WorldWideScience

Sample records for reducing heat losses

  1. Reducing heat loss from the energy absorber of a solar collector

    Science.gov (United States)

    Chao, Bei Tse; Rabl, Ari

    1976-01-01

    A device is provided for reducing convective heat loss in a cylindrical radiant energy collector. It includes a curved reflective wall in the shape of the arc of a circle positioned on the opposite side of the exit aperture from the reflective side walls of the collector. Radiant energy exiting the exit aperture is directed by the curved wall onto an energy absorber such that the portion of the absorber upon which the energy is directed faces downward to reduce convective heat loss from the absorber.

  2. RCS pressure under reduced inventory conditions following a loss of residual heat removal

    International Nuclear Information System (INIS)

    Palmrose, D.E.; Hughes, E.D.; Johnsen, G.W.

    1992-01-01

    The thermal-hydraulic response of a closed-reactor coolant system to loss of residual heat removal (RHR) cooling is investigated. The processes examined include: core coolant boiling and steam generator reflux condensation, pressure increase on the primary side, heat transfer mechanisms on the steam generator primary and secondary sides, and effects of noncondensible gas on heat transfer processes

  3. Method for reducing heat loss during injection of hot water into an oil stratum

    Energy Technology Data Exchange (ETDEWEB)

    Evgenev, A E; Kalashnikov, V N; Raiskii, Yu D

    1968-07-01

    A method is described for reduction of heat loss during the injection of hot water into an oil stratum. During the transportation of the hot water to the face of the bore holes, it has high-molecular polymers added to it. The high-molecular polymer may be guanidine or polyoxyethylene in the quantity of 0.01 to 0.03% by wt.

  4. Thermal-hydraulic processes involved in loss of residual heat removal during reduced inventory operation

    International Nuclear Information System (INIS)

    Fletcher, C.D.; McHugh, P.R.; Naff, S.A.; Johnsen, G.W.

    1991-02-01

    This paper identifies the topics needed to understand pressurized water reactor response to an extended loss of residual heat removal event during refueling and maintenance outages. By identifying the possible plant conditions and cooling methods that would be used for each cooling mode, the controlling thermal-hydraulic processes and phenomena were identified. Controlling processes and phenomena include: gravity drain, core water boil-off, and reflux cooling processes. Important subcategories of the reflux cooling processes include: the initiation of reflux cooling from various plant conditions, the effects of air on reflux cooling, core level depression effects, issues regarding the steam generator secondaries, and the special case of boiler-condenser cooling with once-through steam generators. 25 refs., 6 figs., 1 tab

  5. Heat loss from Buildings

    DEFF Research Database (Denmark)

    Karlsson, Kenneth; Næraa, Rikke

    1997-01-01

    Determination of heat loss coefficients for buildings in Denmark. The coefficient are determined for 15 building groups and 3 year intervals. They are based on the BBR-registre and assumptions of U-values(W/K*m2)and computed in a simple spreed sheet model.The results are used in the REVEILLE...

  6. EFFECTIVENESS OF USING POLYURETHANE FOAM TO REDUCE HEAT LOSS IN THE PREMISES FOR BREEDING

    Directory of Open Access Journals (Sweden)

    Medvedev A.Y.

    2013-10-01

    Full Text Available It is proved that the use of polyurethane foam insulation for the purpose of walling premises for breeding allows them to halve the deficit of heat in winter. Because of this more efficient use of feed, increases the intensity and the level of growth of young comprehensive energp $rocess in the energy of live weight gain of cattle while increasing the profitability of its cultivation for meat.

  7. Targeting the maximum heat recovery for systems with heat losses and heat gains

    International Nuclear Information System (INIS)

    Wan Alwi, Sharifah Rafidah; Lee, Carmen Kar Mun; Lee, Kim Yau; Abd Manan, Zainuddin; Fraser, Duncan M.

    2014-01-01

    Graphical abstract: Illustration of heat gains and losses from process streams. - Highlights: • Maximising energy savings through heat losses or gains. • Identifying location where insulation can be avoided. • Heuristics to maximise heat losses or gains. • Targeting heat losses or gains using the extended STEP technique and HEAT diagram. - Abstract: Process Integration using the Pinch Analysis technique has been widely used as a tool for the optimal design of heat exchanger networks (HENs). The Composite Curves and the Stream Temperature versus Enthalpy Plot (STEP) are among the graphical tools used to target the maximum heat recovery for a HEN. However, these tools assume that heat losses and heat gains are negligible. This work presents an approach that considers heat losses and heat gains during the establishment of the minimum utility targets. The STEP method, which is plotted based on the individual, as opposed to the composite streams, has been extended to consider the effect of heat losses and heat gains during stream matching. Several rules to guide the proper location of pipe insulation, and the appropriate procedure for stream shifting have been introduced in order to minimise the heat losses and maximise the heat gains. Application of the method on two case studies shows that considering heat losses and heat gains yield more realistic utility targets and help reduce both the insulation capital cost and utility cost of a HEN

  8. 24 CFR 3280.506 - Heat loss/heat gain.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Heat loss/heat gain. 3280.506... URBAN DEVELOPMENT MANUFACTURED HOME CONSTRUCTION AND SAFETY STANDARDS Thermal Protection § 3280.506 Heat loss/heat gain. The manufactured home heat loss/heat gain shall be determined by methods outlined in...

  9. Bacterial ice nuclei impact cloud lifetime and radiative properties and reduce atmospheric heat loss in the BRAMS simulation model

    International Nuclear Information System (INIS)

    Costa, Tassio S; Gonçalves, Fábio L T; Yamasoe, Marcia A; Martins, Jorge A; Morris, Cindy E

    2014-01-01

    This study examines the effect of the bacterial species Pseudomonas syringae acting as ice nuclei (IN) on cloud properties to understand its impact on local radiative budget and heating rates. These bacteria may become active IN at temperatures as warm as −2 °C. Numerical simulations were developed using the Brazilian Regional Atmospheric Model System (BRAMS). To investigate the isolated effect of bacterial IN, four scenarios were created considering only homogeneous and bacterial ice nucleation, with 1, 10 and 100 IN per cubic meter of cloud volume and one with no bacteria. Moreover, two other scenarios were generated: the BRAMS default parameterization and its combination with bacterial IN. The model reproduced a strong convective cell over São Paulo on 3 March 2003. Results showed that bacterial IN may change cloud evolution as well as its microphysical properties, which in turn influence cloud radiative properties. For example, the reflected shortwave irradiance over an averaged domain in a scenario considering bacterial IN added to the BRAMS default parameterization was 14% lower than if bacteria were not considered. Heating rates can also be impacted, especially due to differences in cloud lifetime. Results suggest that the omission of bacterial IN in numerical models, including global cloud models, could neglect relevant ice nucleation processes that potentially influence cloud radiative properties. (letter)

  10. Impact of Next Generation District Heating Systems on Distribution Network Heat Losses: A Case Study Approach

    Science.gov (United States)

    Li, Yu; Rezgui, Yacine

    2018-01-01

    District heating (DH) is a promising energy pathway to alleviate environmental negative impacts induced by fossil fuels. Improving the performance of DH systems is one of the major challenges facing its wide adoption. This paper discusses the heat losses of the next generation DH based on the constructed Simulink model. Results show that lower distribution temperature and advanced insulation technology greatly reduce network heat losses. Also, the network heat loss can be further minimized by a reduction of heat demand in buildings.

  11. Heat losses through pipe connections in hot water stores

    DEFF Research Database (Denmark)

    Andersen, Elsa; Fan, Jianhua; Furbo, Simon

    2007-01-01

    The heat loss from pipe connections at the top of hot water storage tanks with and without a heat trap is investigated theoretically and compared to similar experimental investigations. Computational Fluid Dynamics (CFD) is used for the theoretical analysis. The investigations show that the heat...... loss from an ideally insulated pipe connected to the top of a hot water tank is mainly due to a natural convection flow in the pipe, that the heat loss coefficient of pipes connected to the top of a hot water tank is high, and that a heat trap can reduce the heat loss coefficient significantly. Further......, calculations show that the yearly thermal performance of solar domestic hot water systems is strongly reduced if the hot water tank has a thermal bridge located at the top of the tank....

  12. Heat loss from an open cavity

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, C.G. [California State Polytechnic Univ., Pomona, CA (United States). Coll. of Engineering

    1995-12-01

    Cavity type receivers are used extensively in concentrating solar thermal energy collecting systems. The Solar Total Energy Project (STEP) in Shenandoah, Georgia is a large scale field test for the collection of solar thermal energy. The STEP experiment consists of a large field array of solar collectors used to supplement the process steam, cooling and other electrical power requirements of an adjacent knitwear manufacturing facility. The purpose of the tests, conducted for this study, was to isolate and quantify the radiative, conductive, and convective components of total heat loss, and to determine the effects of operating temperature, receiver angle, and aperture size on cavity heat loss. An analytical model for radiative heat loss was developed and compared with two other methods used to determine radiative heat loss. A proposed convective heat loss correlation, including effects of aperture size, receiver operating temperature, and receiver angle is presented. The resulting data is a source to evaluate the STEP measurements.

  13. Turbulent energy losses during orchard heating

    Energy Technology Data Exchange (ETDEWEB)

    Bland, W.L.

    1979-01-01

    Two rapid-response drag anemometers and low time constant thermocouples, all at 4 m above a heated orchard floor, sampled wind component in the vertical direction and temperature at 30 Hz. The turbulent heat flux calculated revealed not more than 10% of the heat lost from the orchard was via turbulent transort. The observations failed to support previous estimates that at least a third of the energy applied was lost through turbulent transport. Underestimation of heat loss due to mean flow and a newly revealed flux due to spatial variations in the mean flow may explain the unaccounted for loss.

  14. Ion heat conduction losses in Extrap

    International Nuclear Information System (INIS)

    Tennfors, E.

    1989-08-01

    The classical ion heat conduction losses in Extrap discharges are calculated using polynomial magnetic field profiles and compared to the power input. For polynomials matched to magnetic field profiles measured in present experiments, these losses are small. By varying the coefficients of the polynomials, a region is found, where the power input can balance the classical heat conduction losses. Each set of coefficients corresponds to values of the parameters F and Θ used in RFP physics. The region determines a region in an F-Θ diagram, including the usual RFP region but extending to higher values of Θ and βΘ

  15. Aging Impairs Whole-Body Heat Loss in Women under Both Dry and Humid Heat Stress.

    Science.gov (United States)

    Notley, Sean R; Poirier, Martin P; Hardcastle, Stephen G; Flouris, Andreas D; Boulay, Pierre; Sigal, Ronald J; Kenny, Glen P

    2017-11-01

    This study was designed to determine whether age-related impairments in whole-body heat loss, which are known to exist in dry heat, also occur in humid heat in women. To evaluate this possibility, 10 young (25 ± 4 yr) and 10 older (51 ± 7 yr) women matched for body surface area (young, 1.69 ± 0.11; older, 1.76 ± 0.14 m, P = 0.21) and peak oxygen consumption (V˙O2peak) (young, 38.6 ± 4.6; older, 34.8 ± 6.6 mL·kg·min, P = 0.15) performed four 15-min bouts of cycling at a fixed metabolic heat production rate (300 W; equivalent to ~45% V˙O2peak), each separated by a 15-min recovery, in dry (35°C, 20% relative humidity) and humid heat (35°C, 60% relative humidity). Total heat loss (evaporative ± dry heat exchange) and metabolic heat production were measured using direct and indirect calorimetry, respectively. Body heat storage was measured as the temporal summation of heat production and loss. Total heat loss was lower in humid conditions compared with dry conditions during all exercise bouts in both groups (all P body heat storage in young and older women, respectively (both P body heat storage was 29% and 16% greater in older women compared with young women in dry and humid conditions, respectively (both P < 0.05). Increasing ambient humidity reduces heat loss capacity in young and older women. However, older women display impaired heat loss relative to young women in both dry and humid heat, and may therefore be at greater risk of heat-related injury during light-to-moderate activity.

  16. Winter-regime surface heat loss from heated streams

    International Nuclear Information System (INIS)

    Paily, P.P.; Macagno, E.O.; Kennedy, J.F.

    1974-01-01

    Evaluation of the rate of surface heat exchange between the water and air is a significant factor in any study of the thermal response of heated streams to heat inputs. Existing methods to determine the amount of heat transfer across the water surface are surveyed, and the different formulas developed for determining the heat exchange components are compiled. Heat-transfer models that have been proposed in the literature are reviewed, and a new linearized model for determining the rate of surface heat exchange is proposed. Generalized relations between the major climatological factors and the coefficients of the linearized heat-loss rate are established by multiple-regression analysis. The analysis is limited to cold-period conditions, in the sense that air temperatures below the freezing point of water only are considered in developing the regression equations. A computer program, using FORTRAN, is presented which enables the computation of the coefficients appearing in the linearized heat-loss rate for all combinations of the various climatological factors

  17. Plasma Heating and Losses in Toroidal Multipole Fields

    International Nuclear Information System (INIS)

    Armentrout, C. J.; Barter, J. D.; Breun, R. A.; Cavallo, A. J.; Drake, J. R.; Etzweiler,; Greenwood, J. R.

    1974-01-01

    The heating and loss of plasmas have been studied in three pulsed, toroidal multipole devices: a large levitated octupole, a small supported octupole and a very small supported quadrupole. Plasmas are produced by gun injection and heated by electron and ion cyclotron resonance heating and ohmic heating. Electron cyclotron heating rates have been measured over a wide range of parameters, and the results are in quantitative agreement with stochastic heating theory. Electron cyclotron resonance heating produces ions with energies larger than predicted by theory. With the addition of a toroidal field, ohmic heating gives densities as high as 10 13 cm -3 in the toroidal quadrupole and 10 12 cm -3 in the small octupole. Plasma losses for n=5 x 10 9 cm -3 plasmas are inferred from Langmuir probe and Fabry-Perot interferometer measurements, and measured with special striped collectors on the wall and rings. The loss to a levitated ring is measured using a modulated light beam telemeter. The confinement is better than Bohm but considerably worse than classical. Low frequency convective cells which are fixed in space are observed. These cells around the ring are diminished when a weak toroidal field is added, and loss collectors show a vastly reduced flux to the rings. Analysis of the spatial density profile shows features of B-independent diffusion. The confinement is sensitive to some kinds of dc field errors, but surprisingly insensitive to perturbations of the ac confining field

  18. Deciding for Others Reduces Loss Aversion

    DEFF Research Database (Denmark)

    Andersson, Ola; Holm, Håkan J.; Tyran, Jean-Robert Karl

    2016-01-01

    We study risk taking on behalf of others, both when choices involve losses and when they do not. A large-scale incentivized experiment with subjects randomly drawn from the Danish population is conducted. We find that deciding for others reduces loss aversion. When choosing between risky prospects...... when losses loom. This finding is consistent with an interpretation of loss aversion as a bias in decision making driven by emotions and that these emotions are reduced when making decisions for others....... for which losses are ruled out by design, subjects make the same choices for themselves as for others. In contrast, when losses are possible, we find that the two types of choices differ. In particular, we find that subjects who make choices for themselves take less risk than those who decide for others...

  19. Deciding for Future Selves Reduces Loss Aversion

    Directory of Open Access Journals (Sweden)

    Qiqi Cheng

    2017-09-01

    Full Text Available In this paper, we present an incentivized experiment to investigate the degree of loss aversion when people make decisions for their current selves and future selves under risk. We find that when participants make decisions for their future selves, they are less loss averse compared to when they make decisions for their current selves. This finding is consistent with the interpretation of loss aversion as a bias in decision-making driven by emotions, which are reduced when making decisions for future selves. Our findings endorsed the external validity of previous studies on the impact of emotion on loss aversion in a real world decision-making environment.

  20. Deciding for Future Selves Reduces Loss Aversion.

    Science.gov (United States)

    Cheng, Qiqi; He, Guibing

    2017-01-01

    In this paper, we present an incentivized experiment to investigate the degree of loss aversion when people make decisions for their current selves and future selves under risk. We find that when participants make decisions for their future selves, they are less loss averse compared to when they make decisions for their current selves. This finding is consistent with the interpretation of loss aversion as a bias in decision-making driven by emotions, which are reduced when making decisions for future selves. Our findings endorsed the external validity of previous studies on the impact of emotion on loss aversion in a real world decision-making environment.

  1. Human local and total heat losses in different temperature.

    Science.gov (United States)

    Wang, Lijuan; Yin, Hui; Di, Yuhui; Liu, Yanfeng; Liu, Jiaping

    2016-04-01

    This study investigates the effects of operative temperature on the local and total heat losses, and the relationship between the heat loss and thermal sensation. 10 local parts of head, neck, chest, abdomen, upper arm, forearm, hand, thigh, leg and foot are selected. In all these parts, convection, radiation, evaporation, respiration, conduction and diffusion heat losses are analyzed when operative temperature is 23, 28, 33 and 37 °C. The local heat losses show that the radiation and convection heat losses are mainly affected by the area of local body, and the heat loss of the thigh is the most in the ten parts. The evaporation heat loss is mainly affected by the distribution of sweat gland, and the heat loss of the chest is the most. The total heat loss of the local body shows that in low temperature, the thigh, leg and chest have much heat loss, while in high temperature, the chest, abdomen, thigh and head have great heat loss, which are useful for clothing design. The heat losses of the whole body show that as the operative temperature increases, the radiation and convection heat losses decrease, the heat losses of conduction, respiration, and diffusion are almost constant, and the evaporation heat loss increases. By comparison, the heat loss ratios of the radiation, convection and sweat evaporation, are in agreement with the previous researches. At last, the formula about the heat loss ratio of convection and radiation is derived. It's useful for thermal comfort evaluation and HVAC (heating, ventilation and air conditioning) design. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Analysis of the internal heat losses in a thermoelectric generator

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Christensen, Dennis Valbjørn; Eriksen, Dan

    2014-01-01

    and radiative heat losses, including surface to surface radiation. For radiative heat losses it is shown that for the temperatures considered here, surface to ambient radiation is a good approximation of the heat loss. For conductive heat transfer the module efficiency is shown to be comparable to the case...... of radiative losses. Finally, heat losses due to internal natural convection in the module is shown to be negligible for the millimetre sized modules considered here. The combined case of radiative and conductive heat transfer resulted in the lowest efficiency. The optimized load resistance is found...... to decrease for increased heat loss. The leg dimensions are varied for all heat losses cases and it is shown that the ideal way to construct a TEG module with minimal heat losses and maximum efficiency is to either use a good insulating material between the legs or evacuate the module completely, and use...

  3. Heat stress causes substantial labour productivity loss in Australia

    Science.gov (United States)

    Zander, Kerstin K.; Botzen, Wouter J. W.; Oppermann, Elspeth; Kjellstrom, Tord; Garnett, Stephen T.

    2015-07-01

    Heat stress at the workplace is an occupational health hazard that reduces labour productivity. Assessment of productivity loss resulting from climate change has so far been based on physiological models of heat exposure. These models suggest productivity may decrease by 11-27% by 2080 in hot regions such as Asia and the Caribbean, and globally by up to 20% in hot months by 2050. Using an approach derived from health economics, we describe self-reported estimates of work absenteeism and reductions in work performance caused by heat in Australia during 2013/2014. We found that the annual costs were US$655 per person across a representative sample of 1,726 employed Australians. This represents an annual economic burden of around US$6.2 billion (95% CI: 5.2-7.3 billion) for the Australian workforce. This amounts to 0.33 to 0.47% of Australia’s GDP. Although this was a period when many Australians experienced what is at present considered exceptional heat, our results suggest that adaptation measures to reduce heat effects should be adopted widely if severe economic impacts from labour productivity loss are to be avoided if heat waves become as frequent as predicted.

  4. Heat losses in power boilers caused by thermal bridges

    Directory of Open Access Journals (Sweden)

    Kocot Monika

    2017-01-01

    Full Text Available In this article the analysis of heat losses caused by thermal bridges that occur in the steam boiler OP-140 is presented. Identification of these bridges were conducted with use of thermographic camera. Heat losses were evaluated based on methodology of VDI 4610 standard, but instead of its simplified equations, criterial equations based on Nusselt number were used. Obtained values of annual heat losses and heat flux density corresponding to the fully insulated boiler surfaces were compared to heat losses generated by thermal bridges located in the same areas. The emphasis is put on the role of industrial insulation in heat losses reduction.

  5. Heat loss by helicity injection in spheromaks

    International Nuclear Information System (INIS)

    Fowler, T.K.

    1994-01-01

    A model is presented for spheromak buildup and decay including thermal diffusivity associated with magnetic turbulence during helicity injection. It is shown that heat loss by magnetic turbulence scales more favorably than gyroBohm transport. Thus gyroBohm scaling for the proposed ignition experiment would be the conservative choice, though present experiments may be dominated by magnetic turbulence. Because of a change in boundary conditions when the gun is turned off, the model may account for the observed increase in electron temperature in CTX after turnoff

  6. Heat Pipes Reduce Engine-Exhaust Emissions

    Science.gov (United States)

    Schultz, D. F.

    1986-01-01

    Increased fuel vaporization raises engine efficiency. Heat-pipe technology increased efficiency of heat transfer beyond that obtained by metallic conduction. Resulted in both improved engine operation and reduction in fuel consumption. Raw material conservation through reduced dependence on strategic materials also benefit from this type of heat-pipe technology. Applications result in improved engine performance and cleaner environment.

  7. Remifentanil Reduces Blood Loss During Orthognathic Surgery.

    Science.gov (United States)

    Matsuura, Nobuyuki; Okamura, Taiki; Ide, Satoko; Ichinohe, Tatsuya

    2017-01-01

    Remifentanil is reported to reduce oral tissue blood flow. We performed a retrospective investigation using logistic regression analysis of anesthesia records to investigate whether the use of remifentanil infusion in a balanced anesthesia technique was useful as a primary technique to reduce blood loss during orthognathic surgery. Subjects were 80 patients who underwent Le Fort I osteotomy and sagittal split ramus osteotomy of the mandible. The variables included gender, age, weight, type of maintenance anesthetic, type and dose or infusion rate of opioid, mean systolic blood pressure (SBP-mean), coefficient of variation of systolic blood pressure (CVSBP) during surgery, mean heart rate (HR-mean), duration of surgery, total blood loss, volume of infusion used, amount of local anesthetic used, body temperature, and urine output. Gender, type of maintenance anesthetic, type of opioid, SBP-mean, CVSBP, HR-mean, and duration of surgery were used as candidates for independent variables. Logistic regression analysis was performed for the selected independent variables with the total blood loss as the dependent variable. The factors associated with the reduction of blood loss were the use of remifentanil (odds ratio, 3.112; 95% CI, 1.166-8.307; P = .023) and smaller CVSBP (odds ratio, 2.747; 95% CI, 1.07-7.053; P = .036). Use of remifentanil and smaller CVSBP were associated with a reduction of blood loss during orthognathic surgery.

  8. Reducing the losses of optical metamaterials

    International Nuclear Information System (INIS)

    Fang, Anan

    2010-01-01

    The field of metamaterials is driven by fascinating and far-reaching theoretical visions, such as perfect lenses, invisibility cloaking, and enhanced optical nonlinearities. However, losses have become the major obstacle towards real world applications in the optical regime. Reducing the losses of optical metamaterials becomes necessary and extremely important. In this thesis, two approaches are taken to reduce the losses. One is to construct an indefinite medium. Indefinite media are materials where not all the principal components of the permittivity and permeability tensors have the same sign. They do not need the resonances to achieve negative permittivity, (var e psilon). So, the losses can be comparatively small. To obtain indefinite media, three-dimensional (3D) optical metallic nanowire media with different structures are designed. They are numerically demonstrated that they are homogeneous effective indefinite anisotropic media by showing that their dispersion relations are hyperbolic. Negative group refraction and pseudo focusing are observed. Another approach is to incorporate gain into metamaterial nanostructures. The nonlinearity of gain is included by a generic four-level atomic model. A computational scheme is presented, which allows for a self-consistent treatment of a dispersive metallic photonic metamaterial coupled to a gain material incorporated into the nanostructure using the finite-difference time-domain (FDTD) method. The loss compensations with gain are done for various structures, from 2D simplified models to 3D realistic structures. Results show the losses of optical metamaterials can be effectively compensated by gain. The effective gain coefficient of the combined system can be much larger than the bulk gain counterpart, due to the strong local-field enhancement.

  9. Reducing the losses of optical metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Anan [Iowa State Univ., Ames, IA (United States)

    2010-01-01

    The field of metamaterials is driven by fascinating and far-reaching theoretical visions, such as perfect lenses, invisibility cloaking, and enhanced optical nonlinearities. However, losses have become the major obstacle towards real world applications in the optical regime. Reducing the losses of optical metamaterials becomes necessary and extremely important. In this thesis, two approaches are taken to reduce the losses. One is to construct an indefinite medium. Indefinite media are materials where not all the principal components of the permittivity and permeability tensors have the same sign. They do not need the resonances to achieve negative permittivity, ε. So, the losses can be comparatively small. To obtain indefinite media, three-dimensional (3D) optical metallic nanowire media with different structures are designed. They are numerically demonstrated that they are homogeneous effective indefinite anisotropic media by showing that their dispersion relations are hyperbolic. Negative group refraction and pseudo focusing are observed. Another approach is to incorporate gain into metamaterial nanostructures. The nonlinearity of gain is included by a generic four-level atomic model. A computational scheme is presented, which allows for a self-consistent treatment of a dispersive metallic photonic metamaterial coupled to a gain material incorporated into the nanostructure using the finite-difference time-domain (FDTD) method. The loss compensations with gain are done for various structures, from 2D simplified models to 3D realistic structures. Results show the losses of optical metamaterials can be effectively compensated by gain. The effective gain coefficient of the combined system can be much larger than the bulk gain counterpart, due to the strong local-field enhancement.

  10. Heat pipes to reduce engine exhaust emissions

    Science.gov (United States)

    Schultz, D. F. (Inventor)

    1984-01-01

    A fuel combustor is presented that consists of an elongated casing with an air inlet conduit portion at one end, and having an opposite exit end. An elongated heat pipe is mounted longitudinally in the casing and is offset from and extends alongside the combustion space. The heat pipe is in heat transmitting relationship with the air intake conduit for heating incoming air. A guide conduit structure is provided for conveying the heated air from the intake conduit into the combustion space. A fuel discharge nozzle is provided to inject fuel into the combustion space. A fuel conduit from a fuel supply source has a portion engaged in heat transfer relationship of the heat pipe for preheating the fuel. The downstream end of the heat pipe is in heat transfer relationship with the casing and is located adjacent to the downstream end of the combustion space. The offset position of the heat pipe relative to the combustion space minimizes the quenching effect of the heat pipe on the gaseous products of combustion, as well as reducing coking of the fuel on the heat pipe, thereby improving the efficiency of the combustor.

  11. Heat Transmission Coefficient Measurements in Buildings Utilizing a Heat Loss Measuring Device

    DEFF Research Database (Denmark)

    Sørensen, Lars Schiøtt

    2013-01-01

    Global energy efficiency can be obtained in two ordinary ways. One way is to improve the energy production and supply side, and the other way is, in general, to reduce the consumption of energy in society. This paper has focus on the latter and especially the consumption of energy for heating...... and cooling our houses. There is a huge energy-saving potential in this area for reducing both the global climate problems as well as economy challenges. Heating of buildings in Denmark accounts for approximately 40% of the entire national energy consumption. For this reason, a reduction of heat losses from...... building envelopes are of great importance in order to reach the Bologna CO2 emission reduction targets. Upgrading of the energy performance of buildings is a topic of huge global interest these years. Not only heating in the temperate and arctic regions are important, but also air conditioning...

  12. Costs of reducing nutrient losses in Denmark

    DEFF Research Database (Denmark)

    Jacobsen, Brian H.; Abildtrup, Jens; Jensen, Jørgen Dejgård

    to the eastern part of Denmark. The final plan for the Aquatic Environment III from 2004 included a 13% reduction of N-leaching until 2015 based on cost effective administrative measures like wetlands and catch crops. Also a tax on mineral phosphorus in feedstuffs was included in order to half the phosphorus......The economic calculations carried out prior to the Plan for the Aquatic Environment III included a comparison of regulation systems aimed at reducing nitrogen leaching, analyses of measures for reducing phosphorus losses and estimation of administrative costs. The conclusions were that taxation...... surplus. The measures in the Plan will have to be supplemented by more measures to meet the targets in the EU's Water Framework Directive....

  13. Reduction of heat losses from greenhouses by means of internal blinds with low thermal emissivity

    NARCIS (Netherlands)

    Meijer, J.

    1980-01-01

    Heat losses in greenhouses may be substantially reduced by the use of heat reflecting blinds. Quantitative results are obtained solving a mathematical heat flow model by numerical methods. Special attention has been given to the emissivity and transmittance of the screen and the ventilation through

  14. Reducing food losses by intelligent food logistics.

    Science.gov (United States)

    Jedermann, Reiner; Nicometo, Mike; Uysal, Ismail; Lang, Walter

    2014-06-13

    The need to feed an ever-increasing world population makes it obligatory to reduce the millions of tons of avoidable perishable waste along the food supply chain. A considerable share of these losses is caused by non-optimal cold chain processes and management. This Theme Issue focuses on technologies, models and applications to monitor changes in the product shelf life, defined as the time remaining until the quality of a food product drops below an acceptance limit, and to plan successive chain processes and logistics accordingly to uncover and prevent invisible or latent losses in product quality, especially following the first-expired-first-out strategy for optimized matching between the remaining shelf life and the expected transport duration. This introductory article summarizes the key findings of this Theme Issue, which brings together research study results from around the world to promote intelligent food logistics. The articles include three case studies on the cold chain for berries, bananas and meat and an overview of different post-harvest treatments. Further contributions focus on the required technical solutions, such as the wireless sensor and communication system for remote quality supervision, gas sensors to detect ethylene as an indicator of unwanted ripening and volatile components to indicate mould infections. The final section of this introduction discusses how improvements in food quality can be targeted by strategic changes in the food chain.

  15. Experimental and numerical analysis of convective heat losses from spherical cavity receiver of solar concentrator

    Directory of Open Access Journals (Sweden)

    Shewale Vinod C.

    2017-01-01

    Full Text Available Spherical cavity receiver of solar concentrator is made up of Cu tubing material having cavity diameter 385 mm to analyze the different heat losses such as conduction, convection and radiation. As the convection loss plays major role in heat loss analysis of cavity receiver, the experimental analysis is carried out to study convective heat loss for the temperature range of 55-75°C at 0°, 15°, 30°, 45°, 60°, and 90° inclination angle of downward facing cavity receiver. The numerical analysis is carried out to study convective heat loss for the low temperature range (55-75°C as well as high temperature range (150-300 °C for no wind condition only. The experimental set-up mainly consists of spherical cavity receiver which is insulated with glass wool insulation to reduce the heat losses from outside surface. The numerical analysis is carried out by using CFD software and the results are compared with the experimental results and found good agreement. The result shows that the convective loss increases with decrease in cavity inclination angle and decreases with decrease in mean cavity receiver temperature. The maximum losses are obtained at 0° inclination angle and the minimum losses are obtained at 90° inclination angle of cavity due to increase in stagnation zone in to the cavity from 0° to 90° inclination. The Nusselt number correlation is developed for the low temperature range 55-75°C based on the experimental data. The analysis is also carried out to study the effect of wind speed and wind direction on convective heat losses. The convective heat losses are studied for two wind speeds (3 m/s and 5 m/s and four wind directions [α is 0° (Side-on wind, 30°, 60°, and 90° (head-on wind]. It is found that the convective heat losses for both wind speed are higher than the losses obtained by no wind test. The highest heat losses are found for wind direction α is 60° with respect to receiver stand and lowest heat losses are found

  16. Self-heating, gamma heating and heat loss effects on resistance temperature detector (RTD) accuracy

    International Nuclear Information System (INIS)

    Qian, T.; Hinds, H.W.; Tonner, P.

    1997-01-01

    Resistance temperature detectors (RTDs) are extensively used in CANDU nuclear power stations for measuring various process and equipment temperatures. Accuracy of measurement is an important performance parameter of RTDs and has great impact on the thermal power efficiency and safety of the plant. There are a number of factors that contribute to some extent to RTD measurement error. Self-heating, gamma heating and the heat-loss throughout conduction of the thermowell are three of these factors. The degree to which these three affect accuracy of RTDs used for the measurement of reactor inlet header temperature (RIHT) has been analyzed and is presented in this paper. (author)

  17. Use of infrared thermography for the evaluation of heat losses during coal storage

    NARCIS (Netherlands)

    Fierro, V.; Miranda, J.L.; Romero, C.; Andrés, J.M.; Pierrot, A.; Gómez-Landesa, E.; Arriaga, A.; Schmal, D.

    1999-01-01

    The exothermic processes during coal storage reduce the calorific value of the coal which in turn results in financial losses. An accurate and easy calculation of the losses may be an efficient tool to evaluate the effectiveness of the measures taken to reduce the spontaneous heating of coal and to

  18. Reducing Heating In High-Speed Cinematography

    Science.gov (United States)

    Slater, Howard A.

    1989-01-01

    Infrared-absorbing and infrared-reflecting glass filters simple and effective means for reducing rise in temperature during high-speed motion-picture photography. "Hot-mirror" and "cold-mirror" configurations, employed in projection of images, helps prevent excessive heating of scenes by powerful lamps used in high-speed photography.

  19. Heat loss investigation from spherical cavity receiver of solar concentrator

    Energy Technology Data Exchange (ETDEWEB)

    Shewale, V. C. [Dept. of Mechanical Engineering, NDMVPS KBT College of Engineering, Nashik (India); Dongarwar, P. R. [Dept. of Mechanical Engineering, College of Military Engineering, Pune (India); Gawande, R. P. [Dept. of Mechanical Engineering, B.D.C.O.E. Wardha, Nagpur University, NagpurI (India)

    2016-11-15

    The heat losses are mainly affects on the performance of cavity receiver of solar concentrator. In this paper, the experimental and numerical study is carried out for different heat losses from spherical cavity receiver of 0.385 m cavity diameter and 0.154 m opening diameter. The total and convection losses are studied experimentally to no wind and wind conditions for the temperature range of 150 °C to 300 °C at 0°, 30°, 45°, 60° and 90° inclination angle of cavity receiver. The experimental set up mainly consists of copper tube material cavity receiver wrapped with nichrome heating coil to heat the cavity and insulated with glasswool insulation. The numerical analysis was carried out with Fluent Computational fluid dynamics (CFD) software, to study connective heat losses for no wind condition only. The numerical results are compared with experimental results and found good agreement with maximum deviation of 12 %. The effect of inclination angle of cavity receiver on total losses and convection losses shows that as the inclination angle increases from 0o to 90o, both losses decreased due to decreased in convective zone into the cavity receiver. The effect of operating temperature of cavity shows that as the temperature of cavity receiver increases, the total and convective losses goes on increasing. The effect of external wind at 2 m/s and 4 m/s in two directions (side-on wind and head-on wind) is also studied experimentally for total and convective heat losses. The result shows that the heat losses are higher for head-on wind condition compared to side-on wind and no wind condition at all inclination angle of cavity receiver. The present results are also compared to the convective losses obtained from the correlations of Stine and Mcdonald and M. Prakash. The convective loss from these correlations shows nearest prediction to both experimental and numerical results.

  20. Heat loss investigation from spherical cavity receiver of solar concentrator

    International Nuclear Information System (INIS)

    Shewale, V. C.; Dongarwar, P. R.; Gawande, R. P.

    2016-01-01

    The heat losses are mainly affects on the performance of cavity receiver of solar concentrator. In this paper, the experimental and numerical study is carried out for different heat losses from spherical cavity receiver of 0.385 m cavity diameter and 0.154 m opening diameter. The total and convection losses are studied experimentally to no wind and wind conditions for the temperature range of 150 °C to 300 °C at 0°, 30°, 45°, 60° and 90° inclination angle of cavity receiver. The experimental set up mainly consists of copper tube material cavity receiver wrapped with nichrome heating coil to heat the cavity and insulated with glasswool insulation. The numerical analysis was carried out with Fluent Computational fluid dynamics (CFD) software, to study connective heat losses for no wind condition only. The numerical results are compared with experimental results and found good agreement with maximum deviation of 12 %. The effect of inclination angle of cavity receiver on total losses and convection losses shows that as the inclination angle increases from 0o to 90o, both losses decreased due to decreased in convective zone into the cavity receiver. The effect of operating temperature of cavity shows that as the temperature of cavity receiver increases, the total and convective losses goes on increasing. The effect of external wind at 2 m/s and 4 m/s in two directions (side-on wind and head-on wind) is also studied experimentally for total and convective heat losses. The result shows that the heat losses are higher for head-on wind condition compared to side-on wind and no wind condition at all inclination angle of cavity receiver. The present results are also compared to the convective losses obtained from the correlations of Stine and Mcdonald and M. Prakash. The convective loss from these correlations shows nearest prediction to both experimental and numerical results

  1. Heat Loss Evaluation of the SMART-ITL Primary System

    International Nuclear Information System (INIS)

    Ryu, Sung Uk; Bae, Hwang; Kim, Dong Eok; Park, Keun Tae; Park, Hyun Sik; Yi, Sung Jae

    2013-01-01

    It is considered that the heat loss rate is one of the critical factors affecting the transient behavior of an integral effect test facility. This paper presents the experimental results of the heat loss rate for the primary system of a SMART-ITL (System-Integrated Modular Advanced ReacTor-Integral Test Loop) facility including the pressurizer (PZR). To evaluate the heat loss rate of the primary system, two different approaches were pursued, i. e., integral and differential approaches. The integral approach is a constant temperature method which controls the core and PZR powers at a desired temperature condition and the differential approach is a natural cooling-down measurement method that lasts for a long period of time. In the present work, the heat losses derived from integral and differential approaches were acquired for the primary system of the SMART-ITL. The results obtained by the two approaches were very similar. In addition, an empirical correlation with respect to the difference between the wall temperature and the ambient temperature was proposed to represent the heat loss characteristics of the SMART-ITL facility. The estimated heat losses could be used to estimate the heat loss during the tests and code simulations

  2. Deciding for Others Reduces Loss Aversion

    DEFF Research Database (Denmark)

    Andersson, Ola; Holm, Håkan J.; Tyran, Jean-Robert Karl

    We study risk taking on behalf of others, both with and without potential losses. A large-scale incentivized experiment is conducted with subjects randomly drawn from the Danish population. On average, decision makers take the same risks for other people as for themselves when losses are excluded....... In contrast, when losses are possible, decisions on behalf of others are more risky. Using structural estimation, we show that this increase in risk stems from a decrease in loss aversion when others are affected by their choices.......We study risk taking on behalf of others, both with and without potential losses. A large-scale incentivized experiment is conducted with subjects randomly drawn from the Danish population. On average, decision makers take the same risks for other people as for themselves when losses are excluded...

  3. Slow brushing reduces heat pain in humans.

    Science.gov (United States)

    Liljencrantz, J; Strigo, I; Ellingsen, D M; Krämer, H H; Lundblad, L C; Nagi, S S; Leknes, S; Olausson, H

    2017-08-01

    C-tactile (CT) afferents are unmyelinated low-threshold mechanoreceptors optimized for signalling affective, gentle touch. In three separate psychophysical experiments, we examined the contribution of CT afferents to pain modulation. In total, 44 healthy volunteers experienced heat pain and CT optimal (slow brushing) and CT sub-optimal (fast brushing or vibration) stimuli. Three different experimental paradigms were used: Concurrent application of heat pain and tactile (slow brushing or vibration) stimulation; Slow brushing, applied for variable duration and intervals, preceding heat pain; Slow versus fast brushing preceding heat pain. Slow brushing was effective in reducing pain, whereas fast brushing or vibration was not. The reduction in pain was significant not only when the CT optimal touch was applied simultaneously with the painful stimulus but also when the two stimuli were separated in time. For subsequent stimulation, the pain reduction was more pronounced for a shorter time interval between brushing and pain. Likewise, the effect was more robust when pain was preceded by a longer duration of brush stimulation. Strong CT-related pain reduction was associated with low anxiety and high calmness scores obtained by a state anxiety questionnaire. Slow brushing - optimal for CT activation - is effective in reducing pain from cutaneous heating. The precise mechanisms for the pain relief are as yet unknown but possible mechanisms include inhibition of nociceptive projection neurons at the level of the dorsal horn as well as analgesia through cortical mechanisms. Slow brushing stimuli - optimal for activation of C-tactile fibres - can reduce pain from cutaneous heating. No such effect was seen with fast brushing or vibration. These observations indicate the role of C-tactile fibres in pain modulation. © 2017 European Pain Federation - EFIC®.

  4. Improving MODPRESS heat loss calculations for PWR pressurizers

    International Nuclear Information System (INIS)

    Ramos, Natalia V.; Lira, Carlos A. Brayner O.; Castrillho, Lazara S.

    2009-01-01

    The improvement of heat loss calculations in MODPRESS transient code for PWR pressurizer analysis is the main focus of this investigation. Initially, a heat loss model was built based on heat transfer coefficient (HTC) correlations obtained in handbooks of thermal engineering. A hand calculation for Neptunus experimental test number U47 yielded a thermal power loss of 11.2 kW against 17.3 kW given by MODPRESS at the same conditions, while the experimental estimate is given as 17 kW. This comparison is valid only for steady state or before starting the transient experiment, because MODPRESS does not update HTC's when the transient phase begins. Furthermore, it must be noted that MODPRESS heat transfer coefficients are adjusted to reproduce the experimental value of the specific type of pressurizer. After inserting the new routine for HTC's into MODPRESS, the heat loss was calculated as 11.4 kW, a value very close to the first estimate but far below 17 kW found in the U47 experiment. In this paper, the heat loss model and results will be described. Further research is being developed to find a more general HTC that allows the analysis of the effects of heat losses on transient behavior of Neptunus and IRIS pressurizers. (author)

  5. Indoor temperatures for calculating room heat loss and heating capacity of radiant heating systems combined with mechanical ventilation systems

    DEFF Research Database (Denmark)

    Wu, Xiaozhou; Olesen, Bjarne W.; Fang, Lei

    2016-01-01

    change rates on the indoor temperatures were performed using the proposed model. When heated surface temperatures and air change rates were from 21.0 to 29.0 degrees C and from 0.5 to 4.0 h-1, the indoor temperatures for calculating the transmission heat loss and ventilation heat loss were between 20...

  6. Orbit losses of strongly ICRF-heated ions

    International Nuclear Information System (INIS)

    Anderson, A.; Dillner, Oe.; Lisak, M.

    1992-01-01

    An approximate analytical investigation is made to assess the importance of orbit losses of strongly ICRF-heated minority ions. Explicit expressions for the fraction of lost minority ions are derived and shown to be in good agreement with numerical simulation results. The results indicate that present day ICRF heating power density levels cannot be raised significantly without causing important particle and energy losses due to unconfined particle orbits. 6 refs., 5 figs

  7. Effect of heat loss in a geothermal reservoir

    NARCIS (Netherlands)

    Ganguly, Sayantan; Tan, Lippong; Date, Abhijit; Mohan Kumar, Mandalagiri Subbarayappa

    This paper reports a three-dimensional (3D) numerical study to determine the effect of heat loss on the transient heat transport and temperature distribution in a geothermal reservoir. The operation of a geothermal power plant, which is essentially an injection-production process, involves

  8. Influence of Variable Fluid Properties and Radiative Heat loss on ...

    African Journals Online (AJOL)

    Consequently, comparative analysis is also performed on the wall shear stress and local heat transfer of the present study with the available results.The results show that the inclusion variable viscosity and thermal conductivity, and radiative heat loss mechanism cause significant effects on the fluid flow velocity, temperature ...

  9. Ripple losses during ICRF heating in Tore Supra

    International Nuclear Information System (INIS)

    Basiuk, V.; Eriksson, L.-G.; Bergeaud, V.; Chantant, M.; Martin, G.; Nguyen, F.; Reichle, R.; Vallet, J.C.; Delpeche, L.; Surle, F.

    2004-01-01

    The toroidal field coils in Tore Supra are supra-conducting, and their number is restricted to 18. As a result, the ripple is fairly large, about 7% at the plasma boundary. Tore Supra has consequently been equipped with dedicated ripple loss diagnostics, which has allowed ripple loss studies. This paper reports on the measurements made with these diagnostics and provides an analysis of the experimental results, comparing them with theoretical expectations whenever possible. Furthermore, the main heating source accelerating ions in Tore Supra is ion cyclotron resonance range of frequency (ICRF) heating, and the paper provides new information on the ripple losses of ICRF accelerated ions. (author)

  10. Maintained intentional weight loss reduces cardiovascular outcomes

    DEFF Research Database (Denmark)

    Caterson, I D; Finer, N; Coutinho, W

    2012-01-01

    Aim: The Sibutramine Cardiovascular OUTcomes trial showed that sibutramine produced greater mean weight loss than placebo but increased cardiovascular morbidity but not mortality. The relationship between 12-month weight loss and subsequent cardiovascular outcomes is explored. Methods: Overweight....../obese subjects (N = 10 744), =55 years with cardiovascular disease and/or type 2 diabetes mellitus, received sibutramine plus weight management during a 6-week Lead-in Period before randomization to continue sibutramine (N = 4906) or to receive placebo (N = 4898). The primary endpoint was the time from...... randomization to first occurrence of a primary outcome event (non-fatal myocardial infarction, non-fatal stroke, resuscitated cardiac arrest or cardiovascular death). Results: For the total population, mean weight change during Lead-in Period (sibutramine) was -2.54 kg. Post-randomization, mean total weight...

  11. Regenerator heat exchanger – calculation of heat recovery efficiency and pressure loss

    DEFF Research Database (Denmark)

    Pomianowski, Michal Zbigniew; Heiselberg, Per Kvols

    Performance of heat exchangers is determined based on two main parameters: efficiency to exchange / recover heat and pressure loss due to friction between fluid and exchanger surfaces. These two parameters are contradicting each other which mean that the higher is efficiency the higher becomes...... pressure loss. The aim of the optimized design of heat exchanger is to reach the highest or the required heat efficiency and at the same time to keep pressure losses as low as possible keeping total exchanger size within acceptable size. In this report is presented analytical calculation method...... to calculate efficiency and pressure loss in the regenerator heat exchanger with a fixed matrix that will be used in the decentralized ventilation unit combined in the roof window. Moreover, this study presents sensitivity study of regenerator heat exchanger performance, taking into account, such parameters as...

  12. Heat loss may explain bill size differences between birds occupying different habitats.

    Directory of Open Access Journals (Sweden)

    Russell Greenberg

    Full Text Available Research on variation in bill morphology has focused on the role of diet. Bills have other functions, however, including a role in heat and water balance. The role of the bill in heat loss may be particularly important in birds where water is limiting. Song sparrows localized in coastal dunes and salt marsh edge (Melospiza melodia atlantica are similar in size to, but have bills with a 17% greater surface area than, those that live in mesic habitats (M. m. melodia, a pattern shared with other coastal sparrows. We tested the hypotheses that sparrows can use their bills to dissipate "dry" heat, and that heat loss from the bill is higher in M. m. atlantica than M. m. melodia, which would indicate a role of heat loss and water conservation in selection for bill size.Bill, tarsus, and body surface temperatures were measured using thermal imaging of sparrows exposed to temperatures from 15-37°C and combined with surface area and physical modeling to estimate the contribution of each body part to total heat loss. Song sparrow bills averaged 5-10°C hotter than ambient. The bill of M. m atlantica dissipated up to 33% more heat and 38% greater proportion of total heat than that of M. m. melodia. This could potentially reduce water loss requirements by approximately 7.7%.This >30% higher heat loss in the bill of M. m. atlantica is independent of evaporative water loss and thus could play an important role in the water balance of sparrows occupying the hot and exposed dune/salt marsh environments during the summer. Heat loss capacity and water conservation could play an important role in the selection for bill size differences between bird populations and should be considered along with trophic adaptations when studying variation in bill size.

  13. Heat loss prediction of a confined premixed jet flame using a conjugate heat transfer approach

    NARCIS (Netherlands)

    Gövert, S.; Mira, D.; Zavala-Ake, M.; Kok, J.B.W.; Vázquez, M.; Houzeaux, G.

    2017-01-01

    The presented work addresses the investigation of the heat loss of a confined turbulent jet flame in a lab-scale combustor using a conjugate-heat transfer approach and large-eddy simulation. The analysis includes the assessment of the principal mechanisms of heat transfer in this combustion chamber:

  14. Quantitative thermography and methods for in-situ determination of heat losses from district heating networks

    Energy Technology Data Exchange (ETDEWEB)

    Boehm, B. [ed.

    1996-11-01

    The course and seminar summarizing application of infrared thermography in district heating systems control gathered Danish specialists with 5 contributions on the subject. Maintenance of the heat distribution pipelines and thermographic inspection of the systems are essential in order to avoid heat losses. (EG)

  15. Modeling heat loss from the udder of a dairy cow.

    Science.gov (United States)

    Gebremedhin, Kifle G; Wu, Binxin

    2016-07-01

    A mechanistic model that predicts sensible and latent heat fluxes from the udder of a dairy cow was developed. The prediction of the model was spot validated against measured data from the literature, and the result agreed within 7% of the measured value for the same ambient temperature. A dairy cow can lose a significant amount of heat (388W/m(2)) from the udder. This suggests that the udder could be considered as a heat sink. The temperature profile through the udder tissue (core to skin) approached the core temperature for an air temperature ≥37°C whereas the profile decreased linearly from the core to skin surface for an air temperature less than 37°C. Sensible heat loss was dominant when ambient air temperature was less than 37.5°C but latent heat loss was greater than sensible heat loss when air temperature was ≥37.5°C. The udder could lose a total (sensible + latent) heat flux of 338W/m(2) at an ambient temperature of 35°C and blood-flow rate of 3.2×10(-3)m(3)/(sm(3) tissue). The results of this study suggests that, in time of heat stress, a dairy cow could be cooled by cooling the udder only (e.g., using an evaporative cooling jacket). Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Can intradermal administration of angiotensin II influence human heat loss responses during whole body heat stress?

    Science.gov (United States)

    Fujii, Naoto; Meade, Robert D; Paull, Gabrielle; McGinn, Ryan; Foudil-bey, Imane; Akbari, Pegah; Kenny, Glen P

    2015-05-01

    It is unclear if angiotensin II, which can increase the production of reactive oxygen species (oxidative stress), modulates heat loss responses of cutaneous blood flow and sweating. We tested the hypothesis that angiotensin II-induced increases in oxidative stress impair cutaneous perfusion and sweating during rest and exercise in the heat. Eleven young (24 ± 4 yr) healthy adults performed two 30-min cycling bouts at a fixed rate of metabolic heat production (400 W) in the heat (35°C). The first and second exercises were followed by a 20- and 40-min recovery. Four microdialysis fibers were placed in the forearm skin for continuous administration of either: 1) lactated Ringer (control), 2) 10 μM angiotensin II, 3) 10 mM ascorbate (an antioxidant), or 4) a combination of 10 μM angiotensin II + 10 mM ascorbate. Cutaneous vascular conductance (CVC; laser-Doppler perfusion units/mean arterial pressure) and sweating (ventilated capsule) were evaluated at each skin site. Compared with control, angiotensin II reduced both CVC and sweating at baseline resting and during each recovery in the heat (all P 0.05). When ascorbate was coinfused with angiotensin II, the effect of angiotensin II on sweating was abolished (all P > 0.05); however, its effect on CVC at baseline resting and during each recovery remained intact (all P stress, while it impairs sweating through increasing oxidative stress during exposure to an ambient heat stress before and following exercise. Copyright © 2015 the American Physiological Society.

  17. Radiant heat loss, an unexploited path for heat stress reduction in shaded cattle.

    Science.gov (United States)

    Berman, A; Horovitz, T

    2012-06-01

    Reducing thermal radiation on shaded animals reduces heat stress independently of other means of stress relief. Radiant heat exchange was estimated as a function of climate, shade structure, and animal density. Body surface portion exposed to radiant sources in shaded environments was determined by geometrical relations to determine angles of view of radiation sources (roof underside, sky, sun-exposed ground, shaded ground) on the animal's surface. The relative representation of environment radiation sources on the body surface was determined. Animal thermal radiation balance was derived from radiant heat gained from radiation sources (including surrounding animals) and that lost from the animal surface. The animal environment was assumed to have different shade dimensions and temperatures. These were summed to the radiant heat balance of the cow. The data formed served to estimate the effect of changes in intensity of radiation sources, roof and shaded surface dimensions, and animal density on radiant heat balance (Rbal) of cattle. Roof height effect was expressed by effect of roof temperature on Rbal. Roof underside temperature (35 to 75°C) effect on Rbal was reduced by roof height. If roof height were 4m, an increase in its underside temperature from 35 to 75°C would increase mean Rbal from -63 to -2 W·m⁻², whereas if roof height were 10 m, Rbal would only increase from -99 to -88 W·m⁻². A hot ground temperature increase from 35 to 65°C reduced mean Rbal heat loss from -45 to 3 W·m⁻². Increasing the surface of the shaded area had only a minor effect on Rbal and on the effect of hot ground on Rbal. Increasing shade roof height reduced the effect of roof temperature on Rbal to minor levels when height was > 8m. Increasing the roof height from 4 to 10 m decreased Rbal from -32 to -94 W·m⁻². Increasing indirect radiation from 100 to 500 W·m⁻² was associated with an increase in Rbal from -135 to +23 W·m⁻². Their combined effects were lower

  18. Heat loss mechanisms in a measurement of specific heat capacity of graphite

    International Nuclear Information System (INIS)

    Shipley, D.R.; Duane, S.

    1996-01-01

    Absorbed dose to graphite in electron beams with nominal energies in the range 3-20 MeV is determined by measuring the temperature rise in the core of a primary standard graphite calorimeter. This temperature rise is related to absorbed dose by a separate measurement of the specific heat capacity of the graphite core. There is, however, a small but significant amount of heat loss from the sample in the determination of specific heat capacity and corrections for these losses are required. This report discusses the sources of heat loss in the measurements and, where possible, provides estimates for the magnitude of these losses. For those mechanisms which are significant, a more realistic model of the measurement system is analysed and corrections for the losses are provided. (UK)

  19. Analysis of decay heat removal following loss of RHR

    International Nuclear Information System (INIS)

    Naff, S.A.; Ward, L.W.

    1991-01-01

    Recent plant experience has included many events occurring during outages at pressurized water reactors. A recent example is the loss of residual heat removal system event that occurred March 20, 1990 at the Vogtle-1 plant following refueling. Plant conditions during outages differ markedly from those prevailing at normal full-power operation on which most past research has concentrated. Specifically, during outages the core power is low, the coolant system may be in a drained state with air or nitrogen present, and various reactor coolant system closures may be unsecured. With the residual heat removal system operating, the core decay heat is readily removed. However, if the residual heat removal system capability is lost and alternative heat removal means cannot be established, heat up of the coolant could lead to core coolant boil-off, fuel rod heat up, and core damage. A study was undertaken by the Nuclear Regulatory Commission to identify what information was needed to understand pressurized water reactor response to an extended loss of residual heat removal event during refueling and maintenance outages. By identifying the possible plant conditions and cooling methods that might be used, the controlling thermal-hydraulic processes and phenomena were identified. Controlling processes and phenomena include: gravity drain into the reactor coolant system, core water boil-off, and reflux condensation cooling processes

  20. Steady-state heat losses in pipes for low-energy district heating

    DEFF Research Database (Denmark)

    Dalla Rosa, Alessandro; Li, Hongwei; Svendsen, Svend

    2010-01-01

    The synergy between highly energy efficient buildings and low-energy district heating (DH) systems is a promising concept for the optimal integration of energy saving policies and energy supply systems based on renewable energy (RE). Distribution heat losses represent a key factor in the design o...

  1. Chlorophyll loss associated with heat-induced senescence in bentgrass.

    Science.gov (United States)

    Jespersen, David; Zhang, Jing; Huang, Bingru

    2016-08-01

    Heat stress-induced leaf senescence is characterized by the loss of chlorophyll from leaf tissues. The objectives of this study were to examine genetic variations in the level of heat-induced leaf senescence in hybrids of colonial (Agrostis capillaris)×creeping bentgrass (Agrostis stolonifera) contrasting in heat tolerance, and determine whether loss of leaf chlorophyll during heat-induced leaf senescence was due to suppressed chlorophyll synthesis and/or accelerated chlorophyll degradation in the cool-season perennial grass species. Plants of two hybrid backcross genotypes ('ColxCB169' and 'ColxCB190') were exposed to heat stress (38/33°C, day/night) for 28 d in growth chambers. The analysis of turf quality, membrane stability, photochemical efficiency, and chlorophyll content demonstrated significant variations in the level of leaf senescence induced by heat stress between the two genotypes, with ColXCB169 exhibiting a lesser degree of decline in chlorophyll content, photochemical efficiency and membrane stability than ColXCB190. The assays of enzymatic activity or gene expression of several major chlorophyll-synthesizing (porphobilinogen deaminase, Mg-chelatase, protochlorophyllide-reductase) and chlorophyll-degrading enzymes (chlorophyllase, pheophytinase, and chlorophyll-degrading peroxidase) indicated heat-induced decline in leaf chlorophyll content was mainly due to accelerated chlorophyll degradation, as manifested by increased gene expression levels of chlorophyllase and pheophytinase, and the activity of pheophytinase (PPH), while chlorophyll-synthesizing genes and enzymatic activities were not differentially altered by heat stress in the two genotypes. The analysis of heat-induced leaf senescence of pph mutants of Arabidopsis further confirmed that PPH could be one enzymes that plays key roles in regulating heat-accelerated chlorophyll degradation. Further research on enzymes responsible in part for the loss of chlorophyll during heat

  2. Green roofs: roof system reducing heating and cooling costs

    Directory of Open Access Journals (Sweden)

    Konasova, Sarka

    2016-06-01

    Full Text Available Green roofs are among the passive building systems that contribute to the thermal stability of the rooms under the roof in both summer and winter. Green roofs can provide a significant contribution to the thermal balance of the protected space. Over the past ten years, many studies have been carried out to investigate the energy benefits of green roofs in terms of the energy performance of buildings. These studies show that the installation of vegetated cover can achieve energy savings for both winter heating and summer cooling. The green roof, as a thermal insulation, reduces the amount of building operating energy costs and reduces heat losses. This article summarizes current literature and points to situations in which green roofs can play an important role in saving energy for heating and cooling due to improved thermal insulating function of the roof, in case of extensive vegetation coverage without significant overloading of the roof structure and associated over-dimensioning. It is important to note that these energy savings always depend on the particular climate, the type of building and the availability and the type of roof structure.

  3. MATHEMATICAL MODELLING OF OPERATION HEAT NETWORKS IN VIEW OF HEAT LOSS

    Directory of Open Access Journals (Sweden)

    ZBARAZ L. I.

    2016-08-01

    Full Text Available Goal. In recent years, due to a significant rise in price of energy, the reduction of direct costs for heating becomes a priority. In the utilities especially important to optimization of energy heating system equipment. During transport of thermal energy in the distribution networks thermal losses occur along the length of the hydraulic pipes and the coolant pumping losses. These loss-dependence of the particular distribution network. Changing temperature and the hydraulic regime at the source necessary to achieve the minimum cost of transport for today acting tariffs for energy. Scientific novelty. The studies received law changes head to the source at the qualitative and quantitative methods of regulation. Results. A mathematical model of an extensive network of decentralized heat source heating, which are analyzed using different methods of regulating and found the best.

  4. Reducing fruit losses in India and Sri Lanka using nanotechnology

    International Development Research Centre (IDRC) Digital Library (Canada)

    Reducing fruit losses in India and. Sri Lanka using ... The post-harvest losses — between 35 and 40% and valued at about ... Industrial Technology Institute in Sri Lanka has a bio-wax ... Better jobs and entrepreneurial opportunities for women.

  5. Thinking like a trader selectively reduces individuals' loss aversion.

    Science.gov (United States)

    Sokol-Hessner, Peter; Hsu, Ming; Curley, Nina G; Delgado, Mauricio R; Camerer, Colin F; Phelps, Elizabeth A

    2009-03-31

    Research on emotion regulation has focused upon observers' ability to regulate their emotional reaction to stimuli such as affective pictures, but many other aspects of our affective experience are also potentially amenable to intentional cognitive regulation. In the domain of decision-making, recent work has demonstrated a role for emotions in choice, although such work has generally remained agnostic about the specific role of emotion. Combining psychologically-derived cognitive strategies, physiological measurements of arousal, and an economic model of behavior, this study examined changes in choices (specifically, loss aversion) and physiological correlates of behavior as the result of an intentional cognitive regulation strategy. Participants were on average more aroused per dollar to losses relative to gains, as measured with skin conductance response, and the difference in arousal to losses versus gains correlated with behavioral loss aversion across subjects. These results suggest a specific role for arousal responses in loss aversion. Most importantly, the intentional cognitive regulation strategy, which emphasized "perspective-taking," uniquely reduced both behavioral loss aversion and arousal to losses relative to gains, largely by influencing arousal to losses. Our results confirm previous research demonstrating loss aversion while providing new evidence characterizing individual differences and arousal correlates and illustrating the effectiveness of intentional regulation strategies in reducing loss aversion both behaviorally and physiologically.

  6. Effect of pipe insulation losses on a loss-of-heat sink accident for an LMR

    International Nuclear Information System (INIS)

    Horak, W.C.; Guppy, J.G.; Wood, P.M.

    1985-01-01

    The efficacy of pipe radiation losses as a heat sink during LOHS in a loop-type LMR plant is investigated. The Super System Code (SSC), which was modified to include pipe radiation losses, was used to simulate such an LOHS in an LMR plant. In order to enhance these losses, the pipes were assumed to be insulated by rock wool, a material whose thermal conductivity increases with increasing temperature. A transient was simulated for a total of eight days, during which the coolant temperatures peaked well below saturation conditions and then declined steadily. The coolant flow rate in the loop remained positive throughout the transient

  7. Schizophrenia illness severity is associated with reduced loss aversion.

    Science.gov (United States)

    Currie, James; Buruju, Dheeraj; Perrin, Jennifer S; Reid, Ian C; Steele, J Douglas; Feltovich, Nick

    2017-06-01

    Loss aversion, whereby losses weigh more heavily than equal-sized gains, has been demonstrated in many decision-making settings. Previous research has suggested reduced loss aversion in schizophrenia, but with little evidence of a link between loss aversion and schizophrenia illness severity. In this study, 20 individuals with schizophrenia and 16 control participants, matched by age and sex, played two versions of the Iterated Prisoners' Dilemma, one version with only positive payoffs and another version in which negative payoffs were possible, with the second version being derived from the first by subtracting a constant value from all payoffs. The control group demonstrated significantly lower cooperation rates under negative payoffs, compared with the version with only positive payoffs, indicative of loss aversion. The patient group on average showed no loss aversion response. Moreover, the extent of loss aversion in patients was found to be negatively correlated with schizophrenia illness severity, with less ill patients showing loss aversion more similar to controls. Results were found to be robust to the inclusion of potential confounding factors as covariates within rigorous probit regression analyses. Reduced loss aversion is a feature of schizophrenia and related to illness severity. Copyright © 2017. Published by Elsevier B.V.

  8. Distribution grid reconfiguration reduces power losses and helps integrate renewables

    International Nuclear Information System (INIS)

    Lueken, Colleen; Carvalho, Pedro M.S.; Apt, Jay

    2012-01-01

    A reconfigurable network can change its topology by opening and closing switches on power lines. We use real wind, solar, load, and cost data and a model of a reconfigurable distribution grid to show that reconfiguration allows a grid operator to reduce operational losses as well as to accept more intermittent renewable generation than a static configuration can. Net present value analysis of automated switch technology shows that the return on investment is negative for this test network when considering only loss reduction, but that the investment is attractive under certain conditions when reconfiguration is used to minimize curtailment. - Highlights: ► Reconfiguration may reduce losses in grids with solar or wind distributed generation. ► Reconfigurable networks can accept more solar or wind DG than static ones. ► Using reconfiguration for loss reduction would not create a positive ROI. ► Using reconfiguration to reduce curtailment usually would create a positive ROI.

  9. The role of arbuscular mycorrhizas in reducing soil nutrient loss.

    Science.gov (United States)

    Cavagnaro, Timothy R; Bender, S Franz; Asghari, Hamid R; Heijden, Marcel G A van der

    2015-05-01

    Substantial amounts of nutrients are lost from soils via leaching and as gaseous emissions. These losses can be environmentally damaging and expensive in terms of lost agricultural production. Plants have evolved many traits to optimize nutrient acquisition, including the formation of arbuscular mycorrhizas (AM), associations of plant roots with fungi that acquire soil nutrients. There is emerging evidence that AM have the ability to reduce nutrient loss from soils by enlarging the nutrient interception zone and preventing nutrient loss after rain-induced leaching events. Until recently, this important ecosystem service of AM had been largely overlooked. Here we review the role of AM in reducing nutrient loss and conclude that this role cannot be ignored if we are to increase global food production in an environmentally sustainable manner. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Energy reduction in buildings in temperate and tropic regions utilizing a heat loss measuring device

    DEFF Research Database (Denmark)

    Sørensen, Lars Schiøtt

    2012-01-01

    There exist two ordinary ways to obtain global energy efficiency. One way is to make improvements on the energy production and supply side, and the other way is, in general, to reduce the consume of energy in the society. This paper has focus on the latter and especially the consume of energy...... for heating up, and cooling down our houses. There is a huge energy saving potential on this area reducing both the World climate problems and economy challenges as well. Heating of buildings in Denmark counts for approximately 40% of the entire national energy consume. Of this reason a reduction of heat...... losses from building envelopes are of great impor­tance in order to reach the Bologna CO2-emission reduction goals. Energy renovation of buildings is a topic of huge focus around the world these years. Not only expenses for heating in the tempered and arctic regions are of importance, but also expenses...

  11. Combined Influence of Strain and Heat Loss on Turbulent Premixed Flame Stabilization

    KAUST Repository

    Tay-Wo-Chong, Luis; Zellhuber, Mathieu; Komarek, Thomas; Im, Hong G.; Polifke, Wolfgang

    2015-01-01

    relation in terms of Markstein number, Karlovitz Number and a non-dimensional heat loss parameter was proposed for the combined influence of strain and heat losses on the consumption speed. Combining this empirical relation with a presumed probability

  12. Condensing heat transfer following a loss-of-coolant accident

    International Nuclear Information System (INIS)

    Krotiuk, W.J.; Rubin, M.B.

    1978-01-01

    A new method for calculating the steam mass condensation energy removal rates on cold surfaces in contact with an air-steam mixture has been developed. This method is based on the principles of mass diffusion of steam from an area of high concentration to the condensing surface, which is an area of low steam concentration. This new method of calculating mass condensation has been programmed into the CONTEMPT-LT Mod 26 computer code, which calculates the pressure and temperature transients inside a light water reactor containment following a loss-of-coolant accident. The condensing heat transfer coefficient predicted by the mass diffusion method is compared to existing semi-empirical correlations and to the experimental results of the Carolinas Virginia Tube Reactor Containment natural decay test. Closer agreement with test results is shown in the calculation of containment pressure, temperature, and heat sink surface temperature using the mass diffusion condensation method than when using any existing semi-empirical correlation

  13. Chaos of radiative heat-loss-induced flame front instability.

    Science.gov (United States)

    Kinugawa, Hikaru; Ueda, Kazuhiro; Gotoda, Hiroshi

    2016-03-01

    We are intensively studying the chaos via the period-doubling bifurcation cascade in radiative heat-loss-induced flame front instability by analytical methods based on dynamical systems theory and complex networks. Significant changes in flame front dynamics in the chaotic region, which cannot be seen in the bifurcation diagrams, were successfully extracted from recurrence quantification analysis and nonlinear forecasting and from the network entropy. The temporal dynamics of the fuel concentration in the well-developed chaotic region is much more complicated than that of the flame front temperature. It exhibits self-affinity as a result of the scale-free structure in the constructed visibility graph.

  14. The effect of wind on the rate of heat loss from avian cup-shaped nests.

    Science.gov (United States)

    Heenan, Caragh B; Seymour, Roger S

    2012-01-01

    Forced convection can significantly influence the heat loss from birds and their offspring but effects may be reduced by using sheltered micro-sites such as cavities or constructing nests. The structural and thermal properties of the nests of two species, the spiny-cheeked honeyeater (Acanthagenys rufogularis) and yellow-throated miner (Manorina flavigula), were measured in relation to three wind speeds. Nest dimensions differ between the two species, despite the similar body mass of the incubating adults, however nest conductance is comparable. As wind speed increases, so does the rate of heat loss from the nests of both species, and further still during incubation recesses. The significance of forced convection through the nest is a near-doubling in heat production required by the parent, even when incubating at relatively low wind speeds. This provides confirmation that selecting a sheltered nest site is important for avian reproductive success.

  15. The effect of wind on the rate of heat loss from avian cup-shaped nests.

    Directory of Open Access Journals (Sweden)

    Caragh B Heenan

    Full Text Available Forced convection can significantly influence the heat loss from birds and their offspring but effects may be reduced by using sheltered micro-sites such as cavities or constructing nests. The structural and thermal properties of the nests of two species, the spiny-cheeked honeyeater (Acanthagenys rufogularis and yellow-throated miner (Manorina flavigula, were measured in relation to three wind speeds. Nest dimensions differ between the two species, despite the similar body mass of the incubating adults, however nest conductance is comparable. As wind speed increases, so does the rate of heat loss from the nests of both species, and further still during incubation recesses. The significance of forced convection through the nest is a near-doubling in heat production required by the parent, even when incubating at relatively low wind speeds. This provides confirmation that selecting a sheltered nest site is important for avian reproductive success.

