WorldWideScience

Sample records for reduces ovalbumin-induced airway

  1. An α4β1 integrin antagonist decreases airway inflammation in ovalbumin-exposed mice

    Science.gov (United States)

    Kenyon, Nicholas J.; Liu, Ruiwu; O’Roark, Erin M.; Huang, Wenzhe; Peng, Li; Lam, Kit S.

    2008-01-01

    Inhibition of the α4 subunit of both the α4β1 and α4β7 integrins has shown promise in decreasing airway inflammation and airway hyperresponsiveness in various animal models. We hypothesized that a novel, high-affinity α4β1 antagonist (LLP2A) would decrease the migration of eosinophils to the lung and ameliorate the airway hyperresponsiveness in a mouse model of ovalbumin-induced airway inflammation. To test this hypothesis, we administered LLP2A, or scrambled LLP2A (a negative control), prior to exposure of sensitized BALB/c mice to ovalbumin aerosol. We can partially prevent, or reverse, the airway inflammatory response, but not airways hyperresponsiveness, by treatment of mice with LLP2A, a synthetic peptidomimetic α4β1 antagonist LLP2A. Specifically engineered, PEGylated (PEG) formulations of this antagonist further reduce the airway inflammatory response to ovalbumin lbumin, presumably by improving the circulating half-life of the drug. PMID:19103195

  2. Inhibitory effect of kefiran on ovalbumin-induced lung inflammation in a murine model of asthma.

    Science.gov (United States)

    Kwon, Ok-Kyoung; Ahn, Kyung-Seop; Lee, Mee-Young; Kim, So-Young; Park, Bo-Young; Kim, Mi-Kyoung; Lee, In-Young; Oh, Sei-Ryang; Lee, Hyeong-Kyu

    2008-12-01

    Kefiran is a major component of kefir which is a microbial symbiont mixture that produces jelly-like grains. This study aimed to evaluate the therapeutic availability of kefiran on the ovalbumin-induced asthma mouse model in which airway inflammation and airway hyper-responsiveness were found in the lung. BALB/c mice sensitized and challenged to ovalbumin were treated intra-gastrically with kefiran 1 hour before the ovalbumin challenge. Kefiran significantly suppressed ovalbumin-induced airway hyper-responsiveness (AHR) to inhaled methacholine. Administration of kefiran significantly inhibited the release of both eosinophils and other inflammatory cells into bronchoalveolar lavage (BAL) fluid and lung tissue which was measured by Diff-Quik. Interleukin-4 (IL-4) and interleukin-5 (IL-5) were also reduced to normal levels after administration of kefiran in BAL fluid. Histological studies demonstrate that kefiran substantially inhibited ovalbumin-induced eosinophilia in lung tissue by H&E staining and goblet cell hyperplasia in the airway by PAS staining. Taken above data, kefiran may be useful for the treatment of inflammation of lung tissue and airway hyper-responsiveness in a murine model and may have therapeutic potential for the treatment of allergic bronchial asthma.

  3. Artemisia argyi attenuates airway inflammation in ovalbumin-induced asthmatic animals.

    Science.gov (United States)

    Shin, Na-Rae; Ryu, Hyung-Won; Ko, Je-Won; Park, Sung-Hyeuk; Yuk, Heung-Joo; Kim, Ha-Jung; Kim, Jong-Choon; Jeong, Seong-Hun; Shin, In-Sik

    2017-09-14

    Artemisia argyi is a traditional herbal medicine in Korea and commonly called as mugwort. It is traditionally used as food source and tea to control abdominal pain, dysmenorrhea, uterine hemorrhage, and inflammation. We investigated the effects of A. argyi (TOTAL) and dehydromatricarin A (DA), its active component on ovalbumin (OVA)-induced allergic asthma. The animals were sensitized on day 0 and 14 by intraperitoneal injection of OVA with aluminum hydroxide. On day 21, 22 and 23 after the initial sensitization, the animals received an airway challenge with OVA for 1h using an ultrasonic nebulizer. TOTAL (50 and 100mg/kg) or DA (10 and 20mg/kg) were administered to mice by oral gavage once daily from day 18-23. Airway hyperresponsiveness (AHR) was measured 24h after final OVA challenge. TOTAL and DA treated animals reduced inflammatory cell counts, cytokines and AHR in asthmatic animals, which was accompanied with inflammatory cell accumulation and mucus hypersecretion. Furthermore, TOTAL and DA significantly declined Erk phosphorylation and the expression of MMP-9 in asthmatic animals. In conclusion, we indicate that Total and DA suppress allergic inflammatory responses caused by OVA challenge. It was considered that A. argyi has a potential for treating allergic asthma. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  4. ARGINASE ENZYMES IN ISOLATED AIRWAYS FROM NORMAL AND NITRIC OXIDE SYNTHASE 2-KNOCKOUT MICE EXPOSED TO OVALBUMIN

    Science.gov (United States)

    Bratt, Jennifer M.; Franzi, Lisa M.; Linderholm, Angela L.; Last, Michael S.; Kenyon, Nicholas J.; Last, Jerold A.

    2009-01-01

    Arginase has been suggested to compete with nitric oxide synthase (NOS) for their common substrate, L-arginine. To study the mechanisms underlying this interaction, we compared arginase expression in isolated airways and the consequences of inhibiting arginase activity in vivo with NO production, lung inflammation, and lung function in both C57BL/6 and NOS2 knockout mice undergoing ovalbumin-induced airway inflammation, a mouse model of asthma. Arginases I and II were measured by western blot in isolated airways from sensitized C57BL/6 mice exposed to ovalbumin aerosol. Physiological and biochemical responses---inflammation, lung compliance, airway hyperreactivity, exhaled NO concentration, arginine concentration--were compared with the responses of NOS2 knockout mice. NOS2 knockout mice had increased total cells in lung lavage, decreased lung compliance, and increased airway hyperreactivity. Both arginase I and arginase II were constitutively expressed in the airways of normal C57BL/6 mice. Arginase I was up-regulated approximately 8-fold in the airways of C57BL/6 mice exposed to ovalbumin. Expression of both arginase isoforms were significantly upregulated in NOS2 knockout mice exposed to ovalbumin, with about 40- and 4-fold increases in arginases I and II, respectively. Arginine concentration in isolated airways was not significantly different in any of the groups studied. Inhibition of arginase by systemic treatment of C57BL/6 mice with a competitive inhibitor, Nω-hydroxy-nor-L-arginine (nor-NOHA), significantly decreased the lung inflammatory response to ovalbumin in these animals. We conclude that NOS2 knockout mice are more sensitive to ovalbumin-induced airway inflammation and its sequelae than are C57BL/6 mice, as determined by increased total cells in lung lavage, decreased lung compliance, and increased airway hyperreactivity, and that these findings are strongly correlated with increased expression of both arginase isoforms in the airways of the NOS2

  5. Sea Cucumber Lipid-Soluble Extra Fraction Prevents Ovalbumin-Induced Allergic Airway Inflammation.

    Science.gov (United States)

    Lee, Da-In; Kang, Shin Ae; Md, Anisuzzaman; Jeong, U-Cheol; Jin, Feng; Kang, Seok-Joong; Lee, Jeong-Yeol; Yu, Hak Sun

    2018-01-01

    In a previous study, our research group demonstrated that sea cucumber (Apostichopus japonicus) extracts ameliorated allergic airway inflammation through CD4 + CD25 + Foxp3 + T (regulatory T; Treg) cell activation and recruitment to the lung. In this study, we aimed to determine which components of sea cucumber contribute to the amelioration of airway inflammation. We used n-hexane fractionation to separate sea cucumber into three phases (n-hexane, alcohol, and solid) and evaluated the ability of each phase to elevate Il10 expression in splenocytes and ameliorate symptoms in mice with ovalbumin (OVA)/alum-induced asthma. Splenocytes treated with the n-hexane phase showed a significant increase in Il10 expression. In the n-hexane phase, 47 fatty acids were identified. Individual fatty acids that comprised at least 5% of the total fatty acids were 16:0, 16:1n-7, 18:0, 18:1n-7, 20:4n-6, and 20:5n-3 (eicosapentaenoic acid). After administering the n-hexane phase to mice with OVA/alum-induced asthma, their asthma symptoms were ameliorated. Several immunomodulatory effects were observed in the n-hexane phase-pretreated group, compared with a vehicle control group. First, eosinophil infiltration and goblet cell hyperplasia were significantly reduced around the airways. Second, the concentrations of Th2-related cytokines (IL-4, IL-5, and IL-13) and Th17-related cytokines (IL-17) were significantly decreased in the spleen and bronchoalveolar lavage fluid (BALF). Finally, the concentrations of TGF-β and IL-10, which are associated with Treg cells, were significantly increased in the BALF and splenocyte culture medium. In conclusion, a fatty acid-rich fraction (n-hexane phase) of sea cucumber extract ameliorated allergic airway inflammation in a mouse model.

  6. Hesperetin, a Selective Phosphodiesterase 4 Inhibitor, Effectively Suppresses Ovalbumin-Induced Airway Hyperresponsiveness without Influencing Xylazine/Ketamine-Induced Anesthesia

    Directory of Open Access Journals (Sweden)

    Chung-Hung Shih

    2012-01-01

    Full Text Available Hesperetin, a selective phosphodiesterase (PDE4 inhibitor, is present in the traditional Chinese medicine, “Chen Pi.” Therefore, we were interested in investigating its effects on ovalbumin- (OVA- induced airway hyperresponsiveness, and clarifying its rationale for ameliorating asthma and chronic obstructive pulmonary disease (COPD. Hesperetin was revealed to have a therapeutic (PDE4H/PDE4L ratio of >11. Hesperetin (10 ~ 30 μmol/kg, intraperitoneally (i.p. dose-dependently and significantly attenuated the airway hyperresponsiveness induced by methacholine. It also significantly suppressed the increases in total inflammatory cells, macrophages, lymphocytes, neutrophils, and eosinophils, and levels of cytokines, including interleukin (IL-2, IL-4, IL-5, interferon-γ, and tumor necrosis factor-α in bronchoalveolar lavage fluid (BALF. It dose-dependently and significantly suppressed total and OVA-specific immunoglobulin E levels in the BALF and serum. However, hesperetin did not influence xylazine/ketamine-induced anesthesia, suggesting that hesperetin has few or no emetic effects. In conclusion, the rationales for ameliorating allergic asthma and COPD by hesperetin are anti-inflammation, immunoregulation, and bronchodilation.

  7. Inhibition of airway epithelial-to-mesenchymal transition and fibrosis by kaempferol in endotoxin-induced epithelial cells and ovalbumin-sensitized mice.

    Science.gov (United States)

    Gong, Ju-Hyun; Cho, In-Hee; Shin, Daekeun; Han, Seon-Young; Park, Sin-Hye; Kang, Young-Hee

    2014-03-01

    Chronic airway remodeling is characterized by structural changes within the airway wall, including smooth muscle hypertrophy, submucosal fibrosis and epithelial shedding. Epithelial-to-mesenchymal transition (EMT) is a fundamental mechanism of organ fibrosis, which can be induced by TGF-β. In the in vitro study, we investigated whether 1-20 μM kaempferol inhibited lipopolysaccharide (LPS)-induced bronchial EMT in BEAS-2B cells. The in vivo study explored demoting effects of 10-20 mg/kg kaempferol on airway fibrosis in BALB/c mice sensitized with ovalbumin (OVA). LPS induced airway epithelial TGF-β1 signaling that promoted EMT with concurrent loss of E-cadherin and induction of α-smooth muscle actin (α-SMA). Nontoxic kaempferol significantly inhibited TGF-β-induced EMT process through reversing E-cadherin expression and retarding the induction of N-cadherin and α-SMA. Consistently, OVA inhalation resulted in a striking loss of epithelial morphology by displaying myofibroblast appearance, which led to bronchial fibrosis with submucosal accumulation of collagen fibers. Oral administration of kaempferol suppressed collagen deposition, epithelial excrescency and goblet hyperplasia observed in the lung of OVA-challenged mice. The specific inhibition of TGF-β entailed epithelial protease-activated receptor-1 (PAR-1) as with 20 μM kaempferol. The epithelial PAR-1 inhibition by SCH-79797 restored E-cadherin induction and deterred α-SMA induction, indicating that epithelial PAR-1 localization was responsible for resulting in airway EMT. These results demonstrate that dietary kaempferol alleviated fibrotic airway remodeling via bronchial EMT by modulating PAR1 activation. Therefore, kaempferol may be a potential therapeutic agent targeting asthmatic airway constriction.

  8. Morin Attenuates Ovalbumin-Induced Airway Inflammation by Modulating Oxidative Stress-Responsive MAPK Signaling

    Directory of Open Access Journals (Sweden)

    Yuan Ma

    2016-01-01

    Full Text Available Asthma is one of the most common inflammatory diseases characterized by airway hyperresponsiveness, inflammation, and remodeling. Morin, an active ingredient obtained from Moraceae plants, has been demonstrated to have promising anti-inflammatory activities in a range of disorders. However, its impacts on pulmonary diseases, particularly on asthma, have not been clarified. This study was designed to investigate whether morin alleviates airway inflammation in chronic asthma with an emphasis on oxidative stress modulation. In vivo, ovalbumin- (OVA- sensitized mice were administered with morin or dexamethasone before challenge. Bronchoalveolar lavage fluid (BALF and lung tissues were obtained to perform cell counts, histological analysis, and enzyme-linked immunosorbent assay. In vitro, human bronchial epithelial cells (BECs were challenged by tumor necrosis factor alpha (TNF-α. The supernatant was collected for the detection of the proinflammatory proteins, and the cells were collected for reactive oxygen species (ROS/mitogen-activated protein kinase (MAPK evaluations. Severe inflammatory responses and remodeling were observed in the airways of the OVA-sensitized mice. Treatment with morin dramatically attenuated the extensive trafficking of inflammatory cells into the BALF and inhibited their infiltration around the respiratory tracts and vessels. Morin administration also significantly suppressed goblet cell hyperplasia and collagen deposition/fibrosis and dose-dependently inhibited the OVA-induced increases in IgE, TNF-α, interleukin- (IL- 4, IL-13, matrix metalloproteinase-9, and malondialdehyde. In human BECs challenged by TNF-α, the levels of proteins such as eotaxin-1, monocyte chemoattractant protein-1, IL-8 and intercellular adhesion molecule-1, were consistently significantly decreased by morin. Western blotting and the 2′,7′-dichlorofluorescein assay revealed that the increases in intracellular ROS and MAPK phosphorylation were

  9. Is a high-fiber diet able to influence ovalbumin-induced allergic airway inflammation in a mouse model?

    Science.gov (United States)

    Zhang, Zhiyu; Shi, Lei; Pang, Wenhui; Wang, Xiaoting; Li, Jianfeng; Wang, Haibo; Shi, Guanggang

    2016-01-01

    More recently, a large amount of experimental and clinical discovered that dietary- fiber intake would decrease the susceptibility to allergic airway disease (AAD) and respiratory inflammation. To investigate whether a fiber-intake supplement is able to influence the induction of AAD and to elucidate the interactive relationship. AAD model mice and control mice were raised on a fundamental diet with standard 4% fiber content, whereas other mice were fed a 10% fiber-content diet in the high fiber-content group, along with a 25% fiber-content diet instead in very-high fiber-content group. All experimental mice were sensitized and challenged with ovalbumin to induce allergic inflammation in both the upper and lower airways. Hallmarks of AAD were examined in terms of eosinophil infiltration and goblet cell metaplasia in subepithelial mucosa, T-helper type 1 (Th1) to Th2 skewing of the immune response. Furthermore, to elucidate the interrelations, we generated 16S ribosomal DNA from fecal samples and further validated the variation of colony composition in each group. The excessive high-fiber supplement induced a promoting effect rather than a suppressive effect, including a rise in nasal rubbing and sneezing, an increase in eosinophil inflammation and goblet cell metaplasia in subepithelial mucosa, and promoted Th2 skewing of the immune response as well as the production of serum levels of ovalbumin-specific immunoglobulin E. Moreover, overconsumption of dietary fiber greatly altered the construction of bacterial flora in the intestinal tract, including an increased proportion of Firmicutes, Actinobacteria, and Proteobacteria, and a decreased proportion of Bacteroidetes. Our work indicated that, instead of a protecting impact, excessive fiber intake preformed a negative influence on the induction of AAD. Therefore, we suspected that an excessive supplement of dietary fiber might not be an advisable method for the prevention and treatment of AADs.

  10. Dianthus superbus fructus suppresses airway inflammation by downregulating of inducible nitric oxide synthase in an ovalbumin-induced murine model of asthma

    Science.gov (United States)

    2012-01-01

    Background Dianthus superbus has long been used as a herbal medicine in Asia and as an anti-inflammatory agent. In this study, we evaluated the anti-inflammatory effects of Dianthus superbus fructus ethanolic extract (DSE) on Th2-type cytokines, eosinophil infiltration, and other factors in an ovalbumin (OVA)-induced murine asthma model. To study the possible mechanism of the anti-inflammatory effect of DSE, we also evaluated the expression of inducible nitric oxide synthase (iNOS) in the respiratory tract. Methods Mice were sensitized on days 0 and 14 by intraperitoneal injection of OVA. On days 21, 22 and 23 after initial sensitization, mice received an airway challenge with OVA for 1 h using an ultrasonic nebulizer. DSE was applied 1 h prior to OVA challenge. Mice were administered DSE orally at doses of 100 mg/kg or 200 mg/kg once daily from day 18 to 23. Bronchoalveolar lavage fluid (BALF) was collected 48 h after the final OVA challenge. Levels of interleukin (IL)-4, IL-13 and eotaxin in BALF were measured using enzyme-linked immunosorbent assays (ELISAs). Lung tissue sections were stained with hematoxylin and eosin for assessment of cell infiltration and mucus production with periodic acid shift staining, in conjunction with ELISA and western blot analyses for iNOS expression. Results DSE significantly reduced the levels of IL-4, IL-13, eotaxin, and immunoglobulin (Ig) E, number of inflammatory cells in BALF, and inflammatory cell infiltration and mucus production in the respiratory tract. DSE also attenuated the overexpression of iNOS protein induced by OVA challenge. Conclusion Our results suggest that DSE effectively protects against allergic airway inflammation by downregulating of iNOS expression and that DSE has potential as a therapeutic agent for allergic asthma. PMID:23110404

  11. An extract of Crataegus pinnatifida fruit attenuates airway inflammation by modulation of matrix metalloproteinase-9 in ovalbumin induced asthma.

    Directory of Open Access Journals (Sweden)

    In Sik Shin

    Full Text Available BACKGROUND: Crataegus pinnatifida (Chinese hawthorn has long been used as a herbal medicine in Asia and Europe. It has been used for the treatment of various cardiovascular diseases such as myocardial weakness, tachycardia, hypertension and arteriosclerosis. In this study, we investigated the anti-inflammatory effects of Crataegus pinnatifida ethanolic extracts (CPEE on Th2-type cytokines, eosinophil infiltration, expression of matrix metalloproteinase (MMP-9, and other factors, using an ovalbumin (OVA-induced murine asthma model. METHODS/PRINCIPAL FINDING: Airways of OVA-sensitized mice exposed to OVA challenge developed eosinophilia, mucus hypersecretion and increased cytokine levels. CPEE was applied 1 h prior to OVA challenge. Mice were administered CPEE orally at doses of 100 and 200 mg/kg once daily on days 18-23. Bronchoalveolar lavage fluid (BALF was collected 48 h after the final OVA challenge. Levels of interleukin (IL-4 and IL-5 in BALF were measured using enzyme-linked immunosorbent (ELISA assays. Lung tissue sections 4 µm in thickness were stained with Mayer's hematoxylin and eosin for assessment of cell infiltration and mucus production with PAS staining, in conjunction with ELISA, and Western blot analyses for the expression of MMP-9, intercellular adhesion molecule (ICAM-1 and vascular cell adhesion molecule (VCAM-1 protein expression. CPEE significantly decreased the Th2 cytokines including IL-4 and IL-5 levels, reduced the number of inflammatory cells in BALF and airway hyperresponsiveness, suppressed the infiltration of eosinophil-rich inflammatory cells and mucus hypersecretion and reduced the expression of ICAM-1, VCAM-1 and MMP-9 and the activity of MMP-9 in lung tissue of OVA-challenged mice. CONCLUSIONS: These results showed that CPEE can protect against allergic airway inflammation and can act as an MMP-9 modulator to induce a reduction in ICAM-1 and VCAM-1 expression. In conclusion, we strongly suggest the feasibility

  12. Nitric Oxide Synthase Enzymes in the Airways of Mice Exposed to Ovalbumin: NOS2 Expression Is NOS3 Dependent

    Directory of Open Access Journals (Sweden)

    Jennifer M. Bratt

    2010-01-01

    Full Text Available Objectives and Design. The function of the airway nitric oxide synthase (NOS isoforms and the lung cell types responsible for its production are not fully understood. We hypothesized that NO homeostasis in the airway is important to control inflammation, which requires upregulation, of NOS2 protein expression by an NOS3-dependent mechanism. Materials or Subjects. Mice from a C57BL/6 wild-type, NOS1−/−, NOS2−/−, and NOS3−/− genotypes were used. All mice strains were systemically sensitized and exposed to filtered air or ovalbumin (OVA aerosol for two weeks to create a subchronic model of allergen-induced airway inflammation. Methods. We measured lung function, lung lavage inflammatory and airway epithelial goblet cell count, exhaled NO, nitrate and nitrite concentration, and airway NOS1, NOS2, and NOS3 protein content. Results. Deletion of NOS1 or NOS3 increases NOS2 protein present in the airway epithelium and smooth muscle of air-exposed animals. Exposure to allergen significantly reduced the expression of NOS2 protein in the airway epithelium and smooth muscle of the NOS3−/− strain only. This reduction in NOS2 expression was not due to the replacement of epithelial cells with goblet cells as remaining epithelial cells did not express NOS2. NOS1−/− animals had significantly reduced goblet cell metaplasia compared to C57Bl/6 wt, NOS2−/−, and NOS3−/− allergen-exposed mice. Conclusion. The airway epithelial and smooth muscle cells maintain a stable airway NO concentration under noninflammatory conditions. This “homeostatic” mechanism is unable to distinguish between NOS derived from the different constitutive NOS isoforms. NOS3 is essential for the expression of NOS2 under inflammatory conditions, while NOS1 expression contributes to allergen-induced goblet cell metaplasia.

  13. Nitric Oxide Synthase Enzymes in the Airways of Mice Exposed to Ovalbumin: NOS2 Expression Is NOS3 Dependent

    Science.gov (United States)

    Bratt, Jennifer M.; Williams, Keisha; Rabowsky, Michelle F.; Last, Michael S.; Franzi, Lisa M.; Last, Jerold A.; Kenyon, Nicholas J.

    2010-01-01

    Objectives and Design. The function of the airway nitric oxide synthase (NOS) isoforms and the lung cell types responsible for its production are not fully understood. We hypothesized that NO homeostasis in the airway is important to control inflammation, which requires upregulation, of NOS2 protein expression by an NOS3-dependent mechanism. Materials or Subjects. Mice from a C57BL/6 wild-type, NOS1−/−, NOS2−/−, and NOS3−/− genotypes were used. All mice strains were systemically sensitized and exposed to filtered air or ovalbumin (OVA) aerosol for two weeks to create a subchronic model of allergen-induced airway inflammation. Methods. We measured lung function, lung lavage inflammatory and airway epithelial goblet cell count, exhaled NO, nitrate and nitrite concentration, and airway NOS1, NOS2, and NOS3 protein content. Results. Deletion of NOS1 or NOS3 increases NOS2 protein present in the airway epithelium and smooth muscle of air-exposed animals. Exposure to allergen significantly reduced the expression of NOS2 protein in the airway epithelium and smooth muscle of the NOS3−/− strain only. This reduction in NOS2 expression was not due to the replacement of epithelial cells with goblet cells as remaining epithelial cells did not express NOS2. NOS1−/− animals had significantly reduced goblet cell metaplasia compared to C57Bl/6 wt, NOS2−/−, and NOS3−/− allergen-exposed mice. Conclusion. The airway epithelial and smooth muscle cells maintain a stable airway NO concentration under noninflammatory conditions. This “homeostatic” mechanism is unable to distinguish between NOS derived from the different constitutive NOS isoforms. NOS3 is essential for the expression of NOS2 under inflammatory conditions, while NOS1 expression contributes to allergen-induced goblet cell metaplasia. PMID:20953358

  14. Hesperetin-7,3'-O-dimethylether selectively inhibits phosphodiesterase 4 and effectively suppresses ovalbumin-induced airway hyperresponsiveness with a high therapeutic ratio

    Directory of Open Access Journals (Sweden)

    Yang You-Lan

    2011-11-01

    Full Text Available Abstract Background Hesperetin was reported to selectively inhibit phosphodiesterase 4 (PDE4. While hesperetin-7,3'-O-dimethylether (HDME is a synthetic liposoluble hesperetin. Therefore, we were interested in investigating its selectivity on PDE4 and binding ability on high-affinity rolipram-binding sites (HARBs in vitro, and its effects on ovalbumin-induced airway hyperresponsiveness in vivo, and clarifying its potential for treating asthma and chronic obstructive pulmonary disease (COPD. Methods PDE1~5 activities were measured using a two-step procedure. The binding of HDME on high-affinity rolipram-binding sites was determined by replacing 2 nM [3H]-rolipram. AHR was assessed using the FlexiVent system and barometric plethysmography. Inflammatory cells were counted using a hemocytometer. Cytokines were determined using mouse T helper (Th1/Th2 cytokine CBA kits, and total immunoglobulin (IgE or IgG2a levels were done using ELISA method. Xylazine (10 mg/kg/ketamine (70 mg/kg-induced anesthesia was performed. Results HDME revealed selective phosphodiesterase 4 (PDE4 inhibition with a therapeutic (PDE4H/PDE4L ratio of 35.5 in vitro. In vivo, HDME (3~30 μmol/kg, orally (p.o. dose-dependently and significantly attenuated the airway resistance (RL and increased lung dynamic compliance (Cdyn, and decreased enhanced pause (Penh values induced by methacholine in sensitized and challenged mice. It also significantly suppressed the increases in the numbers of total inflammatory cells, macrophages, lymphocytes, neutrophils, and eosinophils, and levels of cytokines, including interleukin (IL-2, IL-4, IL-5, interferon-γ, and tumor necrosis factor-α in bronchoalveolar lavage fluid (BALF of these mice. In addition, HDME (3~30 μmol/kg, p.o. dose-dependently and significantly suppressed total and ovalbumin-specific immunoglobulin (IgE levels in the BALF and serum, and enhanced IgG2a level in the serum of these mice. Conclusions HDME exerted anti

  15. Anti-inflammatory effects of Tat-Annexin protein on ovalbumin-induced airway inflammation in a mouse model of asthma

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sun Hwa; Kim, Dae Won; Kim, Hye Ri; Woo, Su Jung; Kim, So Mi; Jo, Hyo Sang [Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702 (Korea, Republic of); Jeon, Seong Gyu [Department of Life Science, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of); Cho, Sung-Woo [Department of Biochemistry and Molecular Biology, University of Ulsan, College of Medicine, Seoul 138-736 (Korea, Republic of); Park, Jong Hoon [Department of Biological Science, Sookmyung Women' s University, Seoul 140-742 (Korea, Republic of); Won, Moo Ho [Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 200-701 (Korea, Republic of); Park, Jinseu [Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702 (Korea, Republic of); Eum, Won Sik, E-mail: wseum@hallym.ac.kr [Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702 (Korea, Republic of); Choi, Soo Young, E-mail: sychoi@hallym.ac.kr [Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702 (Korea, Republic of)

    2012-01-20

    Highlights: Black-Right-Pointing-Pointer We construct a cell permeable Tat-ANX1 fusion protein. Black-Right-Pointing-Pointer We examined the protective effects of Tat-ANX1 protein on OVA-induced asthma in animal models. Black-Right-Pointing-Pointer Transduced Tat-ANX1 protein protects from the OVA-induced production of cytokines and eosinophils in BAL fluid. Black-Right-Pointing-Pointer Tat-ANX1 protein markedly reduced OVA-induced MAPK in lung tissues. Black-Right-Pointing-Pointer Tat-ANX1 protein could be useful as a therapeutic agent for lung disorders including asthma. -- Abstract: Chronic airway inflammation is a key feature of bronchial asthma. Annexin-1 (ANX1) is an anti-inflammatory protein that is an important modulator and plays a key role in inflammation. Although the precise action of ANX1 remains unclear, it has emerged as a potential drug target for inflammatory diseases such as asthma. To examine the protective effects of ANX1 protein on ovalbumin (OVA)-induced asthma in animal models, we used a cell-permeable Tat-ANX1 protein. Mice sensitized and challenged with OVA antigen had an increased amount of cytokines and eosinophils in their bronchoalveolar lavage (BAL) fluid. However, administration of Tat-ANX1 protein before OVA challenge significantly decreased the levels of cytokines (interleukin (IL)-4, IL-5, and IL-13) and BAL fluid in lung tissues. Furthermore, OVA significantly increased the activation of mitogen-activated protein kinase (MAPK) in lung tissues, whereas Tat-ANX1 protein markedly reduced phosphorylation of MAPKs such as extracellular signal-regulated protein kinase, p38, and stress-activated protein kinase/c-Jun N-terminal kinase. These results suggest that transduced Tat-ANX1 protein may be a potential protein therapeutic agent for the treatment of lung disorders including asthma.

  16. Protective Effects of Intratracheally-Administered Bee Venom Phospholipase A2 on Ovalbumin-Induced Allergic Asthma in Mice

    Directory of Open Access Journals (Sweden)

    Kyung-Hwa Jung

    2016-09-01

    Full Text Available Asthma is a common chronic disease characterized by bronchial inflammation, reversible airway obstruction, and airway hyperresponsiveness (AHR. Current therapeutic options for the management of asthma include inhaled corticosteroids and β2 agonists, which elicit harmful side effects. In the present study, we examined the capacity of phospholipase A2 (PLA2, one of the major components of bee venom (BV, to reduce airway inflammation and improve lung function in an experimental model of asthma. Allergic asthma was induced in female BALB/c mice by intraperitoneal administration of ovalbumin (OVA on days 0 and 14, followed by intratracheal challenge with 1% OVA six times between days 22 and 30. The infiltration of immune cells, such as Th2 cytokines in the lungs, and the lung histology, were assessed in the OVA-challenged mice in the presence and absence of an intratracheal administration of bvPLA2. We showed that the intratracheal administration of bvPLA2 markedly suppressed the OVA-induced allergic airway inflammation by reducing AHR, overall area of inflammation, and goblet cell hyperplasia. Furthermore, the suppression was associated with a significant decrease in the production of Th2 cytokines, such as IL-4, IL-5, and IL-13, and a reduction in the number of total cells, including eosinophils, macrophages, and neutrophils in the airway.

  17. Effects of Flavin7 on allergen induced hyperreactivity of airways

    Directory of Open Access Journals (Sweden)

    Franova S

    2009-12-01

    Full Text Available Abstract Some studies have suggested that the polyphenolic compounds might reduce the occurrence of asthma symptoms. The aim of our experiments was to evaluate the effects of 21 days of the flavonoid Flavin7 administration on experimentally induced airway inflammation in ovalbumin-sensitized guinea pigs. We assessed tracheal smooth muscle reactivity by an in vitro muscle-strip method; changes in airway resistance by an in vivo plethysmographic method; histological picture of tracheal tissue; and the levels of interleukin 4 (IL-4, and interleukin 5 (IL-5 in bronchoalveolar lavage fluid (BALF. Histological investigation of tracheal tissue and the concentrations of the inflammatory cytokines IL-4 and IL-5 in BALF were used as indices of airway inflammation. Administration of Flavin7 caused a significant decrease of specific airway resistance after histamine nebulization and a decline in tracheal smooth muscle contraction amplitude in response to bronchoconstricting mediators. Flavin7 minimized the degree of inflammation estimated on the basis of eosinophil calculation and IL-4 and IL-5 concentrations. In conclusion, administration of Flavin7 showed bronchodilating and anti-inflammatory effects on allergen-induced airway inflammation.

  18. Silibinin attenuates allergic airway inflammation in mice

    International Nuclear Information System (INIS)

    Choi, Yun Ho; Jin, Guang Yu; Guo, Hui Shu; Piao, Hong Mei; Li, Liang chang; Li, Guang Zhao; Lin, Zhen Hua; Yan, Guang Hai

    2012-01-01

    Highlights: ► Silibinin diminishes ovalbumin-induced inflammatory reactions in the mouse lung. ► Silibinin reduces the levels of various cytokines into the lung of allergic mice. ► Silibinin prevents the development of airway hyperresponsiveness in allergic mice. ► Silibinin suppresses NF-κB transcriptional activity. -- Abstract: Allergic asthma is a chronic inflammatory disease regulated by coordination of T-helper2 (Th2) type cytokines and inflammatory signal molecules. Silibinin is one of the main flavonoids produced by milk thistle, which is reported to inhibit the inflammatory response by suppressing the nuclear factor-kappa B (NF-κB) pathway. Because NF-κB activation plays a pivotal role in the pathogenesis of allergic inflammation, we have investigated the effect of silibinin on a mouse ovalbumin (OVA)-induced asthma model. Airway hyperresponsiveness, cytokines levels, and eosinophilic infiltration were analyzed in bronchoalveolar lavage fluid and lung tissue. Pretreatment of silibinin significantly inhibited airway inflammatory cell recruitment and peribronchiolar inflammation and reduced the production of various cytokines in bronchoalveolar fluid. In addition, silibinin prevented the development of airway hyperresponsiveness and attenuated the OVA challenge-induced NF-κB activation. These findings indicate that silibinin protects against OVA-induced airway inflammation, at least in part via downregulation of NF-κB activity. Our data support the utility of silibinin as a potential medicine for the treatment of asthma.

  19. Secretoglobin Superfamily Protein SCGB3A2 Deficiency Potentiates Ovalbumin-Induced Allergic Pulmonary Inflammation

    Directory of Open Access Journals (Sweden)

    Taketomo Kido

    2014-01-01

    Full Text Available Secretoglobin (SCGB 3A2, a cytokine-like secretory protein of small molecular weight, which may play a role in lung inflammation, is predominantly expressed in airway epithelial cells. In order to understand the physiological role of SCGB3A2, Scgb3a2−/− mice were generated and characterized. Scgb3a2−/− mice did not exhibit any overt phenotypes. In ovalbumin- (OVA- induced airway allergy inflammation model, Scgb3a2−/− mice in mixed background showed a decreased OVA-induced airway inflammation, while six times C57BL/6NCr backcrossed congenic Scgb3a2−/− mice showed a slight exacerbation of OVA-induced airway inflammation as compared to wild-type littermates. These results indicate that the loss of SCGB3A2 function was influenced by a modifier gene(s in mixed genetic background and suggest that SCGB3A2 has anti-inflammatory property. The results further suggest the possible use of recombinant human SCGB3A2 as an anti-inflammatory agent.

  20. Illicium verum Extract and Trans-Anethole Attenuate Ovalbumin-Induced Airway Inflammation via Enhancement of Foxp3+ Regulatory T Cells and Inhibition of Th2 Cytokines in Mice

    Directory of Open Access Journals (Sweden)

    Yoon-Young Sung

    2017-01-01

    Full Text Available Illicium verum is used in traditional medicine to treat inflammation. The study investigates the effects of IVE and its component, trans-anethole (AET, on airway inflammation in ovalbumin- (OVA- induced asthmatic mice. Asthma was induced in BALB/c mice by systemic sensitization to OVA, followed by intratracheal, intraperitoneal, and aerosol allergen challenges. IVE and AET were orally administered for four weeks. We investigated the effects of treatment on airway hyperresponsiveness, IgE production, pulmonary eosinophilic infiltration, immune cell phenotypes, Th2 cytokine production in bronchoalveolar lavage, Th1/Th2 cytokine production in splenocytes, forkhead box protein 3 (Foxp3 expression, and lung histology. IVE and AET ameliorated OVA-driven airway hyperresponsiveness (p<0.01, pulmonary eosinophilic infiltration (p<0.05, mucus hypersecretion (p<0.01, and IL-4, IL-5, IL-13, and CCR3 production (p<0.05, as well as IgE levels (p<0.01. IVE and AET increased Foxp3 expression in lungs (p<0.05. IVE and AET reduced IL-4 and increased IFN-γ production in the supernatant of splenocyte cultures (p<0.05. Histological studies showed that IVE and AET inhibited eosinophilia and lymphocyte infiltration in lungs (p<0.01. These results indicate that IVE and AET exert antiasthmatic effects through upregulation of Foxp3+ regulatory T cells and inhibition of Th2 cytokines, suggesting that IVE may be a potential therapeutic agent for allergic lung inflammation.

  1. Inhibition of NF-κB Expression and Allergen-induced Airway Inflammation in a Mouse Allergic Asthma Model by Andrographolide

    OpenAIRE

    Li, Jing; Luo, Li; Wang, Xiaoyun; Liao, Bin; Li, Guoping

    2009-01-01

    Andrographolide from traditional Chinese herbal medicines previously showed it possesses a strong anti-inflammatory activity. In present study, we investigated whether Andrographolide could inhibit allergen-induced airway inflammation and airways hyper-responsiveness and explored the mechanism of Andrographolide on allergen-induced airway inflammation and airways hyper-responsiveness. After sensitized and challenged by ovalbumin, the BALB/c mice were administered intraperitoneally with Androg...

  2. Ayanin, a non-selective phosphodiesterase 1-4 inhibitor, effectively suppresses ovalbumin-induced airway hyperresponsiveness without affecting xylazine/ketamine-induced anesthesia.

    Science.gov (United States)

    Lee, Fei-Peng; Shih, Chwen-Ming; Shen, Hsin-Yi; Chen, Chien-Ming; Chen, Chi-Ming; Ko, Wun-Chang

    2010-06-10

    In recent in vitro reports, the IC(50) value of ayanin (quercetin-3,7,4'-O-trimethylether) was 2.2microM for inhibiting interleukin (IL)-4 production from purified basophils, and its therapeutic ratio was >19. Therefore, we were interested in investigating the effects on ovalbumin induced airway hyperresponsiveness in vivo, and to clarify its potential for treating asthma. Ayanin (30-100micromol/kg, orally (p.o.)) dose-dependently and significantly attenuated the enhanced pause (P(enh)) value induced by methacholine in sensitized and challenged mice. It also significantly suppressed the increases in total inflammatory cells, macrophages, lymphocytes, neutrophils, and eosinophils, and levels of cytokines, including IL-2, IL-4, IL-5, and tumor necrosis factor (TNF)-alpha in bronchoalveolar lavage fluid of these mice. However, at 100micromol/kg, it significantly enhanced the level of interferon (IFN)-gamma. In addition, ayanin (30-100micromol/kg, p.o.) dose-dependently and significantly suppressed total and OVA-specific immunoglobulin (Ig)E levels in the serum and bronchoalveolar lavage fluid, and enhanced the IgG(2a) level in serum of these mice. In the present results, ayanin did not affect xylazine/ketamine-induced anesthesia, suggesting that ayanin has few or no adverse effects, such as nausea, vomiting, and gastric hypersecretion. In conclusion, the above results suggest that ayanin may have the potential for use in treating allergic asthma.

  3. Silibinin attenuates allergic airway inflammation in mice

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yun Ho [Department of Anatomy, Medical School, Institute for Medical Sciences, Chonbuk National University, Jeonju, Jeonbuk 561-756 (Korea, Republic of); Jin, Guang Yu [Department of Radiology, Yanbian University Hospital, YanJi 133002 (China); Guo, Hui Shu [Centralab, The First Affiliated Hospital of Dalian Medical University, Dalian 116011 (China); Piao, Hong Mei [Department of Respiratory Medicine, Yanbian University Hospital, YanJi 133000 (China); Li, Liang chang; Li, Guang Zhao [Department of Anatomy and Histology and Embryology, Yanbian University School of Basic Medical Sciences, 977 Gongyuan Road, YanJi 133002, Jilin (China); Lin, Zhen Hua [Department of Pathology, Yanbian University School of Basic Medical Sciences, YanJi 133000 (China); Yan, Guang Hai, E-mail: ghyan@ybu.edu.cn [Department of Anatomy and Histology and Embryology, Yanbian University School of Basic Medical Sciences, 977 Gongyuan Road, YanJi 133002, Jilin (China)

    2012-10-26

    Highlights: Black-Right-Pointing-Pointer Silibinin diminishes ovalbumin-induced inflammatory reactions in the mouse lung. Black-Right-Pointing-Pointer Silibinin reduces the levels of various cytokines into the lung of allergic mice. Black-Right-Pointing-Pointer Silibinin prevents the development of airway hyperresponsiveness in allergic mice. Black-Right-Pointing-Pointer Silibinin suppresses NF-{kappa}B transcriptional activity. -- Abstract: Allergic asthma is a chronic inflammatory disease regulated by coordination of T-helper2 (Th2) type cytokines and inflammatory signal molecules. Silibinin is one of the main flavonoids produced by milk thistle, which is reported to inhibit the inflammatory response by suppressing the nuclear factor-kappa B (NF-{kappa}B) pathway. Because NF-{kappa}B activation plays a pivotal role in the pathogenesis of allergic inflammation, we have investigated the effect of silibinin on a mouse ovalbumin (OVA)-induced asthma model. Airway hyperresponsiveness, cytokines levels, and eosinophilic infiltration were analyzed in bronchoalveolar lavage fluid and lung tissue. Pretreatment of silibinin significantly inhibited airway inflammatory cell recruitment and peribronchiolar inflammation and reduced the production of various cytokines in bronchoalveolar fluid. In addition, silibinin prevented the development of airway hyperresponsiveness and attenuated the OVA challenge-induced NF-{kappa}B activation. These findings indicate that silibinin protects against OVA-induced airway inflammation, at least in part via downregulation of NF-{kappa}B activity. Our data support the utility of silibinin as a potential medicine for the treatment of asthma.

  4. Kaempferol Inhibits Endoplasmic Reticulum Stress-Associated Mucus Hypersecretion in Airway Epithelial Cells And Ovalbumin-Sensitized Mice.

    Science.gov (United States)

    Park, Sin-Hye; Gong, Ju-Hyun; Choi, Yean-Jung; Kang, Min-Kyung; Kim, Yun-Ho; Kang, Young-Hee

    2015-01-01

    Mucus hypersecretion is an important pathological feature of chronic airway diseases, such as asthma and pulmonary diseases. MUC5AC is a major component of the mucus matrix forming family of mucins in the airways. The initiation of endoplasmic reticulum (ER)-mediated stress responses contributes to the pathogenesis of airway diseases. The present study investigated that ER stress was responsible for airway mucus production and this effect was blocked by the flavonoid kaempferol. Oral administration of ≥10 mg/kg kaempferol suppressed mucus secretion and goblet cell hyperplasia observed in the bronchial airway and lung of BALB/c mice sensitized with ovalbumin (OVA). TGF-β and tunicamycin promoted MUC5AC induction after 72 h in human bronchial airway epithelial BEAS-2B cells, which was dampened by 20 μM kaempferol. Kaempferol inhibited tunicamycin-induced ER stress of airway epithelial cells through disturbing the activation of the ER transmembrane sensor ATF6 and IRE1α. Additionally, this compound demoted the induction of ER chaperones such as GRP78 and HSP70 and the splicing of XBP-1 mRNA by tunicamycin. The in vivo study further revealed that kaempferol attenuated the induction of XBP-1 and IRE1α in epithelial tissues of OVA-challenged mice. TGF-β and tunicamycin induced TRAF2 with JNK activation and such induction was deterred by kaempferol. The inhibition of JNK activation encumbered the XBP-1 mRNA splicing and MUC5AC induction by tunicamycin and TGF-β. These results demonstrate that kaempferol alleviated asthmatic mucus hypersecretion through blocking bronchial epithelial ER stress via the inhibition of IRE1α-TRAF2-JNK activation. Therefore, kaempferol may be a potential therapeutic agent targeting mucus hypersecretion-associated pulmonary diseases.

  5. Differential effects of allergen challenge on large and small airway reactivity in mice.

    Directory of Open Access Journals (Sweden)

    Chantal Donovan

    Full Text Available The relative contributions of large and small airways to hyperresponsiveness in asthma have yet to be fully assessed. This study used a mouse model of chronic allergic airways disease to induce inflammation and remodelling and determine whether in vivo hyperresponsiveness to methacholine is consistent with in vitro reactivity of trachea and small airways. Balb/C mice were sensitised (days 0, 14 and challenged (3 times/week, 6 weeks with ovalbumin. Airway reactivity was compared with saline-challenged controls in vivo assessing whole lung resistance, and in vitro measuring the force of tracheal contraction and the magnitude/rate of small airway narrowing within lung slices. Increased airway inflammation, epithelial remodelling and fibrosis were evident following allergen challenge. In vivo hyperresponsiveness to methacholine was maintained in isolated trachea. In contrast, methacholine induced slower narrowing, with reduced potency in small airways compared to controls. In vitro incubation with IL-1/TNFα did not alter reactivity. The hyporesponsiveness to methacholine in small airways within lung slices following chronic ovalbumin challenge was unexpected, given hyperresponsiveness to the same agonist both in vivo and in vitro in tracheal preparations. This finding may reflect the altered interactions of small airways with surrounding parenchymal tissue after allergen challenge to oppose airway narrowing and closure.

  6. Olodaterol attenuates citric acid-induced cough in naïve and ovalbumin-sensitized and challenged guinea pigs.

    Directory of Open Access Journals (Sweden)

    Eva Wex

    Full Text Available Excessive coughing is a common feature of airway diseases. Different G-protein coupled receptors, including β2-adrenergic receptors (β2-AR, have been implicated in the molecular mechanisms underlying the cough reflex. However, the potential antitussive property of β2-AR agonists in patients with respiratory disease is a matter of ongoing debate. The aim of our study was to test the efficacy of the long-acting β2-AR agonist olodaterol with regard to its antitussive property in a pre-clinical model of citric acid-induced cough in guinea pigs and to compare the results to different clinically relevant β2-AR agonists. In our study β2-AR agonists were intratracheally administered, as dry powder, into the lungs of naïve or ovalbumin-sensitized guinea pigs 15 minutes prior to induction of cough by exposure to citric acid. Cough events were counted over 15 minutes during the citric acid exposure. Olodaterol dose-dependently inhibited the number of cough events in naïve and even more potently and with a greater maximal efficacy in ovalbumin-sensitized guinea pigs (p < 0.01. Formoterol and salmeterol showed a trend towards reducing cough. On the contrary, indacaterol demonstrated pro-tussive properties as it significantly increased the number of coughs, both in naïve and ovalbumin-sensitized animals (p < 0.001. In conclusion, olodaterol, at doses eliciting bronchodilation, showed antitussive properties in a model of citric acid-induced cough in naïve and ovalbumin-sensitized guinea pigs. This is in agreement with pre-clinical and clinical studies showing antitussive efficacy of β2-AR agonists. Indacaterol increased the number of coughs in this model, which concurs with clinical data where a transient cough has been observed after indacaterol inhalation. While the antitussive properties of β2-AR agonists can be explained by their ability to lead to the cAMP-induced hyperpolarization of the neuron membrane thereby inhibiting sensory nerve

  7. Asian sand dust enhances ovalbumin-induced eosinophil recruitment in the alveoli and airway of mice

    International Nuclear Information System (INIS)

    Hiyoshi, Kyoko; Ichinose, Takamichi; Sadakane, Kaori; Takano, Hirohisa; Nishikawa, Masataka; Mori, Ikuko; Yanagisawa, Rie; Yoshida, Seiichi; Kumagai, Yoshito; Tomura, Shigeo; Shibamoto, Takayuki

    2005-01-01

    Asian sand dust (ASD) containing sulfate (SO 4 2- ) reportedly causes adverse respiratory health effects but there is no experimental study showing the effect of ASD toward allergic respiratory diseases. The effects of ASD and ASD plus SO 4 2- toward allergic lung inflammation induced by ovalbumin (OVA) were investigated in this study. ICR mice were administered intratracheally with saline; ASD alone (sample from Shapotou desert); and ASD plus SO 4 2- (ASD-SO 4 ); OVA+ASD; OVA+ASD-SO 4 . ASD or ASD-SO 4 alone caused mild nutrophilic inflammation in the bronchi and alveoli. ASD and ASD-SO 4 increased pro-inflammatory mediators, such as Keratinocyte chemoattractant (KC) and macrophage inflammatory protein (MIP)-1 alpha, in bronchoalveolar lavage fluids (BALF). ASD and ASD-SO 4 enhanced eosinophil recruitment induced by OVA in the alveoli and in the submucosa of the airway, which has a goblet cell proliferation in the bronchial epithelium. However, a further increase of eosinophils by addition of SO 4 2- was not observed. The two sand dusts synergistically increased interleukin-5 (IL-5) and monocyte chemotactic protein-1 (MCP-1), which were associated with OVA, in BALF. However, the increased levels of IL-5 were lower in the OVA+ASD-SO 4 group than in the OVA+ASD group. ASD caused the adjuvant effects to specific-IgG1 production by OVA, but not to specific-IgE. These results suggest that the enhancement of eosinophil recruitment in the lung is mediated by synergistically increased IL-5 and MCP-1. IgG1 antibodies may play an important role in the enhancement of allergic reaction caused by OVA and sand dust. However, extra sulfate may not contribute to an increase of eosinophils

  8. Protective effect of Bifidobacterium infantis CGMCC313-2 on ovalbumin-induced airway asthma and β-lactoglobulin-induced intestinal food allergy mouse models

    Science.gov (United States)

    Liu, Meng-Yun; Yang, Zhen-Yu; Dai, Wen-Kui; Huang, Jian-Qiong; Li, Yin-Hu; Zhang, Juan; Qiu, Chuang-Zhao; Wei, Chun; Zhou, Qian; Sun, Xin; Feng, Xin; Li, Dong-Fang; Wang, He-Ping; Zheng, Yue-Jie

    2017-01-01

    AIM To determine whether oral administration of Bifidobacterium infantis CGMCC313-2 (B. infantis CGMCC313-2) inhibits allergen-induced airway inflammation and food allergies in a mouse model. METHODS Ovalbumin (OVA)-induced allergic asthma and β-lactoglobulin-induced food allergy mouse models were used in this study. Following oral administration of B. infantis CGMCC313-2 during or after allergen sensitization, histopathologic changes in the lung and intestine were evaluated by hematoxylin and eosin (HE) staining. In the allergic asthma mouse model, we evaluated the proportion of lung-infiltrating inflammatory cells. OVA-specific IgE and IgG1 levels in serum and cytokine levels in bronchoalveolar lavage fluid (BALF) were also assessed. In the food allergy mouse model, the levels of total IgE and cytokines in serum were measured. RESULTS Oral administration of B. infantis CGMCC313-2 during or after allergen sensitization suppressed allergic inflammation in lung and intestinal tissues, while the proportion of infiltrating inflammatory cells was significantly decreased in the BALF of allergic asthma mice. Moreover, B. infantis CGMCC313-2 decreased the serum levels of total IgE in food allergy mice, and reductions in IgE and IgG1 were also observed in OVA-induced allergic asthma mice. The expression of interleukin-4 (IL-4) and IL-13 in both serum and BALF was suppressed following the administration of B. infantis CGMCC313-2, while an effect on serum IL-10 levels was not observed. CONCLUSION B. infantis CGMCC313-2 inhibits the secretion of allergen-induced IgE, IL-4 and IL-13, and attenuates allergic inflammation. PMID:28405142

  9. Hesperetin-5,7,3'-O-triacetate suppresses airway hyperresponsiveness in ovalbumin-sensitized and challenged mice without reversing xylazine/ketamine-induced anesthesia in normal mice.

    Science.gov (United States)

    Yang, You-Lan; Chen, Chi-Li; Chen, Chi-Ming; Ko, Wun-Chang

    2017-05-30

    We recently reported that hesperetin-5,7,3'-O-triacetate (HTA) dually inhibited phosphodiesterase (PDE)3/4 with a therapeutic ratio of 20.8. The application and development of PDE4 inhibitors for treating asthma or COPD are limited by their side effects, such as nausea, vomiting and gastric hypersecretion. PDE4 inhibitors were reported to reverse xylazine/ketamine-induced anesthesia in rats and triggered vomiting in ferrets. Thus the reversing effect of HTA on xylazine/ketamine-induced anesthesia in mice was studied to assess emetic effect of HTA. The aim of this study was to prove the therapeutic effect of HTA without vomiting effect at an effective dose for treating COPD. Ten female BALB/c mice in each group were sensitized by ovalbumin (OVA) on days 0 and 14. On day 21, these mice were emphasized the sensitization by Freund's complete adjuvant. Mice were challenged by 1% OVA nebulization on days 28, 29, and 30. Airway hyperresponsiveness (AHR) was assessed on day 32 in each group, using the FlexiVent system to determine airway resistance (R L ) and lung dynamic compliance (C dyn ) in anesthetized ovalbumin (OVA)-sensitized and challenged mice. Each group was orally administered HTA (10 ~ 100 μmol/kg), roflumilast (1 and 5 mg/kg) or vehicles (controls) 2 h before and 6 and 24 h after OVA provocation. For comparison, sham-treated mice were challenged with saline instead of 1% OVA. The ability to reverse xylazine/ketamine-induced anesthesia by HTA or roflumilast for 3 h was determined in normal mice. We used roflumilast, a selective PDE4 inhibitor and bronchodilator for severe COPD approved by the US Food and Drug Administration, as a reference drug. In the results, HTA (100 μmol/kg, p.o.) or roflumilast (5 mg/kg, p.o.) significantly suppressed all R L values of MCh at 0.78 ~ 25 mg/mL and enhanced C dyn values of MCh at 3.125 ~ 25 mg/mL compared to OVA-sensitized and -challenged control mice. Orally administered 1, 3 or 10 mg/kg roflumilast

  10. The Ethanol Extract of Osmanthus fragrans Flowers Reduces Oxidative Stress and Allergic Airway Inflammation in an Animal Model

    Directory of Open Access Journals (Sweden)

    Chien-Ya Hung

    2013-01-01

    Full Text Available The Osmanthus fragrans flower, a popular herb in Eastern countries, contains several antioxidant compounds. Ben Cao Gang Mu, traditional Chinese medical literature, describes the usefulness of these flowers for phlegm and stasis reduction, arrest of dysentery with blood in the bowel, and stomachache and diarrhea treatment. However, modern evidence regarding the therapeutic efficacy of these flowers is limited. This study was aimed at assessing the antioxidative effects of the ethanol extract of O. fragrans flowers (OFE in vivo and evaluating its antioxidant maintenance and therapeutic effect on an allergic airway inflammation in mice. After OFE’s oral administration to mice, the values obtained in the oxygen radical absorbance capacity assay as well as the glutathione concentration in the lungs and spleens of mice increased while thiobarbituric acid reactive substances decreased significantly, indicating OFE’s significant in vivo antioxidant activity. OFE was also therapeutically efficacious in a mouse model of ovalbumin-induced allergic airway inflammation. Orally administered OFE suppressed ovalbumin-specific IgE production and inflammatory cell infiltration in the lung. Moreover, the antioxidative state of the mice improved. Thus, our findings confirm the ability of the O. fragrans flowers to reduce phlegm and suggest that OFE may be useful as an antiallergic agent.

  11. Ovalbumin-coated pH-sensitive microneedle arrays effectively induce ovalbumin-specific antibody and T-cell responses in mice.

    Science.gov (United States)

    van der Maaden, Koen; Varypataki, Eleni Maria; Romeijn, Stefan; Ossendorp, Ferry; Jiskoot, Wim; Bouwstra, Joke

    2014-10-01

    The aim of this work was to study the applicability of antigen-coated pH-sensitive microneedle arrays for effective vaccination strategies. Therefore, a model antigen (ovalbumin) was coated onto pH-sensitive (pyridine-modified) microneedle arrays to test pH-triggered antigen release by applying the coated arrays onto ex vivo human skin, and by conducting a dermal immunization study in mice. The release of antigen into ex vivo human skin from the coated microneedles was determined by using radioactively labeled ovalbumin. To investigate the induction of antigen-specific IgG, and CD4(+) and CD8(+) T-cell responses, BALB/c mice were immunized with antigen-coated pH-sensitive microneedles by the 'coat and poke' approach. These responses were compared to responses induced by the 'poke and patch' approach, and subcutaneous and intradermal vaccination with classic hypodermic needles. The pH-sensitive microneedle arrays were efficiently coated with ovalbumin (95% coating efficiency) and upon application of six microneedle arrays 4.27 of 7 μg ovalbumin was delivered into the skin, showing a release efficiency of 70%. In contrast, the 'poke and patch' approach led to a delivery of only 6.91 of 100 μg ovalbumin (7% delivery efficiency). Immunization by means of ovalbumin-coated microneedles resulted in robust CD4(+) and CD8(+) T-cell responses comparable to those obtained after subcutaneous or intradermal immunization with conventional needles. Moreover, it effectively induced IgG responses; however, it required prime-boost immunizations before antibodies were produced. In conclusion, antigen delivery into ex vivo human skin by antigen-coated pH-sensitive microneedle arrays is more efficient than the 'poke-and-patch' approach and in vivo vaccination studies show the applicability of pH-sensitive microneedles for the induction of both T cell and B cell responses. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Obesity promotes prolonged ovalbumin-induced airway inflammation modulating T helper type 1 (Th1), Th2 and Th17 immune responses in BALB/c mice.

    Science.gov (United States)

    Silva, F M C; Oliveira, E E; Gouveia, A C C; Brugiolo, A S S; Alves, C C; Correa, J O A; Gameiro, J; Mattes, J; Teixeira, H C; Ferreira, A P

    2017-07-01

    Clinical and epidemiological studies indicate that obesity affects the development and phenotype of asthma by inducing inflammatory mechanisms in addition to eosinophilic inflammation. The aim of this study was to assess the effect of obesity on allergic airway inflammation and T helper type 2 (Th2) immune responses using an experimental model of asthma in BALB/c mice. Mice fed a high-fat diet (HFD) for 10 weeks were sensitized and challenged with ovalbumin (OVA), and analyses were performed at 24 and 48 h after the last OVA challenge. Obesity induced an increase of inducible nitric oxide synthase (iNOS)-expressing macrophages and neutrophils which peaked at 48 h after the last OVA challenge, and was associated with higher levels of interleukin (IL)-4, IL-9, IL-17A, leptin and interferon (IFN)-γ in the lungs. Higher goblet cell hyperplasia was associated with elevated mast cell influx into the lungs and trachea in the obese allergic mice. In contrast, early eosinophil influx and lower levels of IL-25, thymic stromal lymphopoietin (TSLP), CCL11 and OVA-specific immunoglobulin (IgE) were observed in the obese allergic mice in comparison to non-obese allergic mice. Moreover, obese mice showed higher numbers of mast cells regardless of OVA challenge. These results indicate that obesity affects allergic airway inflammation through mechanisms involving mast cell influx and the release of TSLP and IL-25, which favoured a delayed immune response with an exacerbated Th1, Th2 and Th17 profile. In this scenario, an intense mixed inflammatory granulocyte influx, classically activated macrophage accumulation and intense mucus production may contribute to a refractory therapeutic response and exacerbate asthma severity. © 2017 British Society for Immunology.

  13. Invariant NKT cells are required for airway inflammation induced by environmental antigens

    OpenAIRE

    Wingender, Gerhard; Rogers, Paul; Batzer, Glenda; Lee, Myung Steve; Bai, Dong; Pei, Bo; Khurana, Archana; Kronenberg, Mitchell; Horner, Anthony A.

    2011-01-01

    Invariant NKT cells (iNKT cells) are a unique subset of T lymphocytes that rapidly carry out effector functions. In this study, we report that a majority of sterile house dust extracts (HDEs) tested contained antigens capable of activating mouse and human iNKT cells. HDEs had adjuvant-like properties in an ovalbumin (OVA)-induced asthma model, which were dependent on V?14i NKT cells, as vaccinated animals deficient for iNKT cells displayed significantly attenuated immune responses and airway ...

  14. Preventive Intra Oral Treatment of Sea Cucumber Ameliorate OVA-Induced Allergic Airway Inflammation.

    Science.gov (United States)

    Lee, Da-In; Park, Mi-Kyung; Kang, Shin Ae; Choi, Jun-Ho; Kang, Seok-Jung; Lee, Jeong-Yeol; Yu, Hak Sun

    2016-01-01

    Sea cucumber extracts have potent biological effects, including anti-viral, anti-cancer, antibacterial, anti-oxidant, and anti-inflammation effects. To understand their anti-asthma effects, we induced allergic airway inflammation in mice after 7 oral administrations of the extract. The hyper-responsiveness value in mice with ovalbumin (OVA)-alum-induced asthma after oral injection of sea cucumber extracts was significantly lower than that in the OVA-alum-induced asthma group. In addition, the number of eosinophils in the lungs of asthma-induced mice pre-treated with sea cucumber extract was significantly decreased compared to that of PBS pre-treated mice. Additionally, CD4[Formula: see text]CD25[Formula: see text]Foxp3[Formula: see text]T (regulatory T; Treg) cells significantly increased in mesenteric lymph nodes after 7 administrations of the extract. These results suggest that sea cucumber extract can ameliorate allergic airway inflammation via Treg cell activation and recruitment to the lung.

  15. Olodaterol Attenuates Citric Acid-Induced Cough in Naïve and Ovalbumin-Sensitized and Challenged Guinea Pigs

    Science.gov (United States)

    Wex, Eva; Bouyssou, Thierry

    2015-01-01

    Excessive coughing is a common feature of airway diseases. Different G-protein coupled receptors, including β2-adrenergic receptors (β2-AR), have been implicated in the molecular mechanisms underlying the cough reflex. However, the potential antitussive property of β2-AR agonists in patients with respiratory disease is a matter of ongoing debate. The aim of our study was to test the efficacy of the long-acting β2-AR agonist olodaterol with regard to its antitussive property in a pre-clinical model of citric acid-induced cough in guinea pigs and to compare the results to different clinically relevant β2-AR agonists. In our study β2-AR agonists were intratracheally administered, as dry powder, into the lungs of naïve or ovalbumin-sensitized guinea pigs 15 minutes prior to induction of cough by exposure to citric acid. Cough events were counted over 15 minutes during the citric acid exposure. Olodaterol dose-dependently inhibited the number of cough events in naïve and even more potently and with a greater maximal efficacy in ovalbumin-sensitized guinea pigs (p citric acid-induced cough in naïve and ovalbumin-sensitized guinea pigs. This is in agreement with pre-clinical and clinical studies showing antitussive efficacy of β2-AR agonists. Indacaterol increased the number of coughs in this model, which concurs with clinical data where a transient cough has been observed after indacaterol inhalation. While the antitussive properties of β2-AR agonists can be explained by their ability to lead to the cAMP-induced hyperpolarization of the neuron membrane thereby inhibiting sensory nerve activation and the cough reflex, the mechanism underlying the pro-tussive property of indacaterol is not known. PMID:25781609

  16. Discovery of a novel orally active PDE-4 inhibitor effective in an ovalbumin-induced asthma murine model.

    Science.gov (United States)

    Kwak, Hyun Jeong; Nam, Ji Yeon; Song, Jin Sook; No, Zaesung; Yang, Sung Don; Cheon, Hyae Gyeong

    2012-06-15

    Phosphodiesterase-4 (PDE-4) is responsible for metabolizing adenosine 3',5'-cyclic monophosphate that reduces the activation of a wide range of inflammatory cells including eosinophils. PDE-4 inhibitors are under development for the treatment of respiratory diseases such as asthma and chronic obstructive pulmonary disease. Herein, we report a novel PDE-4 inhibitor, PDE-423 (3-[1-(3-cyclopropylmethoxy-4-difluoromethoxybenzyl)-1H-pyrazol-3-yl]-benzoic acid), which shows good in vitro and in vivo oral activities. PDE-423 exhibited in vitro IC(50)s of 140 nM and 550 nM in enzyme assay and cell-based assay, respectively. In vivo study using ovalbumin-induced asthmatic mice revealed that PDE-423 reduced methacholine-stimulated airway hyperreactivity in a dose-dependent manner by once daily oral administration (ED(50)=18.3 mg/kg), in parallel with decreased eosinophil peroxidase activity and improved lung histology. In addition, PDE-423 was effective in diminishing lipopolysaccharide-induced neutrophilia in vivo as well as in vitro. Oral administration of PDE-423 (100 mg/kg) had no effect on the duration of xylazine/ketamine-induced anesthesia and did not induce vomiting incidence in ferrets up to the dose of 1000 mg/kg. The present study indicates that a novel PDE-4 inhibitor, PDE-423, has good pharmacological profiles implicating this as a potential candidate for the development of a new anti-asthmatic drug. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Trefoil factor-2 reverses airway remodeling changes in allergic airways disease.

    Science.gov (United States)

    Royce, Simon G; Lim, Clarice; Muljadi, Ruth C; Samuel, Chrishan S; Ververis, Katherine; Karagiannis, Tom C; Giraud, Andrew S; Tang, Mimi L K

    2013-01-01

    Trefoil factor 2 (TFF2) is a small peptide with an important role in mucosal repair. TFF2 is up-regulated in asthma, suggesting a role in asthma pathogenesis. Given its known biological role in promoting epithelial repair, TFF2 might be expected to exert a protective function in limiting the progression of airway remodeling in asthma. The contribution of TFF2 to airway remodeling in asthma was investigated by examining the expression of TFF2 in the airway and lung, and evaluating the effects of recombinant TFF2 treatment on established airway remodeling in a murine model of chronic allergic airways disease (AAD). BALB/c mice were sensitized and challenged with ovalbumin (OVA) or saline for 9 weeks, whereas mice with established OVA-induced AAD were treated with TFF2 or vehicle control (intranasally for 14 d). Effects on airway remodeling, airway inflammation, and airway hyperresponsiveness were then assessed, whereas TFF2 expression was determined by immunohistochemistry. TFF2 expression was significantly increased in the airways of mice with AAD, compared with expression levels in control mice. TFF2 treatment resulted in reduced epithelial thickening, subepithelial collagen deposition, goblet-cell metaplasia, bronchial epithelium apoptosis, and airway hyperresponsiveness (all P < 0.05, versus vehicle control), but TFF2 treatment did not influence airway inflammation. The increased expression of endogenous TFF2 in response to chronic allergic inflammation is insufficient to prevent the progression of airway inflammation and remodeling in a murine model of chronic AAD. However, exogenous TFF2 treatment is effective in reversing aspects of established airway remodeling. TFF2 has potential as a novel treatment for airway remodeling in asthma.

  18. The effect of ovalbumin on orthodontic induced root resorption

    Directory of Open Access Journals (Sweden)

    Hosseinagha Aghili

    2013-01-01

    Full Text Available Background: This randomized trial was undertaken to investigate the effect of experimentally induced allergy on orthodontic induced root resorption. Materials and Methods: A total of 30 Wistar rats were divided randomly into test and control groups. Starting from the first 3 days, the rats in the test group were injected intra-peritoneally by 2 mg ovalbumin as allergen and 0.5 mg Alume as adjuvant. Afterward only allergen was injected once a week. The control group was injected by normal saline. After 21 days, Wistar immunoglobulin E was measured and peripheral matured eosinophil was counted. A total of 50 g nickel-titanium closed coil spring was ligated between right incisor and first molar. All animals were sacrificed after 14 days. The mesial root of the right and left first molar was dissected in a horizontal plane. The specimens were divided into four groups considering whether force and/or ovalbumin was applied or not. Root resorption was measured and compared among these groups. Repeated measures analysis of variance (ANOVA, and Bonferoni tests were used to analyze the data. The level of significance was determined at 0.05. Results: In general, the differences were insignificant (P > 0.05. As the only exception, the group in which both ovalbumin and force were applied had significantly more root resorption than the group in which neither force nor ovalbumin was applied (P < 0.001. Conclusion: Allergy may increase the susceptibility to root resorption. Application of light force, periodical monitoring of root resorption and control of allergy are advisable.

  19. Gelam honey attenuates ovalbumin-induced airway inflammation in a mice model of allergic asthma

    Directory of Open Access Journals (Sweden)

    Nur Salme Suhana Shamshuddin

    2018-01-01

    Full Text Available Allergic asthma is a chronic inflammatory disorder of the pulmonary airways. Gelam honey has been proven to possess anti-inflammatory property with great potential to treat an inflammatory condition. However, the effect of ingestion of Gelam honey on allergic asthma has never been studied. This study aimed to investigate the efficacy of Gelam honey on the histopathological changes in the lungs of a mice model of allergic asthma. Forty-two Balb/c mice were divided into seven groups: control, I, II, III, IV, V and VI group. All groups except the control were sensitized and challenged with ovalbumin. Mice in groups I, II, III, IV, and V were given honey at a dose of 10% (v/v, 40% (v/v and 80% (v/v, dexamethasone 3 mg/kg, and phosphate buffered saline (vehicle respectively, orally once a day for 5 days of the challenged period. Mice were sacrificed 24 h after the last OVA challenged and the lungs were evaluated for histopathological changes by light microscopy. All histopathological parameters such as epithelium thickness, the number of mast cell and mucus expression in Group III significantly improved when compared to Group VI except for subepithelial smooth muscle thickness (p < 0.05. In comparing Group III and IV, all the improvements in histopathological parameters were similar. Also, Gelam honey showed a significant (p < 0.05 reduction in inflammatory cell infiltration and beta-hexosaminidase level in bronchoalveolar lavage fluid. In conclusion, we demonstrated that administration of high concentration of Gelam honey alleviates the histopathological changes of mice model of allergic asthma.

  20. Does Inhalation of Virgin Coconut Oil Accelerate Reversal of Airway Remodelling in an Allergic Model of Asthma?

    Science.gov (United States)

    Sulaiman, S. A.

    2017-01-01

    Many studies have been done to evaluate the effect of various natural products in controlling asthma symptoms. Virgin coconut oil (VCO) is known to contain active compounds that have beneficial effects on human health and diseases. The objective of this study was to evaluate the effect of VCO inhalation on airway remodelling in a rabbit model of allergic asthma. The effects of VCO inhalation on infiltration of airway inflammatory cells, airway structures, goblet cell hyperplasia, and cell proliferation following ovalbumin induction were evaluated. Allergic asthma was induced by a combination of ovalbumin and alum injection and/or followed by ovalbumin inhalation. The effect of VCO inhalation was then evaluated via the rescue or the preventive route. Percentage of inflammatory cells infiltration, thickness of epithelium and mucosa regions, and the numbers of goblet and proliferative cells were reduced in the rescue group but not in preventive group. Analysis using a gas chromatography-mass spectrometry found that lauric acid and capric acid were among the most abundant fatty acids present in the sample. Significant improvement was observed in rescue route in alleviating the asthma symptoms, which indicates the VCO was able to relieve asthma-related symptoms more than preventing the onset of asthma. PMID:28660089

  1. Does Inhalation of Virgin Coconut Oil Accelerate Reversal of Airway Remodelling in an Allergic Model of Asthma?

    Directory of Open Access Journals (Sweden)

    N. A. Kamalaldin

    2017-01-01

    Full Text Available Many studies have been done to evaluate the effect of various natural products in controlling asthma symptoms. Virgin coconut oil (VCO is known to contain active compounds that have beneficial effects on human health and diseases. The objective of this study was to evaluate the effect of VCO inhalation on airway remodelling in a rabbit model of allergic asthma. The effects of VCO inhalation on infiltration of airway inflammatory cells, airway structures, goblet cell hyperplasia, and cell proliferation following ovalbumin induction were evaluated. Allergic asthma was induced by a combination of ovalbumin and alum injection and/or followed by ovalbumin inhalation. The effect of VCO inhalation was then evaluated via the rescue or the preventive route. Percentage of inflammatory cells infiltration, thickness of epithelium and mucosa regions, and the numbers of goblet and proliferative cells were reduced in the rescue group but not in preventive group. Analysis using a gas chromatography-mass spectrometry found that lauric acid and capric acid were among the most abundant fatty acids present in the sample. Significant improvement was observed in rescue route in alleviating the asthma symptoms, which indicates the VCO was able to relieve asthma-related symptoms more than preventing the onset of asthma.

  2. A geranyl acetophenone targeting cysteinyl leukotriene synthesis prevents allergic airway inflammation in ovalbumin-sensitized mice

    International Nuclear Information System (INIS)

    Ismail, Norazren; Jambari, Nuzul Nurahya; Zareen, Seema; Akhtar, Mohamad Nadeem; Shaari, Khozirah; Zamri-Saad, Mohamad; Tham, Chau Ling; Sulaiman, Mohd Roslan; Lajis, Nordin Hj; Israf, Daud Ahmad

    2012-01-01

    Asthma is associated with increased pulmonary inflammation and airway hyperresponsiveness. The current use of corticosteroids in the management of asthma has recently raised issues regarding safety and lack of responsiveness in 5–10% of asthmatic individuals. The aim of the present study was to investigate the therapeutic effect of a non-steroidal small molecule that has cysteinyl leukotriene (cysLT) inhibitory activity, upon attenuation of allergic lung inflammation in an acute murine model. Mice were sensitized with ovalbumin (OVA) and treated with several intraperitoneal doses (100, 20, 2 and 0.2 mg/kg) of 2,4,6,-trihydroxy-3-geranylacetophenone (tHGA). Bronchoalveolar lavage was performed, blood and lung samples were obtained and respiratory function was measured. OVA sensitization increased pulmonary inflammation and pulmonary allergic inflammation was significantly reduced at doses of 100, 20 and 2 mg/kg with no effect at the lowest dose of 0.2 mg/kg. The beneficial effects in the lung were associated with reduced eosinophilic infiltration and reduced secretion of Th2 cytokines and cysLTs. Peripheral blood reduction of total IgE was also a prominent feature. Treatment with tHGA significantly attenuated altered airway hyperresponsiveness as measured by the enhanced pause (Penh) response to incremental doses of methacholine. These data demonstrate that tHGA, a synthetic non-steroidal small molecule, can prevent acute allergic inflammation. This proof of concept opens further avenues of research and development of tHGA as an additional option to the current armamentarium of anti-asthma therapeutics. -- Highlights: ► Safer and effective anti-asthmatic drugs are in great demand. ► tHGA is a new 5-LO/cysLT inhibitor that inhibits allergic asthma in mice. ► tHGA is a natural compound that can be synthesized. ► Doses as low as 2 mg/kg alleviate lung pathology in experimental asthma. ► tHGA is a potential drug lead for the treatment of allergic asthma.

  3. Lipoxin A4 stable analogs reduce allergic airway responses via mechanisms distinct from CysLT1 receptor antagonism.

    Science.gov (United States)

    Levy, Bruce D; Lukacs, Nicholas W; Berlin, Aaron A; Schmidt, Birgitta; Guilford, William J; Serhan, Charles N; Parkinson, John F

    2007-12-01

    Cellular recruitment during inflammatory/immune responses is tightly regulated. The ability to dampen inflammation is imperative for prevention of chronic immune responses, as in asthma. Here we investigated the ability of lipoxin A4 (LXA4) stable analogs to regulate airway responses in two allergen-driven models of inflammation. A 15-epi-LXA4 analog (ATLa) and a 3-oxa-15-epi-LXA4 analog (ZK-994) prevented excessive eosinophil and T lymphocyte accumulation and activation after mice were sensitized and aerosol-challenged with ovalbumin. At 50% and to a greater extent than equivalent doses of the CysLT1 receptor antagonist montelukast. Distinct from montelukast, ATLa treatment led to marked reductions in cysteinyl leukotrienes, interleukin-4 (IL-4), and IL-10, and both ATLa and ZK-994 inhibited levels of IL-13. In cockroach allergen-induced airway responses, both intraperitoneal and oral administration of ZK-994 significantly reduced parameters of airway inflammation and hyper-responsiveness in a dose-dependent manner. ZK-994 also significantly changed the balance of Th1/Th2-specific cytokine levels. Thus, the ATLa/LXA4 analog actions are distinct from CysLT1 antagonism and potently block both allergic airway inflammation and hyper-reactivity. Moreover, these results demonstrate these analogs' therapeutic potential as new agonists for the resolution of inflammation.

  4. Therapeutic potential of anti-IL-1β IgY in guinea pigs with allergic asthma induced by ovalbumin.

    Science.gov (United States)

    Wei-xu, Hu; Qin, Xiang; Zhu, Wen; Yuan-yi, Chen; Li-feng, Zeng; Zhi-yong, Liu; Dan, He; Xiao-mu, Wu; Guo-zhu, Hu

    2014-03-01

    Interleukin-1 beta (IL-1β) plays pivotal roles in the progression of allergic airway inflammation. This study aims to determine whether the blockade of IL-1β can inhibit airway inflammation in guinea pigs with allergic asthma induced by the inhalation of aerosolized ovalbumin (OVA). Healthy guinea pigs treated with saline were used as normal controls (group C). The guinea pigs with allergic asthma induced by the inhalation of aerosolized OVA were randomly divided into three groups: (1) the M group containing negative control animals treated with saline; (2) the Z1 group containing animals treated by the inhalation of atomized 0.1% anti-IL-1β immunoglobulin yolk (IgY); and (3) the Z2 group containing positive control animals that were treated with budesonide. The inflammatory cells in the peripheral blood (PB) and bronchoalveolar lavage fluid (BALF) were evaluated using methylene blue and eosin staining. Cytokine concentrations were measured using an enzyme-linked immunosorbent assay. Pulmonary sections were examined using hematoxylin-eosin staining. Allergic inflammation and damage to the pulmonary tissues were decreased in the Z1 group compared to the M group. Eosinophils and neutrophils in the PB and BALF were significantly decreased in the Z1 group compared to the M group (Pguinea pigs with allergic asthma. The inhibitory activity may be due to the decrease in the numbers of eosinophils and neutrophils and the reduced levels of inflammatory cytokines and IgE in the PB and BALF. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. The effect of ovalbumin on orthodontic induced root resorption.

    Science.gov (United States)

    Aghili, Hosseinagha; Ardekani, Mohammad Danesh; Meybodi, Seyed Amir Reza Fatahi; Toodehzaeim, Mohammad Hossein; Modaresi, Jalil; Mansouri, Reza; Momeni, Ehsan

    2013-09-01

    This randomized trial was undertaken to investigate the effect of experimentally induced allergy on orthodontic induced root resorption. A total of 30 Wistar rats were divided randomly into test and control groups. Starting from the first 3 days, the rats in the test group were injected intra-peritoneally by 2 mg ovalbumin as allergen and 0.5 mg Alume as adjuvant. Afterward only allergen was injected once a week. The control group was injected by normal saline. After 21 days, Wistar immunoglobulin E was measured and peripheral matured eosinophil was counted. A total of 50 g nickel-titanium closed coil spring was ligated between right incisor and first molar. All animals were sacrificed after 14 days. The mesial root of the right and left first molar was dissected in a horizontal plane. The specimens were divided into four groups considering whether force and/or ovalbumin was applied or not. Root resorption was measured and compared among these groups. Repeated measures analysis of variance (ANOVA), and Bonferoni tests were used to analyze the data. The level of significance was determined at 0.05. In general, the differences were insignificant (P root resorption than the group in which neither force nor ovalbumin was applied (P > 0.001). Allergy may increase the susceptibility to root resorption. Application of light force, periodical monitoring of root resorption and control of allergy are advisable.

  6. The plant extract Isatis tinctoria L. extract (ITE) inhibits allergen-induced airway inflammation and hyperreactivity in mice.

    Science.gov (United States)

    Brattström, A; Schapowal, A; Kamal, M A; Maillet, I; Ryffel, B; Moser, R

    2010-07-01

    The herbal Isatis tinctoria extract (ITE) inhibits the inducible isoform of cyclooxygenase (COX-2) as well as lipoxygenase (5-LOX) and therefore possesses anti-inflammatory properties. The extract might also be useful in allergic airway diseases which are characterized by chronic inflammation. ITE obtained from leaves by supercritical carbon dioxide extraction was investigated in ovalbumin (OVA) immunised BALB/c mice given intranasally together with antigen challenge in the murine model of allergic airway disease (asthma) with the analysis of the inflammatory and immune parameters in the lung. ITE given with the antigen challenge inhibited in a dose related manner the allergic response. ITE diminished airway hyperresponsiveness (AHR) and eosinophil recruitment into the bronchoalveolar lavage (BAL) fluid upon allergen challenge, but had no effect in the saline control mice. Eosinophil recruitment was further assessed in the lung by eosinophil peroxidase (EPO) activity at a dose of 30 microg ITE per mouse. Microscopic investigations revealed less inflammation, eosinophil recruitment and mucus hyperproduction in the lung in a dose related manner. Diminution of AHR and inflammation was associated with reduced IL-4, IL-5, and RANTES production in the BAL fluid at the 30 microg ITE dose, while OVA specific IgE and eotaxin serum levels remained unchanged. ITE, which has been reported inhibiting COX-2 and 5-LOX, reduced allergic airway inflammation and AHR by inhibiting the production of the Th2 cytokines IL-4 and IL-5, and RANTES. (c) 2009 Elsevier GmbH. All rights reserved.

  7. Intratracheal Administration of Mesenchymal Stem Cells Modulates Tachykinin System, Suppresses Airway Remodeling and Reduces Airway Hyperresponsiveness in an Animal Model.

    Directory of Open Access Journals (Sweden)

    Konrad Urbanek

    Full Text Available The need for new options for chronic lung diseases promotes the research on stem cells for lung repair. Bone marrow-derived mesenchymal stem cells (MSCs can modulate lung inflammation, but the data on cellular processes involved in early airway remodeling and the potential involvement of neuropeptides are scarce.To elucidate the mechanisms by which local administration of MSCs interferes with pathophysiological features of airway hyperresponsiveness in an animal model.GFP-tagged mouse MSCs were intratracheally delivered in the ovalbumin mouse model with subsequent functional tests, the analysis of cytokine levels, neuropeptide expression and histological evaluation of MSCs fate and airway pathology. Additionally, MSCs were exposed to pro-inflammatory factors in vitro.Functional improvement was observed after MSC administration. Although MSCs did not adopt lung cell phenotypes, cell therapy positively affected airway remodeling reducing the hyperplastic phase of the gain in bronchial smooth muscle mass, decreasing the proliferation of epithelium in which mucus metaplasia was also lowered. Decrease of interleukin-4, interleukin-5, interleukin-13 and increase of interleukin-10 in bronchoalveolar lavage was also observed. Exposed to pro-inflammatory cytokines, MSCs upregulated indoleamine 2,3-dioxygenase. Moreover, asthma-related in vivo upregulation of pro-inflammatory neurokinin 1 and neurokinin 2 receptors was counteracted by MSCs that also determined a partial restoration of VIP, a neuropeptide with anti-inflammatory properties.Intratracheally administered MSCs positively modulate airway remodeling, reduce inflammation and improve function, demonstrating their ability to promote tissue homeostasis in the course of experimental allergic asthma. Because of a limited tissue retention, the functional impact of MSCs may be attributed to their immunomodulatory response combined with the interference of neuropeptide system activation and tissue

  8. Puerarin Attenuates Ovalbumin-Induced Lung Inflammation and Hemostatic Unbalance in Rat Asthma Model

    Directory of Open Access Journals (Sweden)

    Feng Dong

    2014-01-01

    Full Text Available Aim. We aimed to investigate and evaluate the preventive activity of puerarin on the ovalbumin-induced asthma rat model. Materials and Methods. Male Wistar rats were sensitized intraperitoneally on days 0, 7, and 14 and challenged to ovalbumin intratracheally on day 21. Groups of sensitized rats were treated randomly either with placebo, puerarin, dexamethasone, or puerarin combined with dexamethasone, from days 15 to 20. Inflammatory markers, including cell counts in bronchoalveolar lavage fluid (BALF, inflammatory cytokines, histopathology, and coagulation parameters, such as coagulation tests and the activity of coagulation factors, were analyzed. Results. Puerarin significantly inhibited the recruitment of inflammatory cells in BALF and lung tissue. At the same time, the release of IL-4, IL-10, and IFN-γ in serum and the expression of mRNAs in lung tissue homogenate were changed by puerarin. Administration of puerarin also effectively rectified the coagulation disorder in asthmatic rats, such as prothrombin time (PT (P<0.01, thrombin time (TT (P<0.05, fibrinogen (FIB (P<0.01,the activity of factor II (FII (P<0.01, the activity of factor V (FV (P<0.05, the activity of factor VII (FVII (P<0.05, the activity of factor X (FX (P<0.05, the activity of factor VIII (FVIII (P<0.01, the activity of factor IX (FIX (P<0.05, and the activity of factor XII (FXII (P<0.05. Conclusions. Our results provide a clue that puerarin was useful for the preventive of allergic airway disease in rodents.

  9. Bradykinin-induced lung inflammation and bronchoconstriction: role in parainfluenze-3 virus-induced inflammation and airway hyperreactivity.

    Science.gov (United States)

    Broadley, Kenneth J; Blair, Alan E; Kidd, Emma J; Bugert, Joachim J; Ford, William R

    2010-12-01

    Inhaled bradykinin causes bronchoconstriction in asthmatic subjects but not nonasthmatics. To date, animal studies with inhaled bradykinin have been performed only in anesthetized guinea pigs and rats, where it causes bronchoconstriction through sensory nerve pathways. In the present study, airway function was recorded in conscious guinea pigs by whole-body plethysmography. Inhaled bradykinin (1 mM, 20 s) caused bronchoconstriction and influx of inflammatory cells to the lungs, but only when the enzymatic breakdown of bradykinin by angiotensin-converting enzyme and neutral endopeptidase was inhibited by captopril (1 mg/kg i.p.) and phosphoramidon (10 mM, 20-min inhalation), respectively. The bronchoconstriction and cell influx were antagonized by the B(2) kinin receptor antagonist 4-(S)-amino-5-(4-{4-[2,4-dichloro-3-(2,4-dimethyl-8-quinolyloxymethyl)phenylsulfonamido]-tetrahydro-2H-4-pyranylcarbonyl}piperazino)-5-oxopentyl](trimethyl)ammonium chloride hydrochloride (MEN16132) when given by inhalation (1 and 10 μM, 20 min) and are therefore mediated via B(2) kinin receptors. However, neither intraperitioneal MEN16132 nor the peptide B(2) antagonist icatibant, by inhalation, antagonized these bradykinin responses. Sensitization of guinea pigs with ovalbumin was not sufficient to induce airway hyperreactivity (AHR) to the bronchoconstriction by inhaled bradykinin. However, ovalbumin challenge of sensitized guinea pigs caused AHR to bradykinin and histamine. Infection of guinea pigs by nasal instillation of parainfluenza-3 virus produced AHR to inhaled histamine and lung influx of inflammatory cells. These responses were attenuated by the bradykinin B(2) receptor antagonist MEN16132 and H-(4-chloro)DPhe-2'(1-naphthylalanine)-(3-aminopropyl)guanidine (VA999024), an inhibitor of tissue kallikrein, the enzyme responsible for lung synthesis of bradykinin. These results suggest that bradykinin is involved in virus-induced inflammatory cell influx and AHR.

  10. Rutin has anti-asthmatic effects in an ovalbumin-induced asthmatic ...

    African Journals Online (AJOL)

    Purpose: To investigate the anti-asthmatic effects of the flavonoid rutin in an ovalbumin (OVA)-induced asthmatic mouse ... protection in asthmatic mice, via downregulation of inflammatory ..... cytokine production by bone marrow-derived dendritic cells stimulated with ... Increased nuclear factor kappaB activity in milk cells of.

  11. Urtica dioica attenuates ovalbumin-induced inflammation and lipid peroxidation of lung tissues in rat asthma model.

    Science.gov (United States)

    Zemmouri, Hanene; Sekiou, Omar; Ammar, Sonda; El Feki, Abdelfattah; Bouaziz, Mohamed; Messarah, Mahfoud; Boumendjel, Amel

    2017-12-01

    To find bioactive medicinal herbs exerting anti-asthmatic activity, we investigated the effect of an aqueous extract of Urtica dioica L. (Urticaceae) leaves (UD), the closest extract to the Algerian traditional use. In this study, we investigated the in vivo anti-asthmatic and antioxidant activities of nettle extract. Adult male Wistar rats were divided into four groups: Group I: negative control; group II: Ovalbumin sensitized/challenged rats (positive control); group III: received UD extract (1.5 g/kg/day) orally along the experimental protocol; group IV: received UD extract (1.5 g/kg/day) orally along the experimental protocol and sensitized/challenged with ovalbumin. After 25 days, blood and tissue samples were collected for haematological and histopathological analysis, respectively. The oxidative stress parameters were evaluated in the lungs, liver and erythrocytes. Then, correlations between markers of airway inflammation and markers of oxidative stress were explored. UD extract significantly (p nettle extract was also investigated for the total phenolic content (30.79 ± 0.96 mg gallic acid/g dry extract) and shows DPPH radical scavenging activity with 152.34 ± 0.37 μg/mL IC 50 value. The results confirmed that UD administration might be responsible for the protective effects of this extract against airway inflammation.

