultural soils: Comparing a wind tunnel, a dust generator, and the open-air plot

    Science.gov (United States)

    Avecilla, Fernando; Panebianco, Juan E.; Mendez, Mariano J.; Buschiazzo, Daniel E.

    2018-06-01

    The PM10 emission efficiency of soils has been determined through different methods. Although these methods imply important physical differences, their outputs have never been compared. In the present study the PM10 emission efficiency was determined for soils through a wide range of textures, using three typical methodologies: a rotary-chamber dust generator (EDG), a laboratory wind tunnel on a prepared soil bed, and field measurements on an experimental plot. Statistically significant linear correlation was found (p < 0.05) between the PM10 emission efficiency obtained from the EDG and wind tunnel experiments. A significant linear correlation (p < 0.05) was also found between the PM10 emission efficiency determined both with the wind tunnel and the EDG, and a soil texture index (%sand + %silt)/(%clay + %organic matter) that reflects the effect of texture on the cohesion of the aggregates. Soils with higher sand content showed proportionally less emission efficiency than fine-textured, aggregated soils. This indicated that both methodologies were able to detect similar trends regarding the correlation between the soil texture and the PM10 emission. The trends attributed to soil texture were also verified for two contrasting soils under field conditions. However, differing conditions during the laboratory-scale and the field-scale experiments produced significant differences in the magnitude of the emission efficiency values. The causes of these differences are discussed within the paper. Despite these differences, the results suggest that standardized laboratory and wind tunnel procedures are promissory methods, which could be calibrated in the future to obtain results comparable to field values, essentially through adjusting the simulation time. However, more studies are needed to extrapolate correctly these values to field-scale conditions.

  1. Diesel passenger car PM emissions: From Euro 1 to Euro 4 with particle filter

    Science.gov (United States)

    Tzamkiozis, Theodoros; Ntziachristos, Leonidas; Samaras, Zissis

    2010-03-01

    This paper examines the impact of the emission control and fuel technology development on the emissions of gaseous and, in particular, PM pollutants from diesel passenger cars. Three cars in five configurations in total were measured, and covered the range from Euro 1 to Euro 4 standards. The emission control ranged from no aftertreatment in the Euro 1 case, an oxidation catalyst in Euro 2, two oxidation catalysts and exhaust gas recirculation in Euro 3 and Euro 4, while a catalyzed diesel particle filter (DPF) fitted in the Euro 4 car led to a Euro 4 + DPF configuration. Both certification test and real-world driving cycles were employed. The results showed that CO and HC emissions were much lower than the emission standard over the hot-start real-world cycles. However, vehicle technologies from Euro 2 to Euro 4 exceeded the NOx and PM emission levels over at least one real-world cycle. The NOx emission level reached up to 3.6 times the certification level in case of the Euro 4 car. PM were up to 40% and 60% higher than certification level for the Euro 2 and Euro 3 cars, while the Euro 4 car emitted close or slightly below the certification level over the real-world driving cycles. PM mass reductions from Euro 1 to Euro 4 were associated with a relevant decrease in the total particle number, in particular over the certification test. This was not followed by a respective reduction in the solid particle number which remained rather constant between the four technologies at 0.86 × 10 14 km -1 (coefficient of variation 9%). As a result, the ratio of solid vs. total particle number ranged from ˜50% in Euro 1-100% in Euro 4. A significant reduction of more than three orders of magnitude in solid particle number is achieved with the introduction of the DPF. However, the potential for nucleation mode formation at high speed from the DPF car is an issue that needs to be considered in the over all assessment of its environmental benefit. Finally, comparison of the

  2. Assesment of PM2.5 emission from corn stover burning determining in chamber combustion

    Science.gov (United States)

    Hafidawati; Lestari, P.; Sofyan, A.

    2018-04-01

    Chamber measurement were conducted to determine Particulate Matter (PM2.5) emission from open burning of corn straw at Garut District, West Java. The of this study is to estimate the concentration of PM2.5 for two types of corn (corncobs and cornstover) for five varieties (Bisma, P29, NK, Bisma, NW). Corn residues were collected and then burned in the chamber combustion. The chamber was designed to simulate the burning in the field, which was observed in the field experiment that meteorological condition was calm wind. The samples were collected using a minivol air sampler. The assessment results of PM2.5 concentrations (mg/m3) from open burning experiment in the chamber for five varieties of corn cobs (Bisma, P29, NK, Bisi, NW) was 9.187; 2.843; 7.409; 3.781; 1.895 respectively. Concentration for corn stover burn was 2.060; 5.283; 4.048; 5.306 and 5.697 respectively. Fluctuations in the value of concentration among these varieties reflect variations in combustion conditions (combustion efficiency) and other parameters including water content, biomass conditions and the meteorological conditions. The combustion efficiency (MCE) of the combustion chamber simulation of corncobs ia lower than the MCE of corn stover, that the concentration PM2.5 more emitted from the burning of corn stover. The results of this study presented provide useful information for the development of local emission factors for PM2.5 from open burning of corn stover in Indonesia.

  3. Anomalous elevated radiocarbon measurements of PM{sub 2.5}

    Energy Technology Data Exchange (ETDEWEB)

    Buchholz, Bruce A., E-mail: buchholz2@llnl.gov [Center for Accelerator Mass Spectrometry, Mail Stop L-397, Lawrence Livermore National Laboratory, P.O. Box 808 Livermore, CA 94551 (United States); Fallon, Stewart J. [Center for Accelerator Mass Spectrometry, Mail Stop L-397, Lawrence Livermore National Laboratory, P.O. Box 808 Livermore, CA 94551 (United States); Radiocarbon Dating Laboratory, Research School of Earth Sciences, Australian National University, Canberra, ACT 0200 (Australia); Zermeno, Paula; Bench, Graham [Center for Accelerator Mass Spectrometry, Mail Stop L-397, Lawrence Livermore National Laboratory, P.O. Box 808 Livermore, CA 94551 (United States); Schichtel, Bret A. [Cooperative Institute for Research in the Atmosphere, Colorado State University, 1375 Campus Delivery, Fort Collins, CO 80523 (United States)

    2013-01-15

    Two-component models are often used to determine the contributions made by fossil fuel and natural sources of carbon in airborne particulate matter (PM). The models reduce thousands of actual sources to two end members based on isotopic signature. Combustion of fossil fuels produces PM free of carbon-14 ({sup 14}C). Wood or charcoal smoke, restaurant fryer emissions, and natural emissions from plants produce PM with the contemporary concentration of {sup 14}C approximately 1.2 Multiplication-Sign 10{sup -1214}C/C. Such data can be used to estimate the relative contributions of fossil fuels and biogenic aerosols to the total aerosol loading and radiocarbon analysis is becoming a popular source apportionment method. Emissions from incinerators combusting medical or biological wastes containing tracer {sup 14}C can skew the {sup 14}C/C ratio of PM, however, so critical analysis of sampling sites for possible sources of elevated PM needs to be completed prior to embarking on sampling campaigns. Results are presented for two ambient monitoring sites in different areas of the United States where {sup 14}C contamination is apparent. Our experience suggests that such contamination is uncommon but is also not rare ({approx}10%) for PM sampling sites.

  4. Characterizing and sourcing ambient PM2.5 over key emission regions in China II: Organic molecular markers and CMB modeling

    Science.gov (United States)

    Zhou, Jiabin; Xiong, Ying; Xing, Zhenyu; Deng, Junjun; Du, Ke

    2017-08-01

    From November 2012 to July 2013, a sampling campaign was completed for comprehensive characterization of PM2.5 over four key emission regions in China: Beijing-Tianjin-Hebei (BTH), Yangzi River Delta (YRD), Pearl River Delta (PRD), and Sichuan Basin (SB). A multi-method approach, adopting different analytical and receptor modeling methods, was employed to determine the relative abundances of region-specific air pollution constituents and contributions of emission sources. This paper is focused on organic molecular marker based source apportionment using chemical mass balance (CMB) receptor modeling. Analyses of the organic molecular markers revealed that vehicle emission, coal combustion, biomass burning, meat cooking and natural gas combustion were the major contributors to organic carbon (OC) in PM2.5. The vehicle emission dominated the sources contributing to OC in spring at four sampling sites. During wintertime, the coal combustion had highest contribution to OC at BTH site, while the major source contributing to OC at YRD and PRD sites was vehicle emission. In addition, the relative contributions of different emission sources to PM2.5 mass at a specific location site and in a specific season revealed seasonal and spatial variations across all four sampling locations. The largest contributor to PM2.5 mass was secondary sulfate (14-17%) in winter at the four sites. The vehicle emission was found to be the major source (14-21%) for PM2.5 mass at PRD site. The secondary ammonium has minor variation (4-5%) across the sites, confirming the influences of regional emission sources on these sites. The distinct patterns of seasonal and spatial variations of source apportionment observed in this study were consistent with the findings in our previous paper based upon water-soluble ions and carbonaceous fractions. This makes it essential for the local government to make season- and region-specific mitigation strategies for abating PM2.5 pollution in China.

  5. Experimental determination of drift and PM10 cooling tower emissions: Influence of components and operating conditions.

    Science.gov (United States)

    Ruiz, J; Kaiser, A S; Lucas, M

    2017-11-01

    Cooling tower emissions have become an increasingly common hazard to the environment (air polluting, ice formation and salts deposition) and to the health (Legionella disease) in the last decades. Several environmental policies have emerged in recent years limiting cooling tower emissions but they have not prevented an increasing intensity of outbreaks. Since the level of emissions depends mainly on cooling tower component design and the operating conditions, this paper deals with an experimental investigation of the amount of emissions, drift and PM 10 , emitted by a cooling tower with different configurations (drift eliminators and distribution systems) and working under several operating conditions. This objective is met by the measurement of cooling tower source emission parameters by means of the sensitive paper technique. Secondary objectives were to contextualize the observed emission rates according to international regulations. Our measurements showed that the drift rates included in the relevant international standards are significantly higher than the obtained results (an average of 100 times higher) and hence, the environmental problems may occur. Therefore, a revision of the standards is recommended with the aim of reducing the environmental and human health impact. By changing the operating conditions and the distribution system, emissions can be reduced by 52.03% and 82% on average. In the case of drift eliminators, the difference ranges from 18.18% to 98.43% on average. As the emissions level is clearly influenced by operating conditions and components, regulation tests should be referred to default conditions. Finally, guidelines to perform emission tests and a selection criterion of components and conditions for the tested cooling tower are proposed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Particle reduction strategies - PAREST. Evaluation of emission reduction scenarios using chemical transport calculations. PM10- and PM2.5-reduction potentials by package of measures for further immission reduction in Germany. Sub-report

    International Nuclear Information System (INIS)

    Stern, Rainer

    2013-01-01

    This report documents the effects of additional emission control measures the PM10 and PM2.5 air quality in Germany (PM = particulate matter). The immission effects of the planned measures were calculated with the Chemistry-Aerosol-Transport Model REM CALGRID (RCG). [de

  7. PM-10 emissions and power of a Diesel engine fueled with crude and refined Biodiesel from salmon oil

    Energy Technology Data Exchange (ETDEWEB)

    J.F. Reyes; M.A. Sepulveda [University of Concepcion (Chile). Department of Mechanization and Energy, Faculty of Agricultural Engineering

    2006-09-15

    Power response and level of particulate emissions were assessed for blends of Diesel-crude Biodiesel and Diesel-refined Biodiesel. Crude Biodiesel and refined Biodiesel or methyl ester, were made from salmon oil with high content of free fatty acids, throughout a process of acid esterification followed by alkaline transesterification. Blends of Diesel-crude Biodiesel and Diesel-refined Biodiesel were tested in a diesel engine to measure simultaneously the dynamometric response and the particulate material (PM-10) emission performance. The results indicate a maximum power loss of about 3.5% and also near 50% of PM-10 reduction with respect to diesel when a 100% of refined Biodiesel is used. For blends with less content of either crude Biodiesel or refined Biodiesel, the observed power losses are lower but at the same time lower reduction in PM-10 emissions are attained. 21 refs., 4 figs., 2 tabs.

  8. Source influence on emission pathways and ambient PM2.5 pollution over India (2015–2050

    Directory of Open Access Journals (Sweden)

    C. Venkataraman

    2018-06-01

    Full Text Available India is currently experiencing degraded air quality, and future economic development will lead to challenges for air quality management. Scenarios of sectoral emissions of fine particulate matter and its precursors were developed and evaluated for 2015–2050, under specific pathways of diffusion of cleaner and more energy-efficient technologies. The impacts of individual source sectors on PM2.5 concentrations were assessed through systematic simulations of spatially and temporally resolved particulate matter concentrations, using the GEOS-Chem model, followed by population-weighted aggregation to national and state levels. We find that PM2.5 pollution is a pan-India problem, with a regional character, and is not limited to urban areas or megacities. Under present-day emissions, levels in most states exceeded the national PM2.5 annual standard (40 µg m−3. Sources related to human activities were responsible for the largest proportion of the present-day population exposure to PM2.5 in India. About 60 % of India's mean population-weighted PM2.5 concentrations come from anthropogenic source sectors, while the remainder are from other sources, windblown dust and extra-regional sources. Leading contributors are residential biomass combustion, power plant and industrial coal combustion and anthropogenic dust (including coal fly ash, fugitive road dust and waste burning. Transportation, brick production and distributed diesel were other contributors to PM2.5. Future evolution of emissions under regulations set at current levels and promulgated levels caused further deterioration of air quality in 2030 and 2050. Under an ambitious prospective policy scenario, promoting very large shifts away from traditional biomass technologies and coal-based electricity generation, significant reductions in PM2.5 levels are achievable in 2030 and 2050. Effective mitigation of future air pollution in India requires adoption of aggressive prospective

  9. Measurement of PM and its chemical composition in real-world emissions from non-road and on-road diesel vehicles

    Directory of Open Access Journals (Sweden)

    M. Cui

    2017-06-01

    idling and working excavators were 3 to 4 times higher than those for moving excavators. Although the EFPM for excavators and trucks was reduced with the constraint of regulations, the element fractions for excavators increased from 0.49 % in pre-stage 1 to 3.03 % in stage 2, and the fraction of WSIs for the China IV truck was 5 times higher than the average value of all other-level trucks. Furthermore, as compared with other diesel vehicles, wide ranges were found for excavators of the ratios of benzo[a]anthracene ∕ (benzo[a]anthracene + chrysene (0.26–0.86, indeno[1,2,3-cd]pyrene ∕ (indeno[1,2,3-cd]pyrene + benzo[ghi]perylene (0.20–1.0, and fluoranthene ∕ (fluoranthene + pyrene (0.24–0.87, which might be a result of the complex characteristics of the excavator operation modes. A comparison of our results with those in the literature revealed that on-board measurement data more accurately reflect actual conditions. Although the fractions of the 16 priority PAHs in PM from the excavator and truck emissions were similar, the equivalent concentrations of total benzo[a]pyrene of excavators were 31 times than that for trucks, implying that more attention should be paid to non-road vehicle emissions.

  10. Development of cotton gin PM10 emission factors for EPA’s AP-42-DUPLICATE DO NOT USE

    Science.gov (United States)

    The Compilation of Air Pollution Emission Factors (AP-42) emission factors are assigned ratings, from A (Excellent) to E (Poor), based on the quality of data used to develop them. All current PM10 cotton gin emission factors received quality ratings of D or lower. In an effort to improve these ratin...

  11. Detection of critical PM2.5 emission sources and their contributions to a heavy haze episode in Beijing, China, using an adjoint model

    Science.gov (United States)

    Zhai, Shixian; An, Xingqin; Zhao, Tianliang; Sun, Zhaobin; Wang, Wei; Hou, Qing; Guo, Zengyuan; Wang, Chao

    2018-05-01

    Air pollution sources and their regional transport are important issues for air quality control. The Global-Regional Assimilation and Prediction System coupled with the China Meteorological Administration Unified Atmospheric Chemistry Environment (GRAPES-CUACE) aerosol adjoint model was applied to detect the sensitive primary emission sources of a haze episode in Beijing occurring between 19 and 21 November 2012. The high PM2.5 concentration peaks occurring at 05:00 and 23:00 LT (GMT+8) over Beijing on 21 November 2012 were set as the cost functions for the aerosol adjoint model. The critical emission regions of the first PM2.5 concentration peak were tracked to the west and south of Beijing, with 2 to 3 days of cumulative transport of air pollutants to Beijing. The critical emission regions of the second peak were mainly located to the south of Beijing, where southeasterly moist air transport led to the hygroscopic growth of particles and pollutant convergence in front of the Taihang Mountains during the daytime on 21 November. The temporal variations in the sensitivity coefficients for the two PM2.5 concentration peaks revealed that the response time of the onset of Beijing haze pollution from the local primary emissions is approximately 1-2 h and that from the surrounding primary emissions it is approximately 7-12 h. The upstream Hebei province has the largest impact on the two PM2.5 concentration peaks, and the contribution of emissions from Hebei province to the first PM2.5 concentration peak (43.6 %) is greater than that to the second PM2.5 concentration peak (41.5 %). The second most influential province for the 05:00 LT PM2.5 concentration peak is Beijing (31.2 %), followed by Shanxi (9.8 %), Tianjin (9.8 %), and Shandong (5.7 %). The second most influential province for the 23:00 LT PM2.5 concentration peak is Beijing (35.7 %), followed by Shanxi (8.1 %), Shandong (8.0 %), and Tianjin (6.7 %). The adjoint model results were compared with the forward

  12. Estimating PM2.5-associated mortality increase in California due to the Volkswagen emission control defeat device

    Science.gov (United States)

    Wang, Tianyang; Jerrett, Michael; Sinsheimer, Peter; Zhu, Yifang

    2016-11-01

    The Volkswagen Group of America (VW) was found by the US Environmental Protection Agency (EPA) and the California Air Resources Board (CARB) to have installed "defeat devices" and emit more oxides of nitrogen (NOx) than permitted under current EPA standards. In this paper, we quantify the hidden NOx emissions from this so-called VW scandal and the resulting public health impacts in California. The NOx emissions are calculated based on VW road test data and the CARB Emission Factors (EMFAC) model. Cumulative hidden NOx emissions from 2009 to 2015 were estimated to be over 3500 tons. Adult mortality changes were estimated based on ambient fine particulate matter (PM2.5) change due to secondary nitrate formation and the related concentration-response functions. We estimated that hidden NOx emissions from 2009 to 2015 have resulted in a total of 12 PM2.5-associated adult mortality increases in California. Most of the mortality increase happened in metropolitan areas, due to their high population and vehicle density.

  13. Partitioning of magnetic particles in PM10, PM2.5 and PM1 aerosols in the urban atmosphere of Barcelona (Spain)

    International Nuclear Information System (INIS)

    Revuelta, María Aránzazu; McIntosh, Gregg; Pey, Jorge; Pérez, Noemi; Querol, Xavier; Alastuey, Andrés

    2014-01-01

    A combined magnetic-chemical study of 15 daily, simultaneous PM 10 –PM 2.5 –PM 1 urban background aerosol samples has been carried out. The magnetic properties are dominated by non-stoichiometric magnetite, with highest concentrations seen in PM 10 . Low temperature magnetic analyses showed that the superparamagnetic fraction is more abundant when coarse, multidomain particles are present, confirming that they may occur as an oxidized outer shell around coarser grains. A strong association of the magnetic parameters with a vehicular PM 10 source has been identified. Strong correlations found with Cu and Sb suggests that this association is related to brake abrasion emissions rather than exhaust emissions. For PM 1 the magnetic remanence parameters are more strongly associated with crustal sources. Two crustal sources are identified in PM 1 , one of which is of North African origin. The magnetic particles are related to this source and so may be used to distinguish North African dust from other sources in PM 1 . - Highlights: • Magnetic properties of PM 10 , PM 2.5 and PM 1 defined for a Mediterranean urban site. • Vehicular source of magnetic particles dominates in PM 10 . • Crustal source of magnetic particles dominates in PM 1 . • Magnetic remanence may distinguish between North African and regional dust in PM 1 . - Capsule abstract two sources of magnetic atmospheric particles have been identified in Barcelona, a vehicular source which dominates in PM 10 and a crustal source that dominates in PM 1

  14. Partitioning of magnetic particles in PM10, PM2.5 and PM1 aerosols in the urban atmosphere of Barcelona (Spain).

    Science.gov (United States)

    Revuelta, María Aránzazu; McIntosh, Gregg; Pey, Jorge; Pérez, Noemi; Querol, Xavier; Alastuey, Andrés

    2014-05-01

    A combined magnetic-chemical study of 15 daily, simultaneous PM10-PM2.5-PM1 urban background aerosol samples has been carried out. The magnetic properties are dominated by non-stoichiometric magnetite, with highest concentrations seen in PM10. Low temperature magnetic analyses showed that the superparamagnetic fraction is more abundant when coarse, multidomain particles are present, confirming that they may occur as an oxidized outer shell around coarser grains. A strong association of the magnetic parameters with a vehicular PM10 source has been identified. Strong correlations found with Cu and Sb suggests that this association is related to brake abrasion emissions rather than exhaust emissions. For PM1 the magnetic remanence parameters are more strongly associated with crustal sources. Two crustal sources are identified in PM1, one of which is of North African origin. The magnetic particles are related to this source and so may be used to distinguish North African dust from other sources in PM1. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. TOXICOLOGICAL EVALUATION OF REALISTIC EMISSIONS OF SOURCE AEROSOLS (TERESA): APPLICATION TO POWER PLANT-DERIVED PM2.5

    Energy Technology Data Exchange (ETDEWEB)

    Annette Rohr

    2006-03-01

    TERESA (Toxicological Evaluation of Realistic Emissions of Source Aerosols) involves exposing laboratory rats to realistic coal-fired power plant and mobile source emissions to help determine the relative toxicity of these PM sources. There are three coal-fired power plants in the TERESA program; this report describes the results of fieldwork conducted at the first plant, located in the Upper Midwest. The project was technically challenging by virtue of its novel design and requirement for the development of new techniques. By examining aged, atmospherically transformed aerosol derived from power plant stack emissions, we were able to evaluate the toxicity of PM derived from coal combustion in a manner that more accurately reflects the exposure of concern than existing methodologies. TERESA also involves assessment of actual plant emissions in a field setting--an important strength since it reduces the question of representativeness of emissions. A sampling system was developed and assembled to draw emissions from the stack; stack sampling conducted according to standard EPA protocol suggested that the sampled emissions are representative of those exiting the stack into the atmosphere. Two mobile laboratories were then outfitted for the study: (1) a chemical laboratory in which the atmospheric aging was conducted and which housed the bulk of the analytical equipment; and (2) a toxicological laboratory, which contained animal caging and the exposure apparatus. Animal exposures were carried out from May-November 2004 to a number of simulated atmospheric scenarios. Toxicological endpoints included (1) pulmonary function and breathing pattern; (2) bronchoalveolar lavage fluid cytological and biochemical analyses; (3) blood cytological analyses; (4) in vivo oxidative stress in heart and lung tissue; and (5) heart and lung histopathology. Results indicated no differences between exposed and control animals in any of the endpoints examined. Exposure concentrations for the

  16. Ship emission inventory and its impact on the PM2.5 air pollution in Qingdao Port, North China

    Science.gov (United States)

    Chen, Dongsheng; Wang, Xiaotong; Nelson, Peter; Li, Yue; Zhao, Na; Zhao, Yuehua; Lang, Jianlei; Zhou, Ying; Guo, Xiurui

    2017-10-01

    In this study, a first high temporal-spatial ship emission inventory in Qingdao Port and its adjacent waters has been developed using a ;bottom-up; method based on Automatic Identification System (AIS) data. The total estimated ship emissions for SO2, NOX, PM10, PM2.5, HC and CO in 2014 are 3.32 × 104, 4.29 × 104, 4.54 × 103, 4.18 × 103, 1.85 × 103 and 3.66 × 103 tonnes, respectively. Emissions of SO2 and NOX from ships account for 9% and 13% of the anthropogenic totals in Qingdao, respectively. The main contributors to the ship emissions are containers, followed by fishing ships, oil tankers and bulk carriers. The inter-monthly ship emissions varied significantly due to two reasons: stopping of the fishing ship activities during the fishing moratorium and the reduction of freight volume around the Chinese New Year Festival. Emissions from transport vessels concentrated basically along the shipping routes, while fishing ships contributed to massive irregular spatial emissions in the sea. The impact of ship emissions on the ambient air quality was further investigated using the Weather Research and Forecasting with Chemistry (WRF/Chem) model. The results reveal that the contribution of ship emissions to the PM2.5 concentrations in Qingdao is the highest in summer (13.1%) and the lowest in winter (1.5%). The impact was more evident over densely populated urban areas, where the contributions from ship emissions could be over 20% in July due to their close range to the docks. These results indicated that the management and control of the ship emissions are highly demanded considering their remarkable influence on the air quality and potential negative effects on human health.

  17. Environmental Justice Aspects of Exposure to PM2.5 Emissions from Electric Vehicle Use in China.

    Science.gov (United States)

    Ji, Shuguang; Cherry, Christopher R; Zhou, Wenjun; Sawhney, Rapinder; Wu, Ye; Cai, Siyi; Wang, Shuxiao; Marshall, Julian D

    2015-12-15

    Plug-in electric vehicles (EVs) in China aim to improve sustainability and reduce environmental health impacts of transport emissions. Urban use of EVs rather than conventional vehicles shifts transportation's air pollutant emissions from urban areas (tailpipes) to predominantly rural areas (power plants), changing the geographic distribution of health impacts. We model PM2.5-related health impacts attributable to urban EV use for 34 major cities. Our investigation focuses on environmental justice (EJ) by comparing pollutant inhalation versus income among impacted counties. We find that EVs could increase EJ challenge in China: most (~77%, range: 41-96%) emission inhalation attributable to urban EVs use is distributed to predominately rural communities whose incomes are on average lower than the cities where EVs are used. Results vary dramatically across cities depending on urban income and geography. Discriminant analysis reveals that counties with low income and high inhalation of urban EV emissions have comparatively higher agricultural employment rates, higher mortality rates, more children in the population, and lower education levels. We find that low-emission electricity sources such as renewable energy can help mitigate EJ issues raised here. Findings here are not unique to EVs, but instead are relevant for nearly all electricity-consuming technologies in urban areas.

  18. Capturing PM2.5 Emissions from 3D Printing via Nanofiber-based Air Filter.

    Science.gov (United States)

    Rao, Chengchen; Gu, Fu; Zhao, Peng; Sharmin, Nusrat; Gu, Haibing; Fu, Jianzhong

    2017-09-04

    This study investigated the feasibility of using polycaprolactone (PCL) nanofiber-based air filters to capture PM2.5 particles emitted from fused deposition modeling (FDM) 3D printing. Generation and aggregation of emitted particles were investigated under different testing environments. The results show that: (1) the PCL nanofiber membranes are capable of capturing particle emissions from 3D printing, (2) relative humidity plays a signification role in aggregation of the captured particles, (3) generation and aggregation of particles from 3D printing can be divided into four stages: the PM2.5 concentration and particles size increase slowly (first stage), small particles are continuously generated and their concentration increases rapidly (second stage), small particles aggregate into more large particles and the growth of concentration slows down (third stage), the PM2.5 concentration and particle aggregation sizes increase rapidly (fourth stage), and (4) the ultrafine particles denoted as "building unit" act as the fundamentals of the aggregated particles. This work has tremendous implications in providing measures for controlling the particle emissions from 3D printing, which would facilitate the extensive application of 3D printing. In addition, this study provides a potential application scenario for nanofiber-based air filters other than laboratory theoretical investigation.

  19. Potential Sources and Formations of the PM2.5 Pollution in Urban Hangzhou

    Directory of Open Access Journals (Sweden)

    Jian Wu

    2016-07-01

    Full Text Available Continuous measurements of meteorological parameters, gaseous pollutants, particulate matters, and the major chemical species in PM2.5 were conducted in urban Hangzhou from 1 September to 30 November 2013 to study the potential sources and formations of PM2.5 pollution. The average PM2.5 concentration was 69 µg·m−3, ~97% higher than the annual concentration limit in the national ambient air quality standards (NAAQS of China. Relative humidity (RH and wind speed (WS were two important factors responsible for the increase of PM2.5 concentration, with the highest value observed under RH of 70%–90%. PM2.5 was in good correlation with both NO2 and CO, but not with SO2, and the potential source contribution function (PSCF results displayed that local emissions were important potential sources contributing to the elevated PM2.5 and NO2 in Hangzhou. Thus, local vehicle emission was suggested as a major contribution to the PM2.5 pollution. Concentrations of NO2 and CO significantly increased in pollution episodes, while the SO2 concentration even decreased, implying local emission rather than region transport was the major source contributing to the formation of pollution episodes. The sum of SO42−, NO3−, and NH4+ accounted for ~50% of PM2.5 in mass in pollution episodes and the NO3−/EC ratios were significantly elevated, revealing that the formation of secondary inorganic species, particularly NO3−, was an important contributor to the PM2.5 pollution in Hangzhou. This study highlights that controlling local pollution emissions was essential to reduce the PM2.5 pollution in Hangzhou, and the control of vehicle emission in particular should be further promoted in the future.

  20. Local contribution of wood combustion to PM10 and PM2.5; Lokale bijdrage van houtverbranding aan PM10 en PM2,5

    Energy Technology Data Exchange (ETDEWEB)

    Kos, G.; Weijers, E. [ECN Biomassa, Kolen en Milieuonderzoek, Petten (Netherlands)

    2011-04-15

    In February 2009 the concentration of wood smoke in a residential area in Schoorl (Noord-Holland, Netherlands) was investigated over a period of three weeks. The aim was to assess the effect of local particulate matter (PM) emissions - caused by heating with wood stoves in this area - on local PM concentration. [Dutch] In februari 2009 zijn in Schoorl in Noord-Holland concentraties houtrook bepaald door levoglucosanmetingen (een voor houtrook kenmerkende koolwaterstofverbinding). Lokale houtrook draagt daar significant bij aan de concentratie fijn stof: tussen 9% en 27% voor PM10 en tussen 30% en 39% voor PM2,5.

  1. Comparison of WindTrax and flux-gradient technique in determining PM10 emission rates from a beef cattle feedlot

    Science.gov (United States)

    Several emission estimation methods can be used to determine emission fluxes from ground-level area sources, including open-lot beef cattle feedlots. This research determined PM10 emission fluxes from a commercial cattle feedlot in Kansas using WindTrax, a backward Lagrangian stochastic-based atmosp...

  2. Particulate emissions calculations from fall tillage operations using point and remote sensors.

    Science.gov (United States)

    Moore, Kori D; Wojcik, Michael D; Martin, Randal S; Marchant, Christian C; Bingham, Gail E; Pfeiffer, Richard L; Prueger, John H; Hatfield, Jerry L

    2013-07-01

    Soil preparation for agricultural crops produces aerosols that may significantly contribute to seasonal atmospheric particulate matter (PM). Efforts to reduce PM emissions from tillage through a variety of conservation management practices (CMPs) have been made, but the reductions from many of these practices have not been measured in the field. A study was conducted in California's San Joaquin Valley to quantify emissions reductions from fall tillage CMP. Emissions were measured from conventional tillage methods and from a "combined operations" CMP, which combines several implements to reduce tractor passes. Measurements were made of soil moisture, bulk density, meteorological profiles, filter-based total suspended PM (TSP), concentrations of PM with an equivalent aerodynamic diameter ≤10 μm (PM) and PM with an equivalent aerodynamic diameter ≤2.5 μm (PM), and aerosol size distribution. A mass-calibrated, scanning, three-wavelength light detection and ranging (LIDAR) procedure estimated PM through a series of algorithms. Emissions were calculated via inverse modeling with mass concentration measurements and applying a mass balance to LIDAR data. Inverse modeling emission estimates were higher, often with statistically significant differences. Derived PM emissions for conventional operations generally agree with literature values. Sampling irregularities with a few filter-based samples prevented calculation of a complete set of emissions through inverse modeling; however, the LIDAR-based emissions dataset was complete. The CMP control effectiveness was calculated based on LIDAR-derived emissions to be 29 ± 2%, 60 ± 1%, and 25 ± 1% for PM, PM, and TSP size fractions, respectively. Implementation of this CMP provides an effective method for the reduction of PM emissions. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  3. Inverse modeling and mapping US air quality influences of inorganic PM2.5 precursor emissions using the adjoint of GEOS-Chem

    Science.gov (United States)

    Henze, D. K.; Seinfeld, J. H.; Shindell, D. T.

    2009-08-01

    Influences of specific sources of inorganic PM2.5 on peak and ambient aerosol concentrations in the US are evaluated using a combination of inverse modeling and sensitivity analysis. First, sulfate and nitrate aerosol measurements from the IMPROVE network are assimilated using the four-dimensional variational (4D-Var) method into the GEOS-Chem chemical transport model in order to constrain emissions estimates in four separate month-long inversions (one per season). Of the precursor emissions, these observations primarily constrain ammonia (NH3). While the net result is a decrease in estimated US~NH3 emissions relative to the original inventory, there is considerable variability in adjustments made to NH3 emissions in different locations, seasons and source sectors, such as focused decreases in the midwest during July, broad decreases throughout the US~in January, increases in eastern coastal areas in April, and an effective redistribution of emissions from natural to anthropogenic sources. Implementing these constrained emissions, the adjoint model is applied to quantify the influences of emissions on representative PM2.5 air quality metrics within the US. The resulting sensitivity maps display a wide range of spatial, sectoral and seasonal variability in the susceptibility of the air quality metrics to absolute emissions changes and the effectiveness of incremental emissions controls of specific source sectors. NH3 emissions near sources of sulfur oxides (SOx) are estimated to most influence peak inorganic PM2.5 levels in the East; thus, the most effective controls of NH3 emissions are often disjoint from locations of peak NH3 emissions. Controls of emissions from industrial sectors of SOx and NOx are estimated to be more effective than surface emissions, and changes to NH3 emissions in regions dominated by natural sources are disproportionately more effective than regions dominated by anthropogenic sources. NOx controls are most effective in northern states in

  4. Emission characteristics of harmful air pollutants from cremators in Beijing, China.

    Directory of Open Access Journals (Sweden)

    Yifeng Xue

    Full Text Available The process of corpse cremation generates numerous harmful air pollutants, including particulate matter (PM, sulfur dioxide (SO2, nitrogen oxides (NOx, volatile organic compounds (VOCs, and heavy metals. These pollutants could have severe effects on the surrounding environment and human health. Currently, the awareness of the emission levels of harmful air pollutants from cremators and their emission characteristics is insufficient. In this study, we obtained the emission characteristics of flue gas from cremators in Beijing and determined the localized emission factors and emission levels of harmful air pollutants based on actual monitoring data from nine typical cremators. The results show that the emissions of air pollutants from the cremators that directly discharge flue gas exceed the emission standards of China and Beijing. The installation of a flue gas post-treatment system could effectively reduce gaseous pollutants and the emission levels of PM. After being equipped with a flue gas post-treatment system, the emission concentrations of PM10, PM2.5, CO, SO2 and VOCs from the cremators are reduced by 97.6, 99.2, 19.6, 85.2 and 70.7%, respectively. Moreover, the emission factors of TSP, PM10, PM2.5, CO, SO2 and VOCs are also reduced to 12.5, 9.3, 3.0, 164.1, 8.8 and 19.8 g/body. Although the emission concentration of VOCs from the cremators is not high, they are one of major sources of "odor" in the crematories and demand more attention. Benzene, a chemical that can seriously harm human health, constitutes the largest proportion (~50% of the chemical components of VOCs in the flue gas from the cremators.

  5. Inter-annual trend of the primary contribution of ship emissions to PM2.5 concentrations in Venice (Italy): Efficiency of emissions mitigation strategies

    Science.gov (United States)

    Contini, Daniele; Gambaro, Andrea; Donateo, Antonio; Cescon, Paolo; Cesari, Daniela; Merico, Eva; Belosi, Franco; Citron, Marta

    2015-02-01

    Ships and harbour emissions are currently increasing, due to the increase of tourism and trade, with potential impact on global air pollution and climate. At local scale, in-port ship emissions influence air quality in coastal areas impacting on health of coastal communities. International legislations to reduce ship emissions, both at Worldwide and European levels, are mainly based on the use of low-sulphur content fuel. In this work an analysis of the inter-annual trends of primary contribution, ε, of tourist shipping to the atmospheric PM2.5 concentrations in the urban area of Venice has been performed. Measurements have been taken in the summer periods of 2007, 2009 and 2012. Results show a decrease of ε from 7% (±1%) in 2007 to 5% (±1%) in 2009 and to 3.5% (±1%) in 2012. The meteorological and micrometeorological conditions of the campaigns were similar. Tourist ship traffic during measurement campaigns increased, in terms of gross tonnage, of about 25.4% from 2007 to 2009 and of 17.6% from 2009 to 2012. The decrease of ε was associated to the effect of a voluntary agreement (Venice Blue Flag) for the use of low-sulphur content fuel enforced in the area between 2007 and 2009 and to the implementation of the 2005/33/CE Directive in 2010. Results show that the use of low-sulphur fuel could effectively reduce the impact of shipping to atmospheric primary particles at local scale. Further, voluntary agreement could also be effective in reducing the impact of shipping on local air quality in coastal areas.

  6. Development of water scrubbers to reduce fine dust emission from poultry houses

    NARCIS (Netherlands)

    Ogink, N.W.M.; Aarnink, A.J.A.; Harn, van J.; Melse, R.W.; Cambra-Lopez, M.

    2010-01-01

    Poultry housings with litter are a major contributor to fine dust emissions (PM10/PM2.5) in the Netherlands. Poultry producers are in need of dust mitigation options that are cost effective. Such an option could be provided by adequately designed water scrubbers. Catchment of dust particles by water

  7. Improvement of PM10 prediction in East Asia using inverse modeling

    Science.gov (United States)

    Koo, Youn-Seo; Choi, Dae-Ryun; Kwon, Hi-Yong; Jang, Young-Kee; Han, Jin-Seok

    2015-04-01

    Aerosols from anthropogenic emissions in industrialized region in China as well as dust emissions from southern Mongolia and northern China that transport along prevailing northwestern wind have a large influence on the air quality in Korea. The emission inventory in the East Asia region is an important factor in chemical transport modeling (CTM) for PM10 (particulate matters less than 10 ㎛ in aerodynamic diameter) forecasts and air quality management in Korea. Most previous studies showed that predictions of PM10 mass concentration by the CTM were underestimated when comparing with observational data. In order to fill the gap in discrepancies between observations and CTM predictions, the inverse Bayesian approach with Comprehensive Air-quality Model with extension (CAMx) forward model was applied to obtain optimized a posteriori PM10 emissions in East Asia. The predicted PM10 concentrations with a priori emission were first compared with observations at monitoring sites in China and Korea for January and August 2008. The comparison showed that PM10 concentrations with a priori PM10 emissions for anthropogenic and dust sources were generally under-predicted. The result from the inverse modeling indicated that anthropogenic PM10 emissions in the industrialized and urbanized areas in China were underestimated while dust emissions from desert and barren soil in southern Mongolia and northern China were overestimated. A priori PM10 emissions from northeastern China regions including Shenyang, Changchun, and Harbin were underestimated by about 300% (i.e., the ratio of a posteriori to a priori PM10 emission was a factor of about 3). The predictions of PM10 concentrations with a posteriori emission showed better agreement with the observations, implying that the inverse modeling minimized the discrepancies in the model predictions by improving PM10 emissions in East Asia.

  8. Anthropogenic Emissions Change the Amount and Composition of Organic PM1 in Amazonia

    Science.gov (United States)

    de Sá, S. S.; Palm, B. B.; Campuzano Jost, P.; Day, D. A.; Hu, W.; Isaacman-VanWertz, G. A.; Yee, L.; Wernis, R. A.; Thalman, R.; Brito, J.; Carbone, S.; Artaxo, P.; Goldstein, A. H.; Manzi, A. O.; Souza, R. A. F. D.; Wang, J.; Alexander, M. L. L.; Jimenez, J. L.; Martin, S. T.

    2017-12-01

    The Amazon forest, while one of the few regions on the globe where pristine conditions may still prevail, has experienced rapid changes due to increasing urbanization in the past decades. Manaus, a Brazilian city of 2-million people in the central Amazon basin, releases a pollution plume over the forest, potentially affecting the production pathways of particulate matter (PM) in the region. As part of GoAmazon2014/5, a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) and a suite of other gas and particle-phase instruments were deployed at the T3 research site, 70 km downwind of Manaus, during the wet and dry seasons. Through a combination of meteorology, emissions, and chemistry, the T3 site was affected by a mixture of biogenic emissions from the tropical rainforest, urban outflow from the Manaus metropolitan area and biomass burning plumes. Results from the T3 site are presented in the context of measurements at T0a/T0t and T2, sites representing predominantly clean and polluted conditions, respectively. The organic component consistently represented on average 70-80% of the PM1 mass concentration across sites and seasons, and constitutes the focus of this work. Positive matrix factorization (PMF) analysis was applied to the time series of organic mass spectra. The resulting factors, which included the so-called IEPOX-SOA, MO-OOA, LO-OOA, BBOA, Fac91 and HOA, provide information on the relative contributions of different sources and pathways to organic PM production. In addition, Fuzzy c-means clustering was applied to the time series of pollution indicators, including concentrations of NOy, total particle number, ozone and sulfate, in order to better understand the convoluted influences of different processes and airmass origin to each point in time. Through combination of the PMF and Fuzzy c-means analyses, insights are drawn about the relative composition of organic PM1 at varying degrees of influence of biogenic and anthropogenic

  9. Influences of natural emission sources (wildfires and Saharan dust) on the urban organic aerosol in Barcelona (Western Mediterranean Basis) during a PM event.

    Science.gov (United States)

    van Drooge, Barend L; Lopez, Jordi F; Grimalt, Joan O

    2012-11-01

    The urban air quality in Barcelona in the Western Mediterranean Basin is characterized by overall high particulate matter (PM) concentrations, due to intensive local anthropogenic emissions and specific meteorological conditions. Moreover, on several days, especially in summer, natural PM sources, such as long-range transported Saharan dust from Northern Africa or wildfires on the Iberian Peninsula and around the Mediterranean Basin, may influence the levels and composition of the organic aerosol. In the second half of July 2009, daily collected PM(10) filter samples in an urban background site in Barcelona were analyzed on organic tracer compounds representing several emission sources. During this period, an important PM peak event was observed. Individual organic compound concentrations increased two to five times during this event. Although highest increase was observed for the organic tracer of biomass burning, the contribution to the organic aerosol was estimated to be around 6 %. Organic tracers that could be related to Saharan dust showed no correlation with the PM and OC levels, while this was the case for those related to fossil fuel combustion from traffic emissions. Moreover, a change in the meteorological conditions gave way to an overall increase of the urban background contamination. Long-range atmospheric transport of organic compounds from primary emissions sources (i.e., wildfires and Saharan dust) has a relatively moderate impact on the organic aerosol in an urban area where the local emissions are dominating.

  10. Source contributions to PM2.5 and PM10 at an urban background and a street location

    Science.gov (United States)

    Keuken, M. P.; Moerman, M.; Voogt, M.; Blom, M.; Weijers, E. P.; Röckmann, T.; Dusek, U.

    2013-06-01

    The contribution of regional, urban and traffic sources to PM2.5 and PM10 in an urban area was investigated in this study. The chemical composition of PM2.5 and PM10 was measured over a year at a street location and up- and down-wind of the city of Rotterdam, the Netherlands. The 14C content in EC and OC concentrations was also determined, to distinguish the contribution from "modern" carbon (e.g., biogenic emissions, biomass burning and wildfires) and fossil fuel combustion. It was concluded that the urban background of PM2.5 and PM10 is dominated by the regional background, and that primary and secondary PM emission by urban sources contribute less than 15%. The 14C analysis revealed that 70% of OC originates from modern carbon and 30% from fossil fuel combustion. The corresponding percentages for EC are, respectively 17% and 83%. It is concluded that in particular the urban population living in street canyons with intense road traffic has potential health risks. This is due to exposure to elevated concentrations of a factor two for EC from exhaust emissions in PM2.5 and a factor 2-3 for heavy metals from brake and tyre wear, and re-suspended road dust in PM10. It follows that local air quality management may focus on local measures to street canyons with intense road traffic.

  11. On the origin and variability of suspended particulate matter (PM1, PM2.5 and PM10) concentrations in Cyprus.

    Science.gov (United States)

    Pikridas, Michael; Vrekoussis, Mihalis; Mihalopoulos, Nikolaos; Kizas, Christos; Savvides, Chrysanthos; Sciare, Jean

    2017-04-01

    's Terra satellite support this result, suggesting that it is not due to a systematic bias in the sampling procedure. The amount of dust regionally transported from both Sahara and Middle-East deserts exhibited an increasing trend from 1998 till 2010, resulting in an elevation of the coarse mode by 0.5 μg m-3 annually. However, during 2010 the contribution of regional dust to PM10 declined sharply (by 6.8 μg m-3), similar to the observed coarse mode trend and has remained at this reduced level since. However, PM1, mostly driven by anthropogenic emissions, remained constant at the regional background site of AMX. Our results suggest a sharp decline in the coarse mode concentration since 2010 that cannot be attributed to local, anthropogenic, influence but rather to the unexpected decline in regional dust transport.

  12. A review on idling reduction strategies to improve fuel economy and reduce exhaust emissions of transport vehicles

    International Nuclear Information System (INIS)

    Shancita, I.; Masjuki, H.H.; Kalam, M.A.; Rizwanul Fattah, I.M.; Rashed, M.M.; Rashedul, H.K.

    2014-01-01

    Highlights: • Introduce various idling reduction technologies for transport vehicles. • Exhibit their energy use, advantages, disadvantages to understand their capability. • Conduct critical review to improve fuel economy and exhaust emissions. • Suggest better technology according to their performance ability. - Abstract: To achieve reductions in vehicle idling, strategies and actions must be taken to minimize the time spent by drivers idling their engines. A number of benefits can be obtained in limiting the idling time. These benefits include savings in fuel use and maintenance costs, vehicle life extension, and reduction in exhaust emissions. The main objective of idling reduction (IR) devices is to reduce the amount of energy wasted by idling trucks, rail locomotives, and automobiles. During idling, gasoline vehicles emit a minimum amount of nitrogen oxides (NO x ) and negligible particulate matter (PM). However, generally a large amount of carbon monoxide (CO) and hydrocarbons (HC) are produced from these vehicles. Gasoline vehicles consume far more fuel at an hourly rate than their diesel counterparts during idling. Higher NOx and comparatively larger PM are produced by diesel vehicles than gasoline vehicles on the average during idling. Auxiliary power unit (APU), direct-fired heaters, fuel cells, thermal storage system, truck stop electrification, battery-based systems, engine idle management (shutdown) systems, electrical (shore power) solutions, cab comfort system, and hybridization are some of the available IR technologies whose performances for reducing fuel consumption and exhaust emissions have been compared. This paper analyzes the availability and capability of most efficient technologies to reduce fuel consumption and exhaust emissions from diesel and gasoline vehicles by comparing the findings of previous studies. The analysis reveals that among all the options direct fired heaters, APUs and electrified parking spaces exhibit better

  13. Multifaceted health impacts of Particulate Matter (PM and its management: An overview

    Directory of Open Access Journals (Sweden)

    Prabhat Kumar Rai

    2015-03-01

    Full Text Available Urban air quality is becoming a serious public health concern at global scale. Particulate matter (PM pollution is intimately linked with human health. Present review describes the different human health implications associated with PM pollution. PM may derive its origin from natural and anthropogenic sources. Vehicle derived pollutants as well as industrial emissions simultaneously release deleterious fine-grained PM into the atmosphere. Fine PM especially PM2.5 and PM10 are particularly deleterious to human health. Air pollution PM is an important environmental health risk factor for several respiratory and cardiovascular morbidity and mortality. Further, PM is inextricably linked with genotoxicity and mutations. Literature review of the cellular and molecular basis of adverse effects associated with PM is presented in this paper. Finally, management, existing technologies and policy options to reduce or mitigate the adverse health impacts of PM pollution is discussed as an eco-sustainable approach.

  14. Contribution of Fugitive Emissions for PM10 Concentrations in an Industrial Area of Portugal

    Science.gov (United States)

    Marta Almeida, Susana; Viana Silva, Alexandra; Garcia, Silvia; Miranda, Ana Isabel

    2013-04-01

    Significant atmospheric dust arises from the mechanical disturbance of granular material exposed to the air. Dust generated from these open sources is termed "fugitive" because it is not discharged to the atmosphere in a confined flow stream. Common sources of fugitive dust include unpaved roads, agricultural tilling operations, aggregate storage piles, heavy construction and harbor operations. The objective of this work was to identify the likeliness and extend of the PM10 limit value exceedences due to fugitive emissions in a particularly zone where PM fugitive emissions are a core of environmental concerns - Mitrena, Portugal. Mitrena, is an industrial area that coexists with a high-density urban region (Setúbal) and areas with an important environmental concern (Sado Estuary and Arrábida which belongs to the protected area Natura 2000 Network). Due to the typology of industry sited in Mitrena (e.g. power plant, paper mill, cement, pesticides and fertilized productions), there are a large uncontrolled PM fugitive emissions, providing from heavy traffic and handling and storage of raw material on uncover stockyards in the harbor and industries. Dispersion modeling was performed with the software TAPM (The Air Pollution Model) and results were mapped over the study area, using GIS (Geographic Information Systems). Results showed that managing local particles concentrations can be a frustrating affair because the weight of fugitive sources is very high comparing with the local anthropogenic stationary sources. In order to ensure that the industry can continue to meet its commitments in protecting air quality, it is essential to warrant that the characteristics of releases from all fugitive sources are fully understood in order to target future investments in those areas where maximum benefit will be achieved.

  15. Particulate Emissions and Biodiesel: A review

    Directory of Open Access Journals (Sweden)

    Michal Angelovič

    2013-05-01

    Full Text Available Abstract The current mode of transport using fuel it cannot be characterized as harmless to human health or as sustainable. The whole process of extracting, processing and using of petroleum products can be seen as the raw material cycle in nature. This cycle also cause serious damage to the environment and human health. Many studies on air pollutant emissions with biodiesel have been carried out worldwide. Studies have shown that diesel-powered vehicles are the major contributors of PM emissions. PM particulates are especially important in regard to adverse health outcomes, such as increased cardiovascular, respiratory morbidity and mortality rates, due to their larger active surface and the higher likelihood of deposition in the alveolar region of the lungs. Hence, it is overwhelming argument that the use of biodiesel instead of diesel causes reduce of PM emissions. Of course, this reduction will become smaller with the reduction of biodiesel proportion in the blended fuel. The trend with which PM emissions of biodiesel will be reduced, is due to lower aromatic and sulfur compounds and higher cetane number for biodiesel, but the more important factor is the higher oxygen content.

  16. Demonstration of Novel Sampling Techniques for Measurement of Turbine Engine Volatile and Non-Volatile Particulate Matter (PM) Emissions

    Science.gov (United States)

    2017-03-06

    WP-201317) Demonstration of Novel Sampling Techniques for Measurement of Turbine Engine Volatile and Non-volatile Particulate Matter (PM... Engine Volatile and Non-Volatile Particulate Matter (PM) Emissions 6. AUTHOR(S) E. Corporan, M. DeWitt, C. Klingshirn, M.D. Cheng, R. Miake-Lye, J. Peck...the performance and viability of two devices to condition aircraft turbine engine exhaust to allow the accurate measurement of total (volatile and non

  17. Estimating State-Specific Contributions to PM2.5- and O3-Related Health Burden from Residential Combustion and Electricity Generating Unit Emissions in the United States.

    Science.gov (United States)

    Penn, Stefani L; Arunachalam, Saravanan; Woody, Matthew; Heiger-Bernays, Wendy; Tripodis, Yorghos; Levy, Jonathan I

    2017-03-01

    Residential combustion (RC) and electricity generating unit (EGU) emissions adversely impact air quality and human health by increasing ambient concentrations of fine particulate matter (PM 2.5 ) and ozone (O 3 ). Studies to date have not isolated contributing emissions by state of origin (source-state), which is necessary for policy makers to determine efficient strategies to decrease health impacts. In this study, we aimed to estimate health impacts (premature mortalities) attributable to PM 2.5 and O 3 from RC and EGU emissions by precursor species, source sector, and source-state in the continental United States for 2005. We used the Community Multiscale Air Quality model employing the decoupled direct method to quantify changes in air quality and epidemiological evidence to determine concentration-response functions to calculate associated health impacts. We estimated 21,000 premature mortalities per year from EGU emissions, driven by sulfur dioxide emissions forming PM 2.5 . More than half of EGU health impacts are attributable to emissions from eight states with significant coal combustion and large downwind populations. We estimate 10,000 premature mortalities per year from RC emissions, driven by primary PM 2.5 emissions. States with large populations and significant residential wood combustion dominate RC health impacts. Annual mortality risk per thousand tons of precursor emissions (health damage functions) varied significantly across source-states for both source sectors and all precursor pollutants. Our findings reinforce the importance of pollutant-specific, location-specific, and source-specific models of health impacts in design of health-risk minimizing emissions control policies. Citation: Penn SL, Arunachalam S, Woody M, Heiger-Bernays W, Tripodis Y, Levy JI. 2017. Estimating state-specific contributions to PM 2.5 - and O 3 -related health burden from residential combustion and electricity generating unit emissions in the United States. Environ

  18. [Preliminary study of source apportionment of PM10 and PM2.5 in three cities of China during spring].

    Science.gov (United States)

    Gao, Shen; Pan, Xiao-chuan; Madaniyazi, Li-na; Xie, Juan; He, Ya-hui

    2013-09-01

    To study source apportionment of atmospheric PM10 (particle matter ≤ 10 µm in aerodynamic diameter) and PM2.5 (particle matter ≤ 2.5 µm in aerodynamic diameter) in Beijing,Urumqi and Qingdao, China. The atmospheric particle samples of PM10 and PM2.5 collected from Beijing between May 17th and June 18th, 2005, from Urumqi between April 20th and June 1st, 2006 and from Qingdao between April 4th and May 15th, 2005, were detected to trace the source apportionment by factor analysis and enrichment factor methods. In Beijing, the source apportionment results derived from factor analysis model for PM10 were construction dust and soil sand dust (contributing rate of variance at 45.35%), industry dust, coal-combusted smoke and vehicle emissions (contributing rate at 31.83%), and biomass burning dust (13.57%). The main pollution element was Pb, while the content (median (minimum value-maximum value)was 0.216 (0.040-0.795) µg/m(3)) . As for PM2.5, the sources were construction dust and soil sand dust (38.86%), industry dust, coal-combusted smoke and vehicle emissions (25.73%), biomass burning dust (13.10%) and burning oil dust (11.92%). The main pollution element was Zn (0.365(0.126-0.808) µg/m(3)).In Urumqi, source apportionment results for PM10 were soil sand dust and coal-combusted dust(49.75%), industry dust, vehicle emissions and secondary particles dust (30.65%). The main characteristic pollution element was Cd (0.463(0.033-1.351) ng/m(3)). As for PM2.5, the sources were soil sand dust and coal-combusted dust (43.26%), secondary particles dust (22.29%), industry dust and vehicle emissions (20.50%). The main characteristic pollution element was As (14.599 (1.696-36.741) µg/m(3)).In Qingdao, source apportionment results for PM10 were construction dust (30.91%), vehicle emissions and industry dust (29.65%) and secondary particles dust (28.99%). The main characteristic pollution element was Pb (64.071 (5.846-346.831) µg/m(3)). As for PM2.5, the sources were

  19. Laboratory characterization of PM emissions from combustion of wildland biomass fuels

    Energy Technology Data Exchange (ETDEWEB)

    Hosseini, SeyedEhsan; Urbanski, Shawn; Dixit, P.; Qi, L.; Burling, Ian R.; Yokelson, Robert; Johnson, Timothy J.; Shrivastava, ManishKumar B.; Jung, H.; Weise, David; Miller, J. Wayne; Cocker, David R.

    2013-09-09

    Particle emissions from open burning of southwestern (SW) and southeastern (SE) U.S. 17 fuel types during 77 controlled laboratory burns are presented. The fuels include SW 18 vegetation types: ceanothus, chamise/scrub oak, coastal sage scrub, California sagebrush, 19 manzanita, maritime chaparral, masticated mesquite, oak savanna, and oak woodland as 20 well as SE vegetation types: 1-year, 2-year rough, pocosin, chipped understory, 21 understory hardwood, and pine litter. The SW fuels burned at a higher Modified 22 Combustion Efficiency (MCE) than the SE fuels resulting in lower particulate matter 23 (PM) mass emission factor (EF). Particle size distributions for six fuels and particle 24 number emission or all fuels are reported. Excellent mass closure (slope = 1.00, r2=0.94) 25 between ions, metals, and carbon with total weight was obtained. Organic carbon 26 emission factors inversely correlated (= 0.72) with MCE, while elemental carbon (EC) 27 had little correlation with MCE (=0.10). The EC/total carbon (TC) ratio sharply 28 increased with MCE for MCEs exceeding 0.94. The average levoglucosan and total Poly 29 Aromatic Hydrocarbons (PAH) emissions factors ranged from 25-1272 mg/kg fuel and 30 1790-11300 μg/kg fuel, respectively. No correlation between MCE and emissions of 31 PAHs/levoglucosan was found. Additionally, PAH diagnostic ratios were observed to be 32 poor indicators of biomass burning. Large fuel-type and regional dependency was 33 observed in the emission rates of ammonium, nitrate, fluoride, chloride, sodium, and

  20. Characterization of Chemical Composition in PM2.5 in Beijing Before, During, and After a Large-Scale International Event

    Science.gov (United States)

    Yang, X.; Cheng, S.; Li, J.

    2017-12-01

    To commemorate the 70th anniversary of the victory of the Chinese people's Anti-Japanese War and the World Anti-Fascist War, an international parade was held in Beijing in September 2015. In order to ensure satisfactory air quality during this event, a phased emission control measures were taken in Beijing and its surrounding provinces. The 24-h PM2.5 samples were collected in Beijing from August 1 to September 15, 2015 covering the period before, during and after this large-scale event. The observed PM2.5 data, meteorological data, emission reduction measures, and air mass trajectory simulation results were systematically analyzed to understand the pollution characteristics and chemical compositions of PM2.5 in Beijing. The results indicated that PM2.5 concentration during the two emission control phases was reduced by 61.7% comparing to the non-control period, but the regional transport of pollutants and meteorological conditions had a more prominent impact on PM2.5 than emission reduction during phase 2. The secondary water-soluble ions including SO42-, NO3-, and NH4+ were found as the main ions present in PM2.5. During the entire emission control period, organic carbon (OC) and elemental carbon (EC) mass concentrations were decreased by 53.1% and 57.9%. A PM2.5 mass balance was analyzed, and it was found that the organic matter accounted for 29.3, 37.6 and 28.5% of the PM2.5 mass before, during and after the emission control, while the contribution of mobile sources to PM2.5 was relatively outstanding after a series of emission control measures.

  1. Human health risk due to variations in PM10-PM2.5 and associated PAHs levels

    Science.gov (United States)

    Sosa, Beatriz S.; Porta, Andrés; Colman Lerner, Jorge Esteban; Banda Noriega, Roxana; Massolo, Laura

    2017-07-01

    WHO (2012) reports that chronic exposure to air pollutants, including particulate matter (PM), causes the death of 7 million people, constituting the most important environmental risk for health in the world. IARC classifies contaminated outdoor air as carcinogenic, Group 1 category. However, in our countries there are few studies regarding air pollution levels and possible associated effects on public health. The current study determined PM and associated polycyclic aromatic hydrocarbons (PAHs) levels in outdoor air, identified their possible emission sources and analysed health risks in the city of Tandil (Argentina). PM10 and PM2.5 samples were collected using a low volume sampler (MiniVol TAS) in three areas: city centre, industrial and residential. Concentrations were determined by gravimetric methods and the content of the US EPA 16 priority PAHs was found by high performance liquid chromatography (HPLC). Description of the main emission sources and selection of monitoring sites resulted from spatial analysis and the IVE (International Vehicle Emissions) model was used in the characterisation of the traffic flow. Median values of 35.7 μgm-3 and 9.6 μgm-3 in PM10 and PM2.5 respectively and characteristic profiles were found for each area. Local values PAHs associated to PM10 and PM2.5, in general, were lower than 10ngm-3. The estimated Unit Risk for the three areas exceeds US EPA standards (9 × 10-5). The number of deaths attributable to short term exposure to outdoor PM10 was 4 cases in children under 5 years of age, and 21 cases in total population, for a relative risk of 1.037.

  2. Modelling PM 10 concentrations and carrying capacity associated with woodheater emissions in Launceston, Tasmania

    Science.gov (United States)

    Luhar, Ashok K.; Galbally, Ian E.; Keywood, Melita

    Launceston is one of the Australian cities most affected by particle pollution due to the use of woodheaters in the winter months, with frequent exceedences of the national standard, the National Environment Protection Measure for Ambient Air Quality (or Air NEPM in short), of 50 micrograms per cubic metre for daily PM 10 (particulate matter with an aerodynamic diameter of 10 μm or less). The main objective of the present study was to determine the woodheater carrying capacity for Launceston—the number of woodheaters that can operate in the city without exceeding the Air NEPM. For this purpose, a prognostic meteorological and air pollution model called TAPM is used, coupled to a gridded woodheater PM 10 emissions inventory. The latter was derived using information on dwelling density, the percentage of dwellings with woodheaters, woodheater emission rates and their diurnal and seasonal variations, and the proportions of compliant/non-compliant woodheaters and open fireplaces. The model simulations are performed for the year 1998, and the concentrations are scaled for previous and subsequent years using trends in woodheater numbers and types. The modelled number of exceedences of the Air NEPM for the period 1997-2004 is in good agreement with the observations. The modelling indicates that the PM 10 Air NEPM would be met in Launceston when the total number of woodheaters is 20% of the total number of dwellings, of which 76%, 18%, 6% would be compliant woodheaters, non-compliant woodheaters and open fireplaces, respectively. With the present trends in the regional woodheater profile, this should occur in the year 2007.

  3. Characterizing and sourcing ambient PM2.5 over key emission regions in China I: Water-soluble ions and carbonaceous fractions

    Science.gov (United States)

    Zhou, Jiabin; Xing, Zhenyu; Deng, Junjun; Du, Ke

    2016-06-01

    During the past decade, huge research resources have been devoted into studies of air pollution in China, which generated abundant datasets on emissions and pollution characterization. Due to the complex nature of air pollution as well as the limitations of each individual investigating approach, the published results were sometimes perplexing and even contradicting. This research adopted a multi-method approach to investigate region-specific air pollution characteristics and sources in China, results obtained using different analytical and receptor modeling methods were inter-compared for validation and interpretation. A year-round campaign was completed for comprehensive characterization of PM2.5 over four key emission regions: Beijing-Tianjin-Hebei (BTH), Yangzi River Delta (YRD), Pearl River Delta (PRD), and Sichuan Basin (SB). Atmospheric PM2.5 samples were collected from 10/2012 to 08/2013 at four regional sites, located on the diffusion paths of air masses from their corresponding megacities (i.e., Beijing, Shanghai, Guangzhou, and Chengdu). The annual average PM2.5 mass concentrations showed distinct regional difference, with the highest observed at BTH and lowest at PRD site. Nine water-soluble ions together contributed 33-41% of PM2.5 mass, with three dominant ionic species being SO42-, NO3-, NH4+, and carbonaceous particulate matter contributed 16-23% of PM2.5 mass. This implied that combustion and secondary formation were the main sources for PM2.5 in China. In addition, SO42-, NO3-, NH4+, and carbonaceous components (OC, EC) showed clear seasonal patterns with the highest concentration occurring in winter while the lowest in summer. Principal component analysis performed on aerosol data revealed that vehicular emissions, coal/biomass combustion, industry source, soil dust as well as secondary formation were the main potential sources for the ionic components of PM2.5. The characteristic chemical species combined with back trajectory analysis indicated

  4. Effect of selective catalytic reduction (SCR) on fine particle emission from two coal-fired power plants in China

    Science.gov (United States)

    Li, Zhen; Jiang, Jingkun; Ma, Zizhen; Wang, Shuxiao; Duan, Lei

    2015-11-01

    Nitrogen oxides (NOx) emission abatement of coal-fired power plants (CFPPs) requires large-scaled installation of selective catalytic reduction (SCR), which would reduce secondary fine particulate matter (PM2.5) (by reducing nitrate aerosol) in the atmosphere. However, our field measurement of two CFPPs equipped with SCR indicates a significant increase of SO42- and NH4+ emission in primary PM2.5, due to catalytic enhancement of SO2 oxidation to SO3 and introducing of NH3 as reducing agent. The subsequent formation of (NH4)2SO4 or NH4HSO4 aerosol is commonly concentrated in sub-micrometer particulate matter (PM1) with a bimodal pattern. The measurement at the inlet of stack also showed doubled primary PM2.5 emission by SCR operation. This effect should therefore be considered when updating emission inventory of CFPPs. By rough estimation, the enhanced primary PM2.5 emission from CFPPs by SCR operation would offset 12% of the ambient PM2.5 concentration reduction in cities as the benefit of national NOx emission abatement, which should draw attention of policy-makers for air pollution control.

  5. Contribution of ship emissions to the concentration of PM2.5: A comprehensive study using AIS data and WRF/Chem model in Bohai Rim Region, China.

    Science.gov (United States)

    Chen, Dongsheng; Zhao, Na; Lang, Jianlei; Zhou, Ying; Wang, Xiaotong; Li, Yue; Zhao, Yuehua; Guo, Xiurui

    2018-01-01

    Compared with on-road vehicles, emission from ships is one of the least-regulated anthropogenic emission sources and non-negligible source of primary aerosols and gas-phase precursors of PM 2.5 . The Bohai Rim Region in China hosts dozens of large ports, two of which ranked among the top ten ports in the world. To determine the impact of ship emissions on the PM 2.5 concentrations over this region, two parts of works have been conducted in this study. First, a detailed ship emission inventory with high spatiotemporal resolution was developed based on Automatic Identification System (AIS) data. Then the WRF/Chem model was applied to modeling the impact of ship emissions by comparing two scenarios: with and without ship emissions. The results indicate that the total estimated ship emissions of SO 2 , NO X , PM 10 , PM 2.5 , CO, HC, and CO 2 from Bohai Rim Region in 2014 are 1.9×10 5 , 2.9×10 5 , 2.6×10 4 , 2.4×10 4 , 2.5×10 4 , 1.2×10 4 , and 1.3×10 7 tonnes, respectively. The modeling results indicate that the annual PM 2.5 concentrations increased by 5.9% on land areas of Bohai Rim Region (the continent within 115.2°E-124.3°E and 36.1°N-41.6°N) due to ship emissions. The contributions show distinctive seasonal variations of contributions, presenting highest in summer (12.5%) followed by spring (6.9%) and autumn (3.3%), and lowest in winter (0.9%). The contribution reaches up to 10.7% along the shoreline and down to 1.0% 200km inland. After examining the statistics of the modeling results during heavy and non-heavy haze days in July, it was found that 6 out of 9 cities around the Bohai Rim Region were observed with higher contributions from ship emissions during heavy haze days compared with non-heavy haze days. These results indicate that the impacts of ship emissions on the ambient PM 2.5 are non-negligible, especially for heavy haze days for most coastal cities in the Bohai Rim Region. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Characterization of Fine Particulate Matter (PM) and Secondary PM Precursor Gases in Mexico City

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Charles E. Kolb

    2008-03-31

    This project was one of three collaborating grants designed to understand the atmospheric chemistry and aerosol particle microphysics impacting air quality in the Mexico City Metropolitan Area (MCMA) and its urban plume. The overall effort, titled MCMA- 2006, focused on: 1) the primary emissions of fine particles and precursor gases leading to photochemical production of atmospheric oxidants and secondary aerosol particles and 2) the measurement and analysis of secondary oxidants and secondary fine particular matter (PM) production, with particular emphasis on secondary organic aerosol (SOA). MCAM-2006 pursued it goals through three main activities: 1) performance and publication of detailed analyses of extensive MCMA trace gas and fine PM measurements made by the collaborating groups and others during earlier MCMA field campaigns in 2002 and 2003; 2) deployment and utilization of extensive real-time trace gas and fine PM instrumentation at urban and downwind MCMA sites in support of the MAX-Mex/MILAGRO field measurements in March, 2006; and, 3) analyses of the 2006 MCMA data sets leading to further publications that are based on new data as well as insights from analysis and publication of the 2002/2003 field data. Thirteen archival publications were coauthored with other MCMA-2003 participants. Documented findings included a significantly improved speciated emissions inventory from on-road vehicles, a greatly enhanced understanding of the sources and atmospheric loadings of volatile organic compounds, a unique analysis of the high fraction of ambient formaldehyde from primary emission sources, a much more extensive knowledge of the composition, size distributions and atmospheric mass loadings of both primary and secondary fine PM, including the fact that the rate of MCMA SOA production greatly exceeded that predicted by current atmospheric models, and evaluations of significant errors that can arise from standard air quality monitors for ozone and nitrogen

  7. Effect of the Apulia air quality plan on PM10 and benzo(apyrene exceedances

    Directory of Open Access Journals (Sweden)

    L. Trizio

    2016-03-01

    Full Text Available During the last years, several exceedances of PM10 and benzo(apyrene limit values exceedances were recorded in Taranto, a city in southern Italy included in so-called areas at high risk of environmental crisis because of the presence of a heavy industrial district including the largest steel factory in Europe. A study of these critical pollution events showed a close correlation with the wind coming from the industrial site to the adjacent urban area. During 2011, at monitoring sites closes to the industrial area, at least the 65% of PM10 exceedances were related to wind day conditions (characterized by at least 3 consecutive hours of wind coming from 270-360±2deg with an associated speed higher than 7 m/s. For this reason, in 2012 an integrated environmental permit and a regional air quality plan were enacted to reduce pollutant emissions from industrial plants. A study of PM10 levels registered during windy days was performed during critical episodes of pollution highlighting that the difference between windy days and no windy days’ concentrations reduces from 2012 to 2014 in industrial site. False negative events (verified ex-post by observed meteorological data not identified by the forecast model - did not show a significant influence on PM concentration: PM10 values were comparable and sometimes lower than windy days levels. It is reasonable that the new scenario with a relevant reduction emissions form Ilva plant reduced the pollutants contribution from industrial area, contributing to PM10 levels decrease, also in false negative events.

  8. Characterisation of PM 10 emissions from woodstove combustion of common woods grown in Portugal

    Science.gov (United States)

    Gonçalves, Cátia; Alves, Célia; Evtyugina, Margarita; Mirante, Fátima; Pio, Casimiro; Caseiro, Alexandre; Schmidl, Christoph; Bauer, Heidi; Carvalho, Fernando

    2010-11-01

    A series of source tests was performed to evaluate the chemical composition of particle emissions from the woodstove combustion of four prevalent Portuguese species of woods: Pinus pinaster (maritime pine), Eucalyptus globulus (eucalyptus), Quercus suber (cork oak) and Acacia longifolia (golden wattle). Analyses included water-soluble ions, metals, radionuclides, organic and elemental carbon (OC and EC), humic-like substances (HULIS), cellulose and approximately l80 organic compounds. Particle (PM 10) emission factors from eucalyptus and oak were higher than those from pine and acacia. The carbonaceous matter represented 44-63% of the particulate mass emitted during the combustion process, regardless of species burned. The major organic components of smoke particles, for all the wood species studied, with the exception of the golden wattle (0.07-1.9% w/w), were anhydrosugars (0.2-17% w/w). Conflicting with what was expected, only small amounts of cellulose were found in wood smoke. As for HULIS, average particle mass concentrations ranged from 1.5% to 3.0%. The golden wattle wood smoke presented much higher concentrations of ions and metal species than the emissions from the other wood types. The results of the analysis of radionuclides revealed that the 226Ra was the naturally occurring radionuclide more enriched in PM 10. The chromatographically resolved organics included n-alkanes, n-alkenes, PAH, oxygenated PAH, n-alkanals, ketones, n-alkanols, terpenoids, triterpenoids, phenolic compounds, phytosterols, alcohols, n-alkanoic acids, n-di-acids, unsaturated acids and alkyl ester acids.

  9. Source contributions to PM{sub 2.5} and PM{sub 10} at an urban background and a street location

    Energy Technology Data Exchange (ETDEWEB)

    Keuken, M.; Voogt, M.; Moerman, M. [TNO, Utrecht (Netherlands); Blom, M.; Weijers, E.P. [Energy research Centre of the Netherlands ECN, Petten (Netherlands); Roeckmann, T.; Dusek, U. [Institute for Marine and Atmospheric Research IMAU, Utrecht (Netherlands)

    2013-06-15

    The contribution of regional, urban and traffic sources to PM{sub 2.5} and PM{sub 10} in an urban area was investigated in this study. The chemical composition of PM{sub 2.5} and PM{sub 10} was measured over a year at a street location and up- and down-wind of the city of Rotterdam, Netherlands. The {sup 14}C content in EC and OC concentrations was also determined, to distinguish the contribution from 'modern' carbon (e.g., biogenic emissions, biomass burning and wildfires) and fossil fuel combustion. It was concluded that the urban background of PM{sub 2.5} and PM{sub 10} is dominated by the regional background, and that primary and secondary PM emission by urban sources contribute less than 15%. The {sup 14}C analysis revealed that 70% of OC originates from modern carbon and 30% from fossil fuel combustion. The corresponding percentages for EC are, respectively 17% and 83%. It is concluded that in particular the urban population living in street canyons with intense road traffic has potential health risks. This is due to exposure to elevated concentrations of a factor two for EC from exhaust emissions in PM{sub 2.5} and a factor 2-3 for heavy metals from brake and tyre wear, and re-suspended road dust in PM{sub 10}. It follows that local air quality management may focus on local measures to street canyons with intense road traffic.

  10. Assessment of social losses of pollution's health caused by man-made pollution of atmospheric air with emissions of particulate matters (PM10

    Directory of Open Access Journals (Sweden)

    Turos Ye.I.

    2017-04-01

    Full Text Available According to available estimates, about 3% of lethal outcomes from cardiac-pulmonary pathology and 5% from lung cancer are related to the impact of patriculate matters (PM. In the course of the study there were assessed social losses of population’s health (additional death cases caused by risk conditions of atmospheric air pollution with PM of various air-dynamic diameter (PM10, proper to emissions of various industrial enterprises. It was established that 90% of population of cities under study live under high exposures (≥50 µg/m3 health and risks for population (IRM=10-3÷10-4, caused by PM10 emissions. Results showed that metallurgical industry is responsible for 7,2 to 2193 additional mortality cases. The impact of machine building enterprises – from 0.06 to 21 cases; coke and chemical – from 1.5 to 36 cases; mining – from 1.1 to 14,6 cases. The findings revealed 0.6 % increase in lifetime mortality for each 10 µg/m3 in 24-hour average PM10 concentration. Based on research outcomes, a set of instruments was developed for implementation of air pollution risk management programs aimed at mitigation of health risks from (PM10 in highly exposed groups.

  11. Atmospheric particulate emissions from dry abrasive blasting using coal slag

    Energy Technology Data Exchange (ETDEWEB)

    Bhaskar Kura; Kalpalatha Kambham; Sivaramakrishnan Sangameswaran; Sandhya Potana [University of New Orleans, New Orleans, LA (United States). Department of Civil and Environmental Engineering

    2006-08-15

    Coal slag is one of the widely used abrasives in dry abrasive blasting. Atmospheric emissions from this process include particulate matter (PM) and heavy metals, such as chromium, lead, manganese, nickel. Quantities and characteristics of PM emissions depend on abrasive characteristics and process parameters. Emission factors are key inputs to estimate emissions. Experiments were conducted to study the effect of blast pressure, abrasive feed rate, and initial surface contamination on total PM (TPM) emission factors for coal slag. Rusted and painted mild steel surfaces were used as base plates. Blasting was carried out in an enclosed chamber, and PM was collected from an exhaust duct using U.S. Environment Protection Agency source sampling methods for stationary sources. Results showed that there is significant effect of blast pressure, feed rate, and surface contamination on TPM emissions. Mathematical equations were developed to estimate emission factors in terms of mass of emissions per unit mass of abrasive used, as well as mass of emissions per unit of surface area cleaned. These equations will help industries in estimating PM emissions based on blast pressure and abrasive feed rate. In addition, emissions can be reduced by choosing optimum operating conditions. 40 refs., 5 figs., 2 tabs.

  12. Emissions from residential energy use dominate exposure to ambient fine particulate matter in India

    Science.gov (United States)

    Conibear, L.; Butt, E. W.; Knote, C. J.; Arnold, S.; Spracklen, D. V.

    2017-12-01

    Exposure to ambient particulate matter of less than 2.5 µm in diameter (PM2.5) is a leading cause of disease burden in India. Information on the source contributions to the burden of disease attributable to ambient PM2.5 exposure is critical to support the national and sub-national control of air pollution. Previous studies analysing the contributions of different emission sectors to disease burden in India have been limited by coarse model resolutions and a lack of extensive PM2.5 observations before 2016. We use a regional numerical weather prediction model online-coupled with chemistry, evaluated against extensive surface observations, to make the first high resolution study of the contributions of seven emission sectors to the disease burden associated with ambient PM2.5 exposure in India. We find that residential energy use is the dominant contributing emission sector. Removing air pollution emissions from residential energy use would reduce population-weighted annual mean ambient PM2.5 concentrations by 52%, reducing the number of premature mortalities caused by exposure to ambient PM2.5 by 26%, equivalent to 268,000 (95% uncertainty interval (95UI): 167,000-360,000) lives every year. The smaller fractional reduction in mortality burden is due to the non-linear exposure-response relationship at the high PM2.5 concentrations observed across India and consequently large reductions in emissions are required to reduce the health burden from ambient PM2.5 exposure in India. Keywords: ambient air quality, India, residential energy use, health impact, particulate matter, WRF-Chem

  13. Soy Biodiesel Emissions Have Reduced Inflammatory Effects Compared to Diesel Emissions in Healthy and Allergic Mice

    Science.gov (United States)

    Toxicity of exhaust from combustion of petroleum diesel (BO), soy-based biodiesel (B100), or a 20% biodiesel/80% petrodiesel mix (B20) was compared in healthy and house dust mite (HDM)-allergic mice. Fuel emissions were diluted to target fine particulate matter (PM2.5) conrentrat...

  14. Light-Duty GDI Vehicle PM and VOC Speciated Emissions at Differing Ambient Temperatures with Ethanol Blend Gasoline

    Science.gov (United States)

    With the rise in the use of ethanol-blend gasoline in the US and more manufacturers implementing gasoline direct injection (GDI) technologies, interest is increasing in how these fuel blends affect PM and VOC emissions in GDI technology vehicles. EPA conducted a study characteri...

  15. Particulate matter emission modelling based on soot and SOF from direct injection diesel engines

    International Nuclear Information System (INIS)

    Tan, P.Q.; Hu, Z.Y.; Deng, K.Y.; Lu, J.X.; Lou, D.M.; Wan, G.

    2007-01-01

    Particulate matter (PM) emission is one of the major pollutants from diesel engines, and it is harmful for human health and influences the atmospheric visibility. In investigations for reducing PM emission, a simulation model for PM emission is a useful tool. In this paper, a phenomenological, composition based PM model of direct injection (DI) diesel engines has been proposed and formulated to simulate PM emission. The PM emission model is based on a quasi-dimensional multi-zone combustion model using the formation mechanisms of the two main compositions of PM: soot and soluble organic fraction (SOF). First, the quasi-dimensional multi-zone combustion model is given. Then, two models for soot and SOF emissions are established, respectively, and after that, the two models are integrated into a single PM emission model. The soot emission model is given by the difference between a primary formation model and an oxidation model of soot. The soot primary formation model is the Hiroyasu soot formation model, and the Nagle and Strickland-Constable model is adopted for soot oxidation. The SOF emission model is based on an unburned hydrocarbons (HC) emission model, and the HC emission model is given by the difference between a HC primary formation model and a HC oxidation model. The HC primary formation model considers fuel injected and mixed beyond the lean combustion limit during ignition delay and fuel effusing from the nozzle sac volume at low pressure and low velocity. In order to validate the PM emission model, experiments were performed on a six cylinder, turbocharged and intercooled DI diesel engine. The simulation results show good agreement with the experimental data, which indicates the validity of the PM emission model. The calculation results show that the distinctions between PM and soot formation rates are mainly in the early combustion stage. The SOF formation has an important influence on the PM formation at lower loads, and soot formation dominates the

  16. Source-receptor relationships for PM2.5 during typical pollution episodes in the Pearl River Delta city cluster, China

    Science.gov (United States)

    Fan, Q.; Liu, Y.; Hong, Y.; Wang, X.; Chan, P.; Chen, X.; Lai, A.; Wang, M.; Chen, X.

    2017-12-01

    Located in the Southern China monsoon region, pollution days in Pearl River Delta (PRD) were classified into "Western type", "Central type" or "Eastern type", with a relative percentage of 67%, 24% and 9%, respectively. Using this classification system, three typical pollution events were selected for numerical simulations using the WRF-Chem model. The source sensitivity method for anthropogenic emissions of PM2.5 and its precursors was applied to identify the source-receptor relationships for PM2.5 among 9 cities in PRD. For "Western type" case, the PRD region was under control of a high-pressure system with easterly prevailing winds. The PM2.5 concentrations in the western PRD region were higher than those in the eastern region, with emissions from cities in the eastern PRD region having higher contributions. Within the PRD's urban cluster, PM2.5 in Huizhou, Dongguan and Shenzhen was mainly derived from local emissions, whereas the PM2.5 in the other cities was primarily derived from external transport. For "Eastern type" case, the PRD was influenced by Typhoon Soulik with westerly prevailing winds. Emissions from cities in the western PRD region had the highest impacts on the overall PM2.5 concentration. PM2.5 in Jiangmen and Foshan was primarily derived from local emissions. Regarding "Central type" case, the PRD region was under control of a uniform pressure field with low wind speed. PM2.5 concentrations of each city were primarily caused by local emissions. Overall, wind flows played a significant role in the transport and spatial distribution of PM2.5 across the PRD region. Ideally, local governments would be wise to establish joint prevention and control measures to reduce regional atmospheric pollution, especially for "Western type" pollution.

  17. Characteristics of PM1.0, PM2.5, and PM10, and Their Relation to Black Carbon in Wuhan, Central China

    Directory of Open Access Journals (Sweden)

    Wei Gong

    2015-09-01

    Full Text Available Hourly average monitoring data for mass concentrations of PM1, PM2.5, PM10, and black carbon (BC were measured in Wuhan from December 2013 to December 2014, which has a flourishing steel industry, to analyze the characteristics of PM and their relation to BC, using statistical methods. The results indicate that variations in the monthly average mass concentrations of PM have similar concave parabolic shapes, with the highest values occurring in January and the lowest values appearing in August or September. The correlation coefficient of the linear regression model between PM1 and PM2.5 is quite high, reaching 0.99. Furthermore, the proportion of PM1 contained within PM2.5 is roughly 90%, directly proving that ultrafine particles whose diameter less than 1 μm may be a primary component of PM2.5 in Wuhan. Additionally, better seasonal correlation between PM and BC occurs only in summer and autumn, due to multiple factors such as topography, temperature, and the atmosphere in winter and spring. Finally, analysis of the diurnal variation of PM and BC demonstrates that the traffic emissions during rush hour, exogenous pollutants, and the shallow PBLH with stagnant atmosphere, all contribute to the severe pollution of Wuhan in winter.