  16. Investigation and Determination of Corn Combine Harvester Losses to Introduce Appropriate Methods to Reduce Losses

    Directory of Open Access Journals (Sweden)

    M.R Mostofi Sarkari

    2011-03-01

    Full Text Available Corn harvesting involves some losses. These losses result in decreased benefits. It is almost impossible to lower losses to zero percent but it can be controlled in an acceptable level. As a result of this research, appropriate methods are introduced to decrease losses and reduce waste. In this project, losses in different part of combine were measured and evaluated according to the available standard method (ASAE S396.2 & S343.3. Harvesting losses include preharvest and during harvest losses comprising ear loss and kernal loss in the header, cylinder and cleaning losses. This project was conducted on farmers’ lands in Gazvin province. Some assessments related to yield factors were evaluated in different parts of farm with specified area, e.g. Plant height, ear number, stem diameter, ear diameter, cob diameter, row/ear and seed/row. All losses evaluated in three treatments which they were: seed moisture content (w.b. in three levels of 19%, 23% and 27%, ground speed in three levels of 0.8, 1.2 and 1.6 ms-1 and cylinder speed of 400, 600 and 800 rpm. The split plot experimental design based on the randomised complete block design (RCBD was used to evaluate treatments. Measured losses compared with standard values to introduce the proper methods to decrease losses and proper adjustments. The results show that appropriate seed moisture content, cylinder and ground speed were 23%, 400 rpm and 1.2 ms-1, respectively. They had minimum total loss which WAS 1.55%, 2.65% and 2.34%, respectivily. The results also show that there was an ear loss in preharvest loss (because of bad weather condition that was 0.95-5.42%, also kernal loss on the header and cylinder loss which all related to improper adjustment of combine but total loss was in an acceptable level and standard. It was variable from 1.55% to 4.02%. Other parameters such as using inexperienced driver, improper combine adjustment, and also nonuniformity of field and ear moisture content in

  17. A novel loss reduced modulation strategy for matrix converters

    DEFF Research Database (Denmark)

    Helle, Lars; Munk-Nielsen, Stig

    2001-01-01

    This paper presents a new modulation strategy for three-phase to three-phase matrix converters. The new modulation strategy is applicable whenever the output voltage reference is below half the input voltage. By applying this new modulation method, the switching losses are reduced by 15-35% compa...

  18. Tritium permeation losses in HYLIFE-II heat exchanger tubes

    International Nuclear Information System (INIS)

    Longhurst, G.R.; Dolan, T.J.

    1990-01-01

    Tritium permeation through the intermediate heat exchanger of the HYLIFE-II inertial fusion design concept is evaluated for routine operating conditions. The permeation process is modelled using the Lewis analogy combined with surface recombination. It is demonstrated that at very low driving potentials, permeation becomes proportional to the first power of the driving potential. The model predicts that under anticipated conditions the primary cooling loop will pass about 6% of the tritium entering it to the intermediate coolant. Possible approached to reducing tritium permeation are explored. Permeation is limited by turbulent diffusion transport through the molten salt. Hence, surface barriers with impendance factors typical of present technology can do very little to reduce permeation. Low Flibe viscosity is desirable. An efficient tritium removal system operating on the Flibe before it gets to the intermediate heat exchanger is required. Needs for further research are highlighted. 9 refs., 2 figs., 1 tab

  19. Electromagnetic therapeutic coils design to reduce energy loss

    Directory of Open Access Journals (Sweden)

    Syrek Przemyslaw

    2016-01-01

    Full Text Available The article introduces the problem of power loss reduction in applicators used in magnetotherapy. To generate magnetic field whose distribution is optimal and to reduce the power loss, the authors establish a set of parameters to evaluate the model of device. Results make it possible to infer that the real power input necessary to operate the magnetic field generator properly may vary significantly depending on construction and localization. The issues raised in this paper should be treated as a basis for further discussion on the construction of applicators used, e.g., in Transcranial Magnetic Stimulation.

  20. Artificial Neural Networks-Based Software for Measuring Heat Collection Rate and Heat Loss Coefficient of Water-in-Glass Evacuated Tube Solar Water Heaters

    Science.gov (United States)

    Liu, Zhijian; Liu, Kejun; Li, Hao; Zhang, Xinyu; Jin, Guangya; Cheng, Kewei

    2015-01-01

    Measurements of heat collection rate and heat loss coefficient are crucial for the evaluation of in service water-in-glass evacuated tube solar water heaters. However, conventional measurement requires expensive detection devices and undergoes a series of complicated procedures. To simplify the measurement and reduce the cost, software based on artificial neural networks for measuring heat collection rate and heat loss coefficient of water-in-glass evacuated tube solar water heaters was developed. Using multilayer feed-forward neural networks with back-propagation algorithm, we developed and tested our program on the basis of 915measuredsamples of water-in-glass evacuated tube solar water heaters. This artificial neural networks-based software program automatically obtained accurate heat collection rateand heat loss coefficient using simply "portable test instruments" acquired parameters, including tube length, number of tubes, tube center distance, heat water mass in tank, collector area, angle between tubes and ground and final temperature. Our results show that this software (on both personal computer and Android platforms) is efficient and convenient to predict the heat collection rate and heat loss coefficient due to it slow root mean square errors in prediction. The software now can be downloaded from http://t.cn/RLPKF08. PMID:26624613

  1. Artificial Neural Networks-Based Software for Measuring Heat Collection Rate and Heat Loss Coefficient of Water-in-Glass Evacuated Tube Solar Water Heaters.

    Science.gov (United States)

    Liu, Zhijian; Liu, Kejun; Li, Hao; Zhang, Xinyu; Jin, Guangya; Cheng, Kewei

    2015-01-01

    Measurements of heat collection rate and heat loss coefficient are crucial for the evaluation of in service water-in-glass evacuated tube solar water heaters. However, conventional measurement requires expensive detection devices and undergoes a series of complicated procedures. To simplify the measurement and reduce the cost, software based on artificial neural networks for measuring heat collection rate and heat loss coefficient of water-in-glass evacuated tube solar water heaters was developed. Using multilayer feed-forward neural networks with back-propagation algorithm, we developed and tested our program on the basis of 915 measured samples of water-in-glass evacuated tube solar water heaters. This artificial neural networks-based software program automatically obtained accurate heat collection rate and heat loss coefficient using simply "portable test instruments" acquired parameters, including tube length, number of tubes, tube center distance, heat water mass in tank, collector area, angle between tubes and ground and final temperature. Our results show that this software (on both personal computer and Android platforms) is efficient and convenient to predict the heat collection rate and heat loss coefficient due to it slow root mean square errors in prediction. The software now can be downloaded from http://t.cn/RLPKF08.

  2. High Speed Gear Sized and Configured to Reduce Windage Loss

    Science.gov (United States)

    Kunz, Robert F. (Inventor); Medvitz, Richard B. (Inventor); Hill, Matthew John (Inventor)

    2013-01-01

    A gear and drive system utilizing the gear include teeth. Each of the teeth has a first side and a second side opposite the first side that extends from a body of the gear. For each tooth of the gear, a first extended portion is attached to the first side of the tooth to divert flow of fluid adjacent to the body of the gear to reduce windage losses that occur when the gear rotates. The gear may be utilized in drive systems that may have high rotational speeds, such as speeds where the tip velocities are greater than or equal to about 68 m/s. Some embodiments of the gear may also utilize teeth that also have second extended portions attached to the second sides of the teeth to divert flow of fluid adjacent to the body of the gear to reduce windage losses that occur when the gear rotates.

  3. Arrangement to reduce the failure frequency of heat condensate pipes

    International Nuclear Information System (INIS)

    Liskow, E.; Apelt, W.; Krause, W.; Meisel, L.

    1988-01-01

    The arrangement of throttling devices in heat condensate pipes of NPP with WWER-440 type reactors aims at reducing their failure frequency, ensuring an energetically favourable operation, and enhancing the availability and safety of NPP units

  4. Study of high energy ion loss during hydrogen minority heating in TFTR

    International Nuclear Information System (INIS)

    Park, J.; Zweben, S.J.

    1994-03-01

    High energy ion loss during hydrogen minority ICRF heating is measured and compared with the loss of the D-D fusion products. During H minority heating a relatively large loss of high energy ions is observed at 45 degrees below the outer midplane, with or without simultaneous NBI heating. This increase is most likely due to a loss of the minority tail protons, a possible model for this process is described

  5. Radiation losses and global energy balance for Ohmically heated discharges in ASDEX

    International Nuclear Information System (INIS)

    Mueller, E.R.; Behringer, K.; Niedermeyer, H.

    1982-01-01

    Global energy balance, radiation profiles and dominant impurity radiation sources are compared for Ohmically heated limiter and divertor discharges in the ASDEX tokamak. In discharges with a poloidal stainless-steel limiter, total radiation from the plasma is the dominant energy loss channel. The axisymmetric divertor reduces this volume-integrated radiation to 30-35% of the heating power and additional Ti-gettering halves it again to 10-15%. Local radiation losses in the plasma centre, which are mainly due to the presence of iron impurity ions, are reduced by about one order of magnitude. In high-current (Isub(p) = 400 kA) and high-density (nsub(e)-bar = 6 x 10 13 cm -3 ) ungettered divertor discharges, up to 55% of the heating power is dumped into a cold-gas target inside the divertor chambers. The bolometrically detected volume power losses in the chambers can mainly be attributed to neutral hydrogen atoms with kinetic energies of a few eV. In this parameter range, the divertor plasma is dominated by inelastic molecular and atomic processes, the main process being Franck-Condon dissociation of H 2 molecules. (author)

  6. The use of torniquet to reduce blood loss at myomectomy.

    Science.gov (United States)

    Ikechebelu, J I; Ezeama, C O; Obiechina, N J A

    2010-06-01

    Fibroids remain the commonest pelvic tumour seen in women with myomectomy being the major form of treatment in our environment. Techniques to minimize blood loss will reduce patient morbidity and the need for blood transfusions. One such technique is the use of a tourniquet during myomectomy operation. This study examines the effectiveness and safety this tourniquet technique. A comparative analysis of the blood loss, transfusion rate and the morbidities associated with the use and non-use of a tourniquet during myomectomy operation at Nnamdi Azikiwe University Teaching Hospital, Nnewi Nigeria was undertaken. The Foley's urethral catheter was adapted as a uterine tourniquet and applied as low as possible at the base of the uterus before enucleating the fibroid masses. The patients who had their myomectomy performed with application of a tourniquet [tourniquet group] and those without [no-tourniquet group] were evenly matched for age, parity and presenting symptoms. The overall mean age of patients was 35.7 +/- 6.1 years and parity was 0.40 +/- 1.25. The main presenting symptoms of the patients were lower abdominal mass 65.6%, menorrhagia 38.7%, infertility 33.3%, abdominal pain 19.4% and dysmenorrhoea 14.0%. There was a statistically significant difference [P < 0.001] in mean blood loss for the no-tourniquet group [756.4 +/- 285.7] and the tourniquet group [515.7 +/- 292.8] as well as the mean blood transfusion rate in no-tourniquet group [1.0 units +/- 1.14] and the tourniquet group [0.24 units +/- 0.51]. However there was no significant difference between the two groups with respect to complication profile. The Foley's catheter form of tourniquet is cheap, safe, effectively reduces blood loss during myomectomy and significantly reduces transfusion rate while not adding to the complications due to the operation.

  7. Thermal stratification in a hot water tank established by heat loss from the tank

    DEFF Research Database (Denmark)

    Fan, Jianhua; Furbo, Simon

    2012-01-01

    This paper presents numerical investigations of thermal stratification in a vertical cylindrical hot water tank established by standby heat loss from the tank. The transient fluid flow and heat transfer in the tank during cooling caused by standby heat loss are calculated by means of validated...... computational fluid dynamics (CFD) models. The measured heat loss coefficient for the different parts of the tank is used as input to the CFD model. Parametric studies are carried out using the validated models to investigate the influence on thermal stratification of the tank by the downward flow...... the heat loss from the tank sides will be distributed at different levels of the tank at different thermal conditions. The results show that 20–55% of the side heat loss drops to layers below in the part of the tank without the presence of thermal stratification. A heat loss removal factor is introduced...

  8. Emotion regulation reduces loss aversion and decreases amygdala responses to losses.

    Science.gov (United States)

    Sokol-Hessner, Peter; Camerer, Colin F; Phelps, Elizabeth A

    2013-03-01

    Emotion regulation strategies can alter behavioral and physiological responses to emotional stimuli and the neural correlates of those responses in regions such as the amygdala or striatum. The current study investigates the brain systems engaged when using an emotion regulation technique during financial decisions. In decision making, regulating emotion with reappraisal-focused strategies that encourage taking a different perspective has been shown to reduce loss aversion as observed both in choices and in the relative arousal responses to actual loss and gain outcomes. In the current study, we find using fMRI that behavioral loss aversion correlates with amygdala activity in response to losses relative to gains. Success in regulating loss aversion also correlates with the reduction in amygdala responses to losses but not to gains. Furthermore, across both decisions and outcomes, we find the reappraisal strategy increases baseline activity in dorsolateral and ventromedial prefrontal cortex and the striatum. The similarity of the neural circuitry observed to that seen in emotion regulation, despite divergent tasks, serves as further evidence for a role of emotion in decision making, and for the power of reappraisal to change assessments of value and thereby choices.

  9. Using Solar Hot Water to Address Piping Heat Losses in Multifamily Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Springer, David [Alliance for Residential Building Innovation, Davis, CA (United States); Seitzler, Matt [Alliance for Residential Building Innovation, Davis, CA (United States); Backman, Christine [Alliance for Residential Building Innovation, Davis, CA (United States); Weitzel, Elizabeth [Alliance for Residential Building Innovation, Davis, CA (United States)

    2015-10-01

    Solar thermal water heating is most cost effective when applied to multifamily buildings and some states offer incentives or other inducements to install them. However, typical solar water heating designs do not allow the solar generated heat to be applied to recirculation losses, only to reduce the amount of gas or electric energy needed for hot water that is delivered to the fixtures. For good reasons, hot water that is recirculated through the building is returned to the water heater, not to the solar storage tank. The project described in this report investigated the effectiveness of using automatic valves to divert water that is normally returned through the recirculation piping to the gas or electric water heater instead to the solar storage tank. The valves can be controlled so that the flow is only diverted when the returning water is cooler than the water in the solar storage tank.

  10. Geospatial Analysis of the Building Heat Demand and Distribution Losses in a District Heating Network

    Directory of Open Access Journals (Sweden)

    Tobias Törnros

    2016-11-01

    Full Text Available The district heating (DH demand of various systems has been simulated in several studies. Most studies focus on the temporal aspects rather than the spatial component. In this study, the DH demand for a medium-sized DH network in a city in southern Germany is simulated and analyzed in a spatially explicit approach. Initially, buildings are geo-located and attributes obtained from various sources including building type, ground area, and number of stories are merged. Thereafter, the annual primary energy demand for heating and domestic hot water is calculated for individual buildings. Subsequently, the energy demand is aggregated on the segment level of an existing DH network and the water flow is routed through the system. The simulation results show that the distribution losses are overall the highest at the end segments (given in percentage terms. However, centrally located pipes with a low throughflow are also simulated to have high losses. The spatial analyses are not only useful when addressing the current demand. Based on a scenario taking into account the refurbishment of buildings and a decentralization of energy production, the future demand was also addressed. Due to lower demand, the distribution losses given in percentage increase under such conditions.

  11. Combined heat transfer and kinetic models to predict cooking loss during heat treatment of beef meat.

    Science.gov (United States)

    Kondjoyan, Alain; Oillic, Samuel; Portanguen, Stéphane; Gros, Jean-Bernard

    2013-10-01

    A heat transfer model was used to simulate the temperature in 3 dimensions inside the meat. This model was combined with a first-order kinetic models to predict cooking losses. Identification of the parameters of the kinetic models and first validations were performed in a water bath. Afterwards, the performance of the combined model was determined in a fan-assisted oven under different air/steam conditions. Accurate knowledge of the heat transfer coefficient values and consideration of the retraction of the meat pieces are needed for the prediction of meat temperature. This is important since the temperature at the center of the product is often used to determine the cooking time. The combined model was also able to predict cooking losses from meat pieces of different sizes and subjected to different air/steam conditions. It was found that under the studied conditions, most of the water loss comes from the juice expelled by protein denaturation and contraction and not from evaporation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Extreme learning machine: a new alternative for measuring heat collection rate and heat loss coefficient of water-in-glass evacuated tube solar water heaters.

    Science.gov (United States)

    Liu, Zhijian; Li, Hao; Tang, Xindong; Zhang, Xinyu; Lin, Fan; Cheng, Kewei

    2016-01-01

    Heat collection rate and heat loss coefficient are crucial indicators for the evaluation of in service water-in-glass evacuated tube solar water heaters. However, the direct determination requires complex detection devices and a series of standard experiments, wasting too much time and manpower. To address this problem, we previously used artificial neural networks and support vector machine to develop precise knowledge-based models for predicting the heat collection rates and heat loss coefficients of water-in-glass evacuated tube solar water heaters, setting the properties measured by "portable test instruments" as the independent variables. A robust software for determination was also developed. However, in previous results, the prediction accuracy of heat loss coefficients can still be improved compared to those of heat collection rates. Also, in practical applications, even a small reduction in root mean square errors (RMSEs) can sometimes significantly improve the evaluation and business processes. As a further study, in this short report, we show that using a novel and fast machine learning algorithm-extreme learning machine can generate better predicted results for heat loss coefficient, which reduces the average RMSEs to 0.67 in testing.

  13. Effect of human skin grafts on whole-body heat loss during exercise heat stress: a case report.

    Science.gov (United States)

    Ganio, Matthew S; Gagnon, Daniel; Stapleton, Jill; Crandall, Craig G; Kenny, Glen P

    2013-01-01

    When exposed to heat stress, increases in cutaneous blood flow and sweating in well-healed grafted skin are severely attenuated, which could impair whole-body heat loss if skin grafts cover a large portion of total body surface area (TBSA). It is unknown to what extent whole-body heat loss is impaired when skin grafts cover a significant (eg, >50%) proportion of TBSA. The authors examined whole-body heat exchange during and after 60 min of cycling exercise in the heat (35°C; 25% relative humidity), at a fixed rate of metabolic heat production (~400 W) in a woman (age, 36 years; mass, 78.2 kg) with well-healed (17+ years) skin grafts covering 75% of TBSA. Her responses were compared with two noninjured control subjects. Whole-body evaporative and dry heat exchange were measured by direct calorimetry. While exercising in the same ambient conditions and at the same rate of heat production, relative evaporative heat loss of nongrafted skin in the grafted subject (ie, evaporative heat loss per m) was nearly twice that of the control subjects. However, total rate of evaporative heat loss reached only 59% of the amount required for heat balance in the skin-grafted subject compared with 92 ± 3% in controls. Thus, the increase in core temperature was 2-fold greater for the grafted (1.22°C) vs control (0.61 ± 0.19°C) individuals. This case study demonstrates that a large area of grafted skin greatly diminishes maximum evaporative heat loss during exercise in the heat, making a compensable environment for control subjects uncompensable for skin-grafted individuals.

  14. Reduced turning frequency and delayed poultry manure addition reduces N loss from sugarcane compost.

    Science.gov (United States)

    Bryndum, S; Muschler, R; Nigussie, A; Magid, J; de Neergaard, A

    2017-07-01

    Composting is an effective method to recycle biodegradable waste as soil amendment in smallholder farming systems. Although all essential plant nutrients are found in compost, a substantial amount of nitrogen is lost during composting. This study therefore investigated the potential of reducing N losses by (i) delaying the addition of nitrogen-rich substrates (i.e. poultry manure), and (ii) reducing the turning frequency during composting. Furthermore, we tested the effect of compost application method on nitrogen mineralization. Sugarcane-waste was composted for 54days with addition of poultry manure at the beginning (i.e. early addition) or after 21days of composting (delayed addition). The compost pile was then turned either every three or nine days. Composts were subsequently applied to soil as (i) homogeneously mixed, or (ii) stratified, and incubated for 28days to test the effect of compost application on nitrogen mineralization. The results showed that delayed addition of poultry manure reduced total nitrogen loss by 33% and increased mineral nitrogen content by >200% compared with early addition. Similarly, less frequent turning reduced total N loss by 12% compared with frequent turning. Stratified placement of compost did not enhance N mineralization compared to a homogeneous mixing. Our results suggested that simple modifications of the composting process (i.e. delayed addition and/or turning frequency) could significantly reduce N losses and improve the plant-nutritional value of compost. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Pressure loss characteristics of LSTF steam generator heat-transfer tubes. Pressure loss increase due to tube internal instruments

    International Nuclear Information System (INIS)

    Suzuki, Mitsuhiro

    1994-11-01

    The steam generator of the Large-Scale Test Facility (LSTF) includes 141 heat-transfer U-tubes with different lengths. Six U-tubes among them are furnished with 15 or 17 probe-type instruments (conduction probe with a thermocouple; CPT) protuberant into the primary side of the U-tubes. Other 135 U-tubes are not instrumented. This results in different hydraulic conditions between the instrumented and non-instrumented U-tubes with the same length. A series of pressure loss characteristics tests was conducted at a test apparatus simulating both types of U-tube. The following pressure loss coefficient (K CPT ) was reduced as a function of Reynolds number (Re) from these tests under single-phase water flow conditions. K CPT =0.16 5600≤Re≤52820, K CPT =60.66xRe -0.688 2420≤Re≤5600, K CPT =2.664x10 6 Re -2.06 1371≤Re≤2420. The maximum uncertainty is 22%. By using these results, the total pressure loss coefficients of full length U-tubes were estimated. It is clarified that the total pressure loss of the shortest instrumented U-tube is equivalent to that of the middle-length non-instrumented U-tube and also that a middle-length instrumented U-tube is equivalent to the longest non-instrumented U-tube. Concludingly. it is important to take account of the CPT pressure loss mentioned above in estimation of fluid behavior at the non-instrumented U-tubes either by using the LSTF experiment data from the CPT-installed U-tubes or by using any analytical codes. (author)

  16. Assessment of heat loss for RSG-GAS primary cooling system

    International Nuclear Information System (INIS)

    Dibyo, S.

    1998-01-01

    Heat Loss is part term of energy balance equation of system, therefore heat loss very important thing in the thermal dynamic analysis. Heat energy loosed from the surface pipe to the air in the room was calculated. Heat energy pass through by conduction, convection and radiation. The convection process are caused by moving of air density, i.e up flow of the hot air return to be down flow. The heat transfer phenomenon could be determined by empirical correlation of Heilman. The primary cooling system is consisted to the 3 zone : 1). Zone of (safety valves-heat exchanger), 2). Zone of heat exchanger surfaces, 3). Zone of heat exchanger-reactor pool. By using input data of air temperature are about 25 o C, temperature of primary coolant about 45 o C, The heat Loss along the pipes to the air are 23.9 k watt or 0.1%

  17. Method for reducing excess heat supply experienced in typical Chinese district heating systems by achieving hydraulic balance and improving indoor air temperature control at the building level

    International Nuclear Information System (INIS)

    Zhang, Lipeng; Gudmundsson, Oddgeir; Thorsen, Jan Eric; Li, Hongwei; Li, Xiaopeng; Svendsen, Svend

    2016-01-01

    A common problem with Chinese district heating systems is that they supply more heat than the actual heat demand. The reason for this excess heat supply is the general failure to use control devices to adjust the indoor temperature and flow in the building heating systems in accordance with the actual heat demand. This results in 15–30% of the total supplied heat being lost. This paper proposes an integrated approach that aims to reduce the excess heat loss by introducing pre-set thermostatic radiator valves combined with automatic balancing valves. Those devices establish hydraulic balance, and stabilize indoor temperatures. The feasibility and the energy consumption reduction of this approach were verified by means of simulation and a field test. By moving the system from centrally planned heat delivery to demand-driven heat delivery, excess heat loss can be significantly reduced. Results show that once the hydraulic balance is achieved and indoor temperatures are controlled with this integrated approach, 17% heat savings and 42.8% pump electricity savings can be achieved. The energy savings will also have a positive environmental effect with seasonal reductions of 11 kg CO_2, 0.1 kg SO_2, and 0.03 kg NO_x per heating square meter for a typical case in Harbin. - Highlights: • Two real cases reflect the temperature and flow control situation of heating systems in China. • Pre-set radiator valves with automatic balancing valves create dynamic hydraulic balance. • IDA-ICE simulation shows 17% heat saving and 48% pump electricity saving. • This approach can improve the comfort level of multi-storey/high-rise residential buildings. • This approach can reduce excess heat supply and bring out positive environmental impacts.

  18. Evaluation of external heat loss from a small-scale expander used in organic Rankine cycle

    International Nuclear Information System (INIS)

    Li Jing; Pei Gang; Li Yunzhu; Ji Jie

    2011-01-01

    With the scaling down of the Organic Rankine Cycle (ORC), the engine shaft power is not only determined by the enthalpy drop in the expansion process but also the external heat loss from the expander. Theoretical and experimental support in evaluating small-scale expander heat loss is rare. This paper presents a quantitative study on the convection, radiation, and conduction heat transfer from a kW-scale expander. A mathematical model is built and validated. The results show that the external radiative or convective heat loss coefficient was about 3.2 or 7.0 W/K.m 2 when the ORC operated around 100 o C. Radiative and convective heat loss coefficients increased as the expander operation temperature increased. Conductive heat loss due to the connection between the expander and the support accounted for a large proportion of the total heat loss. The fitting relationships between heat loss and mean temperature difference were established. It is suggested that low conductivity material be embodied in the support of expander. Mattress insulation for compact expander could be eliminated when the operation temperature is around 100 o C. - Highlights: → A close examination of external heat loss from a small expander is presented. → Theoretical analysis and experimental test were conducted. → The established formulas can be applied to other small ORC expanders. → The results are useful in further research of small-scale ORC.

  19. Reduced risk HTGR concept for industrial heat application

    International Nuclear Information System (INIS)

    Boardman, C.E.; Lipps, A.J.

    1982-01-01

    The industrial process heat market has been identified as major market for the High Temperature Gas-Cooled Reactor (HTGR), however, this market introduces stringent availability requirements on the reactor system relative to electric plants which feed a large existing grid. The characteristics and requirements of the industrial heat markets are summarized; the risks associated with serving this market with a single large HTGR will be discussed; and the modular concept, which has the potential to reduce both safety and investment risks, will be described. The reference modular concept described consists of several small, relatively benign nuclear heat sources linked together to supply heat energy to a balance-of-plant incorporating a process gas train/thermochemical pipe line system and a normal steam-electric plant

  20. REDUCED HEATING LEVEL DURING THE END-OF-YEAR CLOSURE

    CERN Document Server

    ST/CV - ST/FM Groups

    2002-01-01

    To save on energy costs, the heating will once again be operating at a reduced level during the end-of-year closure of the Laboratory. We would ask all those in charge of premises where normal temperature have to be maintained to let us know by 19 December 2002 at the latest (tel. 74195 or 72201). ST/CV - ST/FM Groups

  1. REDUCED HEATING LEVEL DURING THE END-OF-YEAR CLOSURE

    CERN Multimedia

    ST/CV - ST/TFM Groupes

    2001-01-01

    To save on energy costs, the heating will once again be operating at a reduced level during the end-of-year closure of the Laboratory. We would ask all those in charge of premises where normal temperature have to be maintained to let us know by 20 December 2001 at the latest (tel.74195 or 72201).

  2. Reduced heating level during the end-of-year closure

    CERN Multimedia

    2003-01-01

    To save on energy costs, the heating will once again be operating at a reduced level during the end-of-year closure of the Laboratory. We would ask all those in charge of premises where normal temperature have to be maintained to let us know by 18 December 2003 at the latest (tel. 74195 or 72201). ST/CV - ST/FM Groups

  3. Combined Influence of Strain and Heat Loss on Turbulent Premixed Flame Stabilization

    KAUST Repository

    Tay-Wo-Chong, Luis

    2015-11-16

    The present paper argues that the prediction of turbulent premixed flames under non-adiabatic conditions can be improved by considering the combined effects of strain and heat loss on reaction rates. The effect of strain in the presence of heat loss on the consumption speed of laminar premixed flames was quantified by calculations of asymmetric counterflow configurations (“fresh-to-burnt”) with detailed chemistry. Heat losses were introduced by setting the temperature of the incoming stream of products on the “burnt” side to values below those corresponding to adiabatic conditions. The consumption speed decreased in a roughly exponential manner with increasing strain rate, and this tendency became more pronounced in the presence of heat losses. An empirical relation in terms of Markstein number, Karlovitz Number and a non-dimensional heat loss parameter was proposed for the combined influence of strain and heat losses on the consumption speed. Combining this empirical relation with a presumed probability density function for strain in turbulent flows, an attenuation factor that accounts for the effect of strain and heat loss on the reaction rate in turbulent flows was deduced and implemented into a turbulent combustion model. URANS simulations of a premixed swirl burner were carried out and validated against flow field and OH chemiluminescence measurements. Introducing the effects of strain and heat loss into the combustion model, the flame topology observed experimentally was correctly reproduced, with good agreement between experiment and simulation for flow field and flame length.

  4. Test bench HEATREC for heat loss measurement on solar receiver tubes

    Science.gov (United States)

    Márquez, José M.; López-Martín, Rafael; Valenzuela, Loreto; Zarza, Eduardo

    2016-05-01

    In Solar Thermal Electricity (STE) plants the thermal energy of solar radiation is absorbed by solar receiver tubes (HCEs) and it is transferred to a heat transfer fluid. Therefore, heat losses of receiver tubes have a direct influence on STE plants efficiency. A new test bench called HEATREC has been developed by Plataforma Solar de Almería (PSA) in order to determinate the heat losses of receiver tubes under laboratory conditions. The innovation of this test bench consists in the possibility to determine heat losses under controlled vacuum.

  5. Influence of resonant magnetic perturbations on transient heat load deposition and fast ion losses

    International Nuclear Information System (INIS)

    Rack, Michael Thomas

    2014-01-01

    losses in the presence of resonant magnetic perturbation fields, is presented. It is used to investigate the impact of various types of perturbation field, static and rotating, on the losses. The investigations of the heat load deposition profiles show important features of the resonant magnetic perturbation fields. Firstly, the heat can be favourably redistributed to reduce the local heat fluxes; secondly, a physical process is observed that appears to be linked to the heat redistribution and causes a slow propagation of a heat flux pattern long before the major energy is ejected. This opens a new view on the physics of resonant magnetic perturbation fields as it shows that processes on different time-scales are involved during the control of the plasma edge instabilities. The control of these instabilities can benefit from the new method of applying resonant magnetic perturbation fields using lower hybrid waves. This method provides high flexibility as needed to optimize the heat load redistribution. It is proven to create perturbation fields that are always resonant in the plasma edge region. In addition, it was found that no clear drawbacks appear over a wide range of perturbation fields; moreover, strong indications for an improvement of the fast ion confinement are seen. The overall results provide a positive outlook for the application of resonant magnetic perturbation fields to control edge instabilities: (a) an advantageous redistribution of transient heat loads is achievable, (b) lower hybrid waves can be used for the production of highly flexible resonant magnetic perturbation fields, and (c) resonant magnetic perturbation fields do not necessarily reduce the fast ion confinement. These results show that an optimization of the applied magnetic perturbation fields is able to solve the problem of transient heat loads without any drawbacks for the crucial fast ion confinement.

  6. Influence of resonant magnetic perturbations on transient heat load deposition and fast ion losses

    Energy Technology Data Exchange (ETDEWEB)

    Rack, Michael Thomas

    2014-07-11

    losses in the presence of resonant magnetic perturbation fields, is presented. It is used to investigate the impact of various types of perturbation field, static and rotating, on the losses. The investigations of the heat load deposition profiles show important features of the resonant magnetic perturbation fields. Firstly, the heat can be favourably redistributed to reduce the local heat fluxes; secondly, a physical process is observed that appears to be linked to the heat redistribution and causes a slow propagation of a heat flux pattern long before the major energy is ejected. This opens a new view on the physics of resonant magnetic perturbation fields as it shows that processes on different time-scales are involved during the control of the plasma edge instabilities. The control of these instabilities can benefit from the new method of applying resonant magnetic perturbation fields using lower hybrid waves. This method provides high flexibility as needed to optimize the heat load redistribution. It is proven to create perturbation fields that are always resonant in the plasma edge region. In addition, it was found that no clear drawbacks appear over a wide range of perturbation fields; moreover, strong indications for an improvement of the fast ion confinement are seen. The overall results provide a positive outlook for the application of resonant magnetic perturbation fields to control edge instabilities: (a) an advantageous redistribution of transient heat loads is achievable, (b) lower hybrid waves can be used for the production of highly flexible resonant magnetic perturbation fields, and (c) resonant magnetic perturbation fields do not necessarily reduce the fast ion confinement. These results show that an optimization of the applied magnetic perturbation fields is able to solve the problem of transient heat loads without any drawbacks for the crucial fast ion confinement.

  7. Buoyancy driven flow in a hot water tank due to standby heat loss

    DEFF Research Database (Denmark)

    Fan, Jianhua; Furbo, Simon

    2012-01-01

    Results of experimental and numerical investigations of thermal behavior in a vertical cylindrical hot water tank due to standby heat loss of the tank are presented. The effect of standby heat loss on temperature distribution in the tank is investigated experimentally on a slim 150l tank...... show that the CFD model predicts satisfactorily water temperatures at different levels of the tank during cooling by standby heat loss. It is elucidated how the downward buoyancy driven flow along the tank wall is established by the heat loss from the tank sides and how the natural convection flow...... with a height to diameter ratio of 5. A tank with uniform temperatures and with thermal stratification is studied. A detailed computational fluid dynamics (CFD) model of the tank is developed to calculate the natural convection flow in the tank. The distribution of the heat loss coefficient for the different...

  8. Method for optimal design of pipes for low-energy district heating, with focus on heat losses

    DEFF Research Database (Denmark)

    Dalla Rosa, Alessandro; Li, Hongwei; Svendsen, Svend

    2011-01-01

    The synergy between highly energy-efficient buildings and low-energy district heating (DH) systems is a promising concept for the optimal integration of energy-saving policies and energy supply systems based on renewable energy (RE). Network transmission and distribution heat loss is one of the k...

  9. Method for reducing excess heat supply experienced in typical Chinese district heating systems by achieving hydraulic balance and improving indoor air temperature control at the building level

    DEFF Research Database (Denmark)

    Zhang, Lipeng; Gudmundsson, Oddgeir; Thorsen, Jan Eric

    2016-01-01

    A common problem with Chinese district heating systems is that they supply more heat than the actual heat demand. The reason for this excess heat supply is the general failure to use control devices to adjust the indoor temperature and flow in the building heating systems in accordance with the a......A common problem with Chinese district heating systems is that they supply more heat than the actual heat demand. The reason for this excess heat supply is the general failure to use control devices to adjust the indoor temperature and flow in the building heating systems in accordance...... with the actual heat demand. This results in 15-30% of the total supplied heat being lost. This paper proposes an integrated approach that aims to reduce the excess heat loss by introducing pre-set thermostatic radiator valves combined with automatic balancing valves. Those devices establish hydraulic balance...... that once the hydraulic balance is achieved and indoor temperatures are controlled with this integrated approach, 17% heat savings and 42.8% pump electricity savings can be achieved. The energy savings will also have a positive environmental effect with seasonal reductions of 11 kg CO2, 0.1 kg SO2, and 0...

  10. Focused cathode design to reduce anode heating during vircator operation

    Energy Technology Data Exchange (ETDEWEB)

    Lynn, Curtis F.; Dickens, James C.; Neuber, Andreas A. [Center for Pulsed Power and Power Electronics, Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, Texas 79409 (United States)

    2013-10-15

    Virtual cathode oscillators, or vircators, are a type of high power microwave device which operates based on the instability of a virtual cathode, or cloud of electrons, which forms when electron current injected into the drift tube exceeds the space charge limited current within the drift tube. Anode heating by the electron beam during vircator operation ultimately limits achievable pulse lengths, repetition rates, and the duration of burst mode operation. This article discusses a novel cathode design that focuses electrons through holes in the anode, thus significantly reducing anode heating by the electrons emitted from the cathode during the first transit through the A-K gap. Reflexing electrons continue to deposit energy on the anode; however, the discussed minimization of anode heating by main beam electrons has the potential to enable higher repetition rates as well as efficiency and longer diode lifetime. A simulation study of this type of cathode design illustrates possible advantages.

  11. Predicting TDN losses from heat damaged hays and haylages with NIR

    Science.gov (United States)

    During the storage of hay or haylage, heating damage may occur and lead to losses of available protein and digestible nutrients. Recent research indicates that losses of TDN may be more significant economically than losses of available protein. Our objectives for this study were to establish a near-...

  12. Developmental Conductive Hearing Loss Reduces Modulation Masking Release.

    Science.gov (United States)

    Ihlefeld, Antje; Chen, Yi-Wen; Sanes, Dan H

    2016-01-01

    Hearing-impaired individuals experience difficulties in detecting or understanding speech, especially in background sounds within the same frequency range. However, normally hearing (NH) human listeners experience less difficulty detecting a target tone in background noise when the envelope of that noise is temporally gated (modulated) than when that envelope is flat across time (unmodulated). This perceptual benefit is called modulation masking release (MMR). When flanking masker energy is added well outside the frequency band of the target, and comodulated with the original modulated masker, detection thresholds improve further (MMR+). In contrast, if the flanking masker is antimodulated with the original masker, thresholds worsen (MMR-). These interactions across disparate frequency ranges are thought to require central nervous system (CNS) processing. Therefore, we explored the effect of developmental conductive hearing loss (CHL) in gerbils on MMR characteristics, as a test for putative CNS mechanisms. The detection thresholds of NH gerbils were lower in modulated noise, when compared with unmodulated noise. The addition of a comodulated flanker further improved performance, whereas an antimodulated flanker worsened performance. However, for CHL-reared gerbils, all three forms of masking release were reduced when compared with NH animals. These results suggest that developmental CHL impairs both within- and across-frequency processing and provide behavioral evidence that CNS mechanisms are affected by a peripheral hearing impairment.

  13. Developmental Conductive Hearing Loss Reduces Modulation Masking Release

    Directory of Open Access Journals (Sweden)

    Antje Ihlefeld

    2016-12-01

    Full Text Available Hearing-impaired individuals experience difficulties in detecting or understanding speech, especially in background sounds within the same frequency range. However, normally hearing (NH human listeners experience less difficulty detecting a target tone in background noise when the envelope of that noise is temporally gated (modulated than when that envelope is flat across time (unmodulated. This perceptual benefit is called modulation masking release (MMR. When flanking masker energy is added well outside the frequency band of the target, and comodulated with the original modulated masker, detection thresholds improve further (MMR+. In contrast, if the flanking masker is antimodulated with the original masker, thresholds worsen (MMR−. These interactions across disparate frequency ranges are thought to require central nervous system (CNS processing. Therefore, we explored the effect of developmental conductive hearing loss (CHL in gerbils on MMR characteristics, as a test for putative CNS mechanisms. The detection thresholds of NH gerbils were lower in modulated noise, when compared with unmodulated noise. The addition of a comodulated flanker further improved performance, whereas an antimodulated flanker worsened performance. However, for CHL-reared gerbils, all three forms of masking release were reduced when compared with NH animals. These results suggest that developmental CHL impairs both within- and across-frequency processing and provide behavioral evidence that CNS mechanisms are affected by a peripheral hearing impairment.

  14. Systemic steroid reduces long-term hearing loss in experimental pneumococcal meningitis

    DEFF Research Database (Denmark)

    Worsøe, Lise Lotte; Brandt, C.T.; Lund, S.P.

    2010-01-01

    Sensorineural hearing loss is a common complication of pneumococcal meningitis. Treatment with corticosteroids reduces inflammatory response and may thereby reduce hearing loss. However, both experimental studies and clinical trials investigating the effect of corticosteroids on hearing loss have...... generated conflicting results. The objective of the present study was to determine whether systemic steroid treatment had an effect on hearing loss and cochlear damage in a rat model of pneumococcal meningitis.......Sensorineural hearing loss is a common complication of pneumococcal meningitis. Treatment with corticosteroids reduces inflammatory response and may thereby reduce hearing loss. However, both experimental studies and clinical trials investigating the effect of corticosteroids on hearing loss have...

  15. Air Circulation and Heat Exchange under Reduced Pressures

    Science.gov (United States)

    Rygalov, Vadim; Wheeler, Raymond; Dixon, Mike; Hillhouse, Len; Fowler, Philip

    Low pressure atmospheres were suggested for Space Greenhouses (SG) design to minimize sys-tem construction and re-supply materials, as well as system manufacturing and deployment costs. But rarified atmospheres modify heat exchange mechanisms what finally leads to alter-ations in thermal control for low pressure closed environments. Under low atmospheric pressures (e.g., lower than 25 kPa compare to 101.3 kPa for normal Earth atmosphere), convection is becoming replaced by diffusion and rate of heat exchange reduces significantly. During a period from 2001 to 2009, a series of hypobaric experiments were conducted at Space Life Sciences Lab (SLSLab) NASA's Kennedy Space Center and the Department of Space Studies, University of North Dakota. Findings from these experiments showed: -air circulation rate decreases non-linearly with lowering of total atmospheric pressure; -heat exchange slows down with pressure decrease creating risk of thermal stress (elevated leaf tem-peratures) for plants in closed environments; -low pressure-induced thermal stress could be reduced by either lowering system temperature set point or increasing forced convection rates (circulation fan power) within certain limits; Air circulation is an important constituent of controlled environments and plays crucial role in material and heat exchange. Theoretical schematics and mathematical models are developed from a series of observations. These models can be used to establish optimal control algorithms for low pressure environments, such as a space greenhouse, as well as assist in fundamental design concept developments for these or similar habitable structures.

  16. Radiation loss driven instabilities in laser heated plasmas

    International Nuclear Information System (INIS)

    Evans, R.G.

    1985-01-01

    Any plasma in which a significant part of the power balance is due to optically thin radiative losses may be subject to a radiation cooling instability. A simple analytical model gives the dispersion relation for the instability and inclusion of a realistic radiation loss term in a two dimensional hydrodynamic simulation shows that ''jet'' like features form in moderate to high Z plasmas

  17. Air Circulation and Heat Exchange Under Reduced Pressures

    Science.gov (United States)

    Rygalov, V.; Wheeler, R.; Dixon, M.; Fowler, P.; Hillhouse, L.

    2010-01-01

    Heat exchange rates decrease non-linearly with reductions in atmospheric pressure. This decrease creates risk of thermal stress (elevated leaf temperatures) for plants under reduced pressures. Forced convection (fans) significantly increases heat exchange rate under almost all pressures except below 10 kPa. Plant cultivation techniques under reduced pressures will require forced convection. The cooling curve technique is a reliable means of assessing the influence of environmental variables like pressure and gravity on gas exchange of plant. These results represent the extremes of gas exchange conditions for simple systems under variable pressures. In reality, dense plant canopies will exhibit responses in between these extremes. More research is needed to understand the dependence of forced convection on atmospheric pressure. The overall thermal balance model should include latent and radiative exchange components.

  18. Reduced heating level during the end-of-year closure

    CERN Document Server

    ST Department

    2007-01-01

    To save on energy costs, the heating will once again be operating at a reduced level during the end-of-year closure of the Laboratory. We would ask all those in charge of premises where normal temperatures have to be maintained to let us know by 14 December 2007 at the latest (tel. 72201 or 77777 or e-mail fm.support@cern.ch). TS/CV - TS/FM Groups

  19. Reduced heating level during the end-of-year closure

    CERN Multimedia

    2004-01-01

    To save on energy costs, the heating will once again be operating at a reduced level during the end-of-year closure of the Laboratory. We would ask all those in charge of premises where normal temperature have to be maintained to let us know by 16 December 2004 at the latest (tel. 72201 or 77777 or e-mail fm.support@cern.ch.). TS/CV - TS/FM Groups

  20. Reduced heating level during the end-of-year closure

    CERN Document Server

    TS/CV-TS/FM Group

    2004-01-01

    To save on energy costs, the heating will once again be operating at a reduced level during the end-of-year closure of the Laboratory. We would ask all those in charge of premises where normal temperature have to be maintained to let us know by 16 December 2004 at the latest (tel. 72201 or 77777 or e-mail fm.support@cern.ch.).

  1. Reduced heating level during the end-of-year closure

    CERN Document Server

    TS Department

    2008-01-01

    To save on energy costs, the heating will once again be operating at a reduced level during the end-of-year closure of the Laboratory. We would ask all those in charge of premises where normal temperature have to be maintained to let us know by 12 December 2008 at the latest (tel. 72201 or 77777 or e-mail mailto:fm.support@cern.ch). TS/CV - TS/FM Groups

  2. Reduced heating level during the end-of-year closure

    CERN Multimedia

    2007-01-01

    To save on energy costs, the heating will once again be operating at a reduced level during the end-of-year closure of the Laboratory. We would ask all those in charge of premises where normal temperature have to be maintained to let us know by 14 December 2007 at the latest (tel. 72201 or 77777 or e-mail mailto:fm.support@cern.ch). TS/CV - TS/FM Groups

  3. Reduced heating level during the end-of-year closure

    CERN Multimedia

    2006-01-01

    To save on energy costs, the heating will once again be operating at a reduced level during the end-of-year closure of the Laboratory. We would ask all those in charge of premises where normal temperature has to be maintained to let us know by 15 December 2006 at the latest (tel. 72201 or 77777 or e-mail fm.support@cern.ch). TS/CV - TS/FM Groups

  4. Reduced heating level during the end-of-year closure

    CERN Multimedia

    2006-01-01

    To save on energy costs, the heating will once again be operating at a reduced level during the end-of-year closure of the Laboratory. We would ask all those in charge of premises where normal temperature have to be maintained to let us know by 15 December 2006 at the latest (tel. 72201 or 77777 or e-mail fm.support@cern.ch). TS/CV - TS/FM Groups

  5. Reduced heating level during the end-of-year closure

    CERN Multimedia

    TS/CV Group

    2005-01-01

    To save on energy costs, the heating will once again be operating at a reduced level during the end-of-year closure of the Laboratory. We would ask all those in charge of premises where normal temperatures have to be maintained to let us know by 16 December 2005 at the latest (tel. 72201 or 77777 or e-mail fm.support@cern.ch). Groups TS/CV and TS/FM

  6. Recouping the thermal-to-electric conversion loss by the use of waste heat

    International Nuclear Information System (INIS)

    Bradley, W.J.

    1976-01-01

    This paper looks at ways to recoup the thermal-to-electric conversion loss of our thermal power generating stations. These stations now produce twice as much low-grade waste heat as they do electricity. We can improve the situation in two ways: by improving the station efficiency, and by utilizing the low-grade heat beneficially. The following options are examined: N 2 O 4 turbines condensing at 10 deg C; power from moderator waste heat; 50 MW heat pump for district heating; industrial parks with integrated waste heat upgrading station. (author)

  7. Plate heat exchanger - inertia flywheel performance in loss of flow transient

    International Nuclear Information System (INIS)

    Abou-El-Maaty, Talal; Abd-El-Hady, Amr

    2009-01-01

    One of the most versatile types of heat exchangers used is the plate heat exchanger. It has principal advantages over other heat exchangers in that plates can be added and/or removed easily in order to change the area available for heat transfer and therefore its overall performance. The cooling systems of Egypt's second research reactor (ETRR 2) use this type of heat exchanger for cooling purposes in its primary core cooling and pool cooling systems. In addition to the change in the number of heat exchanger cooling channels, the effect of changing the amount of mass flow rate on the heat exchanger performance is an important issues in this study. The inertia flywheel mounted on the primary core cooling system pump with the plate heat exchanger plays an important role in the case of loss of flow transients. The PARET code is used to simulate the effect of loss of flow transients on the reactor core. Hence, the core outlet temperature with the pump-flywheel flow coast down is fed into the plate heat exchanger model developed to estimate the total energy transferred to the cooling tower, the primary side heat exchanger temperature variation, the transmitted heat exchanger power, and the heat exchanger effectiveness. In addition, the pressure drop in both, the primary side and secondary side of the plate heat exchanger is calculated in all simulated transients because their values have limits beyond which the heat exchanger is useless. (orig.)

  8. HEAT LOSS FROM HOT WATER SUPPLY LINE IN A RESIDENTIAL BUILDING

    OpenAIRE

    近藤, 修平; 鉾井, 修一

    2011-01-01

    In order to the evaluate heat loss from hot water supply lines in a residential building, hot water demand in a house in Chiba prefecture was measured and analyzed. The following results were obtained. 1. The heat loss of the hot water supply line was about 132kJ for the shower and 110kJ for the bathtub in winter. Since the temperature difference between the inlet and outlet of the hot water supply line is small, the measured heat loss from the hot water supply line sometimes becomes negative...

  9. Future Earth: Reducing Loss By Automating Response to Earthquake Shaking

    Science.gov (United States)

    Allen, R. M.

    2014-12-01

    Earthquakes pose a significant threat to society in the U.S. and around the world. The risk is easily forgotten given the infrequent recurrence of major damaging events, yet the likelihood of a major earthquake in California in the next 30 years is greater than 99%. As our societal infrastructure becomes ever more interconnected, the potential impacts of these future events are difficult to predict. Yet, the same inter-connected infrastructure also allows us to rapidly detect earthquakes as they begin, and provide seconds, tens or seconds, or a few minutes warning. A demonstration earthquake early warning system is now operating in California and is being expanded to the west coast (www.ShakeAlert.org). In recent earthquakes in the Los Angeles region, alerts were generated that could have provided warning to the vast majority of Los Angelinos who experienced the shaking. Efforts are underway to build a public system. Smartphone technology will be used not only to issue that alerts, but could also be used to collect data, and improve the warnings. The MyShake project at UC Berkeley is currently testing an app that attempts to turn millions of smartphones into earthquake-detectors. As our development of the technology continues, we can anticipate ever-more automated response to earthquake alerts. Already, the BART system in the San Francisco Bay Area automatically stops trains based on the alerts. In the future, elevators will stop, machinery will pause, hazardous materials will be isolated, and self-driving cars will pull-over to the side of the road. In this presentation we will review the current status of the earthquake early warning system in the US. We will illustrate how smartphones can contribute to the system. Finally, we will review applications of the information to reduce future losses.

  10. Life cycle biological efficiency of mice divergently selected for heat loss.

    Science.gov (United States)

    Bhatnagar, A S; Nielsen, M K

    2014-08-01

    Divergent selection in mice for heat loss was conducted in 3 independent replicates creating a high maintenance, high heat loss (MH) and low maintenance, low heat loss (ML) line and unselected control (MC). Improvement in feed efficiency was observed in ML mice due to a reduced maintenance energy requirement but there was also a slight decline in reproductive performance, survivability, and lean content, particularly when compared to MC animals. The objective of this study was to model a life cycle scenario similar to a livestock production system and calculate total inputs and outputs to estimate overall biological efficiency of these lines and determine if reduced feed intake resulted in improved life cycle efficiency. Feed intake, reproductive performance, growth, and body composition were recorded on 21 mating pairs from each line × replicate combination, cohabitated at 7 wk of age and maintained for up to 1 yr unless culled. Proportion of animals at each parity was calculated from survival rates estimated from previous research when enforcing a maximum of 4, 8, or 12 allowed parities. This parity distribution was then combined with values from previous studies to calculate inputs and outputs of mating pairs and offspring produced in a single cycle at equilibrium. Offspring output was defined as kilograms of lean output of offspring at 49 d. Offspring input was defined as megacalories of energy intake for growing offspring from 21 to 49 d. Parent output was defined as kilograms of lean output of culled parents. Parent input was defined as megacalories of energy intake for mating pairs from weaning of one parity to weaning of the next. Offspring output was greatest in MC mice due to superior BW and numbers weaned, while output was lowest in ML mice due to smaller litter sizes and lean content. Parent output did not differ substantially between lines but was greatest in MH mice due to poorer survival rates resulting in more culled animals. Input was greatest in

  11. Reduced turning frequency and delayed poultry manure addition reduces N loss from sugarcane compost

    DEFF Research Database (Denmark)

    Bryndum, Sofie; Muschler, R.; Nigatu, Abebe Nigussie

    2017-01-01

    Composting is an effective method to recycle biodegradable waste as soil amendment in smallholder farming systems. Although all essential plant nutrients are found in compost, a substantial amount of nitrogen is lost during composting. This study therefore investigated the potential of reducing N...... losses by (i) delaying the addition of nitrogen-rich substrates (i.e. poultry manure), and (ii) reducing the turning frequency during composting. Furthermore, we tested the effect of compost application method on nitrogen mineralization. Sugarcane-waste was composted for 54days with addition of poultry...... manure at the beginning (i.e. early addition) or after 21days of composting (delayed addition). The compost pile was then turned either every three or nine days. Composts were subsequently applied to soil as (i) homogeneously mixed, or (ii) stratified, and incubated for 28days to test the effect...

  12. Oceans and continents: Similarities and differences in the mechanisms of heat loss

    International Nuclear Information System (INIS)

    Sclater, J.G.; Parsons, B.; Jaupart, C.

    1981-01-01

    The principal objective of this paper is to present a simple and self-consistent review of the basic physical processes controlling heat loss from the earth. To accomplish this objective, we give a short summary of the oceanic and continental data and compare and contrast the respective mechanisms of heat loss . In the oceans we concentrate on the effect of hydrothermal circulation, and on the continents we consider in some detail a model relating surface heat flow to varying depth scales for the distribution of potassium, thorium, and uranium. From this comparison we conclude that the range in possible geotherms at depths below 100 to 150 km under continents and oceans overlaps and the thermal structure beneath an old stable continent is indistinguishable from that beneath an ocean were it at equilibrium. Oceans and continents are part of the same thermal system. Both have an upper rigid mechanical layer where heat loss is by conduction and a lower thermal boundary layer where convection is dominant. The simple conductive definition of the plate thickness is an oversimplification. The observed distribution of area versus age in the ocean allows us to investigate the dominant mechanism of heat loss which is plate creation. This distribution and an understanding of the heat flow through oceans and continents can be used to calculate the heat loss of the earth. This heat loss is 10 13 cal/s (4.2 x 10 13 W) of which more than 60% results from the creation of oceanic plate. The relation between area and age of the oceans is coupled to the ridge and subducting slab forces that contribute to the driving mechanism for plate motions. These forces are self-regulating and maintain the rate of plate generation required to achieve a balance between heat loss and heat generation

  13. Heat loss and fluid leakage tests of the ROSA-III facility

    International Nuclear Information System (INIS)

    Suzuki, Mitsuhiro; Tasaka, Kanji; Shiba, Masayoshi

    1981-12-01

    The report presents characteristic test results about the steady state heat loss, one of the inherent characteristics of the ROSA-III test facility. The steady state heat loss tests were conducted at five different temperature conditions between 111 0 C and 290 0 C . Net heat loss rates were obtained by estimating the electric power supplied to the core, heat input from the recirculation pumps and steam leakage rate. The heat loss characteristics have important contribution to analyses of the ROSA-III small break tests. A following simple relation was obtained between the net heat loss rate Q*sub(HL) (kJ/s) (*: radical) of the ROSA-III facility and the temperature difference ΔT ( 0 C) between the fluid temperature of the system and the room temperature, Q*sub(HL) = 0.56 x ΔT. (*: radical) And the steam leak flow at normal operating condition of the ROSA-III test, (P = 7.2 MPa) was obtained as 8.9 x 10 -3 kg/s and corresponding steam leakage energy as 10.5 kJ/s. The heat input from the recirculation pumps was indirectly estimated under a constant speed by assuming the heat input was equal to the brake horce power of the pumps. (author)

  14. Energy-Recovery Pressure-Reducer in District Heating System

    Directory of Open Access Journals (Sweden)

    Dariusz Borkowski

    2018-06-01

    Full Text Available Already existing man-made infrastructures that create water flow and unused pressure are interesting energy sources to which micro-hydropower plants can be applied. Apart from water supply systems (WSSs, which are widely described in the literature, significant hydropower potential can also be found in district heating systems (DHSs. In this paper, a prototype, a so-called energy-recovery pressure-reducer (ERPR, utilized for a DHS, is presented. It consisted of a pump as a turbine coupled to a permanent magnet synchronous generator (PMSG. The latter was connected to the power grid through the power electronic unit (PEU. The variable-speed operation allowed one to modify the turbine characteristics to match the substation’s hydraulic conditions. The proposed ERPR device could be installed in series to the existing classic pressure reducing valve (PRV as an independent device that reduces costs and simplifies system installation. The test results of the prototype system located in a substation of Cracow’s DHS are presented. The steady-state curves and regulation characteristics show the prototype’s operating range and efficiency. In this study, the pressure-reducer impact on the electrical and hydraulic systems, and on the environment, were analyzed. The operation tests during the annual heating season revealed an average system’s efficiency of 49%.

  15. Application of heat in postcook meat chillers reduces Listeria.

    Science.gov (United States)

    Eglezos, Sofroni; Dykes, Gary A

    2011-06-01

    Electrical air-blowing heaters were used to heat and dry out holding chillers used for postcook commercial processed meats in an attempt to control the presence of Listeria. A baseline study of the prevalence of Listeria in holding chillers in seven facilities was undertaken. Listeria was detected in four of the seven chillers, and swab samples showed Listeria prevalence ranging from 7 (7.8%) of 90 to 6 (20%) of 30, depending on the facility. Two of the facilities with established Listeria contamination (A and E) were chosen for further studies. The heating trials consisted of three individual heating interventions at each of the two facilities, with 2 weeks of postintervention sampling after each treatment. The initial Listeria prevalence in chiller A was 19 (10.6%) of 180, and treatment at 37°C for 36 h reduced prevalence to 3 (1.7%) of 180. The initial Listeria prevalence in chiller E was 7 (7.8%) of 90, and treatment at 50°C for 2 h reduced prevalence to 0 of 90. Both reductions were statistically significant at P prevalence of Listeria in chillers.

  16. MeV ion loss during 3He minority heating in TFTR

    International Nuclear Information System (INIS)

    Zweben, S.J.; Hammett, G.; Boivin, R.; Phillips, C.; Wilson, R.

    1992-01-01

    The loss of MeV ions during 3 He ICRH minority heating experiments has been measured using scintillator detectors near the wall of TFTR. The observed MeV ion losses to the bottom (90 degrees poloidal) detector are generally consistent with the expected first-orbit loss of D- 3 He alpha particle fusion products, with an inferred global reaction rate up to ∼10 16 reactions/sec. A qualitatively similar but unexpectedly large loss occurs 45 degrees poloidally below the outer midplane. This additional loss might be due to ICRH tail ions or to ICRH wave-induced loss of previously confined fusion products

  17. Heat loss during carbon dioxide insufflation: comparison of a nebulization based humidification device with a humidification and heating system.

    Science.gov (United States)

    Noll, Eric; Schaeffer, Roland; Joshi, Girish; Diemunsch, Sophie; Koessler, Stefanie; Diemunsch, Pierre

    2012-12-01

    This study compared the heat loss observed with the use of MR860 AEA Humidifier™ system (Fisher & Paykel Healthcare, New Zealand), which humidifies and heats the insufflated CO(2), and the use of the AeronebPro™ device (Aerogen, Ireland), which humidifies but does not heat the insufflated CO(2). With institutional approval, 16 experiments were conducted in 4 pigs. Each animal, acting as its own control, was studied at 8-day intervals in randomized sequence with the following four conditions: (1) control (C) no pneumoperitoneum; (2) standard (S) insufflation with nonhumidified, nonheated CO(2); (3) Aeroneb™ (A): insufflation with humidified, nonheated CO(2); and (4) MR860 AEA humidifier™ (MR): insufflation with humidified and heated CO(2). The measured heat loss after 720L CO(2) insufflation during the 4 h was 1.03 ± 0.75 °C (mean ± SEM) in group C; 3.63 ± 0.31 °C in group S; 3.03 ± 0.39 °C in group A; and 1.98 ± 0.09 °C in group MR. The ANOVA showed a significant difference with time (p = 0.0001) and with the insufflation technique (p = 0.024). Heat loss in group C was less than in group S after 60 min (p = 0.03), less than in group A after 70 min (p = 0.03), and less than in group MR after 150 min (p = 0.03). The heat loss in group MR was less than in group S after 50 min (p = 0.04) and less than in group A after 70 min (p = 0.02). After 160 min, the heat loss in group S was greater than in group A (p = 0.03). As far as heat loss is concerned, for laparoscopic procedures of less than 60 min, there is no benefit of using any humidification with or without heating. However, for procedures greater than 60 min, use of heating along with humidification, is superior.

  18. Flood protection diversification to reduce probabilities of extreme losses.

    Science.gov (United States)

    Zhou, Qian; Lambert, James H; Karvetski, Christopher W; Keisler, Jeffrey M; Linkov, Igor

    2012-11-01

    Recent catastrophic losses because of floods require developing resilient approaches to flood risk protection. This article assesses how diversification of a system of coastal protections might decrease the probabilities of extreme flood losses. The study compares the performance of portfolios each consisting of four types of flood protection assets in a large region of dike rings. A parametric analysis suggests conditions in which diversifications of the types of included flood protection assets decrease extreme flood losses. Increased return periods of extreme losses are associated with portfolios where the asset types have low correlations of economic risk. The effort highlights the importance of understanding correlations across asset types in planning for large-scale flood protection. It allows explicit integration of climate change scenarios in developing flood mitigation strategy. © 2012 Society for Risk Analysis.

  19. Reducing security risk using data loss prevention technology.

    Science.gov (United States)

    Beeskow, John

    2015-11-01

    Data loss/leakage protection (DLP) technology seeks to improve data security by answering three fundamental questions: > Where are confidential data stored? > Who is accessing the information? > How are data being handled?

  20. Optimal placement of biomass fuelled gas turbines for reduced losses

    International Nuclear Information System (INIS)

    Jurado, Francisco; Cano, Antonio

    2006-01-01

    This paper presents a method for the optimal location and sizing of biomass fuelled gas turbine power plants. Both profitability in using biomass and power loss are considered in the cost function. The first step is to assess the plant size that maximizes the profitability of the project. The second step is to determine the optimal location of the gas turbines in the electric system to minimize the power loss of the system

  1. Nucleate Boiling Heat Transfer Studied Under Reduced-Gravity Conditions

    Science.gov (United States)

    Chao, David F.; Hasan, Mohammad M.

    2000-01-01

    Boiling is known to be a very efficient mode of heat transfer, and as such, it is employed in component cooling and in various energy-conversion systems. In space, boiling heat transfer may be used in thermal management, fluid handling and control, power systems, and on-orbit storage and supply systems for cryogenic propellants and life-support fluids. Recent interest in the exploration of Mars and other planets and in the concept of in situ resource utilization on the Martian and Lunar surfaces highlights the need to understand how gravity levels varying from the Earth's gravity to microgravity (1g = or > g/g(sub e) = or > 10(exp -6)g) affect boiling heat transfer. Because of the complex nature of the boiling process, no generalized prediction or procedure has been developed to describe the boiling heat transfer coefficient, particularly at reduced gravity levels. Recently, Professor Vijay K. Dhir of the University of California at Los Angeles proposed a novel building-block approach to investigate the boiling phenomena in low-gravity to microgravity environments. This approach experimentally investigates the complete process of bubble inception, growth, and departure for single bubbles formed at a well-defined and controllable nucleation site. Principal investigator Professor Vijay K. Dhir, with support from researchers from the NASA Glenn Research Center at Lewis Field, is performing a series of pool boiling experiments in the low-gravity environments of the KC 135 microgravity aircraft s parabolic flight to investigate the inception, growth, departure, and merger of bubbles from single- and multiple-nucleation sites as a function of the wall superheat and the liquid subcooling. Silicon wafers with single and multiple cavities of known characteristics are being used as test surfaces. Water and PF5060 (an inert liquid) were chosen as test liquids so that the role of surface wettability and the magnitude of the effect of interfacial tension on boiling in reduced

  2. Wind effects on convective heat loss from a cavity receiver for a parabolic concentrating solar collector

    Energy Technology Data Exchange (ETDEWEB)

    Ma, R.Y. [California State Polytechnic Univ., Pomoma, CA (United States). Dept. of Mechanical Engineering

    1993-09-01

    Tests were performed to determine the convective heat loss characteristics of a cavity receiver for a parabolid dish concentrating solar collector for various tilt angles and wind speeds of 0-24 mph. Natural (no wind) convective heat loss from the receiver is the highest for a horizontal receiver orientation and negligible with the reveler facing straight down. Convection from the receiver is substantially increased by the presence of side-on wind for all receiver tilt angles. For head-on wind, convective heat loss with the receiver facing straight down is approximately the same as that for side-on wind. Overall it was found that for wind speeds of 20--24 mph, convective heat loss from the receiver can be as much as three times that occurring without wind.

  3. Leveraging geodetic data to reduce losses from earthquakes

    Science.gov (United States)

    Murray, Jessica R.; Roeloffs, Evelyn A.; Brooks, Benjamin A.; Langbein, John O.; Leith, William S.; Minson, Sarah E.; Svarc, Jerry L.; Thatcher, Wayne R.

    2018-04-23

    Seismic hazard assessments that are based on a variety of data and the best available science, coupled with rapid synthesis of real-time information from continuous monitoring networks to guide post-earthquake response, form a solid foundation for effective earthquake loss reduction. With this in mind, the Earthquake Hazards Program (EHP) of the U.S. Geological Survey (USGS) Natural Hazards Mission Area (NHMA) engages in a variety of undertakings, both established and emergent, in order to provide high quality products that enable stakeholders to take action in advance of and in response to earthquakes. Examples include the National Seismic Hazard Model (NSHM), development of tools for improved situational awareness such as earthquake early warning (EEW) and operational earthquake forecasting (OEF), research about induced seismicity, and new efforts to advance comprehensive subduction zone science and monitoring. Geodetic observations provide unique and complementary information directly relevant to advancing many aspects of these efforts (fig. 1). EHP scientists have long leveraged geodetic data for a range of influential studies, and they continue to develop innovative observation and analysis methods that push the boundaries of the field of geodesy as applied to natural hazards research. Given the ongoing, rapid improvement in availability, variety, and precision of geodetic measurements, considering ways to fully utilize this observational resource for earthquake loss reduction is timely and essential. This report presents strategies, and the underlying scientific rationale, by which the EHP could achieve the following outcomes: The EHP is an authoritative source for the interpretation of geodetic data and its use for earthquake loss reduction throughout the United States and its territories.The USGS consistently provides timely, high quality geodetic data to stakeholders.Significant earthquakes are better characterized by incorporating geodetic data into USGS

  4. Treatment of the loss of ultimate heat sink initiating events in the IRSN level 1 PSA

    International Nuclear Information System (INIS)

    Dupuy, Patricia; Georgescu, Gabriel; Corenwinder, Francois

    2014-01-01

    The total loss of the ultimate heat sink is an initiating event which, even it is mainly of external origin, has been considered in the frame of internal events Level 1 PSA by IRSN. The on-going actions on the development of external hazards PSA and the recent incident of loss of the heat sink induced by the ingress of vegetable matter that occurred in France in 2009 have pointed out the need to improve the modeling of the loss of the heat sink initiating event and sequences to better take into account the fact that this loss may be induced by external hazards and thus affect all the site units. The paper presents the historical steps of the modeling of the total loss of the heat sink, the safety stakes of this modeling, the main assumptions used by IRSN in the associated PSA for the 900 MWe reactors and the results obtained. The total loss of the heat sink was not initially addressed in the safety demonstration of French NPPs. On the basis of the insights of the first probabilistic assessments performed in the 80's, the risks associated to this 'multiple failure situation' turned out to be very significant and design and organisational improvements were implemented on the plants. Reviews of the characterization of external hazards and of their consequences on the installations and French operating feedback have revealed that extreme hazards may induce a total loss of the heat sink. Moreover, the accident that occurred at Fukushima in 2011 has pointed out the risk of such a loss of long duration at all site units in case of extreme hazards. In this context, it seems relevant to further improve the modelling of the total loss of the heat sink by considering the external hazards that may cause this loss. In a first step, IRSN has improved the assumptions and data used in the loss of the heat sink PSA model, in particular by considering that such a loss may affect all the site units. The next challenge will be the deeper analysis of the impact of external hazards on

  5. Heat loss of heat pipelines in insulation moisture conditions with the evaporation

    Directory of Open Access Journals (Sweden)

    Polovnikov Vyacheslav Yu.

    2014-01-01

    Full Text Available Results of numerical simulation of heat and mass transfer in a wet fibroporous material in conditions of evaporation and steam diffusion were obtained. Values of heat and mass fluxes were established. The contribution of evaporation effect to total heat flux and need to consider volume fractions of water and steam into the structure of fibroporous material in calculation of effective thermal conductivity were shown. Nonstationarity of heat and mass transfer in conditions of considered problem can be ignored.

  6. Measuring and heat losses for district heating systems in detached house areas; Maet- och vaermefoerluster foer fjaerrvaermesystem i smaahusomraaden

    Energy Technology Data Exchange (ETDEWEB)

    Cederborg, Frederick; Nordgren, Ola [FVB Sverige ab, Vaesteraas (Sweden)

    2005-07-01

    Within 'low heat load' areas e.g. residential areas, with low energy consumption per individual customer, the resulting relationship between the heat loss and the energy sales is big. For these customers with low energy consumption, in particular during the summer season, concerns have been raised regarding the ability of the heat volume meters to register the true energy consumption. In order to determine the magnitude of the losses, the Swedish District Heating Association, has initiated a measuring project where measurements have been made in two separate residential areas with different system configurations and different temperature control programs. The measurements were performed from May 15, 2003 to September 23, 2004. The main objective for the project was to gather data and to analyse the magnitude of the total losses in the building systems. The relation between the heat losses and the measuring losses was also studied briefly. Two types of systems have been studied, on one hand a conventional district heating area with primary connected houses and on the other hand an area with secondary connected houses with PEX-pipes in Enkoeping. The heat and measuring losses at the area Munksundet in Enkoeping is 17 % at a 'load density' of 0,84. This value is somewhat lower than the accounted annual relative loss of 22-23 % stated in the report 'FVF 1997:11 Fjaerrvaerme till smaahus'. The results show that a secondary connected low temperature system with PEX-pipes is an interesting connection alternative for small houses. Also at the residential area Rotskaer in Skutskaer, the heat and measuring losses are lower than the accounted annual relative loss, about 24 % at a 'load density' of 0,49,which is to be compared with about 33 % annual relative loss according to the report 'FVF 1997:11'. Within this assignment there are difficulties to divide the measuring losses in short circuit flows and errors in the heat

  7. Analysis of unscrammed loss of flow and heat sink for PRISM with GEM

    International Nuclear Information System (INIS)

    Slovik, G.C.; Van Tuyle, G.J.; Kennett, R.J.