  12. l-2-Oxothiazolidine-4-Carboxylic Acid or α-Lipoic Acid Attenuates Airway Remodeling: Involvement of Nuclear Factor-κB (NF-κB, Nuclear Factor Erythroid 2p45-Related Factor-2 (Nrf2, and Hypoxia-Inducible Factor (HIF

    Directory of Open Access Journals (Sweden)

    Heung Bum Lee

    2012-06-01

    Full Text Available Reactive oxygen species (ROS play a crucial role in the pathogenesis of acute and chronic respiratory diseases. Antioxidants have been found to ameliorate airway inflammation and hyperresponsiveness in animal models employing short-term exposure to allergen. However, little data are available on the effect of antioxidants on airway remodeling and signaling pathways in chronic asthma. In the present study, we used a long-term exposure murine model of allergic airway disease to evaluate the effects of an antioxidant, l-2-oxothiazolidine-4-carboxylic acid (OTC or α-lipoic acid (LA on airway remodeling, focusing on the ROS-related hypoxia-inducible signaling. Long-term challenge of ovalbumin (OVA increased ROS production, airway inflammation, and airway hyperresponsiveness, and developed features of airway remodeling such as excessive mucus secretion, subepithelial fibrosis, and thickening of the peribronchial smooth muscle layer. Administration of OTC or LA reduced these features of asthma, including airway remodeling, which was accompanied by suppression of transforming growth factor-β1, vascular endothelial growth factor, and T-helper 2 cytokines. In addition, OVA-induced activation of nuclear factor-κB (NF-κB, nuclear factor erythroid 2p45-related factor-2 (Nrf2, hypoxia-inducible factor (HIF-1α, and HIF-2α was reduced by OTC or LA. Our results also showed that OTC or LA down-regulated phosphoinositide 3-kinase activity and decreased phosphorylation of p38 mitogen-activated protein kinase but not extracellular signal-regulated kinase 1/2 or c-Jun N-terminal kinase. These findings demonstrate that OTC and LA can inhibit activation of NF-κB, Nrf2, and HIF, leading to attenuate allergen-induced airway remodeling.

  13. Enhancement of antigen-induced eosinophilic inflammation in the airways of mast-cell deficient mice by diesel exhaust particles

    International Nuclear Information System (INIS)

    Ichinose, Takamichi; Takano, Hirohisa; Miyabara, Yuichi; Sadakaneo, Kaori; Sagai, Masaru; Shibamoto, Takayuki

    2002-01-01

    The present study was conducted to clarify the involvement of mast cells in the exacerbating effect of diesel exhaust particles (DEP) toward allergic airway inflammation and airway hyperresponsiveness (AHR). Airway inflammation by the infiltration of cosinophils with goblet cell proliferation and AHR, as well as by the production of antigen-specific IgG1 and IgE, in plasma were examined using mast cell-deficient mice (W/W v ) and normal mice (W/W + ). Both groups of mice received ovalbumin (OVA) or OVA+DEP intratracheally. The eosinophilic airway inflammation and goblet cell proliferation promoted by OVA were significantly greater in W/W + than in W/W v . A similar result was observed in AHR, but was not significant among both groups of mice. DEP enhanced OVA induced-allergic airway inflammation, goblet cell proliferation, and development of AHR in W/W v , but not in W/W + . DEP decreased production of antigen-specific IgG1 and IgE in both groups of mice. Mast cells were observed in the submucosal layer of the main bronchus in W/W v . The number of mast cells was significantly decreased by OVA treatment. The results indicate that mast cells are not necessary to enhance airway damage and development of AHR in W/W v by DEP. However, mast cells may be required for the OVA-induced cosinophilic inflammation, airway damage with goblet cell proliferation, and AHR in W/W +

  14. Inhibition of pan neurotrophin receptor p75 attenuates diesel particulate-induced enhancement of allergic airway responses in C57/B16J mice.

    Science.gov (United States)

    Farraj, Aimen K; Haykal-Coates, Najwa; Ledbetter, Allen D; Evansky, Paul A; Gavett, Stephen H

    2006-06-01

    Recent investigations have linked neurotrophins, including nerve growth factor (NGF), neurotrophin-3 (NT-3), and brain-derived neurotrophic factor (BDNF), to allergic airways diseases. Antibody blockade of NGF attenuates airway resistance in allergic mice. Diesel exhaust particle (DEP) exposure has been linked to asthma exacerbation in many cities with vehicular traffic congestion. We tested the hypothesis that DEP-induced enhancement of the hallmark features of allergic airway disease in a murine model is dependent on the function of the pan neurotrophin receptor p75. Ovalbumin (OVA)-sensitized C57B1/6J mice were intranasally instilled with an antibody against the p75 receptor or saline alone 1 h before OVA challenge. The mice were then exposed nose-only to the PM2.5 fraction of SRM2975 DEP or air alone for 5 h beginning 1 h after OVA challenge. Two days later, air-exposed OVA-allergic mice developed a small but insignificant increase in methacholine-induced airflow obstruction relative to air-exposed, vehicle-sensitized mice. DEP-exposed OVA-allergic mice had a significantly greater degree of airway obstruction than all other groups. Instillation of anti-p75 significantly attenuated the DEP-induced increase in airway obstruction in OVA-allergic mice to levels similar to non-sensitized mice. The DEP-induced exacerbation of allergic airway responses may, in part, be mediated by neurotrophins.

  15. The combination of Bifidobacterium breve with non-digestible oligosaccharides suppresses airway inflammation in a murine model for chronic asthma.

    Science.gov (United States)

    Sagar, Seil; Vos, Arjan P; Morgan, Mary E; Garssen, Johan; Georgiou, Niki A; Boon, Louis; Kraneveld, Aletta D; Folkerts, Gert

    2014-04-01

    Over the last decade, there has been a growing interest in the use of interventions that target the intestinal microbiota as a treatment approach for asthma. This study is aimed at exploring the therapeutic effects of long-term treatment with a combination of Bifidobacterium breve with non-digestible oligosaccharides on airway inflammation and remodeling. A murine ovalbumin-induced chronic asthma model was used. Pulmonary airway inflammation; mRNA expression of pattern recognition receptors, Th-specific cytokines and transcription factors in lung tissue; expression of Foxp3 in blood Th cells; in vitro T cell activation; mast cell degranulation; and airway remodeling were examined. The combination of B. breve with non-digestible oligosaccharides suppressed pulmonary airway inflammation; reduced T cell activation and mast cell degranulation; modulated expression of pattern recognition receptors, cytokines and transcription factors; and reduced airway remodeling. The treatment induced regulatory T cell responses, as shown by increased Il10 and Foxp3 transcription in lung tissue, and augmented Foxp3 protein expression in blood CD4+CD25+Foxp3+ T cells. This specific combination of beneficial bacteria with non-digestible oligosaccharides has strong anti-inflammatory properties, possibly via the induction of a regulatory T cell response, resulting in reduced airway remodeling and, therefore, may be beneficial in the treatment of chronic inflammation in allergic asthma. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Immunomodulation of afferent neurons in guinea-pig isolated airway.

    Science.gov (United States)

    Riccio, M M; Myers, A C; Undem, B J

    1996-03-01

    1. The trachea, larynx and main bronchi with the right vagus nerve and nodose ganglion were isolated from guinea-pigs passively immunized 24 h previously with serum containing anti-ovalbumin antibody. 2. The airways were placed in one compartment of a Perspex chamber for recording of isometric tension while the nodose ganglion and attached vagus nerve were pulled into another compartment. Action potentials arriving from single airway afferent nerve endings were monitored extracellularly using a glass microelectrode positioned near neuronal cell bodies in the ganglion. Mechanosensitivity of the nerve endings was quantified using calibrated von Frey filaments immediately before and after exposure to antigen (10 micrograms ml-1 ovalbumin). 3. Ten endings responded to the force exerted by the lowest filament (0.078 mN) and were not further investigated. In airways from thirteen immunized guinea-pigs, the mechanical sensitivity of A delta afferent fibres (conduction velocity = 4.3 +/- 0.6 m s-1) was enhanced 4.1 +/- 0.9-fold following airway exposure to antigen (P action potential generation except in one instance when the receptive field was located over the smooth muscle. This ending also responded to methacholine suggesting that spatial changes in the receptive field, induced by muscle contraction, were responsible for the activation. 5. The mediators responsible for these effects are unknown, although histamine, prostaglandins, leukotrienes and tachykinins do not appear to be essential. The increase in mechanical responsiveness was not associated with the smooth muscle contraction since leukotriene C4, histamine and tachykinins, which all caused a similar contraction to antigen, did not affect mechanical thresholds. Moreover, the antigen-induced increases in excitability persisted beyond the duration of the smooth muscle contraction. 6. These results demonstrate that antigen-antibody-mediated inflammatory processes may enhance the excitability of vagal afferent

  17. A kinetic study of the mechanism of radiation induced agglomeration of ovalbumin in aqueous solution

    International Nuclear Information System (INIS)

    Tuce, Zorana; Janata, Eberhard; Radojcic, Marija; Milosavljevic, B.H.

    2001-01-01

    The effect of concentration on the protein radiolytic damage resulting in a change in molecular mass was measured in the concentration range from 0.2 to 2 mmolxdm -3 ovalbumin in phosphate buffered solutions saturated with N 2 O. The electrophoretic analysis of samples on discontinuous SDS-polyacrylamide gels in the presence or absence of 5% β-mercaptoethanol showed an expected result, i.e. that the protein scission did not take place in the absence of oxygen. Only ovalbumin agglomerates, bonded by covalent bonds other than S-S bridges, were observed. The G-value for the formation of ovalbumin agglomerates increased linearly from 1.1 to 2.4 by increasing the ovalbumin concentration from 0.2 to 2 mmolxdm -3 . The result is interpreted as to be owing to the competition between ovalbumin agglomeration and some intramolecular reactions which did not lead to the change in the molecular mass. It was also found that the G-value is independent of irradiation dose rate. The result was rationalized as a kinetic evidence that the agglomeration is not a cross-linking process, i.e. it does not occur via recombination of the protein radicals produced in the interaction of ovalbumin and · OH radical. The result suggested that the agglomeration takes place via the process of grafting, i.e. it occurs in the reaction of ovalbumin radical and an intact ovalbumin molecule. The time-resolved light scattering experiments provided an additional proof, supporting the reaction scheme of radiation-induced protein agglomeration. The biological consequences of the proposed mechanism of protein agglomeration are also discussed

  18. Influence of pirfenidone on airway hyperresponsiveness and inflammation in a Brown-Norway rat model of asthma.

    Science.gov (United States)

    Mansoor, Jim K; Decile, Kendra C; Giri, Shri N; Pinkerton, Kent E; Walby, William F; Bratt, Jennifer M; Grewal, Harinder; Margolin, Solomon B; Schelegle, Edward S

    2007-01-01

    Pirfenidone was administered to sensitized Brown Norway rats prior to a series of ovalbumin challenges. Airway hyperresponsiveness, inflammatory cell infiltration, mucin and collagen content, and the degree of epithelium and smooth muscle staining for TGF-beta were examined in control, sensitized, and sensitized/challenged rats fed a normal diet or pirfenidone diet. Pirfenidone had no effect on airway hyperresponsiveness, but reduced distal bronchiolar cell infiltration and proximal and distal mucin content. Statistical analysis showed that the control group and sensitized/challenged pirfenidone diet group TGF-beta staining intensity scores were not significantly different from isotype controls, but that the staining intensity scores for the sensitized/challenged normal diet group was significantly different from isotype controls. These results suggest that pirfenidone treatment is effective in reducing some of the components of acute inflammation induced by allergen challenge.

  19. Adam8 Limits the Development of Allergic Airway Inflammation in Mice

    Science.gov (United States)

    Knolle, Martin D.; Nakajima, Takahiro; Hergrueter, Anja; Gupta, Kushagra; Polverino, Francesca; Craig, Vanessa J.; Fyfe, Susanne E.; Zahid, Muhammad; Permaul, Perdita; Cernadas, Manuela; Montano, Gilbert; Tesfaigzi, Yohannes; Sholl, Lynette; Kobzik, Lester; Israel, Elliot; Owen, Caroline A.

    2013-01-01

    To determine whether a disintegrin and a metalloproteinase-8 (Adam8) regulates allergic airway inflammation (AAI) and airway hyper-responsiveness (AHR), we compared AAI and AHR in wild type (WT) versus Adam8−/− mice in different genetic backgrounds sensitized and challenged with ovalbumin (OVA) or house dust mite protein extract (HDM). OVA- and HDM-treated Adam8−/− mice had higher lung leukocyte counts, more airway mucus metaplasia, greater lung levels of some TH2 cytokines, and higher methacholine-induced increases in central airway resistance than allergen-treated WT mice. Studies of OVA-treated Adam8 bone marrow chimeric mice confirmed that leukocyte-derived Adam8 predominantly mediated Adam8’s anti-inflammatory activities in murine airways. Airway eosinophils and macrophages both expressed Adam8 in WT mice with AAI. Adam8 limited AAI and AHR in mice by reducing leukocyte survival because: 1) Adam8−/− mice with AAI had fewer apoptotic eosinophils and macrophages in their airways than WT mice with AAI; and 2) Adam8−/− macrophages and eosinophils had reduced rates of apoptosis compared with WT leukocytes when the intrinsic (but not the extrinsic) apoptosis pathway was triggered in the cells in vitro. ADAM8 was robustly expressed by airway granulocytes in lung sections from human asthma patients but, surprisingly, airway macrophages had less ADAM8 staining than airway eosinophils. Thus, ADAM8 has anti-inflammatory activities during AAI in mice by activating the intrinsic apoptosis pathway in myeloid leukocytes. Strategies that increase ADAM8 levels in myeloid leukocytes may have therapeutic efficacy in asthma. PMID:23670189

  20. Obesity increases airway hyperresponsiveness via the TNF-α pathway and treating obesity induces recovery.

    Directory of Open Access Journals (Sweden)

    Joo Young Kim

    Full Text Available Obesity is a known risk factor for allergic asthma. It has been recognized as a key player in the pathogenesis of several inflammatory disorders via activation of macrophages, which is also vital to the development of allergic asthma. We investigated the mechanism of obesity-related asthma and whether treating obesity through exercise or diet ameliorates the severity of asthma in the obesity-related asthma model. We generated diet-induced obesity (DIO in C57BL/6 mice by high-fat-feeding and ovalbumin-induced asthma (lean-OVA or DIO-OVA. The DIO-OVA mice were then treated with tumor necrosis factor (TNF-α neutralizing antibody as a TNF-α blockade or a Cl2MDP-containing liposome to induce an alveolar macrophage deficiency. To treat obesity, the DIO-OVA mice were under dietary restrictions or exercised. The pathophysiological and immunological responses were analyzed. Airway hyperresponsiveness (AHR, serum IgE and TNF-α levels in the lung tissue increased in the DIO-OVA mice compared to the lean-OVA mice. Both the TNF-α blockade and depletion of alveolar macrophages in the DIO-OVA mice decreased AHR compared to the DIO-OVA mice. Treating obesity by exercise or through dietary means also reduced pulmonary TNF-α levels and AHR in the DIO-OVA mice. These results suggest that restoring normal body weight is an appropriate strategy for reducing TNF-α levels, and controlling inflammation may help improve asthma severity and control in obesity-related asthma.

  1. Role of the adiponectin binding protein, T-cadherin (Cdh13, in allergic airways responses in mice.

    Directory of Open Access Journals (Sweden)

    Alison S Williams

    Full Text Available Adiponectin is an adipose derived hormone that declines in obesity. We have previously shown that exogenous administration of adiponectin reduces allergic airways responses in mice. T-cadherin (T-cad; Cdh13 is a binding protein for the high molecular weight isoforms of adiponectin. To determine whether the beneficial effects of adiponectin on allergic airways responses require T-cad, we sensitized wildtype (WT, T-cadherin deficient (T-cad(-/- and adiponectin and T-cad bideficient mice to ovalbumin (OVA and challenged the mice with aerosolized OVA or PBS. Compared to WT, T-cad(-/- mice were protected against OVA-induced airway hyperresponsiveness, increases in BAL inflammatory cells, and induction of IL-13, IL-17, and eotaxin expression. Histological analysis of the lungs of OVA-challenged T-cad(-/- versus WT mice indicated reduced inflammation around the airways, and reduced mucous cell hyperplasia. Combined adiponectin and T-cad deficiency reversed the effects of T-cad deficiency alone, indicating that the observed effects of T-cad deficiency require adiponectin. Compared to WT, serum adiponectin was markedly increased in T-cad(-/- mice, likely because adiponectin that is normally sequestered by endothelial T-cad remains free in the circulation. In conclusion, T-cad does not mediate the protective effects of adiponectin. Instead, mice lacking T-cad have reduced allergic airways disease, likely because elevated serum adiponectin levels act on other adiponectin signaling pathways.

  2. Role of macrophage migration inhibitory factor (MIF in allergic and endotoxin-induced airway inflammation in mice

    Directory of Open Access Journals (Sweden)

    M. Korsgren

    2000-01-01

    Full Text Available Macrophage migration inhibitory factor (MIF has recently been forwarded as a critical regulator of inflammatory conditions, and it has been hypothesized that MIF may have a role in the pathogenesis of asthma and chronic obstructive pulmonary disease (COPD. Hence, we examined effects of MIF immunoneutralization on the development of allergen-induced eosinophilic inflammation as well as on lipopolysaccaride (LPS-induced neutrophilic inflammation in lungs of mice. Anti-MIF serum validated with respect to MIF neutralizing capacity or normal rabbit serum (NRS was administered i.p. repeatedly during allergen aerosol exposure of ovalbumin (OVA-immunized mice in an established model of allergic asthma, or once before instillation of a minimal dose of LPS into the airways of mice, a tentative model of COPD. Anti-MIF treatment did not affect the induced lung tissue eosinophilia or the cellular composition of bronchoalveolar lavage fluid (BALF in the asthma model. Likewise, anti-MIF treatment did not affect the LPS-induced neutrophilia in lung tissue, BALF, or blood, nor did it reduce BALF levels of tumor necrosis factor-α (TNF-α and macrophage inflammatory protein–1 α (MIP–1 α. The present data suggest that MIF is not critically important for allergen-induced eosinophilic, and LPS-induced neutrophilic responses in lungs of mice. These findings do not support a role of MIF inhibition in the treatment of inflammatory respiratory diseases.

  3. Fisetin-treatment alleviates airway inflammation through inhbition of MyD88/NF-κB signaling pathway.

    Science.gov (United States)

    Huang, Wei; Li, Ming-Li; Xia, Ming-Yue; Shao, Jian-Ying

    2018-07-01

    Asthma is a common chronic airway inflammation disease and is considered as a major public health problem. Fisetin (3,3',4',7-tetrahydroxyflavone) is a naturally occurring flavonoid abundantly found in different vegetables and fruits. Fisetin has been reported to exhibit various positive biological effects, including anti-proliferative, anticancer, anti-oxidative and neuroprotective effects. We evaluated the effects of fisetin on allergic asthma regulation in mice. Mice were first sensitized, then airway-challenged with ovalbumin (OVA). Whether fisetin treatment attenuated OVA-induced airway inflammation was examined via inflammation inhibition through MyD88-related NF-κB (p65) signaling pathway. Mice were divided into the control (Con), OVA-induced asthma (Mod), 40 (FL) and 50 (FH) mg/kg fisetin-treated OVA-induced asthma groups. Our results found that OVA-induced airway inflammation in mice caused a significant inflammatory response via the activation of MyD88 and NF-κB signaling pathways, leading to release of pro-inflammatory cytokines. In contrast, fisetin-treated mice after OVA induction inhibited activation of MyD88 and NF-κB signaling pathways, resulting in downregulation of pro-inflammatory cytokine secretion. Further, fisetin significantly ameliorated the airway hyperresponsiveness (AHR) towards methacholine (Mch). In addition, fisetin reduced the number of eosinophil, monocyte, neutrophil and total white blood cell in the bronchoalveolar lavage fluid (BALF) of OVA-induced mice. The serum and BALF samples obtained from the OVA-induced mice with fisetin showed lower levels of pro-inflammatory cytokines. The results of our study illustrated that fisetin may be a new promising candidate to inhibit airway inflammation response induced by OVA.

  4. Activation of angiotensin-converting enzyme 2 (ACE2) attenuates allergic airway inflammation in rat asthma model

    International Nuclear Information System (INIS)

    Dhawale, Vaibhav Shrirang; Amara, Venkateswara Rao; Karpe, Pinakin Arun; Malek, Vajir; Patel, Deep; Tikoo, Kulbhushan

    2016-01-01

    Angiotensin-I converting enzyme (ACE) is positively correlated to asthma, chronic obstructive pulmonary disease (COPD), acute respiratory distress syndrome (ARDS) and is highly expressed in lungs. ACE2, the counteracting enzyme of ACE, was proven to be protective in pulmonary, cardiovascular diseases. In the present study we checked the effect of ACE2 activation in animal model of asthma. Asthma was induced in male wistar rats by sensitization and challenge with ovalbumin and then treated with ACE2 activator, diminazene aceturate (DIZE) for 2 weeks. 48 h after last allergen challenge, animals were anesthetized, blood, BALF, femoral bone marrow lavage were collected for leucocyte count; trachea for measuring airway responsiveness to carbachol; lungs and heart were isolated for histological studies and western blotting. In our animal model, the characteristic features of asthma such as altered airway responsiveness to carbachol, eosinophilia and neutrophilia were observed. Western blotting revealed the increased pulmonary expression of ACE1, IL-1β, IL-4, NF-κB, BCL2, p-AKT, p-p38 and decreased expression of ACE2 and IκB. DIZE treatment prevented these alterations. Intraalveolar interstitial thickening, inflammatory cell infiltration, interstitial fibrosis, oxidative stress and right ventricular hypertrophy in asthma control animals were also reversed by DIZE treatment. Activation of ACE2 by DIZE conferred protection against asthma as evident from biochemical, functional, histological and molecular parameters. To the best of our knowledge, we report for the first time that activation of ACE2 by DIZE prevents asthma progression by altering AKT, p38, NF-κB and other inflammatory markers. - Highlights: • Diminazene aceturate (DIZE), an ACE2 activator prevents ovalbumin-induced asthma. • DIZE acted by upregulating ACE2, downregulating ACE1, MAPKs, markers of inflammation, apoptosis. • DIZE reduced airway inflammation, fibrosis, right ventricular hypertrophy and

  5. Activation of angiotensin-converting enzyme 2 (ACE2) attenuates allergic airway inflammation in rat asthma model

    Energy Technology Data Exchange (ETDEWEB)

    Dhawale, Vaibhav Shrirang; Amara, Venkateswara Rao; Karpe, Pinakin Arun; Malek, Vajir; Patel, Deep; Tikoo, Kulbhushan, E-mail: tikoo.k@gmail.com

    2016-09-01

    Angiotensin-I converting enzyme (ACE) is positively correlated to asthma, chronic obstructive pulmonary disease (COPD), acute respiratory distress syndrome (ARDS) and is highly expressed in lungs. ACE2, the counteracting enzyme of ACE, was proven to be protective in pulmonary, cardiovascular diseases. In the present study we checked the effect of ACE2 activation in animal model of asthma. Asthma was induced in male wistar rats by sensitization and challenge with ovalbumin and then treated with ACE2 activator, diminazene aceturate (DIZE) for 2 weeks. 48 h after last allergen challenge, animals were anesthetized, blood, BALF, femoral bone marrow lavage were collected for leucocyte count; trachea for measuring airway responsiveness to carbachol; lungs and heart were isolated for histological studies and western blotting. In our animal model, the characteristic features of asthma such as altered airway responsiveness to carbachol, eosinophilia and neutrophilia were observed. Western blotting revealed the increased pulmonary expression of ACE1, IL-1β, IL-4, NF-κB, BCL2, p-AKT, p-p38 and decreased expression of ACE2 and IκB. DIZE treatment prevented these alterations. Intraalveolar interstitial thickening, inflammatory cell infiltration, interstitial fibrosis, oxidative stress and right ventricular hypertrophy in asthma control animals were also reversed by DIZE treatment. Activation of ACE2 by DIZE conferred protection against asthma as evident from biochemical, functional, histological and molecular parameters. To the best of our knowledge, we report for the first time that activation of ACE2 by DIZE prevents asthma progression by altering AKT, p38, NF-κB and other inflammatory markers. - Highlights: • Diminazene aceturate (DIZE), an ACE2 activator prevents ovalbumin-induced asthma. • DIZE acted by upregulating ACE2, downregulating ACE1, MAPKs, markers of inflammation, apoptosis. • DIZE reduced airway inflammation, fibrosis, right ventricular hypertrophy and

  6. Anti-inflammatory Potentials of Excretory/Secretory (ES and Somatic Products of Marshallagia marshalli on Allergic Airway Inflammation in BALB/c Mice

    Directory of Open Access Journals (Sweden)

    Sima PARANDE SHIRVAN

    2016-12-01

    Full Text Available Background: Inverse relationship between helminths infection and immune-mediated diseases has inspired researchers to investigate therapeutic potential of helminths in allergic asthma. Helminth unique ability to induce immunoregulatory responses has already been documented in several experimental studies. This study was designed to investigate whether excretory/secretory (ES and somatic products of Marshallagia marshalli modulate the development of ovalbumin-induced airway inflammation in a mouse model.Methods: This study was carried out at the laboratories of Immunology and Parasitology of Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran during spring and summer 2015. Allergic airway inflammation was induced in mice by intraperitoneal (IP injection with ovalbumin (OVA. The effects of ES and somatic products of M. marshalli were analyzed by inflammatory cell infiltration in bronchoalveolar lavage fluid (BALF, pathological changes and IgE response.Results: Treatment with ES and somatic products of M. marshalli decreased cellular infiltration into BALF when they were administered during sensitization with allergen. Pathological changes were decreased in helminth-treated group, as demonstrated by reduced inflammatory cell infiltration, goblet cell hyperplasia, epithelial lesion and smooth muscle hypertrophy. However, no significant differences were observed in IgE serum levels, cytokines and eosinophil counts between different groups.Conclusion: This study provides new insights into anti-inflammatory effects of ES and somatic products of M. marshalli, during the development of non-eosinophilic model of asthma. Further study is necessary to characterize immunomodulatory molecules derived from M. marshalli as a candidate for the treatment of airway inflammation.

  7. A semisynthetic diterpenoid lactone inhibits NF-κB signalling to ameliorate inflammation and airway hyperresponsiveness in a mouse asthma model

    International Nuclear Information System (INIS)

    Lim, J.C.-W.; Goh, F.-Y.; Sagineedu, S.-R.; Yong, A.C.-H.; Sidik, S.M.; Lajis, N.H.; Wong, W.S.F.; Stanslas, J.

    2016-01-01

    Andrographolide (AGP) and 14-deoxy-11,12-didehydroandrographolide (DDAG), two main diterpenoid constituents of Andrographis paniculata were previously shown to ameliorate asthmatic symptoms in a mouse model. However, due to inadequacies of both compounds in terms of drug-likeness, DDAG analogues were semisynthesised for assessment of their anti-asthma activity. A selected analogue, 3,19-diacetyl-14-deoxy-11,12-didehydroandrographolide (SRS27), was tested for inhibitory activity of NF-κB activation in TNF-α-induced A549 cells and was subsequently evaluated in a mouse model of ovalbumin (OVA)-induced asthma. Female BALB/c mice, 6–8 weeks old were sensitized on days 0 and 14, and challenged on days 22, 23 and 24 with OVA. Compound or vehicle (3% dimethyl sulfoxide) was administered intraperitoneally 1 h before and 11 h after each OVA aerosol challenge. On day 25, pulmonary eosinophilia, airway hyperresponsiveness, mucus hypersecretion, inflammatory cytokines such as IL-4, -5 and -13 in BAL fluid, gene expression of inflammatory mediators such as 5-LOX, E-selectin, VCAM-1, CCL5, TNF-α, AMCase, Ym2, YKL-40, Muc5ac, CCL2 and iNOS in animal lung tissues, and serum IgE were determined. SRS27 at 30 μM was found to suppress NF-κB nuclear translocation in A549 cells. In the ovalbumin-induced mouse asthma model, SRS27 at 3 mg/kg displayed a substantial decrease in pulmonary eosinophilia, BAL fluid inflammatory cytokines level, serum IgE production, mucus hypersecretion and gene expression of inflammatory mediators in lung tissues. SRS27 is the first known DDAG analogue effective in ameliorating inflammation and airway hyperresponsiveness in the ovalbumin-induced mouse asthma model. - Highlights: • SRS27 was synthesised to overcome inadequacies of its parent compound in terms of drug-likeness. • SRS27 was tested in TNF-α-induced A549 lung cells and ovalbumin (OVA)-induced mouse asthma model. • SRS27 suppressed NF-κB nuclear translocation in A549 cells. • SRS27

  8. A semisynthetic diterpenoid lactone inhibits NF-κB signalling to ameliorate inflammation and airway hyperresponsiveness in a mouse asthma model

    Energy Technology Data Exchange (ETDEWEB)

    Lim, J.C.-W. [Pharmacotherapeutics Unit, Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Goh, F.-Y. [Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System (Singapore); Sagineedu, S.-R. [Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Yong, A.C.-H. [Faculty of Pharmacy, Segi University, Jalan Teknologi, 47810 Petaling Jaya (Malaysia); Sidik, S.M. [Histopathology Unit, Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Lajis, N.H. [Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Wong, W.S.F., E-mail: fred_wong@nuhs.edu.sg [Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System (Singapore); Immunology Program, Life Science Institute, National University of Singapore (Singapore); Stanslas, J., E-mail: rcxjs@upm.edu.my [Pharmacotherapeutics Unit, Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia)

    2016-07-01

    Andrographolide (AGP) and 14-deoxy-11,12-didehydroandrographolide (DDAG), two main diterpenoid constituents of Andrographis paniculata were previously shown to ameliorate asthmatic symptoms in a mouse model. However, due to inadequacies of both compounds in terms of drug-likeness, DDAG analogues were semisynthesised for assessment of their anti-asthma activity. A selected analogue, 3,19-diacetyl-14-deoxy-11,12-didehydroandrographolide (SRS27), was tested for inhibitory activity of NF-κB activation in TNF-α-induced A549 cells and was subsequently evaluated in a mouse model of ovalbumin (OVA)-induced asthma. Female BALB/c mice, 6–8 weeks old were sensitized on days 0 and 14, and challenged on days 22, 23 and 24 with OVA. Compound or vehicle (3% dimethyl sulfoxide) was administered intraperitoneally 1 h before and 11 h after each OVA aerosol challenge. On day 25, pulmonary eosinophilia, airway hyperresponsiveness, mucus hypersecretion, inflammatory cytokines such as IL-4, -5 and -13 in BAL fluid, gene expression of inflammatory mediators such as 5-LOX, E-selectin, VCAM-1, CCL5, TNF-α, AMCase, Ym2, YKL-40, Muc5ac, CCL2 and iNOS in animal lung tissues, and serum IgE were determined. SRS27 at 30 μM was found to suppress NF-κB nuclear translocation in A549 cells. In the ovalbumin-induced mouse asthma model, SRS27 at 3 mg/kg displayed a substantial decrease in pulmonary eosinophilia, BAL fluid inflammatory cytokines level, serum IgE production, mucus hypersecretion and gene expression of inflammatory mediators in lung tissues. SRS27 is the first known DDAG analogue effective in ameliorating inflammation and airway hyperresponsiveness in the ovalbumin-induced mouse asthma model. - Highlights: • SRS27 was synthesised to overcome inadequacies of its parent compound in terms of drug-likeness. • SRS27 was tested in TNF-α-induced A549 lung cells and ovalbumin (OVA)-induced mouse asthma model. • SRS27 suppressed NF-κB nuclear translocation in A549 cells. • SRS27

  9. Glyphosate–rich air samples induce IL–33, TSLP and generate IL–13 dependent airway inflammation

    Science.gov (United States)

    Kumar, Sudhir; Khodoun, Marat; Kettleson, Eric M.; McKnight, Christopher; Reponen, Tiina; Grinshpun, Sergey A.; Adhikari, Atin

    2014-01-01

    Several low weight molecules have often been implicated in the induction of occupational asthma. Glyphosate, a small molecule herbicide, is widely used in the world. There is a controversy regarding a role of glyphosate in developing asthma and rhinitis among farmers, the mechanism of which is unexplored. The aim of this study was to explore the mechanisms of glyphosate induced pulmonary pathology by utilizing murine models and real environmental samples. C57BL/6, TLR4−/−, and IL-13−/− mice inhaled extracts of glyphosate-rich air samples collected on farms during spraying of herbicides or inhaled different doses of glyphosate and ovalbumin. The cellular response, humoral response, and lung function of exposed mice were evaluated. Exposure to glyphosate-rich air samples as well as glyphosate alone to the lungs increased: eosinophil and neutrophil counts, mast cell degranulation, and production of IL-33, TSLP, IL-13, and IL-5. In contrast, in vivo systemic IL-4 production was not increased. Co-administration of ovalbumin with glyphosate did not substantially change the inflammatory immune response. However, IL-13-deficiency resulted in diminished inflammatory response but did not have a significant effect on airway resistance upon methacholine challenge after 7 or 21 days of glyphosate exposure. Glyphosate-rich farm air samples as well as glyphosate alone were found to induce pulmonary IL-13-dependent inflammation and promote Th2 type cytokines, but not IL-4 for glyphosate alone. This study, for the first time, provides evidence for the mechanism of glyphosate-induced occupational lung disease. PMID:25172162

  10. Possible Mechanism of Action of the Antiallergic Effect of an Aqueous Extract of Heliotropium indicum L. in Ovalbumin-Induced Allergic Conjunctivitis

    OpenAIRE

    Samuel Kyei; George Asumeng Koffuor; Paul Ramkissoon; Samuel Abokyi; Osei Owusu-Afriyie; Eric Addo Wiredu

    2015-01-01

    Heliotropium indicum is used traditionally as a remedy for conjunctivitis in Ghana. This study therefore evaluated the antiallergic potential of an aqueous whole plant extract of Heliotropium indicum (HIE) in ovalbumin-induced allergic conjunctivitis and attempted to predict its mode of action. Clinical scores for allergic conjunctivitis induced by intraperitoneal ovalbumin sensitization (100?:?10??g OVA/Al(OH)3 in phosphate-buffered saline [PBS]) and topical conjunctival challenge (1.5?mg OV...

  11. Simvastatin Inhibits Goblet Cell Hyperplasia and Lung Arginase in a Mouse Model of Allergic Asthma: A Novel Treatment for Airway Remodeling?

    Science.gov (United States)

    Zeki, Amir A.; Bratt, Jennifer M.; Rabowsky, Michelle; Last, Jerold A.; Kenyon, Nicholas J.

    2010-01-01

    Airway remodeling in asthma contributes to airway hyperreactivity, loss of lung function, and persistent symptoms. Current therapies do not adequately treat the structural airway changes associated with asthma. The statins are cholesterol-lowering drugs that inhibit the enzyme 3-hydroxy-3-methyl-glutaryl-CoA reductase, the rate-limiting step of cholesterol biosynthesis in the mevalonate pathway. These drugs have been associated with improved respiratory health and ongoing clinical trials are testing their therapeutic potential in asthma. We hypothesized that simvastatin treatment of ovalbumin-exposed mice would attenuate early features of airway remodeling, by a mevalonate-dependent mechanism. BALB/c mice were initially sensitized to ovalbumin, and then exposed to 1% ovalbumin aerosol for 2 weeks after sensitization for a total of six exposures. Simvastatin (40 mg/kg) or simvastatin plus mevalonate (20 mg/kg) were injected intraperitoneally before each ovalbumin exposure. Treatment with simvastatin attenuated goblet cell hyperplasia, arginase-1 protein expression, and total arginase enzyme activity, but did not alter airway hydroxyproline content or transforming growth factor-β1. Inhibition of goblet cell hyperplasia by simvastatin was mevalonate-dependent. No appreciable changes to airway smooth muscle cells were observed in any of the control or treatment groups. In conclusion, in an acute mouse model of allergic asthma, simvastatin inhibited early hallmarks of airway remodeling, indicators that can lead to airway thickening and fibrosis. Statins are potentially novel treatments for airway remodeling in asthma. Further studies utilizing sub-chronic or chronic allergen exposure models are needed to extend these initial findings. PMID:21078495

  12. Deficiency of RAMP1 attenuates antigen-induced airway hyperresponsiveness in mice.

    Directory of Open Access Journals (Sweden)

    Manyu Li

    Full Text Available Asthma is a chronic inflammatory disease affecting the lung, characterized by breathing difficulty during an attack following exposure to an environmental trigger. Calcitonin gene-related peptide (CGRP is a neuropeptide that may have a pathological role in asthma. The CGRP receptor is comprised of two components, which include the G-protein coupled receptor, calcitonin receptor-like receptor (CLR, and receptor activity-modifying protein 1 (RAMP1. RAMPs, including RAMP1, mediate ligand specificity in addition to aiding in the localization of receptors to the cell surface. Since there has been some controversy regarding the effect of CGRP on asthma, we sought to determine the effect of CGRP signaling ablation in an animal model of asthma. Using gene-targeting techniques, we generated mice deficient for RAMP1 by excising exon 3. After determining that these mice are viable and overtly normal, we sensitized the animals to ovalbumin prior to assessing airway resistance and inflammation after methacholine challenge. We found that mice lacking RAMP1 had reduced airway resistance and inflammation compared to wildtype animals. Additionally, we found that a 50% reduction of CLR, the G-protein receptor component of the CGRP receptor, also ameliorated airway resistance and inflammation in this model of allergic asthma. Interestingly, the loss of CLR from the smooth muscle cells did not alter the airway resistance, indicating that CGRP does not act directly on the smooth muscle cells to drive airway hyperresponsiveness. Together, these data indicate that signaling through RAMP1 and CLR plays a role in mediating asthma pathology. Since RAMP1 and CLR interact to form a receptor for CGRP, our data indicate that aberrant CGRP signaling, perhaps on lung endothelial and inflammatory cells, contributes to asthma pathophysiology. Finally, since RAMP-receptor interfaces are pharmacologically tractable, it may be possible to develop compounds targeting the RAMP1/CLR

  13. Different effects of deep inspirations on central and peripheral airways in healthy and allergen-challenged mice

    Directory of Open Access Journals (Sweden)

    Dahlén Sven-Erik

    2008-02-01

    Full Text Available Abstract Background Deep inspirations (DI have bronchodilatory and bronchoprotective effects in healthy human subjects, but these effects appear to be absent in asthmatic lungs. We have characterized the effects of DI on lung mechanics during mechanical ventilation in healthy mice and in a murine model of acute and chronic airway inflammation. Methods Balb/c mice were sensitized to ovalbumin (OVA and exposed to nebulized OVA for 1 week or 12 weeks. Control mice were challenged with PBS. Mice were randomly selected to receive DI, which were given twice during the minute before assessment of lung mechanics. Results DI protected against bronchoconstriction of central airways in healthy mice and in mice with acute airway inflammation, but not when OVA-induced chronic inflammation was present. DI reduced lung resistance induced by methacholine from 3.8 ± 0.3 to 2.8 ± 0.1 cmH2O·s·mL-1 in healthy mice and 5.1 ± 0.3 to 3.5 ± 0.3 cmH2O·s·mL-1 in acute airway inflammation (both P P P P P Conclusion We have tested a mouse model of potential value for defining mechanisms and sites of action of DI in healthy and asthmatic human subjects. Our current results point to potent protective effects of DI on peripheral parts of chronically inflamed murine lungs and that the presence of DI may blunt airway hyperreactivity.

  14. Effect of Kuwanon G isolated from the root bark of Morus alba on ovalbumin-induced allergic response in a mouse model of asthma.

    Science.gov (United States)

    Jung, Hyo Won; Kang, Seok Yong; Kang, Jong Seong; Kim, A Ryun; Woo, Eun-Rhan; Park, Yong-Ki

    2014-11-01

    The root bark of Morus alba L. (Mori Cortex Radicis; MCR) is traditionally used in Korean medicine for upper respiratory diseases. In this study, we investigated the antiasthmatic effect of kuwanon G isolated from MCR on ovalbumin (OVA)-induced allergic asthma in mice. Kuwanon G (1 and 10 mg/kg) was administered orally in mice once a day for 7 days during OVA airway challenge. We measured the levels of OVA-specific IgE and Th2 cytokines (IL-4, IL-5, and IL-13) in the sera or bronchoalveolar lavage (BAL) fluids and also counted the immune cells in BAL fluids. Histopathological changes in the lung tissues were analyzed. Kuwanon G significantly decreased the levels of OVA-specific IgE and IL-4, IL-5, and IL-13 in the sera and BAL fluids of asthma mice. Kuwanon G reduced the numbers of inflammatory cells in the BAL fluids of asthma mice. Furthermore, the pathological feature of lungs including infiltration of inflammatory cells, thickened epithelium of bronchioles, mucus, and collagen accumulation was inhibited by kuwanon G. These results indicate that kuwanon G prevents the pathological progression of allergic asthma through the inhibition of lung destruction by inflammation and immune stimulation. Copyright © 2014 John Wiley & Sons, Ltd.

  15. TIM-3 is not essential for development of airway inflammation induced by house dust mite antigens

    Directory of Open Access Journals (Sweden)

    Yoshihisa Hiraishi

    2016-10-01

    Conclusions: Our findings indicate that, in mice, TIM-3 is not essential for development of HDM-induced acute or chronic allergic airway inflammation, although it appears to be involved in reduced lymphocyte recruitment during HDM-induced chronic allergic airway inflammation.

  16. Black seed oil ameliorates allergic airway inflammation by inhibiting T-cell proliferation in rats.

    Science.gov (United States)

    Shahzad, Muhammad; Yang, Xudong; Raza Asim, M B; Sun, Qingzhu; Han, Yan; Zhang, Fujun; Cao, Yongxiao; Lu, Shemin

    2009-02-01

    The black seeds, from the Ranunculaceae family, have been traditionally used by various cultures as a natural remedy for several ailments. In this study, we examined the effect of black seed oil as an immunomodulator in a rat model of allergic airway inflammation. Rats sensitized to ovalbumin and challenged intranasally with ovalbumin to induce an allergic inflammatory response were compared to ovalbumin-sensitized, intranasally ovalbumin-exposed rats pretreated with intraperitoneally administered black seed oil and to control rats. The levels of IgE, IgG1 and ova-specific T-cell proliferation in spleen were measured by ELISA. The pro-inflammatory cytokine IL-4, IL-5, IL-6 and TGF-beta1 mRNA expression levels were measured by reverse transcription polymerase chain reaction. The intraperitoneal administration of black seed oil inhibited the Th2 type immune response in rats by preventing inflammatory cell infiltration and pathological lesions in the lungs. It significantly decreased the nitric oxide production in BALF, total serum IgE, IgG1 and OVA-specific IgG1 along with IL-4, IL-5, IL-6 and TGF-beta1 mRNA expression. Black seed oil treatment resulted in decreased T-cell response evident by lesser delayed type hypersensitivity and lower T-cell proliferation in spleen. In conclusion, black seed oil exhibited a significant reduction in all the markers of allergic inflammation mainly by inhibiting the delayed type hypersensitivity and T-cell proliferation. The data suggests that inhibition of T-cell response may be responsible for immunomodulatory effect of black seed oil in the rat model of allergic airway inflammation.

  17. Aldose reductase inhibition prevents allergic airway remodeling through PI3K/AKT/GSK3β pathway in mice.

    Directory of Open Access Journals (Sweden)

    Umesh C S Yadav

    Full Text Available Long-term and unresolved airway inflammation and airway remodeling, characteristic features of chronic asthma, if not treated could lead to permanent structural changes in the airways. Aldose reductase (AR, an aldo-sugar and lipid aldehyde metabolizing enzyme, mediates allergen-induced airway inflammation in mice, but its role in the airway remodeling is not known. In the present study, we have examined the role of AR on airway remodeling using ovalbumin (OVA-induced chronic asthma mouse model and cultured human primary airway epithelial cells (SAECs and mouse lung fibroblasts (mLFs.Airway remodeling in chronic asthma model was established in mice sensitized and challenged twice a week with OVA for 6 weeks. AR inhibitor, fidarestat, was administered orally in drinking water after first challenge. Inflammatory cells infiltration in the lungs and goblet cell metaplasia, airway thickening, collagen deposition and airway hyper-responsiveness (AHR in response to increasing doses of methacholine were assessed. The TGFβ1-induced epithelial-mesenchymal transition (EMT in SAECs and changes in mLFs were examined to investigate AR-mediated molecular mechanism(s of airway remodeling.In the OVA-exposed mice for 6 wks inflammatory cells infiltration, levels of inflammatory cytokines and chemokines, goblet cell metaplasia, collagen deposition and AHR were significantly decreased by treatment with AR inhibitor, fidarestat. Further, inhibition of AR prevented TGFβ1-induced altered expression of E-cadherin, Vimentin, Occludin, and MMP-2 in SAECs, and alpha-smooth muscle actin and fibronectin in mLFs. Further, in SAECs, AR inhibition prevented TGFβ1- induced activation of PI3K/AKT/GSK3β pathway but not the phosphorylation of Smad2/3.Our results demonstrate that allergen-induced airway remodeling is mediated by AR and its inhibition blocks the progression of remodeling via inhibiting TGFβ1-induced Smad-independent and PI3K/AKT/GSK3β-dependent pathway.

  18. Arginase strongly impairs neuronal nitric oxide-mediated airway smooth muscle relaxation in allergic asthma

    Directory of Open Access Journals (Sweden)

    Zaagsma Johan

    2006-01-01

    Full Text Available Abstract Background Using guinea pig tracheal preparations, we have recently shown that endogenous arginase activity attenuates inhibitory nonadrenergic noncholinergic (iNANC nerve-mediated airway smooth muscle relaxation by reducing nitric oxide (NO production – due to competition with neuronal NO-synthase (nNOS for the common substrate, L-arginine. Furthermore, in a guinea pig model of allergic asthma, airway arginase activity is markedly increased after the early asthmatic reaction (EAR, leading to deficiency of agonist-induced, epithelium-derived NO and subsequent airway hyperreactivity. In this study, we investigated whether increased arginase activity after the EAR affects iNANC nerve-derived NO production and airway smooth muscle relaxation. Methods Electrical field stimulation (EFS; 150 mA, 4 ms, 4 s, 0.5 – 16 Hz-induced relaxation was measured in tracheal open-ring preparations precontracted to 30% with histamine in the presence of 1 μM atropine and 3 μM indomethacin. The contribution of NO to EFS-induced relaxation was assessed by the nonselective NOS inhibitor Nω-nitro-L-arginine (L-NNA, 100 μM, while the involvement of arginase activity in the regulation of EFS-induced NO production and relaxation was investigated by the effect of the specific arginase inhibitor Nω-hydroxy-nor-L-arginine (nor-NOHA, 10 μM. Furthermore, the role of substrate availability to nNOS was measured in the presence of exogenous L-arginine (5.0 mM. Results At 6 h after ovalbumin-challenge (after the EAR, EFS-induced relaxation (ranging from 3.2 ± 1.1% at 0.5 Hz to 58.5 ± 2.2% at 16 Hz was significantly decreased compared to unchallenged controls (7.1 ± 0.8% to 75.8 ± 0.7%; P P P Conclusion The results clearly demonstrate that increased arginase activity after the allergen-induced EAR contributes to a deficiency of iNANC nerve-derived NO and decreased airway smooth muscle relaxation, presumably via increased substrate competition with nNOS.

  19. Invariant NKT cells are required for airway inflammation induced by environmental antigens.

    Science.gov (United States)

    Wingender, Gerhard; Rogers, Paul; Batzer, Glenda; Lee, Myung Steve; Bai, Dong; Pei, Bo; Khurana, Archana; Kronenberg, Mitchell; Horner, Anthony A

    2011-06-06

    Invariant NKT cells (iNKT cells) are a unique subset of T lymphocytes that rapidly carry out effector functions. In this study, we report that a majority of sterile house dust extracts (HDEs) tested contained antigens capable of activating mouse and human iNKT cells. HDEs had adjuvant-like properties in an ovalbumin (OVA)-induced asthma model, which were dependent on Vα14i NKT cells, as vaccinated animals deficient for iNKT cells displayed significantly attenuated immune responses and airway inflammation. Furthermore, the administration of HDEs together with OVA mutually augmented the synthesis of cytokines by Vα14i NKT cells and by conventional CD4(+) T cells in the lung, demonstrating a profound immune response synergy for both Th2 cytokines and IL-17A. These data demonstrate that iNKT cell antigens are far more widely dispersed in the environment than previously anticipated. Furthermore, as the antigenic activity in different houses varied greatly, they further suggest that iNKT cell responses to ambient antigens, particular to certain environments, might promote sensitization to conventional respiratory allergens.

  20. An essential regulatory role of downstream of kinase-1 in the ovalbumin-induced murine model of asthma.

    Directory of Open Access Journals (Sweden)

    Chang-Min Lee

    Full Text Available The downstream of kinase (DOK-1 is involved in the protein tyrosine kinase (PTK pathway in mast cells, but the role of DOK-1 in the pathogenesis of asthma has not been defined. In this study, we have demonstrated a novel regulatory role of DOK-1 in airway inflammation and physiologic responses in a murine model of asthma using lentiviral vector containing DOK-1 cDNA or DOK-1-specific ShRNA. The OVA-induced inflammatory cells, airway hyperresponsiveness, Th2 cytokine expression, and mucus response were significantly reduced in DOK-1 overexpressing mice compared to OVA-challenged control mice. The transgenic introduction of DOK-1 significantly stimulated the activation and expression of STAT-4 and T-bet, while impressively inhibiting the activation and expression of STAT-6 and GATA-3 in airway epithelial cells. On the other hand, DOK-1 knockdown mice enhanced STAT-6 expression and its nuclear translocation compared to OVA-challenged control mice. When viewed in combination, our studies demonstrate DOK-1 regulates allergen-induced Th2 immune responses by selective stimulation and inhibition of STAT-4 and STAT-6 signaling pathways, respectively. These studies provide a novel insight on the regulatory role of DOK-1 in allergen-induced Th2 inflammation and airway responses, which has therapeutic potential for asthma and other allergic diseases.

  1. Reduction of allergenicity of irradiated ovalbumin in ovalbumin-allergic mice

    International Nuclear Information System (INIS)

    Seo, Ji-Hyun; Lee, Ju-Woon; Kim, Jae-Hun; Byun, Eui-Baek; Lee, Soo-Young; Kang, Il-Jun; Byun, Myung-Woo

    2007-01-01

    Egg allergy is one of the most serious of the immediate hypersensitivity reactions to foods. Such an allergic disorder is mediated by IgE antibodies stimulated by T-helper type 2 (Th2) lymphocytes. This study was undertaken to evaluate changes of allergenicity and cytokine profiles by exposure of irradiated ovalbumin (OVA), a major allergen of egg white, in the OVA-allergic mice model. OVA solutions (2 mg/ml in 0.01 M phosphate buffered saline (PBS) were gamma-irradiated to 50 and 100 kGy. The allergenicity in the OVA-allergy-induced mice model was remarkably reduced when challenged with irradiated OVA. Cultures of spleen cells harvested from OVA-sensitized mice showed a significant decrease in Th2 cytokine levels of ILs-4 and -5 with a concomitant increase in Th1 cytokine levels of IL-12 when co-cultured with irradiated OVA. However, IFN-γ level decreased dependant on the radiation dose of co-cultured OVA. The levels of IgEs and Th2-cytokine were reduced dependant on the radiation dose. These data show that the irradiated OVA could downregulate the activity of Th2 lymphocytes in OVA-sensitized mice

  2. Simvastatin inhibits smoke-induced airway epithelial injury: implications for COPD therapy.

    Science.gov (United States)

    Davis, Benjamin B; Zeki, Amir A; Bratt, Jennifer M; Wang, Lei; Filosto, Simone; Walby, William F; Kenyon, Nicholas J; Goldkorn, Tzipora; Schelegle, Edward S; Pinkerton, Kent E

    2013-08-01

    Chronic obstructive pulmonary disease (COPD) is the third leading cause of death. The statin drugs may have therapeutic potential in respiratory diseases such as COPD, but whether they prevent bronchial epithelial injury is unknown. We hypothesised that simvastatin attenuates acute tobacco smoke-induced neutrophilic lung inflammation and airway epithelial injury. Spontaneously hypertensive rats were given simvastatin (20 mg·kg(-1) i.p.) daily for either 7 days prior to tobacco smoke exposure and during 3 days of smoke exposure, or only during tobacco smoke exposure. Pretreatment with simvastatin prior to and continued throughout smoke exposure reduced the total influx of leukocytes, neutrophils and macrophages into the lung and airways. Simvastatin attenuated tobacco smoke-induced cellular infiltration into lung parenchymal and airway subepithelial and interstitial spaces. 1 week of simvastatin pretreatment almost completely prevented smoke-induced denudation of the airway epithelial layer, while simvastatin given only concurrently with the smoke exposure had no effect. Simvastatin may be a novel adjunctive therapy for smoke-induced lung diseases, such as COPD. Given the need for statin pretreatment there may be a critical process of conditioning that is necessary for statins' anti-inflammatory effects. Future work is needed to elucidate the mechanisms of this statin protective effect.

  3. March1 E3 Ubiquitin Ligase Modulates Features of Allergic Asthma in an Ovalbumin-Induced Mouse Model of Lung Inflammation

    Directory of Open Access Journals (Sweden)

    Osama A. Kishta

    2018-01-01

    Full Text Available Membrane-associated RING-CH-1 (March1 is a member of the March family of E3 ubiquitin ligases. March1 downregulates cell surface expression of MHC II and CD86 by targeting them to lysosomal degradation. Given the key roles of MHC class II and CD86 in T cell activation and to get further insights into the development of allergic inflammation, we asked whether March1 deficiency exacerbates or attenuates features of allergic asthma in mice. Herein, we used an acute model of allergy to compare the asthmatic phenotype of March1-deficient and -sufficient mice immunized with ovalbumin (OVA and later challenged by intranasal instillation of OVA in the lungs. We found that eosinophilic inflammation in airways and lung tissue was similar between WT and March1−/− allergic mice, whereas neutrophilic inflammation was significant only in March1−/− mice. Airway hyperresponsiveness as well as levels of IFN-γ, IL-13, IL-6, and IL-10 was lower in the lungs of asthmatic March1−/− mice compared to WT, whereas lung levels of TNF-α, IL-4, and IL-5 were not significantly different. Interestingly, in the serum, levels of total and ova-specific IgE were reduced in March1-deficient mice as compared to WT mice. Taken together, our results demonstrate a role of March1 E3 ubiquitin ligase in modulating allergic responses.

  4. Radiation induced changes in the airway - anaesthetic implications ...

    African Journals Online (AJOL)

    Radiation induced changes in the airway - anaesthetic implications: case report. Mallika Balakrishnan, Renju Kuriakose, Rachel Cherian Koshy. Abstract. Radiation induces a variety of changes in the airway that can potentially lead to difficult intubation. Osteoradionecrosis (ORN) of the mandible, a severe consequence of ...

  5. Motorcycle exhaust particles induce airway inflammation and airway hyperresponsiveness in BALB/C mice.

    Science.gov (United States)

    Lee, Chen-Chen; Liao, Jiunn-Wang; Kang, Jaw-Jou

    2004-06-01

    A number of large studies have reported that environmental pollutants from fossil fuel combustion can cause deleterious effects to the immune system, resulting in an allergic reaction leading to respiratory tract damage. In this study, we investigated the effect of motorcycle exhaust particles (MEP), a major pollutant in the Taiwan urban area, on airway inflammation and airway hyperresponsiveness in laboratory animals. BALB/c mice were instilled intratracheally (i.t.) with 1.2 mg/kg and 12 mg/kg of MEP, which was collected from two-stroke motorcycle engines. The mice were exposed 3 times i.t. with MEP, and various parameters for airway inflammation and hyperresponsiveness were sequentially analyzed. We found that MEP would induce airway and pulmonary inflammation characterized by infiltration of eosinophils, neutrophils, lymphocytes, and macrophages in bronchoalveolar lavage fluid (BALF) and inflammatory cell infiltration in lung. In addition, MEP treatment enhanced BALF interleukin-4 (IL-4), IL-5, and interferon-gamma (IFN-gamma) cytokine levels and serum IgE production. Bronchial response measured by unrestrained plethysmography with methacholine challenge showed that MEP treatment induced airway hyperresponsiveness (AHR) in BALB/c mice. The chemical components in MEP were further fractionated with organic solvents, and we found that the benzene-extracted fraction exerts a similar biological effect as seen with MEP, including airway inflammation, increased BALF IL-4, serum IgE production, and induction of AHR. In conclusion, we present evidence showing that the filter-trapped particles emitted from the unleaded-gasoline-fueled two-stroke motorcycle engine may induce proinflammatory and proallergic response profiles in the absence of exposure to allergen.

  6. In vivo micro-CT assessment of airway remodeling in a flexible OVA-sensitized murine model of asthma.

    Directory of Open Access Journals (Sweden)

    Mathieu Lederlin

    Full Text Available Airway remodeling is a major pathological feature of asthma. Up to now, its quantification still requires invasive methods. In this study, we aimed at determining whether in vivo micro-computed tomography (micro-CT is able to demonstrate allergen-induced airway remodeling in a flexible mouse model of asthma. Sixty Balb/c mice were challenged intranasally with ovalbumin or saline at 3 different endpoints (Days 35, 75, and 110. All mice underwent plethysmography at baseline and just prior to respiratory-gated micro-CT. Mice were then sacrificed to assess bronchoalveolar lavage and lung histology. From micro-CT images (voxel size = 46×46×46 µm, the numerical values of total lung attenuation, peribronchial attenuation (PBA, and PBA normalized by total lung attenuation were extracted. Each parameter was compared between OVA and control mice and correlation coefficients were calculated between micro-CT and histological data. As compared to control animals, ovalbumin-sensitized mice exhibited inflammation alone (Day 35, remodeling alone (Day 110 or both inflammation and remodeling (Day 75. Normalized PBA was significantly greater in mice exhibiting bronchial remodeling either alone or in combination with inflammation. Normalized PBA correlated with various remodeling markers such as bronchial smooth muscle size or peribronchial fibrosis. These findings suggest that micro-CT may help monitor remodeling non-invasively in asthmatic mice when testing new drugs targeting airway remodeling in pre-clinical studies.

  7. Airway Humidification Reduces the Inflammatory Response During Mechanical Ventilation.

    Science.gov (United States)

    Jiang, Min; Song, Jun-Jie; Guo, Xiao-Li; Tang, Yong-Lin; Li, Hai-Bo

    2015-12-01

    Currently, no clinical or animal studies have been performed to establish the relationship between airway humidification and mechanical ventilation-induced lung inflammatory responses. Therefore, an animal model was established to better define this relationship. Rabbits (n = 40) were randomly divided into 6 groups: control animals, sacrificed immediately after anesthesia (n = 2); dry gas group animals, subjected to mechanical ventilation for 8 h without humidification (n = 6); and experimental animals, subjected to mechanical ventilation for 8 h under humidification at 30, 35, 40, and 45°C, respectively (n = 8). Inflammatory cytokines in the bronchi alveolar lavage fluid (BALF) were measured. The integrity of the airway cilia and the tracheal epithelium was examined by scanning and transmission electron microscopy, respectively. Peripheral blood white blood cell counts and the wet to dry ratio and lung pathology were determined. Dry gas group animals showed increased tumor necrosis factor alpha levels in BALF compared with control animals (P humidification temperature was increased to 40°C. Scanning and transmission electron microscopy analysis revealed that cilia integrity was maintained in the 40°C groups. Peripheral white blood cell counts were not different among those groups. Compared with control animals, the wet to dry ratio was significantly elevated in the dry gas group (P humidification at 40°C resulted in reduced pathologic injury compared with the other groups based on the histologic score. Pathology and reduced inflammation observed in animals treated at 40°C was similar to that observed in the control animals, suggesting that appropriate humidification reduced inflammatory responses elicited as a consequence of mechanical ventilation, in addition to reducing damage to the cilia and reducing water loss in the airway. Copyright © 2015 by Daedalus Enterprises.

  8. Possible Mechanism of Action of the Antiallergic Effect of an Aqueous Extract of Heliotropium indicum L. in Ovalbumin-Induced Allergic Conjunctivitis.

    Science.gov (United States)

    Kyei, Samuel; Koffuor, George Asumeng; Ramkissoon, Paul; Abokyi, Samuel; Owusu-Afriyie, Osei; Wiredu, Eric Addo

    2015-01-01

    Heliotropium indicum is used traditionally as a remedy for conjunctivitis in Ghana. This study therefore evaluated the antiallergic potential of an aqueous whole plant extract of Heliotropium indicum (HIE) in ovalbumin-induced allergic conjunctivitis and attempted to predict its mode of action. Clinical scores for allergic conjunctivitis induced by intraperitoneal ovalbumin sensitization (100 : 10 μg OVA/Al(OH)3 in phosphate-buffered saline [PBS]) and topical conjunctival challenge (1.5 mg OVA in 10 μL PBS) in Dunkin-Hartley guinea pigs were estimated after a week's daily treatment with 30-300 mg kg(-1) HIE, 30 mg kg(-1) prednisolone, 10 mg kg(-1) chlorpheniramine, or 10 mL kg(-1) PBS. Ovalbumin-specific IgG and IgE and total IgE in serum were estimated using Enzyme-Linked Immunosorbent Assay. Histopathological assessment of the exenterated conjunctivae was also performed. The 30 and 300 mg kg(-1) HIE treatment resulted in a significantly (p ≤ 0.001) low clinical score of allergic conjunctivitis. Ovalbumin-specific IgG and IgE as well as total serum IgE also decreased significantly (p ≤ 0.01-0.001). The conjunctival tissue in HIE treated guinea pigs had mild mononuclear infiltration compared to the PBS-treated ones, which had intense conjunctival tissue inflammatory infiltration. HIE exhibited antiallergic effect possibly by immunomodulation or immunosuppression.

  9. Citrus tachibana Leaves Ethanol Extract Alleviates Airway Inflammation by the Modulation of Th1/Th2 Imbalance via Inhibiting NF-κB Signaling and Histamine Secretion in a Mouse Model of Allergic Asthma.

    Science.gov (United States)

    Bui, Thi Tho; Piao, Chun Hua; Kim, Soo Mi; Song, Chang Ho; Shin, Hee Soon; Lee, Chang-Hyun; Chai, Ok Hee

    2017-07-01

    Asthma is a chronic inflammatory disease of bronchial airway, which is characterized by chronic airway inflammation, airway edema, goblet cell hyperplasia, the aberrant production of the Th2 cytokines, and eosinophil infiltration in the lungs. In this study, the therapeutic effect and the underlying mechanism of Citrus tachibana leaves ethanol extract (CTLE) in the ovalbumin (OVA)-induced allergic asthma and compound 48/80-induced anaphylaxis were investigated. Oral administration of CTLE inhibited OVA-induced asthmatic response by reducing airway inflammation, OVA-specific IgE and IgG1 levels, and increasing OVA-specific IgG2a levels. CTLE restored Th1/Th2 balance through an increase in Th2 cytokines tumor necrosis factor-α, interleukin (IL)-4, and IL-6 and decreases in Th1 cytokines interferon-γ and IL-12. Furthermore, CTLE inhibited the total level of NF-κB and the phosphorylation of IκB-α and NF-κB by OVA. In addition, CTLE dose-dependently inhibited compound 48/80-induced anaphylaxis via blocking histamine secretion from mast cells. The anti-inflammatory mechanism of CTLE may involve the modulation of Th1/Th2 imbalance via inhibiting the NF-κB signaling and histamine secretion. Taken together, we suggest that CTLE could be used as a therapeutic agent for patients with Th2-mediated or histamine-mediated allergic asthma.

  10. Early treatment of chlorine-induced airway hyperresponsiveness and inflammation with corticosteroids

    Energy Technology Data Exchange (ETDEWEB)

    Jonasson, Sofia, E-mail: sofia.jonasson@foi.se [Swedish Defence Research Agency, Division of CBRN Defence and Security, Umeå (Sweden); Wigenstam, Elisabeth [Swedish Defence Research Agency, Division of CBRN Defence and Security, Umeå (Sweden); Department of Public Health and Clinical Medicine, Unit of Respiratory Medicine, Umeå University, Umeå (Sweden); Koch, Bo [Swedish Defence Research Agency, Division of CBRN Defence and Security, Umeå (Sweden); Bucht, Anders [Swedish Defence Research Agency, Division of CBRN Defence and Security, Umeå (Sweden); Department of Public Health and Clinical Medicine, Unit of Respiratory Medicine, Umeå University, Umeå (Sweden)

    2013-09-01

    Chlorine (Cl{sub 2}) is an industrial gas that is highly toxic and irritating when inhaled causing tissue damage and an acute inflammatory response in the airways followed by a long-term airway dysfunction. The aim of this study was to evaluate whether early anti-inflammatory treatment can protect against the delayed symptoms in Cl{sub 2}-exposed mice. BALB/c mice were exposed by nose-only inhalation using 200 ppm Cl{sub 2} during 15 min. Assessment of airway hyperresponsiveness (AHR), inflammatory cell counts in bronchoalveolar lavage, occurrence of lung edema and lung fibrosis were analyzed 24 h or 14 days post-exposure. A single dose of the corticosteroid dexamethasone (10 or 100 mg/kg) was administered intraperitoneally 1, 3, 6, or 12 h following Cl{sub 2} exposure. High-dose of dexamethasone reduced the acute inflammation if administered within 6 h after exposure but treated animals still displayed a significant lung injury. The effect of dexamethasone administered within 1 h was dose-dependent; high-dose significantly reduced acute airway inflammation (100 mg/kg) but not treatment with the relatively low-dose (10 mg/kg). Both doses reduced AHR 14 days later, while lung fibrosis measured as collagen deposition was not significantly reduced. The results point out that the acute inflammation in the lungs due to Cl{sub 2} exposure only partly is associated with the long-term AHR. We hypothesize that additional pathogenic mechanisms apart from the inflammatory reactions contribute to the development of long-term airway dysfunction. By using this mouse model, we have validated early administration of corticosteroids in terms of efficacy to prevent acute lung injury and delayed symptoms induced by Cl{sub 2} exposure. - Highlights: • Inhalation of Cl{sub 2} may lead to a long-standing airway hyperresponsiveness. • The symptoms in Cl{sub 2}-exposed mice are similar to those described for RADS in humans. • Corticosteroids prevent delayed symptoms such as AHR in

  11. TRPV1 inhibition attenuates IL-13 mediated asthma features in mice by reducing airway epithelial injury.

    Science.gov (United States)

    Rehman, Rakhshinda; Bhat, Younus Ahmad; Panda, Lipsa; Mabalirajan, Ulaganathan

    2013-03-01

    Even though neurogenic axis is well known in asthma pathogenesis much attention had not been given on this aspect. Recent studies have reported the importance of TRP channels, calcium-permeable ion channels and key molecules in neurogenic axis, in asthma therapeutics. The role of TRPV1 channels has been underestimated in chronic respiratory diseases as TRPV1 knockout mice of C57BL/6 strains did not attenuate the features of these diseases. However, this could be due to strain differences in the distribution of airway capsaicin receptors. Here, we show that TRPV1 inhibition attenuates IL-13 induced asthma features by reducing airway epithelial injury in BALB/c mice. We found that IL-13 increased not only the lung TRPV1 levels but also TRPV1 expression in bronchial epithelia in BALB/c rather than in C57BL/6 mice. TRPV1 knockdown attenuated airway hyperresponsiveness, airway inflammation, goblet cell metaplasia and subepithelial fibrosis induced by IL-13 in BALB/c mice. Further, TRPV1 siRNA treatment reduced not only the cytosolic calpain and mitochondrial calpain 10 activities in the lung but also bronchial epithelial apoptosis indicating that TRPV1 siRNA might have corrected the intracellular and intramitochondrial calcium overload and its consequent apoptosis. Knockdown of IL-13 in allergen induced asthmatic mice reduced TRPV1, cytochrome c, and activities of calpain and caspase 3 in lung cytosol. Thus, these findings suggest that induction of TRPV1 with IL-13 in bronchial epithelia could lead to epithelial injury in in vivo condition. Since TRPV1 expression is correlated with human asthma severity, TRPV1 inhibition could be beneficial in attenuating airway epithelial injury and asthma features. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Targeting Phosphoinositide 3-Kinase γ in Airway Smooth Muscle Cells to Suppress Interleukin-13-Induced Mouse Airway Hyperresponsiveness

    Science.gov (United States)

    Jiang, Haihong; Xie, Yan; Abel, Peter W.; Toews, Myron L.; Townley, Robert G.; Casale, Thomas B.

    2012-01-01

    We recently reported that phosphoinositide 3-kinase γ (PI3Kγ) directly regulates airway smooth muscle (ASM) contraction by modulating Ca2+ oscillations. Because ASM contraction plays a critical role in airway hyperresponsiveness (AHR) of asthma, the aim of the present study was to determine whether targeting PI3Kγ in ASM cells could suppress AHR in vitro and in vivo. Intranasal administration into mice of interleukin-13 (IL-13; 10 μg per mouse), a key pathophysiologic cytokine in asthma, induced AHR after 48 h, as assessed by invasive tracheostomy. Intranasal administration of a broad-spectrum PI3K inhibitor or a PI3Kγ-specific inhibitor 1 h before AHR assessment attenuated IL-13 effects. Airway responsiveness to bronchoconstrictor agonists was also examined in precision-cut mouse lung slices pretreated without or with IL-13 for 24 h. Acetylcholine and serotonin dose-response curves indicated that IL-13-treated lung slices had a 40 to 50% larger maximal airway constriction compared with controls. Furthermore, acetylcholine induced a larger initial Ca2+ transient and increased Ca2+ oscillations in IL-13-treated primary mouse ASM cells compared with control cells, correlating with increased cell contraction. As expected, PI3Kγ inhibitor treatment attenuated IL-13-augmented airway contractility of lung slices and ASM cell contraction. In both control and IL-13-treated ASM cells, small interfering RNA-mediated knockdown of PI3Kγ by 70% only reduced the initial Ca2+ transient by 20 to 30% but markedly attenuated Ca2+ oscillations and contractility of ASM cells by 50 to 60%. This report is the first to demonstrate that PI3Kγ in ASM cells is important for IL-13-induced AHR and that acute treatment with a PI3Kγ inhibitor can ameliorate AHR in a murine model of asthma. PMID:22543031

  13. Inherent and antigen-induced airway hyperreactivity in NC mice

    Directory of Open Access Journals (Sweden)

    Tetsuto Kobayashi

    1999-01-01

    Full Text Available In order to clarify the airway physiology of NC mice, the following experiments were carried out. To investigate inherent airway reactivity, we compared tracheal reactivity to various chemical mediators in NC, BALB/c, C57BL/6 and A/J mice in vitro. NC mice showed significantly greater reactivity to acetylcholine than BALB/c and C57BL/6 mice and a reactivity comparable to that of A/J mice, which are known as high responders. Then, airway reactivity to acetylcholine was investigated in those strains in vivo. NC mice again showed comparable airway reactivity to that seen in A/J mice and a significantly greater reactivity than that seen in BALB/c and C57BL/6 mice. To investigate the effects of airway inflammation on airway reactivity to acetylcholine in vivo, NC and BALB/c mice were sensitized to and challenged with antigen. Sensitization to and challenge with antigen induced accumulation of inflammatory cells, especially eosinophils, in lung and increased airway reactivity in NC and BALB/c mice. These results indicate that NC mice exhibit inherent and antigen-induced airway hyperreactivity. Therefore, NC mice are a suitable strain to use in investigating the mechanisms underlying airway hyperreactivity and such studies will provide beneficial information for understanding the pathophysiology of asthma.

  14. Effect of sildenafil on acrolein-induced airway inflammation and mucus production in rats.

    Science.gov (United States)

    Wang, T; Liu, Y; Chen, L; Wang, X; Hu, X-R; Feng, Y-L; Liu, D-S; Xu, D; Duan, Y-P; Lin, J; Ou, X-M; Wen, F-Q

    2009-05-01

    Airway inflammation with mucus overproduction is a distinguishing pathophysiological feature of many chronic respiratory diseases. Phosphodiesterase (PDE) inhibitors have shown anti-inflammatory properties. In the present study, the effect of sildenafil, a potent inhibitor of PDE5 that selectively degrades cyclic guanosine 3',5'-monophosphate (cGMP), on acrolein-induced inflammation and mucus production in rat airways was examined. Rats were exposed to acrolein for 14 and 28 days. Sildenafil or distilled saline was administered intragastrically prior to acrolein exposure. Bronchoalveolar lavage fluid (BALF) was acquired for cell count and the detection of pro-inflammatory cytokine levels. Lung tissue was examined for cGMP content, nitric oxide (NO)-metabolite levels, histopathological lesion scores, goblet cell metaplasia and mucin production. The results suggested that sildenafil pretreatment reversed the significant decline of cGMP content in rat lungs induced by acrolein exposure, and suppressed the increase of lung NO metabolites, the BALF leukocyte influx and pro-inflammatory cytokine release. Moreover, sildenafil pretreatment reduced acrolein-induced Muc5ac mucin synthesis at both mRNA and protein levels, and attenuated airway inflammation, as well as epithelial hyperplasia and metaplasia. In conclusion, sildenafil could attenuate airway inflammation and mucus production in the rat model, possibly through the nitric oxide/cyclic guanosine 3',5'-monophosphate pathway, and, thus, might have a therapeutic potential for chronic airway diseases.

  15. Angiogenesis is induced by airway smooth muscle strain.

    Science.gov (United States)

    Hasaneen, Nadia A; Zucker, Stanley; Lin, Richard Z; Vaday, Gayle G; Panettieri, Reynold A; Foda, Hussein D

    2007-10-01

    Angiogenesis is an important feature of airway remodeling in both chronic asthma and chronic obstructive pulmonary disease (COPD). Airways in those conditions are exposed to excessive mechanical strain during periods of acute exacerbations. We recently reported that mechanical strain of human airway smooth muscle (HASM) led to an increase in their proliferation and migration. Sustained growth in airway smooth muscle in vivo requires an increase in the nutritional supply to these muscles, hence angiogenesis. In this study, we examined the hypothesis that cyclic mechanical strain of HASM produces factors promoting angiogenic events in the surrounding vascular endothelial cells. Our results show: 1) a significant increase in human lung microvascular endothelial cell (HMVEC-L) proliferation, migration, and tube formation following incubation in conditioned media (CM) from HASM cells exposed to mechanical strain; 2) mechanical strain of HASM cells induced VEGF expression and release; 3) VEGF neutralizing antibodies inhibited the proliferation, migration, and tube formations of HMVEC-L induced by the strained airway smooth muscle CM; 4) mechanical strain of HASM induced a significant increase in hypoxia-inducible factor-1alpha (HIF-1alpha) mRNA and protein, a transcription factor required for VEGF gene transcription; and 5) mechanical strain of HASM induced HIF-1alpha/VEGF through dual phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) and ERK pathways. In conclusion, exposing HASM cells to mechanical strain induces signal transduction pathway through PI3K/Akt/mTOR and ERK pathways that lead to an increase in HIF-1alpha, a transcription factor required for VEGF expression. VEGF release by mechanical strain of HASM may contribute to the angiogenesis seen with repeated exacerbation of asthma and COPD.

  16. Deep-Sea-Derived Butyrolactone I Suppresses Ovalbumin-Induced Anaphylaxis by Regulating Mast Cell Function in a Murine Model.

    Science.gov (United States)

    Liu, Qing-Mei; Xie, Chun-Lan; Gao, Yuan-Yuan; Liu, Bo; Lin, Wei-Xiang; Liu, Hong; Cao, Min-Jie; Su, Wen-Jin; Yang, Xian-Wen; Liu, Guang-Ming

    2018-05-22

    Deep-sea-derived butyrolactone I (BTL-I), which was identified as a type of butanolide, was isolated from Aspergillus sp. Ovalbumin (OVA)-induced BALB/c anaphylaxis was established to explore the antifood allergic activity of BTL-I. As a result, BTL-I was able to alleviate OVA-induced allergy symptoms, reduce the levels of histamine and mouse mast cell proteinases, inhibit OVA-specific IgE, and decrease the population of mast cells in the spleen and mesenteric lymph nodes. BTL-I also significantly suppressed mast-dependent passive cutaneous anaphylaxis. Additionally, the maturation of bone marrow-derived mast cells (BMMCs) declined as BTL-I caused down-regulation of c-KIT receptors. Furthermore, molecular docking analyses revealed that BTL-I interacted with the inhibitory receptor, FcγRIIB. In conclusion, the reduction of mast cell function by deep-sea-derived BTL-I as well as its interactions with the inhibitory receptor, FcγRIIB, may contribute to BTL-I-related protection against food anaphylaxis.

  17. Allergen-induced changes in airway responsiveness are related to baseline airway responsiveness

    NARCIS (Netherlands)

    deBruinWeller, MS; Weller, FR; RijssenbeekNouwens, LHM; Jansen, HM; deMonchy, JGR

    In the literature, bronchial allergen challenge is usually reported to result in an increase in histamine-induced airway responsiveness (AR). The present study investigated the relation between baseline AR and allergen-induced changes in AR. The effect of allergen challenge on AR was investigated in

  18. Ferulic Acid Induces Th1 Responses by Modulating the Function of Dendritic Cells and Ameliorates Th2-Mediated Allergic Airway Inflammation in Mice

    Directory of Open Access Journals (Sweden)

    Chen-Chen Lee

    2015-01-01

    Full Text Available This study investigated the immunomodulatory effects of ferulic acid (FA on antigen-presenting dendritic cells (DCs in vitro and its antiallergic effects against ovalbumin- (OVA- induced Th2-mediated allergic asthma in mice. The activation of FA-treated bone marrow-derived DCs by lipopolysaccharide (LPS stimulation induced a high level of interleukin- (IL- 12 but reduced the expression levels of the proinflammatory cytokines IL-1β, IL-6, and tumor necrosis factor- (TNF- α. Compared to control-treated DCs, FA significantly enhanced the expressions of Notch ligand Delta-like 4 (Dll4, MHC class II, and CD40 molecules by these DCs. Furthermore, these FA-treated DCs enhanced T-cell proliferation and Th1 cell polarization. In animal experiments, oral administration of FA reduced the levels of OVA-specific immunoglobulin E (IgE and IgG1 and enhanced IgG2a antibody production in serum. It also ameliorated airway hyperresponsiveness and attenuated eosinophilic pulmonary infiltration in dose-dependent manners. In addition, FA treatment inhibited the production of eotaxin, Th2 cytokines (IL-4, IL-5, and IL-13, and proinflammatory cytokines but promoted the Th1 cytokine interferon- (IFN- γ production in bronchoalveolar lavage fluid (BALF and the culture supernatant of spleen cells. These findings suggest that FA exhibits an antiallergic effect via restoring Th1/Th2 imbalance by modulating DCs function in an asthmatic mouse model.

  19. Protective Roles for RGS2 in a Mouse Model of House Dust Mite-Induced Airway Inflammation.

    Directory of Open Access Journals (Sweden)

    Tresa George

    Full Text Available The GTPase-accelerating protein, regulator of G-protein signalling 2 (RGS2 reduces signalling from G-protein-coupled receptors (GPCRs that signal via Gαq. In humans, RGS2 expression is up-regulated by inhaled corticosteroids (ICSs and long-acting β2-adrenoceptor agonists (LABAs such that synergy is produced in combination. This may contribute to the superior clinical efficacy of ICS/LABA therapy in asthma relative to ICS alone. In a murine model of house dust mite (HDM-induced airways inflammation, three weeks of intranasal HDM (25 μg, 3×/week reduced lung function and induced granulocytic airways inflammation. Compared to wild type animals, Rgs2-/- mice showed airways hyperresponsiveness (increased airways resistance and reduced compliance. While HDM increased pulmonary inflammation observed on hematoxylin and eosin-stained sections, there was no difference between wild type and Rgs2-/- animals. HDM-induced mucus hypersecretion was also unaffected by RGS2 deficiency. However, inflammatory cell counts in the bronchoalveolar lavage fluid of Rgs2-/- animals were significantly increased (57% compared to wild type animals and this correlated with increased granulocyte (neutrophil and eosinophil numbers. Likewise, cytokine and chemokine (IL4, IL17, IL5, LIF, IL6, CSF3, CXCLl, CXCL10 and CXCL11 release was increased by HDM exposure. Compared to wild type, Rgs2-/- animals showed a trend towards increased expression for many cytokines/chemokines, with CCL3, CCL11, CXCL9 and CXCL10 being significantly enhanced. As RGS2 expression was unaffected by HDM exposure, these data indicate that RGS2 exerts tonic bronchoprotection in HDM-induced airways inflammation. Modest anti-inflammatory and anti-remodelling roles for RGS2 are also suggested. If translatable to humans, therapies that maximize RGS2 expression may prove advantageous.

  20. Augmentation of arginase 1 expression by exposure to air pollution exacerbates the airways hyperresponsiveness in murine models of asthma

    Directory of Open Access Journals (Sweden)

    Amatullah Hajera

    2011-02-01

    Full Text Available Abstract Background Arginase overexpression contributes to airways hyperresponsiveness (AHR in asthma. Arginase expression is further augmented in cigarette smoking asthmatics, suggesting that it may be upregulated by environmental pollution. Thus, we hypothesize that arginase contributes to the exacerbation of respiratory symptoms following exposure to air pollution, and that pharmacologic inhibition of arginase would abrogate the pollution-induced AHR. Methods To investigate the role of arginase in the air pollution-induced exacerbation of airways responsiveness, we employed two murine models of allergic airways inflammation. Mice were sensitized to ovalbumin (OVA and challenged with nebulized PBS (OVA/PBS or OVA (OVA/OVA for three consecutive days (sub-acute model or 12 weeks (chronic model, which exhibit inflammatory cell influx and remodeling/AHR, respectively. Twenty-four hours after the final challenge, mice were exposed to concentrated ambient fine particles plus ozone (CAP+O3, or HEPA-filtered air (FA, for 4 hours. After the CAP+O3 exposures, mice underwent tracheal cannulation and were treated with an aerosolized arginase inhibitor (S-boronoethyl-L-cysteine; BEC or vehicle, immediately before determination of respiratory function and methacholine-responsiveness using the flexiVent®. Lungs were then collected for comparison of arginase activity, protein expression, and immunohistochemical localization. Results Compared to FA, arginase activity was significantly augmented in the lungs of CAP+O3-exposed OVA/OVA mice in both the sub-acute and chronic models. Western blotting and immunohistochemical staining revealed that the increased activity was due to arginase 1 expression in the area surrounding the airways in both models. Arginase inhibition significantly reduced the CAP+O3-induced increase in AHR in both models. Conclusions This study demonstrates that arginase is upregulated following environmental exposures in murine models of

  1. Inhibitory Effect of Pycnogenol® on Airway Inflammation in Ovalbumin-Induced Allergic Rhinitis

    Directory of Open Access Journals (Sweden)

    Ceren Günel

    2016-12-01

    Full Text Available Background: The supplement Pycnogenol® (PYC has been used for the treatment of several chronic diseases including allergic rhinitis (AR. However, the in vivo effects on allergic inflammation have not been identified to date. Aims: To investigate the treatment results of PYC on allergic inflammation in a rat model of allergic rhinitis. Study Design: Animal experimentation. Methods: Allergic rhinitis was stimulated in 42 rats by intraperitoneal sensitization and intranasal challenge with Ovalbumin. The animals were divided into six subgroups: healthy controls, AR group, AR group treated with corticosteroid (dexamethasone 1 mg/kg; CS+AR, healthy rats group that were given only PYC of 10 mg/kg (PYC10, AR group treated with PYC of 3mg/kg (PYC3+AR, and AR group treated with PYC of 10 mg/kg (PYC10+AR. Interferon-γ (IFN-γ, interleukin-4 (IL-4, interleukin-10 (IL-10, and OVA-specific immunoglobulin E (Ig-E levels of serum were measured. Histopathological changes in nasal mucosa and expression of tumor necrosis factor-α (TNF-α and IL-1β were evaluated. Results: The levels of the IL-4 were significantly decreased in the PYC3+AR, PYC10+AR and CS+AR groups compared with the AR group (p=0.002, p<0.001, p=0.006. The production of the IFN-γ was significantly decreased in the PYC3+AR and PYC10+AR groups compared with the AR group (p=0.013, p=0.001. The administration of PYC to allergic rats suppressed the elevated IL-10 production, especially in the PYC3+AR group (p=0.006. Mucosal edema was significantly decreased respectively after treatment at dose 3 mg/kg and 10 mg/kg PYC (both, p<0.001. The mucosal expression of TNF-α has significantly decreased in the PYC3+AR and PYC10+AR groups (p=0.005, p<0.001, while the IL-1β expression significantly decreased in the CS+AR, PYC3+AR, and PYC10+AR groups (p<0.001, p=0.003, p=0.001. Conclusion: PYC has multiple suppressive effects on allergic response. Thus, PYC may be used as a supplementary agent in allergic

  2. Counterbalancing of TH2-driven allergic airway inflammation by IL-12 does not require IL-10.

    Science.gov (United States)

    Tournoy, K G; Kips, J C; Pauwels, R A

    2001-03-01

    Asthma is characterized by allergen-induced airway inflammation orchestrated by TH2 cells. The TH1-promoting cytokine IL-12 is capable of inhibiting the TH2-driven allergen-induced airway changes in mice and is therefore regarded as an interesting strategy for treating asthma. The antiallergic effects of IL-12 are only partially dependent of IFN-gamma. Because IL-12 is a potent inducer of the anti-inflammatory cytokine IL-10, the aim of the present study was to investigate in vivo whether the antiallergic effects of IL-12 are mediated through IL-10. C57BL/6J-IL-10 knock-out (IL-10(-/-)) mice were sensitized intraperitoneally to ovalbumin (OVA) and subsequently exposed from day 14 to day 21 to aerosolized OVA (1%). IL-12 was administered intraperitoneally during sensitization, subsequent OVA exposure, or both. IL-12 inhibited the OVA-induced airway eosinophilia, despite the absence of IL-10. Moreover, a shift from a TH2 inflammatory pattern toward a TH1 reaction was observed, with concomitant pronounced mononuclear peribronchial inflammation after IL-12 treatment. Allergen-specific IgE synthesis was completely suppressed only when IL-12 was administered along with the allergen sensitization. Furthermore, treating the animals with IL-12 at the time of the secondary allergen challenge resulted not only in a significant suppression of the airway responsiveness but also in an important IFN-gamma-associated toxicity. These results indicate that IL-12 is able to inhibit allergen-induced airway changes, even in the absence of IL-10. In addition, our results raise concerns regarding the redirection of TH2 inflammation by TH1-inducing therapies because treatment with IL-12 resulted not only in a disappearance of the TH2 inflammation but also in a TH1-driven inflammatory pulmonary pathology.

  3. Reduced immune responses in chimeric mice engrafted with bone marrow cells from mice with airways inflammation.

    Science.gov (United States)

    Scott, Naomi M; Ng, Royce L X; McGonigle, Terence A; Gorman, Shelley; Hart, Prue H

    2015-11-01

    During respiratory inflammation, it is generally assumed that dendritic cells differentiating from the bone marrow are immunogenic rather than immunoregulatory. Using chimeric mice, the outcomes of airways inflammation on bone marrow progenitor cells were studied. Immune responses were analyzed in chimeric mice engrafted for >16 weeks with bone marrow cells from mice with experimental allergic airways disease (EAAD). Responses to sensitization and challenge with the allergen causing inflammation in the bone marrow-donor mice were significantly reduced in the chimeric mice engrafted with bone marrow cells from mice with EAAD (EAAD-chimeric). Responses to intranasal LPS and topical fluorescein isothiocyanate (non-specific challenges) were significantly attenuated. Fewer activated dendritic cells from the airways and skin of the EAAD-chimeric mice could be tracked to the draining lymph nodes, and may contribute to the significantly reduced antigen/chemical-induced hypertrophy in the draining nodes, and the reduced immune responses to sensitizing allergens. Dendritic cells differentiating in vitro from the bone marrow of >16 weeks reconstituted EAAD-chimeric mice retained an ability to poorly prime immune responses when transferred into naïve mice. Dendritic cells developing from bone marrow progenitors during airways inflammation are altered such that daughter cells have reduced antigen priming capabilities.

  4. IL-18 Does not Increase Allergic Airway Disease in Mice When Produced by BCG

    Science.gov (United States)

    Amniai, L.; Biet, F.; Marquillies, P.; Locht, C.; Pestel, J.; Tonnel, A.-B.; Duez, C.