  18. Implementation and evaluation of PM2.5 source contribution ...

    Science.gov (United States)

    Source culpability assessments are useful for developing effective emissions control programs. The Integrated Source Apportionment Method (ISAM) has been implemented in the Community Multiscale Air Quality (CMAQ) model to track contributions from source groups and regions to ambient levels and deposited amounts of primary and secondary inorganic PM2.5. Confidence in this approach is established by comparing ISAM source contribution estimates to emissions zero-out simulations recognizing that these approaches are not always expected to provide the same answer. The comparisons are expected to be most similar for more linear processes such as those involving primary emissions of PM2.5 and most different for non-linear systems like ammonium nitrate formation. Primarily emitted PM2.5 (e.g. elemental carbon), sulfur dioxide, ammonia, and nitrogen oxide contribution estimates compare well to zero-out estimates for ambient concentration and deposition. PM2.5 sulfate ion relationships are strong, but nonlinearity is evident and shown to be related to aqueous phase oxidation reactions in the host model. ISAM and zero-out contribution estimates are less strongly related for PM2.5 ammonium nitrate, resulting from instances of non-linear chemistry and negative responses (increases in PM2.5 due to decreases in emissions). ISAM is demonstrated in the context of an annual simulation tracking well characterized emissions source sectors and boundary conditions shows source contri

  19. Gaseous and particle emissions from an ethanol fumigated compression ignition engine

    International Nuclear Information System (INIS)

    Surawski, Nicholas C.; Ristovski, Zoran D.; Brown, Richard J.; Situ, Rong

    2012-01-01

    Highlights: ► Ethanol fumigation system fitted on a direct injection compression ignition engine. ► Ethanol substitutions up to 40% (by energy) were achieved. ► Gaseous and particle emissions were measured at intermediate speed. ► PM and NO emissions significantly reduced, whilst CO and HC increased. ► The number of particles emitted generally higher with ethanol fumigation. - Abstract: A 4-cylinder Ford 2701C test engine was used in this study to explore the impact of ethanol fumigation on gaseous and particle emission concentrations. The fumigation technique delivered vaporised ethanol into the intake manifold of the engine, using an injector, a pump and pressure regulator, a heat exchanger for vaporising ethanol and a separate fuel tank and lines. Gaseous (Nitric oxide (NO), Carbon monoxide (CO) and hydrocarbons (HC)) and particulate emissions (particle mass (PM 2.5 ) and particle number) testing was conducted at intermediate speed (1700 rpm) using 4 load settings with ethanol substitution percentages ranging from 10% to 40% (by energy). With ethanol fumigation, NO and PM 2.5 emissions were reduced, whereas CO and HC emissions increased considerably and particle number emissions increased at most test settings. It was found that ethanol fumigation reduced the excess air factor for the engine and this led to increased emissions of CO and HC, but decreased emissions of NO. PM 2.5 emissions were reduced with ethanol fumigation, as ethanol has a very low “sooting” tendency. This is due to the higher hydrogen-to-carbon ratio of this fuel, and also because ethanol does not contain aromatics, both of which are known soot precursors. The use of a diesel oxidation catalyst (as an after-treatment device) is recommended to achieve a reduction in the four pollutants that are currently regulated for compression ignition engines. The increase in particle number emissions with ethanol fumigation was due to the formation of volatile (organic) particles

  20. Toxic potential of organic constituents of submicron particulate matter (PM1) in an urban road site (Barcelona).

    Science.gov (United States)

    Mesquita, Sofia R; van Drooge, Barend L; Dall'Osto, Manuel; Grimalt, Joan O; Barata, Carlos; Vieira, Natividade; Guimarães, Laura; Piña, Benjamin

    2017-06-01

    Atmospheric particulate matter (PM) is a recognized risk factor contributing to a number of diseases in human populations and wildlife globally. Organic matter is a major component of PM, but its contribution to overall toxicity of PM has not been thoroughly evaluated yet. In the present work, the biological activity of organic extracts from PM1 (particles with less than 1 μm of aerodynamic diameter) collected from an urban road site in the centre of Barcelona (NE Spain) was evaluated using a yeast-based assay (AhR-RYA) and different gene expression markers in zebrafish embryos. Dioxin-like activity of the extracts correlated to primary emissions from local traffic exhausts, reflecting weekday/weekend alternance. Expression levels of cyp1a and of gene markers for key cellular processes and development (ier2, fos) also correlated to vehicle emissions, whereas expression of gene markers related to antioxidant defence and endocrine effects (gstal, hao1, ttr) was strongly reduced in samples with strong contribution from regional air masses with aged secondary organic species or with strong influence of biomass burning emissions. Our data suggest that the toxic potential of PM1 organic chemical constituents strongly depends on the emission sources and on the process of ageing from primary to secondary organic aerosols.

  1. Capturing PM2.5 emissions from 3D printing via nanofiber-based air filter

    OpenAIRE

    Rao, Chengchen; Gu, Fu; Zhao, Peng; Sharmin, Nusrat; Gu, Haibing; Fu, Jianzhong

    2017-01-01

    This study investigated the feasibility of using polycaprolactone (PCL) nanofiber-based air filters to capture PM2.5 particles emitted from fused deposition modeling (FDM) 3D printing. Generation and aggregation of emitted particles were investigated under different testing environments. The results show that: (1) the PCL nanofiber membranes are capable of capturing particle emissions from 3D printing, (2) relative humidity plays a signification role in aggregation of the captured particles, ...

  2. Numerical simulations for the sources apportionment and control strategies of PM2.5 over Pearl River Delta, China, part I: Inventory and PM2.5 sources apportionment.

    Science.gov (United States)

    Huang, Yeqi; Deng, Tao; Li, Zhenning; Wang, Nan; Yin, Chanqin; Wang, Shiqiang; Fan, Shaojia

    2018-09-01

    This article uses the WRF-CMAQ model to systematically study the source apportionment of PM 2.5 under typical meteorological conditions in the dry season (November 2010) in the Pearl River Delta (PRD). According to the geographical location and the relative magnitude of pollutant emission, Guangdong Province is divided into eight subdomains for source apportionment study. The Brute-Force Method (BFM) method was implemented to simulate the contribution from different regions to the PM 2.5 pollution in the PRD. Results show that the industrial sources accounted for the largest proportion. For emission species, the total amount of NO x and VOC in Guangdong Province, and NH 3 and VOC in Hunan Province are relatively larger. In Guangdong Province, the emission of SO 2 , NO x and VOC in the PRD are relatively larger, and the NH 3 emissions are higher outside the PRD. In northerly-controlled episodes, model simulations demonstrate that local emissions are important for PM 2.5 pollution in Guangzhou and Foshan. Meanwhile, emissions from Dongguan and Huizhou (DH), and out of Guangdong Province (SW) are important contributors for PM 2.5 pollution in Guangzhou. For PM 2.5 pollution in Foshan, emissions in Guangzhou and DH are the major contributors. In addition, high contribution ratio from DH only occurs in severe pollution periods. In southerly-controlled episode, contribution from the southern PRD increases. Local emissions and emissions from Shenzhen, DH, Zhuhai-Jiangmen-Zhongshan (ZJZ) are the major contributors. Regional contribution to the chemical compositions of PM 2.5 indicates that the sources of chemical components are similar to those of PM 2.5 . In particular, SO 4 2- is mainly sourced from emissions out of Guangdong Province, while the NO 3- and NH 4+ are more linked to agricultural emissions. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Exploring the relationship between meteorology and surface PM2.5 in Northern India

    Science.gov (United States)

    Schnell, J.; Naik, V.; Horowitz, L. W.; Paulot, F.; Ginoux, P. A.

    2017-12-01

    Northern India is one of the most polluted and densely populated regions in world. Accurately modeling pollution in the region is difficult due to the extreme conditions with respect to emissions, meteorology, and topography, but it is paramount in order to understand how future changes in emissions and climate may alter the region's pollution regime. We evaluate a developmental version of the new-generation NOAA GFDL Atmospheric Model, version 4 (AM4) in its ability to simulate observed wintertime PM2.5 and its relationship to meteorology over the Northern India (23°N-31°N, 68°E-90°E). We perform two simulations of the GFDL-AM4 nudged to observed meteorology for the period (1980-2016) with two emission inventories developed for CMIP5 and CMIP6 and compare results with observations from India's Central Pollution Control Board (CPCB) for the period 1 October 2015 - 31 March 2016. Overall, our results indicate that the simulation with CMIP6 emissions has substantially reduced the low model bias in the region. The AM4, albeit biased low, generally simulates the magnitude and daily variability in observed total PM2.5. Ammonium nitrate and ammonium sulfate are the primary components of PM2.5 in the model, and although not directly observed, correlations of total observed PM2.5 and meteorology with the modeled individual PM2.5 components suggest the same for the observations. The model correctly reproduces the shape and magnitude of the seasonal cycle of PM2.5; but for the diurnal cycle, it misses the early evening rise and secondary maximum found in the observations. Observed PM2.5 abundances within the densely populated Indo-Gangetic Plain are by far the highest and are closely related to boundary layer meteorology, specifically relative humidity, wind speed, boundary layer height, and inversion strength. The GFDL-AM4 reproduces the observed pollution gradient over Northern India as well as the strength of the meteorology-PM2.5 relationship in most locations.

  4. Field measurement on the emissions of PM, OC, EC and PAHs from indoor crop straw burning in rural China

    International Nuclear Information System (INIS)

    Wei, Siye; Shen, Guofeng; Zhang, Yanyan; Xue, Miao; Xie, Han; Lin, Pengchuan; Chen, Yuanchen; Wang, Xilong; Tao, Shu

    2014-01-01

    Field measurements were conducted to measure emission factors of particulate matter (EF PM ), organic carbon (EF OC ), elemental carbon (EF EC ), 28 parent polycyclic aromatic hydrocarbons (EF 28pPAHs ), and 4 oxygenated PAHs (EF 4oPAHs ) for four types of crop straws burned in two stoves with similar structure but different ages. The average EF PM , EF OC , EF EC , EF 28pPAHs , and EF 4oPAHs were 9.1 ± 5.7 (1.8–22 as range), 2.6 ± 2.9 (0.30–12), 1.1 ± 1.2 (0.086–5.5), 0.26 ± 0.19 (0.076–0.96), 0.011 ± 0.14 (1.3 × 10 −4 – 0.063) g/kg, respectively. Much high EF 28pPAHs was observed in field compared with the laboratory derived EFs and significant difference in EF 28pPAHs was identified among different crop residues, indicating considerable underestimation when laboratory derived EFs were used in the inventory. The field measured EF PM , EF OC , and EF EC were significantly affected by stove age and the EFs of carbonaceous particles for the 15-year old stove were approximately 2.5 times of those for the 1-year old stove. Highlights: • Field measurements provided more reliable data for the inventory. • Emissions from indoor crop residue burning were measured in field. • Much high PAHs emissions were found in field measurement in comparison with laboratory derived results. • Emissions of carbonaceous particulate matter increased by 2.5 times in the old stove compared that in a new stove. -- Emissions of incomplete combustion pollutants strongly affected by the fuel type and stove usage

  5. Masonry fireplace emissions test method: Repeatability and sensitivity to fueling protocol.

    Science.gov (United States)

    Stern, C H; Jaasma, D R; Champion, M R

    1993-03-01

    A test method for masonry fireplaces has been evaluated during testing on six masonry fireplace configurations. The method determines carbon monoxide and particulate matter emission rates (g/h) and factors (g/kg) and does not require weighing of the appliance to determine the timing of fuel loading.The intralaboratory repeatability of the test method has been determined from multiple tests on the six fireplaces. For the tested fireplaces, the ratio of the highest to lowest measured PM rate averaged 1.17 and in no case was greater than 1.32. The data suggest that some of the variation is due to differences in fuel properties.The influence of fueling protocol on emissions has also been studied. A modified fueling protocol, tested in large and small fireplaces, reduced CO and PM emission factors by roughly 40% and reduced CO and PM rates from 0 to 30%. For both of these fireplaces, emission rates were less sensitive to fueling protocol than emission factors.

  6. Air Pollutant Emissions Projections for the Cement and Steel Industry in China and the Impact of Emissions Control Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Hasanbeigi, Ali [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Khanna, Nina [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Price, Lynn [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-03-01

    scenario showed significantly lower PM emissions for the cement industry, reaching to 1.7 million tons of PM in 2050, which is less than half of that in the other two scenarios. The Advanced EOP scenario also has the lowest SO2 emissions for the cement industry in China, reaching to 212,000 tons of SO2 in 2050, which is equal to 40 percent of the SO2 emissions in the Advanced scenario and 30 percent of the emissions in the Base Case scenario. The SO2 emission is mainly caused by fuel (coal) burning in cement kiln or steel processes. For the steel industry, the SO2 emissions of the Advanced EOP scenario are significantly lower than the other scenarios, with emissions declining to 323,000 tons in 2050, which is equal to 21 percent and 17 percent of the emissions of Advanced and Base Case scenarios in 2050, respectively. Results of the economic analysis show that for the Chinese cement industry, end-of-pipe PM control technologies have the lowest abatement cost per ton of PM reduced, followed by product change measures and energy efficiency measures, respectively. In summary, in order to meet Chinese national and regional air quality standards, best practice end-of-pipe emissions control technologies must be installed in both cement and steel industry and it must be supplemented by implementation of energy efficiency technologies and reduction of cement and steel production through structural change in industry.

  7. Hospital indoor PM10/PM2.5 and associated trace elements in Guangzhou, China

    International Nuclear Information System (INIS)

    Wang Xinhua; Bi Xinhui; Sheng Guoying; Fu Jiamo

    2006-01-01

    PM10 and PM2.5 samples were collected in the indoor environments of four hospitals and their adjacent outdoor environments in Guangzhou, China during the summertime. The concentrations of 18 target elements in particles were also quantified. The results showed that indoor PM2.5 levels with an average of 99 μg m -3 were significantly higher than outdoor PM2.5 standard of 65 μg m -3 recommended by USEPA [United States Environmental Protection Agency. Office of Air and Radiation, Office of Air Quality Planning and Standards, Fact Sheet. EPA's Revised Particulate Matter Standards, 17, July 1997] and PM2.5 constituted a large fraction of indoor respirable particles (PM10) by an average of 78% in four hospitals. High correlation between PM2.5 and PM10 (R 2 of 0.87 for indoors and 0.90 for outdoors) suggested that PM2.5 and PM10 came from similar particulate emission sources. The indoor particulate levels were correlated with the corresponding outdoors (R 2 of 0.78 for PM2.5 and 0.67 for PM10), demonstrating that outdoor infiltration could lead to direct transportation into indoors. In addition to outdoor infiltration, human activities and ventilation types could also influence indoor particulate levels in four hospitals. Total target elements accounted for 3.18-5.56% of PM2.5 and 4.38-9.20% of PM10 by mass, respectively. Na, Al, Ca, Fe, Mg, Mn and Ti were found in the coarse particles, while K, V, Cr, Ni, Cu, Zn, Cd, Sn, Pb, As and Se existed more in the fine particles. The average indoor concentrations of total elements were lower than those measured outdoors, suggesting that indoor elements originated mainly from outdoor emission sources. Enrichment factors (EF) for trace element were calculated to show that elements of anthropogenic origins (Zn, Pb, As, Se, V, Ni, Cu and Cd) were highly enriched with respect to crustal composition (Al, Fe, Ca, Ti and Mn). Factor analysis was used to identify possible pollution source-types, namely street dust, road traffic and

  8. Hospital indoor PM10/PM2.5 and associated trace elements in Guangzhou, China.

    Science.gov (United States)

    Wang, Xinhua; Bi, Xinhui; Sheng, Guoying; Fu, Jiamo

    2006-07-31

    PM10 and PM2.5 samples were collected in the indoor environments of four hospitals and their adjacent outdoor environments in Guangzhou, China during the summertime. The concentrations of 18 target elements in particles were also quantified. The results showed that indoor PM2.5 levels with an average of 99 microg m(-3) were significantly higher than outdoor PM2.5 standard of 65 microg m(-3) recommended by USEPA [United States Environmental Protection Agency. Office of Air and Radiation, Office of Air Quality Planning and Standards, Fact Sheet. EPA's Revised Particulate Matter Standards, 17, July 1997] and PM2.5 constituted a large fraction of indoor respirable particles (PM10) by an average of 78% in four hospitals. High correlation between PM2.5 and PM10 (R(2) of 0.87 for indoors and 0.90 for outdoors) suggested that PM2.5 and PM10 came from similar particulate emission sources. The indoor particulate levels were correlated with the corresponding outdoors (R(2) of 0.78 for PM2.5 and 0.67 for PM10), demonstrating that outdoor infiltration could lead to direct transportation into indoors. In addition to outdoor infiltration, human activities and ventilation types could also influence indoor particulate levels in four hospitals. Total target elements accounted for 3.18-5.56% of PM2.5 and 4.38-9.20% of PM10 by mass, respectively. Na, Al, Ca, Fe, Mg, Mn and Ti were found in the coarse particles, while K, V, Cr, Ni, Cu, Zn, Cd, Sn, Pb, As and Se existed more in the fine particles. The average indoor concentrations of total elements were lower than those measured outdoors, suggesting that indoor elements originated mainly from outdoor emission sources. Enrichment factors (EF) for trace element were calculated to show that elements of anthropogenic origins (Zn, Pb, As, Se, V, Ni, Cu and Cd) were highly enriched with respect to crustal composition (Al, Fe, Ca, Ti and Mn). Factor analysis was used to identify possible pollution source-types, namely street dust, road traffic

  9. Assesment of Pb concentration in PM{sub 2,5} and PM{sub 10} at Serpong area; Asesmen konsentrasi Pb pada PM{sub 2,5} dan PM{sub 10} di kawasan Serpong

    Energy Technology Data Exchange (ETDEWEB)

    Rita,; Hamonangan, Esrom; Halimah Syafrul, E-mail: ritaiim@yahoo.com [Pusat Sarana Pengendalian Dampak Lingkungan, Kemenneg Lingkungan Hidup, Kawasan Puspiptek Serpong, Tangerang 15314 (Indonesia); Santoso, Muhayatun; Lestian, Diah Dwiana [Pusat Tenaga Nuklir Bahan dan Radiometri (PTNBR) - BATAN, JI. Tamansari NO.71 Bandung 40132 (Indonesia)

    2010-11-15

    Ambient air pollution, especially Pb, in Serpong area has been detected since 1996. Pollution caused by heavy metals Pb deserve serious attention because of the impact is very influential on health such as reduced levels of intelligence, learning disability, symptoms of anemia, barriers to growth, poor cognitive development, weakened immune system, symptoms of autism, and even premature death. This study was conducted to determine Pb concentration of PM{sub 2,5} and PM{sub 10} in four residential locations in Serpong area as part of a series of comprehensive studies for the characterization and identification of sources pollution. Particulates were sampled using Gent Stacked Filter Unit Sampler at 3 housing locations and 1 office location in the period of August 25 to November 3, 2008, Samples were analyzed using nuclear analytical techniques, Proton Induced X-ray Emission. The results showed that the activity concentration of Pb in PM{sub 2,5} for the location of Setu, Pusarpedal, Batan Indah, and BSD were in the range of 33-388, 12-254, 6-282, and 5-332 ng/m{sup 3}, while for PM{sub 10} were 69-732, 59-647, 31-810, and 28718 ng/m{sup 3}, respectively, In general, Pb concentrations in Serpong area were higher than those in some other cities in Asia region. These results are expected to be used as scientific based reference in formulating, taking action, and appropriate policies to overcome environmental problems. (author)

  10. Temporal variations and spatial distribution of ambient PM2.2 and PM1 concentrations in Dhaka, Bangladesh

    International Nuclear Information System (INIS)

    Begum, Bilkis A.; Biswas, Swapan K.; Hopke, Philip K.

    2006-01-01

    Concentrations and characteristics of airborne particulate matter (PM 1 , PM 2.2 and BC) on air quality have been studied at two air quality-monitoring stations in Dhaka, the capital of Bangladesh. One site is at the Farm Gate area, a hot spot with very high pollutant concentrations because of its proximity to major roadways. The other site is at a semi-residential area located at the Atomic Energy Centre, Dhaka Campus, (AECD) with relatively less traffic. The samples were collected using a 'Gent' stacked filter unit in two fractions of 0-2.2 μm and 2.2-10 μm sizes. Samples of fine (PM 2.2 ) and coarse (PM 2.2-1 ) airborne particulate matter fractions collected from 2000 to 2003 were studied. It has been observed that fine particulate matter has a decreasing trend, from prior year measurements, because of Government policy interventions like phase-wise plans to take two-stroke three-wheelers off the roads in Dhaka and finally banned from January 1, 2003. Other policy interventions were banning of old buses and trucks to ply on Dhaka city promotion of the using compressed natural gas (CNG), introducing air pollution control devices in vehicles, etc. It was found that both local (mostly from vehicular emissions) and possibly some regional emission sources are responsible for high PM 2.2 and BC concentrations in Dhaka. PM 2.2 , PM 2.2-1 and black carbon concentration levels depend on the season, wind direction and wind speed. Transport related emissions are the major source of BC and long-range transportation from fossil fuel related sources and biomass burning could be another substantial source of BC

  11. Temporal variations and spatial distribution of ambient PM2.2 and PM10 concentrations in Dhaka, Bangladesh.

    Science.gov (United States)

    Begum, Bilkis A; Biswas, Swapan K; Hopke, Philip K

    2006-04-01

    Concentrations and characteristics of airborne particulate matter (PM(10), PM(2.2) and BC) on air quality have been studied at two air quality-monitoring stations in Dhaka, the capital of Bangladesh. One site is at the Farm Gate area, a hot spot with very high pollutant concentrations because of its proximity to major roadways. The other site is at a semi-residential area located at the Atomic Energy Centre, Dhaka Campus, (AECD) with relatively less traffic. The samples were collected using a 'Gent' stacked filter unit in two fractions of 0-2.2 mum and 2.2-10 mum sizes. Samples of fine (PM(2.2)) and coarse (PM(2.2-10)) airborne particulate matter fractions collected from 2000 to 2003 were studied. It has been observed that fine particulate matter has a decreasing trend, from prior year measurements, because of Government policy interventions like phase-wise plans to take two-stroke three-wheelers off the roads in Dhaka and finally banned from January 1, 2003. Other policy interventions were banning of old buses and trucks to ply on Dhaka city promotion of the using compressed natural gas (CNG), introducing air pollution control devices in vehicles, etc. It was found that both local (mostly from vehicular emissions) and possibly some regional emission sources are responsible for high PM(2.2) and BC concentrations in Dhaka. PM(2.2), PM(2.2-10) and black carbon concentration levels depend on the season, wind direction and wind speed. Transport related emissions are the major source of BC and long-range transportation from fossil fuel related sources and biomass burning could be another substantial source of BC.

  12. Historical Trends in Pm2.5-Related Premature Mortality ...

    Science.gov (United States)

    Background: Air quality across the northern hemisphere over the past two decades has witnessed dramatic changes, with continuous improvement in developed countries in North America and Europe, but a contrasting sharp deterioration in developing regions of Asia. Objective: This study investigates the historical trend in the long-term exposure to PM2.5 and PM2.5-related premature mortality (PM2.5-mortality) and its response to changes in emission that occurred during 1990-2010 across the northern hemisphere. Implications for future trends in human exposure to air pollution in both developed and developing regions of the world are discussed. Methods: We employed the integrated exposure-response model developed by Health Effects Institute to estimate the PM2.5-mortality. The 1990-2010 annual-average PM2.5 concentrations were obtained from the simulations using WRF-CMAQ model. Emission mitigation efficiencies of SO2, NOx, NH3 and primary PM are estimated from the PM2.5-mortality responses to the emission variations. Results: Estimated PM2.5-mortalities in East Asia and South Asia increased by 21% and 85% respectively, from 866,000 and 578,000 in 1990, to 1,048,000 and 1,068,000 in 2010. PM2.5-mortalities in developed regions, i.e., Europe and high-income North America decreased substantially by 67% and 58% respectively. Conclusions: Over the past two decades, correlations between population and PM2.5 have become weaker in Europe and North America due to air pollu

  13. Reducing mortality risk by targeting specific air pollution sources: Suva, Fiji.

    Science.gov (United States)

    Isley, C F; Nelson, P F; Taylor, M P; Stelcer, E; Atanacio, A J; Cohen, D D; Mani, F S; Maata, M

    2018-01-15

    Health implications of air pollution vary dependent upon pollutant sources. This work determines the value, in terms of reduced mortality, of reducing ambient particulate matter (PM 2.5 : effective aerodynamic diameter 2.5μm or less) concentration due to different emission sources. Suva, a Pacific Island city with substantial input from combustion sources, is used as a case-study. Elemental concentration was determined, by ion beam analysis, for PM 2.5 samples from Suva, spanning one year. Sources of PM 2.5 have been quantified by positive matrix factorisation. A review of recent literature has been carried out to delineate the mortality risk associated with these sources. Risk factors have then been applied for Suva, to calculate the possible mortality reduction that may be achieved through reduction in pollutant levels. Higher risk ratios for black carbon and sulphur resulted in mortality predictions for PM 2.5 from fossil fuel combustion, road vehicle emissions and waste burning that surpass predictions for these sources based on health risk of PM 2.5 mass alone. Predicted mortality for Suva from fossil fuel smoke exceeds the national toll from road accidents in Fiji. The greatest benefit for Suva, in terms of reduced mortality, is likely to be accomplished by reducing emissions from fossil fuel combustion (diesel), vehicles and waste burning. Copyright © 2017. Published by Elsevier B.V.

  14. Temporal and spatial variation in recent vehicular emission inventories in China based on dynamic emission factors.

    Science.gov (United States)

    Cai, Hao; Xie, Shaodong

    2013-03-01

    emissions. This paper tracks the temporal and spatial variation characteristics in recent vehicular emission inventories in China based on dynamic emission factors. The fact that CO and NMVOC emissions kept growing at reduced rates and the NOx, PM10, and GHG emissions continued rising rapidly reveals that it was insufficient to bring down the rapid growth of NOx, PM10, and CO2 emissions by merely tightening emission standards and improving fuel quality of motor vehicles. The results will assist decision makers to formulate effective control policies for China's vehicular emissions. The improved methodologies are applicable for routine update of China's vehicular emission inventories.

  15. Joint measurements of PM2. 5 and light-absorptive PM in woodsmoke-dominated ambient and plume environments

    Science.gov (United States)

    Zhang, K. Max; Allen, George; Yang, Bo; Chen, Geng; Gu, Jiajun; Schwab, James; Felton, Dirk; Rattigan, Oliver

    2017-09-01

    DC, also referred to as Delta-C, measures enhanced light absorption of particulate matter (PM) samples at the near-ultraviolet (UV) range relative to the near-infrared range, which has been proposed previously as a woodsmoke marker due to the presence of enhanced UV light-absorbing materials from wood combustion. In this paper, we further evaluated the applications and limitations of using DC as both a qualitative and semi-quantitative woodsmoke marker via joint continuous measurements of PM2. 5 (by nephelometer pDR-1500) and light-absorptive PM (by 2-wavelength and 7-wavelength Aethalometertext">®) in three northeastern US cities/towns including Rutland, VT; Saranac Lake, NY and Ithaca, NY. Residential wood combustion has shown to be the predominant source of wintertime primary PM2. 5 emissions in both Rutland and Saranac Lake, where we conducted ambient measurements. In Ithaca, we performed woodsmoke plume measurements. We compared the pDR-1500 against a FEM PM2. 5 sampler (BAM 1020), and identified a close agreement between the two instruments in a woodsmoke-dominated ambient environment. The analysis of seasonal and diurnal trends of DC, black carbon (BC, 880 nm) and PM2. 5 concentrations supports the use of DC as an adequate qualitative marker. The strong linear relationships between PM2. 5 and DC in both woodsmoke-dominated ambient and plume environments suggest that DC can reasonably serve as a semi-quantitative woodsmoke marker. We propose a DC-based indicator for woodsmoke emission, which has shown to exhibit a relatively strong linear relationship with heating demand. While we observed reproducible PM2. 5-DC relationships in similar woodsmoke-dominated ambient environments, those relationships differ significantly with different environments, and among individual woodsmoke sources. Our analysis also indicates the potential for PM2. 5-DC relationships to be utilized to distinguish different combustion and operating conditions of woodsmoke sources, and

  16. Impact of emission control on regional air quality in the Pearl Delta River region, southern China

    Science.gov (United States)

    Wang, N.; Xuejiao, D.

    2017-12-01

    The Pearl River Delta (PRD) in China has been suffering from air quality issues and the government has implemented a series of strategies in controlling emissions. In an attempt to provide scientific support for improving air quality, the paper investigates the concerning past-to-present air quality data and assesses air quality resulting from emission control. Statistical data revealed that energy consumption doubled from 2004 to 20014 and vehicle usage increased significantly from 2006 to 2014. Due to the effect of control efforts, primary emission of SO2, NOx and PM2.5 decreased resulting in ambient concentrations of SO2, NO2 and PM10 decreased by 66%, 20% and 24%, respectively. However, O3 increased 19% because of the increase of VOC emission. A chemical transport model, the Community Multi-scale Air Quality, was employed to evaluate the responses of nitrate, ammonium, SOA, PM2.5 and O3 to changes in NOx, VOC and NH3 emissions. Three scenarios, a baseline scenario, a CAP scenario (control strength followed as past tendency), and a REF scenario (strict control referred to latest policy and plans), were conducted to investigate the responses and mechanisms. NOx controlling scenarios showed that NOx, nitrate and PM2.5 reduced by 1.8%, 0.7% and 0.2% under CAP and reduced by 7.2%, 1.8% and 0.3% under REF, respectively. The results indicated that reducing NOx emission caused the increase of atmospheric oxidizability, which might result in a compensation of PM2.5 due to the increase of nitrate or sulfate. NH3 controlling scenarios showed that nitrate was sensitive to NH3 emission in PRD, with nitrate decreased by 0 - 10.6% and 0 - 48% under CAP and REF, respectively. Since controlling NH3 emissions not only reduced ammonium but also significantly reduced nitrate, the implement of NH3 controlling strategy was highly suggested. The VOC scenarios revealed that though SOA was not the major component of PM2.5, controlling VOC emission might take effect in southwestern PRD

  17. Airborne measurements of western U.S. wildfire emissions: Comparison with prescribed burning and air quality implications: Western U.S. Wildfire Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaoxi [School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta Georgia USA; Now at Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder Colorado USA; Now at Department of Chemistry, University of Colorado Boulder, Boulder Colorado USA; Huey, L. Gregory [School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta Georgia USA; Yokelson, Robert J. [Department of Chemistry, University of Montana, Missoula Montana USA; Selimovic, Vanessa [Department of Chemistry, University of Montana, Missoula Montana USA; Simpson, Isobel J. [Department of Chemistry, University of California, Irvine California USA; Müller, Markus [Department of Chemistry, University of Montana, Missoula Montana USA; Institute for Ion Physics and Applied Physics, University of Innsbruck, Innsbruck Austria; Jimenez, Jose L. [Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder Colorado USA; Department of Chemistry, University of Colorado Boulder, Boulder Colorado USA; Campuzano-Jost, Pedro [Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder Colorado USA; Department of Chemistry, University of Colorado Boulder, Boulder Colorado USA; Beyersdorf, Andreas J. [NASA Langley Research Center, Hampton Virginia USA; Now at Department of Chemistry, California State University, San Bernardino California USA; Blake, Donald R. [Department of Chemistry, University of California, Irvine California USA; Butterfield, Zachary [Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos New Mexico USA; Now at Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor Michigan USA; Choi, Yonghoon [NASA Langley Research Center, Hampton Virginia USA; Science Systems and Applications, Inc., Hampton Virginia USA; Crounse, John D. [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena California USA; Day, Douglas A. [Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder Colorado USA; Department of Chemistry, University of Colorado Boulder, Boulder Colorado USA; Diskin, Glenn S. [NASA Langley Research Center, Hampton Virginia USA; Dubey, Manvendra K. [Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos New Mexico USA; Fortner, Edward [Center for Aerosol and Cloud Chemistry, Aerodyne Research Inc., Billerica Massachusetts USA; Hanisco, Thomas F. [Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center, Greenbelt Maryland USA; Hu, Weiwei [Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder Colorado USA; Department of Chemistry, University of Colorado Boulder, Boulder Colorado USA; King, Laura E. [School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta Georgia USA; Kleinman, Lawrence [Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton New York USA; Meinardi, Simone [Department of Chemistry, University of California, Irvine California USA; Mikoviny, Tomas [Department of Chemistry, University of Oslo, Oslo Norway; Onasch, Timothy B. [Center for Aerosol and Cloud Chemistry, Aerodyne Research Inc., Billerica Massachusetts USA; Palm, Brett B. [Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder Colorado USA; Department of Chemistry, University of Colorado Boulder, Boulder Colorado USA; Peischl, Jeff [Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder Colorado USA; Earth System Research Laboratory, National Oceanic and Atmospheric Administration, Boulder Colorado USA; Pollack, Ilana B. [Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder Colorado USA; Earth System Research Laboratory, National Oceanic and Atmospheric Administration, Boulder Colorado USA; Now at Department of Atmospheric Science, Colorado State University, Fort Collins Colorado USA; Ryerson, Thomas B. [Earth System Research Laboratory, National Oceanic and Atmospheric Administration, Boulder Colorado USA; Sachse, Glen W. [NASA Langley Research Center, Hampton Virginia USA; Sedlacek, Arthur J. [Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton New York USA; Shilling, John E. [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland Washington USA; Springston, Stephen [Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton New York USA; St. Clair, Jason M. [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena California USA; Now at Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center, Greenbelt Maryland USA; Now at Joint Center for Earth Systems Technology, University of Maryland, Baltimore County, Baltimore Maryland USA; Tanner, David J. [School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta Georgia USA; Teng, Alexander P. [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena California USA; Wennberg, Paul O. [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena California USA; Division of Engineering and Applied Science, California Institute of Technology, Pasadena California USA; Wisthaler, Armin [Institute for Ion Physics and Applied Physics, University of Innsbruck, Innsbruck Austria; Department of Chemistry, University of Oslo, Oslo Norway; Wolfe, Glenn M. [Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center, Greenbelt Maryland USA; Joint Center for Earth Systems Technology, University of Maryland, Baltimore County, Baltimore Maryland USA

    2017-06-14

    Wildfires emit significant amounts of pollutants that degrade air quality. Plumes from three wildfires in the western U.S. were measured from aircraft during the Studies of Emissions and Atmospheric Composition, Clouds, and Climate Coupling by Regional Surveys (SEAC4RS) and the Biomass Burning Observation Project (BBOP), both in summer 2013. This study reports an extensive set of emission factors (EFs) for over 80 gases and 5 components of submicron particulate matter (PM1) from these temperate wildfires. These include rarely, or never before, measured oxygenated volatile organic compounds and multifunctional organic nitrates. The observed EFs are compared with previous measurements of temperate wildfires, boreal forest fires, and temperate prescribed fires. The wildfires emitted high amounts of PM1 (with organic aerosol (OA) dominating the mass) with an average EF that is more than two times the EFs for prescribed fires. The measured EFs were used to estimate the annual wildfire emissions of carbon monoxide, nitrogen oxides, total nonmethane organic compounds, and PM1 from 11 western U.S. states. The estimated gas emissions are generally comparable with the 2011 National Emissions Inventory (NEI). However, our PM1 emission estimate (1530 ± 570 Gg yr-1) is over three times that of the NEI PM2.5 estimate and is also higher than the PM2.5 emitted from all other sources in these states in the NEI. This study indicates that the source of OA from BB in the western states is significantly underestimated. In addition, our results indicate prescribed burning may be an effective method to reduce fine particle emissions.

  18. On-road particulate emission measurement

    Science.gov (United States)

    Mazzoleni, Claudio

    Particulate matter (PM) suspended in the atmosphere has harmful health effects, contributes to visibility impairment, and affects atmospheric radiative transfer, thereby contributing to global change. Vehicles contribute substantially to the ambient PM concentration in urban areas, yet the fraction of ambient PM originating from vehicle emissions is poorly characterized because suitable measurement methods have not been available. This dissertation describes the development and the use of a new vehicle emission remote sensing system (VERSS) for the on-road measurement of PM emission factors for vehicles. The PM VERSS measures PM by ultraviolet backscattering and transmission. PM backscattering and transmission mass efficiencies have been calculated from Mie theory based on an homogeneous spherical model for gasoline particles and on a two-layers, spherical model for diesel particles. The VERSS was used in a large-scale study in Las Vegas, NV. A commercial gaseous VERSS was used for the measurement of gaseous emission factors (i.e., carbon monoxide, hydrocarbons, and nitrogen oxide). Speed and acceleration were also measured for each vehicle. A video image of each vehicle's rear license plate was acquired and license plate numbers were matched with the Clark County department of motor vehicle database to retrieve vehicle information such as model year, vehicle weight category and engine ignition type. PM VERSS has precisely estimated PM fleet average emission factors and clearly shown the dependence of PM emission factors on vehicle model year. Under mostly hot-stabilized operation, diesel vehicle PM emission factors are about 25 times higher than those of gasoline vehicles. Furthermore, the fleet frequency distributions of PM emission factors are highly skewed, meaning that most of the fleet emission factor is accounted for by a small portion of the fleet. The PM VERSS can measure PM emission factors for these high emitting vehicles on an individual basis. PM

  19. Impact of regional climate change and future emission scenarios on surface O3 and PM2.5 over India

    Science.gov (United States)

    Pommier, Matthieu; Fagerli, Hilde; Gauss, Michael; Simpson, David; Sharma, Sumit; Sinha, Vinay; Ghude, Sachin D.; Landgren, Oskar; Nyiri, Agnes; Wind, Peter

    2018-01-01

    Eleven of the world's 20 most polluted cities are located in India and poor air quality is already a major public health issue. However, anthropogenic emissions are predicted to increase substantially in the short-term (2030) and medium-term (2050) futures in India, especially if no further policy efforts are made. In this study, the EMEP/MSC-W chemical transport model has been used to predict changes in surface ozone (O3) and fine particulate matter (PM2.5) for India in a world of changing emissions and climate. The reference scenario (for present-day) is evaluated against surface-based measurements, mainly at urban stations. The evaluation has also been extended to other data sets which are publicly available on the web but without quality assurance. The evaluation shows high temporal correlation for O3 (r = 0.9) and high spatial correlation for PM2.5 (r = 0.5 and r = 0.8 depending on the data set) between the model results and observations. While the overall bias in PM2.5 is small (lower than 6 %), the model overestimates O3 by 35 %. The underestimation in NOx titration is probably the main reason for the O3 overestimation in the model. However, the level of agreement can be considered satisfactory in this case of a regional model being evaluated against mainly urban measurements, and given the inevitable uncertainties in much of the input data.For the 2050s, the model predicts that climate change will have distinct effects in India in terms of O3 pollution, with a region in the north characterized by a statistically significant increase by up to 4 % (2 ppb) and one in the south by a decrease up to -3 % (-1.4 ppb). This variation in O3 is assumed to be partly related to changes in O3 deposition velocity caused by changes in soil moisture and, over a few areas, partly also by changes in biogenic non-methane volatile organic compounds.Our calculations suggest that PM2.5 will increase by up to 6.5 % over the Indo-Gangetic Plain by the 2050s. The increase over India

  20. Emission controls and changes in air quality in Guangzhou during the Asian Games

    Science.gov (United States)

    Liu, Huan; Wang, Xuemei; Zhang, Jinpu; He, Kebin; Wu, Ye; Xu, Jiayu

    2013-09-01

    With the new air quality standards forthcoming in China, the Pearl River Delta region is facing new challenges to achieve its air quality goal. The success of the emission reduction measures introduced by local authorities in the run-up to the Guangzhou Asian Games demonstrated that the Pearl River Delta air quality can be improved by introducing integrated emission reduction measures. This paper combines observation data, emission reduction measures, and air quality simulations that were applied during the Asian Games (12-27 November 2010) to analyze the relationship between emissions and concentrations of pollutants in Guangzhou. The Asian Games abatement strategy totally reduced emissions of 41.1% SO2, 41.9% NOx, 26.5% PM10, 25.8% PM2.5 and 39.7% VOC. The concentrations of SO2, NO2, PM10 and PM2.5 were reduced by 66.8%, 51.3%, 21.5% and 17.1%, respectively. In Guangzhou, the main challenge to be overcome with the new air quality daily requirements is mostly for NO2, PM2.5, and hourly ozone maxima. If pollutants maintain the same concentrations before and after the Asian Games, there will be 47.4% and 31.6% non-attainment days for NO2 and PM2.5 respectively as a period average. Although PM10 concentration can meet the daily limits (150 μg m-3), it is quite difficult to meet the annual limit value (70 μg m-3). One important implication is that the long-term, step-by-step integrated measures of the past six years work better than the strict, intensive, short-term measures on SO2, NO2 and VOC control. Dust control by limiting construction sites and watering the roads can further reduce 12.8% of the PM10 concentration. However, to reduce ambient PM2.5, the abatement strategy should be more complex and extensive. On the contrary, ozone pollution was not improved during the Asian Games, indicating that alleviation strategies should be improved by scientific studies to determine the appropriate control ratio of NO2 and VOC in the Pearl River Delta region.

  1. N2O and NO2 Emissions from Heavy-Duty Diesel Trucks with Advanced Emission Controls

    Science.gov (United States)

    Preble, C.; Harley, R.; Kirchstetter, T.

    2014-12-01

    Diesel engines are the largest source of nitrogen oxides (NOx) emissions nationally, and also a major contributor to the black carbon (BC) fraction of fine particulate matter (PM). Recently, diesel particle filter (DPF) and selective catalytic reduction (SCR) emission control systems that target exhaust PM and NOx have become standard equipment on new heavy-duty diesel trucks. However, the deliberate catalytic oxidation of engine-out nitric oxide (NO) to nitrogen dioxide (NO2) in continuously regenerating DPFs leads to increased tailpipe emission of NO2. This is of potential concern due to the toxicity of NO2 and the resulting increases in atmospheric formation of other air pollutants such as ozone, nitric acid, and fine PM. While use of SCR reduces emissions of both NO and NO2, it may lead to increased emissions of nitrous oxide (N2O), a potent greenhouse gas. Here we report results from on-road measurements of heavy-duty diesel truck emissions conducted at the Port of Oakland and the Caldecott Tunnel in the San Francisco Bay Area. Emission factors (g pollutant per kg of diesel) were linked via recorded license plates to individual truck attributes, including engine model year and installed emission control equipment. Between 2009 and 2013, the fraction of DPF-equipped trucks at the Port of Oakland increased from 2 to 99%, and median engine age decreased from 11 to 6 years. Over the same period, fleet-average emission factors for black carbon and NOx decreased by 76 ± 22% and 53 ± 8%, respectively. However, direct emissions of NO2 increased, and consequently the NO2/NOx emission ratio increased from 0.03 ± 0.02 to 0.18 ± 0.03. Older trucks retrofitted with DPFs emitted approximately 3.5 times more NO2 than newer trucks equipped with both DPF and SCR. Preliminary data from summer 2014 measurements at the Caldecott Tunnel suggest that some older trucks have negative emission factors for N2O, and that for newer trucks, N2O emission factors have changed sign and

  2. Particulate matter emissions of different brands of mentholated cigarettes.

    Science.gov (United States)

    Gerharz, Julia; Bendels, Michael H K; Braun, Markus; Klingelhöfer, Doris; Groneberg, David A; Mueller, Ruth

    2018-01-09

    Inhaling particulate matter (PM) in environmental tobacco smoke (ETS) endangers the health of nonsmokers. Menthol, an additive in cigarettes, attenuates respiratory irritation of tobacco smoke. It reduces perceptibility of smoke and therefore passive smokers may inhale ETS unnoticed. To investigate a possible effect of menthol on PM concentrations (PM 10 , PM 2.5 , and PM 1 ), ETS of four mentholated cigarette brands (Elixyr Menthol, Winston Menthol, Reyno Classic, and Pall Mall Menthol Blast) with varying menthol content was analyzed. ETS was generated in a standardized way using an automatic environmental tobacco smoke emitter (AETSE), followed by laser aerosol spectrometry. This analysis shows that the tested cigarette brands, despite having different menthol concentrations, do not show differences with regard to PM emissions, with the exception of Reyno Classic, which shows an increased emission, although the menthol level ranged in the midfield. More than 90% of the emitted particles had a size smaller than or equal to 1 µm. Regardless of the menthol level, the count median diameter (CMD) and the mass median diameter (MMD) were found to be 0.3 µm and 0.5 µm, respectively. These results point out that there is no effect of menthol on PM emission and that other additives might influence the increased PM emission of Reyno Classic. Particulate matter (PM) in ETS endangers the health of nonsmokers and smokers. This study considers the effect of menthol, an additive in cigarettes, on PM emissions. Does menthol increase the amount of PM? Due to the exposure to secondhand smoke nearly 900,000 people die each year worldwide. The aim of the study is to measure the particle concentration (L -1 ), mass concentration (µg m -3 ), and dust mass fractions shown as PM 10 , PM 2.5 , and PM 1 of five different cigarette brands, including four with different menthol concentrations and one menthol-free reference cigarette, in a well-established standardized system.

  3. Particle reduction strategies - PAREST. Evaluation of emission reduction scenarios using chemical transport calculations. PM10- and PM2.5-reduction potentials by package of measures for further immission reduction in Germany. Sub-report.; Strategien zur Verminderung der Feinstaubbelastung - PAREST. Bewertung von Emissionsminderungsszenarien mit Hilfe chemischer Transportberechnungen. PM10- und PM2,5-Minderungspotenziale von Massnahmenpaketen zur weiteren Reduzierung der Immissionen in Deutschland. Teilbericht

    Energy Technology Data Exchange (ETDEWEB)

    Stern, Rainer [Freie Univ. Berlin (Germany). Inst. fuer Meteorologie, Troposphaerische Umweltforschung

    2013-06-15

    This report documents the effects of additional emission control measures the PM10 and PM2.5 air quality in Germany (PM = particulate matter). The immission effects of the planned measures were calculated with the Chemistry-Aerosol-Transport Model REM CALGRID (RCG). [German] Dieser Bericht dokumentiert die Auswirkungen zusaetzlicher emissionsmindernder Massnahmen auf die PM10 und PM2.5-Luftqualitaet in Deutschland. Die immissionsseitigen Auswirkungen der geplanten Massnahmen wurden auf der Basis von Berechnungen mit dem Chemie-Aerosol-Transportmodell REM-CALGRID (RCG) bestimmt. Grundlage der Szenarienrechnungen sind die im Rahmen des F and E-Vorhabens entwickelten Emissionsabschaetzungen, die die Aenderung der Emissionen aufgrund von technischen oder nicht-technischen Massnahmen beschreiben. Die den Berechnungen zugrunde liegende horizontale Aufloesung betraegt 0.125 Laenge und 0.0625 Breite oder circa 7 km x 8 km. Das meteorologische Referenzjahr ist 2005.

  4. Predictability Analysis of PM10 Concentrations in Budapest

    Science.gov (United States)

    Ferenczi, Zita

    2013-04-01

    Climate, weather and air quality may have harmful effects on human health and environment. Over the past few hundred years we had to face the changes in climate in parallel with the changes in air quality. These observed changes in climate, weather and air quality continuously interact with each other: pollutants are changing the climate, thus changing the weather, but climate also has impacts on air quality. The increasing number of extreme weather situations may be a result of climate change, which could create favourable conditions for rising of pollutant concentrations. Air quality in Budapest is determined by domestic and traffic emissions combined with the meteorological conditions. In some cases, the effect of long-range transport could also be essential. While the time variability of the industrial and traffic emissions is not significant, the domestic emissions increase in winter season. In recent years, PM10 episodes have caused the most critical air quality problems in Budapest, especially in winter. In Budapest, an air quality network of 11 stations detects the concentration values of different pollutants hourly. The Hungarian Meteorological Service has developed an air quality prediction model system for the area of Budapest. The system forecasts the concentration of air pollutants (PM10, NO2, SO2 and O3) for two days in advance. In this work we used meteorological parameters and PM10 data detected by the stations of the air quality network, as well as the forecasted PM10 values of the air quality prediction model system. In this work we present the evaluation of PM10 predictions in the last two years and the most important meteorological parameters affecting PM10 concentration. The results of this analysis determine the effect of the meteorological parameters and the emission of aerosol particles on the PM10 concentration values as well as the limits of this prediction system.

  5. Characterization of PM-PEMS for in-use measurements conducted during validation testing for the PM-PEMS measurement allowance program

    Science.gov (United States)

    Khan, M. Yusuf; Johnson, Kent C.; Durbin, Thomas D.; Jung, Heejung; Cocker, David R.; Bishnu, Dipak; Giannelli, Robert

    2012-08-01

    This study provides an evaluation of the latest Particulate Matter-Portable Emissions Measurement Systems (PM-PEMS) under different environmental and in-use conditions. It characterizes four PM measurement systems based on different measurement principles. At least three different units were tested for each PM-PEMS to account for variability. These PM-PEMS were compared with a UC Riverside's mobile reference laboratory (MEL). PM measurements were made from a class 8 truck with a 2008 Cummins diesel engine with a diesel particulate filter (DPF). A bypass around the DPF was installed in the exhaust to achieve a brake specific PM (bsPM) emissions level of 25 mg hp-1h-1. PM was dominated by elemental carbon (EC) during non-regeneration conditions and by hydrated sulfate (H2SO4.6H2O) during regeneration. The photo-acoustic PM-PEMS performed best, with a linear regression slope of 0.90 and R2 of 0.88 during non-regenerative conditions. With the addition of a filter, the photo-acoustic PM-PEMS slightly over reported than the total PM mass (slope = 1.10, R2 = 0.87). Under these same non-regeneration conditions, a PM-PEMS equipped with a quartz crystal microbalance (QCM) technology performed the poorest, and had a slope of 0.22 and R2 of 0.13. Re-tests performed on upgraded QCM PM-PEMS showed a better slope (0.66), and a higher R2 of 0.25. In the case of DPF regeneration, all PM-PEMS performed poorly, with the best having a slope of 0.20 and R2 of 0.78. Particle size distributions (PSD) showed nucleation during regeneration, with a shift of particle size to smaller diameters (˜64 nm to ˜13 nm) with elevated number concentrations when compared to non-regeneration conditions.

  6. PM2.5 and gaseous pollutants in New York State during 2005-2016: Spatial variability, temporal trends, and economic influences

    Science.gov (United States)

    Squizzato, Stefania; Masiol, Mauro; Rich, David Q.; Hopke, Philip K.

    2018-06-01

    Over the past decades, mitigation strategies have been adopted both by federal and state agencies in the United States (US) to improve air quality. Between 2007 and 2009, the US faced a financial/economic crisis that lowered activity and reduced emissions. At the same time, changes in the prices of coal and natural gas drove a shift in fuels used for electricity generation. Seasonal patterns, diel cycles, spatial gradients, and trends in PM2.5 and gaseous pollutants concentrations (NOx, SO2, CO and O3) monitored in New York State (NYS) from 2005 to 2016 were examined. Relationships between ambient concentrations, changes in NYS emissions retrieved from the US EPA trends inventory, and economic indicators were studied. PM2.5 and primary gaseous pollutants concentrations decreased across NYS. By 2016, PM2.5 and SO2 attained relatively homogeneous concentrations across the state. PM2.5 concentrations decreased significantly at all sites. Similarly, SO2 concentrations declined at all sites within this period, with the highest slopes observed at the urban sites. Reductions in NOx emissions likely contributed to summertime average ozone reductions. NOx and VOCs controls reduced O3 peak concentrations as seen in significant relationships between the annual O3 4th-highest daily maximum 8-h concentrations and estimated NOx emissions at rural and suburban sites (r2 ∼ 0.7). Spring maxima were not reduced with most sites showing insignificant slopes or significant positive slopes (e.g., +2.6% y-1 and +2% y-1, at CCNY and PFI, respectively). Increases in autumn and winter ozone concentrations were found (e,g., 6.6 ± 0.4% y-1 on average in New York City). Significant relationships were observed between PM2.5, primary pollutants, and economic indicators. Overall, a decrease in electricity generation with coal, and the simultaneous increase in natural gas consumption for power generation, led to a decrease in PM2.5 and gaseous pollutants concentrations.

  7. Feasibility and difficulties on China new air quality standard compliance: PRD case of PM2.5 and ozone from 2010 to 2025

    Science.gov (United States)

    Liu, H.; Wang, X. M.; Pang, J. M.; He, K. B.

    2013-08-01

    Improving the air quality in China is a long and arduous task. Although China has made very aggressive plan on pollutants control, the difficulties to achieve the new air quality goals are still significant. In north, PM2.5 and PM10 are still far beyond the standards. In south, O3 goal is much challenged. A lot of cities are making their city implementation plan (CIP) for new air quality goals. In this study, a southern city, Guangzhou, is selected to analyze the feasibility and difficulties on new air quality standard compliance, as well as the CIP evaluation. A comprehensive study of air quality status in Guangzhou and surrounding area is conducted based on 22 sites monitoring data of O3, PM2.5 and PM10. The monthly non-attainment rates for O3 vary in 7-25% from May to November. The city average PM2.5 concentration is 41 μg m-3 in Guangzhou in 2010, which needs to be reduced by at least 15% to achieve the target of 35 μg m-3. The PM2.5 high violate months are from November to March. Guangzhou CIP was then evaluated with PM2.5 and O3 placed in a core position. The emission amount of NOx, PM10, PM2.5 and VOC in 2025 would be controlled to 600, 420, 200 and 860 thousand tons respectively. Analysis of air quality using the MM5-STEM model suggests that the long-term control measures would achieve the PM2.5 and PM10 goals successfully by 2025. The PM2.5 annual average concentration would be reduced to 20.8 μg m-3 in 2025. The O3 non-attainment rate would increase from 7.1% in 2010 to 12.9% in 2025 and become the most primary atmospheric environmental problem. Guangzhou needs very strong control on VOCs to reduce its ozone. The VOC / NOx reduction ratio should reach at least 2 : 1 (in California, it is about 3 : 1), instead of the current plan of 0.7 : 1. The evaporative emissions control from vehicle non-tailpipe emission and solvent usage should be enhanced and regional ozone transport must be taken into account.

  8. Airborne measurements of western U.S. wildfire emissions: Comparison with prescribed burning and air quality implications: Western U.S. Wildfire Emissions

    International Nuclear Information System (INIS)

    Liu, Xiaoxi; University of Colorado, Boulder, CO; Huey, L. Gregory; Yokelson, Robert J.; Selimovic, Vanessa

    2017-01-01

    Wildfires emit significant amounts of pollutants that degrade air quality. Plumes from three wildfires in the western U.S. were measured from aircraft during the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) and the Biomass Burning Observation Project (BBOP), both in summer 2013. This study reports an extensive set of emission factors (EFs) for over 80 gases and 5 components of submicron particulate matter (PM 1 ) from these temperate wildfires. These include rarely, or never before, measured oxygenated volatile organic compounds and multifunctional organic nitrates. The observed EFs are compared with previous measurements of temperate wildfires, boreal forest fires, and temperate prescribed fires. Furthermore, the wildfires emitted high amounts of PM 1 (with organic aerosol (OA) dominating the mass) with an average EF that is more than 2 times the EFs for prescribed fires. The measured EFs were used to estimate the annual wildfire emissions of carbon monoxide, nitrogen oxides, total nonmethane organic compounds, and PM 1 from 11 western U.S. states. The estimated gas emissions are generally comparable with the 2011 National Emissions Inventory (NEI). However, our PM 1 emission estimate (1530 ± 570 Gg yr -1 ) is over 3 times that of the NEI PM2.5 estimate and is also higher than the PM2.5 emitted from all other sources in these states in the NEI. This study indicates that the source of OA from biomass burning in the western states is significantly underestimated. Additionally, our results indicate that prescribed burning may be an effective method to reduce fine particle emissions.

  9. Climatology of atmospheric PM10 concentration in the Po Valley

    Science.gov (United States)

    Bigi, A.; Ghermandi, G.

    2014-01-01

    The limits to atmospheric pollutant concentration set by the European Commission provide a challenging target for the municipalities in the Po Valley, because of the characteristic climatic conditions and high population density of this region. In order to assess climatology and trends in the concentration of atmospheric particles in the Po Valley, a dataset of PM10 data from 41 sites across the Po Valley have been analysed, including both traffic and background sites (either urban, suburban or rural). Of these 41 sites, 18 with 10 yr or longer record have been analysed for long term trend in de-seasonalized monthly means, in annual quantiles and in monthly frequency distribution. A widespread significant decreasing trend has been observed at most sites, up to few percent per year, by Generalised Least Square and Theil-Sen method. All 41 sites have been tested for significant weekly periodicity by Kruskal-Wallis test for mean anomalies and by Wilcoxon test for weekend effect magnitude. A significant weekly periodicity has been observed for most PM10 series, particularly in summer and ascribed mainly to anthropic particulate emissions. A cluster analysis has been applied in order to highlight stations sharing similar pollution conditions over the reference period. Five clusters have been found, two gathering the metropolitan areas of Torino and Milano and their respective nearby sites and the other three clusters gathering north-east, north-west and central Po Valley sites respectively. Finally the observed trends in atmospheric PM10 have been compared to trends in provincial emissions of particulates and PM precursors, and analysed along with data on vehicular fleet age, composition and fuel sales. Significant basin-wide drop in emissions occurred for gaseous pollutants, contrarily to emissions of PM10 and PM2.5, whose drop resulted low and restricted to few provinces. It is not clear whether the decrease for only gaseous emissions is sufficient to explain the

  10. Assesment of Pb concentration in PM_2_,_5 and PM_1_0 at Serpong area

    International Nuclear Information System (INIS)

    Rita; Esrom Hamonangan; Halimah Syafrul; Muhayatun Santoso; Diah Dwiana Lestian

    2010-01-01

    Ambient air pollution, especially Pb, in Serpong area has been detected since 1996. Pollution caused by heavy metals Pb deserve serious attention because of the impact is very influential on health such as reduced levels of intelligence, learning disability, symptoms of anemia, barriers to growth, poor cognitive development, weakened immune system, symptoms of autism, and even premature death. This study was conducted to determine Pb concentration of PM_2_,_5 and PM_1_0 in four residential locations in Serpong area as part of a series of comprehensive studies for the characterization and identification of sources pollution. Particulates were sampled using Gent Stacked Filter Unit Sampler at 3 housing locations and 1 office location in the period of August 25 to November 3, 2008, Samples were analyzed using nuclear analytical techniques, Proton Induced X-ray Emission. The results showed that the activity concentration of Pb in PM_2_,_5 for the location of Setu, Pusarpedal, Batan Indah, and BSD were in the range of 33-388, 12-254, 6-282, and 5-332 ng/m"3, while for PM_1_0 were 69-732, 59-647, 31-810, and 28718 ng/m"3, respectively, In general, Pb concentrations in Serpong area were higher than those in some other cities in Asia region. These results are expected to be used as scientific based reference in formulating, taking action, and appropriate policies to overcome environmental problems. (author)

  11. Effect of reaction temperature on the PM10 features during coal combustion

    International Nuclear Information System (INIS)

    Sui, J.C.; Du, Y.G.; Liu, Q.C.

    2008-01-01

    Coal-fired power plants produce fine fly ash consisting of particulate matter (PM). Particulate matter less than 10 micrometers in aerodynamic diameter (PM 1 0) is of significant concern because of its adverse environmental and health impacts. This paper studied the effect of reaction temperature on particulate matter (PM 1 0) emission and its chemical composition. The emission characteristics and elemental partition of PM 1 0 from coal combustion were investigated in a drop tube furnace. The paper discussed the experimental apparatus and conditions as well as the coal properties and sample analysis. Liupanshui (LPS) bituminous coal from China was used for the study. The fuel composition of LPS coal and the composition of low temperature ash of Chinese LPS coal were described. The paper also presented the results of the study with reference to particle size distribution and emission characteristic of PM 1 0; elemental partition within PM 1 0; and effect of the reaction temperature on elemental partition within PM 1 0. The PM mass size distribution was found to be bimodal. 14 refs., 2 tabs., 6 figs

  12. Impacts of global, regional, and sectoral black carbon emission reductions on surface air quality and human mortality

    Science.gov (United States)

    Anenberg, S. C.; Talgo, K.; Arunachalam, S.; Dolwick, P.; Jang, C.; West, J. J.

    2011-07-01

    As a component of fine particulate matter (PM2.5), black carbon (BC) is associated with premature human mortality. BC also affects climate by absorbing solar radiation and reducing planetary albedo. Several studies have examined the climate impacts of BC emissions, but the associated health impacts have been studied less extensively. Here, we examine the surface PM2.5 and premature mortality impacts of halving anthropogenic BC emissions globally and individually from eight world regions and three major economic sectors. We use a global chemical transport model, MOZART-4, to simulate PM2.5 concentrations and a health impact function to calculate premature cardiopulmonary and lung cancer deaths. We estimate that halving global anthropogenic BC emissions reduces outdoor population-weighted average PM2.5 by 542 ng m-3 (1.8 %) and avoids 157 000 (95 % confidence interval, 120 000-194 000) annual premature deaths globally, with the vast majority occurring within the source region. Most of these avoided deaths can be achieved by halving emissions in East Asia (China; 54 %), followed by South Asia (India; 31 %), however South Asian emissions have 50 % greater mortality impacts per unit BC emitted than East Asian emissions. Globally, halving residential, industrial, and transportation emissions contributes 47 %, 35 %, and 15 % to the avoided deaths from halving all anthropogenic BC emissions. These contributions are 1.2, 1.2, and 0.6 times each sector's portion of global BC emissions, owing to the degree of co-location with population globally. We find that reducing BC emissions increases regional SO4 concentrations by up to 28 % of the magnitude of the regional BC concentration reductions, due to reduced absorption of radiation that drives photochemistry. Impacts of residential BC emissions are likely underestimated since indoor PM2.5 exposure is excluded. We estimate ∼8 times more avoided deaths when BC and organic carbon (OC) emissions are halved together, suggesting

  13. Evolution of air pollution source contributions over one decade, derived by PM10 and PM2.5 source apportionment in two metropolitan urban areas in Greece

    Science.gov (United States)

    Diapouli, E.; Manousakas, M.; Vratolis, S.; Vasilatou, V.; Maggos, Th; Saraga, D.; Grigoratos, Th; Argyropoulos, G.; Voutsa, D.; Samara, C.; Eleftheriadis, K.

    2017-09-01

    Metropolitan Urban areas in Greece have been known to suffer from poor air quality, due to variety of emission sources, topography and climatic conditions favouring the accumulation of pollution. While a number of control measures have been implemented since the 1990s, resulting in reductions of atmospheric pollution and changes in emission source contributions, the financial crisis which started in 2009 has significantly altered this picture. The present study is the first effort to assess the contribution of emission sources to PM10 and PM2.5 concentration levels and their long-term variability (over 5-10 years), in the two largest metropolitan urban areas in Greece (Athens and Thessaloniki). Intensive measurement campaigns were conducted during 2011-2012 at suburban, urban background and urban traffic sites in these two cities. In addition, available datasets from previous measurements in Athens and Thessaloniki were used in order to assess the long-term variability of concentrations and sources. Chemical composition analysis of the 2011-2012 samples showed that carbonaceous matter was the most abundant component for both PM size fractions. Significant increase of carbonaceous particle concentrations and of OC/EC ratio during the cold period, especially in the residential urban background sites, pointed towards domestic heating and more particularly wood (biomass) burning as a significant source. PMF analysis further supported this finding. Biomass burning was the largest contributing source at the two urban background sites (with mean contributions for the two size fractions in the range of 24-46%). Secondary aerosol formation (sulphate, nitrate & organics) was also a major contributing source for both size fractions at the suburban and urban background sites. At the urban traffic site, vehicular traffic (exhaust and non-exhaust emissions) was the source with the highest contributions, accounting for 44% of PM10 and 37% of PM2.5, respectively. The long

  14. Airborne reduced nitrogen: ammonia emissions from agriculture and other sources.

    Science.gov (United States)

    Anderson, Natalie; Strader, Ross; Davidson, Cliff

    2003-06-01

    Ammonia is a basic gas and one of the most abundant nitrogen-containing compounds in the atmosphere. When emitted, ammonia reacts with oxides of nitrogen and sulfur to form particles, typically in the fine particle size range. Roughly half of the PM(2.5) mass in eastern United States is ammonium sulfate, according to the US EPA. Results from recent studies of PM(2.5) show that these fine particles are typically deposited deep in the lungs and may lead to increased morbidity and/or mortality. Also, these particles are in the size range that will degrade visibility. Ammonia emission inventories are usually constructed by multiplying an activity level by an experimentally determined emission factor for each source category. Typical sources of ammonia include livestock, fertilizer, soils, forest fires and slash burning, industry, vehicles, the oceans, humans, pets, wild animals, and waste disposal and recycling activities. Livestock is the largest source category in the United States, with waste from livestock responsible for about 3x10(9) kg of ammonia in 1995. Volatilization of ammonia from livestock waste is dependent on many parameters, and thus emission factors are difficult to predict. Despite a seasonal variation in these values, the emission factors for general livestock categories are usually annually averaged in current inventories. Activity levels for livestock are from the USDA Census of Agriculture, which does not give information about animal raising practices such as housing types and grazing times, waste handling systems, and approximate animal slurry spreading times or methods. Ammonia emissions in the United States in 1995 from sources other than livestock are much lower; for example, annual emissions are roughly 8x10(8) kg from fertilizer, 7x10(7) kg from industry, 5x10(7) kg from vehicles and 1x10(8) kg from humans. There is considerable uncertainty in the emissions from soil and vegetation, although this category may also be significant

  15. Impact of regional climate change and future emission scenarios on surface O3 and PM2.5 over India

    Directory of Open Access Journals (Sweden)

    M. Pommier

    2018-01-01

    Full Text Available Eleven of the world's 20 most polluted cities are located in India and poor air quality is already a major public health issue. However, anthropogenic emissions are predicted to increase substantially in the short-term (2030 and medium-term (2050 futures in India, especially if no further policy efforts are made. In this study, the EMEP/MSC-W chemical transport model has been used to predict changes in surface ozone (O3 and fine particulate matter (PM2.5 for India in a world of changing emissions and climate. The reference scenario (for present-day is evaluated against surface-based measurements, mainly at urban stations. The evaluation has also been extended to other data sets which are publicly available on the web but without quality assurance. The evaluation shows high temporal correlation for O3 (r =  0.9 and high spatial correlation for PM2.5 (r =  0.5 and r =  0.8 depending on the data set between the model results and observations. While the overall bias in PM2.5 is small (lower than 6 %, the model overestimates O3 by 35 %. The underestimation in NOx titration is probably the main reason for the O3 overestimation in the model. However, the level of agreement can be considered satisfactory in this case of a regional model being evaluated against mainly urban measurements, and given the inevitable uncertainties in much of the input data.For the 2050s, the model predicts that climate change will have distinct effects in India in terms of O3 pollution, with a region in the north characterized by a statistically significant increase by up to 4 % (2 ppb and one in the south by a decrease up to −3 % (−1.4 ppb. This variation in O3 is assumed to be partly related to changes in O3 deposition velocity caused by changes in soil moisture and, over a few areas, partly also by changes in biogenic non-methane volatile organic compounds.Our calculations suggest that PM2.5 will increase by up to 6.5 % over the Indo

  16. Influence of flue gas desulfurization (FGD) installations on emission characteristics of PM2.5 from coal-fired power plants equipped with selective catalytic reduction (SCR).

    Science.gov (United States)

    Li, Zhen; Jiang, Jingkun; Ma, Zizhen; Fajardo, Oscar A; Deng, Jianguo; Duan, Lei

    2017-11-01

    Flue gas desulfurization (FGD) and selective catalytic reduction (SCR) technologies have been widely used to control the emissions of sulphur dioxide (SO 2 ) and nitrogen oxides (NO X ) from coal-fired power plants (CFPPs). Field measurements of emission characteristics of four conventional CFPPs indicated a significant increase in particulate ionic species, increasing PM 2.5 emission with FGD and SCR installations. The mean concentrations of PM 2.5 from all CFPPs tested were 3.79 ± 1.37 mg/m 3 and 5.02 ± 1.73 mg/m 3 at the FGD inlet and outlet, respectively, and the corresponding contributions of ionic species were 19.1 ± 7.7% and 38.2 ± 7.8%, respectively. The FGD was found to enhance the conversion of NH 3 slip from the SCR to NH 4 + in the PM 2.5 , together with the conversion of SO 2 to SO 4 2- , and increased the primary NH 4 + and SO 4 2- aerosol emissions by approximately 18.9 and 4.2 times, respectively. This adverse effect should be considered when updating the emission inventory of CFPPs and should draw the attention of policy-makers for future air pollution control. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Seasonal Variation and Ecosystem Dependence of Emission Factors for Selected Trace Gases and PM2.5 for Southern African Savanna Fires

    Science.gov (United States)

    Korontzi, S.; Ward, D. E.; Susott, R. A.; Yokelson, R. J.; Justice, C. O.; Hobbs, P. V.; Smithwick, E. A. H.; Hao, W. M.

    2003-01-01

    In this paper we present the first early dry season (early June-early August) emission factor measurements for carbon dioxide (CO2), carbon monoxide (CO), methane (Ca), nonmethane hydrocarbons (NMHC), and particulates with a diameter less than 2.5 microns (pM2.5) for southern African grassland and woodland fires. Seasonal emission factors for grassland fires correlate linearly with the proportion of green grass, used as a surrogate for the fuel moisture content, and are higher for products of incomplete combustion in the early part of the dry season compared with later in the dry season. Models of emission factors for NMHC and PM(sub 2.5) versus modified combustion efficiency (MCE) are statistically different in grassland compared with woodland ecosystems. We compare predictions based on the integration of emissions factors from this study, from the southern African Fire-Atmosphere Research Initiative 1992 (SAFARI-92), and from SAFARI-2000 with those based on the smaller set of ecosystem-specific emission factors to estimate the effects of using regional-average rather than ecosystem-specific emission factors. We also test the validity of using the SAFARI-92 models for emission factors versus MCE to predict the early dry season emission factors measured in this study. The comparison indicates that the largest discrepancies occur at the low end (0.907) and high end (0.972) of MCE values measured in this study. Finally, we combine our models of MCE versus proportion of green grass for grassland fires with emission factors versus MCE for selected oxygenated volatile organic compounds measured in the SAFARI-2000 campaign to derive the first seasonal emission factors for these compounds. The results of this study demonstrate that seasonal variations in savanna fire emissions are important and should be considered in modeling emissions at regional to continental scales.

  18. [Emission factors and PM chemical composition study of biomass burning in the Yangtze River Delta region].

    Science.gov (United States)

    Tang, Xi-Bin; Huang, Cheng; Lou, Sheng-Rong; Qiao, Li-Ping; Wang, Hong-Li; Zhou, Min; Chen, Ming-hua; Chen, Chang-Hong; Wang, Qian; Li, Gui-Ling; Li, Li; Huang, Hai-Ying; Zhang, Gang-Feng

    2014-05-01

    The emission characteristics of five typical crops, including wheat straw, rice straw, oil rape straw, soybean straw and fuel wood, were investigated to explore the gas and particulates emission of typical biomass burning in Yangzi-River-Delta area. The straws were tested both by burning in stove and by burning in the farm with a self-developed measurement system as open burning sources. Both gas and fine particle pollutants were measured in this study as well as the chemical composition of fine particles. The results showed that the average emission factors of CO, NO, and PM2,5 in open farm burning were 28.7 g.kg -1, 1.2 g.kg-1 and 2.65 g kg-1 , respectively. Due to insufficient burning in the low oxygen level environment, the emission factors of stove burning were higher than those of open farm burning, which were 81.9 g kg-1, 2. 1 g.kg -1 and 8.5 gkg -1 , respectively. Oil rape straw had the highest emission factors in all tested straws samples. Carbonaceous matter, including organic carbon(OC) and element carbon(EC) , was the foremost component of PM2, 5from biomass burning. The average mass fractions of OC and EC were (38.92 +/- 13.93)% and (5.66 +/-1.54)% by open farm burning and (26.37 +/- 10. 14)% and (18.97 +/- 10.76)% by stove burning. Water soluble ions such as Cl-and K+ had a large contribution. The average mass fractions of CI- and K+ were (13.27 +/-6. 82)% and (12.41 +/- 3.02)% by open farm burning, and were (16.25 +/- 9.34)% and (13.62 +/- 7.91)% by stove burning. The K +/OC values of particles from wheat straw, rice straw, oil rape straw and soybean straw by open farm burning were 0. 30, 0. 52, 0. 49 and 0. 15, respectively, which can be used to evaluate the influence on the regional air quality in YRD area from biomass burning and provide direct evidence for source apportionment.

  19. Current and future emissions of primary pollutants from coal-fired power plants in Shaanxi, China.

    Science.gov (United States)

    Xu, Yong; Hu, Jianlin; Ying, Qi; Hao, Hongke; Wang, Dexiang; Zhang, Hongliang

    2017-10-01

    A high-resolution inventory of primary atmospheric pollutants from coal-fired power plants in Shaanxi in 2012 was built based on a detailed database compiled at unit level involving unit capacity, boiler size and type, commission time, corresponding control technologies, and average coal quality of 72 power plants. The pollutants included SO 2 , NO x , fine particulate matter (PM 2.5 ), inhalable particulate matter (PM 10 ), organic carbon (OC), elemental carbon (EC), carbon monoxide (CO) and non-methane volatile organic compounds (NMVOC). Emission factors for SO 2 , NO x , PM 2.5 and PM 10 were adopted from standardized official promulgation, supplemented by those from local studies. The estimated annual emissions of SO 2 , NO x , PM 2.5 , PM 10 , EC, OC, CO and NMVOC were 152.4, 314.8, 16.6, 26.4, 0.07, 0.27, 64.9 and 2.5kt, respectively. Small units (emission rates compared to medium (≥100MW and emissions were decontamination efficiency, sulfur content and ash content of coal. Weinan and Xianyang were the two cities with the highest emissions, and Guanzhong Plain had the largest emission density. Despite the projected growth of coal consumption, emissions would decrease in 2030 due to improvement in emission control technologies and combustion efficiencies. SO 2 and NO x emissions would experience significant reduction by ~81% and ~84%, respectively. PM 2.5 , PM 10 , EC and OC would be decreased by ~43% and CO and NMVOC would be reduced by ~16%. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Temporal variations and spatial distribution of ambient PM{sub 2.2} and PM{sub 1} concentrations in Dhaka, Bangladesh

    Energy Technology Data Exchange (ETDEWEB)

    Begum, Bilkis A. [Chemistry Division, Atomic Energy Centre, P.O. Box-164, Dhaka (Bangladesh); Biswas, Swapan K. [Chemistry Division, Atomic Energy Centre, P.O. Box-164, Dhaka (Bangladesh); Hopke, Philip K. [Department of Chemical Engineering, Clarkson University, Potsdam, NY 13699-5810 (United States)]. E-mail: hopkepk@clarkson.edu

    2006-04-01

    Concentrations and characteristics of airborne particulate matter (PM{sub 1}, PM{sub 2.2} and BC) on air quality have been studied at two air quality-monitoring stations in Dhaka, the capital of Bangladesh. One site is at the Farm Gate area, a hot spot with very high pollutant concentrations because of its proximity to major roadways. The other site is at a semi-residential area located at the Atomic Energy Centre, Dhaka Campus, (AECD) with relatively less traffic. The samples were collected using a 'Gent' stacked filter unit in two fractions of 0-2.2 {mu}m and 2.2-10 {mu}m sizes. Samples of fine (PM{sub 2.2}) and coarse (PM{sub 2.2-1}) airborne particulate matter fractions collected from 2000 to 2003 were studied. It has been observed that fine particulate matter has a decreasing trend, from prior year measurements, because of Government policy interventions like phase-wise plans to take two-stroke three-wheelers off the roads in Dhaka and finally banned from January 1, 2003. Other policy interventions were banning of old buses and trucks to ply on Dhaka city promotion of the using compressed natural gas (CNG), introducing air pollution control devices in vehicles, etc. It was found that both local (mostly from vehicular emissions) and possibly some regional emission sources are responsible for high PM{sub 2.2} and BC concentrations in Dhaka. PM{sub 2.2}, PM{sub 2.2-1} and black carbon concentration levels depend on the season, wind direction and wind speed. Transport related emissions are the major source of BC and long-range transportation from fossil fuel related sources and biomass burning could be another substantial source of BC.

  1. Temporal variations and spatial distribution of ambient PM{sub 2.2} and PM{sub 10} concentrations in Dhaka, Bangladesh

    Energy Technology Data Exchange (ETDEWEB)

    Begum, Bilkis A.; Biswas, Swapan K. [Chemistry Division, Atomic Energy Centre, P.O. Box-164, Dhaka (Bangladesh); Hopke, Philip K. [Department of Chemical Engineering, Clarkson University, Potsdam, NY 13699-5810 (United States)

    2006-04-01

    Concentrations and characteristics of airborne particulate matter (PM{sub 10}, PM{sub 2.2} and BC) on air quality have been studied at two air quality-monitoring stations in Dhaka, the capital of Bangladesh. One site is at the Farm Gate area, a hot spot with very high pollutant concentrations because of its proximity to major roadways. The other site is at a semi-residential area located at the Atomic Energy Centre, Dhaka Campus, (AECD) with relatively less traffic. The samples were collected using a 'Gent' stacked filter unit in two fractions of 0-2.2 {mu}m and 2.2-10 {mu}m sizes. Samples of fine (PM{sub 2.2}) and coarse (PM{sub 2.2-10}) airborne particulate matter fractions collected from 2000 to 2003 were studied. It has been observed that fine particulate matter has a decreasing trend, from prior year measurements, because of Government policy interventions like phase-wise plans to take two-stroke three-wheelers off the roads in Dhaka and finally banned from January 1, 2003. Other policy interventions were banning of old buses and trucks to ply on Dhaka city promotion of the using compressed natural gas (CNG), introducing air pollution control devices in vehicles, etc. It was found that both local (mostly from vehicular emissions) and possibly some regional emission sources are responsible for high PM{sub 2.2} and BC concentrations in Dhaka. PM{sub 2.2}, PM{sub 2.2-10} and black carbon concentration levels depend on the season, wind direction and wind speed. Transport related emissions are the major source of BC and long-range transportation from fossil fuel related sources and biomass burning could be another substantial source of BC. (author)

  2. Modelling street level PM10 concentrations across Europe: source apportionment and possible futures

    Directory of Open Access Journals (Sweden)

    G. Kiesewetter

    2015-02-01

    Full Text Available Despite increasing emission controls, particulate matter (PM has remained a critical issue for European air quality in recent years. The various sources of PM, both from primary particulate emissions as well as secondary formation from precursor gases, make this a complex problem to tackle. In order to allow for credible predictions of future concentrations under policy assumptions, a modelling approach is needed that considers all chemical processes and spatial dimensions involved, from long-range transport of pollution to local emissions in street canyons. Here we describe a modelling scheme which has been implemented in the GAINS integrated assessment model to assess compliance with PM10 (PM with aerodynamic diameter 10 across Europe. Furthermore, we analyse the predicted evolution of PM10 concentrations in the European Union until 2030 under different policy scenarios. Significant improvements in ambient PM10 concentrations are expected assuming successful implementation of already agreed legislation; however, these will not be large enough to ensure attainment of PM10 limit values in hot spot locations such as Southern Poland and major European cities. Remaining issues are largely eliminated in a scenario applying the best available emission control technologies to the maximal technically feasible extent.

  3. Preliminary PM2.5 and PM10 fractions source apportionment complemented by statistical accuracy determination

    Directory of Open Access Journals (Sweden)

    Samek Lucyna

    2016-03-01

    Full Text Available Samples of PM10 and PM2.5 fractions were collected between the years 2010 and 2013 at the urban area of Krakow, Poland. Numerous types of air pollution sources are present at the site; these include steel and cement industries, traffic, municipal emission sources and biomass burning. Energy dispersive X-ray fluorescence was used to determine the concentrations of the following elements: Cl, K, Ca, Ti, Mn, Fe, Ni, Cu, Zn, Br, Rb, Sr, As and Pb within the collected samples. Defining the elements as indicators, airborne particulate matter (APM source profiles were prepared by applying principal component analysis (PCA, factor analysis (FA and multiple linear regression (MLR. Four different factors identifying possible air pollution sources for both PM10 and PM2.5 fractions were attributed to municipal emissions, biomass burning, steel industry, traffic, cement and metal industry, Zn and Pb industry and secondary aerosols. The uncertainty associated with each loading was determined by a statistical simulation method that took into account the individual elemental concentrations and their corresponding uncertainties. It will be possible to identify two or more sources of air particulate matter pollution for a single factor in case it is extremely difficult to separate the sources.

  4. Reducing ammonia emissions in Europe

    DEFF Research Database (Denmark)

    Jacobsen, Brian H.

    2011-01-01

    The NEC directive has set targets for the 2010 ammonia emissions from a number of European countries. The target will be reached by most EU-countries and the total emission for EU-27 has been reduced by 22% from 1990 to 2007. Denmark is one of the countries with the largest reductions since 1990...

  5. Relative roles of emissions and meteorology in the diurnal pattern of urban PM10: analysis of the daylight saving time effect.

    Science.gov (United States)

    Muñoz, Ricardo C

    2012-06-01

    Daylight saving time (DST) is a common practice in many countries, in which Official Time (OT) is abruptly shifted 1 hour with respect to solar time on two occasions every year (in fall and spring). All anthropogenic emitting processes tied to OT like job and school commuting traffic, abruptly change in this moment their timing with respect to solar time, inducing a sudden shift between emissions and the meteorological factors that control the dispersion and transport of air pollutants. Analyzing 13 years of hourly particulate matter (PM10) concentrations measured in Santiago, Chile, we demonstrate that the DST practice has observable non-trivial effects in the PM10 diurnal cycle. The clearest impact is in the morning peak of PM10 during the fall DST change, which occurs later and has on average a significant smaller magnitude in the days after the DST change as compared to the days before it. This decrease in magnitude is most remarkable because it occurs in a period of the year when overall PM10 concentrations increase due to generally worsening of the dispersion conditions. Results are shown for seven monitoring stations around the city, and for the fall and spring DST changes. They show clearly the interplay of emissions and meteorology in conditioning urban air pollution problems, highlighting the role of the morning and evening transitions of the atmospheric boundary layer in shaping the diurnal pattern of urban air pollutant concentrations.

  6. Impact of low temperature combustion attaining strategies on diesel engine emissions for diesel and biodiesels: A review

    International Nuclear Information System (INIS)

    Imtenan, S.; Varman, M.; Masjuki, H.H.; Kalam, M.A.; Sajjad, H.; Arbab, M.I.; Rizwanul Fattah, I.M.

    2014-01-01

    Highlights: • Various low-temperature combustion strategies have been discussed briefly. • Effect on emissions has been discussed under low temperature combustion strategies. • Low-temperature combustion reduces NO x and PM simultaneously. • Higher CO, HC emissions with lower performance are the demerits of these strategies. • Biodiesels are also potential to attain low temperature combustion conditions. - Abstract: Simultaneous reduction of particulate matter (PM) and nitrogen oxides (NO x ) emissions from diesel exhaust is the key to current research activities. Although various technologies have been introduced to reduce emissions from diesel engines, the in-cylinder reduction techniques of PM and NO x like low temperature combustion (LTC) will continue to be an important field in research and development of modern diesel engines. Furthermore, increasing prices and question over the availability of diesel fuel derived from crude oil have introduced a growing interest. Hence it is most likely that future diesel engines will be operated on pure biodiesel and/or blends of biodiesel and crude oil-based diesel. Being a significant technology to reduce emissions, LTC deserves a critical analysis of emission characteristics for both diesel and biodiesel. This paper critically investigates both petroleum diesel and biodiesel emissions from the view point of LTC attaining strategies. Due to a number of differences of physical and chemical properties, petroleum diesel and biodiesel emission characteristics differ a bit under LTC strategies. LTC strategies decrease NO x and PM simultaneously but increase HC and CO emissions. Recent attempts to attain LTC by biodiesel have created a hope for reduced HC and CO emissions. Decreased performance issue during LTC is also being taken care of by latest ideas. However, this paper highlights the emissions separately and analyzes the effects of significant factors thoroughly under LTC regime

  7. Estimation of light duty vehicle emissions in Islamabad and climate co-benefits of improved emission standards implementation

    Science.gov (United States)

    Shah, Izhar Hussain; Zeeshan, Muhammad

    2016-02-01

    Light Duty Vehicles (LDVs) hold a major share in Islamabad's vehicle fleet and their contribution towards air pollution has not been analyzed previously. Emissions for the base year (2014) and two optimistic 'what-if' scenarios were estimated by using the International Vehicle Emissions (IVE) model. Considering the recent implementation of Euro II as emission standard in Pakistan, scenario 1 assumed entire LDV fleet meeting at least Euro II standards while scenario 2 assumed all LDVs meeting Euro IV standards except motorcycles which would be meeting Euro III emission standards. Higher average age for all vehicles and lower share of Euro compliant vehicles was found in the base case. Low engine stress mode (lower speeds with frequent decelerations) was observed for all vehicles especially on arterials and residential roads. Highest overall emissions (59%) were observed on arterials, followed by residential roads (24%) and highways (17%) with higher emissions observed during morning (8-10 am) and evening (4-6 pm) rush hours. Composite emission factors were also calculated. Results reveal that 1094, 147, 11.1, 0.2 and 0.4 kt of CO2, CO, NOx, SO2 and PM10 respectively were emitted in 2014 by LDVs. Compared with the base year, scenario 1 showed a reduction of 9%, 69%, 73%, 13% and 31%, while scenario 2 exhibited a reduction of 5%, 92%, 90%, 92% and 81% for CO2, CO, NOx, SO2 and PM10 respectively. As compared to the base year, a 20 year CO2-equivalent Global Warming Potential (GWP) reduced by 55% and 64% under scenario 1 and 2 respectively, while a 100 year GWP reduced by 40% and 44% under scenario 1 and 2 respectively. Our results demonstrated significant co-benefits that could be achieved in emission reduction and air quality improvement in the city by vehicle technology implementation.

  8. Source apportionment of PM(2.5) in the harbour-industrial area of Brindisi (Italy): identification and estimation of the contribution of in-port ship emissions.