    1991-01-01

    The US Department of Energy is sponsoring an advanced liquid-metal reactor design by General Electric Company (GE) called PRISM. The intent is to design a reactor with passively safe responses to many operational and severe accidents. PRISM is under review at the US Nuclear Regulatory Commission for licensability with Brookhaven National Laboratory providing technical assistance. Recently, the PRISM design has been modified to include three gas expansion modules (GEMs) on its core periphery. The GEMs were added to quickly reduce the power (by inserting negative reactivity) during loss-of-flow events to curtail peak fuel and clad temperatures predicted in the previous design. The GEM prototypes have been tested at the Fast Flux Test Facility. The significance of the GEMs in PRISM is discussed in this paper through the evaluation of the unprotected loss of flow (ULOF) and loss of heat sink using the SSC code. It has been demonstrated in the past that SSC predicts results similar to GE and other liquid-metal reactor codes

  8. The TX-model - a quantitative heat loss analysis of district heating pipes by means of IR surface temperature measurements

    Energy Technology Data Exchange (ETDEWEB)

    Zinki, Heimo [ZW Energiteknik, Nykoeping (Sweden)

    1996-11-01

    The aim of this study was to investigate the possibility of analysing the temperature profile at the ground surface above buried district heating pipes in such a way that would enable the quantitative determination of heat loss from the pair of pipes. In practical applications, it is supposed that this temperature profile is generated by means of advanced IR-thermography. For this purpose, the principle of the TX - model has been developed, based on the fact that the heat losses from pipes buried in the ground have a temperature signature on the ground surface. Qualitative analysis of this temperature signature is very well known and in practical use for detecting leaks from pipes. These techniques primarily make use of relative changes of the temperature pattern along the pipe. In the quantitative heat loss analysis, however, it is presumed that the temperature profile across the pipes is related to the pipe heat loss per unit length. The basic idea is that the integral of the temperature profile perpendicular to the pipe, called TX, is a function of the heat loss, but is also affected by other parameters such as burial depth, heat diffusivity, wind, precipitation and so on. In order to analyse the parameters influencing the TX- factor, a simulation model for the energy balance at the ground surface has been developed. This model includes the heat flow from the pipe to the surface and the heat exchange at the surface with the environment due to convection, latent heat change, solar and long wave radiation. The simulation gives the surprising result that the TX factor is by and large unaffected during the course of a day even when the sun is shining, as long as other climate conditions are relatively stable (low wind, no rain, no shadows). The results from the simulations were verified at different sites in Denmark, Finland, Sweden and USA through a co-operative research program organised and partially financed by the IEA District Heating Programme, Task III, and

  9. Method of increased bioethanol concentration with reduced heat consumption

    International Nuclear Information System (INIS)

    Bremers, G.; Blija, A.

    2003-01-01

    Ethanol dehydration applying method of non-reflux saline distillation was conduced on a laboratory scale and in bigger pilot equipment. Results make possible recommend new method for the increased of ethanol concentration. Heat consumption reduced by 50% and cooling water consumption by 90 % when the non-reflux distillation was applied. Reflux flow in the column is replacing with contact mass, which consist from saline layer and seclude medium. Basis diagram of ethanol non-reflux saline distillation was established. Distillation equipment and number of plates in the column can calculate using basis diagram. Absolute ethanol can obtain with non-reflux saline distillation. Absolute ethanol use in produce of biofuel (author)

  10. A model for allometric scaling of mammalian metabolism with ambient heat loss

    KAUST Repository

    Kwak, Ho Sang; Im, Hong G.; Shim, Eun Bo

    2016-01-01

    The finding that additional radiative heat loss and the consideration of an outer insulation fur layer attenuate these deviation effects and render the scaling law closer to 2/3 provides in silico evidence for a functional impact of heat transfer mode on the allometric scaling law in mammalian metabolism.

  11. Feeding strategies to reduce methane loss in cattle

    Energy Technology Data Exchange (ETDEWEB)

    Tamminga, S.; Dijkstra, J. [Group Animal Nutrition, Wageningen University, Wageningen (Netherlands); Bannink, A.; Zom, R. [Animal Sciences Group, Wageningen UR, Lelystad (Netherlands)

    2007-02-15

    The emission of greenhouse gases (GHG), notably of methane (CH4), by domestic animals and possible ways of abatement have been the subject of many international studies in recent years. From all emission sources of CH4, agriculture is by far the most important source in The Netherlands. Several techniques to measure CH4 losses from farm animals exist. Most widely used among them are respiration calorimetric chambers and sulphur hexafluoride (SF6) as a tracer gas. Also, there are several ways to express CH4 losses. The most widely used way is to express it as % of GEI. A less popular, but for dairy cows interesting way to express CH4 losses is as gram (or litre) per kg desired product, hence g CH4/kg of milk. Some years ago a series of research projects on the subject of CH4 losses from ruminants in The Netherlands were started, coordinated by the ROB-Agro research programme committee (www.robklimaat.nl). In a 2000 study the role that animal nutrition could play to alleviate the loss of CH4 from ruminant animals, notably from dairy cows, has been reviewed. Several Rob-Agro studies have been performed since and evaluated the effect of nutrition and feed additives on CH4 emission. Simultaneously, a research project, funded by the Dutch Commodity Board of Feedstuffs and the ministry of Agriculture, Nature and Food Quality (LNV), started at the end of 2002 aiming at the quantification of CH4 emission by dairy cows by applying an integrative modelling approach. The model developed was recently used to deliver estimates for the national emission of CH4 by cows. These estimates were used in the Dutch national inventory of emission of greenhouse gases from agriculture.

  12. A model for particle and heat losses by type I edge localized modes

    International Nuclear Information System (INIS)

    Tokar, M Z; Gupta, A; Kalupin, D; Singh, R

    2007-01-01

    A model to estimate the particle and energy losses caused in tokamaks by type I edge localized modes (ELMs) is proposed. This model is based on the assumption that the increase in transport by ELM is due to flows along magnetic field lines perturbed by ballooning-peeling MHD modes. The model reproduces well the experimentally found variation of losses with the plasma collisionality ν*, namely, the weak dependence of the particle loss and significant reduction of the energy loss with increasing ν*. It is argued that the electron parallel heat conductivity is dominating in the energy loss at not very large ν*

  13. SCDAP/RELAP5 Modeling of Heat Transfer and Flow Losses in Lower Head Porous Debris

    International Nuclear Information System (INIS)

    Coryell, E.W.; Siefken, L.J.; Paik, S.

    1998-01-01

    Designs are described for implementing models for calculating the heat transfer and flow losses in porous debris in the lower head of a reactor vessel. The COUPLE model in SCDAP/RELAP5 represents both the porous and non-porous debris that results from core material slumping into the lower head. Currently, the COUPLE model has the capability to model convective and radiative heat transfer from the surfaces of non-porous debris in a detailed manner and to model only in a simplistic manner the heat transfer from porous debris. In order to advance beyond the simplistic modeling for porous debris, designs are developed for detailed calculations of heat transfer and flow losses in porous debris. Correlations are identified for convective heat transfer in porous debris for the following modes of heat transfer; (1) forced convection to liquid, (2) forced convection to gas, (3) nucleate boiling, (4) transition boiling, and (5) film boiling. Interphase heat transfer is modeled in an approximate manner. A design is also described for implementing a model of heat transfer by radiation from debris to the interstitial fluid. A design is described for implementation of models for flow losses and interphase drag in porous debris. Since the models for heat transfer and flow losses in porous debris in the lower head are designed for general application, a design is also described for implementation of these models to the analysis of porous debris in the core region. A test matrix is proposed for assessing the capability of the implemented models to calculate the heat transfer and flow losses in porous debris. The implementation of the models described in this report is expected to improve the COUPLE code calculation of the temperature distribution in porous debris and in the lower head that supports the debris. The implementation of these models is also expected to improve the calculation of the temperature and flow distribution in porous debris in the core region

  14. Efforts to reduce stratospheric ozone loss affect agriculture

    International Nuclear Information System (INIS)

    Weare, B.C.

    1995-01-01

    Research has shown that the increased ultraviolet radiation reaching the Earth's surface resulting from stratospheric ozone loss poses a danger to everyone. Concern about ozone loss prompted many nations to ratify the Montreal Protocol, the most comprehensive international environmental agreement ever enacted. Several provisions of this protocol will have substantial, long-term effects on the agricultural industry. Agriculture contributes substantially to ozone depletion, primarily through its use of chlorofluorocarbons (CFCs) for refrigeration in processing, storage and transport of meats and produce. This paper is meant to serve as an overview of the scientific basis for ozone depletion concerns, a description of the current international policy agreement, and the possible consequences of that policy for agriculture. (author)

  15. Heat waves imposed during early pod development in soybean (Glycine max) cause significant yield loss despite a rapid recovery from oxidative stress.

    Science.gov (United States)

    Siebers, Matthew H; Yendrek, Craig R; Drag, David; Locke, Anna M; Rios Acosta, Lorena; Leakey, Andrew D B; Ainsworth, Elizabeth A; Bernacchi, Carl J; Ort, Donald R

    2015-08-01

    Heat waves already have a large impact on crops and are predicted to become more intense and more frequent in the future. In this study, heat waves were imposed on soybean using infrared heating technology in a fully open-air field experiment. Five separate heat waves were applied to field-grown soybean (Glycine max) in central Illinois, three in 2010 and two in 2011. Thirty years of historical weather data from Illinois were analyzed to determine the length and intensity of a regionally realistic heat wave resulting in experimental heat wave treatments during which day and night canopy temperatures were elevated 6 °C above ambient for 3 days. Heat waves were applied during early or late reproductive stages to determine whether and when heat waves had an impact on carbon metabolism and seed yield. By the third day of each heat wave, net photosynthesis (A), specific leaf weight (SLW), and leaf total nonstructural carbohydrate concentration (TNC) were decreased, while leaf oxidative stress was increased. However, A, SLW, TNC, and measures of oxidative stress were no different than the control ca. 12 h after the heat waves ended, indicating rapid physiological recovery from the high-temperature stress. That end of season seed yield was reduced (~10%) only when heat waves were applied during early pod developmental stages indicates the yield loss had more to do with direct impacts of the heat waves on reproductive process than on photosynthesis. Soybean was unable to mitigate yield loss after heat waves given during late reproductive stages. This study shows that short high-temperature stress events that reduce photosynthesis and increase oxidative stress resulted in significant losses to soybean production in the Midwest, U.S. The study also suggests that to mitigate heat wave-induced yield loss, soybean needs improved reproductive and photosynthetic tolerance to high but increasingly common temperatures. Published 2015. This article is a U.S. Government work and is

  16. Effect of heterogenous and homogenous air gaps on dry heat loss through the garment

    Science.gov (United States)

    Mert, Emel; Psikuta, Agnes; Bueno, Marie-Ange; Rossi, René M.

    2015-11-01

    In real life conditions, the trapped air between the human body and the garment has uneven shape and vary over the body parts as a consequence of the complex geometry of the human body. However, the existing clothing models assume uniform air layer between the human body and the garment or its full contact, which may cause large error in the output of simulations. Therefore, the aim of this study was to investigate the effect of a heterogeneous vertical air gap with different configuration of folds (size and frequency) on dry heat loss using a heated cylinder (Torso). It was found that the presence of folds in the garment led to an increased heat loss from the body in comparison to a homogeneous air gap of comparable size. Interestingly, the size of folds did not have an influence on the dry heat loss. Additionally, the effect of the contact area on dry heat loss became important when exceeding a threshold of about 42 %. The results from this study are useful for modelling of a realistic dry heat loss through the clothing and contribute to the improvement of design of protective and active sport garments.

  17. Biological evaluation of devices used for reducing entrainment and impingement losses at thermal power plants

    International Nuclear Information System (INIS)

    Cada, G.F.; Szluha, A.T.

    1978-01-01

    A preliminary survey of fish protection devices either in use or proposed for water intake structures was conducted for the purpose of assessing their potential for reducing impingement and entrainment. All the designs examined can be divided into two basic categories: behavioral screening systems and physical screening systems. The behavioral screening devices rely upon the ability of fish to sense artificial stimuli and respond by swimming away from hazardous areas. These systems are of little or no value in protecting planktonic fish eggs, larvae, and disoriented, heat-shocked, or lethargic adult fishes. Many of the physical screening devices, on the other hand, require the impingement of organisms against a screen before they can be removed from the intake system, thus subjecting survival. Some of the designs incorporate both behavioral and physical sceening concepts. Six devices were selected for further consideration based on their potential or demonstrated effectiveness in reducing impingement and entrainment losses at a variety of intake situations. The structures evaluated were modified vertical traveling screens, louvers, angled vertical traveling screens, horizontal traveling screens, center-flow screens, and wedge-wire screens. Since some of these intake structures represent new concepts, few laboratory or in situ biological studies have been carried out. For others, actual reductions in fish losses have been demonstrated. The design features and status of biological testing is discussed for each device, and an evaluation of their fish protection potential is presented

  18. Reducing Nutrient Losses with Directed Fertilization of Degraded Soils

    Science.gov (United States)

    Menzies, E.; Walter, M. T.; Schneider, R.

    2016-12-01

    Degraded soils around the world are stunting agricultural productivity in places where people need it the most. In China, hundreds of years of agriculture and human activity have turned large swaths of productive grasslands into expanses of sandy soils where nothing can grow. Returning soils such as these to healthy productive landscapes is crucial to the livelihoods of rural families and to feeding the expanding population of China and the world at large. Buried wood chips can be used to improve the soils' water holding capacity but additional nutrient inputs are crucial to support plant growth and completely restore degraded soils in China and elsewhere. Improperly applied fertilizer can cause large fluxes of soluble nutrients such as nitrogen (N) and phosphorus (P) to pollute groundwater, and reach surface water bodies causing harmful algal blooms or eutrophication. Similarly, fertilization can create increases in nutrient losses in the form of greenhouse gases (GHGs). It is imperative that nutrient additions to this system be done in a way that fosters restoration and a return to productivity, but minimizes nutrient losses to adjacent surface water bodies and the atmosphere. The primary objective of this study is to characterize soluble and gaseous N and P losses from degraded sandy soils with wood chip and fertilizer amendments in order to identify optimal fertilization methods, frequencies, and quantities for soil restoration. A laboratory soil column study is currently underway to begin examining these questions results of this study will be presented at the Fall Meeting.

  19. Thermal stratification in a hot water tank established by heat loss from the tank

    DEFF Research Database (Denmark)

    Fan, Jianhua; Furbo, Simon

    2009-01-01

    Results of experimental and numerical investigations of thermal stratification and natural convection in a vertical cylindrical hot water tank during standby periods are presented. The transient fluid flow and heat transfer in the tank during cooling caused by heat loss are investigated...... on the natural buoyancy resulting in downward flow along the tank side walls due to heat loss of the tank and the influence on thermal stratification of the tank by the downward flow and the corresponding upward flow in the central parts of the tank. Water temperatures at different levels of the tank...... by computational fluid dynamics (CFD) calculations and by thermal measurements. A tank with uniform temperatures and thermal stratification is studied. The distribution of the heat loss coefficient for the different parts of the tank is measured by tests and used as input to the CFD model. The investigations focus...

  20. Heat losses and thermal imaging of ferroic components

    International Nuclear Information System (INIS)

    Ilyashenko, S E; Ivanova, A I; Gasanov, O V; Grechishkin, R M; Tretiakov, S A; Yushkov, K B; Linde, B B J

    2015-01-01

    A study is made of spatial and temporal temperature variations in working devices based on ferroic functional materials. The measurement of the sample's temperature is complemented with direct observation of its distribution over the sample surface. For the latter purpose a thermovision infrared videocamera technique was employed. Specific features of the temperature distribution and its evolution during heating and cooling of a number of piezoelectric, acoustooptic and shape memory components are revealed. Examples of hot spot observations indicative of structural defects in the samples under study are given thus suggesting the use of thermal vision for nondestructive testing. A proposal is made to combine the thermovision method with that of thermomagnetic analysis for the study of ferromagnetic shape memory alloys

  1. Heat losses and thermal performance of commercial combined solar and pellet heating systems

    OpenAIRE

    Fiedler, Frank; Persson, Tomas; Bales, Chris; Nordlander, Svante

    2004-01-01

    Various pellet heating systems are marketed in Sweden, some of them in combination with a solar heating system. Several types of pellet heating units are available and can be used for a combined system. This article compares four typical combined solar and pellet heating systems: System 1 and 2 two with a pellet stove, system 3 with a store integrated pellet burner and system 4 with a pellet boiler. The lower efficiency of pellet heaters compared to oil or gas heaters increases the primary en...

  2. Experimental investigations on heat content of supercooled sodium acetate trihydrate by a simple heat loss method

    DEFF Research Database (Denmark)

    Kong, Weiqiang; Dannemand, Mark; Johansen, Jakob Berg

    2016-01-01

    Sodium acetate trihydrate is a phase change material that can be used for long term heat storage in solar heating systems because of its relatively high heat of fusion, a melting temperature of 58 °C and its ability to supercool stable. In practical applications sodium acetate trihydrate tend to ......, 0.3–0.5 % (wt.%) Xanthan Gum or 1–2% (wt.%) of some solid or liquid polymers as additives had significantly higher heat contents compared to samples of sodium acetate trihydrate suffering from phase separation....

  3. Sauropod necks: are they really for heat loss?

    Directory of Open Access Journals (Sweden)

    Donald M Henderson

    Full Text Available Three-dimensional digital models of 16 different sauropods were used to examine the scaling relationship between metabolism and surface areas of the whole body, the neck, and the tail in an attempt to see if the necks could have functioned as radiators for the elimination of excess body heat. The sauropod taxa sample ranged in body mass from a 639 kg juvenile Camarasaurus to a 25 t adult Brachiosaurus. Metabolism was assumed to be directly proportional to body mass raised to the ¾ power, and estimates of body mass accounted for the presence of lungs and systems of air sacs in the trunk and neck. Surface areas were determined by decomposing the model surfaces into triangles and their areas being computed by vector methods. It was found that total body surface area was almost isometric with body mass, and that it showed negative allometry when plotted against metabolic rate. In contrast, neck area showed positive allometry when plotted against metabolic rate. Tail area show negative allometry with respect to metabolic rate. The many uncertainties about the biology of sauropods, and the variety of environmental conditions that different species experienced during the groups 150 million years of existence, make it difficult to be absolutely certain about the function of the neck as a radiator. However, the functional combination of the allometric increase of neck area, the systems of air sacs in the neck and trunk, the active control of blood flow between the core and surface of the body, changing skin color, and strategic orientation of the neck with respect to wind, make it plausible that the neck could have functioned as a radiator to avoid over-heating.

  4. Psychophysical and cerebral responses to heat stimulation in patients with central pain, painless central sensory loss, and in healthy persons.

    Science.gov (United States)

    Casey, Kenneth L; Geisser, Michael; Lorenz, Jürgen; Morrow, Thomas J; Paulson, Pamela; Minoshima, Satoshi

    2012-02-01

    Patients with central pain (CP) typically have chronic pain within an area of reduced pain and temperature sensation, suggesting an impairment of endogenous pain modulation mechanisms. We tested the hypothesis that some brain structures normally activated by cutaneous heat stimulation would be hyperresponsive among patients with CP but not among patients with a central nervous system lesion causing a loss of heat or nociceptive sensation with no pain (NP). We used H(2)(15)O positron emission tomography to measure, in 15 healthy control participants, 10 NP patients, and 10 CP patients, increases in regional cerebral blood flow among volumes of interest (VOI) from the resting (no stimulus) condition during bilateral contact heat stimulation at heat detection, heat pain threshold, and heat pain tolerance levels. Both patient groups had a reduced perception of heat intensity and unpleasantness on the clinically affected side and a bilateral impairment of heat detection. Compared with the HC group, both NP and CP patients had more hyperactive and hypoactive VOI in the resting state and more hyperresponsive and hyporesponsive VOI during heat stimulation. Compared with NP patients, CP patients had more hyperresponsive VOI in the intralaminar thalamus and sensory-motor cortex during heat stimulation. Our results show that focal CNS lesions produce bilateral sensory deficits and widespread changes in the nociceptive excitability of the brain. The increased nociceptive excitability within the intralaminar thalamus and sensory-motor cortex of our sample of CP patients suggests an underlying pathophysiology for the pain in some central pain syndromes. Published by Elsevier B.V.

  5. Systemic steroid reduces long-term hearing loss in experimental pneumococcal meningitis

    DEFF Research Database (Denmark)

    Worsøe, Lise Lotte; Brandt, C.T.; Lund, S.P.

    2010-01-01

    Sensorineural hearing loss is a common complication of pneumococcal meningitis. Treatment with corticosteroids reduces inflammatory response and may thereby reduce hearing loss. However, both experimental studies and clinical trials investigating the effect of corticosteroids on hearing loss have...... generated conflicting results. The objective of the present study was to determine whether systemic steroid treatment had an effect on hearing loss and cochlear damage in a rat model of pneumococcal meningitis....

  6. Enhanced O2 Loss at Mars Due to an Ambipolar Electric Field from Electron Heating

    Science.gov (United States)

    Ergun, R. E.; Andersson, L. A.; Fowler, C. M.; Woodson, A. K.; Weber, T. D.; Delory, G. T.; Andrews, D. J.; Eriksson, A. I.; Mcenulty, T.; Morooka, M. W.; hide

    2016-01-01

    Recent results from the MAVEN Langmuir Probe and Waves (LPW) instrument suggest higher than predicted electron temperatures (T sub e) in Mars dayside ionosphere above approx. 180 km in altitude. Correspondingly, measurements from Neutral Gas and Ion Mass Spectrometer (NGIMS) indicate significant abundances of O2+ up to approx. 500 km in altitude, suggesting that O2+ may be a principal ion loss mechanism of oxygen. In this article, we investigate the effects of the higher T(sub e) (which results from electron heating) and ion heating on ion outflow and loss. Numerical solutions show that plasma processes including ion heating and higher T(sub e) may greatly increase O2+ loss at Mars. In particular, enhanced T(sub e) in Mars ionosphere just above the exobase creates a substantial ambipolar electric field with a potential (e) of several k(sub b)T(sub e), which draws ions out of the region allowing for enhanced escape. With active solar wind, electron and ion heating, direct O2+ loss could match or exceed loss via dissociative recombination of O2+. These results suggest that direct loss of O2+ may have played a significant role in the loss of oxygen at Mars over time.

  7. SCDAP/RELAP5 Modeling of Heat Transfer and Flow Losses in Lower Head Porous Debris

    International Nuclear Information System (INIS)

    Siefken, Larry James; Coryell, Eric Wesley; Paik, Seungho; Kuo, Han Hsiung

    1999-01-01

    Designs are described for implementing models for calculating the heat transfer and flow losses in porous debris in the lower head of a reactor vessel. The COUPLE model in SCDAP/RELAP5 represents both the porous and nonporous debris that results from core material slumping into the lower head. Currently, the COUPLE model has the capability to model convective and radiative heat transfer from the surfaces of nonporous debris in a detailed manner and to model only in a simplistic manner the heat transfer from porous debris. In order to advance beyond the simplistic modeling for porous debris, designs are developed for detailed calculations of heat transfer and flow losses in porous debris. Correlations are identified for convective heat transfer in porous debris for the following modes of heat transfer; (1) forced convection to liquid, (2) forced convection to gas, (3) nucleate boiling, (4) transition boiling, and (5) film boiling. Interphase heat transfer is modeled in an approximate manner. Designs are described for models to calculate the flow losses and interphase drag of fluid flowing through the interstices of the porous debris, and to apply these variables in the momentum equations in the RELAP5 part of the code. Since the models for heat transfer and flow losses in porous debris in the lower head are designed for general application, a design is also described for implementation of these models to the analysis of porous debris in the core region. A test matrix is proposed for assessing the capability of the implemented models to calculate the heat transfer and flow losses in porous debris. The implementation of the models described in this report is expected to improve the COUPLE code calculation of the temperature distribution in porous debris and in the lower head that supports the debris. The implementation of these models is also expected to improve the calculation of the temperature and flow distribution in porous debris in the core region

  8. Heat Loss Measurements in Buildings Utilizing a U-value Meter

    DEFF Research Database (Denmark)

    Sørensen, Lars Schiøtt

    Heating of buildings in Denmark accounts for approximately 40% of the entire national energy consumption. For this reason, a reduction of heat losses from building envelopes are of great importance in order to reach the Bologna CO2 emission reduction targets. Upgrading of the energy performance...... of buildings is a topic of huge global interest these years. Not only heating in the temperate and arctic regions are important, but also air conditioning and mechanical ventilation in the tropical countries contribute to an enormous energy consumption and corresponding CO2 emission. In order to establish...... the best basis for upgrading the energy performance, it is important to measure the heat losses at different locations on a building facade, in order to optimize the energy performance. The author has invented a U-value meter, enabling measurements of heat transfer coefficients. The meter has been used...

  9. Effect of energetic ion loss on ICRF heating efficiency and energy confinement time in heliotrons

    International Nuclear Information System (INIS)

    Murakami, S.; Nakajima, N.; Okamoto, M.; Nuehrenberg, J.

    1999-06-01

    ICRF heating efficiency and the global energy confinement time during ICRF heating are investigated including the effect of energetic ion loss in heliotrons. The approximate formula of ICRF heating efficiency is derived using the results based on Monte Carlo simulations. The global energy confinement time including energetic ion effect can be expressed in terms of ICRF heating power, plasma density, and magnetic field strength in heliotrons. Our results in the CHS plasma show the systematic decrement of the global energy confinement time due to the energetic ion loss from the assumed energy confinement scaling law, which is consistent with the experimental observations. Also we apply our model to the ICRF minority heating in the LHD plasma in two cases of typical magnetic configurations. The clear increment of the global energy confinement time due to the stored energy of energetic tail ions is obtained in the 'orbit improved' configuration, while the decrement is observed in the 'standard' configuration. (author)

  10. Induction-heating MOCVD reactor with significantly improved heating efficiency and reduced harmful magnetic coupling

    KAUST Repository

    Li, Kuang-Hui; Alotaibi, Hamad S.; Sun, Haiding; Lin, Ronghui; Guo, Wenzhe; Torres-Castanedo, Carlos G.; Liu, Kaikai; Galan, Sergio V.; Li, Xiaohang

    2018-01-01

    In a conventional induction-heating III-nitride metalorganic chemical vapor deposition (MOCVD) reactor, the induction coil is outside the chamber. Therefore, the magnetic field does not couple with the susceptor well, leading to compromised heating efficiency and harmful coupling with the gas inlet and thus possible overheating. Hence, the gas inlet has to be at a minimum distance away from the susceptor. Because of the elongated flow path, premature reactions can be more severe, particularly between Al- and B-containing precursors and NH3. Here, we propose a structure that can significantly improve the heating efficiency and allow the gas inlet to be closer to the susceptor. Specifically, the induction coil is designed to surround the vertical cylinder of a T-shaped susceptor comprising the cylinder and a top horizontal plate holding the wafer substrate within the reactor. Therefore, the cylinder coupled most magnetic field to serve as the thermal source for the plate. Furthermore, the plate can block and thus significantly reduce the uncoupled magnetic field above the susceptor, thereby allowing the gas inlet to be closer. The results show approximately 140% and 2.6 times increase in the heating and susceptor coupling efficiencies, respectively, as well as a 90% reduction in the harmful magnetic flux on the gas inlet.

  11. Induction-heating MOCVD reactor with significantly improved heating efficiency and reduced harmful magnetic coupling

    KAUST Repository

    Li, Kuang-Hui

    2018-02-23

    In a conventional induction-heating III-nitride metalorganic chemical vapor deposition (MOCVD) reactor, the induction coil is outside the chamber. Therefore, the magnetic field does not couple with the susceptor well, leading to compromised heating efficiency and harmful coupling with the gas inlet and thus possible overheating. Hence, the gas inlet has to be at a minimum distance away from the susceptor. Because of the elongated flow path, premature reactions can be more severe, particularly between Al- and B-containing precursors and NH3. Here, we propose a structure that can significantly improve the heating efficiency and allow the gas inlet to be closer to the susceptor. Specifically, the induction coil is designed to surround the vertical cylinder of a T-shaped susceptor comprising the cylinder and a top horizontal plate holding the wafer substrate within the reactor. Therefore, the cylinder coupled most magnetic field to serve as the thermal source for the plate. Furthermore, the plate can block and thus significantly reduce the uncoupled magnetic field above the susceptor, thereby allowing the gas inlet to be closer. The results show approximately 140% and 2.6 times increase in the heating and susceptor coupling efficiencies, respectively, as well as a 90% reduction in the harmful magnetic flux on the gas inlet.

  12. A model for allometric scaling of mammalian metabolism with ambient heat loss

    KAUST Repository

    Kwak, Ho Sang

    2016-02-02

    Background Allometric scaling, which represents the dependence of biological trait or process relates on body size, is a long-standing subject in biological science. However, there has been no study to consider heat loss to the ambient and an insulation layer representing mammalian skin and fur for the derivation of the scaling law of metabolism. Methods A simple heat transfer model is proposed to analyze the allometry of mammalian metabolism. The present model extends existing studies by incorporating various external heat transfer parameters and additional insulation layers. The model equations were solved numerically and by an analytic heat balance approach. Results A general observation is that the present heat transfer model predicted the 2/3 surface scaling law, which is primarily attributed to the dependence of the surface area on the body mass. External heat transfer effects introduced deviations in the scaling law, mainly due to natural convection heat transfer which becomes more prominent at smaller mass. These deviations resulted in a slight modification of the scaling exponent to a value smaller than 2/3. Conclusion The finding that additional radiative heat loss and the consideration of an outer insulation fur layer attenuate these deviation effects and render the scaling law closer to 2/3 provides in silico evidence for a functional impact of heat transfer mode on the allometric scaling law in mammalian metabolism.

  13. Analysis on the Role of RSG-GAS Pool Cooling System during Partial Loss of Heat Sink Accident

    Science.gov (United States)

    Susyadi; Endiah, P. H.; Sukmanto, D.; Andi, S. E.; Syaiful, B.; Hendro, T.; Geni, R. S.

    2018-02-01

    RSG-GAS is a 30 MW reactor that is mostly used for radioisotope production and experimental activities. Recently, it is regularly operated at half of its capacity for efficiency reason. During an accident, especially loss of heat sink, the role of its pool cooling system is very important to dump decay heat. An analysis using single failure approach and partial modeling of RELAP5 performed by S. Dibyo, 2010 shows that there is no significant increase in the coolant temperature if this system is properly functioned. However lessons learned from the Fukushima accident revealed that an accident can happen due to multiple failures. Considering ageing of the reactor, in this research the role of pool cooling system is to be investigated for a partial loss of heat sink accident which is at the same time the protection system fails to scram the reactor when being operated at 15 MW. The purpose is to clarify the transient characteristics and the final state of the coolant temperature. The method used is by simulating the system in RELAP5 code. Calculation results shows the pool cooling systems reduce coolant temperature for about 1 K as compared without activating them. The result alsoreveals that when the reactor is being operated at half of its rated power, it is still in safe condition for a partial loss of heat sink accident without scram.

  14. All fiber cladding mode stripper with uniform heat distribution and high cladding light loss manufactured by CO2 laser ablation

    Science.gov (United States)

    Jebali, M. A.; Basso, E. T.

    2018-02-01

    Cladding mode strippers are primarily used at the end of a fiber laser cavity to remove high-power excess cladding light without inducing core loss and beam quality degradation. Conventional manufacturing methods of cladding mode strippers include acid etching, abrasive blasting or laser ablation. Manufacturing of cladding mode strippers using laser ablation consist of removing parts of the cladding by fused silica ablation with a controlled penetration and shape. We present and characterize an optimized cladding mode stripper design that increases the cladding light loss with a minimal device length and manufacturing time. This design reduces the localized heat generation by improving the heat distribution along the device. We demonstrate a cladding mode stripper written on a 400um fiber with cladding light loss of 20dB, with less than 0.02dB loss in the core and minimal heating of the fiber and coating. The manufacturing process of the designed component is fully automated and takes less than 3 minutes with a very high throughput yield.

  15. Enhanced loss of fusion products during mode conversion heating in TFTR

    International Nuclear Information System (INIS)

    Darrow, D.S.; Majeski, R.; Fisch, N.J.; Heeter, R.F.; Herrmann, H.W.; Herrmann, M.C.; Zarnstorff, M.C.; Zweben, S.J.

    1995-07-01

    Ion Bernstein waves (IBWS) have been generated by mode conversion of ion cyclotron range of frequency (ICRF) fast waves in TFTR. The loss rate of fusion products in these discharges can be large, up to 10 times the first orbit loss rate. The losses are observed at the passing/trapped boundary, indicating that passing particles are being moved onto loss orbits either by increase of their v perpendicular due to the wave, by outward transport in minor radius, or both. The lost particles appear to be DD fusion produced tritons heated to ∼1.5 times their birth energy

  16. Extra Heat Loss Through Light Weight Roofs Due to Latent Heat

    DEFF Research Database (Denmark)

    Rode, Carsten

    1996-01-01

    that changes phase at the terminals of its passage.Note however, that convection of air most often will have an important effect on the overall heat flow - but that is a different topic.Macroscopic latent heat transferConsider the following scenario: Initially, moisture is present in its condensed or frozen......This report is one in a series of papers in Task 5 of IEA Annex 24 on how moisture and air movements affect the energy performance of building constructions. The effect of latent heat flow will be demonstrated by means of an example: a light weight flat roof.Latent heat flow is one of three...... processes by which moisture affects energy performance:Higher thermal conductivityMoist materials have higher thermal con-ductivity than when they are dry. This is because thermally conducting moisture replaces the better insulating air in the pores of the materials. Moisture also enhan-ces the thermal...

  17. A comparison of different methods for in-situ determination of heat losses form district heating pipes

    Energy Technology Data Exchange (ETDEWEB)

    Boehm, Benny [Technical Univ. of Denmark, Dept. of Energy Engineering (Denmark)

    1996-11-01

    A comparison of different methods for in-situ determination of heat losses has been carried out on a 273 mm transmission line in Copenhagen. Instrumentation includes temperature sensors, heat flux meters and an infrared camera. The methods differ with regard to time consumption and costs of applying the specific method, demand on accuracy of temperature measurements, sensitivity to computational parameters, e.g. the thermal conductivity of the soil, response to transients in water temperature and the ground, and steady state assumptions in the model used in the interpretation of the measurements. Several of the applied methods work well. (au)

  18. Methods to reduce AC losses in HTS coated conductors with magnetic substrates

    Energy Technology Data Exchange (ETDEWEB)

    Tsukamoto, O. [Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501 (Japan)], E-mail: osami-t@ynu.ac.jp; Sekizawa, S.; Alamgir, A.K.M. [Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501 (Japan); Miyagi, D. [Okayama University, 1-1, Tsushima-Naka, 1-Chome, Okayama 700-8530 (Japan)

    2007-10-01

    HTS coated conductors (CCs) have high potentials as low-cost and long length conductors. However, a question remains as to what influence the magnetic property of the substrates has on the AC losses. In this paper, the influence of magnetic property of substrates on the AC losses in HTS CCs is studied. Based on the study methods to reduce the AC transport current losses and magnetization losses in CCs with magnetic substrates are investigated. It is shown that the losses can be reduced to the same level of those in CCs with non-magnetic substrates.

  19. Methods to reduce AC losses in HTS coated conductors with magnetic substrates

    International Nuclear Information System (INIS)

    Tsukamoto, O.; Sekizawa, S.; Alamgir, A.K.M.; Miyagi, D.

    2007-01-01

    HTS coated conductors (CCs) have high potentials as low-cost and long length conductors. However, a question remains as to what influence the magnetic property of the substrates has on the AC losses. In this paper, the influence of magnetic property of substrates on the AC losses in HTS CCs is studied. Based on the study methods to reduce the AC transport current losses and magnetization losses in CCs with magnetic substrates are investigated. It is shown that the losses can be reduced to the same level of those in CCs with non-magnetic substrates

  20. Thermal performance of a porus radial fin with natural convection and radiative heat losses

    Directory of Open Access Journals (Sweden)

    Darvishi M.T.

    2015-01-01

    Full Text Available An analytic (series solution is developed to describe the thermal performance of a porous radial fin with natural convection in the fluid saturating the fin and radiation heat loss from the top and bottom surfaces of the fin. The HAM results for the temperature distribution and base heat flux are compared with the direct numerical results and found to be very accurate.

  1. Solar Panels reduce both global warming and Urban Heat Island

    Directory of Open Access Journals (Sweden)

    Valéry eMasson

    2014-06-01

    Full Text Available The production of solar energy in cities is clearly a way to diminish our dependency to fossil fuels, and is a good way to mitigate global warming by lowering the emission of greenhouse gases. However, what are the impacts of solar panels locally ? To evaluate their influence on urban weather, it is necessary to parameterize their effects within the surface schemes that are coupled to atmospheric models. The present paper presents a way to implement solar panels in the Town Energy Balance scheme, taking account of the energy production (for thermal and photovoltaic panels, the impact on the building below and feedback towards the urban micro-climate through radiative and convective fluxes. A scenario of large but realistic deployment of solar panels on the Paris metropolitan area is then simulated. It is shown that solar panels, by shading the roofs, slightly increases the need for domestic heating (3%. In summer however, the solar panels reduce the energy needed for air-conditioning (by 12% and also the Urban Heat Island (UHI: 0.2K by day and up to 0.3K at night. These impacts are larger than those found in previous works, because of the use of thermal panels (that are more efficient than photovoltaic panels and the geographical position of Paris, which is relatively far from the sea. This means that it is not influenced by sea breezes, and hence that its UHI is stronger than for a coastal city of the same size. But this also means that local adaptation strategies aiming to decrease the UHI will have more potent effects. In summary, the deployment of solar panels is good both globally, to produce renewable energy (and hence to limit the warming of the climate and locally, to decrease the UHI, especially in summer, when it can constitute a health threat.

  2. Uncertainty in unprotected loss-of-heat-sink, loss-of-flow, and transient-overpower accidents.

    Energy Technology Data Exchange (ETDEWEB)

    Morris, E. E.; Nuclear Engineering Division

    2007-10-08

    The sensitivities of various output parameters to selected input parameters in unprotected combined loss of heat-sink and loss-of-flow (ULOHS), loss-of-flow (ULOF), and transient-overpower (UTOP) accidents are explored in this report. This line of investigation was suggested by R. A. Wigeland. For an initial examination of potential sensitivities, the MATWS computer program has been compiled as part of a dynamic link library (DLL) so that uncertain input parameters can be sampled from their probability distributions using the GoldSim simulation software. The MATWS program combines the point-kinetics module from the SAS4A/SASSYS computer code with a simplified representation of the reactor heat removal system. Coupling with the GoldSim software by means of a DLL not only provides a convenient mechanism for sampling the stochastic input parameters but also allows the use of various tools that are available in GoldSim for analyzing the dependence of various MATWS outputs on these parameters. Should a decision be made to continue this investigation, the techniques used to couple MATWS and GoldSim could also be applied to couple the SAS4A/SASSYS computer code with GoldSim. The work described here illustrates the type of results that can be obtained from the stochastic analysis.

  3. Uncertainty in unprotected loss-of-heat-sink, loss-of-flow, and transient-overpower accidents

    International Nuclear Information System (INIS)

    Morris, E.E.

    2007-01-01

    The sensitivities of various output parameters to selected input parameters in unprotected combined loss of heat-sink and loss-of-flow (ULOHS), loss-of-flow (ULOF), and transient-overpower (UTOP) accidents are explored in this report. This line of investigation was suggested by R. A. Wigeland. For an initial examination of potential sensitivities, the MATWS computer program has been compiled as part of a dynamic link library (DLL) so that uncertain input parameters can be sampled from their probability distributions using the GoldSim simulation software. The MATWS program combines the point-kinetics module from the SAS4A/SASSYS computer code with a simplified representation of the reactor heat removal system. Coupling with the GoldSim software by means of a DLL not only provides a convenient mechanism for sampling the stochastic input parameters but also allows the use of various tools that are available in GoldSim for analyzing the dependence of various MATWS outputs on these parameters. Should a decision be made to continue this investigation, the techniques used to couple MATWS and GoldSim could also be applied to couple the SAS4A/SASSYS computer code with GoldSim. The work described here illustrates the type of results that can be obtained from the stochastic analysis

  4. Increased protein intake reduces lean body mass loss during weight loss in athletes.

    Science.gov (United States)

    Mettler, Samuel; Mitchell, Nigel; Tipton, Kevin D

    2010-02-01

    To examine the influence of dietary protein on lean body mass loss and performance during short-term hypoenergetic weight loss in athletes. In a parallel design, 20 young healthy resistance-trained athletes were examined for energy expenditure for 1 wk and fed a mixed diet (15% protein, 100% energy) in the second week followed by a hypoenergetic diet (60% of the habitual energy intake), containing either 15% (approximately 1.0 g x kg(-1)) protein (control group, n = 10; CP) or 35% (approximately 2.3 g x kg(-1)) protein (high-protein group, n = 10; HP) for 2 wk. Subjects continued their habitual training throughout the study. Total, lean body, and fat mass, performance (squat jump, maximal isometric leg extension, one-repetition maximum (1RM) bench press, muscle endurance bench press, and 30-s Wingate test) and fasting blood samples (glucose, nonesterified fatty acids (NEFA), glycerol, urea, cortisol, free testosterone, free Insulin-like growth factor-1 (IGF-1), and growth hormone), and psychologic measures were examined at the end of each of the 4 wk. Total (-3.0 +/- 0.4 and -1.5 +/- 0.3 kg for the CP and HP, respectively, P = 0.036) and lean body mass loss (-1.6 +/- 0.3 and -0.3 +/- 0.3 kg, P = 0.006) were significantly larger in the CP compared with those in the HP. Fat loss, performance, and most blood parameters were not influenced by the diet. Urea was higher in HP, and NEFA and urea showed a group x time interaction. Fatigue ratings and "worse than normal" scores on the Daily Analysis of Life Demands for Athletes were higher in HP. These results indicate that approximately 2.3 g x kg(-1) or approximately 35% protein was significantly superior to approximately 1.0 g x kg(-1) or approximately 15% energy protein for maintenance of lean body mass in young healthy athletes during short-term hypoenergetic weight loss.

  5. Reducing nutrient losses in Europe and implications for farming -

    DEFF Research Database (Denmark)

    Jacobsen, Brian H.; Abildtrup, Jens; Ørum, Jens Erik

    2005-01-01

    kg N in reduced leaching. The farmers have paid 60% of the costs. The paper then describes the measures taken in Denmark and the associated costs for the state and the farmers. The next challenge for European farmers is the Water Framework Directive (WFD) with high environmental goals where only...... a slight deviation from the natural state is accepted. This might have a great affect on farming especially in livestock intensive countries and regions in Europe. The paper describes an example of a regional analysis covering the River Basin of Ringkøbing Fjord in Denmark, which indicates the calculations...... to find the most cost effective location of measures. The WFD covers all water and the task of finding the most cost efficient combinations of measures to achieve the goals for streams, lakes, fjords and groundwater will clearly be a challenge. The paper concludes that exceptions from the WFD will have...

  6. Tranexamic acid reduces blood loss during and after cesarean section: A double blinded, randomized, controlled trial

    Directory of Open Access Journals (Sweden)

    Amr H. Yehia

    2014-03-01

    Conclusions: Tranexamic acid can be used safely to reduce blood loss during cesarean section. Reduced blood loss after tranexamic acid was associated with improvement of post-operative hemoglobin, hematocrit and with reduction of post-partum need for iron replacement.

  7. New Configurations of Micro Plate-Fin Heat Sink to Reduce Coolant Pumping Power

    DEFF Research Database (Denmark)

    Kolaei, Alireza Rezania; Rosendahl, Lasse

    2012-01-01

    the optimum heat sink configuration. The particular focus of this study is to reduce the coolant mass flow rate by considering the thermal resistances of the heat sinks and, thereby, to reduce the coolant pumping power in the system. The threedimensional governing equations for the fluid flow and the heat......The thermal resistance of heat exchangers has a strong influence on the electric power produced by a thermoelectric generator (TEG). In this work, a real TEG device is applied to three configurations of micro plate-fin heat sink. The distance between certain microchannels is varied to find...... heat sink configurations reduces the coolant pumping power in the system....

  8. Systematic losses of outdoor production from heat stress and climate change

    Science.gov (United States)

    Buzan, J. R.; Huber, M.

    2017-12-01

    Heat stress impacts humans today with heat waves, worker reductions, and health issues. Here we show novel results in labor productivity for outdoor work due to global warming. We use the HumanIndexMod to calculate 4x daily values of Simplified Wet Bulb Globe Temperature index (sWBGT) from the CMIP5 archive normalized by global mean surface temperature changes. Previous work shows that scaling of sWBGT is robust across the CMIP5 archive. We calculate total annual outdoor labor capacity from our scaled sWBGT results. Our results show modern day losses due to heat stress impacting outdoor work for low latitudes (and parts of Eastern China and the Southern United States). At 2°C of climate change, up to 20% losses to total capacity impact Midwestern United States, while the Southern United States suffers >20% losses. Western Coastal Africa suffers annual losses at >80%, along with the Amazon Basin and the greater South East Asia region. India suffers losses >50% annually. At +5°C, the estimated mean global change by 2100, the Equatorial region (Northern Australia and Northern Bolivia to Western Coastal Africa and Southern India) has complete cessation of annual outdoor work. The Midwest United States suffers losses up to 30%, and the Gulf of Mexico suffers losses >50%. Our results imply that small changes in global mean surface temperature (2°C) will lead to crippling losses to outdoor work annually, and ≥5°C losses will lead to cessation of labor for more than half the world's population.

  9. Enhanced loss of fast ions during mode conversion ion Bernstein wave heating in TFTR

    International Nuclear Information System (INIS)

    Darrow, D.S.; Majeski, R.; Fisch, N.J.; Heeter, R.F.; Herrmann, H.W.; Herrmann, M.C.; Zarnstorff, M.C.; Zweben, S.J.

    1995-12-01

    A strong interaction of fast ions with ion Bernstein waves has been observed in TFTR. It results in a large increase in the fast ion loss rate, and heats the lost particles to several MeV. The lost ions are observed at the passing/trapped boundary and appear to be either DD fusion produced tritons or accelerated D neutral beam ions. Under some conditions, enhanced loss of DT alpha particles is also seen. The losses provide experimental support for some of the elements required for alpha energy channeling

  10. Softened food reduces weight loss in the streptozotocin-induced male mouse model of diabetic nephropathy

    DEFF Research Database (Denmark)

    Nørgaard, Sisse A; Sand, Fredrik W; Sørensen, Dorte B

    2018-01-01

    The streptozotocin (STZ)-induced diabetic mouse is a widely used model of diabetes and diabetic nephropathy (DN). However, it is a well-known issue that this model is challenged by high weight loss, which despite supportive measures often results in high euthanization rates. To overcome...... these issues, we hypothesized that supplementing STZ-induced diabetic mice with water-softened chow in addition to normal chow would reduce weight loss, lower the need for supportive treatment, and reduce the number of mice reaching the humane endpoint of 20% weight loss. In a 15 week STZ-induced DN study we...... demonstrated that diabetic male mice receiving softened chow had reduced acute weight loss following STZ treatment ( p = 0.045) and additionally fewer mice were euthanized due to weight loss. By supplementing the diabetic mice with softened chow, no mice reached 20% weight loss whereas 37.5% of the mice...

  11. Optimisation of a Swedish district heating system with reduced heat demand due to energy efficiency measures in residential buildings

    International Nuclear Information System (INIS)

    Åberg, M.; Henning, D.

    2011-01-01

    The development towards more energy efficient buildings, as well as the expansion of district heating (DH) networks, is generally considered to reduce environmental impact. But the combined effect of these two progressions is more controversial. A reduced heat demand (HD) due to higher energy efficiency in buildings might hamper co-production of electricity and DH. In Sweden, co-produced electricity is normally considered to displace electricity from less efficient European condensing power plants. In this study, a potential HD reduction due to energy efficiency measures in the existing building stock in the Swedish city Linköping is calculated. The impact of HD reduction on heat and electricity production in the Linköping DH system is investigated by using the energy system optimisation model MODEST. Energy efficiency measures in buildings reduce seasonal HD variations. Model results show that HD reductions primarily decrease heat-only production. The electricity-to-heat output ratio for the system is increased for HD reductions up to 30%. Local and global CO 2 emissions are reduced. If co-produced electricity replaces electricity from coal-fired condensing power plants, a 20% HD reduction is optimal for decreasing global CO 2 emissions in the analysed DH system. - Highlights: ► A MODEST optimisation model of the Linköping district heating system is used. ► The impact of heat demand reduction on heat and electricity production is examined. ► Model results show that heat demand reductions decrease heat-only production. ► Local and global CO 2 emissions are reduced. ► The system electricity-to-heat output increases for reduced heat demand up to 30%.

  12. Minimum success criteria at SGTR combined with loss of secondary heat sink

    International Nuclear Information System (INIS)

    Parzer, I.; Petelin, S.

    1993-01-01

    A parametric analysis has been performed investigating minimum success criteria for the hypothetical Steam Generator Tube Rupture (SGTR) accident in a Pressurized Water Reactor (PWR) Nuclear Power Plant, combined with the total loss of secondary heat sink. The analyses have been performed by RELAP5/MOD2 and MOD3 computer codes using Krsko NPP input deck. The Krsko NPP is a 2-loop Westinghouse PWR, 640 MWe, located in Slovenia and operating from 1981. Two break sizes have been chosen for the SGTR event: 2 and 5 double-ended broken tubes have been assumed. Total loss of secondary heat sink has been assumed from the beginning of the calculation. The ways of cooling down the plant after the postulated accident have been investigated, including Bleed ampersand Feed through the primary system. The NPP Krsko Emergency Operating Procedures (EOP) have been verified for this case. Some suggestions have been made, how to improve FR-H.1 procedure (Loss of Secondary Heat Sink), to include some steps, which take into account also SGTR when it is combined with loss of secondary heat sink. Possible misinterpretations of E-0 procedure (Reactor Trip or Safety Injection) have been studied

  13. Turbomachinery Heat Transfer and Loss Modeling for 3D Navier-Stokes Codes

    Science.gov (United States)

    DeWitt, Kenneth; Ameri, Ali

    2005-01-01

    This report's contents focus on making use of NASA Glenn on-site computational facilities,to develop, validate, and apply models for use in advanced 3D Navier-Stokes Computational Fluid Dynamics (CFD) codes to enhance the capability to compute heat transfer and losses in turbomachiney.

  14. The influence of soil moisture transfer on building heat loss via the ground

    NARCIS (Netherlands)

    Janssen, H.M.; Carmeliet, J.; Hens, H.

    2004-01-01

    In this paper, the influence of soil moisture transfer on building heat loss via the ground is investigated by comparing fully coupled simulations with linear thermal simulations. The observed influences of coupling are (1) the larger amplitude of surface temperature, (2) the variation of thermal

  15. Infrared thermography applied to the evaluation of metabolic heat loss of chicks fed with different energy densities

    Directory of Open Access Journals (Sweden)

    VMOS Ferreira

    2011-06-01

    Full Text Available Brazil must comply with international quality standards and animal welfare requirements in order to maintain its position as world's largest exporter of poultry meat. With the scenario of global climate change there is the forecast of occurrence of extreme events with characteristics of both excess cold and heat for several regions of the country. This study aimed to evaluate the effectiveness of using images of infrared thermography to evaluate the loss of sensible heat in young broilers fed different dietary energy levels. Twenty birds were reared in a house with appropriate brooding using infrared lamps. Birds were distributed in a completely randomized experimental into two treatments: T1 (control diet with 2950 kcal ME/kg-1, and T2 (high-energy diet with 3950 kcal ME/kg-1. Infrared thermographic images of the birds were recorded for four consecutive days. One bird was randomly chosen per treatment, and had special images taken and analyzed. Average surface temperature of the body area was calculated using the surface temperature recorded at 100 spots (50 at the front and 50 at the lateral side of the bird's body. Mean surface temperature of the flock was calculated recording 100 spots on the group of birds. Total radiant heat loss was calculated based on the average data of surface temperature. The results indicated that the young broilers fed the high-energy diet presented a metabolic energy loss equivalent to 0.64 kcal h-1, while the birds fed with the control diet lost 2.18 kcal h-1. This finding confirms that oil supplementation to the diet reduces bird heat loss. The infrared camera was able to record young broilers' surface temperature variation when birds were fed diets with different energy contents.

  16. Experimentally-determined external heat loss of automotive gas turbine engine

    Science.gov (United States)

    Meng, P. R.; Wulf, R. F.

    1975-01-01

    An external heat balance was conducted on a 150 HP two-shaft automotive gas turbine engine. The engine was enclosed in a calorimeter box and the temperature change of cooling air passing through the box was measured. Cooling airflow ranges of 1.6 to 2.1 lb-per-second and 0.8 to 1.1 lb-per-second were used. The engine housing heat loss increased as the cooling airflow through the calorimeter box was increased, as would be the case in a moving automobile. The heat balance between the total energy input and the sum of shaft power output and various losses compared within 30 percent at engine idle speeds and within 7 percent at full power.

  17. Effect of Wind Flow on Convective Heat Losses from Scheffler Solar Concentrator Receivers

    Science.gov (United States)

    Nene, Anita Arvind; Ramachandran, S.; Suyambazhahan, S.

    2018-05-01

    Receiver is an important element of solar concentrator system. In a Scheffler concentrator, solar rays get concentrated at focus of parabolic dish. While radiation losses are more predictable and calculable since strongly related to receiver temperature, convective looses are difficult to estimate in view of additional factors such as wind flow direction, speed, receiver geometry, prior to current work. Experimental investigation was carried out on two geometries of receiver namely cylindrical and conical with 2.7 m2 Scheffler to find optimum condition of tilt to provide best efficiency. Experimental results showed that as compared to cylindrical receiver, conical receiver gave maximum efficiency at 45° tilt angle. However effect of additional factors like wind speed, wind direction on especially convective losses could not be separately seen. The current work was undertaken to investigate further the same two geometries using computation fluid dynamics using FLUENT to compute convective losses considering all variables such at tilt angle of receiver, wind velocity and wind direction. For cylindrical receiver, directional heat transfer coefficient (HTC) is remarkably high to tilt condition meaning this geometry is critical to tilt leading to higher convective heat losses. For conical receiver, directional average HTC is remarkably less to tilt condition leading to lower convective heat loss.

  18. XML Survey of the productivity loss due to heat stress in different tasks of farmers in Darreh Shahr city

    Directory of Open Access Journals (Sweden)

    M. R. Monazzam Esmaielpou

    2015-09-01

    Full Text Available Introduction: Heat is one of the hazardous physical agents in the workplace. Exposure to heat and consequent thermal stress influence workers productivity in addition to adverse health effects. The aim of this study was to determine the heat stress induced productivity loss related to different tasks of farmers in Darreh Shahr city, during summer. Material and Method: This cross-sectional study was conducted in summer, 2014, among farmers in Darreh Shahr city. After determining the sample size, farmers’ activities were determined using hierarchical task analysis (HTA, and WBGT measurements were done according to the ISO7243. Metabolism was estimated by the ISO8996. Following, the type of activities were identified according their required metabolism. Knowing WBGT and workload and using the work capacity model, the productivity loss in different tasks and ultimately total productivity loss were calculated. Result: The mean WBGT activities for plowing, terracing, planting seeds, watering, fertilizing, weeding, spraying, and harvesting were 29.98 °C, 31.28 °C,30.66 °C,31.39 °C,31.99 °C,31.75 °C,31.08 °C, and 30.3 °C, respectively. WBGT values were higher than the permissible level provided by ISO7243 in all farming activities. Maximum value of WBGT was belonged to fertilizing activity (31.99 °C and the lowest value was for plowing (29.98 °C. ANOVA test results did not show a significant difference in WBGT at head, waist, and ankle height. The highest and lowest amount of productivity loss was estimated respectively for weeding and plowing activities. The total productivity loss for farming was calculated 69.3 percent in an hour which is due to high physical activity, working outdoor, with exposure to direct solar radiation, and consequent heat stress imposed to workers. Conclusion: Productivity is a factor which is affected by the workplace heat stress. According to results of the present research, the amount of productivity is reduced

  19. Survey of the productivity loss due to heat stress in different tasks of farmers in Darreh Shahr city

    Directory of Open Access Journals (Sweden)

    M. R. Monazzam Esmaielpour

    2015-09-01

    Full Text Available Introduction: Heat is one of the hazardous physical agents in the workplace. Exposure to heat and consequent thermal stress influence workers productivity in addition to adverse health effects. The aim of this study was to determine the heat stress induced productivity loss related to different tasks of farmers in Darreh Shahr city, during summer. . Material and Method: This cross-sectional study was conducted in summer, 2014, among farmers in Darreh Shahr city. After determining the sample size, farmers’ activities were determined using hierarchical task analysis (HTA, and WBGT measurements were done according to the ISO7243. Metabolism was estimated by the ISO8996. Following, the type of activities were identified according their required metabolism. Knowing WBGT and workload and using the work capacity model, the productivity loss in different tasks and ultimately total productivity loss were calculated. .Result: The mean WBGT activities for plowing, terracing, planting seeds, watering, fertilizing, weeding, spraying, and harvesting were 29.98 °C, 31.28 °C,30.66 °C,31.39 °C,31.99 °C,31.75 °C,31.08 °C, and 30.3 °C, respectively. WBGT values were higher than the permissible level provided by ISO7243 in all farming activities. Maximum value of WBGT was belonged to fertilizing activity (31.99 °C and the lowest value was for plowing (29.98 °C. ANOVA test results did not show a significant difference in WBGT at head, waist, and ankle height. The highest and lowest amount of productivity loss was estimated respectively for weeding and plowing activities. The total productivity loss for farming was calculated 69.3 percent in an hour which is due to high physical activity, working outdoor, with exposure to direct solar radiation, and consequent heat stress imposed to workers. .Conclusion: Productivity is a factor which is affected by the workplace heat stress. According to results of the present research, the amount of productivity is

  20. Evaluation of Heat Losses Behind the Front of the Detonation Moving Along the Metallic Porous Surface

    Directory of Open Access Journals (Sweden)

    S. V. Golovastov

    2016-01-01

    Full Text Available The paper considers a computational technique of the heat flow from the hot products of detonation combustion into the porous coating and estimates the efficiency of the coating layer that results in slowing the flame front down with disregard the transverse displacement of the combustion products weight of a hydrogen-air mixture.Initial thermodynamic parameters of combustion products on the porous coating surface have been estimated. A drag (stagnation temperature of flow was determined.The statement of task was to calculate the heat flow into the long cylindrical metal fiber with radius of 15 μm. The reference values of heat capacity and heat diffusivity were used to estimate a thermal diffusivity in a wide range of temperatures. An approximation of the parameters is given for a wide range of temperatures.The calculation algorithm using an explicit four-point scheme is presented. The convergence and accuracy of the results were confirmed. The theoretical estimation using cylindrical Bessel functions was made to prove the accuracy of the results.Total heat loss was estimated using the photos of moving detonation front and hot combustion gases.Comparison of the total heat loss and the amount of energy absorbed by a single fiber allowed us to find that the porous coating thickness, resulting in attenuation of detonation wave, is efficient.

  1. Modeling and simulation of loss of the ultimate heat sink in a typical material testing reactor

    International Nuclear Information System (INIS)

    El-Khatib, Hisham; El-Morshedy, Salah El-Din; Higazy, Maher G.; El-Shazly, Karam

    2013-01-01

    Highlights: ► A thermal–hydraulic model has been developed to simulate loss of the ultimate heat sink in MTR. ► The model involves three coupled sub-models for core, heat exchanger and cooling tower. ► The model is validated against PARET for steady-state and verified by operation data for transients. ► The model is used to simulate the behavior of the reactor under a loss of the ultimate heat sink. ► The model results are analyzed and discussed. -- Abstract: A thermal–hydraulic model has been developed to simulate loss of the ultimate heat sink in a typical material testing reactor (MTR). The model involves three interactively coupled sub-models for reactor core, heat exchanger and cooling tower. The model is validated against PARET code for steady-state operation and verified by the reactor operation records for transients. Then, the model is used to simulate the thermal–hydraulic behavior of the reactor under a loss of the ultimate heat sink event. The simulation is performed for two operation regimes: regime I representing 11 MW power and three cooling tower cells operated, and regime II representing 22 MW power and six cooling tower cells operated. In regime I, the simulation is performed for 1, 2 and 3 cooling tower cells failed while in regime II, it is performed for 1, 2, 3, 4, 5 and 6 cooling tower cells failed. The simulation is performed under protected conditions where the safety action called power reduction is triggered by reactor protection system to decrease the reactor power by 20% when the coolant inlet temperature to the core reaches 43 °C and scram is triggered if the core inlet temperature reaches 44 °C. The model results are analyzed and discussed.

  2. WASTE HEAT RECOVERY IN HEAT PUMP SYSTEMS: SOLUTION TO REDUCE GLOBAL WARMING

    Directory of Open Access Journals (Sweden)

    Y. Baradey

    2015-11-01

    Full Text Available Energy conversion technologies, where waste heat recovery systems are included, have received significant attention in recent years due to reasons that include depletion of fossil fuel, increasing oil prices, changes in climatic conditions, and global warming. For low temperature applications, there are many sources of thermal waste heat, and several recovery systems and potential useful applications have been proposed by researchers [1-4]. In addition, many types of equipment are used to recover waste thermal energy from different systems at low, medium, and high temperature applications, such as heat exchangers, waste heat recovery boiler, thermo-electric generators, and recuperators. In this paper, the focus is on waste heat recovery from air conditioners, and an efficient application of these energy resources. Integration of solar energy with heat pump technologies and major factors that affect the feasibility of heat recovery systems have been studied and reviewed as well. KEYWORDS: waste heat recovery; heat pump.

  3. Mechanisms causing reduced Arctic sea ice loss in a coupled climate model

    Directory of Open Access Journals (Sweden)

    A. E. West

    2013-03-01

    Full Text Available The fully coupled climate model HadGEM1 produces one of the most accurate simulations of the historical record of Arctic sea ice seen in the IPCC AR4 multi-model ensemble. In this study, we examine projections of sea ice decline out to 2030, produced by two ensembles of HadGEM1 with natural and anthropogenic forcings included. These ensembles project a significant slowing of the rate of ice loss to occur after 2010, with some integrations even simulating a small increase in ice area. We use an energy budget of the Arctic to examine the causes of this slowdown. A negative feedback effect by which rapid reductions in ice thickness north of Greenland reduce ice export is found to play a major role. A slight reduction in ocean-to-ice heat flux in the relevant period, caused by changes in the meridional overturning circulation (MOC and subpolar gyre in some integrations, as well as freshening of the mixed layer driven by causes other than ice melt, is also found to play a part. Finally, we assess the likelihood of a slowdown occurring in the real world due to these causes.

  4. Reduction of heat losses on the skid pipe system of a pusher type furnace; Verringerung der Waermeverluste am Tragrohrsystem eines Stossofens

    Energy Technology Data Exchange (ETDEWEB)

    Hoffelner, Mario; Winter, Franz [voestalpine Grobblech GmbH, Linz (Austria); Springer, Michael; Huegel, Frank [FBB Engineering GmbH, Moenchengladbach (Germany); Buhr, Andreas [Almatis GmbH, Frankfurt (Germany); Kockegey-Lorenz, Rainer [Almatis GmbH, Ludwigshafen (Germany)

    2013-06-15

    This paper discusses how energy consumption and energy loss can be reduced in reheating furnaces of hot rolling mills by new lightweight refractory materials and a new modular lining concept for the skid pipe insulation using pre-fabricated shells. The target is to optimise the hot rolling process from an energy point of view, and to reduce the operational cost of the furnaces. The new lightweight pre-fabricated shells based on the microporous castable and a thermotechnical optimised sandwich design can significantly reduce the heat losses compared to dense castable. Industrial application of the new system in a 110 t/h pusher type furnace at voestalpine Grobblech GmbH in Linz, Austria, resulted in reduction of heat loss about 30 %. The annualised energy saving gives a cost reduction of more than Euro 200,000 a year. Costs for the complete new lining about Euro 170,000 result in a payback period of less than one year. (orig.)

  5. Tranexamic acid reduces blood loss in patients with extracapsular fractures of the hip

    DEFF Research Database (Denmark)

    Tengberg, P T; Foss, N B; Palm, H

    2016-01-01

    AIMS: We chose unstable extra-capsular hip fractures as our study group because these types of fractures suffer the largest blood loss. We hypothesised that tranexamic acid (TXA) would reduce total blood loss (TBL) in extra-capsular fractures of the hip. PATIENTS AND METHODS: A single...

  6. Thin-Film layers with Interfaces that reduce RF Losses on High-Resistivity Silicon Substrates

    NARCIS (Netherlands)

    Evseev, S. B.; Milosavljevic, S.; Nanver, L. K.

    2017-01-01

    Radio-Frequency (RF) losses on High-Resistivity Silicon (HRS) substrates were studied for several different surface passivation layers comprising thin-films of SiC, SiN and SiO2 In many combinations, losses from conductive surface channels were reduced and increasing the number of interfaces between

  7. Reducing AC-Winding Losses in High-Current High-Power Inductors

    DEFF Research Database (Denmark)

    Nymand, Morten; Madawala, Udaya K.; Andersen, Michael Andreas E.

    2009-01-01

    Foil windings are preferable in high-current high-power inductors to realize compact designs and to reduce dc-current losses. At high frequency, however, proximity effect will cause very significant increase in ac resistance in multi-layer windings, and lead to high ac winding losses. This paper ...

  8. Modeling farm nutrient flows in the North China Plain to reduce nutrient losses

    NARCIS (Netherlands)

    Zhao, Zhanqing; Bai, Zhaohai; Wei, Sha; Ma, Wenqi; Wang, Mengru; Kroeze, Carolien; Ma, Lin

    2017-01-01

    Years of poor nutrient management practices in the agriculture industry in the North China Plain have led to large losses of nutrients to the environment, causing severe ecological consequences. Analyzing farm nutrient flows is urgently needed in order to reduce nutrient losses. A farm-level

  9. Heat loss in air of an Antarctic marine mammal, the Weddell seal.

    Science.gov (United States)

    Mellish, Jo-Ann; Hindle, Allyson; Skinner, John; Horning, Markus

    2015-01-01

    The conflicting needs of homeostasis in air versus water complicate our understanding of thermoregulation in marine mammals. Large-scale modeling efforts directed at predicting the energetic impact of changing sea ice conditions on polar ecosystems require a better understanding of thermoregulation in air of free-ranging animals. We utilized infrared imaging as an indirect approach to determine surface temperatures of dry, hauled-out Weddell seals (Leptonychotes weddellii, n = 35) of varying age and body condition during the Antarctic summer. The study groups provided a fivefold range in body mass and a threefold range in blubber depth. Surface temperature (T s) did not vary by body region (head, shoulder, axilla, torso, hip, flippers). Average seal T s (mean 13.9 ± 11.2 °C) was best described through a combination of the physical traits of body mass and environmental variables of ambient temperature T air, and wind speed. Additional factors of ice temperature (T ice), relative humidity and cloud cover did not improve the model. Heat transfer model estimates suggested that radiation contributed 56.6 ± 7.7 % of total heat loss. Convection and conduction accounted for the remaining 15.7 ± 12.3 and 27.7 ± 9.3 %, respectively. Heat loss by radiation was primarily influenced by body mass and wind speed, whereas convective heat loss was influenced primarily by blubber depth and wind speed. Conductive heat loss was modeled largely as a function of physical traits of mass and blubber depth rather than any environmental covariates, and therefore was substantially higher in animals in leaner condition.

  10. New Configurations of Micro Plate-Fin Heat Sink to Reduce Coolant Pumping Power

    Science.gov (United States)

    Rezania, A.; Rosendahl, L. A.

    2012-06-01

    The thermal resistance of heat exchangers has a strong influence on the electric power produced by a thermoelectric generator (TEG). In this work, a real TEG device is applied to three configurations of micro plate-fin heat sink. The distance between certain microchannels is varied to find the optimum heat sink configuration. The particular focus of this study is to reduce the coolant mass flow rate by considering the thermal resistances of the heat sinks and, thereby, to reduce the coolant pumping power in the system. The three-dimensional governing equations for the fluid flow and the heat transfer are solved using the finite-volume method for a wide range of pressure drop laminar flows along the heat sink. The temperature and the mass flow rate distribution in the heat sink are discussed. The results, which are in good agreement with previous computational studies, show that using suggested heat sink configurations reduces the coolant pumping power in the system.

  11. Effect of energetic ion loss on ICRF heating efficiency and energy confinement time in heliotrons

    International Nuclear Information System (INIS)

    Murakami, S.; Nakajima, N.; Okamoto, M.; Nuehrenberg, J.