    2007-01-01

    Whilst BCG inhibits allergic airway responses in murine models, IL-18 has adversary effects depending on its environment. We therefore constructed a BCG strain producing murine IL-18 (BCG-IL-18) and evaluated its efficiency to prevent an asthma-like reaction in mice. BALB/cByJ mice were sensitized (day (D) 1 and D10) by intraperitoneal injection of ovalbumin (OVA)-alum and primary (D20–22) and secondary (D62, 63) challenged with OVA aerosols. BCG or BCG-IL-18 were intraperitonealy administered 1 hour before each immunization (D1 and D10). BCG-IL-18 and BCG were shown to similarly inhibit the development of AHR, mucus production, eosinophil influx, and local Th2 cytokine production in BAL, both after the primary and secondary challenge. These data show that IL-18 did not increase allergic airway responses in the context of the mycobacterial infection, and suggest that BCG-IL-18 and BCG are able to prevent the development of local Th2 responses and therefore inhibit allergen-induced airway responses even after restimulation. PMID:18299704

  5. Inhaled corticosteroids inhibit substance P receptor expression in asthmatic rat airway smooth muscle cells

    Directory of Open Access Journals (Sweden)

    Li Miao

    2012-12-01

    Full Text Available Abstract Background Neurokinins (NKs participate in asthmatic airway inflammation, but the effects of NKs on airway smooth muscle cells (ASMCs and those of corticosteroids on NKs are unknown. Methods To investigate the effect of budesonide on substance P (NK-1 receptor (NK-1R expression in the lung and ASMCs, 45 Wistar rats were randomly divided into three groups: control, asthmatic, and budesonide treatment. Aerosolized ovalbumin was used to generate the asthmatic rat model, and budesonide was administered after ovalbumin inhalation. On day 21, bronchial responsiveness tests, bronchoalveolar lavage, and cell counting were conducted. NK-1R protein expression in the lung was investigated by immunohistochemistry and image analysis. Primary rat ASMC cultures were established, and purified ASMCs of the fourth passage were collected for mRNA and protein studies via real-time RT-PCR, immunocytochemistry, and image analysis. Results NK-1R mRNA and protein expression in the budesonide treatment group rat’s lung and ASMCs were less than that in the asthmatic group but greater than that in the control group. Conclusions NK-1R is involved in the pathogenesis of asthma and that budesonide may downregulate the expression of NK-1R in the ASMCs and airways of asthmatic rats, which may alleviate neurogenic airway inflammation.

  6. Suppressive effect of compact bone-derived mesenchymal stem cells on chronic airway remodeling in murine model of asthma.

    Science.gov (United States)

    Ogulur, Ismail; Gurhan, Gulben; Aksoy, Ayca; Duruksu, Gokhan; Inci, Cigdem; Filinte, Deniz; Kombak, Faruk Erdem; Karaoz, Erdal; Akkoc, Tunc

    2014-05-01

    New therapeutic strategies are needed in the treatment of asthma besides vaccines and pharmacotherapies. For the development of novel therapies, the use of mesenchymal stem cells (MSCs) is a promising approach in regenerative medicine. Delivery of compact bone (CB) derived MSCs to the injured lungs is an alternative treatment strategy for chronic asthma. In this study, we aimed to isolate highly enriched population of MSCs from mouse CB with regenerative capacity, and to investigate the impact of these cells in airway remodeling and inflammation in experimental ovalbumin-induced mouse model of chronic asthma. mCB-MSCs were isolated, characterized, labeled with GFP and then transferred into mice with chronic asthma developed by ovalbumin (OVA) provocation. Histopathological changes including basement membrane, epithelium, subepithelial smooth thickness and goblet cell hyperplasia, and MSCs migration to lung tissues were evaluated. These histopathological alterations were increased in ovalbumin-treated mice compared to PBS group (Pasthma. The results reported here provided evidence that mCB-MSCs may be an alternative strategy for the treatment of remodeling and inflammation associated with chronic asthma. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Biochanin A, a Phytoestrogenic Isoflavone with Selective Inhibition of Phosphodiesterase 4, Suppresses Ovalbumin-Induced Airway Hyperresponsiveness

    Directory of Open Access Journals (Sweden)

    Wun-Chang Ko

    2011-01-01

    the serum and BALF, and enhanced the total IgG2a level in the serum of these mice. The PDE4H/PDE4L value of biochanin A was calculated as >35. Biochanin A did not influence xylazine/ketamine-induced anesthesia. Biochanin A (10~30 μM significantly reduced cumulative OVA (10~100 μg/mL-induced contractions in the isolated guinea pig trachealis, suggesting that it inhibits degranulation of mast cells. In conclusion, red clover containing biochanin A has the potential for treating allergic asthma and COPD.

  8. House dust exposure mediates gut microbiome Lactobacillus enrichment and airway immune defense against allergens and virus infection.

    Science.gov (United States)

    Fujimura, Kei E; Demoor, Tine; Rauch, Marcus; Faruqi, Ali A; Jang, Sihyug; Johnson, Christine C; Boushey, Homer A; Zoratti, Edward; Ownby, Dennis; Lukacs, Nicholas W; Lynch, Susan V

    2014-01-14

    Exposure to dogs in early infancy has been shown to reduce the risk of childhood allergic disease development, and dog ownership is associated with a distinct house dust microbial exposure. Here, we demonstrate, using murine models, that exposure of mice to dog-associated house dust protects against ovalbumin or cockroach allergen-mediated airway pathology. Protected animals exhibited significant reduction in the total number of airway T cells, down-regulation of Th2-related airway responses, as well as mucin secretion. Following dog-associated dust exposure, the cecal microbiome of protected animals was extensively restructured with significant enrichment of, amongst others, Lactobacillus johnsonii. Supplementation of wild-type animals with L. johnsonii protected them against both airway allergen challenge or infection with respiratory syncytial virus. L. johnsonii-mediated protection was associated with significant reductions in the total number and proportion of activated CD11c(+)/CD11b(+) and CD11c(+)/CD8(+) cells, as well as significantly reduced airway Th2 cytokine expression. Our results reveal that exposure to dog-associated household dust results in protection against airway allergen challenge and a distinct gastrointestinal microbiome composition. Moreover, the study identifies L. johnsonii as a pivotal species within the gastrointestinal tract capable of influencing adaptive immunity at remote mucosal surfaces in a manner that is protective against a variety of respiratory insults.

  9. Airway Surface Dehydration Aggravates Cigarette Smoke-Induced Hallmarks of COPD in Mice.

    Science.gov (United States)

    Seys, Leen J M; Verhamme, Fien M; Dupont, Lisa L; Desauter, Elke; Duerr, Julia; Seyhan Agircan, Ayca; Conickx, Griet; Joos, Guy F; Brusselle, Guy G; Mall, Marcus A; Bracke, Ken R

    2015-01-01

    Airway surface dehydration, caused by an imbalance between secretion and absorption of ions and fluid across the epithelium and/or increased epithelial mucin secretion, impairs mucociliary clearance. Recent evidence suggests that this mechanism may be implicated in chronic obstructive pulmonary disease (COPD). However, the role of airway surface dehydration in the pathogenesis of cigarette smoke (CS)-induced COPD remains unknown. We aimed to investigate in vivo the effect of airway surface dehydration on several CS-induced hallmarks of COPD in mice with airway-specific overexpression of the β-subunit of the epithelial Na⁺ channel (βENaC). βENaC-Tg mice and wild-type (WT) littermates were exposed to air or CS for 4 or 8 weeks. Pathological hallmarks of COPD, including goblet cell metaplasia, mucin expression, pulmonary inflammation, lymphoid follicles, emphysema and airway wall remodelling were determined and lung function was measured. Airway surface dehydration in βENaC-Tg mice aggravated CS-induced airway inflammation, mucin expression and destruction of alveolar walls and accelerated the formation of pulmonary lymphoid follicles. Moreover, lung function measurements demonstrated an increased compliance and total lung capacity and a lower resistance and hysteresis in βENaC-Tg mice, compared to WT mice. CS exposure further altered lung function measurements. We conclude that airway surface dehydration is a risk factor that aggravates CS-induced hallmarks of COPD.

  10. Preventative effect of an herbal preparation (HemoHIM) on development of airway inflammation in mice via modulation of Th1/2 cells differentiation.

    Science.gov (United States)

    Kim, Jong-Jin; Cho, Hyun Wook; Park, Hae-Ran; Jung, Uhee; Jo, Sung-Kee; Yee, Sung-Tae

    2013-01-01

    HemoHIM, an herbal preparation of three edible herbs (Angelica gigas Nakai, Cnidium officinale Makino, Paeonia japonica Miyabe) is known to increase the Th1 immune response as well as reduce the allergic response in human mast cells. Here, our goal was to determine whether or not HemoHIM could induce Th1 cell differentiation as well as inhibit the development of airway inflammation. To study Th1/Th2 cell differentiation, naive CD4(+) T cells isolated from C57BL/6 mouse spleens were cultured with or without HemoHIM. To examine airway inflammation, C57BL/6 mice were fed HemoHIM for 4 weeks before sensitization and provocation with ovalbumin (OVA). In an in vitro experiment, naive CD4(+) T cells displayed increased Th1 (IFN-γ(+) cell) as well as decreased Th2 (IL-4(+) cell) differentiation in a HemoHIM concentration-dependent manner. Furthermore, in an airway inflammation mice model, eosinophil numbers in BALF, serum levels of OVA-specific IgE and IgG1, and cytokine (IL-4, IL-5, and IL-13) levels in BALF and the supernatant of splenocytes all decreased upon HemoHIM (100 mg/kg body weight) pretreatment (4 weeks). These results show that HemoHIM attenuated allergic airway inflammation in the mouse model through regulation of the Th1/Th2 balance.

  11. Preventative effect of an herbal preparation (HemoHIM on development of airway inflammation in mice via modulation of Th1/2 cells differentiation.

    Directory of Open Access Journals (Sweden)

    Jong-Jin Kim

    Full Text Available HemoHIM, an herbal preparation of three edible herbs (Angelica gigas Nakai, Cnidium officinale Makino, Paeonia japonica Miyabe is known to increase the Th1 immune response as well as reduce the allergic response in human mast cells. Here, our goal was to determine whether or not HemoHIM could induce Th1 cell differentiation as well as inhibit the development of airway inflammation. To study Th1/Th2 cell differentiation, naive CD4(+ T cells isolated from C57BL/6 mouse spleens were cultured with or without HemoHIM. To examine airway inflammation, C57BL/6 mice were fed HemoHIM for 4 weeks before sensitization and provocation with ovalbumin (OVA. In an in vitro experiment, naive CD4(+ T cells displayed increased Th1 (IFN-γ(+ cell as well as decreased Th2 (IL-4(+ cell differentiation in a HemoHIM concentration-dependent manner. Furthermore, in an airway inflammation mice model, eosinophil numbers in BALF, serum levels of OVA-specific IgE and IgG1, and cytokine (IL-4, IL-5, and IL-13 levels in BALF and the supernatant of splenocytes all decreased upon HemoHIM (100 mg/kg body weight pretreatment (4 weeks. These results show that HemoHIM attenuated allergic airway inflammation in the mouse model through regulation of the Th1/Th2 balance.

  12. Secondhand smoke exposure induces acutely airway acidification and oxidative stress.

    Science.gov (United States)

    Kostikas, Konstantinos; Minas, Markos; Nikolaou, Eftychia; Papaioannou, Andriana I; Liakos, Panagiotis; Gougoura, Sofia; Gourgoulianis, Konstantinos I; Dinas, Petros C; Metsios, Giorgos S; Jamurtas, Athanasios Z; Flouris, Andreas D; Koutedakis, Yiannis

    2013-02-01

    Previous studies have shown that secondhand smoke induces lung function impairment and increases proinflammatory cytokines. The aim of the present study was to evaluate the acute effects of secondhand smoke on airway acidification and airway oxidative stress in never-smokers. In a randomized controlled cross-over trial, 18 young healthy never-smokers were assessed at baseline and 0, 30, 60, 120, 180 and 240 min after one-hour secondhand smoke exposure at bar/restaurant levels. Exhaled NO and CO measurements, exhaled breath condensate collection (for pH, H(2)O(2) and NO(2)(-)/NO(3)(-) measurements) and spirometry were performed at all time-points. Secondhand smoke exposure induced increases in serum cotinine and exhaled CO that persisted until 240 min. Exhaled breath condensate pH decreased immediately after exposure (p secondhand smoke induced airway acidification and increased airway oxidative stress, accompanied by significant impairment of lung function. Despite the reversal in EBC pH and lung function, airway oxidative stress remained increased 4 h after the exposure. Clinical trial registration number (EudraCT): 2009-013545-28. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Iptakalim inhibits PDGF-BB-induced human airway smooth muscle cells proliferation and migration

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wenrui; Kong, Hui; Zeng, Xiaoning; Wang, Jingjing; Wang, Zailiang; Yan, Xiaopei; Wang, Yanli; Xie, Weiping, E-mail: wpxie@njmu.edu.cn; Wang, Hong, E-mail: hongwang@njmu.edu.cn

    2015-08-15

    Chronic airway diseases are characterized by airway remodeling which is attributed partly to the proliferation and migration of airway smooth muscle cells (ASMCs). ATP-sensitive potassium (K{sub ATP}) channels have been identified in ASMCs. Mount evidence has suggested that K{sub ATP} channel openers can reduce airway hyperresponsiveness and alleviate airway remodeling. Opening K{sup +} channels triggers K{sup +} efflux, which leading to membrane hyperpolarization, preventing Ca{sup 2+}entry through closing voltage-operated Ca{sup 2+} channels. Intracellular Ca{sup 2+} is the most important regulator of muscle contraction, cell proliferation and migration. K{sup +} efflux decreases Ca{sup 2+} influx, which consequently influences ASMCs proliferation and migration. As a K{sub ATP} channel opener, iptakalim (Ipt) has been reported to restrain the proliferation of pulmonary arterial smooth muscle cells (PASMCs) involved in vascular remodeling, while little is known about its impact on ASMCs. The present study was designed to investigate the effects of Ipt on human ASMCs and the mechanisms underlying. Results obtained from cell counting kit-8 (CCK-8), flow cytometry and 5-ethynyl-2′-deoxyuridine (EdU) incorporation showed that Ipt significantly inhibited platelet-derived growth factor (PDGF)-BB-induced ASMCs proliferation. ASMCs migration induced by PDGF-BB was also suppressed by Ipt in transwell migration and scratch assay. Besides, the phosphorylation of Ca{sup 2+}/calmodulin-dependent kinase II (CaMKII), extracellular regulated protein kinases 1/2 (ERK1/2), protein kinase B (Akt), and cyclic adenosine monophosphate (cAMP) response element binding protein (CREB) were as well alleviated by Ipt administration. Furthermore, we found that the inhibition of Ipt on the PDGF-BB-induced proliferation and migration in human ASMCs was blocked by glibenclamide (Gli), a selective K{sub ATP} channel antagonist. These findings provide a strong evidence to support that Ipt

  14. Tomatidine Attenuates Airway Hyperresponsiveness and Inflammation by Suppressing Th2 Cytokines in a Mouse Model of Asthma

    Directory of Open Access Journals (Sweden)

    Chieh-Ying Kuo

    2017-01-01

    Full Text Available Tomatidine is isolated from the fruits of tomato plants and found to have anti-inflammatory effects in macrophages. In the present study, we investigated whether tomatidine suppresses airway hyperresponsiveness (AHR and eosinophil infiltration in asthmatic mice. BALB/c mice were sensitized with ovalbumin and treated with tomatidine by intraperitoneal injection. Airway resistance was measured by intubation analysis as an indication of airway responsiveness, and histological studies were performed to evaluate eosinophil infiltration in lung tissue. Tomatidine reduced AHR and decreased eosinophil infiltration in the lungs of asthmatic mice. Tomatidine suppressed Th2 cytokine production in bronchoalveolar lavage fluid. Tomatidine also blocked the expression of inflammatory and Th2 cytokine genes in lung tissue. In vitro, tomatidine inhibited proinflammatory cytokines and CCL11 production in inflammatory BEAS-2B bronchial epithelial cells. These results indicate that tomatidine contributes to the amelioration of AHR and eosinophil infiltration by blocking the inflammatory response and Th2 cell activity in asthmatic mice.

  15. Pulmonary Stress Induced by Hyperthermia: Role of Airway Sensory Nerves

    Science.gov (United States)

    2016-01-01

    Myers AC, Kajekar R, Undem BJ. Allergic inflammation-induced neuropeptide production in rapidly adapting afferent nerves in guinea pig airways. Am J...induced neuro- peptide production in rapidly adapting afferent nerves in guinea pig airways. Am. J. Physiol. Lung Cell. Mol. Physiol. 282, L775–L781...co-localization of transient receptor po- tential vanilloid (trpv)1 and sensory neuropeptides in the guinea - pig respiratory system. Neuroscience

  16. Enhancement of Skin Permeation and Skin Immunization of Ovalbumin Antigen via Microneedles.

    Science.gov (United States)

    Pamornpathomkul, Boonnada; Rojanarata, Theerasak; Opanasopit, Praneet; Ngawhirunpat, Tanasait

    2017-10-01

    The purpose of this study was to evaluate the use of different types of microneedles and doses of ovalbumin antigen for in vitro skin permeation and in vivo immunization. In vitro skin permeation experiments and confocal laser scanning microscopy revealed that hollow microneedles had a superior enhancing effect on skin permeation compared with a solid microneedle patch and untreated skin by efficiently delivering ovalbumin-fluorescein conjugate into the deep skin layers. The flux and cumulative amount of ovalbumin-fluorescein conjugate at 8 h after administering with various conditions could be ranked as follows: hollow MN; high dose > medium dose > low dose > MN patch; high dose > medium dose > low dose > untreated skin; high dose > medium dose > low dose > without ovalbumin-fluorescein conjugate. As the dose of ovalbumin-fluorescein conjugate was increased to 500 μg, the antigen accumulated in the skin to a greater extent, as evidenced by the increasing green fluorescence intensity. When the hollow microneedle was used for the delivery of ovalbumin into the skin of mice, it was capable of inducing a stronger immunoglobulin G immune response than conventional subcutaneous injection at the same antigen dose. Immunoglobulin G levels in the hollow MN group were 5.7, 11.6, and 13.3 times higher than those of the subcutaneous injection group for low, medium, and high doses, respectively. Furthermore, the mice immunized using the hollow microneedle showed no signs of skin infection or pinpoint bleeding. The results suggest that the hollow MN is an efficient device for delivering the optimal dose of antigen via the skin for successful immunization.

  17. Aldose reductase regulates acrolein-induced cytotoxicity in human small airway epithelial cells.

    Science.gov (United States)

    Yadav, Umesh C S; Ramana, K V; Srivastava, Satish K

    2013-12-01

    Aldose reductase (AR), a glucose-metabolizing enzyme, reduces lipid aldehydes and their glutathione conjugates with more than 1000-fold efficiency (Km aldehydes 5-30 µM) relative to glucose. Acrolein, a major endogenous lipid peroxidation product as well as a component of environmental pollutants and cigarette smoke, is known to be involved in various pathologies including atherosclerosis, airway inflammation, COPD, and age-related disorders, but the mechanism of acrolein-induced cytotoxicity is not clearly understood. We have investigated the role of AR in acrolein-induced cytotoxicity in primary human small airway epithelial cells (SAECs). Exposure of SAECs to varying concentrations of acrolein caused cell death in a concentration- and time-dependent manner. AR inhibition by fidarestat prevented the low-dose (5-10 µM) but not the high-dose (>10 µM) acrolein-induced SAEC death. AR inhibition protected SAECs from low-dose (5 µM) acrolein-induced cellular reactive oxygen species (ROS). Inhibition of acrolein-induced apoptosis by fidarestat was confirmed by decreased condensation of nuclear chromatin, DNA fragmentation, comet tail moment, and annexin V fluorescence. Further, fidarestat inhibited acrolein-induced translocation of the proapoptotic proteins Bax and Bad from the cytosol to the mitochondria and that of Bcl2 and BclXL from the mitochondria to the cytosol. Acrolein-induced cytochrome c release from mitochondria was also prevented by AR inhibition. The mitogen-activated protein kinases (MAPKs), such as extracellular signal-regulated kinases 1 and 2, stress-activated protein kinase/c-Jun NH2-terminal kinase, and p38MAPK, and c-Jun were transiently activated in airway epithelial cells by acrolein in a concentration- and time-dependent fashion, which was significantly prevented by AR inhibition. These results suggest that AR inhibitors could prevent acrolein-induced cytotoxicity in the lung epithelial cells. Copyright © 2013 Elsevier Inc. All rights

  18. Aldose reductase regulates acrolein-induced cytotoxicity in human small airway epithelial cells

    Science.gov (United States)

    Yadav, Umesh CS; Ramana, KV; Srivastava, SK

    2013-01-01

    Aldose reductase (AR), a glucose metabolizing enzyme, reduces lipid aldehydes and their glutathione conjugates with more than 1000-fold efficiency (Km aldehydes 5-30μM) than glucose. Acrolein, a major endogenous lipid peroxidation product as well as component of environmental pollutant and cigarette smoke, is known to be involved in various pathologies including atherosclerosis, airway inflammation, COPD, and age-related disorders but the mechanism of acrolein-induced cytotoxicity is not clearly understood. We have investigated the role of AR in acrolein-induced cytotoxicity in primary human small airway epithelial cells SAECs. Exposure of SAECs to varying concentrations of acrolein caused cell-death in a concentration- and time-dependent manner. AR inhibition by fidarestat prevented the low (5 to 10 μM) but not high (>10 μM) concentrations of acrolein-induced SAECs cell death. AR inhibition protected SAECs from low dose (5 μM) acrolein-induced cellular reactive oxygen species (ROS). Inhibition of acrolein-induced apoptosis by fidarestat was confirmed by decreased condensation of nuclear chromatin, DNA fragmentation, comet tail-moment, and annexin-V fluorescence. Further, fidarestat inhibited acrolein-induced translocation of pro-apoptotic proteins Bax and Bad from cytosol to the mitochondria, and that of Bcl2 and BclXL from mitochondria to cytosol. Acrolein-induced cytochrome c release from mitochondria was also prevented by AR inhibition. The mitogen-activated protein kinases (MAPK) such as extracellular signal-regulated kinases 1 and 2 (ERK1/2), stress-activated protein kinases/c-jun NH2-terminal kinases (SAPK/JNK) and p38MAPK, and c-jun were transiently activated in airway epithelial cells by acrolein in a concentration and time-dependent fashion, which were significantly prevented by AR inhibition. These results suggest that AR inhibitors could prevent acrolein-induced cytotoxicity in the lung epithelial cells. PMID:23770200

  19. Role of IL-4 receptor α-positive CD4(+) T cells in chronic airway hyperresponsiveness.

    Science.gov (United States)

    Kirstein, Frank; Nieuwenhuizen, Natalie E; Jayakumar, Jaisubash; Horsnell, William G C; Brombacher, Frank

    2016-06-01

    TH2 cells and their cytokines are associated with allergic asthma in human subjects and with mouse models of allergic airway disease. IL-4 signaling through the IL-4 receptor α (IL-4Rα) chain on CD4(+) T cells leads to TH2 cell differentiation in vitro, implying that IL-4Rα-responsive CD4(+) T cells are critical for the induction of allergic asthma. However, mechanisms regulating acute and chronic allergen-specific TH2 responses in vivo remain incompletely understood. This study defines the requirements for IL-4Rα-responsive CD4(+) T cells and the IL-4Rα ligands IL-4 and IL-13 in the development of allergen-specific TH2 responses during the onset and chronic phase of experimental allergic airway disease. Development of acute and chronic ovalbumin (OVA)-induced allergic asthma was assessed weekly in CD4(+) T cell-specific IL-4Rα-deficient BALB/c mice (Lck(cre)IL-4Rα(-/lox)) and respective control mice in the presence or absence of IL-4 or IL-13. During acute allergic airway disease, IL-4 deficiency did not prevent the onset of TH2 immune responses and OVA-induced airway hyperresponsiveness or goblet cell hyperplasia, irrespective of the presence or absence of IL-4Rα-responsive CD4(+) T cells. In contrast, deficiency of IL-13 prevented allergic asthma, irrespective of the presence or absence of IL-4Rα-responsive CD4(+) T cells. Importantly, chronic allergic inflammation and airway hyperresponsiveness were dependent on IL-4Rα-responsive CD4(+) T cells. Deficiency in IL-4Rα-responsive CD4(+) T cells resulted in increased numbers of IL-17-producing T cells and, consequently, increased airway neutrophilia. IL-4-responsive T helper cells are dispensable for acute OVA-induced airway disease but crucial in maintaining chronic asthmatic pathology. Copyright © 2015 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  20. Dietary Compound Kaempferol Inhibits Airway Thickening Induced by Allergic Reaction in a Bovine Serum Albumin-Induced Model of Asthma.

    Science.gov (United States)

    Shin, Daekeun; Park, Sin-Hye; Choi, Yean-Jung; Kim, Yun-Ho; Antika, Lucia Dwi; Habibah, Nurina Umy; Kang, Min-Kyung; Kang, Young-Hee

    2015-12-16

    Asthma is characterized by aberrant airways including epithelial thickening, goblet cell hyperplasia, and smooth muscle hypertrophy within the airway wall. The current study examined whether kaempferol inhibited mast cell degranulation and prostaglandin (PG) release leading to the development of aberrant airways, using an in vitro model of dinitrophenylated bovine serum albumin (DNP-BSA)-sensitized rat basophilic leukemia (RBL-2H3) mast cells and an in vivo model of BSA-challenged asthmatic mice. Nontoxic kaempferol at 10-20 μM suppressed β-hexosaminidase release and cyclooxygenase 2 (COX2)-mediated production of prostaglandin D2 (PGD2) and prostaglandin F2α (PGF2α) in sensitized mast cells. Oral administration of ≤20 mg/kg kaempferol blocked bovine serum albumin (BSA) inhalation-induced epithelial cell excrescence and smooth muscle hypertrophy by attenuating the induction of COX2 and the formation of PGD2 and PGF2α, together with reducing the anti-α-smooth muscle actin (α-SMA) expression in mouse airways. Kaempferol deterred the antigen-induced mast cell activation of cytosolic phospholipase A2 (cPLA2) responsive to protein kinase Cμ (PKCμ) and extracellular signal-regulated kinase (ERK). Furthermore, the antigen-challenged activation of Syk-phospholipase Cγ (PLCγ) pathway was dampened in kaempferol-supplemented mast cells. These results demonstrated that kaempferol inhibited airway wall thickening through disturbing Syk-PLCγ signaling and PKCμ-ERK-cPLA2-COX2 signaling in antigen-exposed mast cells. Thus, kaempferol may be a potent anti-allergic compound targeting allergic asthma typical of airway hyperplasia and hypertrophy.

  1. Inducible Laryngeal Obstruction: Excessive Dynamic Airway Collapse vs. Inducible Laryngeal Obstruction

    Science.gov (United States)

    2017-10-20

    REPORT TYPE 10/20/2017 Poster 4. TITLE AND SUBTITLE Inducible Laryngeal Obstrnction: Excessive Dynamic Airway Collapse vs. Inducible Laryngeal...REPORT b.ABSTRACT c. THIS PAGE ABSTRACT OF PAGES 3. DATES COVERED (From - To) 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER

  2. Newly divided eosinophils limit ozone-induced airway hyperreactivity in nonsensitized guinea pigs.

    Science.gov (United States)

    Wicher, Sarah A; Jacoby, David B; Fryer, Allison D

    2017-06-01

    Ozone causes vagally mediated airway hyperreactivity and recruits inflammatory cells, including eosinophils, to lungs, where they mediate ozone-induced hyperreactivity 1 day after exposure but are paradoxically protective 3 days later. We aimed to test the role of newly divided eosinophils in ozone-induced airway hyperreactivity in sensitized and nonsensitized guinea pigs. Nonsensitized and sensitized guinea pigs were treated with 5-bromo-2-deoxyuridine (BrdU) to label newly divided cells and were exposed to air or ozone for 4 h. Later (1 or 3 days later), vagally induced bronchoconstriction was measured, and inflammatory cells were harvested from bone marrow, blood, and bronchoalveolar lavage. Ozone induced eosinophil hematopoiesis. One day after ozone, mature eosinophils dominate the inflammatory response and potentiate vagally induced bronchoconstriction. However, by 3 days, newly divided eosinophils have reached the lungs, where they inhibit ozone-induced airway hyperreactivity because depleting them with antibody to IL-5 or a TNF-α antagonist worsened vagally induced bronchoconstriction. In sensitized guinea pigs, both ozone-induced eosinophil hematopoiesis and subsequent recruitment of newly divided eosinophils to lungs 3 days later failed to occur. Thus mature eosinophils dominated the ozone-induced inflammatory response in sensitized guinea pigs. Depleting these mature eosinophils prevented ozone-induced airway hyperreactivity in sensitized animals. Ozone induces eosinophil hematopoiesis and recruitment to lungs, where 3 days later, newly divided eosinophils attenuate vagally mediated hyperreactivity. Ozone-induced hematopoiesis of beneficial eosinophils is blocked by a TNF-α antagonist or by prior sensitization. In these animals, mature eosinophils are associated with hyperreactivity. Thus interventions targeting eosinophils, although beneficial in atopic individuals, may delay resolution of airway hyperreactivity in nonatopic individuals. Copyright

  3. Acute airway effects of airborne formaldehyde in sensitized and non-sensitized mice housed in a dry or humid environment

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Søren Thor, E-mail: stl@nrcwe.dk; Wolkoff, Peder, E-mail: pwo@nrcwe.dk; Hammer, Maria, E-mail: mha@nrcwe.dk; Kofoed-Sørensen, Vivi, E-mail: vks@nrcwe.dk; Clausen, Per Axel, E-mail: pac@nrcwe.dk; Nielsen, Gunnar Damgård, E-mail: gdn@nrcwe.dk

    2013-05-01

    We investigated the role of air humidity and allergic sensitization on the acute airway response to inhaled formaldehyde (FA) vapor. Mice were sensitized to the immunogen ovalbumin (OVA) by three intraperitoneal injections followed by two aerosol challenges, giving rise to allergic airway inflammation. Control mice were sham sensitized by saline injections and challenged by saline aerosols. Once sensitized, the mice were housed at high (85–89%) or low (< 10%) relative humidity, respectively for 48 h prior to a 60-min exposure to either 0.4, 1.8 or about 5 ppm FA. Before, during and after exposure, breathing parameters were monitored. These included the specific markers of nose and lung irritations as well as the expiratory flow rate, the latter being a marker of airflow limitation. The sensory irritation response in the upper airways was not affected by allergic inflammation or changes in humidity. At high relative humidity, the OVA-sensitized mice had a decreased expiratory airflow rate compared to the saline control mice after exposure to approximately 5 ppm FA. This is in accordance with the observations that asthmatics are more sensitive than non-asthmatics to higher concentrations of airway irritants including FA. In the dry environment, the opposite trend was seen; here, the saline control mice had a significantly decreased expiratory airflow rate compared to OVA-sensitized mice when exposed to 1.8 and 4 ppm FA. We speculate that increased mucus production in the OVA-sensitized mice has increased the “scrubber effect” in the nose, consequently protecting the conducting and lower airways. - Highlights: ► Role of air humidity and allergy on sensitivity to an airway irritant was studied. ► In the humid environment, allergy amplified the effects of formaldehyde. ► In the dry environment, allergy reduced the effect of formaldehyde. ► Neither allergy nor humidity changed the formaldehyde-induced nasal irritation.

  4. Acute airway effects of airborne formaldehyde in sensitized and non-sensitized mice housed in a dry or humid environment

    International Nuclear Information System (INIS)

    Larsen, Søren Thor; Wolkoff, Peder; Hammer, Maria; Kofoed-Sørensen, Vivi; Clausen, Per Axel; Nielsen, Gunnar Damgård

    2013-01-01

    We investigated the role of air humidity and allergic sensitization on the acute airway response to inhaled formaldehyde (FA) vapor. Mice were sensitized to the immunogen ovalbumin (OVA) by three intraperitoneal injections followed by two aerosol challenges, giving rise to allergic airway inflammation. Control mice were sham sensitized by saline injections and challenged by saline aerosols. Once sensitized, the mice were housed at high (85–89%) or low (< 10%) relative humidity, respectively for 48 h prior to a 60-min exposure to either 0.4, 1.8 or about 5 ppm FA. Before, during and after exposure, breathing parameters were monitored. These included the specific markers of nose and lung irritations as well as the expiratory flow rate, the latter being a marker of airflow limitation. The sensory irritation response in the upper airways was not affected by allergic inflammation or changes in humidity. At high relative humidity, the OVA-sensitized mice had a decreased expiratory airflow rate compared to the saline control mice after exposure to approximately 5 ppm FA. This is in accordance with the observations that asthmatics are more sensitive than non-asthmatics to higher concentrations of airway irritants including FA. In the dry environment, the opposite trend was seen; here, the saline control mice had a significantly decreased expiratory airflow rate compared to OVA-sensitized mice when exposed to 1.8 and 4 ppm FA. We speculate that increased mucus production in the OVA-sensitized mice has increased the “scrubber effect” in the nose, consequently protecting the conducting and lower airways. - Highlights: ► Role of air humidity and allergy on sensitivity to an airway irritant was studied. ► In the humid environment, allergy amplified the effects of formaldehyde. ► In the dry environment, allergy reduced the effect of formaldehyde. ► Neither allergy nor humidity changed the formaldehyde-induced nasal irritation

  5. Protective effects of Scrophularia striata in Ovalbumin-induced mice asthma model

    Science.gov (United States)

    2013-01-01

    Background Scrophularia striata Boiss. (Scrophulariaceae) is a plant growing in the northeastern part of Iran and being used as a traditional herb for various inflammatory disorders. This study was designed to investigate the protective effects of the Scrophularia striata extract in Ovalbumin (OVA) induced-asthma mice model. Methods OVA-sensitized mice were intrapritonealy treated with two doses (100 and 200 mg/kg) of the extract on days 8 to 14 separately. Broncoalveolar lavage fluids (BALF) was collected 48 h after the final OVA challenge and then the number of eosinophils and other inflammatory cells were assessed by direct microscopic counting. In addition, total immunoglubolin (Ig) E and OVA-specific IgE levels in serum, IL-4 and IL-5 cytokines in BALF were determined by Enzyme-Linked Immunosorbent Assay. Moreover, phytochemical assay by thin layer chromatography (TLC) and the 2, 2 diphenyl-1-picrylhydrazyl (DPPH) were used to evaluate the main compounds and the antioxidant capacity of the plant extract, respectively. Results The results showed that the main components; including flavonoids, phenolic compounds and phenyl propanoids were presented in the S. striata extract. In addition, the treatment with extract significantly reduced the number of inflammatory cells and suppressed T-helper 2 (Th2) cytokines including IL-4 and IL-5 in BALF. Also, total IgE and OVA-specific IgE levels in the serum decreased. Conclusion Collectively, it is concluded that the extract has the potential to modulate the Th2 cytokines and could be used as immunomodulatory agent in the treatment of allergic asthma. PMID:23837463

  6. Functionality of ovalbumin during Chinese steamed bread-making processing.

    Science.gov (United States)

    Sang, Shangyuan; Zhang, Huang; Xu, Lei; Chen, Yisheng; Xu, Xueming; Jin, Zhengyu; Yang, Na; Wu, Fengfeng; Li, Dandan

    2018-07-01

    Hen egg is commonly used in some cereal-based food, including cakes and bread. Ovalbumin, one of the major components of egg white protein, can affect the performance of the food product. The interaction between ovalbumin and gluten protein and its effect on property of dough and quality of Chinese steamed bread was investigated in this study. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) patterns indicated that ovalbumin was surprisingly not incorporated in glutenins by covalent bond, whereas size-exclusion high-performance liquid chromatography showed that glutenin macropolymer content in glutenins increased slightly. Furthermore, dynamic rheology experiments indicated ovalbumin led to a decrease inG' andG″ of dough. Based on molecular dynamic simulation and SDS-PAGE results, it was inferred that ovalbumin was not hydrolyzed by endopeptidases during dough fermentation and crosslinked to gluten proteins during steaming. Finally, ovalbumin improved maximum dough height (Hm) during dough development and specific volume of Chinese steamed bread. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Mast cell mediators in citric acid-induced airway constriction of guinea pigs

    International Nuclear Information System (INIS)

    Lin, C.-H.; Lai, Y.-L.

    2005-01-01

    We demonstrated previously that mast cells play an important role in citric acid (CA)-induced airway constriction. In this study, we further investigated the underlying mediator(s) for this type of airway constriction. At first, to examine effects caused by blocking agents, 67 young Hartley guinea pigs were divided into 7 groups: saline + CA; methysergide (serotonin receptor antagonist) + CA; MK-886 (leukotriene synthesis inhibitor) + CA; mepyramine (histamine H 1 receptor antagonist) + CA; indomethacin (cyclooxygenase inhibitor) + CA; cromolyn sodium (mast cell stabilizer) + CA; and compound 48/80 (mast cell degranulating agent) + CA. Then, we tested whether leukotriene C 4 (LTC 4 ) or histamine enhances CA-induced airway constriction in compound 48/80-pretreated guinea pigs. We measured dynamic respiratory compliance (Crs) and forced expiratory volume in 0.1 s (FEV 0.1 ) during either baseline or recovery period. In addition, we detected histamine level, an index of pulmonary mast cell degranulation, in bronchoalveolar lavage (BAL) samples. Citric acid aerosol inhalation caused decreases in Crs and FEV 0.1 , indicating airway constriction in the control group. This airway constriction was significantly attenuated by MK-886, mepyramine, cromolyn sodium, and compound 48/80, but not by either methysergide or indomethacin. Both LTC 4 and histamine infusion significantly increased the magnitude of CA-induced airway constriction in compound 48/80-pretreated guinea pigs. Citric acid inhalation caused significant increase in histamine level in the BAL sample, which was significantly suppressed by compound 48/80. These results suggest that leukotrienes and histamine originating from mast cells play an important role in CA inhalation-induced noncholinergic airway constriction

  8. Bronchoconstriction Induces TGF-β Release and Airway Remodelling in Guinea Pig Lung Slices.

    Directory of Open Access Journals (Sweden)

    Tjitske A Oenema

    Full Text Available Airway remodelling, including smooth muscle remodelling, is a primary cause of airflow limitation in asthma. Recent evidence links bronchoconstriction to airway remodelling in asthma. The mechanisms involved are poorly understood. A possible player is the multifunctional cytokine TGF-β, which plays an important role in airway remodelling. Guinea pig lung slices were used as an in vitro model to investigate mechanisms involved in bronchoconstriction-induced airway remodelling. To address this aim, mechanical effects of bronchoconstricting stimuli on contractile protein expression and TGF-β release were investigated. Lung slices were viable for at least 48 h. Both methacholine and TGF-β1 augmented the expression of contractile proteins (sm-α-actin, sm-myosin, calponin after 48 h. Confocal fluorescence microscopy showed that increased sm-myosin expression was enhanced in the peripheral airways and the central airways. Mechanistic studies demonstrated that methacholine-induced bronchoconstriction mediated the release of biologically active TGF-β, which caused the increased contractile protein expression, as inhibition of actin polymerization (latrunculin A or TGF-β receptor kinase (SB431542 prevented the methacholine effects, whereas other bronchoconstricting agents (histamine and KCl mimicked the effects of methacholine. Collectively, bronchoconstriction promotes the release of TGF-β, which induces airway smooth muscle remodelling. This study shows that lung slices are a useful in vitro model to study mechanisms involved in airway remodelling.

  9. Antithyroid drug-induced agranulocytosis complicated by pneumococcal sepsis and upper airway obstruction.

    Science.gov (United States)

    Ishimaru, Naoto; Ohnishi, Hisashi; Nishiuma, Teruaki; Doukuni, Ryota; Umezawa, Kanoko; Oozone, Sachiko; Kuramoto, Emi; Yoshimura, Sho; Kinami, Saori

    2013-01-01

    Streptococcus pneumoniae is a rare pathogen of sepsis in patients with antithyroid drug-induced agranulocytosis. We herein describe a case of antithyroid drug-induced agranulocytosis complicated by pneumococcal sepsis and upper airway obstruction. A 27-year-old woman who was previously prescribed methimazole for nine months presented with a four-day history of a sore throat. She nearly choked and was diagnosed with febrile agranulocytosis. She was successfully treated with intubation, intravenous antibiotics and granulocyte colony-stimulating factor. Her blood cultures yielded S. pneumoniae. Emergency airway management, treatment of sepsis and the administration of granulocyte colony-stimulating factor can improve the clinical course of antithyroid drug-induced pneumococcal sepsis in patients with airway obstruction.

  10. Critical role of aldehydes in cigarette smoke-induced acute airway inflammation

    NARCIS (Netherlands)

    van der Toorn, Marco; Slebos, Dirk-Jan; de Bruin, Harold G.; Gras, Renee; Rezayat, Delaram; Jorge, Lucie; Sandra, Koen; van Oosterhout, Antoon J. M.

    2013-01-01

    Background: Cigarette smoking (CS) is the most important risk factor for COPD, which is associated with neutrophilic airway inflammation. We hypothesize, that highly reactive aldehydes are critical for CS-induced neutrophilic airway inflammation. Methods: BALB/c mice were exposed to CS, water

  11. Curine inhibits eosinophil activation and airway hyper-responsiveness in a mouse model of allergic asthma

    International Nuclear Information System (INIS)

    Ribeiro-Filho, Jaime; Calheiros, Andrea Surrage; Vieira-de-Abreu, Adriana; Moraes de Carvalho, Katharinne Ingrid; Silva Mendes, Diego da; Melo, Christianne Bandeira; Martins, Marco Aurélio; Silva Dias, Celidarque da; Piuvezam, Márcia Regina

    2013-01-01

    Allergic asthma is a chronic inflammatory airway disease with increasing prevalence around the world. Current asthma therapy includes drugs that usually cause significant side effects, justifying the search for new anti-asthmatic drugs. Curine is a bisbenzylisoquinoline alkaloid that modulates calcium influx in many cell types; however, its anti-allergic and putative toxic effects remain to be elucidated. Our aim was to investigate the effects of curine on eosinophil activation and airway hyper-responsiveness (AHR) and to characterize its potential toxic effects. We used a mouse model of allergic asthma induced by sensitization and challenge with ovalbumin (OVA) to evaluate the anti-allergic effects of oral treatment with curine. The oral administration of curine significantly inhibited eosinophilic inflammation, eosinophil lipid body formation and AHR in animals challenged with OVA compared with animals in the untreated group. The curine treatment also reduced eotaxin and IL-13 production triggered by OVA. Verapamil, a calcium channel antagonist, had similar anti-allergic properties, and curine pre-treatment inhibited the calcium-induced tracheal contractile response ex-vivo, suggesting that the mechanism by which curine exerts its effects is through the inhibition of a calcium-dependent response. A toxicological evaluation showed that orally administered curine did not significantly alter the biochemical, hematological, behavioral and physical parameters measured in the experimental animals compared with saline-treated animals. In conclusion, curine showed anti-allergic activity through mechanisms that involve inhibition of IL-13 and eotaxin and of Ca ++ influx, without inducing evident toxicity and as such, has the potential for the development of anti-asthmatic drugs. - Highlights: • Curine is a bisbenzylisoquinoline alkaloid from Chondrodendron platyphyllum. • Curine inhibits eosinophil influx and activation and airway hyper-responsiveness. • Curine

  12. Curine inhibits eosinophil activation and airway hyper-responsiveness in a mouse model of allergic asthma

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro-Filho, Jaime [Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro (Brazil); Laboratório de Imunofarmacologia, Departamento de Fisiologia e Patologia, UFPB, João Pessoa, Paraíba (Brazil); Calheiros, Andrea Surrage; Vieira-de-Abreu, Adriana [Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro (Brazil); Moraes de Carvalho, Katharinne Ingrid [Laboratório de Inflamação, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro (Brazil); Silva Mendes, Diego da [Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro (Brazil); Melo, Christianne Bandeira [Laboratório de Inflamação, Instituto Biofisica Carlos Chagas Filho, UFRJ, Rio de Janeiro (Brazil); Martins, Marco Aurélio [Laboratório de Inflamação, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro (Brazil); Silva Dias, Celidarque da [Laboratório de Fitoquímica, Departamento de Ciências Farmacêuticas, UFPB, João Pessoa, Paraíba (Brazil); Piuvezam, Márcia Regina, E-mail: mrpiuvezam@ltf.ufpb.br [Laboratório de Imunofarmacologia, Departamento de Fisiologia e Patologia, UFPB, João Pessoa, Paraíba (Brazil); and others

    2013-11-15

    Allergic asthma is a chronic inflammatory airway disease with increasing prevalence around the world. Current asthma therapy includes drugs that usually cause significant side effects, justifying the search for new anti-asthmatic drugs. Curine is a bisbenzylisoquinoline alkaloid that modulates calcium influx in many cell types; however, its anti-allergic and putative toxic effects remain to be elucidated. Our aim was to investigate the effects of curine on eosinophil activation and airway hyper-responsiveness (AHR) and to characterize its potential toxic effects. We used a mouse model of allergic asthma induced by sensitization and challenge with ovalbumin (OVA) to evaluate the anti-allergic effects of oral treatment with curine. The oral administration of curine significantly inhibited eosinophilic inflammation, eosinophil lipid body formation and AHR in animals challenged with OVA compared with animals in the untreated group. The curine treatment also reduced eotaxin and IL-13 production triggered by OVA. Verapamil, a calcium channel antagonist, had similar anti-allergic properties, and curine pre-treatment inhibited the calcium-induced tracheal contractile response ex-vivo, suggesting that the mechanism by which curine exerts its effects is through the inhibition of a calcium-dependent response. A toxicological evaluation showed that orally administered curine did not significantly alter the biochemical, hematological, behavioral and physical parameters measured in the experimental animals compared with saline-treated animals. In conclusion, curine showed anti-allergic activity through mechanisms that involve inhibition of IL-13 and eotaxin and of Ca{sup ++} influx, without inducing evident toxicity and as such, has the potential for the development of anti-asthmatic drugs. - Highlights: • Curine is a bisbenzylisoquinoline alkaloid from Chondrodendron platyphyllum. • Curine inhibits eosinophil influx and activation and airway hyper-responsiveness. • Curine

  13. Training induces cognitive bias: the case of a simulation-based emergency airway curriculum.

    Science.gov (United States)

    Park, Christine S; Stojiljkovic, Ljuba; Milicic, Biljana; Lin, Brian F; Dror, Itiel E

    2014-04-01

    Training-induced cognitive bias may affect performance. Using a simulation-based emergency airway curriculum, we tested the hypothesis that curriculum design would induce bias and affect decision making. Twenty-three novice anesthesiology residents were randomized into 2 groups. The primary outcome measure was the initiation of supraglottic airway and cricothyroidotomy techniques in a simulated cannot-ventilate, cannot-intubate scenario during 3 evaluation sessions. Secondary outcomes were response times for device initiation. After a baseline evaluation and didactic lecture, residents received an initial practical training in either surgical cricothyroidotomy (CRIC group) or supraglottic airway (SGA group). After the midtest, the groups switched to receive the alternate training. From baseline to midtest, the SGA group increased initiation of supraglottic airway but not cricothyroidotomy. The CRIC group increased initiation of cricothyroidotomy but not supraglottic airway. After completion of training in both techniques, the SGA group increased initiation of both supraglottic airway and cricothyroidotomy. In contrast, the CRIC group increased initiation of cricothyroidotomy but failed to change practice in supraglottic airway. Final test response times showed that the CRIC group was slower to initiate supraglottic airway and faster to initiate cricothyroidotomy. Practical training in only 1 technique caused bias in both groups despite a preceding didactic lecture. The chief finding was an asymmetrical effect of training sequence even after training in both techniques. Initial training in cricothyroidotomy caused bias that did not correct despite subsequent supraglottic airway training. Educators must be alert to the risk of inducing cognitive bias when designing curricula.

  14. Virus-induced asthma attack: The importance of allergic inflammation in response to viral antigen in an animal model of asthma.

    Science.gov (United States)

    Skappak, Christopher; Ilarraza, Ramses; Wu, Ying-Qi; Drake, Matthew G; Adamko, Darryl J

    2017-01-01

    Asthma exacerbation can be a life-threatening condition, and is most often triggered by common respiratory viruses. Poor asthma control and worsening of respiratory function is associated with increased airway inflammation, including eosinophilia. Prevention of asthma exacerbation relies on treatment with corticosteroids, which preferentially inhibit allergic inflammation like eosinophils. Human studies demonstrate that inactivated virus can trigger eosinophil activation in vitro through antigen presentation and memory CD4+ lymphocytes. We hypothesized that animals with immunologic memory to a respiratory virus would also develop airway hyperresponsiveness in response to a UV-inactivated form of the virus if they have pre-existing allergic airway inflammation. Guinea pigs were ovalbumin-sensitized, infected with live parainfluenza virus (PIV), aerosol-challenged with ovalbumin, and then re-inoculated 60 days later with live or UV-inactivated PIV. Some animals were either treated with dexamethasone prior to the second viral exposure. Lymphocytes were isolated from parabronchial lymph nodes to confirm immunologic memory to the virus. Airway reactivity was measured and inflammation was assessed using bronchoalveolar lavage and lung histology. The induction of viral immunologic memory was confirmed in infected animals. Allergen sensitized and challenged animals developed airway hyperreactivity with eosinophilic airway inflammation when re-exposed to UV-inactivated PIV, while non-sensitized animals did not. Airway hyperreactivity in the sensitized animals was inhibited by pre-treatment with dexamethasone. We suggest that the response of allergic inflammation to virus antigen is a significant factor causing asthma exacerbation. We propose that this is one mechanism explaining how corticosteroids prevent virus-induced asthma attack.

  15. Interventions designed using quality improvement methods reduce the incidence of serious airway events and airway cardiac arrests during pediatric anesthesia.

    Science.gov (United States)

    Spaeth, James P; Kreeger, Renee; Varughese, Anna M; Wittkugel, Eric

    2016-02-01

    Although serious complications during pediatric anesthesia are less common than they were 20 years ago, serious airway events continue to occur. Based on Quality Improvement (QI) data from our institution, a QI project was designed to reduce the incidence of serious airway events and airway cardiac arrests. A quality improvement team consisting of members of the Department of Anesthesia was formed and QI data from previous years were analyzed. The QI team developed a Smart Aim, Key Driver Diagram, and specific Interventions that focused on the accessibility of emergency drugs, the use of nondepolarizing muscle relaxants for endotracheal intubation in children 2 years and younger, and the presence of anesthesia providers until emergence from anesthesia in high-risk patients. The percentage of cases where muscle relaxants were utilized in children 2 years and younger for endotracheal intubation and where atropine and succinylcholine were readily available increased at both our base and outpatient facilities. Over the 2.5-year study period, the incidence of serious airway events and airway cardiac arrests was reduced by 44% and 59%, respectively compared to the previous 2-year period. We utilized QI methodology to design and implement a project which led to greater standardization of clinical practice within a large pediatric anesthesia group. Based on an understanding of system issues impacting our clinical practice, we designed and tested interventions that led to a significant reduction in the incidence of serious airway events and airway cardiac arrests. © 2015 John Wiley & Sons Ltd.

  16. A guinea pig model of acute and chronic asthma using permanently instrumented and unrestrained animals

    NARCIS (Netherlands)

    Meurs, Herman; Santing, Ruud E.; Remie, Rene; van der Mark, Thomas W.; Westerhof, Fiona J.; Zuidhof, Annet B.; Bos, I. Sophie T.; Zaagsma, Johan

    2006-01-01

    To investigate mechanisms underlying allergen-induced asthmatic reactions, airway hyperresponsiveness and remodeling, we have developed a guinea pig model of acute and chronic asthma using unanesthetized, unrestrained animals. To measure airway function, ovalbumin (IgE)-sensitized animals are

  17. Ursodeoxycholic acid suppresses eosinophilic airway inflammation by inhibiting the function of dendritic cells through the nuclear farnesoid X receptor.

    Science.gov (United States)

    Willart, M A M; van Nimwegen, M; Grefhorst, A; Hammad, H; Moons, L; Hoogsteden, H C; Lambrecht, B N; Kleinjan, A

    2012-12-01

    Ursodeoxycholic acid (UDCA) is the only known beneficial bile acid with immunomodulatory properties. Ursodeoxycholic acid prevents eosinophilic degranulation and reduces eosinophil counts in primary biliary cirrhosis. It is unknown whether UDCA would also modulate eosinophilic inflammation outside the gastrointestinal (GI) tract, such as eosinophilic airway inflammation seen in asthma. The working mechanism for its immunomodulatory effect is unknown. The immunosuppressive features of UDCA were studied in vivo, in mice, in an ovalbumin (OVA)-driven eosinophilic airway inflammation model. To study the mechanism of action of UDCA, we analyzed the effect of UDCA on eosinophils, T cells, and dendritic cell (DCs). DC function was studied in greater detail, focussing on migration and T-cell stimulatory strength in vivo and interaction with T cells in vitro as measured by time-lapse image analysis. Finally, we studied the capacity of UDCA to influence DC/T cell interaction. Ursodeoxycholic acid treatment of OVA-sensitized mice prior to OVA aerosol challenge significantly reduced eosinophilic airway inflammation compared with control animals. DCs expressed the farnesoid X receptor for UDCA. Ursodeoxycholic acid strongly promoted interleukin (IL)-12 production and enhanced the migration in DCs. The time of interaction between DCs and T cells was sharply reduced in vitro by UDCA treatment of the DCs resulting in a remarkable T-cell cytokine production. Ursodeoxycholic acid-treated DCs have less capacity than saline-treated DCs to induce eosinophilic inflammation in vivo in Balb/c mice. Ursodeoxycholic acid has the potency to suppress eosinophilic inflammation outside the GI tract. This potential comprises to alter critical function of DCs, in essence, the effect of UDCA on DCs through the modulation of the DC/T cell interaction. © 2012 John Wiley & Sons A/S.

  18. Radiation induced changes in the airway - anaesthetic implications

    African Journals Online (AJOL)

    Adele

    CASE REPORT. Southern African Journal of Anaesthesia & Analgesia - May 2004. 19. Radiation ... Summary: Radiation induces a variety of changes in the airway that can potentially lead to difficult intubation. ... Mask holding and ventilation is.

  19. Chronic respiratory aeroallergen exposure in mice induces epithelial-mesenchymal transition in the large airways.

    Directory of Open Access Journals (Sweden)

    Jill R Johnson

    Full Text Available Chronic allergic asthma is characterized by Th2-polarized inflammation and leads to airway remodeling and fibrosis but the mechanisms involved are not clear. To determine whether epithelial-mesenchymal transition contributes to airway remodeling in asthma, we induced allergic airway inflammation in mice by intranasal administration of house dust mite (HDM extract for up to 15 consecutive weeks. We report that respiratory exposure to HDM led to significant airway inflammation and thickening of the smooth muscle layer in the wall of the large airways. Transforming growth factor beta-1 (TGF-β1 levels increased in mouse airways while epithelial cells lost expression of E-cadherin and occludin and gained expression of the mesenchymal proteins vimentin, alpha-smooth muscle actin (α-SMA and pro-collagen I. We also observed increased expression and nuclear translocation of Snail1, a transcriptional repressor of E-cadherin and a potent inducer of EMT, in the airway epithelial cells of HDM-exposed mice. Furthermore, fate-mapping studies revealed migration of airway epithelial cells into the sub-epithelial regions of the airway wall. These results show the contribution of EMT to airway remodeling in chronic asthma-like inflammation and suggest that Th2-polarized airway inflammation can trigger invasion of epithelial cells into the subepithelial regions of the airway wall where they contribute to fibrosis, demonstrating a previously unknown plasticity of the airway epithelium in allergic airway disease.

  20. Oral tolerance induction with altered forms of ovalbumin

    Directory of Open Access Journals (Sweden)

    Stransky B.

    1998-01-01

    Full Text Available As a T cell-dependent phenomenon, oral tolerance is not expected to depend necessarily on native configuration of antigens. We investigated the induction of oral tolerance with modified ovalbumin (Ova. Oral administration of heat-denatured (HD-Ova and cyanogen bromide-degraded ovalbumin was less effective than native Ova in inducing oral tolerance in B6D2F1 mice. HD-Ova was effective in suppressing delayed-type hypersensitivity (DTH reactions but did not suppress specific antibody formation. Injection of Ova directly into the stomach, but not into the ileum or cecum, suppressed subsequent immunization to DTH reactions. Gavage with protease inhibitors (aprotinin or ovomucoid before gavage with Ova was ineffective in blocking tolerance induction. Treatment with hydroxyurea to destroy cycling cells 24 h before gavage with Ova blocked oral tolerance induction and also the possibility to passively transfer tolerance to naive recipients with the serum of mice gavaged with Ova 1 h before. The implications of these findings about oral tolerance induction are discussed

  1. Reduced Airway Hyperresponsiveness by Phosphodiesterase 3 and 4 Inhibitors in Guinea-Pigs

    Directory of Open Access Journals (Sweden)

    Nöella Germain

    1999-01-01

    Full Text Available The aim of the present study was to compare the effects of selective phosphodiesterase (PDE 3, 4 and 5 inhibitors on antigen-induced airway hyperresponsiveness in sensitized guinea-pigs. When the sensitized guinea-pigs were orally pre-treated with the selective PDE4 inhibitor, Ro 20-1724 (30 mg/kg, and studied 48 h after OA, a significant reduction (p<0.01 of the leftward shift of the dose-response curve to ACh was noted, whereas it was ineffective at the lower dose (10 mg/kg. Administration of the selective PDE3 inhibitor, milrinone (30 mg/kg also elicited a significant reduction (p<0.01 of the airway hyperresponsiveness, whereas the PDE5 inhibitor zaprinast (30 mg/kg was ineffective. These results show that both PDE3 and PDE4 inhibitors are able to inhibit the antigen-induced airway hyperresponsiveness in sensitized guinea-pigs and support the potential utility of selective PDE inhibitors in the treatment of asthma.

  2. Roxithromycin inhibits VEGF-induced human airway smooth muscle cell proliferation: Opportunities for the treatment of asthma

    International Nuclear Information System (INIS)

    Pei, Qing-Mei; Jiang, Ping; Yang, Min; Qian, Xue-Jiao; Liu, Jiang-Bo; Kim, Sung-Ho

    2016-01-01

    Asthma is a chronic respiratory disease characterized by reversible airway obstruction with persistent airway inflammation and airway remodelling, which is associated with increased airway smooth muscle (ASM) mass. Roxithromycin (RXM) has been widely used in asthma treatment; however, its mechanism of action is poorly understood. Vascular endothelial growth factor (VEGF) has been implicated in inflammatory and airway blood vessel remodelling in patients with asthma, and shown to promote ASM cell proliferation. Here, we investigated the effect of RXM on VEGF-induced ASM cell proliferation and attempted to elucidate the underlying mechanisms of action. We tested the effect of RXM on proliferation and cell cycle progression, as well as on the expression of phospho-VEGF receptor 2 (VEGFR2), phospho-extracellular signal-regulated kinase 1/2 (ERK1/2), phospho-Akt, and caveolin-1 in VEGF-stimulated ASM cells. RXM inhibited VEGF-induced ASM cell proliferation and induced cell cycle arrest. Additionally, VEGF-induced ASM cell proliferation was suppressed by inhibiting the activity of ERK1/2, but not that of Akt. Furthermore, RXM treatment inhibits VEGF-induced activation of VEGFR2 and ERK and downregulation of caveolin-1 in a dose-dependent manner. RXM also inhibited TGF-β-induced VEGF secretion by ASM cells and BEAS-2B cells. Collectively, our findings suggest that RXM inhibits VEGF-induced ASM cell proliferation by suppression of VEGFR2 and ERK1/2 activation and caveolin-1 down-regulation, which may be involved in airway remodelling. Further elucidation of the mechanisms underlying these observations should enable the development of treatments for smooth muscle hyperplasia-associated diseases of the airway such as asthma. - Highlights: • RXM inhibited VEGF-induced ASM cell proliferation and induced cell cycle arrest. • VEGF-induced cell proliferation was suppressed by inhibiting the activity of ERK1/2. • RXM inhibits activation of VEGFR2 and ERK and downregulation

  3. Roxithromycin inhibits VEGF-induced human airway smooth muscle cell proliferation: Opportunities for the treatment of asthma

    Energy Technology Data Exchange (ETDEWEB)

    Pei, Qing-Mei, E-mail: 34713316@qq.com [Department of Radiology, Tianjin Hospital of Integrated Traditional Chinese and Western Medicine, Tianjin (China); Jiang, Ping, E-mail: jiangping@163.com [Department of Respiration, Tianjin First Central Hospital, Tianjin (China); Yang, Min, E-mail: YangMin@163.com [Department of Respiration, Tianjin First Central Hospital, Tianjin (China); Qian, Xue-Jiao, E-mail: qianxuejiao@163.com [Department of Respiration, Tianjin First Central Hospital, Tianjin (China); Liu, Jiang-Bo, E-mail: LJB1984@163.com [Department of Respiration, Tianjin First Central Hospital, Tianjin (China); Kim, Sung-Ho, E-mail: chenghao0726@hotmail.com [Department of Respiration, Tianjin First Central Hospital, Tianjin (China)

    2016-10-01

    Asthma is a chronic respiratory disease characterized by reversible airway obstruction with persistent airway inflammation and airway remodelling, which is associated with increased airway smooth muscle (ASM) mass. Roxithromycin (RXM) has been widely used in asthma treatment; however, its mechanism of action is poorly understood. Vascular endothelial growth factor (VEGF) has been implicated in inflammatory and airway blood vessel remodelling in patients with asthma, and shown to promote ASM cell proliferation. Here, we investigated the effect of RXM on VEGF-induced ASM cell proliferation and attempted to elucidate the underlying mechanisms of action. We tested the effect of RXM on proliferation and cell cycle progression, as well as on the expression of phospho-VEGF receptor 2 (VEGFR2), phospho-extracellular signal-regulated kinase 1/2 (ERK1/2), phospho-Akt, and caveolin-1 in VEGF-stimulated ASM cells. RXM inhibited VEGF-induced ASM cell proliferation and induced cell cycle arrest. Additionally, VEGF-induced ASM cell proliferation was suppressed by inhibiting the activity of ERK1/2, but not that of Akt. Furthermore, RXM treatment inhibits VEGF-induced activation of VEGFR2 and ERK and downregulation of caveolin-1 in a dose-dependent manner. RXM also inhibited TGF-β-induced VEGF secretion by ASM cells and BEAS-2B cells. Collectively, our findings suggest that RXM inhibits VEGF-induced ASM cell proliferation by suppression of VEGFR2 and ERK1/2 activation and caveolin-1 down-regulation, which may be involved in airway remodelling. Further elucidation of the mechanisms underlying these observations should enable the development of treatments for smooth muscle hyperplasia-associated diseases of the airway such as asthma. - Highlights: • RXM inhibited VEGF-induced ASM cell proliferation and induced cell cycle arrest. • VEGF-induced cell proliferation was suppressed by inhibiting the activity of ERK1/2. • RXM inhibits activation of VEGFR2 and ERK and downregulation

  4. Effects of maternal exposure to di(2-ethylhexyl)phthalate (DEHP) during pregnancy on susceptibility to neonatal asthma

    Energy Technology Data Exchange (ETDEWEB)

    Shin, In-Sik; Lee, Mee-Young [Basic Herbal Medicine Research Group, Korea Institute of Oriental Medicine, 483 Expo-ro, Yusung-gu, Daejeon 305-811 (Korea, Republic of); Cho, Eun-Sang [College of Veterinary Medicine, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 305-764 (Korea, Republic of); Choi, Eun-young [College of Nursing and Health, Kongju National University, 56 Gongju Daehak-ro, Gongju, Chungnam 314-701 (Korea, Republic of); Son, Hwa-Young [College of Veterinary Medicine, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 305-764 (Korea, Republic of); Lee, Kyoung-Youl, E-mail: youl10@hanmail.net [College of Nursing and Health, Kongju National University, 56 Gongju Daehak-ro, Gongju, Chungnam 314-701 (Korea, Republic of)

    2014-02-01

    Di(2-ethylhexyl) phthalate (DEHP) is used as a plasticizer and is widely dispersed in the environment. In this study, we investigated the effects of maternal exposure to DEHP during pregnancy on neonatal asthma susceptibility using a murine model of asthma induced by ovalbumin (OVA). Pregnant BALB/c mice received DEHP from gestation day 13 to lactation day 21. Their offspring were sensitized on postnatal days (PNDs) 9 and 15 by intraperitoneal injection of 0.5 μg OVA with 200 μg aluminum hydroxide. On PNDs 22, 23 and 24, live pups received an airway challenge of OVA for 30 min. Offspring from pregnant mice that received DEHP showed reductions in inflammatory cell count, interleukin (IL)-4, IL-13, and eotaxin in their bronchoalveolar lavage fluid and in total immunoglobulin E and OVA-specific IgE in their plasma compared with offspring from pregnant mice that did not receive DEHP treatment. These results were consistent with histological analysis and immunoblotting. Maternal exposure to DEHP reduces airway inflammation and mucus production in offspring, with a decrease in inducible nitric oxide synthase (iNOS) in the lung tissue. This study suggests that maternal exposure to DEHP during pregnancy reduces asthmatic responses induced by OVA challenge in offspring. These effects were considered to be closely related to the suppression of Th2 immune responses and iNOS expression. - Highlights: • Maternal exposure to di(2-ethylhexyl)phthalate reduces asthmatic response in pups. • Di(2-ethylhexyl)phthalate reduces eosinophilia induced by ovalbumin exposure. • Di(2-ethylhexyl)phthalate reduces T-helper type 2 cytokine production. • Di(2-ethylhexyl)phthalate attenuates airway inflammation and mucus production. • Di(2-ethylhexyl)phthalate suppresses inducible nitric oxide synthase in lung tissue.

  5. Effects of maternal exposure to di(2-ethylhexyl)phthalate (DEHP) during pregnancy on susceptibility to neonatal asthma

    International Nuclear Information System (INIS)

    Shin, In-Sik; Lee, Mee-Young; Cho, Eun-Sang; Choi, Eun-young; Son, Hwa-Young; Lee, Kyoung-Youl

    2014-01-01

    Di(2-ethylhexyl) phthalate (DEHP) is used as a plasticizer and is widely dispersed in the environment. In this study, we investigated the effects of maternal exposure to DEHP during pregnancy on neonatal asthma susceptibility using a murine model of asthma induced by ovalbumin (OVA). Pregnant BALB/c mice received DEHP from gestation day 13 to lactation day 21. Their offspring were sensitized on postnatal days (PNDs) 9 and 15 by intraperitoneal injection of 0.5 μg OVA with 200 μg aluminum hydroxide. On PNDs 22, 23 and 24, live pups received an airway challenge of OVA for 30 min. Offspring from pregnant mice that received DEHP showed reductions in inflammatory cell count, interleukin (IL)-4, IL-13, and eotaxin in their bronchoalveolar lavage fluid and in total immunoglobulin E and OVA-specific IgE in their plasma compared with offspring from pregnant mice that did not receive DEHP treatment. These results were consistent with histological analysis and immunoblotting. Maternal exposure to DEHP reduces airway inflammation and mucus production in offspring, with a decrease in inducible nitric oxide synthase (iNOS) in the lung tissue. This study suggests that maternal exposure to DEHP during pregnancy reduces asthmatic responses induced by OVA challenge in offspring. These effects were considered to be closely related to the suppression of Th2 immune responses and iNOS expression. - Highlights: • Maternal exposure to di(2-ethylhexyl)phthalate reduces asthmatic response in pups. • Di(2-ethylhexyl)phthalate reduces eosinophilia induced by ovalbumin exposure. • Di(2-ethylhexyl)phthalate reduces T-helper type 2 cytokine production. • Di(2-ethylhexyl)phthalate attenuates airway inflammation and mucus production. • Di(2-ethylhexyl)phthalate suppresses inducible nitric oxide synthase in lung tissue

  6. L-ornithine derived polyamines in cystic fibrosis airways.

    Directory of Open Access Journals (Sweden)

    Hartmut Grasemann

    Full Text Available Increased arginase activity contributes to airway nitric oxide (NO deficiency in cystic fibrosis (CF. Whether down-stream products of arginase activity contribute to CF lung disease is currently unknown. The objective of this study was to test whether L-ornithine derived polyamines are present in CF airways and contribute to airway pathophysiology. Polyamine concentrations were measured in sputum of patients with CF and in healthy controls, using liquid chromatography-tandem mass spectrometry. The effect of spermine on airway smooth muscle mechanical properties was assessed in bronchial segments of murine airways, using a wire myograph. Sputum polyamine concentrations in stable CF patients were similar to healthy controls for putrescine and spermidine but significantly higher for spermine. Pulmonary exacerbations were associated with an increase in sputum and spermine levels. Treatment for pulmonary exacerbations resulted in decreases in arginase activity, L-ornithine and spermine concentrations in sputum. The changes in sputum spermine with treatment correlated significantly with changes in L-ornithine but not with sputum inflammatory markers. Incubation of mouse bronchi with spermine resulted in an increase in acetylcholine-induced force and significantly reduced nitric oxide-induced bronchial relaxation. The polyamine spermine is increased in CF airways. Spermine contributes to airways obstruction by reducing the NO-mediated smooth muscle relaxation.

  7. Secreted products of Fasciola hepatica inhibit the induction of T cell responses that mediate allergy.

    Science.gov (United States)

    Finlay, C M; Stefanska, A M; Coleman, M M; Jahns, H; Cassidy, J P; McLoughlin, R M; Mills, K H G

    2017-10-01

    There is evidence from epidemiology studies of a negative association between infection with helminth parasites and the development of allergy and asthma. Here, we demonstrate that the excretory/secretory products of the helminth Fasciola hepatica (FHES) protected mice against ovalbumin (OVA)-induced allergic asthma when administered at time of allergen sensitization. FHES reduced the accumulation of mucus, eosinophils and lymphocytes into the airways of allergen-challenged mice. Furthermore, FHES treatment suppressed Th2 responses in the airways. Interestingly, systemic administration of FHES at allergen challenge had no effect on airway inflammation, demonstrating that alum-induced Th2 response is set following initial allergen sensitization. Our findings highlight the immunomodulatory potential of molecules secreted by F. hepatica. © 2017 John Wiley & Sons Ltd.

  8. Attenuation of cigarette smoke-induced airway mucus production by hydrogen-rich saline in rats.

    Directory of Open Access Journals (Sweden)

    Yunye Ning

    Full Text Available BACKGROUND: Over-production of mucus is an important pathophysiological feature in chronic airway disease such as chronic obstructive pulmonary disease (COPD and asthma. Cigarette smoking (CS is the leading cause of COPD. Oxidative stress plays a key role in CS-induced airway abnormal mucus production. Hydrogen protected cells and tissues against oxidative damage by scavenging hydroxyl radicals. In the present study we investigated the effect of hydrogen on CS-induced mucus production in rats. METHODS: Male Sprague-Dawley rats were divided into four groups: sham control, CS group, hydrogen-rich saline pretreatment group and hydrogen-rich saline control group. Lung morphology and tissue biochemical changes were determined by immunohistochemistry, Alcian Blue/periodic acid-Schiff staining, TUNEL, western blot and realtime RT-PCR. RESULTS: Hydrogen-rich saline pretreatment attenuated CS-induced mucus accumulation in the bronchiolar lumen, goblet cell hyperplasia, muc5ac over-expression and abnormal cell apoptosis in the airway epithelium as well as malondialdehyde increase in the BALF. The phosphorylation of EGFR at Tyr1068 and Nrf2 up-regulation expression in the rat lungs challenged by CS exposure were also abrogated by hydrogen-rich saline. CONCLUSION: Hydrogen-rich saline pretreatment ameliorated CS-induced airway mucus production and airway epithelium damage in rats. The protective role of hydrogen on CS-exposed rat lungs was achieved at least partly by its free radical scavenging ability. This is the first report to demonstrate that intraperitoneal administration of hydrogen-rich saline protected rat airways against CS damage and it could be promising in treating abnormal airway mucus production in COPD.

  9. Effect of combined nitrogen dioxide and carbon nanoparticle exposure on lung function during ovalbumin sensitization in Brown Norway rat.

    Directory of Open Access Journals (Sweden)

    Skander Layachi

    Full Text Available The interaction of particulate and gaseous pollutants in their effects on the severity of allergic inflammation and airway responsiveness are not well understood. We assessed the effect of exposure to NO(2 in the presence or absence of repetitive treatment with carbon nanoparticle (CNP during allergen sensitization and challenges in Brown-Norway (BN rat, in order to assess their interactions on lung function and airway responses (AR to allergen and methacholine (MCH, end-expiratory lung volume (EELV, bronchoalveolar lavage fluid (BALF cellular content, serum and BALF cytokine levels and histological changes. Animals were divided into the following groups (n = 6: Control; CNP (Degussa-FW2: 13 nm, 0.5 mg/kg instilled intratracheally ×3 at 7-day intervals; OVA: ovalbumin-sensitised; OVA+CNP: both sensitized and exposed to CNP. Rats were divided into equal groups exposed either to air or to NO(2, 10 ppm, 6 h/d, 5d/wk for 4 weeks. Exposure to NO(2, significantly enhanced lung inflammation and airway reactivity, with a significantly larger effect in animals sensitized to allergen, which was related to a higher expression of TH1 and TH2-type cytokines. Conversely, exposure to NO(2 in animals undergoing repeated tracheal instillation of CNP alone, increased BALF neutrophilia and enhanced the expression of TH1 cytokines: TNF-α and IFN-γ, but did not show an additive effect on airway reactivity in comparison to NO(2 alone. The exposure to NO(2 combined with CNP treatment and allergen sensitization however, unexpectedly resulted in a significant decrease in both airway reactivity to allergen and to methacholine, and a reduction in TH2-type cytokines compared to allergen sensitization alone. EELV was significantly reduced with sensitization, CNP treatment or both. These data suggest an immunomodulatory effect of repeated tracheal instillation of CNP on the proinflammatory effects of NO(2 exposure in sensitized BN rat. Furthermore, our findings suggest

  10. ADAM10 mediates the house dust mite-induced release of chemokine ligand CCL20 by airway epithelium

    NARCIS (Netherlands)

    Post, S.; Rozeveld, D.; Jonker, M. R.; Bischoff, R.; van Oosterhout, A. J.; Heijink, I. H.

    2015-01-01

    Background: House dust mite (HDM) acts on the airway epithelium to induce airway inflammation in asthma. We previously showed that the ability of HDM to induce allergic sensitization in mice is related to airway epithelial CCL20 secretion. Objective: As a disintegrin and metalloprotease (ADAM)s have

  11. Sleep apnea is associated with bronchial inflammation and continuous positive airway pressure-induced airway hyperresponsiveness.

    Science.gov (United States)

    Devouassoux, Gilles; Lévy, Patrick; Rossini, Eliane; Pin, Isabelle; Fior-Gozlan, Michèle; Henry, Mireille; Seigneurin, Daniel; Pépin, Jean-Louis

    2007-03-01

    Obstructive sleep apnea syndrome (OSA) is associated with systemic and upper airway inflammation. Pharyngeal inflammation has a potential role in upper airway collapse, whereas systemic inflammation relates to cardiovascular morbidity. However, the presence of an inflammatory involvement of lower airway has been poorly investigated. The aim of the study was to demonstrate an inflammatory process at the bronchial level in patients with OSA and to analyze effects of continuous positive airway pressure (CPAP) application and humidification on bronchial mucosa. The study was conducted by using sequential induced sputum for cell analysis and IL-8 production, nitric oxide exhalation measurement, and methacholine challenge before and after CPAP. Bronchial neutrophilia and a high IL-8 concentration were observed in untreated OSA compared with controls (75% +/- 20% vs 43% +/- 12%, P Obstructive sleep apnea syndrome is associated with bronchial inflammation. Our data demonstrate CPAP effect on the development of AHR, possibly facilitated by the pre-existing inflammation. Both issues should be evaluated during long-term CPAP use. Results showing a spontaneous bronchial inflammation in OSA and the development of a CPAP-related AHR require a long-term follow-up to evaluate consequences on chronic bronchial obstruction.

  12. Bovine milk fat enriched in conjugated linoleic and vaccenic acids attenuates allergic airway disease in mice.

    Science.gov (United States)

    Kanwar, R K; Macgibbon, A K; Black, P N; Kanwar, J R; Rowan, A; Vale, M; Krissansen, G W

    2008-01-01

    It has been argued that a reduction in the Western diet of anti-inflammatory unsaturated lipids, such as n-3 polyunsaturated fatty acids, has contributed to the increase in the frequency and severity of allergic diseases. We investigated whether feeding milk fat enriched in conjugated linoleic acid and vaccenic acids (VAs) ('enriched' milk fat), produced by supplementing the diet of pasture-fed cows with fish and sunflower oil, will prevent development of allergic airway responses. C57BL/6 mice were fed a control diet containing soybean oil and diets supplemented with milk lipids. They were sensitized by intraperitoneal injection of ovalbumin (OVA) on days 14 and 28, and challenged intranasally with OVA on day 42. Bronchoalveolar lavage fluid, lung tissues and serum samples were collected 6 days after the intranasal challenge. Feeding of enriched milk fat led to marked suppression of airway inflammation as evidenced by reductions in eosinophilia and lymphocytosis in the airways, compared with feeding of normal milk fat and control diet. Enriched milk fat significantly reduced circulating allergen-specific IgE and IgG1 levels, together with reductions in bronchoalveolar lavage fluid of IL-5 and CCL11. Treatment significantly inhibited changes in the airway including airway epithelial cell hypertrophy, goblet cell metaplasia and mucus hypersecretion. The two major components of enriched milk fat, cis-9, trans-11 conjugated linoleic acid and VA, inhibited airway inflammation when fed together to mice, whereas alone they were not effective. Milk fat enriched in conjugated linoleic and VAs suppresses inflammation and changes to the airways in an animal model of allergic airway disease.

  13. Interaction between a "processed" ovalbumin peptide and Ia molecules

    DEFF Research Database (Denmark)

    Buus, S; Colon, S; Smith, C

    1986-01-01

    The binding of 125I-labeled immunogenic peptides to purified Ia molecules in detergent solution was examined by equilibrium dialysis. We used the chicken ovalbumin peptide ovalbumin-(323-339)-Tyr, which is immunogenic in the BALB/c mouse and restricted to I-Ad. 125I-labeled ovalbumin-(323-339)-Tyr......-Ak but not to I-Ek, I-Ad, or I-Ed. Thus, a specific interaction between Ia and antigen that correlates with the major histocompatibility complex restriction was demonstrated, strongly arguing in favor of a determinant selection hypothesis for such restriction....

  14. dNP2-ctCTLA-4 inhibits German cockroach extract-induced allergic airway inflammation and hyper-responsiveness via inhibition of Th2 responses.

    Science.gov (United States)

    Lim, Sangho; Ho Sohn, Jung; Koo, Ja-Hyun; Park, Jung-Won; Choi, Je-Min

    2017-08-04

    German cockroaches are major household allergens that can trigger allergic airway inflammatory diseases with sensitive T-cell responses. Although the use of immune modulatory biologics, such as antibodies, to mediate allergic responses has recently been examined, only systemic administration is available because of the size limitations on intranasal administration. Here we utilized a cell-permeable peptide, dNP2, to deliver the cytoplasmic domain of cytotoxic T-lymphocyte antigen-4 (ctCTLA-4) through the airway epithelium to modulate Th2 responses in a German cockroach extract (GCE)-induced allergic airway inflammation model. The intranasal delivery efficiency of the dNP2-dTomato protein to the lungs was higher in GCE-induced asthmatic lung parenchymal cells compared to the sham cells. Intranasal administration of the dNP2-ctCTLA-4 protein inhibited airway hyper-responsiveness and reduced airway inflammation and remodeling, including goblet cell metaplasia and collagen deposition around the bronchi. The number of infiltrated cells, including eosinophils, and the levels of IL-4, IL-5, IL-13 and IFN-γ in the lungs were significantly reduced, presumably owing to inhibition of Th2 differentiation. However, intranasal administration of CTLA4-Ig did not inhibit airway inflammation. These results collectively suggest that dNP2-ctCTLA-4 is an efficient intranasally applicable candidate biologic for treating allergic asthma.

  15. Bifidobacterium breve and Lactobacillus rhamnosus treatment is as effective as budesonide at reducing inflammation in a murine model for chronic asthma.

    Science.gov (United States)

    Sagar, Seil; Morgan, Mary E; Chen, Si; Vos, Arjan P; Garssen, Johan; van Bergenhenegouwen, Jeroen; Boon, Louis; Georgiou, Niki A; Kraneveld, Aletta D; Folkerts, Gert

    2014-04-16

    Asthma is estimated to affect as many as 300 million people worldwide and its incidence and prevalence are rapidly increasing throughout the world, especially in children and within developing countries. Recently, there has been a growing interest in the use of potentially beneficial bacteria for allergic diseases. This study is aimed at exploring the therapeutic effects of long-term treatment with two different beneficial bacterial strains (Bifidobacterium breve M-16 V and Lactobacillus rhamnosus NutRes1) and a glucocorticoid (budesonide), as a reference treatment, on inflammatory response in a murine model for chronic allergic asthma. To mimic the chronic disease in asthmatic patients, we used the murine ovalbumin-induced asthma model combined with prolonged allergen exposure. Airway function; pulmonary airway inflammation; airway remodelling, mRNA expression of pattern recognition receptors, Th-specific cytokines and transcription factors in lung tissue; mast cell degranulation; in vitro T cell activation; and expression of Foxp3 in blood Th cells were examined. Lactobacillus rhamnosus reduced lung resistance to a similar extent as budesonide treatment in chronically asthmatic mice. Pulmonary airway inflammation, mast cell degranulation, T cell activation and airway remodelling were suppressed by all treatments. Beneficial bacteria and budesonide differentially modulated the expression of toll-like receptors (TLRs), nod-like receptors (NLRs), cytokines and T cell transcription factors. Bifidobacterium breve induced regulatory T cell responses in the airways by increasing Il10 and Foxp3 transcription in lung tissue as well as systemic by augmenting the mean fluorescence intensity of Foxp3 in blood CD4+ T cells. These findings show that Bifidobacterium breve M-16 V and Lactobacillus rhamnosus NutRes1 have strong anti-inflammatory properties that are comparable to budesonide and therefore may be beneficial in the treatment of chronic asthma.

  16. Repeated allergen exposure reduce early phase airway response and leukotriene release despite upregulation of 5-lipoxygenase pathways

    Directory of Open Access Journals (Sweden)

    Cui Zhi-Hua

    2012-03-01

    Full Text Available Abstract Background Allergen induced early phase airway response and airway plasma exudation are predominantly mediated by inflammatory mast cell mediators including histamine, cysteinyl leukotrienes (cysLTs and thromboxane A2 (TXA2. The aim of the present study was to evaluate whether repeated allergen exposure affects early phase airway response to allergen challenge. Methods A trimellitic anhydride (TMA sensitized guinea pig model was used to investigate the effects of low dose repeated allergen exposure on cholinergic airway responsiveness, early phase airway response and plasma exudation, as well as local airway production of mast cell derived cysteinyl leukotrienes and thromboxane B2 (TXB2 after allergen challenge. Results Repeated low dose allergen exposure increased cholinergic airway responsiveness. In contrast, early phase airway response and plasma exudation in response to a high-dose allergen challenge were strongly attenuated after repeated low dose allergen exposure. Inhibition of the airway response was unspecific to exposed allergen and independent of histamine receptor blocking. Furthermore, a significant reduction of cysteinyl leukotrienes and TXB2 was found in the airways of animals repeatedly exposed to a low dose allergen. However, in vitro stimulation of airway tissue from animals repeatedly exposed to a low dose allergen with arachidonic acid and calcium ionophore (A23187 induced production of cysteinyl leukotrienes and TXB2, suggesting enhanced activity of 5-lipoxygenase and cyclooxygenase pathways. Conclusions The inhibition of the early phase airway response, cysteinyl leukotriene and TXB2 production after repeated allergen exposure may result from unresponsive effector cells.

  17. Nicotine impairs cyclooxygenase-2-dependent kinin-receptor-mediated murine airway relaxations

    International Nuclear Information System (INIS)

    Xu, Yuan; Cardell, Lars-Olaf

    2014-01-01

    Introduction: Cigarette smoke induces local inflammation and airway hyperreactivity. In asthmatics, it worsens the symptoms and increases the risk for exacerbation. The present study investigates the effects of nicotine on airway relaxations in isolated murine tracheal segments. Methods: Segments were cultured for 24 h in the presence of vehicle, nicotine (10 μM) and/or dexamethasone (1 μM). Airway relaxations were assessed in myographs after pre-contraction with carbachol (1 μM). Kinin receptors, cyclooxygenase (COX) and inflammatory mediator expressions were assessed by real-time PCR and confocal-microscopy-based immunohistochemistry. Results: The organ culture procedure markedly increased bradykinin- (selective B 2 receptor agonist) and des-Arg 9 -bradykinin- (selective B 1 receptor agonist) induced relaxations, and slightly increased relaxation induced by isoprenaline, but not that induced by PGE 2 . The kinin receptor mediated relaxations were epithelium-, COX-2- and EP2-receptor-dependent and accompanied by drastically enhanced mRNA levels of kinin receptors, as well as inflammatory mediators MCP-1 and iNOS. Increase in COX-2 and mPGES-1 was verified both at mRNA and protein levels. Nicotine selectively suppressed the organ-culture-enhanced relaxations induced by des-Arg 9 -bradykinin and bradykinin, at the same time reducing mPGES-1 mRNA and protein expressions. α7-nicotinic acetylcholine receptor inhibitors α-bungarotoxin and MG624 both blocked the nicotine effects on kinin B 2 receptors, but not those on B 1 . Dexamethasone completely abolished kinin-induced relaxations. Conclusion: It is tempting to conclude that a local inflammatory process per se could have a bronchoprotective component by increasing COX-2 mediated airway relaxations and that nicotine could impede this safety mechanism. Dexamethasone further reduced airway inflammation together with relaxations. This might contribute to the steroid resistance seen in some patients with asthma

  18. Nicotine impairs cyclooxygenase-2-dependent kinin-receptor-mediated murine airway relaxations

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yuan, E-mail: yuan.xu@ki.se; Cardell, Lars-Olaf

    2014-02-15

    Introduction: Cigarette smoke induces local inflammation and airway hyperreactivity. In asthmatics, it worsens the symptoms and increases the risk for exacerbation. The present study investigates the effects of nicotine on airway relaxations in isolated murine tracheal segments. Methods: Segments were cultured for 24 h in the presence of vehicle, nicotine (10 μM) and/or dexamethasone (1 μM). Airway relaxations were assessed in myographs after pre-contraction with carbachol (1 μM). Kinin receptors, cyclooxygenase (COX) and inflammatory mediator expressions were assessed by real-time PCR and confocal-microscopy-based immunohistochemistry. Results: The organ culture procedure markedly increased bradykinin- (selective B{sub 2} receptor agonist) and des-Arg{sup 9}-bradykinin- (selective B{sub 1} receptor agonist) induced relaxations, and slightly increased relaxation induced by isoprenaline, but not that induced by PGE{sub 2}. The kinin receptor mediated relaxations were epithelium-, COX-2- and EP2-receptor-dependent and accompanied by drastically enhanced mRNA levels of kinin receptors, as well as inflammatory mediators MCP-1 and iNOS. Increase in COX-2 and mPGES-1 was verified both at mRNA and protein levels. Nicotine selectively suppressed the organ-culture-enhanced relaxations induced by des-Arg{sup 9}-bradykinin and bradykinin, at the same time reducing mPGES-1 mRNA and protein expressions. α7-nicotinic acetylcholine receptor inhibitors α-bungarotoxin and MG624 both blocked the nicotine effects on kinin B{sub 2} receptors, but not those on B{sub 1}. Dexamethasone completely abolished kinin-induced relaxations. Conclusion: It is tempting to conclude that a local inflammatory process per se could have a bronchoprotective component by increasing COX-2 mediated airway relaxations and that nicotine could impede this safety mechanism. Dexamethasone further reduced airway inflammation together with relaxations. This might contribute to the steroid resistance seen in

  19. Protein Exposed Hydrophobicity Reduces the Kinetic Barrier for Adsorption of Ovalbumin to the Air-Water Interface

    NARCIS (Netherlands)

    Wierenga, P.A.; Meinders, M.B.J.; Egmond, M.R.; Voragen, F.A.G.J.; Jongh, H.H.J. de

    2003-01-01

    Using native and caprylated ovalbumin, the role of exposed hydrophobicity on the kinetics of protein adsorption to the air - water interface is studied. First, changes in the chemical properties of the protein upon caprylation were characterized followed by measurement of the changes in adsorption

  20. Protein exposed hydrophobicity reduces the kinetic barrier for adsoption of ovalbumin to the air-water interface.

    NARCIS (Netherlands)

    Wierenga, P.A.; Meinders, M.B.J.; Egmond, M.R.; Voragen, A.G.J.