    Science.gov (United States)

    Cesari, D; Genga, A; Ielpo, P; Siciliano, M; Mascolo, G; Grasso, F M; Contini, D

    2014-11-01

    Harbours are important for economic and social development of coastal areas but they also represent an anthropogenic source of emissions often located near urban centres and industrial areas. This increases the difficulties in distinguishing the harbour contribution with respect to other sources. The aim of this work is the characterisation of main sources of PM2.5 acting on the Brindisi harbour-industrial area, trying to pinpoint the contribution of in-port ship emissions to primary and secondary PM2.5. Brindisi is an important port-city of the Adriatic Sea considered a hot-spot for anthropogenic environmental pressures at National level. Measurements were performed collecting PM2.5 samples and characterising the concentrations of 23 chemical species (water soluble organic and inorganic carbon; major ions: SO4(2-), NO3(-), NH4(+), Cl(-), C2O4(2-), Na(+), K(+), Mg(2+), Ca(2+); and elements: Ni, Cu, V, Mn, As, Pb, Cr, Sb, Fe, Al, Zn, and Ti). These species represent, on average, 51.4% of PM2.5 and were used for source apportionment via PMF. The contributions of eight sources were estimated: crustal (16.4±0.9% of PM2.5), aged marine (2.6±0.5%), crustal carbonates (7.7±0.3%), ammonium sulphate (27.3±0.8%), biomass burning-fires (11.7±0.7%), traffic (16.4±1.7 %), industrial (0.4±0.3%) and a mixed source oil combustion-industrial including ship emissions in harbour (15.3±1.3%). The PMF did not separate the in-port ship emission contribution from industrial releases. The correlation of estimated contribution with meteorology showed directionality with an increase of oil combustion and sulphate contribution in the harbour direction with respect to the direction of the urban area and an increase of the V/Ni ratio. This allowed for the use of V as marker of primary ship contribution to PM2.5 (2.8%+/-1.1%). The secondary contribution of oil combustion to non-sea-salt-sulphate, nssSO4(2-), was estimated to be 1.3 μg/m(3) (about 40% of total nssSO4(2-) or 11% of PM2

  9. Prediction and analysis of near-road concentrations using a reduced-form emission/dispersion model

    Directory of Open Access Journals (Sweden)

    Kononowech Robert

    2010-06-01

    Full Text Available Abstract Background Near-road exposures of traffic-related air pollutants have been receiving increased attention due to evidence linking emissions from high-traffic roadways to adverse health outcomes. To date, most epidemiological and risk analyses have utilized simple but crude exposure indicators, most typically proximity measures, such as the distance between freeways and residences, to represent air quality impacts from traffic. This paper derives and analyzes a simplified microscale simulation model designed to predict short- (hourly to long-term (annual average pollutant concentrations near roads. Sensitivity analyses and case studies are used to highlight issues in predicting near-road exposures. Methods Process-based simulation models using a computationally efficient reduced-form response surface structure and a minimum number of inputs integrate the major determinants of air pollution exposures: traffic volume and vehicle emissions, meteorology, and receptor location. We identify the most influential variables and then derive a set of multiplicative submodels that match predictions from "parent" models MOBILE6.2 and CALINE4. The assembled model is applied to two case studies in the Detroit, Michigan area. The first predicts carbon monoxide (CO concentrations at a monitoring site near a freeway. The second predicts CO and PM2.5 concentrations in a dense receptor grid over a 1 km2 area around the intersection of two major roads. We analyze the spatial and temporal patterns of pollutant concentration predictions. Results Predicted CO concentrations showed reasonable agreement with annual average and 24-hour measurements, e.g., 59% of the 24-hr predictions were within a factor of two of observations in the warmer months when CO emissions are more consistent. The highest concentrations of both CO and PM2.5 were predicted to occur near intersections and downwind of major roads during periods of unfavorable meteorology (e.g., low wind

  10. Contribution of biogenic emissions to the formation of ozone and particulate matter in the eastern United States.

    Science.gov (United States)

    Pun, Betty K; Wu, Shiang-Yuh; Seigneur, Christian

    2002-08-15

    As anthropogenic emissions of ozone (O3) precursors, fine particulate matter (PM2.5), and PM2.5 precursors continue to decrease in the United States, the fraction of O3 and PM2.5 attributable to natural sources may become significant in some locations, reducing the efficacy that can be expected from future controls of anthropogenic sources. Modeling studies were conducted to estimate the contribution of biogenic emissions to the formation of O3 and PM2.5 in Nashville/TN and the northeastern United States. Two approaches were used to bound the estimates. In an anthropogenic simulation, biogenic emissions and their influence at the domain boundaries were eliminated. Contributions of biogenic compounds to the simulated concentrations of O3 and PM2.5 were determined by the deviation of the concentrations in the anthropogenic case from those in the base case. A biogenic simulation was used to assess the amounts of O3 and PM2.5 produced in an environment free from anthropogenic influences in emissions and boundary conditions. In both locations, the contribution of biogenic emissions to O3 was small (production of O3 was much more sensitive to biogenic emissions in urban areas (22-34%). Therefore, the effects of biogenic emissions on O3 manifested mostly via their interaction with anthropogenic emissions of NOx. In the anthropogenic simulations, the average contribution of biogenic and natural sources to PM2.5 was estimated at 9% in Nashville/TN and 12% in the northeast domain. Because of the long atmospheric lifetimes of PM2.5, the contribution of biogenic/natural PM2.5 from the boundary conditions was higher than the contribution of biogenic aerosols produced within the domain. The elimination of biogenic emissions also affected the chemistry of other secondary PM2.5 components. Very little PM2.5 was formed in the biogenic simulations.

  11. Impacts of global, regional, and sectoral black carbon emission reductions on surface air quality and human mortality

    Directory of Open Access Journals (Sweden)

    S. C. Anenberg

    2011-07-01

    Full Text Available As a component of fine particulate matter (PM2.5, black carbon (BC is associated with premature human mortality. BC also affects climate by absorbing solar radiation and reducing planetary albedo. Several studies have examined the climate impacts of BC emissions, but the associated health impacts have been studied less extensively. Here, we examine the surface PM2.5 and premature mortality impacts of halving anthropogenic BC emissions globally and individually from eight world regions and three major economic sectors. We use a global chemical transport model, MOZART-4, to simulate PM2.5 concentrations and a health impact function to calculate premature cardiopulmonary and lung cancer deaths. We estimate that halving global anthropogenic BC emissions reduces outdoor population-weighted average PM2.5 by 542 ng m−3 (1.8 % and avoids 157 000 (95 % confidence interval, 120 000–194 000 annual premature deaths globally, with the vast majority occurring within the source region. Most of these avoided deaths can be achieved by halving emissions in East Asia (China; 54 %, followed by South Asia (India; 31 %, however South Asian emissions have 50 % greater mortality impacts per unit BC emitted than East Asian emissions. Globally, halving residential, industrial, and transportation emissions contributes 47 %, 35 %, and 15 % to the avoided deaths from halving all anthropogenic BC emissions. These contributions are 1.2, 1.2, and 0.6 times each sector's portion of global BC emissions, owing to the degree of co-location with population globally. We find that reducing BC emissions increases regional SO4 concentrations by up to 28 % of the magnitude of the regional BC concentration reductions, due to reduced absorption of radiation that drives photochemistry. Impacts of residential BC emissions are likely underestimated since indoor PM2.5 exposure is excluded. We estimate ∼8 times

  12. Intervention assessments in the control of PM10 emissions from an urban waste transfer station.

    Science.gov (United States)

    Barratt, B M; Fuller, G W

    2014-05-01

    While vehicle emissions present the most widespread cause of breaches of EU air quality standards in urban areas of the UK, the greatest PM10 concentrations are often recorded close to small industrial sites with significant and long-term public exposure within close proximity. This is particularly the case in London, where monitoring in densely populated locations, adjacent to waste transfer stations (WTS), routinely report the highest PM10 concentrations in the city. This study aims to assess the impact of dust abatement measures taken at a WTS in west London and, in so doing, develop analysis techniques transferrable to other similar industrial situations. The study was performed in a 'blinded fashion', i.e., no details of operating times, activities or remediation measures were provided prior to the analysis. The study established that PM10 concentrations were strongly related to the industrial area's working hours and atmospheric humidity. The primary source of local particulate matter during working hours was found to be from the industrial area itself, not from the adjacent road serving the site. CUSUM analysis revealed a strong, sustained change point coinciding with a number of modifications at the WTS. Analysis suggested that introducing a vehicle washer bay, leading to a less dry and dusty yard, and ceasing stock piling and waste handling activities outside of the open shed had the greatest effect on PM10 concentrations. The techniques developed in this study should empower licensing authorities to more effectively characterise and mitigate particulate matter generated by urban industrial activities, thereby improving the health and quality of life of the local population.

  13. Emission inventory estimation of an intercity bus terminal.

    Science.gov (United States)

    Qiu, Zhaowen; Li, Xiaoxia; Hao, Yanzhao; Deng, Shunxi; Gao, H Oliver

    2016-06-01

    Intercity bus terminals are hotspots of air pollution due to concentrated activities of diesel buses. In order to evaluate the bus terminals' impact on air quality, it is necessary to estimate the associated mobile emission inventories. Since the vehicles' operating condition at the bus terminal varies significantly, conventional calculation of the emissions based on average emission factors suffers the loss of accuracy. In this study, we examined a typical intercity bus terminal-the Southern City Bus Station of Xi'an, China-using a multi-scale emission model-(US EPA's MOVES model)-to quantity the vehicle emission inventory. A representative operating cycle for buses within the station is constructed. The emission inventory was then estimated using detailed inputs including vehicle ages, operating speeds, operating schedules, and operating mode distribution, as well as meteorological data (temperature and humidity). Five functional areas (bus yard, platforms, disembarking area, bus travel routes within the station, and bus entrance/exit routes) at the terminal were identified, and the bus operation cycle was established using the micro-trip cycle construction method. Results of our case study showed that switching to compressed natural gas (CNG) from diesel fuel could reduce PM2.5 and CO emissions by 85.64 and 6.21 %, respectively, in the microenvironment of the bus terminal. When CNG is used, tail pipe exhaust PM2.5 emission is significantly reduced, even less than brake wear PM2.5. The estimated bus operating cycles can also offer researchers and policy makers important information for emission evaluation in the planning and design of any typical intercity bus terminals of a similar scale.

  14. PM10 source apportionment study in Pleasant Valley, Nevada

    International Nuclear Information System (INIS)

    Egami, R.T.; Chow, J.C.; Watson, J.G.; DeLong, T.

    1990-01-01

    A source apportionment study was conducted between March 18 and April 4, 1988, at Pleasant Valley, Nevada, to evaluate air pollutant concentrations to which community residents were exposed and the source contributions to those pollutants. Daily PM 10 samples were taken for chemical speciation of 40 trace elements, ions, and organic and elemental carbon. This paper reports that the objectives of this case study are: to determine the emissions source composition of the potential upwind source, a geothermal plant; to measure the ambient particulate concentration and its chemical characteristics in Pleasant Valley; and to estimate the contributions of different emissions sources to PM 10 . The study found that: particulate emissions from the geothermal cooling-tower plume consisted primarily of sulfate, ammonia, chloride, and trace elements; no significant quantities of toxic inorganic species were found in the ambient air; ambient PM 10 concentrations in Pleasant Valley were within Federal standards; and source contribution to PM 10 were approximately 60% geological material; 20% motor vehicle exhaust; and 10% cooling-tower plume

  15. Reducing methane emissions from ruminant animals

    Energy Technology Data Exchange (ETDEWEB)

    Mathison, G.W.; Okine, E.K.; McAllister, T.A.; Dong, Y.; Galbraith, J.; Dmytruk, O.I.N. [University of Alberta, Edmonton, AB (Canada). Dept. of Agriculture, Food and Nutrition Science

    1998-09-01

    In 1992 it was estimated that 30 x 10{sup 12}g more methane was emitted into the atmosphere than was removed, with animals being considered the largest single anthropogenic source. Ruminants produce 97% of the methane generated in enteric fermentation by animals. Estimates for methane emissions from animal wastes vary between 6 and 31% of that produced directly by the animal, with the most likely value being between 5 and 10% globally. Methane inhibitors can reduce methane emissions to zero in the short term but due to microbial adaptation the effects of these compounds are quickly neutralized and feed intake is often depressed. Methane emissions per unit of feed consumed from sheep and cattle fed hay diets appear to be quite similar but differences between other ruminants have been measured. The most practical way of influencing methane emissions per unit product is to increase productivity level since the proportion of feed energy required to just maintain the animal will be reduced, methane production falls with increased intake level, and the animal may go to market sooner. The most promising avenues for future research for reducing methanogenesis are the development of new products for reducing protozoal numbers in the rumen and the use of bacterocins or other compounds which specifically target methanogenic bacteria.

  16. Elemental composition of PM 10 and PM 2.5 in urban environment in South Brazil

    Science.gov (United States)

    Braga, C. F.; Teixeira, E. C.; Meira, L.; Wiegand, F.; Yoneama, M. L.; Dias, J. F.

    The purpose of the present study is to analyze the elemental composition and the concentrations of PM 10 and PM 2.5 in the Guaíba Hydrographic Basin with HV PM 10 and dichotomous samplers. Three sampling sites were selected: 8° Distrito, CEASA and Charqueadas. The sampling was conducted from October 2001 to December 2002. The mass concentrations of the samplers were evaluated, while the elemental concentrations of Si, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu and Zn were determined using the Particle-Induced X-ray Emission (PIXE) technique. Factor Analysis and Canonical Correlation Analysis were applied to the chemical and meteorological variables in order to identify the sources of particulate matter. Industrial activities such as steel plants, coal-fired power plants, hospital waste burning, vehicular emissions and soil were identified as the sources of the particulate matter. Concentration levels higher than the daily and the annual average air quality standards (150 and 50 μg m -3, respectively) set by the Brazilian legislation were not observed.

  17. Cogeneration, renewables and reducing greenhouse gas emissions

    International Nuclear Information System (INIS)

    Naughten, B.; Dlugosz, J.

    1996-01-01

    The MENSA model is used to assess the potential role of cogeneration and selected new renewable energy technologies in cost-effectively reducing Greenhouse gas emissions. The model framework for analyzing these issues is introduced, together with an account of relevant aspects of its application. In the discussion of selected new renewable energy technologies, it is shown how microeconomic reform may encourage these technologies and fuels, and thereby reduce sector wide carbon dioxide emissions. Policy scenarios modelled are described and the simulation results are presented. Certain interventions in microeconomic reform may result in economic benefits while also reducing emissions: no regrets' opportunities. Some renewable energy technologies are also shown to be cost-effective in the event that targets and timetables for reducing Greenhouse gas emissions are imposed. However, ad hoc interventions in support of particular renewables options are unlikely to be consistent with a least cost approach to achieving environmental objectives. (author). 5 tabs., 5 figs., 21 refs

  18. Temporal and spatial analyses of particulate matter (PM10 and PM2.5) and its relationship with meteorological parameters over an urban city in northeast China

    Science.gov (United States)

    Li, Xiaolan; Ma, Yanjun; Wang, Yangfeng; Liu, Ningwei; Hong, Ye

    2017-12-01

    Temporal and spatial characteristics of atmospheric particulate matter (PM10 and PM2.5) and its relationship with meteorology over Shenyang, a city in northeast China, were statistically analyzed using hourly and daily averaged PM mass concentrations measured at 11 locations and surface meteorological parameters, from January 2014 to May 2016. Using averaged data from 11 stations in Shenyang, it was found that the monthly mean PM2.5 mass concentrations were higher in winter (97.2 ± 11.2 μg m- 3) and autumn (85.5 ± 42.9 μg m- 3), and lower in spring (62.0 ± 14.0 μg m- 3) and summer (42.5 ± 8.4 μg m- 3), similar to the seasonal variation in PM10 concentrations. The monthly ratios of PM2.5/PM10 ranged from 0.41 to 0.87, and were larger in autumn and winter but lowest in spring due to dust activities. PM pollution was concentrated mainly in the central, northern, and western areas of Shenyang in most seasons mainly due to anthropogenic activities such as traffic and residential emission and construction activity as well as natural dust emission. PM concentrations observed over different areas in all seasons generally exhibited two peaks, at 08:00-10:00 local time (LT) and 21:00-23:00 LT, with the exception of PM2.5 in summer, which showed only one peak during the daytime. In addition, PM10 concentrations peaked around 14:00 LT during spring in the western area of Shenyang because of strong thermal and dynamic turbulence, resulting in elevated dust emissions from adjacent dust sources. The relationship between daily PM concentrations and meteorological parameters showed both seasonal and annual variation. Overall, both PM2.5 and PM10 concentrations were negatively correlated with atmospheric visibility, with correlation coefficients (R) of 0.71 and 0.56, respectively. In most seasons, PM concentrations also exhibited negative correlations with wind speed, but showed positive correlations with air pressure, air temperature, and relative humidity. Strong wind

  19. Urban air quality: The challenge of traffic non-exhaust emissions

    NARCIS (Netherlands)

    Amato, F.; Cassee, F.R.; Denier van der Gon, H.A.C.; Gehrig, R.; Gustafsson, M.; Hafner, W.; Harrison, R.M.; Jozwicka, M.; Kelly, F.J.; Moreno, T.; Prevot, A.S.H.; Schaap, M.; Sunyer, J.; Querol, X.

    2014-01-01

    About 400,000 premature adult deaths attributable to air pollution occur each year in the European Region. Road transport emissions account for a significant share of this burden. While important technological improvements have been made for reducing particulate matter (PM) emissions from motor

  20. Urban air quality: the challenge of traffic non-exhaust emissions

    NARCIS (Netherlands)

    Amato, Fulvio; Cassee, Flemming R.; Denier van der Gon, Hugo A C; Gehrig, Robert; Gustafsson, Mats; Hafner, Wolfgang; Harrison, Roy M.; Jozwicka, Magdalena; Kelly, Frank J.; Moreno, Teresa; Prevot, Andre S H; Schaap, Martijn; Sunyer, Jordi; Querol, Xavier

    2014-01-01

    About 400,000 premature adult deaths attributable to air pollution occur each year in the European Region. Road transport emissions account for a significant share of this burden. While important technological improvements have been made for reducing particulate matter (PM) emissions from motor

  1. Assessment of annual air pollution levels with PM1, PM2.5, PM10 and associated heavy metals in Algiers, Algeria.

    Science.gov (United States)

    Talbi, Abdelhamid; Kerchich, Yacine; Kerbachi, Rabah; Boughedaoui, Ménouèr

    2018-01-01

    Concentrations of particulate matter less than 1  μm, 2.5  μm, 10 μm and their contents of heavy metals were investigated in two different stations, urban and roadside at Algiers (Algeria). Sampling was conducted during two years by a high volume samplers (HVS) equipped with a cascade impactor at four levels stage, for one year sampling. The characterization of the heavy metals associated to the particulate matter (PM) was carried out by X-Ray Fluorescence analysis (XRF). The annual average concentration of PM 1 , PM 2.5 and PM 10 in both stations were 18.24, 32.23 and 60.01 μg m -3 respectively. The PM 1 , PM 2.5 and PM 10 concentrations in roadside varied from 13.46 to 25.59 μg m -3 , 20.82-49.85 μg m -3 and 45.90-77.23 μg m -3 respectively. However in the urban station, the PM 1 , PM 2.5 and PM 10 concentrations varied from 10.45 to 26.24 μg m -3 , 18.53-47.58 μg m -3 and 43.8-91.62 μg m -3 . The heavy metals associated to the PM were confirmed by Scanning Electron Microscopy-Energy Dispersive X-Ray analyses (SEM-EDX). The different spots of PM 2.5 analysis by SEM-EDX shows the presence of nineteen elements with anthropogenic and natural origins, within the heavy metal detected, the lead was found with maximum of 5% (weight percent). In order to determine the source contributions of PM levels at the two sampling sites sampling, principal compound analysis (PCA) was applied to the collected data. Statistical analysis confirmed anthropogenic source with traffic being a significant source and high contribution of natural emissions. At both sites, the PM 2.5 /PM 10 ratio is lower than that usually recorded in developed countries. The study of the back-trajectories of the air masses starting from Sahara shows that desert dust influences the concentration and the composition of the PM measured in Algiers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Effect of Fuel Composition on Particulate Matter Emissions from a Gasoline Direct Injection Engine

    Science.gov (United States)

    Smallwood, Bryden Alexander

    The effects of fuel composition on reducing PM emissions were investigated using a Ford Focus wall-guided gasoline direct injection engine (GDI). Initial results with a 65% isooctane and 35% toluene blend showed significant reductions in PM emissions. Further experiments determined that this decrease was due to a lack of light-end components in that fuel blend. Tests with pentane content lower than 15% were found to have PN concentrations 96% lower than tests with 20% pentane content. This indicates that there is a shift in mode of soot production. Pentane significantly increases the vapour pressure of the fuel blend, potentially resulting in surface boiling, less homogeneous mixtures, or decreased fuel rebound from the piston. PM mass measurements and PN Index values both showed strong correlations with the PN concentration emissions. In the gaseous exhaust, THC, pentane, and 1,3 butadiene showed strong correlations with the PM emissions.

  3. Time-Based Readout of a Silicon Photomultiplier (SiPM) for Time of Flight Positron Emission Tomography (TOF-PET)

    CERN Document Server

    Powolny, F; Brunner, S E; Hillemanns, H; Meyer, T; Garutti, E; Williams, M C S; Auffray, E; Shen, W; Goettlich, M; Jarron, P; Schultz-Coulon, H C

    2011-01-01

    Time of flight (TOF) measurements in positron emission tomography (PET) are very challenging in terms of timing performance, and should ideally achieve less than 100 ps FWHM precision. We present a time-based differential technique to read out silicon photomultipliers (SiPMs) which has less than 20 ps FWHM electronic jitter. The novel readout is a fast front end circuit (NINO) based on a first stage differential current mode amplifier with 20 Omega input resistance. Therefore the amplifier inputs are connected differentially to the SiPM's anode and cathode ports. The leading edge of the output signal provides the time information, while the trailing edge provides the energy information. Based on a Monte Carlo photon-generation model, HSPICE simulations were run with a 3 x 3 mm(2) SiPM-model, read out with a differential current amplifier. The results of these simulations are presented here and compared with experimental data obtained with a 3 x 3 x 15 mm(3) LSO crystal coupled to a SiPM. The measured time coi...

  4. Cost-effective reduction of fine primary particulate matter emissions in Finland

    International Nuclear Information System (INIS)

    Karvosenoja, Niko; Klimont, Zbigniew; Tohka, Antti; Johansson, Matti

    2007-01-01

    Policies to reduce adverse health impacts of fine particulate matter (PM 2.5 ) require information on costs of abatement and associated costs. This paper explores the potential for cost-efficient control of anthropogenic primary PM 2.5 emissions in Finland. Based on a Kyoto-compliant energy projection, two emission control scenarios for 2020 were developed. 'Baseline' assumes implementation of PM controls in compliance with existing legislation. 'Reduction' assumes ambitious further reductions. Emissions for 2020 were estimated at 26 and 18.6 Gg a -1 for 'Baseline' and 'Reduction', respectively. The largest abatement potential, 3.0 Gg a -1 , was calculated for power plants and industrial combustion. The largest potential with marginal costs below 5000 Euro MG(PM 2.5 ) -1 was for domestic wood combustion, 1.7 Gg a -1 . For traffic the potential was estimated at 1.0 Gg a -1 , but was associated with high costs. The results from this paper are used in the policy-driven national integrated assessment modeling that explores cost-efficient reductions of the health impacts of PM

  5. Response of fine particulate matter concentrations to changes of emissions and temperature in Europe

    Directory of Open Access Journals (Sweden)

    A. G. Megaritis

    2013-03-01

    Full Text Available PMCAMx-2008, a three dimensional chemical transport model (CTM, was applied in Europe to quantify the changes in fine particle (PM2.5 concentration in response to different emission reductions as well as to temperature increase. A summer and a winter simulation period were used, to investigate the seasonal dependence of the PM2.5 response to 50% reductions of sulfur dioxide (SO2, ammonia (NH3, nitrogen oxides (NOx, anthropogenic volatile organic compounds (VOCs and anthropogenic primary organic aerosol (POA emissions and also to temperature increases of 2.5 and 5 K. Reduction of NH3 emissions seems to be the most effective control strategy for reducing PM2.5, in both periods, resulting in a decrease of PM2.5 up to 5.1 μg m−3 and 1.8 μg m−3 (5.5% and 4% on average during summer and winter respectively, mainly due to reduction of ammonium nitrate (NH4NO3 (20% on average in both periods. The reduction of SO2 emissions decreases PM2.5 in both periods having a significant effect over the Balkans (up to 1.6 μg m−3 during the modeled summer period, mainly due to decrease of sulfate (34% on average over the Balkans. The anthropogenic POA control strategy reduces total OA by 15% during the modeled winter period and 8% in the summer period. The reduction of total OA is higher in urban areas close to its emissions sources. A slight decrease of OA (8% in the modeled summer period and 4% in the modeled winter period is also predicted after a 50% reduction of VOCs emissions due to the decrease of anthropogenic SOA. The reduction of NOx emissions reduces PM2.5 (up to 3.4 μg m−3 during the summer period, due to a decrease of NH4NO3, causing although an increase of ozone concentration in major urban areas and over Western Europe. Additionally, the NOx control strategy actually increases PM2.5 levels during the winter period, due to more oxidants becoming available to react with SO2 and VOCs. The increase of temperature results in a decrease of PM2

  6. Receptor modeling of PM2.5, PM10 and TSP in different seasons and long-range transport analysis at a coastal site of Tianjin, China.

    Science.gov (United States)

    Kong, Shaofei; Han, Bin; Bai, Zhipeng; Chen, Li; Shi, Jianwu; Xu, Zhun

    2010-09-15

    Atmospheric particulate matter (PM(2.5), PM(10) and TSP) were sampled synchronously during three monitoring campaigns from June 2007 to February 2008 at a coastal site in TEDA of Tianjin, China. Chemical compositions including 19 elements, 6 water-solubility ions, organic and elemental carbon were determined. principle components analysis (PCA) and chemical mass balance modeling (CMB) were applied to determine the PM sources and their contributions with the assistance of NSS SO(4)(2)(-), the mass ratios of NO(3)(-) to SO(4)(2)(-) and OC to EC. Air mass backward trajectory model was compared with source apportionment results to evaluate the origin of PM. Results showed that NSS SO(4)(2)(-) values for PM(2.5) were 2147.38, 1701.26 and 239.80 ng/m(3) in summer, autumn and winter, reflecting the influence of sources from local emissions. Most of it was below zero in summer for PM(10) indicating the influence of sea salt. The ratios of NO(3)(-) to SO(4)(2)(-) was 0.19 for PM(2.5), 0.18 for PM(10) and 0.19 for TSP in winter indicating high amounts of coal consumed for heating purpose. Higher OC/EC values (mostly larger than 2.5) demonstrated that secondary organic aerosol was abundant at this site. The major sources were construction activities, road dust, vehicle emissions, marine aerosol, metal manufacturing, secondary sulfate aerosols, soil dust, biomass burning, some pharmaceutics industries and fuel-oil combustion according to PCA. Coal combustion, marine aerosol, vehicular emission and soil dust explained 5-31%, 1-13%, 13-44% and 3-46% for PM(2.5), PM(10) and TSP, respectively. Backward trajectory analysis showed air parcels originating from sea accounted for 39% in summer, while in autumn and winter the air parcels were mainly related to continental origin. Copyright 2010 Elsevier B.V. All rights reserved.

  7. Assessment of regional air quality resulting from emission control in the Pearl River Delta region, southern China.

    Science.gov (United States)

    Wang, N; Lyu, X P; Deng, X J; Guo, H; Deng, T; Li, Y; Yin, C Q; Li, F; Wang, S Q

    2016-12-15

    To evaluate the impact of emission control measures on the air quality in the Pearl River Delta (PRD) region of South China, statistic data including atmospheric observations, emissions and energy consumptions during 2006-2014 were analyzed, and a Weather Research and Forecasting - Community Multi-scale Air Quality (WRF-CMAQ) model was used for various scenario simulations. Although energy consumption doubled from 2004 to 2014 and vehicle number significantly increased from 2006 to 2014, ambient SO 2 , NO 2 and PM 10 were reduced by 66%, 20% and 24%, respectively, mainly due to emissions control efforts. In contrast, O 3 increased by 19%. Model simulations of three emission control scenarios, including a baseline (a case in 2010), a CAP (a case in 2020 assuming control strength followed past control tendency) and a REF (a case in 2020 referring to the strict control measures based on recent policy/plans) were conducted to investigate the variations of air pollutants to the changes in NO x , VOCs and NH 3 emissions. Although the area mean concentrations of NO x , nitrate and PM 2.5 decreased under both NO x CAP (reduced by 1.8%, 0.7% and 0.2%, respectively) and NO x REF (reduced by 7.2%, 1.8% and 0.3%, respectively), a rising of PM 2.5 was found in certain areas as reducing NO x emissions elevated the atmospheric oxidizability. Furthermore, scenarios with NH 3 emission reductions showed that nitrate was sensitive to NH 3 emissions, with decreasing percentages of 0-10.6% and 0-48% under CAP and REF, respectively. Controlling emissions of VOCs reduced PM 2.5 in the southwestern PRD where severe photochemical pollution frequently occurred. It was also found that O 3 formation in PRD was generally VOCs-limited while turned to be NO x -limited in the afternoon (13:00-17:00), suggesting that cutting VOCs emissions would reduce the overall O 3 concentrations while mitigating NO x emissions in the afternoon could reduce the peak O 3 levels. Copyright © 2016 Elsevier B

  8. Advanced CIDI Emission Control System Development

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, Christine

    2006-05-31

    Ford Motor Company, with ExxonMobil and FEV, participated in the Department of Energy's (DOE) Ultra-Clean Transportation Fuels Program with the goal to develop an innovative emission control system for light-duty diesel vehicles. The focus on diesel engine emissions was a direct result of the improved volumetric fuel economy (up to 50%) and lower CO2 emissions (up to 25%) over comparable gasoline engines shown in Europe. Selective Catalytic Reduction (SCR) with aqueous urea as the NOx reductant and a Catalyzed Diesel Particulate Filter (CDPF) were chosen as the primary emission control system components. The program expected to demonstrate more than 90% durable reduction in particulate matter (PM) and NOx emissions on a light-duty truck application, based on the FTP-75 drive cycle. Very low sulfur diesel fuel (<15 ppm-wt) enabled lower PM emissions, reduced fuel economy penalty due to the emission control system and improved long-term system durability. Significant progress was made toward a durable system to meet Tier 2 Bin 5 emission standards on a 6000 lbs light-duty truck. A 40% reduction in engine-out NOx emissions was achieved with a mid-size prototype diesel engine through engine recalibration and increased exhaust gas recirculation. Use of a rapid warm-up strategy and urea SCR provided over 90% further NOx reduction while the CDPF reduced tailpipe PM to gasoline vehicle levels. Development work was conducted to separately improve urea SCR and CDPF system durability, as well as improved oxidation catalyst function. Exhaust gas NOx and ammonia sensors were also developed further. While the final emission control system did not meet Tier 2 Bin 5 NOx after 120k mi of aging on the dynamometer, it did meet the standards for HC, NMOG, and PM, and an improved SCR catalyst was shown to have potential to meet the NOx standard, assuming the DOC durability could be improved further. Models of DOC and SCR function were developed to guide the study of several key

  9. Validation of PM6 & PM7 semiempirical methods on polarizability calculations

    Science.gov (United States)

    Praveen, P. A.; Babu, R. Ramesh; Ramamurthi, K.

    2015-06-01

    Modern semiempirical methods such as PM6 and PM7 are often used to explore the electronic structure dependent properties of molecules. In this work we report the evaluation of PM6 and PM7 methods towards linear and nonlinear optical polarizability calculations for different molecules and solid nanoclusters. The results are compared with reported experimental results as well as theoretical results from other high level theories for the same systems. It is found that both methods produce accurate results for small molecules and the accuracy increases with the increase in asymmetry of the medium sized organic molecules and accuracy reduces for solid nanoclusters.

  10. Validation of PM6 & PM7 semiempirical methods on polarizability calculations

    Energy Technology Data Exchange (ETDEWEB)

    Praveen, P. A.; Babu, R. Ramesh, E-mail: rampap2k@yahoo.co.in [Crystal Growth and Thin film Laboratory, Department of Physics, Bharathidasan University, Tiruchirappalli-620024, Tamilnadu (India); Ramamurthi, K. [Department of Physics and Nanotechnology, Faculty of Engineering and Technology, SRM University, Kattankulathur – 603 203, Tamil Nadu (India)

    2015-06-24

    Modern semiempirical methods such as PM6 and PM7 are often used to explore the electronic structure dependent properties of molecules. In this work we report the evaluation of PM6 and PM7 methods towards linear and nonlinear optical polarizability calculations for different molecules and solid nanoclusters. The results are compared with reported experimental results as well as theoretical results from other high level theories for the same systems. It is found that both methods produce accurate results for small molecules and the accuracy increases with the increase in asymmetry of the medium sized organic molecules and accuracy reduces for solid nanoclusters.

  11. Validation of PM6 & PM7 semiempirical methods on polarizability calculations

    International Nuclear Information System (INIS)

    Praveen, P. A.; Babu, R. Ramesh; Ramamurthi, K.

    2015-01-01

    Modern semiempirical methods such as PM6 and PM7 are often used to explore the electronic structure dependent properties of molecules. In this work we report the evaluation of PM6 and PM7 methods towards linear and nonlinear optical polarizability calculations for different molecules and solid nanoclusters. The results are compared with reported experimental results as well as theoretical results from other high level theories for the same systems. It is found that both methods produce accurate results for small molecules and the accuracy increases with the increase in asymmetry of the medium sized organic molecules and accuracy reduces for solid nanoclusters

  12. Recognize PM2.5 sources and emission patterns via high-density sensor network: An application case in Beijing

    Science.gov (United States)

    Ba, Yu tao; xian Liu, Bao; Sun, Feng; Wang, Li hua; Zhang, Da wei; Yin, Wen jun

    2017-04-01

    Beijing suffered severe air pollution during wintertime, 2016, with the unprecedented high level pollutants monitored. As the most dominant pollutant, fine particulate matter (PM2.5) was measured via high-density sensor network (>1000 fixed monitors across 16000 km2 area). This campaign provided precise observations (spatial resolution ≈ 3 km, temporal resolution = 10 min, error of measure Chemistry) were analyzed to elucidate the effects of atmospheric transportations across regions, both horizontal and vertical, on emission patterns during this haze period. The results quantified the main cause of regional transport and local emission, and highlighted the importance of cross-region cooperation in anti-pollution campaigns.

  13. Chemical composition and sources of PM1 and PM2.5 in Beijing in autumn.

    Science.gov (United States)

    Zhang, Yanyun; Lang, Jianlei; Cheng, Shuiyuan; Li, Shengyue; Zhou, Ying; Chen, Dongsheng; Zhang, Hanyu; Wang, Haiyan

    2018-02-20

    Beijing, the capital of China, suffers from severe atmospheric aerosol pollution; nevertheless, a comprehensive study of the constituents and sources of PM 1 is still lacking, and the differences between PM 1 and PM 2.5 are still unclear. In this study, an intensive observation was conducted to reveal the pollution characteristics of PM 1 and PM 2.5 in Beijing in autumn. Positive matrix factorization (PMF), backward trajectories and a potential source contribution function (PSCF) model were used to identify the source categories and source areas of PM 1 and PM 2.5 . The results showed that the average concentrations of PM 1 and PM 2.5 reached 78.20μg/m 3 and 95.47μg/m 3 during the study period, respectively. PM 1 contributed greatly to PM 2.5 . The PM 1 /PM 2.5 value increased from 73.6% to 90.1% with PM 1 concentration growing from 150μg/m 3 . Higher secondary inorganic aerosol (SIA) proportions (31.3%-70.8%) were found in PM 1 . The higher fraction of SIA, OC, EC and typical elements in PM 1 illustrated that anthropogenic components accumulated more in smaller size particles. Three typical weather patterns causing the heavy pollution in autumn were found as follows: (1) Siberian high and uniform high pressure field, (2) cold front and low-voltage system, and (3) uniform low pressure field. A PMF analysis indicated that secondary aerosols and coal combustion, vehicle, industry, biomass burning, and dust were the important sources of PM, accounting for 53.8%, 8.0%, 13.0%, 13.2% and 12.0% of PM 1 , respectively, and for 47.5%, 9.9%, 12.4%, 8.4% and 21.8% of PM 2.5 , respectively. The HYSPLIT and chemical components analysis indicated the potential contribution from biomass burning and fertilization ammonia emissions to PM 1 in autumn. The source areas were similar for PM 1 and PM 1-2.5 under general polluted conditions, but during the heavily polluted periods, the source areas were distributed in farther regions from Beijing for PM 1 than for PM 1-2.5 . Copyright

  14. Estimation of automobile emissions and control strategies in India.

    Science.gov (United States)

    Nesamani, K S

    2010-03-15

    Rapid, but unplanned urban development and the consequent urban sprawl coupled with economic growth have aggravated auto dependency in India over the last two decades. This has resulted in congestion and pollution in cities. The central and state governments have taken many ameliorative measures to reduce vehicular emissions. However, evolution of scientific methods for emission inventory is crucial. Therefore, an attempt has been made to estimate the emissions (running and start) from on-road vehicles in Chennai using IVE model in this paper. GPS was used to collect driving patterns. The estimated emissions from motor vehicles in Chennai in 2005 were 431, 119, 46, 7, 4575, 29, and 0.41 tons/days respectively for CO, VOC, NO(x), PM, CO(2,) CH(4) and N(2)O. It is observed from the results that air quality in Chennai has degraded. The estimation revealed that two and three-wheelers emitted about 64% of the total CO emissions and heavy-duty vehicles accounted for more than 60% and 36% of the NO(x) and PM emissions respectively. About 19% of total emissions were that of start emissions. It is also estimated that on-road transport contributes about 6637 tons/day CO(2) equivalent in Chennai. This paper has further examined various mitigation options to reduce vehicular emissions. The study has concluded that advanced vehicular technology and augmentation of public transit would have significant impact on reducing vehicular emissions.

  15. Methods for reducing pollutant emissions from jet aircraft

    Science.gov (United States)

    Butze, H. F.

    1971-01-01

    Pollutant emissions from jet aircraft and combustion research aimed at reducing these emissions are defined. The problem of smoke formation and results achieved in smoke reduction from commercial combustors are discussed. Expermental results of parametric tests performed on both conventional and experimental combustors over a range of combustor-inlet conditions are presented. Combustor design techniques for reducing pollutant emissions are discussed. Improved fuel atomization resulting from the use of air-assist fuel nozzles has brought about significant reductions in hydrocarbon and carbon monoxide emissions at idle. Diffuser tests have shown that the combustor-inlet airflow profile can be controlled through the use of diffuser-wall bleed and that it may thus be possible to reduce emissions by controlling combustor airflow distribution. Emissions of nitric oxide from a shortlength annular swirl-can combustor were significantly lower than those from a conventional combustor operating at similar conditions.

  16. Emission Sectoral Contributions of Foreign Emissions to Particulate Matter Concentrations over South Korea

    Science.gov (United States)

    Kim, E.; Kim, S.; Kim, H. C.; Kim, B. U.; Cho, J. H.; Woo, J. H.

    2017-12-01

    In this study, we investigated the contributions of major emission source categories located upwind of South Korea to Particulate Matter (PM) in South Korea. In general, air quality in South Korea is affected by anthropogenic air pollutants emitted from foreign countries including China. Some studies reported that foreign emissions contributed 50 % of annual surface PM total mass concentrations in the Seoul Metropolitan Area, South Korea in 2014. Previous studies examined PM contributions of foreign emissions from all sectors considering meteorological variations. However, little studies conducted to assess contributions of specific foreign source categories. Therefore, we attempted to estimate sectoral contributions of foreign emissions from China to South Korea PM using our air quality forecasting system. We used Model Inter-Comparison Study in Asia 2010 for foreign emissions and Clean Air Policy Support System 2010 emission inventories for domestic emissions. To quantify contributions of major emission sectors to South Korea PM, we applied the Community Multi-scale Air Quality system with brute force method by perturbing emissions from industrial, residential, fossil-fuel power plants, transportation, and agriculture sectors in China. We noted that industrial sector was pre-dominant over the region except during cold season for primary PMs when residential emissions drastically increase due to heating demand. This study will benefit ensemble air quality forecasting and refined control strategy design by providing quantitative assessment on seasonal contributions of foreign emissions from major source categories.

  17. Source apportionment of traffic emissions of particulate matter using tunnel measurements

    Science.gov (United States)

    Lawrence, Samantha; Sokhi, Ranjeet; Ravindra, Khaiwal; Mao, Hongjun; Prain, Hunter Douglas; Bull, Ian D.

    2013-10-01

    This study aims to quantify exhaust/non-exhaust emissions and the uncertainties associated with them by combining innovative motorway tunnel sampling and source apportionment modelling. Analytical techniques ICP-AES and GC-MS were used to identify the metallic and organic composition of PM10, respectively. Good correlation was observed between Fe, Cu, Mn, Ni, Pb and Sb and change in traffic volume. The concentration of polycyclic aromatic hydrocarbons and other organics varies significantly at the entrance and exit site of the tunnel, with fluoranthene, pyrene, benzo[a]pyrene, chrysene and benzothiazole having the highest incremented concentrations. The application of Principal Component Analysis and Multiple Linear Regression Analysis helped to identify the emission sources for 82% of the total PM10 mass inside the tunnel. Identified sources include resuspension (27%), diesel exhaust emissions (21%), petrol exhaust emissions (12%), brake wear emissions (11%) and road surface wear (11%). This study shows that major health related chemical species of PM10 originate from non-exhaust sources, further signifying the need for legislation to reduce these emissions.

  18. Addressing the source contribution of PM2.5 on mortality: an evaluation study of its impacts on excess mortality in China

    Science.gov (United States)

    Tian, Lin; Zeng, Qiang; Dong, Wentan; Guo, Qun; Wu, Ziting; Pan, Xiaochuan; Li, Guoxing; Liu, Yang

    2017-10-01

    We estimated PM2.5 concentrations using satellite data and population mortality values for cause-specific diseases and employed the integrated exposure-response model to obtain the associations between exposure and response. PM2.5 source apportionment data were then used to evaluate the excess mortality attributable to PM2.5 from different emission sources. In 2013, 1.07 million excess deaths were attributed to PM2.5 exposure in China. The potentially avoidable excess deaths would be 279 000, 459 000, 731 000 and 898 000 if the PM2.5 concentrations were reduced to meet WHO interim target (IT)-1 (35 μg m-3, also the Chinese standard), IT-2 (25 μg m-3), IT-3 (15 μg m-3) and the air quality guidelines (10 μg m-3), respectively, compared with concentrations experienced in 2013. There were 249 000 (95% CI: 115-337), 228 000 (95% CI: 105-309), 203 000 (95% CI: 94-274), 197 000 (95% CI: 91-266), and 193 000 (95% CI: 88-262) excess deaths attributed to PM2.5 from coal burning, vehicle emissions, industry-related emissions, dust and other sources in 2013, respectively. Coal burning was the main source of atmospheric PM2.5; it contributed the most to excess mortalities and the health effects were likely to have been conservatively estimated. Considerable health benefits could be achieved if more stringent ambient PM2.5 standards were achieved in China.

  19. Estimating Landscape Fire Particulate Matter (PM) Emissions over Southern Africa using MSG-SEVIRI Fire Radiative Power (FRP) and MODIS Aerosol Optical Thickness Observations

    Science.gov (United States)

    Mota, Bernardo; Wooster, Martin J.

    2016-04-01

    The approach to estimating landscape fire fuel consumption based on the remotely sensed fire radiative power (FRP) thermal energy release rate, as opposed to burned area, is now relatively widely used in studies of fire emissions, including operationally within the Copernicus Atmosphere Monitoring Service (CAMS). Nevertheless, there are still limitations to the approach, including uncertainties associated with using only the few daily overpasses typically provided by polar orbiting satellite systems, the conversion between FRP and smoke emissions, and the increased likelihood that the more frequent data from geostationary systems fails to detect the (probably highly numerous) smaller (i.e. low FRP) component of a regions fire regime. In this study, we address these limitations to directly estimate fire emissions of Particular Matter (PM; or smoke aerosols) by presenting an approach combining the "bottom-up" FRP observations available every 15 minutes across Africa from the Meteosat Spinning Enhanced Visible and Infrared Imager (SEVIRI) Fire Radiative Product (FRP) processed at the EUMETSAT LSA SAF, and the "top-down" aerosol optical thickness (AOT) measures of the fire plumes themselves as measured by the Moderate-resolution Imaging Spectro-radiometer (MODIS) sensors aboard the Terra (MOD04_L2) and Aqua (MYD04_L2) satellites. We determine PM emission coefficients that relate directly to FRP measures by combining these two datasets, and the use of the almost continuous geostationary FRP observations allows us to do this without recourse to (uncertain) data on wind speed at the (unknown) height of the matching plume. We also develop compensation factors to address the detection limitations of small/low intensity (low FRP) fires, and remove the need to estimate fuel consumption by going directly from FRP to PM emissions. We derive the smoke PM emissions coefficients per land cover class by comparing the total fire radiative energy (FRE) released from individual fires

  20. Emission Factors from Aerial and Ground Measurements of Field and Laboratory Forest Burns in the Southeastern U.S.: PM2.5, Black and Brown Carbon, VOC, and PCDD/PCDF

    Science.gov (United States)

    Aerial- and ground-sampled emissions from three prescribed forest burns in the southeastern U.S. were compared to emissions from laboratory open burn tests using biomass from the same locations. A comprehensive array of emissions, including PM2.5, black carbon (BC), brown carbon ...

  1. Impact of Agricultural Emission Reductions on Fine Particulate Matter and Public Health

    Science.gov (United States)

    Pozzer, A.; Tsimpidi, A.; Karydis, V.; De Meij, A.; Lelieveld, J.

    2017-12-01

    A global chemistry-climate model has been used to study the impacts of pollutants released by agriculture on fine particulate matter (PM2.5), with a focus on Europe, North America, South and East Asia. Hypothetical reduction of agricultural emission of 50%, 66% and 100% have been simulated and compared with the reference simulation. The simulations results reveal that a relatively strong reduction in PM2.5 levels can be achieved by decreasing agricultural emissions, and this effect can almost be exclusively explain by the reduction of ammonia (NH3) emissions, released from fertilizer use and animal husbandry. The absolute impact on PM2.5 reduction is strongest in East Asia, even for small emission decreases, although the relative reduction is very low (below 13% for a full removal of agricultural emissions) . Conversely, over Europe and North America, aerosol formation is not directly limited by the availability of ammonia. Nevertheless, reduction of NH3 can also substantially decrease PM2.5concentrations over the latter regions, especially when emissions are abated systematically and an ammonia limited regions of aerosol growth is reached. Further, our results document how reduction of agricultural emissions decreases aerosol pH due to the depletion of aerosol ammonium, which affects particle liquid phase and heterogeneous chemistry. It is calculated that ammonia emission controls could reduce the particle pH up to 1.5 pH-units in East Asia during winter, and more than 1.7 pH-units in South Asia, theoretically assuming complete agricultural emission removal, which could have repercussions for the reactive uptake of gases from the gas phase and the outgassing of relative weak acids. It is finally shown that a 50% reduction of agricultural emissions could prevent the mortality attributable to air pollution by 250 thousands people per year worldwide, amounting to reductions of 30%, 19% , 8% and 3% over North America, Europe and South Asia and East Asia, respectively

  2. Source identification of PM2.5 at a port and an adjacent urban site in a coastal city of China: Impact of ship emissions and port activities.

    Science.gov (United States)

    Xu, Lingling; Jiao, Ling; Hong, Zhenyu; Zhang, Yanru; Du, Wenjiao; Wu, Xin; Chen, Yanting; Deng, Junjun; Hong, Youwei; Chen, Jinsheng

    2018-09-01

    Daily PM 2.5 samples were collected simultaneously at an urban site (UB) and a nearby port-industrial site (PI) on the coast of southeastern China from April 2015 to January 2016. The PM 2.5 mass concentration at the PI (51.9μgm -3 ) was significantly higher than that at the UB. The V concentration at the PI was also significantly higher and well-correlated to the urban value, which suggests that shipping emissions had a significant impact on the PI and, to a lesser extent, on the urban area. A positive matrix factorization (PMF) analysis showed that secondary aerosols were the dominant contribution of PM 2.5 at both sites (36.4% at the PI and 27.2% at the UB), while the contribution of industry and ship emissions identified by V, Mn, and Ba at the PI (26.1%) were double those at the UB. The difference in each source contribution among the trajectory clusters that included significant differences and insignificant differences from the UB to the PI provided insight into the role of local impacts. With regards to the UB, local potential sources play important roles in industry and ship emissions, traffic emissions, fugitive dust, and in their contributions to secondary aerosols. A conditional probability function further revealed that the ship emissions and port activities distributed in the NE, E, and SSE wind sectors were responsible for the source contributions of industry and ship emissions and secondary aerosols at the UB. This study provides an example of investigating the impact of ship emissions and port activities on the surrounding air environment using land-based measurements. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Observations of biomass burning tracers in PM2.5 at two megacities in North China during 2014 APEC summit

    Science.gov (United States)

    Zhang, Zhisheng; Gao, Jian; Zhang, Leiming; Wang, Han; Tao, Jun; Qiu, Xionghui; Chai, Fahe; Li, Yang; Wang, Shulan

    2017-11-01

    To evaluate the effectiveness of biomass burning control measures on PM2.5 reduction, day- and nighttime PM2.5 samples were collected at two urban sites in North China, one in Beijing (BJ) and the other in Shijiazhuang (SJZ), during the 2014 Asia-Pacific Economic Cooperation (APEC) summit. Typical biomass burning aerosol tracers including levoglucosan (LG), Mannosan (MN), and water-soluble potassium (K+), together with other water-soluble ions and carbonaceous species were determined. The levels of biomass burning tracers dropped dramatically during the APEC period when open biomass burning activities were well controlled in North China, yet they increased sharply to even higher levels during the post-APEC period. Distinct linear regression relationships between LG and MN were found with lower LG/MN ratios from periods with much reduced open biomass burning activities. This was likely resulted from the reduced open crop residues burning and increased residential wood burning emissions, as was also supported by the simultaneous decrease in K+/LG ratio. The positive matrix factorization and air quality model simulation analyses suggested that PM2.5 concentration produced from biomass burning sources was reduced by 22% at BJ and 46% at SJZ during the APEC period compared to pre-APEC period, although they increased to higher levels after APEC mainly due to increased residential biomass burning emissions in winter heating season. Biomass burning was also found to be the most important contributor to carbonaceous species that might cause significant light extinction in this region. This study not only suggested implementing biomass burning controls measures were helpful to reduce PM2.5 in North China, but also pointed out both open crop residues burning and indoor biomass burning activities could make substantial contributions to PM2.5 and its major components in urban areas in North China.

  4. Characterization of particulate emissions from Australian open-cut coal mines: Toward improved emission estimates.

    Science.gov (United States)

    Richardson, Claire; Rutherford, Shannon; Agranovski, Igor

    2018-06-01

    Given the significance of mining as a source of particulates, accurate characterization of emissions is important for the development of appropriate emission estimation techniques for use in modeling predictions and to inform regulatory decisions. The currently available emission estimation methods for Australian open-cut coal mines relate primarily to total suspended particulates and PM 10 (particulate matter with an aerodynamic diameter available relating to the PM 2.5 (currently available emission estimation techniques, this paper presents results of sampling completed at three open-cut coal mines in Australia. The monitoring data demonstrate that the particulate size fraction varies for different mining activities, and that the region in which the mine is located influences the characteristics of the particulates emitted to the atmosphere. The proportion of fine particulates in the sample increased with distance from the source, with the coarse fraction being a more significant proportion of total suspended particulates close to the source of emissions. In terms of particulate composition, the results demonstrate that the particulate emissions are predominantly sourced from naturally occurring geological material, and coal comprises less than 13% of the overall emissions. The size fractionation exhibited by the sampling data sets is similar to that adopted in current Australian emission estimation methods but differs from the size fractionation presented in the U.S. Environmental Protection Agency methodology. Development of region-specific emission estimation techniques for PM 10 and PM 2.5 from open-cut coal mines is necessary to allow accurate prediction of particulate emissions to inform regulatory decisions and for use in modeling predictions. Development of region-specific emission estimation techniques for PM 10 and PM 2.5 from open-cut coal mines is necessary to allow accurate prediction of particulate emissions to inform regulatory decisions and for

  5. Simultaneous monitoring and compositions analysis of PM1 and PM2.5 in Shanghai: Implications for characterization of haze pollution and source apportionment.

    Science.gov (United States)

    Qiao, Ting; Zhao, Mengfei; Xiu, Guangli; Yu, Jianzhen

    2016-07-01

    A year-long simultaneous observation of PM1 and PM2.5 were conducted at ECUST campus in Shanghai, the compositions were analyzed and compared. Results showed that PM2.5 was dominated by PM1 on clear days while the contribution of PM1-2.5 to PM2.5 increased on haze days, indicating that PM2.5 should be given priority to characterize or predict haze pollution. On haze days, accumulation of organic carbon (OC), elemental carbon (EC) and primary organic carbon (POC) in PM1-2.5 was faster than that in PM1. Humic-like substances carbon (Hulis-C) in both PM2.5 and PM1 formed faster than water soluble organic carbon (WSOC) on haze days, hence Hulis-C/WSOC increased with the intensification of haze pollution. In terms of water soluble ions, NO3(-)/SO4(2-) in PM1 increased with the aggravation of haze pollution, implying that mobile sources dominated on haze days, so is nitrogen oxidation ratio (NOR). Liquid water content (LWC) in both PM1 and PM2.5 had positive correlations with relative humidity (RH) but negative correlations with visibility, implying that hygroscopic growth might be a factor for visibility impairment, especially LWC in PM1. By comparison with multi-linear equations of LWC in PM1 and PM2.5, NO3(-) exerted a higher influence on hygroscopicity of PM1 than PM2.5, while RH, WSOC, SO4(2-) and NH4(+) had higher effects on PM2.5, especially WSOC. Source apportionment of PM2.5 was also investigated to provide reference for policy making. Cluster analysis by HYSPLIT (HYbrid Single Particle Lagrangian Integrated Trajectory) model showed that PM2.5 originated from marine aerosols, middle-scale transportation and large-scale transportation. Furthermore, PM2.5 on haze days was dominated by middle-scale transportation. In line with source apportionment by positive matrix factorization (PMF) model, PM2.5 was attributed to secondary inorganics, aged sea salt, combustion emissions, hygroscopic growth and secondary organics. Secondary formation was the principle source of

  6. Multidisciplinary Conceptual Design for Reduced-Emission Rotorcraft

    Science.gov (United States)

    Silva, Christopher; Johnson, Wayne; Solis, Eduardo

    2018-01-01

    Python-based wrappers for OpenMDAO are used to integrate disparate software for practical conceptual design of rotorcraft. The suite of tools which are connected thus far include aircraft sizing, comprehensive analysis, and parametric geometry. The tools are exercised to design aircraft with aggressive goals for emission reductions relative to fielded state-of-the-art rotorcraft. Several advanced reduced-emission rotorcraft are designed and analyzed, demonstrating the flexibility of the tools to consider a wide variety of potentially transformative vertical flight vehicles. To explore scale effects, aircraft have been sized for 5, 24, or 76 passengers in their design missions. Aircraft types evaluated include tiltrotor, single-main-rotor, coaxial, and side-by-side helicopters. Energy and drive systems modeled include Lithium-ion battery, hydrogen fuel cell, turboelectric hybrid, and turboshaft drive systems. Observations include the complex nature of the trade space for this simple problem, with many potential aircraft design and operational solutions for achieving significant emission reductions. Also interesting is that achieving greatly reduced emissions may not require exotic component technologies, but may be achieved with a dedicated design objective of reducing emissions.

  7. Decomposition Analysis of the Factors that Influence Energy Related Air Pollutant Emission Changes in China Using the SDA Method

    Directory of Open Access Journals (Sweden)

    Shichun Xu

    2017-09-01

    Full Text Available We decompose factors affecting China’s energy-related air pollutant (NOx, PM2.5, and SO2 emission changes into different effects using structural decomposition analysis (SDA. We find that, from 2005 to 2012, investment increased NOx, PM2.5, and SO2 emissions by 14.04, 7.82 and 15.59 Mt respectively, and consumption increased these emissions by 11.09, 7.98, and 12.09 Mt respectively. Export and import slightly increased the emissions on the whole, but the rate of the increase has slowed down, possibly reflecting the shift in China’s foreign trade structure. Energy intensity largely reduced NOx, PM2.5, and SO2 emissions by 12.49, 14.33 and 23.06 Mt respectively, followed by emission efficiency that reduces these emissions by 4.57, 9.08, and 17.25 Mt respectively. Input-output efficiency slightly reduces the emissions. At sectoral and sub-sectoral levels, consumption is a great driving factor in agriculture and commerce, whereas investment is a great driving factor in transport, construction, and some industrial subsectors such as iron and steel, nonferrous metals, building materials, coking, and power and heating supply. Energy intensity increases emissions in transport, chemical products and manufacturing, but decreases emissions in all other sectors and subsectors. Some policies arising from our study results are discussed.

  8. Composting as a strategy to reduce greenhouse gas emissions

    International Nuclear Information System (INIS)

    Paul, J.W.; Wagner-Riddle, C.; Thompson, A.; Fleming, R.; MacAlpine, A.

    2001-01-01

    Composting animal manure has the potential to reduce emissions of nitrous oxide (N 2 O) and methane (CH 4 ) from agriculture. Agriculture has been recognized as a major contributor of greenhouse gases, releasing an estimated 81% and 70% of the anthropogenic emissions of nitrous oxide (N 2 O) and methane (CH 4 ), respectively. A significant amount of methane is emitted during the storage of liquid manure, whereas nitrous oxide is emitted from the storage of manure and from soil following manure or fertilizer application. Composting animal manure can reduce GHG emissions in two ways; by reducing nitrous oxide and methane emissions during manure storage and application, and by reducing the amount of manufactured fertilizers and the GHG associated with their production and use. We will present information of GHG emissions and potentials for reduction based on available data, and on specific composting experiments. Nitrous oxide and methane emissions were monitored on an enclosed composting system processing liquid hog manure. Measurements indicated that total GHG emissions during composting were 24% of the Tier 2 IPCC estimates for traditional liquid hog manure management on that farm. Previous research has also indicated little nitrous oxide emission following application of composted manure to soil. The method of composting has a large impact on GHG emissions, where GHG emissions are higher from outdoor windrow composting systems than from controlled aerated systems. Further research is required to assess the whole manure management system, but composting appears to have great potential to reduce GHG emissions from agriculture. The bonus is that composting also addresses a number of other environmental concerns such as pathogens, surface and groundwater quality and ammonia emissions. (author)

  9. Laboratory Validation of Four Black Carbon Measurement Methods for Determination of the Nonvolatile Particulate Matter (nvPM) Mass Emissions from Commercial Aircraft Engines

    Science.gov (United States)

    Four candidate black carbon (BC) measurement techniques have been identified by the SAE International E-31 Committee for possible use in determining nonvolatile particulate matter (nvPM) mass emissions during commercial aircraft engine certification. These techniques are carbon b...

  10. The impact of long-range-transport on PM1 and PM2.5 at a Central Mediterranean site

    Science.gov (United States)

    Perrone, M. R.; Becagli, S.; Garcia Orza, J. A.; Vecchi, R.; Dinoi, A.; Udisti, R.; Cabello, M.

    2013-06-01

    Water soluble ions, methanesulfonate, organic and elemental carbon, and metals in PM2.5 and PM1 samples were analysed by Positive Matrix Factorization to identify and quantify major sources of fine particles at a Central Mediterranean site. The cluster analysis of four-day back trajectories was used to determine the dependence of PM2.5 and PM1 levels and composition on air-flows. The cluster analysis has identified six, six, and seven distinct air-flow types arriving at 500, 1500, and 3000 m above sea level (asl), respectively. Slow-west (Wslow) and north-eastern (NE) flows at 500 and 1500 m asl were the most frequent and were associated with the highest PM2.5 and PM1 concentrations. The PM concentrations from combustion sources including biomass burning were at their maximum under north-western (NW) flows. Similarly, the ammonium sulphate source was enhanced under Wslow and NE flows. South-eastern Mediterranean Sea air-flows were associated with the highest PM2.5 concentrations due to the heavy-oil-combustion source and the highest PM2.5 and PM1 concentrations due to the secondary marine source. PM2.5 concentrations due to the reacted dust and traffic source and PM1 concentrations due to the nitrate with reacted dust and mixed anthropogenic source showed no clear dependence on air-flows. This work highlights the different impact of aerosol sources on PM2.5 and PM1 fractions, being PM1 more adequate to control anthropogenic emissions from combustion sources.

  11. Alternative Fuels Data Center: Wisconsin Reduces Emissions With Natural Gas

    Science.gov (United States)

    Trucks Wisconsin Reduces Emissions With Natural Gas Trucks to someone by E-mail Share Alternative Fuels Data Center: Wisconsin Reduces Emissions With Natural Gas Trucks on Facebook Tweet about Alternative Fuels Data Center: Wisconsin Reduces Emissions With Natural Gas Trucks on Twitter Bookmark

  12. Model development for spatial variation of PM2.5 emissions from residential wood burning

    International Nuclear Information System (INIS)

    Yong Q, Tian; Peng Gong; Qian Yu; Radke, John D.

    2004-01-01

    This paper presents a preliminary research result of spatially quantifying and allocating the potential activity of residential wood burning (RWB) by using demographic, hypsographic, climatic and topographic information as independent variables. We also introduce the method for calculating PM 2.5 emission from residential wood combustion with the potential activity as primary variable. A linear regression model was generated to describe spatial and temporal distribution of the potential activity of wood burning as primary heating source. In order to improve the estimation, the classifications of urban, suburban and rural were redefined to meet the specifications of this application. Also, a unique way of defining forest accessibility is found useful in estimating the activity potential of RWB. The results suggest that the potential activity of wood burning is mostly determined by elevation of a location, forest accessibility, urban/non-urban position, climatic conditions and several demographic variables. The analysis results were validated using survey data collected through face-to-face and telephone interviews over the study area in central California. The linear regression model can explain approximately 86% of the variation of surveyed wood burning activity potential. The total PM 2.5 emitted from woodstoves and fireplaces is analyzed for the study region at county level. (Author)

  13. Characterization of Fine Particulate Matter (PM) and Secondary PM Precursor Gases in the Mexico City Metropolitan Area

    Science.gov (United States)

    Molina, Luisa T.; Volkamer, Rainer; de Foy, Benjamin; Lei, Wenfang; Zavala, Miguel; Velasco, Erik; Molina; Mario J.

    2008-10-31

    This project was one of three collaborating grants funded by DOE/ASP to characterize the fine particulate matter (PM) and secondary PM precursors in the Mexico City Metropolitan Area (MCMA) during the MILAGRO Campaign. The overall effort of MCMA-2006, one of the four components, focused on i) examination of the primary emissions of fine particles and precursor gases leading to photochemical production of atmospheric oxidants and secondary aerosol particles; ii) measurement and analysis of secondary oxidants and secondary fine PM production, with particular emphasis on secondary organic aerosol (SOA), and iii) evaluation of the photochemical and meteorological processes characteristic of the Mexico City Basin. The collaborative teams pursued the goals through three main tasks: i) analyses of fine PM and secondary PM precursor gaseous species data taken during the MCMA-2002/2003 campaigns and preparation of publications; ii) planning of the MILAGRO Campaign and deployment of the instrument around the MCMA; and iii) analysis of MCMA-2006 data and publication preparation.

  14. Combustion, performance and emissions characteristics of a newly ...

    Indian Academy of Sciences (India)

    of a newly developed CRDI single cylinder diesel engine. AVINASH ... In case of unit injector and unit pump systems, fuel injection pressure depends on ... nozzle hole diameters were effective in reducing smoke and PM emissions. However ...

  15. Does Increased Extraction of Natural Gas Reduce Carbon Emissions?

    International Nuclear Information System (INIS)

    Aune, F.R.; Golombek, R.; Kittelsen, S.A. C.

    2004-01-01

    Without an international climate agreement, extraction of more natural gas could reduce emissions of CO2 as more 'clean' natural gas may drive out ''dirty'' coal and oil. Using a computable equilibrium model for the Western European electricity and natural gas markets, we examine whether increased extraction of natural gas in Norway reduces global emissions of CO2. We find that both in the short run and in the long run total emissions are reduced if the additional quantity of natural gas is used in gas power production in Norway. If instead the additional quantity is exported directly, total emissions increase both in the short run and in the long run. However, if modest CO2-taxes are imposed, increased extraction of natural gas will reduce CO2 emissions also when the additional natural gas is exported directed

  16. Mass concentration coupled with mass loading rate for evaluating PM_2_._5 pollution status in the atmosphere: A case study based on dairy barns

    International Nuclear Information System (INIS)

    Joo, HungSoo; Park, Kihong; Lee, Kwangyul; Ndegwa, Pius M.

    2015-01-01

    This study investigated particulate matter (PM) loading rates and concentrations in ambient air from naturally ventilated dairy barns and also the influences of pertinent meteorological factors, traffic, and animal activities on mass loading rates and mass concentrations. Generally, relationships between PM_2_._5 concentration and these parameters were significantly poorer than those between the PM loading rate and the same parameters. Although ambient air PM_2_._5 loading rates correlated well with PM_2_._5 emission rates, ambient air PM_2_._5 concentrations correlated poorly with PM_2_._5 concentrations in the barns. A comprehensive assessment of PM_2_._5 pollution in ambient air, therefore, requires both mass concentrations and mass loading rates. Emissions of PM_2_._5 correlated strongly and positively with wind speed, temperature, and solar radiation (R"2 = 0.84 to 0.99) and strongly but negatively with relative humidity (R"2 = 0.93). Animal activity exhibited only moderate effect on PM_2_._5 emissions, while traffic activity did not significantly affect PM_2_._5 emissions. - Highlights: • Sink PM_2_._5 loading rates correlate well with source PM_2_._5 emission rates. • Sink PM_2_._5 concentrations correlate poorly with source PM_2_._5 concentrations. • Mass loading rate complements mass concentration in appraising sink PM_2_._5 status. • PM_2_._5 emissions is dependent on wind speed, temp, solar strength, and RH. • Cow traffic activity affects PM_2_._5 emissions, while traffic activity does not. - Both PM mass loading rate and concentrations are required for comprehensive assessment of pollution potential of PM released into the atmosphere.

  17. Temporal and Spatial variations in Organic and Elemental carbon concentrations in PM10/PM2.5 in the Metropolitan Area of Costa Rica, Central America

    Science.gov (United States)

    Campos-Ramos, A.; Herrera Murillo, J.; Rodriguez-Roman, S.; Cardenas, B.; Blanco-Jimenez, S.

    2011-12-01

    During 2010-2011, as part of a Binational Cooperation Project between Mexico and Costa Rica, samples collected weekly in 15 and 5 sites for PM10 and PM2,5 respectively, in the Metropolitan area of Costa Rica, a region of 2.5 million habitants. Based on the high PM2.5 mass concentrations found (17-38 μg/m3), samples were analyzed to determinate the organic and elemental carbon concentrations using DRI Model 2001 Thermal/Optical Carbon Analyzer (Atmoslytic Inc., Calabasas, CA, USA). Organic (OC) and Elemental (EC) carbon concentrations exhibited a clear seasonal pattern with higher concentrations in the rainy period than in the dry period, due to cooperative effects of changes in emission rates and seasonal meteorology. Spatial variations in carbonaceous species concentrations were observed mostly influenced by the local sources at the different sampling sites in the following magnitude of contribution: vehicle emissions > industrial > agricultural burning. Total carbonaceous aerosol accounted for 42.7% and 26.8% of PM2.5 mass in rainy and dry period, respectively. Good correlation (R = 0.87-0.93) between OC and EC indicated that they had common dominant sources of combustion such as heavy fuels used in industries and traffic emissions. The estimated secondary organic carbon (SOC) accounted for 46.9% and 35.3% of the total OC in the rainy and dry period, respectively, indicating that SOC may be an important contributor to fine organic aerosol in the Metropolitan Area of Costa Rica. These results will be used to improve the National Emissions Inventory, particularly for PM2.5.

  18. Engaging to reduce emissions and solidarity

    International Nuclear Information System (INIS)

    Colombier, M.; Dessus, B.; Laponche, B.

    1997-01-01

    The different negotiations about the reduction of greenhouse gases emissions is studied in this article. The problem of developing countries or fast developing countries such asian countries is evoked. The rate of carbon dioxide emission could be calculated in function of GDP (gross domestic product) to allow to reduce the gaps between the different countries. (N.C.)

  19. City-specific vehicle emission control strategies to achieve stringent emission reduction targets in China's Yangtze River Delta region.

    Science.gov (United States)

    Zhang, Shaojun; Wu, Ye; Zhao, Bin; Wu, Xiaomeng; Shu, Jiawei; Hao, Jiming

    2017-01-01

    The Yangtze River Delta (YRD) region is one of the most prosperous and densely populated regions in China and is facing tremendous pressure to mitigate vehicle emissions and improve air quality. Our assessment has revealed that mitigating vehicle emissions of NOx would be more difficult than reducing the emissions of other major vehicular pollutants (e.g., CO, HC and PM 2.5 ) in the YRD region. Even in Shanghai, where the emission control implemented are more stringent than in Jiangsu and Zhejiang, we observed little to no reduction in NOx emissions from 2000 to 2010. Emission-reduction targets for HC, NOx and PM 2.5 are determined using a response surface modeling tool for better air quality. We design city-specific emission control strategies for three vehicle-populated cities in the YRD region: Shanghai and Nanjing and Wuxi in Jiangsu. Our results indicate that even if stringent emission control consisting of the Euro 6/VI standards, the limitation of vehicle population and usage, and the scrappage of older vehicles is applied, Nanjing and Wuxi will not be able to meet the NOx emissions target by 2020. Therefore, additional control measures are proposed for Nanjing and Wuxi to further mitigate NOx emissions from heavy-duty diesel vehicles. Copyright © 2016. Published by Elsevier B.V.

  20. Inventory of conventional air pollutants emissions from road transportation for the state of Rio de Janeiro

    International Nuclear Information System (INIS)

    Souza, Cristiane Duarte Ribeiro de; Silva, Suellem Deodoro; Silva, Marcelino Aurélio Vieira da; D’Agosto, Márcio de Almeida; Barboza, Arthur Prado

    2013-01-01

    Road transportation has contributed to increased emissions of conventional air pollutants and, consequently, to the increase in problems associated with the environment and human health, depending on the type of pollutant and the concentration of it. To support the development of public policies aimed to decrease total tonnes of emissions, we used a bottom-up approach to estimate the amount of air pollutants, such as carbon monoxide (CO), total hydrocarbons (THC), nitrogen oxides (NO x ), particulate matter (PM), and aldehydes (RCHO), that are emitted by road transportation in the state of Rio de Janeiro (RJ) from 1980 to 2010. The results from 2010 show that cars are responsible for 55% of CO emissions, 61% of THC emissions, and 93% of RCHO emissions. Due to the use of hydrated ethanol and compressed natural gas (CNG) instead of petroleum based fuels during the period analyzed, 1,760,370 t of air pollutant emissions were avoided. Compared to Brazil, in 2010, RJ had a quantity of emissions per vehicle from 12% (CO) to 59% (PM) smaller than the national average. As strategies to reduce air pollutant emissions, we consider reducing the intensity of use, with a proportional reduction in emissions, and increased the use of biodiesel. - Highlights: ► We estimate road transportation emissions for Rio de Janeiro from 1980 to 2010. ► C gasoline was most responsible for CO (74%) and diesel for PM (91%). ► Emissions/vehicle for Rio de Janeiro are (12% to 59%) smaller than Brazilian. ► 1,760,370 t of emissions was avoided using non-petroleum-based fuels. ► Strategies to reduce the emissions of these air pollutants were proposed.

  1. Chemical characterisation of PM10 emissions from combustion in a closed stove of common woods grown in Portugal

    Science.gov (United States)

    Gonçalves, C.; Alves, C.; Pio, C.; Rzaca, M.; Schmidl, C.; Puxbaum, H.

    2009-04-01

    A series of source tests were conducted to determine the wood elemental composition, combustion gases and the chemical constitution of PM10 emissions from the closed stove combustion of four species of woods grown in Portugal: Eucalyptus globulos, Pinus pinaster, Quercus suber and Acacia longifolia. The burning tests were made in a closed stove with a dilution source sampler. To ascertain the combustion phase and conditions, continuous emission monitors measured O2, CO2, CO, NO, hydrocarbons, temperature and pressure, during each burning cycle. Woodsmoke samples have been collected and analysed to estimate the contribution of plant debris and biomass smoke to atmospheric aerosols. At this stage of work, cellulose, anhydrosugars and humic-like substances (HULIS) have been measured. Cellulose was determined photometrically after its conversion to D-Glucose. The determination of levoglucosan and other anhydrosugars, including mannosan and galactosan, was carried out by high performance liquid chromatography with electrochemical detection. HULIS determination was made with a total organic carbon analyser and an infrared non dispersive detector, after the isolation of substances. Cellulose was present in PM10 at mass fractions (w/w) of 0.13%, 0.13%, 0.05% and 0.08% for Eucalyptus globulos, Pinus pinaster, Quercus suber and Acacia longifolia, respectively. Levoglucosan was the major anhydrosugar present in the samples, representing mass fractions of 14.71%, 3.80%, 6.78% and 1.91%, concerning the above mentioned wood species, respectively. The levoglucosan-to-mannosan ratio, usually used to evaluate the proportion of hardwood or softwood smoke in PM10, gave average values of 34.9 (Eucalyptus globulos), 3.40 (Pinus pinaster), 24.8 (Quercus suber) and 10.4 (Acacia longifolia). HULIS were present at mass fractions of 2.35%, 2.99%, 1.52% and 1.72% for the four wood species listed in the same order as before.

  2. Reducing greenhouse gas emissions through operations and supply chain management

    International Nuclear Information System (INIS)

    Plambeck, Erica L.

    2012-01-01

    The experiences of the largest corporation in the world and those of a start-up company show how companies can profitably reduce greenhouse gas emissions in their supply chains. The operations management literature suggests additional opportunities to profitably reduce emissions in existing supply chains, and provides guidance for expanding the capacity of new “zero emission” supply chains. The potential for companies to profitably reduce emissions is substantial but (without effective climate policy) likely insufficient to avert dangerous climate change. - Highlights: ► Describes how firms are profitably reducing greenhouse gas emissions in their supply chains ► Highlights academic literature relevant to supply chain emission reduction

  3. Source Apportionment of PM2.5 in Delhi, India Using PMF Model.

    Science.gov (United States)

    Sharma, S K; Mandal, T K; Jain, Srishti; Saraswati; Sharma, A; Saxena, Mohit

    2016-08-01

    Chemical characterization of PM2.5 [organic carbon, elemental carbon, water soluble inorganic ionic components, and major and trace elements] was carried out for a source apportionment study of PM2.5 at an urban site of Delhi, India from January, 2013, to December, 2014. The annual average mass concentration of PM2.5 was 122 ± 94.1 µg m(-3). Strong seasonal variation was observed in PM2.5 mass concentration and its chemical composition with maxima during winter and minima during monsoon. A receptor model, positive matrix factorization (PMF) was applied for source apportionment of PM2.5 mass concentration. The PMF model resolved the major sources of PM2.5 as secondary aerosols (21.3 %), followed by soil dust (20.5 %), vehicle emissions (19.7 %), biomass burning (14.3 %), fossil fuel combustion (13.7 %), industrial emissions (6.2 %) and sea salt (4.3 %).

  4. On-line Field Measurements of Speciated PM1 Emission Factors from Common South Asian Combustion Sources

    Science.gov (United States)

    DeCarlo, P. F.; Goetz, J. D.; Giordano, M.; Stockwell, C.; Maharjan, R.; Adhikari, S.; Bhave, P.; Praveen, P. S.; Panday, A. K.; Jayarathne, T. S.; Stone, E. A.; Yokelson, R. J.

    2017-12-01

    Characterization of aerosol emissions from prevalent but under sampled combustion sources in South Asia was performed as part of the Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE) in April 2015. Targeted emission sources included cooking stoves with a variety of solid fuels, brick kilns, garbage burning, crop-residue burning, diesel irrigation pumps, and motorcycles. Real-time measurements of submicron non-refractory particulate mass concentration and composition were obtained using an Aerodyne mini Aerosol Mass Spectrometer (mAMS). Speciated PM1 mass emission factors were calculated for all particulate species (e.g. organics, sulfates, nitrates, chlorides, ammonium) and for each source type using the carbon mass balance approach. Size resolved emission factors were also acquired using a novel high duty cycle particle time-of-flight technique (ePTOF). Black carbon and brown carbon absorption emission factors and absorption Angström exponents were measured using filter loading and scattering corrected attenuation at 370 nm and 880 nm with a dual spot aethalometer (Magee Scientific AE-33). The results indicate that open garbage burning is a strong emitter of organic aerosol, black carbon, and internally mixed particle phase hydrogen chloride (HCl). Emissions of HCl were attributed to the presence chlorinated plastics. The primarily coal fired brick kilns were found to be large emitters of sulfate but large differences in the organic and light absorbing component of emissions were observed between the two kiln types investigated (technologically advanced vs. traditional). These results, among others, bring on-line and field-tested aerosol emission measurements to an area of atmoshperic research dominated by off-line or laboratory based measurements.

  5. LHCb: Evidence of CP violation in charmless three-body decays $B^\\pm\\rightarrow K^\\pm\\pi^+\\pi^-$, $B^\\pm\\rightarrow K^\\pm K^+K^-$, $B^\\pm\\rightarrow K^+ K^-\\pi^\\pm$ and $B^\\pm\\rightarrow \\pi^\\pm\\pi^+\\pi^-$

    CERN Multimedia

    Lopes, J H

    2013-01-01

    Evidence of CP violation in charmless three-body decays $B^\\pm\\rightarrow K^\\pm\\pi^+\\pi^-$, $B^\\pm\\rightarrow K^\\pm K^+K^-$, $B^\\pm\\rightarrow K^+ K^-\\pi^\\pm$ and $B^\\pm\\rightarrow \\pi^\\pm\\pi^+\\pi^-$

  6. Impact of agricultural emission reductions on fine-particulate matter and public health

    Science.gov (United States)

    Pozzer, Andrea; Tsimpidi, Alexandra P.; Karydis, Vlassis A.; de Meij, Alexander; Lelieveld, Jos

    2017-10-01

    A global chemistry-climate model has been used to study the impacts of pollutants released by agriculture on fine-particulate matter (PM2.5), with a focus on Europe, North America, East and South Asia. Simulations reveal that a relatively strong reduction in PM2.5 levels can be achieved by decreasing agricultural emissions, notably of ammonia (NH3) released from fertilizer use and animal husbandry. The absolute impact on PM2.5 reduction is strongest in East Asia, even for small emission decreases. Conversely, over Europe and North America, aerosol formation is not immediately limited by the availability of ammonia. Nevertheless, reduction of NH3 can also substantially decrease PM2.5 concentrations over the latter regions, especially when emissions are abated systematically. Our results document how reduction of agricultural emissions decreases aerosol pH due to the depletion of aerosol ammonium, which affects particle liquid phase and heterogeneous chemistry. Further, it is shown that a 50 % reduction of agricultural emissions could prevent the mortality attributable to air pollution by ˜ 250 000 people yr-1 worldwide, amounting to reductions of 30, 19, 8 and 3 % over North America, Europe, East and South Asia, respectively. A theoretical 100 % reduction could even reduce the number of deaths globally by about 800 000 per year.

  7. Estimation of Turkish road transport emissions

    International Nuclear Information System (INIS)

    Soylu, Seref

    2007-01-01

    Using the COPERT III program, an inventory of Turkish road transport emissions was calculated and the contributions of road transport to global and local air pollutant emissions were examined for the year 2004. It was observed that passenger cars are the main source of CO, HC, and Pb emissions while heavy duty vehicles are mainly responsible for NO x , particulate matter (PM), and SO 2 emissions. Taking the emissions for the year 2004 as the baseline, a parametric study was conducted to determine the emission reduction potentials of different road transport strategies. The results indicated that the following road transport strategies; fleet renewal, promotion of public transportation, and faster urban traffic speed are very effective strategies for reducing regulated emissions and fuel consumption (FC) from a technical point of view. It was also noted that replacement of two-stroke motorcycles with four-stroke motorcycles is as effective as fleet renewal in reducing HC emissions

  8. Sustainable passenger road transport scenarios to reduce fuel consumption, air pollutants and GHG (greenhouse gas) emissions in the Mexico City Metropolitan Area

    International Nuclear Information System (INIS)

    Chavez-Baeza, Carlos; Sheinbaum-Pardo, Claudia

    2014-01-01

    This paper presents passenger road transport scenarios that may assist the MCMA (Mexico City Metropolitan Area) in achieving lower emissions in both criteria air pollutants (CO, NO x , NMVOC (non-methane volatile organic compounds), and PM 10 ) and GHG (greenhouse gas) (CH 4 , N 2 O and CO 2 ), while also promoting better mobility and quality of life in this region. We developed a bottom-up model to estimate the historical trends of energy demand, criteria air pollutants and GHG emissions caused by passenger vehicles circulating in the Mexico City Metropolitan Area (MCMA) in order to construct a baseline scenario and two mitigation scenarios that project their impact to 2028. Mitigation scenario “eff” considers increasing fuel efficiencies and introducing new technologies for vehicle emission controls. Mitigation scenario “BRT” considers a modal shift from private car trips to a Bus Rapid Transport system. Our results show significant reductions in air pollutants and GHG emissions. Incentives and environmental regulations are needed to enable these scenarios. - Highlights: • More than 4.2 million passenger vehicles in the MCMA (Mexico City Metropolitan Area) that represent 61% of criteria pollutants and 44% of GHG (greenhouse gas) emissions. • Emissions of CO, NO x and NMVOC (non-methane volatile organic compounds) in baseline scenario decrease with respect to its 2008 value because emission standards. • Emissions of PM 10 and GHG increase in baseline scenario. • Emissions of PM 10 and GHG decrease in eff + BRT scenario from year 2020. • Additional reductions are possible with better standards for diesel vehicles and other technologies

  9. Emissions During and Real-world Frequency of Heavy-duty Diesel Particulate Filter Regeneration.

    Science.gov (United States)

    Ruehl, Chris; Smith, Jeremy D; Ma, Yilin; Shields, Jennifer Erin; Burnitzki, Mark; Sobieralski, Wayne; Ianni, Robert; Chernich, Donald J; Chang, M-C Oliver; Collins, John Francis; Yoon, Seungju; Quiros, David; Hu, Shaohua; Dwyer, Harry

    2018-05-15

    Recent tightening of particulate matter (PM) emission standards for heavy-duty engines has spurred the widespread adoption of diesel particulate filters (DPFs), which need to be regenerated periodically to remove trapped PM. The total impact of DPFs therefore depends not only on their filtering efficiency during normal operation, but also on the emissions during and the frequency of regeneration events. We performed active (parked and driving) and passive regenerations on two heavy-duty diesel vehicles (HDDVs), and report the chemical composition of emissions during these events, as well as the efficiency with which trapped PM is converted to gas-phase products. We also collected activity data from 85 HDDVs to determine how often regeneration occurs during real-world operation. PM emitted during regeneration ranged from 0.2 to 16.3 g, and the average time and distance between real-world active regenerations was 28.0 h and 599 miles. These results indicate that regeneration of real-world DPFs does not substantially offset the reduction of PM by DPFs during normal operation. The broad ranges of regeneration frequency per truck (3-100 h and 23-4078 miles) underscore the challenges in designing engines and associated aftertreatments that reduce emissions for all real-world duty cycles.

  10. Advanced technology development reducing CO2 emissions

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Sup

    2010-09-15

    Responding to Korean government policies on green growth and global energy/ environmental challenges, SK energy has been developing new technologies to reduce CO2 emissions by 1) CO2 capture and utilization, 2) efficiency improvement, and 3) Li-ion batteries. The paper introduces three advanced technologies developed by SK energy; GreenPol, ACO, and Li-ion battery. Contributing to company vision, a more energy and less CO2, the three technologies are characterized as follows. GreenPol utilizes CO2 as a feedstock for making polymer. Advanced Catalytic Olefin (ACO) reduces CO2 emission by 20% and increase olefin production by 17%. Li-ion Batteries for automotive industries improves CO2 emission.

  11. Elemental characterization of PM1 in a heavy traffic region

    Science.gov (United States)

    Ambade, Balram

    Eight hours samples of airborne aerosols PM1 were collected during summer (August-September) and winter (October-November) form one year 2010- 2011 in a intense traffic area of Rajnandgaon city, India. Inductively coupled plasma mass spectroscopy was employed to measure heavy metals (Hg, Cd, Ni, Pb, As). Water-soluble ions (Na+, NH4 +, K+, Ca2+, Cl-, NO3 -, and SO42-) and carbonaceous mass (elemental and organic carbon) were detected using ion chromatograph and CHN analyzer, respectively. The results indicate that the composition of PM10 on intense traffic area is highly affected by automobile emissions. Based on the chemical information, positive matrix factorization (PMF) was used to identify PM sources. A total of five source types were identified, including soil dust, vehicle emissions, sea salt, industrial emissions and secondary aerosols, and their contributions were estimated using PMF. The crustal enrichment factors (EF) were calculated using Al as a reference for the trace metal species to identify the sources

  12. Modeling PM10 in Ho Chi Minh City, Vietnam and evaluation of its impact on human health

    Directory of Open Access Journals (Sweden)

    Bang Quoc Ho

    2017-03-01

    Full Text Available According to World Health Organization (WHO and Global Burden of Disease, ambient air pollution is estimated to be responsible for 3.7 million premature deaths in 2012 [1]. Therefore, it is urgent to estimate the impact of air pollution on public health and economic damage. The objectives of this research are: study the distribution of PM10 concentration over Ho Chi Minh city (HCMC and relationship to public health and for proposing solutions of diseases prevention in HCM, Vietnam. EMIssion SENSitivity model was applied to conduct air emission inventory for transportation sector. Then, Finite Volume Model and Transport and Photochemistry Mesoscale Model were used to simulate the meteorology and the spatial distribution of PM10 in HCMC. Together with disease data obtained, the US Environmental Benefits Mapping and Analysis Model was applied for calculating the number of deaths and estimating economic losses due to PM10 pollution. Finally, solutions to reduce PM10 pollution and protect public health are proposed. The results showed that the highest 1-h average concentration of PM10 is 240 μg m−3 in North Eastern of HCMC. The concentration of PM10 for annual average in District 5 ranged from 17 to 49 μg m−3. There are 12 wards of District 5 with PM10 concentration exceeding the WHO guidelines (20 μg m−3 for annual average of PM10 and 50 μg m−3 for 24-h average. The high concentration of PM10 causes 5 deaths yr−1 in District 5 and 204 deaths yr−1 in HCMC, and it causes economic losses of 1.84 billion of USD.