    1999-01-01

    The ICRF heating efficiency and the global energy confinement time during ICRF heating are investigated, including the effect of energetic ion loss in heliotrons. The approximate formula of ICRF heating efficiency is derived using results based on Monte Carlo simulations (Murakami, S., et al., Fusion Eng. Des. 26 (1995) 209). The global energy confinement time including the energetic ion effect can be expressed in heliotrons in terms of ICRF heating power, plasma density and magnetic field strength. Results in plasmas at CHS show a systematic decrease of the global energy confinement time due to energetic ion loss from the assumed energy confinement scaling law, which is consistent with the experimental observations. The model is also applied to ICRF minority heating in LHD plasmas in two cases of typical magnetic configurations. A clear increase of the global energy confinement time due to the stored energy of energetic tail ions is obtained in the 'orbit improved' configuration, while a decrease is observed in the 'standard' configuration. (author)

  12. ANALYSIS OF THERMAL PROPERTIES AND HEAT LOSS IN CONSTRUCTION AND ISOTHERMAL MATERIALS OF MULTILAYER BUILDING WALLS

    Directory of Open Access Journals (Sweden)

    Arkadiusz Urzędowski

    2017-06-01

    Full Text Available The article discusses the impact of vertical partition, technology on thermal insulation of the building, and the resulting savings and residents thermal comfort. The study is carried out as an analysis of three selected design solutions including such materials as: aerated concrete elements, polystyrene, ceramic elements, concrete, mineral plaster. Simulation results of heat transfer in a multi-layered wall, are subjected to detailed analysis by means of thermal visual methods. The study of existing structures, helped to identify the local point of heat loss by means of infrared technology leading to determination of U-value reduction by 36% in maximum for the described 3 types of structure.

  13. Probabilistic analysis of the loss of the decay heat removal function for Creys-Malville reactor

    International Nuclear Information System (INIS)

    Lanore, J.M.; Villeroux-Lombard, C.; Bouscatie, F.; Pavret de la Rochefordiere, A.

    1982-01-01

    The classical fault tree/event tree methods do not take into account the dependence in time of the systems behaviour during the sequences, and that is quite unrealistic for the decay heat removal function. It was then necessary to use a new methodology based on functional states of the whole system and on transition laws between these states. Thus, the probabilistic analysis of the decay heat removal function for Creys-Malville plant is performed in a global way. The main accident sequences leading to the loss of the function are then determined a posteriori. The weak points are pointed out, in particular the importance of common mode failures

  14. Winter reduction in body mass in a very small, nonhibernating mammal: consequences for heat loss and metabolic rates.

    Science.gov (United States)

    Taylor, Jan R E; Rychlik, Leszek; Churchfield, Sara

    2013-01-01

    Low temperatures in northern winters are energetically challenging for mammals, and a special energetic burden is expected for diminutive species like shrews, which are among the smallest of mammals. Surprisingly, shrews shrink their body size in winter and reduce body and brain mass, an effect known as Dehnel's phenomenon, which is suggested to lower absolute energy intake requirements and thereby enhance survival when food availability is low. Yet reduced body size coupled with higher body-surface-to-mass ratio in these tiny mammals may result in thermoregulatory heat production at a given temperature constituting a larger proportion of the total energy expenditure. To evaluate energetic consequences of reduced body size in winter, we investigated common shrews Sorex araneus in northeastern Poland. Average body mass decreased by 19.0% from summer to winter, and mean skull depth decreased by 13.1%. There was no difference in Dehnel's phenomenon between years despite different weather conditions. The whole-animal thermal conductance (proportional to absolute heat loss) in shrews was 19% lower in winter than in summer; the difference between the two seasons remained significant after correcting for body mass and was caused by improved fur insulation in winter. Thermogenic capacity of shrews, although much enhanced in winter, did not reach its full potential of increase, and this corresponded with relatively mild subnivean temperatures. These findings indicate that, despite their small body size, shrews effectively decrease their costs of thermoregulation. The recorded decrease in body mass from summer to winter resulted in a reduction of overall resting metabolic rate (in thermoneutrality) by 18%. This, combined with the reduced heat loss, should translate to food requirements that are substantially lower than would be the case if shrews did not undergo seasonal decrease in body mass.

  15. Mode and climatic factors effect on energy losses in transient heat modes of transmission lines

    Science.gov (United States)

    Bigun, A. Ya; Sidorov, O. A.; Osipov, D. S.; Girshin, S. S.; Goryunov, V. N.; Petrova, E. V.

    2018-01-01

    Electrical energy losses increase in modern grids. The losses are connected with an increase in consumption. Existing models of electric power losses estimation considering climatic factors do not allow estimating the cable temperature in real time. Considering weather and mode factors in real time allows to meet effectively and safely the consumer’s needs to minimize energy losses during transmission, to use electric power equipment effectively. These factors increase an interest in the evaluation of the dynamic thermal mode of overhead transmission lines conductors. The article discusses an approximate analytic solution of the heat balance equation in the transient operation mode of overhead lines based on the least squares method. The accuracy of the results obtained is comparable with the results of solving the heat balance equation of transient thermal mode with the Runge-Kutt method. The analysis of mode and climatic factors effect on the cable temperature in a dynamic thermal mode is presented. The calculation of the maximum permissible current for variation of weather conditions is made. The average electric energy losses during the transient process are calculated with the change of wind, air temperature and solar radiation. The parameters having the greatest effect on the transmission capacity are identified.

  16. Flow Boiling Critical Heat Flux in Reduced Gravity

    Science.gov (United States)

    Mudawar, Issam; Zhang, Hui; Hasan, Mohammad M.

    2004-01-01

    This study provides systematic method for reducing power consumption in reduced gravity systems by adopting minimum velocity required to provide adequate CHF and preclude detrimental effects of reduced gravity . This study proves it is possible to use existing 1 ge flow boiling and CHF correlations and models to design reduced gravity systems provided minimum velocity criteria are met

  17. NO formation in the burnout region of a partially premixed methane-air flame with upstream heat loss

    Energy Technology Data Exchange (ETDEWEB)

    Mokhov, A.V.; Levinsky, H.B.

    1999-09-01

    Measurements of temperature and NO concentration in laminar, partially premixed methane-air flames stabilized on a ceramic burner in coflow are reported. The NO concentration and temperature were determined by laser-induced fluorescence (LIF) and coherent anti-Stokes Raman scattering (CARS), respectively. Upstream heat loss to the burner was varied by changing the exit velocity of the fuel-air mixture at a constant equivalence ratio of 1,3; this alters the structure of the flame from an axisymmetric Bunsen-type to a strongly stabilized flat flame. To facilitate analysis of the results, a method is derived for separating the effects of dilution from those of chemical reaction based on the relation between the measured temperature and the local mixture fraction, including the effects of upstream heat loss. Using this method, the amount of NO formed during burnout of the hot, fuel-rich combustion products can be ascertained. In the Bunsen-type flame, it is seen that {approximately}40 ppm of NO are produced in this burnout region, at temperatures between {approximately}2,100 K and {approximately}1,900 K, probably via the Zeldovich mechanism. Reducing the exit velocity of 12 cm/s reduces the flame temperature substantially, and effectively eliminates this contribution. At velocities of 12 and 8 cm/s, {approximately}10 ppm of NO are formed in the burnout region, even though the gas temperatures are too low for Zeldovich NO to be significant. Although the mechanism responsible for these observations is as yet unclear, the results are consistent with the idea that the low temperatures in the fuel-rich gases caused by upstream heat loss retard the conversion of HCN (formed via the Fenimore mechanism) to NO, with this residual HCN then being converted to NO during burnout.

  18. Oscillating-flow loss test results in rectangular heat exchanger passages

    Science.gov (United States)

    Wood, J. Gary

    1991-01-01

    Test results of oscillating flow losses in rectangular heat exchanger passages of various aspect ratios are given. This work was performed in support of the design of a free-piston Stirling engine (FPSE) for a dynamic space power conversion system. Oscillating flow loss testing was performed using an oscillating flow rig, which was based on a variable stroke and variable frequency linear drive motor. Tests were run over a range of oscillating flow parameters encompassing the flow regimes of the proposed engine design. Test results are presented in both tabular and graphical form and are compared against analytical predictions.

  19. Heat Loss Testing of Schott's 2008 PTR70 Parabolic Trough Receiver

    Energy Technology Data Exchange (ETDEWEB)

    Burkholder, Frank [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kutscher, Chuck [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2009-05-01

    Two Schott 2008 model year PTR70 HCEs were tested on NREL's heat loss test stand from 100 - 500 deg C in 50 deg C increments. Absorber emittance was determined from the laboratory testing so that the performance of the HCEs could be modeled in a parabolic trough collector. Collector/HCE simulation results for many different field operation conditions were used to create heat loss correlationcoefficients for Excelergy and SAM. SAM estimates that the decreased emittance of the 2008 PTR70 will decrease the LCOE for parabolic trough power plants by 0.5 cents/kWh and increase the electricity generated by 5% relative to previous PTR70s. These conclusions assume that the 2008 PTR70 is supplied at the same cost and with the same optical performance as earlier PTR70 models.

  20. Monitoring the risk of loss of heat sink during plant shutdowns at Bruce Generating Station 'A'

    International Nuclear Information System (INIS)

    Krishnan, K.S.; Mancuso, F.; Vecchiarelli, D.

    1996-01-01

    A relatively simple loss of shutdown heat sink fault tree model has been developed and used during unit outages at Bruce Nuclear Generation Station 'A' to assess, from a risk and reliability perspective, alternative heat sink strategies and to aid in decisions on allowable outage configurations. The model is adjusted to reflect the various unit configurations planned during a specific outage, and identifies events and event combinations leading to loss of fuel cooling. The calculated failure frequencies are compared to the limits consistent with corporate and international public safety goals. The importance measures generated by the interrogation of the fault tree model for each outage configuration are also used to reschedule configurations with high fuel damage frequency later into the outage and to control the configurations with relatively high probability of fuel damage to short intervals at the most appropriate time into the outage. (author)

  1. The influence of soil moisture in the unsaturated zone on the heat loss from buildings via the ground

    NARCIS (Netherlands)

    Janssen, H.; Carmeliet, J.; Hens, H.

    2002-01-01

    In calculations of building heat loss via the ground, the coupling with soil moisture transfer is generally ignored, an important hypothesis which will be falsified in this paper. Results from coupled simulations - coupled soil heat and moisture transfer equations and complete surface heat and

  2. Heat deposition on the first wall due to ICRF-induced loss of fast ions in JT-60U

    International Nuclear Information System (INIS)

    Kusama, Y.; Tobita, K.; Kimura, H.; Hamamatsu, K.; Fujii, T.; Nemoto, M.; Saigusa, M.; Moriyama, S.; Tani, K.; Koide, Y.; Sakasai, A.; Nishitani, T.; Ushigusa, K.

    1995-01-01

    In JT-60U, the heat deposition on the first wall due to the ICRF-induced loss of fast ions was investigated by changing the position of the resonance layer in the ripple-trapping region. A heat spot appears on the first wall of the same major radius as the resonance layer of the ICRF waves. The broadening of the heat spot in the major radius direction is consistent with that of the resonance layer due to the Doppler broadening. The heat spot is considered to be formed by the ICRF-induced ripple-trapped loss of fast ions. Although the total ICRF-induced loss power to the heat spot is as low as 2% of the total ICRF power, the additional heat flux will become a new issue because of the localized heat deposition on the first wall. ((orig.))

  3. Reduced Urban Heat Island intensity under warmer conditions

    Science.gov (United States)

    Scott, Anna A.; Waugh, Darryn W.; Zaitchik, Ben F.

    2018-06-01

    The Urban Heat Island (UHI), the tendency for urban areas to be hotter than rural regions, represents a significant health concern in summer as urban populations are exposed to elevated temperatures. A number of studies suggest that the UHI increases during warmer conditions, however there has been no investigation of this for a large ensemble of cities. Here we compare urban and rural temperatures in 54 US cities for 2000–2015 and show that the intensity of the Urban Heat Island, measured here as the differences in daily-minimum or daily-maximum temperatures between urban and rural stations or ΔT, in fact tends to decrease with increasing temperature in most cities (38/54). This holds when investigating daily variability, heat extremes, and variability across climate zones and is primarily driven by changes in rural areas. We relate this change to large-scale or synoptic weather conditions, and find that the lowest ΔT nights occur during moist weather conditions. We also find that warming cities have not experienced an increasing Urban Heat Island effect.

  4. Finite time thermodynamic analysis and optimization of solar-dish Stirling heat engine with regenerative losses

    Directory of Open Access Journals (Sweden)

    Sharma Arjun

    2011-01-01

    Full Text Available The present study investigates the performance of the solar-driven Stirling engine system to maximize the power output and thermal efficiency using the non-linearized heat loss model of the solar dish collector and the irreversible cycle model of the Stirling engine. Finite time thermodynamic analysis has been done for combined system to calculate the finite-rate heat transfer, internal heat losses in the regenerator, conductive thermal bridging losses and finite regeneration process time. The results indicate that exergy efficiency of dish system increases as the effectiveness of regenerator increases but decreases with increase in regenerative time coefficient. It is also found that optimal range of collector temperature and corresponding concentrating ratio are 1000 K~1400 K and 1100~1400, respectively in order to get maximum value of exergy efficiency. It is reported that the exergy efficiency of this dish system can reach the maximum value when operating temperature and concentrating ratio are 1150 K and 1300, respectively.

  5. Superconductor design and loss analysis for a 20 MJ induction heating coil

    International Nuclear Information System (INIS)

    Walker, M.S.; Declercq, J.G.; Zeitlin, B.A.

    1980-01-01

    The design of a 50 k Ampere conductor for use in a 20 MJ Induction Heating Coil is described. The conductor is a wide flat cable of 36 subcables, each of which contains six NbTi strands around a stainless steel core strand. The 2.04 mm (0.080'') diameter monolithic strands allow bubble clearing for cryostable operation at a pool boiling heat transfer from the unoccluded strand surface of 0.26 Watts/cm 2 . A thin, tough polyester amide-imide (Westinghouse Omega) insulation provides a rugged coating that will resist flaking and chipping during the cabling and compaction operations and provide (1) a reliable adherent surface for enhanced heat transfer, and (2) a low voltage standoff preventing interstrand coupling losses. The strands are uniquely configured using CuNi elements to provide low ac losses with NbTi filaments in an all-copper matrix. AC losses are expected to be approximately 0.3% of 20 MJ for a -7.5 T to 7.5 T one-second 1/2-cosinusoidal bipolar operation in a 20 MJ coil. They will be approximately 0.1% of 100 MJ for 1.8 second -8 T and +8 T ramped operation in a 100 MJ coil. The design is firmly based on the results of tests performed on prototype strands and subcables

  6. Reducing Postharvest Losses during Storage of Grain Crops to Strengthen Food Security in Developing Countries

    Directory of Open Access Journals (Sweden)

    Deepak Kumar

    2017-01-01

    Full Text Available While fulfilling the food demand of an increasing population remains a major global concern, more than one-third of food is lost or wasted in postharvest operations. Reducing the postharvest losses, especially in developing countries, could be a sustainable solution to increase food availability, reduce pressure on natural resources, eliminate hunger and improve farmers’ livelihoods. Cereal grains are the basis of staple food in most of the developing nations, and account for the maximum postharvest losses on a calorific basis among all agricultural commodities. As much as 50%–60% cereal grains can be lost during the storage stage due only to the lack of technical inefficiency. Use of scientific storage methods can reduce these losses to as low as 1%–2%. This paper provides a comprehensive literature review of the grain postharvest losses in developing countries, the status and causes of storage losses and discusses the technological interventions to reduce these losses. The basics of hermetic storage, various technology options, and their effectiveness on several crops in different localities are discussed in detail.

  7. Reducing Postharvest Losses during Storage of Grain Crops to Strengthen Food Security in Developing Countries.

    Science.gov (United States)

    Kumar, Deepak; Kalita, Prasanta

    2017-01-15

    While fulfilling the food demand of an increasing population remains a major global concern, more than one-third of food is lost or wasted in postharvest operations. Reducing the postharvest losses, especially in developing countries, could be a sustainable solution to increase food availability, reduce pressure on natural resources, eliminate hunger and improve farmers' livelihoods. Cereal grains are the basis of staple food in most of the developing nations, and account for the maximum postharvest losses on a calorific basis among all agricultural commodities. As much as 50%-60% cereal grains can be lost during the storage stage due only to the lack of technical inefficiency. Use of scientific storage methods can reduce these losses to as low as 1%-2%. This paper provides a comprehensive literature review of the grain postharvest losses in developing countries, the status and causes of storage losses and discusses the technological interventions to reduce these losses. The basics of hermetic storage, various technology options, and their effectiveness on several crops in different localities are discussed in detail.

  8. Modeling Loss-of-Flow Accidents and Their Impact on Radiation Heat Transfer

    Directory of Open Access Journals (Sweden)

    Jivan Khatry

    2017-01-01

    Full Text Available Long-term high payload missions necessitate the need for nuclear space propulsion. The National Aeronautics and Space Administration (NASA investigated several reactor designs from 1959 to 1973 in order to develop the Nuclear Engine for Rocket Vehicle Application (NERVA. Study of planned/unplanned transients on nuclear thermal rockets is important due to the need for long-term missions. In this work, a system model based on RELAP5 is developed to simulate loss-of-flow accidents on the Pewee I test reactor. This paper investigates the radiation heat transfer between the fuel elements and the structures around it. In addition, the impact on the core fuel element temperature and average core pressure was also investigated. The following expected results were achieved: (i greater than normal fuel element temperatures, (ii fuel element temperatures exceeding the uranium carbide melting point, and (iii average core pressure less than normal. Results show that the radiation heat transfer rate between fuel elements and cold surfaces increases with decreasing flow rate through the reactor system. However, radiation heat transfer decreases when there is a complete LOFA. When there is a complete LOFA, the peripheral coolant channels of the fuel elements handle most of the radiation heat transfer. A safety system needs to be designed to counteract the decay heat resulting from a post-LOFA reactor scram.

  9. Optimizing the District Heating Primary Network from the Perspective of Economic-Specific Pressure Loss

    Directory of Open Access Journals (Sweden)

    Haichao Wang

    2017-07-01

    Full Text Available A district heating (DH system is one of the most important components of infrastructures in cold areas. Proper DH network design should balance the initial investment and the heat distribution cost of the DH network. Currently, this design is often based on a recommended value for specific pressure loss (R = ∆P/L in the main lines. This will result in a feasible network design, but probably not be optimal in most cases. The paper develops a novel optimization model to facilitate the design by considering the initial investment in the pipes and the heat distribution costs. The model will generate all possible network scenarios consisting of different series of diameters for each pipe in the flow direction of the network. Then, the annuity on the initial investment, the heat distribution cost, and the total annual cost will be calculated for each network scenario, taking into account the uncertainties of the material prices and the yearly operating time levels. The model is applied to a sample DH network and the results indicate that the model works quite well, clearly identifying the optimal network design and demonstrating that the heat distribution cost is more important than the initial investment in DH network design.

  10. STEAM GENERATOR TUBE INTEGRITY ANALYSIS OF A TOTAL LOSS OF ALL HEAT SINKS ACCIDENT FOR WOLSONG NPP UNIT 1

    Directory of Open Access Journals (Sweden)

    HEOK-SOON LIM

    2014-02-01

    Full Text Available A total loss of all heat sinks is considered a severe accident with a low probability of occurrence. Following a total loss of all heat sinks, the degasser/condenser relief valves (DCRV become the sole means available for the depressurization of the primary heat transport system. If a nuclear power plant has a total loss of heat sinks accident, high-temperature steam and differential pressure between the primary heat transport system (PHTS and the steam generator (SG secondary side can cause a SG tube creep rupture. To protect the PHTS during a total loss of all heat sinks accident, a sufficient depressurization capability of the degasser/condenser relief valve and the SG tube integrity is very important. Therefore, an accurate estimation of the discharge through these valves is necessary to assess the impact of the PHTS overprotection and the SG tube integrity of the primary circuit. This paper describes the analysis of DCRV discharge capacity and the SG tube integrity under a total loss of all heat sink using the CATHENA code. It was found that the DCRV's discharge capacity is enough to protect the overpressure in the PHTS, and the SG tube integrity is maintained in a total loss of all heat accident.

  11. Steam Generator Tube Integrity Analysis of A Total Loss of all Heat Sinks Accident for Wolsong NPP Unit 1

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Heoksoon; Song, Taeyoung; Chi, Moongoo [Korea Htydro and Nuclear Power Co., Ltd., Daejeon (Korea, Republic of); Kim, Seoungrae [Nuclear Engineering Service and Solution, Daejeon (Korea, Republic of)

    2014-02-15

    A total loss of all heat sinks is considered a severe accident with a low probability of occurrence. Following a total loss of all heat sinks, the degasser/condenser relief valves (DCRV) become the sole means available for the depressurization of the primary heat transport system. If a nuclear power plant has a total loss of heat sinks accident, high-temperature steam and differential pressure between the primary heat transport system (PHTS) and the steam generator (SG) secondary side can cause a SG tube creep rupture. To protect the PHTS during a total loss of all heat sinks accident, a sufficient depressurization capability of the degasser/condenser relief valve and the SG tube integrity is very important. Therefore, an accurate estimation of the discharge through these valves is necessary to assess the impact of the PHTS overprotection and the SG tube integrity of the primary circuit. This paper describes the analysis of DCRV discharge capacity and the SG tube integrity under a total loss of all heat sink using the CATHENA code. It was found that the DCRV's discharge capacity is enough to protect the overpressure in the PHTS, and the SG tube integrity is maintained in a total loss of all heat accident.

  12. Steam Generator Tube Integrity Analysis of A Total Loss of all Heat Sinks Accident for Wolsong NPP Unit 1

    International Nuclear Information System (INIS)

    Lim, Heoksoon; Song, Taeyoung; Chi, Moongoo; Kim, Seoungrae

    2014-01-01

    A total loss of all heat sinks is considered a severe accident with a low probability of occurrence. Following a total loss of all heat sinks, the degasser/condenser relief valves (DCRV) become the sole means available for the depressurization of the primary heat transport system. If a nuclear power plant has a total loss of heat sinks accident, high-temperature steam and differential pressure between the primary heat transport system (PHTS) and the steam generator (SG) secondary side can cause a SG tube creep rupture. To protect the PHTS during a total loss of all heat sinks accident, a sufficient depressurization capability of the degasser/condenser relief valve and the SG tube integrity is very important. Therefore, an accurate estimation of the discharge through these valves is necessary to assess the impact of the PHTS overprotection and the SG tube integrity of the primary circuit. This paper describes the analysis of DCRV discharge capacity and the SG tube integrity under a total loss of all heat sink using the CATHENA code. It was found that the DCRV's discharge capacity is enough to protect the overpressure in the PHTS, and the SG tube integrity is maintained in a total loss of all heat accident

  13. Performance evaluation of a biomass boiler on the basis of heat loss method and total heat values of steam

    International Nuclear Information System (INIS)

    Munir, A.; Alvi, J.Z.; Ashfaq, S.; Ghafoor, A.

    2014-01-01

    Pakistan being an agricultural country has large resources of biomass in the form of crop residues like wood, wheat straw, rice husk, cotton sticks and bagasse. Power generation using biomass offers an excellent opportunity to overcome current scenario of energy crises. Of the all biomass resources, bagasse is one of the potential energy sources which can be successfully utilized for power generation. During the last decade, bagasse fired boilers attained major importance due to increasing prices of primary energy (e.g. fossil fuels). Performance of a bagasse fired boiler was evaluated at Shakarganj Sugar Mill, Bhone-Jhang having steam generation capacity of 80 tons h/sup -1/at 25 bar working pressure. The unit was forced circulation and bi-drum type water tube boiler which was equipped with all accessories like air heater, economizer and super-heater. Flue gas analyzer and thermocouples were used to record percent composition and temperature of flue gases respectively. Physical analysis of bagasse showed gross calorific value of bagasse as 2326 kCal kg/sup -1/. Ultimate analysis of bagasse was performed and the actual air supplied to the boiler was calculated to be 4.05 kg per kg of bagasse under the available resources of the plant. Performance evaluation of the boiler was carried out and a complete heat balance sheet was prepared to investigate the different sources of heat losses. The efficiency of the boiler was evaluated on the basis of heat losses through boiler and was found to be 56.08%. It was also determined that 2 kg of steam produced from 1 kg of bagasse under existing condition of the boiler. The performance evaluation of the boiler was also done on the basis of total heat values of steam and found to be 55.98%. The results obtained from both the methods were found almost similar. Effects of excess air, stack and ambient temperature on the efficiency of boiler have also been evaluated and presented in the manuscript. (author)

  14. Influence of the heat losses and accumulated heat upon the evolution of the thermohydraulic processes in the transients as applied to the ISB-WWER integral test facility

    International Nuclear Information System (INIS)

    Gashenko, I.V.; Melikhov, O.I.; Shmal, I.I.; Kouznetsov, V.D.

    2001-01-01

    The results of the calculational study using the RELAP5/MOD3.2 thermalhydraulic code performed on the influence of the heat losses to the ambient and the heat accumulated in the pipelines walls upon the evolution of the thermalhydraulic processes in the primary circuit of the integral test facility ISB-WWER when simulating the transients caused by the loss of the coolant are presented in the paper. (authors)

  15. Reducing water losses via intelligent pressure management; Reduzierung von Wasserverlusten durch intelligentes Druckmanagement

    Energy Technology Data Exchange (ETDEWEB)

    Oppinger, Peter [VAG-Armaturen GmbH, Mannheim (Germany). Marketing

    2008-03-15

    Leaks in water pipes and leaking municipal water-transmission and piping systems, particularly in developing and threshold countries account for water-losses of up to 50% of the water supplied by the waterworks. This article examines three different solutions for effective pressure management on the basis of an intelligent control system, by means of which water-losses can be reduced to a stable and economically rational level. (orig.)

  16. Impact of thermodynamic properties and heat loss on ignition of transportation fuels in rapid compression machines

    KAUST Repository

    Ahmed, Ahfaz

    2018-01-30

    Rapid compression machines (RCM) are extensively used to study autoignition of a wide variety of fuels at engine relevant conditions. Fuels ranging from pure species to full boiling range gasoline and diesel can be studied in an RCM to develop a better understanding of autoignition kinetics in low to intermediate temperature ranges. In an RCM, autoignition is achieved by compressing a fuel/oxidizer mixture to higher pressure and temperature, thereby initiating chemical reactions promoting ignition. During these experiments, the pressure is continuously monitored and is used to deduce significant events such as the end of compression and the onset of ignition. The pressure profile is also used to assess the temperature evolution of the gas mixture with time using the adiabatic core hypothesis and the heat capacity ratio of the gas mixture. In such RCM studies, real transportation fuels containing many components are often represented by simpler surrogate fuels. While simpler surrogates such as primary reference fuels (PRFs) and ternary primary reference fuel (TPRFs) can match research and motor octane number of transportation fuels, they may not accurately replicate thermodynamic properties (including heat capacity ratio). This non-conformity could exhibit significant discrepancies in the end of compression temperature, thereby affecting ignition delay (τign) measurements. Another aspect of RCMs that can affect τign measurement is post compression heat loss, which depends on various RCM parameters including geometry, extent of insulation, pre-heating temperature etc. To, better understand the effects of these non-chemical kinetic parameters on τign, thermodynamic properties of a number of FACE G gasoline surrogates were calculated and simulated in a multi-zone RCM model. The problem was further investigated using a variance based analysis and individual sensitivities were calculated. This study highlights the effects on τign due to thermodynamic properties of

  17. Impact of thermodynamic properties and heat loss on ignition of transportation fuels in rapid compression machines

    KAUST Repository

    Ahmed, Ahfaz; Hantouche, Mireille; Khurshid, Muneeb; Mohamed, Samah; Nasir, Ehson Fawad; Farooq, Aamir; Roberts, William L.; Knio, Omar; Sarathy, Mani

    2018-01-01

    Rapid compression machines (RCM) are extensively used to study autoignition of a wide variety of fuels at engine relevant conditions. Fuels ranging from pure species to full boiling range gasoline and diesel can be studied in an RCM to develop a better understanding of autoignition kinetics in low to intermediate temperature ranges. In an RCM, autoignition is achieved by compressing a fuel/oxidizer mixture to higher pressure and temperature, thereby initiating chemical reactions promoting ignition. During these experiments, the pressure is continuously monitored and is used to deduce significant events such as the end of compression and the onset of ignition. The pressure profile is also used to assess the temperature evolution of the gas mixture with time using the adiabatic core hypothesis and the heat capacity ratio of the gas mixture. In such RCM studies, real transportation fuels containing many components are often represented by simpler surrogate fuels. While simpler surrogates such as primary reference fuels (PRFs) and ternary primary reference fuel (TPRFs) can match research and motor octane number of transportation fuels, they may not accurately replicate thermodynamic properties (including heat capacity ratio). This non-conformity could exhibit significant discrepancies in the end of compression temperature, thereby affecting ignition delay (τign) measurements. Another aspect of RCMs that can affect τign measurement is post compression heat loss, which depends on various RCM parameters including geometry, extent of insulation, pre-heating temperature etc. To, better understand the effects of these non-chemical kinetic parameters on τign, thermodynamic properties of a number of FACE G gasoline surrogates were calculated and simulated in a multi-zone RCM model. The problem was further investigated using a variance based analysis and individual sensitivities were calculated. This study highlights the effects on τign due to thermodynamic properties of

  18. Development of Interior Permanent Magnet Motors with Concentrated Windings for Reducing Magnet Eddy Current Loss

    Science.gov (United States)

    Yamazaki, Katsumi; Kanou, Yuji; Fukushima, Yu; Ohki, Shunji; Nezu, Akira; Ikemi, Takeshi; Mizokami, Ryoichi

    In this paper, we present the development of interior magnet motors with concentrated windings, which reduce the eddy current loss of the magnets. First, the mechanism of the magnet eddy current loss generation is investigated by a simple linear magnetic circuit. Due to the consideration, an automatic optimization method using an adaptive finite element method is carried out to determine the stator and rotor shapes, which decrease the eddy current loss of the magnet. The determined stator and rotor are manufactured in order to proof the effectiveness by the measurement.

  19. Softened food reduces weight loss in the streptozotocin-induced male mouse model of diabetic nephropathy.

    Science.gov (United States)

    Nørgaard, Sisse A; Sand, Fredrik W; Sørensen, Dorte B; Abelson, Klas Sp; Søndergaard, Henrik

    2018-01-01

    The streptozotocin (STZ)-induced diabetic mouse is a widely used model of diabetes and diabetic nephropathy (DN). However, it is a well-known issue that this model is challenged by high weight loss, which despite supportive measures often results in high euthanization rates. To overcome these issues, we hypothesized that supplementing STZ-induced diabetic mice with water-softened chow in addition to normal chow would reduce weight loss, lower the need for supportive treatment, and reduce the number of mice reaching the humane endpoint of 20% weight loss. In a 15 week STZ-induced DN study we demonstrated that diabetic male mice receiving softened chow had reduced acute weight loss following STZ treatment ( p = 0.045) and additionally fewer mice were euthanized due to weight loss. By supplementing the diabetic mice with softened chow, no mice reached 20% weight loss whereas 37.5% of the mice without this supplement reached this humane endpoint ( p = 0.0027). Excretion of corticosterone metabolites in faeces was reduced in diabetic mice on softened chow ( p = 0.0007), suggesting lower levels of general stress. Finally, it was demonstrated that the water-softened chow supplement did not significantly affect the induction of key disease parameters, i.e. %HbA1C and albuminuria nor result in abnormal teeth wear. In conclusion, supplementation of softened food is refining the STZ-induced diabetic mouse model significantly by reducing stress, weight loss and the number of animals sacrificed due to humane endpoints, while maintaining the key phenotypes of diabetes and nephropathy.

  20. Reducing phosphorus loss in tile water with managed drainage in a claypan soil.

    Science.gov (United States)

    Nash, Patrick R; Nelson, Kelly A; Motavalli, Peter P; Nathan, Manjula; Dudenhoeffer, Chris

    2015-03-01

    Installing subsurface tile drain systems in poorly drained claypan soils to improve corn ( L.) yields could potentially increase environmental phosphorus (P) loss through the tile drainage system. The objectives of the study were to quantify the average concentration and loss of ortho-P in tile drain water from a claypan soil and to determine whether managed subsurface drainage (MD) could reduce ortho-P loss in tile water compared with free subsurface drainage (FD). Flow-weighted ortho-P concentration in the tile water was significantly lower with MD (0.09 mg L) compared with that of FD (0.15 mg L). Ortho-P loss in the tile water of this study was reduced with MD (36 g ha) by 80% compared with FD (180 g ha). Contrary to previous research, reduced ortho-P loss observed over the 4-yr study was not solely due to the reduced amount of water drained annually (63%) with MD compared with FD. During the spring period, when flow was similar between MD and FD, the concentration of ortho-P in the tile water generally was lower with MD compared with FD, which resulted in significantly less ortho-P loss with MD. We speculate that MD's ability to conserve water during the dry summer months increased corn's uptake of water and P, which reduced the amount of P available for leaching loss in the subsequent springs. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  1. Fitness-related differences in the rate of whole-body total heat loss in exercising young healthy women are heat-load dependent.

    Science.gov (United States)

    Lamarche, Dallon T; Notley, Sean R; Poirier, Martin P; Kenny, Glen P

    2018-03-01

    What is the central question of this study? Aerobic fitness modulates heat loss, albeit the heat load at which fitness-related differences occur in young healthy women remains unclear. What is the main finding and its importance? We demonstrate using direct calorimetry that fitness modulates heat loss in a heat-load dependent manner, with differences occurring between young women of low and high fitness and matched physical characteristics when the metabolic heat load is at least 400 W in hot, dry conditions. Although fitness has been known for some time to modulate heat loss, our findings define the metabolic heat load at which fitness-related differences occur. Aerobic fitness has recently been shown to alter heat loss capacity in a heat-load dependent manner in young men. However, given that sex-related differences in heat loss capacity exist, it is unclear whether this response is consistent in women. We therefore assessed whole-body total heat loss in young (21 ± 3 years old) healthy women matched for physical characteristics, but with low (low-fit; 35.8 ± 4.5 ml O 2  kg -1  min -1 ) or high aerobic fitness (high-fit; 53.1 ± 5.1 ml O 2  kg -1  min -1 ; both n = 8; indexed by peak oxygen consumption), during three 30 min bouts of cycling performed at increasing rates of metabolic heat production of 250 (Ex1), 325 (Ex2) and 400 W (Ex3), each separated by a 15 min recovery, in hot, dry conditions (40°C, 11% relative humidity). Whole-body total heat loss (evaporative ± dry heat exchange) and metabolic heat production were measured using direct and indirect calorimetry, respectively. Body heat content was measured as the temporal summation of heat production and loss. Total heat loss did not differ during Ex1 (low-fit, 215 ± 16 W; high-fit, 231 ± 20 W; P > 0.05) and Ex2 (low-fit, 278 ± 15 W; high-fit, 301 ± 20 W; P > 0.05), but was lower in the low-fit (316 ± 21 W) compared with the high-fit women (359 ± 32

  2. Insulator coated magnetic nanoparticulate composites with reduced core loss and method of manufacture thereof

    Science.gov (United States)

    Zhang, Yide (Inventor); Wang, Shihe (Inventor); Xiao, Danny (Inventor)

    2004-01-01

    A series of bulk-size magnetic/insulating nanostructured composite soft magnetic materials with significantly reduced core loss and its manufacturing technology. This insulator coated magnetic nanostructured composite is comprises a magnetic constituent, which contains one or more magnetic components, and an insulating constituent. The magnetic constituent is nanometer scale particles (1-100 nm) coated by a thin-layered insulating phase (continuous phase). While the intergrain interaction between the immediate neighboring magnetic nanoparticles separated by the insulating phase (or coupled nanoparticles) provide the desired soft magnetic properties, the insulating material provides the much demanded high resistivity which significantly reduces the eddy current loss. The resulting material is a high performance magnetic nanostructured composite with reduced core loss.

  3. Numerical Studies on Natural Convection Heat Losses from Open Cubical Cavities

    Directory of Open Access Journals (Sweden)

    M. Prakash

    2013-01-01

    Full Text Available The natural convection heat losses occurring from cubical open cavities are analysed in this paper. Open cubical cavities of sides 0.1 m, 0.2 m, 0.25 m, 0.5 m, and 1 m with constant temperature back wall boundary conditions and opening ratio of 1 are studied. The Fluent CFD software is used to analyse the three-dimensional (3D cavity models. The studies are carried out for cavities with back wall temperatures between 35°C and 100°C. The effect of cavity inclination on the convective loss is analysed for angles of 0° (cavity facing sideways, 30°, 45°, 60°, and 90° (cavity facing vertically downwards. The Rayleigh numbers involved in this study range between 4.5 × 105 and 1.5 × 109. The natural convection loss is found to increase with an increase in back wall temperature. The natural convection loss is observed to decrease with an increase in cavity inclination; the highest convective loss being at 0° and the lowest at 90° inclination. This is observed for all cavities analysed here. Nusselt number correlations involving the effect of Rayleigh number and the cavity inclination angle have been developed from the current studies. These correlations can be used for engineering applications such as electronic cooling, low- and medium-temperature solar thermal systems, passive architecture, and also refrigeration systems.

  4. Transport losses in single and assembled coated conductors with textured-metal substrate with reduced magnetism

    International Nuclear Information System (INIS)

    Amemiya, N.; Jiang, Z.; Li, Z.; Nakahata, M.; Kato, T.; Ueyama, M.; Kashima, N.; Nagaya, S.; Shiohara, S.

    2008-01-01

    Transport losses in a coated conductor with a textured-metal substrate with reduced magnetism were studied experimentally. The substrate is with a clad structure, and HoBCO superconductor layer is deposited on the substrate with buffer layers. The measured transport loss of a sample whose critical current is 126.0 A falls between Norris's strip value and Norris's ellipse value. The increase in the measured transport loss from Norris's strip value can be attributed to its non-uniform lateral J c distribution. The same buffered clad tape was placed under an IBAD-MOCVD coated conductor with a non-magnetic substrate, and its transport loss was measured. The comparison between the measured transport loss of this sample and that of the identical IBAD-MOCVD coated conductor without the buffered clad tape indicates that the increase in the transport loss due to this buffered clad tape is small. The transport losses of hexagonal assemblies of IBAD-MOCVD coated conductors, whose structure simulates that of superconducting power transmission cables, were also measured where the buffered clad tapes were under-lied or over-lied on the coated conductors. The increase in the transport loss of hexagonal assemblies of coated conductors due to the buffered clad tapes is at an allowable level

  5. Reducing Runoff Loss of Applied Nutrients in Oil Palm Cultivation Using Controlled-Release Fertilizers

    Directory of Open Access Journals (Sweden)

    A. Bah

    2014-01-01

    Full Text Available Controlled-release fertilizers are expected to minimize nutrient loss from crop fields due to their potential to supply plant-available nutrients in synchrony with crop requirements. The evaluation of the efficiency of these fertilizers in tropical oil palm agroecological conditions is not yet fully explored. In this study, a one-year field trial was conducted to determine the impact of fertilization with water soluble conventional mixture and controlled-release fertilizers on runoff loss of nutrients from an immature oil palm field. Soil and nutrient loss were monitored for one year in 2012/2013 under erosion plots of 16 m2 on 10% slope gradient. Mean sediments concentration in runoff amounted to about 6.41 t ha−1. Conventional mixture fertilizer posed the greatest risk of nutrient loss in runoff following fertilization due to elevated nitrogen (6.97%, potassium (13.37%, and magnesium (14.76% as percentage of applied nutrients. In contrast, this risk decreased with the application of controlled-release fertilizers, representing 0.75–2.44% N, 3.55–5.09% K, and 4.35–5.43% Mg loss. Meanwhile, nutrient loss via eroded sediments was minimal compared with loss through runoff. This research demonstrates that the addition of controlled-release fertilizers reduced the runoff risks of nutrient loss possibly due to their slow-release properties.

  6. Occupational heat stress and associated productivity loss estimation using the PHS model (ISO 7933): a case study from workplaces in Chennai, India.

    Science.gov (United States)

    Lundgren, Karin; Kuklane, Kalev; Venugopal, Vidhya

    2014-01-01

    Heat stress is a major occupational problem in India that can cause adverse health effects and reduce work productivity. This paper explores this problem and its impacts in selected workplaces, including industrial, service, and agricultural sectors in Chennai, India. Quantitative measurements of heat stress, workload estimations, and clothing testing, and qualitative information on health impacts, productivity loss, etc., were collected. Heat strain and associated impacts on labour productivity between the seasons were assessed using the International Standard ISO 7933:2004, which applies the Predicted Heat Strain (PHS) model. All workplaces surveyed had very high heat exposure in the hot season (Wet Bulb Globe Temperature =29.7), often reaching the international standard safe work values (ISO 7243:1989). Most workers had moderate to high workloads (170-220 W/m2), with some exposed to direct sun. Clothing was found to be problematic, with high insulation values in relation to the heat exposure. Females were found to be more vulnerable because of the extra insulation added from wearing a protective shirt on top of traditional clothing (0.96 clo) while working. When analysing heat strain--in terms of core temperature and dehydration--and associated productivity loss in the PHS model, the parameters showed significant impacts that affected productivity in all workplaces, apart from the laundry facility, especially during the hot season. For example, in the canteen, the core temperature limit of 38°C predicted by the model was reached in only 64 min for women. With the expected increases in temperature due to climate change, additional preventive actions have to be implemented to prevent further productivity losses and adverse health impacts. Overall, this study presented insight into using a thermo-physiological model to estimate productivity loss due to heat exposure in workplaces. This is the first time the PHS model has been used for this purpose. An exploratory

  7. Heat loss analysis-based design of a 12 MW wind power generator module having an HTS flux pump exciter

    International Nuclear Information System (INIS)

    Sung, Hae-Jin; Go, Byeong-Soo; Jiang, Zhenan; Park, Minwon; Yu, In-Keun

    2016-01-01

    Highlights: • A large-scale HTS generator module has been suggested to avoid issues such as a huge vacuum vessel and higher reliability. • The challenging heat loss analysis of a large-scale HTS generator has successfully been performed, enabling the design of an optimal support structure having a total heat loss of 43 W/400 kW. • The results prove the potential of a large-scale superconducting wind-power generator to operate efficiently, and support further development of the concept. - Abstract: The development of an effective high-temperature superconducting (HTS) generator is currently a research focus; however, the reduction of heat loss of a large-scale HTS generator is a challenge. This study deals with a heat loss analysis-based design of a 12 MW wind power generator module having an HTS flux pump exciter. The generator module consists of an HTS rotor of the generator and an HTS flux pump exciter. The specifications of the module were described, and the detailed configuration of the module was illustrated. For the heat loss analysis of the module, the excitation loss of the flux pump exciter, eddy current loss of all of the structures in the module, radiation loss, and conduction loss of an HTS coil supporter were assessed using a 3D finite elements method program. In the case of the conduction loss, different types of the supporters were compared to find out the supporter of the lowest conduction loss in the module. The heat loss analysis results of the module were reflected in the design of the generator module and discussed in detail. The results will be applied to the design of large-scale superconducting generators for wind turbines including a cooling system.

  8. Heat loss analysis-based design of a 12 MW wind power generator module having an HTS flux pump exciter

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Hae-Jin, E-mail: haejin0216@gmail.com [Changwon National University, 20 Changwondaehak-ro, Changwon, 641-773 (Korea, Republic of); Go, Byeong-Soo [Changwon National University, 20 Changwondaehak-ro, Changwon, 641-773 (Korea, Republic of); Jiang, Zhenan [Robinson Research Institute, Victoria University of Wellington, PO Box 33436 (New Zealand); Park, Minwon [Changwon National University, 20 Changwondaehak-ro, Changwon, 641-773 (Korea, Republic of); Yu, In-Keun, E-mail: yuik@changwon.ac.kr [Changwon National University, 20 Changwondaehak-ro, Changwon, 641-773 (Korea, Republic of)

    2016-11-15

    Highlights: • A large-scale HTS generator module has been suggested to avoid issues such as a huge vacuum vessel and higher reliability. • The challenging heat loss analysis of a large-scale HTS generator has successfully been performed, enabling the design of an optimal support structure having a total heat loss of 43 W/400 kW. • The results prove the potential of a large-scale superconducting wind-power generator to operate efficiently, and support further development of the concept. - Abstract: The development of an effective high-temperature superconducting (HTS) generator is currently a research focus; however, the reduction of heat loss of a large-scale HTS generator is a challenge. This study deals with a heat loss analysis-based design of a 12 MW wind power generator module having an HTS flux pump exciter. The generator module consists of an HTS rotor of the generator and an HTS flux pump exciter. The specifications of the module were described, and the detailed configuration of the module was illustrated. For the heat loss analysis of the module, the excitation loss of the flux pump exciter, eddy current loss of all of the structures in the module, radiation loss, and conduction loss of an HTS coil supporter were assessed using a 3D finite elements method program. In the case of the conduction loss, different types of the supporters were compared to find out the supporter of the lowest conduction loss in the module. The heat loss analysis results of the module were reflected in the design of the generator module and discussed in detail. The results will be applied to the design of large-scale superconducting generators for wind turbines including a cooling system.

  9. Distance determination of NPP and oil reservoir on enhanced oil recovery based on heat loss and safety in view point

    International Nuclear Information System (INIS)

    Erlan Dewita; Dedy Priambodo; Sudi Ariyanto

    2013-01-01

    EOR is a method used to increasing oil recovery by injecting material or other to the reservoir. There are 3 EOR technique have been used in the world, namely thermal injection, chemical injection dan Miscible. Thermal injection method is the method most widely used in the world, however, one drawback is the loss of heat during steam distribution to the injection wells. In Indonesia, EOR application has been successfully done in the field of Duri, Chevron uses steam injection method, but still use petroleum as a fuel for steam production. In order to save oil reserves, it was done the introduction of co-generation nuclear power plants to supply some of the heat of nuclear power plants for EOR processes. In cogeneration nuclear power plant, the safety aspect is main priority. The purpose of the study was to evaluate the distance NPP with oil wells by considering heat loss and safety aspects. The method of study and calculations done using Tempo Cycle program. The study results showed that in the distance of 400 meter as exclusion zone of PBMR reactor, with pipe insulation thickness 1 in, the amount of heat loss of 277, 883 kw, while in pipe isolation thickness 2 in, amount of heat loss became 162,634 kw and with isolation thickness 3 in, amount of heat loss 120,767 kw., heat loss can be overcome and provide insulation pipes and improve the quality of saturated steam into superheated. (author)

  10. Diagnosis of an alternative ammonia process technology to reduce exergy losses

    International Nuclear Information System (INIS)

    Ghannadzadeh, Ali; Sadeqzadeh, Majid

    2016-01-01

    Highlights: • Pinpointed non-efficient units by visualized exergetic ammonia process flowsheets. • Recommended ways towards sustainable ammonia productions based on exergy-loss sources. • Demonstrated applicability of the exergetic solutions panel on an ammonia process. - Abstract: Ammonia production through more efficient technologies can be achieved using exergy analysis. Ammonia production is one of the most important but also one of most energy consuming processes in the chemical industry. Based on a panel of solutions previously developed, this study helps to identify potential areas of improvement using an exergy analysis that covers all aspects of conventional ammonia synthesis and separation. The total internal and external exergy losses are calculated as 3,152 and 6,364 kJ/kg, respectively. The process is then divided into five main functional blocks based on their exergy losses. The reforming block contains the largest exergy loss (3,098 kJ/kg) and thus the largest potential for improvement including preheating cold feed through an economizer, developing technology towards isobaric mixing, and pressure drop reduction in the secondary reformer as the main contributors to the irreversibility (1,302 kJ/kg) in this block. The second largest exergy loss resides in the ammonia synthesis block (3,075 kJ/kg) where solutions such as reduced temperature rise across the compressor, proper compressor isolation, reducing undesired components such as argon in the reactor feed, and using lower temperatures for reactor outlet streams, are proposed to decrease the exergy losses. Throttling process in the syngas separator is the key contributing mechanism for the irreversibility (1,635 kJ/kg exergy losses) in the gas upgrading block. The exergy losses in the residual ammonia removal block (833 kJ/kg exergy losses) are mainly due to the stripper and the absorber column where a modified column design might be helpful. The highest exergy loss in the preheating block

  11. Domestic hot water. Measurements of consumption and heat loss from circulation pipes; Varmt brugsvand. Maaling af forbrug og varmetab fra cirkulationsledninger

    Energy Technology Data Exchange (ETDEWEB)

    Boehm, B.; Schroeder, F.; Bergsoee, N.C.

    2009-07-01

    circulation line or use of HWAT should be carefully analysed. 3) For office buildings it is recommended to consider the use of a decentralized, electrical hot water production in preference to a traditional solution with circulation lines. Even if the electricity consumption is weighted by a factor of 2.5 it may be advantageous to use decentralized, electrical water heaters. 4) For apartment buildings, the trend is that it should be possible to measure the consumption in each individual apartment. Therefore, flat stations with a district heating unit in each apartment should be compared with traditional ways of supplying and measuring heat to apartments (heat allocators). 5) New types of circulation lines should be considered, e.g. concentric pipes or twin pipes, which may reduce pipe heat losses considerably. Also, prefabricated vertical pipes should be considered. Regulations as regards inaccessible joints and penetrations including requirements regarding precautionary measures concerning fire must be observed. 6) It is recommended that in depth analyses are conducted on how much of the heat loss from the DHW system that actually can be utilised in a building. (LN)

  12. The dry-heat loss effect of melt-spun phase change material fibres.

    Science.gov (United States)

    Tjønnås, Maria Suong; Færevik, Hilde; Sandsund, Mariann; Reinertsen, Randi E

    2015-01-01

    Phase change materials (PCM) have the ability to store latent heat when they change phases, a property that gives clothing that incorporates PCM its cooling effect. This study investigated the effect of dry-heat loss (cooling) of a novel melt-spun PCM fibre on the basis of the area covered, mass, the latent heat of fusion and melting temperature, compared to a known PCM clothing product. PCM fibres with melting temperatures of 28.4 and 32.0°C and PCM packs with melting temperatures of 28.0 and 32.0°C were studied. The results showed that the PCM fibres had a larger initial peak cooling effect than that of the PCM packs. The duration of the cooling effect of PCM fibres was primarily dependent on the PCM mass and the latent heat of fusion capacity, and secondly on the covered area and melting temperature of the PCM. This study investigates the cooling effect of PCM fibres on a thermal manikin. The PCM fibres had a high but short-lasting cooling effect. This study contributes to the knowledge of how the body's temperature regulation may be affected by the cooling properties of clothing that incorporates PCM.

  13. Unmanned Aerial Vehicles for Environmental Monitoring with Special Reference to Heat Loss

    Science.gov (United States)

    Anweiler, Stanisław; Piwowarski, Dawid; Ulbrich, Roman

    2017-10-01

    This paper presents the design and implementation of device for remote and automatic monitoring of temperature field of large objects. The project aimed to create a quadcopter flying platform equipped with a thermal imaging camera. The object of the research was district heating installations above ground and underground. The results of the work on the implementation of low-cost (below 750 EUR) and efficient heat loss monitoring system. The system consists of a small (<2kg) multirotor platform. To perform thermal images micro camera FlirOne with microcomputer Raspberry Pi3 was used. Exploitation of UAVs in temperature field monitoring reveals only a fraction of their capabilities. The fast-growing multirotor platform market continues to deliver new solutions and improvements. Their use in monitoring the environment is limited only by the imagination of the user.

  14. Unmanned Aerial Vehicles for Environmental Monitoring with Special Reference to Heat Loss

    Directory of Open Access Journals (Sweden)

    Anweiler Stanisław

    2017-01-01

    Full Text Available This paper presents the design and implementation of device for remote and automatic monitoring of temperature field of large objects. The project aimed to create a quadcopter flying platform equipped with a thermal imaging camera. The object of the research was district heating installations above ground and underground. The results of the work on the implementation of low-cost (below 750 EUR and efficient heat loss monitoring system. The system consists of a small (<2kg multirotor platform. To perform thermal images micro camera FlirOne with microcomputer Raspberry Pi3 was used. Exploitation of UAVs in temperature field monitoring reveals only a fraction of their capabilities. The fast-growing multirotor platform market continues to deliver new solutions and improvements. Their use in monitoring the environment is limited only by the imagination of the user.

  15. Reducing nitrate loss in tile drainage water with cover crops and water-table management systems.

    Science.gov (United States)

    Drury, C F; Tan, C S; Welacky, T W; Reynolds, W D; Zhang, T Q; Oloya, T O; McLaughlin, N B; Gaynor, J D

    2014-03-01

    Nitrate lost from agricultural soils is an economic cost to producers, an environmental concern when it enters rivers and lakes, and a health risk when it enters wells and aquifers used for drinking water. Planting a winter wheat cover crop (CC) and/or use of controlled tile drainage-subirrigation (CDS) may reduce losses of nitrate (NO) relative to no cover crop (NCC) and/or traditional unrestricted tile drainage (UTD). A 6-yr (1999-2005) corn-soybean study was conducted to determine the effectiveness of CC+CDS, CC+UTD, NCC+CDS, and NCC+UTD treatments for reducing NO loss. Flow volume and NO concentration in surface runoff and tile drainage were measured continuously, and CC reduced the 5-yr flow-weighted mean (FWM) NO concentration in tile drainage water by 21 to 38% and cumulative NO loss by 14 to 16% relative to NCC. Controlled tile drainage-subirrigation reduced FWM NO concentration by 15 to 33% and cumulative NO loss by 38 to 39% relative to UTD. When CC and CDS were combined, 5-yr cumulative FWM NO concentrations and loss in tile drainage were decreased by 47% (from 9.45 to 4.99 mg N L and from 102 to 53.6 kg N ha) relative to NCC+UTD. The reductions in runoff and concomitant increases in tile drainage under CC occurred primarily because of increases in near-surface soil hydraulic conductivity. Cover crops increased corn grain yields by 4 to 7% in 2004 increased 3-yr average soybean yields by 8 to 15%, whereas CDS did not affect corn or soybean yields over the 6 yr. The combined use of a cover crop and water-table management system was highly effective for reducing NO loss from cool, humid agricultural soils. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  16. Applying Value Stream Mapping to reduce food losses and wastes in supply chains: A systematic review.

    Science.gov (United States)

    De Steur, Hans; Wesana, Joshua; Dora, Manoj K; Pearce, Darian; Gellynck, Xavier

    2016-12-01

    The interest to reduce food losses and wastes has grown considerably in order to guarantee adequate food for the fast growing population. A systematic review was used to show the potential of Value Stream Mapping (VSM) not only to identify and reduce food losses and wastes, but also as a way to establish links with nutrient retention in supply chains. The review compiled literature from 24 studies that applied VSM in the agri-food industry. Primary production, processing, storage, food service and/or consumption were identified as susceptible hotspots for losses and wastes. Results further revealed discarding and nutrient loss, most especially at the processing level, as the main forms of loss/waste in food, which were adapted to four out of seven lean manufacturing wastes (i.e. defect, unnecessary inventory, overproduction and inappropriate processing). This paper presents the state of the art of applying lean manufacturing practices in the agri-food industry by identifying lead time as the most applicable performance indicator. VSM was also found to be compatible with other lean tools such as Just-In-Time and 5S which are continuous improvement strategies, as well as simulation modelling that enhances adoption. In order to ensure successful application of lean practices aimed at minimizing food or nutrient losses and wastes, multi-stakeholder collaboration along the entire food supply chain is indispensable. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. ATHENA simulations of divertor pump trip and loss of heat sink transients for the GSSR

    Energy Technology Data Exchange (ETDEWEB)

    Sjoeberg, A

    2001-04-01

    The ITER-FEAT Generic Site Safety Report includes evaluations of the consequences of various types of conceivable transients that may occur during operation. The transients that have to be considered in this respect are specified in the Accident Analysis Specifications document of the safety report. For the divertor primary heat transport system the ranges of transients include amongst others a trip of the main circulation pump in the divertor cooling loop as well as a loss of heat sink, both initiated at full fusion power operation. The thermal-hydraulic consequences related to the coolability of the divertor primary heat transport system components for these two transients have been evaluated and summarized in the safety report and in the current report an overview of those efforts and associated outcome is provided. The analyses have been made with the ATHENA thermal-hydraulic code using a separately developed ATHENA model of the ITER-FEAT divertor cooling system. The results from the analyses indicate that for the pump trip transient the margin against overheating of critical highly loaded parts of the divertor cassette is small but seems sufficient. In case of the loss of heat sink transient the conservative analysis reveals that the pressurizer safety valve will be opened for an extended period of time and the long term transient development indicates a risk of completely filling up the pressurizer vessel. Thus the margins against jeopardizing the integrity of the divertor cooling system with the current design are for this case small but can for a long term operation at associate conditions pose a problem.

  18. A method to determine stratification efficiency of thermal energy storage processes independently from storage heat losses

    DEFF Research Database (Denmark)

    Haller, M.Y.; Yazdanshenas, Eshagh; Andersen, Elsa

    2010-01-01

    process is in agreement with the first law of thermodynamics. A comparison of the stratification efficiencies obtained from experimental results of charging, standby, and discharging processes gives meaningful insights into the different mixing behaviors of a storage tank that is charged and discharged......A new method for the calculation of a stratification efficiency of thermal energy storages based on the second law of thermodynamics is presented. The biasing influence of heat losses is studied theoretically and experimentally. Theoretically, it does not make a difference if the stratification...

  19. A Numerical Study on Effect of Gas-Phase Radiative Heat Loss on Extinction of Hydrogen Diffusion Flames

    International Nuclear Information System (INIS)

    Sohn, Chae Hoon

    2007-01-01

    Extinction characteristics of hydrogen-air diffusion flames are investigated numerically by adopting counterflow flame configuration. At various pressures, effect of radiative heat loss on flame extinction is examined. Only gas-phase radiation is considered here. Radiative heat loss depends on flame thickness, temperature, H 2 O concentration, and pressure. From flame structures at various pressures, flame thickness decreases with pressure, but its gradient decreases at high pressure. Flame temperature and mole fraction of H 2 O increase slightly with pressure. Accordingly, as pressure increases, radiative heat loss becomes dominant. When radiative heat loss is considered, radiation-induced extinction is observed at low strain rate in addition to transport-induced extinction. As pressure increases, flammable region shifts to the high-temperature region and then, shrunk to the point on the coordinate plane of flame temperature and strain rate

  20. Fitness-related differences in the rate of whole-body evaporative heat loss in exercising men are heat-load dependent.

    Science.gov (United States)

    Lamarche, Dallon T; Notley, Sean R; Louie, Jeffrey C; Poirier, Martin P; Kenny, Glen P

    2018-01-01

    What is the central question of this study? Aerobic fitness modulates heat loss, but the heat-load threshold at which fitness-related differences in heat loss occur in young healthy men remains unclear. What is the main finding and its importance? We demonstrate using direct calorimetry that aerobic fitness modulates heat loss in a heat-load-dependent manner, with fitness-related differences occurring between young men who have low and high fitness when the heat load is ∼≥500 W. Although aerobic fitness has been known for some time to modulate heat loss, our findings define the precise heat-load threshold at which fitness-related differences occur. The effect of aerobic fitness (defined as rate of peak oxygen consumption) on heat loss during exercise is thought to be related to the level of heat stress. However, it remains unclear at what combined exercise and environmental (net) heat-load threshold these fitness-related differences occur. To identify this, we assessed whole-body heat exchange (dry and evaporative) by direct calorimetry in young (22 ± 3 years) men matched for physical characteristics with low (Low-fit; 39.8 ± 2.5 ml O 2  kg -1  min -1 ), moderate (Mod-fit; 50.9 ± 1.2 ml O 2  kg -1  min -1 ) and high aerobic fitness (High-fit; 62.0 ± 4.4 ml O 2  kg -1  min -1 ; each n = 8), during three 30 min bouts of cycling in dry heat (40°C, 12% relative humidity) at increasing rates of metabolic heat production of 300 (Ex1), 400 (Ex2) and 500 W (Ex3), each followed by a 15 min recovery period. Each group was exposed to a similar net heat load (metabolic plus ∼100 W dry heat gain; P = 0.83) during each exercise bout [∼400 (Ex1), ∼500 (Ex2) and ∼600 W (Ex3); P fit (Ex2, 466 ± 21 W; Ex3, 557 ± 26 W) compared with the Low-fit group (Ex2, 439 ± 22 W; Ex3, 511 ± 20 W) during Ex2 and Ex3 (P ≤ 0.03). Conversely, evaporative heat loss for the Mod-fit group did not differ from either the High-fit or Low

  1. DOES INTRAVENOUS TRANEXAMIC ACID REDUCE BLOOD LOSS DURING SURGICALLY ASSISTED RAPID PALATAL EXPANSION?

    Directory of Open Access Journals (Sweden)

    Emine AKBAŞ

    2017-10-01

    Full Text Available Purpose: The purpose of this study was to evaluate the efficacy of tranexamic acid (TXA in reducing blood loss during surgically assisted rapid palatal expansion (SARPE procedure. Subjects and Methods: A total of 34 patients (12 male, 22 female who had been treated surgically under general anesthesia with SARPE including pterygoid disjunction for transverse maxillary deficiency (TMD were included in this study. The study group (n=17 received intravenous (IV TXA 10 mg/kg as a preoperative bolus; the control group (n=17 received normal saline solution. Preoperative and postoperative haemoglobin and haematocrit values, intraoperative blood loss, and any blood product transfusion were recorded. Results: Blood loss during SARPE was statistically significantly less in the study group than the control group (p=0.0001. Conclusion: Preoperative IV administration of TXA can effectively control blood loss during when SARPE with pterygoid disjunction is performed.

  2. Preoperative methylprednisolone does not reduce loss of knee-extension strength after total knee arthroplasty

    DEFF Research Database (Denmark)

    Lindberg-Larsen, Viktoria; Bandholm, Thomas Q; Zilmer, Camilla K

    2017-01-01

    tests, rescue analgesic requirements, and plasma C-reactive protein (CRP) changes. Results - 61 patients completed the follow-up. The loss in quadriceps muscle strength was similar between groups; group MP 1.04 (0.22-1.91) Nm/kg (-89%) vs. group C 1.02 (0.22-1.57) Nm/kg (-88%). Also between......-265) mg/L (p loss of knee-extension strength or other functional outcomes at discharge after fast-track TKA despite a reduced systemic inflammatory response.......Background and purpose - Patients undergoing total knee arthroplasty (TKA) face challenges related to postoperative reduction in knee-extension strength. We evaluated whether inhibition of the inflammatory response by a single preoperative dose of methylprednisolone (MP) reduces the pronounced loss...

  3. Reduced loss of NH 3 by coating urea with biodegradable polymers ...

    African Journals Online (AJOL)

    In agricultural lands, the loss of NH3 from surface-applied urea and micronutrient deficiencies are the two most common problems, which can be solved by using coated urea with micronutrients and biodegradable natural materials. These coatings can improve the nutrient status in the soil and simultaneously reduce ...

  4. Combined Intra-Articular and Intravenous Tranexamic Acid Reduces Blood Loss in Total Knee Arthroplasty

    DEFF Research Database (Denmark)

    Nielsen, Christian Skovgaard; Jans, Øivind; Ørsnes, Thue

    2016-01-01

    BACKGROUND: In total knee arthroplasty, both intravenous (IV) and intra-articular (IA) administration of tranexamic acid (TXA) have been shown to reduce blood loss in several randomized controlled trials, although routine use of systemic TXA is considerably more common. However, to our knowledge...

  5. Evaluating alternative fuel treatment strategies to reduce wildfire losses in a Mediterranean area

    Science.gov (United States)

    Michele Salis; Maurizio Laconi; Alan A. Ager; Fermin J. Alcasena; Bachisio Arca; Olga Lozano; Ana Fernandes de Oliveira; Donatella Spano

    2016-01-01

    The goal of this work is to evaluate by a modeling approach the effectiveness of alternative fuel treatment strategies to reduce potential losses from wildfires in Mediterranean areas. We compared strategic fuel treatments located near specific human values vs random locations, and treated 3, 9 and 15% of a 68,000 ha study area located in Sardinia, Italy. The...

  6. Regulatory analysis for the resolution of Generic Issue 99: Loss of RHR [residual heat removal] capability in PWRs

    International Nuclear Information System (INIS)

    Spano, A.H.

    1989-02-01

    Generic Issue 99 is concerned with the loss of residual heat removal (RHR) capability in pressurized water reactors during cold-plant outage operations. The issue focuses on two risk-significant common-cause failure modes of the RHR system: (1) air binding of the RHR pumps during reduced-inventory operations and (2) spurious closure of the RHR suction valves due to misapplication of the autoclosure interlocks. Resolution of this issue involves consideration of the adequacy of plant capabilities for (1) preventing losses of RHR, (2) responding promptly and effectively to such challenges in order to prevent core damage, and (3) ensuring timely containment protection against the release of radioactivity to the environment in the unlikely event of core damage due to loss of shutdown cooling. This entails examination of (1) relevant operational and accident response procedures, (2) the instrumentation available to the operator for accident diagnosis and mitigation, and (3) the administrative controls available for ensuring control room cognizance of ongoing maintenance activities that could potentially affect the stability of the reactor coolant system. This regulatory analysis provides quantitative assessments of the costs and benefits associated with several alternatives considered for the resolution of Generic Issue 99. 24 refs

  7. Minimizing scatter-losses during pre-heat for magneto-inertial fusion targets

    Science.gov (United States)

    Geissel, Matthias; Harvey-Thompson, Adam J.; Awe, Thomas J.; Bliss, David E.; Glinsky, Michael E.; Gomez, Matthew R.; Harding, Eric; Hansen, Stephanie B.; Jennings, Christopher; Kimmel, Mark W.; Knapp, Patrick; Lewis, Sean M.; Peterson, Kyle; Schollmeier, Marius; Schwarz, Jens; Shores, Jonathon E.; Slutz, Stephen A.; Sinars, Daniel B.; Smith, Ian C.; Speas, C. Shane; Vesey, Roger A.; Weis, Matthew R.; Porter, John L.

    2018-02-01

    The size, temporal and spatial shape, and energy content of a laser pulse for the pre-heat phase of magneto-inertial fusion affect the ability to penetrate the window of the laser-entrance-hole and to heat the fuel behind it. High laser intensities and dense targets are subject to laser-plasma-instabilities (LPI), which can lead to an effective loss of pre-heat energy or to pronounced heating of areas that should stay unexposed. While this problem has been the subject of many studies over the last decades, the investigated parameters were typically geared towards traditional laser driven Inertial Confinement Fusion (ICF) with densities either at 10% and above or at 1% and below the laser's critical density, electron temperatures of 3-5 keV, and laser powers near (or in excess of) 1 × 1015 W/cm2. In contrast, Magnetized Liner Inertial Fusion (MagLIF) [Slutz et al., Phys. Plasmas 17, 056303 (2010) and Slutz and Vesey, Phys. Rev. Lett. 108, 025003 (2012)] currently operates at 5% of the laser's critical density using much thicker windows (1.5-3.5 μm) than the sub-micron thick windows of traditional ICF hohlraum targets. This article describes the Pecos target area at Sandia National Laboratories using the Z-Beamlet Laser Facility [Rambo et al., Appl. Opt. 44(12), 2421 (2005)] as a platform to study laser induced pre-heat for magneto-inertial fusion targets, and the related progress for Sandia's MagLIF program. Forward and backward scattered light were measured and minimized at larger spatial scales with lower densities, temperatures, and powers compared to LPI studies available in literature.

  8. Evaluation of a loss of residual heat removal event during mid-loop operation

    International Nuclear Information System (INIS)

    Seul, Kwang Won; Bang, Young Seok; Lee, Sukho; Kim, Hho Jung

    1996-01-01

    The potential for the RELAP5/MOD3.2 was assessed for the loss-of -RHR event during the mid-loop operation and the predictability of major thermal-hydraulic phenomena was also evaluated for the long term transient. The analysis results of the typical two cases(cold leg opening case and pressurizer opening case) were compared with experimental data which was conducted at ROSA-IV/LSTF in Japan. As a result, it was shown that the code was capable of simulating the thermal-hydraulic transport process with appropriate time step during the reduced inventory operation with the loss-of-RHR system

  9. Reducing Thermal Losses and Gains With Buried and Encapsulated Ducts in Hot-Humid Climates

    Energy Technology Data Exchange (ETDEWEB)

    Shapiro, C.; Magee, A.; Zoeller, W.

    2013-02-01

    The Consortium for Advanced Residential Buildings (CARB) monitored three houses in Jacksonville, FL, to investigate the effectiveness of encapsulated and encapsulated/buried ducts in reducing thermal losses and gains from ductwork in unconditioned attics. Burying ductwork beneath loose-fill insulation has been identified as an effective method of reducing thermal losses and gains from ductwork in dry climates, but it is not applicable in humid climates where condensation may occur on the outside of the duct jacket. By encapsulating the ductwork in closed cell polyurethane foam (ccSPF) before burial beneath loose-fill mineral fiber insulation, the condensation potential may be reduced while increasing the R-value of the ductwork.

  10. Reducing N losses through surface runoff from rice-wheat rotation by improving fertilizer management.

    Science.gov (United States)

    Cao, Yansheng; Sun, Huifeng; Liu, Yaqin; Fu, Zishi; Chen, Guifa; Zou, Guoyan; Zhou, Sheng

    2017-02-01

    To better understand N runoff losses from rice-wheat rotation and demonstrate the effectiveness of improved fertilizer management in reducing N runoff losses, a field study was conducted for three consecutive rice-wheat rotations. Nitrogen losses through surface runoff were measured for five treatments, including CK without N application, C200, C300 simulating the conventional practices, CO200, and CO300. Optimum N rate was applied for C200 and CO200, and 30% of chemical fertilizer was substituted with organic fertilizer for CO200 and CO300 with respect to C200 and C300, respectively. Rice season had higher runoff coefficients than wheat season. Approximately 52% of total N was lost as NH 4 + -N in rice season, ranging from 21 to 83%, and in wheat season, the proportion of NO 3 - -N in total N averaged 53% with a variation from 38 to 67%. The N treatments lost less total N in rice season (1.67-10.7 kg N ha -1 ) than in wheat season (1.72-17.1 kg N ha -1 ). These suggested that a key to controlling N runoff losses from rice-wheat rotation was to limit NO 3 - -N accumulation in wheat season. In both seasons, N runoff losses for C200 and CO300 were lower than those for C300. CO200 better cut N losses than C200 and CO300, with 64 and 57% less N in rice and wheat seasons than C300, respectively. Compared with the conventional practices, optimum N inputs integrated with co-application of organic and chemical fertilizers could reduce N runoff losses with a better N balance under rice-wheat rotation.