    2003-01-01

    Using native and caprylated ovalbumin, the role of exposed hydrophobicity on the kinetics of protein adsorption to the air-water interface is studied. First, changes in the chemical properties of the protein upon caprylation were characterized followed by measurement of the changes in adsorption

  1. Regulation of allergic airway inflammation by adoptive transfer of CD4+ T cells preferentially producing IL-10.

    Science.gov (United States)

    Matsuda, Masaya; Doi, Kana; Tsutsumi, Tatsuya; Fujii, Shinya; Kishima, Maki; Nishimura, Kazuma; Kuroda, Ikue; Tanahashi, Yu; Yuasa, Rino; Kinjo, Toshihiko; Kuramoto, Nobuyuki; Mizutani, Nobuaki; Nabe, Takeshi

    2017-10-05

    Anti-inflammatory pharmacotherapy for asthma has mainly depended on the inhalation of glucocorticoids, which non-specifically suppress immune responses. If the anti-inflammatory cytokine interleukin (IL)-10 can be induced by a specific antigen, asthmatic airway inflammation could be suppressed when individuals are exposed to the antigen. The purpose of this study was to develop cellular immunotherapeutics for atopic diseases using IL-10-producing CD4 + T cells. Spleen cells isolated from ovalbumin (OVA)-sensitized mice were cultured with the antigen, OVA and growth factors, IL-21, IL-27 and TGF-β for 7 days. After the 7-day culture, the CD4 + T cells were purified using a murine CD4 magnetic beads system. When the induced CD4 + T cells were stimulated by OVA in the presence of antigen-presenting cells, IL-10 was preferentially produced in vitro. When CD4 + T cells were adoptively transferred to OVA-sensitized mice followed by intratracheal OVA challenges, IL-10 was preferentially produced in the serum and bronchoalveolar lavage fluid in vivo. IL-10 production coincided with the inhibition of eosinophilic airway inflammation and epithelial mucus plugging. Most of the IL-10-producing CD4 + T cells were negative for Foxp3 and GATA-3, transcription factors of naturally occurring regulatory T cells and Th2 cells, respectively, but double positive for LAG-3 and CD49b, surface markers of inducible regulatory T cells, Tr1 cells. Collectively, most of the induced IL-10-producing CD4 + T cells could be Tr1 cells, which respond to the antigen to produce IL-10, and effectively suppressed allergic airway inflammation. The induced Tr1 cells may be useful for antigen-specific cellular immunotherapy for atopic diseases. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Gender and dose dependent ovalbumin induced hypersensitivity responses in murine model of food allergy

    Science.gov (United States)

    While federal regulations mandate the labeling of major food allergens, allowable food allergen thresholds have yet to be determined. Therefore the aim of this project was to identify the lowest egg allergen ovalbumin (OVA) dose causing hypersensitization using a validated murine model. Mice were or...

  3. Maillard-Reaction-Functionalized Egg Ovalbumin Stabilizes Oil Nanoemulsions.

    Science.gov (United States)

    Liu, Gang; Yuan, Dan; Wang, Qi; Li, Wanrong; Cai, Jie; Li, Shuyi; Lamikanra, Olusola; Qin, Xinguang

    2018-04-25

    Egg white proteins are an excellent source of nutrition, with high biological and technological values. However, their limited functional properties prevent their widespread industrial applications. In this study, the ovalbumin functionality was improved via glycation by Maillard reaction with d-lactose. The free amino groups and sodium dodecyl sulfate-polyacrylamide gel electrophoresis profile were determined, confirming that glycation occurred between ovalbumin and lactose. The emulsification of the conjugate was 2.69-fold higher than that of ovalbumin at pH 7.0 after glycation. The thermal stability also improved remarkably. The glycated protein products were used to form an oil-water nanoemulsion for polymethoxyflavone-rich aged orange peel oil. The resulting nanoemulsion showed good pH, thermal, and storage stabilities.

  4. Intravenous IgA complexed with antigen reduces primary antibody response to the antigen and anaphylaxis upon antigen re-exposure by inhibiting Th1 and Th2 activation in mice.

    Science.gov (United States)

    Yamaki, Kouya; Miyatake, Kenji; Nakashima, Takayuki; Morioka, Ayumi; Yamamoto, Midori; Ishibashi, Yuki; Ito, Ayaka; Kuranishi, Ayu; Yoshino, Shin

    2014-10-01

    Serum IgG, IgE and IgM have been shown to enhance the primary antibody responses upon exposure to the soluble antigens recognized by those antibodies. However, how IgA affects these responses remains unknown. We investigated the effects of intravenously administered monoclonal IgA on the immune responses in mice. DBA/1J mice were immunized with ovalbumin in the presence or absence of anti-ovalbumin monoclonal IgA. The Th1 and Th2 immune responses to ovalbumin and the anaphylaxis induced by re-exposure to ovalbumin were measured. IgA complexed with antigen attenuated the primary antibody responses to the antigen in mice, in contrast to IgG2b and IgE. The primary antibody responses, i.e. the de novo synthesis of anti-ovalbumin IgG2a, IgG1 and IgE in the serum, and the subsequent anaphylaxis induced with re-exposure to ovalbumin were reduced by the co-injection of anti-ovalbumin monoclonal IgA at ovalbumin immunization. The Th1, Th2 and Tr1 cytokines interferon-γ, interleukin-4 and interleukin-10, respectively, released from ovalbumin-restimulated cultured splenocytes collected from allergic mice were also reduced by the treatment. The induction of interferon-γ and interleukin-4 secretion by splenocytes from ovalbumin-immunized mice stimulated in vitro with ovalbumin was also significantly reduced by the antigen complexed with anti-ovalbumin IgA. These data suggest that the direct inhibition of Th1 and Th2 activation by anti-ovalbumin monoclonal IgA participates in the inhibition of the primary antibody responses. IgA plays important immunosuppressive roles under physiological and pathological conditions and is a promising candidate drug for the treatment of immune disorders.

  5. Pituitary Adenylate Cyclase-Activating Polypeptide Reverses Ammonium Metavanadate-Induced Airway Hyperresponsiveness in Rats

    Directory of Open Access Journals (Sweden)

    Mounira Tlili

    2015-01-01

    Full Text Available The rate of atmospheric vanadium is constantly increasing due to fossil fuel combustion. This environmental pollution favours vanadium exposure in particular to its vanadate form, causing occupational bronchial asthma and bronchitis. Based on the well admitted bronchodilator properties of the pituitary adenylate cyclase-activating polypeptide (PACAP, we investigated the ability of this neuropeptide to reverse the vanadate-induced airway hyperresponsiveness in rats. Exposure to ammonium metavanadate aerosols (5 mg/m3/h for 15 minutes induced 4 hours later an array of pathophysiological events, including increase of bronchial resistance and histological alterations, activation of proinflammatory alveolar macrophages, and increased oxidative stress status. Powerfully, PACAP inhalation (0.1 mM for 10 minutes alleviated many of these deleterious effects as demonstrated by a decrease of bronchial resistance and histological restoration. PACAP reduced the level of expression of mRNA encoding inflammatory chemokines (MIP-1α, MIP-2, and KC and cytokines (IL-1α and TNF-α in alveolar macrophages and improved the antioxidant status. PACAP reverses the vanadate-induced airway hyperresponsiveness not only through its bronchodilator activity but also by counteracting the proinflammatory and prooxidative effects of the metal. Then, the development of stable analogs of PACAP could represent a promising therapeutic alternative for the treatment of inflammatory respiratory disorders.

  6. Adverse effect of nano-silicon dioxide on lung function of rats with or without ovalbumin immunization.

    Directory of Open Access Journals (Sweden)

    Bing Han

    Full Text Available BACKGROUND: The great advances of nanomaterials have brought out broad important applications, but their possible nanotoxicity and risks have not been fully understood. It is confirmed that exposure of environmental particulate matter (PM, especially ultrafine PM, are responsible for many lung function impairment and exacerbation of pre-existing lung diseases. However, the adverse effect of nanoparticles on allergic asthma is seldom investigated and the mechanism remains undefined. For the first time, this work investigates the relationship between allergic asthma and nanosized silicon dioxide (nano-SiO₂. METHODOLOGY/PRINCIPAL FINDINGS: Ovalbumin (OVA-treated and saline-treated control rats were daily intratracheally administered 0.1 ml of 0, 40 and 80 µg/ml nano-SiO₂ solutions, respectively for 30 days. Increased nano-SiO₂ exposure results in adverse changes on inspiratory and expiratory resistance (Ri and Re, but shows insignificant effect on rat lung dynamic compliance (Cldyn. Lung histological observation reveals obvious airway remodeling in 80 µg/ml nano-SiO₂-introduced saline and OVA groups, but the latter is worse. Additionally, increased nano-SiO₂ exposure also leads to more severe inflammation. With increasing nano-SiO₂ exposure, IL-4 in lung homogenate increases and IFN-γ shows a reverse but insignificant change. Moreover, at a same nano-SiO₂ exposure concentration, OVA-treated rats exhibit higher (significant IL-4 and lower (not significant IFN-γ compared with the saline-treated rats. The percentages of eosinophil display an unexpected result, in which higher exposure results lower eosinophil percentages. CONCLUSIONS/SIGNIFICANCE: This was a preliminary study which for the first time involved the effect of nano-SiO₂ to OVA induced rat asthma model. The results suggested that intratracheal administration of nano-SiO₂ could lead to the airway hyperresponsiveness (AHR and the airway remolding with or without OVA

  7. Hypoxia-inducible factor-1 signalling promotes goblet cell hyperplasia in airway epithelium

    Science.gov (United States)

    Polosukhin, Vasiliy V; Cates, Justin M; Lawson, William E; Milstone, Aaron P; Matafonov, Anton G; Massion, Pierre P; Lee, Jae Woo; Randell, Scott H; Blackwell, Timothy S

    2018-01-01

    Goblet cell hyperplasia is a common feature of chronic obstructive pulmonary disease (COPD) airways, but the mechanisms that underlie this epithelial remodelling in COPD are not understood. Based on our previous finding of hypoxia-inducible factor-1α (HIF-1α) nuclear localization in large airways from patients with COPD, we investigated whether hypoxia-inducible signalling could influence the development of goblet cell hyperplasia. We evaluated large airway samples obtained from 18 lifelong non-smokers and 13 former smokers without COPD, and 45 former smokers with COPD. In these specimens, HIF-1α nuclear staining occurred almost exclusively in COPD patients in areas of airway remodelling. In COPD patients, 93.2 ± 3.9% (range 65 – 100%) of goblet cells were HIF-1α positive in areas of goblet cell hyperplasia, whereas nuclear HIF-1α was not detected in individuals without COPD or in normal-appearing pseudostratified epithelium from COPD patients. To determine the direct effects of hypoxia-inducible signalling on epithelial cell differentiation in vitro, human bronchial epithelial cells (HBECs) were grown in air-liquid interface cultures under hypoxia (1% O2) or following treatment with a selective HIF-1α stabilizer, (2R)-[(4-biphenylylsulphonyl)amino]-N-hydroxy-3-phenyl-propionamide (BiPS). HBECs grown in hypoxia or with BiPS treatment were characterized by HIF-1α activation, carbonic anhydrase IX expression, mucus-producing cell hyperplasia and increased expression of MUC5AC. Analysis of signal transduction pathways in cells with HIF-1α activation showed increased ERK1/2 phosphorylation without activation of epidermal growth factor receptor, Ras, PI3K-Akt or STAT6. These data indicate an important effect of hypoxia-inducible signalling on airway epithelial cell differentiation and identify a new potential target to limit mucus production in COPD. PMID:21557221

  8. Hesperidin-3′-O-Methylether Is More Potent than Hesperidin in Phosphodiesterase Inhibition and Suppression of Ovalbumin-Induced Airway Hyperresponsiveness

    Directory of Open Access Journals (Sweden)

    You-Lan Yang

    2012-01-01

    Full Text Available Hesperidin is present in the traditional Chinese medicine, “Chen Pi,” and recently was reported to have anti-inflammatory effects. Therefore, we were interested in comparing the effects of hesperidin and hesperidin-3′-O-methylether on phosphodiesterase inhibition and airway hyperresponsiveness (AHR in a murine model of asthma. In the present results, hesperidin-3′-O-methylether, but not hesperidin, at 30 μmol/kg (p.o. significantly attenuated the enhanced pause (Penh value, suppressed the increases in numbers of total inflammatory cells, macrophages, lymphocytes, neutrophils, and eosinophils, suppressed total and OVA-specific immunoglobulin (IgE levels in the serum and BALF, and enhanced the level of total IgG2a in the serum of sensitized and challenged mice, suggesting that hesperidin-3′-O-methylether is more potent than hesperidin in suppression of AHR and immunoregulation. The different potency between them may be due to their aglycons, because these two flavanone glycosides should be hydrolyzed by β-glucosidase after oral administration. Neither influenced xylazine/ketamine-induced anesthesia, suggesting that they may have few or no adverse effects, such as nausea, vomiting, and gastric hypersecretion. In conclusion, hesperidin-3′-O-methylether is more potent in phosphodiesterase inhibition and suppression of AHR and has higher therapeutic (PDE4H/PDE4L ratio than hesperidin. Thus, hesperidin-3′-O-methylether may have more potential for use in treating allergic asthma and chronic obstructive pulmonary disease.

  9. Celastrol Alleviates Airway Hyperresponsiveness and Inhibits Th17 Responses in Obese Asthmatic Mice

    Directory of Open Access Journals (Sweden)

    Zeyu Zeng

    2018-01-01

    Full Text Available Severe airway hyperresponsiveness (AHR is a clinical feature of asthma, which has been associated with obesity and has shown a poor response to standard asthma treatments such as glucocorticoids. Numerous studies have shown that Interleukin (IL-17 producing CD4+T cells (Th17 cells, which could be inhibited by celastrol, is essential in mediating steroid-resistant AHR. The following study investigates the impact of celastrol and its mechanism on the regulation of AHR in murine model of obesity and asthma. C57BL/6 mice were sensitized by intraperitoneal injection of ovalbumin (OVA on day 1 and 13 starting from 12th week, which was followed by aerosol OVA challenge that lasted for 30 min per daily for 7 consecutive days starting from 16th week. Diet-induced obesity (DIO mice were fed a high fat diet (HFD for 16 weeks. Celastrol was administrated orally for 7 consecutive days, 30 min before every challenge in DIO-OVA-induced mice. Lung functions were analyzed by measuring the airway resistance (Rn and methacholine (MCh AHR, while H&E staining was used to examine histological changes in the lungs. Immunohistochemistry was used to observe IL-17A protein in lung tissues; flow cytometry to detect the proportion of Th17 cells in CD4+T cells. The concentration of cytokines IL-17A in serum was assessed by standardized sandwich ELISA, while the expression of IL-17A mRNA in lung was examined by quantitative real-time RT-PCR. Briefly, our data indicated that celastrol reduced body mass in DIO-OVA-induced obesity and asthma. Both baseline Rn and MCh AHR were significantly lower in celastrol group. Moreover, celastrol treatment decreased the frequency of Th17 cell expansion and reduced the production of IL-17A in both lung and serum. To sum up, our findings indicated that Th17 and its cytokine measured in the spleen and lung were closely associated with AHR. In addition, celastrol has shown the ability to suppress AHR through Th17 inhibition in obese asthmatic

  10. Acrolein exposure suppresses antigen-induced pulmonary inflammation

    Science.gov (United States)

    2013-01-01

    Background Adverse health effects of tobacco smoke arise partly from its influence on innate and adaptive immune responses, leading to impaired innate immunity and host defense. The impact of smoking on allergic asthma remains unclear, with various reports demonstrating that cigarette smoke enhances asthma development but can also suppress allergic airway inflammation. Based on our previous findings that immunosuppressive effects of smoking may be largely attributed to one of its main reactive electrophiles, acrolein, we explored the impact of acrolein exposure in a mouse model of ovalbumin (OVA)-induced allergic asthma. Methods C57BL/6 mice were sensitized to ovalbumin (OVA) by intraperitoneal injection with the adjuvant aluminum hydroxide on days 0 and 7, and challenged with aerosolized OVA on days 14–16. In some cases, mice were also exposed to 5 ppm acrolein vapor for 6 hrs/day on days 14–17. Lung tissues or brochoalveolar lavage fluids (BALF) were collected either 6 hrs after a single initial OVA challenge and/or acrolein exposure on day 14 or 48 hrs after the last OVA challenge, on day 18. Inflammatory cells and Th1/Th2 cytokine levels were measured in BALF, and lung tissue samples were collected for analysis of mucus and Th1/Th2 cytokine expression, determination of protein alkylation, cellular thiol status and transcription factor activity. Results Exposure to acrolein following OVA challenge of OVA-sensitized mice resulted in markedly attenuated allergic airway inflammation, demonstrated by decreased inflammatory cell infiltrates, mucus hyperplasia and Th2 cytokines. Acrolein exposure rapidly depleted lung tissue glutathione (GSH) levels, and induced activation of the Nrf2 pathway, indicated by accumulation of Nrf2, increased alkylation of Keap1, and induction of Nrf2-target genes such as HO-1. Additionally, analysis of inflammatory signaling pathways showed suppressed activation of NF-κB and marginally reduced activation of JNK in acrolein

  11. The New Perilaryngeal Airway (CobraPLA™)1 Is as Efficient as the Laryngeal Mask Airway (LMA™)2, But Provides Better Airway Sealing Pressures

    Science.gov (United States)

    Akça, Ozan; Wadhwa, Anupama; Sengupta, Papiya; Durrani, Jaleel; Hanni, Keith; Wenke, Mary; Yücel, Yüksel; Lenhardt, Rainer; Doufas, Anthony G.; Sessler, Daniel I.

    2006-01-01

    The Laryngeal Mask Airway (LMA) is a frequently-used efficient airway device, yet it sometimes seals poorly, thus reducing the efficacy of positive-pressure ventilation. The Perilaryngeal Airway (CobraPLA) is a novel airway device with a larger pharyngeal cuff (when inflated). We tested the hypothesis that the CobraPLA was superior to LMA with regard to insertion time and airway sealing pressure and comparable to LMA in airway adequacy and recovery characteristics. After midazolam and fentanyl, 81 ASA I-II outpatients having elective surgery were randomized to receive an LMA or CobraPLA. Anesthesia was induced with propofol (2.5 mg/kg, IV), and the airway inserted. We measured 1) insertion time; 2) adequacy of the airway (no leak at 15-cm-H2O peak pressure or tidal volume of 5 ml/kg); 3) airway sealing pressure; 4) number of repositioning attempts; and 5) sealing quality (no leak at tidal volume of 8 ml/kg). At the end of surgery, gastric insufflation, postoperative sore throat, dysphonia, and dysphagia were evaluated. Data were compared with unpaired t-tests, chi-square tests, or Fisher’s Exact tests; P<0.05 was significant. Patient characteristics, insertion times, airway adequacy, number of repositioning attempts, and recovery were similar in each group. Airway sealing pressure was significantly greater with CobraPLA (23±6 cm H2O) than LMA (18±5 cm H2O, P<0.001). The CobraPLA has insertion characteristics similar to LMA, but better airway sealing capabilities. PMID:15281543

  12. Methylene-tetrahydrofolate reductase contributes to allergic airway disease.

    Directory of Open Access Journals (Sweden)

    Kenneth R Eyring

    Full Text Available Environmental exposures strongly influence the development and progression of asthma. We have previously demonstrated that mice exposed to a diet enriched with methyl donors during vulnerable periods of fetal development can enhance the heritable risk of allergic airway disease through epigenetic changes. There is conflicting evidence on the role of folate (one of the primary methyl donors in modifying allergic airway disease.We hypothesized that blocking folate metabolism through the loss of methylene-tetrahydrofolate reductase (Mthfr activity would reduce the allergic airway disease phenotype through epigenetic mechanisms.Allergic airway disease was induced in C57BL/6 and C57BL/6Mthfr-/- mice through house dust mite (HDM exposure. Airway inflammation and airway hyperresponsiveness (AHR were measured between the two groups. Gene expression and methylation profiles were generated for whole lung tissue. Disease and molecular outcomes were evaluated in C57BL/6 and C57BL/6Mthfr-/- mice supplemented with betaine.Loss of Mthfr alters single carbon metabolite levels in the lung and serum including elevated homocysteine and cystathionine and reduced methionine. HDM-treated C57BL/6Mthfr-/- mice demonstrated significantly less airway hyperreactivity (AHR compared to HDM-treated C57BL/6 mice. Furthermore, HDM-treated C57BL/6Mthfr-/- mice compared to HDM-treated C57BL/6 mice have reduced whole lung lavage (WLL cellularity, eosinophilia, and Il-4/Il-5 cytokine concentrations. Betaine supplementation reversed parts of the HDM-induced allergic airway disease that are modified by Mthfr loss. 737 genes are differentially expressed and 146 regions are differentially methylated in lung tissue from HDM-treated C57BL/6Mthfr-/- mice and HDM-treated C57BL/6 mice. Additionally, analysis of methylation/expression relationships identified 503 significant correlations.Collectively, these findings indicate that the loss of folate as a methyl donor is a modifier of

  13. Dysregulation of type 2 innate lymphoid cells and TH2 cells impairs pollutant-induced allergic airway responses.

    Science.gov (United States)

    De Grove, Katrien C; Provoost, Sharen; Hendriks, Rudi W; McKenzie, Andrew N J; Seys, Leen J M; Kumar, Smitha; Maes, Tania; Brusselle, Guy G; Joos, Guy F

    2017-01-01

    Although the prominent role of T H 2 cells in type 2 immune responses is well established, the newly identified type 2 innate lymphoid cells (ILC2s) can also contribute to orchestration of allergic responses. Several experimental and epidemiologic studies have provided evidence that allergen-induced airway responses can be further enhanced on exposure to environmental pollutants, such as diesel exhaust particles (DEPs). However, the components and pathways responsible remain incompletely known. We sought to investigate the relative contribution of ILC2 and adaptive T H 2 cell responses in a murine model of DEP-enhanced allergic airway inflammation. Wild-type, Gata-3 +/nlslacZ (Gata-3-haploinsufficient), RAR-related orphan receptor α (RORα) fl/fl IL7R Cre (ILC2-deficient), and recombination-activating gene (Rag) 2 -/- mice were challenged with saline, DEPs, or house dust mite (HDM) or DEP+HDM. Airway hyperresponsiveness, as well as inflammation, and intracellular cytokine expression in ILC2s and T H 2 cells in the bronchoalveolar lavage fluid and lung tissue were assessed. Concomitant DEP+HDM exposure significantly enhanced allergic airway inflammation, as characterized by increased airway eosinophilia, goblet cell metaplasia, accumulation of ILC2s and T H 2 cells, type 2 cytokine production, and airway hyperresponsiveness compared with sole DEPs or HDM. Reduced Gata-3 expression decreased the number of functional ILC2s and T H 2 cells in DEP+HDM-exposed mice, resulting in an impaired DEP-enhanced allergic airway inflammation. Interestingly, although the DEP-enhanced allergic inflammation was marginally reduced in ILC2-deficient mice that received combined DEP+HDM, it was abolished in DEP+HDM-exposed Rag2 -/- mice. These data indicate that dysregulation of ILC2s and T H 2 cells attenuates DEP-enhanced allergic airway inflammation. In addition, a crucial role for the adaptive immune system was shown on concomitant DEP+HDM exposure. Copyright © 2016 American

  14. Effects of tMa-Xin-Di-Tan decoction on ovalbumin-induced allergic ...

    African Journals Online (AJOL)

    box expressed in T cells (T-bet) levels were determined in lung tissues by western blot analysis. Results: MXDT ... airway inflammation, airway hyperreactivity, shortness of breath, and ..... polysaccharide on activation of mast cells. Evid Based.

  15. Exposure of neonates to Respiratory Syncytial Virus is critical in determining subsequent airway response in adults

    Directory of Open Access Journals (Sweden)

    Daly Melissa

    2006-08-01

    Full Text Available Abstract Background Respiratory syncytial virus (RSV is the most common cause of acute bronchiolitis in infants and the elderly. Furthermore, epidemiological data suggest that RSV infection during infancy is a potent trigger of subsequent wheeze and asthma development. However, the mechanism by which RSV contributes to asthma is complex and remains largely unknown. A recent study indicates that the age of initial RSV infection is a key factor in determining airway response to RSV rechallenge. We hypothesized that severe RSV infection during neonatal development significantly alters lung structure and the pulmonary immune micro-environment; and thus, neonatal RSV infection is crucial in the development of or predisposition to allergic inflammatory diseases such as asthma. Methods To investigate this hypothesis the present study was conducted in a neonatal mouse model of RSV-induced pulmonary inflammation and airway dysfunction. Seven-day-old mice were infected with RSV (2 × 105 TCID50/g body weight and allowed to mature to adulthood. To determine if neonatal RSV infection predisposed adult animals to enhanced pathophysiological responses to allergens, these mice were then sensitized and challenged with ovalbumin. Various endpoints including lung function, histopathology, cytokine production, and cellularity in bronchoalveolar lavage were examined. Results RSV infection in neonates alone led to inflammatory airway disease characterized by airway hyperreactivity, peribronchial and perivascular inflammation, and subepithelial fibrosis in adults. If early RSV infection was followed by allergen exposure, this pulmonary phenotype was exacerbated. The initial response to neonatal RSV infection resulted in increased TNF-α levels in bronchoalveolar lavage. Interestingly, increased levels of IL-13 and mucus hyperproduction were observed almost three months after the initial infection with RSV. Conclusion Neonatal RSV exposure results in long term

  16. Effects of Radix Adenophorae and Cyclosporine A on an OVA-Induced Murine Model of Asthma by Suppressing to T Cells Activity, Eosinophilia, and Bronchial Hyperresponsiveness

    Directory of Open Access Journals (Sweden)

    Seong-Soo Roh

    2008-01-01

    Full Text Available The present study is performed to investigate the inhibitory effects of Radix Adenophorae extract (RAE on ovalbumin-induced asthma murine model. To study the anti-inflammatory and antiasthmatic effects of RAE, we examined the development of pulmonary eosinophilic inflammation and inhibitory effects of T cells in murine by RAE and cyclosporine A (CsA. We examined determination of airway hyperresponsiveness, flow cytometric analysis (FACS, enzyme-linked immunosorbent assay (ELISA, quantitative real time (PCR, hematoxylin-eosin staining, and Masson trichrome staining in lung tissue, lung weight, total cells, and eosinophil numbers in lung tissue. We demonstrated how RAE suppressed development on inflammation and decreased airway damage.

  17. Suppression of the immune response to ovalbumin in vivo by anti-idiotypic antibodies

    International Nuclear Information System (INIS)

    Grinevich, A.S.; Pinegin, B.V.

    1986-01-01

    Conditions of suppression of the immune response to a food allergin (ovalbumin) were studied with the aid of anti-idiotypic (AID) antibodies. Hen ovalbumin was used and the experiments were performed on mice. Antibodies were isolated from the resulting protein fractions and tested for inhibitor activity by the method of direct radioimmunologic analysis. The test system consisted of the reaction of binding the globulin fraction to the total preparation of antibodies to ovalbumin from mice and a 125 I-labeled total preparation of antibodies to ovalbumin of the same animals

  18. Pulsed electric field (PEF)-induced aggregation between lysozyme, ovalbumin and ovotransferrin in multi-protein system.

    Science.gov (United States)

    Wu, Li; Zhao, Wei; Yang, Ruijin; Yan, Wenxu

    2015-05-15

    The aggregation of multi-proteins is of great interest in food processing and a good understanding of the formation of aggregates during PEF processing is needed for the application of the process to pasteurize protein-based foods. The aggregates formation of a multi-protein system (containing ovalbumin, ovotransferrin and lysozyme) was studied through turbidity, size exclusion chromatography and SDS-PAGE patterns for interaction studies and binding forces. Results from size exclusion chromatography indicated that there was no soluble aggregates formed during PEF processing. The existence of lysozyme was important to form insoluble aggregates in the chosen ovalbumin solution. The results of SDS-PAGE patterns indicated that lysozyme was prone to precipitate, and was relatively the higher component of aggregates. Citric acid could be effective in inhibiting lysozyme from interacting with other proteins during PEF processing. Blocking the free sulphydryl by N-ethylmaleimide (NEM) did not affect aggregation inhibition. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Intervention effect and dose-dependent response of tanreqing injection on airway inflammation in lipopolysaccharide-induced rats.

    Science.gov (United States)

    Dong, Shoujin; Zhong, Yunqing; Yang, Kun; Xiong, Xiaoling; Mao, Bing

    2013-08-01

    To assess the effect of Tanreqing injection on airway inflammation in rats. A rat model of airway inflammation was generated with lipopolysaccharide (LPS). Tanreqing injection was given by intratracheal instillation, and bronchoalveolar lavage fluid (BALF) from the right lung was collected. BALF total cell and neutrophil counts were then determined. In addition, BALF levels of inflammatory cytokines interleukin-13, cytokine-induced neutrophil chemoat-tractant-1, and tumor necrosis factor-alpha were measured using enzyme linked immunosorbent assay. The middle lobe of the right lung was stained with hematoxylin-eosin and histological changes examined. LPS increased airway inflammation, decreased BALF inflammatory cell count, inflammatory cytokine levels, and suppressed leukocyte influx of the lung. The LPS-induced airway inflammation peaked at 24 h, decreased beginning at 48 h, and had decreased markedly by 96 h. Tanreqing injection contains anti-inflammatory properties, and inhibits airway inflammation in a dose-dependent manner.

  20. Limonene and its ozone-initiated reaction products attenuate allergic lung inflammation in mice.

    Science.gov (United States)

    Hansen, Jitka S; Nørgaard, Asger W; Koponen, Ismo K; Sørli, Jorid B; Paidi, Maya D; Hansen, Søren W K; Clausen, Per Axel; Nielsen, Gunnar D; Wolkoff, Peder; Larsen, Søren Thor

    2016-11-01

    Inhalation of indoor air pollutants may cause airway irritation and inflammation and is suspected to worsen allergic reactions. Inflammation may be due to mucosal damage, upper (sensory) and lower (pulmonary) airway irritation due to activation of the trigeminal and vagal nerves, respectively, and to neurogenic inflammation. The terpene, d-limonene, is used as a fragrance in numerous consumer products. When limonene reacts with the pulmonary irritant ozone, a complex mixture of gas and particle phase products is formed, which causes sensory irritation. This study investigated whether limonene, ozone or the reaction mixture can exacerbate allergic lung inflammation and whether airway irritation is enhanced in allergic BALB/cJ mice. Naïve and allergic (ovalbumin sensitized) mice were exposed via inhalation for three consecutive days to clean air, ozone, limonene or an ozone-limonene reaction mixture. Sensory and pulmonary irritation was investigated in addition to ovalbumin-specific antibodies, inflammatory cells, total protein and surfactant protein D in bronchoalveolar lavage fluid and hemeoxygenase-1 and cytokines in lung tissue. Overall, airway allergy was not exacerbated by any of the exposures. In contrast, it was found that limonene and the ozone-limonene reaction mixture reduced allergic inflammation possibly due to antioxidant properties. Ozone induced sensory irritation in both naïve and allergic mice. However, allergic but not naïve mice were protected from pulmonary irritation induced by ozone. This study showed that irritation responses might be modulated by airway allergy. However, aggravation of allergic symptoms was observed by neither exposure to ozone nor exposure to ozone-initiated limonene reaction products. In contrast, anti-inflammatory properties of the tested limonene-containing pollutants might attenuate airway allergy.

  1. Clonorchis sinensis-derived total protein attenuates airway inflammation in murine asthma model by inducing regulatory T cells and modulating dendritic cell functions

    International Nuclear Information System (INIS)

    Jeong, Young-Il; Kim, Seung Hyun; Ju, Jung Won; Cho, Shin Hyeong; Lee, Won Ja; Park, Jin Wook; Park, Yeong-Min; Lee, Sang Eun

    2011-01-01

    Highlights: → Treatment with Clonorchis sinensis-derived total protein attenuates OVA-induced airway inflammation and AHR to methacholine. → Induction of CD4 + CD25 + Foxp3 + T cells and IL-10 along with suppression of splenocyte proliferation by C. sinensis-derived total protein. → C. sinensis-derived total protein interferes with the expression of co-stimulatory molecules in DCs. -- Abstract: Asthma is characterized by Th2-mediated inflammation, resulting in airway hyperresponsiveness (AHR) through airway remodeling. Recent epidemiological and experimental reports have suggested an inverse relationship between the development of allergy and helminth infections. Infection by Clonorchis sinensis, a liver fluke that resides in the bile duct of humans, is endemic predominantly in Asia including Korea and China. Using a murine model for asthma, we investigated the effects of C. sinensis-derived total protein (Cs-TP) on allergen-induced airway inflammation and the mechanism underlying the protective effects of Cs-TP administration on asthma. Treatment with Cs-TP attenuated OVA-induced airway inflammation and methacholine-induced AHR, as well as eosinophilia development, lymphocyte infiltration into the lung, and goblet cell metaplasia. This protective effect of Cs-TP is associated with markedly reduced OVA-specific IgE and Th1/Th2 cytokine production. Moreover, Cs-TP increased the number of CD4 + CD25 + Foxp3 + regulatory T (Treg) cells as well as their suppressive activity. In fact, proliferation of OVA-restimulated splenocytes was suppressed significantly. Cs-TP also inhibited the expression of such co-stimulatory molecules as CD80, CD86, and CD40 in LPS- or OVA-stimulated dendritic cells (DCs), suggesting that Cs-TP could interfere with the capacity of airway DCs to prime naive T cells. These data demonstrate the capacity of C. sinensis to ameliorate allergic asthma and broaden our understanding of the paradoxical relationship between the allergic immune

  2. Human apolipoprotein E genotypes differentially modify house dust mite-induced airway disease in mice

    DEFF Research Database (Denmark)

    Yao, Xianglan; Dai, Cuilian; Fredriksson, Karin

    2012-01-01

    Apolipoprotein E (apoE) is an endogenous negative regulator of airway hyperreactivity (AHR) and mucous cell metaplasia in experimental models of house dust mite (HDM)-induced airway disease. The gene encoding human apoE is polymorphic, with three common alleles (e2, e3, and e4) reflecting single ...

  3. Long-term nicotine exposure dampens LPS-induced nerve-mediated airway hyperreactivity in murine airways.

    Science.gov (United States)

    Xu, Yuan; Cardell, Lars-Olaf

    2017-09-01

    Nicotine is a major component of cigarette smoke. It causes addiction and is used clinically to aid smoke cessation. The aim of the present study is to investigate the effect of nicotine on lipopolysaccharide (LPS)-induced airway hyperreactivity (AHR) and to explore the potential involvement of neuronal mechanisms behind nicotine's effects in murine models in vivo and in vitro. BALB/c mice were exposed to nicotine in vivo via subcutaneous Alzet osmotic minipumps containing nicotine tartate salt solution (24 mg·kg -1 ·day -1 ) for 28 days. LPS (0.1 mg/ml, 20 µl) was administered intranasally for 3 consecutive days during the end of this period. Lung functions were measured with flexiVent. For the in vitro experiments, mice tracheae were organcultured with either nicotine (10 μM) or vehicle (DMSO, 0.1%) for 4 days. Contractile responses of the tracheal segments were measured in myographs following electric field stimulation (EFS; increasing frequencies of 0.2 to 12.8 Hz) before and after incubation with 10 µg/ml LPS for 1 h. Results showed that LPS induced AHR to methacholine in vivo and increased contractile responses to EFS in vitro. Interestingly, long-term nicotine exposure markedly dampened this LPS-induced AHR both in vitro and in vivo. Tetrodotoxin (TTX) inhibited LPS-induced AHR but did not further inhibit nicotine-suppressed AHR in vivo. In conclusion, long-term nicotine exposure dampened LPS-induced AHR. The effect of nicotine was mimicked by TTX, suggesting the involvement of neuronal mechanisms. This information might be used for evaluating the long-term effects of nicotine and further exploring of how tobacco products interact with bacterial airway infections. Copyright © 2017 the American Physiological Society.

  4. Complexes between ovalbumin nanoparticles and linoleic acid: Stoichiometric, kinetic and thermodynamic aspects.

    Science.gov (United States)

    Sponton, Osvaldo E; Perez, Adrián A; Carrara, Carlos R; Santiago, Liliana G

    2016-11-15

    Stoichiometric, kinetic and thermodynamic aspects of complex formation between heat-induced aggregates of ovalbumin (ovalbumin nanoparticles, OVAn) and linoleic acid (LA) were evaluated. Extrinsic fluorescence data were fitted to modified Scatchard model yielding the following results: n: 49±2 LA molecules bound per OVA monomer unit and Ka: 9.80±2.53×10(5)M. Kinetic and thermodynamic properties were analyzed by turbidity measurements at different LA/OVA monomer molar ratios (21.5-172) and temperatures (20-40°C). An adsorption approach was used and a pseudo-second-order kinetics was found for LA-OVAn complex formation. This adsorption process took place within 1h. Thermodynamic parameters indicated that LA adsorption on OVAn was a spontaneous, endothermic and entropically-driven process, highlighting the hydrophobic nature of the LA and OVAn interaction. Finally, Atomic Force Microscopy imaging revealed that both OVAn and LA-OVAn complexes have a roughly rounded form with size lower than 100nm. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Characterization of allergoids from ovalbumin in vitro and in vivo.

    Science.gov (United States)

    Salgado, J; Casadevall, G; Puigneró, V; Queralt, J

    1996-01-01

    Several in vivo and in vitro methods for monitoring immunological properties of two allergoids obtained by formaldehyde treatment of ovalbumin (OA) were developed. The calculated molecular weight of allergoids was 80 kD (OA-F1) and 165 kD (OA-F2), respectively. The allergenic activity in vitro of allergoids in mast-cell histamine release assay was 1000 times lower than of OA. Both allergoids showed reduced ability to induce passive cutaneous anaphylaxis in the Sprague-Dawley rats or systemic anaphylaxis in Dunkin-Harley guinea-pigs. The ability of OA and allergoids to bind to the OA-specific IgE antibodies was measured in vivo by the inhibition of passive cutaneous anaphylaxis (PCA-inhibition). Allergoid binding to IgE was 51-66% lower than the native allergen. Moreover, the avidity of OA-specific IgG antibodies, measured by ELISA-inhibition, for allergoids and allergen was of the same order. Allergoids induced a different pattern of humoral immune response from that, induced by the native allergen. Thus, after immunization of BALB/c mouse, both allergoids induced a higher production of IgG and a lower production of IgE than OA, only OA-F2 induced a lower production of IgG1. The differences in the IgA response to the immunogens was not significant. Delayed hypersensitivity studies in the BALB/c mouse showed that allergoids were 5- to 12-times less effective in inducing a cell-mediated immune response than OA. The present study provides a battery of immunological methods for preclinical testing of modified allergens.

  6. GENETIC INFLUENCES ON IN VTIRO PARTICULATE MATTER-INDUCED AIRWAY EPITHELIAL INJURY AND INFLAMMATORY MEDIATOR RELEASE

    Science.gov (United States)

    GENETIC INFLUENCES ON IN VITRO PARTICULATE MATTER-INDUCED AIRWAY EPITHELIAL INJURY AND INFLAMMATORY MEDIATOR RELEASE. JA Dye, JH Richards, DA Andrews, UP Kodavanti. US EPA, RTP, NC, USA.Particulate matter (PM) air pollution is capable of damaging the airway epitheli...

  7. Altered fatty acid metabolism and reduced stearoyl-coenzyme a desaturase activity in asthma.

    Science.gov (United States)

    Rodriguez-Perez, N; Schiavi, E; Frei, R; Ferstl, R; Wawrzyniak, P; Smolinska, S; Sokolowska, M; Sievi, N A; Kohler, M; Schmid-Grendelmeier, P; Michalovich, D; Simpson, K D; Hessel, E M; Jutel, M; Martin-Fontecha, M; Palomares, O; Akdis, C A; O'Mahony, L

    2017-11-01

    Fatty acids and lipid mediator signaling play an important role in the pathogenesis of asthma, yet this area remains largely underexplored. The aims of this study were (i) to examine fatty acid levels and their metabolism in obese and nonobese asthma patients and (ii) to determine the functional effects of altered fatty acid metabolism in experimental models. Medium- and long-chain fatty acid levels were quantified in serum from 161 human volunteers by LC/MS. Changes in stearoyl-coenzyme A desaturase (SCD) expression and activity were evaluated in the ovalbumin (OVA) and house dust mite (HDM) murine models. Primary human bronchial epithelial cells from asthma patients and controls were evaluated for SCD expression and activity. The serum desaturation index (an indirect measure of SCD) was significantly reduced in nonobese asthma patients and in the OVA murine model. SCD1 gene expression was significantly reduced within the lungs following OVA or HDM challenge. Inhibition of SCD in mice promoted airway hyper-responsiveness. SCD1 expression was suppressed in bronchial epithelial cells from asthma patients. IL-4 and IL-13 reduced epithelial cell SCD1 expression. Inhibition of SCD reduced surfactant protein C expression and suppressed rhinovirus-induced IP-10 secretion, which was associated with increased viral titers. This is the first study to demonstrate decreased fatty acid desaturase activity in humans with asthma. Experimental models in mice and human epithelial cells suggest that inhibition of desaturase activity leads to airway hyper-responsiveness and reduced antiviral defense. SCD may represent a new target for therapeutic intervention in asthma patients. © 2017 EAACI and John Wiley and Sons A/S. Published by John Wiley and Sons Ltd.

  8. Toll-like receptor-2 agonist-allergen coupling efficiently redirects Th2 cell responses and inhibits allergic airway eosinophilia.

    Science.gov (United States)

    Krishnaswamy, Jayendra Kumar; Jirmo, Adan Chari; Baru, Abdul Mannan; Ebensen, Thomas; Guzmán, Carlos A; Sparwasser, Tim; Behrens, Georg M N

    2012-12-01

    Toll-like receptor (TLR) agonists beneficially modulate allergic airway inflammation. However, the efficiency of TLR agonists varies considerably, and their exact cellular mechanisms (especially of TLR 2/6 agonists) are incompletely understood. We investigated at a cellular level whether the administration of the pharmacologically improved TLR2/6 agonist S-[2,3-bispalmitoyiloxy-(2R)-propyl]-R-cysteinyl-amido-monomethoxy polyethylene glycol (BPP) conjugated to antigenic peptide (BPP-OVA) could divert an existing Th2 response and influence airway eosinophilia. The effects of BPP-OVA on airway inflammation were assessed in a classic murine sensitization/challenge model and an adoptive transfer model, which involved the adoptive transfer of in vitro differentiated ovalbumin (OVA)-specific Th2 cells. Functional T-cell stimulation by lung dendritic cells (DCs) was determined both in vitro and in vivo, combined with a cytokine secretion analysis. A single mucosal application of BPP-OVA efficiently delivered antigen, led to TLR2-mediated DC activation, and resulted in OVA-specific T-cell proliferation via lung DCs in vivo. In alternative models of allergic airway disease, a single administration of BPP-OVA before OVA challenge (but not BPP alone) significantly reduced airway eosinophilia, most likely through altered antigen-specific T-cell stimulation via DCs. Analyses of adoptively transferred Th2-biased cells after BPP-OVA administration in vivo suggested that BPP-OVA guides antigen-specific Th2 cells to produce significantly higher amounts of IFN-γ upon allergen challenge. In conclusion, our data show for the first time that a single mucosal administration of a TLR 2/6 agonist-allergen conjugate can provoke IFN-γ responses in Th2-biased cells and alleviate allergic airway inflammation.

  9. Inflammatory Mediators in Induced Sputum and Airway Hyperresponsiveness in Cough Variant Asthma during Long-Term Inhaled Corticosteroid Treatment

    Directory of Open Access Journals (Sweden)

    Meixuan Liu

    2012-01-01

    Full Text Available Objective. This study aimed to investigate improvements in inflammatory mediator levels in induced sputum and airway hyperresponsiveness (AHR in cough variant asthma (CVA during long-term inhaled corticosteroid (ICS treatment. Patients and Methods. Patients with CVA (=35 and classic asthma (=26 and healthy subjects (=24 were recruited into this study. All patients were treated with budesonide (400 μg/day. Measurement of inflammatory mediators in induced sputum and PD20-FEV1 (the accumulated provocative dose resulting in a 20% decrease in FEV1 in histamine-challenged subjects was performed every three months after the start of medication. Interleukin- (IL- 5 and IL-10 were assayed by ELISA, and the percentage of eosinophils was detected with Giemsa stain. Trends during the follow-up period were analyzed using a general linear model. Results. Inflammatory mediator levels in induced sputum and PD20-FEV1 in patients with CVA and classic asthma differed from those in the control group, although no differences were found in the two asthmatic groups. PD20-FEV1 significantly increased in CVA patients after ICS treatment for 3 months, while classic asthma patients exhibited a delayed change in AHR. After ICS treatment, levels of IL-5 and IL-10 as well as the percentage of eosinophils in the CVA group were altered at 3 months and 6 months, respectively. Accordingly, the level of inflammatory mediators in classic asthma changed more slowly. Conclusion. CVA has a greater improvement in airway inflammation and airway hyperresponsiveness (AHR than classic asthma with respect to inhaled corticosteroid (ICS. Short-term ICS considerably reduces AHR although longer treatment is required for complete control of airway inflammation.

  10. Polysaccharide isolated from Aloe vera gel suppresses ovalbumin-induced food allergy through inhibition of Th2 immunity in mice.

    Science.gov (United States)

    Lee, Dajeong; Kim, Hyuk Soon; Shin, Eunju; Do, Seon-Gil; Lee, Chong-Kil; Kim, Young Mi; Lee, Min Bum; Min, Keun Young; Koo, Jimo; Kim, Su Jeong; Nam, Seung Taek; Kim, Hyun Woo; Park, Young Hwan; Choi, Wahn Soo

    2018-05-01

    An allergic reaction occurs when the immune system overreacts to harmless substance called allergen that gains access to the body. Food allergy is a hypersensitive immune reaction to food proteins and the number of patients with food allergy has recently increased. Aloe Vera is used for wellness and medicinal purposes. In particular, Aloe vera has been reported to enhance immunity. However, the effect of Aloe vera on food allergy is not yet known. In this study, we investigated the effects of processed Aloe vera gel (PAG) containing low molecular weight Aloe polysaccharide (AP) on ovalbumin (OVA)-induced food allergy in mice. Allergic symptoms, rectal temperature, and diarrhea were measured in OVA-induced food allergy mice. Other allergic parameters were also analyzed by RT-PCR, ELISA, flow cytometry, and other biochemical methods. As the results, PAG suppressed the decrease of body temperature, diarrhea, and allergic symptoms in OVA-induced food allergy mice. PAG also reduced serum concentrations of type 2 helper T cell (Th2) cytokines (Interleukin-(IL)-4, IL-5, and IL-13) as well as histamine, mast cell protease-1 (MCP-1), and immunoglobulin (Ig)E. PAG blocked the degranulation of mast cells and infiltration of eosinophils in intestine. Furthermore, PAG suppressed the population of Th2 cells in spleen and mesenteric lymph nodes. PAG also increased the production of IL-10 and population of type 1 regulatory T (Tr1) cells in mice with food allergy. Taken together, our findings suggest that PAG suppressed Th2 immune responses through, at least partially, stimulating the secretion of IL-10 in food allergy mice. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  11. Early life exposure to bisphenol A investigated in mouse models of airway allergy, food allergy and oral tolerance.

    Science.gov (United States)

    Nygaard, Unni Cecilie; Vinje, Nina Eriksen; Samuelsen, Mari; Andreassen, Monica; Groeng, Else-Carin; Bølling, Anette Kocbach; Becher, Rune; Lovik, Martinus; Bodin, Johanna

    2015-09-01

    The impact of early life exposure to bisphenol A (BPA) through drinking water was investigated in mouse models of respiratory allergy, food allergy and oral tolerance. Balb/c mice were exposed to BPA (0, 10 or 100 μg/ml), and the offspring were intranasally exposed to the allergen ovalbumin (OVA). C3H/HeJ offspring were sensitized with the food allergen lupin by intragastric gavage, after exposure to BPA (0, 1, 10 or 100 μg/ml). In separate offspring, oral tolerance was induced by gavage of 5 mg lupin one week before entering the protocol for the food allergy induction. In the airway allergy model, BPA (100 μg/ml) caused increased eosinophil numbers in bronchoalveolar lavage fluid (BALF) and a trend of increased OVA-specific IgE levels. In the food allergy and tolerance models, BPA did not alter the clinical anaphylaxis or antibody responses, but induced alterations in splenocyte cytokines and decreased mouse mast cell protease (MMCP)-1 serum levels. In conclusion, early life exposure to BPA through drinking water modestly augmented allergic responses in a mouse model of airway allergy only at high doses, and not in mouse models for food allergy and tolerance. Thus, our data do not support that BPA promotes allergy development at exposure levels relevant for humans. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Effects of concentrated ambient particles on normal and hypersecretory airways in rats.

    Science.gov (United States)

    Harkema, Jack R; Keeler, Gerald; Wagner, James; Morishita, Masako; Timm, Edward; Hotchkiss, Jon; Marsik, Frank; Dvonch, Timothy; Kaminski, Norbert; Barr, Edward

    2004-08-01

    Epidemiological studies have reported that elevated levels of particulate air pollution in urban communities are associated with increases in attacks of asthma based on evidence from hospital admissions and emergency department visits. Principal pathologic features of chronic airway diseases, like asthma, are airway inflammation and mucous hypersecretion with excessive amounts of luminal mucus and increased numbers of mucus-secreting cells in regions of the respiratory tract that normally have few or no mucous cells (ie, mucous cell metaplasia). The overall goal of the present project was to understand the adverse effects of urban air fine particulate matter (PM2.5; pollutants in the outdoor air of a local Detroit community with a high incidence of childhood asthma; (2) determine the effects of this community-based PM2.5 on the airway epithelium in normal rats and rats compromised with preexisting hypersecretory airway diseases (ie, animal models of human allergic airway disease--asthma and chronic bronchitis); and (3) identify the chemical or physical components of PM2.5 that are responsible for PM2.5 -induced airway inflammation and epithelial alterations in these animal models. Two animal models of airway disease were used to examine the effects of PM2.5 exposure on preexisting hypersecretory airways: neutrophilic airway inflammation induced by endotoxin challenge in F344 rats and eosinophilic airway inflammation induced by ovalbumin (OVA) challenge in BN rats. A mobile air monitoring and exposure laboratory equipped with inhalation exposure chambers for animal toxicology studies, air pollution monitors, and particulate collection devices was used in this investigation. The mobile laboratory was parked in a community in southwestern Detroit during the summer months when particulate air pollution is usually high (July and September 2000). We monitored the outdoor air pollution in this community daily, and exposed normal and compromised rats to concentrated PM2

  13. Extracellular acidification induces connective tissue growth factor production through proton-sensing receptor OGR1 in human airway smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Matsuzaki, Shinichi [Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi 371-8511 (Japan); Ishizuka, Tamotsu, E-mail: tamotsui@showa.gunma-u.ac.jp [Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi 371-8511 (Japan); Yamada, Hidenori; Kamide, Yosuke; Hisada, Takeshi; Ichimonji, Isao; Aoki, Haruka; Yatomi, Masakiyo [Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi 371-8511 (Japan); Komachi, Mayumi [Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512 (Japan); Tsurumaki, Hiroaki; Ono, Akihiro; Koga, Yasuhiko [Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi 371-8511 (Japan); Dobashi, Kunio [Gunma University Graduate School of Health Sciences, Maebashi 371-8511 (Japan); Mogi, Chihiro; Sato, Koichi; Tomura, Hideaki [Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512 (Japan); Mori, Masatomo [Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi 371-8511 (Japan); Okajima, Fumikazu [Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512 (Japan)

    2011-10-07

    Highlights: {yields} The involvement of extracellular acidification in airway remodeling was investigated. {yields} Extracellular acidification alone induced CTGF production in human ASMCs. {yields} Extracellular acidification enhanced TGF-{beta}-induced CTGF production in human ASMCs. {yields} Proton-sensing receptor OGR1 was involved in acidic pH-stimulated CTGF production. {yields} OGR1 may play an important role in airway remodeling in asthma. -- Abstract: Asthma is characterized by airway inflammation, hyper-responsiveness and remodeling. Extracellular acidification is known to be associated with severe asthma; however, the role of extracellular acidification in airway remodeling remains elusive. In the present study, the effects of acidification on the expression of connective tissue growth factor (CTGF), a critical factor involved in the formation of extracellular matrix proteins and hence airway remodeling, were examined in human airway smooth muscle cells (ASMCs). Acidic pH alone induced a substantial production of CTGF, and enhanced transforming growth factor (TGF)-{beta}-induced CTGF mRNA and protein expression. The extracellular acidic pH-induced effects were inhibited by knockdown of a proton-sensing ovarian cancer G-protein-coupled receptor (OGR1) with its specific small interfering RNA and by addition of the G{sub q/11} protein-specific inhibitor, YM-254890, or the inositol-1,4,5-trisphosphate (IP{sub 3}) receptor antagonist, 2-APB. In conclusion, extracellular acidification induces CTGF production through the OGR1/G{sub q/11} protein and inositol-1,4,5-trisphosphate-induced Ca{sup 2+} mobilization in human ASMCs.

  14. Extracellular acidification induces connective tissue growth factor production through proton-sensing receptor OGR1 in human airway smooth muscle cells

    International Nuclear Information System (INIS)

    Matsuzaki, Shinichi; Ishizuka, Tamotsu; Yamada, Hidenori; Kamide, Yosuke; Hisada, Takeshi; Ichimonji, Isao; Aoki, Haruka; Yatomi, Masakiyo; Komachi, Mayumi; Tsurumaki, Hiroaki; Ono, Akihiro; Koga, Yasuhiko; Dobashi, Kunio; Mogi, Chihiro; Sato, Koichi; Tomura, Hideaki; Mori, Masatomo; Okajima, Fumikazu

    2011-01-01

    Highlights: → The involvement of extracellular acidification in airway remodeling was investigated. → Extracellular acidification alone induced CTGF production in human ASMCs. → Extracellular acidification enhanced TGF-β-induced CTGF production in human ASMCs. → Proton-sensing receptor OGR1 was involved in acidic pH-stimulated CTGF production. → OGR1 may play an important role in airway remodeling in asthma. -- Abstract: Asthma is characterized by airway inflammation, hyper-responsiveness and remodeling. Extracellular acidification is known to be associated with severe asthma; however, the role of extracellular acidification in airway remodeling remains elusive. In the present study, the effects of acidification on the expression of connective tissue growth factor (CTGF), a critical factor involved in the formation of extracellular matrix proteins and hence airway remodeling, were examined in human airway smooth muscle cells (ASMCs). Acidic pH alone induced a substantial production of CTGF, and enhanced transforming growth factor (TGF)-β-induced CTGF mRNA and protein expression. The extracellular acidic pH-induced effects were inhibited by knockdown of a proton-sensing ovarian cancer G-protein-coupled receptor (OGR1) with its specific small interfering RNA and by addition of the G q/11 protein-specific inhibitor, YM-254890, or the inositol-1,4,5-trisphosphate (IP 3 ) receptor antagonist, 2-APB. In conclusion, extracellular acidification induces CTGF production through the OGR1/G q/11 protein and inositol-1,4,5-trisphosphate-induced Ca 2+ mobilization in human ASMCs.

  15. Protective effects of valproic acid against airway hyperresponsiveness and airway remodeling in a mouse model of allergic airways disease.

    Science.gov (United States)

    Royce, Simon G; Dang, William; Ververis, Katherine; De Sampayo, Nishika; El-Osta, Assam; Tang, Mimi L K; Karagiannis, Tom C

    2011-12-01

    Airway remodeling and airway hyperresponsiveness are major aspects of asthma pathology that are not targeted optimally by existing anti-inflammatory drugs. Histone deacetylase inhibitors have a wide range of effects that may potentially abrogate aspects of remodeling. One such histone deacetylase inhibitor is valproic acid (2-propylvaleric acid). Valproic acid is used clinically as an anti-epileptic drug and is a potent inhibitor of class I histone deacetylases but also inhibits class II histone deacetylases. We used valproic acid as a molecular model of histone deacetylase inhibition in vivo in chronic allergic airways disease mice with airway remodeling and airway hyperresponsiveness. Wild-type Balb/c mice with allergic airways disease were treated with valproic acid or vehicle control. Airway inflammation was assessed by bronchoalveolar lavage fluid cell counts and examination of lung tissue sections. Remodeling was assessed by morphometric analysis of histochemically stained slides and lung function was assessed by invasive plethysmography measurement of airway resistance. Valproic acid treatment did not affect inflammation parameters; however, valproic acid treatment resulted in reduced epithelial thickness as compared to vehicle treated mice (p < 0.01), reduced subepithelial collagen deposition (p < 0.05) and attenuated airway hyperresponsiveness (p < 0.05 and p < 0.01 for the two highest doses of methacholine, respectively). These findings show that treatment with valproic acid can reduce structural airway remodeling changes and hyperresponsiveness, providing further evidence for the potential use of histone deacetylase inhibitors for the treatment of asthma.

  16. A Novel Orally Available Asthma Drug Candidate That Reduces Smooth Muscle Constriction and Inflammation by Targeting GABAA Receptors in the Lung.

    Science.gov (United States)

    Forkuo, Gloria S; Nieman, Amanda N; Kodali, Revathi; Zahn, Nicolas M; Li, Guanguan; Rashid Roni, M S; Stephen, Michael Rajesh; Harris, Ted W; Jahan, Rajwana; Guthrie, Margaret L; Yu, Olivia B; Fisher, Janet L; Yocum, Gene T; Emala, Charles W; Steeber, Douglas A; Stafford, Douglas C; Cook, James M; Arnold, Leggy A

    2018-05-07

    We describe lead compound MIDD0301 for the oral treatment of asthma based on previously developed positive allosteric α 5 β 3 γ 2 selective GABA A receptor (GABA A R) ligands. MIDD0301 relaxed airway smooth muscle at single micromolar concentrations as demonstrated with ex vivo guinea pig tracheal rings. MIDD0301 also attenuated airway hyperresponsiveness (AHR) in an ovalbumin murine model of asthma by oral administration. Reduced numbers of eosinophils and macrophages were observed in mouse bronchoalveolar lavage fluid without changing mucous metaplasia. Importantly, lung cytokine expression of IL-17A, IL-4, and TNF-α were reduced for MIDD0301-treated mice without changing antiinflammatory cytokine IL-10 levels. Automated patch clamp confirmed amplification of GABA induced current mediated by α 1-3,5 β 3 γ 2 GABA A Rs in the presence of MIDD0301. Pharmacodynamically, transmembrane currents of ex vivo CD4 + T cells from asthmatic mice were potentiated by MIDD0301 in the presence of GABA. The number of CD4 + T cells observed in the lung of MIDD0301-treated mice were reduced by an oral treatment of 20 mg/kg b.i.d. for 5 days. A half-life of almost 14 h was demonstrated by pharmacokinetic studies (PK) with no adverse CNS effects when treated mice were subjected to sensorimotor studies using the rotarod. PK studies also confirmed very low brain distribution. In conclusion, MIDD0301 represents a safe and improved oral asthma drug candidate that relaxes airway smooth muscle and attenuates inflammation in the lung leading to a reduction of AHR at a dosage lower than earlier reported GABA A R ligands.

  17. Single systemic administration of Ag85B of mycobacteria DNA inhibits allergic airway inflammation in a mouse model of asthma

    Directory of Open Access Journals (Sweden)

    Karamatsu K

    2012-12-01

    Full Text Available Katsuo Karamatsu,1,2 Kazuhiro Matsuo,3 Hiroyasu Inada,4 Yusuke Tsujimura,1 Yumiko Shiogama,1,2 Akihiro Matsubara,1,2 Mitsuo Kawano,5 Yasuhiro Yasutomi1,21Laboratory of Immunoregulation and Vaccine Research, Tsukuba Primate Research Center, National Institute of Biomedical Innovation, Tsukuba, 2Division of Immunoregulation, Department of Molecular and Experimental Medicine, Mie University Graduate School of Medicine, Tsu, 3Department of Research and Development, Japan BCG Laboratory, Tokyo, 4Department of Pathology, Suzuka University of Medical Science, Suzuka, 5Department of Microbiology and Molecular Genetics, Mie University Graduate School of Medicine, Tsu, JapanAbstract: The immune responses of T-helper (Th and T-regulatory cells are thought to play a crucial role in the pathogenesis of allergic airway inflammation observed in asthma. The correction of immune response by these cells should be considered in the prevention and treatment of asthma. Native antigen 85B (Ag85B of mycobacteria, which cross-reacts among mycobacteria species, may play an important biological role in host–pathogen interaction since it elicits various immune responses by activation of Th cells. The current study investigated the antiallergic inflammatory effects of DNA administration of Ag85B from Mycobacterium kansasii in a mouse model of asthma. Immunization of BALB/c mice with alum-adsorbed ovalbumin followed by aspiration with aerosolized ovalbumin resulted in the development of allergic airway inflammation. Administration of Ag85B DNA before the aerosolized ovalbumin challenge protected the mice from subsequent induction of allergic airway inflammation. Serum and bronchoalveolar lavage immunoglobulin E levels, extent of eosinophil infiltration, and levels of Th2-type cytokines in Ag85B DNA-administered mice were significantly lower than those in control plasmid-immunized mice, and levels of Th1- and T-regulatory-type cytokines were enhanced by Ag85B

  18. Effect of glucocorticosteroid treatment on ovalbumin-induced IgE-mediated immediate and late allergic response in guinea pig.

    Science.gov (United States)

    Andersson, P; Brange, C; von Kogerer, B; Sonmark, B; Stahre, G

    1988-01-01

    The effect of glucocorticosteroid (GCS) treatment on ovalbumine-induced IgE-mediated immediate and late allergic response was studied in sensitized guinea pigs. The results show that the GCS budesonide (BUD) inhibits the allergen-induced IgE-mediated immediate and late bronchial obstruction. The effect on the early reaction is correlated to the inhibition of leukotrienes and histamine release. The importance of mediator release inhibition for the antianaphylactic effect of GCS is discussed. In examining the effect on the late reaction, it was found that BUD had to be present during the early reaction but did not inhibit the early reaction. Furthermore, the effect on the late reaction was correlated to the inhibition of vascular leakage but not to the infiltration of inflammatory cells as examined in bronchoalveolar lavage. The results indicate that some triggering factors important for the development of the late reaction are released during the early reaction. Inhibition of the release of that factor or the activation of inflammatory cells by that factor might be the mechanism behind the antiinflammatory activities of GCS.

  19. Ozone-induced airway hyperresponsiveness in patients with asthma: role of neutrophil-derived serine proteinases.

    Science.gov (United States)

    Hiltermann, T J; Peters, E A; Alberts, B; Kwikkers, K; Borggreven, P A; Hiemstra, P S; Dijkman, J H; van Bree, L A; Stolk, J

    1998-04-01

    Proteinase inhibitors may be of potential therapeutic value in the treatment of respiratory diseases such as chronic obstructive pulmonary disease (COPD) or asthma. Our aim was to study the role of neutrophils, and neutrophil-derived serine proteinases in an acute model in patients with asthma. Exposure to ozone induces an acute neutrophilic inflammatory reaction accompanied by an increase in airway hyperresponsiveness. It is thought that these two effects of ozone are linked, and that neutrophil-derived serine proteinases (i.e. elastase) may play a role in the ozone-induced airway hyperresponsiveness. Therefore, we examined the effect of recombinant antileukoprotease (rALP), one of the major serine proteinase inhibitors in the lung, on ozone-induced changes in airway hyperresponsiveness in this model. We observed that 16 h after exposure to ozone, airway hyperresponsiveness to methacholine was increased both following placebo and rALP treatment. There was no significant difference between placebo and rALP treatment (change in area under the dose-response curve to methacholine: 117.3+/-59.0 vs 193.6+/-59.6 % fall x DD; p=.12). Moreover, the immediate decrease in FEV1 after ozone exposure was not significantly different between the two groups (placebo: -29.6+/-6.7%; rALP: -20.9+/-3.8%; p=.11). In addition, no significant differences were observed in plasma levels of fibrinogen degradation products generated by neutrophil serine proteinases before and after exposure to ozone. We conclude that neutrophil-derived serine proteinases are not important mediators for ozone-induced hyperresponsiveness.

  20. Effect of the Velvet Antler of Formosan Sambar Deer (Cervus unicolor swinhoei on the Prevention of an Allergic Airway Response in Mice

    Directory of Open Access Journals (Sweden)

    Ching-Yun Kuo

    2012-01-01

    Full Text Available Two mouse models were used to assay the antiallergic effects of the velvet antler (VA of Formosan sambar deer (Cervus unicolor swinhoei in this study. The results using the ovalbumin- (OVA- sensitized mouse model showed that the levels of total IgE and OVA-specific IgE were reduced after VA powder was administrated for 4 weeks. In addition, the ex vivo results indicated that the secretion of T helper cell 1 (Th1, regulatory T (Treg, and Th17 cytokines by splenocytes was significantly increased (P<0.05 when VA powder was administered to the mice. Furthermore, OVA-allergic asthma mice that have been orally administrated with VA powder showed a strong inhibition of Th2 cytokine and proinflammatory cytokine production in bronchoalveolar fluid compared to control mice. An increase in the regulatory T-cell population of splenocytes in the allergic asthma mice after oral administration of VA was also observed. All the features of the asthmatic phenotype, including airway inflammation and the development of airway hyperresponsiveness, were reduced by treatment with VA. These findings support the hypothesis that oral feeding of VA may be an effective way of alleviating asthmatic symptoms in humans.

  1. Clonorchis sinensis-derived total protein attenuates airway inflammation in murine asthma model by inducing regulatory T cells and modulating dendritic cell functions

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Young-Il [Div. of Malaria and Parasitic Diseases, Korea Centers for Disease Control and Prevention, Osong (Korea, Republic of); Kim, Seung Hyun [Div. of AIDS, National Institute of Health, Korea Centers for Disease Control and Prevention, Osong (Korea, Republic of); Ju, Jung Won; Cho, Shin Hyeong; Lee, Won Ja [Div. of Malaria and Parasitic Diseases, Korea Centers for Disease Control and Prevention, Osong (Korea, Republic of); Park, Jin Wook; Park, Yeong-Min [Dept. of Microbiology and Immunology, College of Medicine, Pusan National University, Yang-San (Korea, Republic of); Lee, Sang Eun, E-mail: ondalgl@cdc.go.kr [Div. of Malaria and Parasitic Diseases, Korea Centers for Disease Control and Prevention, Osong (Korea, Republic of)

    2011-04-22

    Highlights: {yields} Treatment with Clonorchis sinensis-derived total protein attenuates OVA-induced airway inflammation and AHR to methacholine. {yields} Induction of CD4{sup +}CD25{sup +}Foxp3{sup +} T cells and IL-10 along with suppression of splenocyte proliferation by C. sinensis-derived total protein. {yields} C. sinensis-derived total protein interferes with the expression of co-stimulatory molecules in DCs. -- Abstract: Asthma is characterized by Th2-mediated inflammation, resulting in airway hyperresponsiveness (AHR) through airway remodeling. Recent epidemiological and experimental reports have suggested an inverse relationship between the development of allergy and helminth infections. Infection by Clonorchis sinensis, a liver fluke that resides in the bile duct of humans, is endemic predominantly in Asia including Korea and China. Using a murine model for asthma, we investigated the effects of C. sinensis-derived total protein (Cs-TP) on allergen-induced airway inflammation and the mechanism underlying the protective effects of Cs-TP administration on asthma. Treatment with Cs-TP attenuated OVA-induced airway inflammation and methacholine-induced AHR, as well as eosinophilia development, lymphocyte infiltration into the lung, and goblet cell metaplasia. This protective effect of Cs-TP is associated with markedly reduced OVA-specific IgE and Th1/Th2 cytokine production. Moreover, Cs-TP increased the number of CD4{sup +}CD25{sup +}Foxp3{sup +} regulatory T (Treg) cells as well as their suppressive activity. In fact, proliferation of OVA-restimulated splenocytes was suppressed significantly. Cs-TP also inhibited the expression of such co-stimulatory molecules as CD80, CD86, and CD40 in LPS- or OVA-stimulated dendritic cells (DCs), suggesting that Cs-TP could interfere with the capacity of airway DCs to prime naive T cells. These data demonstrate the capacity of C. sinensis to ameliorate allergic asthma and broaden our understanding of the paradoxical

  2. Effects of gamma rays on the immunogenicity (IgG types) of ovalbumin

    Energy Technology Data Exchange (ETDEWEB)

    Baptista, J.A. E-mail: jbalves@ipen.br; Spencer, P.J.; Aroeira, L.G.S.; Casare, M.S.; Nascimento, N

    2004-10-01

    Ionizing radiation has been successfully employed to modify the immunological properties of biomolecules. Very promising results were obtained when crude animal venoms, as well as isolated toxins, were treated with gamma rays, yielding toxoids with good immunogenicity. However, little is known about the modifications that irradiated molecules undergo and even less about the immunological response that such antigens elicit. In the present work, we used ovalbumin as a model to investigate possible immunogenic differences between native and irradiated proteins. Native ovalbumin (2 mg/ml in 150 mM NaCl) was irradiated with 2 kGy of {sup 60}Co gamma rays with a 570 Gy/h dose rate. B10.PL mice (n=5) were then immunized with either the native or the irradiated protein. After three immunizations, serum samples were collected and the antibody titers and isotypes were determined by enzyme-linked immunoadsorbant assay. Our data indicate that no difference could be noticed when the antibody titers of the two groups were compared. However, the isotyping assays indicates that the native protein induced high levels of IgG1, while its irradiated counterpart displayed mostly IgG2b antibodies. These data suggest that after irradiation, an antigen known to induce a Th2 response, is able to switch the immune system towards a Th1 pattern.

  3. The Correlation between Chitin and Acidic Mammalian Chitinase in Animal Models of Allergic Asthma

    Directory of Open Access Journals (Sweden)

    Chia-Rui Shen

    2015-11-01

    Full Text Available Asthma is the result of chronic inflammation of the airways which subsequently results in airway hyper-responsiveness and airflow obstruction. It has been shown that an elicited expression of acidic mammalian chitinase (AMCase may be involved in the pathogenesis of asthma. Our recent study has demonstrated that the specific suppression of elevated AMCase leads to reduced eosinophilia and Th2-mediated immune responses in an ovalbumin (OVA-sensitized mouse model of allergic asthma. In the current study, we show that the elicited expression of AMCase in the lung tissues of both ovalbumin- and Der P2-induced allergic asthma mouse models. The effects of allergic mediated molecules on AMCase expression were evaluated by utilizing promoter assay in the lung cells. In fact, the exposure of chitin, a polymerized sugar and the fundamental component of the major allergen mite and several of the inflammatory mediators, showed significant enhancement on AMCase expression. Such obtained results contribute to the basis of developing a promising therapeutic strategy for asthma by silencing AMCase expression.

  4. The Laryngeal Mask Airway (LMA) as an alternative to airway ...

    African Journals Online (AJOL)

    Background: To evaluate the possibility of airway management using a laryngeal mask airway (LMA) during dental procedures on mentally retarded (MR) patients and patients with genetic diseases. Design: A prospective pilot study. Setting: University Hospital. Methods: A pilot study was designed to induce general ...

  5. Asthma induction in mice leads to appearance of alpha2-3- and alpha2-6-linked sialic acid residues in respiratory goblet-like cells

    DEFF Research Database (Denmark)

    Kirkeby, Svend; Jensen, Niels-Erik Viby; Mandel, Ulla

    2008-01-01

    Allergic asthmatic inflammation in mice was induced by sensitization with ovalbumin and lipopolysaccharide from Escherichia coli and visualized in the airways of asthmatic mice by spatial and temporal changes of carbohydrates containing sialic acid residues. Immunohistochemistry was used...

  6. Scavenger receptors in human airway epithelial cells: role in response to double-stranded RNA.

    Directory of Open Access Journals (Sweden)

    Audrey Dieudonné

    Full Text Available Scavenger receptors and Toll-like receptors (TLRs cooperate in response to danger signals to adjust the host immune response. The TLR3 agonist double stranded (dsRNA is an efficient activator of innate signalling in bronchial epithelial cells. In this study, we aimed at defining the role played by scavenger receptors expressed by bronchial epithelial cells in the control of the innate response to dsRNA both in vitro and in vivo. Expression of several scavenger receptor involved in pathogen recognition was first evaluated in human bronchial epithelial cells in steady-state and inflammatory conditions. Their implication in the uptake of dsRNA and the subsequent cell activation was evaluated in vitro by competition with ligand of scavenger receptors including maleylated ovalbumin and by RNA silencing. The capacity of maleylated ovalbumin to modulate lung inflammation induced by dsRNA was also investigated in mice. Exposure to tumor necrosis factor-α increased expression of the scavenger receptors LOX-1 and CXCL16 and the capacity to internalize maleylated ovalbumin, whereas activation by TLR ligands did not. In contrast, the expression of SR-B1 was not modulated in these conditions. Interestingly, supplementation with maleylated ovalbumin limited dsRNA uptake and inhibited subsequent activation of bronchial epithelial cells. RNA silencing of LOX-1 and SR-B1 strongly blocked the dsRNA-induced cytokine production. Finally, administration of maleylated ovalbumin in mice inhibited the dsRNA-induced infiltration and activation of inflammatory cells in bronchoalveolar spaces and lung draining lymph nodes. Together, our data characterize the function of SR-B1 and LOX-1 in bronchial epithelial cells and their implication in dsRNA-induced responses, a finding that might be relevant during respiratory viral infections.

  7. Mediators on human airway smooth muscle.

    Science.gov (United States)

    Armour, C; Johnson, P; Anticevich, S; Ammit, A; McKay, K; Hughes, M; Black, J

    1997-01-01

    1. Bronchial hyperresponsiveness in asthma may be due to several abnormalities, but must include alterations in the airway smooth muscle responsiveness and/or volume. 2. Increased responsiveness of airway smooth muscle in vitro can be induced by certain inflammatory cell products and by induction of sensitization (atopy). 3. Increased airway smooth muscle growth can also be induced by inflammatory cell products and atopic serum. 4. Mast cell numbers are increased in the airways of asthmatics and, in our studies, in airway smooth muscle that is sensitized and hyperresponsive. 5. We propose that there is a relationship between mast cells and airway smooth muscle cells which, once an allergic process has been initiated, results in the development of critical features in the lungs in asthma.

  8. Roles of oxygen radicals and elastase in citric acid-induced airway constriction of guinea-pigs

    OpenAIRE

    Lai, Y -L; Chiou, W -Y; Lu, F J; Chiang, L Y

    1999-01-01

    Antioxidants attenuate noncholinergic airway constriction. To further investigate the relationship between tachykinin-mediated airway constriction and oxygen radicals, we explored citric acid-induced bronchial constriction in 48 young Hartley strain guinea-pigs, divided into six groups: control; citric acid; hexa(sulphobutyl)fullerenes+citric acid; hexa(sulphobutyl)fullerenes+phosphoramidon+citric acid; dimethylthiourea (DMTU)+citric acid; and DMTU+phosphoramidon+citric acid. Hexa(sulphobutyl...

  9. Relationship between airway pathophysiology and airway inflammation in older asthmatics

    DEFF Research Database (Denmark)

    Porsbjerg, Celeste M; Gibson, Peter G; Pretto, Jeffrey J

    2013-01-01

    -dose ratio (%fall in forced expiratory volume in 1 s (FEV1 )/mg saline). Airway closure was assessed during bronchoconstriction percent change in forced vital capacity (FVC)/percent change in FEV1 (i.e. Closing Index). Airway inflammation was assessed by induced sputum and exhaled nitric oxide (eNO). RESULTS...

  10. Inhibitory effects of inhaled complex traditional Chinese medicine on early and late asthmatic responses induced by ovalbumin in sensitized guinea pigs

    Directory of Open Access Journals (Sweden)

    Gong Cheng-Chung

    2011-09-01

    Full Text Available Abstract Background Many formulae of traditional Chinese medicines (TCMs have been used for antiasthma treatment dating back many centuries. There is evidence to suggest that TCMs are effective as a cure for this allergenic disease administered via gastric tubes in animal studies; however, their efficacy, safety and side effects as an asthmatic therapy are still unclear. Methods In this study, guinea pigs sensitized with ovalbumin (OVA were used as an animal model for asthma challenge, and the sensitization of animals by bronchial reactivity to methacholine (Mch and the IgE concentration in the serum after OVA challenge were estimated. Complex traditional Chinese herbs (CTCM were administered to the animals by nebulization, and the leukocytes were evaluated from bronchoalveolar lavage fluid (BALF. Results The results showed that inhalation of CTCM could abolish the increased lung resistance (13-fold increase induced by challenge with OVA in the early asthmatic response (EAR, reducing to as low as baseline (1-fold. Moreover, our results indicated higher IgE levels (range, 78-83 ng/ml in the serum of sensitized guinea pigs than in the unsensitized controls (0.9 ± 0.256 ng/ml. In addition, increased total leukocytes and higher levels of eosinophils and neutrophils were seen 6 hours after challenge, and the increased inflammatory cells were reduced by treatment with CTCM inhalation. The interleukin-5 (IL-5 level in BALF was also reduced by CTCM. Conclusion Our findings indicate a novel method of administering traditional Chinese medicines for asthma treatment in an animal model that may be more effective than traditional methods.

  11. Triptolide inhibits TGF-β1-induced cell proliferation in rat airway smooth muscle cells by suppressing Smad signaling

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ming; Lv, Zhiqiang; Huang, Linjie [Department of Respiratory Medicine, Sun Yat-Sen Memorial Hospital, Institute for Respiratory disease of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong Province 510120 (China); Zhang, Wei [Department of Geratology, the Second People' s Hospital of Shenzhen, Shenzhen 518000 (China); Lin, Xiaoling; Shi, Jianting; Zhang, Wei; Liang, Ruiyun [Department of Respiratory Medicine, Sun Yat-Sen Memorial Hospital, Institute for Respiratory disease of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong Province 510120 (China); Jiang, Shanping, E-mail: shanpingjiang@126.com [Department of Respiratory Medicine, Sun Yat-Sen Memorial Hospital, Institute for Respiratory disease of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong Province 510120 (China)

    2015-02-15

    Background: We have reported that triptolide can inhibit airway remodeling in a murine model of asthma via TGF-β1/Smad signaling. In the present study, we aimed to investigate the effect of triptolide on airway smooth muscle cells (ASMCs) proliferation and the possible mechanism. Methods: Rat airway smooth muscle cells were cultured and made synchronized, then pretreated with different concentration of triptolide before stimulated by TGF-β1. Cell proliferation was evaluated by MTT assay. Flow cytometry was used to study the influence of triptolide on cell cycle and apoptosis. Signal proteins (Smad2, Smad3 and Smad7) were detected by western blotting analysis. Results: Triptolide significantly inhibited TGF-β1-induced ASMC proliferation (P<0.05). The cell cycle was blocked at G1/S-interphase by triptolide dose dependently. No pro-apoptotic effects were detected under the concentration of triptolide we used. Western blotting analysis showed TGF-β1 induced Smad2 and Smad3 phosphorylation was inhibited by triptolide pretreatment, and the level of Smad7 was increased by triptolide pretreatment. Conclusions: Triptolide may function as an inhibitor of asthma airway remodeling by suppressing ASMCs proliferation via negative regulation of Smad signaling pathway. - Highlights: • In this study, rat airway smooth muscle cells were cultured and made synchronized. • Triptolide inhibited TGF-β1-induced airway smooth muscle cells proliferation. • Triptolide inhibited ASMCs proliferation via negative regulation of Smad signaling pathway.

  12. Pulmonary toxicity and adjuvant effect of di-(2-exylhexyl phthalate in ovalbumin-immunized BALB/c mice.

    Directory of Open Access Journals (Sweden)

    Jing Guo

    Full Text Available BACKGROUND: Asthma is a complex pulmonary inflammatory disease, which is characterized by airway hyperresponsiveness, variable airflow obstruction and inflammation in the airways. The majority of asthma is allergic asthma, which is a disease caused by type I hypersensitivity mediated by IgE. Exposures to a number of environmental chemicals are suspected to lead to asthma, one such pollutant is di-(2-ethylheyl phthalate (DEHP. DEHP is a manufactured chemical that is commonly added in plastic products to make them flexible. Epidemiological studies have revealed a positive association between DEHP exposure and asthma prevalence. METHODOLOGY/PRINCIPAL FINDINGS: The present study was aimed to determine the underlying role of DEHP exposure in airway reactivity, especially when combined with allergen exposure. The biomarkers include pulmonary histopathology, airway hyperresponsiveness (lung function, IgE, IL-4, IFN-γ and eosinophils. Healthy balb/c mice were randomly divided into eight exposure groups (n = 8 each: (1 saline control, (2 30 µg/(kg•d DEHP, (3 300 µg/(kg•d DEHP, (4 3000 µg/(kg•d DEHP, and (5 ovalbumin (OVA-sensitized group, (6 OVA-combined with 30 µg/(kg•d DEHP, (7 OVA-combined with 300 µg/(kg•d DEHP, and (8 OVA-combined with 3000 µg/(kg•d DEHP. Experimental tests were conducted after 52-day DEHP exposure and subsequently one week of challenge with aerosolized OVA. The principal findings include: (1 Strong postive associations exist between OVA-combined DEHP exposure and serum total IgE (T-IgE, as well as histological findings. These positive associations show a dose-dependent low dose sensitive effect of DEHP. (2 IL-4, eosinophil recruitment and lung function are also indicators for adjuvant effect of DEHP. CONCLUSIONS/SIGNIFICANCE: Our results suggest that except the significant changes of immunological and inflammatory biomarkers (T-IgE, IL-4, IFN-γ and eosinophils, the pulmonary histological (histopathological

  13. Solubility of drugs in aqueous polymeric solution: effect of ovalbumin on microencapsulation process.

    Science.gov (United States)

    Aziz, Hesham Abdul; Tan, Yvonne Tze Fung; Peh, Kok Khiang

    2012-03-01

    Microencapsulation of water-soluble drugs using coacervation-phase separation method is very challenging, as these drugs partitioned into the aqueous polymeric solution, resulting in poor drug entrapment. For evaluating the effect of ovalbumin on the microencapsulation of drugs with different solubility, pseudoephedrine HCl, verapamil HCl, propranolol HCl, paracetamol, and curcuminoid were used. In addition, drug mixtures comprising of paracetamol and pseudoephedrine HCl were also studied. The morphology, encapsulation efficiency, particle size, and in vitro release profile were investigated. The results showed that the solubility of the drug determined the ratio of ovalbumin to be used for successful microencapsulation. The optimum ratios of drug, ovalbumin, and gelatin for water-soluble (pseudoephedrine HCl, verapamil HCl, and propranolol HCl), sparingly water-soluble (paracetamol), and water-insoluble (curcuminoid) drugs were found to be 1:1:2, 2:3:5, and 1:3:4. As for the drug mixture, the optimum ratio of drug, ovalbumin, and gelatin was 2:3:5. Encapsulated particles prepared at the optimum ratios showed high yield, drug loading, entrapment efficiency, and sustained release profiles. The solubility of drug affected the particle size of the encapsulated particle. Highly soluble drugs resulted in smaller particle size. In conclusion, addition of ovalbumin circumvented the partitioning effect, leading to the successful microencapsulation of water-soluble drugs.

  14. A graphene-based label-free voltammetric immunosensor for sensitive detection of the egg allergen ovalbumin.

    Science.gov (United States)

    Eissa, Shimaa; L'Hocine, Lamia; Siaj, Mohamed; Zourob, Mohammed

    2013-08-07

    A graphene-based label-free voltammetric immunosensor for the sensitive detection of the egg white allergen ovalbumin has been developed. Graphene-modified screen printed carbon electrodes have been covalently functionalized using electrochemical reduction of in situ generated aryl diazonium salt forming a carboxyphenyl film on the graphene surface. The blocking property of the carboxyphenyl film grafted on to the graphene electrodes using different cyclic voltammetry cycles has been characterized using differential pulse voltammetry in [Fe(CN)6](3-/4-) solution. Then, the terminal carboxylic groups on the graphene surface were activated using EDC/NHS and used to immobilize the ovalbumin antibody and construct the immunosensor. The fabrication steps of the immunosensor have also been characterized using differential pulse voltammetry. The decrease in the [Fe(CN)6](3-/4-) reduction peak current after the immunochemical reaction with ovalbumin has been used for the ovalbumin detection. The developed immunosensor has been used for ovalbumin detection in the concentration range of 1 pg mL(-1) to 0.5 μg mL(-1) with a detection limit of 0.83 pg mL(-1) in PBS buffer. The food matrix effect studied with ovalbumin spiked cake extract showed a good percentage of recovery, indicating the possible applicability of the developed immunosensor in real food samples.

  15. Aggregate morphology and network properties of ovalbumin

    NARCIS (Netherlands)

    Weijers, M.

    2005-01-01

    keywords:ovalbumin, hen egg white proteins,

  16. Neutralization of TSLP inhibits airway remodeling in a murine model of allergic asthma induced by chronic exposure to house dust mite.

    Directory of Open Access Journals (Sweden)

    Zhuang-Gui Chen

    Full Text Available Chronic allergic asthma is characterized by Th2-typed inflammation, and contributes to airway remodeling and the deterioration of lung function. However, the initiating factor that links airway inflammation to remodeling is unknown. Thymic stromal lymphopoietin (TSLP, an epithelium-derived cytokine, can strongly activate lung dendritic cells (DCs through the TSLP-TSLPR and OX40L-OX40 signaling pathways to promote Th2 differentiation. To determine whether TSLP is the underlying trigger of airway remodeling in chronic allergen-induced asthma, we induced allergic airway inflammation in mice by intranasal administration of house dust mite (HDM extracts for up to 5 consecutive weeks. We showed that repeated respiratory exposure to HDM caused significant airway eosinophilic inflammation, peribronchial collagen deposition, goblet cell hyperplasia, and airway hyperreactivity (AHR to methacholine. These effects were accompanied with a salient Th2 response that was characterized by the upregulation of Th2-typed cytokines, such as IL-4 and IL-13, as well as the transcription factor GATA-3. Moreover, the levels of TSLP and transforming growth factor beta 1 (TGF-β1 were also increased in the airway. We further demonstrated, using the chronic HDM-induced asthma model, that the inhibition of Th2 responses via neutralization of TSLP with an anti-TSLP mAb reversed airway inflammation, prevented structural alterations, and decreased AHR to methacholine and TGF-β1 level. These results suggest that TSLP plays a pivotal role in the initiation and persistence of airway inflammation and remodeling in the context of chronic allergic asthma.

  17. Characterization of P2Y receptors mediating ATP induced relaxation in guinea pig airway smooth muscle: involvement of prostaglandins and K+ channels.

    Science.gov (United States)

    Montaño, Luis M; Cruz-Valderrama, José E; Figueroa, Alejandra; Flores-Soto, Edgar; García-Hernández, Luz M; Carbajal, Verónica; Segura, Patricia; Méndez, Carmen; Díaz, Verónica; Barajas-López, Carlos

    2011-10-01

    In airway smooth muscle (ASM), adenosine 5'-triphosphate (ATP) induces a relaxation associated with prostaglandin production. We explored the role of K(+) currents (I (K)) in this relaxation. ATP relaxed the ASM, and this effect was abolished by indomethacin. Removal of airway epithelium slightly diminished the ATP-induced relaxation at lower concentration without modifying the responses to ATP at higher concentrations. ATPγS and UTP induced a concentration-dependent relaxation similar to ATP; α,β-methylene-ATP was inactive from 1 to 100 μM. Suramin or reactive blue 2 (RB2), P2Y receptor antagonists, did not modify the relaxation, but their combination significantly reduced this effect of ATP. The relaxation was also inhibited by N-ethylmaleimide (NEM; which uncouples G proteins). In myocytes, the ATP-induced I (K) increment was not modified by suramin or RB2 but the combination of both drugs abolished it. This increment in the I (K) was also completely nullified by NEM and SQ 22,536. 4-Amynopyridine or iberiotoxin diminished the ATP-induced I (K) increment, and the combination of both substances diminished ATP-induced relaxation. The presence of P2Y(2) and P2Y(4) receptors in smooth muscle was corroborated by Western blot and confocal images. In conclusion, ATP: (1) produces relaxation by inducing the production of bronchodilator prostaglandins in airway smooth muscle, most likely by acting on P2Y(4) and P2Y(2) receptors; (2) induces I (K) increment through activation of the delayed rectifier K(+) channels and the high-conductance Ca(2+)-dependent K(+) channels, therefore both channels are implicated in the ATP-induced relaxation; and (3) this I (K) increment is mediated by prostaglandin production which in turns increase cAMP signaling pathway.