  13. System for reducing emissions during coke oven charging

    International Nuclear Information System (INIS)

    Schuecker, Franz-Josef

    2014-01-01

    This article describes a process which reduces emissions from coke production in coke plants. The focus is on the charging process, which can be partly responsible for the fact that statutory emissions limits, which were originally met, are exceeded as coke plants get older. This article presents a solution in the form of a newly developed system that allows the oven charging system - the charging car - to respond to age-related changes in the geometry of a coke oven and thereby reduce the level of emissions.

  14. Weekly cycle of magnetic characteristics of PM2.5 and PM2.5-10 in Beijing, China

    Science.gov (United States)

    SHI, M.; Wu, H.; Zhang, S.; Li, H.; Yang, T.

    2013-12-01

    -oxides containing C, S, Al, Si, Na, Mg and Cl are larger than 1 um. Spherical particles in PM2.5-10 with a length of 0.6-3.5 um and angular particles with a length of 0.5-3.3 um are dominantly composed of Fe and O, additional elements including Na, Ma, Al, Si, S, K and Ca. In addition, metallic elements including Au, Ba, Co, Cr, Mn, Tb and Zr and copper spherical particle with diameter less than 1 um, and square particles rich of sulfur are observed in some samples. They may be related with vehicle body material and automobile exhaust purification catalysts. In summary, our results indicate that the magnetic concentrations and magnetic particle sizes showed seasonal variations and weekly cycle due to anthropogenic magnetic particles from domestic heating systems, vehicle emission and motor vehicle brake system. The results also suggest vehicle emission is predominated source, and magnetic parameters can be used as alternative air pollution indexes in Beijing area.

  15. In vitro investigations of platinum, palladium, and rhodium mobility in urban airborne particulate matter (PM10, PM2.5, and PM1) using simulated lung fluids.

    Science.gov (United States)

    Zereini, Fathi; Wiseman, Clare L S; Püttmann, Wilhelm

    2012-09-18

    Environmental concentrations of platinum group elements (PGE) have been increasing since the introduction of automotive catalytic converters to control harmful emissions. Assessments of the human health risks of exposures to these elements, especially through the inhalation of PGE-associated airborne particulate matter (PM), have been hampered by a lack of data on their bioaccessibility. The purpose of this study is to apply in vitro methods using simulated human lung fluids [artificial lysosomal fluid (ALF) and Gamble's solution] to assess the mobility of the PGE, platinum (Pt), palladium (Pd), and rhodium (Rh) in airborne PM of human health concern. Airborne PM samples (PM(10), PM(2.5), and PM(1)) were collected in Frankfurt am Main, Germany. For comparison, the same extraction experiments were conducted using the standard reference material, Used Auto Catalyst (monolith) (NIST 2557). Pt and Pd concentrations were measured using isotope dilution ICP-Q-MS, while Rh was measured directly with ICP-Q-MS (in collision mode with He), following established matrix separation and enrichment procedures, for both solid (filtered residues) and extracted sample phases. The mobilized fractions measured for PGE in PM(10), PM(2.5), and PM(1) were highly variable, which can be attributed to the heterogenic nature of airborne PM and its composition. Overall, the mobility of PGE in airborne PM samples was notable, with a mean of 51% Rh, 22% Pt, and 29% Pd present in PM(1) being mobilized by ALF after 24 h. For PM(1) exposed to Gamble's solution, a mean of 44% Rh, 18% Pt, and 17% Pd was measured in solution after 24 h. The mobility of PGE associated with airborne PM was also determined to be much higher compared to that measured for the auto catalyst standard reference material. The results suggest that PGE emitted from automotive catalytic converters are likely to undergo chemical transformations during and/or after being emitted in the environment. This study highlights the need

  16. PIXE characterization of PM10 and PM2.5 particulate matter collected during the winter season in Shanghai city

    International Nuclear Information System (INIS)

    Zhang Yuanxun; Wang Yingsong; Li Delu; Li Aiguo; Li Yan; Zhang Guilin

    2006-01-01

    The samples of PM2.5 and PM10 inhalable particulate matter had been collected during the period of December 2002-January 2003 at nineteen representative sites of Shanghai urban and suburb area in order to investigate the chemical characterization of aerosol particle in winter. The samples were analyzed to determine the average concentrations for up to twenty elements by means of particle induced X-ray emission (PIXE). It was found that the average elemental concentrations in the urban center are higher than those in the suburb, except for Ti and P. The particulate mass data demonstrate that the ratio range of PM2.5/PM10 is from 0.32 to 0.85 and its average ratio is 0.6. The result of the enrichment factor shows that the inhalable particles may be divided into two categories, i.e., soil elements from the earth crust and anthropogenic pollution elements. It is noticed that toxic or harmful elements such as S, As, Pb, Ni, Mn and Se are enriched mainly in fine particles with diameter less than 2.5 μm. The fingerprints of major pollution sources such as coal (or oil) burning, vehicle exhaust emission and industry are also presented and discussed. (author)

  17. Particulate pollution of PM10 and PM2.5 due to strong anthropopressure in Sosnowiec city

    Directory of Open Access Journals (Sweden)

    Jolanta Cembrzyńska

    2012-12-01

    Full Text Available Introduction: Air contamination with particulate matter causes a serious problem in large cities and urban-industrial agglomerations both in Poland and Europe. Anthropogenic sources of air pollution in urban areas are emissions from municipal, industrial and transportation sector. Many epidemiological studies have revealed that exposure to air pollution, especially the fine particles with aerodynamic diameter less than 2,5 micrometer, can pose a threat to human health exposed to exceedingly high concentrations of particulate matter. Aim of the study: The aim of this study was to evaluate PM10 and PM2,5 mass concentrations in autumn and winter season in the city of Sosnowiec, in relation to ambient air quality standards in Poland and the European Union. Results: The average concentrations of PM10 and PM2,5 in autumn-winter seasons in Sosnowiec city 2010–2011 were 2,1 to 2,7 times higher than limit values, specified in the legislation acts.

  18. High concentrations of heavy metals in PM from ceramic factories of Southern Spain

    Science.gov (United States)

    Sánchez de la Campa, Ana M.; de la Rosa, Jesús D.; González-Castanedo, Yolanda; Fernández-Camacho, Rocío; Alastuey, Andrés; Querol, Xavier; Pio, Casimiro

    2010-06-01

    In this study, physicochemical characterization of Atmospheric Particulate Matter (PM) was performed in an urban-industrial site background (Bailén, Southern Spain), highly influenced by the impact of emission plumes from ceramic factories. This area is considered one of the towns with the highest PM 10 levels and average SO 2 concentration in Spain. A three stages methodology was used: 1) real-time measurements of levels of PM 10 and gaseous pollutants, and sampling of PM; 2) chemical characterization using ICP-MS, ICP-OES, CI and TOT, and source apportionment analysis (receptor modelling) of PM; and 3) chemical characterization of emission plumes derived from representative factories. High ambient air concentrations were found for most major components and trace elements compared with other industrialized towns in Spain. V and Ni are considered fingerprints of PM derived from the emissions of brick factories in this area, and were shown to be of particular interest. This highlights the high V and Ni concentrations in PM 10 (122 ngV/m 3 and 23.4 ngNi/m 3), with Ni exceeding the 2013 annual target value for the European Directive 2004/107/EC (20 ng/m 3). The methodology of this work can be used by Government departments responsible for Environment and Epidemiology in planning control strategies for improving air quality.

  19. Effects of After-Treatment Control Technologies on Heavy-Duty Diesel Truck Emissions

    Science.gov (United States)

    Preble, C.; Dallmann, T. R.; Kreisberg, N. M.; Hering, S. V.; Harley, R.; Kirchstetter, T.

    2015-12-01

    Diesel engines are major emitters of nitrogen oxides (NOx) and the black carbon (BC) fraction of particulate matter (PM). Diesel particle filter (DPF) and selective catalytic reduction (SCR) emission control systems that target exhaust PM and NOx have recently become standard on new heavy-duty diesel trucks (HDDT). There is concern that DPFs may increase ultrafine particle (UFP) and total particle number (PN) emissions while reducing PM mass emissions. Also, the deliberate catalytic oxidation of engine-out NO to NO2 in continuously regenerating DPFs may lead to increased tailpipe emission of NO2 and near-roadway concentrations that exceed the 1-hr national ambient air quality standard. Increased NO2 emissions can also promote formation of ozone and secondary PM. We report results from ongoing on-road studies of HDDT emissions at the Port of Oakland and the Caldecott Tunnel in California's San Francisco Bay Area. Emission factors (g pollutant per kg diesel) were linked via recorded license plates to each truck's engine model year and installed emission controls. At both sites, DPF use significantly increased the NO2/NOx emission ratio. DPFs also significantly increased NO2 emissions when installed as retrofits on older trucks with higher baseline NOx emissions. While SCR systems on new trucks effectively reduce total NOx emissions and mitigate these undesirable DPF-related NO2 emissions, they also lead to significant emission of N2O, a potent greenhouse gas. When expressed on a CO2-equivalent basis, the N2O emissions increase offsets the fuel economy gain (i.e., the CO2 emission reduction) associated with SCR use. At the Port, average NOx, BC and PN emission factors from new trucks equipped with DPF and SCR were 69 ± 15%, 92 ± 32% and 66 ± 35% lower, respectively, than modern trucks without these emission controls. In contrast, at the Tunnel, PN emissions from older trucks retrofit with DPFs were ~2 times greater than modern trucks without DPFs. The difference

  20. Effects of aromatics, olefins and distillation temperatures (T50 & T90) on particle mass and number emissions from gasoline direct injection (GDI) vehicles

    International Nuclear Information System (INIS)

    Zhu, Rencheng; Hu, Jingnan; Bao, Xiaofeng; He, Liqiang; Zu, Lei

    2017-01-01

    Abstratct: Fuel quality is among the primary reasons for severe vehicle pollution. A limited understanding of the effects of gasoline properties on modern vehicle emissions is one obstacle for the establishment of stricter fuel standards in China. The goal of this study was to evaluate the effects of aromatic and olefin contents and T50 and T90 (defined as the 50%v and 90%v distillation temperatures) on tailpipe emissions from gasoline direct injection (GDI) vehicles compliant with China 4 standards. Both gaseous and particle emissions using different types of gasoline were measured. Changing aromatic and olefin contents had relatively small impacts on fuel consumption. Compared with olefins and T90, the regulated gaseous emissions were impacted more by aromatics and T50. Evident decreases of the particle mass (PM) and particle number (PN) emissions were noticed when the aromatic content and T90 decreased. Reducing the olefin content slightly decreased the PM emissions and increased the PN emissions. With decreasing T50, the PM emissions increased and the PN emissions slightly decreased. These results suggest that aromatic content and T90 should be decreased to reduce particle emissions from GDI vehicles. The information presented in this study provides some suggestions for how to improve gasoline quality in China. - Highlights: • Effect of aromatics, olefins, T50 and T90 on GDI vehicle emissions was investigated. • Aromatics and olefins had little impact on fuel consumption and CO 2 emissions. • Reducing the aromatic content and T90 significantly decreased PM and PN emissions. • Changing the olefin content and T50 had a minor impact on particle emissions. • Thresholds of aromatics and T90 should be tightened in future gasoline regulations.

  1. Recent intensification of winter haze in China linked to foreign emissions and meteorology.

    Science.gov (United States)

    Yang, Yang; Wang, Hailong; Smith, Steven J; Zhang, Rudong; Lou, Sijia; Qian, Yun; Ma, Po-Lun; Rasch, Philip J

    2018-02-01

    Wintertime aerosol pollution in the North China Plain has increased over the past several decades as anthropogenic emissions in China have increased, and has dramatically escalated since the beginning of the 21 st century, but the causes and their quantitative attributions remain unclear. Here we use an aerosol source tagging capability implemented in a global aerosol-climate model to assess long-term trends of PM 2.5 (particulate matter less than 2.5 μm in diameter) in the North China Plain. Our analysis suggests that the impact of China's increasing domestic emissions on PM 2.5 concentrations over the last two decades of 20 th century was partially offset (13%) by decreasing foreign emission over this period. As foreign emissions stabilized after 2000, their counteracting effect almost disappeared, uncovering the impact of China's increasing domestic emissions that had been partially offset in previous years by reductions in foreign emissions. A slowdown in the impact from foreign emission reductions together with weakening winds explain 25% of the increased PM 2.5 trend over 2000-2014 as compared to 1980-2000. Further reductions in foreign emissions are not expected to relieve China's pollution in the future. Reducing local emissions is the most certain way to improve future air quality in the North China Plain.

  2. Effects of particulate oxidation catalyst on unregulated pollutant emission and toxicity characteristics from heavy-duty diesel engine.

    Science.gov (United States)

    Feng, Xiangyu; Ge, Yunshan; Ma, Chaochen; Tan, Jianwei

    2015-01-01

    To evaluate the effects of particulate oxidation catalyst (POC) on unregulated pollutant emission and toxicity characteristics, polycyclic aromatic hydrocarbons (PAHs), volatile organic compounds (VOCs), soot, soluble organic fractions (SOF) and sulphate emissions emitted from a heavy-duty diesel engine retrofitted with a POC were investigated on a diesel bench. The particulate matter (PM) in the exhaust was collected by Teflon membrane, and the PAHs and VOCs were analysed by a gas chromatography/mass spectrometer (GC/MS). The results indicate that the POC exhibits good performance on the emission control of VOCs, PAHs and PM. The POC and the diesel particulate filters (DPF) both show a good performance on reducing the VOCs emission. Though the brake-specific emission (BSE) reductions of the total PAHs by the POC were lower than those by the DPF, the POC still removed almost more than 50% of the total PAHs emission. After the engine was retrofitted with the POC, the reductions of the PM mass, SOF and soot emissions were 45.2-89.0%, 7.8-97.7% and 41.7-93.3%, respectively. The sulphate emissions decreased at low and medium loads, whereas at high load, the results were contrary. The PAHs emissions were decreased by 32.4-69.1%, and the contributions of the PAH compounds were affected by the POC, as well as by load level. The benzo[a]pyrene equivalent (BaPeq) of PAHs emissions were reduced by 35.9-97.6% with the POC. The VOCs emissions were reduced by 21.8-94.1% with the POC, and the reduction was more evident under high load.

  3. Future premature mortality due to O3, secondary inorganic aerosols and primary PM in Europe--sensitivity to changes in climate, anthropogenic emissions, population and building stock.

    Science.gov (United States)

    Geels, Camilla; Andersson, Camilla; Hänninen, Otto; Lansø, Anne Sofie; Schwarze, Per E; Skjøth, Carsten Ambelas; Brandt, Jørgen

    2015-03-04

    Air pollution is an important environmental factor associated with health impacts in Europe and considerable resources are used to reduce exposure to air pollution through emission reductions. These reductions will have non-linear effects on exposure due, e.g., to interactions between climate and atmospheric chemistry. By using an integrated assessment model, we quantify the effect of changes in climate, emissions and population demography on exposure and health impacts in Europe. The sensitivity to the changes is assessed by investigating the differences between the decades 2000-2009, 2050-2059 and 2080-2089. We focus on the number of premature deaths related to atmospheric ozone, Secondary Inorganic Aerosols and primary PM. For the Nordic region we furthermore include a projection on how population exposure might develop due to changes in building stock with increased energy efficiency. Reductions in emissions cause a large significant decrease in mortality, while climate effects on chemistry and emissions only affects premature mortality by a few percent. Changes in population demography lead to a larger relative increase in chronic mortality than the relative increase in population. Finally, the projected changes in building stock and infiltration rates in the Nordic indicate that this factor may be very important for assessments of population exposure in the future.

  4. Quantifying the uncertainties of China's emission inventory for industrial sources: From national to provincial and city scales

    Science.gov (United States)

    Zhao, Yu; Zhou, Yaduan; Qiu, Liping; Zhang, Jie

    2017-09-01

    A comprehensive uncertainty analysis was conducted on emission inventories for industrial sources at national (China), provincial (Jiangsu), and city (Nanjing) scales for 2012. Based on various methods and data sources, Monte-Carlo simulation was applied at sector level for national inventory, and at plant level (whenever possible) for provincial and city inventories. The uncertainties of national inventory were estimated at -17-37% (expressed as 95% confidence intervals, CIs), -21-35%, -19-34%, -29-40%, -22-47%, -21-54%, -33-84%, and -32-92% for SO2, NOX, CO, TSP (total suspended particles), PM10, PM2.5, black carbon (BC), and organic carbon (OC) emissions respectively for the whole country. At provincial and city levels, the uncertainties of corresponding pollutant emissions were estimated at -15-18%, -18-33%, -16-37%, -20-30%, -23-45%, -26-50%, -33-79%, and -33-71% for Jiangsu, and -17-22%, -10-33%, -23-75%, -19-36%, -23-41%, -28-48%, -45-82%, and -34-96% for Nanjing, respectively. Emission factors (or associated parameters) were identified as the biggest contributors to the uncertainties of emissions for most source categories except iron & steel production in the national inventory. Compared to national one, uncertainties of total emissions in the provincial and city-scale inventories were not significantly reduced for most species with an exception of SO2. For power and other industrial boilers, the uncertainties were reduced, and the plant-specific parameters played more important roles to the uncertainties. Much larger PM10 and PM2.5 emissions for Jiangsu were estimated in this provincial inventory than other studies, implying the big discrepancies on data sources of emission factors and activity data between local and national inventories. Although the uncertainty analysis of bottom-up emission inventories at national and local scales partly supported the ;top-down; estimates using observation and/or chemistry transport models, detailed investigations and

  5. Water soluble organic carbon in aerosols (PM1, PM2.5, PM10) and various precipitation forms (rain, snow, mixed) over the southern Baltic Sea station.

    Science.gov (United States)

    Witkowska, Agnieszka; Lewandowska, Anita U

    2016-12-15

    In the urbanized coastal zone of the Southern Baltic, complex measurements of water soluble organic carbon (WSOC) were conducted between 2012 and 2015, involving atmospheric precipitation in its various forms (rain, snow, mixed) and PM1, PM2.5 and PM10 aerosols. WSOC constituted about 60% of the organic carbon mass in aerosols of various sizes. The average concentration of WSOC was equal to 2.6μg∙m -3 in PM1, 3.6μg∙m -3 in PM2.5 and 4.4μg∙m -3 in PM10. The lowest concentration of WSOC was noted in summer as a result of effective removal of this compound with rainfall. The highest WSOC concentrations in PM2.5 and PM10 aerosols were measured in spring, which should be associated with developing vegetation on land and in the sea. On the other hand, the highest WSOC concentrations in PM1 occurred in winter at low air temperatures and greatest atmospheric stability, when there were increased carbon emissions from fuel combustion in the communal-utility sector and from transportation. WSOC concentrations in precipitation were determined by its form. Mixed precipitation turned out to be the richest in soluble organic carbon (5.1mg·dm -3 ), while snow contained the least WSOC (1.7mg·dm -3 ). Snow and rain cleaned carbon compounds from the atmosphere more effectively when precipitation lasted longer than 24h, while in the case of mixed precipitation WSOC was removed most effectively within the first 24h. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Reducing global NOx emissions: developing advanced energy and transportation technologies.

    Science.gov (United States)

    Bradley, Michael J; Jones, Brian M

    2002-03-01

    Globally, energy demand is projected to continue to increase well into the future. As a result, global NOx emissions are projected to continue on an upward trend for the foreseeable future as developing countries increase their standards of living. While the US has experienced improvements in reducing NOx emissions from stationary and mobile sources to reduce ozone, further progress is needed to reduce the health and ecosystem impacts associated with NOx emissions. In other parts of the world, (in developing countries in particular) NOx emissions have been increasing steadily with the growth in demand for electricity and transportation. Advancements in energy and transportation technologies may help avoid this increase in emissions if appropriate policies are implemented. This paper evaluates commercially available power generation and transportation technologies that produce fewer NOx emissions than conventional technologies, and advanced technologies that are on the 10-year commercialization horizon. Various policy approaches will be evaluated which can be implemented on the regional, national and international levels to promote these advanced technologies and ultimately reduce NOx emissions. The concept of the technology leap is offered as a possibility for the developing world to avoid the projected increases in NOx emissions.

  7. Reducing Greenhouse Gas Emissions from Agricultural Wetlands in Borneo

    Science.gov (United States)

    Abdul, H.; Fatah, L.; Nursyamsi, D.; Kazuyuki, I.

    2011-12-01

    At the forum G20 meeting in 2009, Indonesian President delivered Indonesia's commitment to reduce national greenhouse gas (GHG) emissions by 26% in 2020 by unilateral action and by 41% with support of other countries. To achieve the target, Indonesian government has put forestry, agriculture (including peatlands), energy, industry and transportation as main responsible sectors. Development of crop with low GHG emissions, increasing C sequestration and the use of organic fertilizers are among the activities to be carried out in 2010-2020 period to minimize GHG emissions from agricultural sectors. Three experiments have been carried out to elucidate the reflectivity of crop selection, soil ameliorants and organic fertilizers on GHG emissions from agricultural wetlands in Borneo. Firstly, gas samples were collected in weekly basis from oil palm, paddy, and vegetables fields and analyzed for methane (CH4) and nitrous oxide (N2O) concentrations by a gas chromatography. Secondly, coal fly ash, dolomite and ZnSO4 were incorporated into a pot containing peat and/or alluvial soils taken from wetlands in South Kalimantan. The air samples were taken and analyzed for CH4 by a gas chromatography. Finally, microbial consortium are isolated from soil, sediment and cow dung. The microbes were then propagated and used in a rice straw composting processes. The CO2, CH4 and N2O emissions from composting vessel were measured at one, two and four weeks of composting processes. The results showed that shifting the use of peatlands for oil palm to vegetable field reduced the GHG emissions by about 74% and that to paddy field reduce the GHG emissions by about 82%. The CH4 emissions from paddy field can be further reduced by applying dolomite. However, the use of coal fly ash and ZnSO4 increased CH4 emissions from peat soil cultivated to rice. The use of microbe isolated from saline soil could reduce GHG emissions during the composting of rice straw. The social aspect of GHG reduction in

  8. Reducing emissions from diesel combustion

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This paper contains information dealing with engine design to reduce emissions and improve or maintain fuel economy. Topics include: Observation of High Pressure Fuel Spray with Laser Light Sheet Method; Determination of Engine Cylinder Pressures from Crankshaft Speed Fluctuations; Combustion Similarity for Different Size Diesel Engines: Theoretical Prediction and Experimental Results; Prediction of Diesel Engine Particulate Emission During Transient Cycles; Characteristics and Combustibility of Particulate Matter; Dual-Fuel Diesel Engine Using Butane; Measurement of Flame Temperature Distribution in D.I. Diesel Engine with High Pressure Fuel Injection: and Combustion in a Small DI Diesel Engine at Starting

  9. Probabilistic Predictions of PM2.5 Using a Novel Ensemble Design for the NAQFC

    Science.gov (United States)

    Kumar, R.; Lee, J. A.; Delle Monache, L.; Alessandrini, S.; Lee, P.

    2017-12-01

    Poor air quality (AQ) in the U.S. is estimated to cause about 60,000 premature deaths with costs of 100B-150B annually. To reduce such losses, the National AQ Forecasting Capability (NAQFC) at the National Oceanic and Atmospheric Administration (NOAA) produces forecasts of ozone, particulate matter less than 2.5 mm in diameter (PM2.5), and other pollutants so that advance notice and warning can be issued to help individuals and communities limit the exposure and reduce air pollution-caused health problems. The current NAQFC, based on the U.S. Environmental Protection Agency Community Multi-scale AQ (CMAQ) modeling system, provides only deterministic AQ forecasts and does not quantify the uncertainty associated with the predictions, which could be large due to the chaotic nature of atmosphere and nonlinearity in atmospheric chemistry. This project aims to take NAQFC a step further in the direction of probabilistic AQ prediction by exploring and quantifying the potential value of ensemble predictions of PM2.5, and perturbing three key aspects of PM2.5 modeling: the meteorology, emissions, and CMAQ secondary organic aerosol formulation. This presentation focuses on the impact of meteorological variability, which is represented by three members of NOAA's Short-Range Ensemble Forecast (SREF) system that were down-selected by hierarchical cluster analysis. These three SREF members provide the physics configurations and initial/boundary conditions for the Weather Research and Forecasting (WRF) model runs that generate required output variables for driving CMAQ that are missing in operational SREF output. We conducted WRF runs for Jan, Apr, Jul, and Oct 2016 to capture seasonal changes in meteorology. Estimated emissions of trace gases and aerosols via the Sparse Matrix Operator Kernel (SMOKE) system were developed using the WRF output. WRF and SMOKE output drive a 3-member CMAQ mini-ensemble of once-daily, 48-h PM2.5 forecasts for the same four months. The CMAQ mini

  10. Quantifying PM2.5-Meteorology Sensitivities in a Global Climate Model

    Science.gov (United States)

    Westervelt, D. M.; Horowitz, L. W.; Naik, V.; Tai, A. P. K.; Fiore, A. M.; Mauzerall, D. L.

    2016-01-01

    Climate change can influence fine particulate matter concentrations (PM2.5) through changes in air pollution meteorology. Knowledge of the extent to which climate change can exacerbate or alleviate air pollution in the future is needed for robust climate and air pollution policy decision-making. To examine the influence of climate on PM2.5, we use the Geophysical Fluid Dynamics Laboratory Coupled Model version 3 (GFDL CM3), a fully-coupled chemistry-climate model, combined with future emissions and concentrations provided by the four Representative Concentration Pathways (RCPs). For each of the RCPs, we conduct future simulations in which emissions of aerosols and their precursors are held at 2005 levels while other climate forcing agents evolve in time, such that only climate (and thus meteorology) can influence PM2.5 surface concentrations. We find a small increase in global, annual mean PM2.5 of about 0.21 micro-g/cu m3 (5%) for RCP8.5, a scenario with maximum warming. Changes in global mean PM2.5 are at a maximum in the fall and are mainly controlled by sulfate followed by organic aerosol with minimal influence of black carbon. RCP2.6 is the only scenario that projects a decrease in global PM2.5 with future climate changes, albeit only by -0.06 micro-g/cu m (1.5%) by the end of the 21st century. Regional and local changes in PM2.5 are larger, reaching upwards of 2 micro-g/cu m for polluted (eastern China) and dusty (western Africa) locations on an annually averaged basis in RCP8.5. Using multiple linear regression, we find that future PM2.5 concentrations are most sensitive to local temperature, followed by surface wind and precipitation. PM2.5 concentrations are robustly positively associated with temperature, while negatively related with precipitation and wind speed. Present-day (2006-2015) modeled sensitivities of PM2.5 to meteorological variables are evaluated against observations and found to agree reasonably well with observed sensitivities (within 10e50

  11. A novel PM motor with hybrid PM excitation and asymmetric rotor structure for high torque performance

    Directory of Open Access Journals (Sweden)

    Gaohong Xu

    2017-05-01

    Full Text Available This paper proposes a novel permanent magnet (PM motor for high torque performance, in which hybrid PM material and asymmetric rotor design are applied. The hybrid PM material is adopted to reduce the consumption of rare-earth PM because ferrite PM is assisted to enhance the torque production. Meanwhile, the rotor structure is designed to be asymmetric by shifting the surface-insert PM (SPM, which is used to improve the torque performance, including average torque and torque ripple. Moreover, the reasons for improvement of the torque performance are explained by evaluation and analysis of the performances of the proposed motor. Compared with SPM motor and V-type motor, the merit of high utilization ratio of rare-earth PM is also confirmed, showing that the proposed motor can offer higher torque density and lower torque ripple simultaneously with less consumption of rare-earth PM.

  12. The effects of emission control strategies on light-absorbing carbon emissions from a modern heavy-duty diesel engine.

    Science.gov (United States)

    Robinson, Michael A; Olson, Michael R; Liu, Z Gerald; Schauer, James J

    2015-06-01

    Control of atmospheric black carbon (BC) and brown carbon (BrC) has been proposed as an important pathway to climate change mitigation, but sources of BC and BrC are still not well understood. In order to better identify the role of modern heavy-duty diesel engines on the production of BC and BrC, emissions from a heavy-duty diesel engine operating with different emission control strategies were examined using a source dilution sampling system. The effect of a diesel oxidation catalyst (DOC) and diesel particulate filter (DPF) on light-absorbing carbon (LAC) was evaluated at three steady-state engine operation modes: idle, 50% speed and load, and 100% speed and load. LAC was measured with four different engine configurations: engine out, DOC out, DPF out, and engine out with an altered combustion calibration. BC and BrC emission rates were measured with the Aethalometer (AE-31). EC and BC emission rates normalized to the mass of CO₂emitted increased with increasing engine speed and load. Emission rates normalized to brake-specific work did not exhibit similar trends with speed and load, but rather the highest emission rate was measured at idle. EC and OC emissions were reduced by 99% when the DOC and DPF architecture was applied. The application of a DPF was equally effective at removing 99% of the BC fraction of PM, proving to be an important control strategy for both LAC and PM. BC emissions were unexpectedly increased across the DOC, seemingly due to a change aerosol optical properties. Removal of exhaust gas recirculation (EGR) flow due to simulated EGR cooler failure caused a large increase in OC and BrC emission rates at idle, but had limited influence during high load operation. LAC emissions proved to be sensitive to the same control strategies effective at controlling the total mass of diesel PM. In the context of black carbon emissions, very small emission rates of brown carbon were measured over a range of control technologies and engine operating

  13. Long-term trend and variability of atmospheric PM10 concentration in the Po Valley

    Science.gov (United States)

    Bigi, A.; Ghermandi, G.

    2014-05-01

    The limits to atmospheric pollutant concentration set by the European Commission provide a challenging target for the municipalities in the Po Valley, because of the characteristic climatic conditions and high population density of this region. In order to assess climatology and trends in the concentration of atmospheric particles in the Po Valley, a data set of PM10 data from 41 sites across the Po Valley have been analysed, including both traffic and background sites (either urban, suburban or rural). Of these 41 sites, 18 with 10 yr or longer record have been analysed for long-term trend in deseasonalized monthly means, in annual quantiles and in monthly frequency distribution. A widespread significant decreasing trend has been observed at most sites, up to a few percent per year, by a generalized least squares and Theil-Sen method. All 41 sites have been tested for significant weekly periodicity by Kruskal-Wallis test for mean anomalies and by Wilcoxon test for weekend effect magnitude. A significant weekly periodicity has been observed for most PM10 series, particularly in summer and ascribed mainly to anthropic particulate emissions. A cluster analysis has been applied in order to highlight stations sharing similar pollution conditions over the reference period. Five clusters have been found, two encompassing the metropolitan areas of Turin and Milan and their respective nearby sites and the other three clusters gathering northeast, northwest and central Po Valley sites respectively. Finally, the observed trends in atmospheric PM10 have been compared to trends in provincial emissions of particulates and PM precursors, and analysed along with data on vehicular fleet age, composition and fuel sales. A significant basin-wide drop in emissions occurred for gaseous pollutants, contrarily to emissions of PM10 and PM2.5, whose drop was low and restricted to a few provinces. It is not clear whether the decrease for only gaseous emissions is sufficient to explain the

  14. The Effect of PM2.5 from Household Combustion on Life Expectancy in Sub-Saharan Africa

    Directory of Open Access Journals (Sweden)

    Badamassi Aboubacar

    2018-04-01

    Full Text Available Household fuel combustion, especially using solid combustibles (biomass and fossil fuels, for cooking and other activities produces emissions that contribute to concentrations of indoor as well as outdoor air pollutants such as particulate matter with diameter smaller than 2.5 μm (PM2.5 that deteriorate health and likely affect life expectancy (LEX. This study investigates the impact of PM2.5 from household combustion on LEX considering several covariates while controlling for ambient PM2.5 generated by other sectors. The generalized method of moments (GMM model and the panel cointegration model were applied to a dataset of 43 Sub-Saharan Africa (SSA countries over the time period of 1995–2010. Both approaches provide similar results indicating that household PM2.5 is significantly and negatively associated with higher aggregate LEX in the long-run, and, to a greater degree for female’s. Also, among the control variables, PM2.5 from the transport sector has a greater influence on male’s LEX. Thus, efforts should be combined to reduce household PM2.5 since lower levels are associated with increased LEX.

  15. Elemental composition of current automotive braking materials and derived air emission factors

    NARCIS (Netherlands)

    Hulskotte, J.H.J.; Roskam, G.D.; Denier van der Gon, H.A.C.

    2014-01-01

    Wear-related PM emissions are an important constituent of total PM emissions from road transport. Due to ongoing (further) exhaust emission reduction wear emissions may become the dominant PM source from road transport in the near future. The chemical composition of the wear emissions is crucial

  16. Impact of agricultural emission reductions on fine-particulate matter and public health

    Directory of Open Access Journals (Sweden)

    A. Pozzer

    2017-10-01

    Full Text Available A global chemistry-climate model has been used to study the impacts of pollutants released by agriculture on fine-particulate matter (PM2.5, with a focus on Europe, North America, East and South Asia. Simulations reveal that a relatively strong reduction in PM2.5 levels can be achieved by decreasing agricultural emissions, notably of ammonia (NH3 released from fertilizer use and animal husbandry. The absolute impact on PM2.5 reduction is strongest in East Asia, even for small emission decreases. Conversely, over Europe and North America, aerosol formation is not immediately limited by the availability of ammonia. Nevertheless, reduction of NH3 can also substantially decrease PM2.5 concentrations over the latter regions, especially when emissions are abated systematically. Our results document how reduction of agricultural emissions decreases aerosol pH due to the depletion of aerosol ammonium, which affects particle liquid phase and heterogeneous chemistry. Further, it is shown that a 50 % reduction of agricultural emissions could prevent the mortality attributable to air pollution by  ∼ 250 000 people yr−1 worldwide, amounting to reductions of 30, 19, 8 and 3 % over North America, Europe, East and South Asia, respectively. A theoretical 100 % reduction could even reduce the number of deaths globally by about 800 000 per year.

  17. The Effect of Economic Growth, Urbanization, and Industrialization on Fine Particulate Matter (PM2.5) Concentrations in China.

    Science.gov (United States)

    Li, Guangdong; Fang, Chuanglin; Wang, Shaojian; Sun, Siao

    2016-11-01

    Rapid economic growth, industrialization, and urbanization in China have led to extremely severe air pollution that causes increasing negative effects on human health, visibility, and climate change. However, the influence mechanisms of these anthropogenic factors on fine particulate matter (PM 2.5 ) concentrations are poorly understood. In this study, we combined panel data and econometric methods to investigate the main anthropogenic factors that contribute to increasing PM 2.5 concentrations in China at the prefecture level from 1999 to 2011. The results showed that PM 2.5 concentrations and three anthropogenic factors were cointegrated. The panel Fully Modified Least Squares and panel Granger causality test results indicated that economic growth, industrialization, and urbanization increased PM 2.5 concentrations in the long run. The results implied that if China persists in its current development pattern, economic growth, industrialization and urbanization will inevitably lead to increased PM 2.5 emissions in the long term. Industrialization was the principal factor that affected PM 2.5 concentrations for the total panel, the industry-oriented panel and the service-oriented panel. PM 2.5 concentrations can be reduced at the cost of short-term economic growth and industrialization. However, reducing the urbanization level is not an efficient way to decrease PM 2.5 pollutions in the short term. The findings also suggest that a rapid reduction of PM 2.5 concentrations relying solely on adjusting these anthropogenic factors is difficult in a short-term for the heavily PM 2.5 -polluted panel. Moreover, the Chinese government will have to seek much broader policies that favor a decoupling of these coupling relationships.

  18. Aerial sampling of emissions from biomass pile burns in ...

    Science.gov (United States)

    Emissions from burning piles of post-harvest timber slash in Grande Ronde, Oregon were sampled using an instrument platform lofted into the plume using a tether-controlled aerostat or balloon. Emissions of carbon monoxide, carbon dioxide, methane, particulate matter (PM2.5 µm), black carbon, ultraviolet absorbing PM, elemental/organic carbon, semi-volatile organics (polycyclic aromatic hydrocarbons and polychlorinated dibenzodioxins/dibenzofurans), filter-based metals, and volatile organics were sampled for determination of emission factors. The effect on emissions from covering or not covering piles with polyethylene sheets to prevent fuel wetting was determined. Results showed that the uncovered (“wet”) piles burned with lower combustion efficiency and higher emissions of volatile organic compounds. Results for other pollutants will also be discussed. This work determined the emissions from open burning of forest slash wood, with and without plastic sheeting. The foresters advocate the use of plastic to keep the slash wood dry and aid in the controlled combustion of the slash to reduce fuel loading. Concerns about the emissions from the burning plastic prompted this work which conducted an extensive characterization of dry, wet, and dry with plastic slash pile emissions.

  19. Characterization of PM10 sources in the central Mediterranean

    Science.gov (United States)

    Calzolai, G.; Nava, S.; Lucarelli, F.; Chiari, M.; Giannoni, M.; Becagli, S.; Traversi, R.; Marconi, M.; Frosini, D.; Severi, M.; Udisti, R.; di Sarra, A.; Pace, G.; Meloni, D.; Bommarito, C.; Monteleone, F.; Anello, F.; Sferlazzo, D. M.

    2015-12-01

    The Mediterranean Basin atmosphere is influenced by both strong natural and anthropogenic aerosol emissions and is also subject to important climatic forcings. Several programs have addressed the study of the Mediterranean basin; nevertheless important pieces of information are still missing. In this framework, PM10 samples were collected on a daily basis on the island of Lampedusa (35.5° N, 12.6° E; 45 m a.s.l.), which is far from continental pollution sources (the nearest coast, in Tunisia, is more than 100 km away). After mass gravimetric measurements, different portions of the samples were analyzed to determine the ionic content by ion chromatography (IC), the soluble metals by inductively coupled plasma atomic emission spectrometry (ICP-AES), and the total (soluble + insoluble) elemental composition by particle-induced x-ray emission (PIXE). Data from 2007 and 2008 are used in this study. The Positive Matrix Factorization (PMF) model was applied to the 2-year long data set of PM10 mass concentration and chemical composition to assess the aerosol sources affecting the central Mediterranean basin. Seven sources were resolved: sea salt, mineral dust, biogenic emissions, primary particulate ship emissions, secondary sulfate, secondary nitrate, and combustion emissions. Source contributions to the total PM10 mass were estimated to be about 40 % for sea salt, around 25 % for mineral dust, 10 % each for secondary nitrate and secondary sulfate, and 5 % each for primary particulate ship emissions, biogenic emissions, and combustion emissions. Large variations in absolute and relative contributions are found and appear to depend on the season and on transport episodes. In addition, the secondary sulfate due to ship emissions was estimated and found to contribute by about one-third to the total sulfate mass. Results for the sea-salt and mineral dust sources were compared with estimates of the same contributions obtained from independent approaches, leading to an

  20. Mass concentration and elemental composition of indoor PM 2.5 and PM 10 in University rooms in Thessaloniki, northern Greece

    Science.gov (United States)

    Gemenetzis, Panagiotis; Moussas, Panagiotis; Arditsoglou, Anastasia; Samara, Constantini

    The mass concentration and the elemental composition of PM 2.5 and PM 10 were measured in 40 rooms (mainly offices or mixed office-lab rooms, and photocopying places) of the Aristotle University of Thessaloniki, northern Greece. A total of 27 major, minor and trace elements were determined by ED-XRF analysis. The PM 2.5/PM 10 concentration ratios averaged 0.8±0.2, while the corresponding elemental ratios ranged between 0.4±0.2 and 0.9±0.2. The concentrations of PM 2.5 and PM 10 were significantly higher (by 70% and 50%, respectively) in the smokers' rooms compared to the non-smokers' places. The total elemental concentrations were also higher in the smokers' rooms (11.5 vs 8.2 μg m -3 for PM 2.5, and 10.3 vs 7.6 μg m -3 for PM 2.5-10). Fine particle concentrations (PM 2.5) were found to be quite proportional to smoking strength. On the contrary, the two environments exhibited similar coarse (PM 2.5-10) particle fractions not related to the number of cigarettes smoked. A slight decrease of particle concentrations with increasing the floor level was also observed, particularly for PM 2.5, suggesting that high-level floors are less impacted by near ground-level sources like traffic emissions. Finally, the removal efficiency of air purification systems was evaluated.

  1. Observation of the suppressed ADS modes $B^\\pm \\to [\\pi^\\pm K^\\mp \\pi^+\\pi^-]_D K^\\pm$ and $B^\\pm \\to [\\pi^\\pm K^\\mp \\pi^+\\pi^-]_D \\pi^\\pm$

    CERN Document Server

    INSPIRE-00258707; Abellan Beteta, C; Adeva, B; Adinolfi, M; Adrover, C; Affolder, A; Ajaltouni, Z; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves Jr, A A; Amato, S; Amerio, S; Amhis, Y; Anderlini, L; Anderson, J; Andreassen, R; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Bachmann, S; Back, J J; Baesso, C; Balagura, V; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Bauer, Th; Bay, A; Beddow, J; Bedeschi, F; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Benayoun, M; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bettler, M -O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Bowcock, T J V; Bowen, E; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Britsch, M; Britton, T; Brook, N H; Brown, H; Burducea, I; Bursche, A; Busetto, G; Buytaert, J; Cadeddu, S; Callot, O; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carranza-Mejia, H; Carson, L; Carvalho Akiba, K; Casse, G; Cattaneo, M; Cauet, Ch; Charles, M; Charpentier, Ph; Chen, P; Chiapolini, N; Chrzaszcz, M; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coca, C; Coco, V; Cogan, J; Cogneras, E; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Coquereau, S; Corti, G; Couturier, B; Cowan, G A; Craik, D; Cunliffe, S; Currie, R; D'Ambrosio, C; David, P; David, P N Y; De Bonis, I; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Oyanguren Campos, M; De Paula, L; De Silva, W; De Simone, P; Decamp, D; Deckenhoff, M; Del Buono, L; Derkach, D; Deschamps, O; Dettori, F; Di Canto, A; Dijkstra, H; Dogaru, M; Donleavy, S; Dordei, F; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dupertuis, F; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; van Eijk, D; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Elsby, D; Falabella, A; Färber, C; Fardell, G; Farinelli, C; Farry, S; Fave, V; Ferguson, D; Fernandez Albor, V; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fitzpatrick, C; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Furcas, S; Furfaro, E; Gallas Torreira, A; Galli, D; Gandelman, M; Gandini, P; Gao, Y; Garofoli, J; Garosi, P; Garra Tico, J; Garrido, L; Gaspar, C; Gauld, R; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gibson, V; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gordon, H; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hampson, T; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; Hartmann, T; He, J; Heijne, V; Hennessy, K; Henrard, P; Hernando Morata, J A; van Herwijnen, E; Hicks, E; Hill, D; Hoballah, M; Hombach, C; Hopchev, P; Hulsbergen, W; Hunt, P; Huse, T; Hussain, N; Hutchcroft, D; Hynds, D; Iakovenko, V; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jans, E; Jaton, P; Jing, F; John, M; Johnson, D; Jones, C R; Jost, B; Kaballo, M; Kandybei, S; Karacson, M; Karbach, T M; Kenyon, I R; Kerzel, U; Ketel, T; Keune, A; Khanji, B; Kochebina, O; Komarov, I; Koopman, R F; Koppenburg, P; Korolev, M; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kucharczyk, M; Kudryavtsev, V; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanciotti, E; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J -P; Lefèvre, R; Leflat, A; Lefrançois, J; Leo, S; Leroy, O; Leverington, B; Li, Y; Li Gioi, L; Liles, M; Lindner, R; Linn, C; Liu, B; Liu, G; von Loeben, J; Lohn, S; Lopes, J H; Lopez Asamar, E; Lopez-March, N; Lu, H; Lucchesi, D; Luisier, J; Luo, H; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Malde, S; Manca, G; Mancinelli, G; Marconi, U; Märki, R; Marks, J; Martellotti, G; Martens, A; Martin, L; Martín Sánchez, A; Martinelli, M; Martinez Santos, D; Martins Tostes, D; Massafferri, A; Matev, R; Mathe, Z; Matteuzzi, C; Maurice, E; Mazurov, A; McCarthy, J; McNulty, R; Mcnab, A; Meadows, B; Meier, F; Meissner, M; Merk, M; Milanes, D A; Minard, M -N; Molina Rodriguez, J; Monteil, S; Moran, D; Morawski, P; Morello, M J; Mountain, R; Mous, I; Muheim, F; Müller, K; Muresan, R; Muryn, B; Muster, B; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Needham, M; Neufeld, N; Nguyen, A D; Nguyen, T D; Nguyen-Mau, C; Nicol, M; Niess, V; Niet, R; Nikitin, N; Nikodem, T; Nomerotski, A; Novoselov, A; Oblakowska-Mucha, A; Obraztsov, V; Oggero, S; Ogilvy, S; Okhrimenko, O; Oldeman, R; Orlandea, M; Otalora Goicochea, J M; Owen, P; Pal, B K; Palano, A; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Patrick, G N; Patrignani, C; Pavel-Nicorescu, C; Pazos Alvarez, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perego, D L; Perez Trigo, E; Pérez-Calero Yzquierdo, A; Perret, P; Perrin-Terrin, M; Pessina, G; Petridis, K; Petrolini, A; Phan, A; Picatoste Olloqui, E; Pietrzyk, B; Pilař, T; Pinci, D; Playfer, S; Plo Casasus, M; Polci, F; Polok, G; Poluektov, A; Polycarpo, E; Popov, D; Popovici, B; Potterat, C; Powell, A; Prisciandaro, J; Pugatch, V; Puig Navarro, A; Punzi, G; Qian, W; Rademacker, J H; Rakotomiaramanana, B; Rangel, M S; Raniuk, I; Rauschmayr, N; Raven, G; Redford, S; Reid, M M; dos Reis, A C; Ricciardi, S; Richards, A; Rinnert, K; Rives Molina, V; Roa Romero, D A; Robbe, P; Rodrigues, E; Rodriguez Perez, P; Roiser, S; Romanovsky, V; Romero Vidal, A; Rouvinet, J; Ruf, T; Ruffini, F; Ruiz, H; Ruiz Valls, P; Sabatino, G; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salzmann, C; Sanmartin Sedes, B; Sannino, M; Santacesaria, R; Santamarina Rios, C; Santovetti, E; Sapunov, M; Sarti, A; Satriano, C; Satta, A; Savrie, M; Savrina, D; Schaack, P; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M -H; Schwemmer, R; Sciascia, B; Sciubba, A; Seco, M; Semennikov, A; Senderowska, K; Sepp, I; Serra, N; Serrano, J; Seyfert, P; Shapkin, M; Shapoval, I; Shatalov, P; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, O; Shevchenko, V; Shires, A; Silva Coutinho, R; Skwarnicki, T; Smith, N A; Smith, E; Smith, M; Sokoloff, M D; Soler, F J P; Soomro, F; Souza, D; Souza De Paula, B; Spaan, B; Sparkes, A; Spradlin, P; Stagni, F; Stahl, S; Steinkamp, O; Stoica, S; Stone, S; Storaci, B; Straticiuc, M; Straumann, U; Subbiah, V K; Swientek, S; Syropoulos, V; Szczekowski, M; Szczypka, P; Szumlak, T; T'Jampens, S; Teklishyn, M; Teodorescu, E; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Tolk, S; Tonelli, D; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Tran, M T; Tresch, M; Tsaregorodtsev, A; Tsopelas, P; Tuning, N; Ubeda Garcia, M; Ukleja, A; Urner, D; Uwer, U; Vagnoni, V; Valenti, G; Vazquez Gomez, R; Vazquez Regueiro, P; Vecchi, S; Velthuis, J J; Veltri, M; Veneziano, G; Vesterinen, M; Viaud, B; Vieira, D; Vilasis-Cardona, X; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Vorobyev, V; Voß, C; Voss, H; Waldi, R; Wallace, R; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Webber, A D; Websdale, D; Whitehead, M; Wicht, J; Wiechczynski, J; Wiedner, D; Wiggers, L; Wilkinson, G; Williams, M P; Williams, M; Wilson, F F; Wishahi, J; Witek, M; Wotton, S A; Wright, S; Wu, S; Wyllie, K; Xie, Y; Xing, F; Xing, Z; Yang, Z; Young, R; Yuan, X; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, F; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhokhov, A; Zhong, L; Zvyagin, A

    2013-01-01

    An analysis of $B^{\\pm}\\to DK^{\\pm}$ and $B^{\\pm}\\to D\\pi^{\\pm}$ decays is presented where the $D$ meson is reconstructed in the four-body final state $K^{\\pm}\\pi^{\\mp} \\pi^+ \\pi^-$. Using LHCb data corresponding to an integrated luminosity of $1.0{\\rm \\,fb}^{-1}$, first observations are made of the suppressed ADS modes $B^{\\pm}\\to [\\pi^{\\pm} K^{\\mp}\\pi^+\\pi^-]_D K^{\\pm}$ and $B^{\\pm}\\to [\\pi^{\\pm} K^{\\mp} \\pi^+\\pi^- ]_D\\pi^{\\pm}$ with a significance of $5.1\\sigma$ and greater than $10\\sigma$, respectively. Measurements of $CP$ asymmetries and $CP$-conserving ratios of partial widths from this family of decays are also performed. The magnitude of the ratio between the suppressed and favoured $B^{\\pm}\\to DK^{\\pm}$ amplitudes is determined to be $r^K_B = 0.097 \\pm{0.011}$.

  2. How accounting for climate and health impacts of emissions could change the US energy system

    International Nuclear Information System (INIS)

    Brown, Kristen E.; Henze, Daven K.; Milford, Jana B.

    2017-01-01

    This study aims to determine how incorporating damages into energy costs would impact the US energy system. Damages from health impacting pollutants (NO_x, SO_2, particulate matter - PM, and volatile organic compounds - VOCs) as well as greenhouse gases (GHGs) are accounted for by applying emissions fees equal to estimated external damages associated with life-cycle emissions. We determine that in a least-cost framework, fees reduce emissions, including those not targeted by the fees. Emissions reductions are achieved through the use of control technologies, energy efficiency, and shifting of fuels and technologies used in energy conversion. The emissions targeted by fees decrease, and larger fees lead to larger reductions. Compared to the base case with no fees, in 2045, SO_2 emissions are reduced up to 70%, NO_x emissions up to 30%, PM_2_._5 up to 45%, and CO_2 by as much as 36%. Emissions of some pollutants, particularly VOCs and methane, sometimes increase when fees are applied. The co-benefit of reduction in non-targeted pollutants is not always larger for larger fees. The degree of co-reduced emissions depends on treatment of life-cycle emissions and the technology pathway used to achieve emissions reductions, including the mix of efficiency, fuel switching, and emissions control technologies. - Highlights: • Fees based on damages related to energy use are modeled on the US energy system. • Health impacting air pollutants and greenhouse gases are targeted by fees. • Both targeted and other pollutants are reduced compared to a system without fees. • Control technologies, energy efficiency, and shifts in fuels reduce emissions. • Co-benefits do not necessarily increase as fees increase.

  3. Efficiency of Emission Control Measures on Particulate Matter-Related Health Impacts and Economic Cost during the 2014 Asia-Pacific Economic Cooperation Meeting in Beijing

    Directory of Open Access Journals (Sweden)

    Qichen Liu

    2016-12-01

    Full Text Available Background: The Asia-Pacific Economic Cooperation (APEC meeting was held from 5 November to 11 November 2014 in Beijing, and comprehensive emission control measures were implemented. The efficiency of these measures on particulate matter-related health impacts and economic cost need to be evaluated. Methods: The influences of emission control measures during APEC on particulate matter were evaluated, and health economic effects were assessed. Results: Average concentrations of PM2.5 and PM10 during APEC were reduced by 57.0%, and 50.6% respectively, compared with pre-APEC period. However, the concentrations of particulate matter rebounded after APEC. Compared with the pre-APEC and post-APEC periods, the estimated number of deaths caused by non-accidental, cardiovascular and respiratory diseases that could be attributed to PM2.5 and PM10 during the APEC were the lowest. The economic cost associated with mortality caused by PM2.5 and PM10 during the APEC were reduced by (61.3% and 66.6% and (50.3% and 60.8% respectively, compared with pre-APEC and post-APEC. Conclusions: The emission control measures were effective in improving short term air quality and reducing health risks and medical expenses during 2014 APEC, but more efforts is needed for long term and continuous air quality improvement and health protection.

  4. Efficiency of Emission Control Measures on Particulate Matter-Related Health Impacts and Economic Cost during the 2014 Asia-Pacific Economic Cooperation Meeting in Beijing.

    Science.gov (United States)

    Liu, Qichen; Huang, Jing; Guo, Bin; Guo, Xinbiao

    2016-12-28

    Background : The Asia-Pacific Economic Cooperation (APEC) meeting was held from 5 November to 11 November 2014 in Beijing, and comprehensive emission control measures were implemented. The efficiency of these measures on particulate matter-related health impacts and economic cost need to be evaluated. Methods : The influences of emission control measures during APEC on particulate matter were evaluated, and health economic effects were assessed. Results : Average concentrations of PM 2.5 and PM 10 during APEC were reduced by 57.0%, and 50.6% respectively, compared with pre-APEC period. However, the concentrations of particulate matter rebounded after APEC. Compared with the pre-APEC and post-APEC periods, the estimated number of deaths caused by non-accidental, cardiovascular and respiratory diseases that could be attributed to PM 2.5 and PM 10 during the APEC were the lowest. The economic cost associated with mortality caused by PM 2.5 and PM 10 during the APEC were reduced by (61.3% and 66.6%) and (50.3% and 60.8%) respectively, compared with pre-APEC and post-APEC. Conclusions : The emission control measures were effective in improving short term air quality and reducing health risks and medical expenses during 2014 APEC, but more efforts is needed for long term and continuous air quality improvement and health protection.

  5. Particulate matter (PM 2.5 levels in ETS emissions of a Marlboro Red cigarette in comparison to the 3R4F reference cigarette under open- and closed-door condition

    Directory of Open Access Journals (Sweden)

    Mueller Daniel

    2012-06-01

    Full Text Available Abstract Introduction Potential health damage by environmental emission of tobacco smoke (environmental tobacco smoke, ETS has been demonstrated convincingly in numerous studies. People, especially children, are still exposed to ETS in the small space of private cars. Although major amounts of toxic compounds from ETS are likely transported into the distal lung via particulate matter (PM, few studies have quantified the amount of PM in ETS. Study aim The aim of this study was to determine the ETS-dependent concentration of PM from both a 3R4F reference cigarette (RC as well as a Marlboro Red brand cigarette (MRC in a small enclosed space under different conditions of ventilation to model car exposure. Method In order to create ETS reproducibly, an emitter (ETSE was constructed and mounted on to an outdoor telephone booth with an inner volume of 1.75 m3. Cigarettes were smoked under open- and closed-door condition to imitate different ventilation scenarios. PM2.5 concentration was quantified by a laser aerosol spectrometer (Grimm; Model 1.109, and data were adjusted for baseline values. Simultaneously indoor and outdoor climate parameters were recorded. The time of smoking was divided into the ETS generation phase (subset “emission” and a declining phase of PM concentration (subset “elimination”; measurement was terminated after 10 min. For all three time periods the average concentration of PM2.5 (Cmean-PM2.5 and the area under the PM2.5 concentration curve (AUC-PM2.5 was calculated. The maximum concentration (Cmax-PM2.5 was taken from the total interval. Results For both cigarette types open-door ventilation reduced the AUC-PM2.5 (RC: from 59 400 ± 14 600 to 5 550 ± 3 900 μg*sec/m3; MRC: from 86 500 ± 32 000 to 7 300 ± 2 400 μg*sec/m3; p mean-PM2.5 (RC: from 600 ± 150 to 56 ± 40 μg/m3, MRC from 870 ± 320 to 75 ± 25 μg/m3; p max-PM2.5 was reduced by about 80% (RC: from 1 050 ± 230 to

  6. Airborne measurements of western U.S. wildfire emissions: Comparison with prescribed burning and air quality implications

    Science.gov (United States)

    Liu, Xiaoxi; Huey, L. Gregory; Yokelson, Robert J.; Selimovic, Vanessa; Simpson, Isobel J.; Müller, Markus; Jimenez, Jose L.; Campuzano-Jost, Pedro; Beyersdorf, Andreas J.; Blake, Donald R.; Butterfield, Zachary; Choi, Yonghoon; Crounse, John D.; Day, Douglas A.; Diskin, Glenn S.; Dubey, Manvendra K.; Fortner, Edward; Hanisco, Thomas F.; Hu, Weiwei; King, Laura E.; Kleinman, Lawrence; Meinardi, Simone; Mikoviny, Tomas; Onasch, Timothy B.; Palm, Brett B.; Peischl, Jeff; Pollack, Ilana B.; Ryerson, Thomas B.; Sachse, Glen W.; Sedlacek, Arthur J.; Shilling, John E.; Springston, Stephen; St. Clair, Jason M.; Tanner, David J.; Teng, Alexander P.; Wennberg, Paul O.; Wisthaler, Armin; Wolfe, Glenn M.

    2017-06-01

    Wildfires emit significant amounts of pollutants that degrade air quality. Plumes from three wildfires in the western U.S. were measured from aircraft during the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) and the Biomass Burning Observation Project (BBOP), both in summer 2013. This study reports an extensive set of emission factors (EFs) for over 80 gases and 5 components of submicron particulate matter (PM1) from these temperate wildfires. These include rarely, or never before, measured oxygenated volatile organic compounds and multifunctional organic nitrates. The observed EFs are compared with previous measurements of temperate wildfires, boreal forest fires, and temperate prescribed fires. The wildfires emitted high amounts of PM1 (with organic aerosol (OA) dominating the mass) with an average EF that is more than 2 times the EFs for prescribed fires. The measured EFs were used to estimate the annual wildfire emissions of carbon monoxide, nitrogen oxides, total nonmethane organic compounds, and PM1 from 11 western U.S. states. The estimated gas emissions are generally comparable with the 2011 National Emissions Inventory (NEI). However, our PM1 emission estimate (1530 ± 570 Gg yr-1) is over 3 times that of the NEI PM2.5 estimate and is also higher than the PM2.5 emitted from all other sources in these states in the NEI. This study indicates that the source of OA from biomass burning in the western states is significantly underestimated. In addition, our results indicate that prescribed burning may be an effective method to reduce fine particle emissions.

  7. Boiler briquette coal versus raw coal: Part I--Stack gas emissions.

    Science.gov (United States)

    Ge, S; Bai, Z; Liu, W; Zhu, T; Wang, T; Qing, S; Zhang, J

    2001-04-01

    Stack gas emissions were characterized for a steam-generating boiler commonly used in China. The boiler was tested when fired with a newly formulated boiler briquette coal (BB-coal) and when fired with conventional raw coal (R-coal). The stack gas emissions were analyzed to determine emission rates and emission factors and to develop chemical source profiles. A dilution source sampling system was used to collect PM on both Teflon membrane filters and quartz fiber filters. The Teflon filters were analyzed gravimetrically for PM10 and PM2.5 mass concentrations and by X-ray fluorescence (XRF) for trace elements. The quartz fiber filters were analyzed for organic carbon (OC) and elemental carbon (EC) using a thermal/optical reflectance technique. Sulfur dioxide was measured using the standard wet chemistry method. Carbon monoxide was measured using an Orsat combustion analyzer. The emission rates of the R-coal combustion (in kg/hr), determined using the measured stack gas concentrations and the stack gas emission rates, were 0.74 for PM10, 0.38 for PM2.5, 20.7 for SO2, and 6.8 for CO, while those of the BB-coal combustion were 0.95 for PM10, 0.30 for PM2.5, 7.5 for SO2, and 5.3 for CO. The fuel-mass-based emission factors (in g/kg) of the R-coal, determined using the emission rates and the fuel burn rates, were 1.68 for PM10, 0.87 for PM2.5, 46.7 for SO2, and 15 for CO, while those of the BB-coal were 2.51 for PM10, 0.79 for PM2.5, 19.9 for SO2, and 14 for CO. The task-based emission factors (in g/ton steam generated) of the R-coal, determined using the fuel-mass-based emission factors and the coal/steam conversion factors, were 0.23 for PM10, 0.12 for PM2.5, 6.4 for SO2, and 2.0 for CO, while those of the BB-coal were 0.30 for PM10, 0.094 for PM2.5, 2.4 for SO2, and 1.7 for CO. PM10 and PM2.5 elemental compositions are also presented for both types of coal tested in the study.

  8. Boiler Briquette Coal versus Raw Coal: Part I-Stack Gas Emissions.

    Science.gov (United States)

    Ge, Su; Bai, Zhipeng; Liu, Weili; Zhu, Tan; Wang, Tongjian; Qing, Sheng; Zhang, Junfeng

    2001-04-01

    Stack gas emissions were characterized for a steam-generating boiler commonly used in China. The boiler was tested when fired with a newly formulated boiler briquette coal (BB-coal) and when fired with conventional raw coal (R-coal). The stack gas emissions were analyzed to determine emission rates and emission factors and to develop chemical source profiles. A dilution source sampling system was used to collect PM on both Teflon membrane filters and quartz fiber filters. The Teflon filters were analyzed gravimetrically for PM 10 and PM 2.5 mass concentrations and by X-ray fluorescence (XRF) for trace elements. The quartz fiber filters were analyzed for organic carbon (OC) and elemental carbon (EC) using a thermal/optical reflectance technique. Sulfur dioxide was measured using the standard wet chemistry method. Carbon monoxide was measured using an Orsat combustion analyzer. The emission rates of the R-coal combustion (in kg/hr), determined using the measured stack gas concentrations and the stack gas emission rates, were 0.74 for PM 10 , 0.38 for PM 25 , 20.7 for SO 2 , and 6.8 for CO, while those of the BB-coal combustion were 0.95 for PM 10 , 0.30 for PM 2 5 , 7.5 for SO 2 , and 5.3 for CO. The fuel-mass-based emission factors (in g/kg) of the R-coal, determined using the emission rates and the fuel burn rates, were 1.68 for PM 10 , 0.87 for PM 25 , 46.7 for SO 2 , and 15 for CO, while those of the BB-coal were 2.51 for PM 10 , 0.79 for PM 2.5 , 19.9 for SO 2 , and 14 for CO. The task-based emission factors (in g/ton steam generated) of the R-coal, determined using the fuel-mass-based emission factors and the coal/ steam conversion factors, were 0.23 for PM 10 , 0.12 for PM 2.5 , 6.4 for SO 2 , and 2.0 for CO, while those of the BB-coal were 0.30 for PM 10 , 0.094 for PM 2.5 , 2.4 for SO 2 , and 1.7 for CO. PM 10 and PM 2.5 elemental compositions are also presented for both types of coal tested in the study.

  9. Review, improvement and harmonisation of the Nordic particulate matter air emission inventories

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Ole-Kenneth; Winther, M; Boll Illerup, J [Aarhus Univ. National Environmental Research Institute (NERI) (Denmark); Kindbom, K; Sjodin, AA [Swedish Environmental Research Institute (IVL) (Sweden); Saarinen, K; Mikkola-Pusa, J [Finlands Miljoecentral (SYKE) (Finland); Aasestad, K [Statistisk Sentralbyraa (SSB) (Norway); Hallsdottir, B [Environmental and Food Agency Iceland (IS); Makela, K [Technical Research Centre of Finland (VTT) (Finland)

    2010-12-15

    In this study the Nordic particulate matter (PM) emission inventories are compared and for the most important sources - residential wood burning and road transport - a quality analysis is carried out based on PM measurements conducted and models used in the Nordic countries. All the institutions in charge of the work on emission inventories in the Nordic countries have participated in this project together with researchers performing PM measurements in the residential and transport sectors in the Nordic countries in order to increase the quality of the PM national inventories. The ratio between the reported emissions of PM{sub 10} and PM{sub 2.5} was calculated for each country. Norway has the largest share of PM{sub 2.5} compared to PM{sub 10} (88 %), whereas Finland has the lowest (66 %). Denmark and Sweden are right in the middle with 73 and 76 %, respectively. The completeness of the inventories was assessed with particular emphasis on the categories where emissions were reported by one or more countries, while the other categories reported notation keys. It is found that the PM emission inventories generally are complete and that the sources reported as not estimated only are expected to have minor contributions to the total PM emissions. The variability of emission factors for residential wood combustion is discussed and it is illustrated that the emission factors can vary by several orders of magnitude. (Author)

  10. Gaseous and Particulate Emissions from Diesel Engines at Idle and under Load: Comparison of Biodiesel Blend and Ultralow Sulfur Diesel Fuels.

    Science.gov (United States)

    Chin, Jo-Yu; Batterman, Stuart A; Northrop, William F; Bohac, Stanislav V; Assanis, Dennis N

    2012-11-15

    Diesel exhaust emissions have been reported for a number of engine operating strategies, after-treatment technologies, and fuels. However, information is limited regarding emissions of many pollutants during idling and when biodiesel fuels are used. This study investigates regulated and unregulated emissions from both light-duty passenger car (1.7 L) and medium-duty (6.4 L) diesel engines at idle and load and compares a biodiesel blend (B20) to conventional ultralow sulfur diesel (ULSD) fuel. Exhaust aftertreatment devices included a diesel oxidation catalyst (DOC) and a diesel particle filter (DPF). For the 1.7 L engine under load without a DOC, B20 reduced brake-specific emissions of particulate matter (PM), elemental carbon (EC), nonmethane hydrocarbons (NMHCs), and most volatile organic compounds (VOCs) compared to ULSD; however, formaldehyde brake-specific emissions increased. With a DOC and high load, B20 increased brake-specific emissions of NMHC, nitrogen oxides (NO x ), formaldehyde, naphthalene, and several other VOCs. For the 6.4 L engine under load, B20 reduced brake-specific emissions of PM 2.5 , EC, formaldehyde, and most VOCs; however, NO x brake-specific emissions increased. When idling, the effects of fuel type were different: B20 increased NMHC, PM 2.5 , EC, formaldehyde, benzene, and other VOC emission rates from both engines, and changes were sometimes large, e.g., PM 2.5 increased by 60% for the 6.4 L/2004 calibration engine, and benzene by 40% for the 1.7 L engine with the DOC, possibly reflecting incomplete combustion and unburned fuel. Diesel exhaust emissions depended on the fuel type and engine load (idle versus loaded). The higher emissions found when using B20 are especially important given the recent attention to exposures from idling vehicles and the health significance of PM 2.5 . The emission profiles demonstrate the effects of fuel type, engine calibration, and emission control system, and they can be used as source profiles for

  11. Gaseous and Particulate Emissions from Diesel Engines at Idle and under Load: Comparison of Biodiesel Blend and Ultralow Sulfur Diesel Fuels

    Science.gov (United States)

    Chin, Jo-Yu; Batterman, Stuart A.; Northrop, William F.; Bohac, Stanislav V.; Assanis, Dennis N.

    2015-01-01

    Diesel exhaust emissions have been reported for a number of engine operating strategies, after-treatment technologies, and fuels. However, information is limited regarding emissions of many pollutants during idling and when biodiesel fuels are used. This study investigates regulated and unregulated emissions from both light-duty passenger car (1.7 L) and medium-duty (6.4 L) diesel engines at idle and load and compares a biodiesel blend (B20) to conventional ultralow sulfur diesel (ULSD) fuel. Exhaust aftertreatment devices included a diesel oxidation catalyst (DOC) and a diesel particle filter (DPF). For the 1.7 L engine under load without a DOC, B20 reduced brake-specific emissions of particulate matter (PM), elemental carbon (EC), nonmethane hydrocarbons (NMHCs), and most volatile organic compounds (VOCs) compared to ULSD; however, formaldehyde brake-specific emissions increased. With a DOC and high load, B20 increased brake-specific emissions of NMHC, nitrogen oxides (NOx), formaldehyde, naphthalene, and several other VOCs. For the 6.4 L engine under load, B20 reduced brake-specific emissions of PM2.5, EC, formaldehyde, and most VOCs; however, NOx brake-specific emissions increased. When idling, the effects of fuel type were different: B20 increased NMHC, PM2.5, EC, formaldehyde, benzene, and other VOC emission rates from both engines, and changes were sometimes large, e.g., PM2.5 increased by 60% for the 6.4 L/2004 calibration engine, and benzene by 40% for the 1.7 L engine with the DOC, possibly reflecting incomplete combustion and unburned fuel. Diesel exhaust emissions depended on the fuel type and engine load (idle versus loaded). The higher emissions found when using B20 are especially important given the recent attention to exposures from idling vehicles and the health significance of PM2.5. The emission profiles demonstrate the effects of fuel type, engine calibration, and emission control system, and they can be used as source profiles for apportionment

  12. Future Premature Mortality Due to O3, Secondary Inorganic Aerosols and Primary PM in Europe — Sensitivity to Changes in Climate, Anthropogenic Emissions, Population and Building Stock

    Science.gov (United States)

    Geels, Camilla; Andersson, Camilla; Hänninen, Otto; Lansø, Anne Sofie; Schwarze, Per E.; Ambelas Skjøth, Carsten; Brandt, Jørgen

    2015-01-01

    Air pollution is an important environmental factor associated with health impacts in Europe and considerable resources are used to reduce exposure to air pollution through emission reductions. These reductions will have non-linear effects on exposure due, e.g., to interactions between climate and atmospheric chemistry. By using an integrated assessment model, we quantify the effect of changes in climate, emissions and population demography on exposure and health impacts in Europe. The sensitivity to the changes is assessed by investigating the differences between the decades 2000–2009, 2050–2059 and 2080–2089. We focus on the number of premature deaths related to atmospheric ozone, Secondary Inorganic Aerosols and primary PM. For the Nordic region we furthermore include a projection on how population exposure might develop due to changes in building stock with increased energy efficiency. Reductions in emissions cause a large significant decrease in mortality, while climate effects on chemistry and emissions only affects premature mortality by a few percent. Changes in population demography lead to a larger relative increase in chronic mortality than the relative increase in population. Finally, the projected changes in building stock and infiltration rates in the Nordic indicate that this factor may be very important for assessments of population exposure in the future. PMID:25749320

  13. Future Premature Mortality Due to O3, Secondary Inorganic Aerosols and Primary PM in Europe — Sensitivity to Changes in Climate, Anthropogenic Emissions, Population and Building Stock

    Directory of Open Access Journals (Sweden)

    Camilla Geels

    2015-03-01

    Full Text Available Air pollution is an important environmental factor associated with health impacts in Europe and considerable resources are used to reduce exposure to air pollution through emission reductions. These reductions will have non-linear effects on exposure due, e.g., to interactions between climate and atmospheric chemistry. By using an integrated assessment model, we quantify the effect of changes in climate, emissions and population demography on exposure and health impacts in Europe. The sensitivity to the changes is assessed by investigating the differences between the decades 2000–2009, 2050–2059 and 2080–2089. We focus on the number of premature deaths related to atmospheric ozone, Secondary Inorganic Aerosols and primary PM. For the Nordic region we furthermore include a projection on how population exposure might develop due to changes in building stock with increased energy efficiency. Reductions in emissions cause a large significant decrease in mortality, while climate effects on chemistry and emissions only affects premature mortality by a few percent. Changes in population demography lead to a larger relative increase in chronic mortality than the relative increase in population. Finally, the projected changes in building stock and infiltration rates in the Nordic indicate that this factor may be very important for assessments of population exposure in the future.

  14. TOXICOLOGICAL EVALUATION OF REALISTIC EMISSIONS OF SOURCE AEROSOLS (TERESA): APPLICATION TO POWER PLANT-DERIVED PM2.5

    Energy Technology Data Exchange (ETDEWEB)

    Annette Rohr

    2004-12-02

    tended to be slightly higher. Exposure concentrations were about 249 {micro}g/m{sup 3} PM, of which 87 {micro}g/m{sup 3} was sulfate and approximately 110 {micro}g/m{sup 3} was secondary organic material ({approx}44%). Results indicated subtle differences in breathing pattern between exposed and control (sham) animals, but no differences in other endpoints (in vivo chemiluminescence, blood cytology, bronchoalveolar lavage fluid analysis). It was suspected that primary particle losses may have been occurring in the venturi aspirator/orifice sampler; therefore, the stack sampling system was redesigned. The modified system resulted in no substantial increase in particle concentration in the emissions, leading us to conclude that the electrostatic precipitator at the power plant has high efficiency, and that the sampled emissions are representative of those exiting the stack into the atmosphere. This is important, since the objective of the Project is to carry out exposures to realistic coal combustion-derived secondary PM arising from power plants. During the next reporting period, we will document and describe the remainder of the fieldwork at Plant 0, which we expect to be complete by mid-November 2004. This report will include detailed Phase I toxicological findings for all scenarios run, and Phase II toxicological findings for one selected scenario. Depending upon the outcome of the ongoing fieldwork at Plant 0 (i.e. the biological effects observed), not all the proposed scenarios may be evaluated. The next report is also expected to include preliminary field data for Plant 1, located in the Southeast.

  15. Modelling street level PM10 concentrations across Europe: source apportionment and possible futures

    Science.gov (United States)

    Kiesewetter, G.; Borken-Kleefeld, J.; Schöpp, W.; Heyes, C.; Thunis, P.; Bessagnet, B.; Terrenoire, E.; Fagerli, H.; Nyiri, A.; Amann, M.

    2015-02-01

    Despite increasing emission controls, particulate matter (PM) has remained a critical issue for European air quality in recent years. The various sources of PM, both from primary particulate emissions as well as secondary formation from precursor gases, make this a complex problem to tackle. In order to allow for credible predictions of future concentrations under policy assumptions, a modelling approach is needed that considers all chemical processes and spatial dimensions involved, from long-range transport of pollution to local emissions in street canyons. Here we describe a modelling scheme which has been implemented in the GAINS integrated assessment model to assess compliance with PM10 (PM with aerodynamic diameter dispersion calculations, and a traffic increment calculation wherever applicable. At each monitoring station fulfilling a few data coverage criteria, measured concentrations in the base year 2009 are explained to the extent possible and then modelled for the past and future. More than 1850 monitoring stations are covered, including more than 300 traffic stations and 80% of the stations which exceeded the EU air quality limit values in 2009. As a validation, we compare modelled trends in the period 2000-2008 to observations, which are well reproduced. The modelling scheme is applied here to quantify explicitly source contributions to ambient concentrations at several critical monitoring stations, displaying the differences in spatial origin and chemical composition of urban roadside PM10 across Europe. Furthermore, we analyse the predicted evolution of PM10 concentrations in the European Union until 2030 under different policy scenarios. Significant improvements in ambient PM10 concentrations are expected assuming successful implementation of already agreed legislation; however, these will not be large enough to ensure attainment of PM10 limit values in hot spot locations such as Southern Poland and major European cities. Remaining issues are

  16. Clearing the way for reducing emissions from tropical deforestation

    International Nuclear Information System (INIS)

    Skutsch, M.; Bird, N.; Trines, E.; Dutschke, M.; Frumhoff, P.; Jong, B.H.J. de; Laake, P. van; Masera, O.; Murdiyarso, D.

    2007-01-01

    Carbon emissions from tropical deforestation account for about 25% of all anthropogenic carbon dioxide emissions but cannot be credited under current climate change agreements. In the discussions around the architecture of the post-2012 climate regime, the possibility of including credits for reduced emissions from deforestation arises. The paper reviews two approaches for this, compensated reductions (CR) as proposed by Santilli et al. and the Joint Research Centre proposal that combine voluntary commitments by non-Annex I countries to reduce emissions from deforestation with carbon market financing. Both approaches have the clear advantages of simplicity and the possibility of fitting to an evolving greenhouse gas emission reduction regime. The authors consider the strengths and limitations of each proposal and build upon them to address several implementation challenges and options for improvement. Given the urgency of avoiding dangerous climate change, the timely development of technically sound, politically acceptable, cost-effective and practicable measures to reduce emissions from deforestation and forest degradation is essential. These two approaches take us a step closer to this goal, but they need to be refined rapidly to enable this goal to be realised

  17. Clearing the way for reducing emissions from tropical deforestation

    Energy Technology Data Exchange (ETDEWEB)

    Skutsch, M. [Department of Technology and Sustainable Development, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands); Bird, N. [Joanneum Research, Elizabethstrasse 5/1, A-8010 Graz (Austria); Trines, E. [Gramserweg 2, 3711 AW Austerlitz (Netherlands); Dutschke, M. [Biocarbon, Badstrasse 41, 77652 Offenburg (Germany); Frumhoff, P. [Union of Concerned Scientists, 2 Brattle Square, Cambridge, MA 02238-9105 (United States); De Jong, B.H.J. [El Colegio de la Frontera Sur, Unidad Villahermosa, Carr. Vhsa-Reforma Km. 15.5, C.P. 86280, Ra Guineo 2da Secc, Villahermosa, Tabasco (Mexico); Van Laak, P. [ITC, Department of Natural Resources, P.O. Box 6, 7500 AA Enschede (Netherlands); Masera, O. [Centro de Investigaciones en Ecosistemas, UNAMAP 27-3 Xangari 58089, Morelia, Michoacan (Mexico); Murdiyarso, D. [Center for International Forestry Research, Jl. CIFOR, Situ Gede Sindangbarang, Bogor 16680 (Indonesia)

    2007-06-15

    Carbon emissions from tropical deforestation account for about 25% of all anthropogenic carbon dioxide emissions but cannot be credited under current climate change agreements. In the discussions around the architecture of the post-2012 climate regime, the possibility of including credits for reduced emissions from deforestation arises. The paper reviews two approaches for this, compensated reductions (CR) as proposed by Santilli et al. and the Joint Research Centre proposal that combine voluntary commitments by non-Annex I countries to reduce emissions from deforestation with carbon market financing. Both approaches have the clear advantages of simplicity and the possibility of fitting to an evolving greenhouse gas emission reduction regime. The authors consider the strengths and limitations of each proposal and build upon them to address several implementation challenges and options for improvement. Given the urgency of avoiding dangerous climate change, the timely development of technically sound, politically acceptable, cost-effective and practicable measures to reduce emissions from deforestation and forest degradation is essential. These two approaches take us a step closer to this goal, but they need to be refined rapidly to enable this goal to be realised.

  18. Effects of fuels, engine load and exhaust after-treatment on diesel engine SVOC emissions and development of SVOC profiles for receptor modeling

    Science.gov (United States)

    Huang, Lei; Bohac, Stanislav V.; Chernyak, Sergei M.; Batterman, Stuart A.

    2015-01-01

    Diesel exhaust emissions contain numerous semivolatile organic compounds (SVOCs) for which emission information is limited, especially for idling conditions, new fuels and the new after-treatment systems. This study investigates exhaust emissions of particulate matter (PM), polycyclic aromatic hydrocarbons (PAHs), nitro-PAHs (NPAHs), and sterane and hopane petroleum biomarkers from a heavy-duty (6.4 L) diesel engine at various loads (idle, 600 and 900 kPa BMEP), with three types of fuel (ultra-low sulfur diesel or ULSD, Swedish low aromatic diesel, and neat soybean biodiesel), and with and without a diesel oxidation catalyst (DOC) and diesel particulate filter (DPF). Swedish diesel and biodiesel reduced emissions of PM2.5, Σ15PAHs, Σ11NPAHs, Σ5Hopanes and Σ6Steranes, and biodiesel resulted in the larger reductions. However, idling emissions increased for benzo[k]fluoranthene (Swedish diesel), 5-nitroacenaphthene (biodiesel) and PM2.5 (biodiesel), a significant result given the attention to exposures from idling vehicles and the toxicity of high-molecular-weight PAHs and NPAHs. The DOC + DPF combination reduced PM2.5 and SVOC emissions during DPF loading (>99% reduction) and DPF regeneration (83–99%). The toxicity of diesel exhaust, in terms of the estimated carcinogenic risk, was greatly reduced using Swedish diesel, biodiesel fuels and the DOC + DPF. PAH profiles showed high abundances of three and four ring compounds as well as naphthalene; NPAH profiles were dominated by nitro-naphthalenes, 1-nitropyrene and 9-nitroanthracene. Both the emission rate and the composition of diesel exhaust depended strongly on fuel type, engine load and after-treatment system. The emissions data and chemical profiles presented are relevant to the development of emission inventories and exposure and risk assessments. PMID:25709535

  19. Effects of fuels, engine load and exhaust after-treatment on diesel engine SVOC emissions and development of SVOC profiles for receptor modeling.

    Science.gov (United States)

    Huang, Lei; Bohac, Stanislav V; Chernyak, Sergei M; Batterman, Stuart A

    2015-02-01

    Diesel exhaust emissions contain numerous semivolatile organic compounds (SVOCs) for which emission information is limited, especially for idling conditions, new fuels and the new after-treatment systems. This study investigates exhaust emissions of particulate matter (PM), polycyclic aromatic hydrocarbons (PAHs), nitro-PAHs (NPAHs), and sterane and hopane petroleum biomarkers from a heavy-duty (6.4 L) diesel engine at various loads (idle, 600 and 900 kPa BMEP), with three types of fuel (ultra-low sulfur diesel or ULSD, Swedish low aromatic diesel, and neat soybean biodiesel), and with and without a diesel oxidation catalyst (DOC) and diesel particulate filter (DPF). Swedish diesel and biodiesel reduced emissions of PM 2.5 , Σ 15 PAHs, Σ 11 NPAHs, Σ 5 Hopanes and Σ 6 Steranes, and biodiesel resulted in the larger reductions. However, idling emissions increased for benzo[k]fluoranthene (Swedish diesel), 5-nitroacenaphthene (biodiesel) and PM 2.5 (biodiesel), a significant result given the attention to exposures from idling vehicles and the toxicity of high-molecular-weight PAHs and NPAHs. The DOC + DPF combination reduced PM 2.5 and SVOC emissions during DPF loading (>99% reduction) and DPF regeneration (83-99%). The toxicity of diesel exhaust, in terms of the estimated carcinogenic risk, was greatly reduced using Swedish diesel, biodiesel fuels and the DOC + DPF. PAH profiles showed high abundances of three and four ring compounds as well as naphthalene; NPAH profiles were dominated by nitro-naphthalenes, 1-nitropyrene and 9-nitroanthracene. Both the emission rate and the composition of diesel exhaust depended strongly on fuel type, engine load and after-treatment system. The emissions data and chemical profiles presented are relevant to the development of emission inventories and exposure and risk assessments.

  20. Toxicological properties of emission particles from heavy duty engines powered by conventional and bio-based diesel fuels and compressed natural gas.

    Science.gov (United States)

    Jalava, Pasi I; Aakko-Saksa, Päivi; Murtonen, Timo; Happo, Mikko S; Markkanen, Ari; Yli-Pirilä, Pasi; Hakulinen, Pasi; Hillamo, Risto; Mäki-Paakkanen, Jorma; Salonen, Raimo O; Jokiniemi, Jorma; Hirvonen, Maija-Riitta

    2012-09-29

    One of the major areas for increasing the use of renewable energy is in traffic fuels e.g. bio-based fuels in diesel engines especially in commuter traffic. Exhaust emissions from fossil diesel fuelled engines are known to cause adverse effects on human health, but there is very limited information available on how the new renewable fuels may change the harmfulness of the emissions, especially particles (PM). We evaluated the PM emissions from a heavy-duty EURO IV diesel engine powered by three different fuels; the toxicological properties of the emitted PM were investigated. Conventional diesel fuel (EN590) and two biodiesels were used - rapeseed methyl ester (RME, EN14214) and hydrotreated vegetable oil (HVO) either as such or as 30% blends with EN590. EN590 and 100% HVO were also operated with or without an oxidative catalyst (DOC + POC). A bus powered by compressed natural gas (CNG) was included for comparison with the liquid fuels. However, the results from CNG powered bus cannot be directly compared to the other situations in this study. High volume PM samples were collected on PTFE filters from a constant volume dilution tunnel. The PM mass emission with HVO was smaller and with RME larger than that with EN590, but both biofuels produced lower PAH contents in emission PM. The DOC + POC catalyst greatly reduced the PM emission and PAH content in PM with both HVO and EN590. Dose-dependent TNFα and MIP-2 responses to all PM samples were mostly at the low or moderate level after 24-hour exposure in a mouse macrophage cell line RAW 264.7. Emission PM from situations with the smallest mass emissions (HVO + cat and CNG) displayed the strongest potency in MIP-2 production. The catalyst slightly decreased the PM-induced TNFα responses and somewhat increased the MIP-2 responses with HVO fuel. Emission PM with EN590 and with 30% HVO blended in EN590 induced the strongest genotoxic responses, which were significantly greater than those with EN590

  1. Design and evaluation of a SiPM-based large-area detector module for positron emission imaging

    Science.gov (United States)

    Alva-Sánchez, H.; Murrieta-Rodríguez, T.; Calva-Coraza, E.; Martínez-Dávalos, A.; Rodríguez-Villafuerte, M.