  11. Maintained intentional weight loss reduces cardiovascular outcomes: results from the Sibutramine Cardiovascular OUTcomes (SCOUT) trial.

    Science.gov (United States)

    Caterson, I D; Finer, N; Coutinho, W; Van Gaal, L F; Maggioni, A P; Torp-Pedersen, C; Sharma, A M; Legler, U F; Shepherd, G M; Rode, R A; Perdok, R J; Renz, C L; James, W P T

    2012-06-01

    The Sibutramine Cardiovascular OUTcomes trial showed that sibutramine produced greater mean weight loss than placebo but increased cardiovascular morbidity but not mortality. The relationship between 12-month weight loss and subsequent cardiovascular outcomes is explored. Overweight/obese subjects (N = 10 744), ≥55 years with cardiovascular disease and/or type 2 diabetes mellitus, received sibutramine plus weight management during a 6-week Lead-in Period before randomization to continue sibutramine (N = 4906) or to receive placebo (N = 4898). The primary endpoint was the time from randomization to first occurrence of a primary outcome event (non-fatal myocardial infarction, non-fatal stroke, resuscitated cardiac arrest or cardiovascular death). For the total population, mean weight change during Lead-in Period (sibutramine) was -2.54 kg. Post-randomization, mean total weight change to Month 12 was -4.18 kg (sibutramine) or -1.87 kg (placebo). Degree of weight loss during Lead-in Period or through Month 12 was associated with a progressive reduction in risk for the total population in primary outcome events and cardiovascular mortality over the 5-year assessment. Although more events occurred in the randomized sibutramine group, on an average, a modest weight loss of approximately 3 kg achieved in the Lead-in Period appeared to offset this increased event rate. Moderate weight loss (3-10 kg) reduced cardiovascular deaths in those with severe, moderate or mild cardiovascular disease. Modest weight loss over short-term (6 weeks) and longer-term (6-12 months) periods is associated with reduction in subsequent cardiovascular mortality for the following 4-5 years even in those with pre-existing cardiovascular disease. While the sibutramine group experienced more primary outcome events than the placebo group, greater weight loss reduced overall risk of these occurring in both groups. © 2011 Blackwell Publishing Ltd.

  12. Comparison of the Heat Release Rate from the Mass Loss Calorimeter to the Cone Calorimeter for Wood-based Materials

    Science.gov (United States)

    Laura E. Hasburgh; Robert H. White; Mark A. Dietenberger; Charles R. Boardman

    2015-01-01

    There is a growing demand for material properties to be used as inputs in fi re behavior models designed to address building fire safety. This comparative study evaluates using the mass loss calorimeter as an alternative to the cone calorimeter for obtaining heat release rates of wood-based materials. For this study, a modified mass loss calorimeter utilized an...

  13. ATHENA simulations of divertor loss of heat sink transient for the GSSR - Final report with updates

    Energy Technology Data Exchange (ETDEWEB)

    Sponton, L.L

    2001-05-01

    The ITER-FEAT Generic Site Safety Report includes evaluations of the consequences of various types of conceivable transients that can occur during operation. The transients that have to be considered in this respect are specified in the Accident Analysis Specifications document of the safety report. For the divertor primary heat transport system the ranges of transients include amongst others a loss of heat sink at full fusion power operation. The thermal-hydraulic consequences related to the coolability of the divertor primary heat transport system components for this transient have been evaluated and summarised in the safety report and in the current report an overview of those efforts and associated outcome is provided. The analyses have been made with the ATHENA thermal-hydraulic code using a separately developed ATHENA model of the ITER-FEAT divertor cooling system. In the current report results from calculations with an updated pressurizer model and pressurizer control system are outlined. The results show that the pressurizer safety valve does not open, that the pressurizer level increase is moderate and that no temperature increases jeopardize the structure integrity.

  14. ATHENA simulations of divertor loss of heat sink transient for the GSSR - Final report with updates

    International Nuclear Information System (INIS)

    Sponton, L.L.

    2001-05-01

    The ITER-FEAT Generic Site Safety Report includes evaluations of the consequences of various types of conceivable transients that can occur during operation. The transients that have to be considered in this respect are specified in the Accident Analysis Specifications document of the safety report. For the divertor primary heat transport system the ranges of transients include amongst others a loss of heat sink at full fusion power operation. The thermal-hydraulic consequences related to the coolability of the divertor primary heat transport system components for this transient have been evaluated and summarised in the safety report and in the current report an overview of those efforts and associated outcome is provided. The analyses have been made with the ATHENA thermal-hydraulic code using a separately developed ATHENA model of the ITER-FEAT divertor cooling system. In the current report results from calculations with an updated pressurizer model and pressurizer control system are outlined. The results show that the pressurizer safety valve does not open, that the pressurizer level increase is moderate and that no temperature increases jeopardize the structure integrity

  15. Investigation on heat transfer enhancement and pressure loss of double swirl chambers cooling

    Directory of Open Access Journals (Sweden)

    Gang Lin

    2013-09-01

    Full Text Available By merging two standard swirl chambers, an alternative cooling configuration named double swirl chambers (DSC has been developed. In the DSC cooling configuration, the main physical phenomena of the swirl flow in swirl chamber and the advantages of swirl flow in heat transfer augmentation are maintained. Additionally, three new physical phenomena can be found in DSC cooling configuration, which result in a further improvement of the heat transfer: (1 impingement effect has been observed, (2 internal heat exchange has been enhanced between fluids in two swirls, and (3 “∞” shape swirl has been generated because of cross effect between two chambers, which improves the mixing of the fluids. Because of all these improvements, the DSC cooling configuration leads to a higher globally-averaged thermal performance parameter (Nu¯¯/Nu∞/(f/f01/3 than standard swirl chamber. In particular, at the inlet region, the augmentation of the heat transfer is nearly 7.5 times larger than the fully developed non-swirl turbulent flow and the circumferentially averaged Nusselt number coefficient is 41% larger than the standard swirl chamber. Within the present work, a further investigation on the DSC cooling configuration has been focused on the influence of geometry parameters e.g. merging ratio of chambers and aspect ratio of inlet duct on the cooling performance. The results show a very large influence of these geometry parameters in heat transfer enhancement and pressure drop ratio. Compared with the basic configuration of DSC cooling, the improved configuration with 20% to 23% merging ratio shows the highest globally-averaged thermal performance parameter. With the same cross section area in tangential inlet ducts, the DSC cooling channel with larger aspect ratio shows larger heat transfer enhancement and at the same time reduced pressure drop ratio, which results in a better globally-averaged thermal performance parameter.

  16. Study of Power Loss Reduction in SEPR Converters for Induction Heating through Implementation of SiC Based Semiconductor Switches

    Directory of Open Access Journals (Sweden)

    Angel Marinov

    2014-08-01

    Full Text Available This paper presents a power loss analysis for a Single Ended Parallel Resonance (SEPR Converter used for induction heating. The analysis includes a comparison of the losses in the electronic switch when the circuit is realized using a conventional Silicon (Si based IGBT or when using Silicon Carbide (SiC based MOSFET. The analysis includes modelling and simulation as well as experimental verification through power loss and heat dissipation measurement. The presented results can be used as a base of comparison between the switches and can be a starting point for efficiency based design of those types of converters.

  17. Effect of prolonged heat treatments at low temperature on shear force and cooking loss in cows and young bulls

    DEFF Research Database (Denmark)

    Christensen, L.; Andersen, L.; Løje, Hanne

    2011-01-01

    and cooking loss in semitendinosus from cows (4-6 years) and young bulls (12-14 months), representing 2 categories of beef with varying thermal strength of connective tissue. Vacuum packed muscle samples were heat treated at 53°C, 55°C, 58°C and 63°C in water baths for 2½, 7½ and 19½ h. Cooking loss...... 53°C to 55°C, or when increasing heating time from 2½ to 7½ h at 53°C. In semitendinosus from cows shear force decreased significantly with increasing temperature, and with increasing heating time from 2½ to 19½ h at 55°C and 63°C. Cooking loss increased with increasing heating temperature in both...

  18. Minocycline reduces neuroinflammation but does not ameliorate neuron loss in a mouse model of neurodegeneration

    Science.gov (United States)

    Cheng, Shanshan; Hou, Jinxing; Zhang, Chen; Xu, Congyu; Wang, Long; Zou, Xiaoxia; Yu, Huahong; Shi, Yun; Yin, Zhenyu; Chen, Guiquan

    2015-01-01

    Minocycline is a broad-spectrum tetracycline antibiotic. A number of preclinical studies have shown that minocycline exhibits neuroprotective effects in various animal models of neurological diseases. However, it remained unknown whether minocycline is effective to prevent neuron loss. To systematically evaluate its effects, minocycline was used to treat Dicer conditional knockout (cKO) mice which display age-related neuron loss. The drug was given to mutant mice prior to the occurrence of neuroinflammation and neurodegeneration, and the treatment had lasted 2 months. Levels of inflammation markers, including glial fibrillary acidic protein (GFAP), ionized calcium-binding adapter molecule1 (Iba1) and interleukin6 (IL6), were significantly reduced in minocycline-treated Dicer cKO mice. In contrast, levels of neuronal markers and the total number of apoptotic cells in Dicer cKO mice were not affected by the drug. In summary, inhibition of neuroinflammation by minocycline is insufficient to prevent neuron loss and apoptosis. PMID:26000566

  19. Reducing support loss in micromechanical ring resonators using phononic band-gap structures

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Feng-Chia; Huang, Tsun-Che; Wang, Chin-Hung; Chang, Pin [Industrial Technology Research Institute-South, Tainan 709, Taiwan (China); Hsu, Jin-Chen, E-mail: fengchiahsu@itri.org.t, E-mail: hsujc@yuntech.edu.t [Department of Mechanical Engineering, National Yunlin University of Science and Technology, Douliou, Yunlin 64002, Taiwan (China)

    2011-09-21

    In micromechanical resonators, energy loss via supports into the substrates may lead to a low quality factor. To eliminate the support loss, in this paper a phononic band-gap structure is employed. We demonstrate a design of phononic-crystal (PC) strips used to support extensional wine-glass mode ring resonators to increase the quality factor. The PC strips are introduced to stop elastic-wave propagation by the band-gap and deaf-band effects. Analyses of resonant characteristics of the ring resonators and the dispersion relations, eigenmodes, and transmission properties of the PC strips are presented. With the proposed resonator architecture, the finite-element simulations show that the leaky power is effectively reduced and the stored energy inside the resonators is enhanced simultaneously as the operating frequencies of the resonators are within the band gap or deaf bands. Realization of a high quality factor micromechanical ring resonator with minimized support loss is expected.

  20. Reducing support loss in micromechanical ring resonators using phononic band-gap structures

    International Nuclear Information System (INIS)

    Hsu, Feng-Chia; Huang, Tsun-Che; Wang, Chin-Hung; Chang, Pin; Hsu, Jin-Chen

    2011-01-01

    In micromechanical resonators, energy loss via supports into the substrates may lead to a low quality factor. To eliminate the support loss, in this paper a phononic band-gap structure is employed. We demonstrate a design of phononic-crystal (PC) strips used to support extensional wine-glass mode ring resonators to increase the quality factor. The PC strips are introduced to stop elastic-wave propagation by the band-gap and deaf-band effects. Analyses of resonant characteristics of the ring resonators and the dispersion relations, eigenmodes, and transmission properties of the PC strips are presented. With the proposed resonator architecture, the finite-element simulations show that the leaky power is effectively reduced and the stored energy inside the resonators is enhanced simultaneously as the operating frequencies of the resonators are within the band gap or deaf bands. Realization of a high quality factor micromechanical ring resonator with minimized support loss is expected.

  1. SCDAP/RELAP5 modeling of heat transfer and flow losses in lower head porous debris. Rev. 1

    International Nuclear Information System (INIS)

    Siefken, L.J.; Coryell, E.W.; Paik, S.; Kuo, H.

    1999-01-01

    Designs are described for implementing models for calculating the heat transfer and flow losses in porous debris in the lower head of a reactor vessel. The COUPLE model in SCDAP/RELAP5 represents both the porous and nonporous debris that results from core material slumping into the lower head. Currently, the COUPLE model has the capability to model convective and radiative heat transfer from the surfaces of nonporous debris in a detailed manner and to model only in a simplistic manner the heat transfer from porous debris. In order to advance beyond the simplistic modeling for porous debris, designs are developed for detailed calculations of heat transfer and flow losses in porous debris. Correlations are identified for convective heat transfer in porous debris for the following modes of heat transfer; (1) forced convection to liquid, (2) forced convection to gas, (3) nucleate boiling, (4) transition boiling, and (5) film boiling. Interphase heat transfer is modeled in an approximate ma nner. Designs are described for models to calculate the flow losses and interphase drag of fluid flowing through the interstices of the porous debris, and to apply these variables in the momentum equations in the RELAP5 part of the code. Since the models for heat transfer and flow losses in porous debris in the lower head are designed for general application, a design is also described for implementation of these models to the analysis of porous debris in the core region. A test matrix is proposed for assessing the capability of the implemented models to calculate the heat transfer and flow losses in porous debris. The implementation of the models described in this report is expected to improve the COUPLE code calculation of the temperature distribution in porous debris and in the lower head that supports the debris. The implementation of these models is also expected to improve the calculation of the temperature and flow distribution in porous debris in the core region

  2. Use of Insulated Covers over Product Crates to Reduce Losses in Amaranth during Shipping Delays

    Directory of Open Access Journals (Sweden)

    Lizanne Wheeler

    2015-12-01

    Full Text Available Amaranth is a leafy vegetable with high nutrient content which is sensitive to temperature and low relative humidity. Delays in shipment to market may result in significant losses, therefore improved packaging to minimize mechanical damage and reduce moisture loss are desirable. Amaranth was stored in three types of consumer packages, bunches, clamshells and thin plastic bags, within vented plastic crates. Pallet loads were either covered with insulated material or not, while awaiting transportation. Results indicated covering pallets improved the color and overall quality while reducing weight loss and wilting. Covered crates had a “good” (7.6/9.0 overall quality while uncovered averaged 5.5/9.0 or “moderate” quality. There were significant differences in consumer package type, with the bagged amaranth having almost “excellent” quality (8.8/9.0 compared to “good-fair” quality in clamshells (6.2/9.0 and “poor-fair” quality in the control bunches (4.7/9.0. Amaranth stored in thin plastic bags was better in quality and color, with less weight loss and wilting, however, temperatures at the end of six hours of storage were higher and this may lead to microbial growth. Storage of amaranth in thin bags or clamshell packages, within plastic crates covered with insulated pallet covers while awaiting shipping resulted in improved overall quality and color.

  3. Viewing sexual images is associated with reduced physiological arousal response to gambling loss.

    Science.gov (United States)

    Lui, Ming; Hsu, Ming

    2018-01-01

    Erotic imagery is one highly salient emotional signal that exists everywhere in daily life. The impact of sexual stimuli on human decision-making, however, has rarely been investigated. This study examines the impact of sexual stimuli on financial decision-making under risk. In each trial, either a sexual or neutral image was presented in a picture categorization task before a gambling task. Thirty-four men made gambling decisions while their physiological arousal, measured by skin conductance responses (SCRs), was recorded. Behaviorally, the proportion of gambling decisions did not differ between the sexual and neutral image trials. Physiologically, participants had smaller arousal differences, measured in micro-siemen per dollar, between losses and gains in the sexual rather than in the neutral image trials. Moreover, participants' SCRs to losses relative to gains predicted the proportion of gambling decisions in the neutral image trials but not in the sexual image trials. The results were consistent with the hypothesis that the presence of emotionally salient sexual images reduces attentional and arousal-related responses to gambling losses. Our results are consistent with the theory of loss attention involving increased cognitive investment in losses compared to gains. The findings also have potential practical implications for our understanding of the specific roles of sexual images in human financial decision making in everyday life, such as gambling behaviors in the casino.

  4. Reducing blood loss during laparoscopic myomectomy by temporary uterine artery clamping using bulldog clamp

    Directory of Open Access Journals (Sweden)

    Kai-Jo Chiang

    2014-01-01

    Full Text Available Uterine myoma is the most common benign gynecologic tumor worldwide. Mini-invasive surgery has become popular for myomectomy, with advantages over laparotomy. However, reducing blood loss during laparoscopic myomectomy is a major concern for the surgeon because of the limitation in making a quick control bleeding during the operation. Several methods have proved to decrease blood flow, but are not always effective or available. We present a case of uterine myoma with the uterine arteries clamped by bulldog clamps during laparoscopic myomectomy. The myoma was removed successfully with minimal blood loss (<50 ml during the operation. This is an effective, safe, and reliable method for reducing bleeding during laparoscopic myomectomy that does not require ligation of the uterine artery.

  5. Effects of heat loss as percentage of fuel's energy, friction and variable specific heats of working fluid on performance of air standard Otto cycle

    International Nuclear Information System (INIS)

    Lin, J.-C.; Hou, S.-S.

    2008-01-01

    The objective of this study is to analyze the effects of heat loss characterized by a percentage of the fuel's energy, friction and variable specific heats of working fluid on the performance of an air standard Otto cycle with a restriction of maximum cycle temperature. A more realistic and precise relationship between the fuel's chemical energy and the heat leakage that is based on a pair of inequalities is derived through the resulting temperature. The variations in power output and thermal efficiency with compression ratio, and the relations between the power output and the thermal efficiency of the cycle are presented. The results show that the power output as well as the efficiency where maximum power output occurs will increase with increase of the maximum cycle temperature. The temperature dependent specific heats of the working fluid have a significant influence on the performance. The power output and the working range of the cycle increase with the increase of specific heats of the working fluid, while the efficiency decreases with the increase of specific heats of the working fluid. The friction loss has a negative effect on the performance. Therefore, the power output and efficiency of the cycle decrease with increasing friction loss. It is noteworthy that the effects of heat loss characterized by a percentage of the fuel's energy, friction and variable specific heats of the working fluid on the performance of an Otto cycle engine are significant and should be considered in practical cycle analysis. The results obtained in the present study are of importance to provide good guidance for performance evaluation and improvement of practical Otto engines

  6. Effects of entrance configuration on pressure loss and heat transfer of transitional gas flow in a circular tube

    International Nuclear Information System (INIS)

    Ogawa, Masuro; Kawamura, Hiroshi

    1986-01-01

    Pressure loss and heat transfer of a transitional gas flow are affected significantly by the entrance configuration. The friction factor and the heat transfer coefficient were measured using a circular tube with four different kinds of entrance configurations. The Reynolds number at the transition from laminar to intermittent flow was varied from about 1,940 to 9,120. The intermittency factor was measured for heated and unheated flows ; and the relation between the intermittency and the friction factor or heat transfer coefficient was examined. Several existing correlations were tested and found to correlate with the experimental results fairly well. (author)

  7. THERMAL POWER LOSS COMPENSATION IN THE PRODUCTION OF COOKED AND DRIED GRAINS WITH HEAT PUMPS USING

    Directory of Open Access Journals (Sweden)

    S. A. Shevtsov

    2015-01-01

    Full Text Available Using scientificand practical experience and analysis of recent innovative activity on modernization of food concentrates production, a new variant of the energy-efficient processing of cereal crops using superheated steam and direct involvement in the cooking and drying process waste energy using the vapor compression heat pump was suggested. A method for production of cereal concentrates, which is realized using microprocessor control of technological parameters. According to the information on the processes of cereals washing, cooking, drying and cooling microprocessor provides regime parameters control under the restrictions due to both yield of cooked and dried cereal of high quality and economic feasibility. At the same time the amount of moisture is continuously determined in the recirculation loop formed by the evaporation from the cereals in the drying process. To implement the proposed method of cooked and dried cereals production it is offered to use refrigerationand compressor unit operating in a heat pump mode. The refrigerant to be used is khladon 12V1 CF2ClBr with a boiling point in the evaporator of 4°C and the condensing temperature of 153.7 °C. The use of the heat pump in the heat supply system of cooked and dried cereals production instead of electric heaters will reduce power costs by 1.72 times. The proposed method for the production and control of technological parameters in the field of the product acceptable technological properties will provide high quality cooked and dried cereals; an increase in thermal efficiency by making full use of the waste heat of superheated steam; the reduction of specific energy consumption by 25-30 %; the creation of waste-free and environmentally friendly technologies for cereal production.

  8. Role of tranexamic acid in reducing blood loss during and after caesarean section

    Directory of Open Access Journals (Sweden)

    Simran Kaur Bhatia

    2015-01-01

    Full Text Available Introduction: Association between caesarean section and intra operative and post operative bleeding is known. Post-partum hemorrhage is still a leading cause for maternal morbidity and mortality. This study will evaluate the efficacy and safety of tranexamic acid in reducing the blood loss after placental delivery following lower segment caesarean section (LSCS and note any adverse effects. Materials and Methods: A total of 100 women, who underwent elective or emergency primary caesarean section at term between 37 and 41 weeks have been studied prospectively. They were divided into two groups. In the study group of 50, tranexamic acid 1 gm IV was given 20 minutes before making incision for caesarean section and the control group of 50 did not receive tranexamic acid. Statistical Analysis: For quantitative outcomes, the t-test was used to test for difference in the two groups. For categorical outcomes, chi square and odds ratio with 95% confidence interval were used as applicable. Results: The patient characteristics, namely age, height, weight, gestational age and gravidity in two groups were similar which was statistically insignificant. Hemoglobin decreased slightly after birth in both groups but no statistical difference between two groups was noticed. There was no episode of thrombosis in the study. Tranexamic acid significantly reduced the quantity of the blood loss from time of placental delivery to 2 hours postpartum (P < 0.001 and from end of LSCS to 2 hours postpartum (P < 0.001. However, there was no statistical difference in quantity of blood loss from time of placental delivery to end of LSCS in both groups (P < 0.001. Conclusion: A safe dose of tranexamic acid has an effective role in reducing blood loss during LSCS without causing adverse reaction. Thus, drug can be used effectively in reducing maternal morbidity and mortality during LSCS.

  9. Whole Farm Management to Reduce Nutrient Losses From Dairy Farms: A Simulation Study

    OpenAIRE

    Rotz, C.A.; Oenema, J.; Keulen, van, H.

    2006-01-01

    Whole-farm simulation provides a tool for evaluating long-term impacts of nutrient conservation technologies and strategies on dairy farms. A farm simulation model was verified to predict the production and nutrient flows of the De Marke experimental dairy farm in the Netherlands. On this farm, technologies such as a low ammonia emission barn floor, enclosed manure storage, manure injection into the soil, and intraseeding of a grass cover crop on corn land were used to reduce nitrogen loss an...

  10. Comparison of three different methods to prevent heat loss in healthy dogs undergoing 90 minutes of general anesthesia.

    Science.gov (United States)

    Clark-Price, Stuart C; Dossin, Olivier; Jones, Katherine R; Otto, Angela N; Weng, Hsin-Yi

    2013-05-01

    To compare a towel under, a warm water pad under or a forced warm air blanket over dogs as techniques to reduce heat loss during a standardized anesthetic. Prospective, randomized, crossover study. Eight, healthy, mixed breed dogs weighing 16.3-19.6 kg. Dogs were anesthetized four times for 90 minutes. Dogs were placed on a steel table (treatment TA), with a cotton towel (treatment TO) or a circulating warm water pad (treatment WP) between the dog and the table, or with, a towel under the dog and covered with a forced warm air blanket (treatment WAB). Rectal temperature (RT) was recorded at 5 minute intervals. Changes in temperature (ΔRT) were calculated as the RT at a given point subtracted from the RT before anesthesia (baseline) and compared over time. After 90 minutes of anesthesia, the ΔRT was 3.42 °C ± 0.29 for TA, 2.78 °C ± 0.43 for TO, 1.98 °C ± 0.29 for WP, and 0.91 °C ± 0.27 for WAB. Significant differences in ΔRT occurred between TA and WAB at 20 minutes (0.94 °C ± 0.42, p = 0.0206), between TO and WAB at 30 minutes (1.16 °C ± 0.62, p = 0.0063), between WP and WAB at 50 minutes (0.96 °C ± 0.98, p = 0.0249), between TA and WP at 35 minutes (1.19 °C ± 0.54, p = 0.0091), between TO and WP at 70 minutes (1.12 °C ± 0.56, p = 0.0248), and between TA and TO at 75 minutes (0.96 °C ± 0.62, p = 0.0313). These differences in ΔRT between each treatment persisted from the times indicated until the end of the anesthesia. During anesthesia, forced warm air blankets were superior to other methods tested for limiting heat loss. An efficient heat loss technique should be used for anesthesia longer than 20 minutes duration in medium sized dogs. © 2013 The Authors. Veterinary Anaesthesia and Analgesia © 2013 Association of Veterinary Anaesthetists and the American College of Veterinary Anesthesia and Analgesia.

  11. A assessment of loss-of-heat-sink accident with scram in the LMFBR

    International Nuclear Information System (INIS)

    Bari, R.A.; Ludewig, H.; Pratt, W.T.; Sun, Y.H.

    1978-01-01

    A description of a slow core meltdown in a liquid metal fast breeder reactor is presented for conditions of loss-of-heat-sink following neutronic shutdown. Simple models are developed for the prediction of phase changes and/or relocation of the core materials including fuel, clad, ducts, control rod absorber material (B 4 C), and plenum gases. The sequence of events is accounted for and the accident progression is described up to the point of recriticality. The neutronic behavior of the disrupted core is analyzed in R-Z geometry with a static transport theory code. For most scenarios assessed, the reactor is expected to become recritical although large ramp rates are not anticipated. (author)

  12. Assessment of the loss-of-heat-sink accident with scram in the LMFBR

    International Nuclear Information System (INIS)

    Bari, R.A.; Ludewig, H.; Pratt, W.T.; Sun, Y.H.

    1978-01-01

    A description of a slow core meltdown in a liquid metal fast breeder reactor is presented for the conditions of loss-of-heat-sink following neutronic shutdown. Simple models are developed for the prediction of phase changes and/or relocation of the core materials including fuel, clad, ducts, control rod absorber material (B 4 C), and plenum gases. The sequence of events is accounted for and the accident progression is described up to the point of recriticality. The neutronic behavior of the disrupted core is analyzed in R-Z geometry with a static transport theory code. For most scenarios assessed, the reactor is expected to become recritical although large ramp rates are not anticipated

  13. Comparative study of beam losses and heat loads reduction methods in MITICA beam source

    Energy Technology Data Exchange (ETDEWEB)

    Sartori, E., E-mail: emanuele.sartori@igi.cnr.it; Agostinetti, P.; Dal Bello, S.; Marcuzzi, D.; Serianni, G.; Veltri, P. [Consorzio RFX, Euratom-ENEA association, C.so Stati Uniti 4, 35127 Padova (Italy); Sonato, P. [Consorzio RFX, Euratom-ENEA association, C.so Stati Uniti 4, 35127 Padova (Italy); Dipartimento di Ingegneria Elettrica, Padova University, Via Gradenigo 6/a, 35131 Padova (Italy)

    2014-02-15

    In negative ion electrostatic accelerators a considerable fraction of extracted ions is lost by collision processes causing efficiency loss and heat deposition over the components. Stripping is proportional to the local density of gas, which is steadily injected in the plasma source; its pumping from the extraction and acceleration stages is a key functionality for the prototype of the ITER Neutral Beam Injector, and it can be simulated with the 3D code AVOCADO. Different geometric solutions were tested aiming at the reduction of the gas density. The parameter space considered is limited by constraints given by optics, aiming, voltage holding, beam uniformity, and mechanical feasibility. The guidelines of the optimization process are presented together with the proposed solutions and the results of numerical simulations.

  14. Role of Tranexamic Acid in Reducing Blood Loss in Vaginal Delivery.

    Science.gov (United States)

    Roy, Priyankur; Sujatha, M S; Bhandiwad, Ambarisha; Biswas, Bivas

    2016-10-01

    Anti-fibrinolytic agents are used to reduce obstetric blood loss as the fibrinolytic system is known to get activated after placental delivery. To evaluate the efficacy of parenteral tranexamic acid in reducing blood loss during normal labour and to compare it with the amount of blood loss in patients who received placebo in the third stage of labour. Patients with spontaneous labour or planned for induction of labour and fulfilling the inclusion criteria were recruited for the study. In each patient, the pre-delivery pulse rate, blood pressure, Hb gm% and PCV% were noted. Labour was monitored carefully using a partogram. The study group received Inj. Oxytocin and Inj. Tranexamic acid. The control group received Inj. Oxytocin and Placebo injection. Immediately after delivery of the baby, when all the liquor was drained, the patient was placed over a blood drape-a disposable conical, graduated plastic collection bag. The amount of blood collected in the blood drape was measured. Then the patient was given pre-weighed pads, which were weighed 2 h post-partum. The blood loss was measured by measuring the blood collected in the drape and by weighing the swabs before and after delivery. The total number of patients studied was 100-equally distributed in both the groups. The age group of the patients and BMI were comparable. There was a significant increase in the pulse rate and decrease in blood pressure in the control group as compared with the study group. The post-delivery haemoglobin and haematocrit were significantly reduced in the control group as compared to the study group. The mean blood loss at the end of 2 h was 105 ml in the study group and 252 ml in the control group. There was a significant increase in the usage of uterotonics and also in the need for blood transfusion in the control group; 12 % of the patients in the control group had to stay for more than 3 days compared to 2 % in the study group. Tranexamic acid injection, an antifibrinolytic

  15. Epsilon Aminocaproic Acid to Reduce Blood Loss and Transfusion After Total Hip and Total Knee Arthroplasty.

    Science.gov (United States)

    Hobbs, Juliann C; Welsby, Ian J; Green, Cynthia L; Dhakal, Ishwori B; Wellman, Samuel S

    2018-01-01

    Total hip and knee arthroplasty (THA and TKA) are associated with significant blood loss and some patients require postoperative blood transfusion. While tranexamic acid has been studied extensively among this population, we tested the hypothesis that epsilon aminocaproic acid (EACA) can reduce blood loss and transfusion after joint arthroplasty. In April 2014, our Veterans Affairs Medical Center introduced a protocol to administer EACA during THA and TKA. No antifibrinolytics were used previously. We retrospectively compared blood loss and incidence of transfusion among patients who underwent primary arthroplasty in the year before standardized administration of EACA with patients having the same procedures the following year. Blood loss was measured as delta hemoglobin (preoperative hemoglobin - hemoglobin on postoperative day 1). All patients undergoing primary THA or TKA were included. Patients having revision surgery were excluded. We identified 185 primary arthroplasty patients from the year before and 184 from the year after introducing the EACA protocol. There were no changes in surgical technique or attending surgeons during this period. Delta hemoglobin was significantly lower in the EACA group (2.7 ± 0.8 mg/dL) compared to the control group (3.4 ± 1.1 mg/dL) (P blood transfusion was also significantly lower in the EACA group (2.7%) compared to the control group (25.4%) (P transfusion following introduction of the EACA protocol in patients undergoing primary arthroplasty. EACA offers a lower cost alternative to TXA for reducing blood loss and transfusion in this population. Published by Elsevier Inc.

  16. Mitigation Measures Following a Loss-of-Residual-Heat-Removal Event During Shutdown

    International Nuclear Information System (INIS)

    Seul, Kwang Won; Bang, Young Seok; Kim, Hho Jung

    2000-01-01

    The transient following a loss-of-residual-heat-removal event during shutdown was analyzed to determine the containment closure time (CCT) to prevent uncontrolled release of fission products and the gravity-injection path and rate (GIPR) for effective core cooling using the RELAP5/MOD3.2 code. The plant conditions of Yonggwang Units 3 and 4, a pressurized water reactor (PWR) of 2815-MW(thermal) power in Korea, were reviewed, and possible event sequences were identified. From the CCT analysis for the five cases of typical plant configurations, it was estimated for the earliest CCT to be 40 min after the event in a case with a large cold-leg opening and emptied steam generators (SGs). However, the case with water-filled SGs significantly delayed the CCT through the heat removal to the secondary side. From the GIPR analysis for the six possible gravity-injection paths from the refueling water storage tank (RWST), the case with the injection point and opening on the other leg side was estimated to be the most suitable path to avoid core boiling. In addition, from the sensitivity study, it was evaluated for the plant to be capable of providing the core cooling for the long-term transient if nominal RWST water is available. As a result, these analysis methods and results will provide useful information in understanding the plant behavior and preparing the mitigation measures after the event, especially for Combustion Engineering-type PWR plants. However, to directly apply the analysis results to the emergency procedure for such an event, additional case studies are needed for a wide range of operating conditions such as reactor coolant inventory, RWST water temperature, and core decay heat rate

  17. Enhancing the moderator effectiveness as a heat sink during loss-of-coolant accidents in CANDU-PHW reactors using glass-peened surfaces

    International Nuclear Information System (INIS)

    Nitheanandan, T.; Tiede, R.W.; Sanderson, D.B.; Fong, R.W.L.; Coleman, C.E.

    1998-08-01

    The horizontal fuel channel concept is a distinguishing feature of the CANDU-PHW reactor. Each fuel channel consists of a Zr-2.5Nb pressure tube and a Zircaloy-2 calandria tube, separated by a gas filled annulus. The calandria tube is surrounded by heavy-water moderator that also provides a backup heat sink for the reactor core. This heat sink (about 10 mm away from the hot pressure tube) ensures adequate cooling of fuel in the unlikely event of a loss-of-coolant accident (LOCA). One of the ways of enhancing the use of the moderator as a heat sink is to improve the heat-transfer characteristics between the calandria tube and the moderator. This enhancement can be achieved through surface modifications to the calandria tube which have been shown to increase the tube's critical heat flux (CHF) value. An increase in CHIF could be used to reduce moderator subcooling requirements for CANDU fuel channels or increase the margin to dryout. A series of experiments was conducted to assess the benefits provided by glass-peening the outside surface of calandria tubes for postulated LOCA conditions. In particular, the ability to increase the tube's CHF, and thereby reduce moderator subcooling requirements was assessed. Results from the experiments confirm that glass-peening the outer surface of a tube increases its CHF value in pool boiling. This increase in CHF could be used to reduce moderator subcooling requirements for CANDU fuel channels by at least 5 degrees C. (author)

  18. Free convective heat loss from cavity-type solar furnace; Solar receiver kara no shizen tairyu ni yoru netsusonshitsu

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, I; Ito, N [Meiji University, Tokyo (Japan)

    1996-10-27

    Free convective heat loss from solar heat receivers was studied, using three laboratory model receivers (different in depth L and aperture diameter d) heated by electric heaters. Most of the heat produced by heaters was transmitted to the air inside. The cylindrical vessel walls were fully insulated against heat. Heat loss being supposed to result mainly from transfer by free convection, the experiment results were edited by use of Nusselt number Nu and Rayley number Ra. Relations between Nu(D/d){sup m1} and Ra(L/D){sup m2} were plotted in a chart. Here, D is the receiver inner diameter, and m1 and m2 are constants that can be determined by computation. Tests points were provided approximately lineally, irrespective of D, L, or receiver inclination. Air currents were found to produce one or more swirls inside, thanks to the current visualization technique, when the receiver inclination was not sharper than 120{degree} (except 0{degree}). The number of swirls increased as the inner wall temperature rose. This kind of behavior of air currents directly affects the degree of heat loss. 9 refs., 4 figs.

  19. Managing tile drainage, subirrigation, and nitrogen fertilization to enhance crop yields and reduce nitrate loss.

    Science.gov (United States)

    Drury, C F; Tan, C S; Reynolds, W D; Welacky, T W; Oloya, T O; Gaynor, J D

    2009-01-01

    Improving field-crop use of fertilizer nitrogen is essential for protecting water quality and increasing crop yields. The objective of this study was to determine the effectiveness of controlled tile drainage (CD) and controlled tile drainage with subsurface irrigation (CDS) for mitigating off-field nitrate losses and enhancing crop yields. The CD and CDS systems were compared on a clay loam soil to traditional unrestricted tile drainage (UTD) under a corn (Zea Mays L.)-soybean (Glycine Max. (L.) Merr.) rotation at two nitrogen (N) fertilization rates (N1: 150 kg N ha(-1) applied to corn, no N applied to soybean; N2: 200 kg N ha(-1) applied to corn, 50 kg N ha(-1) applied to soybean). The N concentrations in tile flow events with the UTD treatment exceeded the provisional long-term aquatic life limit (LT-ALL) for freshwater (4.7 mg N L(-1)) 72% of the time at the N1 rate and 78% at the N2 rate, whereas only 24% of tile flow events at N1 and 40% at N2 exceeded the LT-ALL for the CDS treatment. Exceedances in N concentration for surface runoff and tile drainage were greater during the growing season than the non-growing season. At the N1 rate, CD and CDS reduced average annual N losses via tile drainage by 44 and 66%, respectively, relative to UTD. At the N2 rate, the average annual decreases in N loss were 31 and 68%, respectively. Crop yields from CDS were increased by an average of 2.8% relative to UTD at the N2 rate but were reduced by an average of 6.5% at the N1 rate. Hence, CD and CDS were effective for reducing average nitrate losses in tile drainage, but CDS increased average crop yields only when additional N fertilizer was applied.

  20. DNS of fully developed turbulent heat transfer of a viscoelastic drag-reducing flow

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Bo [Department of Oil and Gas Storage and Transportation Engineering, China University of Petroleum, Beijing 102249 (China); Kawaguchi, Yasuo [Department of Mechanical Engineering, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510 (Japan)

    2005-10-01

    A direct numerical simulation (DNS) of turbulent heat transfer in a channel flow with a Giesekus model was carried out to investigate turbulent heat transfer mechanism of a viscoelastic drag-reducing flow by additives. The configuration was a fully-developed turbulent channel flow with uniform heat flux imposed on both the walls. The temperature was considered as a passive scalar with the effect of buoyancy force neglected. The Reynolds number based on the friction velocity and half the channel height was 150. Statistical quantities such as root-mean-square temperature fluctuations, turbulent heat fluxes and turbulent Prandtl number were obtained and compared with those of a Newtonian fluid flow. Budget terms of the temperature variance and turbulent heat fluxes were also presented. (author)

  1. Experimental investigation of airfoil trailing edge heat transfer and aerodynamic losses

    Energy Technology Data Exchange (ETDEWEB)

    Brundage, A.L. [Sandia National Laboratories, Albuquerque, NM 87185 (United States); Plesniak, M.W.; Lawless, P.B. [School of Mechanical Engineering, Maurice J. Zucrow Laboratories, Purdue University, West Lafayette, IN 47907 (United States); Ramadhyani, S. [132 Cecil Street SE, Minneapolis, MN 55414 (United States)

    2007-01-15

    Modern gas turbine development is being driven by the often-incompatible goals of increased efficiency, better durability, and reduced emissions. High turbine inlet temperatures and ineffective cooling at the trailing edge of a first-stage stator vane lead to corrosion, oxidation, and thermal fatigue. Observations of this region in engines frequently reveal burn marks, cracks, and buckling. Fundamental studies of the importance of trailing edge heat transfer to the design of an optimal cooling scheme are scarce. An experimental study of an actively cooled trailing edge configuration, in which coolant is injected through a slot, is performed. Trailing edge heat transfer and aerodynamic measurements are reported. An optimum balance between maximizing blade row aerodynamic efficiency and improving thermal protection at the trailing edge is estimated to be achieved when blowing ratios are in the range between 2.1% and 2.8%. The thermal phenomena at the trailing edge are dominated by injection slot heat transfer and flow physics. These measured trends are generally applicable over a wide range of gas turbine applications. (author)

  2. Physiological Responses and Lactation to Cutaneous Evaporative Heat Loss in , , and Their Crossbreds

    Directory of Open Access Journals (Sweden)

    Wang Jian

    2015-11-01

    Full Text Available Cutaneous evaporative heat loss in Bos indicus and Bos taurus has been well documented. Nonetheless, how crossbreds with different fractional genetic proportions respond to such circumstances is of interest. A study to examine the physiological responses to cutaneous evaporative heat loss, also lactation period and milk yield, were conducted in Sahiwal (Bos indicus, n = 10, 444±64.8 kg, 9±2.9 years, Holstein Friesian (Bos taurus, HF100% (n = 10, 488±97.9 kg, 6±2.8 years and the following crossbreds: HF50% (n = 10, 355±40.7 kg, 2±0 years and HF87.5% (n = 10, 489±76.8 kg, 7±1.8 years. They were allocated so as to determine the physiological responses of sweating rate (SR, respiration rate (RR, rectal temperature (RT, and skin temperature (ST with and without hair from 06:00 h am to 15:00 h pm. And milk yield during 180 days were collected at days from 30 to 180. The ambient temperature-humidity-index (THI increased from less than 80 in the early morning to more than 90 in the late afternoon. The interaction of THI and breed were highly affected on SR, RR, RT, and ST (p0.05 but did change over time. The ST with and without hair were similar, and was higher in HF100% (37.4°C; 38.0°C and their crossbred HF50% (35.5°C; 35.5°C and HF87.5% (37.1°C; 37.9°C than Sahiwal (34.8°C; 34.8°C (p<0.01. Moreover, the early lactation were higher at HF100% (25 kg and 87.5% (25 kg than HF50% (23 kg which were higher than Sahiwal (18 kg while the peak period of lactation was higher at HF100% (35 kg than crossbreds both HF87.5% and HF50% (32 kg which was higher than Sahiwal (26 kg (p<0.05. In conclusion, sweating and respiration were the main vehicle for dissipating excess body heat for Sahiwal, HF and crossbreds, respectively. The THI at 76 to 80 were the critical points where the physiological responses to elevated temperature displayed change.

  3. The Potential to Reduce Nitrogen Loss Through Rotating Different Sorghum Varieties in Greenhouse Vegetable Field

    Directory of Open Access Journals (Sweden)

    KANG Ling-yun

    2015-06-01

    Full Text Available In North China plain, excessive fertilization in vegetable greenhouse always results in nitrate accumulation in soil and possible nitrogen leaching with potential environmental risk. It is necessary to rotate appropriate catch crop to absorb surplus nitrogen in fallow season and reduce rootzone nitrate level. An experiment was carried out to select suitable sorghum variety as catch crop to reduce nitrogen loss in Beijing suburb. Six common varieties were used in the experiment as conventional catch crop, sweet corn as the control. The results indicated that the biomass, root growth and nitrogen accumulation in shoots of sorghum Jinza 12 were highest in the catch crops. It demonstrated that the variety Jinza 12 was an appropriate catch crop for reducing nitrogen accumulation in surface soil layer compared with sweet corn. Meanwhile, variety Jiliang 2 maintained highest proportion of soil NH4+-N content after urea application, which might be related to the biological nitrification inhibitors (BNI released by the root system of sorghum. It implied that sorghum could be used as catch crop to reduce nitrogen loss through plant extraction i.e. nitrogen uptake and stabilization i.e. BNI inhibition, in comparison with sweet corn.

  4. Weight Loss and Melatonin Reduce Obesity-Induced Oxidative Damage in Rat Testis

    Directory of Open Access Journals (Sweden)

    Dogan Atilgan

    2013-01-01

    Full Text Available Aim. We aimed to evaluate the antioxidant effects of weight loss and melatonin on the obesity-induced oxidative damage in rat testes. Materials and Methods. 28 male Wistar albino rats were randomly divided into 4 groups, each consisting of 7 rats: control group (Group 1, obesity group (Group 2, obesity + MLT group (Group 3, and weight loss group (Group 4. Rats were weighed at the beginning and at the end of the study. Bilateral orchiectomy was performed and 5 cc blood samples were obtained from all of the rats. Superoxide dismutase (SOD, malondialdehyde (MDA, and protein carbonyl (PC levels were analysed in the testicular tissues and serum. Spermatogenesis was evaluated with the Johnsen scoring system. Results. The testicular tissue and serum levels of MDA, PC, and SOD activity were increased in the obesity group in comparison to the sham operated group (P<0.05. Weight loss and melatonin treatment ameliorated MDA, PC, and SOD levels in testicular tissue and serum significantly (P<0.05. There was no significant difference between groups in terms of mean Johnsen score (P=0.727. Conclusion. Experimentally created obesity caused oxidative stress and both melatonin and weight loss reduced oxidative stress parameters in rat testes.

  5. Does reducing food losses and wastes in sub-Saharan Africa make economic sense?

    Science.gov (United States)

    Aragie, Emerta; Balié, Jean; MoralesOpazo, Cristian

    2018-06-01

    Reducing food losses and waste (FLW) is one of the sustainable ways of closing the food requirement gap in developing countries. However, there is not yet adequate knowledge on the extent of FLW by commodity type and stage of the food supply chain (FSC). Focusing on ten agrarian countries in Africa and building mainly on the Food and Agriculture Organization's Food Balance Sheets (FBSs), this study generates some new insights on the level of FLW by country, FSC and food type. Across the FSC, we find that these countries lose a cumulative amount equivalent to 28% (641 kilocalories per capita per day - kcal/cap/day) of the current calorie intake. Within the FSC, the production and post-harvest handling stages contribute the greater shares of the total losses with 38% or 244 kcal/cap/day and 34% or 218 kcal/cap/day, respectively. Our results also show that farm incomes would increase by 20% if the avoidable losses and waste were recovered. These results are troublesome given the level of poverty and food insecurity in these countries and suggest inefficient and unsustainable use of natural resources (water and cropland) associated with the FSC losses.

  6. Reducing CO2 emissions and energy consumption of heat-integrated distillation systems.

    Science.gov (United States)

    Gadalla, Mamdouh A; Olujic, Zarko; Jansens, Peter J; Jobson, Megan; Smith, Robin

    2005-09-01

    Distillation systems are energy and power intensive processes and contribute significantly to the greenhouse gases emissions (e.g. carbon dioxide). Reducing CO2 emissions is an absolute necessity and expensive challenge to the chemical process industries in orderto meetthe environmental targets as agreed in the Kyoto Protocol. A simple model for the calculation of CO2 emissions from heat-integrated distillation systems is introduced, considering typical process industry utility devices such as boilers, furnaces, and turbines. Furnaces and turbines consume large quantities of fuels to provide electricity and process heats. As a result, they produce considerable amounts of CO2 gas to the atmosphere. Boilers are necessary to supply steam for heating purposes; besides, they are also significant emissions contributors. The model is used in an optimization-based approach to optimize the process conditions of an existing crude oil atmospheric tower in order to reduce its CO2 emissions and energy demands. It is also applied to generate design options to reduce the emissions from a novel internally heat-integrated distillation column (HIDiC). A gas turbine can be integrated with these distillation systems for larger emissions reduction and further energy savings. Results show that existing crude oil installations can save up to 21% in energy and 22% in emissions, when the process conditions are optimized. Additionally, by integrating a gas turbine, the total emissions can be reduced further by 48%. Internal heat-integrated columns can be a good alternative to conventional heat pump and other energy intensive close boiling mixtures separations. Energy savings can reach up to 100% with respect to reboiler heat requirements. Emissions of these configurations are cut down by up to 83%, compared to conventional units, and by 36%, with respect to heat pump alternatives. Importantly, cost savings and more profit are gained in parallel to emissions minimization.

  7. Reducing Pumping Power in Hydronic Heating and Cooling Systems with Microencapsulated Phase Change Material Slurries

    Science.gov (United States)

    Karas, Kristoffer Jason

    Phase change materials (PCMs) are being used increasingly in a variety of thermal transfer and thermal storage applications. This thesis presents the results of a laboratory study into the feasibility of improving the performance of hydronic heating and cooling systems by adding microcapsules filled with a PCM to the water used as heat transport media in these systems. Microencapsulated PCMs (MPCMs) increase the heat carrying capacity of heat transport liquids by absorbing or releasing heat at a constant temperature through a change of phase. Three sequences of tests and their results are presented: 1) Thermal cycling tests conducted to determine the melting temperatures and extent of supercooling associated with the MPCMs tested. 2) Hydronic performance tests in which MPCM slurries were pumped through a fin-and-tube, air-to-liquid heat exchanger and their thermal transfer performance compared against that of ordinary water. 3) Mechanical stability tests in which MPCM slurries were pumped in a continuous loop in order to gauge the extent of rupture due to pumping. It is shown that slurries consisting of water and MPCMs ˜ 14-24 mum in diameter improve thermal performance and offer the potential for power savings in the form of reduced pumping requirements. In addition, it is shown that while slurries of MPCMs 2-5 mum in diameter appear to exhibit better mechanical stability than slurries of larger diameter MPCMs, the smaller MPCMs appear to reduce the thermal performance of air-to-liquid heat exchangers.

  8. Can Tranexamic Acid Reduce Blood Loss during Major Cardiac Surgery? A Pilot Study.

    Science.gov (United States)

    Compton, Frances; Wahed, Amer; Gregoric, Igor; Kar, Biswajit; Dasgupta, Amitava; Tint, Hlaing

    2017-09-01

    We examined the effectiveness of tranexamic acid in preventing intraoperative blood loss during major cardiac surgery. Out of initial 81 patients undergoing major cardiac surgery (both coronary artery bypass and valve repair procedures) at our teaching hospital, sixty-seven patients were selected for this study. We compared estimated blood loss, decrease in percent hemoglobin and hematocrit following surgery between two groups of patients (none of them received any blood product during surgery), one group receiving no tranexamic acid (n=17) and another group receiving tranexamic acid (n=25). In the second study, we combined these patients with patients receiving modest amounts of blood products (1-2 unit) and compared these parameters between two groups of patients (25 patients received no tranexamic acid, 42 patients received tranexamic acid). In patients who received no blood product during surgery, those who received no tranexamic acid showed statistically significant (independent t-test two tailed at p tranexamic acid (mean: 987.2 mL, SD: 459.9, n=25). We observed similar results when the patients receiving no blood products and patients receiving modest amount of blood products were combined based on the use of tranexamic acid or not. No statistically significant difference was observed in percent reduced hemoglobin or hematocrit following surgery in any group of patients. We conclude that intraoperative antifibrinolytic therapy with tranexamic acid does not reduce intraoperative blood loss during major cardiac surgery which contradicts popular belief. © 2017 by the Association of Clinical Scientists, Inc.

  9. Vaccination with recombinant aspartic hemoglobinase reduces parasite load and blood loss after hookworm infection in dogs.

    Directory of Open Access Journals (Sweden)

    Alex Loukas

    2005-10-01

    Full Text Available Hookworms infect 730 million people in developing countries where they are a leading cause of intestinal blood loss and iron-deficiency anemia. At the site of attachment to the host, adult hookworms ingest blood and lyse the erythrocytes to release hemoglobin. The parasites subsequently digest hemoglobin in their intestines using a cascade of proteolysis that begins with the Ancylostoma caninum aspartic protease 1, APR-1.We show that vaccination of dogs with recombinant Ac-APR-1 induced antibody and cellular responses and resulted in significantly reduced hookworm burdens (p = 0.056 and fecal egg counts (p = 0.018 in vaccinated dogs compared to control dogs after challenge with infective larvae of A. caninum. Most importantly, vaccinated dogs were protected against blood loss (p = 0.049 and most did not develop anemia, the major pathologic sequela of hookworm disease. IgG from vaccinated animals decreased the catalytic activity of the recombinant enzyme in vitro and the antibody bound in situ to the intestines of worms recovered from vaccinated dogs, implying that the vaccine interferes with the parasite's ability to digest blood.To the best of our knowledge, this is the first report of a recombinant vaccine from a hematophagous parasite that significantly reduces both parasite load and blood loss, and it supports the development of APR-1 as a human hookworm vaccine.

  10. In-vessel natural circulation during a hypothetical loss-of-heat-sink accident in the Fast Flux Test Facility

    International Nuclear Information System (INIS)

    Perkins, K.R.; Bari, R.A.; Pratt, W.T.

    1979-05-01

    The capability to remove decay heat from the FFTF core via in-vessel natural circulation has been analyzed for the preboiling phase using a lumped parameter model. The results indicate that boiling will occur in the average fuel assembly for a wide spectrum of initial conditions which appear to be representative of the hypothetical loss-of-heat-sink accident. Two-phase pressure drop calculations indicate that, once the saturation temperature is reached, coolability can only be assured for decay heat levels which are less than 0.5% of the operating power. A review of the limited sodium boiling data indicates that boiling-induced natural circulation may support up to 4% of the operating power, but geometric atypicalities and a large degree of inlet subcooling for the existing data limit the applicability to the loss-of-heat-sink accident in FFTF

  11. Food irradiation - a viable technology for reducing postharvest losses of food

    International Nuclear Information System (INIS)

    Loaharanu, P.

    1985-01-01

    Research and development in the past 30 years have clearly demonstrated that food irradiation is a safe, effective and environmentally clean process of food preservation. Twenty-seven countries have approved over 40 irradiated foods or groups of related food items for human consumption, either on an unconditional or a restricted basis. The technology is beginning to play an important role in reducing post-harvest losses of food and in facilitating wider distribution of food in the trade. Its wide application in solving microbial spoilage losses of food, insect disinfestation, improving hygienic qualities, slowing down physiological processes of foods is reviewed. Special emphasis is placed on applications of direct relevance to countries in Asia and the Pacific region

  12. Food irradiation - a viable technology for reducing post harvest losses of food

    International Nuclear Information System (INIS)

    Loaharanu, O.

    1985-01-01

    Research and development in the past 30 years have clearly demonstrated that food irradiation is a safe, effective and environmentally clean process of food preservation. Twenty-seven countries have approved over 40 irradiated foods or groups of related food items for human consumption, either on an unconditional or a restricted basis. The technology is beginning to play an important role in reducing post-harvest losses of food in facilitating wider distribution of food in the trade. Its wide application in solving microbial spoilage loss of food, insect disinfestation, improving hygenic qualities, slowing down physiological processes of foods is reviewed. Special emphasis is placed on applications of direct relevance to countries in Asia and the Pacific region. (author)

  13. Nitrogen footprints: Regional realities and options to reduce nitrogen loss to the environment.

    Science.gov (United States)

    Shibata, Hideaki; Galloway, James N; Leach, Allison M; Cattaneo, Lia R; Cattell Noll, Laura; Erisman, Jan Willem; Gu, Baojing; Liang, Xia; Hayashi, Kentaro; Ma, Lin; Dalgaard, Tommy; Graversgaard, Morten; Chen, Deli; Nansai, Keisuke; Shindo, Junko; Matsubae, Kazuyo; Oita, Azusa; Su, Ming-Chien; Mishima, Shin-Ichiro; Bleeker, Albert

    2017-03-01

    Nitrogen (N) management presents a sustainability dilemma: N is strongly linked to energy and food production, but excess reactive N causes environmental pollution. The N footprint is an indicator that quantifies reactive N losses to the environment from consumption and production of food and the use of energy. The average per capita N footprint (calculated using the N-Calculator methodology) of ten countries varies from 15 to 47 kg N capita -1 year -1 . The major cause of the difference is the protein consumption rates and food production N losses. The food sector dominates all countries' N footprints. Global connections via trade significantly affect the N footprint in countries that rely on imported foods and feeds. The authors present N footprint reduction strategies (e.g., improve N use efficiency, increase N recycling, reduce food waste, shift dietary choices) and identify knowledge gaps (e.g., the N footprint from nonfood goods and soil N process).

  14. Assessment of Coping Capability of KORI Unit 1 under Extended Loss AC Power and Loss of Ultimate Heat Sink Initiated by Beyond Design Natural Disaster

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chang Hyun; Ha, Sang Jun [KHNP CRI, Daejeon (Korea, Republic of); Han, Kee Soo [Nuclear Engineering Service and Solution (NESS) Co. Ltd., Deajeon (Korea, Republic of); Park, Chan Eok [KEPCO Engineering and Constructd., Deajeon (Korea, Republic of)

    2016-10-15

    In Korea, the government and industry performed comprehensive safety inspection on all domestic nuclear power plants against beyond design basis external events and fifty action items have been issued. In addition to post- Fukushima action items, the stress tests for all domestic nuclear power plants are on the way to enhance the safety of domestic nuclear power plants through finding the vulnerabilities in intentional stress conditions initiated by beyond design natural disaster. This paper presents assessment results of coping capability of KORI Unit 1 under the simultaneous Extended Loss of AC Power (ELAP) and Loss of Ultimate Heat Sink (LUHS) which is a representative plant condition initiated by beyond design natural disaster. The assessment of the coping capability of KORI Unit 1 has been performed under simultaneous the extended loss of AC power and loss of ultimate heat sink initiated by beyond design natural disaster. It is concluded that KORI Unit 1 has the capability, in the event of loss of safety functions by beyond design natural disaster, to sufficiently cool down the reactor core without fuel damage, to keep pressure boundaries of the reactor coolant system in transient condition and to control containment and temperature to maintain the integrity of the containment buildings.

  15. Assessment of Coping Capability of KORI Unit 1 under Extended Loss AC Power and Loss of Ultimate Heat Sink Initiated by Beyond Design Natural Disaster

    International Nuclear Information System (INIS)

    Kim, Chang Hyun; Ha, Sang Jun; Han, Kee Soo; Park, Chan Eok

    2016-01-01

    In Korea, the government and industry performed comprehensive safety inspection on all domestic nuclear power plants against beyond design basis external events and fifty action items have been issued. In addition to post- Fukushima action items, the stress tests for all domestic nuclear power plants are on the way to enhance the safety of domestic nuclear power plants through finding the vulnerabilities in intentional stress conditions initiated by beyond design natural disaster. This paper presents assessment results of coping capability of KORI Unit 1 under the simultaneous Extended Loss of AC Power (ELAP) and Loss of Ultimate Heat Sink (LUHS) which is a representative plant condition initiated by beyond design natural disaster. The assessment of the coping capability of KORI Unit 1 has been performed under simultaneous the extended loss of AC power and loss of ultimate heat sink initiated by beyond design natural disaster. It is concluded that KORI Unit 1 has the capability, in the event of loss of safety functions by beyond design natural disaster, to sufficiently cool down the reactor core without fuel damage, to keep pressure boundaries of the reactor coolant system in transient condition and to control containment and temperature to maintain the integrity of the containment buildings

  16. An estimation of core damage frequency of a pressurized water reactor during midloop operation due to loss of residual heat removal

    International Nuclear Information System (INIS)

    Chao, C.C.; Chen, C.T.; Lee, M.

    1995-01-01

    The core damage frequency caused by loss of residual heat removal (RHR) events was assessed during midloop operation of a Westinghouse-designed three-loop pressurized water reactor. The assessment considers two types of outages (refueling and drained maintenance) and uses failure data collected specifically for shutdown condition. Event trees were developed for five categories of loss of RHR events. Human actions to mitigate the loss of RHR events were identified and human error probabilities were quantified using the human cognitive reliability (HCR) and the technique for human error rate prediction (THERP) models. The results showed that the core damage frequency caused by loss of RHR events during midloop operation was 3.4 x 10 -5 per year. The results also showed that the core damage frequency can be reduced significantly by removing a pressurizer safety valve before entering midloop operation. The establishment of reflux cooling, i.e., decay heat removal through the steam generator secondary side, also plays an important role in mitigating the loss of RHR events during midloop operation

  17. Evaluation of mitigation strategies to reduce ammonia losses from slurry fertilisation on arable lands

    Energy Technology Data Exchange (ETDEWEB)

    Carozzi, M., E-mail: marco.carozzi@unimi.it [University of Milan, Department of Agricultural and Environmental Sciences, via Celoria 2, 20133 Milan (Italy); Ferrara, R.M.; Rana, G. [Consiglio per la Ricerca e sperimentazione in Agricoltura, Research Unit for Cropping Systems in Dry Environments, via C. Ulpiani, 5 – 70125 Bari (Italy); Acutis, M. [University of Milan, Department of Agricultural and Environmental Sciences, via Celoria 2, 20133 Milan (Italy)

    2013-04-01

    To evaluate the best practices in reducing ammonia (NH{sub 3}) losses from fertilised arable lands, six field trials were carried out in three different locations in northern Italy. NH{sub 3} emissions from cattle slurry were estimated considering the spreading techniques and the field incorporation procedures. The measurements were performed using long term exposure samplers associated to the determination of the atmospheric turbulence and the use of the backward Lagrangian stochastic (bLS) model WindTrax. The results obtained indicate that the NH{sub 3} emission process was exhausted in the first 24–48 h after slurry spreading. The slurry incorporation technique was able to reduce the NH{sub 3} losses with respect to the surface spreading, where a contextual incorporation led to reductions up to 87%. However, the best abatement strategy for NH{sub 3} losses from slurry applications has proved to be the direct injection into the soil, with a reduction of about 95% with respect to the surface spreading. The results obtained highlight the strong dependence of the volatilisation phenomenon by soil and weather conditions. - Highlights: ► Ammonia emissions from land-application of slurry were quantified. ► We examined and compared six different agronomic treatments in three locations. ► The faster was the soil-incorporation of slurry, the lower was the ammonia loss. ► The direct injection of slurry was found to be the best abatement strategy. ► The environmental factors were able to strongly influence the ammonia emission.

  18. Swine manure injection with low-disturbance applicator and cover crops reduce phosphorus losses.

    Science.gov (United States)

    Kovar, J L; Moorman, T B; Singer, J W; Cambardella, C A; Tomer, M D

    2011-01-01

    Injection of liquid swine manure disturbs surface soil so that runoff from treated lands can transport sediment and nutrients to surface waters. We determined the effect of two manure application methods on P fate in a corn (Zea mays L.)-soybean [Glycine max (L.) Merr.] production system, with and without a winter rye (Secale cereale L.)-oat (Avena sativa L.) cover crop. Treatments included: (i) no manure; (ii) knife injection; and (iii) low-disturbance injection, each with and without the cover crop. Simulated rainfall runoff was analyzed for dissolved reactive P (DRP) and total P (TP). Rainfall was applied 8 d after manure application (early November) and again in May after emergence of the corn crop. Manure application increased soil bioavailable P in the 20- to 30-cm layer following knife injection and in the 5- to 20-cm layer following low-disturbance injection. The low-disturbance system caused less damage to the cover crop, so that P uptake was more than threefold greater. Losses of DRP were greater in both fall and spring following low-disturbance injection; however, application method had no effect on TP loads in runoff in either season. The cover crop reduced fall TP losses from plots with manure applied by either method. In spring, DRP losses were significantly higher from plots with the recently killed cover crop, but TP losses were not affected. Low-disturbance injection of swine manure into a standing cover crop can minimize plant damage and P losses in surface runoff while providing optimum P availability to a subsequent agronomic crop.

  19. Magnetic flux and heat losses by diffusive, advective, and Nernst effects in MagLIF-like plasma

    International Nuclear Information System (INIS)

    Velikovich, A. L.; Giuliani, J. L.; Zalesak, S. T.

    2014-01-01

    The MagLIF approach to inertial confinement fusion involves subsonic/isobaric compression and heating of a DT plasma with frozen-in magnetic flux by a heavy cylindrical liner. The losses of heat and magnetic flux from the plasma to the liner are thereby determined by plasma advection and gradient-driven transport processes, such as thermal conductivity, magnetic field diffusion and thermomagnetic effects. Theoretical analysis based on obtaining exact self-similar solutions of the classical collisional Braginskii's plasma transport equations in one dimension demonstrates that the heat loss from the hot plasma to the cold liner is dominated by the transverse heat conduction and advection, and the corresponding loss of magnetic flux is dominated by advection and the Nernst effect. For a large electron Hall parameter ω e τ e effective diffusion coefficients determining the losses of heat and magnetic flux are both shown to decrease with ω e τ e as does the Bohm diffusion coefficient, which is commonly associated with low collisionality and two-dimensional transport. This family of exact solutions can be used for verification of codes that model the MagLIF plasma dynamics

  20. Latent heat loss and sweat gland histology of male goats in an equatorial semi-arid environment

    Science.gov (United States)

    de Melo Costa, Cíntia Carol; Maia, Alex Sandro Campos; Neto, José Domingues Fontenele; Oliveira, Steffan Edward Octávio; de Queiroz, João Paulo Araújo Fernandes

    2014-03-01

    The objective of this work was to quantify the heat loss by cutaneous evaporation of goats in an equatorial semi-arid environment. The latent heat loss from the body surfaces of these ten undefined breed goats was measured using a ventilated capsule in sun and shade and in the three body regions (neck, flank and hindquarters). Skin samples from these three regions were histologically analyzed to relate the quantity of sweat glands, the area of sweat glands and the epithelium thickness of each of these regions to the heat loss by cutaneous evaporation of the examined goats. The epithelium thickness that was measured varied significantly for body regions with different quantities and areas of sweat glands ( P < 0.01). Among the body regions that were examined, the samples from the neck demonstrated the highest epithelium thickness (16.23 ± 0.13 μm). However, the samples of sweat glands from the flank had the biggest area (43330.51 ± 778.71 μm2) and quantity per square centimeter (390 ± 9 cm-2). After the animals were exposed to sun, the flanks lost the greatest amount of heat by cutaneous evaporation (73.03 ± 1.75 W m-2) and possessed the highest surface temperatures (39.47 ± 0.18 °C). The histological characteristics may have influenced the heat loss by cutaneous evaporation that was observed in the flank region after the animals were exposed to sun.

  1. First and Second-Law Efficiency Analysis and ANN Prediction of a Diesel Cycle with Internal Irreversibility, Variable Specific Heats, Heat Loss, and Friction Considerations

    Directory of Open Access Journals (Sweden)

    M. M. Rashidi

    2014-04-01

    Full Text Available The variability of specific heats, internal irreversibility, heat and frictional losses are neglected in air-standard analysis for different internal combustion engine cycles. In this paper, the performance of an air-standard Diesel cycle with considerations of internal irreversibility described by using the compression and expansion efficiencies, variable specific heats, and losses due to heat transfer and friction is investigated by using finite-time thermodynamics. Artificial neural network (ANN is proposed for predicting the thermal efficiency and power output values versus the minimum and the maximum temperatures of the cycle and also the compression ratio. Results show that the first-law efficiency and the output power reach their maximum at a critical compression ratio for specific fixed parameters. The first-law efficiency increases as the heat leakage decreases; however the heat leakage has no direct effect on the output power. The results also show that irreversibilities have depressing effects on the performance of the cycle. Finally, a comparison between the results of the thermodynamic analysis and the ANN prediction shows a maximum difference of 0.181% and 0.194% in estimating the thermal efficiency and the output power. The obtained results in this paper can be useful for evaluating and improving the performance of practical Diesel engines.

  2. Reducing the energy consumption of an earth–air heat exchanger with a PID control system

    International Nuclear Information System (INIS)

    Diaz-Mendez, S.E.; Patiño-Carachure, C.; Herrera-Castillo, J.A.

    2014-01-01

    Highlights: • The application of control actions to green technologies has been simulated. • Energy consumption of green technologies can be reduced even more. • The efficiency of green technologies can be raised. • Environmental concerns can be diminished. • The sustainability of the planet can be increased. - Abstract: Reducing environmental emissions is one of the challenges that human being has to overcome. It can only be reached with a proper energetic efficiency and management of the processes that exist in the society nowadays. Several academic works have mentioned that raising the efficiency of a process it also increases sustainability and in turn decreases the environmental impact. One process that requires much attention is the cooling and heating of buildings; this process contributes to the major part of the electric bill, in particular, if a conventional and old air conditioning is used as commonly occurs in many countries. In recent years there have been developed new alternatives that are used in few countries, such as the earth–air heat exchanger, where air is passed through a heat exchanger buried a few meters below the ground. The heat exchanger takes advantage of the well-known difference between the temperature of the surrounding air and the temperature of the ground for cooling or heating the air that is subsequently injected into the buildings. This process requires less energy, then in the present work is thought that a PID (Proportional, Integral and Derivative) controller can be applied to an earth–air heat exchanger to reduce even more the energy consumption. Therefore, a simulation of a thermodynamic model of an earth–air heat exchanger was done and used along with a PID controller, to estimate savings in energy consumption. The results show that the energy consumption can be reduced up to 87% with the PID control, hence the efficiency of the process is increased as well as the sustainability of the planet and thus the

  3. Effectiveness of tranexamic acid in reducing blood loss during cytoreductive surgery for advanced ovarian cancer.

    Science.gov (United States)

    Kietpeerakool, Chumnan; Supoken, Amornrat; Laopaiboon, Malinee; Lumbiganon, Pisake

    2016-01-23

    Ovarian cancer is the third most common gynaecological cancer worldwide, with an age-standardised incidence rate of 6.1 per 10,000 women. Standard therapy for advanced epithelial ovarian cancer (EOC) includes a combination of cytoreductive surgery and platinum-based chemotherapy. Cytoreductive surgery aims to remove as much of the visible tumour as possible. As extensive intraperitoneal metastases are typical of advanced EOC, cytoreductive surgery is usually an extensive procedure with the risk of excessive bleeding. Tranexamic acid given perioperatively is effective in reducing blood loss and allogeneic blood transfusion requirements in a variety of surgical settings. Therefore, tranexamic acid seems to be a promising agent for minimising blood loss and the need for blood transfusion among women with advanced EOC undergoing cytoreductive surgery. To assess the effects of tranexamic acid for reducing blood loss associated with cytoreductive surgery in women with advanced EOC (stage III to IV). We searched the Cochrane Gynaecological, Neuro-oncology and Orphan Cancers Trial Register, the Cochrane Central Register of Controlled Trials (CENTRAL) (Issue 5, 2015), MEDLINE, EMBASE and conference proceedings to May 2015. We also checked registers of clinical trials, citation lists of included studies, key textbooks and previous systematic reviews for potentially relevant studies. We included randomised controlled trials (RCTs) comparing tranexamic acid given during surgery versus placebo or no treatment, in adult women diagnosed with advanced EOC. Two review authors (CK, AS) independently selected potentially relevant trials, extracted data, assessed risk of bias, compared results and resolved disagreements by discussion. We found only one study that met our inclusion criteria. This was a randomised double blind, placebo-controlled multicentre study conducted to evaluate the effectiveness of a single dose of intravenous tranexamic acid (15 mg/kg body weight) versus

  4. Exchanging and Storing Energy. Reducing Energy Demand through Heat Exchange between Functions and Temporary Storage

    Energy Technology Data Exchange (ETDEWEB)

    Sillem, E.