  18. Receptor for advanced glycation end products and its ligand high-mobility group box-1 mediate allergic airway sensitization and airway inflammation.

    Science.gov (United States)

    Ullah, Md Ashik; Loh, Zhixuan; Gan, Wan Jun; Zhang, Vivian; Yang, Huan; Li, Jian Hua; Yamamoto, Yasuhiko; Schmidt, Ann Marie; Armour, Carol L; Hughes, J Margaret; Phipps, Simon; Sukkar, Maria B

    2014-08-01

    The receptor for advanced glycation end products (RAGE) shares common ligands and signaling pathways with TLR4, a key mediator of house dust mite (Dermatophagoides pteronyssinus) (HDM) sensitization. We hypothesized that RAGE and its ligand high-mobility group box-1 (HMGB1) cooperate with TLR4 to mediate HDM sensitization. To determine the requirement for HMGB1 and RAGE, and their relationship with TLR4, in airway sensitization. TLR4(-/-), RAGE(-/-), and RAGE-TLR4(-/-) mice were intranasally exposed to HDM or cockroach (Blatella germanica) extracts, and features of allergic inflammation were measured during the sensitization or challenge phase. Anti-HMGB1 antibody and the IL-1 receptor antagonist Anakinra were used to inhibit HMGB1 and the IL-1 receptor, respectively. The magnitude of allergic airway inflammation in response to either HDM or cockroach sensitization and/or challenge was significantly reduced in the absence of RAGE but not further diminished in the absence of both RAGE and TLR4. HDM sensitization induced the release of HMGB1 from the airway epithelium in a biphasic manner, which corresponded to the sequential activation of TLR4 then RAGE. Release of HMGB1 in response to cockroach sensitization also was RAGE dependent. Significantly, HMGB1 release occurred downstream of TLR4-induced IL-1α, and upstream of IL-25 and IL-33 production. Adoptive transfer of HDM-pulsed RAGE(+/+)dendritic cells to RAGE(-/-) mice recapitulated the allergic responses after HDM challenge. Immunoneutralization of HMGB1 attenuated HDM-induced allergic airway inflammation. The HMGB1-RAGE axis mediates allergic airway sensitization and airway inflammation. Activation of this axis in response to different allergens acts to amplify the allergic inflammatory response, which exposes it as an attractive target for therapeutic intervention. Copyright © 2014 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  19. Serum IgE Induced Airway Smooth Muscle Cell Remodeling Is Independent of Allergens and Is Prevented by Omalizumab

    Science.gov (United States)

    Roth, Michael; Zhao, Feng; Zhong, Jun; Lardinois, Didier; Tamm, Michael

    2015-01-01

    Background Airway wall remodeling in allergic asthma is reduced after treatment with humanized anti-IgE-antibodies. We reported earlier that purified IgE, without the presence of allergens, is sufficient to induce airway wall remodeling due to airway smooth muscle cell (ASMC) activity deposing extracellular matrix. Objective We postulate that IgE contained in serum of allergic asthma patients, in the absence of allergens, stimulates ASMC remodeling activities and can be prevented by anti-IgE antibodies. Methods Isolated human ASMC were exposed to serum obtained from: (i) healthy controls, or patients with (ii) allergic asthma, (iii) non-allergic asthma, and (iv) atopic non-asthma patients. Proliferation and the deposition of collagens and fibronectin were determined after 3 and 5 days. Results Serum from patients with allergies significantly stimulated: (i) ASMC proliferation, (ii) deposition of collagen type-I (48 hours) and (iii) of fibronectin (24 hours). One hour pre-incubation with Omalizumab prevented these three effects of allergic serum, but had no significant effect on serum from healthy donors or non-allergic asthma patients. Interestingly, the addition of allergens did not further increase any of the IgE effects. Conclusion and Clinical Relevance Our data provides experimental evidence that the beneficial effect of Omalizumab on airway wall remodeling and improved lung function may be due to its direct action on IgE bound ASMC. PMID:26332463

  20. Serum IgE Induced Airway Smooth Muscle Cell Remodeling Is Independent of Allergens and Is Prevented by Omalizumab.

    Directory of Open Access Journals (Sweden)

    Michael Roth

    Full Text Available Airway wall remodeling in allergic asthma is reduced after treatment with humanized anti-IgE-antibodies. We reported earlier that purified IgE, without the presence of allergens, is sufficient to induce airway wall remodeling due to airway smooth muscle cell (ASMC activity deposing extracellular matrix.We postulate that IgE contained in serum of allergic asthma patients, in the absence of allergens, stimulates ASMC remodeling activities and can be prevented by anti-IgE antibodies.Isolated human ASMC were exposed to serum obtained from: (i healthy controls, or patients with (ii allergic asthma, (iii non-allergic asthma, and (iv atopic non-asthma patients. Proliferation and the deposition of collagens and fibronectin were determined after 3 and 5 days.Serum from patients with allergies significantly stimulated: (i ASMC proliferation, (ii deposition of collagen type-I (48 hours and (iii of fibronectin (24 hours. One hour pre-incubation with Omalizumab prevented these three effects of allergic serum, but had no significant effect on serum from healthy donors or non-allergic asthma patients. Interestingly, the addition of allergens did not further increase any of the IgE effects.Our data provides experimental evidence that the beneficial effect of Omalizumab on airway wall remodeling and improved lung function may be due to its direct action on IgE bound ASMC.

  1. The contribution of airway smooth muscle to airway narrowing and airway hyperresponsiveness in disease.

    Science.gov (United States)

    Martin, J G; Duguet, A; Eidelman, D H

    2000-08-01

    Airway hyperresponsiveness (AHR), the exaggerated response to constrictor agonists in asthmatic subjects, is incompletely understood. Changes in either the quantity or properties of airway smooth muscle (ASM) are possible explanations for AHR. Morphometric analyses demonstrate structural changes in asthmatic airways, including subepithelial fibrosis, gland hyperplasia/hypertrophy, neovascularization and an increase in ASM mass. Mathematical modelling of airway narrowing suggests that, of all the changes in structure, the increase in ASM mass is the most probable cause of AHR. An increase in ASM mass in the large airways is more closely associated with a greater likelihood of dying from asthma than increases in ASM mass in other locations within the airway tree. ASM contraction is opposed by the elastic recoil of the lungs and airways, which appears to limit the degree of bronchoconstriction in vivo. The cyclical nature of tidal breathing applies stresses to the airway wall that enhance the bronchodilating influence of the lung tissues on the contracting ASM, in all probability by disrupting cross-bridges. However, the increase in ASM mass in asthma may overcome the limitation resulting from the impedances to ASM shortening imposed by the lung parenchyma and airway wall tissues. Additionally, ASM with the capacity to shorten rapidly may achieve shorter lengths and cause a greater degree of bronchoconstriction when stimulated to contract than slower ASM. Changes in ASM properties are induced by the process of sensitization and allergen-exposure such as enhancement of phospholipase C activity and inositol phosphate turnover, and increases in myosin light chain kinase activity. Whether changes in ASM mass or biochemical/biomechanical properties form the basis for asthma remains to be determined.

  2. Therapeutic effects of co-inhaled roflumilast or formoterol and ...

    African Journals Online (AJOL)

    Purpose: To investigate the therapeutic effects of "inhaled" roflumilast and formoterol separately or combined with fluticasone on the ultrastructural airway changes in ovalbumin-induced asthmatic mice. Methods: The asthmatic mice were divided randomly into seven groups (n = 8): positive control, vehicle, and five treated ...

  3. Ventilation and Perfusion Lung Scintigraphy of Allergen-Induced Airway Responses in Atopic Asthmatic Subjects

    Directory of Open Access Journals (Sweden)

    Krishnan Parameswaran

    2007-01-01

    Full Text Available BACKGROUND: Both ventilation (V and perfusion (Q of the lungs are altered in asthma, but their relationships with allergen-induced airway responses and gas exchange are not well described.

  4. Vaccination against IL-33 Inhibits Airway Hyperresponsiveness and Inflammation in a House Dust Mite Model of Asthma.

    Directory of Open Access Journals (Sweden)

    Ying Lei

    Full Text Available In several clinical and experimental studies IL-33 and its receptor have been found to play important roles in the development of asthma and allergic airway inflammation. We evaluated the effects of vaccination against IL-33 in a mouse model of airway inflammation induced by house dust mite (HDM allergen. Balb/c mice received the IL-33 vaccine subcutaneously, followed by intranasal administration of HDM for up to six weeks. Vaccination against IL-33 induced high titers of specific anti-IL-33 IgG antibodies that inhibited HDM-induced airway hyperresponsiveness (AHR in the conducting airways and tissue damping. The vaccination also attenuated the HDM-induced elevation in the numbers of eosinophils in bronchoalveolar lavage fluid (BALF and suppressed the accumulation of inflammatory cells in the airways. Furthermore, the levels of IL-17A, IL-25, IL-33 and TSLP in lung tissue homogenates were reduced by vaccination against IL-33. These observations demonstrate that vaccination against IL-33 inhibits HDM-induced development of AHR, airway inflammation and production of inflammatory cytokines. The results also indicate an important role of IL-33 in the regulation of AHR of the distal lung compartments. Thus, administration of such a vaccine is potentially an effective therapeutic tool for treating allergic asthma.

  5. Class A dioscorins of various yam species suppress ovalbumin-induced allergic reactions.

    Science.gov (United States)

    Yang, Ching-Chi; Lin, Kuo-Chih

    2014-06-01

    Dioscorins, the primary storage proteins in yam tubers, of different species exhibited varying immunomodulatory activities in mice. We inferred that this might be attributed to the various isoforms in the yam tubers. We aimed to investigate the antiallergic potential of the Class A dioscorins of various yam species using the ovalbumin (OVA)-induced murine allergy model. We purified the recombinant Class A dioscorins (rDioscorins) of various yam species from Escherichia coli and evaluated their antiallergic potential by enzyme-linked immunosorbent assay. The Class A rDioscorins of various yam species suppressed allergic reactions by significantly decreasing the serum IgE and histamine levels. The serum IFN-γ and IgG2a levels significantly increased in all rDioscorin-treated mice. The splenocytes of the rDioscorin-treated mice also exhibited upregulated IFN-γ secretion in response to ConA stimulation. By contrast, the serum IL-5 levels decreased to basal levels in mice treated with Class A rDioscorins and the amount of IL-5 produced by splenocytes decreased in response to ConA stimulation. The Class A rDioscorins suppress allergic reactions, possibly through modulating an imbalanced Th1/Th2 immune response to OVA by promoting Th1 cell responses. Furthermore, the Class A rDioscorins of various yam species exhibited similar immunomodulatory activities in OVA-sensitized mice, which were different from the activities demonstrated by native dioscorins, suggesting that distinct immunomodulatory effects of native dioscorins on mice were attributed to the various isoforms in the yam tubers. The Class A dioscorins of various yam species exhibit antiallergic activity and are potential immunotherapeutic agents for treating IgE-mediated hypersensitivity.

  6. Directional secretory response of double stranded RNA-induced thymic stromal lymphopoetin (TSLP) and CCL11/eotaxin-1 in human asthmatic airways.

    Science.gov (United States)

    Nino, Gustavo; Huseni, Shehlanoor; Perez, Geovanny F; Pancham, Krishna; Mubeen, Humaira; Abbasi, Aleeza; Wang, Justin; Eng, Stephen; Colberg-Poley, Anamaris M; Pillai, Dinesh K; Rose, Mary C

    2014-01-01

    Thymic stromal lymphoproetin (TSLP) is a cytokine secreted by the airway epithelium in response to respiratory viruses and it is known to promote allergic Th2 responses in asthma. This study investigated whether virally-induced secretion of TSLP is directional in nature (apical vs. basolateral) and/or if there are TSLP-mediated effects occurring at both sides of the bronchial epithelial barrier in the asthmatic state. Primary human bronchial epithelial cells (HBEC) from control (n = 3) and asthmatic (n = 3) donors were differentiated into polarized respiratory tract epithelium under air-liquid interface (ALI) conditions and treated apically with dsRNA (viral surrogate) or TSLP. Sub-epithelial effects of TSLP were examined in human airway smooth muscle cells (HASMC) from normal (n = 3) and asthmatic (n = 3) donors. Clinical experiments examined nasal airway secretions obtained from asthmatic children during naturally occurring rhinovirus-induced exacerbations (n = 20) vs. non-asthmatic uninfected controls (n = 20). Protein levels of TSLP, CCL11/eotaxin-1, CCL17/TARC, CCL22/MDC, TNF-α and CXCL8 were determined with a multiplex magnetic bead assay. Our data demonstrate that: 1) Asthmatic HBEC exhibit an exaggerated apical, but not basal, secretion of TSLP after dsRNA exposure; 2) TSLP exposure induces unidirectional (apical) secretion of CCL11/eotaxin-1 in asthmatic HBEC and enhanced CCL11/eotaxin-1 secretion in asthmatic HASMC; 3) Rhinovirus-induced asthma exacerbations in children are associated with in vivo airway secretion of TSLP and CCL11/eotaxin-1. There are virally-induced TSLP-driven secretory immune responses at both sides of the bronchial epithelial barrier characterized by enhanced CCL11/eotaxin-1 secretion in asthmatic airways. These results suggest a new model of TSLP-mediated eosinophilic responses in the asthmatic airway during viral-induced exacerbations.

  7. Directional secretory response of double stranded RNA-induced thymic stromal lymphopoetin (TSLP and CCL11/eotaxin-1 in human asthmatic airways.

    Directory of Open Access Journals (Sweden)

    Gustavo Nino

    Full Text Available Thymic stromal lymphoproetin (TSLP is a cytokine secreted by the airway epithelium in response to respiratory viruses and it is known to promote allergic Th2 responses in asthma. This study investigated whether virally-induced secretion of TSLP is directional in nature (apical vs. basolateral and/or if there are TSLP-mediated effects occurring at both sides of the bronchial epithelial barrier in the asthmatic state.Primary human bronchial epithelial cells (HBEC from control (n = 3 and asthmatic (n = 3 donors were differentiated into polarized respiratory tract epithelium under air-liquid interface (ALI conditions and treated apically with dsRNA (viral surrogate or TSLP. Sub-epithelial effects of TSLP were examined in human airway smooth muscle cells (HASMC from normal (n = 3 and asthmatic (n = 3 donors. Clinical experiments examined nasal airway secretions obtained from asthmatic children during naturally occurring rhinovirus-induced exacerbations (n = 20 vs. non-asthmatic uninfected controls (n = 20. Protein levels of TSLP, CCL11/eotaxin-1, CCL17/TARC, CCL22/MDC, TNF-α and CXCL8 were determined with a multiplex magnetic bead assay.Our data demonstrate that: 1 Asthmatic HBEC exhibit an exaggerated apical, but not basal, secretion of TSLP after dsRNA exposure; 2 TSLP exposure induces unidirectional (apical secretion of CCL11/eotaxin-1 in asthmatic HBEC and enhanced CCL11/eotaxin-1 secretion in asthmatic HASMC; 3 Rhinovirus-induced asthma exacerbations in children are associated with in vivo airway secretion of TSLP and CCL11/eotaxin-1.There are virally-induced TSLP-driven secretory immune responses at both sides of the bronchial epithelial barrier characterized by enhanced CCL11/eotaxin-1 secretion in asthmatic airways. These results suggest a new model of TSLP-mediated eosinophilic responses in the asthmatic airway during viral-induced exacerbations.

  8. β2-Agonist induced cAMP is decreased in asthmatic airway smooth muscle due to increased PDE4D

    NARCIS (Netherlands)

    Trian, Thomas; Burgess, Janette K; Niimi, Kyoko; Moir, Lyn M; Ge, Qi; Berger, Patrick; Liggett, Stephen B; Black, Judith L; Oliver, Brian G

    2011-01-01

    BACKGROUND AND OBJECTIVE: Asthma is associated with airway narrowing in response to bronchoconstricting stimuli and increased airway smooth muscle (ASM) mass. In addition, some studies have suggested impaired β-agonist induced ASM relaxation in asthmatics, but the mechanism is not known. OBJECTIVE:

  9. Cold-inducible RNA-binding protein mediates cold air inducible airway mucin production through TLR4/NF-κB signaling pathway.

    Science.gov (United States)

    Chen, Lingxiu; Ran, Danhua; Xie, Wenyue; Xu, Qing; Zhou, Xiangdong

    2016-10-01

    Mucus overproduction is an important feature in patients with chronic inflammatory airway diseases and cold air stimulation has been shown to be associated with the severity of these diseases. However, the regulatory mechanisms that mediate excessive mucin production under cold stress remain elusive. Recently, the cold-inducible RNA-binding protein (CIRP) has been shown to be markedly induced after exposure to cold air. In this study, we sought to explore the expression of CIRP within bronchial biopsy specimens, the effect on mucin5AC (MUC5AC) production in chronic inflammatory airway diseases and the potential signaling pathways involved in cold air stimulation process. We found that CIRP protein expression was significantly increased in patients with COPD and in mice treated with cold air. Moreover, cold air stimulation induced MUC5AC expression in wild-type mice but not in CIRP(-/-) mice. In vitro, cold air stress significantly elevated the transcriptional and protein expression levels of MUC5AC in human bronchial epithelial cells. CIRP, toll-like receptor 4 (TLR4) and phosphorylated NF-κB p65 (p-p65) increased significantly in response to cold stress and CIRP siRNA, TLR4 - neutralizing Ab and a specific inhibitor of NF-κB could attenuated cold stress inducible MUC5AC expression. In addition, CIRP siRNA could hindered the expression levels of TLR4 and p-p65 both induced by cold stress. Taken together, these results suggest that airway epithelial cells constitutively express CIRP in vitro and in vivo. CIRP is responsible for cold-inducible MUC5AC expression by activating TLR4/NF-κB signaling pathway. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Fabrication and characterization of ovalbumin films for wound dressing applications

    International Nuclear Information System (INIS)

    Shojaee, Mozhgan; Navaee, Fatemeh; Jalili–Firoozinezhad, Sasan; Faturechi, Rahim; Majidi, Mohammad; Bonakdar, Shahin

    2015-01-01

    A great number of people suffer from burning injuries all around the world each year. Applying an appropriate wound dressing can promote new tissue formation, prevent losing water and inhibit invasion of infectious organisms. In this study, egg white with a long standing history, as a homemade remedy, was fabricated as a wound dressing for burn injuries. For this reason, ovalbumin films were cross-linked by 1-ethyl-3-3-dimethyl aminopropyl carbodiimide hydrochloride (EDC) with different concentrations (1, 5 and 10 mM) using three concentrations of ethanol. Physical–chemical characterizations including Fourier transform infrared spectroscopy (FTIR), gas transmission rate (GTR), tensile mechanical tests, water uptake and degradation rate were performed on the samples. The sample with 5 mM crosslinking agent at 70% ethanol was considered as the optimized one with 417 kPa of ultimate tensile strength, 64% elongation at break and 230% water uptake. In addition, biological evaluations conducted by MTT and live/dead assay indicated no sign of cyto-toxicity for all the samples. Moreover, scanning electron microscopy (SEM) showed that the fibroblast cells were well spread on the sample with the formation of filopodia. In conclusion, modified ovalbumin can be applied as the base material for fabrication of wound dressing and skin care products. - Highlights: • Ovalbumin films were cross-linked by EDC with different concentrations. • Physical–chemical characterizations were performed on the samples. • Biological evaluations indicated no sign of cyto-toxicity for all the samples. • The optimized sample was considered with 5 mM crosslinking agent at 70% ethanol. • Modified ovalbumin can be applied as wound dressings and skin care products

  11. Fabrication and characterization of ovalbumin films for wound dressing applications

    Energy Technology Data Exchange (ETDEWEB)

    Shojaee, Mozhgan; Navaee, Fatemeh [Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Jalili–Firoozinezhad, Sasan [Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Departments of Biomedicine and Surgery, University Hospital Basel, University of Basel, 4031 Basel (Switzerland); Faturechi, Rahim [Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Majidi, Mohammad [National Cell Bank of Iran, Pasteur Institute of Iran, Tehran (Iran, Islamic Republic of); Bonakdar, Shahin, E-mail: sh_bonakdar@pasteur.ac.ir [National Cell Bank of Iran, Pasteur Institute of Iran, Tehran (Iran, Islamic Republic of)

    2015-03-01

    A great number of people suffer from burning injuries all around the world each year. Applying an appropriate wound dressing can promote new tissue formation, prevent losing water and inhibit invasion of infectious organisms. In this study, egg white with a long standing history, as a homemade remedy, was fabricated as a wound dressing for burn injuries. For this reason, ovalbumin films were cross-linked by 1-ethyl-3-3-dimethyl aminopropyl carbodiimide hydrochloride (EDC) with different concentrations (1, 5 and 10 mM) using three concentrations of ethanol. Physical–chemical characterizations including Fourier transform infrared spectroscopy (FTIR), gas transmission rate (GTR), tensile mechanical tests, water uptake and degradation rate were performed on the samples. The sample with 5 mM crosslinking agent at 70% ethanol was considered as the optimized one with 417 kPa of ultimate tensile strength, 64% elongation at break and 230% water uptake. In addition, biological evaluations conducted by MTT and live/dead assay indicated no sign of cyto-toxicity for all the samples. Moreover, scanning electron microscopy (SEM) showed that the fibroblast cells were well spread on the sample with the formation of filopodia. In conclusion, modified ovalbumin can be applied as the base material for fabrication of wound dressing and skin care products. - Highlights: • Ovalbumin films were cross-linked by EDC with different concentrations. • Physical–chemical characterizations were performed on the samples. • Biological evaluations indicated no sign of cyto-toxicity for all the samples. • The optimized sample was considered with 5 mM crosslinking agent at 70% ethanol. • Modified ovalbumin can be applied as wound dressings and skin care products.

  12. Cyclic mechanical strain-induced proliferation and migration of human airway smooth muscle cells: role of EMMPRIN and MMPs.

    Science.gov (United States)

    Hasaneen, Nadia A; Zucker, Stanley; Cao, Jian; Chiarelli, Christian; Panettieri, Reynold A; Foda, Hussein D

    2005-09-01

    Airway smooth muscle (ASM) proliferation and migration are major components of airway remodeling in asthma. Asthmatic airways are exposed to mechanical strain, which contributes to their remodeling. Matrix metalloproteinase (MMP) plays an important role in remodeling. In the present study, we examined if the mechanical strain of human ASM (HASM) cells contributes to their proliferation and migration and the role of MMPs in this process. HASM were exposed to mechanical strain using the FlexCell system. HASM cell proliferation, migration and MMP release, activation, and expression were assessed. Our results show that cyclic strain increased the proliferation and migration of HASM; cyclic strain increased release and activation of MMP-1, -2, and -3 and membrane type 1-MMP; MMP release was preceded by an increase in extracellular MMP inducer; Prinomastat [a MMP inhibitor (MMPI)] significantly decreased cyclic strain-induced proliferation and migration of HASM; and the strain-induced increase in the release of MMPs was accompanied by an increase in tenascin-C release. In conclusion, cyclic mechanical strain plays an important role in HASM cell proliferation and migration. This increase in proliferation and migration is through an increase in MMP release and activation. Pharmacological MMPIs should be considered in the pursuit of therapeutic options for airway remodeling in asthma.

  13. Involvement of Syk kinase in TNF-induced nitric oxide production by airway epithelial cells

    International Nuclear Information System (INIS)

    Ulanova, Marina; Marcet-Palacios, Marcelo; Munoz, Samira; Asfaha, Samuel; Kim, Moo-Kyung; Schreiber, Alan D.; Befus, A. Dean

    2006-01-01

    We have recently found that Syk is widely expressed in lung epithelial cells (EC) and participates in β1 integrin signaling. In this study, we assessed the role of Syk in regulation of NO production. Stimulation of human bronchial EC line HS-24 by TNF caused an increased expression of inducible nitric oxide synthase (iNOS). Inhibition of Syk using siRNA or piceatannol down-regulated the iNOS expression and reduced NO production. This effect occurred in EC simultaneously stimulated via β1 integrins, suggesting that TNF and β1 integrins provide co-stimulatory signals. Inhibition of Syk down-regulated TNF-induced p38 and p44/42 MAPK phosphorylation and nuclear translocation of p65 NF-κB. Thus, TNF-induced activation of pro-inflammatory signaling in EC leading to enhanced expression of iNOS and NO production was dependent on Syk. Syk-mediated signaling regulates NO production at least partly via activating the MAPK cascade. Understanding the role of Syk in airway EC may help in developing new therapeutic tools for inflammatory lung disorders

  14. Divergent effects of urban particulate air pollution on allergic airway responses in experimental asthma: a comparison of field exposure studies

    Directory of Open Access Journals (Sweden)

    Wagner James G

    2012-07-01

    Full Text Available Abstract Background Increases in ambient particulate matter of aerodynamic diameter of 2.5 μm (PM2.5 are associated with asthma morbidity and mortality. The overall objective of this study was to test the hypothesis that PM2.5 derived from two distinct urban U.S. communities would induce variable responses to aggravate airway symptoms during experimental asthma. Methods We used a mobile laboratory to conduct community-based inhalation exposures to laboratory rats with ovalbumin-induced allergic airways disease. In Grand Rapids exposures were conducted within 60 m of a major roadway, whereas the Detroit was located in an industrial area more than 400 m from roadways. Immediately after nasal allergen challenge, Brown Norway rats were exposed by whole body inhalation to either concentrated air particles (CAPs or filtered air for 8 h (7:00 AM - 3:00 PM. Both ambient and concentrated PM2.5 was assessed for mass, size fractionation, and major component analyses, and trace element content. Sixteen hours after exposures, bronchoalveolar lavage fluid (BALF and lung lobes were collected and evaluated for airway inflammatory and mucus responses. Results Similar CAPs mass concentrations were generated in Detroit (542 μg/m3 and Grand Rapids (519 μg/m3. Exposure to CAPs at either site had no effects in lungs of non-allergic rats. In contrast, asthmatic rats had 200% increases in airway mucus and had more BALF neutrophils (250% increase, eosinophils (90%, and total protein (300% compared to controls. Exposure to Detroit CAPs enhanced all allergic inflammatory endpoints by 30-100%, whereas inhalation of Grand Rapids CAPs suppressed all allergic responses by 50%. Detroit CAPs were characterized by high sulfate, smaller sized particles and were derived from local combustion sources. Conversely Grand Rapids CAPs were derived primarily from motor vehicle sources. Conclusions Despite inhalation exposure to the same mass concentration of urban PM2

  15. Reduced local immune response with continuous positive airway pressure during one-lung ventilation for oesophagectomy

    NARCIS (Netherlands)

    Verhage, R. J. J.; Boone, J.; Rijkers, G. T.; Cromheecke, G. J.; Kroese, A. C.; Weijs, T. J.; Borel Rinkes, I. H. M.; van Hillegersberg, R.

    2014-01-01

    Background. Transthoracic oesophagectomy requires prolonged one-lung ventilation causing systemic and local inflammatory responses. Application of continuous positive airway pressure (CPAP) to the collapsed lung potentially reduces pulmonary damage, hypoxia, and consequent inflammation. This

  16. Role of endothelin-converting enzyme, chymase and neutral endopeptidase in the processing of big ET-1, ET-1(1-21) and ET-1(1-31) in the trachea of allergic mice.

    Science.gov (United States)

    De Campo, Benjamin A; Goldie, Roy G; Jeng, Arco Y; Henry, Peter J

    2002-08-01

    The present study examined the roles of endothelin-converting enzyme (ECE), neutral endopeptidase (NEP) and mast cell chymase as processors of the endothelin (ET) analogues ET-1(1-21), ET-1(1-31) and big ET-1 in the trachea of allergic mice. Male CBA/CaH mice were sensitized with ovalbumin (10 microg) delivered intraperitoneal on days 1 and 14, and exposed to aerosolized ovalbumin on days 14, 25, 26 and 27 (OVA mice). Mice were killed and the trachea excised for histological analysis and contraction studies on day 28. Tracheae from OVA mice had 40% more mast cells than vehicle-sensitized mice (sham mice). Ovalbumin (10 microg/ml) induced transient contractions (15+/-3% of the C(max)) in tracheae from OVA mice. The ECE inhibitor CGS35066 (10 microM) inhibited contractions induced by big ET-1 (4.8-fold rightward shift of dose-response curve; Peffect on contractions induced by any of the ET analogues used. The NEP inhibitor CGS24592 (10 microM) inhibited contractions induced by ET-1(1-31) (6.2-fold rightward shift; Pbig ET-1. These data suggest that big ET-1 is processed predominantly by a CGS35066-sensitive ECE within allergic airways rather than by mast cell-derived proteases such as chymase. If endogenous ET-1(1-31) is formed within allergic airways, it is likely to undergo further conversion by NEP to more active products.

  17. Tissue factor pathway inhibitor prevents airway obstruction, respiratory failure and death due to sulfur mustard analog inhalation

    International Nuclear Information System (INIS)

    Rancourt, Raymond C.; Veress, Livia A.; Ahmad, Aftab; Hendry-Hofer, Tara B.; Rioux, Jacqueline S.; Garlick, Rhonda B.; White, Carl W.

    2013-01-01

    Sulfur mustard (SM) inhalation causes airway injury, with enhanced vascular permeability, coagulation, and airway obstruction. The objective of this study was to determine whether recombinant tissue factor pathway inhibitor (TFPI) could inhibit this pathogenic sequence. Methods: Rats were exposed to the SM analog 2-chloroethyl ethyl sulfide (CEES) via nose-only aerosol inhalation. One hour later, TFPI (1.5 mg/kg) in vehicle, or vehicle alone, was instilled into the trachea. Arterial O 2 saturation was monitored using pulse oximetry. Twelve hours after exposure, animals were euthanized and bronchoalveolar lavage fluid (BALF) and plasma were analyzed for prothrombin, thrombin–antithrombin complex (TAT), active plasminogen activator inhibitor-1 (PAI-1) levels, and fluid fibrinolytic capacity. Lung steady-state PAI-1 mRNA was measured by RT-PCR analysis. Airway-capillary leak was estimated by BALF protein and IgM, and by pleural fluid measurement. In additional animals, airway cast formation was assessed by microdissection and immunohistochemical detection of airway fibrin. Results: Airway obstruction in the form of fibrin-containing casts was evident in central conducting airways of rats receiving CEES. TFPI decreased cast formation, and limited severe hypoxemia. Findings of reduced prothrombin consumption, and lower TAT complexes in BALF, demonstrated that TFPI acted to limit thrombin activation in airways. TFPI, however, did not appreciably affect CEES-induced airway protein leak, PAI-1 mRNA induction, or inhibition of the fibrinolytic activity present in airway surface liquid. Conclusions: Intratracheal administration of TFPI limits airway obstruction, improves gas exchange, and prevents mortality in rats with sulfur mustard-analog-induced acute lung injury. - Highlights: • TFPI administration to rats after mustard inhalation reduces airway cast formation. • Inhibition of thrombin activation is the likely mechanism for limiting casts. • Rats given TFPI had

  18. Tissue factor pathway inhibitor prevents airway obstruction, respiratory failure and death due to sulfur mustard analog inhalation

    Energy Technology Data Exchange (ETDEWEB)

    Rancourt, Raymond C., E-mail: raymond.rancourt@ucdenver.edu; Veress, Livia A., E-mail: livia.veress@ucdenver.edu; Ahmad, Aftab, E-mail: aftab.ahmad@ucdenver.edu; Hendry-Hofer, Tara B., E-mail: tara.hendry-hofer@ucdenver.edu; Rioux, Jacqueline S., E-mail: jacqueline.rioux@ucdenver.edu; Garlick, Rhonda B., E-mail: rhonda.garlick@ucdenver.edu; White, Carl W., E-mail: carl.w.white@ucdenver.edu

    2013-10-01

    Sulfur mustard (SM) inhalation causes airway injury, with enhanced vascular permeability, coagulation, and airway obstruction. The objective of this study was to determine whether recombinant tissue factor pathway inhibitor (TFPI) could inhibit this pathogenic sequence. Methods: Rats were exposed to the SM analog 2-chloroethyl ethyl sulfide (CEES) via nose-only aerosol inhalation. One hour later, TFPI (1.5 mg/kg) in vehicle, or vehicle alone, was instilled into the trachea. Arterial O{sub 2} saturation was monitored using pulse oximetry. Twelve hours after exposure, animals were euthanized and bronchoalveolar lavage fluid (BALF) and plasma were analyzed for prothrombin, thrombin–antithrombin complex (TAT), active plasminogen activator inhibitor-1 (PAI-1) levels, and fluid fibrinolytic capacity. Lung steady-state PAI-1 mRNA was measured by RT-PCR analysis. Airway-capillary leak was estimated by BALF protein and IgM, and by pleural fluid measurement. In additional animals, airway cast formation was assessed by microdissection and immunohistochemical detection of airway fibrin. Results: Airway obstruction in the form of fibrin-containing casts was evident in central conducting airways of rats receiving CEES. TFPI decreased cast formation, and limited severe hypoxemia. Findings of reduced prothrombin consumption, and lower TAT complexes in BALF, demonstrated that TFPI acted to limit thrombin activation in airways. TFPI, however, did not appreciably affect CEES-induced airway protein leak, PAI-1 mRNA induction, or inhibition of the fibrinolytic activity present in airway surface liquid. Conclusions: Intratracheal administration of TFPI limits airway obstruction, improves gas exchange, and prevents mortality in rats with sulfur mustard-analog-induced acute lung injury. - Highlights: • TFPI administration to rats after mustard inhalation reduces airway cast formation. • Inhibition of thrombin activation is the likely mechanism for limiting casts. • Rats given TFPI

  19. Development of nanoparticle based delivery systems for sublingual immunotherapy

    DEFF Research Database (Denmark)

    Alija, Hava; Rask, Carola; Brimnes, Jens

    The prevalence of IgE mediated allergic diseases is increasing dramatically in industrialized countries. Sublingual immunotherapy (SLIT) has been demonstrated to be a safe and efficacious treatment for IgE mediated allergic diseases, but requires protracted treatment duration. Even though SLIT...... (OVA)-induced allergic airway inflammation model for their ability to improve immune tolerance induction of ovalbumin (protein and peptide) when delivered sublingually. In the liposome study, mice were treated sublingually during two weeks with free or liposome encapsulated OVA (OVA-liposomes) followed...... by intraperitoneal injections and intranasal challenge. Mice treated sublingually with OVA-liposomes showed a significant reduction of airway eosinophilia, OVA-specific IgE antibodies and splenocyte proliferation in comparison to free OVA. In addition, reduced levels of IFN-ɣ and IL-5 were observed in spleen cell...

  20. Tissue remodeling induced by hypersecreted epidermal growth factor and amphiregulin in the airway after an acute asthma attack.

    Science.gov (United States)

    Enomoto, Yukinori; Orihara, Kanami; Takamasu, Tetsuya; Matsuda, Akio; Gon, Yasuhiro; Saito, Hirohisa; Ra, Chisei; Okayama, Yoshimichi

    2009-11-01

    Epidermal growth factor receptor ligands, such as epidermal growth factor (EGF) and amphiregulin, may play key roles in tissue remodeling in asthma. However, the kinetics of EGF and amphiregulin secretion in the airway after an acute asthma attack and the effect of prolonged airway exposure to these ligands on airway remodeling are unknown. To measure the EGF and amphiregulin concentrations in sputa obtained from patients with asthma under various conditions, and to examine the effects of EGF and amphiregulin on the proliferation or differentiation of airway structural cells. Epidermal growth factor and amphiregulin levels were measured by ELISA in sputum specimens collected from 14 hospitalized children with asthma during an acute asthma attack, 13 stable outpatients with asthma, 8 healthy control children, and 7 children with respiratory tract infections. The effects of EGF and amphiregulin on the proliferation and/or differentiation of normal human bronchial epithelial cells (NHBE), bronchial smooth muscle cells (BSMC), and normal human lung fibroblasts (NHLF) were examined. The sputum levels of EGF were significantly higher for about a week after an acute asthma attack compared with the levels in stable subjects with asthma and control subjects. In contrast, upregulation of amphiregulin in the sputa of patients with asthma was observed only during the acute attack. EGF caused proliferation of NHBE, BSMC, and NHLF, whereas amphiregulin induced proliferation of only NHBE. Prolonged exposure of NHBE to EGF and amphiregulin induced mucous cell metaplasia in an IL-13-independent manner. Acute asthma attacks are associated with hypersecretion of EGF and amphiregulin in the airway. Recurrent acute attacks may aggravate airway remodeling.

  1. Smoking-induced gene expression changes in the bronchial airway are reflected in nasal and buccal epithelium

    Directory of Open Access Journals (Sweden)

    Zhang Xiaohui

    2008-05-01

    Full Text Available Abstract Background Cigarette smoking is a leading cause of preventable death and a significant cause of lung cancer and chronic obstructive pulmonary disease. Prior studies have demonstrated that smoking creates a field of molecular injury throughout the airway epithelium exposed to cigarette smoke. We have previously characterized gene expression in the bronchial epithelium of never smokers and identified the gene expression changes that occur in the mainstem bronchus in response to smoking. In this study, we explored relationships in whole-genome gene expression between extrathorcic (buccal and nasal and intrathoracic (bronchial epithelium in healthy current and never smokers. Results Using genes that have been previously defined as being expressed in the bronchial airway of never smokers (the "normal airway transcriptome", we found that bronchial and nasal epithelium from non-smokers were most similar in gene expression when compared to other epithelial and nonepithelial tissues, with several antioxidant, detoxification, and structural genes being highly expressed in both the bronchus and nose. Principle component analysis of previously defined smoking-induced genes from the bronchus suggested that smoking had a similar effect on gene expression in nasal epithelium. Gene set enrichment analysis demonstrated that this set of genes was also highly enriched among the genes most altered by smoking in both nasal and buccal epithelial samples. The expression of several detoxification genes was commonly altered by smoking in all three respiratory epithelial tissues, suggesting a common airway-wide response to tobacco exposure. Conclusion Our findings support a relationship between gene expression in extra- and intrathoracic airway epithelial cells and extend the concept of a smoking-induced field of injury to epithelial cells that line the mouth and nose. This relationship could potentially be utilized to develop a non-invasive biomarker for

  2. Arginase attenuates inhibitory nonadrenergic noncholinergic nerve-induced nitric oxide generation and airway smooth muscle relaxation

    NARCIS (Netherlands)

    Maarsingh, H; Tio, MA; Zaagsma, J; Meurs, H

    2005-01-01

    Background: Recent evidence suggests that endogenous arginase activity potentiates airway responsiveness to methacholine by attenuation of agonist-induced nitric oxide (NO) production, presumably by competition with epithelial constitutive NO synthase for the common substrate, L-arginine. Using

  3. Airway remodelling and inflammation in asthma are dependent on the extracellular matrix protein fibulin-1c.

    Science.gov (United States)

    Liu, Gang; Cooley, Marion A; Nair, Prema M; Donovan, Chantal; Hsu, Alan C; Jarnicki, Andrew G; Haw, Tatt Jhong; Hansbro, Nicole G; Ge, Qi; Brown, Alexandra C; Tay, Hock; Foster, Paul S; Wark, Peter A; Horvat, Jay C; Bourke, Jane E; Grainge, Chris L; Argraves, W Scott; Oliver, Brian G; Knight, Darryl A; Burgess, Janette K; Hansbro, Philip M

    2017-12-01

    Asthma is a chronic inflammatory disease of the airways. It is characterized by allergic airway inflammation, airway remodelling, and airway hyperresponsiveness (AHR). Asthma patients, in particular those with chronic or severe asthma, have airway remodelling that is associated with the accumulation of extracellular matrix (ECM) proteins, such as collagens. Fibulin-1 (Fbln1) is an important ECM protein that stabilizes collagen and other ECM proteins. The level of Fbln1c, one of the four Fbln1 variants, which predominates in both humans and mice, is increased in the serum and airways fluids in asthma but its function is unclear. We show that the level of Fbln1c was increased in the lungs of mice with house dust mite (HDM)-induced chronic allergic airway disease (AAD). Genetic deletion of Fbln1c and therapeutic inhibition of Fbln1c in mice with chronic AAD reduced airway collagen deposition, and protected against AHR. Fbln1c-deficient (Fbln1c -/- ) mice had reduced mucin (MUC) 5 AC levels, but not MUC5B levels, in the airways as compared with wild-type (WT) mice. Fbln1c interacted with fibronectin and periostin that was linked to collagen deposition around the small airways. Fbln1c -/- mice with AAD also had reduced numbers of α-smooth muscle actin-positive cells around the airways and reduced airway contractility as compared with WT mice. After HDM challenge, these mice also had fewer airway inflammatory cells, reduced interleukin (IL)-5, IL-13, IL-33, tumour necrosis factor (TNF) and CXCL1 levels in the lungs, and reduced IL-5, IL-33 and TNF levels in lung-draining lymph nodes. Therapeutic targeting of Fbln1c reduced the numbers of GATA3-positive Th2 cells in the lymph nodes and lungs after chronic HDM challenge. Treatment also reduced the secretion of IL-5 and IL-13 from co-cultured dendritic cells and T cells restimulated with HDM extract. Human epithelial cells cultured with Fbln1c peptide produced more CXCL1 mRNA than medium-treated controls. Our data show

  4. Mechanisms of mechanical strain memory in airway smooth muscle.

    Science.gov (United States)

    Kim, Hak Rim; Hai, Chi-Ming

    2005-10-01

    We evaluated the hypothesis that mechanical deformation of airway smooth muscle induces structural remodeling of airway smooth muscle cells, thereby modulating mechanical performance in subsequent contractions. This hypothesis implied that past experience of mechanical deformation was retained (or "memorized") as structural changes in airway smooth muscle cells, which modulated the cell's subsequent contractile responses. We termed this phenomenon mechanical strain memory. Preshortening has been found to induce attenuation of both force and isotonic shortening velocity in cholinergic receptor-activated airway smooth muscle. Rapid stretching of cholinergic receptor-activated airway smooth muscle from an initial length to a final length resulted in post-stretch force and myosin light chain phosphorylation that correlated significantly with initial length. Thus post-stretch muscle strips appeared to retain memory of the initial length prior to rapid stretch (mechanical strain memory). Cytoskeletal recruitment of actin- and integrin-binding proteins and Erk 1/2 MAPK appeared to be important mechanisms of mechanical strain memory. Sinusoidal length oscillation led to force attenuation during oscillation and in subsequent contractions in intact airway smooth muscle, and p38 MAPK appeared to be an important mechanism. In contrast, application of local mechanical strain to cultured airway smooth muscle cells induced local actin polymerization and cytoskeletal stiffening. It is conceivable that deep inspiration-induced bronchoprotection may be a manifestation of mechanical strain memory such that mechanical deformation from past breathing cycles modulated the mechanical performance of airway smooth muscle in subsequent cycles in a continuous and dynamic manner.

  5. Differential effects of airway anesthesia on ozone-induced pulmonary responses in human subjects.

    Science.gov (United States)

    Schelegle, E S; Eldridge, M W; Cross, C E; Walby, W F; Adams, W C

    2001-04-01

    We examined the effect of tetracaine aerosol inhalation, a local anesthetic, on lung volume decrements, rapid shallow breathing, and subjective symptoms of breathing discomfort induced by the acute inhalation of 0.30 ppm ozone for 65 min in 22 ozone-sensitive healthy human subjects. After 50 min of ozone inhalation FEV(1) was reduced 24%, breathing frequency was increased 40%, tidal volume was decreased 31%, and total subjective symptom score was increased (71.2, compared with 3.8 for filtered air exposure). Inhalation of tetracaine aerosol resulted in marked reductions in ozone-induced subjective symptoms of throat tickle and/or irritation (92.1%), cough (78.5%), shortness of breath (72.5%), and pain on deep inspiration (69.4%). In contrast, inhalation of tetracaine aerosol (mass median aerodynamic diameter of 3.52 microm with a geometric standard deviation of 1.92) resulted in only minor and inconsistent rectification of FEV(1) decrements (5.0%) and breathing frequency (-3.8%) that was not significantly different from that produced by saline aerosol alone (FEV(1), 5.1% and breathing frequency, -2.7%). Our data are consistent with afferent endings located within the large conducting airways of the tracheobronchial tree being primarily responsible for ozone-induced subjective symptoms and provides strong evidence that ozone-induced inhibition of maximal inspiratory effort is not dependent on conscious sensations of inspiratory discomfort.

  6. Mechanisms of pollution-induced airway disease: in vivo studies

    Energy Technology Data Exchange (ETDEWEB)

    Peden, D.B. [Univ. of North Carolina School of Medicine, Center for Environmental Medicine and Lung Biology, North Carolina (United States)

    1997-12-31

    Several studies have investigated the effects of ozone, sulphur dioxide (SO{sub 2}), and nitrogen dioxide (NO{sub 2}) on lung function in normal and asthmatic subjects. Decreased lung function has been observed with ozone levels as low as 0.15 ppm - this effect is concentration dependent and is exacerbated by exercise. A number of lines of evidence suggest that the effect on lung function is mediated, at lest in part, by neural mechanisms. In both normals and asthmatics, ozone has been shown to induce neutrophilic inflammation, with increased levels of several inflammatory mediators, including prostaglandin E{sub 2}. However, in normal subjects, none of the markers of inflammation correlate with changes in lung function. The lung function changes in asthmatics may be associated with inflammatory effects; alternatively, ozone may prime the airways for an increased response to subsequently inhaled allergen. Indeed, an influx of both polymorphonucleocytes and eosinophils has been observed in asthmatic patients after ozone exposure. It has been suggested that the effect of ozone on classic allergen-induced bronchoconstriction may be more significant than any direct effect of this pollutant in asthmatics. SO{sub 2} does not appear to affect lung function in normal subjects, but may induce bronchoconstriction in asthmatics. Nasal breathing, which is often impaired in asthmatics, reduces the pulmonary effects of SO{sub 2}, since this water-soluble gas is absorbed by the nasal mucosa. NO{sub 2} may also influence lung function in asthmatics, but further research is warranted. SO{sub 2} and NO{sub 2} alone do not seem to have a priming effect in asthmatics, but a combination of these two gases has resulted in a heightened sensitivity to subsequently inhaled allergen. (au)

  7. The Oligo Fucoidan Inhibits Platelet-Derived Growth Factor-Stimulated Proliferation of Airway Smooth Muscle Cells

    Directory of Open Access Journals (Sweden)

    Chao-Huei Yang

    2016-01-01

    Full Text Available In the pathogenesis of asthma, the proliferation of airway smooth muscle cells (ASMCs is a key factor in airway remodeling and causes airway narrowing. In addition, ASMCs are also the effector cells of airway inflammation. Fucoidan extracted from marine brown algae polysaccharides has antiviral, antioxidant, antimicrobial, anticlotting, and anticancer properties; however, its effectiveness for asthma has not been elucidated thus far. Platelet-derived growth factor (PDGF-treated primary ASMCs were cultured with or without oligo-fucoidan (100, 500, or 1000 µg/mL to evaluate its effects on cell proliferation, cell cycle, apoptosis, and Akt, ERK1/2 signaling pathway. We found that PDGF (40 ng/mL increased the proliferation of ASMCs by 2.5-fold after 48 h (p < 0.05. Oligo-fucoidan reduced the proliferation of PDGF-stimulated ASMCs by 75%–99% after 48 h (p < 0.05 and induced G1/G0 cell cycle arrest, but did not induce apoptosis. Further, oligo-fucoidan supplementation reduced PDGF-stimulated extracellular signal-regulated kinase (ERK1/2, Akt, and nuclear factor (NF-κB phosphorylation. Taken together, oligo-fucoidan supplementation might reduce proliferation of PDGF-treated ASMCs through the suppression of ERK1/2 and Akt phosphorylation and NF-κB activation. The results provide basis for future animal experiments and human trials.

  8. Store-operated calcium entry is required for sustained contraction and Ca2+ oscillations of airway smooth muscle.

    Science.gov (United States)

    Chen, Jun; Sanderson, Michael J

    2017-05-15

    Airway hyper-responsiveness in asthma is driven by excessive contraction of airway smooth muscle cells (ASMCs). Agonist-induced Ca 2+ oscillations underlie this contraction of ASMCs and the magnitude of this contraction is proportional to the Ca 2+ oscillation frequency. Sustained contraction and Ca 2+ oscillations require an influx of extracellular Ca 2+ , although the mechanisms and pathways mediating this Ca 2+ influx during agonist-induced ASMC contraction are not well defined. By inhibiting store-operated calcium entry (SOCE) or voltage-gated Ca 2+ channels (VGCCs), we show that SOCE, rather than Ca 2+ influx via VGCCs, provides the major Ca 2+ entry pathway into ASMCs to sustain ASMCs contraction and Ca 2+ oscillations. SOCE may therefore serve as a potential target for new bronchodilators to reduce airway hyper-responsiveness in asthma. Asthma is characterized by airway hyper-responsiveness: the excessive contraction of airway smooth muscle. The extent of this airway contraction is proportional to the frequency of Ca 2+ oscillations within airway smooth muscle cells (ASMCs). Sustained Ca 2+ oscillations require a Ca 2+ influx to replenish Ca 2+ losses across the plasma membrane. Our previous studies implied store-operated calcium entry (SOCE) as the major pathway for this Ca 2+ influx. In the present study, we explore this hypothesis, by examining the effects of SOCE inhibitors (GSK7975A and GSK5498A) as well as L-type voltage-gated Ca 2+ channel inhibitors (nifedipine and nimodipine) on airway contraction and Ca 2+ oscillations and SOCE-mediated Ca 2+ influx in ASMCs within mouse precision-cut lung slices. We found that both GSK7975A and GSK5498A were able to fully relax methacholine-induced airway contraction by abolishing the Ca 2+ oscillations, in a manner similar to that observed in zero extracellular Ca 2+ ([Ca 2+ ] e ). In addition, GSK7975A and GSK5498A inhibited increases in intracellular Ca 2+ ([Ca 2+ ] i ) in ASMCs with depleted Ca 2+ -stores in

  9. Effects of Sohamhyoong-Tang on Ovalbumin-Induced Allergic Reaction in BALB/c Mice

    Directory of Open Access Journals (Sweden)

    So Hyun Jo

    2016-01-01

    Full Text Available IgE-mediated mast cell degranulation and excessive Th2 cells activation are major features of various allergic diseases. Sohamhyoong-tang has been reported to have anti-inflammatory and antibacterial effects. In this study, we investigated the inhibitory effect of Sohamhyoong-tang extract (SHHTE on allergic symptoms and inflammatory responses in ovalbumin- (OVA- sensitized BALB/c mice. The mice were sensitized with OVA and alum at 2-week intervals and then orally given SHHTE for 13 days followed by intradermal OVA injection. Administration of SHHTE significantly reduced edema formation and inflammatory-cell infiltration in ear tissues. Total and OVA-specific IgEs as well as proinflammatory cytokine TNF-α and Th2-associated cytokine IL-4 levels were lower in the SHHTE-treated group than in the vehicle. SHHTE treatment significantly suppressed both mRNA and protein levels of IL-4 and IL-5 in OVA-stimulated splenocytes. SHHTE decreased Th1 (IFN-γ and Th17 (IL-17a cytokine mRNA expression but increased Treg cytokines (IL-10 and TGF-β1. Moreover, SHHTE significantly inhibited degranulation of RBL-2H3 cell line in a dose-dependent manner. Thus, SHHTE efficiently inhibited the allergic symptoms in an OVA-sensitized mouse model and its action may correlate with the suppression of IgE production by increasing IL-10 and TGF-β1, which can limit the function of other T helper cells and prevent the release of inflammatory mediators from mast cells. These results suggest that SHHTE could be a therapeutic agent for treating various allergic diseases.

  10. Picroside II Attenuates Airway Inflammation by Downregulating the Transcription Factor GATA3 and Th2-Related Cytokines in a Mouse Model of HDM-Induced Allergic Asthma.

    Directory of Open Access Journals (Sweden)

    Jin Choi

    Full Text Available Picroside II isolated from Pseudolysimachion rotundum var. subintegrum has been used as traditional medicine to treat inflammatory diseases. In this study, we assessed whether picroside II has inhibitory effects on airway inflammation in a mouse model of house dust mite (HDM-induced asthma. In the HDM-induced asthmatic model, picroside II significantly reduced inflammatory cell counts in the bronchoalveolar lavage fluid (BALF, the levels of total immunoglobulin (Ig E and HDM-specific IgE and IgG1 in serum, airway inflammation, and mucus hypersecretion in the lung tissues. ELISA analysis showed that picroside II down-regulated the levels of Th2-related cytokines (including IL-4, IL-5, and IL-13 and asthma-related mediators, but it up-regulated Th1-related cytokine, IFNγ in BALF. Picroside II also inhibited the expression of Th2 type cytokine genes and the transcription factor GATA3 in the lung tissues of HDM-induced mice. Finally, we demonstrated that picroside II significantly decreased the expression of GATA3 and Th2 cytokines in developing Th2 cells, consistent with in vivo results. Taken together, these results indicate that picroside II has protective effects on allergic asthma by reducing GATA3 expression and Th2 cytokine bias.

  11. Ovalbumin-BasedPorous Scaffolds for Bone Tissue Regeneration

    Directory of Open Access Journals (Sweden)

    Gabrielle Farrar

    2010-01-01

    Full Text Available Cell differentiation on glutaraldehyde cross-linked ovalbumin scaffolds was the main focus of this research. Salt leaching and freeze drying were used to create a three-dimensional porous structure. Average pore size was 147.84±40.36 μm and 111.79±30.71 μm for surface and cross sectional area, respectively. Wet compressive strength and elastic modulus were 6.8±3.6 kPa. Average glass transition temperature was 320.1±1.4°C. Scaffolds were sterilized with ethylene oxide prior to seeding MC3T3-E1 cells. Cells were stained with DAPI and Texas red to determine morphology and proliferation. Average cell numbers increased between 4-hour- and 96-hour-cultured scaffolds. Alkaline phosphatase and osteocalcin levels were measured at 3, 7, 14, and 21 days. Differentiation studies showed an increase in osteocalcin at 21 days and alkaline phosphatase levels at 14 days, both indicating differentiation occurred. This work demonstrated the use of ovalbumin scaffolds for a bone tissue engineering application.

  12. X-ray upper airway changes in individuals suffering from obstructive respiratory disorders during sleep

    International Nuclear Information System (INIS)

    Shakhov, A.A.; Rabukhina, N.A.; Nerobeev, A.I.; Vasil'ev, A.Yu.

    2000-01-01

    Obstructive respiratory disorders during sleep present an important medical and social problem. Serious dysfunctions of cardiovascular, nervous, endocrine and other vital systems of the body reduce longevity and life quality. On the other hand, load nocturnal snore and abnormal during sleepiness cause great damage to family life, reduce working capacity and induce accidents. X-ray visualization of the upper airways is essential in diagnosing obstructive upper airway states and selecting patients for surgical treatment. The paper presents the author's own experience in using various X-ray diagnostic methods in patients with chronic snore and obstructive sleep apnoea-hypopnoea syndrome [ru

  13. Levcromakalim- and isoprenaline-induced relaxation of human isolated airways--role of the epithelium and of K+ channel activation.

    Science.gov (United States)

    Black, J L; Johnson, P R; McKay, K O; Carey, D; Armour, C L

    1994-06-01

    In this study we have investigated the mechanism of action of levcromakalim and isoprenaline in human isolated airways with respect to the K+ channels they activate and the possibility that these smooth muscle relaxants activate K+ channels on the airway epithelium. Mechanical removal of the epithelial layer (mean percentage of epithelium present 20 +/- 3%, n = 20 tissues) did not affect the relaxation responses to levcromakalim or isoprenaline, either in terms of maximal relaxation or sensitivity. Whilst having no effect on isoprenaline-induced relaxation, studied from basal tone, the ATP-sensitive K+ channel blocker BRL 31660 (10, 30 and 50 microM) reduced relaxation responses induced (from basal tone) by levcromakalim from 74 +/- 6% (of the maximal response to isoprenaline) to 48 +/- 12% (n = 7), 9 +/- 9% (n = 4) and 0 (n = 4), respectively. Charybdotoxin, a blocker of high conductance Ca(2+)-activated K+ channels, at concentrations of 30 and 100 nM, had no effect on either levcromakalim- or or isoprenaline-induced relaxation responses and yet charybdotoxin was active at KCa channels in outside-out patches of hippocampal granule cells. Moreover, tetraethylammonium (10 mM) inhibited neither isoprenaline- nor levcromakalim-induced relaxation. This study has demonstrated that the relaxation responses elicited in human bronchus to isoprenaline and levcromakalim are likely to be the result of direct effects on the smooth muscle with no contribution from epithelial receptors or K+ channels. The actions of levcromakalim appear to be mediated only via activation of KATP channels. Further, we have made the important observation that, under the experimental conditions of our study, isoprenaline does not activate the KCa channel to produce relaxation in human bronchus.

  14. Inherent and antigen-induced airway hyperreactivity in NC mice

    OpenAIRE

    Tetsuto Kobayashi; Toru Miura; Tomoko Haba; Miyuki Sato; Masao Takei; Isao Serizawa

    1999-01-01

    In order to clarify the airway physiology of NC mice, the following experiments were carried out. To investigate inherent airway reactivity, we compared tracheal reactivity to various chemical mediators in NC, BALB/c, C57BL/6 and A/J mice in vitro. NC mice showed significantly greater reactivity to acetylcholine than BALB/c and C57BL/6 mice and a reactivity comparable to that of A/J mice, which are known as high responders. Then, airway reactivity to acetylcholine was investigated in those st...

  15. The Inclusion of Chitosan in Poly-ε-caprolactone Nanoparticles: Impact on the Delivery System Characteristics and on the Adsorbed Ovalbumin Secondary Structure.

    Science.gov (United States)

    Jesus, Sandra; Fragal, Elizangela H; Rubira, Adley F; Muniz, Edvani C; Valente, Artur J M; Borges, Olga

    2018-01-01

    This report extensively explores the benefits of including chitosan into poly-ε-caprolactone (PCL) nanoparticles (NPs) to obtain an improved protein/antigen delivery system. Blend NPs (PCL/chitosan NPs) showed improved protein adsorption efficacy (84%) in low shear stress and aqueous environment, suggesting that a synergistic effect between PCL hydrophobic nature and the positive charges of chitosan present at the particle surface was responsible for protein interaction. Additionally, thermal analysis suggested the blend NPs were more stable than the isolated polymers and cytotoxicity assays in a primary cell culture revealed chitosan inclusion in PCL NPs reduced the toxicity of the delivery system. A quantitative 6-month stability study showed that the inclusion of chitosan in PCL NPs did not induce a change in adsorbed ovalbumin (OVA) secondary structure characterized by the increase in the unordered conformation (random coil), as it was observed for OVA adsorbed to chitosan NPs. Additionally, the slight conformational changes occurred, are not expected to compromise ovalbumin secondary structure and activity, during a 6-month storage even at high temperatures (45°C). In simulated biological fluids, PCL/chitosan NPs showed an advantageous release profile for oral delivery. Overall, the combination of PCL and chitosan characteristics provide PCL/chitosan NPs valuable features particularly important to the development of vaccines for developing countries, where it is difficult to ensure cold chain transportation and non-parenteral formulations would be preferred.

  16. Mesenchymal stem cells ameliorate the histopathological changes in a murine model of chronic asthma.

    Science.gov (United States)

    Firinci, Fatih; Karaman, Meral; Baran, Yusuf; Bagriyanik, Alper; Ayyildiz, Zeynep Arikan; Kiray, Muge; Kozanoglu, Ilknur; Yilmaz, Osman; Uzuner, Nevin; Karaman, Ozkan

    2011-08-01

    Asthma therapies are effective in reducing inflammation but airway remodeling is poorly responsive to these agents. New therapeutic options that have fewer side effects and reverse chronic changes in the lungs are essential. Mesenchymal stem cells (MSCs) are promising for the development of novel therapies in regenerative medicine. This study aimed to examine the efficacy of MSCs on lung histopathology in a murine model of chronic asthma. BALB/c mice were divided into four groups: Group 1 (control group, n=6), Group 2 (ovalbumin induced asthma only, n=10), Group 3 (ovalbumin induced asthma + MSCs, n=10), and Group 4 (MSCs only, n=10). Histological findings (basement membrane, epithelium, subepithelial smooth muscle thickness, numbers of goblet and mast cells) of the airways and MSC migration were evaluated by light, electron, and confocal microscopes. In Group 3, all early histopathological changes except epithelial thickness and all of the chronic changes were significantly ameliorated when compared with Group 2. Evaluation with confocal microscopy showed that no noteworthy amount of MSCs were present in the lung tissues of Group 4 while significant amount of MSCs was detected in Group 3. Serum NO levels in Group 3, were significantly lower than Group 2. The results of this study revealed that MSCs migrated to lung tissue and ameliorated bronchial asthma in murine model. Further studies are needed to evaluate the efficacy of MSCs for the treatment of asthma. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Atopic asthmatic immune phenotypes associated with airway microbiota and airway obstruction.

    Directory of Open Access Journals (Sweden)

    Benjamin A Turturice

    Full Text Available Differences in asthma severity may be related to inflammation in the airways. The lower airway microbiota has been associated with clinical features such as airway obstruction, symptom control, and response to corticosteroids.To assess the relationship between local airway inflammation, severity of disease, and the lower airway microbiota in atopic asthmatics.A cohort of young adult, atopic asthmatics with intermittent or mild/moderate persistent symptoms (n = 13 were assessed via bronchoscopy, lavage, and spirometry. These individuals were compared to age matched non-asthmatic controls (n = 6 and to themselves after six weeks of treatment with fluticasone propionate (FP. Inflammation of the airways was assessed via a cytokine and chemokine panel. Lower airway microbiota composition was determined by metagenomic shotgun sequencing.Unsupervised clustering of cytokines and chemokines prior to treatment with FP identified two asthmatic phenotypes (AP, termed AP1 and AP2, with distinct bronchoalveolar lavage inflammatory profiles. AP2 was associated with more obstruction, compared to AP1. After treatment with FP reduced MIP-1β and TNF-α and increased IL-2 was observed. A module of highly correlated cytokines that include MIP-1β and TNF-α was identified that negatively correlated with pulmonary function. Independently, IL-2 was positively correlated with pulmonary function. The airway microbiome composition correlated with asthmatic phenotypes. AP2, prior to FP treatment, was enriched with Streptococcus pneumoniae. Unique associations between IL-2 or the cytokine module and the microbiota composition of the airways were observed in asthmatics subjects prior to treatment but not after or in controls.The underlying inflammation in atopic asthma is related to the composition of microbiota and is associated with severity of airway obstruction. Treatment with inhaled corticosteroids was associated with changes in the airway inflammatory response to

  18. No priming of the immune response in newborn Brown Norway rats dosed with ovalbumin in the mouth

    DEFF Research Database (Denmark)

    Madsen, Charlotte Bernhard; Pilegaard, Kirsten

    2003-01-01

    with ovalbumin and if this method could be used in an animal model for food allergy. Methods: Newborn Brown Norway rats were dosed with ovalbumin in the mouth (100 mug or 6 mg). As young adults, the animals were dosed by gavage for 35 days with 1 mg ovalbumin/day or once intraperitoneally with 100 mug. Control......E and IgG responses were decreased compared to the control groups, however, not always reaching statistical significance. A statistical significant decrease in the specific immune response was found in young adult rats dosed in the mouth as compared to by gavage. Conclusions: Dosing Brown Norway rats...

  19. PERCEPTION OF AIRWAY-OBSTRUCTION IN A RANDOM-POPULATION SAMPLE - RELATIONSHIP TO AIRWAY HYPERRESPONSIVENESS IN THE ABSENCE OF RESPIRATORY SYMPTOMS

    NARCIS (Netherlands)

    BRAND, PLP; RIJCKEN, B; SCHOUTEN, JP; KOETER, GH; WEISS, ST; POSTMA, DS

    Subjects with asymptomatic airway hyperresponsiveness in epidemiologic studies may have variable airway obstruction that is not perceived as dyspnea. We tested the hypothesis that such subjects are less likely to report an increase in dyspnea during histamine-induced bronchoconstriction than

  20. Targeting of Rac1 prevents bronchoconstriction and airway hyperresponsiveness.

    Science.gov (United States)

    André-Grégoire, Gwennan; Dilasser, Florian; Chesné, Julie; Braza, Faouzi; Magnan, Antoine; Loirand, Gervaise; Sauzeau, Vincent

    2017-11-16

    The molecular mechanisms responsible for airway smooth muscle cells' (aSMCs) contraction and proliferation in airway hyperresponsiveness (AHR) associated with asthma are still largely unknown. The small GTPases of the Rho family (RhoA, Rac1, and Cdc42) play a central role in SMC functions including migration, proliferation, and contraction. The objective of this study was to identify the role of Rac1 in aSMC contraction and to investigate its involvement in AHR associated with allergic asthma. To define the role of Rac1 in aSMC, ex and in vitro analyses of bronchial reactivity were performed on bronchi from smooth muscle (SM)-specific Rac1 knockout mice and human individuals. In addition, this murine model was exposed to allergens (ovalbumin or house dust mite extract) to decipher in vivo the implication of Rac1 in AHR. The specific SMC deletion or pharmacological inhibition of Rac1 in mice prevented the bronchoconstrictor response to methacholine. In human bronchi, a similar role of Rac1 was observed during bronchoconstriction. We further demonstrated that Rac1 activation is responsible for bronchoconstrictor-induced increase in intracellular Ca 2+ concentration and contraction both in murine and in human bronchial aSMCs, through its association with phospholipase C β2 and the stimulation of inositol 1,4,5-trisphosphate production. In vivo, Rac1 deletion in SMCs or pharmacological Rac1 inhibition by nebulization of NSC23766 prevented AHR in murine models of allergic asthma. Moreover, nebulization of NSC23766 decreased eosinophil and neutrophil populations in bronchoalveolar lavages from mice with asthma. Our data reveal an unexpected and essential role of Rac1 in the regulation of intracellular Ca 2+ and contraction of aSMCs, and the development of AHR. Rac1 thus appears as an attractive therapeutic target in asthma, with a combined beneficial action on both bronchoconstriction and pulmonary inflammation. Copyright © 2017 American Academy of Allergy, Asthma

  1. Dioscorin pre-treatment protects A549 human airway epithelial cells from hydrogen peroxide-induced oxidative stress.

    Science.gov (United States)

    Hsu, Jeng-Yuan; Chu, Jao-Jia; Chou, Ming-Chih; Chen, Ya-Wen

    2013-10-01

    Hydrogen peroxide (H(2)O(2)) is a highly reactive oxygen species involved in lung and bronchial epithelium injury. Increased H(2)O(2) levels have been reported in expired breath condensates of patients with inflammatory airway diseases such as chronic obstructive pulmonary disease. Protecting airway epithelial cells from oxidative stress is an important task in the prevention and management of airway diseases. Previous studies demonstrate that yam (Dioscorea batatas Decne) has antioxidant and anti-trypsin activities. This study evaluated the validity of dioscorin in vitro. The results showed that dioscorin attenuated the alteration of H(2)O(2) on G2/M cell cycle arrest. This might be associated with the activation of IκB and subsequent inactivation of NF-κB. Furthermore, dioscorin suppressed IL-8 secretion and reduced changes of adhesion molecule expressions in H(2)O(2)-injured A549 cells. These results help in understanding the potential of traditional Chinese herbal medicine as treatment for airway inflammatory diseases.

  2. Deformation of ovalbumin-alginate capsules in a T-Junction

    Science.gov (United States)

    Häner, Edgar; Juel, Anne

    2015-11-01

    We study experimentally the flow-induced deformation of liquid-filled ovalbumin-alginate capsules in a T-junction. In applications, capsules/cells often negotiate branched networks with junctions thus experiencing large deformations. We investigate the constant volume-flux viscous flow of buoyancy-neutral thin-walled capsules close to the centreline of rectangular channels, by comparison to near-rigid gelled beads. The motion of the capsules in straight channels scales with the capillary number - the ration of viscous to elastic forces. However, the effect of elastic deformation on the motion is sufficiently weak that a rigid sphere model predicts the velocity of capsules with diameters of up to 70% of that of the channel to within 5%. In the T-junction, systematic selection of daughter channel (right-left) occurs outside a finite region around the channel centreline, by contrast with near-rigid gelled beads, where the actual centreline is the separator. We quantify the behaviour of capsules in terms of their longitudinal stretching (up to a factor of three without rupture). We show the large range of deformations encountered can be applied to the measurement of the elastic properties of capsules as well as to the geometric-induced sorting and manipulation of capsules.

  3. Single ovalbumin molecules exploring nucleoplasm and nucleoli of living cell nuclei.

    Science.gov (United States)

    Speil, Jasmin; Kubitscheck, Ulrich

    2010-03-01

    The nucleus is the center of direction and coordination of the cell's metabolic and reproductive activities and contains numerous functionally specialized domains. These subnuclear structures are not delimited by membranes like cytoplasmic organelles and their function is only poorly understood. Here, we studied the most prominent nuclear domains, nucleoli and the remaining nucleoplasm. We used fluorescently labeled ovalbumin-ATTO647N, an inert protein, to examine their physical properties. This inert tracer was microinjected into the cytoplasm of HeLa cells, and after diffusion into the nucleus the tracer distribution and mobility in the two nuclear compartments was examined. Like many macromolecular probes ovalbumin was significantly less abundant in nucleoli compared to the nucleoplasm. High-speed fluorescence microscopy allowed visualizing and analyzing single tracer molecule trajectories within nucleoli and nucleoplasm. In accordance with previous studies we found that the viscosity of the nucleus is sevenfold higher than that of aqueous buffer. Notably, nucleoplasm and nucleoli did not significantly differ in viscosity, however, the fraction of slow or trapped molecules was higher in the nucleoplasm than in nucleoli (6% versus 0.2%). Surprisingly, even a completely inert molecule like ovalbumin showed at times short-lived binding events with a decay time of 8 ms in the nucleoplasm and even shorter-6.3 ms-within the nucleoli. Copyright 2009 Elsevier B.V. All rights reserved.

  4. A passive quantitative measurement of airway resistance using depth data.

    Science.gov (United States)

    Ostadabbas, Sarah; Bulach, Christoph; Ku, David N; Anderson, Larry J; Ghovanloo, Maysam

    2014-01-01

    The Respiratory Syncytial Virus (RSV) is the most common cause of serious lower respiratory tract infections in infants and young children. RSV often causes increased airway resistance, clinically detected as wheezing by chest auscultation. In this disease, expiratory flows are significantly reduced due to the high resistance in patient's airway passages. A quantitative method for measuring resistance can have a great benefit to diagnosis and management of children with RSV infections as well as with other lung diseases. Airway resistance is defined as the lung pressure divided by the airflow. In this paper, we propose a method to quantify resistance through a simple, non-contact measurement of chest volume that can act as a surrogate measure of the lung pressure and volumetric airflow. We used depth data collected by a Microsoft Kinect camera for the measurement of the lung volume over time. In our experimentation, breathing through a number of plastic straws induced different airway resistances. For a standard spirometry test, our volume/flow estimation using Kinect showed strong correlation with the flow data collected by a commercially-available spirometer (five subjects, each performing 20 breathing trials, correlation coefficient = 0.88, with 95% confidence interval). As the number of straws decreased, emulating a higher airway obstruction, our algorithm was sufficient to distinguish between several levels of airway resistance.

  5. Airway resistance at maximum inhalation as a marker of asthma and airway hyperresponsiveness

    Directory of Open Access Journals (Sweden)

    O'Connor George T

    2011-07-01

    Full Text Available Abstract Background Asthmatics exhibit reduced airway dilation at maximal inspiration, likely due to structural differences in airway walls and/or functional differences in airway smooth muscle, factors that may also increase airway responsiveness to bronchoconstricting stimuli. The goal of this study was to test the hypothesis that the minimal airway resistance achievable during a maximal inspiration (Rmin is abnormally elevated in subjects with airway hyperresponsiveness. Methods The Rmin was measured in 34 nonasthmatic and 35 asthmatic subjects using forced oscillations at 8 Hz. Rmin and spirometric indices were measured before and after bronchodilation (albuterol and bronchoconstriction (methacholine. A preliminary study of 84 healthy subjects first established height dependence of baseline Rmin values. Results Asthmatics had a higher baseline Rmin % predicted than nonasthmatic subjects (134 ± 33 vs. 109 ± 19 % predicted, p = 0.0004. Sensitivity-specificity analysis using receiver operating characteristic curves indicated that baseline Rmin was able to identify subjects with airway hyperresponsiveness (PC20 min % predicted, FEV1 % predicted, and FEF25-75 % predicted, respectively. Also, 80% of the subjects with baseline Rmin min > 145% predicted had hyperresponsive airways, regardless of clinical classification as asthmatic or nonasthmatic. Conclusions These findings suggest that baseline Rmin, a measurement that is easier to perform than spirometry, performs as well as or better than standard spirometric indices in distinguishing subjects with airway hyperresponsiveness from those without hyperresponsive airways. The relationship of baseline Rmin to asthma and airway hyperresponsiveness likely reflects a causal relation between conditions that stiffen airway walls and hyperresponsiveness. In conjunction with symptom history, Rmin could provide a clinically useful tool for assessing asthma and monitoring response to treatment.

  6. Th1 cytokine-induced syndecan-4 shedding by airway smooth muscle cells is dependent on mitogen-activated protein kinases.

    Science.gov (United States)

    Tan, Xiahui; Khalil, Najwa; Tesarik, Candice; Vanapalli, Karunasri; Yaputra, Viki; Alkhouri, Hatem; Oliver, Brian G G; Armour, Carol L; Hughes, J Margaret

    2012-04-01

    In asthma, airway smooth muscle (ASM) chemokine secretion can induce mast cell recruitment into the airways. The functions of the mast cell chemoattractant CXCL10, and other chemokines, are regulated by binding to heparan sulphates such as syndecan-4. This study is the first demonstration that airway smooth muscle cells (ASMC) from people with and without asthma express and shed syndecan-4 under basal conditions. Syndecan-4 shedding was enhanced by stimulation for 24 h with the Th1 cytokines interleukin-1β (IL-1β) or tumor necrosis factor-α (TNF-α), but not interferon-γ (IFNγ), nor the Th2 cytokines IL-4 and IL-13. ASMC stimulation with IL-1β, TNF-α, and IFNγ (cytomix) induced the highest level of syndecan-4 shedding. Nonasthmatic and asthmatic ASM cell-associated syndecan-4 protein expression was also increased by TNF-α or cytomix at 4-8 h, with the highest levels detected in cytomix-stimulated asthmatic cells. Cell-associated syndecan-4 levels were decreased by 24 h, whereas shedding remained elevated at 24 h, consistent with newly synthesized syndecan-4 being shed. Inhibition of ASMC matrix metalloproteinase-2 did not prevent syndecan-4 shedding, whereas inhibition of ERK MAPK activation reduced shedding from cytomix-stimulated ASMC. Although ERK inhibition had no effect on syndecan-4 mRNA levels stimulated by cytomix, it did cause an increase in cell-associated syndecan-4 levels, consistent with the shedding being inhibited. In conclusion, ASMC produce and shed syndecan-4 and although this is increased by the Th1 cytokines, the MAPK ERK only regulates shedding. ASMC syndecan-4 production during Th1 inflammatory conditions may regulate chemokine activity and mast cell recruitment to the ASM in asthma.

  7. Randomized crossover comparison of the laryngeal mask airway classic with i-gel laryngeal mask airway in the management of difficult airway in post burn neck contracture patients

    Directory of Open Access Journals (Sweden)

    Jeevan Singh

    2012-01-01

    Full Text Available Purpose: The objective of the study was to compare the performance of i-gel supraglottic airway with cLMA in difficult airway management in post burn neck contracture patients and assess the feasibility of i-gel use for emergency airway management in difficult airway situation with reduced neck movement and limited mouth opening. Methods: Prospective, crossover, randomized controlled trial was performed amongst forty eight post burn neck contracture patients with limited mouth opening and neck movement. i-gel and cLMA were placed in random order in each patient. Primary outcome was overall success rate. Other measurements were time to successful ventilation, airway leak pressure, fiberoptic glottic view, visualization of square wave pattern. Results: Success rate for the i-gel was 91.7% versus 79.2% for the cLMA. i-gel required shorter insertion time (19.3 seconds vs. 23.5 seconds, P=0.000. Airway leak pressure difference was statistically significant (i-gel 21.2 cm H20; cLMA 16.9 cm H 2 0; P=0.00. Fiberoptic view through the i-gel showed there were less epiglottic downfolding and better fiberoptic view of the glottis than cLMA. Overall agreement in insertion outcome for i-gel was 22/24 (91.7% successes and 2/24(8.3% failure and for cLMA, 19/24 (79.16% successes and 5/24 (16.7% failure in the first attempt. Conclusion: The i-gel is cheap, effective airway device which is easier to insert and has better clinical performance in the difficult airway management of the airway in the post burn contracture of the neck. Our study shows that i-gel is feasible for emergency airway management in difficult airway situation with reduced neck movement and limited mouth opening in post burn neck.

  8. Effect of Fluticasone and Salmeterol on Tracheal Responsiveness to Ovalbumin and Lung Inflammation, Administrated during and after Sensitization

    Directory of Open Access Journals (Sweden)

    Zahra Gholamnezhad

    2014-01-01

    Full Text Available The effect of duration of administration of fluticasone propionate and salmeterol on tracheal responsiveness to ovalbumin and total and differential white blood cell in sensitized guinea pig was examined. Six groups of guinea pigs (n=7 were sensitized to ovalbumin. Three groups of them were subjected to inhaled fluticasone propionate and salmeterol, one group during sensitization (A, one group after that (for 18 days, B, and the other one during sensitization but with 18 days delay before measurements (C. Three other groups were treated with placebo in the same manner. The tracheal responsiveness to ovalbumin and total and differential white blood cells of three placebo groups were significantly higher than those of control group (P<0.001 for all cases. Tracheal responsiveness to ovalbumin and total and differential white blood cell in treated groups with fluticasone propionate and salmeterol were significantly decreased compared to those of placebo groups (nonsignificant to P<0.001. The improvement in all variables in treatment groups A and C were more pronounced than group B. The results showed that fluticasone propionate and salmeterol had a prevention effect on tracheal hyperresponsiveness to ovalbumin and lung inflammation which was more pronounced when administered during than after sensitization.

  9. Electrochemical sensing of concanavalin A and ovalbumin interaction in solution

    Czech Academy of Sciences Publication Activity Database

    Vargová, Veronika; Helma, Robert; Paleček, Emil; Ostatná, Veronika

    2016-01-01

    Roč. 935, SEP2016 (2016), s. 97-103 ISSN 0003-2670 R&D Projects: GA ČR(CZ) GA13-00956S Institutional support: RVO:68081707 Keywords : Protein-protein interactions * Lectin-glycoprotein interactions * Ovalbumin Subject RIV: BO - Biophysics Impact factor: 4.950, year: 2016

  10. Protective effects of anisodamine on cigarette smoke extract-induced airway smooth muscle cell proliferation and tracheal contractility

    International Nuclear Information System (INIS)

    Xu, Guang-Ni; Yang, Kai; Xu, Zu-Peng; Zhu, Liang; Hou, Li-Na; Qi, Hong; Chen, Hong-Zhuan; Cui, Yong-Yao

    2012-01-01

    Anisodamine, an antagonist of muscarinic acetylcholine receptors (mAChRs), has been used therapeutically to improve smooth muscle function, including microvascular, intestinal and airway spasms. Our previous studies have revealed that airway hyper-reactivity could be prevented by anisodamine. However, whether anisodamine prevents smoking-induced airway smooth muscle (ASM) cell proliferation remained unclear. In this study, a primary culture of rat ASM cells was used to evaluate an ASM phenotype through the ability of the cells to proliferate and express contractile proteins in response to cigarette smoke extract (CSE) and intervention of anisodamine. Our results showed that CSE resulted in an increase in cyclin D1 expression concomitant with the G0/G1-to-S phase transition, and high expression of M2 and M3. Functional studies showed that tracheal hyper-contractility accompanied contractile marker α-SMA high-expression. These changes, which occur only after CSE stimulation, were prevented and reversed by anisodamine, and CSE-induced cyclin D1 expression was significantly inhibited by anisodamine and the specific inhibitor U0126, BAY11-7082 and LY294002. Thus, we concluded that the protective and reversal effects and mechanism of anisodamine on CSE-induced events might involve, at least partially, the ERK, Akt and NF-κB signaling pathways associated with cyclin D1 via mAChRs. Our study validated that anisodamine intervention on ASM cells may contribute to anti-remodeling properties other than bronchodilation. -- Highlights: ► CSE induces tracheal cell proliferation, hyper-contractility and α-SMA expression. ► Anisodamine reverses CSE-induced tracheal hyper-contractility and cell proliferation. ► ERK, PI3K, and NF-κB pathways and cyclin D1 contribute to the reversal effect.

  11. Key role of group v secreted phospholipase A2 in Th2 cytokine and dendritic cell-driven airway hyperresponsiveness and remodeling.

    Directory of Open Access Journals (Sweden)

    William R Henderson

    Full Text Available Previous work has shown that disruption of the gene for group X secreted phospholipase A2 (sPLA2-X markedly diminishes airway hyperresponsiveness and remodeling in a mouse asthma model. With the large number of additional sPLA2s in the mammalian genome, the involvement of other sPLA2s in the asthma model is possible - in particular, the group V sPLA2 (sPLA2-V that like sPLA2-X is highly active at hydrolyzing membranes of mammalian cells.The allergen-driven asthma phenotype was significantly reduced in sPLA2-V-deficient mice but to a lesser extent than observed previously in sPLA2-X-deficient mice. The most striking difference observed between the sPLA2-V and sPLA2-X knockouts was the significant impairment of the primary immune response to the allergen ovalbumin (OVA in the sPLA2-V(-/- mice. The impairment in eicosanoid generation and dendritic cell activation in sPLA2-V(-/- mice diminishes Th2 cytokine responses in the airways.This paper illustrates the diverse roles of sPLA2s in the immunopathogenesis of the asthma phenotype and directs attention to developing specific inhibitors of sPLA2-V as a potential new therapy to treat asthma and other allergic disorders.

  12. Maternal immune response to helminth infection during pregnancy determines offspring susceptibility to allergic airway inflammation.

    Science.gov (United States)

    Straubinger, Kathrin; Paul, Sabine; Prazeres da Costa, Olivia; Ritter, Manuel; Buch, Thorsten; Busch, Dirk H; Layland, Laura E; Prazeres da Costa, Clarissa U

    2014-12-01

    Schistosomiasis, a chronic helminth infection, elicits distinct immune responses within the host, ranging from an initial TH1 and subsequent TH2 phase to a regulatory state, and is associated with dampened allergic reactions within the host. We sought to evaluate whether non-transplacental helminth infection during pregnancy alters the offspring's susceptibility to allergy. Ovalbumin-induced allergic airway inflammation was analyzed in offspring from Schistosoma mansoni-infected mothers mated during the TH1, TH2, or regulatory phase of infection. Embryos derived from in vitro fertilized oocytes of acutely infected females were transferred into uninfected foster mice to determine the role of placental environment. The fetomaternal unit was further characterized by helminth-specific immune responses and microarray analyses. Eventually, IFN-γ-deficient mice were infected to evaluate the role of this predominant cytokine on the offspring's allergy phenotype. We demonstrate that offspring from schistosome-infected mothers that were mated in the TH1 and regulatory phases, but not the TH2 immune phase, are protected against the onset of allergic airway inflammation. Interestingly, these effects were associated with distinctly altered schistosome-specific cytokine and gene expression profiles within the fetomaternal interface. Furthermore, we identified that it is not the transfer of helminth antigens but rather maternally derived IFN-γ during the acute phase of infection that is essential for the progeny's protective immune phenotype. Overall, we present a novel immune phase-dependent coherency between the maternal immune responses during schistosomiasis and the progeny's predisposition to allergy. Therefore, we propose to include helminth-mediated transmaternal immune modulation into the expanded hygiene hypothesis. Copyright © 2014 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  13. Aspergillus antigen induces robust Th2 cytokine production, inflammation, airway hyperreactivity and fibrosis in the absence of MCP-1 or CCR2

    Directory of Open Access Journals (Sweden)

    Charo Israel F

    2004-09-01

    Full Text Available Abstract Background Asthma is characterized by type 2 T-helper cell (Th2 inflammation, goblet cell hyperplasia, airway hyperreactivity, and airway fibrosis. Monocyte chemoattractant protein-1 (MCP-1 or CCL2 and its receptor, CCR2, have been shown to play important roles in the development of Th2 inflammation. CCR2-deficient mice have been found to have altered inflammatory and physiologic responses in some models of experimental allergic asthma, but the role of CCR2 in contributing to inflammation and airway hyperreactivity appears to vary considerably between models. Furthermore, MCP-1-deficient mice have not previously been studied in models of experimental allergic asthma. Methods To test whether MCP-1 and CCR2 are each required for the development of experimental allergic asthma, we applied an Aspergillus antigen-induced model of Th2 cytokine-driven allergic asthma associated with airway fibrosis to mice deficient in either MCP-1 or CCR2. Previous studies with live Aspergillus conidia instilled into the lung revealed that MCP-1 and CCR2 play a role in anti-fungal responses; in contrast, we used a non-viable Aspergillus antigen preparation known to induce a robust eosinophilic inflammatory response. Results We found that wild-type C57BL/6 mice developed eosinophilic airway inflammation, goblet cell hyperplasia, airway hyperreactivity, elevations in serum IgE, and airway fibrosis in response to airway challenge with Aspergillus antigen. Surprisingly, mice deficient in either MCP-1 or CCR2 had responses to Aspergillus antigen similar to those seen in wild-type mice, including production of Th2 cytokines. Conclusion We conclude that robust Th2-mediated lung pathology can occur even in the complete absence of MCP-1 or CCR2.