    2018-03-01

    The design and evaluation of a large-area detector module for positron emission imaging applications, is presented. The module features a SensL ArrayC-60035-64P-PCB solid state detector (8×8 array of tileable silicon photomultipliers by SensL, 7.2 mm pitch) covering a total area of 57.4×57.4 mm2. The detector module was formed using a pixelated array of 40×40 lutetium-yttrium oxyorthosilicate (LYSO) scintillator crystal elements with 1.43 mm pitch. A 7 mm thick coupling light guide was used to allow light sharing between adjacent SiPM. A 16-channel symmetric charge division (SCD) readout board was designed to multiplex the number of signals from 64 to 16 (8 columns and 8 rows) and a center-of-gravity algorithm to identify the position. Data acquisition and digitization was accomplished using a custom-made system based on FPGAs boards. Crystal maps were obtained using 18F-positron sources and Voronoi diagrams were used to correct for geometric distortions and to generate a non-uniformity correction matrix. All measurements were taken at a controlled room temperature of 22oC. The crystal maps showed minor distortion, 90% of the 1600 total crystal elements could be identified, a mean peak-to-valley ratio of 4.3 was obtained and a 10.8% mean energy resolution for 511 keV annihilation photons was determined. The performance of the detector using our own readout board was compared to that using two different commercially readout boards using the same detector module arrangement. We show that these large-area SiPM arrays, combined with a 16-channel SCD readout board, can offer high spatial resolution, excellent energy resolution and detector uniformity and thus, can be used for positron emission imaging applications.

  2. Study on emission characteristics of hybrid bus under driving cycles in typical Chinese city

    Science.gov (United States)

    Xie, Yongdong; Xu, Guangju

    2017-09-01

    In this study, hybrid city bus was taken as the research object, through the vehicle drum test, the vehicle emissions of hybrid bus, the transient emissions of gas pollutants, as well as the particle size and number distribution were surveyed. The results of the studies are listed as follows: First, compared to traditional fuel bus, hybrid bus could reduce about 44% of the NOx emissions, 33% of the total hydrocarbon emissions, and 51% of the particles emissions. Furthermore, the distribution of particles number concentration of test vehicle became high in middle and low in both sides. More specifically, the particle number concentration was mainly concentrated in the range from 0.021 to 0.755μm, the maximum was 0.2μm, and particle size of particulate matter (PM) less than 1.2μm accounted for 95% of the total number concentration. Particulate mass concentration was increased with increment of particle size, and the maximum of particulate mass (PM) concentration was 6.2μm. On average, whether traditional fuel bus or hybrid bus, the particle size of particulate matter(PM) less than 2.5μm accounted for more than 98% in the particles emission. It is found that the particles are more likely to deposit to the lung, respiratory bronchioles and alveoli, causing respiratory and lung diseases. Therefore, how to control the PM emissions of hybrid bus is the key factor of the study.

  3. Reducing greenhouse gas emissions from u.s. transportation

    Science.gov (United States)

    2010-01-01

    This report examines the prospects for substantially reducing the greenhouse gas (GHG) emissions from the U.S. transportation sector, which accounts for 27 percent of the GHG emissions of the entire U.S. economy and 30 percent of the world's transpor...

  4. Investigating the Potential of Ridesharing to Reduce Vehicle Emissions

    Directory of Open Access Journals (Sweden)

    Roozbeh Jalali

    2017-06-01

    Full Text Available As urban populations grow, cities need new strategies to maintain a good standard of living while enhancing services and infrastructure development. A key area for improving city operations and spatial layout is the transportation of people and goods. While conventional transportation systems (i.e., fossil fuel based are struggling to serve mobility needs for growing populations, they also represent serious environmental threats. Alternative-fuel vehicles can reduce emissions that contribute to local air pollution and greenhouse gases as mobility needs grow. However, even if alternative-powered vehicles were widely employed, road congestion would still increase. This paper investigates ridesharing as a mobility option to reduce emissions (carbon, particulates and ozone while accommodating growing transportation needs and reducing overall congestion. The potential of ridesharing to reduce carbon emissions from personal vehicles in Changsha, China, is examined by reviewing mobility patterns of approximately 8,900 privately-owned vehicles over two months. Big data analytics identify ridesharing potential among these drivers by grouping vehicles by their trajectory similarity. The approach includes five steps: data preprocessing, trip recognition, feature vector creation, similarity measurement and clustering. Potential reductions in vehicle emissions through ridesharing among a specific group of drivers are calculated and discussed. While the quantitative results of this analysis are specific to the population of Changsha, they provide useful insights for the potential of ridesharing to reduce vehicle emissions and the congestion expected to grow with mobility needs. Within the study area, ridesharing has the potential to reduce total kilometers driven by about 24% assuming a maximum distance between trips less than 10 kilometers, and schedule time less than 60 minutes. For a more conservative maximum trip distance of 2 kilometers and passenger

  5. 75 FR 33614 - Adequacy Status of the Submitted 2009 PM2.5

    Science.gov (United States)

    2010-06-14

    ... that transportation activities will not produce new air quality violations, worsen existing violations... the Submitted 2009 PM 2.5 Motor Vehicle Emission Budgets for Transportation Conformity Purposes for..., PM 2.5 nonattainment areas to be adequate for transportation conformity purposes. The transportation...

  6. Reducing the Green House Gas Emissions from the Transportation Sector

    Directory of Open Access Journals (Sweden)

    Oyewande Akinnikawe

    2010-02-01

    Full Text Available In the United States, two thirds of the carbon monoxide and about one third of carbon dioxide emissions come from the transportation sector. Ways to reduce these emissions in the future include replacing gasoline and diesel by biofuels, or by blend of biofuels with conventional gasoline and diesel, or by compressed natural gas (CNG, or by replacing internal combustion engines by electric motors powered by hydrogen fuel cells or battery-powered electric vehicles recharged from the electric grid. This presentation will review these technologies the fuel production pathways, when they are likely to be available, and by what fraction transportation sector green house gas emissions could be reduced by each. A well-to-wheels (WTW analysis is performed on each vehicle/ fuel technology using the GREET model and the total energy use, the CO 2 emissions, NO x emissions, SO x emissions for the life cycle of the vehicle technologies are calculated. Prospects for reducing foreign oil dependence as well as mitigating green house gases emission from the transportation sector will be considered in the analysis.

  7. Indoor PM1, PM2.5, PM10 and outdoor PM2.5 concentrations in primary schools in Sari, Iran.

    Science.gov (United States)

    Mohammadyan, Mahmoud; Shabankhani, Bijan

    2013-09-01

    This study was carried out to determine the distribution of particles in classrooms in primary schools located in the centre of the city of Sari, Iran and identify the relationship between indoor classroom particle levels and outdoor PM2.5 concentrations. Outdoor PM2.5 and indoor PM1, PM2.5, and PM10 were monitored using a real-time Micro Dust Pro monitor and a GRIMM monitor, respectively. Both monitors were calibrated by gravimetric method using filters. The Kolmogorov-Smirnov test showed that all indoor and outdoor data fitted normal distribution. Mean indoor PM1, PM2.5, PM10 and outdoor PM2.5 concentrations for all of the classrooms were 17.6 μg m(-3), 46.6 μg m(-3), 400.9 μg m(-3), and 36.9 μg m(-3), respectively. The highest levels of indoor and outdoor PM2.5 concentrations were measured at the Shahed Boys School (69.1 μg m(-3) and 115.8 μg m(-3), respectively). The Kazemi school had the lowest levels of indoor and outdoor PM2.5 (29.1 μg m(-3) and 15.5 μg m(-3), respectively). In schools located near both main and small roads, the association between indoor fine particle (PM2.5 and PM1) and outdoor PM2.5 levels was stronger than that between indoor PM10 and outdoor PM2.5 levels. Mean indoor PM2.5 and PM10 and outdoor PM2.5 were higher than the standards for PM2.5 and PM10, and there was a good correlation between indoor and outdoor fine particle concentrations.

  8. Vehicle-based road dust emission measurement (III):. effect of speed, traffic volume, location, and season on PM 10 road dust emissions in the Treasure Valley, ID

    Science.gov (United States)

    Etyemezian, V.; Kuhns, H.; Gillies, J.; Chow, J.; Hendrickson, K.; McGown, M.; Pitchford, M.

    compared. PM 10 paved road dust emission inventories calculated with the TRAKER method were 61% higher in winter and 180% higher in summer than inventories calculated from on-site silt loading measurements. Emissions calculated from silt loading measurements conducted on-site indicated that the AP-42 default values are too low for the Treasure Valley by a factor of 1.5 for summer conditions and by a factor of 3.8 for winter. Both silt loading and TRAKER are techniques that were calibrated against the horizontal flux of dust, which was estimated by the difference in PM 10 concentration between instruments located upwind and downwind of an unpaved road. The upwind/downwind method, and therefore both silt loading and TRAKER, gives a measure of the dust emitted near the source, and not the dust that can be transported on a regional or air shed scale. Correcting the measured dust emissions for deposition and removal near the source is outside the scope of this work, but is a continuing area of research among dispersion modelers.

  9. Use of water containing acetone–butanol–ethanol for NOx-PM (nitrogen oxide-particulate matter) trade-off in the diesel engine fueled with biodiesel

    International Nuclear Information System (INIS)

    Chang, Yu-Cheng; Lee, Wen-Jhy; Wu, Tser Son; Wu, Chang-Yu; Chen, Shui-Jen

    2014-01-01

    Fuel blends that contain biodiesel are known to produce greater NO x (nitrogen oxide) emissions in diesel engine exhaust than regular diesel, and this is one of the key barriers to the wider adoption of biodiesel as an alternative fuel. In this study, a water-containing ABE (acetone–butanol–ethanol) solution, which simulates products that are produced from biomass fermentation without dehydration processing, was tested as a biodiesel-diesel blend additive to lower NO x emissions from diesel engines. The energy efficiency and the PM (particulate matter) and PAHs (polycyclic aromatic hydrocarbons) emissions were investigated and compared under various operating conditions. Although biodiesel had greater NO x emissions, the blends that contained 25% of the water-containing ABE solution had significantly lower NO x (4.30–30.7%), PM (10.9–63.1%), and PAH (polycyclic aromatic hydrocarbon) emissions (26.7–67.6%) than the biodiesel–diesel blends and regular diesel, respectively. In addition, the energy efficiency of this new blend was 0.372–7.88% higher with respect to both the biodiesel–diesel blends and regular diesel. Because dehydration and surfactant addition are not necessary, the application of ABE–biodiesel–diesel blends can simplify fuel production processes, reduce energy consumption, and lower pollutant emissions, meaning that the ABE–biodiesel–diesel blend is a promising green fuel. - Highlights: • Water-containing ABE (acetone–butanol–ethanol)–biodiesel–diesel was tested in a diesel engine. • The addition of ABE to biodiesel–diesel blends can enhance the energy efficiency. • The addition of ABE can solve the problem of NO x -PM (nitrogen oxide-particulate matter) trade-off when using biodiesel. • PAHs (polycyclic aromatic hydrocarbons) can be further reduced by adding ABE in biodiesel–diesel blends. • Fuel production was simplified due to the acceptance of water in ABE

  10. Study of the chemical elements and polycyclic aromatic hydrocarbons in atmospheric particles of PM 10 and PM 2.5 in the urban and rural areas of South Brazil

    Science.gov (United States)

    Dallarosa, Juliana; Calesso Teixeira, Elba; Meira, Lindolfo; Wiegand, Flavio

    2008-07-01

    The purpose of this work is to study the chemical elements and PAHs associated with atmospheric particulate in samples of PM 10 collected in the Metropolitan Area of Porto Alegre—MAPA, Rio Grande do Sul, Brazil. In addition, to study the chemical elements associated with particles of different fractions of PM 10-2.5 and PM 2.5 using dichotomous sampling, in urban (MAPA) and rural areas. Two types of samplers were used: HV PM 10 and Dichotomous (PM 10-2.5 and PM 2.5). Samples were collected during 2002 and 2005. The concentration of the elements Si, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, and Zn was determined by PIXE (Particle-Induced X-ray Emission), while the concentrations of 16 major PAHs were determined according to EPA with a gas chromatograph coupled to a mass spectrometer (GS/MS). Results showed that elements of anthropogenic origin (V, Zn, Cr, Ni, Cu, and S) were mainly associated with the fraction PM 2.5, while the soil dust (Si, Al, Ti and Fe) were found mainly on fraction PM 10-2.5. In samples of PM 10, the most frequent PAHs found were Bgp, Flt, BaA, Chr, B(b + k)F, BaP and Dba. The types of emission and their association with the atmospheric parameters were studied applying the statistical analysis of the principal component method. The main sources found in the area under study were vehicles, industries (steel mills and a coal-fired power station), dust, sea breeze, and burning.

  11. New technologies reducing emissions from combustion of biofuels

    International Nuclear Information System (INIS)

    Oravainen, H.

    1997-01-01

    In reducing CO 2 emissions, bioenergy will be the most important source of renewable energy in the next few decades. In principle, combustion of biomass is friendly to the environment because CO 2 released during combustion is recycled back into natural circulation. Biofuels normally contain little nitrogen and sulphur. However, depending on the combustion technology used, emissions may be quite high. This is true of combustion of biomass fuels in small appliances like wood stoves, fireplaces, small boilers etc. When fuels having high content of volatile matter are burnt in appliances using batch type combustion, the process is rather an unsteady-state combustion. Emissions of carbon monoxide, other combustible gases and particulates are quite difficult to avoid. With continuous combustion processes this is not normally a problem. This conference paper presents some means of reducing emissions from combustion of biofuels. 5 refs., 4 figs

  12. [Sampling methods for PM2.5 from stationary sources: a review].

    Science.gov (United States)

    Jiang, Jing-Kun; Deng, Jian-Guo; Li, Zhen; Li, Xing-Hua; Duan, Lei; Hao, Ji-Ming

    2014-05-01

    The new China national ambient air quality standard has been published in 2012 and will be implemented in 2016. To meet the requirements in this new standard, monitoring and controlling PM2,,5 emission from stationary sources are very important. However, so far there is no national standard method on sampling PM2.5 from stationary sources. Different sampling methods for PM2.5 from stationary sources and relevant international standards were reviewed in this study. It includes the methods for PM2.5 sampling in flue gas and the methods for PM2.5 sampling after dilution. Both advantages and disadvantages of these sampling methods were discussed. For environmental management, the method for PM2.5 sampling in flue gas such as impactor and virtual impactor was suggested as a standard to determine filterable PM2.5. To evaluate environmental and health effects of PM2.5 from stationary sources, standard dilution method for sampling of total PM2.5 should be established.

  13. Technology Opportunities to Reduce U.S. Greenhouse Gas Emissions

    Energy Technology Data Exchange (ETDEWEB)

    National Lab Directors, . .

    2001-04-05

    The rise in greenhouse gas emissions from fossil fuel combustion and industrial and agricultural activities has aroused international concern about the possible impacts of these emissions on climate. Greenhouse gases--mostly carbon dioxide, some methane, nitrous oxide and other trace gases--are emitted to the atmosphere, enhancing an effect in which heat reflected from the earth's surface is kept from escaping into space, as in a greenhouse. Thus, there is concern that the earth's surface temperature may rise enough to cause global climate change. Approximately 90% of U.S. greenhouse gas emissions from anthropogenic sources come from energy production and use, most of which are a byproduct of the combustion of fossil fuels. On a per capita basis, the United States is one of the world's largest sources of greenhouse gas emissions, comprising 4% of the world's population, yet emitting 23% of the world's greenhouse gases. Emissions in the United States are increasing at around 1.2% annually, and the Energy Information Administration forecasts that emissions levels will continue to increase at this rate in the years ahead if we proceed down the business-as-usual path. President Clinton has presented a two-part challenge for the United States: reduce greenhouse gas emissions and grow the economy. Meeting the challenge will mean that in doing tomorrow's work, we must use energy more efficiently and emit less carbon for the energy expended than we do today. To accomplish these goals, President Clinton proposed on June 26, 1997, that the United States ''invest more in the technologies of the future''. In this report to Secretary of Energy Pena, 47 technology pathways are described that have significant potential to reduce carbon dioxide emissions. The present study was completed before the December 1997 United Nations Framework Convention on Climate Change and is intended to provide a basis to evaluate technology

  14. Primary anthropogenic aerosol emission trends for China, 1990–2005

    Directory of Open Access Journals (Sweden)

    Y. Lei

    2011-02-01

    Full Text Available An inventory of anthropogenic primary aerosol emissions in China was developed for 1990–2005 using a technology-based approach. Taking into account changes in the technology penetration within industry sectors and improvements in emission controls driven by stricter emission standards, a dynamic methodology was derived and implemented to estimate inter-annual emission factors. Emission factors of PM2.5 decreased by 7%–69% from 1990 to 2005 in different industry sectors of China, and emission factors of TSP decreased by 18%–80% as well, with the measures of controlling PM emissions implemented. As a result, emissions of PM2.5 and TSP in 2005 were 11.0 Tg and 29.7 Tg, respectively, less than what they would have been without the adoption of these measures. Emissions of PM2.5, PM10 and TSP presented similar trends: they increased in the first six years of 1990s and decreased until 2000, then increased again in the following years. Emissions of TSP peaked (35.5 Tg in 1996, while the peak of PM10 (18.8 Tg and PM2.5 (12.7 Tg emissions occurred in 2005. Although various emission trends were identified across sectors, the cement industry and biofuel combustion in the residential sector were consistently the largest sources of PM2.5 emissions, accounting for 53%–62% of emissions over the study period. The non-metallic mineral product industry, including the cement, lime and brick industries, accounted for 54%–63% of national TSP emissions. There were no significant trends of BC and OC emissions until 2000, but the increase after 2000 brought the peaks of BC (1.51 Tg and OC (3.19 Tg emissions in 2005. Although significant improvements in the estimation of primary aerosols are presented here, there still exist large uncertainties. More accurate and detailed activity information and emission factors based on local tests are essential to further improve emission estimates

  15. Urban passenger transport energy saving and emission reduction potential: A case study for Tianjin, China

    International Nuclear Information System (INIS)

    Peng, Binbin; Du, Huibin; Ma, Shoufeng; Fan, Ying; Broadstock, David C.

    2015-01-01

    Highlights: • Potential to reduce urban passenger transport is projected between 2010 and 2040. • Four scenarios reflecting different policy mixes are considered. • The potential for energy conservation and emission reductions are obtained. • Vehicle population regulation is most effective in energy saving and reducing overall GHG. • Emission standards are the most effective measure to reduce pollutant emissions. - Abstract: With rapid growth of the vehicle population, urban passenger transport in China is largely responsible for increases in energy consumption, greenhouse gas (GHG) emissions, and also atmospheric pollutants (NO x , CO, HC, PM). In this paper, we first develop an urban passenger transport energy saving and emission reduction potential evaluation model using the “Long Range Energy Alternatives Planning (LEAP)” tool; and then take Tianjin city as an empirical case to evaluate the reduction potential of final energy consumption, GHG emissions and pollutants emissions of Tianjin’s urban passenger transport sector between 2010 and 2040 under four scenarios, i.e. BAU (business as usual) scenario, PP (the 12th five-year plan policy) scenario, CP (comprehensive policy) scenario and HP (hybrid policy of PP and CP) scenario. The results show that due to the public transport promotion, energy consumption and CO 2 emissions in 2040 can be reduced by 22% and 22.6% in the PP scenario, compared to BAU. The largest reductions in energy consumption, CO 2 and atmospheric pollutants emissions can be achieved under CP scenario, in which vehicle population regulation is the most effective to be implemented. Emissions standard regulation is the most effective measure to reduce atmospheric pollutant emissions in all the scenarios and green energy promotion is especially effective to reduce NO x and PM

  16. Highly-Integrated CMOS Interface Circuits for SiPM-Based PET Imaging Systems.

    Science.gov (United States)

    Dey, Samrat; Lewellen, Thomas K; Miyaoka, Robert S; Rudell, Jacques C

    2012-01-01

    Recent developments in the area of Positron Emission Tomography (PET) detectors using Silicon Photomultipliers (SiPMs) have demonstrated the feasibility of higher resolution PET scanners due to a significant reduction in the detector form factor. The increased detector density requires a proportionally larger number of channels to interface the SiPM array with the backend digital signal processing necessary for eventual image reconstruction. This work presents a CMOS ASIC design for signal reducing readout electronics in support of an 8×8 silicon photomultiplier array. The row/column/diagonal summation circuit significantly reduces the number of required channels, reducing the cost of subsequent digitizing electronics. Current amplifiers are used with a single input from each SiPM cathode. This approach helps to reduce the detector loading, while generating all the necessary row, column and diagonal addressing information. In addition, the single current amplifier used in our Pulse-Positioning architecture facilitates the extraction of pulse timing information. Other components under design at present include a current-mode comparator which enables threshold detection for dark noise current reduction, a transimpedance amplifier and a variable output impedance I/O driver which adapts to a wide range of loading conditions between the ASIC and lines with the off-chip Analog-to-Digital Converters (ADCs).

  17. Assessment of the Potential to Reduce Emissions from Road Transportation, Notably NOx, Through the Use of Alternative Vehicles and Fuels in the Great Smoky Mountains Region; TOPICAL

    International Nuclear Information System (INIS)

    Sheffield, J.

    2001-01-01

    Air pollution is a serious problem in the region of the Great Smoky Mountains. The U.S. Environmental Protection Agency (EPA) may designate non-attainment areas by 2003 for ozone. Pollutants include nitrogen oxides (NOx), sulfur dioxide (SO(sub 2)), carbon monoxide (CO), volatile organic compounds (VOCs), lead, and particulate matter (PM), which are health hazards, damage the environment, and limit visibility. The main contributors to this pollution are industry, transportation, and utilities. Reductions from all contributors are needed to correct this problem. While improvements are projected in each sector over the next decades, the May 2000 Interim Report issued by the Southern Appalachian Mountains Initiative (SAMI) suggests that the percentage of NOx emissions from transportation may increase. The conclusions are: (1) It is essential to consider the entire fuel cycle in assessing the benefits, or disadvantages, of an alternative fuel option, i.e., feedstock and fuel production, in addition to vehicle operation; (2) Many improvements to the energy efficiency of a particular vehicle and engine combination will also reduce emissions by reducing fuel use, e.g., engine efficiency, reduced weight, drag and tire friction, and regenerative braking; (3) In reducing emissions it will be important to install the infrastructure to provide the improved fuels, support the maintenance of advanced vehicles, and provide emissions testing of both local vehicles and those from out of state; (4) Public transit systems using lower emission vehicles can play an important role in reducing emissions per passenger mile by carrying passengers more efficiently, particularly in congested areas. However, analysis is required for each situation; (5) Any reduction in emissions will be welcome, but the problems of air pollution in our region will not be solved by a few modest improvements. Substantial reductions in emissions of key pollutants are required both in East Tennessee and in

  18. Toxicity of Urban PM10 and Relation with Tracers of Biomass Burning.

    Science.gov (United States)

    Van Den Heuvel, Rosette; Staelens, Jeroen; Koppen, Gudrun; Schoeters, Greet

    2018-02-12

    The chemical composition of particles varies with space and time and depends on emission sources, atmospheric chemistry and weather conditions. Evidence suggesting that particles differ in toxicity depending on their chemical composition is growing. This in vitro study investigated the biological effects of PM 10 in relation to PM-associated chemicals. PM 10 was sampled in ambient air at an urban traffic site (Borgerhout) and a rural background location (Houtem) in Flanders (Belgium). To characterize the toxic potential of PM 10 , airway epithelial cells (Beas-2B cells) were exposed to particles in vitro. Different endpoints were studied including cell damage and death (cell viability) and the induction of interleukin-8 (IL-8). The mutagenic capacity was assessed using the Ames II Mutagenicity Test. The endotoxin levels in the collected samples were analyzed and the oxidative potential (OP) of PM 10 particles was evaluated by electron paramagnetic resonance (EPR) spectroscopy. Chemical characteristics of PM 10 included tracers for biomass burning (levoglucosan, mannosan and galactosan), elemental and organic carbon (EC/OC) and polycyclic aromatic hydrocarbons (PAHs). Most samples displayed dose-dependent cytotoxicity and IL-8 induction. Spatial and temporal differences in PM 10 toxicity were seen. PM 10 collected at the urban site was characterized by increased pro-inflammatory and mutagenic activity as well as higher OP and elevated endotoxin levels compared to the background area. Reduced cell viability (-0.46 biomass burning, levoglucosan, mannosan and galactosan. Furthermore, direct and indirect mutagenicity were associated with tracers for biomass burning, OC, EC and PAHs. Multiple regression analyses showed levoglucosan to explain 16% and 28% of the variance in direct and indirect mutagenicity, respectively. Markers for biomass burning were associated with altered cellular responses and increased mutagenic activity. These findings may indicate a role of

  19. Assessment and Mitigation of PM pollution in the border regions of Austria and Slovenia

    Science.gov (United States)

    Uhrner, Ulrich; Reifeltshammer, Rafael; Lackner, Bettina; Forkel, Renate; Sturm, Peter

    2017-04-01

    Many cities, towns and regions located at the southern fringe of the Alps face remarkably high PM levels particularly during the winter period. The project PMinter aimed 1) to analyse the air quality in S-Styria, S-Carinthia and N-Slovenia, 2) to evaluate local and regional measures to develop effective air quality management plans and finally 3) to support a sustainable improvement of air quality in the project region. Using wood for residential heating is very popular in Austria and in Slovenia. To assess the contribution from wood smoke to the total PM burden and the impact of regional and large scale transport as well as the impact of secondary aerosols were major goals of PMinter. Due to the complex terrain air quality and exposure assessment is challenging. To resolve sources which are located in valleys and basins, emissions were computed or processed on 1 km x 1 km resolution for the entire program area. A new combined model approach was developed and tested successfully using a state-of-the-art CTM (WRF/Chem) on the regional scale and the Lagrangian particle model GRAL on the local scale. A detailed analysis and comparisons with measurements and regional/local scale scenario simulations were carried out. Residential heating using wood was identified as the major source and PM component dominant on the "local scale" ( 10 km), secondary inorganic aerosol was the dominant PM component on the regional scale ( 10 km - 150 km) and above. Various mitigation scenarios for PM were computed. A "local" scenario where individual heating facilities using solid fuels were replaced by district heating and a regional scenario with 35% reduced ammonia emissions from agriculture proved to be most effective.

  20. 75 FR 29537 - Draft Transportation Conformity Guidance for Quantitative Hot-spot Analyses in PM2.5

    Science.gov (United States)

    2010-05-26

    ... Quantitative Hot- spot Analyses in PM 2.5 and PM 10 Nonattainment and Maintenance Areas AGENCY: Environmental... finalized, this guidance would help state and local agencies complete quantitative PM 2.5 and PM 10 hot-spot... projects. A hot-spot analysis includes an estimation of project-level emissions, air quality modeling, and...

  1. Evaluating strategies to reduce urban air pollution

    Science.gov (United States)

    Duque, L.; Relvas, H.; Silveira, C.; Ferreira, J.; Monteiro, A.; Gama, C.; Rafael, S.; Freitas, S.; Borrego, C.; Miranda, A. I.

    2016-02-01

    During the last years, specific air quality problems have been detected in the urban area of Porto (Portugal). Both PM10 and NO2 limit values have been surpassed in several air quality monitoring stations and, following the European legislation requirements, Air Quality Plans were designed and implemented to reduce those levels. In this sense, measures to decrease PM10 and NO2 emissions have been selected, these mainly related to the traffic sector, but also regarding the industrial and residential combustion sectors. The main objective of this study is to investigate the efficiency of these reduction measures with regard to the improvement of PM10 and NO2 concentration levels over the Porto urban region using a numerical modelling tool - The Air Pollution Model (TAPM). TAPM was applied over the study region, for a simulation domain of 80 × 80 km2 with a spatial resolution of 1 × 1 km2. The entire year of 2012 was simulated and set as the base year for the analysis of the impacts of the selected measures. Taking into account the main activity sectors, four main scenarios have been defined and simulated, with focus on: (1) hybrid cars; (2) a Low Emission Zone (LEZ); (3) fireplaces and (4) industry. The modelling results indicate that measures to reduce PM10 should be focused on residential combustion (fireplaces) and industrial activity and for NO2 the strategy should be based on the traffic sector. The implementation of all the defined scenarios will allow a total maximum reduction of 4.5% on the levels of both pollutants.

  2. Analysis of PM10, PM2.5, and PM2 5-10 concentrations in Santiago, Chile, from 1989 to 2001.

    Science.gov (United States)

    Koutrakis, Petros; Sax, Sonja N; Sarnat, Jeremy A; Coull, Brent; Demokritou, Phil; Oyola, Pedro; Garcia, Javier; Gramsch, Ernesto

    2005-03-01

    Daily particle samples were collected in Santiago, Chile, at four urban locations from January 1, 1989, through December 31, 2001. Both fine PM with da Ambient Air Quality Standards and the European Union concentration limits. Mean PM2.5 levels during the cold season (April through September) were more than twice as high as those observed in the warm season (October through March); whereas coarse particle levels were similar in both seasons. PM concentration trends were investigated using regression models, controlling for site, weekday, month, wind speed, temperature, and RH. Results showed that PM2.5 concentrations decreased substantially, 52% over the 12-year period (1989-2000), whereas PM2.5-10 concentrations increased by approximately 50% in the first 5 years and then decreased by a similar percentage over the following 7 years. These decreases were evident even after controlling for significant climatic effects. These results suggest that the pollution reduction programs developed and implemented by the Comisión Nacional del Medio Ambiente (CONAMA) have been effective in reducing particle levels in the Santiago Metropolitan region. However, particle levels remain high and it is thus imperative that efforts to improve air quality continue.

  3. Effects of Local Greenhouse Gas Abatement Strategies on Air Pollutant Emissions and on Health in Kuopio, Finland

    Directory of Open Access Journals (Sweden)

    Arja Asikainen

    2017-06-01

    Full Text Available Implementation of greenhouse gas (GHG abatement strategies often ends up as the responsibility of municipal action rather than national policies. Impacts of local GHG reduction measures were investigated in the EU FP7 funded project Urban Reduction of Greenhouse Gas Emissions in China and Europe (URGENCHE. Kuopio in Finland was one of the case study cities. The assessed reduction measures were (1 increased use of biomass in local heat and power cogeneration plant, (2 energy efficiency improvements of residences, (3 increased biofuel use in traffic, and (4 increased small scale combustion of wood for residential heating. Impact assessment compared the 2010 baseline with a 2020 BAU (business as usual scenario and a 2020 CO2 interventions scenario. Changes in emissions were assessed for CO2, particulate matter (PM2.5 and PM10, NOx, and SO2, and respective impacts were assessed for PM2.5 ambient concentrations and health effects. The assessed measures would reduce the local CO2 emissions in the Kuopio urban area by over 50% and local emissions of PM2.5 would clearly decrease. However, the annual average ambient PM2.5 concentration would decrease by just 4%. Thus, only marginal population level health benefits would be achieved with these assumed local CO2 abatement actions.

  4. Variability of levels and composition of PM10 and PM2.5 in the Barcelona metro system

    Directory of Open Access Journals (Sweden)

    E. de Miguel

    2012-06-01

    Full Text Available From an environmental perspective, the underground metro system is one of the cleanest forms of public transportation in urban agglomerations. Current studies report contradicting results regarding air quality in the metro systems: whereas some reveal poor air quality, others report PM levels which are lower or of the same order of magnitude than those measured in traffic sites above ground level. The present work assesses summer and winter indoor air quality and passenger exposure in the Barcelona metro, focusing on PM levels and their metal contents. In addition, the impact on indoor air quality of platform screen door systems (automated systems consisting of closed rail track and platforms is evaluated, to determine whether these systems reduce passenger exposure to PM when compared with conventional systems (open tracks and platforms. In the Barcelona metro PM levels inside the trains in summer are amongst the lowest reported for worldwide metro systems (11–32 μg m−3 PM2.5. This is most likely due to the air conditioning system working in all carriages of the Barcelona metro during the whole year. Levels were considerably higher on the platforms, reaching mean levels of 46 and 125 μg m3 in the new (L9 and old (L3 lines, respectively. PM10 data are also reported in the present study, but comparison with other metro systems is difficult due to the scarcity of data compared with PM2.5. Results showed distinct PM daily cycles, with a drastic increase from 06:00 to 07:00 a.m., a diurnal maximum from 07:00 to 10:00 p.m., and marked decrease between 10:00 p.m. and 05:00 a.m. The elements with the highest enrichment were those associated with wheel or brake abrasion products (Ba, Fe, Cu, Mn, Cr, Sb, As, Mo, Co, Sr, among others. Laminar hematite (Fe2O3 was the dominant particle type, being mainly originated by mechanical abrasion of the rail track and wheels. Regarding passenger exposure to PM, the contribution of commuting by metro was

  5. Semiconductor technology for reducing emissions and increasing efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Duffin, B.; Frank, R. [Motorola Semiconductor Products Sector, Phoenix, AZ (United States)

    1997-12-31

    The cooperation and support of all industries are required to significantly impact a worldwide reduction in gaseous emissions that may contribute to climate change. Each industry also is striving to more efficiently utilize the resources that it consumes since this is both conservation for good citizenship and an intelligent approach to business. The semiconductor industry is also extremely concerned with these issues. However, semiconductor manufacturer`s products provide solutions for reduced emissions and increased efficiency in their industry, other industries and areas that can realize significant improvements through control technology. This paper will focus on semiconductor technologies of digital control, power switching and sensing to improve efficiency and reduce emissions in automotive, industrial, and office/home applications. 10 refs., 13 figs.

  6. A new alternative paraffinic-palmbiodiesel fuel for reducing polychlorinated dibenzo-p-dioxin/dibenzofuran emissions from heavy-duty diesel engines.

    Science.gov (United States)

    Lin, Yuan-Chung; Liu, Shou-Heng; Chen, Yan-Min; Wu, Tzi-Yi

    2011-01-15

    Polychlorinated dibenzo-p-dioxin/dibenzofuran (PCDD/F) emissions from heavy-duty diesel engines (HDDEs) fuelled with paraffinic-palmbiodiesel blends have been rarely addressed in the literature. A high-resolution gas chromatograph/high-resolution mass spectrometer (HRGC/HRMS) was used to analyze 17 PCDD/F species. Experimental results indicate that the main species of PCDD/Fs were OCDD (octachlorinated debenzo-p-dioxin) and OCDF (octachlorodibenzofuran), and they accounted for 40-50% of the total PCDD/Fs for all test fuels. Paraffinic-palmbiodiesel blends decreased PCDD/Fs by 86.1-88.9%, toxic PCDD/Fs by 91.9-93.0%, THC (total hydrocarbons) by 13.6-23.3%, CO (carbon monoxide) by 27.2-28.3%, and PM (particulate matter) by 21.3-34.2%. Using biodiesel blends, particularly BP9505 or BP8020, instead of premium diesel fuel (PDF) significantly reduced emissions of both PCDD/Fs and traditional pollutants. Using BP9505 (95vol% paraffinic fuel+5vol% palmbiodiesel) and BP8020 instead of PDF can decrease PCDD/F emissions by 5.93 and 5.99gI-TEQyear(-1) in Taiwan, respectively. Copyright © 2010. Published by Elsevier B.V.

  7. Opportunities to reduce methane emissions in the natural gas industry

    Energy Technology Data Exchange (ETDEWEB)

    Cowgill, R.M. [Radian Corporation, Austin, TX (United States)

    1995-12-31

    The U.S. Environmental Protection Agency (EPA) and the Gas Research Institute (GRI) cofunded a project to quantify methane (CH{sub 4}) emissions from the U.S. natural gas industry. Methane, the major constituent of natural gas, is a potent greenhouse gas that is believed to increase the effect of global warming when released to the atmosphere. Reducing emissions from natural gas systems would lessen the greenhouse gas effect attributable to atmospheric CH{sub 4}. Further, mitigation methods to reduce emissions of natural gas, a marketable resource, could save money and increase energy efficiency. This presentation summarizes the major sources and quantity of methane being emitted to the atmosphere for all segments of the U.S. gas industry: production; processing; storage; transmission; and distribution. A description of how those emissions were determined is included here, as well as a discussion of which sources are potential candidates for reducing emissions. (author)

  8. Opportunities to reduce methane emissions in the natural gas industry

    Energy Technology Data Exchange (ETDEWEB)

    Cowgill, R M [Radian Corporation, Austin, TX (United States)

    1996-12-31

    The U.S. Environmental Protection Agency (EPA) and the Gas Research Institute (GRI) cofunded a project to quantify methane (CH{sub 4}) emissions from the U.S. natural gas industry. Methane, the major constituent of natural gas, is a potent greenhouse gas that is believed to increase the effect of global warming when released to the atmosphere. Reducing emissions from natural gas systems would lessen the greenhouse gas effect attributable to atmospheric CH{sub 4}. Further, mitigation methods to reduce emissions of natural gas, a marketable resource, could save money and increase energy efficiency. This presentation summarizes the major sources and quantity of methane being emitted to the atmosphere for all segments of the U.S. gas industry: production; processing; storage; transmission; and distribution. A description of how those emissions were determined is included here, as well as a discussion of which sources are potential candidates for reducing emissions. (author)

  9. Opportunities to reduce methane emissions in the natural gas industry

    International Nuclear Information System (INIS)

    Cowgill, R.M.

    1995-01-01

    The U.S. Environmental Protection Agency (EPA) and the Gas Research Institute (GRI) cofunded a project to quantify methane (CH 4 ) emissions from the U.S. natural gas industry. Methane, the major constituent of natural gas, is a potent greenhouse gas that is believed to increase the effect of global warming when released to the atmosphere. Reducing emissions from natural gas systems would lessen the greenhouse gas effect attributable to atmospheric CH 4 . Further, mitigation methods to reduce emissions of natural gas, a marketable resource, could save money and increase energy efficiency. This presentation summarizes the major sources and quantity of methane being emitted to the atmosphere for all segments of the U.S. gas industry: production; processing; storage; transmission; and distribution. A description of how those emissions were determined is included here, as well as a discussion of which sources are potential candidates for reducing emissions. (author)

  10. Economics of reducing CO2 emissions from China

    International Nuclear Information System (INIS)

    Wu Zhongxin

    1991-01-01

    Relative to the nations of the industrialized world, developing countries emit far lower levels of CO 2 per capita. In coming years, however, as the developing world experiences more rapid rates of economic and population growth, their carbon emissions per capita inevitably will rise. Therefore, developing countries should be encouraged both to adopt more advanced energy technologies in order to improve the efficiency of energy exploration, transportation, generation and end-use and to replace carbon-intensive fuels sources with less carbon-intensive sources (non-fossil fuels and renewable energy). By incorporating methods aimed at curtailing carbon emissions into their energy development strategies, developing nations can reduce the risks posed by higher CO 2 emissions. However, adopting more advanced energy technologies generally entails high costs. These higher prices serve as a particularly large obstacle for developing nations. In order to serve the common interest of protecting the global environment, international funds should be devoted to cover the high costs of reducing developing world CO 2 emissions

  11. An Assessment of Fine Particulate (PM2.5) Air Pollution in Jeddah, Saudi Arabia

    Science.gov (United States)

    Nayebare, S. R.; Khwaja, H. A.; Aburizaiza, O. S.; Siddique, A.; Zeb, J.; Hussain, M. M.; Khatib, F.; Blake, D. R.; Carpenter, D. O.

    2017-12-01

    We assessed the levels, chemical composition and delineated the sources of PM2.5 in Jeddah, to estimate the anthropogenic influence. Sampling was done from April 8th 2013 to February 18th, 2014 in four cycles. PM2.5 samples were analyzed for black carbon (BC), trace elements (TEs) and water-soluble ionic species (IS). Delineation of sources was by mass reconstruction, enrichment factor (EF), and positive matrix factorization (PMF). The 24-h PM2.5 levels showed seasonal variabilities with mean PM2.5 per cycle (cycle 1: 58.8±25.0, cycle 2: 36.2±12.3, cycle 3: 33.9±9.1, and cycle 4: 38.0±17.7µg/m3) exceeding the WHO guideline (25.0 µg/m3). Overall, BC explained 3.61%, 5.92%, 7.15% and 6.51% of PM2.5 during cycles 1-4, respectively but with delta-C levels below zero. This excluded bio-mass burning as a PM2.5 source. IS were mostly SO42-, NO3-, NH4+, Na+ and K+, characteristic of industrial and vehicular emissions. From mass reconstruction, BC, TEs and IS collectively explained 73.6 - 89.5% of PM2.5. EF analysis defined two broad categories of TEs as; anthropogenic (Ni, V, Cu, Zn, Cl, Pb, S, Lu and Br), and earth-crust derived (Al, Si, Ti, Mg, K, Fe, Sr, Mn, Ca, Na and Cr) TEs. These anthropogenic TEs are mostly of industrial and vehicular origins. PMF broadly defined 4 major sources of PM2.5; fossil fuels combustion (36.0%), soil (34.1%), sea-spray (15.4%) and vehicular emissions (14.5%). Results show a major anthropogenic influence related to vehicular and industrial emissions, and further stress the need for more research to fully delineate PM2.5 sources in Jeddah.

  12. Indoor PM2.5 exposure in London's domestic stock: Modelling current and future exposures following energy efficient refurbishment

    Science.gov (United States)

    Shrubsole, C.; Ridley, I.; Biddulph, P.; Milner, J.; Vardoulakis, S.; Ucci, M.; Wilkinson, P.; Chalabi, Z.; Davies, M.

    2012-12-01

    Simulations using CONTAM (a validated multi-zone indoor air quality (IAQ) model) are employed to predict indoor exposure to PM2.5 in London dwellings in both the present day housing stock and the same stock following energy efficient refurbishments to meet greenhouse gas emissions reduction targets for 2050. We modelled interventions that would contribute to the achievement of these targets by reducing the permeability of the dwellings to 3 m3 m-2 h-1 at 50 Pa, combined with the introduction of mechanical ventilation and heat recovery (MVHR) systems. It is assumed that the current mean outdoor PM2.5 concentration of 13 μg m-3 decreased to 9 μg m-3 by 2050 due to emission control policies. Our primary finding was that installation of (assumed perfectly functioning) MVHR systems with permeability reduction are associated with appreciable reductions in PM2.5 exposure in both smoking and non-smoking dwellings. Modelling of the future scenario for non-smoking dwellings show a reduction in annual average indoor exposure to PM2.5 of 18.8 μg m-3 (from 28.4 to 9.6 μg m-3) for a typical household member. Also of interest is that a larger reduction of 42.6 μg m-3 (from 60.5 to 17.9 μg m-3) was shown for members exposed primarily to cooking-related particle emissions in the kitchen (cooks). Reductions in envelope permeability without mechanical ventilation produced increases in indoor PM2.5 concentrations; 5.4 μg m-3 for typical household members and 9.8 μg m-3 for cooks. These estimates of changes in PM2.5 exposure are sensitive to assumptions about occupant behaviour, ventilation system usage and the distributions of input variables (±72% for non-smoking and ±107% in smoking residences). However, if realised, they would result in significant health benefits.

  13. Modelling the long-range transport of secondary PM 10 to the UK

    Science.gov (United States)

    Malcolm, A. L.; Derwent, R. G.; Maryon, R. H.

    The fine fraction of airborne particulate matter (PM 10) is known to be harmful to human health. In order to establish how current air quality standards can best be met now and in the future, it is necessary to understand the cause of PM 10 episodes. The UK Met Office's dispersion model, NAME, has been used to model hourly concentrations of sulphate aerosol for 1996 at a number of UK locations. The model output has been compared with measured values of PM 10 or sulphate aerosol at these sites and used to provide attribution information. In particular two large PM 10 episodes in March and July 1996 have been studied. The March episode has been shown to be the result of imported pollution from outside the UK, whereas the July case was dominated by UK emissions. This work highlights the need to consider trans-boundary pollution when setting air quality standards and when making policy decisions on emissions.

  14. Emissão de PM2,5 e gases em sistemas domésticos de queima de biomassa

    OpenAIRE

    Fernandes, Ana Patrícia da Silva

    2009-01-01

    Realizou-se uma série de testes para determinar a composição gasosa e a constituição química das emissões de PM2,5 resultantes da combustão doméstica em lareira e fogão. Queimaram-se 7 espécies lenhosas representativas da floresta Portuguesa (Pinus pinaster, Eucalyptus globulus, Quercus suber, Acácia longifolia, Quercus faginea, Olea europea, Quercus ilex rotundifolia) e briquetes de resíduos de biomassa. A amostragem de gases foi realizada junto à exaustão da chaminé do fogão e da lareira...

  15. Deconvoluting Mixtures ofEmissions Sources to Investigate PM2.5's Ability to Generate Reactive Oxygen Species and its Associations with Cardiorespiratory Effects

    Science.gov (United States)

    Weber, R. J.; Bates, J.; Abrams, J.; Verma, V.; Fang, T.; Klein, M.; Strickland, M. J.; Sarnat, S. E.; Chang, H. H.; Mulholland, J. A.; Tolbert, P. E.; Russell, A. G.

    2015-12-01

    It is hypothesized that fine particulate matter (PM2.5) inhalation can catalytically generate reactive oxygen species (ROS) in excess of the body's antioxidant capacity, leading to oxidative stress and ultimately adverse health. PM2.5 emissions from different sources vary widely in chemical composition, with varied effects on the body. Here, the ability of mixtures of different sources of PM2.5 to generate ROS and associations of this capability with acute health effects were investigated. A dithiothreitol (DTT) assay that integrates over different sources was used to quantify ROS generation potential of ambient water-soluble PM2.5 in Atlanta from June 2012 - June 2013. PM2.5 source impacts, estimated using the Chemical Mass Balance method with ensemble-averaged source impact profiles, were related to DTT activity using a linear regression model, which provided information on intrinsic DTT activity (i.e., toxicity) of each source. The model was then used to develop a time series of daily DTT activity over a ten-year period (1998-2010) for use in an epidemiologic study. Light-duty gasoline vehicles exhibited the highest intrinsic DTT activity, followed by biomass burning and heavy-duty diesel vehicles. Biomass burning contributed the largest fraction to total DTT activity, followed by gasoline and diesel vehicles (45%, 20% and 14%, respectively). These results suggest the importance of aged oxygenated organic aerosols and metals in ROS generation. Epidemiologic analyses found significant associations between estimated DTT activity and emergency department visits for congestive heart failure and asthma/wheezing attacks in the 5-county Atlanta area. Estimated DTT activity was the only pollutant measure out of PM2.5, O3, and PM2.5 constituents elemental carbon and organic carbon) that exhibited a significant link to congestive heart failure. In two-pollutant models, DTT activity was significantly associated with asthma/wheeze and congestive heart failure while PM2

  16. Variability in the primary emissions and secondary gas and particle formation from vehicles using bioethanol mixtures.

    Science.gov (United States)

    Gramsch, E; Papapostolou, V; Reyes, F; Vásquez, Y; Castillo, M; Oyola, P; López, G; Cádiz, A; Ferguson, S; Wolfson, M; Lawrence, J; Koutrakis, P

    2018-04-01

    Bioethanol for use in vehicles is becoming a substantial part of global energy infrastructure because it is renewable and some emissions are reduced. Carbon monoxide (CO) emissions and total hydrocarbons (THC) are reduced, but there is still controversy regarding emissions of nitrogen oxides (NO x ), aldehydes, and ethanol; this may be a concern because all these compounds are precursors of ozone and secondary organic aerosol (SOA). The amount of emissions depends on the ethanol content, but it also may depend on the engine quality and ethanol origin. Thus, a photochemical chamber was used to study secondary gas and aerosol formation from two flex-fueled vehicles using different ethanol blends in gasoline. One vehicle and the fuel used were made in the United States, and the others were made in Brazil. Primary emissions of THC, CO, carbon dioxide (CO 2 ), and nonmethane hydrocarbons (NMHC) from both vehicles decreased as the amount of ethanol in gasoline increased. NO x emissions in the U.S. and Brazilian cars decreased with ethanol content. However, emissions of THC, CO, and NO x from the Brazilian car were markedly higher than those from the U.S. car, showing high variability between vehicle technologies. In the Brazilian car, formation of secondary nitrogen dioxide (NO 2 ) and ozone (O 3 ) was lower for higher ethanol content in the fuel. In the U.S. car, NO 2 and O 3 had a small increase. Secondary particle (particulate matter [PM]) formation in the chamber decreased for both vehicles as the fraction of ethanol in fuel increased, consistent with previous studies. Secondary to primary PM ratios for pure gasoline is 11, also consistent with previous studies. In addition, the time required to form secondary PM is longer for higher ethanol blends. These results indicate that using higher ethanol blends may have a positive impact on air quality. The use of bioethanol can significantly reduce petroleum use and greenhouse gas emissions worldwide. Given the extent of

  17. Improving material management to reduce greenhouse gas emissions

    NARCIS (Netherlands)

    Hekkert, Marko Peter

    2000-01-01

    Climate change due to greenhouse gas emissions caused by human actions is probably one of the major global environmental problems that we face today. In order to reduce the risk of climate change and the potential effects thereof, the emission of greenhouse gases like carbon dioxide (CO2) and

  18. Regulated Emissions from Biodiesel Tested in Heavy-Duty Engines Meeting 2004 Emission Standards

    Energy Technology Data Exchange (ETDEWEB)

    McCormick, R. L.; Tennant, C. J.; Hayes, R. R.; Black, S.; Ireland, J.; McDaniel, T.; Williams, A.; Frailey, M.; Sharp, C. A.

    2005-11-01

    Biodiesel produced from soybean oil, canola oil, yellow grease, and beef tallow was tested in two heavy-duty engines. The biodiesels were tested neat and as 20% by volume blends with a 15 ppm sulfur petroleum-derived diesel fuel. The test engines were the following: 2002 Cummins ISB and 2003 DDC Series 60. Both engines met the 2004 U.S. emission standard of 2.5 g/bhp-h NO{sub x}+HC (3.35 g/kW-h) and utilized exhaust gas recirculation (EGR). All emission tests employed the heavy-duty transient procedure as specified in the U.S. Code of Federal Regulations. Reduction in PM emissions and increase in NO{sub x} emissions were observed for all biodiesels in all engines, confirming observations made in older engines. On average PM was reduced by 25% and NO{sub x} increased by 3% for the two engines tested for a variety of B20 blends. These changes are slightly larger in magnitude, but in the same range as observed in older engines. The cetane improver 2-ethyl hexyl nitrate was shown to have no measurable effect on NO{sub x} emissions from B20 in these engines, in contrast to observations reported for older engines. The effect of intake air humidity on NO{sub x} emissions from the Cummins ISB was quantified. The CFR NO{sub x}/humidity correction factor was shown to be valid for an engine equipped with EGR, operating at 1700 m above sea level, and operating on conventional or biodiesel.

  19. TOXICOLOGICAL EVALUATION OF REALISTIC EMISSIONS OF SOURCE AEROSOLS (TERESA): APPLICATION TO POWER PLANT-DERIVED PM2.5

    Energy Technology Data Exchange (ETDEWEB)

    Annette C. Rohr; Petros Koutrakis; John Godleski

    2011-03-31

    Determining the health impacts of different sources and components of fine particulate matter (PM2.5) is an important scientific goal, because PM is a complex mixture of both inorganic and organic constituents that likely differ in their potential to cause adverse health outcomes. The TERESA (Toxicological Evaluation of Realistic Emissions of Source Aerosols) study focused on two PM sources - coal-fired power plants and mobile sources - and sought to investigate the toxicological effects of exposure to realistic emissions from these sources. The DOE-EPRI Cooperative Agreement covered the performance and analysis of field experiments at three power plants. The mobile source component consisted of experiments conducted at a traffic tunnel in Boston; these activities were funded through the Harvard-EPA Particulate Matter Research Center and will be reported separately in the peer-reviewed literature. TERESA attempted to delineate health effects of primary particles, secondary (aged) particles, and mixtures of these with common atmospheric constituents. The study involved withdrawal of emissions directly from power plant stacks, followed by aging and atmospheric transformation of emissions in a mobile laboratory in a manner that simulated downwind power plant plume processing. Secondary organic aerosol (SOA) derived from the biogenic volatile organic compound {alpha}-pinene was added in some experiments, and in others ammonia was added to neutralize strong acidity. Specifically, four scenarios were studied at each plant: primary particles (P); secondary (oxidized) particles (PO); oxidized particles + secondary organic aerosol (SOA) (POS); and oxidized and neutralized particles + SOA (PONS). Extensive exposure characterization was carried out, including gas-phase and particulate species. Male Sprague Dawley rats were exposed for 6 hours to filtered air or different atmospheric mixtures. Toxicological endpoints included (1) breathing pattern; (2) bronchoalveolar lavage

  20. Spatiotemporal estimation of historical PM2.5 concentrations using PM10, meteorological variables, and spatial effect

    Science.gov (United States)

    Li, Lianfa; Wu, Anna H.; Cheng, Iona; Chen, Jiu-Chiuan; Wu, Jun

    2017-10-01

    Monitoring of fine particulate matter with diameter health outcomes such as cancer. In this study, we aimed to design a flexible approach to reliably estimate historical PM2.5 concentrations by incorporating spatial effect and the measurements of existing co-pollutants such as particulate matter with diameter additive non-linear model. The spatiotemporal model was evaluated, using leaving-one-site-month-out cross validation. Our final daily model had an R2 of 0.81, with PM10, meteorological variables, and spatial autocorrelation, explaining 55%, 10%, and 10% of the variance in PM2.5 concentrations, respectively. The model had a cross-validation R2 of 0.83 for monthly PM2.5 concentrations (N = 8170) and 0.79 for daily PM2.5 concentrations (N = 51,421) with few extreme values in prediction. Further, the incorporation of spatial effects reduced bias in predictions. Our approach achieved a cross validation R2 of 0.61 for the daily model when PM10 was replaced by total suspended particulate. Our model can robustly estimate historical PM2.5 concentrations in California when PM2.5 measurements were not available.

  1. The impact of particulate matter (PM and nitric oxides (NOx on human health and an analysis of selected sources accounting for their emission in Poland

    Directory of Open Access Journals (Sweden)

    Jakub Krzeszowiak

    2016-10-01

    Full Text Available Introduction and objective: This paper is concerned with the harmful impact of nitric oxides (NOx and particulate matter (PM on humans. The objective was to determine which source of emission is the most urgent in terms of its reduction.Abbreviated description of the state of knowledge: In published epidemiological studies multiple notifications indicating the harmful impact of particulate matter on human health can be found. The harmful impact is underscored by the increase in the number of hospitalisations owing to diseases of respiratory and cardio-vascular systems, as well as by the rise in general fatality rate. The analysis of the PM impact on the human body is prompted by the fact that its detrimental effects are not clearly defined. Additionally, nitric oxides contribute to the increased number of exacerbations of respiratory disease and are a factor increasing susceptibility to development of local inflammation. Conclusions: The following study is meant to show that the air pollution which derives from vehicles (NOx and PM has a significant impact on human health. This applies particularly to residents of cities and big towns. This issue has gained special importance in Poland. According to the data from the Central Statistical Office, the increasing number of vehicles in use and their age lead to increased emission of the pollutants considered.

  2. Impact of biogenic emission uncertainties on the simulated response of ozone and fine particulate matter to anthropogenic emission reductions.

    Science.gov (United States)

    Hogrefe, Christian; Isukapalli, Sastry S; Tang, Xiaogang; Georgopoulos, Panos G; He, Shan; Zalewsky, Eric E; Hao, Winston; Ku, Jia-Yeong; Key, Tonalee; Sistla, Gopal

    2011-01-01

    The role of emissions of volatile organic compounds and nitric oxide from biogenic sources is becoming increasingly important in regulatory air quality modeling as levels of anthropogenic emissions continue to decrease and stricter health-based air quality standards are being adopted. However, considerable uncertainties still exist in the current estimation methodologies for biogenic emissions. The impact of these uncertainties on ozone and fine particulate matter (PM2.5) levels for the eastern United States was studied, focusing on biogenic emissions estimates from two commonly used biogenic emission models, the Model of Emissions of Gases and Aerosols from Nature (MEGAN) and the Biogenic Emissions Inventory System (BEIS). Photochemical grid modeling simulations were performed for two scenarios: one reflecting present day conditions and the other reflecting a hypothetical future year with reductions in emissions of anthropogenic oxides of nitrogen (NOx). For ozone, the use of MEGAN emissions resulted in a higher ozone response to hypothetical anthropogenic NOx emission reductions compared with BEIS. Applying the current U.S. Environmental Protection Agency guidance on regulatory air quality modeling in conjunction with typical maximum ozone concentrations, the differences in estimated future year ozone design values (DVF) stemming from differences in biogenic emissions estimates were on the order of 4 parts per billion (ppb), corresponding to approximately 5% of the daily maximum 8-hr ozone National Ambient Air Quality Standard (NAAQS) of 75 ppb. For PM2.5, the differences were 0.1-0.25 microg/m3 in the summer total organic mass component of DVFs, corresponding to approximately 1-2% of the value of the annual PM2.5 NAAQS of 15 microg/m3. Spatial variations in the ozone and PM2.5 differences also reveal that the impacts of different biogenic emission estimates on ozone and PM2.5 levels are dependent on ambient levels of anthropogenic emissions.

  3. Sources of ambient concentrations and chemical composition of PM 2.5-0.1 in Cork Harbour, Ireland

    Science.gov (United States)

    Hellebust, S.; Allanic, A.; O'Connor, I. P.; Jourdan, C.; Healy, D.; Sodeau, J. R.

    2010-02-01

    Particulate matter (PM 10-2.5 and PM 2.5-0.1) has been collected over a period of one year in Cork Harbour, Ireland, using a high-volume cascade impactor and polyurethane foam collection substrate. Collected PM 2.5-0.1 was analysed for water-soluble inorganic ions and metal content using ion chromatography and inductively coupled plasma-optical emission spectroscopy. On average approximately 50% by mass of the chemical content of PM was identified. The motivation for the study was to assess the potential impact of shipping emissions on air quality in Cork Harbour and City, with a view to informing public health impacts. The average ambient concentration of PM 10 between May 2007 and April 2008 was 4.6 µgm - 3 and the maximum concentration measured in one sample, representing a 4 day collection period, was 16 µgm - 3 . The major inorganic constituents identified in PM collected in Haulbowline Island in Cork Harbour were sulfate, ammonium, nitrate, chloride and sodium ions, which were mainly attributable to sea salt and secondary inorganic aerosols from regional sources. The results were analysed by principal component analysis for the purpose of source apportionment. Four factors were identified explaining over 80% of the data set variance. The factors were: shipping, sea salt, crustal material and secondary inorganic aerosols (SIA). The smaller size fraction was frequently observed to dominate, as the average concentration was 2.77 µgm - 3 for PM 2.5-0.1 compared to 1.9 µgm - 3 for PM 10-2.5. Fresh ship plumes were not found to make a significant contribution to primary PM 2.5-0.1 concentrations adjacent to the shipping channel. However, this was partially attributed to the ultrafine nature of ship emissions and the majority of the toxic metal content was attributed to emissions associated with heavy oil combustion sources, which include ship engines.

  4. A review of current knowledge concerning PM2. 5 chemical composition, aerosol optical properties and their relationships across China

    Science.gov (United States)

    Tao, Jun; Zhang, Leiming; Cao, Junji; Zhang, Renjian

    2017-08-01

    To obtain a thorough knowledge of PM2. 5 chemical composition and its impact on aerosol optical properties across China, existing field studies conducted after the year 2000 are reviewed and summarized in terms of geographical, interannual and seasonal distributions. Annual PM2. 5 was up to 6 times the National Ambient Air Quality Standards (NAAQS) in some megacities in northern China. Annual PM2. 5 was higher in northern than southern cities, and higher in inland than coastal cities. In a few cities with data longer than a decade, PM2. 5 showed a slight decrease only in the second half of the past decade, while carbonaceous aerosols decreased, sulfate (SO42-) and ammonium (NH4+) remained at high levels, and nitrate (NO3-) increased. The highest seasonal averages of PM2. 5 and its major chemical components were typically observed in the cold seasons. Annual average contributions of secondary inorganic aerosols to PM2. 5 ranged from 25 to 48 %, and those of carbonaceous aerosols ranged from 23 to 47 %, both with higher contributions in southern regions due to the frequent dust events in northern China. Source apportionment analysis identified secondary inorganic aerosols, coal combustion and traffic emission as the top three source factors contributing to PM2. 5 mass in most Chinese cities, and the sum of these three source factors explained 44 to 82 % of PM2. 5 mass on annual average across China. Biomass emission in most cities, industrial emission in industrial cities, dust emission in northern cities and ship emission in coastal cities are other major source factors, each of which contributed 7-27 % to PM2. 5 mass in applicable cities. The geographical pattern of scattering coefficient (bsp) was similar to that of PM2. 5, and that of aerosol absorption coefficient (bap) was determined by elemental carbon (EC) mass concentration and its coating. bsp in ambient condition of relative humidity (RH) = 80 % can be amplified by about 1.8 times that under dry conditions

  5. Chassis dynamometer study of emissions from 21 in-use heavy-duty diesel vehicles

    International Nuclear Information System (INIS)

    Yanowitz, J.; Graboski, M.S.; Ryan, L.B.A.; Alleman, T.L.; McCormick, R.L.

    1999-01-01

    Regulated emissions from 21 in-use heavy-duty diesel vehicles were measured on a heavy-duty chassis dynamometer via three driving cycles using a low-sulfur diesel fuel. Emissions of particulate matter (PM), nitrogen oxides (NO x ), carbon monoxide (CO), total hydrocarbon (THC), and PM sulfate fraction were measured. For hot start tests, emissions ranged from 0.30 to 7.43 g/mi (mean 1.96) for PM; 4.15--54.0 g/mi (mean 23.3) for NO x ; 2.09--86.2 g/mi (mean 19.5) for CO; and 0.25--8.25 g/mi (mean 1.70) for THC. When emissions are converted to a g/gal basis, the effect of driving cycle is eliminated for NO x and largely eliminated for PM. Sulfate comprised less than 1% of the emitted PM for all vehicles and test cycles. A strong correlation is observed between emissions of CO and PM. Cold starting at 77 F produced an 11% increase in PM emissions. Multivariate regression analyses indicate that in-use PM emissions have decreased at a slower rate than anticipated based on the stricter engine certification test standards put into effect since 1985. NO x emissions do not decrease with model year for the vehicles tested here. Smoke opacity measurements are not well correlated with mass emissions of regulated pollutants

  6. Costs of emission-reducing manure application

    NARCIS (Netherlands)

    Huijsmans, J.F.M.; Verwijs, B.; Rodhe, L.; Smith, K.

    2004-01-01

    Favourable economics of handling and application of manure are of fundamental importance to encourage the implementation of emission-reducing application techniques. The economics of manure application depend on the costs of the equipment and the time to carry out the field operation. In this study

  7. Particulate emissions from residential wood combustion

    DEFF Research Database (Denmark)

    Luis Teles de Carvalho, Ricardo; Jensen, Ole Michael; Tarelho, Luis A. C.

    Residential wood combustion (RWC) in fireplaces and conventional appliances is the main contributor to fine particulate matter (PM2.5) emissions in Denmark and Portugal representing more than 30% of the total emissions [1;2]. Such estimations are uncertain concerning the wood consumption...... and official emission factors, not taking into account actual burning conditions in dwellings [3]. There is limited knowledge on the real-life performance and spatial distribution of existing appliance types. Few studies have been targeting to understand the influence of fuel operation habits on PM2...... the available estimations for Denmark and Portugal, suggesting a methodology to increase the accuracy of activity data and emission factors. This work is based on new studies carried out to quantify the PM2.5 emissions in daily life through field experiments in Danish dwellings and by considering typical...

  8. PM2.5 and aerosol black carbon in Suva, Fiji

    Science.gov (United States)

    Isley, C. F.; Nelson, P. F.; Taylor, M. P.; Mani, F. S.; Maata, M.; Atanacio, A.; Stelcer, E.; Cohen, D. D.

    2017-02-01

    Concentrations of particulate air pollution in Suva, Fiji, have been largely unknown and consequently, current strategies to reduce health risk from air pollution in Suva are not targeted effectively. This lack of air quality data is common across the Pacific Island Countries. A monitoring study, during 2014 and 2015, has characterised the fine particulate air quality in Suva, representing the most detailed study to date of fine aerosol air pollutants for the Pacific Islands; with sampling at City, Residential (Kinoya) and Background (Suva Point) sites. Meteorology for Suva, as it relates to pollutant dispersion for this period of time, has also been analysed. The study design enables the contribution of maritime air and the anthropogenic emissions to be carefully distinguished from each other and separately characterised. Back trajectory calculations show that a packet of air sampled at the Suva City site has typically travelled 724 km in the 24-h prior to sampling, mainly over open ocean waters; inferring that pollutants would also be rapidly transported away from Suva. For fine particulates, Suva City reported a mid-week PM2.5 of 8.6 ± 0.4 μg/m3, averaged over 13-months of gravimetric sampling. Continuous monitoring (Osiris laser photometer) suggests that some areas of Suva may experience levels exceeding the WHO PM2.5 guideline of 10 μg/m3, however, compared to other countries, Fiji's PM2.5 is low. Peak aerosol particulate levels, at all sites, were experienced at night-time, when atmospheric conditions were least favourable to dispersion of air pollutants. Suva's average ambient concentrations of black carbon in PM2.5, 2.2 ± 0.1 μg/m3, are, however, similar to those measured in much larger cities. With any given parcel of air spending only seven minutes, on average, over the land area of Suva Peninsula, these black carbon concentrations are indicative that significant combustion emissions occur within Suva. Many other communities in the Pacific Islands

  9. Identification of the sources of PM10 in a subway tunnel using positive matrix factorization.

    Science.gov (United States)

    Park, Duckshin; Lee, Taejeong; Hwang, Doyeon; Jung, Wonseok; Lee, Yongil; Cho, KiChul; Kim, Dongsool; Lees, Kiyoung

    2014-12-01

    The level of particulate matter of less than 10 μm diameter (PM10) at subway platforms can be significantly reduced by installing a platform screen-door system. However, both workers and passengers might be exposed to higher PM10 levels while the cars are within the tunnel because it is a more confined environment. This study determined the PM10 levels in a subway tunnel, and identified the sources of PM10 using elemental analysis and receptor modeling. Forty-four PM10 samples were collected in the tunnel between the Gireum and Mia stations on Line 4 in metropolitan Seoul and analyzed using inductively coupled plasma-atomic emission spectrometry and ion chromatography. The major PM10 sources were identified using positive matrix factorization (PMF). The average PM10 concentration in the tunnels was 200.8 ± 22.0 μg/m3. Elemental analysis indicated that the PM10 consisted of 40.4% inorganic species, 9.1% anions, 4.9% cations, and 45.6% other materials. Iron was the most abundant element, with an average concentration of 72.5 ± 10.4 μg/m3. The PM10 sources characterized by PMF included rail, wheel, and brake wear (59.6%), soil combustion (17.0%), secondary aerosols (10.0%), electric cable wear (8.1%), and soil and road dust (5.4%). Internal sources comprising rail, wheel, brake, and electric cable wear made the greatest contribution to the PM10 (67.7%) in tunnel air. Implications: With installation of a platform screen door, PM10 levels in subway tunnels were higher than those on platforms. Tunnel PM10 levels exceeded 150 µg/m3 of the Korean standard for subway platform. Elemental analysis of PM10 in a tunnel showed that Fe was the most abundant element. Five PM10 sources in tunnel were identified by positive matrix factorization. Railroad-related sources contributed 68% of PM10 in the subway tunnel.

  10. Standardized emissions inventory methodology for open-pit mining areas.

    Science.gov (United States)

    Huertas, Jose I; Camacho, Dumar A; Huertas, Maria E

    2011-08-01

    There is still interest in a unified methodology to quantify the mass of particulate material emitted into the atmosphere by activities inherent to open-pit mining. For the case of total suspended particles (TSP), the current practice is to estimate such emissions by developing inventories based on the emission factors recommended by the USEPA for this purpose. However, there are disputes over the specific emission factors that must be used for each activity and the applicability of such factors to cases quite different to the ones under which they were obtained. There is also a need for particulate matter with an aerodynamic diameter less than 10 μm (PM(10)) emission inventories and for metrics to evaluate the emission control programs implemented by open-pit mines. To address these needs, work was carried out to establish a standardized TSP and PM(10) emission inventory methodology for open-pit mining areas. The proposed methodology was applied to seven of the eight mining companies operating in the northern part of Colombia, home to the one of the world's largest open-pit coal mining operations (∼70 Mt/year). The results obtained show that transport on unpaved roads is the mining activity that generates most of the emissions and that the total emissions may be reduced up to 72% by spraying water on the unpaved roads. Performance metrics were defined for the emission control programs implemented by mining companies. It was found that coal open-pit mines are emitting 0.726 and 0.180 kg of TSP and PM(10), respectively, per ton of coal produced. It was also found that these mines are using on average 1.148 m(2) of land per ton of coal produced per year.

  11. Measurement of the charge asymmetry in $B^{\\pm}\\rightarrow \\phi K^{\\pm}$ and search for $B^{\\pm}\\rightarrow \\phi \\pi^{\\pm}$ decays

    CERN Document Server

    Aaij, R; Adinolfi, M; Adrover, C; Affolder, A; Ajaltouni, Z; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves Jr, A A; Amato, S; Amerio, S; Amhis, Y; Anderlini, L; Anderson, J; Andreassen, R; Andrews, J E; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Bachmann, S; Back, J J; Badalov, A; Baesso, C; Balagura, V; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Bauer, Th; Bay, A; Beddow, J; Bedeschi, F; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bettler, M -O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Bowcock, T J V; Bowen, E; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Britsch, M; Britton, T; Brook, N H; Brown, H; Bursche, A; Busetto, G; Buytaert, J; Cadeddu, S; Callot, O; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Campora Perez, D; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carranza-Mejia, H; Carson, L; Carvalho Akiba, K; Casse, G; Castillo Garcia, L; Cattaneo, M; Cauet, Ch; Cenci, R; Charles, M; Charpentier, Ph; Chen, P; Cheung, S -F; Chiapolini, N; Chrzaszcz, M; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coca, C; Coco, V; Cogan, J; Cogneras, E; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Coquereau, S; Corti, G; Couturier, B; Cowan, G A; Craik, D C; Cruz Torres, M; Cunliffe, S; Currie, R; D'Ambrosio, C; David, P; David, P N Y; Davis, A; De Bonis, I; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Silva, W; De Simone, P; Decamp, D; Deckenhoff, M; Del Buono, L; Déléage, N; Derkach, D; Deschamps, O; Dettori, F; Di Canto, A; Dijkstra, H; Dogaru, M; Donleavy, S; Dordei, F; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dupertuis, F; Durante, P; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; van Eijk, D; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Falabella, A; Färber, C; Farinelli, C; Farry, S; Ferguson, D; Fernandez Albor, V; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fiore, M; Fitzpatrick, C; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Furfaro, E; Gallas Torreira, A; Galli, D; Gandelman, M; Gandini, P; Gao, Y; Garofoli, J; Garosi, P; Garra Tico, J; Garrido, L; Gaspar, C; Gauld, R; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gibson, V; Giubega, L; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gorbounov, P; Gordon, H; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Griffith, P; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hamilton, B; Hampson, T; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; Hartmann, T; He, J; Head, T; Heijne, V; Hennessy, K; Henrard, P; Hernando Morata, J A; van Herwijnen, E; Heß, M; Hicheur, A; Hicks, E; Hill, D; Hoballah, M; Hombach, C; Hulsbergen, W; Hunt, P; Huse, T; Hussain, N; Hutchcroft, D; Hynds, D; Iakovenko, V; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jans, E; Jaton, P; Jawahery, A; Jing, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Kaballo, M; Kandybei, S; Kanso, W; Karacson, M; Karbach, T M; Kenyon, I R; Ketel, T; Khanji, B; Kochebina, O; Komarov, I; Koopman, R F; Koppenburg, P; Korolev, M; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kucharczyk, M; Kudryavtsev, V; Kurek, K; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanciotti, E; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J -P; Lefèvre, R; Leflat, A; Lefrançois, J; Leo, S; Leroy, O; Lesiak, T; Leverington, B; Li, Y; Li Gioi, L; Liles, M; Lindner, R; Linn, C; Liu, B; Liu, G; Lohn, S; Longstaff, I; Lopes, J H; Lopez-March, N; Lu, H; Lucchesi, D; Luisier, J; Luo, H; Lupton, O; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Malde, S; Manca, G; Mancinelli, G; Maratas, J; Marconi, U; Marino, P; Märki, R; Marks, J; Martellotti, G; Martens, A; Martín Sánchez, A; Martinelli, M; Martinez Santos, D; Martins Tostes, D; Martynov, A; Massafferri, A; Matev, R; Mathe, Z; Matteuzzi, C; Maurice, E; Mazurov, A; McCarthy, J; McNab, A; McNulty, R; McSkelly, B; Meadows, B; Meier, F; Meissner, M; Merk, M; Milanes, D A; Minard, M -N; Molina Rodriguez, J; Monteil, S; Moran, D; Morawski, P; Mordà, A; Morello, M J; Mountain, R; Mous, I; Muheim, F; Müller, K; Muresan, R; Muryn, B; Muster, B; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Needham, M; Neubert, S; Neufeld, N; Nguyen, A D; Nguyen, T D; Nguyen-Mau, C; Nicol, M; Niess, V; Niet, R; Nikitin, N; Nikodem, T; Nomerotski, A; Novoselov, A; Oblakowska-Mucha, A; Obraztsov, V; Oggero, S; Ogilvy, S; Okhrimenko, O; Oldeman, R; Orlandea, M; Otalora Goicochea, J M; Owen, P; Oyanguren, A; Pal, B K; Palano, A; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Patrick, G N; Patrignani, C; Pavel-Nicorescu, C; Pazos Alvarez, A; Pearce, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perez Trigo, E; Pérez-Calero Yzquierdo, A; Perret, P; Perrin-Terrin, M; Pescatore, L; Pesen, E; Pessina, G; Petridis, K; Petrolini, A; Phan, A; Picatoste Olloqui, E; Pietrzyk, B; Pilař, T; Pinci, D; Playfer, S; Plo Casasus, M; Polci, F; Polok, G; Poluektov, A; Polycarpo, E; Popov, A; Popov, D; Popovici, B; Potterat, C; Powell, A; Prisciandaro, J; Pritchard, A; Prouve, C; Pugatch, V; Puig Navarro, A; Punzi, G; Qian, W; Rachwal, B; Rademacker, J H; Rakotomiaramanana, B; Rangel, M S; Raniuk, I; Rauschmayr, N; Raven, G; Redford, S; Reichert, S; Reid, M M; dos Reis, A C; Ricciardi, S; Richards, A; Rinnert, K; Rives Molina, V; Roa Romero, D A; Robbe, P; Roberts, D A; Rodrigues, A B; Rodrigues, E; Rodriguez Perez, P; Roiser, S; Romanovsky, V; Romero Vidal, A; Rouvinet, J; Ruf, T; Ruffini, F; Ruiz, H; Ruiz Valls, P; Sabatino, G; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salustino Guimaraes, V; Sanmartin Sedes, B; Santacesaria, R; Santamarina Rios, C; Santovetti, E; Sapunov, M; Sarti, A; Satriano, C; Satta, A; Savrie, M; Savrina, D; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M -H; Schwemmer, R; Sciascia, B; Sciubba, A; Seco, M; Semennikov, A; Senderowska, K; Sepp, I; Serra, N; Serrano, J; Seyfert, P; Shapkin, M; Shapoval, I; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, O; Shevchenko, V; Shires, A; Silva Coutinho, R; Sirendi, M; Skidmore, N; Skwarnicki, T; Smith, N A; Smith, E; Smith, E; Smith, J; Smith, M; Sokoloff, M D; Soler, F J P; Soomro, F; Souza, D; Souza De Paula, B; Spaan, B; Sparkes, A; Spradlin, P; Stagni, F; Stahl, S; Steinkamp, O; Stevenson, S; Stoica, S; Stone, S; Storaci, B; Straticiuc, M; Straumann, U; Subbiah, V K; Sun, L; Sutcliffe, W; Swientek, S; Syropoulos, V; Szczekowski, M; Szczypka, P; Szilard, D; Szumlak, T; T'Jampens, S; Teklishyn, M; Teodorescu, E; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Tolk, S; Tonelli, D; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Tran, M T; Tresch, M; Tsaregorodtsev, A; Tsopelas, P; Tuning, N; Ubeda Garcia, M; Ukleja, A; Ustyuzhanin, A; Uwer, U; Vagnoni, V; Valenti, G; Vallier, A; Vazquez Gomez, R; Vazquez Regueiro, P; Vázquez Sierra, C; Vecchi, S; Velthuis, J J; Veltri, M; Veneziano, G; Vesterinen, M; Viaud, B; Vieira, D; Vilasis-Cardona, X; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Vorobyev, V; Voß, C; Voss, H; Waldi, R; Wallace, C; Wallace, R; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Webber, A D; Websdale, D; Whitehead, M; Wicht, J; Wiechczynski, J; Wiedner, D; Wiggers, L; Wilkinson, G; Williams, M P; Williams, M; Wilson, F F; Wimberley, J; Wishahi, J; Wislicki, W; Witek, M; Wormser, G; Wotton, S A; Wright, S; Wu, S; Wyllie, K; Xie, Y; Xing, Z; Yang, Z; Yuan, X; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, F; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhokhov, A; Zhong, L; Zvyagin, A

    2014-01-01

    The CP-violating charge asymmetry in $B^{\\pm}\\rightarrow \\phi K^{\\pm}$ decays is measured in a sample of $pp$ collisions at 7 TeV centre-of-mass energy, corresponding to an integrated luminosity of 1.0 fb$^{-1}$ collected by the LHCb experiment. The result is $\\mathcal{A}_{CP}(B^{\\pm}\\rightarrow \\phi K^{\\pm}) = \\rm 0.022\\pm 0.021 \\pm 0.009$, where the first uncertainty is statistical and the second systematic. In addition, a search for the $B^{\\pm}\\rightarrow \\phi \\pi^{\\pm}$ decay mode is performed, using the $B^{\\pm}\\rightarrow \\phi K^{\\pm}$ decay rate for normalization. An upper limit on the branching fraction $\\mathcal{B}(B^{\\pm}\\rightarrow \\phi \\pi^{\\pm})< 1.5\\times 10^{-7}$ is set at 90% confidence level.