    2011-06-15

    As typical office buildings from the nineties have large heating and cooling installations to provide heat or cold wherever and whenever needed, more recent office buildings have almost no demand for heating due to high internal heat loads caused by people, lighting and office appliances and because of the great thermal qualities of the contemporary building envelope. However, these buildings still have vast cooling units to cool down servers and other energy consuming installations. At the same time other functions such as dwellings, swimming pools, sporting facilities, archives and museums still need to be heated most of the year. In the current building market there is an increasing demand for mixed-use buildings or so called hybrid buildings. The Science Business Centre is no different and houses a conference centre, offices, a museum, archives, an exhibition space and a restaurant. From the initial program brief it seemed that the building will simultaneously house functions that need cooling most of the year and functions that will need to be heated the majority of the year. Can this building be equipped with a 'micro heating and cooling network' and where necessary temporarily store energy? With this idea a research proposal was formulated. How can the demand for heating and cooling of the Science Business Centre be reduced by using energy exchange between different kinds of functions and by temporarily storing energy? In conclusion the research led to: four optimized installation concepts; short term energy storage in pavilion concept and museum; energy exchange between the restaurant and archives; energy exchange between the server space and the offices; the majority of heat and cold will be extracted from the soil (long term energy storage); the access heat will be generated by the energy roof; PV cells from the energy roof power all climate installations; a total energy plan for the Science Business Centre; a systematic approach for exchanging

  5. Habituation of Salmonella spp. at Reduced Water Activity and Its Effect on Heat Tolerance

    Science.gov (United States)

    Mattick, K. L.; Jørgensen, F.; Legan, J. D.; Lappin-Scott, H. M.; Humphrey, T. J.

    2000-01-01

    The effect of habituation at reduced water activity (aw) on heat tolerance of Salmonella spp. was investigated. Stationary-phase cells were exposed to aw 0.95 in broths containing glucose-fructose, sodium chloride, or glycerol at 21°C for up to a week prior to heat challenge at 54°C. In addition, the effects of different aws and heat challenge temperatures were investigated. Habituation at aw 0.95 resulted in increased heat tolerance at 54°C with all solutes tested. The extent of the increase and the optimal habituation time depended on the solute used. Exposure to broths containing glucose-fructose (aw 0.95) for 12 h resulted in maximal heat tolerance, with more than a fourfold increase in D54 values. Cells held for more than 72 h in these conditions, however, became as heat sensitive as nonhabituated populations. Habituation in the presence of sodium chloride or glycerol gave rise to less pronounced but still significant increases in heat tolerance at 54°C, and a shorter incubation time was required to maximize tolerance. The increase in heat tolerance following habituation in broths containing glucose-fructose (aw 0.95) was RpoS independent. The presence of chloramphenicol or rifampin during habituation and inactivation did not affect the extent of heat tolerance achieved, suggesting that de novo protein synthesis was probably not necessary. These data highlight the importance of cell prehistory prior to heat inactivation and may have implications for food manufacturers using low-aw ingredients. PMID:11055944

  6. Numerical analysis of the effects of radiation heat transfer and ionization energy loss on the cavitation Bubble's dynamics

    International Nuclear Information System (INIS)

    Mahdi, M.; Ebrahimi, R.; Shams, M.

    2011-01-01

    A numerical scheme for simulating the acoustic and hydrodynamic cavitation was developed. Bubble instantaneous radius was obtained using Gilmore equation which considered the compressibility of the liquid. A uniform temperature was assumed for the inside gas during the collapse. Radiation heat transfer inside the bubble and the heat conduction to the bubble was considered. The numerical code was validated with the experimental data and a good correspondence was observed. The dynamics of hydrofoil cavitation bubble were also investigated. It was concluded that the thermal radiation heat transfer rate strongly depended on the cavitation number, initial bubble radius and hydrofoil angle of attack. -- Highlights: → Heat transfer and ionization energy losses were analyzed in the cavitation bubble. → Radiation of hydrodynamic bubble was approximately equal to the black body. → Radiation heat transfer did not affect the bubble dynamic. → Conduction decreased the bubble pressure and increased the bubble temperature. → Ionization decreased the temperature and increased the pressure in the bubble.

  7. Occupational heat stress and associated productivity loss estimation using the PHS model (ISO 7933): a case study from workplaces in Chennai, India

    Science.gov (United States)

    Lundgren, Karin; Kuklane, Kalev; Venugopal, Vidhya

    2014-01-01

    Background Heat stress is a major occupational problem in India that can cause adverse health effects and reduce work productivity. This paper explores this problem and its impacts in selected workplaces, including industrial, service, and agricultural sectors in Chennai, India. Design Quantitative measurements of heat stress, workload estimations, and clothing testing, and qualitative information on health impacts, productivity loss, etc., were collected. Heat strain and associated impacts on labour productivity between the seasons were assessed using the International Standard ISO 7933:2004, which applies the Predicted Heat Strain (PHS) model. Results and conclusions All workplaces surveyed had very high heat exposure in the hot season (Wet Bulb Globe Temperature x¯ =29.7), often reaching the international standard safe work values (ISO 7243:1989). Most workers had moderate to high workloads (170–220 W/m2), with some exposed to direct sun. Clothing was found to be problematic, with high insulation values in relation to the heat exposure. Females were found to be more vulnerable because of the extra insulation added from wearing a protective shirt on top of traditional clothing (0.96 clo) while working. When analysing heat strain – in terms of core temperature and dehydration – and associated productivity loss in the PHS model, the parameters showed significant impacts that affected productivity in all workplaces, apart from the laundry facility, especially during the hot season. For example, in the canteen, the core temperature limit of 38°C predicted by the model was reached in only 64 min for women. With the expected increases in temperature due to climate change, additional preventive actions have to be implemented to prevent further productivity losses and adverse health impacts. Overall, this study presented insight into using a thermo-physiological model to estimate productivity loss due to heat exposure in workplaces. This is the first time the PHS

  8. Occupational heat stress and associated productivity loss estimation using the PHS model (ISO 7933: a case study from workplaces in Chennai, India

    Directory of Open Access Journals (Sweden)

    Karin Lundgren

    2014-11-01

    Full Text Available Background: Heat stress is a major occupational problem in India that can cause adverse health effects and reduce work productivity. This paper explores this problem and its impacts in selected workplaces, including industrial, service, and agricultural sectors in Chennai, India. Design: Quantitative measurements of heat stress, workload estimations, and clothing testing, and qualitative information on health impacts, productivity loss, etc., were collected. Heat strain and associated impacts on labour productivity between the seasons were assessed using the International Standard ISO 7933:2004, which applies the Predicted Heat Strain (PHS model. Results and conclusions: All workplaces surveyed had very high heat exposure in the hot season (Wet Bulb Globe Temperature x¯ =29.7, often reaching the international standard safe work values (ISO 7243:1989. Most workers had moderate to high workloads (170–220 W/m2, with some exposed to direct sun. Clothing was found to be problematic, with high insulation values in relation to the heat exposure. Females were found to be more vulnerable because of the extra insulation added from wearing a protective shirt on top of traditional clothing (0.96 clo while working. When analysing heat strain – in terms of core temperature and dehydration – and associated productivity loss in the PHS model, the parameters showed significant impacts that affected productivity in all workplaces, apart from the laundry facility, especially during the hot season. For example, in the canteen, the core temperature limit of 38°C predicted by the model was reached in only 64 min for women. With the expected increases in temperature due to climate change, additional preventive actions have to be implemented to prevent further productivity losses and adverse health impacts. Overall, this study presented insight into using a thermo-physiological model to estimate productivity loss due to heat exposure in workplaces. This is the

  9. Heat recovery from flue gas of coal fired installations with reduced pollutant emission - the Zittau process

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, H; Strauss, R; Hofmann, K -D; Suder, M; Hultsch, T; Wetzel, W; Gabrysch, H; Jung, J [Technische Hochschule, Zittau (German Democratic Republic)

    1988-12-01

    Reviews the technology applied in the Zittau process for flue gas heat recovery and flue gas desulfurization in small brown coal fired power plants. Steam generators have a capacity of 6.5 or 10 t/h, low grade fuel with 8.2 MJ/kg calorific value is combusted. Technology has been developed on an experimental 10 t/h steam generator since 1986; an industrial 6.5 t/h prototype steam generator is now in operation achieving 95% SO{sub 2} removal from flue gas with 5600 to 7800 mg SO{sub 2} per m{sup 3} of dry flue gas. The Zittau technology is available in 3 variants: with maximum waste heat recovery, with partial waste heat recovery or without waste heat recovery and only wet flue gas scrubbing. Two flowsheets of flue gas and suspension circulation are provided. The first variant recovers 25.7% of nominal heat capacity (1.1 thermal MW from a 4.2 MW steam generator with 6.5 t/h steam capacity), the second variant recovers 6.5% of waste heat by reducing heat exchangers to 20% of the size of the first variant. Flue gas suspension scrubbing utilizes power plant ash, which is capable of absorbing 50 to 70% of SO{sub 2}, additional 25% SO{sub 2} removal is achieved by providing either 40% ash from another power plant or limestone for suspensions. Various technological details are included. 5 refs.

  10. Helping to reduce turbomachinery losses through advanced technology and on-line expertise

    Energy Technology Data Exchange (ETDEWEB)

    Feigel, R.E. [Hartford Steam Boiler Inspection & Insurance Co., Hartford, CT (United States)

    1994-12-31

    It`s clear that turbomachinery poses a set of unique problems for risk managers. The size of the equipment, the role it often takes in production and the severity of a loss all combine to make a risk manager`s job that much more difficult. But while the job may be difficult, it`s not impossible. Through a combination of advanced technology, regular predictive maintenance and some expert advice, today`s risk managers, working with plant operational personnel, are reducing major turbomachinery losses. There are several telltale signs that warn plant personnel of an impending turbomachinery failure. One is vibration. All turbomachinery will vibrate at some level, even when in good working condition. But a change in the vibration level usually indicates a change in the machine`s performance. If plant personnel can detect a change early enough, they may be able to avoid an unscheduled shutdown. Hartford Steam Boiler recently introduced a periodic vibration data collection program called DATALERT{trademark} to help its customers separate problem from non-problem machines. As a result, companies can focus resources on equipment that needs immediate attention. And equipment in good working condition doesn`t tie up resources unnecessarily at the next maintenance turnaround. DATALERT is an integrated machinery vibration data collecting and expert analysis system developed by Hartford Steam Boiler to assist customers in preventing rotating machine downtime or losses. The data collection program is described.

  11. Flow-Boiling Critical Heat Flux Experiments Performed in Reduced Gravity

    Science.gov (United States)

    Hasan, Mohammad M.; Mudawar, Issam

    2005-01-01

    Poor understanding of flow boiling in microgravity has recently emerged as a key obstacle to the development of many types of power generation and advanced life support systems intended for space exploration. The critical heat flux (CHF) is perhaps the most important thermal design parameter for boiling systems involving both heatflux-controlled devices and intense heat removal. Exceeding the CHF limit can lead to permanent damage, including physical burnout of the heat-dissipating device. The importance of the CHF limit creates an urgent need to develop predictive design tools to ensure both the safe and reliable operation of a two-phase thermal management system under the reduced-gravity (like that on the Moon and Mars) and microgravity environments of space. At present, very limited information is available on flow-boiling heat transfer and the CHF under these conditions.

  12. Forebrain-Specific Loss of BMPRII in Mice Reduces Anxiety and Increases Object Exploration.

    Science.gov (United States)

    McBrayer, Zofeyah L; Dimova, Jiva; Pisansky, Marc T; Sun, Mu; Beppu, Hideyuki; Gewirtz, Jonathan C; O'Connor, Michael B

    2015-01-01

    To investigate the role of Bone Morphogenic Protein Receptor Type II (BMPRII) in learning, memory, and exploratory behavior in mice, a tissue-specific knockout of BMPRII in the post-natal hippocampus and forebrain was generated. We found that BMPRII mutant mice had normal spatial learning and memory in the Morris water maze, but showed significantly reduced swimming speeds with increased floating behavior. Further analysis using the Porsolt Swim Test to investigate behavioral despair did not reveal any differences in immobility between mutants and controls. In the Elevated Plus Maze, BMPRII mutants and Smad4 mutants showed reduced anxiety, while in exploratory tests, BMPRII mutants showed more interest in object exploration. These results suggest that loss of BMPRII in the mouse hippocampus and forebrain does not disrupt spatial learning and memory encoding, but instead impacts exploratory and anxiety-related behaviors.

  13. Forebrain-Specific Loss of BMPRII in Mice Reduces Anxiety and Increases Object Exploration.

    Directory of Open Access Journals (Sweden)

    Zofeyah L McBrayer

    Full Text Available To investigate the role of Bone Morphogenic Protein Receptor Type II (BMPRII in learning, memory, and exploratory behavior in mice, a tissue-specific knockout of BMPRII in the post-natal hippocampus and forebrain was generated. We found that BMPRII mutant mice had normal spatial learning and memory in the Morris water maze, but showed significantly reduced swimming speeds with increased floating behavior. Further analysis using the Porsolt Swim Test to investigate behavioral despair did not reveal any differences in immobility between mutants and controls. In the Elevated Plus Maze, BMPRII mutants and Smad4 mutants showed reduced anxiety, while in exploratory tests, BMPRII mutants showed more interest in object exploration. These results suggest that loss of BMPRII in the mouse hippocampus and forebrain does not disrupt spatial learning and memory encoding, but instead impacts exploratory and anxiety-related behaviors.

  14. USING CENTER HOLE HEAT TRANSFER TO REDUCE FORMATION TIMES FOR CERAMIC WASTE FORMS FROM PYROPROCESSING

    International Nuclear Information System (INIS)

    Kenneth J. Bateman; Charles W. Solbrig

    2006-01-01

    The waste produced from processing spent fuel from the EBR II reactor must be processed into a waste form suitable for long term storage in Yucca Mountain. The method chosen produces zeolite granules mixed with glass frit, which must then be converted into a solid. This is accomplished by loading it into a can and heating to 900 C in a furnace regulated at 915 C. During heatup to 900 C, the zeolite and glass frit react and consolidate to produce a sodalite monolith. The resultant ceramic waste form (CWF) is then cooled. The waste is 52 cm in diameter and initially 300 cm long but consolidates to 150 cm long during the heating process. After cooling it is then inserted in a 5-DHLW/DOE SNF Long Canister. Without intervention, the waste takes 82 hours to heat up to 900 C in a furnace designed to geometrically fit the cylindrical waste form. This paper investigates the reduction in heating times possible with four different methods of additional heating through a center hole. The hole size is kept small to maximize the amount of CWF that is processed in a single run. A hole radius of 1.82 cm was selected which removes only 1% of the CWF. A reference computation was done with a specified inner hole surface temperature of 915 C to provide a benchmark for the amount of improvement which can be made. It showed that the heatup time can potentially be reduced to 43 hours with center hole heating. The first method, simply pouring high temperature liquid aluminum into the hole, did not produce any noticeable effect on reducing heat up times. The second method, flowing liquid aluminum through the hole, works well as long as the velocity is high enough (2.5 cm/sec) to prevent solidification of the aluminum during the initial front movement of the aluminum into the center hole. The velocity can be reduced to 1 cm/sec after the initial front has traversed the ceramic. This procedure reduces the formation time to near that of the reference case. The third method, flowing a gas

  15. Dual capillary tube / heat exchanger in combination with cycle priming for reducing charge migration

    Science.gov (United States)

    Gomes, Alberto Regio; Kuehl, Steven J.; Litch, Andrew D.; Wu, Guolian

    2017-07-04

    A refrigerator appliance including a multi-capacity compressor and a refrigerant circuit with two conduits and pressure reducing devices arranged in parallel between an evaporator and a condenser. Refrigerant can flow through one, both or none of the conduits and pressure reducing devices. The appliance also has a heat exchanger in contact with either one pressure reducing device, or one conduit between the pressure reducing device and the valve system. The appliance also includes a controller for priming the compressor above a nominal capacity for a predetermined or calculated duration at the beginning of an ON-cycle.

  16. Buccal bone loss after immediate implantation can be reduced by the flapless approach

    Directory of Open Access Journals (Sweden)

    ARTHUR BELÉM NOVAES JR

    2011-10-01

    Full Text Available Aim: The aim of this study was to evaluate the buccal bone remodeling after immediate implantation with flap or flapless approach. Material and Methods: The mandibular bilateral premolars of 3 dogs were extracted and immediately three implants were placed in both hemi-arches of each dog. Randomly, one hemi-arch was treated with the flapless approach, while in the contra lateral hemi-arch tooth extractions and implant placement were done after mucoperiosteal flap elevation. Non-submerged healing of 12 weeks was provided for both groups. Histomorphometric analysis was done to compare buccal and lingual bone height loss, bone density and bone-to-implant contact in the groups. Fluorescence analysis was performed to investigate the dynamic of bone remodeling in the different groups. Results: There was a significant association between the surgical flap and the extent of bone resorption around immediate implants. The loss of buccal bone height was significantly lower in the flapless group when compared to the flap group (0.98 mm x 2.14 mm, respectively, p<0.05. The coronal and apical buccal bone densities of the flap group were significantly higher when compared to the lingual components, showing anatomical differences between the bone plates. Fluorescence analysis showed no major differences in bone healing between the flap and flapless groups, supporting that the higher loss of buccal bone height is linked to the anatomic characteristics of this plate and to the negative influence of the detachment of the periosteum in immediate implant therapy. Conclusion: The flapless approach for immediate post-extraction implants reduces the buccal bone height loss.

  17. Reducing Digging Losses by Using Automated Steering to Plant and Invert Peanuts

    Directory of Open Access Journals (Sweden)

    George Vellidis

    2014-07-01

    Full Text Available GPS guidance of farm machinery has been increasingly adopted by farmers because of the perceived gains in efficiency that it provides. In the southeastern USA one of the reasons farmers adopt GPS guidance, and specifically automated steering (auto-steer, is that it can theoretically result in large yield gains when used to plant and invert peanuts—one of the region’s most important crops. The goal of our study was to quantify the yield benefit of using real time kinematic (RTK-based auto-steer to plant and invert peanuts under a variety of terrain conditions. Yield benefits result from reduced digging losses. The study was conducted for two consecutive years (2010 and 2011 on a private farm in Georgia, USA. When all data are grouped together, auto-steer outperformed conventional by 579 kg/ha in 2010 and 451 kg/ha in 2011. We also evaluated the performance of auto-steer under different curvature conditions using low, medium, and high curvature rows. The results showed that auto-steer outperformed conventional under all curvature by a minimum of 338 kg/ha. Finally, we evaluated passive implement guidance in combination with auto-steer and found that it holds tremendous potential for further reducing digging losses. In many cases, auto-steer will pay for itself within a year.

  18. Evaluation of focused ultrasound algorithms: Issues for reducing pre-focal heating and treatment time.

    Science.gov (United States)

    Yiannakou, Marinos; Trimikliniotis, Michael; Yiallouras, Christos; Damianou, Christakis

    2016-02-01

    Due to the heating in the pre-focal field the delay between successive movements in high intensity focused ultrasound (HIFU) are sometimes as long as 60s, resulting to treatment time in the order of 2-3h. Because there is generally a requirement to reduce treatment time, we were motivated to explore alternative transducer motion algorithms in order to reduce pre-focal heating and treatment time. A 1 MHz single element transducer with 4 cm diameter and 10 cm focal length was used. A simulation model was developed that estimates the temperature, thermal dose and lesion development in the pre-focal field. The simulated temperature history that was combined with the motion algorithms produced thermal maps in the pre-focal region. Polyacrylimde gel phantom was used to evaluate the induced pre-focal heating for each motion algorithm used, and also was used to assess the accuracy of the simulation model. Three out of the six algorithms having successive steps close to each other, exhibited severe heating in the pre-focal field. Minimal heating was produced with the algorithms having successive steps apart from each other (square, square spiral and random). The last three algorithms were improved further (with small cost in time), thus eliminating completely the pre-focal heating and reducing substantially the treatment time as compared to traditional algorithms. Out of the six algorithms, 3 were successful in eliminating the pre-focal heating completely. Because these 3 algorithms required no delay between successive movements (except in the last part of the motion), the treatment time was reduced by 93%. Therefore, it will be possible in the future, to achieve treatment time of focused ultrasound therapies shorter than 30 min. The rate of ablated volume achieved with one of the proposed algorithms was 71 cm(3)/h. The intention of this pilot study was to demonstrate that the navigation algorithms play the most important role in reducing pre-focal heating. By evaluating in

  19. Heat transfer and loss by whole-body hyperthermia during severe lower-body heating are impaired in healthy older men.

    Science.gov (United States)

    Brazaitis, Marius; Paulauskas, Henrikas; Eimantas, Nerijus; Obelieniene, Diana; Baranauskiene, Neringa; Skurvydas, Albertas

    2017-10-01

    Most studies demonstrate that aging is associated with a weakened thermoregulation. However, it remains unclear whether heat transfer (for heat loss) from the lower (uncompensable) to the upper (compensable) body during passively-induced severe lower-body heating is delayed or attenuated with aging. Therefore, the main purpose of this study was to investigate heat transfer from uncompensable to compensable body areas in young men and healthy older men during passively-induced whole-body hyperthermia with a demonstrated post-heating change in core body (rectal; T re ) temperature. Nine healthy older men and eleven healthy young men (69±6 vs. 21±1 years old, mean±SD, Pheating in water at approximately 43°C. Despite a similar increment in T re (approximately 2.5°C) in both groups, the heating rate was significantly lower in older men than in young men (1.69±0.12 vs. 2.47±0.29°C/h, respectively; Pheat in the skin and deep muscles than young men, and this was associated with a greater heat-transfer delay and subsequent inertia in the increased core body (T re ) temperature. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Continuation of metformin reduces early pregnancy loss in obese Pakistani women with polycystic ovarian syndrome.

    Science.gov (United States)

    Nawaz, Fauzia Haq; Rizvi, Javed

    2010-01-01

    Polycystic ovarian syndrome (PCOS) is the most common cause of anovulatory infertility worldwide. In addition to a poor conception rate, pregnancy loss rates are significantly higher (30-50%) during the first trimester in women with PCOS. Insulin resistance (IR) in this syndrome is not only implicated toward early pregnancy loss (EPL) but also pathognomic for various obstetrical complications during pregnancy. We evaluated the role of Metformin in the reduction of EPL in women with PCOS who conceived spontaneously or after induction ovulation with or without Metformin. The primary objective was to evaluate the effectiveness of Metformin in the reduction of EPL in women with PCOS. Secondary outcomes like gestational diabetes, pregnancy-induced hypertension and intrauterine growth restriction were also analyzed at the end of the study. This case-control study was conducted from March 2005 to March 2008 in the infertility and antenatal clinics of the Department of Obstetrics and Gynecology of Aga Khan University Hospital, Karachi, Pakistan. A total of 197 infertile women with PCOS were included. 'Cases' were women with PCOS who conceived while taking Metformin and it whom it was continued throughout pregnancy. 'Controls' were women in whom Metformin was either stopped in first trimester after confirmation of pregnancy (by serum betaHCG or by ultrasound) or they conceived spontaneously without the use of Metformin. All 197 women in this study had a confirmed diagnosis of PCOS (Rotterdam criteria). These women were followed till the final outcome of pregnancy was achieved. Both groups were compared for risk of EPL. It was found that continuation of Metformin during pregnancy reduces EPL, i.e. 8.8 vs. 29.4% in cases and controls, respectively (p pregnancy loss rate was 12.5% in the Metformin versus 49.4% in control group (p = 0.002). Metformin continuation during pregnancy significantly reduces EPL in women with PCOS. IR may play a significant role in EPL. Copyright 2009

  1. Tidal heating and mass loss in neutron star binaries - Implications for gamma-ray burst models

    Science.gov (United States)

    Meszaros, P.; Rees, M. J.

    1992-01-01

    A neutron star in a close binary orbit around another neutron star (or stellar-mass black hole) spirals inward owing to gravitational radiation. We discuss the effects of tidal dissipation during this process. Tidal energy dissipated in the neutron star's core escapes mainly as neutrinos, but heating of the crust, and outward diffusion of photons, blows off the outer layers of the star. This photon-driven mass loss precedes the final coalescence. The presence of this eject material impedes the escape of gamma-rays created via neutrino interactions. If an e(+) - e(-) fireball, created in the late stages of coalescence, were loaded with (or surrounded by) material with the mean column density of the ejecta, it could not be an efficient source of gamma-rays. Models for cosmologically distant gamma-rays burst that involve neutron stars must therefore be anisotropic, so that the fireball expands preferentially in directions where the column density of previously blown-off material is far below the spherically averaged value which we have calculated. Some possible 'scenarios' along these lines are briefly discussed.

  2. Loss of residual heat removal system: Diablo Canyon, Unit 2, April 10, 1987

    International Nuclear Information System (INIS)

    1987-06-01

    This report presents the findings of an NRC Augmented Inspection Team (AIT) investigation into the circumstances associated with the loss of residual heat removal (RHR) system capability for a period of approximately one and one-half hours at the Diablo Canyon, Unit 2 reactor facility on April 10, 1987. This event occurred while the Diablo Canyon, Unit 2, a pressurized water reactor, was shutdown with the reactor coolant system (RCS) water level drained to approximately mid-level of the hot leg piping. The reactor containment building equipment hatch was removed at the time of the event, and plant personnel were in the process of removing the primary side manways to gain access into the steam generator channel head areas. Thus, two fission product barriers were breached throughout the event. The RCS temperature increased from approximately 87 0 F to bulk boiling conditions without RCS temperature indication available to the plant operators. The RCS was subsequently pressurized to approximately 7 to 10 psig. The NRC AIT members concluded that the Diablo Canyon, Unit 2 plant was, at the time of the event, in a condition not previously analyzed by the NRC staff. The AIT findings from this event appear significant and generic to other pressurized water reactor facilities licensed by the NRC

  3. Aeroplastic, New Composite Materials with Reduced Heat Transfer and Increased Flame Retardancy

    Science.gov (United States)

    Williams, Martha K.; Smith, Trent M.; Nichols, James D.; Roberson, Luke B.; Tate, Lanetra C.

    2015-01-01

    A new composite system formulated using commodity grade and engineered grade polymers. The composites can be fabricated into fibers, molded, or otherwise processed into useable articles. Use of this technology reduces the thermal conductivity and peak heat releases rates of the base polymer between 20%-50% while maintaining or enhancing the mechanical properties..

  4. Role of tin as a reducing agent in iron containing heat absorbing ...

    Indian Academy of Sciences (India)

    Unknown

    infrared region and a narrow weak band for Fe3+ ion at its λmax at around 380 nm was observed in the silicate glass. ... Tin reducing agent; iron heat absorption; silicate glass. 1. ... ing point of aluminium metal is far below than the glass.

  5. Traits in Spring Wheat Cultivars Associated with Yield Loss Caused by a Heat Stress Episode after Anthesis

    DEFF Research Database (Denmark)

    Vignjevic, Marija; Wang, Xiao; Olesen, Jørgen E

    2015-01-01

    with heat tolerance. Fifteen spring wheat (Triticum aestivum L.) cultivars were grown in pots under semifield conditions, and heat stress (35/26 °C) and control treatments (20/12 °C) were applied in growth chambers for 5 days starting 14 days after flowering. The heat stress treatment reduced final yield...... in the grain-filling period was negatively correlated with grain nitrogen yield (r = −0.60). A positive correlation (r = 0.73) was found between the treatment effect on green leaf area (GLA) and the reduction in yield resulting from heat stress. The amount of stem water-soluble carbohydrates (WSC...

  6. Mode selection of China's urban heating and its potential for reducing energy consumption and CO2 emission

    International Nuclear Information System (INIS)

    Chen, Xia; Wang, Li; Tong, Lige; Sun, Shufeng; Yue, Xianfang; Yin, Shaowu; Zheng, Lifang

    2014-01-01

    China's carbon dioxide (CO 2 ) emission ranks the highest in the world. CO 2 emission from urban central heating, which has an average annual growth rate of 10.3%, is responsible for 4.4% of China's total CO 2 emission. The current policy for improving urban central heating focuses on replacing coal with natural gas. This paper analyzes the existing situation and problems pertaining to urban heating, and evaluates the potential for reducing energy consumption and CO 2 emission by heat pump heating. The results show that the current policy of replacing coal with natural gas for urban central heating decreases energy consumption and CO 2 emission by 16.6% and 63.5%, respectively. On the other hand, replacing coal-based urban central heating with heat pump heating is capable of decreasing energy consumption and CO 2 emission by 57.6% and 81.4%, respectively. Replacing both urban central and decentralized heating with heat pump heating can lead to 67.7% and 85.8% reduction in energy consumption and CO 2 emission, respectively. The decreases in CO 2 emission will account for 24.5% of China's target to reduce total CO 2 emission by 2020. - Highlights: • Existing situation and problems of urban heating in China. • Feasibility of heat pump heating in China. • Potential of energy saving and emission reduction for heat pump heating. • China should adjust urban heating strategy. • Replacing urban central heating and decentralized heating with heat pump heating

  7. Experimental Demyelination and Axonal Loss Are Reduced in MicroRNA-146a Deficient Mice.

    Science.gov (United States)

    Martin, Nellie A; Molnar, Viktor; Szilagyi, Gabor T; Elkjaer, Maria L; Nawrocki, Arkadiusz; Okarmus, Justyna; Wlodarczyk, Agnieszka; Thygesen, Eva K; Palkovits, Miklos; Gallyas, Ferenc; Larsen, Martin R; Lassmann, Hans; Benedikz, Eirikur; Owens, Trevor; Svenningsen, Asa F; Illes, Zsolt

    2018-01-01

    reduced in the demyelinating corpus callosum of the KO mice. During demyelination, absence of miR-146a reduced inflammatory responses, demyelination, axonal loss, the number of infiltrating macrophages, and increased the number of myelinating oligodendrocytes. The number of OPCs was slightly higher in the WT mice during remyelination, indicating a complex role of miR-146a during in vivo de- and remyelination.

  8. Experimental Demyelination and Axonal Loss Are Reduced in MicroRNA-146a Deficient Mice

    Directory of Open Access Journals (Sweden)

    Nellie A. Martin

    2018-03-01

    Iba1+ macrophages/microglia was reduced in the demyelinating corpus callosum of the KO mice.ConclusionDuring demyelination, absence of miR-146a reduced inflammatory responses, demyelination, axonal loss, the number of infiltrating macrophages, and increased the number of myelinating oligodendrocytes. The number of OPCs was slightly higher in the WT mice during remyelination, indicating a complex role of miR-146a during in vivo de- and remyelination.

  9. Use of a heated graphite scrubber as a means of reducing interferences in UV-absorbance measurements of atmospheric ozone

    Directory of Open Access Journals (Sweden)

    A. A. Turnipseed

    2017-06-01

    Full Text Available A new solid-phase scrubber for use in conventional ozone (O3 photometers was investigated as a means of reducing interferences from other UV-absorbing species and water vapor. It was found that when heated to 100–130 °C, a tubular graphite scrubber efficiently removed up to 500 ppb ozone and ozone monitors using the heated graphite scrubber were found to be less susceptible to interferences from water vapor, mercury vapor, and aromatic volatile organic compounds (VOCs compared to conventional metal oxide scrubbers. Ambient measurements from a graphite scrubber-equipped photometer and a co-located Federal equivalent method (FEM ozone analyzer showed excellent agreement over 38 days of measurements and indicated no loss in the scrubber's ability to remove ozone when operated at 130 °C. The use of a heated graphite scrubber was found to reduce the interference from mercury vapor to ≤ 3 % of that obtained using a packed-bed Hopcalite scrubber. For a series of substituted aromatic compounds (ranging in volatility and absorption cross section at 253.7 nm, the graphite scrubber was observed to consistently exhibit reduced levels of interference, typically by factors of 2.5 to 20 less than with Hopcalite. Conventional solid-phase scrubbers also exhibited complex VOC adsorption and desorption characteristics that were dependent upon the relative humidity (RH, volatility of the VOC, and the available surface area of the scrubber. This complex behavior involving humidity is avoided by use of a heated graphite scrubber. These results suggest that heated graphite scrubbers could be substituted in most ozone photometers as a means of reducing interferences from other UV-absorbing species found in the atmosphere. This could be particularly important in ozone monitoring for compliance with the United States (U.S. Clean Air Act or for use in VOC-rich environments such as in smog chambers and monitoring indoor air quality.

  10. Potential of HVAC and solar technologies for hospital retrofit to reduce heating energy consumption

    Science.gov (United States)

    Pop, Octavian G.; Abrudan, Ancuta C.; Adace, Dan S.; Pocola, Adrian G.; Balan, Mugur C.

    2018-02-01

    The study presents a combination of several energy efficient technologies together with their potential to reduce the energy consumption and to increase the comfort through the retrofit of a hospital building. The existing situation is characterized by an old and inefficient heating system, by the complete missing of any ventilation and by no cooling. The retrofit proposal includes thermal insulation and a distributed HVAC system consisting of several units that includes air to air heat exchangers and air to air heat pumps. A condensing boiler was also considered for heating. A solar thermal system for preparing domestic hot water and a solar photovoltaic system to assist the HVAC units are also proposed. Heat transfer principles are used for modelling the thermal response of the building to the environmental parameters and thermodynamic principles are used for modelling the behaviour of HVAC, solar thermal system and photovoltaic system. All the components of the heating loads were determined for one year period. The study reveals the capacity of the proposed systems to provide ventilation and thermal comfort with a global reduction of energy consumption of 71.6 %.

  11. Strategies to Reduce the Harmful Effects of Extreme Heat Events: A Four-City Study

    Directory of Open Access Journals (Sweden)

    Jalonne L. White-Newsome

    2014-02-01

    Full Text Available Extreme heat events (EHEs are becoming more intense, more frequent and longer lasting in the 21st century. These events can disproportionately impact the health of low-income, minority, and urban populations. To better understand heat-related intervention strategies used by four U.S. cities, we conducted 73 semi-structured interviews with government and non-governmental organization leaders representing public health, general social services, emergency management, meteorology, and the environmental planning sectors in Detroit, MI; New York City, NY; Philadelphia, PA and Phoenix, AZ—cities selected for their diverse demographics, climates, and climate adaptation strategies. We identified activities these leaders used to reduce the harmful effects of heat for residents in their city, as well as the obstacles they faced and the approaches they used to evaluate these efforts. Local leaders provided a description of how local context (e.g., climate, governance and city structure impacted heat preparedness. Despite the differences among study cities, political will and resource access were critical to driving heat-health related programming. Upon completion of our interviews, we convened leaders in each city to discuss these findings and their ongoing efforts through day-long workshops. Our findings and the recommendations that emerged from these workshops could inform other local or national efforts towards preventing heat-related morbidity and mortality.

  12. Connecting people and place: a new framework for reducing urban vulnerability to extreme heat

    International Nuclear Information System (INIS)

    Wilhelmi, Olga V; Hayden, Mary H

    2010-01-01

    Climate change is predicted to increase the intensity and negative impacts of urban heat events, prompting the need to develop preparedness and adaptation strategies that reduce societal vulnerability to extreme heat. Analysis of societal vulnerability to extreme heat events requires an interdisciplinary approach that includes information about weather and climate, the natural and built environment, social processes and characteristics, interactions with stakeholders, and an assessment of community vulnerability at a local level. In this letter, we explore the relationships between people and places, in the context of urban heat stress, and present a new research framework for a multi-faceted, top-down and bottom-up analysis of local-level vulnerability to extreme heat. This framework aims to better represent societal vulnerability through the integration of quantitative and qualitative data that go beyond aggregate demographic information. We discuss how different elements of the framework help to focus attention and resources on more targeted health interventions, heat hazard mitigation and climate adaptation strategies.

  13. FoxO/Daf-16 restored thrashing movement reduced by heat stress in Caenorhabditis elegans.

    Science.gov (United States)

    Furuhashi, Tsubasa; Sakamoto, Kazuichi

    2014-04-01

    Many studies on thermotolerance have been done in Caenorhabditis elegans in order to extend survival under heat stress; Daf-16, a homolog of FoxO in C. elegans, was detected as the key factor in thermotolerance. However, the recovery process from heat stress damage has been seldom discussed. In this study, we analyzed the roles of FoxO/Daf-16 on the recovery from heat stress damage by monitoring thrashing movement. Heat shock reduced the movement, which was restored by culturing at 20°C. Thrashing movement was not restored in the daf-16 mutant, which suggests that Daf-16 is one of the essential factors in repairing the damage. Movement restoration was promoted in the daf-2 mutant, a homolog of insulin/IGF-1-like receptor, in a daf-16-dependent manner. In addition, heat stress decreased the expression of daf-28 and ins-7, agonists of Daf-2. Taken together, these results revealed that FoxO/Daf-16 removes heat stress damage and restores movement via inhibition of the insulin-like signaling pathway in C. elegans, suggesting that FoxO/Daf-16 plays a critical role in thermotolerance. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. An Approximate Solution for Predicting the Heat Extraction and Preventing Heat Loss from a Closed-Loop Geothermal Reservoir

    Directory of Open Access Journals (Sweden)

    Bisheng Wu

    2017-01-01

    Full Text Available Approximate solutions are found for a mathematical model developed to predict the heat extraction from a closed-loop geothermal system which consists of two vertical wells (one for injection and the other for production and one horizontal well which connects the two vertical wells. Based on the feature of slow heat conduction in rock formation, the fluid flow in the well is divided into three stages, that is, in the injection, horizontal, and production wells. The output temperature of each stage is regarded as the input of the next stage. The results from the present model are compared with those obtained from numerical simulator TOUGH2 and show first-order agreement with a temperature difference less than 4°C for the case where the fluid circulated for 2.74 years. In the end, a parametric study shows that (1 the injection rate plays dominant role in affecting the output performance, (2 higher injection temperature produces larger output temperature but decreases the total heat extracted given a specific time, (3 the output performance of geothermal reservoir is insensitive to fluid viscosity, and (4 there exists a critical point that indicates if the fluid releases heat into or absorbs heat from the surrounding formation.

  15. SCDAP/RELAP5 modeling of fluid heat transfer and flow losses through porous debris in a light water reactor

    International Nuclear Information System (INIS)

    Harvego, E. A.; Siefken, L. J.

    2000-01-01

    The SCDAP/RELAP5 code is being developed at the Idaho National Engineering and Environmental Laboratory under the primary sponsorship of the U.S. Nuclear Regulatory Commission (NRC) to provide best-estimate transient simulations of light water reactor coolant systems during severe accidents. This paper describes the modeling approach used in the SCDAP/RELAP5 code to calculate fluid heat transfer and flow losses through porous debris that has accumulated in the vessel lower head and core regions during the latter stages of a severe accident. The implementation of heat transfer and flow loss correlations into the code is discussed, and calculations performed to assess the validity of the modeling approach are described. The different modes of heat transfer in porous debris include: (1) forced convection to liquid, (2) forced convection to gas, (3) nucleate boiling, (4) transition boiling, (5) film boiling, and (6) transition from film boiling to convection to vapor. The correlations for flow losses in porous debris include frictional and form losses. The correlations for flow losses were integrated into the momentum equations in the RELAP5 part of the code. Since RELAP5 is a very general non-homogeneous non-equilibrium thermal-hydraulics code, the resulting modeling methodology is applicable to a wide range of debris thermal-hydraulic conditions. Assessment of the SCDAP/RELAP5 debris bed thermal-hydraulic models included comparisons with experimental measurements and other models available in the open literature. The assessment calculations, described in the paper, showed that SCDAP/RELAP5 is capable of calculating the heat transfer and flow losses occurring in porous debris regions that may develop in a light water reactor during a severe accident

  16. Reducing soil erosion and nutrient loss on sloping land under crop-mulberry management system.

    Science.gov (United States)

    Fan, Fangling; Xie, Deti; Wei, Chaofu; Ni, Jiupai; Yang, John; Tang, Zhenya; Zhou, Chuan

    2015-09-01

    Sloping croplands could result in soil erosion, which leads to non-point source pollution of the aquatic system in the Three Gorges Reservoir Region. Mulberry, a commonly grown cash plant in the region, is traditionally planted in contour hedgerows as an effective management practice to control soil erosion and non-point source pollution. In this field study, surface runoff and soil N and P loss on sloping land under crop-mulberry management were investigated. The experiments consisted of six crop-mulberry treatments: Control (no mulberry hedgerow with mustard-corn rotation); T1 (two-row contour mulberry with mustard-corn rotation); T2 (three-row contour mulberry with mustard-corn rotation); T3 (border mulberry and one-row contour mulberry with mustard-corn rotation); T4 (border mulberry with mustard-corn rotation); T5 (two-row longitudinal mulberry with mustard). The results indicated that crop-mulberry systems could effectively reduce surface runoff and soil and nutrient loss from arable slope land. Surface runoff from T1 (342.13 m(3) hm(-2)), T2 (260.6 m(3) hm(-2)), T3 (113.13 m(3) hm(-2)), T4 (114 m(3) hm(-2)), and T5 (129 m(3) hm(-2)) was reduced by 15.4, 35.6, 72.0, 71.8, and 68.1%, respectively, while soil loss from T1 (0.21 t hm(-2)), T2 (0.13 t hm(-2)), T3 (0.08 t hm(-2)), T4 (0.11 t hm(-2)), and T5 (0.12 t hm(-2)) was reduced by 52.3, 70.5, 81.8, 75.0, and 72.7%, respectively, as compared with the control. Crop-mulberry ecosystem would also elevate soil N by 22.3% and soil P by 57.4%, and soil nutrient status was contour-line dependent.

  17. Reduced Operating Time but Not Blood Loss With Cruciate Retaining Total Knee Arthroplasty

    Science.gov (United States)

    Vermesan, Dinu; Trocan, Ilie; Prejbeanu, Radu; Poenaru, Dan V; Haragus, Horia; Gratian, Damian; Marrelli, Massimo; Inchingolo, Francesco; Caprio, Monica; Cagiano, Raffaele; Tatullo, Marco

    2015-01-01

    Background There is no consensus regarding the use of retaining or replacing cruciate implants for patients with limited deformity who undergo a total knee replacement. Scope of this paper is to evaluate whether a cruciate sparing total knee replacement could have a reduced operating time compared to a posterior stabilized implant. Methods For this purpose, we performed a randomized study on 50 subjects. All procedures were performed by a single surgeon in the same conditions to minimize bias and only knees with a less than 20 varus deviation and/or maximum 15° fixed flexion contracture were included. Results Surgery time was significantly shorter with the cruciate retaining implant (P = 0.0037). The mean duration for the Vanguard implant was 68.9 (14.7) and for the NexGen II Legacy was 80.2 (11.3). A higher range of motion, but no significant Knee Society Scores at 6 months follow-up, was used as controls. Conclusions In conclusion, both implants had the potential to assure great outcomes. However, if a decision has to be made, choosing a cruciate retaining procedure could significantly reduce the surgical time. When performed under tourniquet, this gain does not lead to reduced blood loss. PMID:25584102

  18. Evaporative cooling with sprinklers to reduce heat-related fruit damage in northern highbush blueberry

    Science.gov (United States)

    Hot and sunny weather can cause a considerable amount of fruit damage in blueberries and results in millions of dollars of crop loss each year. The objective of this study was to evaluate the efficacy of using sprinklers to reduce the damage. The study was conducted for 2 years in a mature planting ...

  19. Simulation of water management for fodder beet to reduce yield losses under late season drought

    Directory of Open Access Journals (Sweden)

    T. Noreldin

    2016-12-01

    Full Text Available The objectives of this study were to calibrate CropSyst model for fodder beet grown under full and late season drought and to use the simulation results to analyze the relationship between irrigation amount and yield, as well as in water management to reduce yield losses under full and late season drought. For this reason, two field experiments were implemented at El-Serw Agricultural Research Station in Demiatte governorate, during 2011/12 and 2012/13 growing seasons. Two irrigation treatments were studied: full irrigation and late season drought. The model was calibrated using the data obtained from the two seasons. Results indicated that the reduction in fodder beet yield under late season drought was 11 and 12% in 2011/12 and 2012/13 growing seasons, respectively. Calibration of CropSyst revealed that the percentage of difference between measured and predicted values were low in both growing seasons. The results also indicated that changing irrigation schedule after examining water stress index under full and late season drought led to increase in fodder beet yield, as well as water and land productivity. Thus, CropSyst model can give insight into when to apply irrigation water to minimize yield losses under late season drought.

  20. Neutrophil depletion reduces edema formation and tissue loss following traumatic brain injury in mice

    Directory of Open Access Journals (Sweden)

    Kenne Ellinor

    2012-01-01

    Full Text Available Abstract Background Brain edema as a result of secondary injury following traumatic brain injury (TBI is a major clinical concern. Neutrophils are known to cause increased vascular permeability leading to edema formation in peripheral tissue, but their role in the pathology following TBI remains unclear. Methods In this study we used controlled cortical impact (CCI as a model for TBI and investigated the role of neutrophils in the response to injury. The outcome of mice that were depleted of neutrophils using an anti-Gr-1 antibody was compared to that in mice with intact neutrophil count. The effect of neutrophil depletion on blood-brain barrier function was assessed by Evan's blue dye extravasation, and analysis of brain water content was used as a measurement of brain edema formation (24 and 48 hours after CCI. Lesion volume was measured 7 and 14 days after CCI. Immunohistochemistry was used to assess cell death, using a marker for cleaved caspase-3 at 24 hours after injury, and microglial/macrophage activation 7 days after CCI. Data were analyzed using Mann-Whitney test for non-parametric data. Results Neutrophil depletion did not significantly affect Evan's blue extravasation at any time-point after CCI. However, neutrophil-depleted mice exhibited a decreased water content both at 24 and 48 hours after CCI indicating reduced edema formation. Furthermore, brain tissue loss was attenuated in neutropenic mice at 7 and 14 days after injury. Additionally, these mice had a significantly reduced number of activated microglia/macrophages 7 days after CCI, and of cleaved caspase-3 positive cells 24 h after injury. Conclusion Our results suggest that neutrophils are involved in the edema formation, but not the extravasation of large proteins, as well as contributing to cell death and tissue loss following TBI in mice.

  1. Diversity in forest management to reduce wildfire losses: implications for resilience

    Directory of Open Access Journals (Sweden)

    Susan Charnley

    2017-03-01

    Full Text Available This study investigates how federal, state, and private corporate forest owners in a fire-prone landscape of southcentral Oregon manage their forests to reduce wildfire hazard and loss to high-severity wildfire. We evaluate the implications of our findings for concepts of social-ecological resilience. Using interview data, we found a high degree of "response diversity" (variation in forest management decisions and behaviors to reduce wildfire losses between and within actor groups. This response diversity contributed to heterogeneous forest conditions across the landscape and was driven mainly by forest management legacies, economics, and attitudes toward wildfire (fortress protection vs. living with fire. We then used an agent-based landscape model to evaluate trends in forest structure and fire metrics by ownership. Modeling results indicated that, in general, U.S. Forest Service management had the most favorable outcomes for forest resilience to wildfire, and private corporate management the least. However, some state and private corporate forest ownerships have the building blocks for developing fire-resilient forests. Heterogeneity in social-ecological systems is often thought to favor social-ecological resilience. We found that despite high social and ecological heterogeneity in our study area, most forest ownerships do not exhibit characteristics that make them resilient to high-severity fire currently or in the future under current management. Thus, simple theories about resilience based on heterogeneity must be informed by knowledge of the environmental and social conditions that comprise that heterogeneity. Our coupled human and natural systems (CHANS approach enabled us to understand connections among the social, economic, and ecological components of a multiownership, fire-prone ecosystem, and to identify how social-ecological resilience to wildfire might improve through interventions to address key constraints in the system. Our

  2. The costs of reducing loss to follow-up in South African cervical cancer screening

    Directory of Open Access Journals (Sweden)

    Kuhn Louise

    2005-11-01

    Full Text Available Abstract Background This study was designed to quantify the resources used in reestablishing contact with women who missed their scheduled cervical cancer screening visits and to assess the success of this effort in reducing loss to follow-up in a developing country setting. Methods Women were enrolled in this Cape Town, South Africa-based screening study between 2000 and 2003, and all had scheduled follow-up visits in 2003. Community health worker (CHW time, vehicle use, maintenance, and depreciation were estimated from weekly logs and cost accounting systems. The percentage of women who attended their scheduled visit, those who attended after CHW contact(s, and those who never returned despite attempted contact(s were determined. The number of CHW visits per woman was also estimated. Results 3,711 visits were scheduled in 2003. Of these, 2,321 (62.5% occurred without CHW contact, 918 (24.8% occurred after contact(s, and 472 (12.7% did not occur despite contact(s. Loss to follow-up was reduced from 21% to 6%, 39% to 10%, and 50% to 24% for 6, 12, and 24-month visits. CHWs attempted 3,200 contacts in 530 trips. On average, 3 CHWs attempted to contact 6 participants over each 111 minute trip. The per-person cost (2003 Rand for these activities was 12.75, 24.92, and 40.50 for 6, 12, and 24-month visits. Conclusion CHW contact with women who missed scheduled visits increased their return rate. Cost-effectiveness analyses aimed at policy decisions about cervical cancer screening in developing countries should incorporate these findings.

  3. Reduced efficacy of fluoxetine following MDMA ("Ecstasy")-induced serotonin loss in rats.

    Science.gov (United States)

    Durkin, Sarah; Prendergast, Alison; Harkin, Andrew

    2008-12-12

    Long-term serotonin (5-HT) neuronal loss is currently a major cause of concern associated with recreational use of the substituted amphetamine 3,4 methylenedioxymethamphetamine (MDMA; "Ecstasy"). Such loss may be problematic considering that psychiatric disorders such as depression and anxiety and responses to first line treatments for these disorders are associated with 5-HT. In this study the effects of prior exposure to MDMA on behavioural and central neurochemical changes induced by the serotonin (5-HT) re-uptake inhibitor and antidepressant fluoxetine were examined in rats. Animals were administered MDMA (10 mg/kg. i.p.) four times daily for two consecutive days. One week later the animals were subjected to treatment with fluoxetine (10 mg/kg, i.p.). Fluoxetine treatment groups received either acute (saline injections for 20 days followed by 3 fluoxetine treatments over 24 h) or chronic (once daily fluoxetine for 21 days) drug administration. Prior exposure to MDMA resulted in an attenuation of fluoxetine-induced swimming behaviour in the modified forced swimming test (FST); a behavioural test of antidepressant action. In parallel MDMA treatment resulted in significant regional depletions of 5-HT and its metabolite 5-hydroxyindoleacetic acid (5-HIAA) accompanied by a reduction in cortical [3H] paroxetine binding to nerve terminal 5-HT transporters. MDMA-induced 5-HT loss was enhanced in animals following chronic fluoxetine administration. Elimination of fluoxetine and its metabolite norfluoxetine from the brain abolished this interaction between MDMA and fluoxetine treatment. Fluoxetine administration reduced both 5-HIAA and the 5-HIAA:5-HT metabolism ratio, which was attenuated in animals pre-treated with MDMA. Overall the results show that MDMA induces long-term 5-HT loss in the rodent brain and consequently diminishes behaviour and reductions in 5-HT metabolism induced by the antidepressant fluoxetine. These results have potential clinical relevance

  4. Effectiveness of two contrasting mulching rates to reduce post-fire soil and organic matter losses

    Science.gov (United States)

    Silva, Flavio; Prats, Sergio; Vieira, Diana; Puga, João; Lopes, Rita; Gonzaléz-Pelayo, Oscar; Caetano, Ana; Campos, Isabel; Keizer, Jacob

    2017-04-01

    Wildfire-affected soils can reveal strong responses in runoff generation and associated soil (fertility) losses, thereby constituting a major threat to the typically shallow and poor forest soils of the Portuguese mountain areas. Mulching with logging residues from these forests has proven to provide a protective soil cover that is highly effective in reducing post-fire runoff and especially erosion (Prats et al., 2012, 2014, 2016a, 2016b). However, these past experiments have all applied comparatively large amounts of forest residues, in the order of 10 Mg ha-1, so that the relationship between application rate and effectiveness is still poorly known. Such relationship would nonetheless be of crucial importance for the employment of forest residue mulching in practice, as one of the possible emergency stabilization measures to be contemplated in post-fire land management of a recently-burned area. Further research gaps that exist in relation to post-fire forest residue mulching include its effectiveness in reducing soil fertility losses (C, N, P; Ferreira et al., 2016a, 2016b) and in minimizing export of contaminants (especially PAHs and metals; Campos et al., 2016), and its (secondary) impacts on soil biological activity and diversity (Puga et al., 2016) and on forest productivity (including through the addition of organic matter to the soil surface, partially replacing the burned litter layer; Prats et al. 2016b). In the framework of the EU-project RECARE, the effectiveness of two contrasting mulching rates with forest logging residues has been tested following a wildfire that on August 9th - 10th 2015 consumed some 715 ha of eucalypt plantations in the Semide municipality, central Portugal. Commercially-available logging residues (chopped bark and twigs) from eucalypt plantations were purchased, transported to the study site and applied to six out of nine 16 m2 erosion bounded plots that had been installed in a burned eucalypt plantation using a randomized

  5. The ability of cover crops to reduce nitrogen and phosphorus losses from arable land in southern Scandinavia and Finland

    DEFF Research Database (Denmark)

    Aronsson, H.; Hansen, Elly Møller; Thomsen, Ingrid Kaag

    2016-01-01

    ]). The data indicate that CCs do not substantially reduce total P losses by runoff and leaching. The effects of CCs on total P leaching varied between a relative increase of 86% and a decrease of 43%. Climate conditions involving freezing-thawing during winter increased the risk of losses of dissolved P from...

  6. Heterologous expression of a plastid EF-Tu reduces protein thermal aggregation and enhances CO2 fixation in wheat (Triticum aestivum) following heat stress.

    Science.gov (United States)

    Fu, Jianming; Momcilović, Ivana; Clemente, Thomas E; Nersesian, Natalya; Trick, Harold N; Ristic, Zoran

    2008-10-01

    Heat stress is a major constraint to wheat production and negatively impacts grain quality, causing tremendous economic losses, and may become a more troublesome factor due to global warming. At the cellular level, heat stress causes denaturation and aggregation of proteins and injury to membranes leading to alterations in metabolic fluxes. Protein aggregation is irreversible, and protection of proteins from thermal aggregation is a strategy a cell uses to tolerate heat stress. Here we report on the development of transgenic wheat (Triticum aestivum) events, expressing a maize gene coding for plastidal protein synthesis elongation factor (EF-Tu), which, compared to non-transgenic plants, display reduced thermal aggregation of leaf proteins, reduced heat injury to photosynthetic membranes (thylakoids), and enhanced rate of CO(2) fixation after exposure to heat stress. The results support the concept that EF-Tu ameliorates negative effects of heat stress by acting as a molecular chaperone. This is the first demonstration of the introduction of a plastidal EF-Tu in plants that leads to protection against heat injury and enhanced photosynthesis after heat stress. This is also the first demonstration that a gene other than HSP gene can be used for improvement of heat tolerance and that the improvement is possible in a species that has a complex genome, hexaploid wheat. The results strongly suggest that heat tolerance of wheat, and possibly other crop plants, can be improved by modulating expression of plastidal EF-Tu and/or by selection of genotypes with increased endogenous levels of this protein.

  7. Yeast culture increased plasma niacin concentration, evaporative heat loss, and feed efficiency of dairy cows in a hot environment.

    Science.gov (United States)

    Dias, Julia D L; Silva, Rayana B; Fernandes, Tatiane; Barbosa, Eugenio F; Graças, Larissa E C; Araujo, Rafael C; Pereira, Renata A N; Pereira, Marcos N

    2018-04-04

    The supplementation of dairy cows with yeast culture may increase diet digestibility, plasma niacin concentration, heat dissipation, and lactation performance. Our objective was to evaluate the response of Holstein cows in late lactation (234 ± 131 d in milk) to dead yeast culture (YC, 15 g/d, Factor SC, GRASP, Saccharomyces cerevisiae) during Brazilian summer (temperature-humidity index >68 for 92.2% of the time). Thirty-two cows were individually fed a standard total mixed ration for 14 d and control (CTL) or YC treatments for 35 d, in a covariate adjusted complete randomized block design. Response was evaluated in wk 5 or as repeated measures over time. Cows were milked 3 times per day and treatments (YC or placebo) were orally dosed to each cow before each milking. Plasma niacin was 1.50 for CTL and 1.66 µg/mL for YC. The YC reduced rectal temperature, respiration rate, and skin temperature, whereas it tended to increase sweating rate. The proportion of cows with rectal temperature ≥39.2°C on CTL and YC was, respectively, 8 and 0% at 0730 h, 52 and 25% at 1500 h, and 35 and 26% at 2200 h. Plasma glucose was increased by YC. The total-tract apparent digestibility of nutrients, plasma urea N concentration, molar proportion of ruminal VFA, and urinary allantoin excretion were not affected by YC. Cows fed YC were less selective against feed particles >19 mm in the morning, in the afternoon were more selective against long feed particles and in favor of particles loss, and feed efficiency of late lactation dairy cows by reducing intake at similar milk yield. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  8. Reducing the porosity and reflection loss of silicon nanowires by a sticky tape

    International Nuclear Information System (INIS)

    Liu, Junjun; Huang, Zhifeng

    2015-01-01

    Engineering the porosity of silicon nanowires (SiNWs) is of fundamental importance, and this work introduces a new method for doing so. Metal-assisted chemical etching (MACE) of heavily doped Si(100) creates mesoporous silicon nanowires (mp-SiNWs). mp-SiNWs are transferred from the MACE-treated wafer to a sticky tape, leaving residues composed of broken mp-SiNWs and a mesoporous Si layer on the wafer. Then the taped wafer is re-treated by MACE, without changing the etching conditions. The second MACE treatment generates mp-SiNWs that are less porous and longer than those generated by the first MACE treatment, which can be attributed to the difference in the surface topography at the beginning of the etching process. Less porous mp-SiNWs reduce optical scattering from the porous Si skeletons, and vertically protrude on the wafer without aggregation to facilitate optical trapping. Consequently, less porous mp-SiNWs effectively reduce ultraviolet-visible reflection loss. (paper)

  9. Endocannabinoid receptor blockade reduces alanine aminotransferase in polycystic ovary syndrome independent of weight loss.

    Science.gov (United States)

    Dawson, Alison J; Kilpatrick, Eric S; Coady, Anne-Marie; Elshewehy, Abeer M M; Dakroury, Youssra; Ahmed, Lina; Atkin, Stephen L; Sathyapalan, Thozhukat

    2017-07-14

    Evidence suggests that endocannabinoid system activation through the cannabinoid receptor 1 (CB1) is associated with enhanced liver injury, and CB1 antagonism may be beneficial. The aim of this study was to determine the impact of rimonabant (CB1 antagonist) on alanine aminotransferase (ALT), a hepatocellular injury marker, and a hepatic inflammatory cytokine profile. Post hoc review of 2 studies involving 50 obese women with PCOS and well matched for weight, randomised to weight reducing therapy; rimonabant (20 mg od) or orlistat (120 mg tds), or to insulin sensitising therapy metformin, (500 mg tds), or pioglitazone (45 mg od). No subject had non-alcoholic fatty liver disease (NAFLD). Treatment with rimonabant for 12 weeks reduced both ALT and weight (p weight. There was a significant reduction of weight with orlistat (p weight loss and hepatic inflammatory markers in obese women with PCOS without NAFLD. ISRCTN58369615 (February 2007; retrospectively registered) ISRCTN75758249 (October 2007; retrospectively registered).

  10. A study on emergency response guideline during the loss of steam generator secondary heat sink in pressurizer water reactor

    International Nuclear Information System (INIS)

    Yoon, D. J.; Lee, J. Y.; Song, D. S.

    1999-01-01

    A loss of secondary heat sink can occur as a result of several different initiating events, which are a loss of main feedwater during power operation, a loss of off-site power, or any other scenario for which main feedwater is isolated or lost. At this point the opening and closing of the PORV or safety valves will result in a loss of RCS inventory similar in nature to a small break loss of coolant accident. If operator action is not taken, the pressurizer PORV or safety valves will continue to cycle open and closed at the valve setpoint pressure removing RCS inventory and a limited amount of core decay heat until eventually enough inventory will be lost to result in core uncovery. We conclude that a requirement to successfully initiate bleed and feed on steam generator dryout, without any significant core uncovery expected to occur, is that the PORV flow to power ratio must exceed 140 (lbm/hr)/Mwt. For all plants whose PORV capacity is less than 140 (lbm/hr)/Mwt, since symptoms of SG dryout cannot be used to initiate bleed and feed, increasing RCS pressure and temperature or pressure greater than 2335 psig cannot be used. The only alternative symptom available is SG narrow range level. Since Kori 1,2,3 and 4' PORV capacity is more than the criteria, the bleed and feed operation can be initiated at steam generator dryout

  11. A Laplace transform certified reduced basis method; application to the heat equation and wave equation

    OpenAIRE

    Knezevic, David; Patera, Anthony T.; Huynh, Dinh Bao Phuong

    2010-01-01

    We present a certified reduced basis (RB) method for the heat equation and wave equation. The critical ingredients are certified RB approximation of the Laplace transform; the inverse Laplace transform to develop the time-domain RB output approximation and rigorous error bound; a (Butterworth) filter in time to effect the necessary “modal” truncation; RB eigenfunction decomposition and contour integration for Offline–Online decomposition. We present numerical results to demonstrate the accura...

  12. Reducing uranium and thorium level in Zircon: effect of heat treatment on rate of leaching

    International Nuclear Information System (INIS)

    Meor Yusoff Meor Sulaiman

    2002-01-01

    Considerable amount of uranium and thorium are found in Malaysian zircon and the level is much higher than the minimum value adopted by many importing countries. Selective leaching had been applied as an important technique to reduce these elements. An initial study was carried out using hydrochloric acid leaching system but the result was not favourable. The rate of uranium and thorium leached can be further improved by introducing a heat pretreatment process prior to leaching (Author)

  13. Icariin Reduces Dopaminergic Neuronal Loss and Microglia-Mediated Inflammation in Vivo and in Vitro

    Directory of Open Access Journals (Sweden)

    Guo-Qing Wang

    2018-01-01

    Full Text Available Parkinson’s disease (PD is one of the most common neurodegenerative diseases characterized with a gradual loss of midbrain substantia nigra (SN dopamine (DA neurons. An excessive evidence demonstrated that microglia-mediated inflammation might be involved in the pathogenesis of PD. Thus, inhibition of neuroinflammation might possess a promising potential for PD treatment. Icariin (ICA, a single active component extracted from the Herba Epimedii, presents amounts of pharmacological properties, such as anti-inflammation, anti-oxidant, and anti-aging. Recent studies show ICA produced neuroprotection against brain dysfunction. However, the mechanisms underlying ICA-exerted neuroprotection are fully illuminated. In the present study, two different neurotoxins of 6-hydroxydopamine (6-OHDA and lipopolysaccharide (LPS-induced rat midbrain DA neuronal damage were applied to investigate the neuroprotective effects of ICA. In addition, primary rat midbrain neuron-glia co-cultures were performed to explore the mechanisms underlying ICA-mediated DA neuroprotection. In vitro data showed that ICA protected DA neurons from LPS/6-OHDA-induced DA neuronal damage and inhibited microglia activation and pro-inflammatory factors production via the suppression of nuclear factor-κB (NF-κB pathway activation. In animal results, ICA significantly reduced microglia activation and significantly attenuated LPS/6-OHDA-induced DA neuronal loss and subsequent animal behavior changes. Together, ICA could protect DA neurons against LPS- and 6-OHDA-induced neurotoxicity both in vivo and in vitro. These actions might be closely associated with the inhibition of microglia-mediated neuroinflammation.

  14. [Single intravenous tranexamic acid dose to reduce blood loss in primary total knee replacement].

    Science.gov (United States)

    Sanz-Reig, J; Parra Ruiz, B; Ferrández Martínez, J; Martínez López, J F

    2016-01-01

    To evaluate the effectiveness and safety of a single intravenous dose of tranexamic acid in order to reduce blood loss in total knee replacement. Prospective observational study of the administration of tranexamic acid in patients undergoing primary total knee arthroplasty from November 2013 to February 2015, in which an autologous blood recovery system was used. The study included 98 patients, distributed into two groups of 49 patients according to whether or not they received intravenous tranexamic acid. The primary endpoint was the number of patients requiring autologous transfusion from the recovery system autologous blood recovery system. No drop-outs were recorded during follow-up. There were no significant differences between groups as regards the preoperative and hospital variables. The mean preoperative haemoglobin and haematocrit at 24 and 48 hours postoperatively were similar in both groups. The average volume of bleeding in the autologous blood recovery system and estimated average blood loss was lower in patients who had been administered tranexamic acid, with significant differences. No patients in the group that was administered tranexamic acid required blood autotransfusion. The transfusion rate was zero in the two groups. No adverse events related to the administration of tranexamic acid were recorded. Intravenous administration of tranexamic acid, according to the described protocol, has presented a non-autotransfusion or allo-transfusion rate of 100%, with no increased incidence of thrombotic events. Thus, its use in this group of patients is recommended. The indication should be individualized, its use justified in the patient medical records, and informed consent is mandatory. Copyright © 2015 SECOT. Published by Elsevier Espana. All rights reserved.

  15. Assessment of Effectiveness of Cool Coat in Reducing Heat Strain among Workers in Steel Industry.

    Science.gov (United States)

    Parameswarappa, S B; Narayana, J

    2017-01-01

    A research study was conducted to assess the effectiveness of cool coat in reducing heat strain among workers exposed to heat in a steel plant located in south India. The study consists of assessing heat strain of workers exposed to heat in a steel plant by measuring physiological reactions of workers such as pulse rate and core body temperature with and without cool coat. The coal coat taken for this study was procured from M/s Yamuna Industries, Noida. Out of 140 employees exposed to heat hazard, 101 employees were examined in this study. Study was done in important production units in steel plant having heat hazard. Workers were interviewed and examined and information regarding thermal comfort was collected. First, the heat strain was assessed when the workers were not using cool coats. The air temperature was measured at all hot zone workplaces and found in the range of 34 0 C to 39.4 0 C (Mean: 36.54 0 C & S.D: 1.54). Physiological response such as core body temperature, pulse rate and blood pressure of workers exposed to heat hazard were measured before & after work to know the heat strain sustained by workers when they were working. Maximum core body temperature after work was found to be 39.3 0 C (Mean; 38.52 & S.D; 0.7). Maximum pulse rate of workers after work was found to be 120 beats/minute (Mean; 94.96 beats/minute, S.D: 13.11). The study indicate core body temperature of workers was found more than the permissible exposure limit prescribed by ACGIH, indicating the heat strain sustained by workers is significant, whereas the pulse rate and blood pressure was found normal & not exceeded the limits. Second, with cool coat, the heat strain was assessed among 10 workers selected from the 101 employees. Core body temperature was measured before and soon after work, The core body temperature recorded soon after work was in the range of 35.5 - 37.20C (Mean 36.36, SD= 0.52), indicating a drop in the core body temperature. In this study, a core body

  16. An effect of heat insulation parameters on thermal losses of water-cooled roofs for secondary steelmaking electric arc furnaces

    Directory of Open Access Journals (Sweden)

    E. Mihailov

    2016-07-01

    Full Text Available The aim of this work is research in the insulation parameters effect on the thermal losses of watercooled roofs for secondary steelmaking electric arc furnaces. An analytical method has been used for the investigation in heat transfer conditions in the working area. The results of the research can be used to choose optimal cooling parameters and select a suitable kind of insulation for water-cooled surfaces.

  17. Water conservation benefits of urban heat mitigation: can cooling strategies reduce water consumption in California?

    Science.gov (United States)

    Vahmani, P.; Jones, A. D.

    2017-12-01

    Urban areas are at the forefront of climate mitigation and adaptation efforts given their high concentration of people, industry, and infrastructure. Many cities globally are seeking strategies to counter the consequences of both a hotter and drier climate. While urban heat mitigation strategies have been shown to have beneficial effects on health, energy consumption, and greenhouse gas emissions, their implications for water conservation have not been widely examined. Here we show that broad implementation of cool roofs, an urban heat mitigation strategy, not only results in significant cooling of air temperature, but also meaningfully decreases outdoor water consumption by reducing evaporative and irrigation water demands. Based on a suite of satellite-supported, multiyear regional climate simulations, we find that cool roof adoption has the potential to reduce outdoor water consumption across the major metropolitan areas in California by up to 9%. Irrigation water savings per capita, induced by cool roofs, range from 1.8 to 15.4 gallons per day across 18 counties examined. Total water savings in Los Angeles county alone is about 83 million gallons per day. While this effect is robust across the 15 years examined (2001-2015), including both drought and non-drought years, we find that cool roofs are most effective during the hottest days of the year, indicating that they could play an even greater role in reducing outdoor water use in a hotter future climate. We further show that this synergistic relationship between heat mitigation and water conservation is asymmetrical - policies that encourage direct reductions in irrigation water use can lead to substantial regional warming, potentially conflicting with heat mitigation efforts designed to counter the effects of the projected warming climate.

  18. Reduction of heat losses on the skid pipe system of reheating furnaces in the steel industry; Verringerung der Waermeverluste am Tragrohrsystem von Waermeoefen in der Stahlindustrie

    Energy Technology Data Exchange (ETDEWEB)

    Springer, Michael; Huegel, Frank [FBB Engineering GmbH, Moenchengladbach (Germany)

    2011-06-15

    New technology can improve the energy efficiency of thermo processing equipment, innovative technology can ultimately help to reduce CO{sub 2} emissions from existing facilities and simultaneously ensure that the equipment can also operate more economically. The result of consequent development at FBB ENGINEERING GmbH for insulation of skid pipe systems of reheating furnaces in steel industry (walking beam -, pusher type furnace) are efficient pre-fabricated shells made of ultra-light weight castable FLB-11/150-I1 with thermo technical optimized sandwich design that lead to significant and sustainable reduction of heat losses and are responsible for high energy saving potential. Thermo technical CFD simulations, laboratory tests, field trials and complete installations of skid pipe systems show that compared to dense castable heat loss in the skid pipe cooling systems can be reduced up to 30 % and more with pre-fabricated shells made of ultra-light weight castable FLB-11/150-I1. (orig.)