  14. Airway remodeling and its reversibility in equine asthma

    Directory of Open Access Journals (Sweden)

    Jean-Pierre Lavoie

    2017-06-01

    Full Text Available Despite effective therapies for controlling its clinical manifestations, human asthma remains an incurable disease. It is now recognized that inflammation induced structural changes (remodeling of the airways are responsible for the progressive loss of lung function in asthmatic patients. However, the peripheral airways, where most of the remodeling occurs in severe asthmatic patients, cannot be safely sampled in humans, and therefore, little is known of the effects of current therapies at reversing the established asthmatic remodeling, especially those occurring in the peripheral airways. Animal models have been studied to unravel etiological, immunopathological, and genetic attributes leading to asthma. However, experiments in which the disease is artificially induced have been shown to have limited translational potential for humans. To the contrary, horses naturally suffer from an asthma-like condition which shares marked similarities with human asthma making this model unique to investigate the kinetics, reversibility, as well as the physiological consequences of tissue remodeling (Bullone and Lavoie 2015. We reported an increased deposition of smooth muscle, collagen and elastic fibers in the peripheral airways of affected horses, which was correlated with the lung function (Herszberg et al., 2006; Setlakwe et al., 2014. The airway subepithelial collagen depositions were almost completely reversed with 6 to 12 months of treatment with either antigen avoidance or inhaled corticosteroids (ICS administration, and there was a modest (30% on average decrease in airway smooth muscle (Leclere et al., 2011. A recent study also found that ICS combined with long-acting ß2-agonists drugs (LABA and ICS monotherapy similarly induced a 30% decrease of the airway smooth muscle mass at 3 months (Buollone, 2017. However, only ICS/LABA and antigen avoidance decreased airway luminal neutrophilia. The findings indicate the enhance therapeutic effect of ICS

  15. Involvement of the MAPK and PI3K pathways in chitinase 3-like 1-regulated hyperoxia-induced airway epithelial cell death

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Mi Na; Lee, Kyung Eun; Hong, Jung Yeon; Heo, Won Il; Kim, Kyung Won; Kim, Kyu Earn [Department of Pediatrics and Institute of Allergy, Severance Medical Research Institute, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul (Korea, Republic of); Sohn, Myung Hyun, E-mail: mhsohn@yuhs.ac [Department of Pediatrics and Institute of Allergy, Severance Medical Research Institute, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2012-05-18

    Highlights: Black-Right-Pointing-Pointer Hyperoxia induces apoptosis and chitinase 3-like 1 expression in human airway epithelial cells. Black-Right-Pointing-Pointer Presence of chitinase 3-like 1 affects airway epithelial cell death after hyperoxic exposure. Black-Right-Pointing-Pointer Silencing chitinase 3-like 1 manipulate the phosphorylation of ERK, p38 and Akt. -- Abstract: Background: Exposure to 100% oxygen causes hyperoxic acute lung injury characterized by cell death and injury of alveolar epithelial cells. Recently, the role of chitinase 3-like 1 (CHI3L1), a member of the glycosyl hydrolase 18 family that lacks chitinase activity, in oxidative stress was demonstrated in murine models. High levels of serum CHI3L1 have been associated with various diseases of the lung, such as asthma, chronic obstructive pulmonary disease, and cancer. However, the role of CHI3L1 in human airway epithelial cells undergoing oxidative stress remains unknown. In addition, the signaling pathways associated with CHI3L1 in this process are poorly understood. Purpose: In this study, we demonstrate the role of CHI3L1, along with the MAPK and PI3K signaling pathways, in hyperoxia-exposed airway epithelial cells. Method: The human airway epithelial cell line, BEAS-2B, was exposed to >95% oxygen (hyperoxia) for up to 72 h. Hyperoxia-induced cell death was determined by assessing cell viability, Annexin-V FITC staining, caspase-3 and -7 expression, and electron microscopy. CHI3L1 knockdown and overexpression studies were conducted in BEAS-2B cells to examine the role of CHI3L1 in hyperoxia-induced apoptosis. Activation of the MAPK and PI3K pathways was also investigated to determine the role of these signaling cascades in this process. Results: Hyperoxia exposure increased CHI3L1 expression and apoptosis in a time-dependent manner. CHI3L1 knockdown protected cells from hyperoxia-induced apoptosis. In contrast, CHI3L1 overexpression promoted cell death after hyperoxia exposure. Finally

  16. Extraglottic airway devices: technology update

    Directory of Open Access Journals (Sweden)

    Sharma B

    2017-08-01

    Full Text Available Bimla Sharma, Chand Sahai, Jayashree Sood Department of Anaesthesiology, Pain and Perioperative Medicine, Sir Ganga Ram Hospital, New Delhi, India Abstract: Extraglottic airway devices (EADs have revolutionized the field of airway management. The invention of the laryngeal mask airway was a game changer, and since then, there have been several innovations to improve the EADs in design, functionality, safety and construction material. These have ranged from changes in the shape of the mask, number of cuffs and material used, like rubber, polyvinylchloride and latex. Phthalates, which were added to the construction material in order to increase device flexibility, were later omitted when this chemical was found to have serious adverse reproductive outcomes. The various designs brought out by numerous companies manufacturing EADs resulted in the addition of several devices to the airway market. These airway devices were put to use, many of them with inadequate or no evidence base regarding their efficacy and safety. To reduce the possibility of compromising the safety of the patient, the Difficult Airway Society (DAS formed the Airway Device Evaluation Project Team (ADEPT to strengthen the evidence base for airway equipment and vet the new extraglottic devices. A preuse careful analysis of the design and structure may help in better understanding of the functionality of a particular device. In the meantime, the search for the ideal EAD continues. Keywords: extraglottic airway devices, laryngeal mask airway, other extraglottic airway devices, safety, technology update

  17. Cigarette smoke modulates expression of human rhinovirus-induced airway epithelial host defense genes.

    Directory of Open Access Journals (Sweden)

    David Proud

    Full Text Available Human rhinovirus (HRV infections trigger acute exacerbations of chronic obstructive pulmonary disease (COPD and asthma. The human airway epithelial cell is the primary site of HRV infection and responds to infection with altered expression of multiple genes, the products of which could regulate the outcome to infection. Cigarette smoking aggravates asthma symptoms, and is also the predominant risk factor for the development and progression of COPD. We, therefore, examined whether cigarette smoke extract (CSE modulates viral responses by altering HRV-induced epithelial gene expression. Primary cultures of human bronchial epithelial cells were exposed to medium alone, CSE alone, purified HRV-16 alone or to HRV-16+ CSE. After 24 h, supernatants were collected and total cellular RNA was isolated. Gene array analysis was performed to examine mRNA expression. Additional experiments, using real-time RT-PCR, ELISA and/or western blotting, validated altered expression of selected gene products. CSE and HRV-16 each induced groups of genes that were largely independent of each other. When compared to gene expression in response to CSE alone, cells treated with HRV+CSE showed no obvious differences in CSE-induced gene expression. By contrast, compared to gene induction in response to HRV-16 alone, cells exposed to HRV+CSE showed marked suppression of expression of a number of HRV-induced genes associated with various functions, including antiviral defenses, inflammation, viral signaling and airway remodeling. These changes were not associated with altered expression of type I or type III interferons. Thus, CSE alters epithelial responses to HRV infection in a manner that may negatively impact antiviral and host defense outcomes.

  18. Protective effect of soybean oil- or fish oil-rich diets on allergic airway inflammation

    Directory of Open Access Journals (Sweden)

    Navarro-Xavier RA

    2016-05-01

    Full Text Available Roberta Araujo Navarro-Xavier,1 Karina Vieira de Barros,1 Iracema Senna de Andrade,1 Zaira Palomino,2 Dulce Elena Casarini,2 Vera Lucia Flor Silveira3 1Departamento de Fisiologia, 2Departamento de Medicina, 3Departamento de Ciências Biológicas, Universidade Federal de São Paulo, Diadema, São Paulo, Brazil Background: The increased prevalence of asthma and allergic diseases in westernized societies has been associated with increased intake of diets rich in n-6 fatty acids (FAs and poor in n-3 FAs. This study aimed to analyze the prophylactic effects of treatment with a soybean oil-rich diet (rich in n-6 or fish oil (rich in n-3 in an allergic airway inflammation model on lung inflammation score, leukocyte migration, T-helper cell (Th-2 (interleukin [IL]-4, IL-5 and Th1 (interferon [IFN]-γ, tumor necrosis factor-α cytokines, lipoxin A4, nitric oxide, bradykinin, and corticosterone levels in bronchoalveolar lavage (BAL or lungs. Methods: Male Wistar rats fed with soybean oil- or fish oil-rich diet or standard rat chow were sensitized twice with ovalbumin–alumen and challenged twice with ovalbumin aerosol. The BAL and lungs were examined 24 hours later. Results: Both diets, rich in n-6 or n-3 FAs, impaired the allergic lung inflammation and reduced leukocyte migration, eosinophil and neutrophil percentages, and IL-4/IL-5/bradykinin levels in BAL and/or lungs, as well as increased the nitric oxide levels in BAL. The soybean oil-rich diet additionally increased the levels of lipoxin A4 and corticosterone in the lungs. Conclusion: Data presented demonstrated that the n-6 FA-rich diet had protective effect upon allergic airway inflammation and was as anti-inflammatory as the n-3 FA-rich diet, although through different mechanisms, suggesting that both diets could be considered as complementary therapy or a prophylactic alternative for allergic airway inflammation. Keywords: asthma, nitric oxide, n-6 fatty acids, n-3 fatty acids, cytokines

  19. Ambient urban Baltimore particulate-induced airway hyperresponsiveness and inflammation in mice

    Energy Technology Data Exchange (ETDEWEB)

    Walters, D.M.; Breysse, P.N.; Wills-Karp, M. [Childrens Hospital, Cincinnati, OH (United States). Medical Centre, Division of Immunobiology

    2001-10-15

    Airborne particulate matter (PM) is hypothesized to play a role in increases in asthma prevalence, although a causal relationship has yet to be established. To investigate the effects of real-world PM exposure on airway reactivity (AHR) and bronchoalveolar lavage (BAL) cellularity, mice were exposed to a single dose (0.5 mg/ mouse) of ambient PM, coal fly ash, or diesel PM. It was found that ambient PM exposure induced increases in AHR and BAL cellularity, whereas diesel PM induced significant increases in BAL cellularity, but not AHR. On the other hand, coal fly ash exposure did not elicit significant changes in either of these parameters. Ambient PM-induced temporal changes in AHR, BAL cells, and lung cytakine levels over a 2-wk period were then examined. Ambient PM-induced AHR was sustained over 7 d. The increase in AHR was preceded by dramatic increases in BAL eosinophils, whereas a decline in AHR was associated with increases in macrophages. It is concluded that ambient PM can induce asthmalike parameters in mice, suggesting that PM exposure may be an important factor in increases in asthma prevalence.

  20. Corticosteroids reduce IL-6 in ASM cells via up-regulation of MKP-1.

    Science.gov (United States)

    Quante, Timo; Ng, Yee Ching; Ramsay, Emma E; Henness, Sheridan; Allen, Jodi C; Parmentier, Johannes; Ge, Qi; Ammit, Alaina J

    2008-08-01

    The mechanisms by which corticosteroids reduce airway inflammation are not completely understood. Traditionally, corticosteroids were thought to inhibit cytokines exclusively at the transcriptional level. Our recent evidence, obtained in airway smooth muscle (ASM), no longer supports this view. We have found that corticosteroids do not act at the transcriptional level to reduce TNF-alpha-induced IL-6 gene expression. Rather, corticosteroids inhibit TNF-alpha-induced IL-6 secretion by reducing the stability of the IL-6 mRNA transcript. TNF-alpha-induced IL-6 mRNA decays at a significantly faster rate in ASM cells pretreated with the corticosteroid dexamethasone (t(1/2) = 2.4 h), compared to vehicle (t(1/2) = 9.0 h; P ASM cells.

  1. Solvent freeze out crystallization of lysozyme from a lysozyme-ovalbumin mixture

    Energy Technology Data Exchange (ETDEWEB)

    Diaz Borbon, V.; Ulrich, J. [Martin-Luther-Universitaet Halle-Wittenberg, Zentrum fuer Ingenieurwissenschaft, Verfahrenstechnik/TVT, 06099 Halle Saale (Germany)

    2012-05-15

    Hen egg white lysozyme (HEWL) crystallization conditions from an ovalbumin-lysozyme mixture were found by screening tests and further located in pseudo-phase diagrams. This information was used to set up the initial conditions for the solvent freeze out (SFO) process. The process uses the freezing of ice to create the supersaturation for the proteins to crystallize out of the solution. The crystallization of HEWL (15 mg/mL) out of a lysozyme-ovalbumin mixture (1.7 mg/mL) is carried out by SFO. Under the reported conditions, a crystallization yield of 69 % was obtained. A mean crystal size of 77.8 {mu}m was enhanced in a crystallization time of 15.1 h. The lysozyme nature of the crystals is proven by SDS PAGE and enzymatic activity tests. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. Cigarette smoke–induced induction of antioxidant enzyme activities in airway leukocytes is absent in active smokers with COPD

    Science.gov (United States)

    Dove, Rosamund E.; Leong-Smith, Pheneatia; Roos-Engstrand, Ester; Pourazar, Jamshid; Shah, Mittal; Behndig, Annelie F.; Mudway, Ian S.; Blomberg, Anders

    2015-01-01

    Background Oxidative injury to the airway has been proposed as an important underlying mechanism in the pathogenesis of chronic obstructive pulmonary disease (COPD). As the extent of oxidant-mediated damage is dependent on the endogenous antioxidant defences within the airways, we examined whether COPD was associated with deficiencies in the antioxidant network within the respiratory tract lining fluids (RTLFs) and resident airway leukocytes. We hypothesised that COPD would be associated with both basal depression of antioxidant defences and impaired adaptive antioxidant responses to cigarette smoke. Methods Low molecular weight and enzymatic antioxidants together with metal-handling proteins were quantified in bronchoalveolar lavage fluid and airway leukocytes, derived from current (n=9) and ex-smoking COPD patients (n=15), as well as from smokers with normal lung function (n=16) and healthy never smokers (n=13). Results Current cigarette smoking was associated with an increase in ascorbate and glutathione within peripheral RTLFs in both smokers with normal lung function compared with healthy never smokers and in COPD smokers compared with COPD ex-smokers. In contrast, intra-cellular antioxidant enzyme activities (glutathione peroxidase, glutathione reductase, and catalase) were only up-regulated in smokers with normal lung function compared with healthy never smokers and not in actively smoking COPD patients relative to COPD ex-smokers. Conclusions We found no evidence of impaired basal antioxidant defences, within either the RTLFs or airway leukocytes in stable ex-smoking COPD patients compared with healthy never smoking controls. Current cigarette smoking induced an up-regulation of low molecular weight antioxidants in the RTLFs of both control subjects with normal lung function and patients with COPD. Importantly, the present data demonstrated a cigarette smoke–induced increase in intra-cellular antioxidant enzyme activities only within the smokers with

  3. PPARγ as a Potential Target to Treat Airway Mucus Hypersecretion in Chronic Airway Inflammatory Diseases

    Directory of Open Access Journals (Sweden)

    Yongchun Shen

    2012-01-01

    Full Text Available Airway mucus hypersecretion (AMH is a key pathophysiological feature of chronic airway inflammatory diseases such as bronchial asthma, cystic fibrosis, and chronic obstructive pulmonary disease. AMH contributes to the pathogenesis of chronic airway inflammatory diseases, and it is associated with reduced lung function and high rates of hospitalization and mortality. It has been suggested that AMH should be a target in the treatment of chronic airway inflammatory diseases. Recent evidence suggests that a key regulator of airway inflammation, hyperresponsiveness, and remodeling is peroxisome proliferator-activated receptor gamma (PPARγ, a ligand-activated transcription factor that regulates adipocyte differentiation and lipid metabolism. PPARγ is expressed in structural, immune, and inflammatory cells in the lung. PPARγ is involved in mucin production, and PPARγ agonists can inhibit mucin synthesis both in vitro and in vivo. These findings suggest that PPARγ is a novel target in the treatment of AMH and that further work on this transcription factor may lead to new therapies for chronic airway inflammatory diseases.

  4. Insulin induces airway smooth muscle contraction

    NARCIS (Netherlands)

    Schaafsma, D.; Gosens, R.; Ris, J. M.; Zaagsma, J.; Meurs, H.; Nelemans, S. A.

    Background and purpose: Recently, the use of inhaled insulin formulations for the treatment of type I and type II diabetes has been approved in Europe and in the United States. For regular use, it is critical that airway function remains unimpaired in response to insulin exposure. Experimental

  5. Role of contractile prostaglandins and Rho-kinase in growth factor-induced airway smooth muscle contraction

    Directory of Open Access Journals (Sweden)

    Zaagsma Johan

    2005-07-01

    Full Text Available Abstract Background In addition to their proliferative and differentiating effects, several growth factors are capable of inducing a sustained airway smooth muscle (ASM contraction. These contractile effects were previously found to be dependent on Rho-kinase and have also been associated with the production of eicosanoids. However, the precise mechanisms underlying growth factor-induced contraction are still unknown. In this study we investigated the role of contractile prostaglandins and Rho-kinase in growth factor-induced ASM contraction. Methods Growth factor-induced contractions of guinea pig open-ring tracheal preparations were studied by isometric tension measurements. The contribution of Rho-kinase, mitogen-activated protein kinase (MAPK and cyclooxygenase (COX to these reponses was established, using the inhibitors Y-27632 (1 μM, U-0126 (3 μM and indomethacin (3 μM, respectively. The Rho-kinase dependency of contractions induced by exogenously applied prostaglandin F2α (PGF2α and prostaglandin E2 (PGE2 was also studied. In addition, the effects of the selective FP-receptor antagonist AL-8810 (10 μM and the selective EP1-antagonist AH-6809 (10 μM on growth factor-induced contractions were investigated, both in intact and epithelium-denuded preparations. Growth factor-induced PGF2α-and PGE2-release in the absence and presence of Y-27632, U-0126 and indomethacin, was assessed by an ELISA-assay. Results Epidermal growth factor (EGF-and platelet-derived growth factor (PDGF-induced contractions of guinea pig tracheal smooth muscle preparations were dependent on Rho-kinase, MAPK and COX. Interestingly, growth factor-induced PGF2α-and PGE2-release from tracheal rings was significantly reduced by U-0126 and indomethacin, but not by Y-27632. Also, PGF2α-and PGE2-induced ASM contractions were largely dependent on Rho-kinase, in contrast to other contractile agonists like histamine. The FP-receptor antagonist AL-8810 (10 μM significantly

  6. Acrolein and thiol-reactive electrophiles suppress allergen-induced innate airway epithelial responses by inhibition of DUOX1 and EGFR.

    Science.gov (United States)

    Danyal, Karamatullah; de Jong, Willem; O'Brien, Edmund; Bauer, Robert A; Heppner, David E; Little, Andrew C; Hristova, Milena; Habibovic, Aida; van der Vliet, Albert

    2016-11-01

    Acrolein is a major thiol-reactive component of cigarette smoke (CS) that is thought to contribute to increased asthma incidence associated with smoking. Here, we explored the effects of acute acrolein exposure on innate airway responses to two common airborne allergens, house dust mite and Alternaria alternata, and observed that acrolein exposure of C57BL/6 mice (5 ppm, 4 h) dramatically inhibited innate airway responses to subsequent allergen challenge, demonstrated by attenuated release of the epithelial-derived cytokines IL-33, IL-25, and IL-1α. Acrolein and other anti-inflammatory thiol-reactive electrophiles, cinnamaldehyde, curcumin, and sulforaphane, similarly inhibited allergen-induced production of these cytokines from human or murine airway epithelial cells in vitro. Based on our previous observations indicating the importance of Ca 2+ -dependent signaling, activation of the NADPH oxidase DUOX1, and Src/EGFR-dependent signaling in allergen-induced epithelial secretion of these cytokines, we explored the impact of acrolein on these pathways. Acrolein and other thiol-reactive electrophiles were found to dramatically prevent allergen-induced activation of DUOX1 as well as EGFR, and acrolein was capable of inhibiting EGFR tyrosine kinase activity via modification of C797. Biotin-labeling strategies indicated increased cysteine modification and carbonylation of Src, EGFR, as well as DUOX1, in response to acrolein exposure in vitro and in vivo, suggesting that direct alkylation of these proteins on accessible cysteine residues may be responsible for their inhibition. Collectively, our findings indicate a novel anti-inflammatory mechanism of CS-derived acrolein and other thiol-reactive electrophiles, by directly inhibiting DUOX1- and EGFR-mediated airway epithelial responses to airborne allergens. Copyright © 2016 the American Physiological Society.

  7. Deterioration of epithelium mediated mechanisms in diabetic-antigen sensitized airways of guinea pigs.

    Science.gov (United States)

    Bano, Saidullah; Swati, Omanwar; Kambadur, Muralidhar; Mohammad, Fahim

    2016-01-01

    The onset of diabetes causes disruption of respiratory epithelial mediators. The present study investigates whether diabetes modifies the epithelium mediated bronchial responses in hyper-reactive airway smooth muscle (ASM) primarily through nitric oxide (NO), cyclooxygenase (COX), and epithelium derived hyperpolarizing factor (EpDHF) pathways. Experimental model of guinea pigs having hyper-reactive airways with or without diabetes were developed. The responses of tracheal rings to cumulative concentrations of acetylcholine (ACh) and isoproterenol (IP) in the presence and absence of epithelium and before and after incubation with NO, K + ATP and COX inhibitors, N-(ω)-Nitro-L-arginine methyl ester (L-NAME; 100 μM), glybenclamide (10 μM) and indomethacin (100 μM) were assessed. In diabetic guinea pigs with hyper-reactive airways, a decrease in ACh induced bronchoconstriction was observed after epithelium removal and after incubation with L-NAME/indomethacin, suggesting damage to NO/COX pathways. Hyper-reactivity did not alter the response of trachea to ACh but affected the response to IP which was further reduced in hyper-reactive animals with diabetes. The ASM response to IP after glybenclamide treatment did not alter in hyper-reactive guinea pigs and diabetic guinea pigs with hyper-reactive airways, suggesting damage to the EpDHF pathway. Treatment with indomethacin reduced IP response in the hyper-reactive model, and did not produce any change in diabetic model with hyper-reactive airways, indicating further disruption of the COX pathway. EpDHF pathway is damaged in hyper-reactive guinea pigs and in diabetic guinea pigs with hyper-reactive airways. Diabetes further aggravates the NO and COX mediated pathways in diabetic guinea pigs with hyper-reactive airways.

  8. The R213G polymorphism in SOD3 protects against allergic airway inflammation

    DEFF Research Database (Denmark)

    Gaurav, Rohit; Varasteh, Jason T; Weaver, Michael R

    2017-01-01

    ) in bronchoalveolar lavage fluid and reduced type II innate lymphoid cells (ILC2s) in lungs. SOD mimetic (Mn (III) tetrakis (N-ethylpyridinium-2-yl) porphyrin) attenuated Alternaria-induced expression of IL-33 and IL-8 release in BEAS-2B cells. These results suggest that R213G SNP potentially benefits its carriers...... by resulting in high EC-SOD in airway-lining fluid, which ameliorates allergic airway inflammation by dampening the innate immune response, including IL-33/ST2-mediated changes in ILC2s....

  9. A Zinc Chelator TPEN Attenuates Airway Hyperresponsiveness Airway Inflammation in Mice In Vivo

    Directory of Open Access Journals (Sweden)

    Satoru Fukuyama

    2011-01-01

    Conclusions: In pulmonary allergic inflammation induced in mice immunized with antigen without alum, zinc chelator inhibits airway inflammation and hyperresponsiveness. These findings suggest that zinc may be a therapeutic target of allergic asthma.

  10. Effects of gasoline engine emissions on preexisting allergic airway responses in mice.

    Science.gov (United States)

    Day, Kimberly C; Reed, Matthew D; McDonald, Jacob D; Seilkop, Steven K; Barrett, Edward G

    2008-10-01

    Gasoline-powered vehicle emissions contribute significantly to ambient air pollution. We hypothesized that exposure to gasoline engine emissions (GEE) may exacerbate preexisting allergic airway responses. Male BALB/c mice were sensitized by injection with ovalbumin (OVA) and then received a 10-min aerosolized OVA challenge. Parallel groups were sham-sensitized with saline. Mice were exposed 6 h/day to air (control, C) or GEE containing particulate matter (PM) at low (L), medium (M), or high (H) concentrations, or to the H level with PM removed by filtration (high-filtered, HF). Immediately after GEE exposure mice received another 10-min aerosol OVA challenge (pre-OVA protocol). In a second (post-OVA) protocol, mice were similarly sensitized but only challenged to OVA before air or GEE exposure. Measurements of airway hyperresponsiveness (AHR), bronchoalveolar lavage (BAL), and blood collection were performed approximately 24 h after the last exposure. In both protocols, M, H, and HF GEE exposure significantly decreased BAL neutrophils from nonsensitized mice but had no significant effect on BAL cells from OVA-sensitized mice. In the pre-OVA protocol, GEE exposure increased OVA-specific IgG(1) but had no effect on BAL interleukin (IL)-2, IL-4, IL-13, or interferon (IFN)-gamma in OVA-sensitized mice. Nonsensitized GEE-exposed mice had increased OVA-specific IgG(2a), IgE, and IL-2, but decreased total IgE. In the post-OVA protocol, GEE exposure reduced BAL IL-4, IL-5, and IFN-gamma in nonsensitized mice but had no effect on sensitized mice. These results suggest acute exposure to the gas-vapor phase of GEE suppressed inflammatory cells and cytokines from nonsensitized mice but did not substantially exacerbate allergic responses.

  11. Effects of drug treatment on inflammation and hyperreactivity of airways and on immune variables in cats with experimentally induced asthma.

    Science.gov (United States)

    Reinero, Carol R; Decile, Kendra C; Byerly, Jenni R; Berghaus, Roy D; Walby, William E; Berghaus, Londa J; Hyde, Dallas M; Schelegle, Edward S; Gershwin, Laurel J

    2005-07-01

    To compare the effects of an orally administered corticosteroid (prednisone), an inhaled corticosteroid (flunisolide), a leukotriene-receptor antagonist (zafirlukast), an antiserotonergic drug (cyproheptadine), and a control substance on the asthmatic phenotype in cats with experimentally induced asthma. 6 cats with asthma experimentally induced by the use of Bermuda grass allergen (BGA). A randomized, crossover design was used to assess changes in the percentage of eosinophils in bronchoalveolar lavage fluid (BALF); airway hyperresponsiveness; blood lymphocyte phenotype determined by use of flow cytometry; and serum and BALF content of BGA-specific IgE, IgG, and IgA determined by use of ELISAs. Mean +/- SE eosinophil percentages in BALF when cats were administered prednisone (5.0 +/- 2.3%) and flunisolide (2.5 +/- 1.7%) were significantly lower than for the control treatment (33.7 +/- 11.1%). We did not detect significant differences in airway hyperresponsiveness or lymphocyte surface markers among treatments. Content of BGA-specific IgE in serum was significantly lower when cats were treated with prednisone (25.5 +/- 5.4%), compared with values for the control treatment (63.6 +/- 12.9%); no other significant differences were observed in content of BGA-specific immunoglobulins among treatments. Orally administered and inhaled corticosteroids decreased eosinophilic inflammation in airways of cats with experimentally induced asthma. Only oral administration of prednisone decreased the content of BGA-specific IgE in serum; no other significant local or systemic immunologic effects were detected among treatments. Inhaled corticosteroids can be considered as an alternate method for decreasing airway inflammation in cats with asthma.

  12. Human airway epithelial cell cultures for modeling respiratory syncytial virus infection.

    Science.gov (United States)

    Pickles, Raymond J

    2013-01-01

    Respiratory syncytial virus (RSV) is an important human respiratory pathogen with narrow species tropism. Limited availability of human pathologic specimens during early RSV-induced lung disease and ethical restrictions for RSV challenge studies in the lower airways of human volunteers has slowed our understanding of how RSV causes airway disease and greatly limited the development of therapeutic strategies for reducing RSV disease burden. Our current knowledge of RSV infection and pathology is largely based on in vitro studies using nonpolarized epithelial cell-lines grown on plastic or in vivo studies using animal models semipermissive for RSV infection. Although these models have revealed important aspects of RSV infection, replication, and associated inflammatory responses, these models do not broadly recapitulate the early interactions and potential consequences of RSV infection of the human columnar airway epithelium in vivo. In this chapter, the pro et contra of in vitro models of human columnar airway epithelium and their usefulness in respiratory virus pathogenesis and vaccine development studies will be discussed. The use of such culture models to predict characteristics of RSV infection and the correlation of these findings to the human in vivo situation will likely accelerate our understanding of RSV pathogenesis potentially identifying novel strategies for limiting the severity of RSV-associated airway disease.

  13. Resting Tension Affects eNOS Activity in a Calcium-Dependent Way in Airways

    Directory of Open Access Journals (Sweden)

    Paschalis-Adam Molyvdas

    2007-03-01

    Full Text Available The alteration of resting tension (RT from 0.5 g to 2.5 g increased significantly airway smooth muscle contractions induced by acetylcholine (ACh in rabbit trachea. The decrease in extracellular calcium concentration [Ca2+]o from 2 mM to 0.2 mM reduced ACh-induced contractions only at 2.5 g RT with no effect at 0.5 g RT. The nonselective inhibitor of nitric oxide synthase (NOS, NG-nitro-L-arginine methyl ester (L-NAME increased ACh-induced contractions at 2.5 g RT. The inhibitor of inducible NOS, S-methylsothiourea or neuronal NOS, 7-nitroindazole had no effect. At 2.5 g RT, the reduction of [Ca2+]o from 2 mM to 0.2 mM abolished the effect of L-NAME on ACh-induced contractions. The NO precursor L-arginine or the tyrosine kinase inhibitors erbstatin A and genistein had no effect on ACh-induced contractions obtained at 2.5 g RT. Our results suggest that in airways, RT affects ACh-induced contractions by modulating the activity of epithelial NOS in a calcium-dependent, tyrosine-phosphorylation-independent way.

  14. Effect of heat-inactivated kefir-isolated Lactobacillus kefiranofaciens M1 on preventing an allergic airway response in mice.

    Science.gov (United States)

    Hong, Wei-Sheng; Chen, Yen-Po; Dai, Ting-Yeu; Huang, I-Nung; Chen, Ming-Ju

    2011-08-24

    In this study, we assessed the anti-asthmatic effects of heat-inactivated Lactobacillus kefiranofaciens M1 (HI-M1) and its fermented milk using different feeding procedures and at various dosage levels. The possible mechanisms whereby HI-M1 has anti-allergic asthmatic effects were also evaluated. Ovalbumin (OVA)-allergic asthma mice that have been orally administrated the HI-M1 samples showed strong inhibition of production of T helper cell (Th) 2 cytokines, pro-inflammatory cytokines, and Th17 cytokines in splenocytes and bronchoalveolar fluid compared to control mice. An increase in regulatory T cell population in splenocytes in the allergic asthma mice after oral administration of H1-M1 was also observed. In addition, all of the features of the asthmatic phenotype, including specific IgE production, airway inflammation, and development of airway hyperresponsiveness, were depressed in a dose-dependent manner by treatment. These findings support the possibility that oral feeding of H1-M1 may be an effective way of alleviating asthmatic symptoms in humans.

  15. Long acting β2-agonist and corticosteroid restore airway glandular cell function altered by bacterial supernatant

    Directory of Open Access Journals (Sweden)

    Nawrocki-Raby Béatrice

    2010-01-01

    Full Text Available Abstract Background Staphylococcus aureus releases virulence factors (VF that may impair the innate protective functions of airway cells. The aim of this study was to determine whether a long-acting β2 adrenergic receptor agonist (salmeterol hydroxynaphthoate, Sal combined with a corticosteroid (fluticasone propionate, FP was able to regulate ion content and cytokine expression by airway glandular cells after exposure to S. aureus supernatant. Methods A human airway glandular cell line was incubated with S. aureus supernatant for 1 h and then treated with the combination Sal/FP for 4 h. The expression of actin and CFTR proteins was analyzed by immunofluorescence. Videomicroscopy was used to evaluate chloride secretion and X-ray microanalysis to measure the intracellular ion and water content. The pro-inflammatory cytokine expression was assessed by RT-PCR and ELISA. Results When the cells were incubated with S. aureus supernatant and then with Sal/FP, the cellular localisation of CFTR was apical compared to the cytoplasmic localisation in cells incubated with S. aureus supernatant alone. The incubation of airway epithelial cells with S. aureus supernatant reduced by 66% the chloride efflux that was fully restored by Sal/FP treatment. We also observed that Sal/FP treatment induced the restoration of ion (Cl and S and water content within the intracellular secretory granules of airway glandular cells and reduced the bacterial supernatant-dependent increase of pro-inflammatory cytokines IL8 and TNFα. Conclusions Our results demonstrate that treatment with the combination of a corticosteroid and a long-acting β2 adrenergic receptor agonist after bacterial infection restores the airway glandular cell function. Abnormal mucus induced by defective ion transport during pulmonary infection could benefit from treatment with a combination of β2 adrenergic receptor agonist and glucocorticoid.

  16. Inhibition of aldose reductase prevents experimental allergic airway inflammation in mice.

    Directory of Open Access Journals (Sweden)

    Umesh C S Yadav

    2009-08-01

    Full Text Available The bronchial asthma, a clinical complication of persistent inflammation of the airway and subsequent airway hyper-responsiveness, is a leading cause of morbidity and mortality in critically ill patients. Several studies have shown that oxidative stress plays a key role in initiation as well as amplification of inflammation in airways. However, still there are no good anti-oxidant strategies available for therapeutic intervention in asthma pathogenesis. Most recent studies suggest that polyol pathway enzyme, aldose reductase (AR, contributes to the pathogenesis of oxidative stress-induced inflammation by affecting the NF-kappaB-dependent expression of cytokines and chemokines and therefore inhibitors of AR could be anti-inflammatory. Since inhibitors of AR have already gone through phase-III clinical studies for diabetic complications and found to be safe, our hypothesis is that AR inhibitors could be novel therapeutic drugs for the prevention and treatment of asthma. Hence, we investigated the efficacy of AR inhibition in the prevention of allergic responses to a common natural airborne allergen, ragweed pollen that leads to airway inflammation and hyper-responsiveness in a murine model of asthma.Primary Human Small Airway Epithelial Cells (SAEC were used to investigate the in vitro effects of AR inhibition on ragweed pollen extract (RWE-induced cytotoxic and inflammatory signals. Our results indicate that inhibition of AR prevents RWE -induced apoptotic cell death as measured by annexin-v staining, increase in the activation of NF-kappaB and expression of inflammatory markers such as inducible nitric oxide synthase (iNOS, cycloxygenase (COX-2, Prostaglandin (PG E(2, IL-6 and IL-8. Further, BALB/c mice were sensitized with endotoxin-free RWE in the absence and presence of AR inhibitor and followed by evaluation of perivascular and peribronchial inflammation, mucin production, eosinophils infiltration and airway hyperresponsiveness. Our results

  17. Randomized controlled trial of fish oil and montelukast and their combination on airway inflammation and hyperpnea-induced bronchoconstriction.

    Directory of Open Access Journals (Sweden)

    Sandra Tecklenburg-Lund

    2010-10-01

    Full Text Available Both fish oil and montelukast have been shown to reduce the severity of exercise-induced bronchoconstriction (EIB. The purpose of this study was to compare the effects of fish oil and montelukast, alone and in combination, on airway inflammation and bronchoconstriction induced by eucapnic voluntary hyperpnea (EVH in asthmatics.In this model of EIB, twenty asthmatic subjects with documented hyperpnea-induced bronchoconstriction (HIB entered a randomized double-blind trial. All subjects entered on their usual diet (pre-treatment, n = 20 and then were randomly assigned to receive either one active 10 mg montelukast tablet and 10 placebo fish oil capsules (n = 10 or one placebo montelukast tablet and 10 active fish oil capsules totaling 3.2 g EPA and 2.0 g DHA (n = 10 taken daily for 3-wk. Thereafter, all subjects (combination treatment; n = 20 underwent another 3-wk treatment period consisting of a 10 mg active montelukast tablet or 10 active fish oil capsules taken daily.While HIB was significantly inhibited (p0.017 between treatment groups; percent fall in forced expiratory volume in 1-sec was -18.4 ± 2.1%, -9.3±2.8%, -11.6 ± 2.8% and -10.8 ± 1.7% on usual diet (pre-treatment, fish oil, montelukast and combination treatment respectively. All three treatments were associated with a significant reduction (p0.017 in these biomarkers between treatments.While fish oil and montelukast are both effective in attenuating airway inflammation and HIB, combining fish oil with montelukast did not confer a greater protective effect than either intervention alone. Fish oil supplementation should be considered as an alternative treatment for EIB.ClinicalTrials.gov NCT00676468.

  18. Antigen-Specific IgG ameliorates allergic airway inflammation via Fcγ receptor IIB on dendritic cells

    Directory of Open Access Journals (Sweden)

    Karasuyama Hajime

    2011-04-01

    Full Text Available Abstract Background There have been few reports on the role of Fc receptors (FcRs and immunoglobulin G (IgG in asthma. The purpose of this study is to clarify the role of inhibitory FcRs and antigen presenting cells (APCs in pathogenesis of asthma and to evaluate antigen-transporting and presenting capacity by APCs in the tracheobronchial mucosa. Methods In FcγRIIB deficient (KO and C57BL/6 (WT mice, the effects of intratracheal instillation of antigen-specific IgG were analysed using the model with sensitization and airborne challenge with ovalbumin (OVA. Thoracic lymph nodes instilled with fluorescein-conjugated OVA were analysed by fluorescence microscopy. Moreover, we analysed the CD11c+ MHC class II+ cells which intaken fluorescein-conjugated OVA in thoracic lymph nodes by flow cytometry. Also, lung-derived CD11c+ APCs were analysed by flow cytometry. Effects of anti-OVA IgG1 on bone marrow dendritic cells (BMDCs in vitro were also analysed. Moreover, in FcγRIIB KO mice intravenously transplanted dendritic cells (DCs differentiated from BMDCs of WT mice, the effects of intratracheal instillation of anti-OVA IgG were evaluated by bronchoalveolar lavage (BAL. Results In WT mice, total cells and eosinophils in BAL fluid reduced after instillation with anti-OVA IgG1. Anti-OVA IgG1 suppressed airway inflammation in hyperresponsiveness and histology. In addition, the number of the fluorescein-conjugated OVA in CD11c+ MHC class II+ cells of thoracic lymph nodes with anti-OVA IgG1 instillation decreased compared with PBS. Also, MHC class II expression on lung-derived CD11c+ APCs with anti-OVA IgG1 instillation reduced. Moreover, in vitro, we showed that BMDCs with anti-OVA IgG1 significantly decreased the T cell proliferation. Finally, we demonstrated that the lacking effects of anti-OVA IgG1 on airway inflammation on FcγRIIB KO mice were restored with WT-derived BMDCs transplanted intravenously. Conclusion Antigen-specific IgG ameliorates

  19. Arginase attenuates inhibitory nonadrenergic noncholinergic nerve-induced nitric oxide generation and airway smooth muscle relaxation

    Directory of Open Access Journals (Sweden)

    Meurs Herman

    2005-03-01

    Full Text Available Abstract Background Recent evidence suggests that endogenous arginase activity potentiates airway responsiveness to methacholine by attenuation of agonist-induced nitric oxide (NO production, presumably by competition with epithelial constitutive NO synthase for the common substrate, L-arginine. Using guinea pig tracheal open-ring preparations, we now investigated the involvement of arginase in the modulation of neuronal nitric oxide synthase (nNOS-mediated relaxation induced by inhibitory nonadrenergic noncholinergic (iNANC nerve stimulation. Methods Electrical field stimulation (EFS; 150 mA, 4 ms, 4 s, 0.5 – 16 Hz-induced relaxation was measured in tracheal preparations precontracted to 30% with histamine, in the presence of 1 μM atropine and 3 μM indomethacin. The contribution of NO to the EFS-induced relaxation was assessed by the nonselective NOS inhibitor L-NNA (0.1 mM, while the involvement of arginase activity in the regulation of EFS-induced NO production and relaxation was investigated by the effect of the specific arginase inhibitor nor-NOHA (10 μM. Furthermore, the role of substrate availability to nNOS in EFS-induced relaxation was measured in the presence of various concentrations of exogenous L-arginine. Results EFS induced a frequency-dependent relaxation, ranging from 6.6 ± 0.8% at 0.5 Hz to 74.6 ± 1.2% at 16 Hz, which was inhibited with the NOS inhibitor L-NNA by 78.0 ± 10.5% at 0.5 Hz to 26.7 ± 7.7% at 8 Hz (P Conclusion The results indicate that endogenous arginase activity attenuates iNANC nerve-mediated airway relaxation by inhibition of NO generation, presumably by limiting L-arginine availability to nNOS.

  20. Raw Cow’s Milk Prevents the Development of Airway Inflammation in a Murine House Dust Mite-Induced Asthma Model

    Directory of Open Access Journals (Sweden)

    Suzanne Abbring

    2017-08-01

    Full Text Available Epidemiological studies show an inverse relation between raw cow’s milk consumption and the development of asthma. This protective effect seems to be abolished by milk processing. However, evidence for a causal relationship is lacking, and direct comparisons between raw and processed milk are hardly studied. Therefore, this study investigated the preventive capacity of raw and heated raw milk on the development of house dust mite (HDM-induced allergic asthma in mice. Six- to seven-week-old male BALB/c mice were intranasally (i.n. sensitized with 1 µg HDM or PBS on day 0, followed by an i.n. challenge with 10 µg HDM or PBS on days 7–11. In addition, mice were fed 0.5 mL raw cow’s milk, heated raw cow’s milk, or PBS three times a week throughout the study, starting 1 day before sensitization. On day 14, airway hyperresponsiveness (AHR in response to increasing doses of methacholine was measured to assess lung function. Bronchoalveolar lavage fluid (BALF and lungs were furthermore collected to study the extent of airway inflammation. Raw milk prevented both HDM-induced AHR and pulmonary eosinophilic inflammation, whereas heated raw milk did not. Both milk types suppressed the Th2-polarizing chemokine CCL17 in lung homogenates and reduced lung Th2 and Th17 cell frequency. IL-4 and IL-13 production after ex vivo restimulation of lung T cells with HDM was also reduced by both milk types. However, local IL-5 and IL-13 concentrations were only suppressed by raw milk. These findings support the asthma-protective capacity of raw cow’s milk and show the importance of reduced local type 2 cytokine levels. Heated raw milk did not show an asthma-protective effect, which indicates the involvement of heat-sensitive components. Besides causal evidence, this study provides the basis for further mechanistic studies.

  1. PKA and Epac cooperate to augment bradykinin-induced interleukin-8 release from human airway smooth muscle cells

    Directory of Open Access Journals (Sweden)

    Halayko Andrew J

    2009-09-01

    -loading of Rap1, but not of Rap2. Treatment of the cells with toxin B-1470 and U0126 significantly reduced bradykinin-induced IL-8 release alone or in combination with the activators of PKA and Epac. Interestingly, inhibition of PKA by Rp-8-CPT-cAMPS and silencing of Epac1 and Epac2 expression by specific siRNAs largely decreased activation of Rap1 and the augmentation of bradykinin-induced IL-8 release by both PKA and Epac. Conclusion Collectively, our data suggest that PKA, Epac1 and Epac2 act in concert to modulate inflammatory properties of airway smooth muscle via signaling to the Ras-like GTPase Rap1 and to ERK1/2.

  2. A combined approach of hollow microneedles and nanocarriers for skin immunization with plasmid DNA encoding ovalbumin

    Directory of Open Access Journals (Sweden)

    Pamornpathomkul B

    2017-01-01

    Full Text Available Boonnada Pamornpathomkul,1 Adisak Wongkajornsilp,2 Wanida Laiwattanapaisal,3 Theerasak Rojanarata,1 Praneet Opanasopit,1 Tanasait Ngawhirunpat1 1Department of Pharmaceutical Technology, Faculty of Pharmacy, Pharmaceutical Development of Green Innovations Group, Silpakorn University, Nakhon Pathom, 2Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 3Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand Abstract: The aim of this study was to investigate the use of different types of microneedles (MNs and nanocarriers for in vitro skin permeation and in vivo immunization of plasmid DNA encoding ovalbumin (pOVA. In vitro skin permeation studies indicated that hollow MNs had a superior enhancing effect on skin permeation compared with solid MN patches, electroporation (EP patches, the combination of MN and EP patches, and untreated skin. Upon using hollow MNs combined with nanocarriers for pOVA delivery, the skin permeation was higher than for the delivery of naked pOVA, as evidenced by the increased amount of pOVA in Franz diffusion cells and immunoglobulin G (IgG antibody responses. When the hollow MNs were used for the delivery of nanocarrier:pOVA complexes into the skin of mice, they induced a stronger IgG immune response than conventional subcutaneous (SC injections. In addition, immunization of mice with the hollow MNs did not induce signs of skin infection or pinpoint bleeding. Accordingly, the hollow MNs combined with a nanocarrier delivery system is a promising approach for delivering pOVA complexes to the skin for promoting successful immunization. Keywords: hollow microneedle, solid microneedle, electroporation, plasmid DNA encoding ovalbumin, skin immunization, nanocarrier

  3. Hypercapnia modulates cAMP signalling and cystic fibrosis transmembrane conductance regulator‐dependent anion and fluid secretion in airway epithelia

    Science.gov (United States)

    Turner, Mark J.; Saint‐Criq, Vinciane; Patel, Waseema; Ibrahim, Salam H.; Verdon, Bernard; Ward, Christopher; Garnett, James P.; Tarran, Robert; Cann, Martin J.

    2015-01-01

    Key points Raised arterial blood CO2 (hypercapnia) is a feature of many lung diseases.CO2 has been shown to act as a cell signalling molecule in human cells, notably by influencing the levels of cell signalling second messengers: cAMP and Ca2+.Hypercapnia reduced cAMP‐stimulated cystic fibrosis transmembrane conductance regulator‐dependent anion and fluid transport in Calu‐3 cells and primary human airway epithelia but did not affect cAMP‐regulated HCO3 − transport via pendrin or Na+/HCO3 − cotransporters.These results further support the role of CO2 as a cell signalling molecule and suggests CO2‐induced reductions in airway anion and fluid transport may impair innate defence mechanisms of the lungs. Abstract Hypercapnia is clinically defined as an arterial blood partial pressure of CO2 of above 40 mmHg and is a feature of chronic lung disease. In previous studies we have demonstrated that hypercapnia modulates agonist‐stimulated cAMP levels through effects on transmembrane adenylyl cyclase activity. In the airways, cAMP is known to regulate cystic fibrosis transmembrane conductance regulator (CFTR)‐mediated anion and fluid secretion, which contributes to airway surface liquid homeostasis. The aim of the current work was to investigate if hypercapnia could modulate cAMP‐regulated ion and fluid transport in human airway epithelial cells. We found that acute exposure to hypercapnia significantly reduced forskolin‐stimulated elevations in intracellular cAMP as well as both adenosine‐ and forskolin‐stimulated increases in CFTR‐dependent transepithelial short‐circuit current, in polarised cultures of Calu‐3 human airway cells. This CO2‐induced reduction in anion secretion was not due to a decrease in HCO3 − transport given that neither a change in CFTR‐dependent HCO3 − efflux nor Na+/HCO3 − cotransporter‐dependent HCO3 − influx were CO2‐sensitive. Hypercapnia also reduced the volume of forskolin‐stimulated fluid

  4. Albumen foam stability and s-ovalbumin contents in eggs coated with whey protein concentrate

    Directory of Open Access Journals (Sweden)

    ACC Alleoni

    2004-06-01

    Full Text Available Food products such as breads, cakes, crackers, meringues, ice creams and several bakery items depend on air incorporation to maintain their texture and structure during or after processing. Proteins are utilized in the food industry since they improve texture attributes through their ability to encapsulate and retain air. The objectives of this work were to quantify s-ovalbumin contents in albumen and to determine alterations in egg white foam stability in fresh eggs, and in eggs coated and non-coated with a whey protein-based concentrate film (WPC, stored at 25°C for 28 days. The volume of drained liquid was higher in non-coated eggs than in coated eggs stored at 25°C at all storage periods. The difference on the third day of storage was in the order of 59% between coated and non-coated eggs, while on the twenty-eighth day it was 202%. During the storage period, an increase in pH and drainage volume was observed for non-coated eggs. After three days, the non-coated eggs showed a s-ovalbumin content 33% higher than coated eggs; this increase jumped to 205% at 28 days of storage. There was a positive correlation between s-ovalbumin content and the volume of drained liquid for coated and non-coated eggs; in other words, when the s-ovalbumin content increased, there was an increase in the volume of drained liquid and a decrease in foam stability. WPC coating maintain egg quality, since it is an effective barrier against the loss of CO2, avoiding changes in the pH of egg white.

  5. Airway epithelial NF-κB activation promotes Mycoplasma pneumoniae clearance in mice.

    Directory of Open Access Journals (Sweden)

    Di Jiang

    Full Text Available Respiratory infections including atypical bacteria Mycoplasma pneumoniae (Mp contribute to the pathobiology of asthma and chronic obstructive pulmonary disease (COPD. Mp infection mainly targets airway epithelium and activates various signaling pathways such as nuclear factor κB (NF-κB. We have shown that short palate, lung, and nasal epithelium clone 1 (SPLUNC1 serves as a novel host defense protein and is up-regulated upon Mp infection through NF-κB activation in cultured human and mouse primary airway epithelial cells. However, the in vivo role of airway epithelial NF-κB activation in host defense against Mp infection has not been investigated. In the current study, we investigated the effects of in vivo airway epithelial NF-κB activation on lung Mp clearance and its association with airway epithelial SPLUNC1 expression.Non-antimicrobial tetracycline analog 9-t-butyl doxycycline (9-TB was initially optimized in mouse primary tracheal epithelial cell culture, and then utilized to induce in vivo airway epithelial specific NF-κB activation in conditional NF-κB transgenic mice (CC10-(CAIKKβ with or without Mp infection. Lung Mp load and inflammation were evaluated, and airway epithelial SPLUNC1 protein was examined by immunohistochemistry. We found that 9-TB treatment in NF-κB transgene positive (Tg+, but not transgene negative (Tg- mice significantly reduced lung Mp load. Moreover, 9-TB increased airway epithelial SPLUNC1 protein expression in NF-κB Tg+ mice.By using the non-antimicrobial 9-TB, our study demonstrates that in vivo airway epithelial NF-κB activation promotes lung bacterial clearance, which is accompanied by increased epithelial SPLUNC1 expression.

  6. Anti-inflammatory effects of embelin in A549 cells and human asthmatic airway epithelial tissues.

    Science.gov (United States)

    Lee, In-Seung; Cho, Dong-Hyuk; Kim, Ki-Suk; Kim, Kang-Hoon; Park, Jiyoung; Kim, Yumi; Jung, Ji Hoon; Kim, Kwanil; Jung, Hee-Jae; Jang, Hyeung-Jin

    2018-02-01

    Allergic asthma is the most common type in asthma, which is defined as a chronic inflammatory disease of the lung. In this study, we investigated whether embelin (Emb), the major component of Ardisia japonica BL. (AJB), exhibits anti-inflammatory effects on allergic asthma via inhibition of NF-κB activity using A549 cells and asthmatic airway epithelial tissues. Inflammation was induced in A549 cells, a human airway epithelial cell line, by IL-1β (10 ng/ml) treatment for 4 h. The effects of Emb on NF-κB activity and COX-2 protein expression in inflamed airway epithelial cells and human asthmatic airway epithelial tissues were analyzed via western blot. The secretion levels of NF-κB-mediated cytokines/chemokines, including IL-4, 6, 9, 13, TNF-α and eotaxin, were measured by a multiplex assay. Emb significantly blocked NF-κB activity in IL-1β-treated A549 cells and human asthmatic airway epithelial tissues. COX-2 expression was also reduced in both IL-1β-treated A549 cells and asthmatic tissues Emb application. Emb significantly reduced the secretion of IL-4, IL-6 and eotaxin in human asthmatic airway epithelial tissues by inhibiting activity of NF-κB. The results of this study suggest that Emb may be used as an anti-inflammatory agent via inhibition of NF-κB and related cytokines.

  7. Airway responses towards allergens - from the airway epithelium to T cells

    DEFF Research Database (Denmark)

    Papazian, Dick; Hansen, Søren; Würtzen, Peter A

    2015-01-01

    -damaged, healthy epithelium lowers the DCs ability to induce inflammatory T cell responses towards allergens. The purpose of this review is to summarize the current knowledge on which signals from the airway epithelium, from first contact with inhaled allergens all the way to the ensuing Th2 cell responses...

  8. Exercise induced dyspnea in the young. Larynx as the bottleneck of the airways.

    Science.gov (United States)

    Røksund, Ola Drange; Maat, Robert Christiaan; Heimdal, John Helge; Olofsson, Jan; Skadberg, Britt Torunn; Halvorsen, Thomas

    2009-12-01

    Exercise induced asthma may symptomatically be difficult to differentiate from exercise related obstruction in the upper airways, sometimes leading to diagnostic confusion and inappropriate treatment. Larynx accounts for a significant fraction of total airway resistance, but its role as a limiting factor for airflow during exercise has been hampered by lack of diagnostic tools. We aimed to study laryngeal function in exercising humans by transnasal laryngoscopy. Continuous video recording of the larynx was performed in parallel with continuous film recording of the upper part of the body and recording of breath sounds in subjects running to respiratory distress or exhaustion on a treadmill. A successful examination was obtained in 20 asymptomatic volunteers and 151 (91%) of 166 young patients with a history of inspiratory distress or stridor during exercise. At rest, six patients had abnormal laryngeal findings. During exercise, a moderate or severe adduction of laryngeal structures was observed in parallel with increasing inspiratory distress in 113 (75%) patients. In 109 of these, adduction started within supraglottic structures, followed by adduction of the vocal cords in 88. In four patients, laryngeal adduction started in the vocal cords, involving supraglottic structures secondarily in three. Larynx can safely be studied throughout a maximum intensity exercise treadmill test. A characteristic laryngeal response pattern to exercise was visualised in a large proportion of patients with suspected upper airway obstruction. Laryngoscopy during ongoing symptoms is recommended for proper assessment of these patients.

  9. Curcumin regulates airway epithelial cell cytokine responses to the pollutant cadmium

    International Nuclear Information System (INIS)

    Rennolds, Jessica; Malireddy, Smitha; Hassan, Fatemat; Tridandapani, Susheela; Parinandi, Narasimham; Boyaka, Prosper N.; Cormet-Boyaka, Estelle

    2012-01-01

    Highlights: ► Cadmium induces secretion of IL-6 and IL-8 by two distinct pathways. ► Cadmium increases NAPDH oxidase activity leading to Erk activation and IL-8 secretion. ► Curcumin prevents cadmium-induced secretion of both IL-6 and IL-8 by airway cells. ► Curcumin could be use to suppress lung inflammation due to cadmium inhalation. -- Abstract: Cadmium is a toxic metal present in the environment and its inhalation can lead to pulmonary disease such as lung cancer and chronic obstructive pulmonary disease. These lung diseases are characterized by chronic inflammation. Here we show that exposure of human airway epithelial cells to cadmium promotes a polarized apical secretion of IL-6 and IL-8, two pivotal pro-inflammatory cytokines known to play an important role in pulmonary inflammation. We also determined that two distinct pathways controlled secretion of these proinflammatory cytokines by human airway epithelial cells as cadmium-induced IL-6 secretion occurs via an NF-κB dependent pathway, whereas IL-8 secretion involves the Erk1/2 signaling pathway. Interestingly, the natural antioxidant curcumin could prevent both cadmium-induced IL-6 and IL-8 secretion by human airway epithelial cells. In conclusion, curcumin could be used to prevent airway inflammation due to cadmium inhalation.

  10. Differential distribution of inflammatory cells in large and small airways in smokers

    NARCIS (Netherlands)

    Battaglia, Salvatore; Mauad, Thais; van Schadewijk, Annemarie M.; Vignola, Antonia M.; Rabe, Klaus F.; Bellia, Vincenzo; Sterk, Peter J.; Hiemstra, Pieter S.

    2007-01-01

    BACKGROUND: Smoking induces structural changes in the airways, and is considered a major factor in the development of airflow obstruction in chronic obstructive pulmonary disease. However, differences in inflammatory cell distribution between large airways (LA) and small airways (SA) have not been

  11. Recombinant Mycobacterium bovis BCG producing IL-18 reduces IL-5 production and bronchoalveolar eosinophilia induced by an allergic reaction.

    Science.gov (United States)

    Biet, F; Duez, C; Kremer, L; Marquillies, P; Amniai, L; Tonnel, A-B; Locht, C; Pestel, J

    2005-08-01

    Allergic reactions occur through the exacerbated induction of a Th2 cell type expression profile and can be prevented by agents favoring a Th1 profile. Bacillus Calmette-Guérin (BCG) is able to induce high IFN-gamma levels and has been shown to decrease experimentally induced allergy. The induction of IFN-gamma is mediated by interleukin (IL)-12 known to be secreted upon mycobacterial infections and can be enhanced by IL-18 acting in synergy with IL-12. We evaluated the ability of a recombinant BCG strain producing IL-18 (rBCG) to modify the Th2 type responses in a murine model of ovalbumin (OVA)-dependent allergic reaction. Mice were injected intraperitoneally or intranasally with OVA at days 0 and 15 and exposed to an OVA aerosol challenge at days 29, 30, 31 and 34. At days 0 and 15, two additional groups of mice received OVA together with 5 x 10(6) colony forming units of either rBCG or nonrecombinant BCG. A time-course analysis of OVA-specific immunoglobulin (Ig)E, IgG1 and IgG2a levels indicated no significant difference between the three groups of mice. However, following in vitro stimulation with OVA, lymph node cells from rBCG-treated mice produced less IL-5 and more IFN-gamma than those of mice injected with nonrecombinant BCG. In addition, 48 h after the last OVA challenge, a strong reduction of bronchoalveolar eosinophilia was found in the rBCG-injected mice compared to the nontreated or nonrecombinant BCG-treated groups. These results indicate that the production of IL-18 by rBCG may enhance the immunomodulatory properties of BCG that suppress pulmonary Th2 responses and, in particular, decrease airway eosinophilia.

  12. Restoring Cystic Fibrosis Transmembrane Conductance Regulator Function Reduces Airway Bacteria and Inflammation in People with Cystic Fibrosis and Chronic Lung Infections.

    Science.gov (United States)

    Hisert, Katherine B; Heltshe, Sonya L; Pope, Christopher; Jorth, Peter; Wu, Xia; Edwards, Rachael M; Radey, Matthew; Accurso, Frank J; Wolter, Daniel J; Cooke, Gordon; Adam, Ryan J; Carter, Suzanne; Grogan, Brenda; Launspach, Janice L; Donnelly, Seamas C; Gallagher, Charles G; Bruce, James E; Stoltz, David A; Welsh, Michael J; Hoffman, Lucas R; McKone, Edward F; Singh, Pradeep K

    2017-06-15

    Previous work indicates that ivacaftor improves cystic fibrosis transmembrane conductance regulator (CFTR) activity and lung function in people with cystic fibrosis and G551D-CFTR mutations but does not reduce density of bacteria or markers of inflammation in the airway. These findings raise the possibility that infection and inflammation may progress independently of CFTR activity once cystic fibrosis lung disease is established. To better understand the relationship between CFTR activity, airway microbiology and inflammation, and lung function in subjects with cystic fibrosis and chronic airway infections. We studied 12 subjects with G551D-CFTR mutations and chronic airway infections before and after ivacaftor. We measured lung function, sputum bacterial content, and inflammation, and obtained chest computed tomography scans. Ivacaftor produced rapid decreases in sputum Pseudomonas aeruginosa density that began within 48 hours and continued in the first year of treatment. However, no subject eradicated their infecting P. aeruginosa strain, and after the first year P. aeruginosa densities rebounded. Sputum total bacterial concentrations also decreased, but less than P. aeruginosa. Sputum inflammatory measures decreased significantly in the first week of treatment and continued to decline over 2 years. Computed tomography scans obtained before and 1 year after ivacaftor treatment revealed that ivacaftor decreased airway mucous plugging. Ivacaftor caused marked reductions in sputum P. aeruginosa density and airway inflammation and produced modest improvements in radiographic lung disease in subjects with G551D-CFTR mutations. However, P. aeruginosa airway infection persisted. Thus, measures that control infection may be required to realize the full benefits of CFTR-targeting treatments.

  13. Beneficial effects of ursodeoxycholic acid via inhibition of airway remodelling, apoptosis of airway epithelial cells, and Th2 immune response in murine model of chronic asthma.

    Science.gov (United States)

    Işık, S; Karaman, M; Çilaker Micili, S; Çağlayan-Sözmen, Ş; Bağrıyanık, H Alper; Arıkan-Ayyıldız, Z; Uzuner, N; Karaman, Ö

    In previous studies, anti-inflammatory, anti-apoptotic and immunomodulatory effects of ursodeoxycholic acid (UDCA) on liver diseases have been shown. In this study, we aimed to investigate the effects of UDCA on airway remodelling, epithelial apoptosis, and T Helper (Th)-2 derived cytokine levels in a murine model of chronic asthma. Twenty-seven BALB/c mice were divided into five groups; PBS-Control, OVA-Placebo, OVA-50mg/kg UDCA, OVA-150mg/kg UDCA, OVA-Dexamethasone. Mice in groups OVA-50mg/kg UDCA, OVA-150mg/kg UDCA, OVA-Dexamethasone received the UDCA (50mg/kg), UDCA (150mg/kg), and dexamethasone, respectively. Epithelium thickness, sub-epithelial smooth muscle thickness, number of mast and goblet cells of samples isolated from the lung were measured. Immunohistochemical scorings of the lung tissue for matrix metalloproteinase-9 (MMP-9), vascular endothelial growth factor (VEG-F), transforming growth factor-beta (TGF-β), terminal deoxynucleotidyl transferase-mediated dUTP nick endlabeling (TUNEL) and cysteine-dependent aspartate-specific proteases (caspase)-3 were determined. IL-4, IL-5, IL-13, Nitric oxide, ovalbumin-specific immunoglobulin (Ig) E levels were quantified. The dose of 150mg/kg UDCA treatment led to lower epithelial thickness, sub-epithelial smooth muscle thickness, goblet and mast cell numbers compared to placebo. Except for MMP-9 and TUNEL all immunohistochemical scores were similar in both UDCA treated groups and the placebo. All cytokine levels were significantly lower in group IV compared to the placebo. These findings suggested that the dose of 150mg/kg UDCA improved all histopathological changes of airway remodelling and its beneficial effects might be related to modulating Th-2 derived cytokines and the inhibition of apoptosis of airway epithelial cells. Copyright © 2017 SEICAP. Published by Elsevier España, S.L.U. All rights reserved.

  14. Airways obstruction, coal mining, and disability.

    OpenAIRE

    Lapp, N L; Morgan, W K; Zaldivar, G

    1994-01-01

    It has recently been suggested that the inhalation of coal in the absence of complicated coal workers' pneumoconiosis (CWP) or smoking can lead to disabling airways obstruction. The cause of such obstruction has been variously attributed to emphysema or bronchitis. The frequency of significant airways obstruction in a group of United States coal miners seeking compensation for occupationally induced pulmonary impairment was therefore determined. In a sample of 611 "Black Lung" claimants there...

  15. Monovalent engagement of the BCR activates ovalbumin-specific transnuclear B cells

    NARCIS (Netherlands)

    Avalos, Ana M.; Bilate, Angelina M.; Witte, Martin D.; Tai, Albert K.; He, Jiang; Frushicheva, Maria P.; Thill, Peter D.; Meyer-Wentrup, Friederike; Theile, Christopher S.; Chakraborty, Arup K.; Zhuang, Xiaowei; Ploegh, Hidde L.

    2014-01-01

    Valency requirements for B cell activation upon antigen encounter are poorly understood. OB1 transnuclear B cells express an IgG1 B cell receptor (BCR) specific for ovalbumin (OVA), the epitope of which can be mimicked using short synthetic peptides to allow antigen-specific engagement of the BCR.

  16. GS143, an IκB ubiquitination inhibitor, inhibits allergic airway inflammation in mice

    International Nuclear Information System (INIS)

    Hirose, Koichi; Wakashin, Hidefumi; Oki, Mie; Kagami, Shin-ichiro; Suto, Akira; Ikeda, Kei; Watanabe, Norihiko; Iwamoto, Itsuo; Furuichi, Yasuhiro; Nakajima, Hiroshi

    2008-01-01

    Asthma is characterized by airway inflammation with intense eosinophil infiltration and mucus hyper-production, in which antigen-specific Th2 cells play critical roles. Nuclear factor-κB (NF-κB) pathway has been demonstrated to be essential for the production of Th2 cytokines and chemokines in the airways in murine asthma models. In the present study, we examined the effect of GS143, a novel small-molecule inhibitor of IκB ubiquitination, on antigen-induced airway inflammation and Th2 cytokine production in mice. Intranasal administration of GS143 prior to antigen challenge suppressed antigen-induced NF-κB activation in the lung of sensitized mice. Intranasal administration of GS143 also inhibited antigen-induced eosinophil and lymphocyte recruitment into the airways as well as the expression of Th2 cytokines and eotaxin in the airways. Moreover, GS143 inhibited antigen-induced differentiation of Th2 cells but not of Th1 cells in vitro. Taken together, these results suggest that IκB ubiquitination inhibitor may have therapeutic potential against asthma

  17. Early-life viral infection and allergen exposure interact to induce an asthmatic phenotype in mice

    Directory of Open Access Journals (Sweden)

    Asquith Kelly L

    2010-02-01

    Full Text Available Abstract Background Early-life respiratory viral infections, notably with respiratory syncytial virus (RSV, increase the risk of subsequent development of childhood asthma. The purpose of this study was to assess whether early-life infection with a species-specific model of RSV and subsequent allergen exposure predisposed to the development of features of asthma. Methods We employed a unique combination of animal models in which BALB/c mice were neonatally infected with pneumonia virus of mice (PVM, which replicates severe RSV disease in human infants and following recovery, were intranasally sensitised with ovalbumin. Animals received low-level challenge with aerosolised antigen for 4 weeks to elicit changes of chronic asthma, followed by a single moderate-level challenge to induce an exacerbation of inflammation. We then assessed airway inflammation, epithelial changes characteristic of remodelling, airway hyperresponsiveness (AHR and host immunological responses. Results Allergic airway inflammation, including recruitment of eosinophils, was prominent only in animals that had recovered from neonatal infection with PVM and then been sensitised and chronically challenged with antigen. Furthermore, only these mice exhibited an augmented Th2-biased immune response, including elevated serum levels of anti-ovalbumin IgE and IgG1 as well as increased relative expression of Th2-associated cytokines IL-4, IL-5 and IL-13. By comparison, development of AHR and mucous cell change were associated with recovery from PVM infection, regardless of subsequent allergen challenge. Increased expression of IL-25, which could contribute to induction of a Th2 response, was demonstrable in the lung following PVM infection. Signalling via the IL-4 receptor α chain was crucial to the development of allergic inflammation, mucous cell change and AHR, because all of these were absent in receptor-deficient mice. In contrast, changes of remodelling were evident in mice

  18. Cigarette Smoke and Estrogen Signaling in Human Airway Smooth Muscle

    Directory of Open Access Journals (Sweden)

    Venkatachalem Sathish

    2015-06-01

    Full Text Available Aims: Cigarette smoke (CS in active smokers and second-hand smoke exposure exacerbate respiratory disorders such as asthma and chronic bronchitis. While women are known to experience a more asthmatic response to CS than emphysema in men, there is limited information on the mechanisms of CS-induced airway dysfunction. We hypothesize that CS interferes with a normal (protective bronchodilatory role of estrogens, thus worsening airway contractility. Methods: We tested effects of cigarette smoke extract (CSE on 17β-estradiol (E2 signaling in enzymatically-dissociated bronchial airway smooth muscle (ASM obtained from lung samples of non-smoking female patients undergoing thoracic surgery. Results: In fura-2 loaded ASM cells, CSE increased intracellular calcium ([Ca2+]i responses to 10µM histamine. Acute exposure to physiological concentrations of E2 decreased [Ca2+]i responses. However, in 24h exposed CSE cells, although expression of estrogen receptors was increased, the effect of E2 on [Ca2+]i was blunted. Acute E2 exposure also decreased store-operated Ca2+ entry and inhibited stromal interaction molecule 1 (STIM1 phosphorylation: effects blunted by CSE. Acute exposure to E2 increased cAMP, but less so in 24h CSE-exposed cells. 24h CSE exposure increased S-nitrosylation of ERα. Furthermore, 24h CSE-exposed bronchial rings showed increased bronchoconstrictor agonist responses that were not reduced as effectively by E2 compared to non-CSE controls. Conclusion: These data suggest that CS induces dysregulation of estrogen signaling in ASM, which could contribute to increased airway contractility in women exposed to CS.

  19. Staphylococcus aureus α-Toxin Induces Actin Filament Remodeling in Human Airway Epithelial Model Cells.

    Science.gov (United States)

    Ziesemer, Sabine; Eiffler, Ina; Schönberg, Alfrun; Müller, Christian; Hochgräfe, Falko; Beule, Achim G; Hildebrandt, Jan-Peter

    2018-04-01

    Exposure of cultured human airway epithelial model cells (16HBE14o-, S9) to Staphylococcus aureus α-toxin (hemolysin A, Hla) induces changes in cell morphology and cell layer integrity that are due to the inability of the cells to maintain stable cell-cell or focal contacts and to properly organize their actin cytoskeletons. The aim of this study was to identify Hla-activated signaling pathways involved in regulating the phosphorylation level of the actin-depolymerizing factor cofilin. We used recombinant wild-type hemolysin A (rHla) and a variant of Hla (rHla-H35L) that is unable to form functional transmembrane pores to treat immortalized human airway epithelial cells (16HBE14o-, S9) as well as freshly isolated human nasal tissue. Our results indicate that rHla-mediated changes in cofilin phosphorylation require the formation of functional Hla pores in the host cell membrane. Formation of functional transmembrane pores induced hypophosphorylation of cofilin at Ser3, which was mediated by rHla-induced attenuation of p21-activated protein kinase and LIM kinase activities. Because dephosphorylation of pSer3-cofilin results in activation of this actin-depolymerizing factor, treatment of cells with rHla resulted in loss of actin stress fibers from the cells and destabilization of cell shape followed by the appearance of paracellular gaps in the cell layers. Activation of protein kinase A or activation of small GTPases (Rho, Rac, Cdc42) do not seem to be involved in this response.

  20. Suppression of Th17-polarized airway inflammation by rapamycin.

    Science.gov (United States)

    Joean, Oana; Hueber, Anja; Feller, Felix; Jirmo, Adan Chari; Lochner, Matthias; Dittrich, Anna-Maria; Albrecht, Melanie

    2017-11-10

    Because Th17-polarized airway inflammation correlates with poor control in bronchial asthma and is a feature of numerous other difficult-to-treat inflammatory lung diseases, new therapeutic approaches for this type of airway inflammation are necessary. We assessed different licensed anti-inflammatory agents with known or expected efficacy against Th17-polarization in mouse models of Th17-dependent airway inflammation. Upon intravenous transfer of in vitro derived Th17 cells and intranasal challenge with the corresponding antigen, we established acute and chronic murine models of Th17-polarised airway inflammation. Consecutively, we assessed the efficacy of methylprednisolone, roflumilast, azithromycin, AM80 and rapamycin against acute or chronic Th17-dependent airway inflammation. Quantifiers for Th17-associated inflammation comprised: bronchoalveolar lavage (BAL) differential cell counts, allergen-specific cytokine and immunoglobulin secretion, as well as flow cytometric phenotyping of pulmonary inflammatory cells. Only rapamycin proved effective against acute Th17-dependent airway inflammation, accompanied by increased plasmacytoid dendritic cells (pDCs) and reduced neutrophils as well as reduced CXCL-1 levels in BAL. Chronic Th17-dependent airway inflammation was unaltered by rapamycin treatment. None of the other agents showed efficacy in our models. Our results demonstrate that Th17-dependent airway inflammation is difficult to treat with known agents. However, we identify rapamycin as an agent with inhibitory potential against acute Th17-polarized airway inflammation.

  1. Effect of aging on airway remodeling and muscarinic receptors in a murine acute asthma model

    Directory of Open Access Journals (Sweden)

    Kang JY

    2013-10-01

    Full Text Available Ji Young Kang, Sook Young Lee, Chin Kook Rhee, Seung Joon Kim, Soon Seog Kwon, Young Kyoon KimDepartment of Internal Medicine, College of Medicine, Catholic University of Korea, Seoul, KoreaBackground and objectives: The influence of aging on the development of asthma has not been studied thoroughly. The aim of this study was to investigate age-related airway responses involving lung histology and expression of muscarinic receptors in a murine model of acute asthma. Methods: Female BALB/c mice at the ages of 6 weeks and 6, 9, and 12 months were sensitized and challenged with ovalbumin (OVA for 1 month (n = 8–12 per group. We analyzed inflammatory cells and T-helper (Th2 cytokines in bronchoalveolar lavage (BAL fluid and parameters of airway remodeling and expression of muscarinic receptors in lung tissue. Results: Among the OVA groups, total cell and eosinophil numbers in BAL fluid were significantly higher in the older (6-, 9-, and 12-month-old mice than in the young (6-week-old mice. Interleukin (IL 4 (IL-4 concentration increased, but IL-5 and IL-13 concentrations showed a decreased tendency, with age. IL-17 concentration tended to increase with age, which did not reach statistical significance. periodic acid-Schiff (PAS staining area, peribronchial collagen deposition, and area of α-smooth muscle staining were significantly higher in the 6-month older OVA group than in the young OVA group. The expression of the M3 and M2 muscarinic receptors tended to increase and decrease, respectively, with age. Conclusion: The aged mice showed an active and unique pattern not only on airway inflammation, but also on airway remodeling and expression of the muscarinic receptors during the development of acute asthma compared with the young mice. These findings suggest that the aging process affects the pathogenesis of acute asthma and age-specific approach might be more appropriate for better asthma control in a clinical practice.Keywords: aging, asthma

  2. Virally inactivated human platelet concentrate lysate induces regulatory T cells and immunosuppressive effect in a murine asthma model.

    Science.gov (United States)

    Lee, Yueh-Lun; Lee, Lin-Wen; Su, Chen-Yao; Hsiao, George; Yang, Yi-Yuan; Leu, Sy-Jye; Shieh, Ying-Hua; Burnouf, Thierry

    2013-09-01

    Platelet concentrate lysates (PCLs) are increasingly used in regenerative medicine. We have developed a solvent/detergent (S/D)-treated PCL. The functional properties of this preparation should be unveiled. We hypothesized that, due to transforming growth factor-β1 (TGF-β1) content, PCLs may exert immunosuppressive and anti-inflammatory functions. PCL was prepared by S/D treatment, oil extraction, and hydrophobic interaction chromatography. The content of TGF-β in PCL was determined by enzyme-linked immunosorbent assay. Cultured CD4+ T cells were used to investigate the effects of PCL on expression of transcription factor forkhead box P3 (Foxp3), the inhibition of T-cell proliferation, and cytokine production. The regulatory function of PCL-converted CD4+ T cells was analyzed by suppressive assay. The BALB/c mice were given PCL-converted CD4+ T cells before ovalbumin (OVA) sensitization and challenge using an asthma model. Inflammatory parameters, such as the level of immunoglobulin E (IgE), airway hyperresponsiveness (AHR), bronchial lavage fluid eosinophils, and cytokines were assayed. Recombinant human (rHu) TGF-β1 was used as control. PCL significantly enhanced the development of CD4+Foxp3+-induced regulatory T cells (iTregs). Converted iTregs produced neither Th1 nor Th2 cytokines and inhibited normal T-cell proliferation. PCL- and rHuTGF-β-converted CD4+ T cells prevented OVA-induced asthma. PCL- and rHuTGF-β-modified T cells both significantly reduced expression levels of OVA-specific IgE and significantly inhibited the development of AHR, airway eosinophilia, and Th2 responses in mice. S/D-treated PCL promotes Foxp3+ iTregs and exerts immunosuppressive and anti-inflammatory properties. This finding may help to understand the clinical properties of platelet lysates. © 2013 American Association of Blood Banks.

  3. Innate lymphoid cells contribute to allergic airway disease exacerbation by obesity.

    Science.gov (United States)

    Everaere, Laetitia; Ait-Yahia, Saliha; Molendi-Coste, Olivier; Vorng, Han; Quemener, Sandrine; LeVu, Pauline; Fleury, Sebastien; Bouchaert, Emmanuel; Fan, Ying; Duez, Catherine; de Nadai, Patricia; Staels, Bart; Dombrowicz, David; Tsicopoulos, Anne

    2016-11-01

    Epidemiologic and clinical observations identify obesity as an important risk factor for asthma exacerbation, but the underlying mechanisms remain poorly understood. Type 2 innate lymphoid cells (ILC2s) and type 3 innate lymphoid cells (ILC3s) have been implicated, respectively, in asthma and adipose tissue homeostasis and in obesity-associated airway hyperresponsiveness (AHR). We sought to determine the potential involvement of innate lymphoid cells (ILCs) in allergic airway disease exacerbation caused by high-fat diet (HFD)-induced obesity. Obesity was induced by means of HFD feeding, and allergic airway inflammation was subsequently induced by means of intranasal administration of house dust mite (HDM) extract. AHR, lung and visceral adipose tissue inflammation, humoral response, cytokines, and innate and adaptive lymphoid populations were analyzed in the presence or absence of ILCs. HFD feeding exacerbated allergic airway disease features, including humoral response, airway and tissue eosinophilia, AHR, and T H 2 and T H 17 pulmonary profiles. Notably, nonsensitized obese mice already exhibited increased lung ILC counts and tissue eosinophil infiltration compared with values in lean mice in the absence of AHR. The numbers of total and cytokine-expressing lung ILC2s and ILC3s further increased in HDM-challenged obese mice compared with those in HDM-challenged lean mice, and this was accompanied by high IL-33 and IL-1β levels and decreased ILC markers in visceral adipose tissue. Furthermore, depletion of ILCs with an anti-CD90 antibody, followed by T-cell reconstitution, led to a profound decrease in allergic airway inflammatory features in obese mice, including T H 2 and T H 17 infiltration. These results indicate that HFD-induced obesity might exacerbate allergic airway inflammation through mechanisms involving ILC2s and ILC3s. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  4. Curcumin regulates airway epithelial cell cytokine responses to the pollutant cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Rennolds, Jessica; Malireddy, Smitha; Hassan, Fatemat; Tridandapani, Susheela; Parinandi, Narasimham [Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, The Ohio State University, Columbus, OH 43210 (United States); Boyaka, Prosper N. [Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210 (United States); Cormet-Boyaka, Estelle, E-mail: Estelle.boyaka@osumc.edu [Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, The Ohio State University, Columbus, OH 43210 (United States)

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer Cadmium induces secretion of IL-6 and IL-8 by two distinct pathways. Black-Right-Pointing-Pointer Cadmium increases NAPDH oxidase activity leading to Erk activation and IL-8 secretion. Black-Right-Pointing-Pointer Curcumin prevents cadmium-induced secretion of both IL-6 and IL-8 by airway cells. Black-Right-Pointing-Pointer Curcumin could be use to suppress lung inflammation due to cadmium inhalation. -- Abstract: Cadmium is a toxic metal present in the environment and its inhalation can lead to pulmonary disease such as lung cancer and chronic obstructive pulmonary disease. These lung diseases are characterized by chronic inflammation. Here we show that exposure of human airway epithelial cells to cadmium promotes a polarized apical secretion of IL-6 and IL-8, two pivotal pro-inflammatory cytokines known to play an important role in pulmonary inflammation. We also determined that two distinct pathways controlled secretion of these proinflammatory cytokines by human airway epithelial cells as cadmium-induced IL-6 secretion occurs via an NF-{kappa}B dependent pathway, whereas IL-8 secretion involves the Erk1/2 signaling pathway. Interestingly, the natural antioxidant curcumin could prevent both cadmium-induced IL-6 and IL-8 secretion by human airway epithelial cells. In conclusion, curcumin could be used to prevent airway inflammation due to cadmium inhalation.

  5. Non-genomic estrogen regulation of ion transport and airway surface liquid dynamics in cystic fibrosis bronchial epithelium.

    Directory of Open Access Journals (Sweden)

    Vinciane Saint-Criq

    Full Text Available Male cystic fibrosis (CF patients survive longer than females and lung exacerbations in CF females vary during the estrous cycle. Estrogen has been reported to reduce the height of the airway surface liquid (ASL in female CF bronchial epithelium. Here we investigated the effect of 17β-estradiol on the airway surface liquid height and ion transport in normal (NuLi-1 and CF (CuFi-1 bronchial epithelial monolayers. Live cell imaging using confocal microscopy revealed that airway surface liquid height was significantly higher in the non-CF cells compared to the CF cells. 17β-estradiol (0.1-10 nM reduced the airway surface liquid height in non-CF and CF cells after 30 min treatment. Treatment with the nuclear-impeded Estrogen Dendrimer Conjugate mimicked the effect of free estrogen by reducing significantly the airway surface liquid height in CF and non-CF cells. Inhibition of chloride transport or basolateral potassium recycling decreased the airway surface liquid height and 17β-estradiol had no additive effect in the presence of these ion transporter inhibitors. 17β-estradiol decreased bumetanide-sensitive transepithelial short-circuit current in non-CF cells and prevented the forskolin-induced increase in ASL height. 17β-estradiol stimulated an amiloride-sensitive transepithelial current and increased ouabain-sensitive basolateral short-circuit current in CF cells. 17β-estradiol increased PKCδ activity in CF and non-CF cells. These results demonstrate that estrogen dehydrates CF and non-CF ASL, and these responses to 17β-estradiol are non-genomic rather than involving the classical nuclear estrogen receptor pathway. 17β-estradiol acts on the airway surface liquid by inhibiting cAMP-mediated chloride secretion in non-CF cells and increasing sodium absorption via the stimulation of PKCδ, ENaC and the Na(+/K(+ATPase in CF cells.

  6. Airway Management Dilemma in a Patient with Maxillofacial Injury ...

    African Journals Online (AJOL)

    He had tracheostomy and repair of the laceration under general anaesthesia. Anaesthesia was induced with intravenous ketamine with the patient in the left lateral position while traction on the tongue using a Magill's forceps ensured patency of the airway. A classical laryngeal mask airway was subsequently inserted to ...

  7. Airway smooth muscle cells : regulators of airway inflammation

    NARCIS (Netherlands)

    Zuyderduyn, Suzanne

    2007-01-01

    Airways from asthmatic subjects are more responsive to bronchoconstrictive stimuli than airways from healthy subjects. Airway smooth muscle (ASM) cells mediate contraction of the airways by responding to the bronchoconstrictive stimuli, which was thought to be the primary role of ASM cells. In this

  8. Design of the exhale airway stents for emphysema (EASE) trial : an endoscopic procedure for reducing hyperinflation

    NARCIS (Netherlands)

    Shah, Pallav L.; Slebos, Dirk-Jan; Cardoso, Paulo F. G.; Cetti, Edward J.; Sybrecht, Gerhard W.; Cooper, Joel D.

    2011-01-01

    Background: Airway Bypass is a catheter-based, bronchoscopic procedure in which new passageways are created that bypass the collapsed airways, enabling trapped air to exit the lungs. The Exhale Airway Stents for Emphysema (EASE) Trial was designed to investigate whether Exhale (R) Drug-Eluting

  9. CD38/cADPR Signaling Pathway in Airway Disease: Regulatory Mechanisms

    Directory of Open Access Journals (Sweden)

    Deepak A. Deshpande

    2018-01-01

    Full Text Available Asthma is an inflammatory disease in which proinflammatory cytokines have a role in inducing abnormalities of airway smooth muscle function and in the development of airway hyperresponsiveness. Inflammatory cytokines alter calcium (Ca2+ signaling and contractility of airway smooth muscle, which results in nonspecific airway hyperresponsiveness to agonists. In this context, Ca2+ regulatory mechanisms in airway smooth muscle and changes in these regulatory mechanisms encompass a major component of airway hyperresponsiveness. Although dynamic Ca2+ regulation is complex, phospholipase C/inositol tris-phosphate (PLC/IP3 and CD38-cyclic ADP-ribose (CD38/cADPR are two major pathways mediating agonist-induced Ca2+ regulation in airway smooth muscle. Altered CD38 expression or enhanced cyclic ADP-ribosyl cyclase activity associated with CD38 contributes to human pathologies such as asthma, neoplasia, and neuroimmune diseases. This review is focused on investigations on the role of CD38-cyclic ADP-ribose signaling in airway smooth muscle in the context of transcriptional and posttranscriptional regulation of CD38 expression. The specific roles of transcription factors NF-kB and AP-1 in the transcriptional regulation of CD38 expression and of miRNAs miR-140-3p and miR-708 in the posttranscriptional regulation and the underlying mechanisms of such regulation are discussed.

  10. CD38/cADPR Signaling Pathway in Airway Disease: Regulatory Mechanisms

    Science.gov (United States)

    Deshpande, Deepak A.; Guedes, Alonso G. P.; Graeff, Richard; Dogan, Soner; Subramanian, Subbaya; Walseth, Timothy F.

    2018-01-01

    Asthma is an inflammatory disease in which proinflammatory cytokines have a role in inducing abnormalities of airway smooth muscle function and in the development of airway hyperresponsiveness. Inflammatory cytokines alter calcium (Ca2+) signaling and contractility of airway smooth muscle, which results in nonspecific airway hyperresponsiveness to agonists. In this context, Ca2+ regulatory mechanisms in airway smooth muscle and changes in these regulatory mechanisms encompass a major component of airway hyperresponsiveness. Although dynamic Ca2+ regulation is complex, phospholipase C/inositol tris-phosphate (PLC/IP3) and CD38-cyclic ADP-ribose (CD38/cADPR) are two major pathways mediating agonist-induced Ca2+ regulation in airway smooth muscle. Altered CD38 expression or enhanced cyclic ADP-ribosyl cyclase activity associated with CD38 contributes to human pathologies such as asthma, neoplasia, and neuroimmune diseases. This review is focused on investigations on the role of CD38-cyclic ADP-ribose signaling in airway smooth muscle in the context of transcriptional and posttranscriptional regulation of CD38 expression. The specific roles of transcription factors NF-kB and AP-1 in the transcriptional regulation of CD38 expression and of miRNAs miR-140-3p and miR-708 in the posttranscriptional regulation and the underlying mechanisms of such regulation are discussed. PMID:29576747

  11. PPARγ Ligands Regulate Noncontractile and Contractile Functions of Airway Smooth Muscle: Implications for Asthma Therapy

    Directory of Open Access Journals (Sweden)

    Chantal Donovan

    2012-01-01

    Full Text Available In asthma, the increase in airway smooth muscle (ASM can contribute to inflammation, airway wall remodeling and airway hyperresponsiveness (AHR. Targetting peroxisome proliferator-activated receptor γ (PPARγ, a receptor upregulated in ASM in asthmatic airways, may provide a novel approach to regulate these contributions. This review summarises experimental evidence that PPARγ ligands, such as rosiglitazone (RGZ and pioglitazone (PGZ, inhibit proliferation and inflammatory cytokine production from ASM in vitro. In addition, inhaled administration of these ligands reduces inflammatory cell infiltration and airway remodelling in mouse models of allergen-induced airways disease. PPARγ ligands can also regulate ASM contractility, with acute treatment eliciting relaxation of mouse trachea in vitro through a PPARγ-independent mechanism. Chronic treatment can protect against the loss of bronchodilator sensitivity to β2-adrenoceptor agonists and inhibit the development of AHR associated with exposure to nicotine in utero or following allergen challenge. Of particular interest, a small clinical trial has shown that oral RGZ treatment improves lung function in smokers with asthma, a group that is generally unresponsive to conventional steroid treatment. These combined findings support further investigation of the potential for PPARγ agonists to target the noncontractile and contractile functions of ASM to improve outcomes for patients with poorly controlled asthma.

  12. Role of IRE1α/XBP-1 in Cystic Fibrosis Airway Inflammation

    Directory of Open Access Journals (Sweden)

    Carla M. P. Ribeiro

    2017-01-01

    Full Text Available Cystic fibrosis (CF pulmonary disease is characterized by chronic airway infection and inflammation. The infectious and inflamed CF airway environment impacts on the innate defense of airway epithelia and airway macrophages. The CF airway milieu induces an adaptation in these cells characterized by increased basal inflammation and a robust inflammatory response to inflammatory mediators. Recent studies have indicated that these responses depend on activation of the unfolded protein response (UPR. This review discusses the contribution of airway epithelia and airway macrophages to CF airway inflammatory responses and specifically highlights the functional importance of the UPR pathway mediated by IRE1/XBP-1 in these processes. These findings suggest that targeting the IRE1/XBP-1 UPR pathway may be a therapeutic strategy for CF airway disease.

  13. Spin-labelling study of interactions of ovalbumin with multilamellar liposomes and specific anti-ovalbumin antibodies.

    Science.gov (United States)

    Brgles, Marija; Mirosavljević, Krunoslav; Noethig-Laslo, Vesna; Frkanec, Ruza; Tomasić, Jelka

    2007-03-10

    Ovalbumin (OVA) has been used continuously as the model antigen in numerous studies of immune reactions and antigen processing, very often encapsulated into liposomes. The purpose of this work was to study the possible interactions of spin-labelled OVA and lipids in liposomal membranes using electron spin resonance (ESR) spectroscopy. OVA was covalently spin-labelled with 4-maleimido-2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO-maleimide), characterized and encapsulated into multilamellar, negatively charged liposomes. ESR spectra of this liposomal preparation gave evidence for the interaction of OVA with the lipid bilayers. Such an interaction was also evidenced by the ESR spectra of liposomal preparation containing OVA, where liposomes were spin-labelled with n-doxyl stearic acids. The spin-labelled OVA retains its property to bind specific anti-OVA antibodies, as shown by ESR spectroscopy, but also in ELISA for specific anti-OVA IgG.

  14. Enhanced airway dilation by positive-pressure inflation of the lungs compared with active deep inspiration in patients with asthma

    NARCIS (Netherlands)

    Slats, Annelies M.; Janssen, Kirsten; de Jeu, Ronald C.; van der Plas, Dirk T.; Schot, Robert; van den Aardweg, Joost G.; Sterk, Peter J.