  12. Search for $CP$ violation in $D^{\\pm}\\rightarrow K^0_S K^{\\pm}$ and $D^{\\pm}_{s}\\rightarrow K^0_S \\pi^{\\pm}$ decays

    CERN Document Server

    Aaij, R.; Adinolfi, M.; Affolder, A.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves Jr, A.A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Anderson, J.; Andreassen, R.; Andreotti, M.; Andrews, J.E.; Appleby, R.B.; Aquines Gutierrez, O.; Archilli, F.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Bachmann, S.; Back, J.J.; Badalov, A.; Balagura, V.; Baldini, W.; Barlow, R.J.; Barschel, C.; Barsuk, S.; Barter, W.; Batozskaya, V.; Battista, V.; Bay, A.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Belogurov, S.; Belous, K.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Benton, J.; Berezhnoy, A.; Bernet, R.; Bettler, M.O.; van Beuzekom, M.; Bien, A.; Bifani, S.; Bird, T.; Bizzeti, A.; Bjornstad, P.M.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Bondar, A.; Bondar, N.; Bonivento, W.; Borghi, S.; Borgia, A.; Borsato, M.; Bowcock, T.J.V.; Bowen, E.; Bozzi, C.; Brambach, T.; van den Brand, J.; Bressieux, J.; Brett, D.; Britsch, M.; Britton, T.; Brodzicka, J.; Brook, N.H.; Brown, H.; Bursche, A.; Busetto, G.; Buytaert, J.; Cadeddu, S.; Calabrese, R.; Calvi, M.; Calvo Gomez, M.; Camboni, A.; Campana, P.; Campora Perez, D.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carranza-Mejia, H.; Carson, L.; Carvalho Akiba, K.; Casse, G.; Cassina, L.; Garcia, L.Castillo; Cattaneo, M.; Cauet, Ch.; Cenci, R.; Charles, M.; Charpentier, Ph.; Chen, S.; Cheung, S.F.; Chiapolini, N.; Chrzaszcz, M.; Ciba, K.; Cid Vidal, X.; Ciezarek, G.; Clarke, P.E.L.; Clemencic, M.; Cliff, H.V.; Closier, J.; Coco, V.; Cogan, J.; Cogneras, E.; Collins, P.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombes, M.; Coquereau, S.; Corti, G.; Corvo, M.; Counts, I.; Couturier, B.; Cowan, G.A.; Craik, D.C.; Cruz Torres, M.; Cunliffe, S.; Currie, R.; D'Ambrosio, C.; Dalseno, J.; David, P.; David, P.N.Y.; Davis, A.; De Bruyn, K.; De Capua, S.; De Cian, M.; de Miranda, J.M.; De Paula, L.; De Silva, W.; De Simone, P.; Decamp, D.; Deckenhoff, M.; Del Buono, L.; Deleage, N.; Derkach, D.; Deschamps, O.; Dettori, F.; Di Canto, A.; Dijkstra, H.; Donleavy, S.; Dordei, F.; Dorigo, M.; Dosil Suarez, A.; Dossett, D.; Dovbnya, A.; Dreimanis, K.; Dujany, G.; Dupertuis, F.; Durante, P.; Dzhelyadin, R.; Dziurda, A.; Dzyuba, A.; Easo, S.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; El Rifai, I.; Elsasser, Ch.; Ely, S.; Esen, S.; Evans, T.; Falabella, A.; Farber, C.; Farinelli, C.; Farley, N.; Farry, S.; Fay, RF.; Ferguson, D.; Fernandez Albor, V.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fiore, M.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fontana, M.; Fontanelli, F.; Forty, R.; Francisco, O.; Frank, M.; Frei, C.; Frosini, M.; Fu, J.; Furfaro, E.; Gallas Torreira, A.; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Gao, Y.; Garofoli, J.; Garra Tico, J.; Garrido, L.; Gaspar, C.; Gauld, R.; Gavardi, L.; Gavrilov, G.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gianelle, A.; Giani', S.; Gibson, V.; Giubega, L.; Gligorov, V.V.; Gobel, C.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gordon, H.; Gotti, C.; Grabalosa Gandara, M.; Graciani Diaz, R.; Granado Cardoso, L.A.; Grauges, E.; Graziani, G.; Grecu, A.; Greening, E.; Gregson, S.; Griffith, P.; Grillo, L.; Grunberg, O.; Gui, B.; Gushchin, E.; Guz, Yu.; Gys, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S.C.; Hall, S.; Hamilton, B.; Hampson, T.; Han, X.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S.T.; Harrison, J.; Hartmann, T.; He, J.; Head, T.; Heijne, V.; Hennessy, K.; Henrard, P.; Henry, L.; Hernando Morata, J.A.; van Herwijnen, E.; Hess, M.; Hicheur, A.; Hill, D.; Hoballah, M.; Hombach, C.; Hulsbergen, W.; Hunt, P.; Hussain, N.; Hutchcroft, D.; Hynds, D.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jaeger, A.; Jalocha, J.; Jans, E.; Jaton, P.; Jawahery, A.; Jing, F.; John, M.; Johnson, D.; Jones, C.R.; Joram, C.; Jost, B.; Jurik, N.; Kaballo, M.; Kandybei, S.; Kanso, W.; Karacson, M.; Karbach, T.M.; Karodia, S.; Kelsey, M.; Kenyon, I.R.; Ketel, T.; Khanji, B.; Khurewathanakul, C.; Klaver, S.; Kochebina, O.; Kolpin, M.; Komarov, I.; Koopman, R.F.; Koppenburg, P.; Korolev, M.; Kozlinskiy, A.; Kravchuk, L.; Kreplin, K.; Kreps, M.; Krocker, G.; Krokovny, P.; Kruse, F.; Kucewicz, W.; Kucharczyk, M.; Kudryavtsev, V.; Kurek, K.; Kvaratskheliya, T.; La Thi, V.N.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lambert, D.; Lambert, R.W.; Lanciotti, E.; Lanfranchi, G.; Langenbruch, C.; Langhans, B.; Latham, T.; Lazzeroni, C.; Le Gac, R.; van Leerdam, J.; Lees, J.P.; Lefevre, R.; Leflat, A.; Lefrancois, J.; Leo, S.; Leroy, O.; Lesiak, T.; Leverington, B.; Li, Y.; Liles, M.; Lindner, R.; Linn, C.; Lionetto, F.; Liu, B.; Liu, G.; Lohn, S.; Longstaff, I.; Lopes, J.H.; Lopez-March, N.; Lowdon, P.; Lu, H.; Lucchesi, D.; Luo, H.; Lupato, A.; Luppi, E.; Lupton, O.; Machefert, F.; Machikhiliyan, I.V.; Maciuc, F.; Maev, O.; Malde, S.; Manca, G.; Mancinelli, G.; Maratas, J.; Marchand, J.F.; Marconi, U.; Benito, C.Marin; Marino, P.; Marki, R.; Marks, J.; Martellotti, G.; Martens, A.; Martin Sanchez, A.; Martinelli, M.; Martinez Santos, D.; Martinez Vidal, F.; Martins Tostes, D.; Massafferri, A.; Matev, R.; Mathe, Z.; Matteuzzi, C.; Mazurov, A.; McCann, M.; McCarthy, J.; McNab, A.; McNulty, R.; McSkelly, B.; Meadows, B.; Meier, F.; Meissner, M.; Merk, M.; Milanes, D.A.; Minard, M.N.; Moggi, N.; Molina Rodriguez, J.; Monteil, S.; Morandin, M.; Morawski, P.; Morda, A.; Morello, M.J.; Moron, J.; Morris, A.B.; Mountain, R.; Muheim, F.; Muller, K.; Muresan, R.; Mussini, M.; Muster, B.; Naik, P.; Nakada, T.; Nandakumar, R.; Nasteva, I.; Needham, M.; Neri, N.; Neubert, S.; Neufeld, N.; Neuner, M.; Nguyen, A.D.; Nguyen, T.D.; Nguyen-Mau, C.; Nicol, M.; Niess, V.; Niet, R.; Nikitin, N.; Nikodem, T.; Novoselov, A.; O'Hanlon, D.P.; Oblakowska-Mucha, A.; Obraztsov, V.; Oggero, S.; Ogilvy, S.; Okhrimenko, O.; Oldeman, R.; Onderwater, G.; Orlandea, M.; Otalora Goicochea, J.M.; Owen, P.; Oyanguren, A.; Pal, B.K.; Palano, A.; Palombo, F.; Palutan, M.; Panman, J.; Papanestis, A.; Pappagallo, M.; Parkes, C.; Parkinson, C.J.; Passaleva, G.; Patel, G.D.; Patel, M.; Patrignani, C.; Pazos Alvarez, A.; Pearce, A.; Pellegrino, A.; Pepe Altarelli, M.; Perazzini, S.; Perez Trigo, E.; Perret, P.; Perrin-Terrin, M.; Pescatore, L.; Pesen, E.; Petridis, K.; Petrolini, A.; Picatoste Olloqui, E.; Pietrzyk, B.; Pilar, T.; Pinci, D.; Pistone, A.; Playfer, S.; Plo Casasus, M.; Polci, F.; Poluektov, A.; Polycarpo, E.; Popov, A.; Popov, D.; Popovici, B.; Potterat, C.; Prisciandaro, J.; Pritchard, A.; Prouve, C.; Pugatch, V.; Puig Navarro, A.; Punzi, G.; Qian, W.; Rachwal, B.; Rademacker, J.H.; Rakotomiaramanana, B.; Rama, M.; Rangel, M.S.; Raniuk, I.; Rauschmayr, N.; Raven, G.; Reichert, S.; Reid, M.M.; dos Reis, A.C.; Ricciardi, S.; Richards, A.; Rihl, M.; Rinnert, K.; Rives Molina, V.; Roa Romero, D.A.; Robbe, P.; Rodrigues, A.B.; Rodrigues, E.; Rodriguez Perez, P.; Roiser, S.; Romanovsky, V.; Vidal, A.Romero; Rotondo, M.; Rouvinet, J.; Ruf, T.; Ruffini, F.; Ruiz, H.; Valls, P.Ruiz; Sabatino, G.; Saborido Silva, J.J.; Sagidova, N.; Sail, P.; Saitta, B.; Salustino Guimaraes, V.; Sanchez Mayordomo, C.; Sanmartin Sedes, B.; Santacesaria, R.; Santamarina Rios, C.; Santovetti, E.; Sapunov, M.; Sarti, A.; Satriano, C.; Satta, A.; Savrie, M.; Savrina, D.; Schiller, M.; Schindler, H.; Schlupp, M.; Schmelling, M.; Schmidt, B.; Schneider, O.; Schopper, A.; Schune, M.H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Seco, M.; Semennikov, A.; Sepp, I.; Serra, N.; Serrano, J.; Sestini, L.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, V.; Shires, A.; Coutinho, R.Silva; Simi, G.; Sirendi, M.; Skidmore, N.; Skwarnicki, T.; Smith, N.A.; Smith, E.; Smith, E.; Smith, J.; Smith, M.; Snoek, H.; Sokoloff, M.D.; Soler, F.J.P.; Soomro, F.; Souza, D.; Souza De Paula, B.; Spaan, B.; Sparkes, A.; Spradlin, P.; Stagni, F.; Stahl, M.; Stahl, S.; Steinkamp, O.; Stenyakin, O.; Stevenson, S.; Stoica, S.; Stone, S.; Storaci, B.; Stracka, S.; Straticiuc, M.; Straumann, U.; Stroili, R.; Subbiah, V.K.; Sun, L.; Sutcliffe, W.; Swientek, K.; Swientek, S.; Syropoulos, V.; Szczekowski, M.; Szczypka, P.; Szilard, D.; Szumlak, T.; T'Jampens, S.; Teklishyn, M.; Tellarini, G.; Teubert, F.; Thomas, C.; Thomas, E.; van Tilburg, J.; Tisserand, V.; Tobin, M.; Tolk, S.; Tomassetti, L.; Tonelli, D.; Topp-Joergensen, S.; Torr, N.; Tournefier, E.; Tourneur, S.; Tran, M.T.; Tresch, M.; Tsaregorodtsev, A.; Tsopelas, P.; Tuning, N.; Garcia, M.Ubeda; Ukleja, A.; Ustyuzhanin, A.; Uwer, U.; Vagnoni, V.; Valenti, G.; Vallier, A.; Vazquez Gomez, R.; Vazquez Regueiro, P.; Vazquez Sierra, C.; Vecchi, S.; Velthuis, J.J.; Veltri, M.; Veneziano, G.; Vesterinen, M.; Viaud, B.; Vieira, D.; Vieites Diaz, M.; Vilasis-Cardona, X.; Vollhardt, A.; Volyanskyy, D.; Voong, D.; Vorobyev, A.; Vorobyev, V.; Voss, C.; Voss, H.; de Vries, J.A.; Waldi, R.; Wallace, C.; Wallace, R.; Walsh, J.; Wandernoth, S.; Wang, J.; Ward, D.R.; Watson, N.K.; Websdale, D.; Whitehead, M.; Wicht, J.; Wiedner, D.; Wilkinson, G.; Williams, M.P.; Williams, M.; Wilson, F.F.; Wimberley, J.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S.A.; Wright, S.; Wu, S.; Wyllie, K.; Xie, Y.; Xing, Z.; Xu, Z.; Yang, Z.; Yuan, X.; Yushchenko, O.; Zangoli, M.; Zavertyaev, M.; Zhang, L.; Zhang, W.C.; Zhang, Y.; Zhelezov, A.; Zhokhov, A.; Zhong, L.; Zvyagin, A.

    2014-10-03

    A search for $CP$ violation in Cabibbo-suppressed $D^{\\pm}\\rightarrow K^0_S K^{\\pm}$ and $D^{\\pm}_{s}\\rightarrow K^0_S \\pi^{\\pm}$ decays is performed using $pp$ collision data, corresponding to an integrated luminosity of 3~fb$^{-1}$, recorded by the LHCb experiment. The individual $CP$-violating asymmetries are measured to be \\begin{eqnarray*} \\mathcal{A}_{CP}^{D^{\\pm}\\rightarrow K^0_S K^{\\pm}} & = & (+0.03 \\pm 0.17 \\pm 0.14) \\% \\\\ \\mathcal{A}_{CP}^{D^{\\pm}_s\\rightarrow K^0_S \\pi^{\\pm}} & = & (+0.38 \\pm 0.46 \\pm 0.17) \\%, \\end{eqnarray*} assuming that $CP$ violation in the Cabibbo-favoured decays is negligible. A combination of the measured asymmetries for the four decay modes $D^{\\pm}_{(s)}\\rightarrow K^0_S K^{\\pm}$ and $D^{\\pm}_{(s)}\\rightarrow K^0_S \\pi^{\\pm}$ gives the sum \\[ \\mathcal{A}_{CP}^{D^{\\pm}\\rightarrow K^0_S K^{\\pm}}+ \\mathcal{A}_{CP}^{D^{\\pm}_s\\rightarrow K^0_S \\pi^{\\pm}} = (+0.41 \\pm 0.49 \\pm 0.26) \\%. \\] In all cases, the first uncertainties are statistical and the second sys...

  13. Spatial and temporal variation of phthalic acid esters (PAEs) in atmospheric PM10 and PM2.5 and the influence of ambient temperature in Tianjin, China

    Science.gov (United States)

    Kong, Shaofei; Ji, Yaqin; Liu, Lingling; Chen, Li; Zhao, Xueyan; Wang, Jiajun; Bai, Zhipeng; Sun, Zengrong

    2013-08-01

    Phthalic acid esters (PAEs) are produced in large amounts throughout the world and are excessively used in various industries, which have posed a serious threat to human health and the environment. An investigation of six major PAEs congeners in atmospheric PM10 and PM2.5 was synchronously conducted at seven sites belonging to different functional zones in spring, summer and winter in Tianjin, China in 2010. Results showed that the average concentrations of DMP, DEP, DBP, BBP, DEHP and DOP in PM10 were 0.88, 0.73, 12.90, 0.15, 98.29 and 0.83 ng m-3, respectively, and in PM2.5, they were 0.54, 0.30, 8.72, 0.08, 75.68 and 0.33 ng m-3, respectively. DEHP and DBP were the predominant species. The industrial site exhibited highest PAEs values as 135.9 ± 202.8 ng m-3. In winter, the detected percentages for DOP were low. The other five PAEs concentrations were higher in winter than those in spring and summer, which may be related to the influence of emission sources, meteorological parameters and the chemical-physical characteristic of themselves. Except for DOP, other PAEs were negatively correlated with ambient temperature and the relationships were the best fitted as exponential forms. Significant positive correlations were found for PAEs in PM2.5 and PM10, indicating common sources. The PM2.5/PM10 ratios (0.53-0.70) for the six PAEs concentrations suggested that they were preferentially concentrated in finer particles. Principal component analysis indicated the emission from cosmetics and personal care products, plasticizers and sewage and industrial wastewater may be important sources for PAEs in atmospheric particulate matter in Tianjin.

  14. Advanced receptor modelling for the apportionment of road dust resuspension to atmospheric PM

    Science.gov (United States)

    Amato, F.; Pandolfi, M.; Escrig, A.; Querol, X.; Alastuey, A.; Pey, J.; Perez, N.; Hopke, P. K.

    2009-04-01

    Fugitive emissions from traffic resuspension can often represent an important source of atmospheric particulate matter in urban environments, especially when the scarce precipitations favour the accumulation of road dust. Resuspension of road dust can lead to high exposures to heavy metals, metalloids and mineral matter. Knowing the amount of its contribution to atmospheric PM is a key task for establishing eventual mitigation or preventive measures. Factor analysis techniques are widely used tools for atmospheric aerosol source apportionment, based on the mass conservation principle. Paatero and Tapper (1993) suggested the use of a Weighted Least Squares scheme with the aim of obtaining a minimum variance solution. Additionally they proposed to incorporate the basic physical constraint of non negativity, calling their approach Positive Matrix Factorization (PMF), which can be performed by the program PMF2 released by Paatero (1997). Nevertheless, Positive Matrix Factorization can be either solved with the Multilinear Engine (ME-2), a more flexible program, also developed by Paatero (1999), which can solve any model consisting in sum of products of unknowns. The main difference with PMF2 is that ME-2 does not solve only well-defined tasks, but its actions are defined in a "script file" written in a special-purpose programming language, allowing incorporating additional tasks such as data processing etc. Thus in ME-2 a priori information, e.g. chemical fingerprints can be included as auxiliary terms of the object function to be minimized. This feature of ME-2 make it especially suitable for source apportionment studies where some knowledge (chemical ratios, profiles, mass conservation etc) of involved sources is available. The aim of this study was to quantify the contribution of road dust resuspension in PM10, PM2.5 and PM1 data set from Barcelona (Spain). Given that recently the emission profile of local road dust was characterized (Amato et al., in press

  15. Attribution of projected changes in summertime US ozone and PM2.5 concentrations to global changes

    Directory of Open Access Journals (Sweden)

    A. Guenther

    2009-02-01

    Full Text Available The impact that changes in future climate, anthropogenic US emissions, background tropospheric composition, and land-use have on summertime regional US ozone and PM2.5 concentrations is examined through a matrix of downscaled regional air quality simulations, where each set of simulations was conducted for five months of July climatology, using the Community Multi-scale Air Quality (CMAQ model. Projected regional scale changes in meteorology due to climate change under the Intergovernmental Panel on Climate Change (IPCC A2 scenario are derived through the downscaling of Parallel Climate Model (PCM output with the MM5 meteorological model. Future chemical boundary conditions are obtained through downscaling of MOZART-2 (Model for Ozone and Related Chemical Tracers, version 2.4 global chemical model simulations based on the IPCC Special Report on Emissions Scenarios (SRES A2 emissions scenario. Projected changes in US anthropogenic emissions are estimated using the EPA Economic Growth Analysis System (EGAS, and changes in land-use are projected using data from the Community Land Model (CLM and the Spatially Explicit Regional Growth Model (SERGOM. For July conditions, changes in chemical boundary conditions are found to have the largest impact (+5 ppbv on average daily maximum 8-h (DM8H ozone. Changes in US anthropogenic emissions are projected to increase average DM8H ozone by +3 ppbv. Land-use changes are projected to have a significant influence on regional air quality due to the impact these changes have on biogenic hydrocarbon emissions. When climate changes and land-use changes are considered simultaneously, the average DM8H ozone decreases due to a reduction in biogenic VOC emissions (−2.6 ppbv. Changes in average 24-h (A24-h PM2.5 concentrations are dominated by projected changes in anthropogenic emissions (+3 μg m−3, while changes in chemical boundary conditions have a negligible effect. On average, climate change reduces A24-h PM2

  16. Comparing climate policies to reduce carbon emissions in China

    International Nuclear Information System (INIS)

    Li, Aijun; Lin, Boqiang

    2013-01-01

    Currently, China is the largest carbon emitter mainly due to growing consumption of fossil fuels. In 2009, the Chinese government committed itself to reducing domestic carbon emissions per unit of GDP by 40–45% by 2020 compared to 2005 levels. Therefore, it is a top priority for the Chinese government to adopt efficient policy instruments to reduce its carbon intensity. Against this background, this paper develops a general equilibrium model and seeks to provide empirical contributions by comparing the potential impacts of several different policy options to reduce China's carbon emissions. The main findings are as follows. Firstly, these climate policies would affect the structure of economy and contribute to carbon emissions reduction and carbon intensity reduction. Secondly, there would be significant differences in the economic and environmental effects among different climate policies and hence, the government would trade-off among different economic objectives to overcome any potential resistances. Thirdly, there would be considerable differences in the emissions effects of absolute and intensity-based carbon emissions controls, implying that the government might adopt different climate policies for absolute or intensity-based carbon emissions controls. Looking ahead, the government should trade-off among different objectives when designing climate reforms. - Highlights: • We develop a static general equilibrium model to simulate the impacts of climate policies. • We compare the potential impacts of various climate policies in China. • We discuss how to design these policies to make them more effective

  17. UK company strategies in reducing carbon dioxide emissions

    Directory of Open Access Journals (Sweden)

    Yongmei Bentley

    2016-07-01

    Full Text Available This study investigated a number of large UK companies’ strategies in reducing emissions of carbon dioxide (CO2 in their supply chain operations. In-depth interviews were conducted with logistics/supply chain (SC managers across different sectors. The research identified the main CO2 reduction strategies, and examined these in the light of existing literature in the research domain. One of the key findings was that there was a strong tension between cost reduction (identified as the major driver for reducing CO2 and lack of resources (the main barrier. It was also found that most CO2 reduction strategies had started only fairly recently, and so far, were mainly operational and tactical in nature. This study makes an empirical contribution to a better understanding of how companies form their CO2 reduction strategies in response to environmental pressures. It has implications for policy makers in terms of how to motivate logistics/SC managers to implement strategies to reduce the environmental impact of CO2 emissions in their business operations. Therefore, it is recommended that logistics/SC managers develop and implement practical initiatives and strategies to reduce CO2 emissions, and to embed these into corporate strategy.

  18. Quantifying Future PM2.5 and Associated Health Effects Due to Changes in US Wildfires

    Science.gov (United States)

    Pierce, J. R.; Val Martin, M.; Ford, B.; Zelasky, S.; Heald, C. L.; Li, F.; Lawrence, D. M.; Fischer, E. V.

    2017-12-01

    Fine particulate matter (PM2.5) from landscape fires has been shown to adversely affect visibility, air quality and and health across the US. Fire activity is strongly related to climate and human activities. Predictions based on climate scenarios and future land cover projections that consider socioeconomic development suggest that fire activity will rise dramatically over the next decades. As PM2.5 is associated with increased mortality and morbidity rates, increases in emissions from landscape fires may alter the health burden on the US population. Here we present an analysis of the changes in future wildfire activity and consequences for PM2.5 and health over the US from 2000 to 2100. We employ the global Community Earth System Model (CESM) with the IPCC RCP projections. Within CESM, we use a process-based global fire parameterization to project future climate-driven and human-caused fire emissions. From these simulations, we determine the current and future impact on PM2.5 concentrations and visibility for different regions of the US, and we also calculate the mortality attributable to PM2.5 and wildfire-specific PM2.5 using existing concentration-response functions. Results show that although total PM2.5 concentrations in the US are projected to be similar in 2100 as in 2000, the dominant source of PM2.5 will change. Under the RCP8.5 climate projection and SSP3 population projection, non-fire emissions (mostly anthropogenic) are projected to decrease, but PM2.5 from CONUS and non-US wildfires is projected to increase from approximately 20% of all PM2.5 in 2000 to 80% of all PM2.5 in 2100. Furthermore, although the US population is expected to decline between 2000 and 2100, the mortality attributable to wildfire smoke is expected to increase from 25,000 deaths per year in 2000 to 75,000 deaths per year in 2100.

  19. Reducing greenhouse gas emissions and improving air quality: Two global challenges.

    Science.gov (United States)

    Erickson, Larry E

    2017-07-01

    There are many good reasons to promote sustainable development and reduce greenhouse gas emissions and other combustion emissions. The air quality in many urban environments is causing many premature deaths because of asthma, cardiovascular disease, chronic obstructive pulmonary disease, lung cancer, and dementia associated with combustion emissions. The global social cost of air pollution is at least $3 trillion/year; particulates, nitrogen oxides and ozone associated with combustion emissions are very costly pollutants. Better air quality in urban environments is one of the reasons for countries to work together to reduce greenhouse gas emissions through the Paris Agreement on Climate Change. There are many potential benefits associated with limiting climate change. In the recent past, the concentrations of greenhouse gases in the atmosphere have been increasing and the number of weather and climate disasters with costs over $1 billion has been increasing. The average global temperature set new record highs in 2014, 2015, and 2016. To reduce greenhouse gas emissions, the transition to electric vehicles and electricity generation using renewable energy must take place in accord with the goals of the Paris Agreement on Climate Change. This work reviews progress and identifies some of the health benefits associated with reducing combustion emissions. © 2017 American Institute of Chemical Engineers Environ Prog, 36: 982-988, 2017.

  20. El Nino and Health Risks from Landscape Fire Emissions in Southeast Asia

    Science.gov (United States)

    Marlier, Miriam E.; Defries, Ruth S.; Voulgarakis, Apostolos; Kinney, Patrick L.; Randerson, James T.; Shindell, Drew T.; Chen, Yang; Faluvegi, Greg

    2013-01-01

    Emissions from landscape fires affect both climate and air quality. Here, we combine satellite-derived fire estimates and atmospheric modelling to quantify health effects from fire emissions in southeast Asia from 1997 to 2006. This region has large interannual variability in fire activity owing to coupling between El Nino-induced droughts and anthropogenic land-use change. We show that during strong El Nino years, fires contribute up to 200 micrograms per cubic meter and 50 ppb in annual average fine particulate matter (PM2.5) and ozone surface concentrations near fire sources, respectively. This corresponds to a fire contribution of 200 additional days per year that exceed the World Health Organization 50 micrograms per cubic metre 24-hr PM(sub 2.5) interim target and an estimated 10,800 (6,800-14,300)-person (approximately 2 percent) annual increase in regional adult cardiovascular mortality. Our results indicate that reducing regional deforestation and degradation fires would improve public health along with widely established benefits from reducing carbon emissions, preserving biodiversity and maintaining ecosystem services.

  1. [Emission characteristics of fine particles from grate firing boilers].

    Science.gov (United States)

    Wang, Shu-Xiao; Zhao, Xiu-Juan; Li, Xing-Hua; Wei, Wei; Hao, Ji-Ming

    2009-04-15

    Grate firing boilers are the main type of Chinese industrial boilers, which accounts for 85% of the industrial boilers and is one of the most important emission sources of primary air pollutants in China. In this study, five boilers in three cities were selected and tested to measure the emission characteristics of PM2.5, and gaseous pollutants were applied by a compact dilution sampling system, which was developed for this field study. Results showed that particles mass size distributions for the five industrial boilers presented single peak or double peak, former peaks near 0.14 microm and the later peaks after 1.0 microm; the cyclone dust remover and wet scrubber dust remover had effective removal efficiencies not only to PM2.5, but also to PM1.0; and under the condition of same control techniques, grate firing boiler with high capacity has less PM2.5 emission than the boiler with low capacity. In the PM2.5 collected from flue gases, SO4(2-) was the most abundant ion, accounted for 20%-40% of the PM2.5; and C was the most abundant element (7.5%-31.8%), followed by S (8.4%-18.7%). Carbon balance method was applied to calculate the emission factors of these pollutants. The emission factors of PM2.5, NO, and SO2 were in the range of 0.046-0.486 g x kg(-1), 1.63-2.47 g x kg(-1), 1.35-9.95 g x kg(-1) respectively. The results are useful for the emission inventory development of industrial boilers and the source analysis of PM2.5 in atmospheric environment.

  2. Spatiotemporal Characteristics of Air Pollutants (PM10, PM2.5, SO2, NO2, O3, and CO in the Inland Basin City of Chengdu, Southwest China

    Directory of Open Access Journals (Sweden)

    Kuang Xiao

    2018-02-01

    Full Text Available Most cities in China are experiencing severe air pollution due to rapid economic development and accelerated urbanization. Long-term air pollution data with high temporal and spatial resolutions are needed to support research into physical and chemical processes that affect air quality, and the corresponding health risks. For the first time, data on PM10, PM2.5, SO2, NO2, O3 and CO concentrations in 23 ambient air quality automatic monitoring stations and routine meteorological were collected between January 2014 and December 2016 to determine the spatial and temporal variation in these pollutants and influencing factors in Chengdu. The annual mean concentrations of PM2.5 and PM10 exceeded the standard of Chinese Ambient Air Quality and World Health Organization guidelines standards at all of the stations. The concentrations of PM10, PM2.5, SO2 and CO decreased from 2014 to 2016, and the NO2 level was stable, whereas the O3 level increased markedly during this period. The air pollution characteristics in Chengdu showed simultaneously high PM concentrations and O3. High PM concentrations were mainly observed in the middle region of Chengdu and may have been due to the joint effects of industrial and vehicle emissions. Ozone pollution was mainly due to vehicle emissions in the downtown area, and industry had a more important effect on O3 in the northern area with fewer vehicles. The concentrations of PM10, PM2.5, NO2 and CO were highest in winter and lowest in summer; the highest SO2 concentration was also observed in winter and was lowest in autumn, whereas the O3 concentration peaked in summer. Haze pollution can easily form under the weather conditions of static wind, low temperature and relative humidity, and high surface pressure inside Chengdu. In contrast, severe ozone pollution is often associated with high temperature.

  3. Opportunities for reducing environmental emissions from forage-based dairy farms

    Directory of Open Access Journals (Sweden)

    Tom Misselbrook

    2013-03-01

    Full Text Available Modern dairy production is inevitably associated with impacts to the environment and the challenge for the industry today is to increase production to meet growing global demand while minimising emissions to the environment. Negative environmental impacts include gaseous emissions to the atmosphere, of ammonia from livestock manure and fertiliser use, of methane from enteric fermentation and manure management, and of nitrous oxide from nitrogen applications to soils and from manure management. Emissions to water include nitrate, ammonium, phosphorus, sediment, pathogens and organic matter, deriving from nutrient applications to forage crops and/or the management of grazing livestock. This paper reviews the sources and impacts of such emissions in the context of a forage-based dairy farm and considers a number of potential mitigation strategies, giving some examples using the farm-scale model SIMSDAIRY. Most of the mitigation measures discussed are associated with systemic improvements in the efficiency of production in dairy systems. Important examples of mitigations include: improvements to dairy herd fertility, that can reduce methane and ammonia emissions by up to 24 and 17%, respectively; diet modification such as the use of high sugar grasses for grazing, which are associated with reductions in cattle N excretion of up to 20% (and therefore lower N losses to the environment and potentially lower methane emissions, or reducing the crude protein content of the dairy cow diet through use of maize silage to reduce N excretion and methane emissions; the use of nitrification inhibitors with fertiliser and slurry applications to reduce nitrous oxide emissions and nitrate leaching by up to 50%. Much can also be achieved through attention to the quantity, timing and method of application of nutrients to forage crops and utilising advances made through genetic improvements.

  4. Relationships of relative humidity with PM2.5 and PM10 in the Yangtze River Delta, China.

    Science.gov (United States)

    Lou, Cairong; Liu, Hongyu; Li, Yufeng; Peng, Yan; Wang, Juan; Dai, Lingjun

    2017-10-23

    Severe particulate matter (PM, including PM 2.5 and PM 10 ) pollution frequently impacts many cities in the Yangtze River Delta (YRD) in China, which has aroused growing concern. In this study, we examined the associations between relative humidity (RH) and PM pollution using the equal step-size statistical method. Our results revealed that RH had an inverted U-shaped relationship with PM 2.5 concentrations (peaking at RH = 45-70%), and an inverted V-shaped relationship (peaking at RH = 40 ± 5%) with PM 10 , SO 2 , and NO 2 . The trends of polluted-day number significantly changed at RH = 70%. The very-dry (RH humidity (RH = 60-70%) conditions positively affected PM 2.5 and exerted an accumulation effect, while the mid-humidity (RH = 70-80%), high-humidity (RH = 80-90%), and extreme-humidity (RH = 90-100%) conditions played a significant role in reducing particle concentrations. For PM 10 , the accumulation and reduction effects of RH were split at RH = 45%. Moreover, an upward slope in the PM 2.5 /PM 10 ratio indicated that the accumulation effects from increasing RH were more intense on PM 2.5 than on PM 10 , while the opposite was noticed for the reduction effects. Secondary transformations from SO 2 and NO 2 to sulfate and nitrate were mainly responsible for PM 2.5 pollution, and thus, controlling these precursors is effective in mitigating the PM pollution in the YRD, especially during winter. The conclusions in this study will be helpful for regional air-quality management.

  5. PM₂.₅ emissions from light-duty gasoline vehicles in Beijing, China.

    Science.gov (United States)

    Shen, Xianbao; Yao, Zhiliang; Huo, Hong; He, Kebin; Zhang, Yingzhi; Liu, Huan; Ye, Yu

    2014-07-15

    As stricter standards for diesel vehicles are implemented in China, and the use of diesel trucks is forbidden in urban areas, determining the contribution of light-duty gasoline vehicles (LDGVs) to on-road PM2.5 emissions in cities is important. Additionally, in terms of particle number and size, particulates emitted from LDGVs have a greater health impact than particulates emitted from diesel vehicles. In this work, we measured PM2.5 emissions from 20 LDGVs in Beijing, using an improved combined on-board emission measurement system. We compared these measurements with those reported in previous studies, and estimated the contribution of LDGVs to on-road PM2.5 emissions in Beijing. The results show that the PM2.5 emission factors for LDGVs, complying with European Emission Standards Euro-0 through Euro-4 were: 117.4 ± 142, 24.1 ± 20.4, 4.85 ± 7.86, 0.99 ± 1.32, 0.17 ± 0.15 mg/km, respectively. Our results show a significant decline in emissions with improving vehicle technology. However, this trend is not reflected in recent emission inventory studies. The daytime contributions of LDGVs to PM2.5 emissions on highways, arterials, residential roads, and within urban areas of Beijing were 44%, 62%, 57%, and 57%, respectively. The contribution of LDGVs to PM2.5 emissions varied both for different road types and for different times. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. FETC Programs for Reducing Greenhouse Gas Emissions

    International Nuclear Information System (INIS)

    Ruether, J.A.

    1998-02-01

    Mark Twain once quipped that everyone talks about the weather but no one does anything about it. With interest in global climate change on the rise, researchers in the fossil-energy sector are feeling the heat to provide new technology to permit continued use of fossil fuels but with reduced emissions of so-called 'greenhouse gases.' Three important greenhouse gases, carbon dioxide, methane, and nitrous oxide, are released to the atmosphere in the course of recovering and combusting fossil fuels. Their importance for trapping radiation, called forcing, is in the order given. In this report, we briefly review how greenhouse gases cause forcing and why this has a warming effect on the Earth's atmosphere. Then we discuss programs underway at FETC that are aimed at reducing emissions of methane and carbon dioxide

  7. ANALYSIS OF THE RESULTS OF MEASUREMENT OF CONCENTRATIONS OF AIR POLLUTION WITH PM10 AND PM2.5 MEASURING STATION SQUARE OF POZNAN IN BYDGOSZCZ

    Directory of Open Access Journals (Sweden)

    Rafał Pasela

    2017-02-01

    Full Text Available The phenomenon of suspended particulate pollution PM10 and PM2.5 occurs in large urban areas where the main source of their presence is communication, which is primarily related to the combustion of liquid fuels. PM2.5 dust pollution is a major risk factor for diseases of the respiratory, cardiovascular, and allergy. Act regulating the standards and target dates for reducing concentrations of particulate matter in urban areas and in all the cities of over 100 thousand. residents of the Directive of the European Parliament and Council Directive 2008/50/EC of 21 May 2008. on ambient air quality and cleaner air for Europe (CAFE. The acceptable level of average daily concentration of PM10 is 50 μg/m3 and may be exceeded by not more than 35 times a year, while the level of allowable annual average concentration of 40 μg/m3. The aim of this study was to assess the state of air pollution of dust PM10 and PM2.5 for the selected area of the city of Bydgoszcz. The analysis was conducted using data from air monitoring stations located at Poznanska street. The station is owned by the Provincial Inspectorate for Environmental Protection (VIEP in Bydgoszcz. The studies have shown that the annual average concentration of particulate matter analyzed station in Bydgoszcz in the years 2013-2015 amounted to PM10 41 μg/m3 PM2.5 and 23 μg/m3. The results are on the borderline of acceptable levels of concentration resulting from the Regulation of the Minister of the Environment of 2 August 2012. The concentrations of particulate matter in ambient air are strongly associated with meteorological conditions. The definitely higher concentrations observed in the autumn-winter season. The decrease in temperature causes the combustion in the boiler house of fuels with a high emissions. The highest average daily concentration of suspended particulate matter was observed on Thursday and Friday in the winter months, and while the lowest concentration was recorded in the

  8. The pollution characteristics of PM2.5 and correlation analysis with meteorological parameters in Xinxiang during the Shanghai Cooperation Organization Prime Ministers' Meeting.

    Science.gov (United States)

    Feng, Jinglan; Yu, Hao; Mi, Kai; Su, Xianfa; Chen, Yunqi; Sun, Jian-Hui; Li, Qilu

    2018-06-01

    The pollution characteristics of PM 2.5 and correlation analysis with meteorological parameters in Xinxiang during the Shanghai Cooperation Organization Prime Ministers' Meeting were investigated. During the whole meeting, nine PM 2.5 samples were collected at a suburban site of Xinxiang, and the average concentration of PM 2.5 was 122.28 μg m -3 . NO 3 - , NH 4 + , SO 4 2- accounted for 56.8% of the total water-soluble ions. In addition, with an exception of Cl - , all of water-soluble ions decreased during the meeting. Total concentrations of crustal elements ranged from 6.53 to 185.86 μg m -3 , with an average concentration of 52.51 μg m -3 , which accounted for 82.5% of total elements. The concentrations of organic carbon and elemental carbon were 7.71 and 1.52 μg m -3 , respectively, lower than those before and after the meeting. It is indicated that during the meeting, limiting motor vehicles is to reduce exhaust emissions, delay heating is to reduce the fossil fuel combustion, and other measures are to reduce the concentration of PM 2.5 . The directly dispersing by mixing layer height increase and the indirectly reducing the formation of secondary aerosol by low relative humidity, and these are the only two key removing mechanisms of PM 2.5 in Xinxiang during the meeting.

  9. Estimation of vehicular emissions using dynamic emission factors: A case study of Delhi, India

    Science.gov (United States)

    Mishra, Dhirendra; Goyal, P.

    2014-12-01

    The estimation of vehicular emissions depends mainly on the values of emission factors, which are used for the development of a comprehensive emission inventory of vehicles. In this study the variations of emission factors as well as the emission rates have been studied in Delhi. The implementation of compressed natural gas (CNG), in the diesel and petrol, public vehicles in the year 2001 has changed the complete air quality scenario of Delhi. The dynamic emission factors of criteria pollutants viz. carbon monoxide (CO), nitrogen oxide (NOx) and particulate matter (PM10) for all types of vehicles have been developed after, which are based on the several factors such as regulated emission limits, number of vehicle deterioration, vehicle increment, vehicle age etc. These emission factors are found to be decreased continuously throughout the study years 2003-2012. The International Vehicle Emissions (IVE) model is used to estimate the emissions of criteria pollutants by utilizing a dataset available from field observations at different traffic intersections in Delhi. Thus the vehicular emissions, based on dynamic emission factors have been estimated for the years 2003-2012, which are found to be comparable with the monitored concentrations at different locations in Delhi. It is noticed that the total emissions of CO, NOx, and PM10 are increased by 45.63%, 68.88% and 17.92%, respectively up to the year 2012 and the emissions of NOx and PM10 are grown continuously with an annual average growth rate of 5.4% and 1.7% respectively.

  10. An LUR/BME framework to estimate PM2.5 explained by on road mobile and stationary sources.

    Science.gov (United States)

    Reyes, Jeanette M; Serre, Marc L

    2014-01-01

    Knowledge of particulate matter concentrations Bayesian Maximum Entropy (BME) framework to estimate PM2.5 across the United States from 1999 to 2009. A cross-validation was done to determine the improvement of the estimate due to the LUR incorporation into BME. These results were applied to known diseases to determine predicted mortality coming from total PM2.5 as well as PM2.5 explained by major contributing sources. This method showed a mean squared error reduction of over 21.89% oversimple kriging. PM2.5 explained by on road mobile emissions and stationary emissions contributed to nearly 568,090 and 306,316 deaths, respectively, across the United States from 1999 to 2007.

  11. Austrian emission inventory for dust

    International Nuclear Information System (INIS)

    Winiwarter, W.; Trenker, C.; Hoeflinger, W.

    2001-09-01

    For the first time, Austrian emissions of anthropogenic particulate matter emissions to the atmosphere have been estimated. Results have been reported as total suspended particles (TSP) as well as for the fractions of particles smaller than 10 μm or 2.5 μm aerodynamic diameter (PM 10 , PM 2.5 ), respectively. Base years for the inventory were 1990, 1995 and 1999. Excluded from this assessment is wind blown dust, which has been considered a natural source here. National statistics have been applied, specifically those also used previously in the Austrian air pollution inventory (OLI). Emission factors have been taken from literature compilations, only for exceptional cases specific Austrian assessments were performed or original literature on emission measurements was consulted. Resuspension of dust by road traffic emerged as the most important source. For the size fraction of PM 10 this source contributed about half of the emissions, when applying the calculation scheme by the U.S. EPA. While this scheme is widely used and well documented, its validity is currently subject of intense scientific debate. As these results do not seem to coincide with ambient air measurements, resuspension of road dust is considered separately and not now included in the national total. The sum of all other sources increases from 75,000 t of TSP in 1990 and 1995 to 77,000 t in 1999, while both PM 10 and PM 2.5 exhibit decreasing tendency (at 45,000 t and 26,000 t in 1999, respectively). The increase in TSP derives from increasing traffic and friction related emissions (tire wear, break wear), decrease of the finer particulate matter is due to reductions in firewood consumption for domestic heating. Most important source sectors are fugitive emissions from material transfer in industry as well as the building industry and the tilling of agricultural land. Common to these sources is the high uncertainty of available data. Wood combustion is the most important of the non

  12. Wellbeing impacts of city policies for reducing greenhouse gas emissions

    DEFF Research Database (Denmark)

    Hiscock, Rosemary; Mudu, Pierpaolo; Braubach, Matthias

    2014-01-01

    To mitigate climate change, city authorities are developing policies in areas such as transportation, housing and energy use, to reduce greenhouse gas emissions. In addition to their effects on greenhouse gas emissions, these policies are likely to have consequences for the wellbeing...... and subjective aspects which can be measured quantitatively; our review of measures informs the development of a theoretical model linking wellbeing to policies which cities use to reduce greenhouse gas emissions. Finally, we discuss the extent to which the links proposed in the conceptual model are supported...

  13. Reduced emissions from inexpensive high-sulphur coal briquettes

    International Nuclear Information System (INIS)

    Gammage, R.B.; Wachter, E.A.; Wade, J.; Wilson, D.L.; Haas, J.W.; Ahmad, N.; Siltain, F.; Raza, M.Z.

    1992-01-01

    Airborne emissions were measured during the combustion of Pakistani high-sulphur coal, cold briquetted with lime and clay; comparison was made to emissions from raw coal and traditional fuels burnt in a native, mud-lined Angethi stove. Compared to raw coal, the amended coal gave fourfold reduced emission of respirable-size particles (RSP) and threefold reduced total releases of SO 2 . In domestic cooking, substitution of the amended coal briquettes for traditional fuels will not worsen indoor air quality with respect to CO, SO 2 , NO x , and RSP. The high peak amounts of CO (100--250 ppm), SO 2 (2--5 ppm), and NO x (1--5 ppm) were limited to the early phase of burning. The high thermal value of the coal briquettes together with a simple briquetting technology, make this fuel an attractive energy alternative in countries that are underdeveloped, developing, or experiencing major restructuring

  14. Technologies for simulation improvement of NOx and PM emissions and fuel consumption of future diesel engines for heavy-duty trucks; Shorai no ogatasha diesel engine ni okeru NOx, PM, nenryo shohi no kaizen

    Energy Technology Data Exchange (ETDEWEB)

    Shimoda, M.; Shimokawa, K.; Uchida, N.; Tsuji, Y.; Yokotaa, H.; Hosoya, M. [Hino Motors, Ltd., Tokyo (Japan)

    1999-01-01

    Future diesel engines for heavy-duty trucks are required to have significantly low NO{sub x} and PM emissions and fuel consumption characteristics. In order to improve these characteristics, various technologies including high pressure fuel injection systems, combustion optimization. high boost pressure turbocharging, EGR homogeneous charge compression ignition combined with multiple injections, and aftertreatment are discussed. As each technology has a number of challenges to overcome, it will take long before engines with these technologies are commercially available. In this paper, the research activities accomplished to date are reported. (author)

  15. Indian oil company joins efforts to reduce methane emissions

    Science.gov (United States)

    Kumar, Mohi

    The Oil and Natural Gas Corp, Ltd. (ONGC), headquartered in Dehradun, India, has joined seven U.S. and Canadian oil and natural gas companies as a partner in a U.S. Environmental Protection Agency program to reduce greenhouse gas emissions. EPA's Natural Gas STAR International Program aims to reduce methane emissions from the oil and natural gas sector while delivering more gas to markets around the world. With this partnership, ONGC agrees to implement emissions reduction practices and to submit annual reports on progress achieved; EPA agrees to assist ONGC with training technicians in new cost-effective technologies that will help achieve target emissions. The Natural Gas STAR International Program is administered under the Methane to Markets Partnership, a group of 20 countries and 600 companies across the globe that since 2004 has volunteered to cut methane emissions. More information on EPA's agreement with ONGC can be found at http://www.epa.gov/gasstar/index.htm; information about the Methane to Markets Partnership can be found at http://www.methanetomarkets.org.

  16. Including the temporal change in PM{sub 2.5} concentration in the assessment of human health impact: Illustration with renewable energy scenarios to 2050

    Energy Technology Data Exchange (ETDEWEB)

    Gschwind, Benoit, E-mail: benoit.gschwind@mines-paristech.fr [Centre Observation, Impacts, Energy, MINES ParisTech, 1 rue Claude Daunesse, CS 10207, F-06904 Sophia Antipolis (France); Lefevre, Mireille, E-mail: mireille.lefevre@mines-paristech.fr [Centre Observation, Impacts, Energy, MINES ParisTech, 1 rue Claude Daunesse, CS 10207, F-06904 Sophia Antipolis (France); Blanc, Isabelle, E-mail: isabelle.blanc@mines-paristech.fr [Centre Observation, Impacts, Energy, MINES ParisTech, 1 rue Claude Daunesse, CS 10207, F-06904 Sophia Antipolis (France); Ranchin, Thierry, E-mail: thierry.ranchin@mines-paristech.fr [Centre Observation, Impacts, Energy, MINES ParisTech, 1 rue Claude Daunesse, CS 10207, F-06904 Sophia Antipolis (France); Wyrwa, Artur, E-mail: awyrwa@agh.edu.pl [AGH University of Science and Technology, Al. Mickiewicza 30, Krakow 30-059 (Poland); Drebszok, Kamila [AGH University of Science and Technology, Al. Mickiewicza 30, Krakow 30-059 (Poland); Cofala, Janusz, E-mail: cofala@iiasa.ac.at [International Institute for Applied Systems Analysis, Schlossplatz 1, 2067 Laxenburg (Austria); Fuss, Sabine, E-mail: fuss@mcc-berlin.net [International Institute for Applied Systems Analysis, Schlossplatz 1, 2067 Laxenburg (Austria); Mercator Research Institute on Global Commons and Climate Change, Torgauer Str. 12-15, 10829 Berlin (Germany)

    2015-04-15

    This article proposes a new method to assess the health impact of populations exposed to fine particles (PM{sub 2.5}) during their whole lifetime, which is suitable for comparative analysis of energy scenarios. The method takes into account the variation of particle concentrations over time as well as the evolution of population cohorts. Its capabilities are demonstrated for two pathways of European energy system development up to 2050: the Baseline (BL) and the Low Carbon, Maximum Renewable Power (LC-MRP). These pathways were combined with three sets of assumptions about emission control measures: Current Legislation (CLE), Fixed Emission Factors (FEFs), and the Maximum Technically Feasible Reductions (MTFRs). Analysis was carried out for 45 European countries. Average PM{sub 2.5} concentration over Europe in the LC-MRP/CLE scenario is reduced by 58% compared with the BL/FEF case. Health impacts (expressed in days of loss of life expectancy) decrease by 21%. For the LC-MRP/MTFR scenario the average PM{sub 2.5} concentration is reduced by 85% and the health impact by 34%. The methodology was developed within the framework of the EU's FP7 EnerGEO project and was implemented in the Platform of Integrated Assessment (PIA). The Platform enables performing health impact assessments for various energy scenarios. - Highlights: • A new method to assess health impact of PM{sub 2.5} for energy scenarios is proposed. • An algorithm to compute Loss of Life Expectancy attributable to exposure to PM{sub 2.5} is depicted. • Its capabilities are demonstrated for two pathways of European energy system development up to 2050. • Integrating the temporal evolution of PM{sub 2.5} is of great interest for assessing the potential impacts of energy scenarios.

  17. Contribution of Black Carbon to PM2.5 Concentration in Six Brazilian Cities

    Science.gov (United States)

    Fornaro, A.; Andrade, M.; Miranda, R. M.

    2013-12-01

    tracer for the diesel emission estimative. According to receptor analysis the participation of diesel to the contribution of BC was more than 70% of the PM2.5 mass concentration. So, the control of BC emission is an important tool in reducing the concentration of fine particles in atmosphere.

  18. Measurement of CP violation in the phase space of $B^{\\pm} \\rightarrow K^{+} K^{-} \\pi^{\\pm}$ and $B^{\\pm} \\rightarrow \\pi^{+} \\pi^{-} \\pi^{\\pm}$ decays

    CERN Document Server

    Aaij, Roel; Adinolfi, Marco; Adrover, Cosme; Affolder, Anthony; Ajaltouni, Ziad; Albrecht, Johannes; Alessio, Federico; Alexander, Michael; Ali, Suvayu; Alkhazov, Georgy; Alvarez Cartelle, Paula; Alves Jr, Antonio; Amato, Sandra; Amerio, Silvia; Amhis, Yasmine; Anderlini, Lucio; Anderson, Jonathan; Andreassen, Rolf; Andrews, Jason; Appleby, Robert; Aquines Gutierrez, Osvaldo; Archilli, Flavio; Artamonov, Alexander; Artuso, Marina; Aslanides, Elie; Auriemma, Giulio; Baalouch, Marouen; Bachmann, Sebastian; Back, John; Badalov, Alexey; Baesso, Clarissa; Balagura, Vladislav; Baldini, Wander; Barlow, Roger; Barschel, Colin; Barsuk, Sergey; Barter, William; Bauer, Thomas; Bay, Aurelio; Beddow, John; Bedeschi, Franco; Bediaga, Ignacio; Belogurov, Sergey; Belous, Konstantin; Belyaev, Ivan; Ben-Haim, Eli; Bencivenni, Giovanni; Benson, Sean; Benton, Jack; Berezhnoy, Alexander; Bernet, Roland; Bettler, Mar-Olivier; van Beuzekom, Martinus; Bien, Alexander; Bifani, Simone; Bird, Thomas; Bizzeti, Andrea; Bjørnstad, Pål Marius; Blake, Thomas; Blanc, Frédéric; Blouw, Johan; Blusk, Steven; Bocci, Valerio; Bondar, Alexander; Bondar, Nikolay; Bonivento, Walter; Borghi, Silvia; Borgia, Alessandra; Bowcock, Themistocles; Bowen, Espen Eie; Bozzi, Concezio; Brambach, Tobias; van den Brand, Johannes; Bressieux, Joël; Brett, David; Britsch, Markward; Britton, Thomas; Brook, Nicholas; Brown, Henry; Bursche, Albert; Busetto, Giovanni; Buytaert, Jan; Cadeddu, Sandro; Callot, Olivier; Calvi, Marta; Calvo Gomez, Miriam; Camboni, Alessandro; Campana, Pierluigi; Campora Perez, Daniel; Carbone, Angelo; Carboni, Giovanni; Cardinale, Roberta; Cardini, Alessandro; Carranza-Mejia, Hector; Carson, Laurence; Carvalho Akiba, Kazuyoshi; Casse, Gianluigi; Castillo Garcia, Lucia; Cattaneo, Marco; Cauet, Christophe; Cenci, Riccardo; Charles, Matthew; Charpentier, Philippe; Cheung, Shu-Faye; Chiapolini, Nicola; Chrzaszcz, Marcin; Ciba, Krzystof; Cid Vidal, Xabier; Ciezarek, Gregory; Clarke, Peter; Clemencic, Marco; Cliff, Harry; Closier, Joel; Coca, Cornelia; Coco, Victor; Cogan, Julien; Cogneras, Eric; Collins, Paula; Comerma-Montells, Albert; Contu, Andrea; Cook, Andrew; Coombes, Matthew; Coquereau, Samuel; Corti, Gloria; Couturier, Benjamin; Cowan, Greig; Craik, Daniel Charles; Cruz Torres, Melissa Maria; Cunliffe, Samuel; Currie, Robert; D'Ambrosio, Carmelo; David, Pascal; David, Pieter; Davis, Adam; De Bonis, Isabelle; De Bruyn, Kristof; De Capua, Stefano; De Cian, Michel; De Miranda, Jussara; De Paula, Leandro; De Silva, Weeraddana; De Simone, Patrizia; Decamp, Daniel; Deckenhoff, Mirko; Del Buono, Luigi; Déléage, Nicolas; Derkach, Denis; Deschamps, Olivier; Dettori, Francesco; Di Canto, Angelo; Dijkstra, Hans; Dogaru, Marius; Donleavy, Stephanie; Dordei, Francesca; Dosil Suárez, Alvaro; Dossett, David; Dovbnya, Anatoliy; Dupertuis, Frederic; Durante, Paolo; Dzhelyadin, Rustem; Dziurda, Agnieszka; Dzyuba, Alexey; Easo, Sajan; Egede, Ulrik; Egorychev, Victor; Eidelman, Semen; van Eijk, Daan; Eisenhardt, Stephan; Eitschberger, Ulrich; Ekelhof, Robert; Eklund, Lars; El Rifai, Ibrahim; Elsasser, Christian; Falabella, Antonio; Färber, Christian; Farinelli, Chiara; Farry, Stephen; Ferguson, Dianne; Fernandez Albor, Victor; Ferreira Rodrigues, Fernando; Ferro-Luzzi, Massimiliano; Filippov, Sergey; Fiore, Marco; Fitzpatrick, Conor; Fontana, Marianna; Fontanelli, Flavio; Forty, Roger; Francisco, Oscar; Frank, Markus; Frei, Christoph; Frosini, Maddalena; Furfaro, Emiliano; Gallas Torreira, Abraham; Galli, Domenico; Gandelman, Miriam; Gandini, Paolo; Gao, Yuanning; Garofoli, Justin; Garosi, Paola; Garra Tico, Jordi; Garrido, Lluis; Gaspar, Clara; Gauld, Rhorry; Gersabeck, Evelina; Gersabeck, Marco; Gershon, Timothy; Ghez, Philippe; Gibson, Valerie; Giubega, Lavinia-Helena; Gligorov, V.V.; Göbel, Carla; Golubkov, Dmitry; Golutvin, Andrey; Gomes, Alvaro; Gorbounov, Petr; Gordon, Hamish; Grabalosa Gándara, Marc; Graciani Diaz, Ricardo; Granado Cardoso, Luis Alberto; Graugés, Eugeni; Graziani, Giacomo; Grecu, Alexandru; Greening, Edward; Gregson, Sam; Griffith, Peter; Grillo, Lucia; Grünberg, Oliver; Gui, Bin; Gushchin, Evgeny; Guz, Yury; Gys, Thierry; Hadjivasiliou, Christos; Haefeli, Guido; Haen, Christophe; Haines, Susan; Hall, Samuel; Hamilton, Brian; Hampson, Thomas; Hansmann-Menzemer, Stephanie; Harnew, Neville; Harnew, Samuel; Harrison, Jonathan; Hartmann, Thomas; He, Jibo; Head, Timothy; Heijne, Veerle; Hennessy, Karol; Henrard, Pierre; Hernando Morata, Jose Angel; van Herwijnen, Eric; Heß, Miriam; Hicheur, Adlène; Hicks, Emma; Hill, Donal; Hoballah, Mostafa; Hombach, Christoph; Hulsbergen, Wouter; Hunt, Philip; Huse, Torkjell; Hussain, Nazim; Hutchcroft, David; Hynds, Daniel; Iakovenko, Viktor; Idzik, Marek; Ilten, Philip; Jacobsson, Richard; Jaeger, Andreas; Jans, Eddy; Jaton, Pierre; Jawahery, Abolhassan; Jing, Fanfan; John, Malcolm; Johnson, Daniel; Jones, Christopher; Joram, Christian; Jost, Beat; Kaballo, Michael; Kandybei, Sergii; Kanso, Wallaa; Karacson, Matthias; Karbach, Moritz; Kenyon, Ian; Ketel, Tjeerd; Khanji, Basem; Kochebina, Olga; Komarov, Ilya; Koopman, Rose; Koppenburg, Patrick; Korolev, Mikhail; Kozlinskiy, Alexandr; Kravchuk, Leonid; Kreplin, Katharina; Kreps, Michal; Krocker, Georg; Krokovny, Pavel; Kruse, Florian; Kucharczyk, Marcin; Kudryavtsev, Vasily; Kurek, Krzysztof; Kvaratskheliya, Tengiz; La Thi, Viet Nga; Lacarrere, Daniel; Lafferty, George; Lai, Adriano; Lambert, Dean; Lambert, Robert W; Lanciotti, Elisa; Lanfranchi, Gaia; Langenbruch, Christoph; Latham, Thomas; Lazzeroni, Cristina; Le Gac, Renaud; van Leerdam, Jeroen; Lees, Jean-Pierre; Lefèvre, Regis; Leflat, Alexander; Lefrançois, Jacques; Leo, Sabato; Leroy, Olivier; Lesiak, Tadeusz; Leverington, Blake; Li, Yiming; Li Gioi, Luigi; Liles, Myfanwy; Lindner, Rolf; Linn, Christian; Liu, Bo; Liu, Guoming; Lohn, Stefan; Longstaff, Ian; Lopes, Jose; Lopez-March, Neus; Lu, Haiting; Lucchesi, Donatella; Luisier, Johan; Luo, Haofei; Lupton, Oliver; Machefert, Frederic; Machikhiliyan, Irina V; Maciuc, Florin; Maev, Oleg; Malde, Sneha; Manca, Giulia; Mancinelli, Giampiero; Maratas, Jan; Marconi, Umberto; Marino, Pietro; Märki, Raphael; Marks, Jörg; Martellotti, Giuseppe; Martens, Aurelien; Martín Sánchez, Alexandra; Martinelli, Maurizio; Martinez Santos, Diego; Martins Tostes, Danielle; Martynov, Aleksandr; Massafferri, André; Matev, Rosen; Mathe, Zoltan; Matteuzzi, Clara; Maurice, Emilie; Mazurov, Alexander; McCarthy, James; McNab, Andrew; McNulty, Ronan; McSkelly, Ben; Meadows, Brian; Meier, Frank; Meissner, Marco; Merk, Marcel; Milanes, Diego Alejandro; Minard, Marie-Noelle; Molina Rodriguez, Josue; Monteil, Stephane; Moran, Dermot; Morawski, Piotr; Mordà, Alessandro; Morello, Michael Joseph; Mountain, Raymond; Mous, Ivan; Muheim, Franz; Müller, Katharina; Muresan, Raluca; Muryn, Bogdan; Muster, Bastien; Naik, Paras; Nakada, Tatsuya; Nandakumar, Raja; Nasteva, Irina; Needham, Matthew; Neubert, Sebastian; Neufeld, Niko; Nguyen, Anh Duc; Nguyen, Thi-Dung; Nguyen-Mau, Chung; Nicol, Michelle; Niess, Valentin; Niet, Ramon; Nikitin, Nikolay; Nikodem, Thomas; Nomerotski, Andrey; Novoselov, Alexey; Oblakowska-Mucha, Agnieszka; Obraztsov, Vladimir; Oggero, Serena; Ogilvy, Stephen; Okhrimenko, Oleksandr; Oldeman, Rudolf; Orlandea, Marius; Otalora Goicochea, Juan Martin; Owen, Patrick; Oyanguren, Maria Arantza; Pal, Bilas Kanti; Palano, Antimo; Palutan, Matteo; Panman, Jacob; Papanestis, Antonios; Pappagallo, Marco; Parkes, Christopher; Parkinson, Christopher John; Passaleva, Giovanni; Patel, Girish; Patel, Mitesh; Patrick, Glenn; Patrignani, Claudia; Pavel-Nicorescu, Carmen; Pazos Alvarez, Antonio; Pearce, Alex; Pellegrino, Antonio; Penso, Gianni; Pepe Altarelli, Monica; Perazzini, Stefano; Perez Trigo, Eliseo; Pérez-Calero Yzquierdo, Antonio; Perret, Pascal; Perrin-Terrin, Mathieu; Pescatore, Luca; Pesen, Erhan; Pessina, Gianluigi; Petridis, Konstantin; Petrolini, Alessandro; Phan, Anna; Picatoste Olloqui, Eduardo; Pietrzyk, Boleslaw; Pilař, Tomas; Pinci, Davide; Playfer, Stephen; Plo Casasus, Maximo; Polci, Francesco; Polok, Grzegorz; Poluektov, Anton; Polycarpo, Erica; Popov, Alexander; Popov, Dmitry; Popovici, Bogdan; Potterat, Cédric; Powell, Andrew; Prisciandaro, Jessica; Pritchard, Adrian; Prouve, Claire; Pugatch, Valery; Puig Navarro, Albert; Punzi, Giovanni; Qian, Wenbin; Rachwal, Bartolomiej; Rademacker, Jonas; Rakotomiaramanana, Barinjaka; Rangel, Murilo; Raniuk, Iurii; Rauschmayr, Nathalie; Raven, Gerhard; Redford, Sophie; Reichert, Stefanie; Reid, Matthew; dos Reis, Alberto; Ricciardi, Stefania; Richards, Alexander; Rinnert, Kurt; Rives Molina, Vincente; Roa Romero, Diego; Robbe, Patrick; Roberts, Douglas; Rodrigues, Ana Barbara; Rodrigues, Eduardo; Rodriguez Perez, Pablo; Roiser, Stefan; Romanovsky, Vladimir; Romero Vidal, Antonio; Rotondo, Marcello; Rouvinet, Julien; Ruf, Thomas; Ruffini, Fabrizio; Ruiz, Hugo; Ruiz Valls, Pablo; Sabatino, Giovanni; Saborido Silva, Juan Jose; Sagidova, Naylya; Sail, Paul; Saitta, Biagio; Salustino Guimaraes, Valdir; Sanmartin Sedes, Brais; Santacesaria, Roberta; Santamarina Rios, Cibran; Santovetti, Emanuele; Sapunov, Matvey; Sarti, Alessio; Satriano, Celestina; Satta, Alessia; Savrie, Mauro; Savrina, Darya; Schiller, Manuel; Schindler, Heinrich; Schlupp, Maximilian; Schmelling, Michael; Schmidt, Burkhard; Schneider, Olivier; Schopper, Andreas; Schune, Marie Helene; Schwemmer, Rainer; Sciascia, Barbara; Sciubba, Adalberto; Seco, Marcos; Semennikov, Alexander; Senderowska, Katarzyna; Sepp, Indrek; Serra, Nicola; Serrano, Justine; Seyfert, Paul; Shapkin, Mikhail; Shapoval, Illya; Shcheglov, Yury; Shears, Tara; Shekhtman, Lev; Shevchenko, Oksana; Shevchenko, Vladimir; Shires, Alexander; Silva Coutinho, Rafael; Sirendi, Marek; Skidmore, Nicola; Skwarnicki, Tomasz; Smith, Anthony; Smith, Edmund; Smith, Eluned; Smith, Jackson; Smith, Mark; Sokoloff, Michael; Soler, Paul; Soomro, Fatima; Souza, Daniel; Souza De Paula, Bruno; Spaan, Bernhard; Sparkes, Ailsa; Spradlin, Patrick; Stagni, Federico; Stahl, Sascha; Steinkamp, Olaf; Stevenson, Scott; Stoica, Sabin; Stone, Sheldon; Storaci, Barbara; Straticiuc, Mihai; Straumann, Ulrich; Subbiah, Vijay Kartik; Sun, Liang; Sutcliffe, William; Swientek, Stefan; Syropoulos, Vasileios; Szczekowski, Marek; Szczypka, Paul; Szilard, Daniela; Szumlak, Tomasz; T'Jampens, Stephane; Teklishyn, Maksym; Teodorescu, Eliza; Teubert, Frederic; Thomas, Christopher; Thomas, Eric; van Tilburg, Jeroen; Tisserand, Vincent; Tobin, Mark; Tolk, Siim; Tonelli, Diego; Topp-Joergensen, Stig; Torr, Nicholas; Tournefier, Edwige; Tourneur, Stephane; Tran, Minh Tâm; Tresch, Marco; Tsaregorodtsev, Andrei; Tsopelas, Panagiotis; Tuning, Niels; Ubeda Garcia, Mario; Ukleja, Artur; Ustyuzhanin, Andrey; Uwer, Ulrich; Vagnoni, Vincenzo; Valenti, Giovanni; Vallier, Alexis; Vazquez Gomez, Ricardo; Vazquez Regueiro, Pablo; Vázquez Sierra, Carlos; Vecchi, Stefania; Velthuis, Jaap; Veltri, Michele; Veneziano, Giovanni; Vesterinen, Mika; Viaud, Benoit; Vieira, Daniel; Vilasis-Cardona, Xavier; Vollhardt, Achim; Volyanskyy, Dmytro; Voong, David; Vorobyev, Alexey; Vorobyev, Vitaly; Voß, Christian; Voss, Helge; Waldi, Roland; Wallace, Charlotte; Wallace, Ronan; Wandernoth, Sebastian; Wang, Jianchun; Ward, David; Watson, Nigel; Webber, Adam Dane; Websdale, David; Whitehead, Mark; Wicht, Jean; Wiechczynski, Jaroslaw; Wiedner, Dirk; Wiggers, Leo; Wilkinson, Guy; Williams, Matthew; Williams, Mike; Wilson, Fergus; Wimberley, Jack; Wishahi, Julian; Wislicki, Wojciech; Witek, Mariusz; Wormser, Guy; Wotton, Stephen; Wright, Simon; Wu, Suzhi; Wyllie, Kenneth; Xie, Yuehong; Xing, Zhou; Yang, Zhenwei; Yuan, Xuhao; Yushchenko, Oleg; Zangoli, Maria; Zavertyaev, Mikhail; Zhang, Feng; Zhang, Liming; Zhang, Wen Chao; Zhang, Yanxi; Zhelezov, Alexey; Zhokhov, Anatoly; Zhong, Liang; Zvyagin, Alexander

    2014-01-01

    The charmless decays $B^{\\pm} \\rightarrow K^{+}K^{-}\\pi^{\\pm}$ and $B^{\\pm} \\rightarrow \\pi^{+}\\pi^{-}\\pi^{\\pm}$ are reconstructed in a data set, corresponding to an integrated luminosity of 1.0 fb$^{-1}$ of pp collisions at a center-of-mass energy of 7 TeV, collected by LHCb in 2011. The inclusive charge asymmetries of these modes are measured to be $A_{CP}(B^{\\pm} \\rightarrow K^{+}K^{-}\\pi^{\\pm}) =-0.141 \\pm 0.040 (stat) \\pm 0.018 (syst) \\pm 0.007 (J/\\psi K^{\\pm})$ and $A_{CP}(B^{\\pm} \\rightarrow \\pi^{+}\\pi^{-}\\pi^{\\pm}) = 0.117 \\pm 0.021 (stat) \\pm 0.009 (syst) \\pm 0.007 (J/\\psi K^{\\pm})$, where the third uncertainty is due to the CP asymmetry of the $B^{\\pm} \\rightarrow J/\\psi K^{\\pm}$ reference mode. In addition to the inclusive CP asymmetries, larger asymmetries are observed in localized regions of phase space.

  19. Global anthropogenic emissions of particulate matter including black carbon

    Science.gov (United States)

    Klimont, Zbigniew; Kupiainen, Kaarle; Heyes, Chris; Purohit, Pallav; Cofala, Janusz; Rafaj, Peter; Borken-Kleefeld, Jens; Schöpp, Wolfgang

    2017-07-01

    This paper presents a comprehensive assessment of historical (1990-2010) global anthropogenic particulate matter (PM) emissions including the consistent and harmonized calculation of mass-based size distribution (PM1, PM2. 5, PM10), as well as primary carbonaceous aerosols including black carbon (BC) and organic carbon (OC). The estimates were developed with the integrated assessment model GAINS, where source- and region-specific technology characteristics are explicitly included. This assessment includes a number of previously unaccounted or often misallocated emission sources, i.e. kerosene lamps, gas flaring, diesel generators, refuse burning; some of them were reported in the past for selected regions or in the context of a particular pollutant or sector but not included as part of a total estimate. Spatially, emissions were calculated for 172 source regions (as well as international shipping), presented for 25 global regions, and allocated to 0.5° × 0.5° longitude-latitude grids. No independent estimates of emissions from forest fires and savannah burning are provided and neither windblown dust nor unpaved roads emissions are included. We estimate that global emissions of PM have not changed significantly between 1990 and 2010, showing a strong decoupling from the global increase in energy consumption and, consequently, CO2 emissions, but there are significantly different regional trends, with a particularly strong increase in East Asia and Africa and a strong decline in Europe, North America, and the Pacific region. This in turn resulted in important changes in the spatial pattern of PM burden, e.g. European, North American, and Pacific contributions to global emissions dropped from nearly 30 % in 1990 to well below 15 % in 2010, while Asia's contribution grew from just over 50 % to nearly two-thirds of the global total in 2010. For all PM species considered, Asian sources represented over 60 % of the global anthropogenic total, and residential combustion

  20. Global anthropogenic emissions of particulate matter including black carbon

    Directory of Open Access Journals (Sweden)

    Z. Klimont

    2017-07-01

    Full Text Available This paper presents a comprehensive assessment of historical (1990–2010 global anthropogenic particulate matter (PM emissions including the consistent and harmonized calculation of mass-based size distribution (PM1, PM2. 5, PM10, as well as primary carbonaceous aerosols including black carbon (BC and organic carbon (OC. The estimates were developed with the integrated assessment model GAINS, where source- and region-specific technology characteristics are explicitly included. This assessment includes a number of previously unaccounted or often misallocated emission sources, i.e. kerosene lamps, gas flaring, diesel generators, refuse burning; some of them were reported in the past for selected regions or in the context of a particular pollutant or sector but not included as part of a total estimate. Spatially, emissions were calculated for 172 source regions (as well as international shipping, presented for 25 global regions, and allocated to 0.5°  ×  0.5° longitude–latitude grids. No independent estimates of emissions from forest fires and savannah burning are provided and neither windblown dust nor unpaved roads emissions are included. We estimate that global emissions of PM have not changed significantly between 1990 and 2010, showing a strong decoupling from the global increase in energy consumption and, consequently, CO2 emissions, but there are significantly different regional trends, with a particularly strong increase in East Asia and Africa and a strong decline in Europe, North America, and the Pacific region. This in turn resulted in important changes in the spatial pattern of PM burden, e.g. European, North American, and Pacific contributions to global emissions dropped from nearly 30 % in 1990 to well below 15 % in 2010, while Asia's contribution grew from just over 50 % to nearly two-thirds of the global total in 2010. For all PM species considered, Asian sources represented over 60 % of the global

  1. Chemical characteristics and sources of PM1 during the 2016 summer in Hangzhou.

    Science.gov (United States)

    Li, Kangwei; Chen, Linghong; White, Stephen J; Zheng, Xianjue; Lv, Biao; Lin, Chao; Bao, Zhier; Wu, Xuecheng; Gao, Xiang; Ying, Fang; Shen, Jiandong; Azzi, Merched; Cen, Kefa

    2018-01-01

    During the 2016 Hangzhou G20 Summit, the chemical composition of submicron particles (PM 1 ) was measured by a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) along with a suite of collocated instruments. The campaign was undertaken between August 5 and September 23, 2016. The impacts of emission controls and meteorological conditions on PM 1 chemical composition, diurnal cycles, organic aerosol (OA) source apportionment, size distribution and elemental ratios were characterized in detail. Excluding rainy days, the mean PM 1 mass concentration during G20 was 30.3 μg/m 3 , similar to that observed before G20 (28.6 μg/m 3 ), but much lower than that after G20 (42.7 μg/m 3 ). The aerosol chemistry during the three periods was substantially different. Before G20, high PM 1 loading mostly occurred at daytime, with OA accounting for 60.1% of PM 1 , followed by sulfate (15.6%) and ammonium (9.1%). During G20, the OA fraction decreased from 60.1% to 44.6%, whereas secondary inorganic aerosol (SIA) increased from 31.8% to 49.5%. After G20, SIA dominated high PM 1 loading, especially at nighttime. Further analysis showed that the nighttime regional transport might play an unfavorable role in the slight increase of secondary PM 1 during G20, while the strict emissions controls were implemented. The OA (O/C = 0.58) during G20 was more aged, 48.7% and 13.7% higher than that before and after G20 respectively. Our study highlighted that the emission controls during G20 were of great success in lowering locally produced aerosol and pollutants, despite of co-existence of nighttime regional transport containing aerosol high in low-volatile organics and sulfate. It was implied that not only are emissions controls on both local and regional scale important, but that the transport of pollutants needs to be sufficiently well accounted for, to ensure the successful implementation of air pollution mitigation campaigns in China. Copyright © 2017 Elsevier Ltd

  2. Quantifying the emissions and air quality co-benefits of lower-carbon electricity production

    Science.gov (United States)

    Plachinski, Steven D.; Holloway, Tracey; Meier, Paul J.; Nemet, Gregory F.; Rrushaj, Arber; Oberman, Jacob T.; Duran, Phillip L.; Voigt, Caitlin L.

    2014-09-01

    The impact of air emissions from electricity generation depends on the spatial distribution of power plants and electricity dispatch decisions. Thus, any realistic evaluation of the air quality impacts of lower-carbon electricity must account for the spatially heterogeneous changes in associated emissions. Here, we present an analysis of the changes in fine particulate matter (PM2.5) associated with current, expected, and proposed energy efficiency and renewable energy policies in Wisconsin. We simulate the state's electricity system and its potential response to policies using the MyPower electricity-sector model, which calculates plant-by-plant reductions in NOx and SO2 emissions. We find that increased efficiency and renewable generation in a 2024 policy scenario substantially reduce statewide emissions of NOx and SO2 (55% and 59% compared to 2008, 32% and 33% compared to 2024 business-as-usual, BAU). PM2.5 is quantified across the Great Lakes region using the EPA Community Multiscale Air Quality (CMAQ) model for some emissions scenarios. We find that summer mean surface concentrations of sulfate and PM2.5 are less sensitive to policy changes than emissions. In the 2024 policy scenario, sulfate aerosol decreases less than 3% over most of the region relative to BAU and 3-13% relative to 2008 over most of Wisconsin. The lower response of these secondary aerosols arises from chemical and meteorological processing of electricity emissions, and mixing with other emission sources. An analysis of model performance and response to emission reduction at five sites in Wisconsin shows good model agreement with observations and a high level of spatial and temporal variability in sulfate and PM2.5 reductions. In this case study, the marginal improvements in emissions and air quality associated with carbon policies were less than the technology, renewable, and conservation assumptions under a business-as-usual scenario. However, this analysis for Wisconsin shows how

  3. Soil acidification in China: is controlling SO2 emissions enough?

    Science.gov (United States)

    Zhao, Yu; Duan, Lei; Xing, Jia; Larssen, Thorjorn; Nielsen, Chris P; Hao, Jiming

    2009-11-01

    Facing challenges of increased energy consumption and related regional air pollution, China has been aggressively implementing flue gas desulfurization (FGD) and phasing out small inefficient units in the power sector in order to achieve the national goal of 10% reduction in sulfur dioxide (SO(2)) emissions from 2005 to 2010. In this paper, the effect of these measures on soil acidification is explored. An integrated methodology is used, combining emission inventory data, emission forecasts, air quality modeling, and ecological sensitivities indicated by critical load. National emissions of SO(2), oxides of nitrogen (NO(X)), particulate matter (PM), and ammonia (NH(3)) in 2005 were estimated to be 30.7, 19.6, 31.3, and 16.6 Mt, respectively. Implementation of existing policy will lead to reductions in SO(2) and PM emissions, while those of NO(X) and NH(3) will continue to rise, even under tentatively proposed control measures. In 2005, the critical load for soil acidification caused by sulfur (S) deposition was exceeded in 28% of the country's territory, mainly in eastern and south-central China. The area in exceedance will decrease to 26% and 20% in 2010 and 2020, respectively, given implementation of current plans for emission reductions. However, the exceedance of the critical load for nitrogen (N, combining effects of eutrophication and acidification) will double from 2005 to 2020 due to increased NO(X) and NH(3) emissions. Combining the acidification effects of S and N, the benefits of SO(2) reductions during 2005-2010 will almost be negated by increased N emissions. Therefore abatement of N emissions (NO(X) and NH(3)) and deposition will be a major challenge to China, requiring policy development and technology investments. To mitigate acidification in the future, China needs a multipollutant control strategy that integrates measures to reduce S, N, and PM.

  4. Application of particle size distributions to total particulate stack samples to estimate PM2.5 and PM10 emission factors for agricultural sources

    Science.gov (United States)

    Particle size distributions (PSD) have long been used to more accurately estimate the PM10 fraction of total particulate matter (PM) stack samples taken from agricultural sources. These PSD analyses were typically conducted using a Coulter Counter with 50 micrometer aperture tube. With recent increa...

  5. Reducing CO2 emissions in Sierra Leone and Ghana

    International Nuclear Information System (INIS)

    Davidson, O.

    1991-01-01

    With soring population growth rates and minimal economic growth, the nations of Africa are afflicted with innumerable problems. Why then should Africa's developing countries worry about CO 2 emissions? First, because agricultural activities form the backbone of most African economies; thus, these nations may be particularly vulnerable to the negative impacts of climate change. Second, acting to reduce carbon emissions will bring about more efficient energy use. All of Africa could benefit from the improved use of energy. Finally, the accumulation of CO 2 in the atmosphere is a global problem with individual solutions; in order to reduce international emissions, all countries, including those in Africa, must contribute. Typical of many African countries, Ghana and Sierra Leone have among the lowest levels of energy demand per capita across the globe. primary energy demand per capita in these two West African nations equals about one quarter of the world's average and about one twentieth of the US average. This work summarizes the results of two long-term energy use and carbon emissions scenarios for Sierra Leone and Ghana. In the high emissions (HE) scenario for 2025, policy changes focused on galvanizing economic growth lead to significant increases in energy use and carbon emissions in Ghana and Sierra Leone between 1985 and 2025. In the low emissions (LE) scenario, the implementation of policies aimed specifically at curtailing CO 2 emissions significantly limits the increase in carbon in both nations by 2025

  6. Toxicity of Urban PM10 and Relation with Tracers of Biomass Burning

    Directory of Open Access Journals (Sweden)

    Rosette Van Den Heuvel

    2018-02-01

    Full Text Available The chemical composition of particles varies with space and time and depends on emission sources, atmospheric chemistry and weather conditions. Evidence suggesting that particles differ in toxicity depending on their chemical composition is growing. This in vitro study investigated the biological effects of PM10 in relation to PM-associated chemicals. PM10 was sampled in ambient air at an urban traffic site (Borgerhout and a rural background location (Houtem in Flanders (Belgium. To characterize the toxic potential of PM10, airway epithelial cells (Beas-2B cells were exposed to particles in vitro. Different endpoints were studied including cell damage and death (cell viability and the induction of interleukin-8 (IL-8. The mutagenic capacity was assessed using the Ames II Mutagenicity Test. The endotoxin levels in the collected samples were analyzed and the oxidative potential (OP of PM10 particles was evaluated by electron paramagnetic resonance (EPR spectroscopy. Chemical characteristics of PM10 included tracers for biomass burning (levoglucosan, mannosan and galactosan, elemental and organic carbon (EC/OC and polycyclic aromatic hydrocarbons (PAHs. Most samples displayed dose-dependent cytotoxicity and IL-8 induction. Spatial and temporal differences in PM10 toxicity were seen. PM10 collected at the urban site was characterized by increased pro-inflammatory and mutagenic activity as well as higher OP and elevated endotoxin levels compared to the background area. Reduced cell viability (−0.46 < rs < −0.35, p < 0.01 and IL-8 induction (−0.62 < rs < −0.67, p < 0.01 were associated with all markers for biomass burning, levoglucosan, mannosan and galactosan. Furthermore, direct and indirect mutagenicity were associated with tracers for biomass burning, OC, EC and PAHs. Multiple regression analyses showed levoglucosan to explain 16% and 28% of the variance in direct and indirect mutagenicity, respectively. Markers for biomass burning were

  7. Global Air Quality and Health Co-benefits of Mitigating Near-term Climate Change Through Methane and Black Carbon Emission Controls

    Science.gov (United States)

    Anenberg, Susan C.; Schwartz, Joel; Shindell, Drew Todd; Amann, Markus; Faluvegi, Gregory S.; Klimont, Zbigniew; Janssens-Maenhout, Greet; Pozzoli, Luca; Dingenen, Rita Van; Vignati, Elisabetta; hide

    2012-01-01

    Tropospheric ozone and black carbon (BC), a component of fine particulate matter (PM health benefits of 14 specific emission control measures targeting BC and methane, an ozone precursor, that were selected because of their potential to reduce the rate of climate change over the next 20-40 years. Methods: We simulated the impacts of mitigation measures on outdoor concentrations of PM2.5 and ozone using two composition-climate models, and calculated associated changes in premature PM2.5- and ozone-related deaths using epidemiologically derived concentration-response functions. Results: We estimated that, for PM2.5 and ozone, respectively, fully implementing these measures could reduce global population-weighted average surface concentrations by 23-34% and 7-17% and avoid 0.6-4.4 and 0.04-0.52 million annual premature deaths globally in 2030. More than 80% of the health benefits are estimated to occur in Asia. We estimated that BC mitigation measures would achieve approximately 98% of the deaths that would be avoided if all BC and methane mitigation measures were implemented, due to reduced BC and associated reductions of nonmethane ozone precursor and organic carbon emissions as well as stronger mortality relationships for PM2.5 relative to ozone. Although subject to large uncertainty, these estimates and conclusions are not strongly dependent on assumptions for the concentration-response function. Conclusions: In addition to climate benefits, our findings indicate that the methane and BC emission control measures would have substantial co-benefits for air quality and public health worldwide, potentially reversing trends of increasing air pollution concentrations and mortality in Africa and South, West, and Central Asia. These projected benefits are independent of carbon dioxide mitigation measures. Benefits of BC measures are underestimated because we did not account for benefits from reduced indoor exposures and because outdoor exposure estimates were limited by

  8. Methodology to estimate particulate matter emissions from certified commercial aircraft engines.

    Science.gov (United States)

    Wayson, Roger L; Fleming, Gregg G; Lovinelli, Ralph

    2009-01-01

    Today, about one-fourth of U.S. commercial service airports, including 41 of the busiest 50, are either in nonattainment or maintenance areas per the National Ambient Air Quality Standards. U.S. aviation activity is forecasted to triple by 2025, while at the same time, the U.S. Environmental Protection Agency (EPA) is evaluating stricter particulate matter (PM) standards on the basis of documented human health and welfare impacts. Stricter federal standards are expected to impede capacity and limit aviation growth if regulatory mandated emission reductions occur as for other non-aviation sources (i.e., automobiles, power plants, etc.). In addition, strong interest exists as to the role aviation emissions play in air quality and climate change issues. These reasons underpin the need to quantify and understand PM emissions from certified commercial aircraft engines, which has led to the need for a methodology to predict these emissions. Standardized sampling techniques to measure volatile and nonvolatile PM emissions from aircraft engines do not exist. As such, a first-order approximation (FOA) was derived to fill this need based on available information. FOA1.0 only allowed prediction of nonvolatile PM. FOA2.0 was a change to include volatile PM emissions on the basis of the ratio of nonvolatile to volatile emissions. Recent collaborative efforts by industry (manufacturers and airlines), research establishments, and regulators have begun to provide further insight into the estimation of the PM emissions. The resultant PM measurement datasets are being analyzed to refine sampling techniques and progress towards standardized PM measurements. These preliminary measurement datasets also support the continued refinement of the FOA methodology. FOA3.0 disaggregated the prediction techniques to allow for independent prediction of nonvolatile and volatile emissions on a more theoretical basis. The Committee for Aviation Environmental Protection of the International Civil

  9. Optimal learning on climate change: why climate skeptics should reduce emissions

    NARCIS (Netherlands)

    van Wijnbergen, S.; Willems, T.

    2015-01-01

    Climate skeptics typically argue that the possibility that global warming is exogenous, implies that we should not take additional action towards reducing emissions until we know what drives warming. This paper however shows that even climate skeptics have an incentive to reduce emissions: such a

  10. An optimal control model for reducing and trading of carbon emissions

    Science.gov (United States)

    Guo, Huaying; Liang, Jin

    2016-03-01

    A stochastic optimal control model of reducing and trading for carbon emissions is established in this paper. With considerations of reducing the carbon emission growth and the price of the allowances in the market, an optimal policy is searched to have the minimum total costs to achieve the agreement of emission reduction targets. The model turns to a two-dimension HJB equation problem. By the methods of reducing dimension and Cole-Hopf transformation, a semi-closed form solution of the corresponding HJB problem under some assumptions is obtained. For more general cases, the numerical calculations, analysis and comparisons are presented.

  11. A Computational Fluid Dynamic (CFD) Simulation of PM10 Dispersion Caused by Rail Transit Construction Activity: A Real Urban Street Canyon Model

    Science.gov (United States)

    Wang, Yang; Zhou, Ying; Zuo, Jian

    2018-01-01

    Particle emissions derived from construction activities have a significant impact on the local air quality, while the canyon effect with reduced natural ventilation contributes to the highest particulate pollution in urban environments. This study attempted to examine the effect of PM10 emissions derived from the construction of a rail transit system in an urban street canyon. Using a 3D computational fluid dynamic (CFD) model based on a real street canyon with different height ratios, this study formulates the impact of height ratio and wind directions on the dispersion and concentration of PM10. The results indicate that parallel flow would cause the concentration of PM10 at the end of the street canyons in all height ratios, and the trends in horizontal, vertical and lateral planes in all street canyons are similar. While in the condition of perpendicular flow, double-eddy circulations occur and lead to the concentration of PM10 in the middle part of the street canyon and leeward of backwind buildings in all height ratios. Furthermore, perpendicular flow will cause the concentration of PM10 to increase if the upwind buildings are higher than the backwind ones. This study also shows that the dispersion of PM10 is strongly associated with wind direction in and the height ratios of the street canyons. Certain measures could, therefore, be taken to prevent the impact on people in terms of the PM10 concentration and the heights of street canyons identified in this research. Potential mitigation strategies are suggested, include measurements below 4 m according to governmental regulations, dust shields, and atomized water. PMID:29522495

  12. A Computational Fluid Dynamic (CFD) Simulation of PM10 Dispersion Caused by Rail Transit Construction Activity: A Real Urban Street Canyon Model.

    Science.gov (United States)

    Wang, Yang; Zhou, Ying; Zuo, Jian; Rameezdeen, Raufdeen

    2018-03-09

    Particle emissions derived from construction activities have a significant impact on the local air quality, while the canyon effect with reduced natural ventilation contributes to the highest particulate pollution in urban environments. This study attempted to examine the effect of PM 10 emissions derived from the construction of a rail transit system in an urban street canyon. Using a 3D computational fluid dynamic (CFD) model based on a real street canyon with different height ratios, this study formulates the impact of height ratio and wind directions on the dispersion and concentration of PM 10 . The results indicate that parallel flow would cause the concentration of PM 10 at the end of the street canyons in all height ratios, and the trends in horizontal, vertical and lateral planes in all street canyons are similar. While in the condition of perpendicular flow, double-eddy circulations occur and lead to the concentration of PM 10 in the middle part of the street canyon and leeward of backwind buildings in all height ratios. Furthermore, perpendicular flow will cause the concentration of PM 10 to increase if the upwind buildings are higher than the backwind ones. This study also shows that the dispersion of PM 10 is strongly associated with wind direction in and the height ratios of the street canyons. Certain measures could, therefore, be taken to prevent the impact on people in terms of the PM 10 concentration and the heights of street canyons identified in this research. Potential mitigation strategies are suggested, include measurements below 4 m according to governmental regulations, dust shields, and atomized water.

  13. A Computational Fluid Dynamic (CFD Simulation of PM10 Dispersion Caused by Rail Transit Construction Activity: A Real Urban Street Canyon Model

    Directory of Open Access Journals (Sweden)

    Yang Wang

    2018-03-01

    Full Text Available Particle emissions derived from construction activities have a significant impact on the local air quality, while the canyon effect with reduced natural ventilation contributes to the highest particulate pollution in urban environments. This study attempted to examine the effect of PM10 emissions derived from the construction of a rail transit system in an urban street canyon. Using a 3D computational fluid dynamic (CFD model based on a real street canyon with different height ratios, this study formulates the impact of height ratio and wind directions on the dispersion and concentration of PM10. The results indicate that parallel flow would cause the concentration of PM10 at the end of the street canyons in all height ratios, and the trends in horizontal, vertical and lateral planes in all street canyons are similar. While in the condition of perpendicular flow, double-eddy circulations occur and lead to the concentration of PM10 in the middle part of the street canyon and leeward of backwind buildings in all height ratios. Furthermore, perpendicular flow will cause the concentration of PM10 to increase if the upwind buildings are higher than the backwind ones. This study also shows that the dispersion of PM10 is strongly associated with wind direction in and the height ratios of the street canyons. Certain measures could, therefore, be taken to prevent the impact on people in terms of the PM10 concentration and the heights of street canyons identified in this research. Potential mitigation strategies are suggested, include measurements below 4 m according to governmental regulations, dust shields, and atomized water.

  14. Chemical tracers of shipping emissions in a Mediterranean harbour

    Science.gov (United States)

    Viana, M.; Amato, F.; Alastuey, A.; Querol, X.; Román, A.; García, M.