  19. Body temperature depression and peripheral heat loss accompany the metabolic and ventilatory responses to hypoxia in low and high altitude birds.

    Science.gov (United States)

    Scott, Graham R; Cadena, Viviana; Tattersall, Glenn J; Milsom, William K

    2008-04-01

    The objectives of this study were to compare the thermoregulatory, metabolic and ventilatory responses to hypoxia of the high altitude bar-headed goose with low altitude waterfowl. All birds were found to reduce body temperature (T(b)) during hypoxia, by up to 1-1.5 degrees C in severe hypoxia. During prolonged hypoxia, T(b) stabilized at a new lower temperature. A regulated increase in heat loss contributed to T(b) depression as reflected by increases in bill surface temperatures (up to 5 degrees C) during hypoxia. Bill warming required peripheral chemoreceptor inputs, since vagotomy abolished this response to hypoxia. T(b) depression could still occur without bill warming, however, because vagotomized birds reduced T(b) as much as intact birds. Compared to both greylag geese and pekin ducks, bar-headed geese required more severe hypoxia to initiate T(b) depression and heat loss from the bill. However, when T(b) depression or bill warming were expressed relative to arterial O(2) concentration (rather than inspired O(2)) all species were similar; this suggests that enhanced O(2) loading, rather than differences in thermoregulatory control centres, reduces T(b) depression during hypoxia in bar-headed geese. Correspondingly, bar-headed geese maintained higher rates of metabolism during severe hypoxia (7% inspired O(2)), but this was only partly due to differences in T(b). Time domains of the hypoxic ventilatory response also appeared to differ between bar-headed geese and low altitude species. Overall, our results suggest that birds can adjust peripheral heat dissipation to facilitate T(b) depression during hypoxia, and that bar-headed geese minimize T(b) and metabolic depression as a result of evolutionary adaptations that enhance O(2) transport.

  20. Reshaping the Built Environment to Reduce Environmental and Public Health Impacts of Summertime Heat

    Science.gov (United States)

    Rosenthal, J. E.; Bakewell, K.

    2005-12-01

    , risk of mortality was higher in the black community, and in those living in certain types of low-income and multi-tenant housing. Interventions in the built environment to promote urban heat island mitigation can reduce ambient temperatures, potentially reducing heat-related mortality rates in vulnerable populations, electricity consumption and air pollutant emissions, and slow ozone formation, an important health stressor. These mitigation measures may also serve as adaptive responses for a range of potential future climate conditions. Here we review current research that assesses the health, air quality, and energy conservation benefits in cities from these interventions in the built environment, and discuss the techniques and research objectives of a new pilot community-based project to mitigate the heat island effect in the South Bronx, New York City through implementation of vegetated and high albedo roofing on residential and institutional buildings. Recent studies use mesoscale climate models and a variety of land-use and land-cover scenarios to project the effects of increasing vegetative fraction and albedo within metropolitan regions and to evaluate the impacts of measures that may serve both as adaptive responses to current conditions and mitigation for future climate variability. Through this perspective, we address the questions: What urban design approaches make for resilient cities in a changing environment? What costs and benefits may be expected by the adoption of heat island mitigation techniques within the New York metropolitan region?

  1. Ongoing hydrothermal heat loss from the 1912 ash-flow sheet, Valley of Ten Thousand Smokes, Alaska

    Science.gov (United States)

    Hogeweg, N.; Keith, T.E.C.; Colvard, E.M.; Ingebritsen, S.E.

    2005-01-01

    The June 1912 eruption of Novarupta filled nearby glacial valleys on the Alaska Peninsula with ash-flow tuff (ignimbrite), and post-eruption observations of thousands of steaming fumaroles led to the name 'Valley of Ten Thousand Smokes' (VTTS). By the late 1980s most fumarolic activity had ceased, but the discovery of thermal springs in mid-valley in 1987 suggested continued cooling of the ash-flow sheet. Data collected at the mid-valley springs between 1987 and 2001 show a statistically significant correlation between maximum observed chloride (Cl) concentration and temperature. These data also show a statistically significant decline in the maximum Cl concentration. The observed variation in stream chemistry across the sheet strongly implies that most solutes, including Cl, originate within the area of the VTTS occupied by the 1912 deposits. Numerous measurements of Cl flux in the Ukak River just below the ash-flow sheet suggest an ongoing heat loss of ???250 MW. This represents one of the largest hydrothermal heat discharges in North America. Other hydrothermal discharges of comparable magnitude are related to heat obtained from silicic magma bodies at depth, and are quasi-steady on a multidecadal time scale. However, the VTTS hydrothermal flux is not obviously related to a magma body and is clearly declining. Available data provide reasonable boundary and initial conditions for simple transient modeling. Both an analytical, conduction-only model and a numerical model predict large rates of heat loss from the sheet 90 years after deposition.

  2. Characterization of the frictional losses and heat transfer of oscillatory viscous flow through wire-mesh regenerators

    Directory of Open Access Journals (Sweden)

    A.A. Boroujerdi

    2015-12-01

    Full Text Available In this paper, new relations for calculating heat transfer and pressure drop characteristics of oscillatory flow through wire-mesh screen regenerator such as Darcy permeability, Forchheimer’s inertial coefficient, and heat transfer area per unit volume, as a function of the wire diameter are presented. According to the derived relations, thinner wires have higher pressure drop and higher heat transfer rate. The relations are applicable for all regenerative cryocoolers. Embedding the new relations into a numerical model, three Stirling-type orifice pulse tube cryocoolers with three regenerators different in length and diameter but same volume in a variety of wire diameters, have been modeled. The results achieved by the model reveal that the local heat transfer coefficient decreases with increase of the wire diameter and the length-to-diameter ratio. In addition, it was shown that the mean absolute gas–solid wire temperature difference is a linear function of wire diameter in the range investigated. The results show that for larger length-to-diameter ratios, Forchheimer’s effect will dominate frictional losses, and the variations of the frictional losses are proportional to the inverse of the wire diameter. Wire diameter has been optimized to maximize the coefficient of performance of the cryocooler. Shorter regenerators have thinner optimum wires.

  3. Using single-step genomic best linear unbiased predictor to enhance the mitigation of seasonal losses due to heat stress in pigs.

    Science.gov (United States)

    Fragomeni, B O; Lourenco, D A L; Tsuruta, S; Bradford, H L; Gray, K A; Huang, Y; Misztal, I

    2016-12-01

    The purposes of this study were to analyze the impact of seasonal losses due to heat stress in pigs from different breeds raised in different environments and to evaluate the accuracy improvement from adding genomic information to genetic evaluations. Data were available for 2 different swine populations: purebred Duroc animals raised in Texas and North Carolina and commercial crosses of Duroc and F females (Landrace × Large White) raised in Missouri and North Carolina; pedigrees provided links for animals from different states. Pedigree information was available for 553,442 animals, of which 8,232 pure breeds were genotyped. Traits were BW at 170 d for purebred animals and HCW for crossbred animals. Analyses were done with an animal model as either single- or 2-trait models using phenotypes measured in different states as separate traits. Additionally, reaction norm models were fitted for 1 or 2 traits using heat load index as a covariable. Heat load was calculated as temperature-humidity index greater than 70 and was averaged over 30 d prior to data collection. Variance components were estimated with average information REML, and EBV and genomic EBV (GEBV) with BLUP or single-step genomic BLUP (ssGBLUP). Validation was assessed for 146 genotyped sires with progeny in the last generation. Accuracy was calculated as a correlation between EBV and GEBV using reduced data (all animals, except the last generation) and using complete data. Heritability estimates for purebred animals were similar across states (varying from 0.23 to 0.26), and reaction norm models did not show evidence of a heat stress effect. Genetic correlations between states for heat loads were always strong (>0.91). For crossbred animals, no differences in heritability were found in single- or 2-trait analysis (from 0.17 to 0.18), and genetic correlations between states were moderate (0.43). In the reaction norm for crossbreeds, heritabilities ranged from 0.15 to 0.30 and genetic correlations

  4. DOES TRANEXAMIC ACID REDUCE BLOOD LOSS IN OFF-PUMP CORONARY ARTERY BYPASS?

    Directory of Open Access Journals (Sweden)

    A. Mehr-Aein

    2006-09-01

    Full Text Available Tranexamic acid is now used on a routine basis for on-pump coronary artery bypass grafting (CABG. We assessed the hemostatic effects of tranexamic acid to decrease bleeding tendency and transfusion requirements in patients undergoing off-pump coronary artery bypass surgery (OPCAB. A total of 66 patients were enrolled to elective OPCAB in a double-blind, prospective randomized study. Of these, 33 patients received tranexamic acid (15 mg/kg before the infusion of heparin and 15 mg/kg after protamin infusion, and 33 patients received only saline. Preoperative hematologic variables, postoperative bleeding and allogeneic transfusions were considered. D-dimer plasma levels were also evaluated to monitor the activation of fibrinolysis. Postoperative bleeding was significantly lower in the tranexamic acid group compared with the control group (320 ± 38 mL vs. 480 ± 75 mL at 12 hour, P < 0.001. The tranexamic acid group had significantly lesser need for allogeneic blood products (0.46 units/patients vs. 0.94 units/patients, P < 0.001. They had also lower post-operative D-dimer plasma levels. No postoperative thrombotic complications were observed in either group. The defective hemostasis occurs even in the OPCABG. Tranexamic acid effectively reduces postoperative blood loss and the need for allogeneic blood products after OPCAB is decreased.

  5. Reducing Risk of Noise-Induced Hearing Loss in Collegiate Music Ensembles Using Ambient Technology.

    Science.gov (United States)

    Powell, Jason; Chesky, Kris

    2017-09-01

    Student musicians are at risk for noise-induced hearing loss (NIHL) as they develop skills and perform during instructional activities. Studies using longitudinal dosimeter data show that pedagogical procedures and instructor behaviors are highly predictive of NIHL risk, thus implying the need for innovative approaches to increase instructor competency in managing instructional activities without interfering with artistic and academic freedom. Ambient information systems, an emerging trend in human-computer interaction that infuses psychological behavioral theories into technologies, can help construct informative risk-regulating systems. The purpose of this study was to determine the effects of introducing an ambient information system into the ensemble setting. The system used two ambient displays and a counterbalanced within-subjects treatment study design with six jazz ensemble instructors to determine if the system could induce a behavior change that alters trends in measures resulting from dosimeter data. This study assessed efficacy using time series analysis to determine changes in eight statistical measures of behavior over a 9-wk period. Analysis showed that the system was effective, as all instructors showed changes in a combination of measures. This study is in an important step in developing non-interfering technology to reduce NIHL among academic musicians.

  6. Loss of arylformamidase with reduced thymidine kinase expression leads to impaired glucose tolerance

    Directory of Open Access Journals (Sweden)

    Alison J. Hugill

    2015-11-01

    Full Text Available Tryptophan metabolites have been linked in observational studies with type 2 diabetes, cognitive disorders, inflammation and immune system regulation. A rate-limiting enzyme in tryptophan conversion is arylformamidase (Afmid, and a double knockout of this gene and thymidine kinase (Tk has been reported to cause renal failure and abnormal immune system regulation. In order to further investigate possible links between abnormal tryptophan catabolism and diabetes and to examine the effect of single Afmid knockout, we have carried out metabolic phenotyping of an exon 2 Afmid gene knockout. These mice exhibit impaired glucose tolerance, although their insulin sensitivity is unchanged in comparison to wild-type animals. This phenotype results from a defect in glucose stimulated insulin secretion and these mice show reduced islet mass with age. No evidence of a renal phenotype was found, suggesting that this published phenotype resulted from loss of Tk expression in the double knockout. However, despite specifically removing only exon 2 of Afmid in our experiments we also observed some reduction of Tk expression, possibly due to a regulatory element in this region. In summary, our findings support a link between abnormal tryptophan metabolism and diabetes and highlight beta cell function for further mechanistic analysis.

  7. Aerobic exercise training without weight loss reduces dyspnea on exertion in obese women

    Science.gov (United States)

    Bernhardt, Vipa; Stickford, Jonathon L.; Bhammar, Dharini M.; Babb, Tony G.

    2015-01-01

    Dyspnea on exertion (DOE) is a common symptom in obesity. We investigated whether aerobic exercise training without weight loss could reduce DOE. Twenty-two otherwise healthy obese women participated in a 12-week supervised aerobic exercise training program, exercising 30 min/day at 70–80% heart rate reserve, 4 days/week. Subjects were grouped based on their Ratings of Perceived Breathlessness (RPB) during constant load 60W cycling: +DOE (n = 12, RPB ≥ 4, 37 ± 7 years, 34 ± 4kg/m2) and −DOE (n = 10, RPB ≤ 2, 32 ± 6 years, 33 ± 3kg/m2). No significant differences between the groups in body composition, pulmonary function, or cardiorespiratory fitness were observed pre-training. Post-training, peak was improved significantly in both groups (+DOE: 12 ± 7, −DOE: 14 ± 8%). RPB was significantly decreased in the + DOE (4.7 ± 1.0–2.5 ± 1.0) and remained low in the −DOE group (1.2 ± 0.6–1.3 ± 1.0) (interaction p exercise training improved cardiorespiratory fitness and DOE and thus appears to be an effective treatment for DOE in obese women. PMID:26593640

  8. Multidrug-resistant tuberculosis patients’ views of interventions to reduce treatment loss to follow-up

    Science.gov (United States)

    Tupasi, T.; Garfin, A. M. C. G.; Mangan, J. M.; Orillaza-Chi, R.; Naval, L. C.; Balane, G. I.; Basilio, R.; Golubkov, A.; Joson, E. S.; Lew, W-J.; Lofranco, V.; Mantala, M.; Pancho, S.; Sarol, J. N.; Blumberg, A.; Burt, D.; Kurbatova, E. V.

    2017-01-01

    SUMMARY SETTING Patients who initiated treatment for multi-drug-resistant tuberculosis (MDR-TB) at 15 Programmatic Management of Drug-resistant Tuberculosis (PMDT) health facilities in the Philippines between July and December 2012. OBJECTIVES To describe patients’ views of current interventions, and suggest changes likely to reduce MDR-TB loss to follow-up. METHODS In-depth interviews were conducted between April and July 2014 with MDR-TB patients who were undergoing treatment, had finished treatment at the time of the interview (controls), or had been lost to follow-up (LTFU). Responses were thematically analyzed. RESULTS Interviews were conducted with 182 patients who were undergoing or had completed treatment and 91 LTFU patients. Views and suggestions could be thematically categorized as approaches to facilitate adherence or address barriers to adherence. The top themes were the need for transportation assistance or improvements to the current transportation assistance program, food assistance, and difficulties patients encountered related to their medications. These themes were addressed by respectively 63%, 60%, and 32% of the participants. CONCLUSIONS A more patient-centered approach is needed to improve MDR-TB treatment adherence. Programs should strive to provide assistance that considers patient preferences, is adequate to cover actual costs or needs, and is delivered in a timely, uninterrupted manner. PMID:28157461

  9. [Effect of reduced N application on soil N residue and N loss in maize-soybean relay strip intercropping system].

    Science.gov (United States)

    Liu, Xiao-Ming; Yong, Tai-Wen; Liu, Wen-Yu; Su, Ben-Ying; Song, Chun; Yang, Feng; Wang, Xiao-Chun; Yang, Wen-Yu

    2014-08-01

    A field experiment was conducted in 2012, including three planting pattern (maize-soybean relay strip intercropping, mono-cultured maize and soybean) and three nitrogen application level [0 kg N x hm(-2), 180 kg N x hm(-2) (reduced N) and 240 kg N x hm(-2) (normal N)]. Fields were assigned to different treatments in a randomized block design with three replicates. The objective of this work was to analyze the effects of planting patterns and nitrogen application rates on plant N uptake, soil N residue and N loss. After fertilization applications, NH4(+)-N and NO3(-)-N levels increased in the soil of intercropped maize but decreased in the soil of intercropped soybean. Compared with mono-crops, the soil N residue and loss of intercropped soybean were reduced, while those of intercropped maize were increased and decreased, respectively. With the reduced rate of N application, N residue rate, N loss rate and ammonia volatilization loss rate of the maize-soybean intercropping relay strip system were decreased by 17.7%, 21.5% and 0.4% compared to mono-cultured maize, but increased by 2.0%, 19.8% and 0.1% compared to mono-cultured soybean, respectively. Likewise, the reduced N application resulted in reductions in N residue, N loss, and the N loss via ammonia volatilization in the maize-soybean relay strip intercropping system compared with the conventional rate of N application adopted by local farmers, and the N residue rate, N loss rate and ammonia volatilization loss rate reduced by 12.0%, 15.4% and 1.2%, respectively.

  10. Experimental study of heat exchange coefficients, critical heat flux and charge losses, using water-steam mixtures in turbulent flow in a vertical tube

    International Nuclear Information System (INIS)

    Perroud, P.; De La Harpe, A.; Rebiere, J.

    1960-12-01

    Two stainless steel tubes were used (with diameters of 5 and 10 mm, lengths 400 and 600 mm respectively), heated electrically (50 Hz). The mixture flows from top to bottom. The work was carried out mainly on mixtures of high concentration (x > 0.1), at pressures between 50 and 60 kg/cm 2 , flowing as a liquid film on the walls of the tube with droplets suspended in the central current of steam. By analysis of the heat transfer laws the exchange mechanisms were established, and the conditions under which the critical heat flux may be exceeded without danger of actual burnout were determined. In this way high output concentrations (x s > 0.9) may be obtained. An attempt has been made to find out to what extent existing correlation formulae can be used to account for the phenomena observed. It is shown that those dealing with exchange coefficients can only be applied in a first approximation in cases where exchange by convection is preponderant, and only below the critical flux. The formulae proposed by WAPD and CISE do not give a satisfactory estimation of the critical heat flux, and the essential reasons for this inadequacy are explained. Lastly, the Martinelli and Nelson method may be used to an approximation of 30 per cent for the calculation of charge losses. (author) [fr

  11. Morphological dependency of cutaneous blood flow and sweating during compensable heat stress when heat-loss requirements are matched across participants.

    Science.gov (United States)

    Notley, Sean R; Park, Joonhee; Tagami, Kyoko; Ohnishi, Norikazu; Taylor, Nigel A S

    2016-07-01

    Human heat loss is thought, in part, to be morphologically related. It was therefore hypothesized that when heat-loss requirements and body temperatures were matched, that the mass-specific surface area alone could significantly explain both cutaneous vascular and sudomotor responses during compensable exercise. These thermoeffector responses were examined in 36 men with widely varying mass-specific surface areas (range, 232.3-292.7 cm(2)/kg), but of similar age, aerobic fitness, and adiposity. Subjects completed two trials under compensable conditions (28.1°C, 36.8% relative humidity), each involving rest (20 min) and steady-state cycling (45 min) at two matched metabolic heat-production rates (light, ∼135 W/m(2); moderate, ∼200 W/m(2)). Following equivalent mean body temperature changes, forearm blood flow and vascular conductance (r = 0.63 and r = 0.65) shared significant, positive associations with the mass-specific surface area during light work (P < 0.05), explaining ∼45% of the vasomotor variation. Conversely, during light and moderate work, whole body sweat rate, as well as local sweat rate and sudomotor sensitivity at three of four measured sites, revealed moderate, negative relationships with the mass-specific surface area (correlation coefficient range -0.37 to -0.73, P < 0.05). Moreover, those relationships could uniquely account for between 10 and 53% of those sweating responses (P < 0.05). Therefore, both thermoeffector responses displayed a significant morphological dependency in the presence of equivalent thermoafferent drive. Indeed, up to half of the interindividual variation in these effector responses could now be explained through morphological differences and the first principles governing heat transfer. Copyright © 2016 the American Physiological Society.

  12. The Impact of Reduced Gravity on Free Convective Heat Transfer from a Finite, Flat, Vertical Plate

    Science.gov (United States)

    Lotto, Michael A.; Johnson, Kirstyn M.; Nie, Christopher W.; Klaus, David M.

    2017-10-01

    Convective heat transfer is governed by a number of factors including various fluid properties, the presence of a thermal gradient, geometric configuration, flow condition, and gravity. Empirically-derived analytical relationships can be used to estimate convection as a function of these governing parameters. Although it is relatively straightforward to experimentally quantify the contributions of the majority of these variables, it is logistically difficult to assess the influence of reduced-gravity due to practical limitations of establishing this environment. Therefore, in order to explore this regime, a series of tests was conducted to evaluate convection under reduced-gravity conditions averaging 0.45 m/sec2 (0.05 g) achieved aboard a parabolic aircraft. The results showed a reduction in net heat transfer of approximately 61% in flight relative to a 1 g terrestrial baseline using the same setup. The average experimental Nusselt Number of 19.05 ± 1.41 statistically correlated with the predicted value of 18.90 ± 0.63 (N = 13), estimated using the Churchill-Chu correlation for free convective heat transfer from a finite, flat, vertical plate. Extrapolating this to similar performance in true microgravity (10-6 g) indicates that these conditions should yield a Nusselt Number of 1.27, which is 2.6% the magnitude of free convection at 1 g, or a reduction of 97.4%. With advection essentially eliminated, heat transfer becomes limited to diffusion and radiation, which are gravity-independent and nearly equivalent in magnitude in this case. These results offer a general guideline for integrating components that utilize natural (free) convective gas cooling in a spacecraft habitat and properly sizing the thermal control system.

  13. Lining bunker walls with oxygen barrier film reduces nutrient losses in corn silages.

    Science.gov (United States)

    Lima, L M; Dos Santos, J P; Casagrande, D R; Ávila, C L S; Lara, M S; Bernardes, T F

    2017-06-01

    (1,258.3 and 1,294.0 kg/t, respectively). Regarding the distances from the walls, the effects were more pronounced from 0 to 101 cm. The OB50 and OB100 silages had better quality and lower mold counts and DM losses than ST50 and ST100. The OB system reduced DM and nutrient losses at the shoulders in farm bunker corn silages compared with no sidewall plastic. The OB film should lap onto the crop for at least 200 cm so that 150 cm are covered outward from the wall. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  14. NLP modeling for the optimization of LiBr-H2O absorption refrigeration systems with exergy loss rate, heat transfer area, and cost as single objective functions

    DEFF Research Database (Denmark)

    Mussati, Sergio F.; Gernaey, Krist; Morosuk, Tatiana

    2016-01-01

    exergy loss rate, the total heat transfer area, and the total annual cost of the system. It was found that the optimal solution obtained by minimization of the total exergy loss rate provides “theoretical” upper bounds not only for the total heat transfer area of the system but also for each process unit...... and all stream temperatures, while the optimal solution obtained by minimization of the total heat transfer area provides the lower bounds for these model variables, to solve a cost optimization problem. The minimization of the total exergy loss rate by varying parametrically the available total heat...... transfer area between these bounds was also performed, allowing to see how the optimal distribution of the available total heat transfer area among the system components, as well as the operating conditions (stream temperature, pressure, composition, and mass flow rate) and heat loads, vary qualitatively...

  15. A reduced theoretical model for estimating condensation effects in combustion-heated hypersonic tunnel

    Science.gov (United States)

    Lin, L.; Luo, X.; Qin, F.; Yang, J.

    2018-03-01

    As one of the combustion products of hydrocarbon fuels in a combustion-heated wind tunnel, water vapor may condense during the rapid expansion process, which will lead to a complex two-phase flow inside the wind tunnel and even change the design flow conditions at the nozzle exit. The coupling of the phase transition and the compressible flow makes the estimation of the condensation effects in such wind tunnels very difficult and time-consuming. In this work, a reduced theoretical model is developed to approximately compute the nozzle-exit conditions of a flow including real-gas and homogeneous condensation effects. Specifically, the conservation equations of the axisymmetric flow are first approximated in the quasi-one-dimensional way. Then, the complex process is split into two steps, i.e., a real-gas nozzle flow but excluding condensation, resulting in supersaturated nozzle-exit conditions, and a discontinuous jump at the end of the nozzle from the supersaturated state to a saturated state. Compared with two-dimensional numerical simulations implemented with a detailed condensation model, the reduced model predicts the flow parameters with good accuracy except for some deviations caused by the two-dimensional effect. Therefore, this reduced theoretical model can provide a fast, simple but also accurate estimation of the condensation effect in combustion-heated hypersonic tunnels.

  16. The loss of activating transcription factor 4 (ATF4) reduces bone toughness and fracture toughness.

    Science.gov (United States)

    Makowski, Alexander J; Uppuganti, Sasidhar; Wadeer, Sandra A; Whitehead, Jack M; Rowland, Barbara J; Granke, Mathilde; Mahadevan-Jansen, Anita; Yang, Xiangli; Nyman, Jeffry S

    2014-05-01

    Even though age-related changes to bone tissue affecting fracture risk are well characterized, only a few matrix-related factors have been identified as important to maintaining fracture resistance. As a gene critical to osteoblast differentiation, activating transcription factor 4 (ATF4) is possibly one of these important factors. To test the hypothesis that the loss of ATF4 affects the fracture resistance of bone beyond bone mass and structure, we harvested bones from Atf4+/+ and Atf4-/- littermates at 8 and 20 weeks of age (n≥9 per group) for bone assessment across several length scales. From whole bone mechanical tests in bending, femurs from Atf4-/- mice were found to be brittle with reduced toughness and fracture toughness compared to femurs from Atf4+/+ mice. However, there were no differences in material strength and in tissue hardness, as determined by nanoindentation, between the genotypes, irrespective of age. Tissue mineral density of the cortex at the point of loading as determined by micro-computed tomography was also not significantly different. However, by analyzing local composition by Raman Spectroscopy (RS), bone tissue of Atf4-/- mice was found to have higher mineral to collagen ratio compared to wild-type tissue, primarily at 20 weeks of age. From RS analysis of intact femurs at 2 orthogonal orientations relative to the polarization axis of the laser, we also found that the organizational-sensitive peak ratio, ν1Phosphate per Amide I, changed to a greater extent upon bone rotation for Atf4-deficient tissue, implying bone matrix organization may contribute to the brittleness phenotype. Target genes of ATF4 activity are not only important to osteoblast differentiation but also in maintaining bone toughness and fracture toughness. Published by Elsevier Inc.

  17. Helichrysum and Grapefruit Extracts Boost Weight Loss in Overweight Rats Reducing Inflammation.

    Science.gov (United States)

    de la Garza, Ana Laura; Etxeberria, Usune; Haslberger, Alexander; Aumueller, Eva; Martínez, J Alfredo; Milagro, Fermín I

    2015-08-01

    Obesity is characterized by an increased production of inflammatory markers. High levels of circulating free fatty acids and chronic inflammation lead to increased oxidative stress, contributing to the development of insulin resistance (IR). Recent studies have focused on the potential use of flavonoids for obesity management due to their antioxidant and anti-inflammatory properties. This study was designed to investigate the antioxidant and anti-inflammatory effects of helichrysum and grapefruit extracts in overweight insulin-resistant rats. Thirty-eight male Wistar rats were randomly distributed in two groups: control group (n=8) and high-fat sucrose (HFS) group (n=30). After 22 days of ad libitum water and food access, the rats fed HFS diet changed to standard diet and were reassigned into three groups (n=10 each group): nonsupplemented, helichrysum extract (2 g/kg bw), and grapefruit extract (1 g/kg bw) administered for 5 weeks. Rats supplemented with both extracts gained less body weight during the 5-week period of treatment, showed lower serum insulin levels and liver TBARS levels. Leptin/adiponectin ratio, as an indicator of IR, was lower in both extract-administered groups. These results were accompanied by a reduction in TNFα gene expression in epididymal adipose tissue and intestinal mucosa, and TLR2 expression in intestinal mucosa. Helichrysum and grapefruit extracts might be used as complement hypocaloric diets in weight loss treatment. Both extracts helped to reduce weight gain, hyperinsulinemia, and IR, improved inflammation markers, and decreased the HFS diet-induced oxidative stress in insulin-resistant rats.

  18. The Loss of Activating Transcription Factor 4 (ATF4) Reduces Bone Toughness and Fracture Toughness

    Science.gov (United States)

    Makowski, Alexander J.; Uppuganti, Sasidhar; Waader, Sandra A.; Whitehead, Jack M.; Rowland, Barbara J.; Granke, Mathilde; Mahadevan-Jansen, Anita; Yang, Xiangli; Nyman, Jeffry S.

    2014-01-01

    Even though age-related changes to bone tissue affecting fracture risk are well characterized, only a few matrix-related factors have been identified as important to maintaining fracture resistance. As a gene critical to osteoblast differentiation, activating transcription factor 4 (ATF4) is possibly one of the seimportant factors. To test the hypothesis that the loss of ATF4 affects the fracture resistance of bone beyond bone mass and structure, we harvested bones from Atf4+/+ and Atf4−/− littermates at 8 and 20 weeks of age (n≥9 per group) for bone assessment across several length scales. From whole bone mechanical tests in bending, femurs from Atf4−/− mice were found to be brittle with reduced toughness and fracture toughness compared to femurs from Atf4+/+ mice. However, there were no differences in material strength and in tissue hardness, as determined by nanoindentation, between the genotypes, irrespective age. Tissue mineral density of the cortex at the point of loading as determined by micro-computed tomography was also not significantly different. However, by analyzing local composition by Raman Spectroscopy (RS), bone tissue of Atf4−/− mice was found to have higher mineral to collagen ratio compared to wild-type tissue, primarily at 20 weeks of age. From RS analysis of intact femurs at 2 orthogonal orientations relative to the polarization axis of the laser, we also found that the organizational-sensitive peak ratio, ν1 Phosphate per Amide I, changed to a greater extent upon bone rotation for Atf4-deficient tissue, implying bone matrix organization may contribute to the brittleness phenotype. Target genes of ATF4 activity are not only important to osteoblast differentiation but also maintaining bone toughness and fracture toughness. PMID:24509412

  19. DFD-01 Reduces Transepidermal Water Loss and Improves Skin Hydration and Flexibility.

    Science.gov (United States)

    Jackson, J Mark; Grove, Gary L; Allenby, Kent; Houser, Tim

    2017-12-01

    In plaque psoriasis, the benefit of topical steroids is well established. The vehicle formulation of topical steroids may also provide benefit in addition to the effects of the steroid itself. DFD-01 (betamethasone dipropionate spray, 0.05%) is a formulation composed of a topical steroid in an emollient-like vehicle that enhances penetration to the target site of inflammation in the skin. The aim of this study was to assess the effect of DFD-01 and its vehicle on skin hydration and barrier function in compromised skin and to evaluate its effect on flexibility in healthy skin. Eighteen healthy white volunteers were enrolled in each of two studies. In Study 1, dry shaving of volar forearms created a compromised skin barrier, through which transepidermal water loss (TEWL) was measured using an evaporimeter. Capacitance, a measure of epidermal hydration, was also measured at baseline and at 1, 2 and 4 h after application of DFD-01 or its vehicle formulation. In Study 2, intact skin flexibility was tested with a cutometer before and at 1, 2 and 4 h after application of DFD-01 or vehicle. In Study 1, both DFD-01 and its vehicle were effective at reducing TEWL through the compromised stratum corneum. Capacitance measurements confirmed this finding; razor-chafed skin treated with either DFD-01 or vehicle exhibited levels of skin hydration similar to unshaved control skin. Study 2 found softening and greater flexibility of normal skin treated with either DFD-01 or vehicle compared with nontreated control skin samples. These tests suggest that the DFD-01 formulation and its vehicle are each effective at retaining moisture within a damaged skin barrier and for softening and increasing the flexibility of intact skin. Dr. Reddy's Laboratories.

  20. Historical review of efforts to reduce noise-induced hearing loss in the United States.

    Science.gov (United States)

    Kerr, Madeleine J; Neitzel, Richard L; Hong, OiSaeng; Sataloff, Robert T

    2017-06-01

    Noise-induced hearing loss is a centuries-old problem that is still prevalent in the United States and worldwide. To describe highlights in the development of hearing loss prevention in the U.S. from World War II to the present. Literature review. Approaches to occupational noise-induced hearing loss prevention in the United States over the past seven decades are described using a hierarchy of controls framework and an interdisciplinary perspective. Historical timelines and developmental milestones related to occupational noise-induced hearing loss prevention are summarized as a life course. Lessons are drawn for other countries in their hearing conservation efforts. Future developments building on the hearing loss prevention work of the past 70 years can prevent the problem of occupational NIHL in the 21st century. Am. J. Ind. Med. 60:569-577, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  1. Heat stress and reduced plane of nutrition decreases intestinal integrity and function in pigs.

    Science.gov (United States)

    Pearce, S C; Mani, V; Weber, T E; Rhoads, R P; Patience, J F; Baumgard, L H; Gabler, N K

    2013-11-01

    Heat stress can compromise intestinal integrity and induce leaky gut in a variety of species. Therefore, the objectives of this study were to determine if heat stress (HS) directly or indirectly (via reduced feed intake) increases intestinal permeability in growing pigs. We hypothesized that an increased heat-load causes physiological alterations to the intestinal epithelium, resulting in compromised barrier integrity and altered intestinal function that contributes to the overall severity of HS-related illness. Crossbred gilts (n=48, 43±4 kg BW) were housed in constant climate controlled rooms in individual pens and exposed to 1) thermal neutral (TN) conditions (20°C, 35-50% humidity) with ad libitum intake, 2) HS conditions (35°C, 20-35% humidity) with ad libitum feed intake, or 3) pair-fed in TN conditions (PFTN) to eliminate confounding effects of dissimilar feed intake. Pigs were sacrificed at 1, 3, or 7 d of environmental exposure and jejunum samples were mounted into modified Ussing chambers for assessment of transepithelial electrical resistance (TER) and intestinal fluorescein isothiocyanate (FITC)-labeled lipopolysaccharide (LPS) permeability (expressed as apparent permeability coefficient, APP). Further, gene and protein markers of intestinal integrity and stress were assessed. Irrespective of d of HS exposure, plasma endotoxin levels increased 45% (Pwarm summer months.

  2. Waste Tyres as Heat Sink to Reduce the Driveway Surface Temperatures in Malaysia

    Directory of Open Access Journals (Sweden)

    Aniza Abdul Aziz

    2013-12-01

    Full Text Available The development of roads and driveways are on the rise as automobiles are now a necessity to all. This excessive development with its requirements increased the urban heat temperature and the generation of waste tyres. Waste tyre management has therefore been taken seriously by developed countries and since the European directive to ban used tyre products and whole tire disposal from landfill in 2003 and 2006 respectively, many researchers have looked for alternative ways to use the waste tyre. In Malaysia, The Smart and Cool Home Developer attempted to develop an eco-house by utilising waste tyre as the foundation for the driveway and claimed that the buried tyres act as a heat sink for the concrete and reduce the surface temperature of the driveway. Hence investigations were conducted on two sample houses to investigate this phenomenon. Findings from this pilot study show that waste tyres do act as a heat sink to the concrete driveways which affect the ambient temperature and relative humidity of the immediate surroundings.

  3. Laser surface modification of medical grade alloys for reduced heating in a magnetic resonance imaging environment

    Energy Technology Data Exchange (ETDEWEB)

    Benafan, O., E-mail: othmane.benafan@nasa.gov, E-mail: raj@ucf.edu; Vaidyanathan, R., E-mail: othmane.benafan@nasa.gov, E-mail: raj@ucf.edu [Advanced Materials Processing and Analysis Center (AMPAC), Materials Science and Engineering, Mechanical and Aerospace Engineering, University of Central Florida, Orlando, Florida 32816 (United States); Chen, S.-Y.; Kar, A. [Laser-Advanced Materials Processing Laboratory, Center for Research and Education in Optics and Lasers (CREOL), College of Optics and Photonics, University of Central Florida, Orlando, Florida 32816 (United States)

    2015-12-15

    Nanoscale surface modification of medical grade metallic alloys was conducted using a neodymium-doped yttrium aluminum garnet laser-based dopant diffusion technique. The objective of this approach was to minimize the induction heating by reducing the absorbed radio frequency field. Such an approach is advantageous in that the dopant is diffused into the alloy and is not susceptible to detachment or spallation as would an externally applied coating, and is expected to not deteriorate the mechanical and electrical properties of the base alloy or device. Experiments were conducted using a controlled environment laser system with the ability to control laser properties (i.e., laser power, spot size, and irradiation time) and dopant characteristics (i.e., temperature, concentration, and pressure). The reflective and transmissive properties of both the doped and untreated samples were measured in a radio frequency (63.86 MHz) magnetic field using a system comprising a high power signal generator, a localized magnetic field source and sensor, and a signal analyzer. The results indicate an increase in the reflectivity of the laser-treated samples compared to untreated samples. The effect of reflectivity on the heating of the alloys is investigated through a mathematical model incorporating Maxwell’s equations and heat conduction.

  4. Technological significances to reduce the material problems. Feasibility of heat flux reduction

    International Nuclear Information System (INIS)

    Yamazaki, Seiichiro; Shimada, Michiya.

    1994-01-01

    For a divertor plate in a fusion power reactor, a high temperature coolant must be used for heat removal to keep thermal efficiency high. It makes the temperature and thermal stress of wall materials higher than the design limits. Issues of the coolant itself, e.g. burnout of high temperature water, will also become a serious problem. Sputtering erosion of the surface material will be a great concern of its lifetime. Therefore, it is necessary to reduce the heat and particle loads to the divertor plate technologically. The feasibility of some technological methods of heat reduction, such as separatrix sweeping, is discussed. As one of the most promising ideas, the methods of radiative cooling of the divertor plasma are summarized based on the recent results of large tokamaks. The feasibility of remote radiative cooling and gas divertor is discussed. The ideas are considered in recent design studies of tokamak power reactors and experimental reactors. By way of example, conceptual designs of divertor plate for the steady state tokamak power reactor are described. (author)

  5. Restricting dietary sodium reduces plasma sodium response to exercise in the heat.

    Science.gov (United States)

    Koenders, E E; Franken, C P G; Cotter, J D; Thornton, S N; Rehrer, N J

    2017-11-01

    Exercise-associated hyponatremia can be life-threatening. Excessive hypotonic fluid ingestion is the primary etiological factor but does not explain all variability. Possible effects of chronic sodium intake are unknown. The aim of this study was to determine whether dietary sodium affects plasma sodium concentration [Na + ] during exercise in the heat, when water intake nearly matches mass loss. Endurance-trained men (n = 9) participated in this crossover experiment. Each followed a low-sodium (lowNa) or high-sodium (highNa) diet for 9 days with 24-h fluid intakes and urine outputs measured before experimental trials (day 10). The trials were ≥2 week apart. Trials comprised 3 h (or if not possible to complete, to exhaustion) cycling (55% VO 2max ; 34 °C, 65% RH) with water intake approximating mass loss. Plasma [Na + ], hematocrit, sweat and urine [Na + ], heart rate, core temperature, and subjective perceptions were monitored. Urine [Na + ] was lower on lowNa 24 h prior to (31 ± 24, 76 ± 30 mmol/L, P = 0.027) and during trials (10 ± 10, 52 ± 32 mmol/L, P = 0.004). Body mass was lower on lowNa (79.6 ± 8.5, 80.5 ± 8.9, P = 0.03). Plasma [Na + ] was lower on lowNa before (137 ± 2, 140 ± 3, P = 0.007) and throughout exercise (P = 0.001). Sweat [Na + ] was unaffected by diet (54.5 ± 40, 54.5 ± 23 mmol/L, P = 0.99). Heart rate and core temperature were higher on lowNa (P ≤ 0.001). Despite decreased urinary sodium losses, plasma sodium was lower on lowNa, with decreased mass indicating (extracellular) water may have been less, explaining greater heart rate and core temperature. General population health recommendations to lower salt intake may not be appropriate for endurance athletes, particularly those training in the heat. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Low-Dose Epinephrine Plus Tranexamic Acid Reduces Early Postoperative Blood Loss and Inflammatory Response: A Randomized Controlled Trial.

    Science.gov (United States)

    Zeng, Wei-Nan; Liu, Jun-Li; Wang, Fu-You; Chen, Cheng; Zhou, Qiang; Yang, Liu

    2018-02-21

    The reductions of perioperative blood loss and inflammatory response are important in total knee arthroplasty. Tranexamic acid reduced blood loss and the inflammatory response in several studies. However, the effect of epinephrine administration plus tranexamic acid has not been intensively investigated, to our knowledge. In this study, we evaluated whether the combined administration of low-dose epinephrine plus tranexamic acid reduced perioperative blood loss or inflammatory response further compared with tranexamic acid alone. This randomized placebo-controlled trial consisted of 179 consecutive patients who underwent primary total knee arthroplasty. Patients were randomized into 3 interventions: Group IV received intravenous low-dose epinephrine plus tranexamic acid, Group TP received topical diluted epinephrine plus tranexamic acid, and Group CT received tranexamic acid alone. The primary outcome was perioperative blood loss on postoperative day 1. Secondary outcomes included perioperative blood loss on postoperative day 3, coagulation and fibrinolysis parameters (measured by thromboelastography), inflammatory cytokine levels, transfusion values (rate and volume), thromboembolic complications, length of hospital stay, wound score, range of motion, and Hospital for Special Surgery (HSS) score. The mean calculated total blood loss (and standard deviation) in Group IV was 348.1 ± 158.2 mL on postoperative day 1 and 458.0 ± 183.4 mL on postoperative day 3, which were significantly reduced (p 0.05). The combined administration of low-dose epinephrine and tranexamic acid demonstrated an increased effect in reducing perioperative blood loss and the inflammatory response compared with tranexamic acid alone, with no apparent increased incidence of thromboembolic and other complications. Therapeutic Level I. See Instructions for Authors for a complete description of levels of evidence.

  7. Intervention to reduce heat stress and improve efficiency among sugarcane workers in El Salvador: Phase 1.

    Science.gov (United States)

    Bodin, T; García-Trabanino, R; Weiss, I; Jarquín, E; Glaser, J; Jakobsson, K; Lucas, R A I; Wesseling, C; Hogstedt, C; Wegman, D H

    2016-06-01

    Chronic heat stress and dehydration from strenuous work in hot environments is considered an essential component of the epidemic of chronic kidney disease in Central America. (1) To assess feasibility of providing an intervention modelled on OSHA's Water.Rest.Shade programme (WRS) during sugarcane cutting and (2) to prevent heat stress and dehydration without decreasing productivity. Midway through the 6-month harvest, the intervention introduced WRS practices. A 60-person cutting group was provided water supplied in individual backpacks, mobile shaded rest areas and scheduled rest periods. Ergonomically improved machetes and efficiency strategies were also implemented. Health data (anthropometric, blood, urine, questionnaires) were collected preharvest, preintervention, mid-intervention and at the end of harvest. A subsample participated in focus group discussions. Daily wet bulb globe temperatures (WBGT) were recorded. The employer provided individual production records. Over the harvest WBGT was >26°C from 9:00 onwards reaching average maximum of 29.3±1.7°C, around 13:00. Postintervention self-reported water consumption increased 25%. Symptoms associated with heat stress and with dehydration decreased. Individual daily production increased from 5.1 to a high of 7.3 tons/person/day postintervention. This increase was greater than in other cutting groups at the company. Focus groups reported a positive perception of components of the WRS, and the new machete and cutting programmes. A WRS intervention is feasible in sugarcane fields, and appears to markedly reduce the impact of the heat stress conditions for the workforce. With proper attention to work practices, production can be maintained with less impact on worker health. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  8. Weight-loss changes PPAR expression, reduces atherosclerosis and improves cardiovascular function in obese insulin-resistant mice

    Energy Technology Data Exchange (ETDEWEB)

    Verreth, Wim; Verhamme, Peter; Pelat, Michael; Ganame, Javier; Bielicki, John K.; Mertens, Ann; Quarck, Rozenn; Benhabiles, Nora; Marguerie, Gerard; Mackness, Bharti; Mackness, Mike; Ninio, Ewa; Herregods, Marie-Christine; Balligand, Jean-Luc; Holvoet, Paul

    2003-09-01

    Weight-loss in obese insulin-resistant, but not in insulin-sensitive, persons reduces CHD risk. It is not known to what extent changes in the adipose gene expression profile are important for reducing CHD risk. We studied the effect of diet restriction-induced weight-loss on gene expression in adipose tissue, atherosclerosis and cardiovascular function in mice with combined leptin and LDL-receptor deficiency. Obesity, hypertriglyceridemia and insulin-resistance are associated with hypertension, impaired left ventricle function and accelerated atherosclerosis in those mice. Diet restriction during 12 weeks caused a 45% weight-loss and changes in the gene expression in adipose tissue of PPARa and PPAR? and of key genes regulating glucose transport and insulin sensitivity, lipid metabolism, oxidative stress and inflammation, most of which are under the transcriptional control of PPARs. These changes were associated with increased insulin-sensitivity, decreased hypertriglyceridemia, reduced mean 24-hour blood pressure and heart rate, restored circadian variations of blood pressure and heart rate, increased ejection fraction, and reduced atherosclerosis. Thus, induction of PPARa and PPAR? in adipose tissue is a key mechanism for reducing atherosclerosis and improving cardiovascular function resulting from weight-loss. Our observations point to the critical role of PPARs in the pathogenesis of cardiovascular features of the metabolic syndrome.

  9. Local loss and spatial homogenization of plant diversity reduce ecosystem multifunctionality

    Science.gov (United States)

    Experimental studies show that local plant species loss decreases ecosystem functioning and services, but it remains unclear how other changes in biodiversity, such as spatial homogenization, alter multiple processes (multifunctionality) in natural ecosystems. We present a global analysis of eight ...

  10. Climate change reduces water availability for agriculture by decreasing non-evaporative irrigation losses

    Science.gov (United States)

    Malek, Keyvan; Adam, Jennifer C.; Stöckle, Claudio O.; Peters, R. Troy

    2018-06-01

    Irrigation efficiency plays an important role in agricultural productivity; it affects farm-scale water demand, and the partitioning of irrigation losses into evaporative and non-evaporative components. This partitioning determines return flow generation and thus affects water availability. Over the last two decades, hydrologic and agricultural research communities have significantly improved our understanding of the impacts of climate change on water availability and food productivity. However, the impacts of climate change on the efficiency of irrigation systems, particularly on the partitioning between evaporative and non-evaporative losses, have received little attention. In this study, we incorporated a process-based irrigation module into a coupled hydrologic/agricultural modeling framework (VIC-CropSyst). To understand how climate change may impact irrigation losses, we applied VIC-CropSyst over the Yakima River basin, an important agricultural region in Washington State, U.S. We compared the historical period of 1980-2010 to an ensemble of ten projections of climate for two future periods: 2030-2060 and 2060-2090. Results averaged over the watershed showed that a 9% increase in evaporative losses will be compensated by a reduction of non-evaporative losses. Therefore, overall changes in future efficiency are negligible (-0.4%) while the Evaporative Loss Ratio (ELR) (defined as the ratio of evaporative to non-evaporative irrigation losses) is enhanced by 10%. This higher ELR is associated with a reduction in return flows, thus negatively impacting downstream water availability. Results also indicate that the impact of climate change on irrigation losses depend on irrigation type and climate scenarios.

  11. Phase separation of cesium from lead borosilicate glass by heat treatment under a reducing atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zhanglian; Okada, Takashi, E-mail: t-okada@u-fukui.ac.jp; Nishimura, Fumihiro; Yonezawa, Susumu

    2016-11-05

    Highlights: • Cesium was phase separated from lead borosilicate glass under a reductive atmosphere. • The phase separation occurred on the glass surface that was in contact with the gas. • The leachability of cesium was enhanced by the phase separation. • The degree of such enhancement varied depending on the heat treatment conditions. - Abstract: A phase-separation technique for removing sodium from glass using a heat-treatment method under a reducing atmosphere was previously developed for sodium recovery from waste glass. In this study, this technique was applied to cesium-containing lead borosilicate glass to concentrate the cesium in phase-separated sodium-rich materials for efficient cesium extraction. The theoretical phase-separation temperature of the sodium-rich phase was simulated by thermodynamic equilibrium calculations and was predicted to occur below 700 °C for lead borosilicate glass. Experimentally, a simulated lead borosilicate glass was melted at 1000 °C and subsequently annealed below 700 °C under a CO-containing reducing atmosphere. The phase separation of cesium was found to occur with sodium enrichment on the glass surface that was in contact with the gas phase, promoting cesium extraction from the treated glass using water. The cesium extraction efficiency was affected by the surface area of the treated glass that was in contact with water, and under the examined conditions, the cesium extraction efficiency was up to 66%. Phase separation using reductive heat treatment, combined with a water leaching technique, is suggested to be effective for extracting cesium incorporated in borosilicate glass waste.

  12. Heat production, respiratory quotient, and methane loss subsequent to LPS challenge in beef heifers

    Science.gov (United States)

    Respiration calorimetry was used to measure energy utilization during an acute phase response (APR) to lipopolysaccharide (LPS). Eight Angus heifers (208 +/- 29.2 kg) were randomly assigned to one of two calorimeters in four 2-day periods for measurement of heat production (HP), methane (CH4), and r...

  13. Optimization of loss and gain multilayers for reducing the scattering of a perfect conducting cylinder

    Science.gov (United States)

    Zhen-Zhong, Yu; Guo-Shu, Zhao; Gang, Sun; Hai-Fei, Si; Zhong, Yang

    2016-07-01

    Reduction of electromagnetic scattering from a conducting cylinder could be achieved by covering it with optimized multilayers of normal dielectric and plasmonic material. The plasmonic material with intrinsic losses could degrade the cloaking effect. Using a genetic algorithm, we present the optimized design of loss and gain multilayers for reduction of the scattering from a perfect conducting cylinder. This multilayered structure is theoretically and numerically analyzed when the plasmonic material with low loss and high loss respectively is considered. We demonstrate by full-wave simulation that the optimized nonmagnetic gain-loss design can greatly compensate the decreased cloaking effect caused by loss material, which facilitates the realization of practical electromagnetic cloaking, especially in the optical range. Project supported by the Research Foundation of Jinling Institute of Technology, China (Grant No. JIT-B-201426), the Jiangsu Modern Education and Technology Key Project, China (Grant No. 2014-R-31984), the Jiangsu 333 Project Funded Research Project, China (Grant No. BRA2010004), and the University Science Research Project of Jiangsu Province, China (Grant No. 15KJB520010).

  14. Effect of Stabilization Heat Treatment on Time-Dependent Polarization Losses in Sintered Nd-Fe-B Permanent Magnets

    Directory of Open Access Journals (Sweden)

    Tuominen S.

    2013-01-01

    Full Text Available Some companies in the motor and generator industry utilizing sintered NdFeB magnets have adopted pre-ageing heat treatment in order to improve the stability of the magnets. The parameters of this stabilization heat treatment are based mainly on assumptions rather than on any published research results. In this work, the effects of pre-ageing treatment on the time-dependent polarization losses of two different types of commercial sintered NdFeB magnets were studied. The material showing the squarer J(H curve did not benefit from the pre-ageing treatment, since it seems to be stable under a certain critical temperature. In contrast, a stabilizing effect was observed in the material showing rounder J(H curve. After the stabilization heat treatment, the polarization of the magnets was found to be at lower level, but unchanged over a certain period of time. The length of this period depends on the temperature and the duration of the pre-ageing treatment. In addition, our analysis reveals that the stabilization heat treatment performed in an open circuit condition does not stabilize the magnet uniformly.

  15. Fast pyrobolometers for measurements of plasma heat fluxes and radiation losses in the MST Reversed Field Pinch

    International Nuclear Information System (INIS)

    Fiksel, G.; Frank, J.; Holly, D.

    1993-01-01

    Two types of fast bolometers are described for the plasma energy transport study in the Madison Symmetric Torus plasma confinement device. Both types use pyrocrystals of LiTaO 3 or LiNbO 3 as the sensors. One type is used for measurements of the radiated heat losses and is situated at the vacuum shell inner surface. Another type is insertable in the plasma and measures the plasma particle heat flux. The frequency response of the bolometers is measured to be in the 150--200 kHz range. The range of the measured power fluxes is 0.1 W/cm 2 10 kW/cm 2 and can be adjusted by changing the size of the entrance aperture. The lower limit is determined by the amplifier noise and the frequency bandwidth, the higher limit by destruction of the bolometer sensor

  16. Optimization of the design and mode of operation of a QD laser for reducing the heat-to-bitrate ratio

    Energy Technology Data Exchange (ETDEWEB)

    Zhukov, A. E., E-mail: zhukale@gmail.com; Savelyev, A. V. [Russian Academy of Sciences, St. Petersburg Academic University-Nanotechnology Research and Education Center (Russian Federation); Maximov, M. V. [Russian Academy of Sciences, Ioffe Physical-Technical Institute (Russian Federation); Kryzhanovskaya, N. V. [Russian Academy of Sciences, St. Petersburg Academic University-Nanotechnology Research and Education Center (Russian Federation); Gordeev, N. Yu.; Shernyakov, Yu. M. [Russian Academy of Sciences, Ioffe Physical-Technical Institute (Russian Federation); Payusov, A. S.; Nadtochiy, A. M.; Zubov, F. I.; Korenev, V. V. [Russian Academy of Sciences, St. Petersburg Academic University-Nanotechnology Research and Education Center (Russian Federation)

    2013-08-15

    Heat dissipation under the high-speed modulation of quantum dot edge-emitting lasers is considered. It is shown that, for a given laser diode, there is a bias current at which the heat-to-bitrate ratio is minimized. Moreover, there exists a certain optimal optical loss of the laser cavity at which the lowest heat-to-bitrate ratio is provided for any design of edge-emitting lasers that can be fabricated from an epitaxial structure. The heat-to-bitrate ratio and the corresponding bitrate are numerically calculated and analytical expressions are derived. It is demonstrated that the heat-to-bitrate ratio of quantum dot edge-emitting lasers can be less than 0.4 pJ/bit at a bitrate exceeding 10 Gbit/s.

  17. Optimization of the design and mode of operation of a QD laser for reducing the heat-to-bitrate ratio

    International Nuclear Information System (INIS)

    Zhukov, A. E.; Savelyev, A. V.; Maximov, M. V.; Kryzhanovskaya, N. V.; Gordeev, N. Yu.; Shernyakov, Yu. M.; Payusov, A. S.; Nadtochiy, A. M.; Zubov, F. I.; Korenev, V. V.

    2013-01-01

    Heat dissipation under the high-speed modulation of quantum dot edge-emitting lasers is considered. It is shown that, for a given laser diode, there is a bias current at which the heat-to-bitrate ratio is minimized. Moreover, there exists a certain optimal optical loss of the laser cavity at which the lowest heat-to-bitrate ratio is provided for any design of edge-emitting lasers that can be fabricated from an epitaxial structure. The heat-to-bitrate ratio and the corresponding bitrate are numerically calculated and analytical expressions are derived. It is demonstrated that the heat-to-bitrate ratio of quantum dot edge-emitting lasers can be less than 0.4 pJ/bit at a bitrate exceeding 10 Gbit/s

  18. Effect of static mixer on the performance of compact plate heat exchanger with zwitterionic type of drag-reducing additives

    Energy Technology Data Exchange (ETDEWEB)

    Blais, C.; Wollerstrand, J.

    1997-06-01

    The main task of the project was to investigate the influence of drag-reducing additives (DRA) dissolved in circulating hot water on heat transfer in compact plate heat exchangers (PHE). Furthermore the result of flow disturbance (static mixing) immediately before the PHE on pressure drop and heat transfer was clarified. The project used a new type of DRA (surfactants of zwitterionic type) for two different temperature ranges. A dedicated test rig, `Ansgar`, was built for the purpose. Good thermal and mechanical stability also outside the operating range was observed except some sensitivity for water hardness at high temperatures for DRA2. Similarly to known investigations, the heat transfer coefficient was significantly reduced by DRA in heat exchangers. In PHE used however, the heat transfer reduction was considerably lower in the high flow region. A static mixer placed in front of the PHE was found to significantly improve heat transfer, especially at high flow rates. On the other hand, an additional pressure drop was introduced. Therefore the optimal choice of static mixer needs further investigation. Specially designed PHE combining mixing and heat transfer functions could be beneficial to reducing the effects of additives in thermal systems. The relaxation time (RT) of drag-reducing additives in water solutions flowing through test pipes with known geometries was estimated by monitoring specific pressure drop variation along the pipe. These preliminary experiments in respect to relaxation time showed that RT depends on the flow rate and on the temperature 12 refs, 11 figs, 1 tab

  19. Radiation loss and global energy balance of ohmically heated divertor discharge in JT-60 tokamak

    International Nuclear Information System (INIS)

    Koide, Yoshihiko; Yamada, Kimio; Yoshida, Hidetoshi; Nakamura, Hiroo; Niikura, Setsuo; Tsuji, Shunji

    1986-03-01

    Divertor experiment in JT-60 with a small divertor chamber has been successfully performed up to 1.6 MA discharge. Several divertor effects were experimentally confirmed as follows. Radiation loss in main plasma saturates with the increase of plasma current and its ratio to the input power is about 20 % at 1.5 MA. The rest of input power is exhausted into the divertor chamber and a half of it is dissipated as the radiation loss. Impurity accumulation is not observed during a few sec without internal MHD activity and gross impurity confinement time is several hundred msec. (author)

  20. Comparison of the superelasticity of different nickel?titanium orthodontic archwires and the loss of their properties by heat treatment

    OpenAIRE

    Bellini, Humberto; Moyano, Javier; Gil, Javier; Puigdollers, Andreu

    2016-01-01

    The aim of this work is to describe and compare mechanical properties of eight widely used nickel?titanium orthodontic wires under uniform testing conditions and to determine the influence of the heat treatments on the loss of the superelasticity. Ten archwires from two batches from eight different manufacturers were evaluated. A three-point bending test was performed, in accordance with ISO 15841:2006, on 80 round nickel?titanium archwire segments of 0.016?inch. To obtain a load-deflection c...

  1. ITER SAFETY TASK NID-5D: Operational tritium loss and accident investigation for heat transport and water detritiation systems

    International Nuclear Information System (INIS)

    Kalyanam, K.M.; Fong, C.; Moledina, M.; Natalizio, A.

    1995-02-01

    The task objectives are to: a) determine major pathways for tritium loss during normal operation of the cooling systems and water detritiation system, b) estimate operational losses and environmental tritium releases from the heat transport and water detritiation systems of ITER, and c) prepare a preliminary Failure Modes and Effects Analysis (FMEA) for the ITER Water Detritiation System. The analysis will be used to estimate chronic environmental tritium releases (airborne and waterborne) for the ITER Cooling Systems and Water Detritiation System. The assessment will form the basis for demonstrating the acceptability of ITER for siting in the Early Safety and Environmental Characterization Study (ESECS), to be issued in early 1995. (author). 7 refs., 10 tabs., 11 figs

  2. Thermodynamic effects when utilizing waste heat from condensation in cases of a reduced vacuum in steam turbine plants of thermal power stations, to provide heat at low temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Vasiljevic, N.; Savic, B.; Stojakovic, M.

    1986-01-01

    There is an interesting variant of cogeneration in the steam turbine system of a thermal power plant, i.e. the utilisation of the waste heat of condensation with a reduced vacuum without reconstruction of the thermal power plant. The thermodynamic effect in cogeneration was calculated in consideration of the dynamics of heat consumption. This cogeneration process has the advantage of saving primary energy without reconstruction of the thermal power plant.

  3. Novel Method for Measuring the Heat Collection Rate and Heat Loss Coefficient of Water-in-Glass Evacuated Tube Solar Water Heaters Based on Artificial Neural Networks and Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Zhijian Liu

    2015-08-01

    Full Text Available The determinations of heat collection rate and heat loss coefficient are crucial for the evaluation of in service water-in-glass evacuated tube solar water heaters. However, the direct determination requires complex detection devices and a series of standard experiments, which also wastes too much time and manpower. To address this problem, we propose machine learning models including artificial neural networks (ANNs and support vector machines (SVM to predict the heat collection rate and heat loss coefficient without a direct determination. Parameters that can be easily obtained by “portable test instruments” were set as independent variables, including tube length, number of tubes, tube center distance, heat water mass in tank, collector area, final temperature and angle between tubes and ground, while the heat collection rate and heat loss coefficient determined by the detection device were set as dependent variables respectively. Nine hundred fifteen samples from in-service water-in-glass evacuated tube solar water heaters were used for training and testing the models. Results show that the multilayer feed-forward neural network (MLFN with 3 nodes is the best model for the prediction of heat collection rate and the general regression neural network (GRNN is the best model for the prediction of heat loss coefficient due to their low root mean square (RMS errors, short training times, and high prediction accuracies (under the tolerances of 30%, 20%, and 10%, respectively.

  4. Solar Heating System with Building-Integrated Heat Storage

    DEFF Research Database (Denmark)

    Heller, Alfred

    1996-01-01

    Traditional solar heating systems cover between 5 and 10% of the heat demand fordomestic hot water and comfort heating. By applying storage capacity this share can beincreased much. The Danish producer of solar heating systems, Aidt-Miljø, markets such a system including storage of dry sand heated...... by PP-pipe heat exchanger. Heat demand is reduced due to direct solar heating, and due to storage. Heat demand is reduced due to direct solar heating, due to storage and due to lower heat losses through the ground. In theory, by running the system flow backwards through the sand storage, active heating...... can be achieved.The objective of the report is to present results from measured system evaluation andcalculations and to give guidelines for the design of such solar heating systems with building integrated sand storage. The report is aimed to non-technicians. In another report R-006 the main results...

  5. Vermicomposting as a technology for reducing nitrogen losses and greenhouse gas emissions from small-scale composting

    NARCIS (Netherlands)

    Nigussie, Abebe; Kuijper, Thomas; Bruun, Sander; Neergaard, de Andreas

    2016-01-01

    Thermophilic composting produces a significant amount of greenhouse gases. The objectives of this study were (i) to evaluate the effectiveness of vermicomposting to reduce nitrogen losses and greenhouse gases emissions compared to thermophilic composting, and (ii) to determine the effect of

  6. Reduced loss aversion in pathological gambling and alcohol dependence is associated with differential alterations in amygdala and prefrontal functioning.

    Science.gov (United States)

    Genauck, Alexander; Quester, Saskia; Wüstenberg, Torsten; Mörsen, Chantal; Heinz, Andreas; Romanczuk-Seiferth, Nina

    2017-11-24

    Diagnostic criteria for pathological gambling and alcohol dependence (AD) include repeated addictive behavior despite severe negative consequences. However, the concept of loss aversion (LA) as a facet of value-based decision making has not yet been used to directly compare these disorders. We hypothesized reduced LA in pathological gamblers (PG) and AD patients, correlation of LA with disorder severity, and reduced loss-related modulation of brain activity. 19 PG subjects, 15 AD patients and 17 healthy controls (HC) engaged in a LA task in a functional magnetic resonance imaging setting. Imaging analyses focused on neural gain and loss sensitivity in the meso-cortico-limbic network of the brain. Both PG and AD subjects showed reduced LA. AD subjects showed altered loss-related modulation of activity in lateral prefrontal regions. PG subjects showed indication of altered amygdala-prefrontal functional connectivity. Although we observed reduced LA in both a behavioral addiction and a substance-related disorder our neural findings might challenge the notion of complete neuro-behavioral congruence of substance-use disorders and behavioral addictions.

  7. A simple method for reducing inevitable dielectric loss in high-permittivity dielectric elastomers

    DEFF Research Database (Denmark)

    Madsen, Frederikke Bahrt; Yu, Liyun; Mazurek, Piotr Stanislaw

    2016-01-01

    elastomer matrix, with high dielectric permittivity and a low Young's modulus, aligned with no loss of mechanical stability, was prepared through the use of commercially available chloropropyl-functional silicone oil mixed into a tough commercial liquid silicone rubber silicone elastomer. The addition...... also decreased the dielectric losses of an elastomer containing dielectric permittivity-enhancing TiO2 fillers. Commercially available chloropropyl-functional silicone oil thus constitutes a facile method for improved silicone DEs, with very low dielectric losses.......Commercial viability of dielectric elastomers (DEs) is currently limited by a few obstacles, including high driving voltages (in the kV range). Driving voltage can be lowered by either decreasing the Young's modulus or increasing the dielectric permittivity of silicone elastomers, or a combination...

  8. Evaluation of the Safety Issue Concerning the Potential for Loss of Decay Heat Removal Function due to Crude Oil Spill in the Ultimate Heat Sink of Nuclear Reactors

    International Nuclear Information System (INIS)

    Jo, Jong Chull; Roh, Kyung Wan; Yune, Young Gill; Kang, Dong Gu; Kim, Hho Jhung

    2008-01-01

    A barge crashed into a moored oil tanker at about 7:15 a.m., Dec. 12, 2007, dumping around 10,500 tons of crude oil into the sea in Korea. The incident took place about 15 kilometers northwest of Manripo beach in South Chungcheong where is Korea's west coast in the Yellow Sea. In a few days, the oil slicks spread to the northern and southern tips of the Taean Peninsula by strong winds and tides. As time went the spilled oil floating on the surface of sea water was volatilized to become tar-balls and lumps and drifted far away in the southern direction. 13 days after the incident, some of oil slicks and tar lumps were observed to flow in the service water intake at the Younggwang nuclear power plants (NPPs) operating 6 reactors, which are over 150 km away from the incident spot in the southeastern direction. According to the report by the Younggwang NPPs, a total weight 83 kg of tar lumps was removed for about 3 days. Oil spills in the sea can happen in any country or anytime due to human errors or mistakes, wars, terrors, intentional dumping of waste oils, and natural disasters like typhoon and tsunami. In fact, there have been 7 major oil spills over 10,000 tons that have occurred around the world since 1983. As such serious oil spill incidents may happen near the operating power plants using the sea water as ultimate heat sink. To ensure the safe operation of nuclear reactors it is required to evaluate the potential for loss of decay heat removal function of nuclear reactors due to the spilled oils flowing in the service water intake, from which the service water is pumped. Thus, Korea Institute of Nuclear Safety identified this problem as one of the important safety. When an incident of crude oil spill from an oil carrier occurs in the sea near the nuclear power plants, the spilled oil can be transported to the intake pit, where all service water pumps locate, by sea current and wind drift (induced) current. The essential service water pumps take the service

  9. Evaluation of the Safety Issue Concerning the Potential for Loss of Decay Heat Removal Function due to Crude Oil Spill in the Ultimate Heat Sink of Nuclear Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Jong Chull; Roh, Kyung Wan; Yune, Young Gill; Kang, Dong Gu; Kim, Hho Jhung [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2008-05-15

    A barge crashed into a moored oil tanker at about 7:15 a.m., Dec. 12, 2007, dumping around 10,500 tons of crude oil into the sea in Korea. The incident took place about 15 kilometers northwest of Manripo beach in South Chungcheong where is Korea's west coast in the Yellow Sea. In a few days, the oil slicks spread to the northern and southern tips of the Taean Peninsula by strong winds and tides. As time went the spilled oil floating on the surface of sea water was volatilized to become tar-balls and lumps and drifted far away in the southern direction. 13 days after the incident, some of oil slicks and tar lumps were observed to flow in the service water intake at the Younggwang nuclear power plants (NPPs) operating 6 reactors, which are over 150 km away from the incident spot in the southeastern direction. According to the report by the Younggwang NPPs, a total weight 83 kg of tar lumps was removed for about 3 days. Oil spills in the sea can happen in any country or anytime due to human errors or mistakes, wars, terrors, intentional dumping of waste oils, and natural disasters like typhoon and tsunami. In fact, there have been 7 major oil spills over 10,000 tons that have occurred around the world since 1983. As such serious oil spill incidents may happen near the operating power plants using the sea water as ultimate heat sink. To ensure the safe operation of nuclear reactors it is required to evaluate the potential for loss of decay heat removal function of nuclear reactors due to the spilled oils flowing in the service water intake, from which the service water is pumped. Thus, Korea Institute of Nuclear Safety identified this problem as one of the important safety. When an incident of crude oil spill from an oil carrier occurs in the sea near the nuclear power plants, the spilled oil can be transported to the intake pit, where all service water pumps locate, by sea current and wind drift (induced) current. The essential service water pumps take the

  10. Cover cropping to reduce nitrate loss through subsurface drainage in the northern U.S. corn belt.

    Science.gov (United States)

    Strock, J S; Porter, P M; Russelle, M P

    2004-01-01

    Despite the use of best management practices for nitrogen (N) application rate and timing, significant losses of nitrate nitrogen (NO3(-)-N) in drainage discharge continue to occur from row crop cropping systems. Our objective was to determine whether a autumn-seeded winter rye (Secale cereale L.) cover crop following corn (Zea mays L.) would reduce NO3(-)-N losses through subsurface tile drainage in a corn-soybean [Glycine mar (L.) Merr.] cropping system in the northern Corn Belt (USA) in a moderately well-drained soil. Both phases of the corn-soybean rotation, with and without the winter rye cover crop following corn, were established in 1998 in a Normania clay loam (fine-loamy, mixed, mesic Aquic Haplustoll) soil at Lamberton, MN. Cover cropping did not affect subsequent soybean yield, but reduced drainage discharge, flow-weighted mean nitrate concentration (FWMNC), and NO3(-)-N loss relative to winter fallow, although the magnitude of the effect varied considerably with annual precipitation. Three-year average drainage discharge was lower with a winter rye cover crop than without (p = 0.06). Over three years, subsurface tile-drainage discharge was reduced 11% and NO3(-)-N loss was reduced 13% for a corn-soybean cropping system with a rye cover crop following corn than with no rye cover crop. We estimate that establishment of a winter rye cover crop after corn will be successful in one of four years in southwestern Minnesota. Cover cropping with rye has the potential to be an effective management tool for reducing NO3(-)-N loss from subsurface drainage discharge despite challenges to establishment and spring growth in the north-central USA.

  11. Investigation and application of reduced-order methods for flows study in heat exchanger tube bundles

    International Nuclear Information System (INIS)

    Pomarede, M.