    2008-01-01

    Deep inspiration temporarily reduces induced airways obstruction in healthy subjects. This bronchodilatory effect of deep inspiration is impaired in asthma. Passive machine-assisted lung inflation may augment bronchodilation compared with an active deep inspiration in patients with asthma by either

  15. Treatment with 1,25(OH){sub 2}D{sub 3}induced HDAC2 expression and reduced NF-κB p65 expression in a rat model of OVA-induced asthma

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Y.; Wang, G.F.; Yang, L.; Liu, F.; Kang, J.Q.; Wang, R.L.; Gu, W.; Wang, C.Y. [Department of Gerontology Medicine, Xinhua Hospital, Shanghai Jiatong University School of Medicine, Shanghai (China)

    2015-04-28

    Recent evidence indicates that a deficiency of 1,25-dihydroxyvitamin D{sub 3} (1,25[OH]{sub 2}D{sub 3}) may influence asthma pathogenesis; however, its roles in regulating specific molecular transcription mechanisms remain unclear. We aimed to investigate the effect of 1,25(OH){sub 2}D{sub 3} on the expression and enzyme activity of histone deacetylase 2 (HDAC2) and its synergistic effects with dexamethasone (Dx) in the inhibition of inflammatory cytokine secretion in a rat asthma model. Healthy Wistar rats were randomly divided into 6 groups: control, asthma, 1,25(OH){sub 2}D{sub 3} pretreatment, 1,25(OH){sub 2}D{sub 3} treatment, Dx treatment, and Dx and 1,25(OH){sub 2}D{sub 3} treatment. Pulmonary inflammation was induced by ovalbumin (OVA) sensitization and challenge (OVA/OVA). Inflammatory cells and cytokines in the bronchoalveolar lavage (BAL) fluid and histological changes in lung tissue were examined. Nuclear factor kappa B (NF-κB) p65 and HDAC2 expression levels were assessed with Western blot analyses and quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR). Enzyme activity measurements and immunohistochemical detection of HDAC2 were also performed. Our data demonstrated that 1,25(OH){sub 2}D{sub 3} reduced the airway inflammatory response and the level of inflammatory cytokines in BAL. Although NF-κB p65 expression was attenuated in the pretreatment and treatment groups, the expression and enzyme activity of HDAC2 were increased. In addition, 1,25(OH){sub 2}D{sub 3} and Dx had synergistic effects on the suppression of total cell infusion, cytokine release, and NF-κB p65 expression, and they also increased HDAC2 expression and activity in OVA/OVA rats. Collectively, our results indicated that 1,25(OH){sub 2}D{sub 3}might be useful as a novel HDAC2 activator in the treatment of asthma.

  16. Combined fluticasone propionate and salmeterol reduces RSV infection more effectively than either of them alone in allergen-sensitized mice

    Directory of Open Access Journals (Sweden)

    Ledford Dennis

    2006-05-01

    Full Text Available Abstract Background Respiratory syncytial virus (RSV infection is the major cause of bronchiolitis in infants and is a risk factor for the development of asthma. Allergic asthmatics are more susceptible to RSV infection and viral exacerbation. Methods Since the effectiveness of corticosteroids in treating RSV infection has been controversial, we tested fluticasone propionate (FP and salmeterol (Sal alone versus FP plus Sal (FPS on RSV-induced airway inflammation. Mice were sensitized and challenged with ovalbumin (OVA and infected with RSV. Following infection they were treated with FP, Sal, or FPS intranasally and airway hyperreactivity (AHR, inflammation and RSV titers were examined. Results The group treated with FPS showed significantly lower AHR compared to the group treated with FP or Sal alone. The group treated with FP alone showed slightly decreased (non-significant AHR compared to controls. Treatment with FPS resulted in significant decreases in the percentage of eosinophils and neutrophils in bronchoalveolar lavage fluid and in lung pathology compared to FP or Sal. FP alone decreased eosinophils but not neutrophils or lymphocytes, while Sal alone decreased eosinophils and neutrophils but not lymphocytes. FPS treatment of mice infected with RSV in the absence of allergen sensitization resulted in a 50% decrease of RSV titer in the lung and a reduction in neutrophils compared to FP or Sal. Conclusion Together, these results indicate that fluticasone in combination with salmeterol is a more effective treatment for decreasing airway hyperreactivity and inflammation than either of them alone in allergen-sensitized, RSV-infected mice.

  17. Effect of airway acidosis and alkalosis on airway vascular smooth muscle responsiveness to albuterol.

    Science.gov (United States)

    Cancado, Jose E; Mendes, Eliana S; Arana, Johana; Horvath, Gabor; Monzon, Maria E; Salathe, Matthias; Wanner, Adam

    2015-04-02

    In vitro and animal experiments have shown that the transport and signaling of β2-adrenergic agonists are pH-sensitive. Inhaled albuterol, a hydrophilic β2-adrenergic agonist, is widely used for the treatment of obstructive airway diseases. Acute exacerbations of obstructive airway diseases can be associated with changes in ventilation leading to either respiratory acidosis or alkalosis thereby affecting albuterol responsiveness in the airway. The purpose of this study was to determine if airway pH has an effect on albuterol-induced vasodilation in the airway. Ten healthy volunteers performed the following respiratory maneuvers: quiet breathing, hypocapnic hyperventilation, hypercapnic hyperventilation, and eucapnic hyperventilation (to dissociate the effect of pH from the effect of ventilation). During these breathing maneuvers, exhaled breath condensate (EBC) pH and airway blood flow response to inhaled albuterol (ΔQ̇aw) were assessed. Mean ± SE EBC pH (units) and ΔQ̇aw (μl.min(-1).mL(-1)) were 6.4 ± 0.1 and 16.8 ± 1.9 during quiet breathing, 6.3 ± 0.1 and 14.5 ± 2.4 during eucapnic hyperventilation, 6.6 ± 0.2 and -0.2 ± 1.8 during hypocapnic hyperventilation (p = 0.02 and <0.01 vs. quiet breathing), and 5.9 ± 0.1 and 2.0 ± 1.5 during hypercapnic hyperventilation (p = 0.02 and <0.02 vs quiet breathing). Albuterol responsiveness in the airway as assessed by ΔQ̇aw is pH sensitive. The breathing maneuver associated with decreased and increased EBC pH both resulted in a decreased responsiveness independent of the level of ventilation. These findings suggest an attenuated response to hydrophilic β2-adrenergic agonists during airway disease exacerbations associated with changes in pH. Registered at clinicaltrials.gov: NCT01216748 .

  18. Post-extubation airway obstruction. Literature review

    Directory of Open Access Journals (Sweden)

    Álvaro SÁNCHEZ-TABERNERO

    2017-03-01

    Full Text Available Introduction and objective: airway obstruction after extubation in any surgery is a critical event with low incidence, which may require reintubation or tracheostomy, which often otolaryngologist is required. Objective: To determine the prevalence of BVA and its causes through systematic literature review. Method: Literature review in PubMed, Scopus and Cochrane clinical trials, meta-analysis, reviews and case series and control over airway obstruction after extubation that requires reintubation in adults. Results: 6 studies and one clinical practice guidelines were selected. The most common cause of extubation failure is blocking the airway for various reasons (pharyngeal muscle weakness residual effect -often farmacologycal-, laryngospasm, vocal cord paralysis, edema of upper respiratory tract, cervical postoperative hematoma, foreign bodies or secretions. Most cases of re-intubation occurred within 2 hours after extubation. Conclusions: The most common cause of failure after general anesthesia extubation is blocking the airway generally caused by residual neuromuscular blocking effect. Airway obstruction risk increases in airway and head and neck surgery. Difficult intubation guidlines have improved performance and reduced adverse events and similar strategies must be implemented in extubation. The procedure extubation and reintubation should be documented. Working groups airway must be multidisciplinary and include specialists in otolaryngology.

  19. Decrease of Airway Allergies After Lung Transplantation Is Associated With Reduced Basophils and Eosinophils.

    Science.gov (United States)

    Niedzwiecki, M; Yamada, Y; Inci, I; Weder, W; Jungraithmayr, W

    2016-01-01

    Allergies are hypersensitive reactions of the immune system on antigen exposure similar to immune reactions after transplantation (Tx). Their activity can change after Tx. The lung as a transplantable organ is challenged two-fold, by antigens from the blood and the air environment. Herein we analyzed if airway allergies change after lung Tx. We systematically reviewed patients' airway allergies before and after lung Tx between 1992 and 2014. The course of lymphocytes, thrombocytes, and leukocytes, among them neutrophils, eosinophils, and basophils, was analyzed in patients in whom airway allergies have changed and in whom they did not change. From 362 lung transplanted patients, 44 patients had suffered from allergies before Tx (12.2%). In 20 of these patients (45.5%), airway allergies disappeared completely within 1 year after lung Tx and were persistently absent thereafter. In these patients, basophils and eosinophils decreased significantly (P allergies did not disappear. Leukocytes overall, and in particular, neutrophils, decreased significantly in patients whose allergy disappeared (P allergies disappeared in almost half of cases after lung Tx. Along with this reduction, basophils and eosinophils decreased as potentially responsible cells for this phenomenon. These findings may stimulate intensified research on basophils and eosinophils as major drivers of airway allergies. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. [Effect of airway humidification on lung injury induced by mechanical ventilation].

    Science.gov (United States)

    Song, Junjie; Jiang, Min; Qi, Guiyan; Xie, Yuying; Wang, Huaiquan; Tian, Yonggang; Qu, Jingdong; Zhang, Xiaoming; Li, Haibo

    2014-12-01

    To explore the effect of airway humidification on lung injury as a result of mechanical ventilation with different tidal volume (VT). Twenty-four male Japanese white rabbits were randomly divided into four groups: low VT with airway humidification group, high VT with airway humidification group, low VT and high VT group without humidification, with 6 rabbits in each group. Mechanical ventilation was started after intubation and lasted for 6 hours. Low VT denoted 8 mL/kg, while high VT was 16 mL/kg, fraction of inspired oxygen (FiO₂) denoted 0.40, positive end-expiratory pressure (PEEP) was 0. Temperature at Y piece of circuit in airway humidification groups was monitored and controlled at 40 centigrade. Arterial blood gas analysis, including pH value, arterial partial pressure of oxygen (PaO₂), arterial partial pressure of carbon dioxide (PaCO₂), lung mechanics indexes, including peak airway pressure (P(peak)) and airway resistance (Raw), and lung compliance was measured at 0, 2, 4, 6 hours of mechanical ventilation. The levels of tumor necrosis factor-α (TNF-α) and interleukin-8 (IL-8) in plasma and bronchoalveolar lavage fluid (BALF) were determined by enzyme linked immunosorbent assay (ELISA). The animals were sacrificed at the end of mechanical ventilation. The wet to dry (W/D) ratio of lung tissues was calculated. Histopathologic changes in the lung tissueies were observed with microscope, and lung injury score was calculated. Scanning and transmission electron microscopies were used to examine the integrity of the airway cilia and the tracheal epithelium. Compared with low V(T) group, pH value in high V(T) group was significantly increased, PaCO₂was significantly lowered, and no difference in PaO₂was found. P(peak), Raw, and lung compliance were significantly increased during mechanical ventilation. There were no significant differences in blood gas analysis and lung mechanics indexes between low V(T) with airway humidification group and low V

  1. TRPM8 mechanism of autonomic nerve response to cold in respiratory airway

    Directory of Open Access Journals (Sweden)

    Wang Cong-Yi

    2008-06-01

    Full Text Available Abstract Breathing cold air without proper temperature exchange can induce strong respiratory autonomic responses including cough, airway constriction and mucosal secretion, and can exacerbate existing asthma conditions and even directly trigger an asthma attack. Vagal afferent fiber is thought to be involved in the cold-induced respiratory responses through autonomic nerve reflex. However, molecular mechanisms by which vagal afferent fibers are excited by cold remain unknown. Using retrograde labeling, immunostaining, calcium imaging, and electrophysiological recordings, here we show that a subpopulation of airway vagal afferent nerves express TRPM8 receptors and that activation of TRPM8 receptors by cold excites these airway autonomic nerves. Thus activation of TRPM8 receptors may provoke autonomic nerve reflex to increase airway resistance. This putative autonomic response may be associated with cold-induced exacerbation of asthma and other pulmonary disorders, making TRPM8 receptors a possible target for prevention of cold-associated respiratory disorders.

  2. Awake insertion of a Laryngeal Mask Airway-Proseal™ as alternative to awake fiberoptic intubation in management of anticipated difficult airway in ambulatory surgery

    Directory of Open Access Journals (Sweden)

    Matilde Zaballos

    Full Text Available Abstract Background and objectives The decision whether to manage an ambulatory patient with a previously documented difficult airway with a supraglottic device remain controversial. We report an awake insertion of a Laryngeal Mask Airway Proseal™ in a patient with known difficult airway scheduled for ambulatory surgery. Case report A 46-yr-old woman was programmed as a day case surgery for breast nodule resection. Her anesthetic record included an impossible intubation with cancelation of surgery and subsequent awake fibroscopic intubation. She reported emotional distress with the previous experience and declined this approach. In view of the previous experience, an awake airway control with a Laryngeal Mask Airway Proseal™ was planned after explaining and reassuring the patient. After adequate topicalisation, a size 4 Laryngeal Mask Airway Proseal™ was successfully inserted after two attempts, and their patency was confirmed by capnography. Anesthesia was induced intravenously and the surgery was uneventful. Conclusion We describe a feasible alternative strategy to awake intubation in a patient with known difficult airway undergoing ambulatory surgery. In this specific clinical situation, if tracheal intubation is deemed unnecessary, awake supraglottic airway might allow adequate ventilation and their use should be considered.

  3. Interleukin-33 from Monocytes Recruited to the Lung Contributes to House Dust Mite-Induced Airway Inflammation in a Mouse Model.

    Directory of Open Access Journals (Sweden)

    Hiroki Tashiro

    Full Text Available Interleukin-33 (IL-33 activates group 2 innate lymphoid cells (ILC2, resulting in T-helper-2 inflammation in bronchial asthma. Airway epithelial cells were reported as sources of IL-33 during apoptosis and necrosis. However, IL-33 is known to be from sources other than airway epithelial cells such as leukocytes, and the mechanisms of IL-33 production and release are not fully understood. The aim of this study was to clarify the role of IL-33 production by monocytes in airway inflammation.BALB/c mice were sensitized and challenged with a house dust mite (HDM preparation. Airway inflammation was assessed by quantifying inflammatory cells in bronchoalveolar lavage (BAL fluid, and IL-25, IL-33, and thymic stromal lymphopoietin (TSLP levels in lung. Immunohistochemistry for IL-33 in lung sections was also performed. Ly6c, CD11b, and CD11c expression was examined by flow cytometry. Clodronate liposomes were used in the HDM-airway inflammation model to deplete circulating monocytes.The IL-33, but not IL-25 or TSLP, level in lung homogenates was markedly increased in HDM mice compared to control mice. IL-33-positive cells in the lungs were identified using immunohistochemistry and were increased in areas surrounding bronchi and vasculature. Furthermore, IL-33 levels were increased in mononuclear cells derived from lungs of HDM mice compared to controls. The expression of Ly6c in mononuclear cells was significantly higher in HDM mice than in controls. Treatment with clodronate liposomes led to inhibition of not only inflammatory cells in BAL fluid, airway hyper reactivity and Th2 cytokines in lung, but also IL-33 in lung.IL-33 from monocytes recruited to the lung may contribute to the pathogenesis of HDM-induced airway inflammation.

  4. Ghrelin Ameliorates Asthma by Inhibiting Endoplasmic Reticulum Stress.

    Science.gov (United States)

    Fu, Tian; Wang, Lei; Zeng, Qingdi; Zhang, Yan; Sheng, Baowei; Han, Liping

    2017-12-01

    This study aimed to confirm the ameliorative effect of ghrelin on asthma and investigate its mechanism. The murine model of asthma was induced by ovalbumin (OVA) treatment and assessed by histological pathology and airway responsiveness to methacholine. The total and differential leukocytes were counted. Tumor necrosis factor α, interferon γ, interleukin-5 and interleukin-13 levels in bronchoalveolar lavage fluid were quantified by commercial kits. The protein levels in pulmonary tissues were measured by Western blot analysis. Ghrelin ameliorated the histological pathology and airway hyperresponsiveness in the OVA-induced asthmatic mouse model. Consistently, OVA-increased total and differential leukocytes and levels of tumor necrosis factor α, interferon γ, interleukin-5 and interleukin-13 in bronchoalveolar lavage fluid were significantly attenuated by ghrelin. Ghrelin prevented the increased protein levels of the endoplasmic reticulum stress markers glucose regulated protein 78 and CCAAT/enhancer binding protein homologous protein and reversed the reduced levels of p-Akt in asthmatic mice. Ghrelin might prevent endoplasmic reticulum stress activation by stimulating the Akt signaling pathway, which attenuated inflammation and ameliorated asthma in mice. Ghrelin might be a new target for asthma therapy. Copyright © 2017. Published by Elsevier Inc.

  5. Possible role of differential growth in airway wall remodeling in asthma

    KAUST Repository

    Moulton, D. E.

    2011-01-20

    Possible role of differential growth in airway wall remodeling in asthma. J Appl Physiol 110: 1003-1012, 2011. First published January 20, 2011; doi:10.1152/japplphysiol.00991.2010.- Airway remodeling in patients with chronic asthma is characterized by a thickening of the airway walls. It has been demonstrated in previous theoretical models that this change in thickness can have an important mechanical effect on the properties of the wall, in particular on the phenomenon of mucosal folding induced by smooth muscle contraction. In this paper, we present a model for mucosal folding of the airway in the context of growth. The airway is modeled as a bilayered cylindrical tube, with both geometric and material nonlinearities accounted for via the theory of finite elasticity. Growth is incorporated into the model through the theory of morphoelasticity. We explore a range of growth possibilities, allowing for anisotropic growth as well as different growth rates in each layer. Such nonuniform growth, referred to as differential growth, can change the properties of the material beyond geometrical changes through the generation of residual stresses. We demonstrate that differential growth can have a dramatic impact on mucosal folding, in particular on the critical pressure needed to induce folding, the buckling pattern, as well as airway narrowing. We conclude that growth may be an important component in airway remodeling. Copyright © 2011 the American Physiological Society.

  6. Alcohol and airways function in health and disease.

    Science.gov (United States)

    Sisson, Joseph H

    2007-08-01

    The volatility of alcohol promotes the movement of alcohol from the bronchial circulation across the airway epithelium and into the conducting airways of the lung. The exposure of the airways through this route likely accounts for many of the biologic effects of alcohol on lung airway functions. The effect of alcohol on lung airway functions is dependent on the concentration, duration, and route of exposure. Brief exposure to mild concentrations of alcohol may enhance mucociliary clearance, stimulates bronchodilation, and probably attenuates the airway inflammation and injury observed in asthma and chronic obstructive pulmonary disease (COPD). Prolonged and heavy exposure to alcohol impairs mucociliary clearance, may complicate asthma management, and likely worsens outcomes including lung function and mortality in COPD patients. Nonalcohol congeners and alcohol metabolites act as triggers for airway disease exacerbations especially in atopic asthmatics and in Asian populations who have a reduced capacity to metabolize alcohol. Research focused on the mechanisms of alcohol-mediated changes in airway functions has identified specific mechanisms that mediate alcohol effects within the lung airways. These include prominent roles for the second messengers calcium and nitric oxide, regulatory kinases including PKG and PKA, alcohol- and acetaldehyde-metabolizing enzymes such as aldehyde dehydrogenase 2. The role alcohol may play in the pathobiology of airway mucus, bronchial blood flow, airway smooth muscle regulation, and the interaction with other airway exposure agents, such as cigarette smoke, represents opportunities for future investigation.

  7. Goishi tea consumption inhibits airway hyperresponsiveness in BALB/c mice

    Directory of Open Access Journals (Sweden)

    Nakamura Hiroyuki

    2011-08-01

    Full Text Available Abstract Background Airway hyperresponsiveness (AHR is one of the important traits that characterize bronchial asthma. Goishi tea is a post-heating fermented tea that has been reported to have higher free radical scavenging activity. In this study, we evaluated the prophylactic effects of Goishi tea on AHR in BALB/c mice. Results The number of inflammatory cells in BAL fluid was considerably reduced in Goishi tea/Der f and Gallic acid/Der f groups as compared with Tap water/Der f group. Regarding inflammatory cells in BAL, a significant reduction of eosinophils and neutrophils was observed in Goishi tea-treated mice (p Der f group (p Der f group. In asthmatic mice (Tap water/Der f group, the intensity of airway resistance increased simultaneously with the increase in acetylcholine concentration in a dose-dependant way. AHR was significantly inhibited in Goishi tea/Der f and Gallic acid/Der f (p Der f group. Regarding serum specific-IgG1, significantly lower levels of this antibody were observed in Goishi tea/Der f and Gallic acid/Der f groups as compared with the Tap water/Der f group (p Conclusions The results suggest that Goishi tea consumption exerted an inhibitory effect on eosinophilic and neutrophilic infiltration in the lung, attenuated the increase in airway resistance and increased the production of adiponectin; thus reducing Der f induced allergic inflammatory process in mice.

  8. Airway distensibility in Chronic Obstructive Airway Disease

    DEFF Research Database (Denmark)

    Winkler Wille, Mathilde Marie; Pedersen, Jesper Holst; Dirksen, Asger

    2013-01-01

    Rationale – Chronic Obstructive Pulmonary Disease (COPD) is a combination of chronic bronchitis and emphysema, which both may lead to airway obstruction. Under normal circumstances, airway dimensions vary as a function of inspiration level. We aim to study the influence of COPD and emphysema......-20% (mild), 20%-30% (moderate) or >30% (severe). Spirometry was performed annually and participants were divided into severity groups according to the Global Initiative for Chronic Obstructive Lung Disease (GOLD). Data were analysed in a mixed effects regression model with log(airway lumen diameter...... and emphysema, respectively. Conclusions – Airway distensibility decreases significantly with increasing severity of both GOLD status and emphysema, indicating that in COPD the dynamic change in airway calibre during respiration is compromised. Chronic bronchitis and emphysema appear to be interacting...

  9. Vagotomy decreases the neuronal activities of medulla oblongata and alleviates neurogenic inflammation of airways induced by repeated intra-esophageal instillation of HCl in guinea pigs.

    Science.gov (United States)

    Chen, Zhe; Chen, Hui; Chen, Fagui; Gu, Dachuan; Sun, Lejia; Zhang, Weitao; Fan, Linfeng; Lin, Yong; Dong, Rong; Lai, Kefang

    2017-12-20

    Neuronal activity in the medulla oblongata and neurogenic inflammation of airways were investigated in a guinea pig model induced by repeated intra-esophageal instillation of hydrochloric acid (HCl) after vagotomy. Unilateral vagotomy was performed in the vagotomy group, while a sham-operation was performed in the sham group. Operation was not conducted in sham control group. Airway inflammation was observed with hematoxylin and eosin (HE) staining. C-fos protein was measured by immunohistochemistry (IHC) and Western blot (WB). Substance P was examined by IHC and enzyme-linked immuno sorbent assay (ELISA). Airway microvascular permeability was detected by evans blue dye (EBD) fluorescence. Inflammation of airway was observed in the trachea and bronchi after chronic HCl perfusion into the lower esophagus, and was alleviated after unilateral vagotomy. C-fos expression in the medulla oblongata was lower in the vagotomy group compared to the sham control and sham groups. Substance P-like immunoreactivity (SP-li), concentration and microvascular leakage in airway were lower in the vagotomy group than that in the other groups. Our results suggest that vagotomy improved neurogenic inflammation of airways and decreased neuronal activities, the afferent nerves and neurons in medulla oblongata may be involved in neurogenic inflammation of airways mediated by esophageal-bronchial reflex.

  10. Development of a novel severe triple allergen asthma model in mice which is resistant to dexamethasone and partially resistant to TLR7 and TLR9 agonist treatment.

    Directory of Open Access Journals (Sweden)

    Matthias J Duechs

    Full Text Available Severe asthma is characterised by persistent inflammation, hyperreactivity and remodeling of the airways. No efficient treatment is available, this is particularly the case for steroid resistant phenotypes. Our aim therefore was to develop a preclinical model showing characteristics of severe human asthma including steroid insensitivity. Mice were first sensitized with ovalbumin, extracts of cockroach or house dust mite followed by a challenge period of seven weeks. Further to this, an additional group of mice was sensitized with all three allergens and then challenged with allergen alternating weekly between allergens. All three allergens applied separately to the mice induced comparably strong Th2-type airway inflammation, airway hyperreactivity and airway remodeling, which was characterised by fibrosis and increased smooth muscle thickness. In contrast, application of all three allergens together resulted in a greater Th2 response and increased airway hyperreactivity and a stronger albeit not significant remodeling phenotype compared to using HDM or CRA. In this triple allergen model dexamethasone application, during the last 4 weeks of challenge, showed no suppressive effects on any of these parameters in this model. In contrast, both TLR7 agonist resiquimod and TLR9 agonist CpG-ODN reduced allergen-specific IgE, eosinophils, and collagen I in the lungs. The TLR9 agonist also reduced IL-4 and IL-5 whilst increasing IFN-γ and strongly IL-10 levels in the lungs, effects not seen with the TLR7 agonist. However, neither TLR agonist had any effect on airway hyperreactivity and airway smooth muscle mass. In conclusion we have developed a severe asthma model, which is steroid resistant and only partially sensitive to TLR7 and TLR9 agonist treatment. This model may be particular useful to test new potential therapeutics aiming at treating steroid resistant asthma in humans and investigating the underlying mechanisms responsible for steroid

  11. Neural control of airway to deep inhalation in rabbits.

    Science.gov (United States)

    Schweitzer, Cyril; Demoulin, Bruno; Varechova, Silvia; Poussel, Mathias; Marchal, François

    2011-07-31

    Bronchodilation induced by a deep inhalation (DI) is usually attributed to the mechanical interdependence between airways and parenchyma. The aim of the study was to evaluate the contribution of neural control of the airway in the response to DI. In mechanically ventilated rabbits, cervical vagi were cooled using 2 Peltier elements. Lung resistance was measured before and up to 2 min after a DI at vagus nerve temperature = 37 °C (R(L37 °C)), 8 °C (R(L8 °C)) and 4 °C (R(L4 °C)). Measurements were performed in control conditions (Ctrl) and during infusion of methacholine (Mch). At Ctrl, R(L8 °C) and R(L4 °C) were significantly lower than R(L37 °C). After Mch, however, R(L4 °C) was not different from R(L37 °C), both being significantly higher than R(L8 °C). Vagal cold block (VCB) abolished the bronchodilation observed after the control DI and reduced its magnitude after Mch. The magnitude of bronchodilation immediately after the DI was significantly related to baseline R(L) at any vagal temperature (p < 0.001), but the renarrowing was more strongly related to baseline R(L) after VCB than at baseline. The data indicate a significant contribution of respiratory reflexes to the airway response after DI, highlight the influence of vagal control of airway wall visco-elasticity and suggests the occurrence of a moderate reflex bronchodilation in response to Mch. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Integrated care pathways for airway diseases (AIRWAYS-ICPs)

    NARCIS (Netherlands)

    Bousquet, J.; Addis, A.; Adcock, I.; Agache, I.; Agusti, A.; Alonso, A.; Annesi-Maesano, I.; Anto, J. M.; Bachert, C.; Baena-Cagnani, C. E.; Bai, C.; Baigenzhin, A.; Barbara, C.; Barnes, P. J.; Bateman, E. D.; Beck, L.; Bedbrook, A.; Bel, E. H.; Benezet, O.; Bennoor, K. S.; Benson, M.; Bernabeu-Wittel, M.; Bewick, M.; Bindslev-Jensen, C.; Blain, H.; Blasi, F.; Bonini, M.; Bonini, S.; Boulet, L. P.; Bourdin, A.; Bourret, R.; Bousquet, P. J.; Brightling, C. E.; Briggs, A.; Brozek, J.; Buhl, R.; Bush, A.; Caimmi, D.; Calderon, M.; Calverley, P.; Camargos, P. A.; Camuzat, T.; Canonica, G. W.; Carlsen, K. H.; Casale, T. B.; Cazzola, M.; Cepeda Sarabia, A. M.; Cesario, A.; Chen, Y. Z.; Chkhartishvili, E.; Chavannes, N. H.; Chiron, R.; Chuchalin, A.; Chung, K. F.; Cox, L.; Crooks, G.; Crooks, M. G.; Cruz, A. A.; Custovic, A.; Dahl, R.; Dahlen, S. E.; de Blay, F.; Dedeu, T.; Deleanu, D.; Demoly, P.; Devillier, P.; Didier, A.; Dinh-Xuan, A. T.; Djukanovic, R.; Dokic, D.; Douagui, H.; Dubakiene, R.; Eglin, S.; Elliot, F.; Emuzyte, R.; Fabbri, L.; Fink Wagner, A.; Fletcher, M.; Fokkens, W. J.; Fonseca, J.; Franco, A.; Frith, P.; Furber, A.; Gaga, M.; Garcés, J.; Garcia-Aymerich, J.; Gamkrelidze, A.; Gonzales-Diaz, S.; Gouzi, F.; Guzmán, M. A.; Haahtela, T.; Harrison, D.; Hayot, M.; Heaney, L. G.; Heinrich, J.; Hellings, P. W.; Hooper, J.; Humbert, M.; Hyland, M.; Iaccarino, G.; Jakovenko, D.; Jardim, J. R.; Jeandel, C.; Jenkins, C.; Johnston, S. L.; Jonquet, O.; Joos, G.; Jung, K. S.; Kalayci, O.; Karunanithi, S.; Keil, T.; Khaltaev, N.; Kolek, V.; Kowalski, M. L.; Kull, I.; Kuna, P.; Kvedariene, V.; Le, L. T.; Lodrup Carlsen, K. C.; Louis, R.; MacNee, W.; Mair, A.; Majer, I.; Manning, P.; de Manuel Keenoy, E.; Masjedi, M. R.; Melen, E.; Melo-Gomes, E.; Menzies-Gow, A.; Mercier, G.; Mercier, J.; Michel, J. P.; Miculinic, N.; Mihaltan, F.; Milenkovic, B.; Molimard, M.; Momas, I.; Montilla-Santana, A.; Morais-Almeida, M.; Morgan, M.; N'Diaye, M.; Nafti, S.; Nekam, K.; Neou, A.; Nicod, L.; O'Hehir, R.; Ohta, K.; Paggiaro, P.; Palkonen, S.; Palmer, S.; Papadopoulos, N. G.; Papi, A.; Passalacqua, G.; Pavord, I.; Pigearias, B.; Plavec, D.; Postma, D. S.; Price, D.; Rabe, K. F.; Radier Pontal, F.; Redon, J.; Rennard, S.; Roberts, J.; Robine, J. M.; Roca, J.; Roche, N.; Rodenas, F.; Roggeri, A.; Rolland, C.; Rosado-Pinto, J.; Ryan, D.; Samolinski, B.; Sanchez-Borges, M.; Schünemann, H. J.; Sheikh, A.; Shields, M.; Siafakas, N.; Sibille, Y.; Similowski, T.; Small, I.; Sola-Morales, O.; Sooronbaev, T.; Stelmach, R.; Sterk, P. J.; Stiris, T.; Sud, P.; Tellier, V.; To, T.; Todo-Bom, A.; Triggiani, M.; Valenta, R.; Valero, A. L.; Valiulis, A.; Valovirta, E.; van Ganse, E.; Vandenplas, O.; Vasankari, T.; Vestbo, J.; Vezzani, G.; Viegi, G.; Visier, L.; Vogelmeier, C.; Vontetsianos, T.; Wagstaff, R.; Wahn, U.; Wallaert, B.; Whalley, B.; Wickman, M.; Williams, D. M.; Wilson, N.; Yawn, B. P.; Yiallouros, P. K.; Yorgancioglu, A.; Yusuf, O. M.; Zar, H. J.; Zhong, N.; Zidarn, M.; Zuberbier, T.

    2014-01-01

    The objective of Integrated Care Pathways for Airway Diseases (AIRWAYS-ICPs) is to launch a collaboration to develop multi-sectoral care pathways for chronic respiratory diseases in European countries and regions. AIRWAYS-ICPs has strategic relevance to the European Union Health Strategy and will

  13. Integrated care pathways for airway diseases (AIRWAYS-ICPs)

    NARCIS (Netherlands)

    Bousquet, J.; Addis, A.; Adcock, I.; Agache, I.; Agusti, A.; Alonso, A.; Annesi-Maesano, I.; Anto, J. M.; Bachert, C.; Baena-Cagnani, C. E.; Bai, C.; Baigenzhin, A.; Barbara, C.; Barnes, P. J.; Bateman, E. D.; Beck, L.; Bedbrook, A.; Bel, E. H.; Benezet, O.; Bennoor, K. S.; Benson, M.; Bernabeu-Wittel, M.; Bewick, M.; Bindslev-Jensen, C.; Blain, H.; Blasi, F.; Bonini, M.; Bonini, S.; Boulet, L. P.; Bourdin, A.; Bourret, R.; Bousquet, P. J.; Brightling, C. E.; Briggs, A.; Brozek, J.; Buh, R.; Bush, A.; Caimmi, D.; Calderon, M.; Calverley, P.; Camargos, P. A.; Camuzat, T.; Canonica, G. W.; Carlsen, K. H.; Casale, T. B.; Cazzola, M.; Sarabia, A. M. Cepeda; Cesario, A.; Chen, Y. Z.; Chkhartishvili, E.; Chavannes, N. H.; Chiron, R.; Chuchalin, A.; Chung, K. F.; Cox, L.; Crooks, G.; Crooks, M. G.; Cruz, A. A.; Custovic, A.; Dahl, R.; Dahlen, S. E.; De Blay, F.; Dedeu, T.; Deleanu, D.; Demoly, P.; Devillier, P.; Didier, A.; Dinh-Xuan, A. T.; Djukanovic, R.; Dokic, D.; Douagui, H.; Dubakiene, R.; Eglin, S.; Elliot, F.; Emuzyte, R.; Fabbri, L.; Wagner, A. Fink; Fletcher, M.; Fokkens, W. J.; Fonseca, J.; Franco, A.; Frith, P.; Furber, A.; Gaga, M.; Garces, J.; Garcia-Aymerich, J.; Gamkrelidze, A.; Gonzales-Diaz, S.; Gouzi, F.; Guzman, M. A.; Haahtela, T.; Harrison, D.; Hayot, M.; Heaney, L. G.; Heinrich, J.; Hellings, P. W.; Hooper, J.; Humbert, M.; Hyland, M.; Iaccarino, G.; Jakovenko, D.; Jardim, J. R.; Jeandel, C.; Jenkins, C.; Johnston, S. L.; Jonquet, O.; Joos, G.; Jung, K. S.; Kalayci, O.; Karunanithi, S.; Keil, T.; Khaltaev, N.; Kolek, V.; Kowalski, M. L.; Kull, I.; Kuna, P.; Kvedariene, V.; Le, L. T.; Carlsen, K. C. Lodrup; Louis, R.; MacNee, W.; Mair, A.; Majer, I.; Manning, P.; Keenoy, E. de Manuel; Masjedi, M. R.; Meten, E.; Melo-Gomes, E.; Menzies-Gow, A.; Mercier, G.; Mercier, J.; Michel, J. P.; Miculinic, N.; Mihaltan, F.; Milenkovic, B.; Molimard, M.; Mamas, I.; Montilla-Santana, A.; Morais-Almeida, M.; Morgan, M.; N'Diaye, M.; Nafti, S.; Nekam, K.; Neou, A.; Nicod, L.; O'Hehir, R.; Ohta, K.; Paggiaro, P.; Palkonen, S.; Palmer, S.; Papadopoulos, N. G.; Papi, A.; Passalacqua, G.; Pavord, I.; Pigearias, B.; Plavec, D.; Postma, D. S.; Price, D.; Rabe, K. F.; Pontal, F. Radier; Redon, J.; Rennard, S.; Roberts, J.; Robine, J. M.; Roca, J.; Roche, N.; Rodenas, F.; Roggeri, A.; Rolland, C.; Rosado-Pinto, J.; Ryan, D.; Samolinski, B.; Sanchez-Borges, M.; Schunemann, H. J.; Sheikh, A.; Shields, M.; Siafakas, N.; Sibille, Y.; Similowski, T.; Small, I.; Sola-Morales, O.; Sooronbaev, T.; Stelmach, R.; Sterk, P. J.; Stiris, T.; Sud, P.; Tellier, V.; To, T.; Todo-Bom, A.; Triggiani, M.; Valenta, R.; Valero, A. L.; Valiulis, A.; Valovirta, E.; Van Ganse, E.; Vandenplas, O.; Vasankari, T.; Vestbo, J.; Vezzani, G.; Viegi, G.; Visier, L.; Vogelmeier, C.; Vontetsianos, T.; Wagstaff, R.; Wahn, U.; Wallaert, B.; Whalley, B.; Wickman, M.; Williams, D. M.; Wilson, N.; Yawn, B. P.; Yiallouros, P. K.; Yorgancioglu, A.; Yusuf, O. M.; Zar, H. J.; Zhong, N.; Zidarn, M.; Zuberbier, T.

    The objective of Integrated Care Pathways for Airway Diseases (AIRWAYS-ICPs) is to launch a collaboration to develop multi-sectoral care pathways for chronic respiratory diseases in European countries and regions. AIRWAYS-ICPs has strategic relevance to the European Union Health Strategy and will

  14. Human Lung Mast Cell Products Regulate Airway Smooth Muscle CXCL10 Levels.

    Science.gov (United States)

    Alkhouri, H; Cha, V; Tong, K; Moir, L M; Armour, C L; Hughes, J M

    2014-01-01

    In asthma, the airway smooth muscle (ASM) produces CXCL10 which may attract CXCR3(+) mast/T cells to it. Our aim was to investigate the effects of mast cell products on ASM cell CXCL10 production. ASM cells from people with and without asthma were stimulated with IL-1 β , TNF- α , and/or IFN γ and treated with histamine (1-100  μ M) ± chlorpheniramine (H1R antagonist; 1  μ M) or ranitidine (H2R antagonist; 50  μ M) or tryptase (1 nM) ± leupeptin (serine protease inhibitor; 50  μ M), heat-inactivated tryptase, or vehicle for 4 h or 24 h. Human lung mast cells (MC) were isolated and activated with IgE/anti-IgE and supernatants were collected after 2 h or 24 h. The supernatants were added to ASM cells for 48 h and ASM cell CXCL10 production detected using ELISA (protein) and real-time PCR (mRNA). Histamine reduced IL-1 β /TNF- α -induced CXCL10 protein, but not mRNA, levels independent of H1 and H2 receptor activation, whereas tryptase and MC 2 h supernatants reduced all cytokine-induced CXCL10. Tryptase also reduced CXCL10 levels in a cell-free system. Leupeptin inhibited the effects of tryptase and MC 2 h supernatants. MC 24 h supernatants contained TNF- α and amplified IFN γ -induced ASM cell CXCL10 production. This is the first evidence that MC can regulate ASM cell CXCL10 production and its degradation. Thus MC may regulate airway myositis in asthma.

  15. IL-13-induced proliferation of airway epithelial cells: mediation by intracellular growth factor mobilization and ADAM17

    Directory of Open Access Journals (Sweden)

    Sandifer Tracy

    2007-07-01

    Full Text Available Abstract Background The pleiotrophic cytokine interleukin (IL-13 features prominently in allergic and inflammatory diseases. In allergic asthma, IL-13 is well established as an inducer of airway inflammation and tissue remodeling. We demonstrated previously that IL-13 induces release of transforming growth factor-α (TGFα from human bronchial epithelial cells, with proliferation of these cells mediated by the autocrine/paracrine action of this growth factor. TGFα exists as an integral membrane protein and requires proteolytic processing to its mature form, with a disintegrin and metalloproteinase (ADAM17 responsible for this processing in a variety of tissues. Methods In this study, normal human bronchial epithelial (NHBE cells grown in air/liquid interface (ALI culture were used to examine the mechanisms whereby IL-13 induces release of TGFα and cellular proliferation. Inhibitors and antisense RNA were used to examine the role of ADAM17 in these processes, while IL-13-induced changes in the intracellular expression of TGFα and ADAM17 were visualized by confocal microscopy. Results IL-13 was found to induce proliferation of NHBE cells, and release of TGFα, in an ADAM17-dependent manner; however, this IL-13-induced proliferation did not appear to result solely from ADAM17 activation. Rather, IL-13 induced a change in the location of TGFα expression from intracellular to apical regions of the NHBE cells. The apical region was also found to be a site of significant ADAM17 expression, even prior to IL-13 stimulation. Conclusion Results from this study indicate that ADAM17 mediates IL-13-induced proliferation and TGFα shedding in NHBE cells. Furthermore, they provide the first example wherein a cytokine (IL-13 induces a change in the intracellular expression pattern of a growth factor, apparently inducing redistribution of intracellular stores of TGFα to the apical region of NHBE cells where expression of ADAM17 is prominent. Thus, IL-13

  16. Upper airway morphology in Down Syndrome patients under dexmedetomidine sedation

    Directory of Open Access Journals (Sweden)

    Rajeev Subramanyam

    Full Text Available Abstract Background and objectives: Children with Down Syndrome are vulnerable to significant upper airway obstruction due to relative macroglossia and dynamic airway collapse. The objective of this study was to compare the upper airway dimensions of children with Down Syndrome and obstructive sleep apnea with normal airway under dexmedetomidine sedation. Methods: IRB approval was obtained. In this retrospective study, clinically indicated dynamic sagittal midline magnetic resonance images of the upper airway were obtained under low (1 mcg/kg/h and high (3 mcg/kg/h dose dexmedetomidine. Airway anteroposterior diameters and sectional areas were measured as minimum and maximum dimensions by two independent observers at soft palate (nasopharyngeal airway and at base of the tongue (retroglossal airway. Results and conclusions: Minimum anteroposterior diameter and minimum sectional area at nasopharynx and retroglossal airway were significantly reduced in Down Syndrome compared to normal airway at both low and high dose dexmedetomidine. However, there were no significant differences between low and high dose dexmedetomidine in both Down Syndrome and normal airway. The mean apnea hypopnea index in Down Syndrome was 16 ± 11. Under dexmedetomidine sedation, children with Down Syndrome and obstructive sleep apnea when compared to normal airway children show significant reductions in airway dimensions most pronounced at the narrowest points in the nasopharyngeal and retroglossal airways.

  17. Upper airway morphology in Down Syndrome patients under dexmedetomidine sedation.

    Science.gov (United States)

    Subramanyam, Rajeev; Fleck, Robert; McAuliffe, John; Radhakrishnan, Rupa; Jung, Dorothy; Patino, Mario; Mahmoud, Mohamed

    2016-01-01

    Children with Down Syndrome are vulnerable to significant upper airway obstruction due to relative macroglossia and dynamic airway collapse. The objective of this study was to compare the upper airway dimensions of children with Down Syndrome and obstructive sleep apnea with normal airway under dexmedetomidine sedation. IRB approval was obtained. In this retrospective study, clinically indicated dynamic sagittal midline magnetic resonance images of the upper airway were obtained under low (1mcg/kg/h) and high (3mcg/kg/h) dose dexmedetomidine. Airway anteroposterior diameters and sectional areas were measured as minimum and maximum dimensions by two independent observers at soft palate (nasopharyngeal airway) and at base of the tongue (retroglossal airway). Minimum anteroposterior diameter and minimum sectional area at nasopharynx and retroglossal airway were significantly reduced in Down Syndrome compared to normal airway at both low and high dose dexmedetomidine. However, there were no significant differences between low and high dose dexmedetomidine in both Down Syndrome and normal airway. The mean apnea hypopnea index in Down Syndrome was 16±11. Under dexmedetomidine sedation, children with Down Syndrome and obstructive sleep apnea when compared to normal airway children show significant reductions in airway dimensions most pronounced at the narrowest points in the nasopharyngeal and retroglossal airways. Copyright © 2015 Sociedade Brasileira de Anestesiologia. Published by Elsevier Editora Ltda. All rights reserved.

  18. [Upper airway morphology in Down Syndrome patients under dexmedetomidine sedation].

    Science.gov (United States)

    Subramanyam, Rajeev; Fleck, Robert; McAuliffe, John; Radhakrishnan, Rupa; Jung, Dorothy; Patino, Mario; Mahmoud, Mohamed

    2016-01-01

    Children with Down Syndrome are vulnerable to significant upper airway obstruction due to relative macroglossia and dynamic airway collapse. The objective of this study was to compare the upper airway dimensions of children with Down Syndrome and obstructive sleep apnea with normal airway under dexmedetomidine sedation. IRB approval was obtained. In this retrospective study, clinically indicated dynamic sagittal midline magnetic resonance images of the upper airway were obtained under low (1mcg/kg/h) and high (3mcg/kg/h) dose dexmedetomidine. Airway anteroposterior diameters and sectional areas were measured as minimum and maximum dimensions by two independent observers at soft palate (nasopharyngeal airway) and at base of the tongue (retroglossal airway). Minimum anteroposterior diameter and minimum sectional area at nasopharynx and retroglossal airway were significantly reduced in Down Syndrome compared to normal airway at both low and high dose dexmedetomidine. However, there were no significant differences between low and high dose dexmedetomidine in both Down Syndrome and normal airway. The mean apnea hypopnea index in Down Syndrome was 16±11. Under dexmedetomidine sedation, children with Down Syndrome and obstructive sleep apnea when compared to normal airway children show significant reductions in airway dimensions most pronounced at the narrowest points in the nasopharyngeal and retroglossal airways. Copyright © 2015 Sociedade Brasileira de Anestesiologia. Publicado por Elsevier Editora Ltda. All rights reserved.

  19. Plant Proteinase Inhibitor BbCI Modulates Lung Inflammatory Responses and Mechanic and Remodeling Alterations Induced by Elastase in Mice

    Directory of Open Access Journals (Sweden)

    Rafael Almeida-Reis

    2017-01-01

    Full Text Available Background. Proteinases play a key role in emphysema. Bauhinia bauhinioides cruzipain inhibitor (BbCI is a serine-cysteine proteinase inhibitor. We evaluated BbCI treatment in elastase-induced pulmonary alterations. Methods.  C57BL/6 mice received intratracheal elastase (ELA group or saline (SAL group. One group of mice was treated with BbCI (days 1, 15, and 21 after elastase instillation, ELABC group. Controls received saline and BbCI (SALBC group. After 28 days, we evaluated respiratory mechanics, exhaled nitric oxide, and bronchoalveolar lavage fluid. In lung tissue we measured airspace enlargement, quantified neutrophils, TNFα-, MMP-9-, MMP-12-, TIMP-1-, iNOS-, and eNOS-positive cells, 8-iso-PGF2α, collagen, and elastic fibers in alveolar septa and airways. MUC-5-positive cells were quantified only in airways. Results. BbCI reduced elastase-induced changes in pulmonary mechanics, airspace enlargement and elastase-induced increases in total cells, and neutrophils in BALF. BbCI reduced macrophages and neutrophils positive cells in alveolar septa and neutrophils and TNFα-positive cells in airways. BbCI attenuated elastic and collagen fibers, MMP-9- and MMP-12-positive cells, and isoprostane and iNOS-positive cells in alveolar septa and airways. BbCI reduced MUC5ac-positive cells in airways. Conclusions. BbCI improved lung mechanics and reduced lung inflammation and airspace enlargement and increased oxidative stress levels induced by elastase. BbCI may have therapeutic potential in chronic obstructive pulmonary disease.

  20. Effects of ASM-024, a modulator of acetylcholine receptor function, on airway responsiveness and allergen-induced responses in patients with mild asthma.

    Science.gov (United States)

    Boulet, Louis-Philippe; Gauvreau, Gail M; Cockcroft, Donald W; Davis, Beth; Vachon, Luc; Cormier, Yvon; O'Byrne, Paul M

    2015-01-01

    To evaluate the safety, tolerability and clinical activity of ASM-024, a new cholinergic compound with dual nicotinic and muscarinic activity, in mild allergic asthma. The present study involved 24 stable, mild allergic asthmatic subjects. In a cross-over design, ASM-024 (50 mg or 200 mg) or placebo were administered once daily by nebulization over three periods of nine consecutive days separated by a three-week washout. The effect of each treatment on the forced expiratory volume in 1 s (FEV1), provocative concentration of methacholine causing a 20% decline in FEV1 (PC20), early and late asthmatic responses, and allergen-induced inflammation were measured. Seventeen subjects completed the study. During treatment with ASM-024 at 50 mg or 200 mg, the PC20 value increased respectively from a mean (± SD) 2.56±3.86 mg/mL to 4.11 mg/mL (P=0.007), and from 3.12±4.37 mg/mL to 5.23 mg/mL (P=0.005) (no change with placebo). On day 7 (day preceding allergen challenge), postdosing FEV1 increased by 2.0% with 50 mg (P=0.005) and 1.9% with 200 mg (P=0.008) (placebo -1.1%). ASM-24 had no inhibitory effect on early and late asthmatic responses, nor on sputum eosinophil or neutrophil levels. ASM-024 induced no serious adverse events, but caused cough in 22% and 48% of the subjects with 50 mg and 200 mg, respectively, compared with 10% who were on placebo. ASM-024 did not inhibit allergen-induced asthmatic response and related airway inflammation, but reduced methacholine airway responsiveness and slightly improved lung function. The mechanism by which ASM-024 improves these outcomes requires further study.

  1. Ionotropic and Metabotropic Proton-Sensing Receptors Involved in Airway Inflammation in Allergic Asthma

    Directory of Open Access Journals (Sweden)

    Haruka Aoki

    2014-01-01

    Full Text Available An acidic microenvironment has been shown to evoke a variety of airway responses, including cough, bronchoconstriction, airway hyperresponsiveness (AHR, infiltration of inflammatory cells in the lung, and stimulation of mucus hyperproduction. Except for the participation of transient receptor potential vanilloid-1 (TRPV1 and acid-sensing ion channels (ASICs in severe acidic pH (of less than 6.0-induced cough and bronchoconstriction through sensory neurons, the molecular mechanisms underlying extracellular acidic pH-induced actions in the airways have not been fully understood. Recent studies have revealed that ovarian cancer G protein-coupled receptor 1 (OGR1-family G protein-coupled receptors, which sense pH of more than 6.0, are expressed in structural cells, such as airway smooth muscle cells and epithelial cells, and in inflammatory and immune cells, such as eosinophils and dendritic cells. They function in a variety of airway responses related to the pathophysiology of inflammatory diseases, including allergic asthma. In the present review, we discuss the roles of ionotropic TRPV1 and ASICs and metabotropic OGR1-family G protein-coupled receptors in the airway inflammation and AHR in asthma and respiratory diseases.

  2. Lung mechanics and histology during sevoflurane anesthesia in a model of chronic allergic asthma.

    Science.gov (United States)

    Burburan, Shirley Moreira; Xisto, Debora Gonçalves; Ferreira, Halina Cidrini; Riva, Douglas Dos Reis; Carvalho, Giovanna Marcella Cavalcante; Zin, Walter Araujo; Rocco, Patricia Rieken Macêdo

    2007-03-01

    There are no studies examining the effects of sevoflurane on a chronically inflamed and remodeled airway, such as that found in asthma. In the present study, we sought to define the respiratory effects of sevoflurane in a model of chronic allergic asthma. For this purpose, pulmonary mechanics were studied and lung morphometry analyzed to determine whether the physiological modifications reflected underlying morphological changes. Thirty-six BALB/c mice (20-25 g) were randomly divided into four groups. In OVA groups, mice were sensitized with ovalbumin and exposed to repeated ovalbumin challenges. In SAL groups, mice received saline using the same protocol. Twenty-four hours after the last challenge, the animals were anesthetized with pentobarbital sodium (PENTO, 20 mg/kg i.p.) or sevoflurane (SEVO, 1 MAC). Lung static elastance (Est), resistive ([DELTA]P1) and viscoelastic/inhomogeneous ([DELTA]P2) pressure decreases were analyzed by an end-inflation occlusion method. Lungs were fixed and stained for histological analysis. Animals in the OVASEVO group showed lower [DELTA]P1 (38%), [DELTA]P2 (24%), and Est (22%) than animals in the OVAPENTO group. Histology demonstrated greater airway dilation (16%) and a lower degree of alveolar collapse (25%) in the OVASEVO compared with OVAPENTO group. [DELTA]P1 was lower (35%) and airway diameters larger (12%) in the SALSEVO compared with SALPENTO group. Sevoflurane anesthesia acted both at airway level and lung periphery reducing ([DELTA]P1 and [DELTA]P2 pressures, and Est in chronic allergic asthma.

  3. Tanreqing Injection Attenuates Lipopolysaccharide-Induced Airway Inflammation through MAPK/NF-κB Signaling Pathways in Rats Model

    Science.gov (United States)

    Liu, Wei; Jiang, Hong-li; Cai, Lin-li; Yan, Min; Dong, Shou-jin; Mao, Bing

    2016-01-01

    Background. Tanreqing injection (TRQ) is a commonly used herbal patent medicine for treating inflammatory airway diseases in view of its outstanding anti-inflammatory properties. In this study, we explored the signaling pathways involved in contributions of TRQ to LPS-induced airway inflammation in rats. Methods/Design. Adult male Sprague Dawley (SD) rats randomly divided into different groups received intratracheal instillation of LPS and/or intraperitoneal injection of TRQ. Bronchoalveolar Lavage Fluid (BALF) and lung samples were collected at 24 h, 48 h, and 96 h after TRQ administration. Protein and mRNA levels of tumor necrosis factor- (TNF-) α, Interleukin- (IL-) 1β, IL-6, and IL-8 in BALF and lung homogenate were observed by ELISA and real-time PCR, respectively. Lung sections were stained for p38 MAPK and NF-κB detection by immunohistochemistry. Phospho-p38 MAPK, phosphor-extracellular signal-regulated kinases ERK1/2, phospho-SAPK/JNK, phospho-NF-κB p65, phospho-IKKα/β, and phospho-IκB-α were measured by western blot analysis. Results. The results showed that TRQ significantly counteracted LPS-stimulated release of TNF-α, IL-1β, IL-6, and IL-8, attenuated cells influx in BALF, mitigated mucus hypersecretion, suppressed phosphorylation of NF-κB p65, IκB-α, ΙKKα/β, ERK1/2, JNK, and p38 MAPK, and inhibited p38 MAPK and NF-κB p65 expression in rat lungs. Conclusions. Results of the current research indicate that TRQ possesses potent exhibitory effects in LPS-induced airway inflammation by, at least partially, suppressing the MAPKs and NF-κB signaling pathways, in a general dose-dependent manner. PMID:27366191

  4. Ovalbumin with Glycated Carboxyl Groups Shows Membrane-Damaging Activity

    Directory of Open Access Journals (Sweden)

    Ching-Chia Tang

    2017-02-01

    Full Text Available The aim of the present study was to investigate whether glycated ovalbumin (OVA showed novel activity at the lipid-water interface. Mannosylated OVA (Man-OVA was prepared by modification of the carboxyl groups with p-aminophenyl α-dextro (d-mannopyranoside. An increase in the number of modified carboxyl groups increased the membrane-damaging activity of Man-OVA on cell membrane-mimicking vesicles, whereas OVA did not induce membrane permeability in the tested phospholipid vesicles. The glycation of carboxyl groups caused a notable change in the gross conformation of OVA. Moreover, owing to their spatial positions, the Trp residues in Man-OVA were more exposed, unlike those in OVA. Fluorescence quenching studies suggested that the Trp residues in Man-OVA were located on the interface binds with the lipid vesicles, and their microenvironment was abundant in positively charged residues. Although OVA and Man-OVA showed a similar binding affinity for lipid vesicles, the lipid-interacting feature of Man-OVA was distinct from that of OVA. Chemical modification studies revealed that Lys and Arg residues, but not Trp residues, played a crucial role in the membrane-damaging activity of Man-OVA. Taken together, our data suggest that glycation of carboxyl groups causes changes in the structural properties and membrane-interacting features of OVA, generating OVA with membrane-perturbing activities at the lipid-water interface.

  5. Hypoxia-induced pulmonary arterial hypertension augments lung injury and airway reactivity caused by ozone exposure

    International Nuclear Information System (INIS)

    Zychowski, Katherine E.; Lucas, Selita N.; Sanchez, Bethany; Herbert, Guy; Campen, Matthew J.

    2016-01-01

    Ozone (O 3 )-related cardiorespiratory effects are a growing public health concern. Ground level O 3 can exacerbate pre-existing respiratory conditions; however, research regarding therapeutic interventions to reduce O 3 -induced lung injury is limited. In patients with chronic obstructive pulmonary disease, hypoxia-associated pulmonary hypertension (HPH) is a frequent comorbidity that is difficult to treat clinically, yet associated with increased mortality and frequency of exacerbations. In this study, we hypothesized that established HPH would confer vulnerability to acute O 3 pulmonary toxicity. Additionally, we tested whether improvement of pulmonary endothelial barrier integrity via rho-kinase inhibition could mitigate pulmonary inflammation and injury. To determine if O 3 exacerbated HPH, male C57BL/6 mice were subject to either 3 weeks continuous normoxia (20.9% O 2 ) or hypoxia (10.0% O 2 ), followed by a 4-h exposure to either 1 ppm O 3 or filtered air (FA). As an additional experimental intervention fasudil (20 mg/kg) was administered intraperitoneally prior to and after O 3 exposures. As expected, hypoxia significantly increased right ventricular pressure and hypertrophy. O 3 exposure in normoxic mice caused lung inflammation but not injury, as indicated by increased cellularity and edema in the lung. However, in hypoxic mice, O 3 exposure led to increased inflammation and edema, along with a profound increase in airway hyperresponsiveness to methacholine. Fasudil administration resulted in reduced O 3 -induced lung injury via the enhancement of pulmonary endothelial barrier integrity. These results indicate that increased pulmonary vascular pressure may enhance lung injury, inflammation and edema when exposed to pollutants, and that enhancement of pulmonary endothelial barrier integrity may alleviate such vulnerability. - Highlights: • Environmental exposures can exacerbate chronic obstructive pulmonary disease (COPD). • It is unknown if comorbid

  6. Effect of parenchymal stiffness on canine airway size with lung inflation.

    Directory of Open Access Journals (Sweden)

    Robert H Brown

    2010-04-01

    Full Text Available Although airway patency is partially maintained by parenchymal tethering, this structural support is often ignored in many discussions of asthma. However, agonists that induce smooth muscle contraction also stiffen the parenchyma, so such parenchymal stiffening may serve as a defense mechanism to prevent airway narrowing or closure. To quantify this effect, specifically how changes in parenchymal stiffness alter airway size at different levels of lung inflation, in the present study, we devised a method to separate the effect of parenchymal stiffening from that of direct airway narrowing. Six anesthetized dogs were studied under four conditions: baseline, after whole lung aerosol histamine challenge, after local airway histamine challenge, and after complete relaxation of the airways. In each of these conditions, we used High resolution Computed Tomography to measure airway size and lung volume at five different airway pressures (0, 12, 25, 32, and 45 cm H(2O. Parenchymal stiffening had a protective effect on airway narrowing, a fact that may be important in the airway response to deep inspiration in asthma. When the parenchyma was stiffened by whole lung aerosol histamine challenge, at every lung volume above FRC, the airways were larger than when they were directly challenged with histamine to the same initial constriction. These results show for the first time that a stiff parenchyma per se minimizes the airway narrowing that occurs with histamine challenge at any lung volume. Thus in clinical asthma, it is not simply increased airway smooth muscle contraction, but perhaps a lack of homogeneous parenchymal stiffening that contributes to the symptomatic airway hyperresponsiveness.

  7. Matrine suppresses airway inflammation by downregulating SOCS3 expression via inhibition of NF-κB signaling in airway epithelial cells and asthmatic mice

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Daqing [Department of Respiration, Xi’an Children’s Hospital, Xi’an 710003 (China); Wang, Jing [Department of Neonatology, Xi’an Children’s Hospital, Xi’an 710003 (China); Yang, Niandi [Outpatient Department, School of Aerospace Engineering, Air Force Engineering University, Xi’an 710038 (China); Ma, Haixin, E-mail: drhaixinma@163.com [Department of Quality Control, Xi’an Children’s Hospital, Xi’an 710003 (China)

    2016-08-12

    Matrine has been demonstrated to attenuate allergic airway inflammation. Elevated suppressor of cytokine signaling 3 (SOCS3) was correlated with the severity of asthma. The aim of this study was to investigate the effect of matrine on SOCS3 expression in airway inflammation. In this study, we found that matrine significantly inhibited OVA-induced AHR, inflammatory cell infiltration, goblet cell differentiation, and mucous production in a dose-dependent manner in mice. Matrine also abrogated the level of interleukin (IL)-4 and IL-13, but enhanced interferon (IFN)-γ expression, both in BALF and in lung homogenates. Furthermore, matrine impeded TNF-α-induced the expression of IL-6 and adhesion molecules in airway epithelial cells (BEAS-2B and MLE-12). Additionally, we found that matrine inhibited SOCS3 expression, both in asthmatic mice and TNF-α-stimulated epithelial cells via suppression of the NF-κB signaling pathway by using pcDNA3.1-SOCS3 plasmid, SOCS3 siRNA, or nuclear factor kappa-B (NF-κB) inhibitor PDTC. Conclusions: Matrine suppresses airway inflammation by downregulating SOCS3 expression via inhibition of NF-κB signaling in airway epithelial cells and asthmatic mice. - Highlights: • Matrine attenuates asthmatic symptoms and regulates Th1/Th2 balance in vivo. • Matrine suppresses inflammation responses in vitro. • Matrine decreases SOCS3 expression both in vivo and in vitro. • Matrine inhibits SOCS3 expression by suppressing NF-κB signaling.

  8. Type 2 innate lymphoid cell suppression by regulatory T cells attenuates airway hyperreactivity and requires inducible T-cell costimulator-inducible T-cell costimulator ligand interaction.

    Science.gov (United States)

    Rigas, Diamanda; Lewis, Gavin; Aron, Jennifer L; Wang, Bowen; Banie, Homayon; Sankaranarayanan, Ishwarya; Galle-Treger, Lauriane; Maazi, Hadi; Lo, Richard; Freeman, Gordon J; Sharpe, Arlene H; Soroosh, Pejman; Akbari, Omid

    2017-05-01

    Atopic diseases, including asthma, exacerbate type 2 immune responses and involve a number of immune cell types, including regulatory T (Treg) cells and the emerging type 2 innate lymphoid cells (ILC2s). Although ILC2s are potent producers of type 2 cytokines, the regulation of ILC2 activation and function is not well understood. In the present study, for the first time, we evaluate how Treg cells interact with pulmonary ILC2s and control their function. ILC2s and Treg cells were evaluated by using in vitro suppression assays, cell-contact assays, and gene expression panels. Also, human ILC2s and Treg cells were adoptively transferred into NOD SCID γC-deficient mice, which were given isotype or anti-inducible T-cell costimulator ligand (ICOSL) antibodies and then challenged with IL-33 and assessed for airway hyperreactivity. We show that induced Treg cells, but not natural Treg cells, effectively suppress the production of the ILC2-driven proinflammatory cytokines IL-5 and IL-13 both in vitro and in vivo. Mechanistically, our data reveal the necessity of inducible T-cell costimulator (ICOS)-ICOS ligand cell contact for Treg cell-mediated ILC2 suppression alongside the suppressive cytokines TGF-β and IL-10. Using a translational approach, we then demonstrate that human induced Treg cells suppress syngeneic human ILC2s through ICOSL to control airway inflammation in a humanized ILC2 mouse model. These findings suggest that peripheral expansion of induced Treg cells can serve as a promising therapeutic target against ILC2-dependent asthma. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  9. Role of Aquaporin Water Channels in Airway Fluid Transport, Humidification, and Surface Liquid Hydration

    Science.gov (United States)

    Song, Yuanlin; Jayaraman, Sujatha; Yang, Baoxue; Matthay, Michael A.; Verkman, A.S.

    2001-01-01

    Several aquaporin-type water channels are expressed in mammalian airways and lung: AQP1 in microvascular endothelia, AQP3 in upper airway epithelia, AQP4 in upper and lower airway epithelia, and AQP5 in alveolar epithelia. Novel quantitative methods were developed to compare airway fluid transport–related functions in wild-type mice and knockout mice deficient in these aquaporins. Lower airway humidification, measured from the moisture content of expired air during mechanical ventilation with dry air through a tracheotomy, was 54–56% efficient in wild-type mice, and reduced by only 3–4% in AQP1/AQP5 or AQP3/AQP4 double knockout mice. Upper airway humidification, measured from the moisture gained by dry air passed through the upper airways in mice breathing through a tracheotomy, decreased from 91 to 50% with increasing ventilation from 20 to 220 ml/min, and reduced by 3–5% in AQP3/AQP4 knockout mice. The depth and salt concentration of the airway surface liquid in trachea was measured in vivo using fluorescent probes and confocal and ratio imaging microscopy. Airway surface liquid depth was 45 ± 5 μm and [Na+] was 115 ± 4 mM in wild-type mice, and not significantly different in AQP3/AQP4 knockout mice. Osmotic water permeability in upper airways, measured by an in vivo instillation/sample method, was reduced by ∼40% by AQP3/AQP4 deletion. In doing these measurements, we discovered a novel amiloride-sensitive isosmolar fluid absorption process in upper airways (13% in 5 min) that was not affected by aquaporin deletion. These results establish the fluid transporting properties of mouse airways, and indicate that aquaporins play at most a minor role in airway humidification, ASL hydration, and isosmolar fluid absorption. PMID:11382807

  10. Comparison of Airway Responses Induced in a Mouse Model by the Gas and Particulate Fractions of Gasoline Direct Injection Engine Exhaust

    Directory of Open Access Journals (Sweden)

    Caitlin L. Maikawa

    2018-03-01

    Full Text Available Diesel exhaust has been associated with asthma, but its response to other engine emissions is not clear. The increasing prevalence of vehicles with gasoline direct injection (GDI engines motivated this study, and the objective was to evaluate pulmonary responses induced by acute exposure to GDI engine exhaust in an allergic asthma murine model. Mice were sensitized with an allergen to induce airway hyperresponsiveness or treated with saline (non-allergic group. Animals were challenged for 2-h to exhaust from a laboratory GDI engine operated at conditions equivalent to a highway cruise. Exhaust was filtered to assess responses induced by the particulate and gas fractions. Short-term exposure to particulate matter from GDI engine exhaust induced upregulation of genes related to polycyclic aromatic hydrocarbon (PAH metabolism (Cyp1b1 and inflammation (TNFα in the lungs of non-allergic mice. High molecular weight PAHs dominated the particulate fraction of the exhaust, and this response was therefore likely attributable to the presence of these PAHs. The particle fraction of GDI engine exhaust further contributed to enhanced methacholine responsiveness in the central and peripheral tissues in animals with airway hyperresponsiveness. As GDI engines gain prevalence in the vehicle fleet, understanding the health impacts of their emissions becomes increasingly important.

  11. Comparison of Airway Responses Induced in a Mouse Model by the Gas and Particulate Fractions of Gasoline Direct Injection Engine Exhaust.

    Science.gov (United States)

    Maikawa, Caitlin L; Zimmerman, Naomi; Ramos, Manuel; Shah, Mittal; Wallace, James S; Pollitt, Krystal J Godri

    2018-03-01

    Diesel exhaust has been associated with asthma, but its response to other engine emissions is not clear. The increasing prevalence of vehicles with gasoline direct injection (GDI) engines motivated this study, and the objective was to evaluate pulmonary responses induced by acute exposure to GDI engine exhaust in an allergic asthma murine model. Mice were sensitized with an allergen to induce airway hyperresponsiveness or treated with saline (non-allergic group). Animals were challenged for 2-h to exhaust from a laboratory GDI engine operated at conditions equivalent to a highway cruise. Exhaust was filtered to assess responses induced by the particulate and gas fractions. Short-term exposure to particulate matter from GDI engine exhaust induced upregulation of genes related to polycyclic aromatic hydrocarbon (PAH) metabolism ( Cyp1b1 ) and inflammation ( TNFα ) in the lungs of non-allergic mice. High molecular weight PAHs dominated the particulate fraction of the exhaust, and this response was therefore likely attributable to the presence of these PAHs. The particle fraction of GDI engine exhaust further contributed to enhanced methacholine responsiveness in the central and peripheral tissues in animals with airway hyperresponsiveness. As GDI engines gain prevalence in the vehicle fleet, understanding the health impacts of their emissions becomes increasingly important.

  12. Respiratory health of elite athletes - preventing airway injury: a critical review.

    Science.gov (United States)

    Kippelen, Pascale; Fitch, Kenneth D; Anderson, Sandra Doreen; Bougault, Valerie; Boulet, Louis-Philippe; Rundell, Kenneth William; Sue-Chu, Malcolm; McKenzie, Donald C

    2012-06-01

    Elite athletes, particularly those engaged in endurance sports and those exposed chronically to airborne pollutants/irritants or allergens, are at increased risk for upper and lower airway dysfunction. Airway epithelial injury may be caused by dehydration and physical stress applied to the airways during severe exercise hyperpnoea and/or by inhalation of noxious agents. This is thought to initiate an inflammatory cascade/repair process that, ultimately, could lead to airway hyperresponsiveness (AHR) and asthma in susceptible athletes. The authors review the evidence relating to prevention or reduction of the risk of AHR/asthma development. Appropriate measures should be implemented when athletes exercise strenuously in an attempt to attenuate the dehydration stress and reduce the exposure to noxious airborne agents. Environmental interventions are the most important. Non-pharmacological strategies can assist, but currently, pharmacological measures have not been demonstrated to be effective. Whether early prevention of airway injury in elite athletes can prevent or reduce progression to AHR/asthma remains to be established.

  13. PI3K-delta mediates double-stranded RNA-induced upregulation of B7-H1 in BEAS-2B airway epithelial cells

    International Nuclear Information System (INIS)

    Kan-o, Keiko; Matsumoto, Koichiro; Asai-Tajiri, Yukari; Fukuyama, Satoru; Hamano, Saaka; Seki, Nanae; Nakanishi, Yoichi; Inoue, Hiromasa

    2013-01-01

    Highlights: •Double-stranded RNA upregulates B7-H1 on BEAS-2B airway epithelial cells. •The upregulation of B7-H1 is attenuated by inhibition of PI3Kδ isoform. •PI3Kδ-mediated upregulation of B7-H1 is independent of NF-κB activation. •Inhibition of PI3Kδ may prevent persistent viral infection induced by B7-H1. -- Abstract: Airway viral infection disturbs the health-related quality of life. B7-H1 (also known as PD-L1) is a coinhibitory molecule associated with the escape of viruses from the mucosal immunity, leading to persistent infection. Most respiratory viruses generate double-stranded (ds) RNA during replication. The stimulation of cultured airway epithelial cells with an analog of viral dsRNA, polyinosinic-polycytidylic acid (poly IC) upregulates the expression of B7-H1 via activation of the nuclear factor κB(NF-κB). The mechanism of upregulation was investigated in association with phosphatidylinositol 3-kinases (PI3Ks). Poly IC-induced upregulation of B7-H1 was profoundly suppressed by a pan-PI3K inhibitor and partially by an inhibitor or a small interfering (si)RNA for PI3Kδ in BEAS-2B cells. Similar results were observed in the respiratory syncytial virus-infected cells. The expression of p110δ was detected by Western blot and suppressed by pretreatment with PI3Kδ siRNA. The activation of PI3Kδ is typically induced by oxidative stress. The generation of reactive oxygen species was increased by poly IC. Poly IC-induced upregulation of B7-H1 was attenuated by N-acetyl-L-cysteine, an antioxidant, or by oxypurinol, an inhibitor of xanthine oxidase. Poly IC-induced activation of NF-κB was suppressed by a pan-PI3K inhibitor but not by a PI3Kδ inhibitor. These results suggest that PI3Kδ mediates dsRNA-induced upregulation of B7-H1 without affecting the activation of NF-κB

  14. A prospective study to evaluate and compare laryngeal mask airway ProSeal and i-gel airway in the prone position.

    Science.gov (United States)

    Taxak, Susheela; Gopinath, Ajith; Saini, Savita; Bansal, Teena; Ahlawat, Mangal Singh; Bala, Manju

    2015-01-01

    Prone position is commonly used to provide surgical access to a variety of surgeries. In view of the advantages of induction of anesthesia in the prone position, we conducted a randomized study to evaluate and compare ProSeal laryngeal mask airway (LMA) and i-gel in the prone position. Totally, 40 patients of either sex as per American Society of Anesthesiologists physical status I or II, between 16 and 60 years of age, scheduled to undergo surgery in prone position were included in the study. After the patients positioned themselves prone on the operating table, anesthesia was induced by the standard technique. LMA ProSeal was used as an airway conduit in group 1 while i-gel was used in group 2. At the end of surgery, the airway device was removed in the same position. Insertion of airway device was successful in first attempt in 16, and 17 cases in ProSeal laryngeal mask airway (PLMA) and i-gel groups, respectively. A second attempt was required to secure the airway in 4 and 3 patients in PLMA and i-gel groups, respectively. The mean insertion time was 21.8 ± 2.70 s for group 1 and 13.1 ± 2.24 s for group 2, the difference being statistically significant (P position. The PLMA has a better seal while insertion is easier with i-gel.

  15. Epidemiology of pollution-induced airway disease in Japan

    International Nuclear Information System (INIS)

    Miyamoto, T.

    1997-01-01

    Air pollution has been implicated as one of the factors responsible for the increased incidence of allergic diseases seen over recent years. Epidemiological studies in Japan demonstrate that atopic subjects living in urban areas are more likely to suffer from the effects of air pollution, with increased coughing, sputum production, wheezing and throat irritation. Furthermore, animal studies show that high concentrations of pollutant gases can promote airway sensitization. The incidence of allergic Rhinitis and asthma have been shown to be greater in areas where there is heavy traffic and hence high levels of automobile exhaust emissions. Intranasal administration of diesel exhaust particles in mice produces a stimulatory effect on immunoglobulin E production, and a similar finding has also been shown with suspended particulate matter in air. Air pollutants, such as ozone and nitrogen dioxide (NO 2 ), have been shown to stimulate the production of granulocyte-macrophage colony stimulating factor, which may play a vital role in airway hyperreactivity and asthma. In comparative studies of asthma in urban and rural areas, history of airway infection and a younger age of onset were found to be significantly greater in urban areas. When the asthmatic patients were divided into two groups according to environmental NO 2 levels (group I: NO 2 >30 ppb, group II: NO 2 <30 ppb), no significant difference regarding the various parameters was noted between the two groups, except for a greater severity of asthma in adults in group I, and a greater severity in chrildren in group II. These studies imply that air pollution may be one reason for the increase in allergic diseases in Japan, but a definitive conclusion cannot be drawn, and further, investigation is warranted. (au)

  16. An autocrine ATP release mechanism regulates basal ciliary activity in airway epithelium.

    Science.gov (United States)

    Droguett, Karla; Rios, Mariana; Carreño, Daniela V; Navarrete, Camilo; Fuentes, Christian; Villalón, Manuel; Barrera, Nelson P

    2017-07-15

    Extracellular ATP, in association with [Ca 2+ ] i regulation, is required to maintain basal ciliary beat frequency. Increasing extracellular ATP levels increases ciliary beating in airway epithelial cells, maintaining a sustained response by inducing the release of additional ATP. Extracellular ATP levels in the millimolar range, previously associated with pathophysiological conditions of the airway epithelium, produce a transient arrest of ciliary activity. The regulation of ciliary beat frequency is dependent on ATP release by hemichannels (connexin/pannexin) and P2X receptor activation, the blockage of which may even stop ciliary movement. The force exerted by cilia, measured by atomic force microscopy, is reduced following extracellular ATP hydrolysis. This result complements the current understanding of the ciliary beating regulatory mechanism, with special relevance to inflammatory diseases of the airway epithelium that affect mucociliary clearance. Extracellular nucleotides, including ATP, are locally released by the airway epithelium and stimulate ciliary activity in a [Ca 2+ ] i -dependent manner after mechanical stimulation of ciliated cells. However, it is unclear whether the ATP released is involved in regulating basal ciliary activity and mediating changes in ciliary activity in response to chemical stimulation. In the present study, we evaluated ciliary beat frequency (CBF) and ciliary beating forces in primary cultures from mouse tracheal epithelium, using videomicroscopy and atomic force microscopy (AFM), respectively. Extracellular ATP levels and [Ca 2+ ] i were measured by luminometric and fluorimetric assays, respectively. Uptake of ethidium bromide was measured to evaluate hemichannel functionality. We show that hydrolysis of constitutive extracellular ATP levels with apyrase (50 U ml -1 ) reduced basal CBF by 45% and ciliary force by 67%. The apyrase effect on CBF was potentiated by carbenoxolone, a hemichannel inhibitor, and oxidized ATP, an

  17. Molecular details of ovalbumin-pectin complexes at the air/water interface: A spectroscopic study

    NARCIS (Netherlands)

    Kudryashova, E.V.; Visser, A.J.W.G.; Hoek, A. van; Jongh, H.H.J. de

    2007-01-01

    To stabilize air-water interfaces, as in foams, the adsorption of surface-active components is a prerequisite. An approach to controlling the surface activity of proteins is noncovalent complex formation with a polyelectrolyte in the bulk phase. The molecular properties of egg white ovalbumin in a

  18. Molecular details of ovalbumin-pectin complexes at the air/water interface: a spectroscopic study.

    NARCIS (Netherlands)

    Kudryashova, E.V.; Visser, A.J.W.G.; Hoek, van A.; Jongh, de H.H.J.

    2007-01-01

    To stabilize air-water interfaces, as in foams, the adsorption of surface-active components is a prerequisite. An approach to controlling the surface activity of proteins is noncovalent complex formation with a polyelectrolyte in the bulk phase. The molecular properties of egg white ovalbumin in a

  19. Estrogen receptor beta signaling inhibits PDGF induced human airway smooth muscle proliferation.

    Science.gov (United States)

    Ambhore, Nilesh Sudhakar; Katragadda, Rathnavali; Raju Kalidhindi, Rama Satyanarayana; Thompson, Michael A; Pabelick, Christina M; Prakash, Y S; Sathish, Venkatachalem

    2018-04-20

    Airway smooth muscle (ASM) cell hyperplasia driven by persistent inflammation is a hallmark feature of remodeling in asthma. Sex steroid signaling in the lungs is of considerable interest, given epidemiological data showing more asthma in pre-menopausal women and aging men. Our previous studies demonstrated that estrogen receptor (ER) expression increases in asthmatic human ASM; however, very limited data are available regarding differential roles of ERα vs. ERβ isoforms in human ASM cell proliferation. In this study, we evaluated the effect of selective ERα and ERβ modulators on platelet-derived growth factor (PDGF)-stimulated ASM proliferation and the mechanisms involved. Asthmatic and non-asthmatic primary human ASM cells were treated with PDGF, 17β-estradiol, ERα-agonist and/or ERβ-agonist and/or G-protein-coupled estrogen receptor 30 (GPR30/GPER) agonist and proliferation was measured using MTT and CyQuant assays followed by cell cycle analysis. Transfection of small interfering RNA (siRNA) ERα and ERβ significantly altered the human ASM proliferation. The specificity of siRNA transfection was confirmed by Western blot analysis. Gene and protein expression of cell cycle-related antigens (PCNA and Ki67) and C/EBP were measured by RT-PCR and Western analysis, along with cell signaling proteins. PDGF significantly increased ASM proliferation in non-asthmatic and asthmatic cells. Treatment with PPT showed no significant effect on PDGF-induced proliferation, whereas WAY interestingly suppressed proliferation via inhibition of ERK1/2, Akt, and p38 signaling. PDGF-induced gene expression of PCNA, Ki67 and C/EBP in human ASM was significantly lower in cells pre-treated with WAY. Furthermore, WAY also inhibited PDGF-activated PCNA, C/EBP, cyclin-D1, and cyclin-E. Overall, we demonstrate ER isoform-specific signaling in the context of ASM proliferation. Activation of ERβ can diminish remodeling in human ASM by inhibiting pro-proliferative signaling pathways

  20. Bis(tributyltin)oxide (TBTO) decreases the food allergic response against peanut and ovalbumin in Brown Norway rats

    International Nuclear Information System (INIS)

    Jonge, Jonathan D. de; Ezendam, Janine; Knippels, Leon M.J.; Odink, Jennie; Pourier, Milanthy S.; Penninks, Andre H.; Pieters, Raymond; Loveren, Henk van

    2007-01-01

    Other factors than the allergen itself may be of importance in the development of food allergy. This report describes the influence of the immunosuppressive compound bis(tributyltin)oxide (TBTO), present in the food chain, on the development of food allergy to peanut or ovalbumin in Brown Norway (BN) rats. To study these effects BN rats were sensitized to either 1 or 10 mg peanut or ovalbumin by daily oral gavage and the TBTO-groups were fed a diet containing 80 mg TBTO per kg diet. Co-exposure to TBTO not only resulted in decreased general immunologic parameters such as weights of mesenteric lymph nodes and Peyer's patches, lymphocyte proliferation rates in splenocytes, but also on allergic parameters. In the peanut allergen-model TBTO decreased allergen-specific Th2 cytokine production by spleen cells, number of eosinophilic and basophilic granulocytes in the blood and production of mast cell protease II after oral food challenge. In the ovalbumin allergen-model TBTO decreased the number of eosinophilic and basophilic granulocytes, allergen-specific IgE and production of mast cell protease II after oral food challenge. The data imply that in the process of risk assessment of food allergy attention should be given to immunomodulating compounds present in the diet

  1. K+-induced alterations in airway muscle responsiveness to electrical field stimulation

    International Nuclear Information System (INIS)

    Murlas, C.; Ehring, G.; Suszkiw, J.; Sperelakis, N.

    1986-01-01

    We investigated possible pre- and postsynaptic effects of K+-induced depolarization on ferret tracheal smooth muscle (TSM) responsiveness to cholinergic stimulation. To assess electromechanical activity, cell membrane potential (Em) and tension (Tm) were simultaneously recorded in buffer containing 6, 12, 18, or 24 mM K+ before and after electrical field stimulation (EFS) or exogenous acetylcholine (ACh). In 6 mM K+, Em was -58.1 +/- 1.0 mV (mean +/- SE). In 12 mM K+, Em was depolarized to -52.3 +/- 0.9 mV, basal Tm did not change, and both excitatory junctional potentials and contractile responses to EFS at short stimulus duration were larger than in 6 mM K+. No such potentiation occurred at a higher K+, although resting Em and Tm increased progressively above 12 mM K+. The sensitivity of ferret TSM to exogenous ACh appeared unaffected by K+. To determine whether the hyperresponsiveness in 12 mM K+ was due, in part, to augmented ACh release from intramural airway nerves, experiments were done using TSM preparations incubated with [3H]choline to measure [3H]ACh release at rest and during EFS. Although resting [3H]ACh release increased progressively in higher K+, release evoked by EFS was maximal in 12 mM K+ and declined in higher concentrations. We conclude that small elevations in the extracellular K+ concentration augment responsiveness of the airways, by increasing the release of ACh both at rest and during EFS from intramural cholinergic nerve terminals. Larger increases in K+ appear to be inhibitory, possibly due to voltage-dependent effects that occur both pre- and postsynaptically

  2. Airway hyperresponsiveness and development of lung function in adolescence and adulthood

    DEFF Research Database (Denmark)

    Harmsen, Lotte; Ulrik, Charlotte S; Porsbjerg, Celeste

    2014-01-01

    with and without airway hyperresponsiveness. In a repeated measures regression model with adjustment for asthma and smoking, airway hyperresponsiveness was independently associated with reduced rates of growth in lung function in both sexes of 23 ml/year. Reduced growth rates resulted in deficits in maximal......BACKGROUND: Long-term longitudinal studies of lung function from childhood to adulthood are important in linking our understanding of childhood risk factors to adult disease. Airway hyperresponsiveness has been shown to independently affect lung function growth in studies of adolescence....... The objective of the study was to test the hypothesis that airway hyperresponsiveness has an independent deleterious effect on lung function in adolescence that extends into adulthood. METHODS: A random population sample (n = 983) aged 7-17 from Copenhagen was followed longitudinally for 20 years with four...

  3. Airway Relaxation Effects of Water-Soluble Sclerotial Extract From Lignosus rhinocerotis

    Directory of Open Access Journals (Sweden)

    Mei Kee Lee

    2018-05-01

    Full Text Available Lignosus rhinocerotis has a long history of use by the indigenous community within East Asia to treat a range of health conditions including asthma and chronic cough. To date, there is limited scientific evidence to support its therapeutic effects in relieving these airways conditions. In this study, we examined the effects of the different molecular weight fractions [high-molecular-weight (HMW, medium-molecular-weight (MMW, and low-molecular-weight (LMW] obtained from the cold water sclerotial extract (CWE of L. rhinocerotis on airways patency using airway segments isolated from Sprague Dawley rat in an organ bath set-up. It is demonstrated that the HMW and MMW fractions exhibited higher efficacy in relaxing the pre-contracted airways when compared to the CWE and LMW fraction. In addition, the HMW fraction markedly supressed carbachol-, 5-hydroxytrptamine-, and calcium-induced airway contractions. CWE demonstrated a lower efficacy than the HMW fraction but it also significantly attenuated carbachol- and calcium-induced airway contractions. Results showed that the bronchorelaxation effect of CWE and fractions is mediated via blockade of extracellular Ca2+ influx. The composition analysis revealed the following parts of carbohydrate and proteins, respectively: HMW fraction: 71 and 4%; MMW fraction: 35 and 1%; and LMW fraction: 22 and 0.3%. Our results strongly suggest that the polysaccharide–protein complex or proteins found in the HMW and MMW fractions is likely to contribute to the bronchorelaxation effect of CWE.

  4. Components of Streptococcus pneumoniae suppress allergic airways disease and NKT cells by inducing regulatory T cells.

    Science.gov (United States)

    Thorburn, Alison N; Foster, Paul S; Gibson, Peter G; Hansbro, Philip M

    2012-05-01

    Asthma is an allergic airways disease (AAD) caused by dysregulated immune responses and characterized by eosinophilic inflammation, mucus hypersecretion, and airway hyperresponsiveness (AHR). NKT cells have been shown to contribute to AHR in some mouse models. Conversely, regulatory T cells (Tregs) control aberrant immune responses and maintain homeostasis. Recent evidence suggests that Streptococcus pneumoniae induces Tregs that have potential to be harnessed therapeutically for asthma. In this study, mouse models of AAD were used to identify the S. pneumoniae components that have suppressive properties, and the mechanisms underlying suppression were investigated. We tested the suppressive capacity of type-3-polysaccharide (T3P), isolated cell walls, pneumolysoid (Ply) and CpG. When coadministered, T3P + Ply suppressed the development of: eosinophilic inflammation, Th2 cytokine release, mucus hypersecretion, and AHR. Importantly, T3P + Ply also attenuated features of AAD when administered during established disease. We show that NKT cells contributed to the development of AAD and also were suppressed by T3P + Ply treatment. Furthermore, adoptive transfer of NKT cells induced AHR, which also could be reversed by T3P + Ply. T3P + Ply-induced Tregs were essential for the suppression of NKT cells and AAD, which was demonstrated by Treg depletion. Collectively, our results show that the S. pneumoniae components T3P + Ply suppress AAD through the induction of Tregs that blocked the activity of NKT cells. These data suggest that S. pneumoniae components may have potential as a therapeutic strategy for the suppression of allergic asthma through the induction of Tregs and suppression of NKT cells.

  5. Divergent pro-inflammatory profile of human dendritic cells in response to commensal and pathogenic bacteria associated with the airway microbiota.

    Science.gov (United States)

    Larsen, Jeppe Madura; Steen-Jensen, Daniel Bisgaard; Laursen, Janne Marie; Søndergaard, Jonas Nørskov; Musavian, Hanieh Sadat; Butt, Tariq Mahmood; Brix, Susanne

    2012-01-01

    Recent studies using culture-independent methods have characterized the human airway microbiota and report microbial communities distinct from other body sites. Changes in these airway bacterial communities appear to be associated with inflammatory lung disease, yet the pro-inflammatory properties of individual bacterial species are unknown. In this study, we compared the immune stimulatory capacity on human monocyte-derived dendritic cells (DCs) of selected airway commensal and pathogenic bacteria predominantly associated with lungs of asthma or COPD patients (pathogenic Haemophillus spp. and Moraxella spp.), healthy lungs (commensal Prevotella spp.) or both (commensal Veillonella spp. and Actinomyces spp.). All bacteria were found to induce activation of DCs as demonstrated by similar induction of CD83, CD40 and CD86 surface expression. However, asthma and COPD-associated pathogenic bacteria provoked a 3-5 fold higher production of IL-23, IL-12p70 and IL-10 cytokines compared to the commensal bacteria. Based on the differential cytokine production profiles, the studied airway bacteria could be segregated into three groups (Haemophilus spp. and Moraxella spp. vs. Prevotella spp. and Veillonella spp. vs. Actinomyces spp.) reflecting their pro-inflammatory effects on DCs. Co-culture experiments found that Prevotella spp. were able to reduce Haemophillus influenzae-induced IL-12p70 in DCs, whereas no effect was observed on IL-23 and IL-10 production. This study demonstrates intrinsic differences in DC stimulating properties of bacteria associated with the airway microbiota.