    2009-04-01

    Particle emissions from transport-related activities are known as one of the most important sources contributing to the PM mass concentrations in urban environments. However, only limited information is currently available in the literature on the contribution to PM levels by specific transport related sources such as shipping emissions, even though according to the latest IPCC report (Ribeiro et al., 2007), shipping emissions are receiving increased scrutiny by international and regional regulatory agencies because of their potential impact on air quality and human health in communities downwind from major shipping lanes and ports (Dominguez et al., 2008). One of the main reasons for this lack of information is the complexity in the detection of shipping emissions, given that no specific emission tracers have so far been identified as a consequence of the vast variability of combustion fuels burnt by vessels. The city of Melilla was selected for the study of shipping emissions due to its location on the South-Western sector of the Mediterranean basin, on the Northern coast of Morocco and less than 200 km from the Gibraltar Strait (35°17´40" N, 2°56´30" W). The city covers an extension of 13.4 km2, with a population of 70000 inhabitants. The monitoring station selected for the present study is representative of urban background levels, and it is located at approximately 150 m from the Melilla harbour. The harbour is mainly characterised by commercial traffic (passanger and container), although minerals and other loose materials are also stocked on the docks located farthest away from the monitoring site. PM10, PM2.5 and PM1 levels were determined on an hourly basis between 12/01/2008 and 19/12/2008 using a GRIMM laser spectrometer, which produced more than 8000 data points for each size fraction (24000 data points in total). In addition, PM10 and PM2.5 levels were sampled on quartz fibre filter substrates (Munktell) by means of high-volume samplers (PM1025 MCV

  15. Measurement of $C\\!P$ violation in the phase space of $B^{\\pm} \\to K^{\\pm} \\pi^{+} \\pi^{-}$ and $B^{\\pm} \\to K^{\\pm} K^{+} K^{-}$ decays

    CERN Document Server

    INSPIRE-00258707; Adeva, B; Adinolfi, M; Adrover, C; Affolder, A; Ajaltouni, Z; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves Jr, A A; Amato, S; Amerio, S; Amhis, Y; Anderlini, L; Anderson, J; Andreassen, R; Andrews, J E; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Bachmann, S; Back, J J; Baesso, C; Balagura, V; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Bauer, Th; Bay, A; Beddow, J; Bedeschi, F; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bettler, M -O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Bowcock, T J V; Bowen, E; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Britsch, M; Britton, T; Brook, N H; Brown, H; Burducea, I; Bursche, A; Busetto, G; Buytaert, J; Cadeddu, S; Callot, O; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Campora Perez, D; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carranza-Mejia, H; Carson, L; Carvalho Akiba, K; Casse, G; Castillo Garcia, L; Cattaneo, M; Cauet, Ch; Cenci, R; Charles, M; Charpentier, Ph; Chen, P; Chiapolini, N; Chrzaszcz, M; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coca, C; Coco, V; Cogan, J; Cogneras, E; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Coquereau, S; Corti, G; Couturier, B; Cowan, G A; Craik, D C; Cunliffe, S; Currie, R; D'Ambrosio, C; David, P; David, P N Y; Davis, A; De Bonis, I; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Silva, W; De Simone, P; Decamp, D; Deckenhoff, M; Del Buono, L; Déléage, N; Derkach, D; Deschamps, O; Dettori, F; Di Canto, A; Di Ruscio, F; Dijkstra, H; Dogaru, M; Donleavy, S; Dordei, F; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dupertuis, F; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; van Eijk, D; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Elsby, D; Falabella, A; Färber, C; Fardell, G; Farinelli, C; Farry, S; Fave, V; Ferguson, D; Fernandez Albor, V; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fiore, M; Fitzpatrick, C; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Furcas, S; Furfaro, E; Gallas Torreira, A; Galli, D; Gandelman, M; Gandini, P; Gao, Y; Garofoli, J; Garosi, P; Garra Tico, J; Garrido, L; Gaspar, C; Gauld, R; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gibson, V; Giubega, L; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gordon, H; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Griffith, P; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hamilton, B; Hampson, T; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; Hartmann, T; He, J; Head, T; Heijne, V; Hennessy, K; Henrard, P; Hernando Morata, J A; van Herwijnen, E; Hicheur, A; Hicks, E; Hill, D; Hoballah, M; Holtrop, M; Hombach, C; Hopchev, P; Hulsbergen, W; Hunt, P; Huse, T; Hussain, N; Hutchcroft, D; Hynds, D; Iakovenko, V; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jans, E; Jaton, P; Jawahery, A; Jing, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Kaballo, M; Kandybei, S; Kanso, W; Karacson, M; Karbach, T M; Kenyon, I R; Ketel, T; Keune, A; Khanji, B; Kochebina, O; Komarov, I; Koopman, R F; Koppenburg, P; Korolev, M; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kucharczyk, M; Kudryavtsev, V; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanciotti, E; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J -P; Lefèvre, R; Leflat, A; Lefrançois, J; Leo, S; Leroy, O; Lesiak, T; Leverington, B; Li, Y; Li Gioi, L; Liles, M; Lindner, R; Linn, C; Liu, B; Liu, G; Lohn, S; Longstaff, I; Lopes, J H; Lopez-March, N; Lu, H; Lucchesi, D; Luisier, J; Luo, H; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Malde, S; Manca, G; Mancinelli, G; Marconi, U; Märki, R; Marks, J; Martellotti, G; Martens, A; Martín Sánchez, A; Martinelli, M; Martinez Santos, D; Martins Tostes, D; Massafferri, A; Matev, R; Mathe, Z; Matteuzzi, C; Maurice, E; Mazurov, A; Mc Skelly, B; McCarthy, J; McNab, A; McNulty, R; Meadows, B; Meier, F; Meissner, M; Merk, M; Milanes, D A; Minard, M -N; Molina Rodriguez, J; Monteil, S; Moran, D; Morawski, P; Mordà, A; Morello, M J; Mountain, R; Mous, I; Muheim, F; Müller, K; Muresan, R; Muryn, B; Muster, B; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Needham, M; Neubert, S; Neufeld, N; Nguyen, A D; Nguyen, T D; Nguyen-Mau, C; Nicol, M; Niess, V; Niet, R; Nikitin, N; Nikodem, T; Nomerotski, A; Novoselov, A; Oblakowska-Mucha, A; Obraztsov, V; Oggero, S; Ogilvy, S; Okhrimenko, O; Oldeman, R; Orlandea, M; Otalora Goicochea, J M; Owen, P; Oyanguren, A; Pal, B K; Palano, A; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Patrick, G N; Patrignani, C; Pavel-Nicorescu, C; Pazos Alvarez, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perez Trigo, E; Pérez-Calero Yzquierdo, A; Perret, P; Perrin-Terrin, M; Pessina, G; Petridis, K; Petrolini, A; Phan, A; Picatoste Olloqui, E; Pietrzyk, B; Pilař, T; Pinci, D; Playfer, S; Plo Casasus, M; Polci, F; Polok, G; Poluektov, A; Polycarpo, E; Popov, A; Popov, D; Popovici, B; Potterat, C; Powell, A; Prisciandaro, J; Pritchard, A; Prouve, C; Pugatch, V; Puig Navarro, A; Punzi, G; Qian, W; Rademacker, J H; Rakotomiaramanana, B; Rangel, M S; Raniuk, I; Rauschmayr, N; Raven, G; Redford, S; Reid, M M; dos Reis, A C; Ricciardi, S; Richards, A; Rinnert, K; Rives Molina, V; Roa Romero, D A; Robbe, P; Roberts, D A; Rodrigues, E; Rodriguez Perez, P; Roiser, S; Romanovsky, V; Romero Vidal, A; Rouvinet, J; Ruf, T; Ruffini, F; Ruiz, H; Ruiz Valls, P; Sabatino, G; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salustino Guimaraes, V; Salzmann, C; Sanmartin Sedes, B; Sannino, M; Santacesaria, R; Santamarina Rios, C; Santovetti, E; Sapunov, M; Sarti, A; Satriano, C; Satta, A; Savrie, M; Savrina, D; Schaack, P; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M -H; Schwemmer, R; Sciascia, B; Sciubba, A; Seco, M; Semennikov, A; Sepp, I; Serra, N; Serrano, J; Seyfert, P; Shapkin, M; Shapoval, I; Shatalov, P; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, O; Shevchenko, V; Shires, A; Silva Coutinho, R; Sirendi, M; Skwarnicki, T; Smith, N A; Smith, E; Smith, J; Smith, M; Sokoloff, M D; Soler, F J P; Soomro, F; Souza, D; Souza De Paula, B; Spaan, B; Sparkes, A; Spradlin, P; Stagni, F; Stahl, S; Steinkamp, O; Stoica, S; Stone, S; Storaci, B; Straticiuc, M; Straumann, U; Subbiah, V K; Sun, L; Swientek, S; Syropoulos, V; Szczekowski, M; Szczypka, P; Szumlak, T; T'Jampens, S; Teklishyn, M; Teodorescu, E; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Tolk, S; Tonelli, D; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Tran, M T; Tresch, M; Tsaregorodtsev, A; Tsopelas, P; Tuning, N; Ubeda Garcia, M; Ukleja, A; Urner, D; Ustyuzhanin, A; Uwer, U; Vagnoni, V; Valenti, G; Vallier, A; Van Dijk, M; Vazquez Gomez, R; Vazquez Regueiro, P; Vázquez Sierra, C; Vecchi, S; Velthuis, J J; Veltri, M; Veneziano, G; Vesterinen, M; Viaud, B; Vieira, D; Vilasis-Cardona, X; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Vorobyev, V; Voß, C; Voss, H; Waldi, R; Wallace, C; Wallace, R; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Webber, A D; Websdale, D; Whitehead, M; Wicht, J; Wiechczynski, J; Wiedner, D; Wiggers, L; Wilkinson, G; Williams, M P; Williams, M; Wilson, F F; Wimberley, J; Wishahi, J; Witek, M; Wotton, S A; Wright, S; Wu, S; Wyllie, K; Xie, Y; Xing, Z; Yang, Z; Young, R; Yuan, X; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, F; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhokhov, A; Zhong, L; Zvyagin, A

    2013-01-01

    The charmless decays $B^{\\pm}\\to K^{\\pm}\\pi^+\\pi^-$ and $B^{\\pm}\\to K^{\\pm}K^+K^-$ are reconstructed using data, corresponding to an integrated luminosity of 1.0 fb$^{-1}$, collected by LHCb in 2011. The inclusive charge asymmetries of these modes are measured as $A_{C\\!P}(B^{\\pm}\\to K^{\\pm}\\pi^+\\pi^-) = 0.032 \\pm 0.008 {\\mathrm{\\,(stat)}} \\pm 0.004 {\\mathrm{\\,(syst)}} \\pm 0.007 (J/\\psi K^{\\pm})$ and $A_{C\\!P}(B^{\\pm}\\to K^{\\pm}K^+K^-) = -0.043 \\pm 0.009 {\\mathrm{\\,(stat)}} \\pm 0.003 {\\mathrm{\\,(syst)}} \\pm 0.007 (J/\\psi K^{\\pm})$, where the third uncertainty is due to the $C\\!P$ asymmetry of the $B^{\\pm}\\to J/\\psi K^{\\pm}$ reference mode. The significance of $A_{C\\!P}(B^{\\pm}\\to K^{\\pm}K^+K^-)$ exceeds three standard deviations and is the first evidence of an inclusive $C\\!P$ asymmetry in charmless three-body $B$ decays. In addition to the inclusive $C\\!P$ asymmetries, larger asymmetries are observed in localised regions of phase space.

  16. Household air pollution and personal inhalation exposure to particles (TSP/PM2.5/PM1.0/PM0.25) in rural Shanxi, North China

    International Nuclear Information System (INIS)

    Huang, Ye; Du, Wei; Chen, Yuanchen; Shen, Guofeng; Su, Shu; Lin, Nan; Shen, Huizhong; Zhu, Dan; Yuan, Chenyi; Duan, Yonghong; Liu, Junfeng; Li, Bengang; Tao, Shu

    2017-01-01

    Personal exposure to size-segregated particles among rural residents in Shanxi, China in summer, 2011 were investigated using portable carried samplers (N = 84). Household air pollution was simultaneously studied using stationary samplers in nine homes. Information on household fuel types, cooking activity, smoking behavior, kitchen ventilation conditions etc., were also collected and discussed. The study found that even in the summer period, the daily average concentrations of PM 2.5 and PM 1.0 in the kitchen were as high as 376 ± 573 and 288 ± 397 μg/m 3 (N = 6), that were nearly 3 times of 114 ± 81 and 97 ± 77 μg/m 3 in the bedroom (N = 8), and significantly higher than those of 64 ± 28 and 47 ± 21 μg/m 3 in the outdoor air (N = 6). The personal daily exposure to PM 2.5 and PM 1.0 were 98 ± 52 and 77 ± 47 μg/m 3 , respectively, that were lower than the concentrations in the kitchen but higher than the outdoor levels. The mass fractions of PM 2.5 in TSP were 90%, 72%, 65% and 68% on average in the kitchen, bedroom, outdoor air and personal inhalation exposure, respectively, and moreover, a majority of particles in PM 2.5 had diameters less than 1.0 μm. Calculated time-weighted average exposure based on indoor and outdoor air concentrations and time spent indoor and outdoor were positively correlated but, was ∼33% lower than the directly measured exposure. The daily exposure among those burning traditional solid fuels could be lower by ∼41% if the kitchen was equipped with an outdoor chimney, but was still 8–14% higher than those household using cleaning energies, like electricity and gas. With a ventilator in the kitchen, the exposure among the population using clean energies could be further reduced by 10–24%. - Highlights: • High inhalation exposure of fine PM 2.5 and PM 1.0 among rural residents. • Smoking prevails on cooking in increasing exposure to finer particles. • PM exposure could be reduced by

  17. Gasoline reformulation to reduce exhaust emissions in Finnish conditions. Influence of sulphur and benzene contents of gasoline on exhaust emissions

    International Nuclear Information System (INIS)

    Kytoe, M.; Aakko, P.; Lappi, M.

    1994-01-01

    At earlier stages of the study it was found that the exhaust emissions from cars are reduced when using fuels with no more than 4 wt% of oxygen. At this stage of the study the work focused on impacts of the sulphur and benzene content of gasoline on exhaust emissions in Finland. Sulphur in gasoline retards the operation of the catalyst, and consequently the exhaust emissions of catalyst cars increase if the sulphur content of the fuel increases. In the present study, evaporation during refuelling were measured for fuels with varying vapour pressures and benzene contents of gasoline. The total hydrocarbon evaporation was reduced by 22 % (10 g) when the vapour pressure of gasoline was reduced from 85 kPa to 65 kPa. Correspondingly, benzene evaporation during refuelling was reduced to a third when the benzene content of the fuel was reduced from the level of 3 wt% to 1 wt%. The reduction of the sulphur content of gasoline from 500 ppm to 100 ppm affected regulated exhaust emissions from the catalyst car at +22 deg C as follows: CO emission was reduced on average by 14 % (0.175 g/km), CH emission by 7 % (0.010 g/km) and NO x emission by 9 % (0.011 g/km). At-7 deg C the percentual changes were smaller. When the benzene content of the fuel was reduced from 3 wt% to 1 wt%, the benzene emission from the catalyst cars was reduced by 20-30 % and from the non-catalyst cars on average by 30 % both at +22 deg C and -7 deg C. The benzene emission ranged 3-22 mg/km for the catalyst cars and 40-90 mg/km for the non-catalyst cars at +22 deg C in the FTP test

  18. The blue skies in Beijing during APEC 2014: A quantitative assessment of emission control efficiency and meteorological influence

    Science.gov (United States)

    Liu, Hongli; He, Jing; Guo, Jianping; Miao, Yucong; Yin, Jinfang; Wang, Yuan; Xu, Hui; Liu, Huan; Yan, Yan; Li, Yuan; Zhai, Panmao

    2017-10-01

    Most previous studies attributed the alleviation of aerosol pollution to either emission control measures or favorable meteorological conditions. However, our understanding of their quantitative contribution is far from complete. In this study, based on model simulation using the CMA (China Meteorological Administration) Unified Atmospheric Chemistry Environment for aerosols (CUACE/Aero), in combination with simultaneous ground-based hourly PM2.5 observations, we aim to quantify the relative contributions of the emission control measures and meteorology to the blue-skies seen in Beijing during the Asia-Pacific Economic Cooperation (APEC) summit held in November of 2014. A series of model simulations have been performed over Beijing-Tianjin-Hebei (BTH) region by implementing nine different emission control schemes. To investigate the relative contributions of the emission control measures and meteorology, the study period has been divided into five episodes. Overall, the CUACE/Aero model can reasonably well reproduce the temporal and spatial evolution of PM2.5 during APEC 2014, although the model performance varies by different time periods and regions of interest. Model results show the emission control measures on average reduced the PM2.5 concentration by 41.3% in urban areas of Beijing and 39.7% in Huairou district, respectively, indicating emission control plays a significant role for the blue skies observed. Among all the emission control measures under investigation, local emission control in Beijing contributed the largest to the reduction of PM2.5 concentrations with a reduction of 35.5% in urban area of Beijing and 34.8% in Huairou, in contrast with the vehicle emission control in Hebei that contributed the least with a reduction of less than 1%. The emission control efficiency in five episodes has been assessed quantitatively, which falls in the range of 36.2%-41.2% in urban area of Beijing and 34.9%-40.7% in Huairou, indicative of no significant episode

  19. Comprehensive assessment of PM2.5 physicochemical properties during the Southeast Asia dry season (southwest monsoon)

    Science.gov (United States)

    Khan, Md Firoz; Sulong, Nor Azura; Latif, Mohd Talib; Nadzir, Mohd Shahrul Mohd; Amil, Norhaniza; Hussain, Dini Fajrina Mohd; Lee, Vernon; Hosaini, Puteri Nurafidah; Shaharom, Suhana; Yusoff, Nur Amira Yasmin Mohd; Hoque, Hossain Mohammed Syedul; Chung, Jing Xiang; Sahani, Mazrura; Mohd Tahir, Norhayati; Juneng, Liew; Maulud, Khairul Nizam Abdul; Abdullah, Sharifah Mastura Syed; Fujii, Yusuke; Tohno, Susumu; Mizohata, Akira

    2016-12-01

    A comprehensive assessment of fine particulate matter (PM2.5) compositions during the Southeast Asia dry season is presented. Samples of PM2.5 were collected between 24 June and 14 September 2014 using a high-volume sampler. Water-soluble ions, trace species, rare earth elements, and a range of elemental carbon (EC) and organic carbon were analyzed. The characterization and source apportionment of PM2.5 were investigated. The results showed that the 24 h PM2.5 concentration ranged from 6.64 to 68.2 µg m-3. Meteorological driving factors strongly governed the diurnal concentration of aerosol, while the traffic in the morning and evening rush hours coincided with higher levels of CO and NO2. The correlation analysis for non sea-salt K+-EC showed that EC is potentially associated with biomass burning events, while the formation of secondary organic carbon had a moderate association with motor vehicle emissions. Positive matrix factorization (PMF) version 5.0 identified the sources of PM2.5: (i) biomass burning coupled with sea salt [I] (7%), (ii) aged sea salt and mixed industrial emissions (5%), (iii) road dust and fuel oil combustion (7%), (iv) coal-fired combustion (25%), (v) mineral dust (8%), (vi) secondary inorganic aerosol (SIA) coupled with F- (15%), and (vii) motor vehicle emissions coupled with sea salt [II] (24%). Motor vehicle emissions, SIA, and coal-fired power plant are the predominant sources contributing to PM2.5. The response of the potential source contribution function and Hybrid Single-Particle Lagrangian Integrated Trajectory backward trajectory model suggest that the outline of source regions were consistent to the sources by PMF 5.0.

  20. Improved Rice Residue Burning Emissions Estimates: Accounting for Practice-Specific Emission Factors in Air Pollution Assessments of Vietnam

    Science.gov (United States)

    Lasko, Kristofer; Vadrevu, Krishna

    2018-01-01

    In Southeast Asia and Vietnam, rice residues are routinely burned after the harvest to prepare fields for the next season. Specific to Vietnam, the two prevalent burning practices include: a). piling the residues after hand harvesting; b). burning the residues without piling, after machine harvesting. In this study, we synthesized field and laboratory studies from the literature on rice residue burning emission factors for Particulate Matter less than 2.5 microns (PM2.5). We found significant differences in the resulting burning-practice specific emission factors, with 16.9 grams per square kilogram (plus or minus 6.9) for pile burning and 8.8 grams per square kilogram (plus or minus 3.5) for non-pile burning. We calculated burning practice specific emissions based on rice area data, region-specific fuel-loading factors, combined emission factors, and estimates of burning from the literature. Our results for year 2015 estimate 180 gigagrams of PM2.5 result from the pile burning method and 130 gigagrams result from non-pile burning method, with the most-likely current emission scenario of 150 gigagrams PM2.5 emissions for Vietnam. For comparison purposes, we calculated emissions using generalized agricultural emission factors employed in global biomass burning studies. These results estimate 80 gigagrams PM2.5, which is only 44 percent of the pile burning-based estimates, suggesting underestimation in previous studies. We compare our emissions to an existing all-combustion sources inventory, results show emissions account for 14-18 percent of Vietnam's total PM2.5 depending on burning practice. Within the highly-urbanized and cloud-covered Hanoi Capital region (HCR), we use rice area from Sentinel-1A to derive spatially-explicit emissions and indirectly estimate residue burning dates. Results from HYSPLIT (Hybrid Single-Particle Lagrangian Integrated Trajectory) back-trajectory analysis stratified by season show autumn has most emission trajectories originating in

  1. Optimal learning on climate change: why climate skeptics should reduce emissions

    NARCIS (Netherlands)

    van Wijnbergen, S.; Willems, T.

    2012-01-01

    Climate skeptics argue that the possibility that global warming is exogenous implies that we should not take additional action towards reducing greenhouse gas emissions until we know more. However this paper shows that even climate skeptics have an incentive to reduce emissions: such a change of

  2. Detection of latex allergens by immunoelectron microscopy in ambient air (PM10) in Oslo, Norway (1997-2003).

    Science.gov (United States)

    Namork, Ellen; Kurup, Viswanath P; Aasvang, Gunn Marit; Johansen, Bjørn V

    2004-11-01

    The authors collected ambient air along two highways in Oslo to investigate the annual variations in particulate matter (PM10) and the presence of latex as an outdoor allergen. PMI, was monitored for a period of five years, during which time the use of studded winter tires was reduced. The presence of latex and of common aeroallergens was examined directly on the collection filters with immunoelectron microscopy visualized in a scanning electron microscope. The annual variation in PM10 was similar over the five years of sampling, with increased mass concentrations in winter. Statistical analysis indicated no major effect from the change to nonstudded tires. The most important factors influencing the PM10 concentration were meteorological parameters like wind and rain. Immnunolabeling of the filters showed latex as an outdoor allergen that adhered to carbon aggregates from vehicle emission. The results also indicated cross-reactive epitopes among the common allergens investigated, which for sensitized subjects may add to the risk of developing latex allergy.

  3. Idle emissions from heavy-duty diesel and natural gas vehicles at high altitude.

    Science.gov (United States)

    McCormick, R L; Graboski, M S; Alleman, T L; Yanowitz, J

    2000-11-01

    Idle emissions of total hydrocarbon (THC), CO, NOx, and particulate matter (PM) were measured from 24 heavy-duty diesel-fueled (12 trucks and 12 buses) and 4 heavy-duty compressed natural gas (CNG)-fueled vehicles. The volatile organic fraction (VOF) of PM and aldehyde emissions were also measured for many of the diesel vehicles. Experiments were conducted at 1609 m above sea level using a full exhaust flow dilution tunnel method identical to that used for heavy-duty engine Federal Test Procedure (FTP) testing. Diesel trucks averaged 0.170 g/min THC, 1.183 g/min CO, 1.416 g/min NOx, and 0.030 g/min PM. Diesel buses averaged 0.137 g/min THC, 1.326 g/min CO, 2.015 g/min NOx, and 0.048 g/min PM. Results are compared to idle emission factors from the MOBILE5 and PART5 inventory models. The models significantly (45-75%) overestimate emissions of THC and CO in comparison with results measured from the fleet of vehicles examined in this study. Measured NOx emissions were significantly higher (30-100%) than model predictions. For the pre-1999 (pre-consent decree) truck engines examined in this study, idle NOx emissions increased with model year with a linear fit (r2 = 0.6). PART5 nationwide fleet average emissions are within 1 order of magnitude of emissions for the group of vehicles tested in this study. Aldehyde emissions for bus idling averaged 6 mg/min. The VOF averaged 19% of total PM for buses and 49% for trucks. CNG vehicle idle emissions averaged 1.435 g/min for THC, 1.119 g/min for CO, 0.267 g/min for NOx, and 0.003 g/min for PM. The g/min PM emissions are only a small fraction of g/min PM emissions during vehicle driving. However, idle emissions of NOx, CO, and THC are significant in comparison with driving emissions.

  4. Characterization of Fine Particulate Matter (PM) and Secondary PM Precursor Gases in the Mexico City Metropolitan Area

    Energy Technology Data Exchange (ETDEWEB)

    Molina, Luisa T.; Molina, Mario J.; Volkamer, Rainer; de Foy, Benjamin; Lei, Wenfang; Zavaka, Miguel; Velasco, Erik

    2008-10-31

    This project was one of three collaborating grants funded by DOE/ASP to characterize the fine particulate matter (PM) and secondary PM precursors in the Mexico City Metropolitan Area (MCMA) during the MILAGRO Campaign. The overall effort of MCMA-2006, one of the four components, focused on i) examination of the primary emissions of fine particles and precursor gases leading to photochemical production of atmospheric oxidants and secondary aerosol particles; ii) measurement and analysis of secondary oxidants and secondary fine PM production, with particular emphasis on secondary organic aerosol (SOA), and iii) evaluation of the photochemical and meteorological processes characteristic of the Mexico City Basin. The collaborative teams pursued the goals through three main tasks: i) analyses of fine PM and secondary PM precursor gaseous species data taken during the MCMA-2002/2003 campaigns and preparation of publications; ii) planning of the MILAGRO Campaign and deployment of the instrument around the MCMA; and iii) analysis of MCMA-2006 data and publication preparation. The measurement phase of the MILAGRO Campaign was successfully completed in March 2006 with excellent participation from the international scientific community and outstanding cooperation from the Mexican government agencies and institutions. The project reported here was led by the Massachusetts Institute of Technology/Molina Center for Energy and the Environment (MIT/MCE2) team and coordinated with DOE/ASP-funded collaborators at Aerodyne Research Inc., University of Colorado at Boulder and Montana State University. Currently 24 papers documenting the findings from this project have been published. The results from the project have improved significantly our understanding of the meteorological and photochemical processes contributing to the formation of ozone, secondary aerosols and other pollutants. Key findings from the MCMA-2003 include a vastly improved speciated emissions inventory from on

  5. Seasonal variation of the metal composition in particulate matter (PM) in Graz determined with ICPMS

    International Nuclear Information System (INIS)

    Hartl, M.; Raber, G.; Goessler, W.; Licbinsky, R.; Pongratz, T.

    2009-01-01

    Full text: Graz, the 2 nd biggest city of Austria, is not only famous for its cultural heritage but is also well known as one of the most heavily air-polluted cities of Austria. Samples of particulate matter (PM 1.0 , PM 2.5 , and PM 10 ), collected in Graz over a one year period, were analyzed for 36 metals by ICPMS following microwave-assisted acid digestion. Accumulation of PM in the city (Graz is located in a basin) and additional emissions (e.g. domestic combustion) during winter caused not only higher PM concentrations but also marked changes in the PM metal composition. (author)

  6. SPECIEUROPE: The European data base for PM source profiles

    OpenAIRE

    PERNIGOTTI DENISE; BELIS CLAUDIO; SPANO' LUCA

    2015-01-01

    A database of atmospheric particulate matter emission source profiles in Europe (SPECIEUROPE) was developed by the Joint Research Center in the framework of the Forum for air quality modeling in Europe (FAIRMODE, Working Group 3). It contains the chemical composition of particulate matter (PM) emission sources reported in the scientific literature and reports drafted by competent authorities. The first release of SPECIEUROPE consists of 151 measured profiles (original), 13 composite (merging ...

  7. Gaseous and particulate emissions from rural vehicles in China

    Science.gov (United States)

    Yao, Zhiliang; Huo, Hong; Zhang, Qiang; Streets, David G.; He, Kebin

    2011-06-01

    Rural vehicles (RVs) could contribute significantly to air pollutant emissions throughout Asia due to their considerable population, extensive usage, and high emission rates, but their emissions have not been measured before and have become a major concern for the accuracy of regional and global emission inventories. In this study, we measured CO, HC, NO x and PM emissions of RVs using a combined on-board emission measurement system on real roads in China. We also compared the emission levels of the twenty RVs to those of nineteen Euro II light-duty diesel trucks (LDDTs) that we measured for previous studies. The results show that one-cylinder RVs have lower distance-based emission factors compared to LDDTs because of their smaller weight and engine power, but they have significantly higher fuel-based PM emission factors than LDDTs. Four-cylinder RVs have equivalent emission levels to LDDTs. Based on the emission factors and the activity data obtained, we estimate that the total emissions of RVs in China in 2006 were 1049 Gg of CO, 332 Gg of HC, 933 Gg of NO x, and 54 Gg of PM, contributing over 40% to national on-road diesel CO, NO x, and PM emissions. As RVs are a significant contributor to national emissions, further research work is needed to improve the accuracy of inventories at all levels, and the government should strengthen the management of RVs to facilitate both policy making and research work.

  8. Identification and quantification of shipping emissions in Bohai Rim, China

    International Nuclear Information System (INIS)

    Zhang, Fan; Chen, Yingjun; Tian, Chongguo; Wang, Xiaoping; Huang, Guopei; Fang, Yin; Zong, Zheng

    2014-01-01

    Rapid development of port and shipbuilding industry in China has badly affected the ambient air quality of coastal zone due to shipping emissions. A total of 60 ambient air samples were collected from background site of Tuoji Island in Bohai Sea strait. The air samples were analyzed for PM 2.5 , organic carbon (OC), element carbon (EC), inorganic elements, and water-soluble ions. The maximum concentration of PM 2.5 was observed during spring (73.6 μg·m −3 ) compared to winter (39.0 μg·m −3 ) with mean of 54.6 μg·m −3 . Back trajectory air mass analysis together with temporal distribution of vanadium (V) showed that V could be the typical tracer of shipping emissions at Tuoji Island. Furthermore, the ratios of vanadium to nickel (V/Ni), vanadium to lead (V/Pb) and vanadium to zinc (V/Zn) also suggest shipping emissions at Tuoji Island. The annual average primary PM 2.5 estimate of shipping emissions was 0.65 μg·m −3 at Tuoji Island, accounting for 2.94% of the total primary PM 2.5 , with a maximum of 3.16% in summer and a minimum of 2.39% in autumn. - Highlights: • Tracers of shipping emissions in coastal zone of northern China were identified. • Contributions of shipping emissions on primary PM 2.5 were estimated. • Shipping emissions accounted for 2.94% of primary PM 2.5 apart from fishing boats. • Impact of shipping emissions on coastal zone increased rapidly in recent years

  9. Recent changes in particulate air pollution over China observed from space and the ground: effectiveness of emission control.

    Science.gov (United States)

    Lin, Jintai; Nielsen, Chris P; Zhao, Yu; Lei, Yu; Liu, Yang; McElroy, Michael B

    2010-10-15

    The Chinese government has moved aggressively since 2005 to reduce emissions of a number of pollutants including primary particulate matter (PM) and sulfur dioxide (SO(2)), efforts inadvertently aided since late 2008 by economic recession. Satellite observations of aerosol optical depth (AOD) and column nitrogen dioxide (NO(2)) provide independent indicators of emission trends, clearly reflecting the sharp onset of the recession in the fall of 2008 and rebound of the economy in the latter half of 2009. Comparison of AOD with ground-based observations of PM over a longer period indicate that emission-control policies have not been successful in reducing concentrations of aerosol pollutants at smaller size range over industrialized regions of China. The lack of success is attributed to the increasing importance of anthropogenic secondary aerosols formed from precursor species including nitrogen oxides (NO(x)), non-methane volatile organic compounds (NMVOC), and ammonia (NH(3)).

  10. Ionic and carbonaceous compositions of PM10, PM2.5 and PM1.0 at Gosan ABC Superstation and their ratios as source signature

    Directory of Open Access Journals (Sweden)

    S. Kim

    2012-02-01

    Full Text Available PM1.0, PM2.5, and PM10 were sampled at Gosan ABC Superstation on Jeju Island from August 2007 to September 2008. The carbonaceous aerosols were quantified with the thermal/optical reflectance (TOR method, which produced five organic carbon (OC fractions, OC1, OC2, OC3, OC4, and pyrolyzed organic carbon (OP, and three elemental carbon (EC fractions, EC1, EC2, and EC3. The mean mass concentrations of PM1.0, PM2.5, and PM10 were 13.7 μg m−3, 17.2 μg m−3, and 28.4 μg m−3, respectively. The averaged mass fractions of OC and EC were 23.0% and 10.4% for PM1.0, 22.9% and 9.8% for PM2.5, and 16.4% and 6.0% for PM10. Among the OC and EC sub-components, OC2 and EC2+3 were enriched in the fine mode, but OC3 and OC4 in the coarse mode. The filter-based PM1.0 EC agreed well with black carbon (BC measured by an Aethalometer, and PM10 EC was higher than BC, implying less light absorption by larger particles. EC was well correlated with sulfate, resulting in good relationships of sulfate with both aerosol scattering coefficient measured by Nephelometer and BC concentration. Our measurements of EC confirmed the definition of EC1 as char-EC emitted from smoldering combustion and EC2+3 as soot-EC generated from higher-temperature combustion such as motor vehicle exhaust and coal combustion (Han et al., 2010. In particular, EC1 was strongly correlated with potassium, a traditional biomass burning indicator, except during the summer, when the ratio of EC1 to EC2+3 was the lowest. We also found the ratios of major chemical species to be a useful tool to constrain the main sources of aerosols, by which the five air masses were well distinguished: Siberia, Beijing, Shanghai, Yellow Sea, and East Sea types. Except Siberian air, the continental background of the study region, Beijing plumes showed the highest EC1 (and OP to sulfate ratio, which implies that this air mass had the highest net warming by aerosols of the four air masses. Shanghai-type air, which was

  11. Reducing the Livestock related green house gases emission

    Directory of Open Access Journals (Sweden)

    D Indira

    2012-08-01

    Full Text Available Cattle rearing generate more global warming green house gases than driving cars. These green house gases leads to changes in the climate. This climate change affects the livestock, man and natural environment continuously. For this reason it is important for livestock farmers to find the ways which minimize these gases emission. In this article the causes of climate change and effects, measures to be taken by farmers and their efficiency in reducing green house gases emission were reviewed briefly to make the farmers and students aware of the reduction of global warming green house gases and measures to be taken for reducing these gases. [Vet. World 2012; 5(4.000: 244-247

  12. PM Levels, Composition and Evolution in a Highly Industrialised Area. Objectives of Improvement

    Science.gov (United States)

    Minguillon, M. C.; Querol, X.; Alastuey, A.; Monfort, E.; Mantilla, E.; Miro, J. V.

    2007-05-01

    Evolution of levels and speciation of PM10 in the ceramic producing area of Castello (East Spain) was studied from April 2002 until December 2005. To this end, daily PM10 sampling was carried out at three urban sites and one suburban site of the area and chemical analyses were made in about 35 % of the samples. Average PM10 levels varied between 27-36 µg/m3 for the study period. The major constituent was mineral matter, exceeding by 5-12 µg/m3 the usual ranges of annual mineral loads in PM10 at similar Spanish urban or regional background sites with no industrial influence. Based on this comparison and on the efficiency of emission abatement techniques, a reduction target of 3-5 µgPM10/m3 of the annual mean seems to be achievable at the urban sites. Moreover, levels of Li, Sc, Co, Zn, As, Se, Rb, Zr, Cd, Cs, Ce, Tl and Pb were higher than the usual range of concentration in urban areas of Spain. Of these elements, Zr, Zn, Pb and As may be considered as tracers of the ceramic emissions from the study area. Their levels showed a simultaneous decrease with the progressive implementation of emission abatement techniques in frit (glaze component for the manufacture of glazed tiles) fusion kilns of the area. Given the high proportion of facilities with implemented abatement techniques at the end of the study period, the reduction margin for these elements is very low.

  13. Diesel engine performance and emission evaluation using emulsified fuels stabilized by conventional and gemini surfactants

    Energy Technology Data Exchange (ETDEWEB)

    M. Nadeem; C. Rangkuti; K. Anuar; M.R.U. Haq; I.B. Tan; S.S. Shah [Universiti Teknologi PETRONAS, Bandar Seri Iskandar (Malaysia)

    2006-10-15

    Diesel engines exhausting gaseous emission and particulate matter have long been regarded as one of the major air pollution sources, particularly in metropolitan areas, and have been a source of serious public concern for a long time. The emulsification method is not only motivated by cost reduction but is also one of the potentially effective techniques to reduce exhaust emission from diesel engines. Water/diesel (W/D) emulsified formulations are reported to reduce the emissions of NOx, SOx, CO and particulate matter (PM) without compensating the engine's performance. Emulsion fuels with varying contents of water and diesel were prepared and stabilized by conventional and gemini surfactant, respectively. Surfactant's dosage, emulsification time, stirring intensity, emulsifying temperature and mixing time have been reported. Diesel engine performance and exhaust emission was also measured and analyzed with these indigenously prepared emulsified fuels. The obtained experimental results indicate that the emulsions stabilized by gemini surfactant have much finer and better-distributed water droplets as compared to those stabilized by conventional surfactant. A comparative study involving torque, engine brake mean effective pressure (BMEP), specific fuel consumption (SFC), particulate matter (PM), NOx and CO emissions is also reported for neat diesel and emulsified formulations. It was found that there was an insignificant reduction in engine's efficiency but on the other hand there are significant benefits associated with the incorporation of water contents in diesel regarding environmental hazards. The biggest reduction in PM, NOx, CO and SOx emission was achieved by the emulsion stabilized by gemini surfactant containing 15% water contents. 34 refs., 11 figs., 1 tab.

  14. FINE PARTICULATE MATTER (PM) AND ORGANIC SPECIATION OF FIREPLACE EMISSIONS

    Science.gov (United States)

    This paper presents a summary of fireplace particle size and organic speciation data gathered to date in an on-going project. Tests are being conducted in a residential wood combustion (RWC) laboratory on three factory-built fireplaces. RWC wood smoke particles <10?m (PM10) con...

  15. Tailpipe, resuspended road dust, and brake-wear emission factors from on-road vehicles

    Science.gov (United States)

    Abu-Allaban, Mahmoud; Gillies, John A.; Gertler, Alan W.; Clayton, Russ; Proffitt, David

    Intensive mass and chemical measurements were performed at roadside locations in Reno, Nevada, and Durham/Research Triangle Park), North Carolina to derive tailpipe, resuspended road dust, and brake-wear emission factors from in-use vehicles. Continuous particulate matter (PM) data were utilized to derive total emission factors while integrated PM data were used to attribute the calculated emission factors to different mechanisms using chemical mass balance receptor modeling and scanning electron microscopy techniques. Resuspended road dust and tailpipe emissions were found to be the dominant mechanisms that contribute significantly to the total PM 10 and PM 2.5 emission factors, respectively. Small contributions from brake-wear were observed at locations where strong braking occurs, but no tire-wear was seen at any sampling location. PM 10 emission rates from light-duty spark ignition (LDSI) vehicles ranged from 40 to 780 mg/km, 10 to 70 mg/km, and 0 to 80 mg/km per vehicle for road dust, tailpipe, and brake-wear, respectively. PM 10 emission rates from heavy-duty vehicles ranged from 230 to 7800 mg/km, 60 to 570 mg/km, and 0 to 610 mg/km per vehicle for road dust, tailpipe, and brake-wear, respectively. PM 2.5 emission rates from LDSI vehicles ranged from 2 to 25 mg/km, 10 to 50 mg/km, and 0 to 5 mg/km per vehicle for road dust, tailpipe, and brake-wear, respectively. PM 2.5 emission rates from heavy-duty vehicles ranged from 15 to 300 mg/km, 60 to 480 mg/km, and 0 to 15 mg/km per vehicle for road dust, tailpipe, and brake-wear, respectively.

  16. Totally impermeable film (TIF reduces emissions in perennial crop fumigation

    Directory of Open Access Journals (Sweden)

    Suduan Gao

    2013-10-01

    Full Text Available Many perennial nursery fields and replanted orchards and vineyards in California are treated with preplant soil fumigants to control soilborne pests. In annual crops, such as strawberry, covering fumigated fields with totally impermeable film (TIF has shown promise in controlling emissions and improving fumigant distribution in soil. The objective of this research was to optimize the use of TIF for perennial crops via three field trials. TIF reduced peak emission flux and cumulative emissions by > 90% relative to polyethylene tarp during a 2-week covering period. After the TIF was cut, emissions were greatly reduced compared to when tarps were cut after 6 days. TIF maintained higher fumigant concentrations under tarp and in the soil than polyethylene film. The results indicate that TIF can increase fumigation efficiency for perennial crop growers.

  17. Simulations of the Fuel Economy and Emissions of Hybrid Transit Buses over Planned Local Routes

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Zhiming [ORNL; LaClair, Tim J [ORNL; Daw, C Stuart [ORNL; Smith, David E [ORNL; Franzese, Oscar [ORNL

    2014-01-01

    We present simulated fuel economy and emissions city transit buses powered by conventional diesel engines and diesel-hybrid electric powertrains of varying size. Six representative city drive cycles were included in the study. In addition, we included previously published aftertreatment device models for control of CO, HC, NOx, and particulate matter (PM) emissions. Our results reveal that bus hybridization can significantly enhance fuel economy by reducing engine idling time, reducing demands for accessory loads, exploiting regenerative braking, and shifting engine operation to speeds and loads with higher fuel efficiency. Increased hybridization also tends to monotonically reduce engine-out emissions, but trends in the tailpipe (post-aftertreatment) emissions involve more complex interactions that significantly depend on motor size and drive cycle details.

  18. Structuring economic incentives to reduce emissions from deforestation within Indonesia.

    Science.gov (United States)

    Busch, Jonah; Lubowski, Ruben N; Godoy, Fabiano; Steininger, Marc; Yusuf, Arief A; Austin, Kemen; Hewson, Jenny; Juhn, Daniel; Farid, Muhammad; Boltz, Frederick

    2012-01-24

    We estimate and map the impacts that alternative national and subnational economic incentive structures for reducing emissions from deforestation (REDD+) in Indonesia would have had on greenhouse gas emissions and national and local revenue if they had been in place from 2000 to 2005. The impact of carbon payments on deforestation is calibrated econometrically from the pattern of observed deforestation and spatial variation in the benefits and costs of converting land to agriculture over that time period. We estimate that at an international carbon price of $10/tCO(2)e, a "mandatory incentive structure," such as a cap-and-trade or symmetric tax-and-subsidy program, would have reduced emissions by 163-247 MtCO(2)e/y (20-31% below the without-REDD+ reference scenario), while generating a programmatic budget surplus. In contrast, a "basic voluntary incentive structure" modeled after a standard payment-for-environmental-services program would have reduced emissions nationally by only 45-76 MtCO(2)e/y (6-9%), while generating a programmatic budget shortfall. By making four policy improvements--paying for net emission reductions at the scale of an entire district rather than site-by-site; paying for reductions relative to reference levels that match business-as-usual levels; sharing a portion of district-level revenues with the national government; and sharing a portion of the national government's responsibility for costs with districts--an "improved voluntary incentive structure" would have been nearly as effective as a mandatory incentive structure, reducing emissions by 136-207 MtCO(2)e/y (17-26%) and generating a programmatic budget surplus.

  19. Structuring economic incentives to reduce emissions from deforestation within Indonesia

    Science.gov (United States)

    Busch, Jonah; Lubowski, Ruben N.; Godoy, Fabiano; Steininger, Marc; Yusuf, Arief A.; Austin, Kemen; Hewson, Jenny; Juhn, Daniel; Farid, Muhammad; Boltz, Frederick

    2012-01-01

    We estimate and map the impacts that alternative national and subnational economic incentive structures for reducing emissions from deforestation (REDD+) in Indonesia would have had on greenhouse gas emissions and national and local revenue if they had been in place from 2000 to 2005. The impact of carbon payments on deforestation is calibrated econometrically from the pattern of observed deforestation and spatial variation in the benefits and costs of converting land to agriculture over that time period. We estimate that at an international carbon price of $10/tCO2e, a “mandatory incentive structure,” such as a cap-and-trade or symmetric tax-and-subsidy program, would have reduced emissions by 163–247 MtCO2e/y (20–31% below the without-REDD+ reference scenario), while generating a programmatic budget surplus. In contrast, a “basic voluntary incentive structure” modeled after a standard payment-for-environmental-services program would have reduced emissions nationally by only 45–76 MtCO2e/y (6–9%), while generating a programmatic budget shortfall. By making four policy improvements—paying for net emission reductions at the scale of an entire district rather than site-by-site; paying for reductions relative to reference levels that match business-as-usual levels; sharing a portion of district-level revenues with the national government; and sharing a portion of the national government's responsibility for costs with districts—an “improved voluntary incentive structure” would have been nearly as effective as a mandatory incentive structure, reducing emissions by 136–207 MtCO2e/y (17–26%) and generating a programmatic budget surplus. PMID:22232665

  20. Emissions from small-scale burns of simulated deployed U.S. military waste.

    Science.gov (United States)

    Woodall, Brian D; Yamamoto, Dirk P; Gullett, Brian K; Touati, Abderrahmane

    2012-10-16

    U.S. military forces have historically relied on open burning as an expedient method of volume reduction and treatment of solid waste during the conflicts in Afghanistan and Iraq. This study is the first effort to characterize a broad range of pollutants and their emission factors during the burning of military waste and the effects that recycling efforts, namely removing plastics, might have on emissions. Piles of simulated military waste were constructed, burned, and emissions sampled at the U.S. Environmental Protection Agency (EPA) Open Burn Testing Facility (OBTF), Research Triangle Park, NC. Three tests contained polyethylene terephthalate (PET #1 or PET) plastic water bottles and four did not. Emission factors for polycyclic aromatic hydrocarbons (PAHs), volatile organic compounds (VOCs), particulate matter (PM(10), PM(2.5)), polychlorinated and polybrominated dioxins/furans (PCDD/F and PBDD/F), and criteria pollutants were determined and are contained within. The average PCDD/F emission factors were 270 ng-toxic equivalency (TEQ) per kg carbon burned (ng-TEQ/kg Cb), ranging from 35 to 780 ng-TEQ/kg Cb. Limited testing suggests that targeted removal of plastic water bottles has no apparent effect on reducing pollutants and may even promote increased emissions.

  1. Characterisation and quantification of the sources of PM10 during air pollution episodes in the UK

    International Nuclear Information System (INIS)

    Muir, David; Longhurst, J.W.S.; Tubb, A.

    2006-01-01

    Data for concentrations of PM 10 and gaseous pollutants from sites in the UK Automatic Urban and Rural Network have been examined during periods of elevated concentrations of PM 10 . The ratios of concentrations of PM 10 to those of the other pollutants were used to determine the most probable source of the additional particles. The hypothesis is that because the concentrations of PM 10 were divided by those of the other pollutants, the ratio should decrease when PM 10 and the other pollutants have a common source. Conversely, the ratio should increase when the sources are different. During episodes where road traffic was the most probable source of the additional particles, the ratios of concentrations of PM 10 to carbon monoxide and oxides of nitrogen did decrease, but the comparable ratios for sulphur dioxide and ozone increased. In contrast, during episodes known to have been caused by construction activity, all these ratios increased. This is taken to show that the basic hypothesis is valid. For prolonged episodes, it was possible to use data averaged over the total duration of the episode for the purposes of source identification. For sporadic construction, or other short-duration episodes, it was necessary to use time series data. The data have also been used to calculate the differences between hourly average concentrations of pollutants measured during episodes and long-term hourly average concentrations. These have been used to model the additional PM 10 during air pollution episodes associated with construction activities and road traffic emissions. This confirms the lack of relationship between PM 10 and other pollutants during construction works. During episodes arising from road traffic emissions, there was good agreement between measured and modelled additional concentrations of PM 10 when an appropriate factor, F, related to the contribution of road traffic emissions to PM 10 at different site types was applied. The values used were 0.2 (Suburban

  2. Field characterization of the PM2.5 Aerosol Chemical Speciation Monitor: insights into the composition, sources, and processes of fine particles in eastern China

    Science.gov (United States)

    Zhang, Yunjiang; Tang, Lili; Croteau, Philip L.; Favez, Olivier; Sun, Yele; Canagaratna, Manjula R.; Wang, Zhuang; Couvidat, Florian; Albinet, Alexandre; Zhang, Hongliang; Sciare, Jean; Prévôt, André S. H.; Jayne, John T.; Worsnop, Douglas R.

    2017-12-01

    A PM2.5-capable aerosol chemical speciation monitor (Q-ACSM) was deployed in urban Nanjing, China, for the first time to measure in situ non-refractory fine particle (NR-PM2.5) composition from 20 October to 19 November 2015, along with parallel measurements of submicron aerosol (PM1) species by a standard Q-ACSM. Our results show that the NR-PM2.5 species (organics, sulfate, nitrate, and ammonium) measured by the PM2.5-Q-ACSM are highly correlated (r2 > 0.9) with those measured by a Sunset Lab OC  /  EC analyzer and a Monitor for AeRosols and GAses (MARGA). The comparisons between the two Q-ACSMs illustrated similar temporal variations in all NR species between PM1 and PM2.5, yet substantial mass fractions of aerosol species were observed in the size range of 1-2.5 µm. On average, NR-PM1-2.5 contributed 53 % of the total NR-PM2.5, with sulfate and secondary organic aerosols (SOAs) being the two largest contributors (26 and 27 %, respectively). Positive matrix factorization of organic aerosol showed similar temporal variations in both primary and secondary OAs between PM1 and PM2.5, although the mass spectra were slightly different due to more thermal decomposition on the capture vaporizer of the PM2.5-Q-ACSM. We observed an enhancement of SOA under high relative humidity conditions, which is associated with simultaneous increases in aerosol pH, gas-phase species (NO2, SO2, and NH3) concentrations and aerosol water content driven by secondary inorganic aerosols. These results likely indicate an enhanced reactive uptake of SOA precursors upon aqueous particles. Therefore, reducing anthropogenic NOx, SO2, and NH3 emissions might not only reduce secondary inorganic aerosols but also the SOA burden during haze episodes in China.

  3. Strategies to Reduce Greenhouse Gas Emissions from Laparoscopic Surgery.

    Science.gov (United States)

    Thiel, Cassandra L; Woods, Noe C; Bilec, Melissa M

    2018-04-01

    To determine the carbon footprint of various sustainability interventions used for laparoscopic hysterectomy. We designed interventions for laparoscopic hysterectomy from approaches that sustainable health care organizations advocate. We used a hybrid environmental life cycle assessment framework to estimate greenhouse gas emissions from the proposed interventions. We conducted the study from September 2015 to December 2016 at the University of Pittsburgh (Pittsburgh, Pennsylvania). The largest carbon footprint savings came from selecting specific anesthetic gases and minimizing the materials used in surgery. Energy-related interventions resulted in a 10% reduction in carbon footprint per case but would result in larger savings for the whole facility. Commonly implemented approaches, such as recycling surgical waste, resulted in less than a 5% reduction in greenhouse gases. To reduce the environmental emissions of surgeries, health care providers need to implement a combination of approaches, including minimizing materials, moving away from certain heat-trapping anesthetic gases, maximizing instrument reuse or single-use device reprocessing, and reducing off-hour energy use in the operating room. These strategies can reduce the carbon footprint of an average laparoscopic hysterectomy by up to 80%. Recycling alone does very little to reduce environmental footprint. Public Health Implications. Health care services are a major source of environmental emissions and reducing their carbon footprint would improve environmental and human health. Facilities seeking to reduce environmental footprint should take a comprehensive systems approach to find safe and effective interventions and should identify and address policy barriers to implementing more sustainable practices.

  4. Co-Mitigation of Ozone and PM2.5 Pollution over the Beijing-Tianjin-Hebei Region

    Science.gov (United States)

    Liu, J.; Xiang, S.; Yi, K.; Tao, W.

    2017-12-01

    With the rapid industrialization and urbanization, emissions of air pollutants in China were increasing rapidly during the past few decades, causing severe particulate matter and ozone pollution in many megacities. Facing these knotty environmental problems, China has released a series of pollution control policies to mitigate air pollution emissions and optimize energy supplement structure. Consequently, fine particulate matters (PM2.5) decrease recently. However, the concentrations of ambient ozone have been increasing, especially during summer time and over megacities. In this study, we focus on the opposite trends of ozone and PM2.5 over the Beijing-Tianjin-Hebei region. We use the Weather Research and Forecasting model coupled with Chemistry (WRF/Chem) to simulate and analyze the best emission reduction strategies, and adopt the Empirical Kinetics Modeling Approach (EKMA) to depict the influences of mitigating NOx and VOCs. We also incorporate the abatement costs for NOx and VOCs in our analysis to explore the most cost-effective mitigation strategies for both ozone and PM2.5.

  5. PAH emissions from old and new types of domestic hot water boilers.

    Science.gov (United States)

    Horak, Jiri; Kubonova, Lenka; Krpec, Kamil; Hopan, Frantisek; Kubesa, Petr; Motyka, Oldrich; Laciok, Vendula; Dej, Milan; Ochodek, Tadeas; Placha, Daniela

    2017-06-01

    Five different domestic heating boilers (automatic, over-fire, with down-draft combustion and gasification) and three types of fuel (lignite, wood and mixed fuel) were examined in 25 combustion tests and correlated with the emissions of particulate matter (PM), carbon monoxide (CO), total organic carbon (TOC) and 12 polycyclic aromatic hydrocarbons (PAHs with MW = 178-278 g/mol) focusing on particle phase. However, the distribution of 12 PAHs in gas phase was considered as well due to the presence mainly of lighter PAHs in gas phase. The PAHs, as well as the CO and TOC, are the indicators of incomplete combustion, and in this study PAH emission increased significantly with increasing emissions of CO and TOC. The PAHs were mainly detected on PM 2.5 , their contents were increasing linearly with increasing PM 2.5 emissions. The highest emission factors of PAHs were measured for boilers of old construction, such as over-fire boiler (5.8-929 mg/kg) and boiler with down-draft combustion (3.1-54.1 mg/kg). Modern types of boilers produced much lower emissions of PAHs, in particular, automatic boiler (0.3-3.3 mg/kg) and gasification boilers (0.2-6.7 mg/kg). In general, the inefficient combustion at reduced output of boilers generated 1.4-17.7 times more emissions of PAHs than the combustion at nominal output of boilers. It is recommended to operate boilers at nominal output with sufficient air supply and to use the proper fuel to minimise PAHs emissions from domestic heating appliances. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Reducing Methane Emissions: The Other Climate Change Challenge

    International Nuclear Information System (INIS)

    Dessus, Benjamin; Laponche, Bernard

    2008-08-01

    Climate change studies show that it is vital to massively reduce atmospheric concentrations of greenhouse gases in the coming decades in order to limit the global average temperature rise ultimately to 2 or 3 deg. C and to prevent the occurrence of irreversible phenomena such as the melting of permafrost. To achieve these targets, climate experts construct scenarios estimating the changes in atmospheric concentrations of the different greenhouse gases, and determine the maximum levels that these concentrations should reach. Climate change policy targets are then set in terms of greenhouse gas emission reductions. In order to simplify the global assessment of the impact of emissions of these different greenhouse gases on global warming, the international community has adopted rules of equivalence to make it possible to take into account the emissions of non-CO_2 greenhouse gases within one single unit: the ton of CO_2 equivalent (t CO_2 eq). This is achieved by using the 'Global Warming Potential' (GWP) indicator which indicates the ratio of the respective climate impacts of a pulse emission of the greenhouse gas considered over a given period of time to a pulse emission of CO_2 of the same volume in the same year. A reference period of 100 years was defined and this means therefore that in terms of climate impacts, the emission of 1 ton of CH_4 is 'worth' the emission of 21 tons of CO_2. The study presented in this document shows that the widespread use of this equivalence to calculate not only past emissions, but also future emissions anticipated or emissions avoided over a period in the past or in the future, has led to the climate impact of CH_4 emissions being underestimated. This is because the GWP of CH_4 varies considerably depending on the period under consideration. This underestimation is accentuated even more if the respective impacts of avoided emissions of CO_2 and CH_4 are compared, either on a permanent basis or over a limited period of time. Thus

  7. A STRATEGIC PROGRAM TO REDUCE GREENHOUSE GASES EMISSIONS PRODUCED FROM FOOD INDUSTRY

    Energy Technology Data Exchange (ETDEWEB)

    A. Kilic [Faculty of Science, Department of Biology, University of Nigde, Nigde (Turkey); A. Midilli [Faculty of Engineering, Department of Mechanical Engineering, Nigde (Turkey); I. Dincer [Faculty of Engineering and Applied Science, University of Ontario Institute of Technology, Oshawa, ON (Canada)

    2008-09-30

    Greenhouse gases (GHGs) emissions are at every stage of conventional food production (planting, harvesting, irrigation, food production, transportation, and application of pesticides and fertilizers, etc.). In this study, a strategic program is proposed to reduce GHGs emissions resulting during conventional food production. The factors which form the basis of this strategic program are energy, environment and sustainability. The results show that the application of sustainable food processing technologies can significantly reduce GHGs emissions resulting from food industry. Moreover, minimizing the utilization of fossil-fuel energy sources and maximizing the utilization of renewable energy sources results in the reduction of GHGs emissions during food production, which in turn reduces the effect of global warming.

  8. Characterizing and sourcing ambient PM2.5 over key emission regions in China III: Carbon isotope based source apportionment of black carbon

    Science.gov (United States)

    Yu, Kuangyou; Xing, Zhenyu; Huang, Xiaofeng; Deng, Junjun; Andersson, August; Fang, Wenzheng; Gustafsson, Örjan; Zhou, Jiabin; Du, Ke

    2018-03-01

    Regional haze over China has severe implications for air quality and regional climate. To effectively combat these effects the high uncertainties regarding the emissions from different sources needs to be reduced. In this paper, which is the third in a series on the sources of PM2.5 in pollution hotspot regions of China, we focus on the sources of black carbon aerosols (BC), using carbon isotope signatures. Four-season samples were collected at two key locations: Beijing-Tianjin-Hebei (BTH, part of Northern China plain), and the Pearl River Delta (PRD). We find that that fossil fuel combustion was the predominant source of BC in both BTH and PRD regions, accounting for 75 ± 5%. However, the contributions of what fossil fuel components were dominating differed significantly between BTH and PRD, and varied dramatically with seasons. Coal combustion is overall the all-important BC source in BTH, accounting for 46 ± 12% of the BC in BTH, with the maximum value (62%) found in winter. In contrast for the PRD region, liquid fossil fuel combustion (e.g., oil, diesel, and gasoline) is the dominant source of BC, with an annual mean value of 41 ± 15% and the maximum value of 55% found in winter. Region- and season-specific source apportionments are recommended to both accurately assess the climate impact of carbonaceous aerosol emissions and to effectively mitigate deteriorating air quality caused by carbonaceous aerosols.

  9. Impacts of Mid-level Biofuel Content in Gasoline on SIDI Engine-Out and Tailpipe Particulate Matter Emissions: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    He, X.; Ireland, J. C.; Zigler, B. T.; Ratcliff, M. A.; Knoll, K. E.; Alleman, T. L.; Tester, J. T.

    2011-02-01

    The influences of ethanol and iso-butanol blended with gasoline on engine-out and post Three-Way Catalyst (TWC) particle size distribution and number concentration were studied using a GM 2.0L turbocharged Spark Ignition Direct Injection (SIDI) engine. The engine was operated using the production ECU with a dynamometer controlling the engine speed and the accelerator pedal position controlling the engine load. A TSI Fast Mobility Particle Sizer (FMPS) spectrometer was used to measure the particle size distribution in the range from 5.6 to 560 nm with a sampling rate of 1 Hz. US federal certification gasoline (E0), two ethanol-blended fuels (E10 and E20), and 11.7% iso-butanol blended fuel (BU12) were tested. Measurements were conducted at ten selected steady-state engine operation conditions. Bi-modal particle size distributions were observed for all operating conditions with peak values at particle sizes of 10 nm and 70 nm. Idle and low speed / low load conditions emitted higher total particle numbers than other operating conditions. At idle, the engine-out Particulate Matter (PM) emissions were dominated by nucleation mode particles, and the production TWC reduced these nucleation mode particles by more than 50%, while leaving the accumulation mode particle distribution unchanged. At engine load higher than 6 bar NMEP, accumulation mode particles dominated the engine-out particle emissions and the TWC had little effect. Compared to the baseline gasoline (E0), E10 does not significantly change PM emissions, while E20 and BU12 both reduce PM emissions under the conditions studied. Iso-butanol was observed to impact PM emissions more than ethanol, with up to 50% reductions at some conditions. In this paper, the issues related to PM measurement using FMPS are also discussed. While some uncertainties are due to engine variation, the FMPS must be operated under careful maintenance procedures in order to achieve repeatable measurement results.

  10. Global burden of mortalities due to chronic exposure to ambient PM2.5 from open combustion of domestic waste

    Science.gov (United States)

    Kodros, John K.; Wiedinmyer, Christine; Ford, Bonne; Cucinotta, Rachel; Gan, Ryan; Magzamen, Sheryl; Pierce, Jeffrey R.

    2016-12-01

    Uncontrolled combustion of domestic waste has been observed in many countries, creating concerns for air quality; however, the health implications have not yet been quantified. We incorporate the Wiedinmyer et al (2014 Environ. Sci. Technol. 48 9523-30) emissions inventory into the global chemical-transport model, GEOS-Chem, and provide a first estimate of premature adult mortalities from chronic exposure to ambient PM2.5 from uncontrolled combustion of domestic waste. Using the concentration-response functions (CRFs) of Burnett et al (2014 Environ. Health Perspect. 122 397-403), we estimate that waste-combustion emissions result in 270 000 (5th-95th: 213 000-328 000) premature adult mortalities per year. The confidence interval results only from uncertainty in the CRFs and assumes equal toxicity of waste-combustion PM2.5 to all other PM2.5 sources. We acknowledge that this result is likely sensitive to choice of chemical-transport model, CRFs, and emission inventories. Our central estimate equates to 9% of adult mortalities from exposure to ambient PM2.5 reported in the Global Burden of Disease Study 2010. Exposure to PM2.5 from waste combustion increases the risk of premature mortality by more than 0.5% for greater than 50% of the population. We consider sensitivity simulations to uncertainty in waste-combustion emission mass, the removal of waste-combustion emissions, and model resolution. A factor-of-2 uncertainty in waste-combustion PM2.5 leads to central estimates ranging from 138 000 to 518 000 mortalities per year for factors-of-2 reductions and increases, respectively. Complete removal of waste combustion would only avoid 191 000 (5th-95th: 151 000-224 000) mortalities per year (smaller than the total contributed premature mortalities due to nonlinear CRFs). Decreasing model resolution from 2° × 2.5° to 4° × 5° results in 16% fewer mortalities attributed to waste-combustion PM2.5, and over Asia, decreasing resolution from 0.5° × 0.666° to 2° × 2

  11. Effect of different struvite crystallization methods on gaseous emission and the comprehensive comparison during the composting.

    Science.gov (United States)

    Jiang, Tao; Ma, Xuguang; Yang, Juan; Tang, Qiong; Yi, Zhigang; Chen, Maoxia; Li, Guoxue

    2016-10-01

    This study compared 4 different struvite crystallization process (SCP) during the composting of pig feces. Four combinations of magnesium and phosphate salts (H3PO4+MgO (PMO), KH2PO4+MgSO4 (KPM), Ca(H2PO4)2+MgSO4 (CaPM), H3PO4+MgSO4 (PMS)) were assessed and were also compared to a control group (CK) without additives. The magnesium and phosphate salts were all supplemented at a level equivalent to 15% of the initial nitrogen content on a molar basis. The SCP significantly reduced NH3 emission by 50.7-81.8%, but not the N2O. Although PMS group had the lowest NH3 emission rate, the PMO treatment had the highest struvite content in the end product. The addition of sulphate decreased CH4 emission by 60.8-74.6%. The CaPM treatment significantly decreased NH3 (59.2%) and CH4 (64.9%) emission and yielded compost that was completely matured. Due to its effective performance and low cost, the CaPM was suggested to be used in practice. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Identification and quantification of shipping emissions in Bohai Rim, China

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Fan [Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Chen, Yingjun, E-mail: yjchen@yic.ac.cn [Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003 (China); Tian, Chongguo, E-mail: cgtian@yic.ac.cn [Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003 (China); Wang, Xiaoping [University of Chinese Academy of Sciences, Beijing 100049 (China); State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, Guangdong 510640 (China); Huang, Guopei; Fang, Yin; Zong, Zheng [Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003 (China); University of Chinese Academy of Sciences, Beijing 100049 (China)

    2014-11-01

    Rapid development of port and shipbuilding industry in China has badly affected the ambient air quality of coastal zone due to shipping emissions. A total of 60 ambient air samples were collected from background site of Tuoji Island in Bohai Sea strait. The air samples were analyzed for PM{sub 2.5}, organic carbon (OC), element carbon (EC), inorganic elements, and water-soluble ions. The maximum concentration of PM{sub 2.5} was observed during spring (73.6 μg·m{sup −3}) compared to winter (39.0 μg·m{sup −3}) with mean of 54.6 μg·m{sup −3}. Back trajectory air mass analysis together with temporal distribution of vanadium (V) showed that V could be the typical tracer of shipping emissions at Tuoji Island. Furthermore, the ratios of vanadium to nickel (V/Ni), vanadium to lead (V/Pb) and vanadium to zinc (V/Zn) also suggest shipping emissions at Tuoji Island. The annual average primary PM{sub 2.5} estimate of shipping emissions was 0.65 μg·m{sup −3} at Tuoji Island, accounting for 2.94% of the total primary PM{sub 2.5}, with a maximum of 3.16% in summer and a minimum of 2.39% in autumn. - Highlights: • Tracers of shipping emissions in coastal zone of northern China were identified. • Contributions of shipping emissions on primary PM{sub 2.5} were estimated. • Shipping emissions accounted for 2.94% of primary PM{sub 2.5} apart from fishing boats. • Impact of shipping emissions on coastal zone increased rapidly in recent years.

  13. Assessment of the long-term impacts of PM10 and PM2.5 particles from construction works on surrounding areas.

    Science.gov (United States)

    Azarmi, Farhad; Kumar, Prashant; Marsh, Daniel; Fuller, Gary

    2016-02-01

    Construction activities are common across cities; however, the studies assessing their contribution to airborne PM10 (≤10 μm) and PM2.5 (≤2.5 μm) particles on the surrounding air quality are limited. Herein, we assessed the impact of PM10 and PM2.5 arising from construction works in and around London. Measurements were carried out at 17 different monitoring stations around three construction sites between January 2002 and December 2013. Tapered element oscillating microbalance (TEOM 1400) and OSIRIS (2315) particle monitors were used to measure the PM10 and PM2.5 fractions in the 0.1-10 μm size range along with the ambient meteorological data. The data was analysed using bivariate concentration polar plots and k-means clustering techniques. Daily mean concentrations of PM10 were found to exceed the European Union target limit value of 50 μg m(-3) at 11 monitoring stations but remained within the allowable 35 exceedences per year, except at two monitoring stations. In general, construction works were found to influence the downwind concentrations of PM10 relatively more than PM2.5. Splitting of the data between working (0800-1800 h; local time) and non-working (1800-0800 h) periods showed about 2.2-fold higher concentrations of PM10 during working hours when compared with non-working hours. However, these observations did not allow to conclude that this increase was from the construction site emissions. Together, the polar concentration plots and the k-means cluster analysis applied to a pair of monitoring stations across the construction sites (i.e. one in upwind and the other in downwind) confirmed the contribution of construction sources on the measured concentrations. Furthermore, pairing the monitoring stations downwind of the construction sites showed a logarithmic decrease (with R(2) about 0.9) in the PM10 and PM2.5 concentration with distance. Our findings clearly indicate an impact of construction activities on the nearby downwind areas and a need

  14. Impacts of emission reduction and meteorological conditions on air quality improvement during the 2014 Youth Olympic Games in Nanjing, China

    Directory of Open Access Journals (Sweden)

    Q. Huang

    2017-11-01

    Full Text Available As the holding city of the 2nd Youth Olympic Games (YOG, Nanjing is highly industrialized and urbanized, and faces several air pollution issues. In order to ensure better air quality during the event, the local government took great efforts to control the emissions from pollutant sources. However, air quality can still be affected by synoptic weather, not only emission. In this paper, the influences of meteorological factors and emission reductions were investigated using observational data and numerical simulations with WRF–CMAQ (Weather Research and Forecasting – Community Multiscale Air Quality. During the month in which the YOG were held (August 2014, the observed hourly mean concentrations of SO2, NO2, PM10, PM2.5, CO and O3 were 11.6 µg m−3, 34.0 µg m−3, 57.8 µg m−3, 39.4 µg m−3, 0.9 mg m−3 and 38.8 µg m−3, respectively, which were below China National Ambient Air Quality Standard (level 2. However, model simulation showed that the weather conditions, such as weaker winds during the YOG, were adverse for better air quality and could increase SO2, NO2, PM10, PM2.5 and CO by 17.5, 16.9, 18.5, 18.8, 7.8 and 0.8 %. Taking account of local emission abatement only, the simulated SO2, NO2, PM10, PM2.5 and CO decreased by 24.6, 12.1, 15.1, 8.1 and 7.2 %. Consequently, stringent emission control measures can reduce the concentrations of air pollutants in the short term, and emission reduction is very important for air quality improvement during the YOG. A good example has been set for air quality protection for important social events.

  15. Impacts of emission reduction and meteorological conditions on air quality improvement during the 2014 Youth Olympic Games in Nanjing, China

    Science.gov (United States)

    Huang, Qian; Wang, Tijian; Chen, Pulong; Huang, Xiaoxian; Zhu, Jialei; Zhuang, Bingliang

    2017-11-01

    As the holding city of the 2nd Youth Olympic Games (YOG), Nanjing is highly industrialized and urbanized, and faces several air pollution issues. In order to ensure better air quality during the event, the local government took great efforts to control the emissions from pollutant sources. However, air quality can still be affected by synoptic weather, not only emission. In this paper, the influences of meteorological factors and emission reductions were investigated using observational data and numerical simulations with WRF-CMAQ (Weather Research and Forecasting - Community Multiscale Air Quality). During the month in which the YOG were held (August 2014), the observed hourly mean concentrations of SO2, NO2, PM10, PM2.5, CO and O3 were 11.6 µg m-3, 34.0 µg m-3, 57.8 µg m-3, 39.4 µg m-3, 0.9 mg m-3 and 38.8 µg m-3, respectively, which were below China National Ambient Air Quality Standard (level 2). However, model simulation showed that the weather conditions, such as weaker winds during the YOG, were adverse for better air quality and could increase SO2, NO2, PM10, PM2.5 and CO by 17.5, 16.9, 18.5, 18.8, 7.8 and 0.8 %. Taking account of local emission abatement only, the simulated SO2, NO2, PM10, PM2.5 and CO decreased by 24.6, 12.1, 15.1, 8.1 and 7.2 %. Consequently, stringent emission control measures can reduce the concentrations of air pollutants in the short term, and emission reduction is very important for air quality improvement during the YOG. A good example has been set for air quality protection for important social events.

  16. Urban aerosol in Oporto, Portugal: Chemical characterization of PM10 and PM2.5

    Science.gov (United States)

    Custódio, Danilo; Ferreira, Catarina; Alves, Célia; Duarte, Mácio; Nunes, Teresa; Cerqueira, Mário; Pio, Casimiro; Frosini, Daniele; Colombi, Cristina; Gianelle, Vorne; Karanasiou, Angeliki; Querol, Xavier

    2014-05-01

    Several urban and industrial areas in Southern Europe are not capable of meeting the implemented EU standards for particulate matter. Efficient air quality management is required in order to ensure that the legal limits are not exceeded and that the consequences of poor air quality are controlled and minimized. Many aspects of the direct and indirect effects of suspended particulate matter on climate and public health are not well understood. The temporal variation of the chemical composition is still demanded, since it enables to adopt off-set strategies and to better estimate the magnitude of anthropogenic forcing on climate. This study aims to provide detailed information on concentrations and chemical composition of aerosol from Oporto city, an urban center in Southern Europe. This city is located near the coast line in the North of Portugal, being the country's second largest urban area. Moreover, Oporto city economic prospects depend heavily on a diversified industrial park, which contribute to air quality degradation. Another strong source of air pollution is traffic. The main objectives of this study are: 1) to characterize the chemical composition of PM10 and PM2.5 by setting up an orchestra of aerosol sampling devices in a strategic place in Oporto; 2) to identify the sources of particles exploring parameters such as organic and inorganic markers (e.g. sugars as tracers for biomass burning; metals and elemental carbon for industrial and vehicular emissions); 3) to evaluate long range transport of pollutants using back trajectory analysis. Here we present data obtained between January 2013 and January 2014 in a heavy traffic roadside sampling site located in the city center. Different PM10 and PM2.5 samplers were operated simultaneously in order to collect enough mass on different filter matrixes and to fulfill the requirements of analytical methodologies. More than 100 aerosol samples were collected and then analysed for their mass concentration and

  17. RESPIRATORY EFFECTS OF INHALED METAL-RICH PARTICULATE MATTER (PM) IN RATS: INFLUENCE OF SYSTEMIC ANTIOXIDANT DEPLETION

    Science.gov (United States)

    Metal-mediated generation of reactive oxygen species and resultant oxidative stress has been implicated in the pathogenesis of emission-source PM toxicity. We hypothesized that inducing an antioxidant deficit prior to inhalation of metal-rich PM would worsen adverse health outcom...

  18. PMF and PSCF based source apportionment of PM2.5 at a regional background site in North China

    Science.gov (United States)

    Zong, Zheng; Wang, Xiaoping; Tian, Chongguo; Chen, Yingjun; Fu, Shanfei; Qu, Lin; Ji, Ling; Li, Jun; Zhang, Gan

    2018-05-01

    To apportion regional PM2.5 (atmospheric particles with aerodynamic diameter water-soluble ions and inorganic elements, various approaches, such as Mann-Kendall test, chemical mass closure, ISORROPIA II model, Positive Matrix Factorization (PMF) linked with Potential Source Contribution Function (PSCF), were used to explore the PM2.5 speciation, sources, and source regions. Consequently, distinct seasonal variations of PM2.5 and its main species were found and could be explained by varying emission source characteristics. Based on PMF model, seven source factors for PM2.5 were identified, which were coal combustion + biomass burning, vehicle emission, mineral dust, ship emission, sea salt, industry source, refined chrome industry with the contribution of 48.21%, 30.33%, 7.24%, 6.63%, 3.51%, 3.2%, and 0.88%, respectively. In addition, PSCF analysis using the daily contribution of each factor from PMF result suggested that Shandong peninsula and Hebei province were identified as the high potential region for coal combustion + biomass burning; Beijing-Tianjin-Hebei (BTH) region was the main source region for industry source; Bohai Sea and East China Sea were found to be of high source potential for ship emission; Geographical region located northwest of BH Island was possessed of high probability for sea salt; Mineral dust presumably came from the region of Mongolia; Refined chrome industry mostly came from Liaoning, Jilin province; The vehicle emission was primarily of BTH region origin, centring on metropolises, such as Beijing and Tianjin. These results provided precious implications for PM2.5 control strategies in North China.

  19. Examining the Efforts of a Small, Open Economy to Reduce Carbon Emissions

    DEFF Research Database (Denmark)

    Levitt, Clinton J.; Saaby Pedersen, Morten; Sørensen, Anders

    2015-01-01

    emissions by relatively small, open economies. Although, these economies are small players in international markets, international trade has an important influence on their economies. Investigating the outcome of efforts to curb emissions by these small, open economies provides insights into the situation...... faced by a large set of the world's economies. This paper has three objectives: (1) investigate the outcome of Denmark's efforts to reduce its carbon emissions by characterizing the relationship between Denmark's macroeconomic activity and carbon emissions; (2) determine the carbon content of Danish...... trade and document the important effects that growing trade with China has had on Danish consumption emissions; and (3), investigate the robustness of measures of consumption emissions under varying information requirements. Our analysis of the outcomes of Danish efforts to reduce carbon emissions...

  20. Geochemistry and carbon isotopic ratio for assessment of PM10 composition, source and seasonal trends in urban environment.

    Science.gov (United States)

    Di Palma, A; Capozzi, F; Agrelli, D; Amalfitano, C; Giordano, S; Spagnuolo, V; Adamo, P

    2018-08-01

    Investigating the nature of PM 10 is crucial to differentiate sources and their relative contributions. In this study we compared the levels, and the chemical and mineralogical properties of PM 10 particles sampled in different seasons at monitoring stations representative of urban background, urban traffic and suburban traffic areas of Naples city. The aims were to relate the PM 10 load and characteristics to the location of the monitoring stations, to investigate the different sources contributing to PM 10 and to highlight PM 10 seasonal variability. Bulk analyses of chemical species in the PM 10 fraction included total carbon and nitrogen, δ 13 C and other 20 elements. Both natural and anthropogenic sources were found to contribute to the exceedances of the EU PM 10 limit values. The natural contribution was mainly related to marine aerosols and soil dust, as highlighted by X-ray diffractometry and SEM-EDS microscopy. The percentage of total carbon suggested a higher contribution of biogenic components to PM 10 in spring. However, this result was not supported by the δ 13 C values which were seasonally homogeneous and not sufficient to extract single emission sources. No significant differences, in terms of PM 10 load and chemistry, were observed between monitoring stations with different locations, suggesting a homogeneous distribution of PM 10 on the studied area in all seasons. The anthropogenic contribution to PM 10 seemed to dominate in all sites and seasons with vehicular traffic acting as a main source mostly by generation of non-exhaust emissions Our findings reinforce the need to focus more on the analysis of PM 10 in terms of quality than of load, to reconsider the criteria for the classification and the spatial distribution of the monitoring stations within urban and suburban areas, with a special attention to the background location, and to emphasize all the policies promoting sustainable mobility and reduction of both exhaust and not

  1. Oxidative potential of ambient PM2.5 in the coastal cities of the Bohai Sea, northern China: Seasonal variation and source apportionment.

    Science.gov (United States)

    Liu, WeiJian; Xu, YunSong; Liu, WenXin; Liu, QingYang; Yu, ShuangYu; Liu, Yang; Wang, Xin; Tao, Shu

    2018-05-01

    Emissions of air pollutants from primary and secondary sources in China are considerably higher than those in developed countries, and exposure to air pollution is main risk of public health. Identifying specific particulate matter (PM) compositions and sources are essential for policy makers to propose effective control measures for pollutant emissions. Ambient PM 2.5 samples covered a whole year were collected from three coastal cities of the Bohai Sea. Oxidative potential (OP) was selected as the indicator to characterize associated PM compositions and sources most responsible for adverse impacts on human health. Positive matrix factorization (PMF) and multiple linear regression (MLR) were employed to estimate correlations of PM 2.5 sources with OP. The volume- and mass-based dithiothreitol (DTT v and DTT m ) activities of PM 2.5 were significantly higher in local winter or autumn (p  0.700, p water-soluble organic carbon (WSOC) and some transition metals. Using PMF, source fractions of PM 2.5 were resolved as secondary source, traffic source, biomass burning, sea spray and urban dust, industry, coal combustion, and mineral dust. Further quantified by MLR, coal combustion, biomass burning, secondary sources, industry, and traffic source were dominant contributors to the water-soluble DTT v activity. Our results also suggested large differences in seasonal contributions of different sources to DTT v variability. A higher contribution of DTT v was derived from coal combustion during the local heating period. Secondary sources exhibited a greater fraction of DTT v in summer, when there was stronger solar radiation. Traffic sources exhibited a prevailing contribution in summer, and industry contributed larger proportions in spring and winter. Future abatement priority of air pollution should reduce the sources contributing to OP of PM 2.5 . Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Experimental investigation on regulated and unregulated emissions of a diesel/methanol compound combustion engine with and without diesel oxidation catalyst.

    Science.gov (United States)

    Zhang, Z H; Cheung, C S; Chan, T L; Yao, C D

    2010-01-15

    The use of methanol in combination with diesel fuel is an effective measure to reduce particulate matter (PM) and nitrogen oxides (NOx) emissions from in-use diesel vehicles. In this study, a diesel/methanol compound combustion (DMCC) scheme was proposed and a 4-cylinder naturally-aspirated direct-injection diesel engine modified to operate on the proposed combustion scheme. The effect of DMCC and diesel oxidation catalyst (DOC) on the regulated emissions of total hydrocarbons (THC), carbon monoxide (CO), NOx and PM was investigated based on the Japanese 13 Mode test cycle. Certain unregulated emissions, including methane, ethyne, ethene, 1,3-butadiene, BTX (benzene, toluene, xylene), unburned methanol and formaldehyde were also evaluated based on the same test cycle. In addition, the soluble organic fraction (SOF) in the particulate and the particulate number concentration and size distribution were investigated at certain selected modes of operation. The results show that the DMCC scheme can effectively reduce NOx, particulate mass and number concentrations, ethyne, ethene and 1,3-butadiene emissions but significantly increase the emissions of THC, CO, NO(2), BTX, unburned methanol, formaldehyde, and the proportion of SOF in the particles. After the DOC, the emission of THC, CO, NO(2), as well as the unregulated gaseous emissions, can be significantly reduced when the exhaust gas temperature is sufficiently high while the particulate mass concentration is further reduced due to oxidation of the SOF. Copyright 2009 Elsevier B.V. All rights reserved.

  3. Reducing CO2 emissions and energy consumption of heat-integrated distillation systems.

    Science.gov (United States)

    Gadalla, Mamdouh A; Olujic, Zarko; Jansens, Peter J; Jobson, Megan; Smith, Robin

    2005-09-01

    Distillation systems are energy and power intensive processes and contribute significantly to the greenhouse gases emissions (e.g. carbon dioxide). Reducing CO2 emissions is an absolute necessity and expensive challenge to the chemical process industries in orderto meetthe environmental targets as agreed in the Kyoto Protocol. A simple model for the calculation of CO2 emissions from heat-integrated distillation systems is introduced, considering typical process industry utility devices such as boilers, furnaces, and turbines. Furnaces and turbines consume large quantities of fuels to provide electricity and process heats. As a result, they produce considerable amounts of CO2 gas to the atmosphere. Boilers are necessary to supply steam for heating purposes; besides, they are also significant emissions contributors. The model is used in an optimization-based approach to optimize the process conditions of an existing crude oil atmospheric tower in order to reduce its CO2 emissions and energy demands. It is also applied to generate design options to reduce the emissions from a novel internally heat-integrated distillation column (HIDiC). A gas turbine can be integrated with these distillation systems for larger emissions reduction and further energy savings. Results show that existing crude oil installations can save up to 21% in energy and 22% in emissions, when the process conditions are optimized. Additionally, by integrating a gas turbine, the total emissions can be reduced further by 48%. Internal heat-integrated columns can be a good alternative to conventional heat pump and other energy intensive close boiling mixtures separations. Energy savings can reach up to 100% with respect to reboiler heat requirements. Emissions of these configurations are cut down by up to 83%, compared to conventional units, and by 36%, with respect to heat pump alternatives. Importantly, cost savings and more profit are gained in parallel to emissions minimization.

  4. Evaluation of PM-10 commercial inlets for new surveillance air sampler

    International Nuclear Information System (INIS)

    Langer, G.

    1986-01-01

    The inlet for the present Rock Flats Plant surveillance sampler does not meet the new but still tentative PM-10 (<10-μm particle mass) criterion for sampling the hazardous fraction of airborne dust. Since this criterion relates mainly to non-radioactive emissions, DOE and EPA are presently in the process of promulgating emission guidelines specifically for non-reactor DOE nuclear facilities. The authors present approach is to select a commercial inlet and modify its, if necessary, to meet the PM-10 criterion, keeping in mind that they may have to recover the dust collected in the inlet. There is no EPA-approved PM-10 inlet design; instead, EPA issued a performance specification. As a nuclear operation, Rocky Flats has to sample continuously to ensure no period remains unmonitored, instead of every sixth day, as set forth by EPA for non-nuclear installations. During this study period, the authors developed an inlet evaluation methodology to meet the above, anticipated EPA requirements. Also, they started testing two potential inlets. 6 references, 2 figures, 1 table

  5. Winter mass concentrations of carbon species in PM10, PM 2.5 and PM1 in Zagreb air, Croatia.

    Science.gov (United States)

    Godec, Ranka; Čačković, Mirjana; Šega, Krešimir; Bešlić, Ivan

    2012-11-01

    The purpose of our investigation was to examine the mass concentrations of EC, OC and TC (EC + OC) in PM(10), PM(2.5) and PM(1) particle fractions. Daily PM(10), PM(2.5) and PM(1) samples were collected at an urban background monitoring site in Zagreb during winter 2009. Average OC and EC mass concentrations were 11.9 and 1.8 μg m(-3) in PM(10), 9.0 and 1.4 μg m(-3) in PM(2.5), and 5.5 and 1.1 μg m(-3) in PM(1). Average OC/EC ratios in PM(10), PM(2.5), and PM(1) were 7.4, 6.9 and 5.4, respectively.