    2012-01-01

    The objective of this thesis is to study the ability of model reduction for investigations of flow-induced vibrations in heat exchangers tube bundle systems.These mechanisms are a cause of major concern because heat exchangers are key elements of nuclear power plants and on-board stoke-holds.In a first part, we give a recall on heat exchangers functioning and on vibratory problems to which they are prone. Then, complete calculations leaded with the CFD numerical code Code-Saturne are carried out, first for the flow around a single circular cylinder (fixed then elastically mounted) and then for the case of a tube bundle system submitted to cross-flow. Reduced-order method POD is applied to the flow resolution with fixed structures. The obtained results show the efficiency of this technique for such configurations, using stabilization methods for the dynamical system resolution in the tube-bundle case. Multiphase-POD, which is a method enabling the adaptation of POD to fluid-structure interactions, is applied. Large displacements of a single cylinder elastically mounted under cross-flow, corresponding to the lock-in phenomenon,are well reproduced with this reduction technique. In the same way, large displacements of a confined moving tube in a bundle are shown to be faithfully reconstructed.Finally, the use of model reduction is extended to parametric studies. First, we propose to use the method which consists in projecting Navier-Stokes equations for several values of the Reynolds number on to a unique POD basis. The results obtained confirm the fact that POD predictability is limited to a range of parameter values. Then, a basis interpolation method, constructed using Grassmann manifolds and allowing the construction of a POD basis from other pre-calculated basis, is applied to basic cases. (author)

  12. Analysis of loss of decay heat removal sequences at Browns Ferry Unit One: Chapter 17

    International Nuclear Information System (INIS)

    Harrington, R.M.

    1983-01-01

    This paper summarizes the Oak Ridge National Laboratory (ORNL) report ''Loss of DHR Sequences at Browns Ferry Unit One - Accident Sequence Analysis'' (NUREG/CR-2973). The Loss of DHR investigation is the third in a series of accident studies concerning the BWR 4 - MK I containment plant design. These studies, sponsored by the Nuclear Regulatory Commission Severe Accident Sequence Analysis (SASA) program, have been conducted at ORNL with the full cooperation of the Tennessee Valley Authority (TVA), using Unit One of the Browns Ferry Nuclear Plant as the model design. Each unit of this three-unit plant has a maximum authorized power of 3293 MW(t) or 1067 net MW(e). The primary containments are of the Mark I pressure suppression pool type and the three units share a secondary containment of the controlled leakage, elevated release design. Each unit occupies a separate reactor building located in one structure underneath the common refueling floor

  13. The effects of heating on mechanical loss in tantala/silica optical coatings

    International Nuclear Information System (INIS)

    Abernathy, Matthew R.; Harry, Gregory M.; Travasso, Flavio; Martin, Iain; Reid, Stuart; Rowan, Sheila; Hough, Jim; Fejer, Martin M.; Route, Roger; Penn, Steve; Armandula, Helena; Gretarsson, Andri

    2008-01-01

    Second-generation interferometric gravitational-wave detectors will operate at temperatures noticeably above room temperature. Study was done to determine what effect elevated temperatures would have on the Q and coating thermal noise of the detector mirrors. Results show that increased temperature increases loss angle in a manner that is more significant at higher frequencies. Trends show that the increased temperature will have a negligible effect at the low (100 Hz) frequencies important to second-generation detectors

  14. The Scaling of Loss Pathways and Heat Transfer in Small Scale Internal Combustion Engines

    Science.gov (United States)

    2016-09-16

    to the time required for mass transport in the system and describes how fast combustion will propagate relative to the rate that mass is transported ...it had much lower parasitic losses [117]. 3.6.2. Fuel AKI Reduction and Alternative Fuels As the largest single consumer of transport fuel in the...United States, the Air Force also has a vested interest in alternative fuels. Groenewegen et al. [120] investigated algae and Camelia biodiesels as

  15. Can surface-applied zeolite reduce ammonia losses from feedyard manure? A laboratory study

    Science.gov (United States)

    Ammonia emission from beef cattle feedyard manure results in losses of nitrogen (N), which may negatively affect air, soil, and water quality. The magnitude and rate of ammonia volatilization from feedyards partially depends on the amount of urinary urea excreted and dissociation of ionic ammonium ...

  16. Hydroxyethyl Starch Reduces Coagulation Competence and Increases Blood Loss During Major Surgery

    DEFF Research Database (Denmark)

    Rasmussen, Kirsten C; Johansson, Pär I; Højskov, Michael

    2014-01-01

    OBJECTIVE: This study evaluated whether administration of hydroxyethyl starch (HES) 130/0.4 affects coagulation competence and influences the perioperative blood loss. BACKGROUND: Artificial colloids substitute blood volume during surgery; with the administration of HES 130/0.4 (Voluven, Fresenius...

  17. Reducing burn-in voltage loss in polymer solar cells by increasing the polymer crystallinity

    KAUST Repository

    Heumueller, Thomas; Mateker, William R.; Sachs-Quintana, I. T.; Vandewal, Koen; Bartelt, Jonathan A.; Burke, Timothy M.; Ameri, Tayebeh; Brabec, Christoph J.; McGehee, Michael D.

    2014-01-01

    In order to commercialize polymer solar cells, the fast initial performance losses present in many high efficiency materials will have to be managed. This burn-in degradation is caused by light-induced traps and its characteristics depend on which

  18. Non-random species loss in bacterial communities reduces antifungal volatile production

    NARCIS (Netherlands)

    Hol, G.; Garbeva, P.; Hordijk, C.; Hundscheid, M.P.J.; Klein Gunnewiek, P.J.A.; Agtmaal, van M.; Boer, de W.

    2015-01-01

    The contribution of low-abundance microbial species to soil ecosystems is easily overlooked because there is considerable overlap between metabolic abilities (functional redundancy) of dominant and subordinate microbial species. Here we studied how loss of less abundant soil bacteria affected the

  19. Composting and gypsum amendment of broiler litter to reduce nutrient leaching loss

    Science.gov (United States)

    Relative to fresh broiler litter, little is known about the dynamics of composted litter derived-nutrient in the ecosystem. In this study, the potential leaching losses of nutrients from compost relative to fresh broiler litter along with flue gas desulfurization (FGD gypsum), as a nutrient immobil...

  20. Nitrogen footprints: Regional realities and options to reduce nitrogen loss to the environment Ambio

    NARCIS (Netherlands)

    Shibata, H.; Galloway, J.N.; Leach, A.M.; Noll, C.; Erisman, J.W.

    2016-01-01

    Nitrogen (N) management presents a sustainability dilemma: N is strongly linked to energy and food production, but excess reactive N causes environmental pollution. The N footprint is an indicator that quantifies reactive N losses to the environment from consumption and production of food and the

  1. Greenhouse gas mitigation can reduce sea-ice loss and increase polar bear persistence

    Science.gov (United States)

    Steven C. Amstrup; Eric T. DeWeaver; David C. Douglas; Bruce G. Marcot; George M. Durner; Cecilia M. Bitz; David A. Bailey

    2010-01-01

    On the basis of projected losses of their essential sea-ice habitats, a United States Geological Survey research team concluded in 2007 that two-thirds of the world's polar bears (Ursus maritimus) could disappear by mid-century if business-as-usual greenhouse gas emissions continue. That projection, however, did not consider the possible...

  2. Comparison of a reduced carbohydrate and reduced fat diet for LDL, HDL, and VLDL subclasses during 9-months of weight maintenance subsequent to weight loss.

    Science.gov (United States)

    LeCheminant, James D; Smith, Bryan K; Westman, Eric C; Vernon, Mary C; Donnelly, Joseph E

    2010-06-01

    This study compared LDL, HDL, and VLDL subclasses in overweight or obese adults consuming either a reduced carbohydrate (RC) or reduced fat (RF) weight maintenance diet for 9 months following significant weight loss. Thirty-five (21 RC; 14 RF) overweight or obese middle-aged adults completed a 1-year weight management clinic. Participants met weekly for the first six months and bi-weekly thereafter. Meetings included instruction for diet, physical activity, and behavior change related to weight management. Additionally, participants followed a liquid very low-energy diet of approximately 2092 kJ per day for the first three months of the study. Subsequently, participants followed a dietary plan for nine months that targeted a reduced percentage of carbohydrate (approximately 20%) or fat (approximately 30%) intake and an energy intake level calculated to maintain weight loss. Lipid subclasses using NMR spectroscopy were analyzed prior to weight loss and at multiple intervals during weight maintenance. Body weight change was not significantly different within or between groups during weight maintenance (p>0.05). The RC group showed significant increases in mean LDL size, large LDL, total HDL, large and small HDL, mean VLDL size, and large VLDL during weight maintenance while the RF group showed increases in total HDL, large and small HDL, total VLDL, and large, medium, and small VLDL (p0.05). Some individual lipid subclasses improved in both dietary groups. Large and medium VLDL subclasses increased to a greater extent across weight maintenance in the RF group.

  3. Reducing deuterium-tritium ice roughness by electrical heating of the saturated vapor

    International Nuclear Information System (INIS)

    Mapoles, E.R.; Sater, J.D.; Monsler, E.; Pipes, J.

    1996-01-01

    High gain targets for inertial confinement fusion (ICF) contain a layer of deuterium-tritium (DT) ice which surrounds a volume of DT gas in thermal equilibrium with the solid. The roughness of the cryogenic fuel layer inside of ICF targets is one of the sources of imperfections which cause implosions to deviate from perfect one dimensional performance. Experiments at Lawrence Livermore National Laboratory have shown that applying a heat flux across the inner surface of a hydrogen layer such as that inside an ICF target reduces the intrinsic roughness of the surface. We have developed a technique to generate this heat flux by applying and electric field to the DT vapor in the center of these shells. This vapor has a small but significant conductivity due to ionization caused by beta decay of tritium in the vapor and the solid. We describe here experiments using a 1.15 GHz cavity to apply an electric field to frozen DT inside of a sapphire test cell. The cell and cavity geometry allows visual observation of the frozen layers

  4. Gender differences in scalp hair growth rates are maintained but reduced in pattern hair loss compared to controls.

    Science.gov (United States)

    Van Neste, D J J; Rushton, D H

    2016-08-01

    Hair loss is related to follicular density, programmed regrowth and hair productivity. The dissatisfaction with hair growth in patients experiencing hair loss might be due to slower linear hair growth rate (LHGR). LHGR and hair diameter was evaluated in Caucasian controls and patients with patterned hair loss employing the validated non-invasive, contrast-enhanced-phototrichogram with exogen collection. We evaluated 59,765 anagen hairs (controls 24,609, patients 35,156) and found thinner hairs grew slower than thicker hairs. LHGR in normal women was generally higher than in normal men. LHGR correlates with hair diameter (P hair of equal thickness in controls, subjects affected with patterned hair loss showed reduced hair growth rates, an observation found in both male and female patients. Males with pattern hair loss showed further reduction in growth rates as clinical severity worsened. However, sample size limitations prevented statistical evaluation of LHGR in severely affected females. Caucasian ethnicity. In pattern hair loss, LHGR significantly contributes to the apparent decrease in hair volume in affected areas. In early onset, LHRG might have a prognostic value in females but not in males. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Flux loss and heating during the formation of a field-reversed configuration

    International Nuclear Information System (INIS)

    Sgro, A.G.; Armstrong, W.T.; Lipson, J.; Tuszewski, M.G.; Cochrane, J.C.

    1982-01-01

    The simulated time evolution of magnetic field profiles and trapped flux in a field-reversed configuration, when compared with the experiment, implies that the rapid decay of the initial reversed flux is due to a resistivity that is anomalously enhanced over its classical value. A tenuous plasma between the field-reversed configuration and the wall carries a significant fraction of the current, and about half of the anomalous Joule heating must be deposited directly in the ions in order to calculate the correct ion temperature. The fractional flux retention is most sensitive to an increase of applied bias field

  6. Isochoric heating of reduced mass targets by ultra-intense laser produced relativistic electrons

    Energy Technology Data Exchange (ETDEWEB)

    Neumayer, P; Lee, H J; Offerman, D; Shipton, E; Kemp, A; Kritcher, A L; Doppner, T; Back, C A; Glenzer, S H

    2009-02-04

    We present measurements of the chlorine K-alpha emission from reduced mass targets, irradiated with ultra-high intensity laser pulses. Chlorinated plastic targets with diameters down to 50 micrometers and mass of a few 10{sup -8} g were irradiated with up to 7 J of laser energy focused to intensities of several 10{sup 19} W/cm{sup 2}. The conversion of laser energy to K-alpha radiation is measured, as well as high resolution spectra that allow observation of line shifts, indicating isochoric heating of the target up to 18 eV. A zero-dimensional 2-temperature equilibration model, combined with electron impact K-shell ionization and post processed spectra from collisional radiative calculations reproduces the observed K-alpha yields and line shifts, and shows the importance of target expansion due to the hot electron pressure.

  7. Analysis of proton exchange membrane fuel cell polarization losses at elevated temperature 120 C and reduced relative humidity

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Hui; Kunz, H. Russell [Department of Chemical Engineering, University of Connecticut, Storrs, CT (United States); Fenton, James M. [Florida Solar Energy Center, University of Central Florida, Cocoa, FL (United States)

    2007-03-01

    Polarization losses of proton exchange membrane (PEM) fuel cells at 120 C and reduced relative humidity (RH) were analyzed. Reduced RH affects membrane and electrode ionic resistance, catalytic activity and oxygen transport. For a cell made of Nafion {sup registered} 112 membrane and electrodes that have 35 wt.% Nafion {sup registered} and 0.3 mg/cm{sup 2} platinum supported on carbon, membrane resistance at 20%RH was 0.407 {omega} cm{sup 2} and electrode resistance 0.203 {omega} cm{sup 2}, significantly higher than 0.092 and 0.041 {omega} cm{sup 2} at 100%RH, respectively. In the kinetically controlled region, 20%RH resulted in 96 mV more cathode activation loss than 100%RH. Compared to 100%, 20%RH also produced significant oxygen transport loss across the ionomer film in the electrode, 105 mV at 600 mA/cm{sup 2}. The significant increase in polarization losses at elevated temperature and reduced RH indicates the extreme importance of designing electrodes for high temperature PEM fuel cells since membrane development has always taken most emphasis. (author)

  8. An Optimal Domestic Electric Vehicle Charging Strategy for Reducing Network Transmission Loss While Taking Seasonal Factors into Consideration

    Directory of Open Access Journals (Sweden)

    Yuancheng Zhao

    2018-01-01

    Full Text Available With the rapid growth of domestic electric vehicle charging loads, the peak-valley gap and power fluctuation rate of power systems increase sharply, which can lead to the increase of network losses and energy efficiency reduction. This paper tries to regulate network loads and reduce power system transmission loss by optimizing domestic electric vehicle charging loads. In this paper, a domestic electric vehicle charging loads model is first developed by analyzing the key factors that can affect users’ charging behavior. Subsequently, the Monte Carlo method is proposed to simulate the power consumption of a cluster of domestic electric vehicles. After that, an optimal electric vehicle charging strategy based on the 0-1 integer programming is presented to regulate network daily loads. Finally, by taking the IEEE33 distributed power system as an example, this paper tries to verify the efficacy of the proposed optimal charging strategy and the necessity for considering seasonal factors when scheduling electric vehicle charging loads. Simulation results show that the proposed 0-1 integer programming method does have good performance in reducing the network peak-valley gap, voltage fluctuation rate, and transmission loss. Moreover, it has some potential to further reduce power system transmission loss when seasonal factors are considered.

  9. Caffeine ingestion after rapid weight loss in judo athletes reduces perceived effort and increases plasma lactate concentration without improving performance.

    Science.gov (United States)

    Lopes-Silva, Joao P; Felippe, Leandro J C; Silva-Cavalcante, Marcos D; Bertuzzi, Romulo; Lima-Silva, Adriano E

    2014-07-22

    The objective of this study was to examine the effect of caffeine on judo performance, perceived exertion, and plasma lactate response when ingested during recovery from a 5-day weight loss period. Six judokas performed two cycles of a 5-day rapid weight loss procedure to reduce their body weight by ~5%. After weigh-in, subjects re-fed and rehydrated over a 4-h recovery period. In the third hour of this "loading period", subjects ingested a capsule containing either caffeine (6 mg·kg-1) or placebo. One hour later, participants performed three bouts of a judo fitness test with 5-min recovery periods. Perceived exertion and plasma lactate were measured before and immediately after each test bout. Body weight was reduced in both caffeine and placebo conditions after the weight loss period (-3.9% ± 1.6% and -4.0% ± 2.3% from control, respectively, p caffeine or placebo groups. However, plasma lactate was systemically higher and perceived exertion lower in the subjects who ingested caffeine compared to either the control or placebo subjects (p caffeine did not improve performance during the judo fitness test after a 5-day weight loss period, but reduced perceived exertion and increased plasma lactate.

  10. The Weight Loss Effect of Heated Inner Cylinder by Free Convection in Horizontal Cylindrical Enclosure

    Science.gov (United States)

    Sboev, I. O.; Kondrashov, A. N.; Rybkin, K. A.; Burkova, L. N.; Goncharov, M. M.

    2018-03-01

    The work presents results of numerical simulations of natural convection in cavity formed by the surfaces of two horizontal coaxial cylinders. The temperature of the outer cylinder is constant. The area between the cylinders is filled with an ideal incompressible fluid. The inner cylinder is set as the heater. The solution of the equations of thermal convection in a two-dimensional approximation performed by the software package ANSYS Fluent with finite volume method. The study compares the results of numerical simulation with several well-known theoretical and experimental results. The nature of interaction of the inner cylinder with a convection current created in the gap was observed. It was shown that the flux appeared around a heated cylinder affects the weight of the heat source and causes an additional lift force from the surrounding fluid. The various Rayleigh numbers (from 1.0 ṡ 103 to 1.5 ṡ 106) and fluid with different Prandtl number (from 0.5 to 1.0 ṡ 105) are considered.

  11. Water Table Management Reduces Tile Nitrate Loss in Continuous Corn and in a Soybean-Corn Rotation

    Directory of Open Access Journals (Sweden)

    Craig F. Drury

    2001-01-01

    Full Text Available Water table management systems can be designed to alleviate soil water excesses and deficits, as well as reduce nitrate leaching losses in tile discharge. With this in mind, a standard tile drainage (DR system was compared over 8 years (1991 to 1999 to a controlled tile drainage/subirrigation (CDS system on a low-slope (0.05 to 0.1% Brookston clay loam soil (Typic Argiaquoll in southwestern Ontario, Canada. In the CDS system, tile discharge was controlled to prevent excessive drainage, and water was pumped back up the tile lines (subirrigation to replenish the crop root zone during water deficit periods. In the first phase of the study (1991 to 1994, continuous corn (Zea mays, L. was grown with annual nitrogen (N fertilizer inputs as per local soil test recommendations. In the second phase (1995 to 1999, a soybean (Glycine max L., Merr.-corn rotation was used with N fertilizer added only during the two corn years. In Phase 1 when continuous corn was grown, CDS reduced total tile discharge by 26% and total nitrate loss in tile discharge by 55%, compared to DR. In addition, the 4-year flow weighted mean (FWM nitrate concentration in tile discharge exceeded the Canadian drinking water guideline (10 mg N l–1 under DR (11.4 mg N l–1, but not under CDS (7.0 mg N l–1. In Phase 2 during the soybean-corn rotation, CDS reduced total tile discharge by 38% and total nitrate loss in tile discharge by 66%, relative to DR. The 4-year FWM nitrate concentration during Phase 2 in tile discharge was below the drinking water guideline for both DR (7.3 mg N l–1 and CDS (4.0 mg N l–1. During both phases of the experiment, the CDS treatment caused only minor increases in nitrate loss in surface runoff relative to DR. Hence CDS decreased FWM nitrate concentrations, total drainage water loss, and total nitrate loss in tile discharge relative to DR. In addition, soybean-corn rotation reduced FWM nitrate concentrations and total nitrate loss in tile discharge

  12. Evaluation of Loss Resources during Sugarcane Production Process and Provide Solutions to Reduce Waste

    Directory of Open Access Journals (Sweden)

    H Zakidizaji

    2018-03-01

    Full Text Available Introduction No use of advanced mechanization and weakness in post harvesting technology are the main reasons of agricultural losses. Some of these wastes (agricultural losses are related to crop growing conditions in field and the remaining to processing of sugar in mill. The most useful priority setting methods for agricultural projects are the Analytic Hierarchy Process (AHP. So, this study presents an introduction of application manner of the AHP as a mostly common method of setting agricultural projects priorities. The purpose of this work is studying the sugarcane loss during production process using AHP in Khuzestan province. Materials and Methods The resources of sugarcane waste have been defined based on expert’s opinions. A questionnaire and personal interviews have formed the basis of this research. The study was applied to a panel of qualified informants made up of thirty-two experts. Those interviewed were distributed in Sugarcane Development and By-products Company in 2015-2016. Then, with using the analytical hierarchy process, a questionnaire was designed for defining the weight and importance of parameters effecting on sugarcane waste. For this method of evaluation, three main criteria considered, were yield criteria, cost criteria and income criteria. Criteria and prioritizing of them was done by questionnaire and interview with sophisticated experts. This technique determined and ranked the importance of sugarcane waste resources based on attributing relative weights to factors with respect to comments provided in the questionnaires. Analytical Hierarchy Process was done by using of software (Expert choice and the inconsistency rate on expert judgments was investigated. Results and Discussion How to use agricultural implements and machinery during planting and harvesting of sugarcane, can increase or decrease the volume of waste. In planting period, the losses mainly consists of loss of setts during cutting them by machine

  13. Hilar somatostatin interneuron loss reduces dentate gyrus inhibition in a mouse model of temporal lobe epilepsy.

    Science.gov (United States)

    Hofmann, Gabrielle; Balgooyen, Laura; Mattis, Joanna; Deisseroth, Karl; Buckmaster, Paul S

    2016-06-01

    In patients with temporal lobe epilepsy, seizures usually start in the hippocampus, and dentate granule cells are hyperexcitable. Somatostatin interneurons are a major subpopulation of inhibitory neurons in the dentate gyrus, and many are lost in patients and animal models. However, surviving somatostatin interneurons sprout axon collaterals and form new synapses, so the net effect on granule cell inhibition remains unclear. The present study uses optogenetics to activate hilar somatostatin interneurons and measure the inhibitory effect on dentate gyrus perforant path-evoked local field potential responses in a mouse model of temporal lobe epilepsy. In controls, light activation of hilar somatostatin interneurons inhibited evoked responses up to 40%. Epileptic pilocarpine-treated mice exhibited loss of hilar somatostatin interneurons and less light-induced inhibition of evoked responses. These findings suggest that severe epilepsy-related loss of hilar somatostatin interneurons can overwhelm the surviving interneurons' capacity to compensate by sprouting axon collaterals. Wiley Periodicals, Inc. © 2016 International League Against Epilepsy.

  14. Integration of internet of things to reduce various losses of jatropha seed supply chain

    Science.gov (United States)

    Srinivasan, S. P.; Anitha, J.; Vijayakumar, R.

    2017-06-01

    The evolution of bio fuel supply chain has revolutionized the organization by restructuring the practices of the traditional management. A flexible distribution system is becoming the need of our society. The main focus of this paper is to integrate IoT technologies into a cultivation, extraction and management of Jatropha seed. It was noticed that major set-back of farmers due to poor supply chain integration. The various losses like information about the Jatropha seed availability, the location of esterification plants and distribution details are identified through this IoT. This enables the farmers to reorganize the land resources, yield estimation and distribution functions. The wastage and the scarcity of energy can be tackled by using the smart phone technologies. This paper is proposes a conceptual frame work on various losses involved in the supply chain of Jatropha seed.

  15. Greenhouse gas mitigation can reduce sea-ice loss and increase polar bear persistence

    Science.gov (United States)

    Amstrup, Steven C.; Deweaver, E.T.; Douglas, David C.; Marcot, B.G.; Durner, George M.; Bitz, C.M.; Bailey, D.A.

    2010-01-01

    On the basis of projected losses of their essential sea-ice habitats, a United States Geological Survey research team concluded in 2007 that two-thirds of the worlds polar bears (Ursus maritimus) could disappear by mid-century if business-as-usual greenhouse gas emissions continue. That projection, however, did not consider the possible benefits of greenhouse gas mitigation. A key question is whether temperature increases lead to proportional losses of sea-ice habitat, or whether sea-ice cover crosses a tipping point and irreversibly collapses when temperature reaches a critical threshold. Such a tipping point would mean future greenhouse gas mitigation would confer no conservation benefits to polar bears. Here we show, using a general circulation model, that substantially more sea-ice habitat would be retained if greenhouse gas rise is mitigated. We also show, with Bayesian network model outcomes, that increased habitat retention under greenhouse gas mitigation means that polar bears could persist throughout the century in greater numbers and more areas than in the business-as-usual case. Our general circulation model outcomes did not reveal thresholds leading to irreversible loss of ice; instead, a linear relationship between global mean surface air temperature and sea-ice habitat substantiated the hypothesis that sea-ice thermodynamics can overcome albedo feedbacks proposed to cause sea-ice tipping points. Our outcomes indicate that rapid summer ice losses in models and observations represent increased volatility of a thinning sea-ice cover, rather than tipping-point behaviour. Mitigation-driven Bayesian network outcomes show that previously predicted declines in polar bear distribution and numbers are not unavoidable. Because polar bears are sentinels of the Arctic marine ecosystem and trends in their sea-ice habitats foreshadow future global changes, mitigating greenhouse gas emissions to improve polar bear status would have conservation benefits throughout

  16. Greenhouse gas mitigation can reduce sea-ice loss and increase polar bear persistence.

    Science.gov (United States)

    Amstrup, Steven C; Deweaver, Eric T; Douglas, David C; Marcot, Bruce G; Durner, George M; Bitz, Cecilia M; Bailey, David A

    2010-12-16

    On the basis of projected losses of their essential sea-ice habitats, a United States Geological Survey research team concluded in 2007 that two-thirds of the world's polar bears (Ursus maritimus) could disappear by mid-century if business-as-usual greenhouse gas emissions continue. That projection, however, did not consider the possible benefits of greenhouse gas mitigation. A key question is whether temperature increases lead to proportional losses of sea-ice habitat, or whether sea-ice cover crosses a tipping point and irreversibly collapses when temperature reaches a critical threshold. Such a tipping point would mean future greenhouse gas mitigation would confer no conservation benefits to polar bears. Here we show, using a general circulation model, that substantially more sea-ice habitat would be retained if greenhouse gas rise is mitigated. We also show, with Bayesian network model outcomes, that increased habitat retention under greenhouse gas mitigation means that polar bears could persist throughout the century in greater numbers and more areas than in the business-as-usual case. Our general circulation model outcomes did not reveal thresholds leading to irreversible loss of ice; instead, a linear relationship between global mean surface air temperature and sea-ice habitat substantiated the hypothesis that sea-ice thermodynamics can overcome albedo feedbacks proposed to cause sea-ice tipping points. Our outcomes indicate that rapid summer ice losses in models and observations represent increased volatility of a thinning sea-ice cover, rather than tipping-point behaviour. Mitigation-driven Bayesian network outcomes show that previously predicted declines in polar bear distribution and numbers are not unavoidable. Because polar bears are sentinels of the Arctic marine ecosystem and trends in their sea-ice habitats foreshadow future global changes, mitigating greenhouse gas emissions to improve polar bear status would have conservation benefits throughout

  17. Neuroligin-1 loss is associated with reduced tenacity of excitatory synapses.

    Directory of Open Access Journals (Sweden)

    Adel Zeidan

    Full Text Available Neuroligins (Nlgns are postsynaptic, integral membrane cell adhesion molecules that play important roles in the formation, validation, and maturation of synapses in the mammalian central nervous system. Given their prominent roles in the life cycle of synapses, it might be expected that the loss of neuroligin family members would affect the stability of synaptic organization, and ultimately, affect the tenacity and persistence of individual synaptic junctions. Here we examined whether and to what extent the loss of Nlgn-1 affects the dynamics of several key synaptic molecules and the constancy of their contents at individual synapses over time. Fluorescently tagged versions of the postsynaptic scaffold molecule PSD-95, the AMPA-type glutamate receptor subunit GluA2 and the presynaptic vesicle molecule SV2A were expressed in primary cortical cultures from Nlgn-1 KO mice and wild-type (WT littermates, and live imaging was used to follow the constancy of their contents at individual synapses over periods of 8-12 hours. We found that the loss of Nlgn-1 was associated with larger fluctuations in the synaptic contents of these molecules and a poorer preservation of their contents at individual synapses. Furthermore, rates of synaptic turnover were somewhat greater in neurons from Nlgn-1 knockout mice. Finally, the increased GluA2 redistribution rates observed in neurons from Nlgn-1 knockout mice were negated by suppressing spontaneous network activity. These findings suggest that the loss of Nlgn-1 is associated with some use-dependent destabilization of excitatory synapse organization, and indicate that in the absence of Nlgn-1, the tenacity of excitatory synapses might be somewhat impaired.

  18. Varicose vein surgery using a pneumatic tourniquet: reduced blood loss and improved cosmesis.

    OpenAIRE

    Thompson, J. F.; Royle, G. T.; Farrands, P. A.; Najmaldin, A.; Clifford, P. C.; Webster, J. H.

    1990-01-01

    A prospective controlled randomised study has been performed of 100 consecutive patients undergoing varicose vein surgery. One group underwent saphenofemoral flush ligation and multiple lower leg avulsions with the leg exsanguinated with a Rhys-Davies cuff, and ischaemia maintained with a pneumatic tourniquet. The other group underwent identical surgery but with a 30 degree head down tilt only. Blood loss was significantly less (13.5 +/- 12 ml vs 133 +/- 78 ml; P less than 0.01) and postopera...

  19. Reducing burn-in voltage loss in polymer solar cells by increasing the polymer crystallinity

    KAUST Repository

    Heumueller, Thomas

    2014-08-01

    In order to commercialize polymer solar cells, the fast initial performance losses present in many high efficiency materials will have to be managed. This burn-in degradation is caused by light-induced traps and its characteristics depend on which polymer is used. We show that the light-induced traps are in the bulk of the active layer and we find a direct correlation between their presence and the open-circuit voltage loss in devices made with amorphous polymers. Solar cells made with crystalline polymers do not show characteristic open circuit voltage losses, even though light-induced traps are also present in these devices. This indicates that crystalline materials are more resistant against the influence of traps on device performance. Recent work on crystalline materials has shown there is an energetic driving force for charge carriers to leave amorphous, mixed regions of bulk heterojunctions, and charges are dominantly transported in pure, ordered phases. This energetic landscape allows efficient charge generation as well as extraction and also may benefit the stability against light-induced traps. This journal is © the Partner Organisations 2014.

  20. Reduced probability of smoking cessation in men with increasing number of job losses and partnership breakdowns

    DEFF Research Database (Denmark)

    Kriegbaum, Margit; Larsen, Anne Mette; Christensen, Ulla

    2011-01-01

    and to study joint exposure to both. Methods Birth cohort study of smoking cessation of 6232 Danish men born in 1953 with a follow-up at age 51 (response rate 66.2%). History of unemployment and cohabitation was measured annually using register data. Information on smoking cessation was obtained...... by a questionnaire. Results The probability of smoking cessation decreased with the number of job losses (ranging from 1 OR 0.54 (95% CI 0.46 to 0.64) to 3+ OR 0.41 (95% CI 0.30 to 0.55)) and of broken partnerships (ranging from 1 OR 0.74 (95% CI 0.63 to 0.85) to 3+ OR 0.50 (95% CI 0.39 to 0.63)). Furthermore......–23 years (OR 0.44, 95% CI 0.37 to 0.52)). Those who never cohabited and experienced one or more job losses had a particular low chance of smoking cessation (OR 0.19, 95% CI 0.12 to 0.30). Conclusion The numbers of job losses and of broken partnerships were both inversely associated with probability...

  1. Biochar-amended filter socks reduce herbicide losses via tile line surface inlets

    Science.gov (United States)

    Standing water in depressions and behind terraces in fields with subsurface drainage systems can result in reduced crop yields. This concern can be partially alleviated by installing surface inlets that reduce the duration of ponding. Unfortunately, these inlets provide an open conduit for surface w...

  2. A short-term supranutritional vitamin E supplementation alleviated respiratory alkalosis but did not reduce oxidative stress in heat stressed pigs

    Directory of Open Access Journals (Sweden)

    Fan Liu

    2018-02-01

    Full Text Available Objective Heat stress (HS triggers oxidative stress and respiratory alkalosis in pigs. The objective of this experiment was to study whether a short-term supranutritional amount of dietary vitamin E (VE can mitigate oxidative stress and respiratory alkalosis in heat-stressed pigs. Methods A total of 24 pigs were given either a control diet (17 IU/kg VE or a high VE (200 IU/kg VE; HiVE diet for 14 d, then exposed to thermoneutral (TN; 20°C, 45% humidity or HS (35°C, 35% to 45% humidity, 8 h daily conditions for 7 d. Respiration rate and rectal temperature were measured three times daily during the thermal exposure. Blood gas variables and oxidative stress markers were studied in blood samples collected on d 7. Results Although HiVE diet did not affect the elevated rectal temperature or respiration rate observed during HS, it alleviated (all p<0.05 for diet×temperature the loss of blood CO2 partial pressure and bicarbonate, as well as the increase in blood pH in the heat-stressed pigs. The HS reduced (p = 0.003 plasma biological antioxidant potential (BAP and tended to increase (p = 0.067 advanced oxidized protein products (AOPP in the heat-stressed pigs, suggesting HS triggers oxidative stress. The HiVE diet did not affect plasma BAP or AOPP. Only under TN conditions the HiVE diet reduced the plasma reactive oxygen metabolites (p<0.05 for diet× temperature. Conclusion A short-term supplementation with 200 IU/kg VE partially alleviated respiratory alkalosis but did not reduce oxidative stress in heat-stressed pigs.

  3. New waste heat district heating system with combined heat and power based on absorption heat exchange cycle in China

    International Nuclear Information System (INIS)

    Sun Fangtian; Fu Lin; Zhang Shigang; Sun Jian

    2012-01-01

    A new waste heat district heating system with combined heat and power based on absorption heat exchange cycle (DHAC) was developed to increase the heating capacity of combined heat and power (CHP) through waste heat recovery, and enhance heat transmission capacity of the existing primary side district heating network through decreasing return water temperature by new type absorption heat exchanger (AHE). The DHAC system and a conventional district heating system based on CHP (CDH) were analyzed in terms of both thermodynamics and economics. Compared to CDH, the DHAC increased heating capacity by 31% and increased heat transmission capacity of the existing primary side district heating network by 75%. The results showed that the exergetic efficiency of DHAC was 10.41% higher and the product exergy monetary cost was 36.6¥/GJ less than a CHD. DHAC is an effective way to increase thermal utilization factor of CHP, and to reduce district heating cost. - Highlights: ► Absorption heat pumps are used to recover waste heat in CHP. ► Absorption heat exchanger can reduce exergy loss in the heat transfer process. ► New waste heat heating system (DHAC) can increase heating capacity of CHP by 31%. ► DHAC can enhance heat transmission capacity of the primary pipe network by 75%. ► DHAC system has the higher exergetic efficiency and the better economic benefit.

  4. A practical cooling strategy for reducing the physiological strain associated with firefighting activity in the heat.

    Science.gov (United States)

    Barr, D; Gregson, W; Sutton, L; Reilly, T

    2009-04-01

    The aim of this study was to establish whether a practical cooling strategy reduces the physiological strain during simulated firefighting activity in the heat. On two separate occasions under high ambient temperatures (49.6 +/- 1.8 degrees C, relative humidity (RH) 13 +/- 2%), nine male firefighters wearing protective clothing completed two 20-min bouts of treadmill walking (5 km/h, 7.5% gradient) separated by a 15-min recovery period, during which firefighters were either cooled (cool) via application of an ice vest and hand and forearm water immersion ( approximately 19 degrees C) or remained seated without cooling (control). There was no significant difference between trials in any of the dependent variables during the first bout of exercise. Core body temperature (37.72 +/- 0.34 vs. 38.21 +/- 0.17 degrees C), heart rate (HR) (81 +/- 9 vs. 96 +/- 17 beats/min) and mean skin temperature (31.22 +/- 1.04 degrees C vs. 33.31 +/- 1 degrees C) were significantly lower following the recovery period in cool compared with control (p second bout of activity in cool compared to control. Mean skin temperature, HR and thermal sensation were significantly lower during bout 2 in cool compared with control (p < 0.05). It is concluded that this practical cooling strategy is effective at reducing the physiological strain associated with demanding firefighting activity under high ambient temperatures.

  5. Reduced basal autophagy and impaired mitochondrial dynamics due to loss of Parkinson's disease-associated protein DJ-1.

    Directory of Open Access Journals (Sweden)

    Guido Krebiehl

    2010-02-01

    Full Text Available Mitochondrial dysfunction and degradation takes a central role in current paradigms of neurodegeneration in Parkinson's disease (PD. Loss of DJ-1 function is a rare cause of familial PD. Although a critical role of DJ-1 in oxidative stress response and mitochondrial function has been recognized, the effects on mitochondrial dynamics and downstream consequences remain to be determined.Using DJ-1 loss of function cellular models from knockout (KO mice and human carriers of the E64D mutation in the DJ-1 gene we define a novel role of DJ-1 in the integrity of both cellular organelles, mitochondria and lysosomes. We show that loss of DJ-1 caused impaired mitochondrial respiration, increased intramitochondrial reactive oxygen species, reduced mitochondrial membrane potential and characteristic alterations of mitochondrial shape as shown by quantitative morphology. Importantly, ultrastructural imaging and subsequent detailed lysosomal activity analyses revealed reduced basal autophagic degradation and the accumulation of defective mitochondria in DJ-1 KO cells, that was linked with decreased levels of phospho-activated ERK2.We show that loss of DJ-1 leads to impaired autophagy and accumulation of dysfunctional mitochondria that under physiological conditions would be compensated via lysosomal clearance. Our study provides evidence for a critical role of DJ-1 in mitochondrial homeostasis by connecting basal autophagy and mitochondrial integrity in Parkinson's disease.

  6. Which Route of Tranexamic Acid Administration is More Effective to Reduce Blood Loss Following Total Knee Arthroplasty?

    Science.gov (United States)

    Keyhani, Sohrab; Esmailiejah, Ali Akbar; Abbasian, Mohammad Reza; Safdari, Farshad

    2016-01-01

    The most appropriate route of tranexamic acid administration is controversial. In the current study, we compared the efficacy of intravenous (IV) and topical intra-articular tranexamic acid in reducing blood loss and transfusion rate in patients who underwent primary total knee arthroplasty. One hundred twenty 120 patients were scheduled to undergo primary total knee arthroplasty. Patients were randomly allocated to three equal groups: IV tranexamic acid (500 mg), topical tranexamic acid (3 g in 100 mL normal saline) and the control. In the topical group, half of the volume was used to irrigate the joint and the other half was injected intra-articularly. The volume of blood loss, hemoglobin (Hb) level at 24 hours postoperative, and rate of transfusion was compared between groups. The blood loss and Hb level were significantly greater and lower in the control group, respectively (P=0.031). Also, the rate of transfusion was significantly greater in the control group (P=0.013). However, IV and topical groups did not differ significantly in terms of measured variables. No patient experienced a thromboembolic event in our study. Tranexamic acid is a useful antifibrinolytic drug to reduce postoperative blood loss, Hb drop, and rate of blood transfusion in patients undergoing total knee arthroplasty. The route of tranexamic acid administration did not affect the efficacy and safety.

  7. Reducing Stiffness and Electrical Losses of High Channel Hybrid Nerve Cuff Electrodes

    National Research Council Canada - National Science Library

    Schuettler, M

    2001-01-01

    .... Interconnection lines were made of only 300 nm of sputtered gold, which led to high line drops. Cold electroplating was used to thicken the lines to 3 microns, which reduced the mean track resistance from 480 ohms to 10 ohms...

  8. The Role of Geoscience Information in Reducing Catastrophic Loss Using a Web-Based Economics Experiment

    Science.gov (United States)

    Bernknopf, Richard L.; Brookshire, David S.; Ganderton, Philip T.

    2003-01-01

    What role can geoscience information play in the assessment of risk and the value of insurance, especially for natural hazard type risks? In an earlier, related paper Ganderton and others (2000) provided subjects with relatively simple geoscience information concerning natural hazard-type risks. Their research looked at how subjects purchase insurance when faced with relatively low probability but high loss risks of the kind that characterize natural hazards and now, increasingly, manmade disasters. They found evidence to support the expected utility theory (definitions of economics terms can be found in a glossary at the end of report), yet there remained the implication that subjects with excessive aversion to risk were willing to pay considerably more for insurance than the actuarially fair price plus any reasonable risk premium. Here, we report the results of additional experiments that provide further support for the basic postulates of expected utility theory. However, these new experiments add considerably to the decision environment facing subjects by offering an option to purchase geoscientific information that would assist them when calculating expected losses from hazards more accurately. Using an Internet-based mechanism to present information and gather data in an experimental setting, this research provided subjects with considerable textual and graphical information, and time to process it. Over a period of three months, almost 400 subjects participated in on-line experiments that generated approximately 22,000 usable data points for the empirical analysis discussed in this report. In the design of the experiment, we modeled the decisions to purchase (1) a detailed map giving subjects more information regarding the distribution of losses from a hazard and (2) insurance to indemnify them from any losses should they occur. On the basis of this design, we find strong evidence in support of the expected utility theory. Many of the findings reinforce

  9. Bioimpedance identifies body fluid loss after exercise in the heat: a pilot study with body cooling.

    Directory of Open Access Journals (Sweden)

    Hannes Gatterer

    Full Text Available Assessment of post-exercise changes in hydration with bioimpedance (BI is complicated by physiological adaptations that affect resistance (R and reactance (Xc values. This study investigated exercise-induced changes in R and Xc, independently and in bioelectrical impedance vector analysis, when factors such as increased skin temperature and blood flow and surface electrolyte accumulation are eliminated with a cold shower.Healthy males (n = 14, 24.1±1.7 yr; height (H: 182.4±5.6 cm, body mass: 72.3±6.3 kg exercised for 1 hr at a self-rated intensity (15 BORG in an environmental chamber (33°C and 50% relative humidity, then had a cold shower (15 min. Before the run BI, body mass, hematocrit and Posm were measured. After the shower body mass was measured; BI measurements were performed continuously every 20 minutes until R reached a stable level, then hematocrit and Posm were measured again.Compared to pre-trial measurements body mass decreased after the run and Posm, Hct, R/H and Xc/H increased (p<0.05 with a corresponding lengthening of the impedance vector along the major axis of the tolerance ellipse (p<0.001. Changes in Posm were negatively related to changes in body mass (r = -0.564, p = 0.036 and changes in Xc/H (r = -0.577, p = 0.041.Present findings showed that after a bout of exercise-induced dehydration followed by cold shower the impedance vector lengthened that indicates fluid loss. Additionally, BI values might be useful to evaluate fluid shifts between compartments as lower intracellular fluid loss (changed Xc/R indicated greater Posm increase.

  10. Combustion modeling including heat loss using flamelet generated manifolds: a validation study in OpenFOAM

    NARCIS (Netherlands)

    Ottino, G.M.; Fancello, A.; Falcone, M.; Bastiaans, R.J.M.; Goey, de L.P.H.

    In numerical combustion applications the Flamelet Generated Manifolds technique (FGM) is being used at an increasingly number of occasions. This technique is an approach to reduce the chemistry efficiently and accurately. In the present work FGM is coupled to an OpenFOAM-based CFD solver. The

  11. Linear stability analysis of flow instabilities with a nodalized reduced order model in heated channel

    International Nuclear Information System (INIS)

    Paul, Subhanker; Singh, Suneet

    2015-01-01

    The prime objective of the presented work is to develop a Nodalized Reduced Order Model (NROM) to carry linear stability analysis of flow instabilities in a two-phase flow system. The model is developed by dividing the single phase and two-phase region of a uniformly heated channel into N number of nodes followed by time dependent spatial linear approximations for single phase enthalpy and two-phase quality between the consecutive nodes. Moving boundary scheme has been adopted in the model, where all the node boundaries vary with time due to the variation of boiling boundary inside the heated channel. Using a state space approach, the instability thresholds are delineated by stability maps plotted in parameter planes of phase change number (N pch ) and subcooling number (N sub ). The prime feature of the present model is that, though the model equations are simpler due to presence of linear-linear approximations for single phase enthalpy and two-phase quality, yet the results are in good agreement with the existing models (Karve [33]; Dokhane [34]) where the model equations run for several pages and experimental data (Solberg [41]). Unlike the existing ROMs, different two-phase friction factor multiplier correlations have been incorporated in the model. The applicability of various two-phase friction factor multipliers and their effects on stability behaviour have been depicted by carrying a comparative study. It is also observed that the Friedel model for friction factor calculations produces the most accurate results with respect to the available experimental data. (authors)

  12. Reduced cortical distribution volume of iodine-123 iomazenil in Alzheimer's disease as a measure of loss of synapses

    DEFF Research Database (Denmark)

    Soricelli, A; Postiglione, A; Grivet-Fojaja, M R

    1996-01-01

    Iodine-123 labelled iomazenil (IMZ) is a specific tracer for the GABAA receptor, the dominant inhibitory synapse of the brain. The cerebral distribution volume (Vd) of IMZ may be taken as a quantitative measure of these synapses in Alzheimer's disease (AD), where synaptic loss tends indiscriminat...... simultaneously. Reduced values were found in all regions except in the occipital (visual) cortex. In particular, temporal and parietal cortex Vd was significantly (P...

  13. A randomized controlled trial on the efficacy of carbohydrate-reduced or fat-reduced diets in patients attending a telemedically guided weight loss program.

    Science.gov (United States)

    Frisch, Sabine; Zittermann, Armin; Berthold, Heiner K; Götting, Christian; Kuhn, Joachim; Kleesiek, Knut; Stehle, Peter; Körtke, Heinrich

    2009-07-18

    We investigated whether macronutrient composition of energy-restricted diets influences the efficacy of a telemedically guided weight loss program. Two hundred overweight subjects were randomly assigned to a conventional low-fat diet and a low-carbohydrate diet group (target carbohydrate content: >55% energy and Bluetooth technology by mobile phone. Various fatness and fat distribution parameters, energy and macronutrient intake, and various biochemical risk markers were measured at baseline and after 6, and 12 months. In both groups, energy intake decreased by 400 kcal/d compared to baseline values within the first 6 months and slightly increased again within the second 6 months. Macronutrient composition differed significantly between the groups from the beginning to month 12. At study termination, weight loss was 5.8 kg (SD: 6.1 kg) in the low-carbohydrate group and 4.3 kg (SD: 5.1 kg) in the low-fat group (p = 0.065). In the low-carbohydrate group, triglyceride and HDL-cholesterol levels were lower at month 6 and waist circumference and systolic blood pressure were lower at month 12 compared with the low-fat group (P = 0.005-0.037). Other risk markers improved to a similar extent in both groups. Despite favourable effects of both diets on weight loss, the carbohydrate-reduced diet was more beneficial with respect to cardiovascular risk factors compared to the fat-reduced diet. Nevertheless, compliance with a weight loss program appears to be even a more important factor for success in prevention and treatment of obesity than the composition of the diet. Clinicaltrials.gov as NCT00868387.

  14. A randomized controlled trial on the efficacy of carbohydrate-reduced or fat-reduced diets in patients attending a telemedically guided weight loss program

    Directory of Open Access Journals (Sweden)

    Stehle Peter

    2009-07-01

    Full Text Available Abstract Background We investigated whether macronutrient composition of energy-restricted diets influences the efficacy of a telemedically guided weight loss program. Methods Two hundred overweight subjects were randomly assigned to a conventional low-fat diet and a low-carbohydrate diet group (target carbohydrate content: >55% energy and ® technology by mobile phone. Various fatness and fat distribution parameters, energy and macronutrient intake, and various biochemical risk markers were measured at baseline and after 6, and 12 months. Results In both groups, energy intake decreased by 400 kcal/d compared to baseline values within the first 6 months and slightly increased again within the second 6 months. Macronutrient composition differed significantly between the groups from the beginning to month 12. At study termination, weight loss was 5.8 kg (SD: 6.1 kg in the low-carbohydrate group and 4.3 kg (SD: 5.1 kg in the low-fat group (p = 0.065. In the low-carbohydrate group, triglyceride and HDL-cholesterol levels were lower at month 6 and waist circumference and systolic blood pressure were lower at month 12 compared with the low-fat group (P = 0.005–0.037. Other risk markers improved to a similar extent in both groups. Conclusion Despite favourable effects of both diets on weight loss, the carbohydrate-reduced diet was more beneficial with respect to cardiovascular risk factors compared to the fat-reduced diet. Nevertheless, compliance with a weight loss program appears to be even a more important factor for success in prevention and treatment of obesity than the composition of the diet. Trial registration Clinicaltrials.gov as NCT00868387

  15. Loss of Acetylcholine Signaling Reduces Cell Clearance Deficiencies in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Sérgio M Pinto

    Full Text Available The ability to eliminate undesired cells by apoptosis is a key mechanism to maintain organismal health and homeostasis. Failure to clear apoptotic cells efficiently can cause autoimmune diseases in mammals. Genetic studies in Caenorhabditis elegans have greatly helped to decipher the regulation of apoptotic cell clearance. In this study, we show that the loss of levamisole-sensitive acetylcholine receptor, but not of a typical neuronal acetylcholine receptor causes a reduction in the number of persistent cell corpses in worms suffering from an engulfment deficiency. This reduction is not caused by impaired or delayed cell death but rather by a partial restoration of the cell clearance capacity. Mutants in acetylcholine turn-over elicit a similar phenotype, implying that acetylcholine signaling is the process responsible for these observations. Surprisingly, tissue specific RNAi suggests that UNC-38, a major component of the levamisole-sensitive receptor, functions in the dying germ cell to influence engulfment efficiency. Animals with loss of acetylcholine receptor exhibit a higher fraction of cell corpses positive for the "eat-me" signal phosphatidylserine. Our results suggest that modulation by ion channels of ion flow across plasma membrane in dying cells can influence the dynamics of phosphatidylserine exposure and thus clearance efficiency.

  16. Analysis of a Community-based Intervention to Reduce Heat-related Illness during Heat Waves in Licheng, China: a Quasi-experimental Study.

    Science.gov (United States)

    Li, Jing; Xu, Xin; Wang, Jun; Zhao, Yun; Song, Xiu Ping; Liu, Zhi Dong; Cao, Li Na; Jiang, Bao Fa; Liu, Qi Yong

    2016-11-01

    To reduce health-related threats of heat waves, interventions have been implemented in many parts of the world. However, there is a lack of higher-level evidence concerning the intervention efficacy. This study aimed to determine the efficacy of an intervention to reduce the number of heat-related illnesses. A quasi-experimental design was employed by two cross-sectional surveys in the year 2014 and 2015, including 2,240 participants and 2,356 participants, respectively. Each survey was designed to include one control group and one intervention group, which conducted in Licheng, China. A representative sample was selected using a multistage sampling method. Data, collected from questionnaires about heat waves in 2014 and 2015, were analyzed using a difference-in-difference analysis and cost effectiveness analysis. Outcomes included changes in the prevalence of heat-related illnesses and cost-effectiveness variables. Relative to the control participants, the prevalence of heat-related illness in the intervention participants decreased to a greater extent in rural areas than in urban areas (OR=0.495 vs. OR=1.281). Moreover, the cost-effectiveness ratio in the intervention group was less than that in the control group (US$15.06 vs. US$15.69 per participant). Furthermore, to avoid one additional patient, the incremental cost-effectiveness ratio showed that an additional US$14.47 would be needed for the intervention compared to when no intervention was applied. The intervention program may be considered a worthwhile investment for rural areas that are more likely to experience heat waves. Meanwhile, corresponding improving measures should be presented towards urban areas. Future research should examine whether the intervention strategies could be spread out in other domestic or international regions where heat waves are usually experienced. Copyright © 2016 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  17. Numerical analysis of Eucalyptus grandis × E. urophylla heat-treatment: A dynamically detecting method of mass loss during the process

    Science.gov (United States)

    Zhao, Zijian; Ma, Qing; Mu, Jun; Yi, Songlin; He, Zhengbin

    Eucalyptus particles, lamellas and boards were applied to explore a simply-implemented method with neglected heat and mass transfer to inspect the mass loss during the heat-treatment course. The results revealed that the mass loss of a certain period was theoretically the definite integration of loss rate to time in this period, and a monitoring model for mass loss speed was developed with the particles and validated with the lamellas and boards. The loss rate was correlated to the temperature and temperature-evolving speed in the model which was composed of three functions during different temperature-evolving period. The sample mass loss was calculated in the MATLAB for the lamellas and boards and the model was validated and adjusted based on the difference between the computed results and the practically measured loss values. The error ranges of the new models were -16.30% to 18.35% for wood lamellas and -9.86% to 6.80% for wood boards. This method made it possible to acquire the instantaneous loss value through continuously detecting the wood temperature evolution. This idea could provide a reference for the Eucalyptus heat-treatment to detect the treating course and control the final material characteristics.

  18. Linking physiological and cellular responses to thermal stress: β-adrenergic blockade reduces the heat shock response in fish.

    Science.gov (United States)

    Templeman, Nicole M; LeBlanc, Sacha; Perry, Steve F; Currie, Suzanne

    2014-08-01

    When faced with stress, animals use physiological and cellular strategies to preserve homeostasis. We were interested in how these high-level stress responses are integrated at the level of the whole animal. Here, we investigated the capacity of the physiological stress response, and specifically the β-adrenergic response, to affect the induction of the cellular heat shock proteins, HSPs, following a thermal stress in vivo. We predicted that blocking β-adrenergic stimulation during an acute heat stress in the whole animal would result in reduced levels of HSPs in red blood cells (RBCs) of rainbow trout compared to animals where adrenergic signaling remained intact. We first determined that a 1 h heat shock at 25 °C in trout acclimated to 13 °C resulted in RBC adrenergic stimulation as determined by a significant increase in cell swelling, a hallmark of the β-adrenergic response. A whole animal injection with the β2-adrenergic antagonist, ICI-118,551, successfully reduced this heat-induced RBC swelling. The acute heat shock caused a significant induction of HSP70 in RBCs of 13 °C-acclimated trout as well as a significant increase in plasma catecholamines. When heat-shocked fish were treated with ICI-118,551, we observed a significant attenuation of the HSP70 response. We conclude that circulating catecholamines influence the cellular heat shock response in rainbow trout RBCs, demonstrating physiological/hormonal control of the cellular stress response.

  19. Pegasus project. DLC coating and low viscosity oil reduce energy losses significantly

    Energy Technology Data Exchange (ETDEWEB)

    Doerwald, Dave; Jacobs, Ruud [Hauzer Techno Coating (Netherlands). Tribological Coatings

    2012-03-15

    Pegasus, the flying horse from Greek mythology, is a suitable name for the research project initiated by a German automotive OEM with participation of Hauzer Techno Coating and several automotive suppliers. It will enable future automotive vehicles to reduce fuel consumption without losing power. The project described in this article focuses on the rear differential, because reducing friction here can contribute considerably to efficiency improvement of the whole vehicle. Surfaces, coating and oil viscosity have been investigated and interesting conclusions have been reached. (orig.)

  20. Maintaining yields and reducing nitrogen loss in rice–wheat rotation system in Taihu Lake region with proper fertilizer management

    International Nuclear Information System (INIS)

    Xue, Lihong; Yu, Yingliang; Yang, Linzhang

    2014-01-01

    In the Tailake region of China, heavy nitrogen (N) loss of rice–wheat rotation systems, due to high fertilizer-N input with low N use efficiency (NUE), was widely reported. To alleviate the detrimental impacts caused by N loss, it is necessary to improve the fertilizer management practices. Therefore, a 3 yr field experiments with different N managements including organic combined chemical N treatment (OCN, 390 kg N ha −1 yr −1 , 20% organic fertilizer), control–released urea treatment (CRU, 390 kg N ha −1 yr −1 , 70% resin-coated urea), reduced chemical N treatment (RCN, 390 kg N ha −1 yr −1 , all common chemical fertilizer), and site-specific N management (SSNM, 333 kg N ha −1 yr −1 , all common chemical fertilizer) were conducted in the Taihu Lake region with the ‘farmer’s N’ treatment (FN, 510 kg N ha −1 yr −1 , all common chemical fertilizer) as a control. Grain yield, plant N uptake (PNU), NUE, and N losses via runoff, leaching, and ammonia volatilization were assessed. In the rice season, the FN treatment had the highest N loss and lowest NUE, which can be attributed to an excessive rate of N application. Treatments of OCN and RCN with a 22% reduced N rate from FN had no significant effect on PNU nor the yield of rice in the 3 yr; however, the NUE was improved and N loss was reduced 20–32%. OCN treatment achieved the highest yield, while SSNM has the lowest N loss and highest NUE due to the lowest N rate. In wheat season, N loss decreased about 28–48% with the continuous reduction of N input, but the yield also declined, with the exception of OCN treatment. N loss through runoff, leaching and ammonia volatilization was positively correlated with the N input rate. When compared with the pure chemical fertilizer treatment of RCN under the same N input, OCN treatment has better NUE, better yield, and lower N loss. 70% of the urea replaced with resin-coated urea had no significant effect on yield and NUE improvement, but

  1. Azathioprine reduces the risk of audiometric relapse in immune-mediated hearing loss.

    Science.gov (United States)

    Mata-Castro, Nieves; Gavilanes-Plasencia, Javier; Ramírez-Camacho, Rafael; García-Fernández, Alfredo; García-Berrocal, José Ramón

    2018-03-01

    Current schemes for treatment of immune-mediated hearing loss with sporadic short-course, low-dose corticosteroids, are insufficient. To determine the role of azathioprine in the control of auditory impairment, a longitudinal, observational, descriptive study was performed with 20 patients treated with azathioprine (1.5-2.5mg/kg/day into two doses) for 1year. The loss of 10dB on two consecutive frequencies or 15dB on an isolated frequency was considered as relapse. The mean age of the patients was 52.50years (95%CI: 46.91-58.17), half were women. Bilateral affectation was 65%. 75% had organ specific disease and 25% had systemic autoimmune disease. The difference between baseline PTA (46.49dB; DS18.90) and PTA at 12months (45.47dB; DS18.88) did not reach statistical significance (P=.799). There was a moderate positive correlation between female sex and the presence of systemic disease (R=.577). By applying Student's t for paired data, a significant difference (P=.042) was obtained between the PTA in frequencies up to 1000 Hz (PTA125-1000Hz). The relative incidence rate of relapse per year was .52 relapses/year (95%CI: .19-1.14]). The median time to audiometric relapse-free was 9.70months (DS1.03). Azathioprine maintains the hearing threshold, decreases the risk of relapse, and slows down the rate at which patients relapse, altering the course of immune-mediated inner ear disease. Copyright © 2018 Sociedad Española de Otorrinolaringología y Cirugía de Cabeza y Cuello. Publicado por Elsevier España, S.L.U. All rights reserved.

  2. Intentional weight loss reduces mortality rate in a rodent model of dietary obesity.

    Science.gov (United States)

    Vasselli, Joseph R; Weindruch, Richard; Heymsfield, Steven B; Pi-Sunyer, F Xavier; Boozer, Carol N; Yi, Nengjun; Wang, Chenxi; Pietrobelli, Angelo; Allison, David B

    2005-04-01

    We used a rodent model of dietary obesity to evaluate effects of caloric restriction-induced weight loss on mortality rate. Research Measures and Procedures: In a randomized parallel-groups design, 312 outbred Sprague-Dawley rats (one-half males) were assigned at age 10 weeks to one of three diets: low fat (LF; 18.7% calories as fat) with caloric intake adjusted to maintain body weight 10% below that for ad libitum (AL)-fed rat food, high fat (HF; 45% calories as fat) fed at the same level, or HF fed AL. At age 46 weeks, the lightest one-third of the AL group was discarded to ensure a more obese group; the remaining animals were randomly assigned to one of three diets: HF-AL, HF with energy restricted to produce body weights of animals restricted on the HF diet throughout life, or LF with energy restricted to produce the body weights of animals restricted on the LF diet throughout life. Life span, body weight, and leptin levels were measured. Animals restricted throughout life lived the longest (p < 0.001). Life span was not different among animals that had been obese and then lost weight and animals that had been nonobese throughout life (p = 0.18). Animals that were obese and lost weight lived substantially longer than animals that remained obese throughout life (p = 0.002). Diet composition had no effect on life span (p = 0.52). Weight loss after the onset of obesity during adulthood leads to a substantial increase in longevity in rats.

  3. implications for reducing loss to follow-up among HIV-infected and

    African Journals Online (AJOL)

    Juddy Wachira * wachirajuddy@gmail.com, Susan E Middlestadt , Rachel Vreeman & Paula Braitstein

    women caregivers suggests that interventions to reduce pediatric LTFU need to be holistic and ... Conclusion : La complexité et l'interconnexion des facteurs sous-tendant la rétention des enfants suivant un .... For all those who were married, their male partners ... forced to look for casual jobs to sustain their families' needs.

  4. Effectiveness of oat and rye cover crops in reducing nitrate losses in drainage water

    Science.gov (United States)

    A significant portion of the NO3 from agricultural fields that contaminates surface waters in the Midwest Corn Belt is transported to streams or rivers by subsurface drainage systems or “tiles”. Previous research has shown that N fertilizer management alone is not sufficient for reducing NO3 concent...

  5. Practical modeling of acoustic losses in air due to heat conduction and viscosity

    DEFF Research Database (Denmark)

    Christensen, René; Juhl, Peter Møller; Cutanda Henríquez, Vicente

    2008-01-01

    in analytical and numerical models. A simple circular geometry with a narrow tube has been used as a reference and is investigated both through measurements and the different models. The simulation methods compared are: i) traditional analytical approaches such as lumped parameter modelling and transmission...... line modelling, ii) numerical methods implemented into commercial packages, such as the low reduced frequency models as proposed by W. M. Beltman and implemented in ACTRAN and the linearized Navier-Stokes equations used in COMSOL Multiphysics, and iii) an implementation specifically made...

  6. Shifts of heat availability and stressful temperatures in Russian Federation result in gains and losses of wheat thermal suitability

    Science.gov (United States)

    Di Paola, Arianna; Caporaso, Luca; Santini, Monia; Di Paola, Francesco; Vasenev, Ivan; Valentini, Riccardo

    2017-04-01

    Climate changes are likely to shift the suitability of lands devoted to cropping systems. We explored the past-to-future thermal suitability of Russian Federation for wheat (Triticum aestivum) culture through an ensemble of bias corrected CMIP5-GCMs outputs considering two representative concentration pathways (RCP 4.5 and 8.5). Thermal suitability assesses where wheat heat requirement, counted from suggested sowing dates, is satisfied without the occurrence of stressful hot and frost temperatures. Thermal requirement was estimated by means of phenological observations on soft wheat involving different wheat cultivar collected in different regions of Russian Federation, Azerbaidhan, Kazakhstan and Tadzhikistan, whilst stressful temperatures were taken from a literature survey. Results showed projected geographical shift of heat resource toward the north-eastern regions, currently mainly covered by forests and croplands, but also an increase of very hot temperatures in the most productive areas of the southern regions. Gains and losses were then quantified and discussed from both agronomical and climatic perspective.

  7. Simple method for calculation of heat loss through floor/beam-wall intersections according to ISO 9164

    International Nuclear Information System (INIS)

    Dilmac, Sukran; Guner, Abdurrahman; Senkal, Filiz; Kartal, Semiha

    2007-01-01

    The international standards for calculation of energy consumption for heating are ISO 9164 and EN 832. Although they are based on similar principles, there are significant differences in the calculation procedure of transmission heat loss coefficient, H T , especially in the evaluation of thermal bridges. The calculation of H T and the way thermal bridges are to be taken into consideration are explained in detail in EN 832 and in a series of other linked standards. In ISO 9164, the parameters used in the relevant equations are cited, but there is a lack of explanation about how they will be determined or calculated. Although in ISO 6946-2, the earlier version of the same standard, the calculation methods of these quantities were explained for column-wall intersections; in the revised ISO 6946, these explanations have been removed. On the other hand, these parameters had never been defined for floor/beam-wall intersections. In this paper, a new method is proposed for calculation of the parameters cited in ISO 9164 for floor/beam-wall intersections. The results obtained by the proposed method for typical floor with beam sections are compared with the results obtained by the methods stated in EN 832/EN 13789/EN ISO 14683 and the results obtained from 2D analysis. Different methods are evaluated as to their simplicity and agreement

  8. Caffeine Ingestion after Rapid Weight Loss in Judo Athletes Reduces Perceived Effort and Increases Plasma Lactate Concentration without Improving Performance

    Directory of Open Access Journals (Sweden)

    Joao P. Lopes-Silva

    2014-07-01

    Full Text Available The objective of this study was to examine the effect of caffeine on judo performance, perceived exertion, and plasma lactate response when ingested during recovery from a 5-day weight loss period. Six judokas performed two cycles of a 5-day rapid weight loss procedure to reduce their body weight by ~5%. After weigh-in, subjects re-fed and rehydrated over a 4-h recovery period. In the third hour of this “loading period”, subjects ingested a capsule containing either caffeine (6 mg·kg−1 or placebo. One hour later, participants performed three bouts of a judo fitness test with 5-min recovery periods. Perceived exertion and plasma lactate were measured before and immediately after each test bout. Body weight was reduced in both caffeine and placebo conditions after the weight loss period (−3.9% ± 1.6% and −4.0% ± 2.3% from control, respectively, p < 0.05. At three hours after weigh-in, body weight had increased with both treatments but remained below the control (−3.0% ± 1.3% and −2.7% ± 2.2%. There were no significant differences in the number of throws between the control, caffeine or placebo groups. However, plasma lactate was systemically higher and perceived exertion lower in the subjects who ingested caffeine compared to either the control or placebo subjects (p < 0.05. In conclusion, caffeine did not improve performance during the judo fitness test after a 5-day weight loss period, but reduced perceived exertion and increased plasma lactate.

  9. Optimal Scheduling of Integrated Energy Systems with Combined Heat and Power Generation, Photovoltaic and Energy Storage Considering Battery Lifetime Loss

    Directory of Open Access Journals (Sweden)

    Yongli Wang

    2018-06-01

    Full Text Available Integrated energy systems (IESs are considered a trending solution for the energy crisis and environmental problems. However, the diversity of energy sources and the complexity of the IES have brought challenges to the economic operation of IESs. Aiming at achieving optimal scheduling of components, an IES operation optimization model including photovoltaic, combined heat and power generation system (CHP and battery energy storage is developed in this paper. The goal of the optimization model is to minimize the operation cost under the system constraints. For the optimization process, an optimization principle is conducted, which achieves maximized utilization of photovoltaic by adjusting the controllable units such as energy storage and gas turbine, as well as taking into account the battery lifetime loss. In addition, an integrated energy system project is taken as a research case to validate the effectiveness of the model via the improved differential evolution algorithm (IDEA. The comparison between IDEA and a traditional differential evolution algorithm shows that IDEA could find the optimal solution faster, owing to the double variation differential strategy. The simulation results in three different battery states which show that the battery lifetime loss is an inevitable factor in the optimization model, and the optimized operation cost in 2016 drastically decreased compared with actual operation data.

  10. Reduced energy consumption by massive thermoelectric waste heat recovery in light duty trucks

    Science.gov (United States)

    Magnetto, D.; Vidiella, G.

    2012-06-01

    The main objective of the EC funded HEATRECAR project is to reduce the energy consumption and curb CO2 emissions of vehicles by massively harvesting electrical energy from the exhaust system and re-use this energy to supply electrical components within the vehicle or to feed the power train of hybrid electrical vehicles. HEATRECAR is targeting light duty trucks and focuses on the development and the optimization of a Thermo Electric Generator (TEG) including heat exchanger, thermoelectric modules and DC/DC converter. The main objective of the project is to design, optimize and produce a prototype system to be tested on a 2.3l diesel truck. The base case is a Thermo Electric Generator (TEG) producing 1 KWel at 130 km/h. We present the system design and estimated output power from benchmark Bi2Te3 modules. We discuss key drivers for the optimization of the thermal-to-electric efficiency, such as materials, thermo-mechanical aspects and integration.

  11. Suppressed beta relaxations and reduced heat capacity in ultrastable organic glasses prepared by physical vapor deposition

    Science.gov (United States)

    Ediger, Mark

    Glasses play an important role in technology as a result of their macroscopic homogeneity (e.g., the clarity of window glass) and our ability to tune properties through composition changes. A problem with liquid-cooled glasses is that they exhibit marginal kinetic stability and slowly evolve towards lower energy glasses and crystalline states. In contrast, we have shown that physical vapor deposition can prepare glasses with very high kinetic stability. These materials have properties expected for ``million-year-old'' glasses, including high density, low enthalpy, and high mechanical moduli. We have used nanocalorimetry to show that these high stability glasses have lower heat capacities than liquid-cooled glasses for a number of molecular systems. Dielectric relaxation has been used to show that the beta relaxation can be suppressed by nearly a factor of four in vapor-deposited toluene glasses, indicating a very tight packing environment. Consistent with this view, computer simulations of high stability glasses indicate reduced Debye-Waller factors. These high stability materials raise interesting questions about the limiting properties of amorphous packing arrangements.

  12. Forebrain-Specific Loss of BMPRII in Mice Reduces Anxiety and Increases Object Exploration

    OpenAIRE

    McBrayer, Zofeyah L.; Dimova, Jiva; Pisansky, Marc T.; Sun, Mu; Beppu, Hideyuki; Gewirtz, Jonathan C.; O’Connor, Michael B.

    2015-01-01

    To investigate the role of Bone Morphogenic Protein Receptor Type II (BMPRII) in learning, memory, and exploratory behavior in mice, a tissue-specific knockout of BMPRII in the post-natal hippocampus and forebrain was generated. We found that BMPRII mutant mice had normal spatial learning and memory in the Morris water maze, but showed significantly reduced swimming speeds with increased floating behavio