  6. Methane, a greenhouse gas: measures to reduce and valorize anthropogenic emissions

    International Nuclear Information System (INIS)

    2010-03-01

    This report first presents the greenhouse effect properties of methane (one of the six gases the emissions of which must be reduced according to the Kyoto protocol), comments the available data on methane emission assessment in the World, in Europe and in France, and outlines the possibilities of improvement of data and indicators on a short and middle term. It describes how methane can be captured and valorized, indicates the concerned quantities. Notably, it discussed the management of methane generating and spreading practices (from waste water treatment, from domestic wastes), how to reduce methane emissions in agriculture. It finally proposes elements aimed at elaborating a national and international policy regarding methane emission reductions

  7. Black carbon cookstove emissions: A field assessment of 19 stove/fuel combinations

    Science.gov (United States)

    Garland, Charity; Delapena, Samantha; Prasad, Rajendra; L'Orange, Christian; Alexander, Donee; Johnson, Michael

    2017-11-01

    Black carbon (BC) emissions from household cookstoves consuming solid fuel produce approximately 25 percent of total anthropogenic BC emissions. The short atmospheric lifetime of BC means that reducing BC emissions would result in a faster climate response than mitigating CO2 and other long-lived greenhouse gases. This study presents the results of optical BC measurements of two new cookstove emissions field assessments and 17 archived cookstove datasets. BC was determined from attenuation of 880 nm light, which is strongly absorbed by BC, and linearly related between 1 and 125 attenuation units. A relationship was experimentally determined correlating BC mass deposition on quartz filters determined via thermal optical analysis (TOA) and on PTFE and quartz filters using transmissometry, yielding an attenuation cross-section (σATN) for both filter media types. σATN relates TOA measurements to optical measurements on PTFE and quartz (σATN(PTFE) = 13.7 cm-2 μg, R2 = 0.87, σATN(Quartz) = 15.6 cm-2 μg, R2 = 0.87). These filter-specific σATN, optical measurements of archived filters were used to determine BC emission factors and the fraction of particulate matter (PM) in the form of black carbon (BC/PM). The 19 stoves measured fell into five stove classes; simple wood, rocket, advanced biomass, simple charcoal, and advanced charcoal. Advanced biomass stoves include forced- and natural-draft gasifiers which use wood or biomass pellets as fuel. Of these classes, the simple wood and rocket stoves demonstrated the highest median BC emission factors, ranging from 0.051 to 0.14 g MJ-1. The lowest BC emission factors were seen in charcoal stoves, which corresponds to the generally low PM emission factors observed during charcoal combustion, ranging from 0.0084 to 0.014 g MJ-1. The advanced biomass stoves generally showed an improvement in BC emissions factors compared to simple wood and rocket stoves, ranging from 0.0031 to 0.071 g MJ-1. BC/PM ratios were highest for the

  8. Measurements of the branching fractions and $C\\!P$ asymmetries of $B^{\\pm} \\to J\\!/\\!\\psi\\, \\pi^{\\pm}$ and $B^{\\pm} \\to \\psi(2S) \\pi^{\\pm}$ decays

    CERN Document Server

    Aaij, R; Adeva, B; Adinolfi, M; Adrover, C; Affolder, A; Ajaltouni, Z; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves Jr, A A; Amato, S; Amhis, Y; Anderson, J; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Bachmann, S; Back, J J; Balagura, V; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Bates, A; Bauer, C; Bauer, Th; Bay, A; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Benayoun, M; Bencivenni, G; Benson, S; Benton, J; Bernet, R; Bettler, M-O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blanks, C; Blouw, J; Blusk, S; Bobrov, A; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Bowcock, T J V; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Britsch, M; Britton, T; Brook, N H; Brown, H; Büchler-Germann, A; Burducea, I; Bursche, A; Buytaert, J; Cadeddu, S; Callot, O; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carson, L; Carvalho Akiba, K; Casse, G; Cattaneo, M; Cauet, Ch; Charles, M; Charpentier, Ph; Chiapolini, N; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coca, C; Coco, V; Cogan, J; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Corti, G; Couturier, B; Cowan, G A; Currie, R; D'Ambrosio, C; David, P; David, P N Y; De Bonis, I; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Simone, P; Decamp, D; Deckenhoff, M; Degaudenzi, H; Del Buono, L; Deplano, C; Derkach, D; Deschamps, O; Dettori, F; Dickens, J; Dijkstra, H; Diniz Batista, P; Domingo Bonal, F; Donleavy, S; Dordei, F; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dupertuis, F; Dzhelyadin, R; Dziurda, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; van Eijk, D; Eisele, F; Eisenhardt, S; Ekelhof, R; Eklund, L; Elsasser, Ch; Elsby, D; Esperante Pereira, D; Falabella, A; Färber, C; Fardell, G; Farinelli, C; Farry, S; Fave, V; Fernandez Albor, V; Ferro-Luzzi, M; Filippov, S; Fitzpatrick, C; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Furcas, S; Gallas Torreira, A; Galli, D; Gandelman, M; Gandini, P; Gao, Y; Garnier, J-C; Garofoli, J; Garra Tico, J; Garrido, L; Gascon, D; Gaspar, C; Gauld, R; Gauvin, N; Gersabeck, M; Gershon, T; Ghez, Ph; Gibson, V; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gordon, H; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hampson, T; Hansmann-Menzemer, S; Harji, R; Harnew, N; Harrison, J; Harrison, P F; Hartmann, T; He, J; Heijne, V; Hennessy, K; Henrard, P; Hernando Morata, J A; van Herwijnen, E; Hicks, E; Holubyev, K; Hopchev, P; Hulsbergen, W; Hunt, P; Huse, T; Huston, R S; Hutchcroft, D; Hynds, D; Iakovenko, V; Ilten, P; Imong, J; Jacobsson, R; Jaeger, A; Jahjah Hussein, M; Jans, E; Jansen, F; Jaton, P; Jean-Marie, B; Jing, F; John, M; Johnson, D; Jones, C R; Jost, B; Kaballo, M; Kandybei, S; Karacson, M; Karbach, T M; Keaveney, J; Kenyon, I R; Kerzel, U; Ketel, T; Keune, A; Khanji, B; Kim, Y M; Knecht, M; Koopman, R F; Koppenburg, P; Korolev, M; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kruzelecki, K; Kucharczyk, M; Kudryavtsev, V; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanciotti, E; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J-P; Lefèvre, R; Leflat, A; Lefrançois, J; Leroy, O; Lesiak, T; Li, L; Li Gioi, L; Lieng, M; Liles, M; Lindner, R; Linn, C; Liu, B; Liu, G; von Loeben, J; Lopes, J H; Lopez Asamar, E; Lopez-March, N; Lu, H; Luisier, J; Mac Raighne, A; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Magnin, J; Malde, S; Mamunur, R M D; Manca, G; Mancinelli, G; Mangiafave, N; Marconi, U; Märki, R; Marks, J; Martellotti, G; Martens, A; Martin, L; Martín Sánchez, A; Martinelli, M; Martinez Santos, D; Massafferri, A; Mathe, Z; Matteuzzi, C; Matveev, M; Maurice, E; Maynard, B; Mazurov, A; McGregor, G; McNulty, R; Meissner, M; Merk, M; Merkel, J; Miglioranzi, S; Milanes, D A; Minard, M-N; Molina Rodriguez, J; Monteil, S; Moran, D; Morawski, P; Mountain, R; Mous, I; Muheim, F; Müller, K; Muresan, R; Muryn, B; Muster, B; Mylroie-Smith, J; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Needham, M; Neufeld, N; Nguyen, A D; Nguyen-Mau, C; Nicol, M; Niess, V; Nikitin, N; Nikodem, T; Nomerotski, A; Novoselov, A; Oblakowska-Mucha, A; Obraztsov, V; Oggero, S; Ogilvy, S; Okhrimenko, O; Oldeman, R; Orlandea, M; Otalora Goicochea, J M; Owen, P; Pal, B K; Palacios, J; Palano, A; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Paterson, S K; Patrick, G N; Patrignani, C; Pavel-Nicorescu, C; Pazos Alvarez, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perego, D L; Perez Trigo, E; Pérez-Calero Yzquierdo, A; Perret, P; Perrin-Terrin, M; Pessina, G; Petrolini, A; Phan, A; Picatoste Olloqui, E; Pie Valls, B; Pietrzyk, B; Pilař, T; Pinci, D; Plackett, R; Playfer, S; Plo Casasus, M; Polok, G; Poluektov, A; Polycarpo, E; Popov, D; Popovici, B; Potterat, C; Powell, A; Prisciandaro, J; Pugatch, V; Puig Navarro, A; Qian, W; Rademacker, J H; Rakotomiaramanana, B; Rangel, M S; Raniuk, I; Raven, G; Redford, S; Reid, M M; dos Reis, A C; Ricciardi, S; Richards, A; Rinnert, K; Roa Romero, D A; Robbe, P; Rodrigues, E; Rodrigues, F; Rodriguez Perez, P; Rogers, G J; Roiser, S; Romanovsky, V; Rosello, M; Rouvinet, J; Ruf, T; Ruiz, H; Sabatino, G; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salzmann, C; Sannino, M; Santacesaria, R; Santamarina Rios, C; Santinelli, R; Santovetti, E; Sapunov, M; Sarti, A; Satriano, C; Satta, A; Savrie, M; Savrina, D; Schaack, P; Schiller, M; Schindler, H; Schleich, S; Schlupp, M; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Seco, M; Semennikov, A; Senderowska, K; Sepp, I; Serra, N; Serrano, J; Seyfert, P; Shapkin, M; Shapoval, I; Shatalov, P; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, O; Shevchenko, V; Shires, A; Silva Coutinho, R; Skwarnicki, T; Smith, N A; Smith, E; Sobczak, K; Soler, F J P; Solomin, A; Soomro, F; Souza De Paula, B; Spaan, B; Sparkes, A; Spradlin, P; Stagni, F; Stahl, S; Steinkamp, O; Stoica, S; Stone, S; Storaci, B; Straticiuc, M; Straumann, U; Subbiah, V K; Swientek, S; Szczekowski, M; Szczypka, P; Szumlak, T; T'Jampens, S; Teodorescu, E; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Tolk, S; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Tran, M T; Tsaregorodtsev, A; Tuning, N; Ubeda Garcia, M; Ukleja, A; Uwer, U; Vagnoni, V; Valenti, G; Vazquez Gomez, R; Vazquez Regueiro, P; Vecchi, S; Velthuis, J J; Veltri, M; Viaud, B; Videau, I; Vieira, D; Vilasis-Cardona, X; Visniakov, J; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Vorobyev, V; Voss, H; Waldi, R; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Webber, A D; Websdale, D; Whitehead, M; Wiedner, D; Wiggers, L; Wilkinson, G; Williams, M P; Williams, M; Wilson, F F; Wishahi, J; Witek, M; Witzeling, W; Wotton, S A; Wyllie, K; Xie, Y; Xing, F; Xing, Z; Yang, Z; Young, R; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, F; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhong, L; Zvyagin, A

    2012-01-01

    A study of $B^{\\pm} \\to J\\!/\\!\\psi\\, \\pi^{\\pm}$ and $B^{\\pm} \\to \\psi(2S) \\pi^{\\pm}$ decays is performed with data corresponding to $0.37\\,{\\rm fb}^{-1}$ of proton-proton collisions at $\\sqrt{s}=7\\,\\mathrm{Te\\kern -0.1em V}$. Their branching fractions are found to be \\begin{eqnarray*} \\mathcal{B}(B^{\\pm} \\to J\\!/\\!\\psi\\, \\pi^{\\pm}) &=& (3.88 \\pm 0.11 \\pm 0.15) \\times 10^{-5}\\ {\\rm and}\\\\ \\mathcal{B}(B^{\\pm} \\to \\psi(2S) \\pi^{\\pm}) &=& (2.52 \\pm 0.26 \\pm 0.15) \\times 10^{-5}, \\end{eqnarray*} where the first uncertainty is related to the statistical size of the sample and the second quantifies systematic effects. The measured $C\\!P$ asymmetries in these modes are \\begin{eqnarray*} A_{CP}^{J\\!/\\!\\psi\\, \\pi} &=& 0.005 \\pm 0.027 \\pm 0.011\\ {\\rm and} \\\\ A_{CP}^{\\psi(2S) \\pi} &=& 0.048 \\pm 0.090 \\pm 0.011 \\end{eqnarray*} with no evidence of direct $C\\!P$ violation seen.

  9. Use of landfill gas will save money and reduce emissions

    International Nuclear Information System (INIS)

    Espinosa, G.G.

    1991-01-01

    The City of Glendale, California has commenced on a project to transport landfill gas (LFG) from the Scholl Canyon Landfill to the Grayson Power Plant. At the plant the LFG will be used to produce electricity in existing steam electric generating units and combustion turbines. The LFG will reduce the natural gas consumed at the plant resulting in a substantial cost savings for the City. This project also offers significant environmental improvements. First, the elimination of flaring at the landfill will reduce emissions. Second, the LFG will reduce NO x emissions from the power plant. This paper will describe the existing collection system at the landfill as well as the design of the compression and piping system to transport the LFG to the power plant. It will also outline the in-plant modifications to the fuel delivery system and examine some of the emission implications of how the fuel is utilized

  10. On-road vehicle emission control in Beijing: past, present, and future.

    Science.gov (United States)

    Wu, Ye; Wang, Renjie; Zhou, Yu; Lin, Bohong; Fu, Lixin; He, Kebin; Hao, Jiming

    2011-01-01

    Beijing, the capital of China, has experienced rapid motorization since 1990; a trend that is likely to continue. The growth in vehicles and the corresponding emissions create challenges to improving the urban air quality. In an effort to reduce the impact of vehicle emissions on urban air quality, Beijing has adopted a number of vehicle emission control strategies and policies since the mid 1990 s. These are classified into seven categories: (1) emission control on new vehicles; (2) emission control on in-use vehicles; (3) fuel quality improvements; (4) alternative-fuel and advanced vehicles; (5) economic policies; (6) public transport; and (7) temporal traffic control measures. Many have proven to be successful, such as the Euro emission standards, unleaded gasoline and low sulfur fuel, temporal traffic control measures during the Beijing Olympic Games, etc. Some, however, have been failures, such as the gasoline-to-LPG taxi retrofit program. Thanks to the emission standards for new vehicles as well as other controls, the fleet-average emission rates of CO, HC, NO(X), and PM(10) by each major vehicle category are decreasing over time. For example, gasoline cars decreased fleet-average emission factors by 12.5% for CO, 10.0% for HC, 5.8% for NO(X), and 13.0% for PM(10) annually since 1995, and such a trend is likely to continue. Total emissions for Beijing's vehicle fleet increased from 1995 to 1998. However, they show a clear and steady decrease between 1999 and 2009. In 2009, total emissions of CO, HC, NO(X), and PM(10) were 845,000 t, 121,000 t, 84,000 t, and 3700 t, respectively; with reductions of 47%, 49%, 47%, and 42%, relative to 1998. Beijing has been considered a pioneer in controlling vehicle emissions within China, similar to the role of California to the U.S. The continued rapid growth of vehicles, however, is challenging Beijing's policy-makers.

  11. Road fugitive dust emission characteristics in Beijing during Olympics Game 2008 in Beijing, China

    Science.gov (United States)

    Shou-bin, Fan; Gang, Tian; Gang, Li; Yu-hu, Huang; Jian-ping, Qin; Shui-yuan, Cheng

    2009-12-01

    Eighty road dust-fall (DF) monitoring sites and 14 background monitoring sites were established in the Beijing metropolitan area, and monitoring was conducted from January 2006 to December 2008. The dust-fall attributable to roads (ΔDF) showed a clear decline from 2006 to 2008. Dust-fall levels decreased across different road types from freeway > major arterial roads > minor arterial roads > collector roads > background sites. The ΔDF showed declines of 65%, 55%, 65% and 84% respectively for freeways, major arterial, minor arterial and collector roads from August 2007 to August 2008, and declines of 77%, 76%, 82% and 82% between August 2006 and August 2008. The ΔDF declined by 80%, 79%, 82% and 69% for freeways, major arterial, minor arterial and collector roads respectively between September 2007 and September 2008, and declined by 84%, 88%, 80% and 81% between September 2006 and September 2008. Eighty samples were collected in August 2007 and August 2008 and analyzed for silt loading. PM 10 emission factors and emission strengths were calculated using the AP-42 model. The silt loading reduced by 77%, 35%, 61%, 59% and 75% for freeways, major arterial, minor arterial, collector and local roads respectively. The PM 10 emission factors were reduced by 57%, 15%, 36%, 51% and 61% and the PM 10 emission strength declined by 70%, 40%, 55%, 65% and 72% for freeways, major arterial, minor arterial, collector and local roads respectively between August 2007 and August 2008. The decline is consistent with the reduction in road dust-fall.

  12. An atmospheric emission inventory of anthropogenic and biogenic sources for Lebanon

    Science.gov (United States)

    Waked, Antoine; Afif, Charbel; Seigneur, Christian

    2012-04-01

    A temporally-resolved and spatially-distributed emission inventory was developed for Lebanon to provide quantitative information for air pollution studies as well as for use as input to air quality models. This inventory covers major anthropogenic and biogenic sources in the region with 5 km spatial resolution for Lebanon and 1 km spatial resolution for its capital city Beirut and its suburbs. The results obtained for CO, NOx, SO2, NMVOC, NH3, PM10 and PM2.5 for the year 2010 were 563, 75, 62, 115, 4, 12, and 9 Gg, respectively. About 93% of CO emissions, 67% of NMVOC emissions and 52% of NOx emissions are calculated to originate from the on-road transport sector while 73% of SO2 emissions, 62% of PM10 emissions and 59% of PM2.5 emissions are calculated to originate from power plants and industrial sources. The spatial allocation of emissions shows that the city of Beirut and its suburbs encounter a large fraction of the emissions from the on-road transport sector while urban areas such as Zouk Mikael, Jieh, Chekka and Selaata are mostly affected by emissions originating from the industrial and energy production sectors. Temporal profiles were developed for several emission sectors.

  13. Comprehensive urban air quality studies of Islamabad: elemental characterization of PM10 and PM2.5, source apportionment and transboundary pollutant migration (abstract)

    International Nuclear Information System (INIS)

    Waheed, S.; Siddique, N.; Daud, M.

    2011-01-01

    Long term urban air quality of Islamabad, the capital city of Pakistan, has been investigated as a part of the joint UNDP/IAEA/RCA/RAS/7/015 project, entitled C haracterization and source identification of particulate air pollution in the Asian region (RCA) . Around 380 pairs of fine (PM2.5) and coarse (PM10-2.5) polycarbonate filters from the Nilore area were collected using GENT sampler. The average PM2.5 and PM2.5-10 masses at this site were found to be 15.02 and 37.01 g/m/sup 3/ respectively that are far below to the Pakistani limit for PM10 of 100 g/m/sup 3/. The average Black Carbon (BC) was found to be 2.58 and 1.22 g/m/sup 3/ corresponding to 20.7% and 4.54% of the fine and coarse mass respectively. The non destructive Ion Beam Analysis method, Proton induced X-ray emission (PIXE) and Proton induced gamma ray emission (PIGE) were employed to quantify more than 40 elements in both fine and coarse fractions. The acquired elemental data has been statistically treated and subjected to mass closure studies, principal component and factor analysis to calculate correlation matrices. The reconstructed mass (RCM) was calculated for both particle modes using soil, sulphate, smoke, sea salt and BC as pseudo sources. Data analysis performed using EPA-PMF3 shows that the fine and coarse data for the suburban site identifies 4 sources; biomass/ combustion, road dust, soil and automobile. Long range transport of pollutants was studied using HYSPLIT4 model. It was observed that high fine soil contributions in this area were mainly from dust storms arriving from west and North West of the country. (author)

  14. Air emissions of ammonia and methane from livestock operations: valuation and policy options.

    Science.gov (United States)

    Shih, Jhih-Shyang; Burtraw, Dallas; Palmer, Karen; Siikamäki, Juha

    2008-09-01

    The animal husbandry industry is a major emitter of ammonia (NH3), which is a precursor of fine particulate matter (PM2.5)--arguably, the number-one environment-related public health threat facing the nation. The industry is also a major emitter of methane (CH4), which is an important greenhouse gas (GHG). We present an integrated process model of the engineering economics of technologies to reduce NH3 and CH4 emissions at dairy operations in California. Three policy options are explored: PM offset credits for NH3 control, GHG offset credits for CH4 control, and expanded net metering policies to provide revenue for the sale of electricity generated from captured methane (CH4) gas. Individually these policies vary substantially in the economic incentives they provide for farm operators to reduce emissions. We report on initial steps to fully develop the integrated process model that will provide guidance for policy-makers.

  15. TOXICOLOGICAL EVALUATION OF REALISTIC EMISSIONS OF SOURCE AEROSOLS (TERESA): APPLICATION TO POWER PLANT-DERIVED PM2.5

    Energy Technology Data Exchange (ETDEWEB)

    Annette Rohr

    2005-03-31

    This report documents progress made on the subject project during the period of September 1, 2004 through February 28, 2005. The TERESA Study is designed to investigate the role played by specific emissions sources and components in the induction of adverse health effects by examining the relative toxicity of coal combustion and mobile source (gasoline and/or diesel engine) emissions and their oxidative products. The study involves on-site sampling, dilution, and aging of coal combustion emissions at three coal-fired power plants, as well as mobile source emissions, followed by animal exposures incorporating a number of toxicological endpoints. The DOE-EPRI Cooperative Agreement (henceforth referred to as ''the Agreement'') for which this technical progress report has been prepared covers the performance and analysis of field experiments at the first TERESA plant, located in the Upper Midwest and henceforth referred to as Plant 0, and at two additional coal-fired power plants (Plants 1 and 2) utilizing different coal types and with different plant configurations. During this reporting period, all fieldwork at Plant 0 was completed. Stack sampling was conducted in October to determine if there were significant differences between the in-stack PM concentrations and the diluted concentrations used for the animal exposures. Results indicated no significant differences and therefore confidence that the revised stack sampling methodology described in the previous semiannual report is appropriate for use in the Project. Animal exposures to three atmospheric scenarios were carried out. From October 4-7, we conducted exposures to oxidized emissions with the addition of secondary organic aerosol (SOA). Later in October, exposures to the most complex scenario (oxidized, neutralized emissions plus SOA) were repeated to ensure comparability with the results of the June/July exposures where a different stack sampling setup was employed. In November, exposures

  16. The Simulations of Wildland Fire Smoke PM25 in the NWS Air Quality Forecasting Systems

    Science.gov (United States)

    Huang, H. C.; Pan, L.; McQueen, J.; Lee, P.; ONeill, S. M.; Ruminski, M.; Shafran, P.; Huang, J.; Stajner, I.; Upadhayay, S.; Larkin, N. K.

    2017-12-01

    The increase of wildland fire intensity and frequency in the United States (U.S.) has led to property loss, human fatality, and poor air quality due to elevated particulate matters and surface ozone concentrations. The NOAA/National Weather Service (NWS) built the National Air Quality Forecast Capability (NAQFC) based on the U.S. Environmental Protection Agency (EPA) Community Multi-scale Air Quality (CMAQ) Modeling System driven by the NCEP North American Mesoscale Forecast System meteorology to provide ozone and fine particulate matter (PM2.5) forecast guidance publicly. State and local forecasters use the NWS air quality forecast guidance to issue air quality alerts in their area. The NAQFC PM2.5 predictions include emissions from anthropogenic and biogenic sources, as well as natural sources such as dust storms and wildland fires. The wildland fire emission inputs to the NAQFC is derived from the NOAA National Environmental Satellite, Data, and Information Service Hazard Mapping System fire and smoke detection product and the emission module of the U.S. Forest Service (USFS) BlueSky Smoke Modeling Framework. Wildland fires are unpredictable and can be ignited by natural causes such as lightning or be human-caused. It is extremely difficult to predict future occurrences and behavior of wildland fires, as is the available bio-fuel to be burned for real-time air quality predictions. Assumptions of future day's wildland fire behavior often have to be made from older observed wildland fire information. The comparisons between the NAQFC modeled PM2.5 and the EPA AirNow surface observation show that large errors in PM2.5 prediction can occur if fire smoke emissions are sometimes placed at the wrong location and/or time. A configuration of NAQFC CMAQ-system to re-run previous 24 hours, during which wildland fires were observed from satellites has been included recently. This study focuses on the effort performed to minimize the error in NAQFC PM2.5 predictions

  17. Origin of inorganic and organic components of PM_2_._5 in subway stations of Barcelona, Spain

    International Nuclear Information System (INIS)

    Martins, Vânia; Moreno, Teresa; Minguillón, María Cruz; Drooge, Barend L. van; Reche, Cristina; Amato, Fulvio; Miguel, Eladio de; Capdevila, Marta; Centelles, Sonia; Querol, Xavier

    2016-01-01

    The present work assesses indoor air quality in stations of the Barcelona subway system. PM_2_._5 concentrations on the platforms of 4 subway stations were measured during two different seasons and the chemical composition was determined. A Positive Matrix Factorization analysis was performed to identify and quantify the contributions of major PM_2_._5 sources in the subway stations. Mean PM_2_._5 concentrations varied according to the stations design and seasonal periods. PM_2_._5 was composed of haematite, carbonaceous aerosol, crustal matter, secondary inorganic compounds, trace elements, insoluble sulphate and halite. Organic compounds such as PAHs, nicotine, levoglucosan and aromatic musk compounds were also identified. Subway PM_2_._5 source comprised emissions from rails, wheels, catenaries, brake pads and pantographs. The subway source showed different chemical profiles for each station, but was always dominated by Fe. Control actions on the source are important for the achievement of better air quality in the subway environment. - Highlights: • PM_2_._5 concentrations varied according to stations design and seasonal periods. • Haematite was the most abundant component of PM_2_._5. • Organic compounds such as PAHs were detected in the subway stations. • The subway contribution to ambient PM_2_._5 on the platforms ranged from 9 to 58%. • The chemical profile of the subway emissions varies depending on the station. - Concentrations of PM_2_._5 chemical components varied according to stations design, seasonal periods, and chemical composition of rail, catenary and trains. PM_2_._5 consists mainly of Fe.

  18. Air pollutant emissions from Chinese households: A major and underappreciated ambient pollution source

    Science.gov (United States)

    Liu, Jun; Mauzerall, Denise L.; Chen, Qi; Zhang, Qiang; Song, Yu; Peng, Wei; Klimont, Zbigniew; Qiu, Xinghua; Zhang, Shiqiu; Hu, Min; Lin, Weili; Smith, Kirk R.; Zhu, Tong

    2016-01-01

    As part of the 12th Five-Year Plan, the Chinese government has developed air pollution prevention and control plans for key regions with a focus on the power, transport, and industrial sectors. Here, we investigate the contribution of residential emissions to regional air pollution in highly polluted eastern China during the heating season, and find that dramatic improvements in air quality would also result from reduction in residential emissions. We use the Weather Research and Forecasting model coupled with Chemistry to evaluate potential residential emission controls in Beijing and in the Beijing, Tianjin, and Hebei (BTH) region. In January and February 2010, relative to the base case, eliminating residential emissions in Beijing reduced daily average surface PM2.5 (particulate mater with aerodynamic diameter equal or smaller than 2.5 micrometer) concentrations by 14 ± 7 μg⋅m−3 (22 ± 6% of a baseline concentration of 67 ± 41 μg⋅m−3; mean ± SD). Eliminating residential emissions in the BTH region reduced concentrations by 28 ± 19 μg⋅m−3 (40 ± 9% of 67 ± 41 μg⋅m−3), 44 ± 27 μg⋅m−3 (43 ± 10% of 99 ± 54 μg⋅m−3), and 25 ± 14 μg⋅m−3 (35 ± 8% of 70 ± 35 μg⋅m−3) in Beijing, Tianjin, and Hebei provinces, respectively. Annually, elimination of residential sources in the BTH region reduced emissions of primary PM2.5 by 32%, compared with 5%, 6%, and 58% achieved by eliminating emissions from the transportation, power, and industry sectors, respectively. We also find air quality in Beijing would benefit substantially from reductions in residential emissions from regional controls in Tianjin and Hebei, indicating the value of policies at the regional level. PMID:27354524

  19. Contribution of garbage burning to chloride and PM2.5 in Mexico City

    Directory of Open Access Journals (Sweden)

    N. Bei

    2012-09-01

    Full Text Available The contribution of garbage burning (GB emissions to chloride and PM2.5 in the Mexico City Metropolitan Area (MCMA has been investigated for the period of 24 to 29 March during the MILAGRO-2006 campaign using the WRF-CHEM model. When the MCMA 2006 official emission inventory without biomass burning is used in the simulations, the WRF-CHEM model significantly underestimates the observed particulate chloride in the urban and the suburban areas. The inclusion of GB emissions substantially improves the simulations of particulate chloride; GB contributes more than 60% of the observation, indicating that it is a major source of particulate chloride in Mexico City. GB yields up to 3 pbb HCl at the ground level in the city, which is mainly caused by the burning of polyvinyl chloride (PVC in the garbage. GB is also an important source of PM2.5, contributing about 3–30% simulated PM2.5 mass on average. More modeling work is needed to evaluate the GB contribution to hazardous air toxics, such as dioxin, which is found to be released at high level from PVC burning in laboratory experiments.

  20. New Jersey proposes rule reducing NOx emissions

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    The New Jersey Department of Environmental Protection and Energy has proposed a rule requiring utility and industrial sources to significantly reduce their emission levels of nitrogen oxide (NO x ). If approved, it will be the first major rule mandated by the Clean Air Act Amendments of 1990 to affect New Jersey's stationary sources of these air pollutants - primarily electric generating utilities and other large fossil fuel burning facilities. The proposed rule requires all facilities with the potential to emit 25 tons or more of NO x each year to install reasonably available control technology by May 30, 1995. According to Richard Sinding, the environment and energy agency's assistant commissioner for policy and planning, the rule will likely require installation of low-NO x burners or other modifications to the combustion process. Sinding says the proposed rule will reduce the State's NO x emissions by approximately 30,000 tons a year, roughly 30 percent from current levels from these stationary sources. The pollution prevention measures are estimated to cost approximately $1,000 for each ton of NO x removed. The state energy agency estimates the average residential utility customer will see an increase in the monthly electric bill of about 50 cents. The agency said the proposed regulation includes provisions to make implementation more flexible and less costly for achieving the NO x reductions. It has approved the use of natural gas during the ozone season if low-NO x burners are not available. Additionally, emissions may be averaged from all units at the same utility or company location, effectively allowing a company to select the most cost-effective method of achieving the required emissions reductions

  1. Liming induces carbon dioxide (CO2) emission in PSB inoculated alkaline soil supplemented with different phosphorus sources.

    Science.gov (United States)

    Adnan, Muhammad; Shah, Zahir; Sharif, Muhammad; Rahman, Hidayatur

    2018-04-01

    Agricultural land is a major sink of global organic carbon (C). Its suitable management is crucial for improving C sequestration and reducing soil CO 2 emission. Incubation experiments were performed to assess the impact of phosphate solubilizing bacterial (PSB) inoculation (inoculated and uninoculated) and soil calcification (4.78, 10, 15, and 20% crushed CaCO 3 ) with phosphorus (P) sources [single superphosphate (SSP), rock phosphate (RP), farm yard manure (FYM), and poultry manure (PM)] in experiment 1 and with various rates of PM (4, 8, and 12 kg ha -1 ) in experiment 2 on cumulative soil respiration. These experiments were arranged in three factorial, complete randomize design (CRD) with three replications. Interactively, lime with P sources (at day 1 and 3) and lime with PSB (at day 1) significantly expedited soil respiration. Mainly, PSB inoculation, liming, PM fertilization, and its various rates significantly enhanced soil respiration with time over control/minimum in alkaline soil at all incubation periods. Higher CO 2 emission was detected in soil supplemented with organic P sources (PM and FYM) than mineral sources (SSP and RP). CO 2 emission was noted to increase with increasing PM content. Since liming intensified CO 2 discharge from soil, therefore addition of lime to an alkaline soil should be avoided; instead, integrated approaches must be adopted for P management in alkaline calcareous soils for climate-smart agriculture.

  2. Reducing dust emissions at OAO Alchevskkoks coke battery 10A

    Energy Technology Data Exchange (ETDEWEB)

    T.F. Trembach; E.N. Lanina [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

    2009-07-15

    Coke battery 10A with rammed batch is under construction at OAO Alchevskkoks. The design documentation developed by Giprokoks includes measures for reducing dust emissions to the atmosphere. Aspiration systems with dry dust trapping are employed in the new components of coke battery 10A and in the existing coke-sorting equipment. Two-stage purification of dusty air in cyclones and bag filters is employed for the coke-sorting equipment. This system considerably reduces coke-dust emissions to the atmosphere.

  3. An approach to a black carbon emission inventory for Mexico by two methods

    International Nuclear Information System (INIS)

    Cruz-Núñez, Xochitl

    2014-01-01

    A black carbon (BC) emission inventory for Mexico is presented. Estimate was performed by using two approaches, based on fuel consumption and emission factors in a top-down scheme, and the second from PM25 emission data and its correlation with black carbon by source category, assuming that black carbon = elemental carbon. Results show that black carbon emissions are in interval 53–473 Gg using the fuel consumption approach and between 62 and 89 using the sector method. Black carbon key sources come from biomass burning in the rural sector, with 47 percent share to the National total. Mobile sources emissions account to 16% to the total. An opportunity to reduce, in the short-term, carbon dioxide equivalent (CO2-eq) emissions by reducing black carbon emissions would be obtained in reducing emissions mainly from biomass burning in rural housing sector and diesel emissions in the transport sector with important co-benefits in direct radiative forcing, public health and air quality. - Highlights: • Black carbon emissions are estimated between 53 and 473 Gg/year on a fuel consumption method. • Black carbon emissions are estimated between 62 and 89 Gg/year on a sector method

  4. An approach to a black carbon emission inventory for Mexico by two methods

    Energy Technology Data Exchange (ETDEWEB)

    Cruz-Núñez, Xochitl, E-mail: xcruz@unam.mx

    2014-05-01

    A black carbon (BC) emission inventory for Mexico is presented. Estimate was performed by using two approaches, based on fuel consumption and emission factors in a top-down scheme, and the second from PM25 emission data and its correlation with black carbon by source category, assuming that black carbon = elemental carbon. Results show that black carbon emissions are in interval 53–473 Gg using the fuel consumption approach and between 62 and 89 using the sector method. Black carbon key sources come from biomass burning in the rural sector, with 47 percent share to the National total. Mobile sources emissions account to 16% to the total. An opportunity to reduce, in the short-term, carbon dioxide equivalent (CO2-eq) emissions by reducing black carbon emissions would be obtained in reducing emissions mainly from biomass burning in rural housing sector and diesel emissions in the transport sector with important co-benefits in direct radiative forcing, public health and air quality. - Highlights: • Black carbon emissions are estimated between 53 and 473 Gg/year on a fuel consumption method. • Black carbon emissions are estimated between 62 and 89 Gg/year on a sector method.

  5. Environmental pollution: quantitative analysis of particulate matter (PM10) by SR-TXRF

    International Nuclear Information System (INIS)

    Moreira, Silvana; Melo Junior, Ariston da Silva; Zucchi, Orgheda Luiza Araujo Domingues; Vives, Ana Elisa Sirito de

    2007-01-01

    The atmospheric pollution is a concern in the great urban centers, due its association with man pathologies. The Campinas region is one of the most urbanized of the Sao Paulo State and an important industrial center. Thus, due to its location and importance were installed three samplers for particulate material (PM 10 ). One sampler was located in downtown of Campinas city, in an avenue with high vehicular flow. Another sampler was installed in the UNICAMP campus and the third one in Paulinia city, near to REPLAN. For downtown of Campinas city PM 10 concentrations higher than regular air quality established by CETESB (150 μg.m -3 ) was observed. The PM 10 values for Paulinia and downtown of Campinas were higher than Barao Geraldo location. Employing SR-TXRF was possible identify and quantify 19 elements in the particulate material samples. All the measurements were performed at Synchrotron Light Source Laboratory, Campinas, SP. After statistics analysis by principal components and cluster analysis was possible to assemble the elements according emission sources. The dusty soil for coarse fraction contributed with 62%, 51% and 46% for Barao Geraldo, Paulinia and downtown of Campinas, respectively. The vehicular emission was responsible for 16% at downtown Campinas city as expected due to high vehicular flow at sampling place. The vehicular and industrial emissions contributed with 20% and 25%, respectively at Paulinia sampling site. The industrial emissions observed for Barao Geraldo and downtown of Campinas city were 27% and 33%, respectively. (author)

  6. Source contributions to PM2.5 in Guangdong province, China by numerical modeling: Results and implications

    Science.gov (United States)

    Yin, Xiaohong; Huang, Zhijiong; Zheng, Junyu; Yuan, Zibing; Zhu, Wenbo; Huang, Xiaobo; Chen, Duohong

    2017-04-01

    As one of the most populous and developed provinces in China, Guangdong province (GD) has been experiencing regional haze problems. Identification of source contributions to ambient PM2.5 level is essential for developing effective control strategies. In this study, using the most up-to-date emission inventory and validated numerical model, source contributions to ambient PM2.5 from eight emission source sectors (agriculture, biogenic, dust, industry, power plant, residential, mobile and others) in GD in 2012 were quantified. Results showed that mobile sources are the dominant contributors to the ambient PM2.5 (24.0%) in the Pearl River Delta (PRD) region, the central and most developed area of GD, while industry sources are the major contributors (21.5% 23.6%) to those in the Northeastern GD (NE-GD) region and the Southwestern GD (SW-GD) region. Although many industries have been encouraged to move from the central GD to peripheral areas such as NE-GD and SW-GD, their emissions still have an important impact on the PM2.5 level in the PRD. In addition, agriculture sources are responsible for 17.5% to ambient PM2.5 in GD, indicating the importance of regulations on agricultural activities, which has been largely ignored in the current air quality management. Super-regional contributions were also quantified and their contributions to the ambient PM2.5 in GD are significant with notable seasonal differences. But they might be overestimated and further studies are needed to better quantify the transport impacts.

  7. Particulate Matter Dispersion (PM10, with interrelation of topographic and meteorological factors

    Directory of Open Access Journals (Sweden)

    Alvaro Javier Arrieta-Fuentes

    2016-07-01

    Full Text Available Mining-industrial processes carried out by anthropic action, bring the generation of impacts to the environment. Between the impacts associated with mining is the involvement of the air quality produced by the release of atmospheric pollutants, being subject to study the behavior of the respirable fraction of particulate matter less than 10 microns (PM10 with respect to meteorological and topographical factors. The analyzed scenarios in the study involved daily and annual exposure times of PM10, in wich modeling with AERMOD View Software was made. The model was carried out in two topographic zones, a complex area, located in the municipality of Socha and a simple area located in the municipality of Sogamoso. It was used meteorological data type satellite, in format .SAM for modeled areas. Three types of emission sources were identified in the areas; considering that the disperse fixed emission sources predominate, followed by the mobile sources and point sources were found in low proportion. PM10 dispersion models made for the zones of simple and complex topography, gave as result that direction and the wind speed is conditioned by the type of zone. It allowed a free flow in the predominant direction in wind rose to the area of simple topography and a turbulent flow in the complex area. It was determined that the sources of emission of PM10 in both cases are local scale; They presented a critical radius of drag and deposition of particles of 200 m approximately.

  8. Comparison of Ground-Based PM2.5 and PM10 Concentrations in China, India, and the U.S.

    Directory of Open Access Journals (Sweden)

    Xingchuan Yang

    2018-07-01

    Full Text Available Urbanization and industrialization have spurred air pollution, making it a global problem. An understanding of the spatiotemporal characteristics of PM2.5 and PM10 concentrations (particulate matter with an aerodynamic diameter of less than 2.5 μm and 10 μm, respectively is necessary to mitigate air pollution. We compared the characteristics of PM2.5 and PM10 concentrations and their trends of China, India, and the U.S. from 2014 to 2017. Particulate matter levels were lowest in the U.S., while China showed higher concentrations, and India showed the highest. Interestingly, significant declines in PM2.5 and PM10 concentrations were found in some of the most polluted regions in China as well as the U.S. No comparable decline was observed in India. A strong seasonal trend was observed in China and India, with the highest values occurring in winter and the lowest in summer. The opposite trend was noted for the U.S. PM2.5 was highly correlated with PM10 for both China and India, but the correlation was poor for the U.S. With regard to reducing particulate matter pollutant concentrations, developing countries can learn from the experiences of developed nations and benefit by establishing and implementing joint regional air pollution control programs.

  9. Urban PM in Eastern Germany: Source apportionment and contributions from different spatial scales

    Science.gov (United States)

    van Pinxteren, D.; Fomba, K. W.; Mothes, F.; Spindler, G.; Herrmann, H.

    2017-12-01

    Understanding the contributions of particulate matter (PM) sources and the source areas impacting total PM levels in a city are important requirements for further developing clean air policies and efficient abatement strategies. This presentation reports on two studies in Eastern Germany providing a detailed picture of present-day urban PM sources and discriminating contributions of local, regional and long-range sources. The "Leipzig Aerosol 2013-15" study yielded contributions of 12 sources to coarse, fine, and ultrafine particles, resolved by Positive Matrix Factorization (PMF) from comprehensive chemical speciation of 5-stage Berner impactor samples at 4 different sites in the Leipzig area. Dominant winter-time sources were traffic exhaust and non-exhaust emissions, secondary aerosol formation, and combustion emissions from both biomass and coal burning with different relative importance in different particle size ranges. Local sources dominated PM levels in ultrafine and coarse particles (60% - 80%) while high mass concentrations in accumulation mode particles mainly resulted from regional import into the city (70%). The "PM-East" study compiled PM10 mass and constituents' concentrations at 10 urban and rural sites in Eastern Germany during winter 2016/17, which included a 3-week episode of frequent exceedances of the PM10 limit value. PMF source apportionment is performed for a subset of the sites, including the city of Berlin. Contributions from short-, mid-, and long-range sources, including trans-boundary pollution import from neighbouring countries, are quantitatively assessed by advanced back trajectory statistical methods. Data analysis in PM-East is ongoing and final results will be available by November. Funding is acknowledged from 4 federal states of Germany: Berlin Senate Department for Environment, Transport and Climate Protection; Saxon State Office for Environment, Agriculture and Geology; State Agency for Environment, Nature Conservation and

  10. OPTIONS FOR REDUCING REFRIGERANT EMISSIONS FROM SUPERMARKET SYSTEMS

    Science.gov (United States)

    The report was prepared to assist personnel responsible for the design, construction, and maintenance of retail food refrigeration equipment in making knowledgeable decisions regarding the implementation of refrigerant-emissions-reducing practices and technologies. It characteriz...

  11. The impact of household cooking and heating with solid fuels on ambient PM2.5 in peri-urban Beijing

    Science.gov (United States)

    Liao, Jiawen; Zimmermann Jin, Anna; Chafe, Zoë A.; Pillarisetti, Ajay; Yu, Tao; Shan, Ming; Yang, Xudong; Li, Haixi; Liu, Guangqing; Smith, Kirk R.

    2017-09-01

    Household cooking and space heating with biomass and coal have adverse impacts on both indoor and outdoor air quality and are associated with a significant health burden. Though household heating with biomass and coal is common in northern China, the contribution of space heating to ambient air pollution is not well studied. We investigated the impact of space heating on ambient air pollution in a village 40 km southwest of central Beijing during the winter heating season, from January to March 2013. Ambient PM2.5 concentrations and meteorological conditions were measured continuously at rooftop sites in the village during two winter months in 2013. The use of coal- and biomass-burning cookstoves and space heating devices was measured over time with Stove Use Monitors (SUMs) in 33 households and was coupled with fuel consumption data from household surveys to estimate hourly household PM2.5 emissions from cooking and space heating over the same period. We developed a multivariate linear regression model to assess the relationship between household PM2.5 emissions and the hourly average ambient PM2.5 concentration, and a time series autoregressive integrated moving average (ARIMA) regression model to account for autocorrelation. During the heating season, the average hourly ambient PM2.5 concentration was 139 ± 107 μg/m3 (mean ± SD) with strong autocorrelation in hourly concentration. The average primary PM2.5 emission per hour from village household space heating was 0.736 ± 0.138 kg/hour. The linear multivariate regression model indicated that during the heating season - after adjusting for meteorological effects - 39% (95% CI: 26%, 54%) of hourly averaged ambient PM2.5 was associated with household space heating emissions from the previous hour. Our study suggests that a comprehensive pollution control strategy for northern China, including Beijing, should address uncontrolled emissions from household solid fuel combustion in surrounding areas, particularly

  12. Reducing truck emissions at container terminals in a low carbon economy

    DEFF Research Database (Denmark)

    Chen, Gang; GOVINDAN, Kannan; Golias, Mihalis M.

    2013-01-01

    This study proposes a methodology to optimize truck arrival patterns to reduce emissions from idling truck engines at marine container terminals. A bi-objective model is developed minimizing both truck waiting times and truck arrival pattern change. The truck waiting time is estimated via...... a queueing network. Based on the waiting time, truck idling emissions are estimated. The proposed methodology is evaluated with a case study, where truck arrival rates vary over time. We propose a Genetic Algorithm based heuristic to solve the resulting problem. Result shows that, a small shift of truck...... arrivals can significantly reduce truck emissions, especially at the gate....

  13. Reducing local traffic emissions at urban intersection using ITS countermeasures

    NARCIS (Netherlands)

    Mahmod, M.; Arem, B. van; Pueboobpaphan, R.; Lange, R. de

    2013-01-01

    In many countries traffic emissions have significantly increased during the last two decades because of the increased number of vehicles. As such, traffic emissions have become the main source of air pollution in urban areas, where breaches of the EU limit values frequently occur. To reduce these

  14. Levels of PM2.5/PM10 and associated metal(loid)s in rural households of Henan Province, China.

    Science.gov (United States)

    Wu, Fuyong; Wang, Wei; Man, Yu Bon; Chan, Chuen Yu; Liu, Wenxin; Tao, Shu; Wong, Ming Hung

    2015-04-15

    Although a majority of China's rural residents use solid fuels (biomass and coal) for household cooking and heating, clean energy such as electricity and liquid petroleum gas is becoming more popular in the rural area. Unfortunately, both solid fuels and clean energy could result in indoor air pollution. Daily respirable particulate matter (PM≤10 μm) and inhalable particulate matter (PM≤2.5 μm) were investigated in kitchens, sitting rooms and outdoor area in rural Henan during autumn (Sep to Oct 2012) and winter (Jan 2013). The results showed that PM (PM2.5 and PM10) and associated metal(loid)s varied among the two seasons and the four types of domestic energy used. Mean concentrations of PM2.5 and PM10 in kitchens during winter were 59.2-140.4% and 30.5-145.1% higher than those during autumn, respectively. Similar with the trends of PM2.5 and PM10, concentrations of As, Pb, Zn, Cd, Cu, Ni and Mn in household PM2.5 and PM10 were apparently higher in winter than those in autumn. The highest mean concentrations of PM2.5 and PM10 (368.5 and 588.7 μg m(-3)) were recorded in sitting rooms in Baofeng during winter, which were 5.7 and 3.9 times of corresponding health based guidelines for PM2.5 and PM10, respectively. Using coal can result in severe indoor air pollutants including PM and associated metal(loid)s compared with using crop residues, electricity and gas in rural Henan Province. Rural residents' exposure to PM2.5 and PM10 would be roughly reduced by 13.5-22.2% and 8.9-37.7% via replacing coal or crop residues with electricity. The present study suggested that increased use of electricity as domestic energy would effectively improve indoor air quality in rural China. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. The impact of China's vehicle emissions on regional air quality in 2000 and 2020: a scenario analysis

    Directory of Open Access Journals (Sweden)

    E. Saikawa

    2011-09-01

    Full Text Available The number of vehicles in China has been increasing rapidly. We evaluate the impact of current and possible future vehicle emissions from China on Asian air quality. We modify the Regional Emission Inventory in Asia (REAS for China's road transport sector in 2000 using updated Chinese data for the number of vehicles, annual mileage, and emission factors. We develop two scenarios for 2020: a scenario where emission factors remain the same as they were in 2000 (No-Policy, NoPol, and a scenario where Euro 3 vehicle emission standards are applied to all vehicles (except motorcycles and rural vehicles. The Euro 3 scenario is an approximation of what may be the case in 2020 as, starting in 2008, all new vehicles in China (except motorcycles were required to meet the Euro 3 emission standards. Using the Weather Research and Forecasting model coupled with Chemistry (WRF/Chem, we examine the regional air quality response to China's vehicle emissions in 2000 and in 2020 for the NoPol and Euro 3 scenarios. We evaluate the 2000 model results with observations in Japan, China, Korea, and Russia. Under NoPol in 2020, emissions of carbon monoxide (CO, nitrogen oxides (NOx, non-methane volatile organic compounds (NMVOCs, black carbon (BC, and organic carbon (OC from China's vehicles more than double compared to the 2000 baseline. If all vehicles meet the Euro 3 regulations in 2020, however, these emissions are reduced by more than 50% relative to NoPol. The implementation of stringent vehicle emission standards leads to a large, simultaneous reduction of the surface ozone (O3 mixing ratios and particulate matter (PM2.5 concentrations. In the Euro 3 scenario, surface O3 is reduced by more than 10 ppbv and surface PM2.5 is reduced by more than 10 μg m−3 relative to NoPol in Northeast China in all seasons. In spring, surface O3 mixing ratios and PM2.5 concentrations in

  16. Fiscal Measures to Reduce CO2 Emissions from New Passenger Cars

    OpenAIRE

    Cowi A/S

    2002-01-01

    Model based calculations constitute the core output of this study. The calculations assess the extent to which vehicle related taxes (mainly acquisition taxes and ownership taxes) can be effective means to reduce CO2 emissions from new cars. More specifically, the model calculations have assessed the ability of vehicle taxes to support the target to reduce average CO2 emissions from new cars down to a level of 120 g/km. This is the agreed target of the Community Strategy to reduce CO2 emissio...

  17. Asian emissions in 2006 for the NASA INTEX-B mission

    Directory of Open Access Journals (Sweden)

    Z. L. Yao

    2009-07-01

    Full Text Available A new inventory of air pollutant emissions in Asia in the year 2006 is developed to support the Intercontinental Chemical Transport Experiment-Phase B (INTEX-B funded by the National Aeronautics and Space Administration (NASA. Emissions are estimated for all major anthropogenic sources, excluding biomass burning. We estimate total Asian anthropogenic emissions in the year 2006 as follows: 47.1 Tg SO2, 36.7 Tg NOx, 298.2 Tg CO, 54.6 Tg NMVOC, 29.2 Tg PM10, 22.2 Tg PM2.5, 2.97 Tg BC, and 6.57 Tg OC. We emphasize emissions from China because they dominate the Asia pollutant outflow to the Pacific and the increase of emissions from China since 2000 is of great concern. We have implemented a series of improved methodologies to gain a better understanding of emissions from China, including a detailed technology-based approach, a dynamic methodology representing rapid technology renewal, critical examination of energy statistics, and a new scheme of NMVOC speciation for model-ready emissions. We estimate China's anthropogenic emissions in the year 2006 to be as follows: 31.0 Tg SO2, 20.8 Tg NOx, 166.9 Tg CO, 23.2 Tg NMVOC, 18.2 Tg PM10, 13.3 Tg PM2.5, 1.8 Tg BC, and 3.2 Tg OC. We have also estimated 2001 emissions for China using the same methodology and found that all species show an increasing trend during 2001–2006: 36% increase for SO2, 55% for NOx, 18% for CO, 29% for VOC, 13% for PM10, and 14% for PM2.5, BC, and OC. Emissions are gridded at a resolution of 30 min×30 min and can be accessed at our web site (http://mic.greenresource.cn/intex-b2006.

  18. Electrocardiographic, hemodynamic, and biochemical responses to acute particulate matter (PM) exposure in aged heart failure-prone rats

    Science.gov (United States)

    Human exposure to ambient PM from fossil-fuel emissions is linked to cardiovascular disease and death. This association strengthens in people with preexisting cardiac disease-especially heart failure (HF). The mechanisms explaining PM-induced exacerbation ofHF are unclear. Some o...

  19. Particle Reduction Strategies - PAREST. PM10-cause analysis based on hypothetical emissions scenarios. Sub-report; Strategien zur Verminderung der Feinstaubbelastung - PAREST. PM10-Ursachenanalyse auf der Basis hypothetischer Emissionsszenarien. Teilbericht

    Energy Technology Data Exchange (ETDEWEB)

    Stern, Rainer [Freie Univ. Berlin (Germany). Inst. fuer Meteorologie, Troposphaerische Umweltforschung

    2013-06-15

    In this report, a PM10 cause analysis is presented, which provides an estimation of the extent to which the emitted substances from ten different source sectors are responsible for the calculated PM10 concentrations in Germany (PM = particulate matter). [German] In diesem Bericht wird eine PM10-Ursachenanalyse vorgestellt, die eine Abschaetzung liefert, in welchem Umfang die in Deutschland von den verschiedenen Verursachergruppen emittierten Stoffe fuer die in Deutschland berechneten PM10-Konzentrationen verantwortlich sind.

  20. Characterization of PM10 and PM2.5 and associated heavy metals at the crossroads and urban background site in Zabrze, Upper Silesia, Poland, during the smog episodes.

    Science.gov (United States)

    Pastuszka, Jozef S; Rogula-Kozłowska, Wioletta; Zajusz-Zubek, Elwira

    2010-09-01

    The concentrations of seven heavy metals (Cd, Cr, Cu, Fe, Mn, Ni, and Pb) associated with PM10 and PM2.5 at the crossroads and the background sites have been studied in Zabrze, Poland, during smog episodes. Although the background level was unusually elevated due to both high particulate emission from the industrial and municipal sources and smog favorable meteorological conditions, significant increase of the concentration of PM2.5 and PM10 as well as associated heavy metals in the roadside air compared to the urban background has been documented. The average daily difference between the roadside and corresponding urban background aerosol concentration was equal to 39.5 microg m(-3) for PM10 and 41.2 microg m(-3) for PM2.5. The highest levels of the studied metals in Zabrze appeared for iron carried by PM10 particles: 1,706 (background) and 28,557 ng m(-3) (crossroads). The lowest concentration level (in PM10) has been found for cadmium: 7 and 77 ng m(-3) in the background and crossroads site, respectively. Also the concentrations of heavy metals carried by the fine particles (PM2.5) were very high in Zabrze during the smog episodes. Concentrations of all studied metals associated with PM10 increased at the roadside compared to the background about ten times (one order) while metals contained in PM2.5 showed two to three times elevated concentrations (except Fe-five times and Cr-no increase).

  1. Effect of phosphorous transformation on the reduction of PM{sub 10} formation during Co-combustion of coal and sewage sludge

    Energy Technology Data Exchange (ETDEWEB)

    Zhuo, J.K.; Dong, M.; Li, G.D.; Li, S.Q.; Song, Q.; Yao, Q. [Tsinghua Univ., Beijing (China). Key Lab. of Thermal Science and Power Engineering; Duan, L. [Tsinghua Univ., Beijing (China). Dept. of Environmental Science and Engineering

    2013-07-01

    Co-combustion of Municipal Sewage Sludge with coal will become increasingly widely used, regarded as an important incineration method with the high thermal efficiency, low emissions, low investment and operating costs. However, the presence of phosphorus in fine particle has gained increased attention due to its environmental adverse affection and deactivation of SCR DeNOx catalysts. Therefore, the behavior of phosphorus in fine particles during co-combustion of coal and sewage sludge was investigated in a 25 kW quasi one-dimensional down-fired pulverized coal combustor, where PM{sub 10} was collected from the furnace centerline in the outlet of flue gas cooler by using a two-stage nitrogen-aspirated, water-cooling isokinetic sampling probe followed a 13-stage electric low pressure impactor. Then the formation mechanism of PM{sub 10} was investigated by observing the different fractions of sewage sludge in the coal. Similar to the coal combustion, the particle-size-distributions (PSD) of PM{sub 10} mass concentration by co-combustion of sewage sludge with coal exhibit two distinct modes separated by a fraction of 0.157-0.263 {mu}m, ultrafine mode and intermediate mode. With the sewage sludge blended sludge up to 15% (thermal ratio), the mass concentration of the total fly ash and PM{sub 10+} (Dp > 10 {mu}m) vastly increased from 1,088 and 547 mg/Nm{sup 3} (during coal combustion) to 5,059 and 4,403 mg/Nm{sup 3}. However, the mass concentration of fine particulates, such as PM{sub 1}, PM{sub 2.5} and PM{sub 10} was maintained at the emission level of coal combustion. When the fraction of sewage sludge less than 15%, the mass concentration of fine particle is higher than the emission during coal combustion, while the growth rate is only by the 3.6, 7.9 and 4.8% of the total concentration of fly ash (5% thermal). The change of the PSD of mass concentration during co- combustion of sewage sludge and coal, mainly was caused by the interaction between Si, Al and Ca, Fe

  2. Effect of Bedding Material on Dust and Ammonia Emission from Broiler Houses

    NARCIS (Netherlands)

    Harn, van J.; Aarnink, A.J.A.; Mosquera Losada, J.; Riel, van J.W.; Ogink, N.W.M.

    2012-01-01

    Ammonia emission, Bedding material, Broilers, Dust emission The objective of this study was to determine the effects of different bedding materials on fine dust (PM10 and PM2.5) and ammonia emissions from broiler houses. The effects on broiler performance and footpad lesions were also studied. The

  3. Wind farms on undegraded peatlands are unlikely to reduce future carbon emissions

    International Nuclear Information System (INIS)

    Smith, Jo; Nayak, Dali Rani; Smith, Pete

    2014-01-01

    Onshore wind energy is a key component of the renewable energies used by governments to reduce carbon emissions from electricity production, but will carbon emissions be reduced when wind farms are located on carbon-rich peatands? Wind farms are often located in uplands because most are of low agricultural value, are distant from residential areas, and are windy. Many UK uplands are peatlands, with layers of accumulated peat that represent a large stock of soil carbon. When peatlands are drained for construction there is a higher risk of net carbon loss than for mineral soils. Previous work suggests that wind farms sited on peatlands can reduce net carbon emissions if strictly managed for maximum retention of carbon. Here we show that, whereas in 2010, most sites had potential to provide net carbon savings, by 2040 most sites will not reduce carbon emissions even with careful management. This is due to projected changes in the proportion of fossil fuels used to generate electricity. The results suggest future policy should avoid constructing wind farms on undegraded peatlands unless drainage of peat is minimal and the volume excavated in foundations can be significantly reduced compared to energy output. - Highlights: • Future wind farms located on undegraded peats will not reduce carbon emissions. • This is due to projected changes in fossil fuels used to generate electricity. • Future policy should avoid constructing wind farms on undegraded peats

  4. 78 FR 21547 - Approval and Promulgation of Air Quality Implementation Plans; Oregon: Eugene-Springfield PM10

    Science.gov (United States)

    2013-04-11

    ... winter day emissions from point sources, residential wood combustion, road dust, and motor vehicle exhaust, brake and tire wear. The emissions inventory includes an inventory of point sources of PM 10... State's submittal. Emissions estimates for road dust and motor vehicle exhaust, brake wear, and tire...

  5. Search for direct CP violating charge asymmetries in $K^\\pm\\to\\pi^\\pm\\pi^+\\pi^-$ and $K^\\pm\\to\\pi^\\pm\\pi^0\\pi^0$ decays

    CERN Document Server

    Batley, J Richard; Kalmus, George Ernest; Lazzeroni, C; Munday, D J; Slater, M W; Wotton, S A; Arcidiacono, R; Bocquet, G; Cabibbo, Nicola; Ceccucci, A; Cundy, Donald C; Falaleev, V; Fidecaro, Maria; Gatignon, L; Gonidec, A; Kubischta, Werner; Norton, A; Maier, A; Patel, M; Peters, A; Balev, S; Frabetti, P L; Goudzovski, E; Khristov, P Z; Kekelidze, V D; Kozhuharov, V; Litov, L; Madigozhin, D T; Marinova, E; Molokanova, N A; Polenkevich, I; Potrebenikov, Yu K; Stoynev, S; Zinchenko, A I; Monnier, E; Swallow, E; Winston, R; Rubin, P; Walker, A; Baldini, W; Cotta-Ramusino, A; Dalpiaz, P; Damiani, C; Fiorini, M; Gianoli, A; Martini, M; Petrucci, F; Savrié, M; Scarpa, M; Wahle, H; Bizzeti, A; Calvetti, M; Celeghini, E; Iacopini, E; Lenti, M; Martelli, F; Ruggiero, G; Veltri, M; Behler, M; Eppard, K; Kleinknecht, K; Marouelli, P; Masetti, L; Moosbrugger, U; Morales-Morales, C; Renk, B; Wache, M; Wanke, R; Winhart, A; Coward, D; Dabrowski, A; Fonseca-Martin, T; Shieh, M; Szleper, M; Velasco, M; Wood, M D; Anzivino, Giuseppina; Cenci, P; Imbergamo, E; Nappi, A; Pepé, M; Petrucci, M C; Piccini, M; Raggi, M; Valdata-Nappi, M; Cerri, C; Collazuol, G; Costantini, F; Di Lella, L; Doble, N; Fantechi, R; Fiorini, L; Giudici, S; Lamanna, G; Mannelli, I; Michetti, A; Pierazzini, G M; Sozzi, M; Bloch-Devaux, B; Cheshkov, C; Chèze, J B; De Beer, M; Derré, J; Marel, Gérard; Mazzucato, E; Peyaud, B; Vallage, B; Holder, M; Ziolkowski, M; Bifani, S; Biino, C; Cartiglia, N; Clemencic, M; Goy-Lopez, S; Marchetto, F; Dibon, Heinz; Jeitler, Manfred; Markytan, Manfred; Mikulec, I; Neuhofer, G; Widhalm, L

    2007-01-01

    A measurement of the direct CP violating charge asymmetries of the Dalitz plot linear slopes $A_g=(g^+-g^-)/(g^++g^-)$ in $K^\\pm\\to\\pi^\\pm\\pi^+\\pi^-$ and $K^\\pm\\to\\pi^\\pm\\pi^0\\pi^0$ decays by the NA48/2 experiment at CERN SPS is presented. A new technique of asymmetry measurement involving simultaneous $K^+$ and $K^-$ beams and a large data sample collected allowed a result of an unprecedented precision. The charge asymmetries were measured to be $A^c_g=(-1.5\\pm2.1)\\times10^{-4}$ with $3.11\\times 10^9$ $K^{\\pm}\\to\\pi^\\pm\\pi^+\\pi^-$ decays, and $A^n_g=(1.8\\pm1.8)\\times10^{-4}$ with $9.13\\times 10^7$ $K^{\\pm}\\to\\pi^\\pm\\pi^0\\pi^0$ decays. The precision of the results is limited mainly by the size of the data sample.

  6. How to reduce emissions related to consumption: which public policies?

    International Nuclear Information System (INIS)

    Fink, Meike; Gautier, Celia

    2014-05-01

    This report proposes an assessment of greenhouse gas emissions related to consumption in the world. It examines which are currently the world emission flows which come with trade exchanges (intermediate and final goods) between countries. The first part tries to highlight hidden emissions present in our imports and exports. It presents the different methods of greenhouse gas accounting, discusses the emission flows at the planet level, and the challenge of the limitation of 'carbon leaks', and discusses what makes a country a net emission importer or exporter. The second part discusses how France can reduce its consumption-based emissions, how to reach a factor 4 of reduction on these emissions, how to act against leaks and inflows of emissions through measures at the world level (international agreement, reduction of emissions by sea and air transport, reduction of industry emissions) or at the national level (relocation of polluting industries in France or Europe, promotion of short circuits, eco-design, changes in consumption modes, measures on groups of products which import emissions)

  7. Estimates of PM2.5 levels in the southeastern United States for the year 2010. What else can be done?

    International Nuclear Information System (INIS)

    Odman, M. Talat; Russell, Armistead G.; Boylan, James W.

    2004-01-01

    We developed a comprehensive air quality modeling system for use in integrated assessment studies. We evaluated the ability of the modeling system to reproduce observed PM 2.5 levels in Class I areas of the Southern Appalachians Mountains using IMPROVE data during 9 week-long episodes between 1991 and 1995. The mean normalized error was less than 40% for the sulfate, ammonium, elemental carbon and organic components. The error was larger for nitrates and soils but these components constitute a small fraction of PM 2.5 in the Southeast. Using meteorological inputs for the same episodes and emission projections, we estimated the PM 2.5 levels in the year 2010. In addition, using the direct sensitivity analysis method, we estimated the sensitivity of PM 2.5 levels to SO 2 , NO x and NH 3 emissions from various sub-regions. These sensitivities give a first-order estimate of the responses to emissions controls beyond those already factored into the 2010 projections

  8. Reductions in emissions of carbonaceous particulate matter and polycyclic aromatic hydrocarbons from combustion of biomass pellets in comparison with raw fuel burning.

    Science.gov (United States)

    Shen, Guofeng; Tao, Shu; Wei, Siye; Zhang, Yanyan; Wang, Rong; Wang, Bin; Li, Wei; Shen, Huizhong; Huang, Ye; Chen, Yuanchen; Chen, Han; Yang, Yifeng; Wang, Wei; Wei, Wen; Wang, Xilong; Liu, Wenxing; Wang, Xuejun; Masse Simonich, Staci L y

    2012-06-05

    Biomass pellets are emerging as a cleaner alternative to traditional biomass fuels. The potential benefits of using biomass pellets include improving energy utilization efficiency and reducing emissions of air pollutants. To assess the environmental, climate, and health significance of replacing traditional fuels with biomass pellets, it is critical to measure the emission factors (EFs) of various pollutants from pellet burning. However, only a few field measurements have been conducted on the emissions of carbon monoxide (CO), particulate matter (PM), and polycyclic aromatic hydrocarbons (PAHs) from the combustion of pellets. In this study, pine wood and corn straw pellets were burned in a pellet burner (2.6 kW), and the EFs of CO, organic carbon, elemental carbon, PM, and PAHs (EF(CO), EF(OC), EF(EC), EF(PM), and EF(PAH)) were determined. The average EF(CO), EF(OC), EF(EC), and EF(PM) were 1520 ± 1170, 8.68 ± 11.4, 11.2 ± 8.7, and 188 ± 87 mg/MJ for corn straw pellets and 266 ± 137, 5.74 ± 7.17, 2.02 ± 1.57, and 71.0 ± 54.0 mg/MJ for pine wood pellets, respectively. Total carbonaceous carbon constituted 8 to 14% of the PM mass emitted. The measured values of EF(PAH) for the two pellets were 1.02 ± 0.64 and 0.506 ± 0.360 mg/MJ, respectively. The secondary side air supply in the pellet burner did not change the EFs of most pollutants significantly (p > 0.05). The only exceptions were EF(OC) and EF(PM) for pine wood pellets because of reduced combustion temperatures with the increased air supply. In comparison with EFs for the raw pine wood and corn straw, EF(CO), EF(OC), EF(EC), and EF(PM) for pellets were significantly lower than those for raw fuels (p 0.05). Based on the measured EFs and thermal efficiencies, it was estimated that 95, 98, 98, 88, and 71% reductions in the total emissions of CO, OC, EC, PM, and PAHs could be achieved by replacing the raw biomass fuels combusted in traditional cooking stoves with pellets burned in modern pellet burners.

  9. Estimation of shipping emissions in Candarli Gulf, Turkey.

    Science.gov (United States)

    Deniz, Cengiz; Kilic, Alper; Civkaroglu, Gökhan

    2010-12-01

    Ships are significant air pollution sources as their high powered main engines often use heavy fuels. The major atmospheric components emitted are nitrogen oxides, particulate matter (PM), sulfur oxide gases, carbon oxides, and toxic air pollutants. Shipping emissions cause severe impacts on health and environment. These effects of emissions are emerged especially in territorial waters, inland seas, canals, straits, bays, and port regions. Candarli Gulf is one of the major industrial regions on the Aegean side of Turkey. The marine environment of the region is affected by emissions from ships calling to ten different ports. In this study, NO( x ), SO(2), CO(2), hydrocarbons (HC), and PM emissions from 7,520 ships are estimated during the year of 2007. These emissions are classified regarding operation modes and types of ships. Annual shipping emissions are estimated as 631.2 t year(-1) for NO(x), 573.6 t year(-1) for SO(2), 33,848.9 t year(-1) for CO(2), 32.3 t year(-1) for HC, and 57.4 t year(-1) for PM.

  10. Impact of idling on fuel consumption and exhaust emissions and available idle-reduction technologies for diesel vehicles – A review

    International Nuclear Information System (INIS)

    Rahman, S.M. Ashrafur; Masjuki, H.H.; Kalam, M.A.; Abedin, M.J.; Sanjid, A.; Sajjad, H.

    2013-01-01

    Highlights: • In this paper we reviewed the impact of diesel vehicles idling on fuel consumption and exhaust emission. • Fuel consumption and emissions during idling are very high compared to driving cycle. • The effects of various operating on fuel consumption and exhaust emission were discussed. • Available idle-reduction technologies impact on idling fuel consumption and emissions were discussed. • Idling reduction technologies reduce fuel consumption and emissions significantly. - Abstract: In order to maintain cab comfort truck drivers have to idle their engine to obtain the required power for accessories, such as the air conditioner, heater, television, refrigerator, and lights. This idling of the engine has a major impact on its fuel consumption and exhaust emission. Idling emissions can be as high as 86.4 g/h, 16,500 g/h, 5130 g/h, 4 g/h, and 375 g/h for HC, CO 2 , CO, PM, and NOx, respectively. Idling fuel consumption rate can be as high as 1.85 gal/h. The accessory loading, truck model, fuel-injection system, ambient temperature, idling speed, etc., also affect significantly the emission levels and fuel consumption rate. An increase in accessory loading and ambient temperature increases the emissions and fuel consumption. During idling, electronic fuel-injection systems reduce HC, PM, and CO emission, but increase NOx emissions compared with a mechanical fuel-injection system. An increase of idling speed increases fuel consumption rate. There are many systems available on the market to reduce engine idling and improve air quality and fuel consumption rate, such as an auxiliary power unit (APU), truck stop electrification, thermal storage systems, fuel cells, and direct fire heaters. A direct fire heater reduces fuel consumption by 94–96% and an APU reduces consumption by 60–87%. Furthermore, these technologies increase air quality significantly by reducing idling emissions, which is the reason why they are considered as key alternatives to

  11. Evaluation of On-Road Vehicle Emission Trends in the United States

    Science.gov (United States)

    Harley, R. A.; Dallmann, T. R.; Kirchstetter, T.

    2010-12-01

    Mobile sources contribute significantly to emissions of nitrogen oxides (NOx), carbon monoxide (CO), fine particulate matter (PM2.5), and black carbon (BC). These emissions lead to a variety of environmental problems including air pollution and climate change. At present, national and state-level mobile source emission inventories are developed using statistical models to predict emissions from large and diverse populations of vehicles. Activity is measured by total vehicle-km traveled, and pollutant emission factors are predicted based on laboratory testing of individual vehicles. Despite efforts to improve mobile source emission inventories, they continue to have large associated uncertainties. Alternate methods, such as the fuel-based approach used here, are needed to evaluate estimates of mobile source emissions and to help reduce uncertainties. In this study we quantify U.S. national emissions of NOx, CO, PM2.5, and BC from on-road diesel and gasoline vehicles for the years 1990-2010, including effects of a weakened national economy on fuel sales and vehicle travel from 2008-10. Pollutant emissions are estimated by multiplying total amounts of fuel consumed with emission factors expressed per unit of fuel burned. Fuel consumption is used as a measure of vehicle activity, and is based on records of taxable fuel sales. Pollutant emission factors are derived from roadside and tunnel studies, remote sensing measurements, and individual vehicle exhaust plume capture experiments. Emission factors are updated with new results from a summer 2010 field study conducted at the Caldecott tunnel in the San Francisco Bay Area.

  12. Emissions of road dust by winter tyres and the contributions of different road dust sources in road side particle samples; Talvirenkaiden poelypaeaestoet ja eri katupoelylaehteiden osuudet kadunvarrella keraetyissae hiukkasnaeytteissae

    Energy Technology Data Exchange (ETDEWEB)

    Kupiainen, K.; Pirjola, L.; Ritola, R.; Stojiljkovic, A.; Malinen, A.

    2013-09-01

    material deposited on the road surface. Resuspension is detected in street conditions throughout the year, but the seasonal variation is high. The measurements conducted in early April represented the situation at high resuspension levels. Emissions were 15-20-fold greater than during low resuspension conditions. No significant differences in the emission levels of the different winter tires were detected. Initial conditions of the resuspension were so high that the increment emissions from pavement wear by studs were not detectable. At low resuspension conditions, still approximately 50 -60 percent of the studded tyre's overall emissions were explained by resuspension. The remaining 40 - 50 percent was accounted to the pavement wear by studs. Reducing the number of studs per tyre reduced also the PM{sub 10} emission. The tyre that complied with the new studded tyre requirements that will enter into force in July 2013 reduced the emissions by 10 - 28 percent. The results obtained in low resuspension conditions demonstrate that studded tires increase the formation of dust compared to non-studded tires. Tire wear was observed to change its particulate emissions significantly. Increasing tread wear reduced the tyre's PM{sub 10} emissions. Tyre wear resulted in changes in both resuspension and pavement wear emissions. Further studies on factors affecting the PM10 emissions of worn tires should be conducted. (orig.)

  13. A large source of dust missing in Particulate Matter emission inventories? Wind erosion of post-fire landscapes

    Directory of Open Access Journals (Sweden)

    N.S. Wagenbrenner

    2017-02-01

    Full Text Available Wind erosion of soils burned by wildfire contributes substantial particulate matter (PM in the form of dust to the atmosphere, but the magnitude of this dust source is largely unknown. It is important to accurately quantify dust emissions because they can impact human health, degrade visibility, exacerbate dust-on-snow issues (including snowmelt timing, snow chemistry, and avalanche danger, and affect ecological and biogeochemical cycles, precipitation regimes, and the Earth’s radiation budget. We used a novel modeling approach in which local-scale winds were used to drive a high-resolution dust emission model parameterized for burned soils to provide a first estimate of post-fire PM emissions. The dust emission model was parameterized with dust flux measurements from a 2010 fire scar. Here we present a case study to demonstrate the ability of the modeling framework to capture the onset and dynamics of a post-fire dust event and then use the modeling framework to estimate PM emissions from burn scars left by wildfires in U.S. western sagebrush landscapes during 2012. Modeled emissions from 1.2 million ha of burned soil totaled 32.1 Tg (11.7–352 Tg of dust as PM10 and 12.8 Tg (4.68–141 Tg as PM2.5. Despite the relatively large uncertainties in these estimates and a number of underlying assumptions, these first estimates of annual post-fire dust emissions suggest that post-fire PM emissions could substantially increase current annual PM estimates in the U.S. National Emissions Inventory during high fire activity years. Given the potential for post-fire scars to be a large source of PM, further on-site PM flux measurements are needed to improve emission parameterizations and constrain these first estimates.

  14. Indoor PM2.5 in an urban zone with heavy wood smoke pollution: The case of Temuco, Chile.

    Science.gov (United States)

    Jorquera, Héctor; Barraza, Francisco; Heyer, Johanna; Valdivia, Gonzalo; Schiappacasse, Luis N; Montoya, Lupita D

    2018-05-01

    Temuco is a mid-size city representative of severe wood smoke pollution in southern Chile; however, little is known about the indoor air quality in this region. A field measurement campaign at 63 households in the Temuco urban area was conducted in winter 2014 and is reported here. In this study, indoor and outdoor (24-hr) PM 2.5 and its elemental composition were measured and compared. Infiltration parameters and outdoor/indoor contributions to indoor PM 2.5 were also determined. A statistical evaluation of how various air quality interventions and household features influence indoor PM 2.5 was also performed. This study determined median indoor and outdoor PM 2.5 concentrations of 44.4 and 41.8 μg/m 3 , respectively. An average infiltration factor (0.62 ± 0.06) was estimated using sulfur as a tracer species. Using a simple mass balance approach, median indoor and outdoor contributions to indoor PM 2.5 concentrations were then estimated as 12.5 and 26.5 μg/m 3 , respectively; therefore, 68% of indoor PM 2.5 comes from outdoor infiltration. This high percentage is due to high outdoor pollution and relatively high household air exchange rates (median: 1.06 h -1 ). This study found that S, Br and Rb were dominated by outdoor contributions, while Si, Ca, Ti, Fe and As originated from indoor sources. Using continuous indoor and outdoor PM 2.5 measurements, a median indoor source strength of 75 μg PM 2.5 /min was estimated for the diurnal period, similar to literature results. For the evening period, the median estimate rose to 135 μg PM 2.5 /min, reflecting a more intense wood burning associated to cooking and space heating at night. Statistical test results (at the 90% confidence level) support the ongoing woodstove replacement program (reducing emissions) and household weatherization subsidies (reducing heating demand) for improving indoor air quality in southern Chile, and suggest that a cookstove improvement program might be helpful as well

  15. Reducing refinery CO2 emissions through amine solvent upgrade and optimization

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, Thiago V.; Valenzuela, Michelle [The Dow Chemical Company, Midland, MI (United States)

    2012-07-01

    Regional initiatives are underway to reduce and limit the emissions of greenhouse gases. With CO2 emissions making up over 80% of the greenhouse gases, cap-and-trade programs will focus on those industries that consume the most energy. Refineries are among the top energy consumers and are seeking opportunities to reduce usage. With tightening margins, energy management programs will not only help refineries meet CO{sub 2} emission regulations, but can also provide a competitive advantage. With the trend towards heavier and higher sulfur containing crudes, refineries are increasing processing capabilities, which can include capital-intensive projects and additional energy consumption. Energy conservation plans should include optimization of these processes. One area to consider includes the acid gas removal systems in refineries. Through the selection and use of optimal solvents and implementation of energy efficiency techniques, which require minimal capital investment and expenditures, refineries can reduce energy usage, overall CO{sub 2} emissions, and total cost in acid gas systems. This paper will discuss these approaches and share case studies detailing the implementation and results. (author)

  16. New NOx cleansing technology can reduce industry emissions

    International Nuclear Information System (INIS)

    2006-01-01

    The Norwegian, Bergen-based company ECO Energy has recently launched a new cleaning technology halving NO x emissions from industry plants without requiring large investments. Thus, governmental promises to finance NO x cleaning equipment for Norwegian industry have become less expensive to reach. ECO Energy has ensured world patent on the 'stopNOx' technology. Its method consists of adding water and urea to oil before the combustion process. The technology has been applied in Italy, reducing NO x emissions from industry in average with above 50 percent (ml)

  17. Bufei Huoxue Capsule Attenuates PM2.5-Induced Pulmonary Inflammation in Mice

    Directory of Open Access Journals (Sweden)

    Yue Jing

    2017-01-01

    Full Text Available Atmospheric fine particulate matter 2.5 (PM 2.5 may carry many toxic substances on its surface and this may pose a public health threat. Epidemiological research indicates that cumulative ambient PM2.5 is correlated to morbidity and mortality due to pulmonary and cardiovascular diseases and cancer. Mitigating the toxic effects of PM2.5 is therefore highly desired. Bufei Huoxue (BFHX capsules have been used in China to treat pulmonary heart disease (cor pulmonale. Thus, we assessed the effects of BFHX capsules on PM2.5-induced pulmonary inflammation and the underlying mechanisms of action. Using Polysearch and Cytoscape 3.2.1 software, pharmacological targets of BFHX capsules in atmospheric PM2.5-related respiratory disorders were predicted and found to be related to biological pathways of inflammation and immune function. In a mouse model of PM2.5-induced inflammation established with intranasal instillation of PM2.5 suspension, BFHX significantly reduced pathological response and inflammatory mediators including IL-4, IL-6, IL-10, IL-8, TNF-α, and IL-1β. BFHX also reduced keratinocyte growth factor (KGF, secretory immunoglobulin A (sIgA, and collagen fibers deposition in lung and improved lung function. Thus, BFHX reduced pathological responses induced by PM2.5, possibly via regulation of inflammatory mediators in mouse lungs.

  18. Reducing Greenhouse Gas Emissions in Transport: All in One Basket?

    Directory of Open Access Journals (Sweden)

    Nicholas Rivers

    2018-02-01

    Full Text Available Analysis after analysis has shown consistently that if policy-makers aiming to meet climate goals are looking for the most-efficient, least-distortionary way to target emissions growth, there is simply nothing better than abandoning all emissions regulations except for one: A straight, revenue-neutral carbon tax. Nothing works through more channels, at a lower cost. Alas, policy-makers are not always looking for the most-efficient, least-distortionary way to target emissions growth. That’s because many of those same analyses show that in order to reach emissions targets, the price on carbon would have to be so punitive as to be politically unbearable, raising the price of gasoline, for example, by about a dollar a litre. That leads politicians to mix in other policies that are less visible to the consumer but also less efficient, less effective and more expensive in abating carbon dioxide. The recently negotiated Pan-Canadian Framework on Clean Growth and Climate Change intends to follow that model, relying on a blend of different policies to help reach Canada’s Paris climate targets. But while the government seems therefore determined to rule out the possibility of a nothing-but-a-carbon-tax plan, it is possible, through the careful application of just the right sort of emission-reduction approaches, to reduce the costs of abatement in a key policy target — namely, road transportation — to a level that at least approaches the lower cost of a carbon tax. The government will likely consider several options in trying to reduce emissions from road transportation. Typical tools include requiring manufacturers to meet standards for new vehicles that mandate fuel economy and greenhouse gas emissions; gasoline taxes; taxes on emissions-intensive vehicles; subsidies for low-emission or zero-emission vehicles; and subsidies for public transit. Indications are that a low-carbon fuel standard (LCFS will play a significant role in the Pan

  19. Influence of polymethyl acrylate additive on the formation of particulate matter and NOX emission of a biodiesel-diesel-fueled engine.

    Science.gov (United States)

    Monirul, Islam Mohammad; Masjuki, Haji Hassan; Kalam, Mohammad Abdul; Zulkifli, Nurin Wahidah Mohd; Shancita, Islam

    2017-08-01

    The aim of this study is to investigate the effect of the polymethyl acrylate (PMA) additive on the formation of particulate matter (PM) and nitrogen oxide (NO X ) emission from a diesel coconut and/or Calophyllum inophyllum biodiesel-fueled engine. The physicochemical properties of 20% of coconut and/or C. inophyllum biodiesel-diesel blend (B20), 0.03 wt% of PMA with B20 (B20P), and diesel fuel were measured and compared to ASTM D6751, D7467, and EN 14214 standard. The test results showed that the addition of PMA additive with B20 significantly improves the cold-flow properties such as pour point (PP), cloud point (CP), and cold filter plugging point (CFPP). The addition of PMA additives reduced the engine's brake-specific energy consumption of all tested fuels. Engine emission results showed that the additive-added fuel reduce PM concentration than B20 and diesel, whereas the PM size and NO X emission both increased than B20 fuel and baseline diesel fuel. Also, the effect of adding PMA into B20 reduced Carbon (C), Aluminum (Al), Potassium (K), and volatile materials in the soot, whereas it increased Oxygen (O), Fluorine (F), Zinc (Zn), Barium (Ba), Chlorine (Cl), Sodium (Na), and fixed carbon. The scanning electron microscope (SEM) results for B20P showed the lower agglomeration than B20 and diesel fuel. Therefore, B20P fuel can be used as an alternative to diesel fuel in diesel engines to lower the harmful emissions without compromising the fuel quality.

  20. Trends of PM2.5 concentrations in China: A long term approach.

    Science.gov (United States)

    Fontes, Tânia; Li, Peilin; Barros, Nelson; Zhao, Pengjun

    2017-07-01

    The fast economic growth of China along the last two decades has created a strong impact on the environment. The occurrence of heavy haze pollution days is the most visible effect. Although many researchers have studied such problem, a high number of spatio-temporal limitations in the recent studies were identified. From our best knowledge the long trends of PM 2.5 concentrations were not fully investigated in China, in particular the year-to-year trends and the seasonal and daily cycles. Therefore, in this work the PM 2.5 concentrations collected from automatic monitors from five urban sites located in megacities with different climatic zones in China were analysed: Beijing (40°N), Chengdu (31°N), Guangzhou (23°N), Shanghai (31°N) and Shenyang (43°N). For an inter-comparison a meta-analysis was carried out. An evaluation conducted since 1999 demonstrates that PM 2.5 concentrations have been reduced until 2008, period which match with the occurrence of the Olympic Games. However, a seasonal analysis highlight that such decrease occurs mostly during warmer seasons than cold seasons. During winter PM 2.5 concentrations are typically 1.3 to 2.7 higher than in summer. The average daily cycle shows that the lowest and highest PM 2.5 concentrations often occurs in the afternoon and evening hours respectively. Such daily variations are mostly driven by the daily variation of the boundary layer depth and emissions. Although the PM 2.5 levels have showing signs of improvement, even during the warming season the values are still too high in comparison with the annual environmental standards of China (35 μg m -3 ). Moreover, during cold seasons the north regions have values twice higher than this limit. Thus, to fulfil these standards the governmental mitigation measures need to be strongly reinforced in order to optimize the daily living energy consumption, primarily in the north regions of China and during the winter periods. Copyright © 2017 Elsevier Ltd. All