  6. Exercise Inhibits the Effects of Smoke-Induced COPD Involving Modulation of STAT3

    Directory of Open Access Journals (Sweden)

    Maysa Alves Rodrigues Brandao-Rangel

    2017-01-01

    Full Text Available Purpose. Evaluate the participation of STAT3 in the effects of aerobic exercise (AE in a model of smoke-induced COPD. Methods. C57Bl/6 male mice were divided into control, Exe, COPD, and COPD+Exe groups. Smoke were administered during 90 days. Treadmill aerobic training begun on day 61 until day 90. Pulmonary inflammation, systemic inflammation, the level of lung emphysema, and the airway remodeling were evaluated. Analysis of integral and phosphorylated expression of STAT3 by airway epithelial cells, peribronchial leukocytes, and parenchymal leukocytes was performed. Results. AE inhibited smoke-induced accumulation of total cells (p<0.001, lymphocytes (p<0.001, and neutrophils (p<0.001 in BAL, as well as BAL levels of IL-1β (p<0.001, CXCL1 (p<0.001, IL-17 (p<0.001, and TNF-α (p<0.05, while increased the levels of IL-10 (p<0.001. AE also inhibited smoke-induced increases in total leukocytes (p<0.001, neutrophils (p<0.05, lymphocytes (p<0.001, and monocytes (p<0.01 in blood, as well as serum levels of IL-1β (p<0.01, CXCL1 (p<0.01, IL-17 (p<0.05, and TNF-α (p<0.01, while increased the levels of IL-10 (p<0.001. AE reduced smoke-induced emphysema (p<0.001 and collagen fiber accumulation in the airways (p<0.001. AE reduced smoke-induced STAT3 and phospho-STAT3 expression in airway epithelial cells (p<0.001, peribronchial leukocytes (p<0.001, and parenchymal leukocytes (p<0.001. Conclusions. AE reduces smoke-induced COPD phenotype involving STAT3.

  7. Minocycline Blocks Asthma-associated Inflammation in Part by Interfering with the T Cell Receptor-Nuclear Factor κB-GATA-3-IL-4 Axis without a Prominent Effect on Poly(ADP-ribose) Polymerase*

    Science.gov (United States)

    Naura, Amarjit S.; Kim, Hogyoung; Ju, Jihang; Rodriguez, Paulo C.; Jordan, Joaquin; Catling, Andrew D.; Rezk, Bashir M.; Elmageed, Zakaria Y. Abd; Pyakurel, Kusma; Tarhuni, Abdelmetalab F.; Abughazleh, Mohammad Q.; Errami, Youssef; Zerfaoui, Mourad; Ochoa, Augusto C.; Boulares, A. Hamid

    2013-01-01

    Minocycline protects against asthma independently of its antibiotic function and was recently reported as a potent poly(ADP-ribose) polymerase (PARP) inhibitor. In an animal model of asthma, a single administration of minocycline conferred excellent protection against ovalbumin-induced airway eosinophilia, mucus hypersecretion, and Th2 cytokine production (IL-4/IL-5/IL-12(p70)/IL-13/GM-CSF) and a partial protection against airway hyperresponsiveness. These effects correlated with pronounced reduction in lung and sera allergen-specific IgE. A reduction in poly(ADP-ribose) immunoreactivity in the lungs of minocycline-treated/ovalbumin-challenged mice correlated with decreased oxidative DNA damage. The effect of minocycline on PARP may be indirect, as the drug failed to efficiently block direct PARP activation in lungs of N-methyl-N′-nitro-N-nitroso-guanidine-treated mice or H2O2-treated cells. Minocycline blocked allergen-specific IgE production in B cells potentially by modulating T cell receptor (TCR)-linked IL-4 production at the mRNA level but not through a modulation of the IL-4-JAK-STAT-6 axis, IL-2 production, or NFAT1 activation. Restoration of IL-4, ex vivo, rescued IgE production by minocycline-treated/ovalbumin-stimulated B cells. IL-4 blockade correlated with a preferential inhibition of the NF-κB activation arm of TCR but not GSK3, Src, p38 MAPK, or ERK1/2. Interestingly, the drug promoted a slightly higher Src and ERK1/2 phosphorylation. Inhibition of NF-κB was linked to a complete blockade of TCR-stimulated GATA-3 expression, a pivotal transcription factor for IL-4 expression. Minocycline also reduced TNF-α-mediated NF-κB activation and expression of dependent genes. These results show a potentially broad effect of minocycline but that it may block IgE production in part by modulating TCR function, particularly by inhibiting the signaling pathway, leading to NF-κB activation, GATA-3 expression, and subsequent IL-4 production. PMID:23184953

  8. Minocycline blocks asthma-associated inflammation in part by interfering with the T cell receptor-nuclear factor κB-GATA-3-IL-4 axis without a prominent effect on poly(ADP-ribose) polymerase.

    Science.gov (United States)

    Naura, Amarjit S; Kim, Hogyoung; Ju, Jihang; Rodriguez, Paulo C; Jordan, Joaquin; Catling, Andrew D; Rezk, Bashir M; Abd Elmageed, Zakaria Y; Pyakurel, Kusma; Tarhuni, Abdelmetalab F; Abughazleh, Mohammad Q; Errami, Youssef; Zerfaoui, Mourad; Ochoa, Augusto C; Boulares, A Hamid

    2013-01-18

    Minocycline protects against asthma independently of its antibiotic function and was recently reported as a potent poly(ADP-ribose) polymerase (PARP) inhibitor. In an animal model of asthma, a single administration of minocycline conferred excellent protection against ovalbumin-induced airway eosinophilia, mucus hypersecretion, and Th2 cytokine production (IL-4/IL-5/IL-12(p70)/IL-13/GM-CSF) and a partial protection against airway hyperresponsiveness. These effects correlated with pronounced reduction in lung and sera allergen-specific IgE. A reduction in poly(ADP-ribose) immunoreactivity in the lungs of minocycline-treated/ovalbumin-challenged mice correlated with decreased oxidative DNA damage. The effect of minocycline on PARP may be indirect, as the drug failed to efficiently block direct PARP activation in lungs of N-methyl-N'-nitro-N-nitroso-guanidine-treated mice or H(2)O(2)-treated cells. Minocycline blocked allergen-specific IgE production in B cells potentially by modulating T cell receptor (TCR)-linked IL-4 production at the mRNA level but not through a modulation of the IL-4-JAK-STAT-6 axis, IL-2 production, or NFAT1 activation. Restoration of IL-4, ex vivo, rescued IgE production by minocycline-treated/ovalbumin-stimulated B cells. IL-4 blockade correlated with a preferential inhibition of the NF-κB activation arm of TCR but not GSK3, Src, p38 MAPK, or ERK1/2. Interestingly, the drug promoted a slightly higher Src and ERK1/2 phosphorylation. Inhibition of NF-κB was linked to a complete blockade of TCR-stimulated GATA-3 expression, a pivotal transcription factor for IL-4 expression. Minocycline also reduced TNF-α-mediated NF-κB activation and expression of dependent genes. These results show a potentially broad effect of minocycline but that it may block IgE production in part by modulating TCR function, particularly by inhibiting the signaling pathway, leading to NF-κB activation, GATA-3 expression, and subsequent IL-4 production.

  9. Prevention of airway hyperresponsiveness induced by left ventricular dysfunction in rats

    Directory of Open Access Journals (Sweden)

    Petak Ferenc

    2012-12-01

    Full Text Available Abstract Background The effectiveness of strategies for treatment of the altered static lung volume and against the development of bronchial hyperreactivity (BHR following a left ventricular dysfunction (LVD induced by myocardial ischaemia was investigated in a rat model of sustained postcapillary pulmonary hypertension. Methods Airway resistance (Raw was identified from the respiratory system input impedance (Zrs in four groups of rats. End-expiratory lung volume (EELV was determined plethysmographically, and Zrs was measured under baseline conditions and following iv infusions of 2, 6 or 18 μg/kg/min methacholine. Sham surgery was performed in the rats in Group C, while the left interventricular coronary artery was ligated and Zrs and its changes following identical methacholine challenges were reassessed in the same rats 8 weeks later, during which no treatment was applied (Group I, or the animals were treated daily with a combination of an angiotensin enzyme converter inhibitor and a diuretic (enalapril and furosemide, Group IE, or a calcium channel blocker (diltiazem, Group ID. The equivalent dose of methacholine causing a 100% increase in Raw (ED50 was determined in each group. Diastolic pulmonary arterial pressure (PapD was assessed by introducing a catheter into the pulmonary artery. Results The sustained presence of a LVD increased PapD in all groups of rats, with variable but significant elevations in Groups I (p = 0.004, ID (p = 0.013 and IE (p = 0.006. A LVD for 8 weeks induced no changes in baseline Raw but elevated the EELV independently of the treatments. In Group I, BHR consistently developed following the LVD, with a significant decrease in ED50 from 10.0 ± 2.5 to 6.9 ± 2.5 μg/kg/min (p = 0.006. The BHR was completely abolished in both Groups ID and IE, with no changes in ED50 (9.5 ± 3.6 vs. 10.7 ± 4.7, p = 0.33 and 10.6 ± 2.1 vs. 9.8 ± 3.5 μg/kg/min p = 0.56, respectively

  10. S1P-induced airway smooth muscle hyperresponsiveness and lung inflammation in vivo: molecular and cellular mechanisms.

    Science.gov (United States)

    Roviezzo, F; Sorrentino, R; Bertolino, A; De Gruttola, L; Terlizzi, M; Pinto, A; Napolitano, M; Castello, G; D'Agostino, B; Ianaro, A; Sorrentino, R; Cirino, G

    2015-04-01

    Sphingosine-1-phosphate (S1P) has been shown to be involved in the asthmatic disease as well in preclinical mouse experimental models of this disease. The aim of this study was to understand the mechanism(s) underlying S1P effects on the lung. BALB/c, mast cell-deficient and Nude mice were injected with S1P (s.c.) on days 0 and 7. Functional, molecular and cellular studies were performed. S1P administration to BALB/c mice increased airway smooth muscle reactivity, mucus production, PGD2 , IgE, IL-4 and IL-13 release. These features were associated to a higher recruitment of mast cells to the lung. Mast cell-deficient Kit (W) (-sh/) (W) (-sh) mice injected with S1P did not display airway smooth muscle hyper-reactivity. However, lung inflammation and IgE production were still present. Treatment in vivo with the anti-CD23 antibody B3B4, which blocks IgE production, inhibited both S1P-induced airway smooth muscle reactivity in vitro and lung inflammation. S1P administration to Nude mice did not elicit airway smooth muscle hyper-reactivity and lung inflammation. Naïve (untreated) mice subjected to the adoptive transfer of CD4+ T-cells harvested from S1P-treated mice presented all the features elicited by S1P in the lung. S1P triggers a cascade of events that sequentially involves T-cells, IgE and mast cells reproducing several asthma-like features. This model may represent a useful tool for defining the role of S1P in the mechanism of action of currently-used drugs as well as in the development of new therapeutic approaches for asthma-like diseases. © 2014 The British Pharmacological Society.

  11. Relaxation of soman-induced contracture of airway smooth muscle in vitro. (Reannouncement with new availability information)

    Energy Technology Data Exchange (ETDEWEB)

    Filbert, M.G.; Moore, D.H.; Adler, M.

    1992-12-31

    A possible role for beta-adrenergic agonists in the management of bronchoconstriction resulting from exposure to anticholinesterase compounds was investigated in vitro in canine tracheal smooth muscle. Norepinephrine, salbutamol and isoproterenol produced partial relaxation of soman-induced contractures. However, the relaxation induced was not sustained; muscle tensions returned to pretreatment levels within minutes despite the continued presence of beta-agonists. Increasing cAMP levels with the non beta-agonist bronchodilators such as thoophylline, a phosphodiesterase inhibitor, or forskolin, a specific stimulator of adenylate cyclase, resulted in more complete and longer lasting relaxation, suggesting that beta-adrenoceptor desensitization may contribute to the failure by beta-agonists to produce sustained relaxation. Nerve agents, Soman, Toxicity, Airway smooth muscle, In vitro, Physiology, Effects.

  12. Higher levels of spontaneous breathing reduce lung injury in experimental moderate acute respiratory distress syndrome.

    Science.gov (United States)

    Carvalho, Nadja C; Güldner, Andreas; Beda, Alessandro; Rentzsch, Ines; Uhlig, Christopher; Dittrich, Susanne; Spieth, Peter M; Wiedemann, Bärbel; Kasper, Michael; Koch, Thea; Richter, Torsten; Rocco, Patricia R; Pelosi, Paolo; de Abreu, Marcelo Gama

    2014-11-01

    To assess the effects of different levels of spontaneous breathing during biphasic positive airway pressure/airway pressure release ventilation on lung function and injury in an experimental model of moderate acute respiratory distress syndrome. Multiple-arm randomized experimental study. University hospital research facility. Thirty-six juvenile pigs. Pigs were anesthetized, intubated, and mechanically ventilated. Moderate acute respiratory distress syndrome was induced by repetitive saline lung lavage. Biphasic positive airway pressure/airway pressure release ventilation was conducted using the airway pressure release ventilation mode with an inspiratory/expiratory ratio of 1:1. Animals were randomly assigned to one of four levels of spontaneous breath in total minute ventilation (n = 9 per group, 6 hr each): 1) biphasic positive airway pressure/airway pressure release ventilation, 0%; 2) biphasic positive airway pressure/airway pressure release ventilation, > 0-30%; 3) biphasic positive airway pressure/airway pressure release ventilation, > 30-60%, and 4) biphasic positive airway pressure/airway pressure release ventilation, > 60%. The inspiratory effort measured by the esophageal pressure time product increased proportionally to the amount of spontaneous breath and was accompanied by improvements in oxygenation and respiratory system elastance. Compared with biphasic positive airway pressure/airway pressure release ventilation of 0%, biphasic positive airway pressure/airway pressure release ventilation more than 60% resulted in lowest venous admixture, as well as peak and mean airway and transpulmonary pressures, redistributed ventilation to dependent lung regions, reduced the cumulative diffuse alveolar damage score across lungs (median [interquartile range], 11 [3-40] vs 18 [2-69]; p ventilation more than 0-30% and more than 30-60% showed a less consistent pattern of improvement in lung function, inflammation, and damage compared with biphasic positive airway

  13. The osmolyte xylitol reduces the salt concentration of airway surface liquid and may enhance bacterial killing

    Science.gov (United States)

    Zabner, Joseph; Seiler, Michael P.; Launspach, Janice L.; Karp, Philip H.; Kearney, William R.; Look, Dwight C.; Smith, Jeffrey J.; Welsh, Michael J.

    2000-10-01

    The thin layer of airway surface liquid (ASL) contains antimicrobial substances that kill the small numbers of bacteria that are constantly being deposited in the lungs. An increase in ASL salt concentration inhibits the activity of airway antimicrobial factors and may partially explain the pathogenesis of cystic fibrosis (CF). We tested the hypothesis that an osmolyte with a low transepithelial permeability may lower the ASL salt concentration, thereby enhancing innate immunity. We found that the five-carbon sugar xylitol has a low transepithelial permeability, is poorly metabolized by several bacteria, and can lower the ASL salt concentration in both CF and non-CF airway epithelia in vitro. Furthermore, in a double-blind, randomized, crossover study, xylitol sprayed for 4 days into each nostril of normal volunteers significantly decreased the number of nasal coagulase-negative Staphylococcus compared with saline control. Xylitol may be of value in decreasing ASL salt concentration and enhancing the innate antimicrobial defense at the airway surface.

  14. TGF-β-activated kinase 1 (TAK1 signaling regulates TGF-β-induced WNT-5A expression in airway smooth muscle cells via Sp1 and β-catenin.

    Directory of Open Access Journals (Sweden)

    Kuldeep Kumawat

    Full Text Available WNT-5A, a key player in embryonic development and post-natal homeostasis, has been associated with a myriad of pathological conditions including malignant, fibroproliferative and inflammatory disorders. Previously, we have identified WNT-5A as a transcriptional target of TGF-β in airway smooth muscle cells and demonstrated its function as a mediator of airway remodeling. Here, we investigated the molecular mechanisms underlying TGF-β-induced WNT-5A expression. We show that TGF-β-activated kinase 1 (TAK1 is a critical mediator of WNT-5A expression as its pharmacological inhibition or siRNA-mediated silencing reduced TGF-β induction of WNT-5A. Furthermore, we show that TAK1 engages p38 and c-Jun N-terminal kinase (JNK signaling which redundantly participates in WNT-5A induction as only simultaneous, but not individual, inhibition of p38 and JNK suppressed TGF-β-induced WNT-5A expression. Remarkably, we demonstrate a central role of β-catenin in TGF-β-induced WNT-5A expression. Regulated by TAK1, β-catenin is required for WNT-5A induction as its silencing repressed WNT-5A expression whereas a constitutively active mutant augmented basal WNT-5A abundance. Furthermore, we identify Sp1 as the transcription factor for WNT-5A and demonstrate its interaction with β-catenin. We discover that Sp1 is recruited to the WNT-5A promoter in a TGF-β-induced and TAK1-regulated manner. Collectively, our findings describe a TAK1-dependent, β-catenin- and Sp1-mediated signaling cascade activated downstream of TGF-β which regulates WNT-5A induction.

  15. Matrix stiffness-modulated proliferation and secretory function of the airway smooth muscle cells.

    Science.gov (United States)

    Shkumatov, Artem; Thompson, Michael; Choi, Kyoung M; Sicard, Delphine; Baek, Kwanghyun; Kim, Dong Hyun; Tschumperlin, Daniel J; Prakash, Y S; Kong, Hyunjoon

    2015-06-01

    Multiple pulmonary conditions are characterized by an abnormal misbalance between various tissue components, for example, an increase in the fibrous connective tissue and loss/increase in extracellular matrix proteins (ECM). Such tissue remodeling may adversely impact physiological function of airway smooth muscle cells (ASMCs) responsible for contraction of airways and release of a variety of bioactive molecules. However, few efforts have been made to understand the potentially significant impact of tissue remodeling on ASMCs. Therefore, this study reports how ASMCs respond to a change in mechanical stiffness of a matrix, to which ASMCs adhere because mechanical stiffness of the remodeled airways is often different from the physiological stiffness. Accordingly, using atomic force microscopy (AFM) measurements, we found that the elastic modulus of the mouse bronchus has an arithmetic mean of 23.1 ± 14 kPa (SD) (median 18.6 kPa). By culturing ASMCs on collagen-conjugated polyacrylamide hydrogels with controlled elastic moduli, we found that gels designed to be softer than average airway tissue significantly increased cellular secretion of vascular endothelial growth factor (VEGF). Conversely, gels stiffer than average airways stimulated cell proliferation, while reducing VEGF secretion and agonist-induced calcium responses of ASMCs. These dependencies of cellular activities on elastic modulus of the gel were correlated with changes in the expression of integrin-β1 and integrin-linked kinase (ILK). Overall, the results of this study demonstrate that changes in matrix mechanics alter cell proliferation, calcium signaling, and proangiogenic functions in ASMCs. Copyright © 2015 the American Physiological Society.

  16. Differential Roles of Hydrogen Peroxide in Adaptive and Inflammatory Gene Expression Induced by Exposure of Human Airway Epithelial Cells to Zn2+

    Science.gov (United States)

    Oxidant stress is believed to play an important role in particulate matter (PM)–mediated toxicity in the respiratory tract. Zinc (Zn2+) is a ubiquitous component of PM that has been shown to induce adverse responses such as inflammatory and adaptive gene expression in airway epit...

  17. Individual canine Airway Response Variability to a Deep Inspiration

    Directory of Open Access Journals (Sweden)

    Robert H. Brown

    2011-01-01

    Full Text Available In healthy individuals, a DI can reverse (bronchodilation or prevent (bronchoprotection induced airway constriction. For individuals with asthma or COPD, these effects may be attenuated or absent. Previous work showed that the size and duration of a DI affected the subsequent response of the airways. Also, increased airway tone lead to increased airway size variability. The present study examined how a DI affected the temporal variability in individual airway baseline size and after methacholine challenge in dogs using High-Resolution Computed Tomography. Dogs were anesthetized and ventilated, and on 4 separate days, HRCT scans were acquired before and after a DI at baseline and during a continuous intravenous infusion of methacholine (Mch at 3 dose rates (17, 67, and 200 μg/mm. The Coefficient of Variation was used as an index of temporal variability in airway size. We found that at baseline and the lowest dose of Mch, variability decreased immediately and 5 minutes after the DI ( P < 0.0001. In contrast, with higher doses of Mch, the DI caused a variable response. At a rate of 67 μg/min of Mch, the temporal variability increased after 5 minutes, while at a rate of 200 μg/min of Mch, the temporal variability increased immediately after the DI. Increased airway temporal variability has been shown to be associated with asthma. Although the mechanisms underlying this temporal variability are poorly understood, the beneficial effects of a DI to decrease airway temporal variability was eliminated when airway tone was increased. If this effect is absent in asthmatics, this may suggest a possible mechanism for the loss of bronchoprotective and bronchodilatory effects after a DI in asthma.

  18. Simvastatin Inhibits IL-5-Induced Chemotaxis and CCR3 Expression of HL-60-Derived and Human Primary Eosinophils.

    Science.gov (United States)

    Fu, Chia-Hsiang; Tsai, Wan-Chun; Lee, Ta-Jen; Huang, Chi-Che; Chang, Po-Hung; Su Pang, Jong-Hwei

    2016-01-01

    IL-5-induced chemotaxis of eosinophils is an important feature of allergic airway inflammatory diseases. Simvastatin, a lipid lowering agent, has been shown to exhibit anti-inflammatory and anti-allergic effects. Our aim was to investigate the effect of simvastatin on IL-5-induced eosinophil chemotaxis and its regulatory mechanisms. Eosinophils were derived by treating HL-60 clone 15 (HC15) cells with butyric acid (BA) in an alkaline condition or through direct isolation from human peripheral blood. The expressions of CC chemokine receptor 3 (CCR3) and interleukin (IL)-5 receptors (IL5Rα and β) were analyzed using RT/real-time PCR. The granular proteins were stained using fast green. Eotaxin-induced chemotaxis was measured using a transwell migration assay. CCR3 protein expression was revealed by immunocytochemistry. An animal model of allergic rhinitis was established by challenging Sprague-Dawley® rats repeatedly with ovalbumin. Butyric acid significantly increased the expression of IL5Rα and IL5Rβ, CCR3 and granular proteins in HC15 cells, indicating the maturation of eosinophils (BA-E cells). IL-5 further enhanced the CCR3 expression at both the mRNA and protein levels and the eotaxin-induced chemotaxis of BA-E cells. Simvastatin inhibited the effects of IL-5 on BA-E cells, but not in the presence of mevalonate. Similar results were also exhibited in human primary eosinophils. In vivo animal studies further confirmed that oral simvastatin could significantly suppress the infiltration of eosinophils into turbinate tissues of allergic rats. Therefore, simvastatin was demonstrated to inhibit IL-5-induced CCR3 expression and chemotaxis of eosinophils mediated via the mevalonate pathway. We confirmed that simvastatin also reduced eosinophilic infiltration in allergic rhinitis.

  19. Airway stents

    Science.gov (United States)

    Keyes, Colleen

    2018-01-01

    Stents and tubes to maintain the patency of the airways are commonly used for malignant obstruction and are occasionally employed in benign disease. Malignant airway obstruction usually results from direct involvement of bronchogenic carcinoma, or by extension of carcinomas occurring in the esophagus or the thyroid. External compression from lymph nodes or metastatic disease from other organs can also cause central airway obstruction. Most malignant airway lesions are surgically inoperable due to advanced disease stage and require multimodality palliation, including stent placement. As with any other medical device, stents have significantly evolved over the last 50 years and deserve an in-depth understanding of their true capabilities and complications. Not every silicone stent is created equal and the same holds for metallic stents. Herein, we present an overview of the topic as well as some of the more practical and controversial issues surrounding airway stents. We also try to dispel the myths surrounding stent removal and their supposed use only in central airways. At the end, we come to the long-held conclusion that stents should not be used as first line treatment of choice, but after ruling out the possibility of curative surgical resection or repair. PMID:29707506

  20. Risk factors for small pharyngeal airway dimensions in preorthodontic children

    DEFF Research Database (Denmark)

    Anandarajah, Seerone; Dudhia, Raahib; Sandham, Andrew

    2017-01-01

    Objective: To analyze which parameters, gathered from standard orthodontic diagnostic material, were most relevant for identifying small pharyngeal airway dimensions in preorthodontic children. Materials and Methods: The sample was composed of 105 cone beam computed tomography scans of healthy......, skeletal maturity and gender significant associations were found between pharyngeal airway dimensions and craniofacial morphology. Airway volume was positively associated with maxillary and mandibular width (P ... and sagittal jaw relationship were the most relevant factors for minimal cross-sectional area (r2 = 0.16). Conclusion: Pharyngeal airway dimensions were significantly associated with age, skeletal maturity, and craniofacial morphology in all three planes. Children with a reduced mandibular width and increased...

  1. Sublingual injection of microparticles containing glycolipid ligands for NKT cells and subunit vaccines induces antibody responses in oral cavity.

    Science.gov (United States)

    DeLyria, Elizabeth S; Zhou, Dapeng; Lee, Jun Soo; Singh, Shailbala; Song, Wei; Li, Fenge; Sun, Qing; Lu, Hongzhou; Wu, Jinhui; Qiao, Qian; Hu, Yiqiao; Zhang, Guodong; Li, Chun; Sastry, K Jagannadha; Shen, Haifa

    2015-03-20

    Natural Killer T (NKT) cells are a unique type of innate immune cells which exert paradoxical roles in animal models through producing either Th1 or Th2 cytokines and activating dendritic cells. Alpha-galactosylceramide (αGalCer), a synthetic antigen for NKT cells, was found to be safe and immune stimulatory in cancer and hepatitis patients. We recently developed microparticle-formulated αGalCer, which is selectively presented by dendritic cells and macrophages, but not B cells, and thus can avoid the anergy of NKT cells. In this study, we have examined the immunogenicity of microparticles containing αGalCer and protein vaccine components through sublingual injection in mice. The results showed that sublingual injection of microparticles containing αGalCer and ovalbumin triggered IgG responses in serum (titer >1:100,000), which persisted for more than 3months. Microparticles containing ovalbumin alone also induced comparable level of IgG responses. However, immunoglobulin subclass analysis showed that sublingually injected microparticles containing αGalCer and ovalbumin induced 20 fold higher Th1 biased antibody (IgG2c) than microparticles containing OVA alone (1:20,000 as compared to 1:1000 titer). Sublingual injection of microparticles containing αGalCer and ovalbumin induced secretion of both IgG (titer >1:1000) and IgA (titer=1:80) in saliva secretion, while microparticles containing ovalbumin alone only induced secretion of IgG in saliva. Our results suggest that sublingual injection of microparticles and their subsequent trafficking to draining lymph nodes may induce adaptive immune responses in mucosal compartments. Ongoing studies are focused on the mechanism of antigen presentation and lymphocyte biology in the oral cavity, as well as the toxicity and efficacy of these candidate microparticles for future applications. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. IMD-4690, a novel specific inhibitor for plasminogen activator inhibitor-1, reduces allergic airway remodeling in a mouse model of chronic asthma via regulating angiogenesis and remodeling-related mediators.

    Directory of Open Access Journals (Sweden)

    Toshifumi Tezuka

    Full Text Available Plasminogen activator inhibitor (PAI-1 is the principal inhibitor of plasminogen activators, and is responsible for the degradation of fibrin and extracellular matrix. IMD-4690 is a newly synthesized inhibitor for PAI-1, whereas the effect on allergic airway inflammation and remodeling is still unclear. We examined the in vivo effects by using a chronic allergen exposure model of bronchial asthma in mice. The model was generated by an immune challenge for 8 weeks with house dust mite antigen, Dermatophagoides pteronyssinus (Dp. IMD-4690 was intraperitoneally administered during the challenge. Lung histopathology, hyperresponsiveness and the concentrations of mediators in lung homogenates were analyzed. The amount of active PAI-1 in the lungs was increased in mice treated with Dp. Administration with IMD-4690 reduced an active/total PAI-1 ratio. IMD-4690 also reduced the number of bronchial eosinophils in accordance with the decreased expressions of Th2 cytokines in the lung homogenates. Airway remodeling was inhibited by reducing subepithelial collagen deposition, smooth muscle hypertrophy, and angiogenesis. The effects of IMD-4690 were partly mediated by the regulation of TGF-β, HGF and matrix metalloproteinase. These results suggest that PAI-1 plays crucial roles in airway inflammation and remodeling, and IMD-4690, a specific PAI-1 inhibitor, may have therapeutic potential for patients with refractory asthma due to airway remodeling.

  3. IMD-4690, a novel specific inhibitor for plasminogen activator inhibitor-1, reduces allergic airway remodeling in a mouse model of chronic asthma via regulating angiogenesis and remodeling-related mediators.

    Science.gov (United States)

    Tezuka, Toshifumi; Ogawa, Hirohisa; Azuma, Masahiko; Goto, Hisatsugu; Uehara, Hisanori; Aono, Yoshinori; Hanibuchi, Masaki; Yamaguchi, Yoichi; Fujikawa, Tomoyuki; Itai, Akiko; Nishioka, Yasuhiko

    2015-01-01

    Plasminogen activator inhibitor (PAI)-1 is the principal inhibitor of plasminogen activators, and is responsible for the degradation of fibrin and extracellular matrix. IMD-4690 is a newly synthesized inhibitor for PAI-1, whereas the effect on allergic airway inflammation and remodeling is still unclear. We examined the in vivo effects by using a chronic allergen exposure model of bronchial asthma in mice. The model was generated by an immune challenge for 8 weeks with house dust mite antigen, Dermatophagoides pteronyssinus (Dp). IMD-4690 was intraperitoneally administered during the challenge. Lung histopathology, hyperresponsiveness and the concentrations of mediators in lung homogenates were analyzed. The amount of active PAI-1 in the lungs was increased in mice treated with Dp. Administration with IMD-4690 reduced an active/total PAI-1 ratio. IMD-4690 also reduced the number of bronchial eosinophils in accordance with the decreased expressions of Th2 cytokines in the lung homogenates. Airway remodeling was inhibited by reducing subepithelial collagen deposition, smooth muscle hypertrophy, and angiogenesis. The effects of IMD-4690 were partly mediated by the regulation of TGF-β, HGF and matrix metalloproteinase. These results suggest that PAI-1 plays crucial roles in airway inflammation and remodeling, and IMD-4690, a specific PAI-1 inhibitor, may have therapeutic potential for patients with refractory asthma due to airway remodeling.

  4. Respiratory health of elite athletes – preventing airway injury: a critical review

    Science.gov (United States)

    Kippelen, Pascale; Fitch, Kenneth D; Anderson, Sandra Doreen; Bougault, Valerie; Boulet, Louis-Philippe; Rundell, Kenneth William; Sue-Chu, Malcolm; McKenzie, Donald C

    2012-01-01

    Elite athletes, particularly those engaged in endurance sports and those exposed chronically to airborne pollutants/irritants or allergens, are at increased risk for upper and lower airway dysfunction. Airway epithelial injury may be caused by dehydration and physical stress applied to the airways during severe exercise hyperpnoea and/or by inhalation of noxious agents. This is thought to initiate an inflammatory cascade/repair process that, ultimately, could lead to airway hyperresponsiveness (AHR) and asthma in susceptible athletes. The authors review the evidence relating to prevention or reduction of the risk of AHR/asthma development. Appropriate measures should be implemented when athletes exercise strenuously in an attempt to attenuate the dehydration stress and reduce the exposure to noxious airborne agents. Environmental interventions are the most important. Non-pharmacological strategies can assist, but currently, pharmacological measures have not been demonstrated to be effective. Whether early prevention of airway injury in elite athletes can prevent or reduce progression to AHR/asthma remains to be established. PMID:22522585

  5. Grain dust-induced lung inflammation is reduced by Rhodobacter sphaeroides diphosphoryl lipid A.

    Science.gov (United States)

    Jagielo, P J; Quinn, T J; Qureshi, N; Schwartz, D A

    1998-01-01

    To further determine the importance of endotoxin in grain dust-induced inflammation of the lower respiratory tract, we evaluated the efficacy of pentaacylated diphosphoryl lipid A derived from the lipopolysaccharide of Rhodobacter sphaeroides (RsDPLA) as a partial agonist of grain dust-induced airway inflammation. RsDPLA is a relatively inactive compound compared with lipid A derived from Escherichia coli (LPS) and has been demonstrated to act as a partial agonist of LPS-induced inflammation. To assess the potential stimulatory effect of RsDPLA in relation to LPS, we incubated THP-1 cells with RsDPLA (0.001-100 micrograms/ml), LPS (0.02 microgram endotoxin activity/ml), or corn dust extract (CDE; 0.02 microgram endotoxin activity/ml). Incubation with RsDPLA revealed a tumor necrosis factor (TNF)-alpha stimulatory effect at 100 micrograms/ml. In contrast, incubation with LPS or CDE resulted in TNF-alpha release at 0.02 microgram/ml. Pretreatment of THP-1 cells with varying concentrations of RsDPLA before incubation with LPS or CDE (0.02 microgram endotoxin activity/ml) resulted in a dose-dependent reduction in the LPS- or CDE-induced release of TNF-alpha with concentrations of RsDPLA of up to 10 micrograms/ml but not at 100 micrograms/ml. To further understand the role of endotoxin in grain dust-induced airway inflammation, we utilized the unique LPS inhibitory property of RsDPLA to determine the inflammatory response to inhaled CDE in mice in the presence of RsDPLA. Ten micrograms of RsDPLA intratracheally did not cause a significant inflammatory response compared with intratracheal saline. However, pretreatment of mice with 10 micrograms of RsDPLA intratracheally before exposure to CDE (5.4 and 0.2 micrograms/m3) or LPS (7.2 and 0.28 micrograms/m3) resulted in significant reductions in the lung lavage concentrations of total cells, neutrophils, and specific proinflammatory cytokines compared with mice pretreated with sterile saline. These results confirm the LPS

  6. Potentially pathogenic airway bacteria and neutrophilic inflammation in treatment resistant severe asthma.

    Science.gov (United States)

    Green, Benjamin J; Wiriyachaiporn, Surasa; Grainge, Christopher; Rogers, Geraint B; Kehagia, Valia; Lau, Laurie; Carroll, Mary P; Bruce, Kenneth D; Howarth, Peter H

    2014-01-01

    Molecular microbiological analysis of airway samples in asthma has demonstrated an altered microbiome in comparison to healthy controls. Such changes may have relevance to treatment-resistant severe asthma, particularly those with neutrophilic airway inflammation, as bacteria might be anticipated to activate the innate immune response, a process that is poorly steroid responsive. An understanding of the relationship between airway bacterial presence and dominance in severe asthma may help direct alternative treatment approaches. We aimed to use a culture independent analysis strategy to describe the presence, dominance and abundance of bacterial taxa in induced sputum from treatment resistant severe asthmatics and correlate findings with clinical characteristics and airway inflammatory markers. Induced sputum was obtained from 28 stable treatment-resistant severe asthmatics. The samples were divided for supernatant IL-8 measurement, cytospin preparation for differential cell count and Terminal Restriction Fragment Length Polymorphism (T-RFLP) profiling for bacterial community analysis. In 17/28 patients, the dominant species within the airway bacterial community was Moraxella catarrhalis or a member of the Haemophilus or Streptococcus genera. Colonisation with these species was associated with longer asthma disease duration (mean (SD) 31.8 years (16.7) vs 15.6 years (8.0), p = 0.008), worse post-bronchodilator percent predicted FEV1 (68.0% (24.0) vs 85.5% (19.7), p = 0.025) and higher sputum neutrophil differential cell counts (median (IQR) 80% (67-83) vs 43% (29-67), p = 0.001). Total abundance of these organisms significantly and positively correlated with sputum IL-8 concentration and neutrophil count. Airway colonisation with potentially pathogenic micro-organisms in asthma is associated with more severe airways obstruction and neutrophilic airway inflammation. This altered colonisation may have a role in the development of an asthma phenotype that

  7. Genetic Deletion and Pharmacological Inhibition of PI3Kγ Reduces Neutrophilic Airway Inflammation and Lung Damage in Mice with Cystic Fibrosis-Like Lung Disease

    Directory of Open Access Journals (Sweden)

    Maria Galluzzo

    2015-01-01

    Full Text Available Purpose. Neutrophil-dominated airway inflammation is a key feature of progressive lung damage in cystic fibrosis (CF. Thus, reducing airway inflammation is a major goal to prevent lung damage in CF. However, current anti-inflammatory drugs have shown several limits. PI3Kγ plays a pivotal role in leukocyte recruitment and activation; in the present study we determined the effects of genetic deletion and pharmacologic inhibition of PI3Kγ on airway inflammation and structural lung damage in a mouse model of CF lung disease. Methods. βENaC overexpressing mice (βENaC-Tg were backcrossed with PI3Kγ-deficient (PI3KγKO mice. Tissue damage was assessed by histology and morphometry and inflammatory cell number was evaluated in bronchoalveolar lavage fluid (BALF. Furthermore, we assessed the effect of a specific PI3Kγ inhibitor (AS-605240 on inflammatory cell number in BALF. Results. Genetic deletion of PI3Kγ decreased neutrophil numbers in BALF of PI3KγKO/βENaC-Tg mice, and this was associated with reduced emphysematous changes. Treatment with the PI3Kγ inhibitor AS-605240 decreased the number of neutrophils in BALF of βENaC-Tg mice, reproducing the effect observed with genetic deletion of the enzyme. Conclusions. These results demonstrate the biological efficacy of both genetic deletion and pharmacological inhibition of PI3Kγ in reducing chronic neutrophilic inflammation in CF-like lung disease in vivo.

  8. A PAF receptor antagonist inhibits acute airway inflammation and late-phase responses but not chronic airway inflammation and hyperresponsiveness in a primate model of asthma

    Directory of Open Access Journals (Sweden)

    R. H. Gundel

    1992-01-01

    Full Text Available We have examined the effects of a PAF receptor antagonist, WEB 2170, on several indices of acute and chronic airway inflammation and associated changes in lung function in a primate model of allergic asthma. A single oral administration WEB 2170 provided dose related inhibition of the release of leukotriene C4 (LTC4 and prostaglandin D2 (PGD2 recovered and quantified in bronchoalveolar lavage (BAL fluid obtained during the acute phase response to inhaled antigen. In addition, oral WEB 2170 treatment in dual responder primates blocked the acute influx of neutrophils into the airways as well as the associated late-phase airway obstruction occurring 6 h after antigen inhalation. In contrast, a multiple dosing regime with WEB 2170 (once a day for 7 consecutive days failed to reduce the chronic airway inflammation (eosinophilic and associated airway hyperresponsiveness to inhaled methacholine that is characteristic of dual responder monkeys. Thus, we conclude that the generation of PAF following antigen inhalation contributes to the development of lipid mediators, acute airway inflammation and associated late-phase airway obstruction in dual responder primates; however, PAF does not play a significant role in the maintenance of chronic airway inflammation and associated airway hyperresponsiveness in this primate model.

  9. Low flow anesthesia: Efficacy and outcome of laryngeal mask airway versus pressure-optimized cuffed-endotracheal tube

    Directory of Open Access Journals (Sweden)

    El-Seify Zeinab

    2010-01-01

    Full Text Available Background: Low flow anesthesia can lead to reduction of anesthetic gas and vapor consumption. Laryngeal mask airway (LMA has proved to be an effective and safe airway device. The aim of this study is to assess the feasibility of laryngeal mask airway during controlled ventilation using low fresh gas flow (1.0 L/min as compared to endotracheal tube (ETT. Patients and Methods : Fifty nine non-smoking adult patients; ASA I or II, being scheduled for elective surgical procedures, with an expected duration of anesthesia 60 minutes or more, were randomly allocated into two groups - Group I (29 patients had been ventilated using LMA size 4 for females and 5 for males respectively; and Group II (30 patients were intubated using ETT. After 10 minutes of high fresh gas flow, the flow was reduced to 1 L/min. Patients were monitored for airway leakage, end-tidal CO 2 (ETCO 2 , inspiratory and expiratory isoflurane and nitrous oxide fraction concentrations, and postoperative airway-related complications Results : Two patients in the LMA-group developed initial airway leakage (6.9% versus no patient in ETT-group. Cough and sore throat were significantly higher in ETT patients. There were no evidences of differences between both groups regarding ETCO 2 , uptake of gases, nor difficulty in swallowing. Conclusion : The laryngeal mask airway proved to be effective and safe in establishing an airtight seal during controlled ventilation under low fresh gas flow of 1 L/min, inducing less coughing and sore throat during the immediate postoperative period than did the ETT, with continuous measurement and readjustment of the tube cuff pressure.

  10. Toxoplasma gondii infection induces suppression in a mouse model of allergic airway inflammation.

    Directory of Open Access Journals (Sweden)

    Ignacio M Fenoy

    Full Text Available Allergic asthma is an inflammatory disorder characterized by infiltration of the airway wall with inflammatory cells driven mostly by activation of Th2-lymphocytes, eosinophils and mast cells. There is a link between increased allergy and a reduction of some infections in Western countries. Epidemiological data also show that respiratory allergy is less frequent in people exposed to orofecal and foodborne microbes such as Toxoplasma gondii. We previously showed that both acute and chronic parasite T. gondii infection substantially blocked development of airway inflammation in adult BALB/c mice. Based on the high levels of IFN-γ along with the reduction of Th2 phenotype, we hypothesized that the protective effect might be related to the strong Th1 immune response elicited against the parasite. However, other mechanisms could also be implicated. The possibility that regulatory T cells inhibit allergic diseases has received growing support from both animal and human studies. Here we investigated the cellular mechanisms involved in T. gondii induced protection against allergy. Our results show for the first time that thoracic lymph node cells from mice sensitized during chronic T. gondii infection have suppressor activity. Suppression was detected both in vitro, on allergen specific T cell proliferation and in vivo, on allergic lung inflammation after adoptive transference from infected/sensitized mice to previously sensitized animals. This ability was found to be contact-independent and correlated with high levels of TGF-β and CD4(+FoxP3(+ cells.

  11. Degrees of reality: airway anatomy of high-fidelity human patient simulators and airway trainers.

    Science.gov (United States)

    Schebesta, Karl; Hüpfl, Michael; Rössler, Bernhard; Ringl, Helmut; Müller, Michael P; Kimberger, Oliver

    2012-06-01

    Human patient simulators and airway training manikins are widely used to train airway management skills to medical professionals. Furthermore, these patient simulators are employed as standardized "patients" to evaluate airway devices. However, little is known about how realistic these patient simulators and airway-training manikins really are. This trial aimed to evaluate the upper airway anatomy of four high-fidelity patient simulators and two airway trainers in comparison with actual patients by means of radiographic measurements. The volume of the pharyngeal airspace was the primary outcome parameter. Computed tomography scans of 20 adult trauma patients without head or neck injuries were compared with computed tomography scans of four high-fidelity patient simulators and two airway trainers. By using 14 predefined distances, two cross-sectional areas and three volume parameters of the upper airway, the manikins' similarity to a human patient was assessed. The pharyngeal airspace of all manikins differed significantly from the patients' pharyngeal airspace. The HPS Human Patient Simulator (METI®, Sarasota, FL) was the most realistic high-fidelity patient simulator (6/19 [32%] of all parameters were within the 95% CI of human airway measurements). The airway anatomy of four high-fidelity patient simulators and two airway trainers does not reflect the upper airway anatomy of actual patients. This finding may impact airway training and confound comparative airway device studies.

  12. Reduced survival in patients with ALS with upper airway obstructive events on non-invasive ventilation.

    Science.gov (United States)

    Georges, Marjolaine; Attali, Valérie; Golmard, Jean Louis; Morélot-Panzini, Capucine; Crevier-Buchman, Lise; Collet, Jean-Marc; Tintignac, Anne; Morawiec, Elise; Trosini-Desert, Valery; Salachas, François; Similowski, Thomas; Gonzalez-Bermejo, Jesus

    2016-10-01

    Non-invasive ventilation (NIV) is part of standard care in amyotrophic lateral sclerosis (ALS). Intolerance or unavailability of NIV, as well as the quality of correction of nocturnal hypoventilation, has a direct impact on prognosis. We describe the importance of NIV failure due to upper airway obstructive events, the clinical characteristics, as well as their impact on the prognosis of ALS. Retrospective analysis of the data of 190 patients with ALS and NIV in a single centre for the period 2011-2014. 179 patients tolerating NIV for more than 4 h per night without leaks were analysed. Among the 179 patients, after correction of leaks, 73 remained inadequately ventilated at night (defined as more than 5% of the night spent at NIV, no difference was demonstrated between patients with and without upper airway obstructive events. In all patients, upper airway obstruction was concomitant with reduction of ventilatory drive. This study shows that upper airway obstruction during NIV occurs in patients with ALS and is associated with poorer prognosis. Such events should be identified as they can be corrected by adjusting ventilator settings. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  13. Incidence of unanticipated difficult airway using an objective airway score versus a standard clinical airway assessment

    DEFF Research Database (Denmark)

    Nørskov, Anders Kehlet; Rosenstock, Charlotte Valentin; Wetterslev, Jørn

    2013-01-01

    -specific assessment. Data from patients' pre-operative airway assessment are registered in the Danish Anaesthesia Database. Objective scores for intubation and mask ventilation grade the severity of airway managements. The accuracy of predicting difficult intubation and mask ventilation is measured for each group...... the examination and registration of predictors for difficult mask ventilation with a non-specified clinical airway assessment on prediction of difficult mask ventilation.Method/Design: We cluster-randomized 28 Danish departments of anaesthesia to airway assessment either by the SARI or by usual non...... that registration of the SARI and predictors for difficult mask ventilation are mandatory for the intervention group but invisible to controls....

  14. Safety and Efficacy of Thoracic External Beam Radiotherapy After Airway Stenting in Malignant Airway Obstruction

    Energy Technology Data Exchange (ETDEWEB)

    Rochet, Nathalie, E-mail: nrochet@partners.org [Department of Radiation Oncology, University of Heidelberg, Heidelberg (Germany); Hauswald, Henrik; Schmaus, Martina; Hensley, Frank [Department of Radiation Oncology, University of Heidelberg, Heidelberg (Germany); Huber, Peter [Department of Radiotherapy, German Cancer Research Center, Heidelberg (Germany); Eberhardt, Ralf; Herth, Felix J. [Department of Pulmonology and Respiratory Care Medicine, Thoraxklinik at University of Heidelberg, Heidelberg (Germany); Debus, Juergen; Neuhof, Dirk [Department of Radiation Oncology, University of Heidelberg, Heidelberg (Germany)

    2012-05-01

    Purpose: We retrospectively evaluated the outcome and toxicity of external beam radiotherapy (EBRT) after airway stents were placed in patients treated for malignant airway obstruction. Methods and Materials: Between 2004 and 2009, we performed airway stenting followed by EBRT in 43 patients for symptomatic primary lung cancer (n = 31) or other thoracic malignancies (n = 12). The median time interval between stent placement and first irradiation was 14 days. A median total dose of 50 Gy was delivered. Sixty-seven percent of the patients had reduced performance status (Karnofsky performance score, {<=}70). Results: EBRT had to be stopped prematurely in 16 patients (37%), at a median total dose of 17 Gy, for various reasons. In this group of patients, the survival was poor, with a median overall survival (OS) of only 21 days. Twenty-seven patients (63%) completed radiotherapy as planned, with a median OS of 8.4 months. Fourteen of 43 patients (33%) developed at least one Common Terminology Criteria for Adverse Event of grade 3 to 5. The most common event was a malignant restenosis of the stent leading to asphyxia (n = 7), followed by fistula formation (n = 4), necrosis (n = 3), mediastinitis with abscess (n = 1), secondary nonmalignant airway stenosis (n = 1), and hemoptysis (n = 1). With the exception of one event, all events were associated with a local progression of the tumor. Conclusions: Although the long-term prognosis for patients with malignant airway obstruction is poor, airway stenting combined with EBRT offers a possible therapeutic option, achieving fast relief of acute respiratory distress with an associated antitumor effect, resulting in a potential survival benefit. However, due to local advanced tumor growth, increased rates of adverse events are to be expected, necessitating careful monitoring.

  15. Safety and Efficacy of Thoracic External Beam Radiotherapy After Airway Stenting in Malignant Airway Obstruction

    International Nuclear Information System (INIS)

    Rochet, Nathalie; Hauswald, Henrik; Schmaus, Martina; Hensley, Frank; Huber, Peter; Eberhardt, Ralf; Herth, Felix J.; Debus, Juergen; Neuhof, Dirk

    2012-01-01

    Purpose: We retrospectively evaluated the outcome and toxicity of external beam radiotherapy (EBRT) after airway stents were placed in patients treated for malignant airway obstruction. Methods and Materials: Between 2004 and 2009, we performed airway stenting followed by EBRT in 43 patients for symptomatic primary lung cancer (n = 31) or other thoracic malignancies (n = 12). The median time interval between stent placement and first irradiation was 14 days. A median total dose of 50 Gy was delivered. Sixty-seven percent of the patients had reduced performance status (Karnofsky performance score, ≤70). Results: EBRT had to be stopped prematurely in 16 patients (37%), at a median total dose of 17 Gy, for various reasons. In this group of patients, the survival was poor, with a median overall survival (OS) of only 21 days. Twenty-seven patients (63%) completed radiotherapy as planned, with a median OS of 8.4 months. Fourteen of 43 patients (33%) developed at least one Common Terminology Criteria for Adverse Event of grade 3 to 5. The most common event was a malignant restenosis of the stent leading to asphyxia (n = 7), followed by fistula formation (n = 4), necrosis (n = 3), mediastinitis with abscess (n = 1), secondary nonmalignant airway stenosis (n = 1), and hemoptysis (n = 1). With the exception of one event, all events were associated with a local progression of the tumor. Conclusions: Although the long-term prognosis for patients with malignant airway obstruction is poor, airway stenting combined with EBRT offers a possible therapeutic option, achieving fast relief of acute respiratory distress with an associated antitumor effect, resulting in a potential survival benefit. However, due to local advanced tumor growth, increased rates of adverse events are to be expected, necessitating careful monitoring.

  16. The actin regulator zyxin reinforces airway smooth muscle and accumulates in airways of fatal asthmatics.

    Directory of Open Access Journals (Sweden)

    Sonia R Rosner

    Full Text Available Bronchospasm induced in non-asthmatic human subjects can be easily reversed by a deep inspiration (DI whereas bronchospasm that occurs spontaneously in asthmatic subjects cannot. This physiological effect of a DI has been attributed to the manner in which a DI causes airway smooth muscle (ASM cells to stretch, but underlying molecular mechanisms-and their failure in asthma-remain obscure. Using cells and tissues from wild type and zyxin-/- mice we report responses to a transient stretch of physiologic magnitude and duration. At the level of the cytoskeleton, zyxin facilitated repair at sites of stress fiber fragmentation. At the level of the isolated ASM cell, zyxin facilitated recovery of contractile force. Finally, at the level of the small airway embedded with a precision cut lung slice, zyxin slowed airway dilation. Thus, at each level zyxin stabilized ASM structure and contractile properties at current muscle length. Furthermore, when we examined tissue samples from humans who died as the result of an asthma attack, we found increased accumulation of zyxin compared with non-asthmatics and asthmatics who died of other causes. Together, these data suggest a biophysical role for zyxin in fatal asthma.

  17. Improving release completeness from PLGA-based implants for the acid-labile model protein ovalbumin.

    Science.gov (United States)

    Duque, Luisa; Körber, Martin; Bodmeier, Roland

    2018-03-01

    The objectives of this study were to assess the feasibility of hot melt extrusion (HME) for the preparation of PLGA-based ovalbumin-loaded implants as well as to characterize and improve protein release from the implants. Ovalbumin (OVA) was stable during extrusion, which was attributed to a protective effect of the biodegradable matrix. OVA release was characterized by a low burst, a slow release up to day 21, which plateaued thereafter resulting in incomplete release for all evaluated protein loadings. Release incompleteness was accompanied by the formation of an insoluble residual mass. Further characterization of this mass indicated that it consisted of non-covalent protein aggregates and polymer, where ovalbumin was ionically bound as the pH inside the degrading matrix decreased below the pI of the protein. Although higher protein release was obtained with the inclusion of weak bases because of their neutralizing effect, OVA aggregation and release incompleteness were not fully avoided. With the use of shellac, a well-known enteric and biocompatible polymer, as protective excipient, a distinct late release phase occurred and release completeness was increased to more than 75% cumulative release. Shellac apparently protected the protein against the acidic microclimate due to its low solubility at low pH. Protected OVA was thus released once the pH increased due to a declining PLGA-oligomer formation. The result was a triphasic release profile consisting of an initial burst, a slow diffusion phase over about 7 weeks, and an erosion-controlled dissolution phase over the next 3 weeks. An acid-labile protein like OVA was thus feasibly protected from interactions with PLGA and its degradation products, resulting in a controlled delivery of more than 85% of the original payload. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. allergy, asthma airway and anaphylaxis

    African Journals Online (AJOL)

    The perioperative preparation of children presenting for surgery aims to identify medical problems that might influence the outcome and to institute management strategies to reduce those risks. Respiratory and airway complications remain the most significant cause of morbidity and mortality in modern paediatric ...

  19. Severe respiratory syncytial virus bronchiolitis in infants is associated with reduced airway interferon gamma and substance P.

    Directory of Open Access Journals (Sweden)

    Malcolm G Semple

    2007-10-01

    Full Text Available Severe human respiratory syncytial virus (hRSV bronchiolitis in previously well infants may be due to differences in the innate immune response to hRSV infection.to determine if factors mediating proposed mechanisms for severe bronchiolitis differ with severity of disease.197 infants admitted to hospital with hRSV bronchiolitis were recruited and grouped according to no oxygen requirement (n = 27, oxygen dependence (n = 114 or mechanical ventilation (n = 56. We collected clinical data, nasopharyngeal aspirate (NPA and if ventilated bronchoalveolar lavage (BAL. Interferon-gamma (IFN-gamma, substance P (SP, interleukin 9 (IL-9, urea and hRSV load, were measured in cell free supernatant from NPA and BAL. Multivariate analysis compared independent effects of clinical, virological and immunological variables upon disease severity. IFN-gamma and SP concentrations were lower in NPA from infants who required oxygen or mechanical ventilation. Viral load and IL-9 concentrations were high but did not vary with severity of disease. Independent predictors of severe disease (in diminishing size of effect were low weight on admission, low gestation at birth, low NPA IFN-gamma and NPA SP. Nasal airway sampling appears to be a useful surrogate for distal airway sampling since concentrations of IFN-gamma, SP, IL-9 and viral load in NPA correlate with the same in BAL.Our data support two proposed mechanisms for severe hRSV disease; reduced local IFN-gamma response and SP mediated inflammation. We found large amounts of hRSV and IL-9 in airways secretions from the upper and lower respiratory tract but could not associate these with disease severity.

  20. Composition of nasal airway surface liquid in cystic fibrosis and other airway diseases determined by X-ray microanalysis.

    Science.gov (United States)

    Vanthanouvong, V; Kozlova, I; Johannesson, M; Nääs, E; Nordvall, S L; Dragomir, A; Roomans, G M

    2006-04-01

    The ionic composition of the airway surface liquid (ASL) in healthy individuals and in patients with cystic fibrosis (CF) has been debated. Ion transport properties of the upper airway epithelium are similar to those of the lower airways and it is easier to collect nasal ASL from the nose. ASL was collected with ion exchange beads, and the elemental composition of nasal fluid was determined by X-ray microanalysis in healthy subjects, CF patients, CF heterozygotes, patients with rhinitis, and with primary ciliary dyskinesia (PCD). In healthy subjects, the ionic concentrations were approximately isotonic. In CF patients, CF heterozygotes, rhinitis, and PCD patients, [Na] and [Cl] were significantly higher compared when compared with those in controls. [K] was significantly higher in CF and PCD patients compared with that in controls. Severely affected CF patients had higher ionic concentrations in their nasal ASL than in patients with mild or moderate symptoms. Female CF patients had higher levels of Na, Cl, and K than male patients. As higher salt concentrations in the ASL are also found in other patients with airway diseases involving chronic inflammation, it appears likely that inflammation-induced epithelial damage is important in determining the ionic composition of the ASL. Copyright (c) 2006 Wiley-Liss, Inc.

  1. Dioscin and methylprotodioscin isolated from the root of Asparagus cochinchinensis suppressed the gene expression and production of airway MUC5AC mucin induced by phorbol ester and growth factor.

    Science.gov (United States)

    Lee, Hyun Jae; Park, Jin Sung; Yoon, Yong Pill; Shin, Ye Jin; Lee, Sang Kook; Kim, Yeong Shik; Hong, Jang-Hee; Son, Kun Ho; Lee, Choong Jae

    2015-05-15

    The root of Asparagus cochinchinensis (Lour.) Merr. has been utilized as mucoregulators and expectorants for controlling the airway inflammatory diseases in folk medicine. We investigated whether dioscin and methylprotodioscin isolated from the root of Asparagus cochinchinensis (Lour.) Merr. suppress the gene expression and production of airway MUC5AC mucin induced by phorbol ester and growth factor. Confluent NCI-H292 cells were pretreated with dioscin or methylprotodioscin for 30 min and then stimulated with EGF or PMA for 24 h. The MUC5AC mucin gene expression was measured by RT-PCR. Production of MUC5AC mucin protein was measured by ELISA. (1) Dioscin and methylprotodioscin suppressed the expression of MUC5AC mucin gene induced by EGF or PMA; (2) dioscin suppressed the production of MUC5AC mucin induced by either EGF at 10(-5) M (p Asparagus cochinchinensis suppress the gene expression and production of MUC5AC mucin, by directly acting on airway epithelial cells, and the results are consistent with the traditional use of Asparagus cochinchinensis as remedy for diverse inflammatory pulmonary diseases. Copyright © 2015 Elsevier GmbH. All rights reserved.

  2. Hypoxia-induced pulmonary arterial hypertension augments lung injury and airway reactivity caused by ozone exposure

    Energy Technology Data Exchange (ETDEWEB)

    Zychowski, Katherine E.; Lucas, Selita N.; Sanchez, Bethany; Herbert, Guy; Campen, Matthew J., E-mail: mcampen@salud.unm.edu

    2016-08-15

    Ozone (O{sub 3})-related cardiorespiratory effects are a growing public health concern. Ground level O{sub 3} can exacerbate pre-existing respiratory conditions; however, research regarding therapeutic interventions to reduce O{sub 3}-induced lung injury is limited. In patients with chronic obstructive pulmonary disease, hypoxia-associated pulmonary hypertension (HPH) is a frequent comorbidity that is difficult to treat clinically, yet associated with increased mortality and frequency of exacerbations. In this study, we hypothesized that established HPH would confer vulnerability to acute O{sub 3} pulmonary toxicity. Additionally, we tested whether improvement of pulmonary endothelial barrier integrity via rho-kinase inhibition could mitigate pulmonary inflammation and injury. To determine if O{sub 3} exacerbated HPH, male C57BL/6 mice were subject to either 3 weeks continuous normoxia (20.9% O{sub 2}) or hypoxia (10.0% O{sub 2}), followed by a 4-h exposure to either 1 ppm O{sub 3} or filtered air (FA). As an additional experimental intervention fasudil (20 mg/kg) was administered intraperitoneally prior to and after O{sub 3} exposures. As expected, hypoxia significantly increased right ventricular pressure and hypertrophy. O{sub 3} exposure in normoxic mice caused lung inflammation but not injury, as indicated by increased cellularity and edema in the lung. However, in hypoxic mice, O{sub 3} exposure led to increased inflammation and edema, along with a profound increase in airway hyperresponsiveness to methacholine. Fasudil administration resulted in reduced O{sub 3}-induced lung injury via the enhancement of pulmonary endothelial barrier integrity. These results indicate that increased pulmonary vascular pressure may enhance lung injury, inflammation and edema when exposed to pollutants, and that enhancement of pulmonary endothelial barrier integrity may alleviate such vulnerability. - Highlights: • Environmental exposures can exacerbate chronic obstructive

  3. Reversible self-association of ovalbumin at air-water interfaces and the consequences for the exerted pressure

    NARCIS (Netherlands)

    Kudryashova, E.V.; Visser, A.J.W.G.; Jongh, de H.H.J.

    2005-01-01

    In this study the relation between the ability of protein self-association and the surface properties at air-water interfaces is investigated using a combination of spectroscopic techniques. Three forms of chicken egg ovalbumin were obtained with different self-associating behavior: native

  4. Chimeric Antigen Receptor-Redirected Regulatory T Cells Suppress Experimental Allergic Airway Inflammation, a Model of Asthma

    Directory of Open Access Journals (Sweden)

    Jelena Skuljec

    2017-09-01

    Full Text Available Cellular therapy with chimeric antigen receptor (CAR-redirected cytotoxic T cells has shown impressive efficacy in the treatment of hematologic malignancies. We explored a regulatory T cell (Treg-based therapy in the treatment of allergic airway inflammation, a model for asthma, which is characterized by an airway hyper-reactivity (AHR and a chronic, T helper-2 (Th2 cell-dominated immune response to allergen. To restore the immune balance in the lung, we redirected Tregs by a CAR toward lung epithelia in mice upon experimentally induced allergic asthma, closely mimicking the clinical situation. Adoptively transferred CAR Tregs accumulated in the lung and in tracheobronchial lymph nodes, reduced AHR and diminished eosinophilic airway inflammation, indicated by lower cell numbers in the bronchoalveolar lavage fluid and decreased cell infiltrates in the lung. CAR Treg cells furthermore prevented excessive pulmonary mucus production as well as increase in allergen-specific IgE and Th2 cytokine levels in exposed animals. CAR Tregs were more efficient in controlling asthma than non-modified Tregs, indicating the pivotal role of specific Treg cell activation in the affected organ. Data demonstrate that lung targeting CAR Treg cells ameliorate key features of experimental airway inflammation, paving the way for cell therapy of severe allergic asthma.

  5. Endothelial MMP14 is required for endothelial-dependent growth support of human airway basal cells

    Science.gov (United States)

    Ding, Bi-Sen; Gomi, Kazunori; Rafii, Shahin; Crystal, Ronald G.; Walters, Matthew S.

    2015-01-01

    ABSTRACT Human airway basal cells are the stem (or progenitor) population of the airway epithelium, and play a central role in anchoring the epithelium to the basement membrane. The anatomic position of basal cells allows for potential paracrine signaling between them and the underlying non-epithelial stromal cells. In support of this, we have previously demonstrated that endothelial cells support growth of basal cells during co-culture through vascular endothelial growth factor A (VEGFA)-mediated signaling. Building on these findings, we found, by RNA sequencing analysis, that basal cells expressed multiple fibroblast growth factor (FGF) ligands (FGF2, FGF5, FGF11 and FGF13) and that only FGF2 and FGF5 were capable of functioning in a paracrine manner to activate classical FGF receptor (FGFR) signaling. Antibody-mediated blocking of FGFR1 during basal-cell–endothelial-cell co-culture significantly reduced the endothelial-cell-dependent basal cell growth. Stimulation of endothelial cells with basal-cell-derived growth factors induced endothelial cell expression of matrix metallopeptidase 14 (MMP14), and short hairpin RNA (shRNA)-mediated knockdown of endothelial cell MMP14 significantly reduced the endothelial-cell-dependent growth of basal cells. Overall, these data characterize a new growth-factor-mediated reciprocal ‘crosstalk’ between human airway basal cells and endothelial cells that regulates proliferation of basal cells. PMID:26116571

  6. Differential cellular responses in healthy mice and in mice with established airway inflammation when exposed to hematite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Gustafsson, Åsa, E-mail: asa.gustafsson@foi.se [Swedish Defence Research Agency, Division of CBRN Defence and Security, Umeå (Sweden); Dept of Public Health and Clinical Medicine, Umeå University (Sweden); Bergström, Ulrika [Swedish Defence Research Agency, Division of CBRN Defence and Security, Umeå (Sweden); Dept of Organismal Biology, Uppsala University, SE-751 Uppsala (Sweden); Ågren, Lina [Swedish Defence Research Agency, Division of CBRN Defence and Security, Umeå (Sweden); Österlund, Lars [Dept of Engineering Sciences, The Ångström Laboratory, Uppsala University, SE-751 Uppsala (Sweden); Sandström, Thomas [Dept of Public Health and Clinical Medicine, Umeå University (Sweden); Bucht, Anders [Swedish Defence Research Agency, Division of CBRN Defence and Security, Umeå (Sweden); Dept of Public Health and Clinical Medicine, Umeå University (Sweden)

    2015-10-01

    The aim of this study was to investigate the inflammatory and immunological responses in airways and lung-draining lymph nodes (LDLNs), following lung exposure to iron oxide (hematite) nanoparticles (NPs). The responses to the hematite NPs were evaluated in both healthy non-sensitized mice, and in sensitized mice with an established allergic airway disease. The mice were exposed intratracheally to either hematite NPs or to vehicle (PBS) and the cellular responses were evaluated on days 1, 2, and 7, post-exposure. Exposure to hematite NPs increased the numbers of neutrophils, eosinophils, and lymphocytes in the airways of non-sensitized mice on days 1 and 2 post-exposure; at these time points the number of lymphocytes was also elevated in the LDLNs. In contrast, exposing sensitized mice to hematite NPs induced a rapid and unspecific cellular reduction in the alveolar space on day 1 post-exposure; a similar decrease of lymphocytes was also observed in the LDLN. The results indicate that cells in the airways and in the LDLN of individuals with established airway inflammation undergo cell death when exposed to hematite NPs. A possible explanation for this toxic response is the extensive generation of reactive oxygen species (ROS) in the pro-oxidative environment of inflamed airways. This study demonstrates how sensitized and non-sensitized mice respond differently to hematite NP exposure, and it highlights the importance of including individuals with respiratory disorders when evaluating health effects of inhaled nanomaterials. - Highlights: • Hematite NPs induce differential responses in airways of healthy and allergic mice. • Hematite induced an airway inflammation in healthy mice. • Hematite induced cellular reduction in the alveolus and lymph nodes of allergic mice. • Cell death is possible due to extensive pro-oxidative environment in allergic mice. • It is important to include sensitive individuals when valuing health effects of NPs.

  7. Nebulized Anti-IL-13 Monoclonal Antibody Fab' Fragment Reduces Allergen-Induced Asthma

    OpenAIRE

    Hacha, Jonathan; Tomlinson, K; Maertens, Ludovic; Paulissen, Geneviève; Rocks, Natacha; Foidart, Jean-Michel; Noël, Agnès; Palframan, R; Guéders, Maud; Cataldo, Didier

    2012-01-01

    Rationale: Interleukin-13 (IL-13) is a prototypic Th2 cytokine and a central mediator of the complex cascade of events leading to asthmatic phenotype. Indeed, IL-13 plays key roles in IgE synthesis, bronchial hyperresponsiveness, mucus hypersecretion, subepithelial fibrosis and eosinophil infiltration. Objectives: We assessed the potential efficacy of inhaled anti-IL-13 monoclonal antibody Fab' fragment on allergen-induced airway inflammation, hyperresponsiveness and remodeling in an experime...

  8. Effect of Nebivolol on tone of tracheal muscle of guinea pig

    International Nuclear Information System (INIS)

    Shaukat, A.; Sharif, M.; Najmi, M.H.

    2015-01-01

    Background: The use of β-blockers is limited by adverse effects such as bronchospasm in asthmatics. Third generation beta-blockers such as nebivolol may show better tolerability in asthmatic subjects because they lack β-blocker induced bronchoconstriction. Method: Effects of nebivolol on the tracheal muscle strips prepared from ovalbumin-sensitised guinea pigs of both sexes were studied. Two sets of experiments were designed after dividing the animals randomly into two groups. Using oxygenated Krebs-Henseleit solution as the nutrient medium, the trachealis muscle activity was measured with isometric force displacement transducer and recorded on 4-channel Oscillograph. Results: Nebivolol 10(-6) M did not produce significant effect on contractions evoked by histamine in concentrations ranging from 10/su -7/ M to 10/sup -3/ M. The mean of amplitude of contraction for different concentrations of histamine were calculated and compared with the group treated with histamine only. Mean of amplitude of contraction, percent responses and percent deviations when compared with the control group were insignificant (p>0.05). Conclusion: Nebivolol did not affect the tone of airway smooth muscle in ovalbumin-sensitised guinea pigs. Nebivolol may be considered safe in patients with airway disease however, further clinical evaluation and exploratory work is required. (author)

  9. The role of anaerobic bacteria in the cystic fibrosis airway.

    Science.gov (United States)

    Sherrard, Laura J; Bell, Scott C; Tunney, Michael M

    2016-11-01

    Anaerobic bacteria are not only normal commensals, but are also considered opportunistic pathogens and have been identified as persistent members of the lower airway community in people with cystic fibrosis of all ages and stages of disease. Currently, the role of anaerobic bacteria in cystic fibrosis lower airway disease is not well understood. Therefore, this review describes the recent studies relating to the potential pathophysiological role(s) of anaerobes within the cystic fibrosis lungs. The most frequently identified anaerobic bacteria in the lower airways are common to both cystic fibrosis and healthy lungs. Studies have shown that in cystic fibrosis, the relative abundance of anaerobes fluctuates in the lower airways with reduced lung function and increased inflammation associated with a decreased anaerobic load. However, anaerobes found within the lower airways also produce virulence factors, may cause a host inflammatory response and interact synergistically with recognized pathogens. Anaerobic bacteria are potentially members of the airway microbiota in health but could also contribute to the pathogenesis of lower airway disease in cystic fibrosis via both direct and indirect mechanisms. A personalized treatment strategy that maintains a normal microbial community may be possible in the future.

  10. Acrolein stimulates eicosanoid release from bovine airway epithelial cells

    International Nuclear Information System (INIS)

    Doupnik, C.A.; Leikauf, G.D.

    1990-01-01

    Injury to the airway mucosa after exposure to environmental irritants is associated with pulmonary inflammation and bronchial hyperresponsiveness. To better understand the relationships between mediator release and airway epithelial cell injury during irritant exposures, we studied the effects of acrolein, a low-molecular-weight aldehyde found in cigarette smoke, on arachidonic acid metabolism in cultured bovine tracheal epithelial cells. Confluent airway epithelial cell monolayers, prelabeled with [3H]arachidonic acid, released significant levels of 3H activity when exposed (20 min) to 100 microM acrolein. [3H]arachidonic acid products were resolved using reverse-phase high-performance liquid chromatography. Under control conditions the released 3H activity coeluted predominantly with the cyclooxygenase product, prostaglandin (PG) E2. After exposure to acrolein, significant peaks in 3H activity coeluted with the lipoxygenase products 12-hydroxyeicosatetraenoic acid (HETE) and 15-HETE, as well as with PGE2, PGF2 alpha, and 6-keto-PGF1 alpha. Dose-response relationships for acrolein-induced release of immunoreactive PGF2 alpha and PGE2 from unlabeled epithelial monolayers demonstrated 30 microM acrolein as the threshold dose, with 100 microM acrolein inducing nearly a fivefold increase in both PGF2 alpha and PGE2. Cellular viability after exposure to 100 microM acrolein, determined by released lactate dehydrogenase activity, was not affected until exposure periods were greater than or equal to 2 h. These results implicate the airway epithelial cell as a possible source of eicosanoids after exposure to acrolein

  11. IL-18 Does not Increase Allergic Airway Disease in Mice When Produced by BCG

    Directory of Open Access Journals (Sweden)

    L. Amniai

    2007-01-01

    These data show that IL-18 did not increase allergic airway responses in the context of the mycobacterial infection, and suggest that BCG-IL-18 and BCG are able to prevent the development of local Th2 responses and therefore inhibit allergen-induced airway responses even after restimulation.

  12. Interaction between endoplasmic/sarcoplasmic reticulum stress (ER/SR stress), mitochondrial signaling and Ca(2+) regulation in airway smooth muscle (ASM).

    Science.gov (United States)

    Delmotte, Philippe; Sieck, Gary C

    2015-02-01

    Airway inflammation is a key aspect of diseases such as asthma. Several inflammatory cytokines (e.g., TNFα and IL-13) increase cytosolic Ca(2+) ([Ca(2+)]cyt) responses to agonist stimulation and Ca(2+) sensitivity of force generation, thereby enhancing airway smooth muscle (ASM) contractility (hyper-reactive state). Inflammation also induces ASM proliferation and remodeling (synthetic state). In normal ASM, the transient elevation of [Ca(2+)]cyt induced by agonists leads to a transient increase in mitochondrial Ca(2+) ([Ca(2+)]mito) that may be important in matching ATP production with ATP consumption. In human ASM (hASM) exposed to TNFα and IL-13, the transient increase in [Ca(2+)]mito is blunted despite enhanced [Ca(2+)]cyt responses. We also found that TNFα and IL-13 induce reactive oxidant species (ROS) formation and endoplasmic/sarcoplasmic reticulum (ER/SR) stress (unfolded protein response) in hASM. ER/SR stress in hASM is associated with disruption of mitochondrial coupling with the ER/SR membrane, which relates to reduced mitofusin 2 (Mfn2) expression. Thus, in hASM it appears that TNFα and IL-13 result in ROS formation leading to ER/SR stress, reduced Mfn2 expression, disruption of mitochondrion-ER/SR coupling, decreased mitochondrial Ca(2+) buffering, mitochondrial fragmentation, and increased cell proliferation.

  13. A novel animal model for hyperdynamic airway collapse.

    Science.gov (United States)

    Tsukada, Hisashi; O'Donnell, Carl R; Garland, Robert; Herth, Felix; Decamp, Malcolm; Ernst, Armin

    2010-12-01

    Tracheobronchomalacia (TBM) is increasingly recognized as a condition associated with significant pulmonary morbidity. However, treatment is invasive and complex, and because there is no appropriate animal model, novel diagnostic and treatment strategies are difficult to evaluate. We endeavored to develop a reliable airway model to simulate hyperdynamic airway collapse in humans. Seven 20-kg male sheep were enrolled in this study. Tracheomalacia was created by submucosal resection of > 50% of the circumference of 10 consecutive cervical tracheal cartilage rings through a midline cervical incision. A silicone stent was placed in the trachea to prevent airway collapse during recovery. Tracheal collapsibility was assessed at protocol-specific time points by bronchoscopy and multidetector CT imaging while temporarily removing the stent. Esophageal pressure and flow data were collected to assess flow limitation during spontaneous breathing. All animals tolerated the surgical procedure well and were stented without complications. One sheep died at 2 weeks because of respiratory failure related to stent migration. In all sheep, near-total forced inspiratory airway collapse was observed up to 3 months postprocedure. Esophageal manometry demonstrated flow limitation associated with large negative pleural pressure swings during rapid spontaneous inhalation. Hyperdynamic airway collapse can reliably be induced with this technique. It may serve as a model for evaluation of novel diagnostic and therapeutic strategies for TBM.

  14. Surfactant protein-A suppresses eosinophil-mediated killing of Mycoplasma pneumoniae in allergic lungs.

    Directory of Open Access Journals (Sweden)

    Julie G Ledford

    Full Text Available Surfactant protein-A (SP-A has well-established functions in reducing bacterial and viral infections but its role in chronic lung diseases such as asthma is unclear. Mycoplasma pneumoniae (Mp frequently colonizes the airways of chronic asthmatics and is thought to contribute to exacerbations of asthma. Our lab has previously reported that during Mp infection of non-allergic airways, SP-A aides in maintaining airway homeostasis by inhibiting an overzealous TNF-alpha mediated response and, in allergic mice, SP-A regulates eosinophilic infiltration and inflammation of the airway. In the current study, we used an in vivo model with wild type (WT and SP-A(-/- allergic mice challenged with the model antigen ovalbumin (Ova that were concurrently infected with Mp (Ova+Mp to test the hypothesis that SP-A ameliorates Mp-induced stimulation of eosinophils. Thus, SP-A could protect allergic airways from injury due to release of eosinophil inflammatory products. SP-A deficient mice exhibit significant increases in inflammatory cells, mucus production and lung damage during concurrent allergic airway disease and infection (Ova+Mp as compared to the WT mice of the same treatment group. In contrast, SP-A deficient mice have significantly decreased Mp burden compared to WT mice. The eosinophil specific factor, eosinophil peroxidase (EPO, which has been implicated in pathogen killing and also in epithelial dysfunction due to oxidative damage of resident lung proteins, is enhanced in samples from allergic/infected SP-A(-/- mice as compared to WT mice. In vitro experiments using purified eosinophils and human SP-A suggest that SP-A limits the release of EPO from Mp-stimulated eosinophils thereby reducing their killing capacity. These findings are the first to demonstrate that although SP-A interferes with eosinophil-mediated biologic clearance of Mp by mediating the interaction of Mp with eosinophils, SP-A simultaneously benefits the airway by limiting inflammation

  15. Influence of radiation dose and reconstruction algorithm in MDCT assessment of airway wall thickness: A phantom study

    International Nuclear Information System (INIS)

    Gomez-Cardona, Daniel; Nagle, Scott K.; Li, Ke; Chen, Guang-Hong; Robinson, Terry E.

    2015-01-01

    Purpose: Wall thickness (WT) is an airway feature of great interest for the assessment of morphological changes in the lung parenchyma. Multidetector computed tomography (MDCT) has recently been used to evaluate airway WT, but the potential risk of radiation-induced carcinogenesis—particularly in younger patients—might limit a wider use of this imaging method in clinical practice. The recent commercial implementation of the statistical model-based iterative reconstruction (MBIR) algorithm, instead of the conventional filtered back projection (FBP) algorithm, has enabled considerable radiation dose reduction in many other clinical applications of MDCT. The purpose of this work was to study the impact of radiation dose and MBIR in the MDCT assessment of airway WT. Methods: An airway phantom was scanned using a clinical MDCT system (Discovery CT750 HD, GE Healthcare) at 4 kV levels and 5 mAs levels. Both FBP and a commercial implementation of MBIR (Veo TM , GE Healthcare) were used to reconstruct CT images of the airways. For each kV–mAs combination and each reconstruction algorithm, the contrast-to-noise ratio (CNR) of the airways was measured, and the WT of each airway was measured and compared with the nominal value; the relative bias and the angular standard deviation in the measured WT were calculated. For each airway and reconstruction algorithm, the overall performance of WT quantification across all of the 20 kV–mAs combinations was quantified by the sum of squares (SSQs) of the difference between the measured and nominal WT values. Finally, the particular kV–mAs combination and reconstruction algorithm that minimized radiation dose while still achieving a reference WT quantification accuracy level was chosen as the optimal acquisition and reconstruction settings. Results: The wall thicknesses of seven airways of different sizes were analyzed in the study. Compared with FBP, MBIR improved the CNR of the airways, particularly at low radiation dose

  16. Influence of radiation dose and reconstruction algorithm in MDCT assessment of airway wall thickness: A phantom study

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Cardona, Daniel [Department of Medical Physics, University of Wisconsin-Madison School of Medicine and Public Health, 1111 Highland Avenue, Madison, Wisconsin 53705 (United States); Nagle, Scott K. [Department of Medical Physics, University of Wisconsin-Madison School of Medicine and Public Health, 1111 Highland Avenue, Madison, Wisconsin 53705 (United States); Department of Radiology, University of Wisconsin-Madison School of Medicine and Public Health, 600 Highland Avenue, Madison, Wisconsin 53792 (United States); Department of Pediatrics, University of Wisconsin-Madison School of Medicine and Public Health, 600 Highland Avenue, Madison, Wisconsin 53792 (United States); Li, Ke; Chen, Guang-Hong, E-mail: gchen7@wisc.edu [Department of Medical Physics, University of Wisconsin-Madison School of Medicine and Public Health, 1111 Highland Avenue, Madison, Wisconsin 53705 (United States); Department of Radiology, University of Wisconsin-Madison School of Medicine and Public Health, 600 Highland Avenue, Madison, Wisconsin 53792 (United States); Robinson, Terry E. [Department of Pediatrics, Stanford School of Medicine, 770 Welch Road, Palo Alto, California 94304 (United States)

    2015-10-15

    Purpose: Wall thickness (WT) is an airway feature of great interest for the assessment of morphological changes in the lung parenchyma. Multidetector computed tomography (MDCT) has recently been used to evaluate airway WT, but the potential risk of radiation-induced carcinogenesis—particularly in younger patients—might limit a wider use of this imaging method in clinical practice. The recent commercial implementation of the statistical model-based iterative reconstruction (MBIR) algorithm, instead of the conventional filtered back projection (FBP) algorithm, has enabled considerable radiation dose reduction in many other clinical applications of MDCT. The purpose of this work was to study the impact of radiation dose and MBIR in the MDCT assessment of airway WT. Methods: An airway phantom was scanned using a clinical MDCT system (Discovery CT750 HD, GE Healthcare) at 4 kV levels and 5 mAs levels. Both FBP and a commercial implementation of MBIR (Veo{sup TM}, GE Healthcare) were used to reconstruct CT images of the airways. For each kV–mAs combination and each reconstruction algorithm, the contrast-to-noise ratio (CNR) of the airways was measured, and the WT of each airway was measured and compared with the nominal value; the relative bias and the angular standard deviation in the measured WT were calculated. For each airway and reconstruction algorithm, the overall performance of WT quantification across all of the 20 kV–mAs combinations was quantified by the sum of squares (SSQs) of the difference between the measured and nominal WT values. Finally, the particular kV–mAs combination and reconstruction algorithm that minimized radiation dose while still achieving a reference WT quantification accuracy level was chosen as the optimal acquisition and reconstruction settings. Results: The wall thicknesses of seven airways of different sizes were analyzed in the study. Compared with FBP, MBIR improved the CNR of the airways, particularly at low radiation dose

  17. Baicalin Inhibits Lipopolysaccharide-Induced Inflammation Through Signaling NF-κB Pathway in HBE16 Airway Epithelial Cells.

    Science.gov (United States)

    Dong, Shou-jin; Zhong, Yun-qing; Lu, Wen-ting; Li, Guan-hong; Jiang, Hong-li; Mao, Bing

    2015-08-01

    Baicalin, a flavonoid monomer derived from Scutellaria baicalensis called Huangqin in mandarin, is the main active ingredient contributing to S. baicalensis' efficacy. It is known in China that baicalin has potential therapeutic effects on inflammatory diseases. However, its anti-inflammatory mechanism has still not been fully interpreted. We aim to investigate the anti-inflammatory effect of baicalin on lipopolysaccharide (LPS)-induced inflammation in HBE16 airway epithelial cells and also to explore the underlying signaling mechanisms. The anti-inflammatory action of baicalin was evaluated in human airway epithelial cells HBE16 treated with LPS. Airway epithelial cells HBE16 were pretreated with a range of concentrations of baicalin for 30 min and then stimulated with 10 μg/ml LPS. The secretions of interleukin-6 (IL-6), interleukin-8 (IL-8), and tumor necrosis factor-α (TNF-α) in cell culture supernatants were quantified by enzyme-linked immunosorbent assay (ELISA). The messenger RNA (mRNA) expressions of IL-6, IL-8, and TNF-α were tested by quantitative real-time polymerase chain reaction (real-time RT-PCR). Furthermore, Western blotting was used to determine whether the signaling pathway NF-κB was involved in the anti-inflammatory action of baicalin. The inflammatory cell model was successfully built with 10 μg/ml LPS for 24 h in our in vitro experiments. Both the secretions and the mRNA expressions of IL-6, IL-8, and TNF-α were significantly inhibited by baicalin. Moreover, the expression levels of phospho-IKKα/β and phospho-NF-κB p65 were downregulated, and the phospho-IκB-α level was upregulated by baicalin. These findings suggest that the anti-inflammatory properties of baicalin may be resulted from the inhibition of IL-6, IL-8, and TNF-α expression via preventing signaling NF-κB pathway in HBE16 airway epithelial cells. In addition, this study provides evidence to understand the therapeutic effects of baicalin on inflammatory diseases in

  18. Persistence of smoking-induced dysregulation of miRNA expression in the small airway epithelium despite smoking cessation.

    Directory of Open Access Journals (Sweden)

    Guoqing Wang

    Full Text Available Even after quitting smoking, the risk of the development of chronic obstructive pulmonary disease (COPD and lung cancer remains significantly higher compared to healthy nonsmokers. Based on the knowledge that COPD and most lung cancers start in the small airway epithelium (SAE, we hypothesized that smoking modulates miRNA expression in the SAE linked to the pathogenesis of smoking-induced airway disease, and that some of these changes persist after smoking cessation. SAE was collected from 10th to 12th order bronchi using fiberoptic bronchoscopy. Affymetrix miRNA 2.0 arrays were used to assess miRNA expression in the SAE from 9 healthy nonsmokers and 10 healthy smokers, before and after they quit smoking for 3 months. Smoking status was determined by urine nicotine and cotinine measurement. There were significant differences in the expression of 34 miRNAs between healthy smokers and healthy nonsmokers (p1.5, with functions associated with lung development, airway epithelium differentiation, inflammation and cancer. After quitting smoking for 3 months, 12 out of the 34 miRNAs did not return to normal levels, with Wnt/β-catenin signaling pathway being the top identified enriched pathway of the target genes of the persistent dysregulated miRNAs. In the context that many of these persistent smoking-dependent miRNAs are associated with differentiation, inflammatory diseases or lung cancer, it is likely that persistent smoking-related changes in SAE miRNAs play a role in the subsequent development of these disorders.

  19. Peculiarities of Airway Inflammation and Lipid Peroxidation in the Development of Hyperosmotic Airway Hyperresponsiveness in Patients with Asthma

    Directory of Open Access Journals (Sweden)

    Alexey B. Pirogov

    2016-12-01

    Full Text Available The aim of our study was to evaluate the role of airway cellular inflammation and the lipid peroxidation level in the development of airway hyperresponsiveness (AHR to inhalation of hypertonic saline (IHS. Methods and Results: The study included the estimation of inflammatory-cellular composition, intracellular concentration of myeloperoxidase (MPO in induced sputum (IS, serum levels of lipid hydroperoxides (LHP, ceruloplasmin, and vitamin E in 29 patients with asthma and 12 healthy persons. AHR to IHS was assessed by spirometry after 3-min IHS via ultrasonic nebulizer. Patients with asthma had higher indices of leukocytes destruction and cytolysis intensity with the increased leukocyte count in IS. Maximum values of neutrophils cytolysis intensity and leukocytic MPO were found in IS of the patients with AHR to IHS. After the bronchial provocation, serum concentration of LHP was higher in these patients in comparison with the patients without the AHR and control groups. In addition, patients with asthma had lower level of antioxidants than healthy subjects. Conclusion: Marked inflammation involving MPO-activated leukocytes and intensive lipid peroxidation underlie the excessive airway response to IHS.

  20. Numerical Simulation for Mechanism of Airway Narrowing in Asthma

    Science.gov (United States)

    Bando, Kiyoshi; Yamashita, Daisuke; Ohba, Kenkichi

    A calculation model is proposed to examine the generation mechanism of the numerous lobes on the inner-wall of the airway in asthmatic patients and to clarify luminal occlusion of the airway inducing breathing difficulties. The basement membrane in the airway wall is modeled as a two-dimensional thin-walled shell having inertia force due to the mass, and the smooth muscle contraction effect is replaced by uniform transmural pressure applied to the basement membrane. A dynamic explicit finite element method is used as a numerical simulation method. To examine the validity of the present model, simulation of an asthma attack is performed. The number of lobes generated in the basement membrane increases when transmural pressure is applied in a shorter time period. When the remodeling of the basement membrane occurs characterized by thickening and hardening, it is demonstrated that the number of lobes decreases and the narrowing of the airway lumen becomes severe. Comparison of the results calculated by the present model with those measured for animal experiments of asthma will be possible.

  1. Dorsal Vagal Complex Modulates Neurogenic Airway Inflammation in a Guinea Pig Model With Esophageal Perfusion of HCl

    Directory of Open Access Journals (Sweden)

    Zhe Chen

    2018-05-01

    Full Text Available Neurogenic airway inflammation in chronic cough and bronchial asthma related to gastroesophageal reflux (GER is involved in the esophageal–bronchial reflex, but it is unclear whether this reflex is mediated by central neurons. This study aimed to investigate the regulatory effects of the dorsal vagal complex (DVC on airway inflammation induced by the esophageal perfusion of hydrochloric acid (HCl following the microinjection of nuclei in the DVC in guinea pigs. Airway inflammation was evaluated by measuring the extravasation of Evans blue dye (EBD and substance P (SP expression in the airway. Neuronal activity was indicated by Fos expression in the DVC. The neural pathways from the lower esophagus to the DVC and the DVC to the airway were identified using DiI tracing and pseudorabies virus Bartha (PRV-Bartha retrograde tracing, respectively. HCl perfusion significantly increased plasma extravasation, SP expression in the trachea, and the expression of SP and Fos in the medulla oblongata nuclei, including the nucleus of the solitary tract (NTS and the dorsal motor nucleus of the vagus (DMV. The microinjection of glutamic acid (Glu or exogenous SP to enhance neuronal activity in the DVC significantly potentiated plasma extravasation and SP release induced by intra-esophageal perfusion. The microinjection of γ-aminobutyric acid (GABA, lidocaine to inhibit neuronal activity or anti-SP serum in the DVC alleviated plasma extravasation and SP release. In conclusion, airway inflammation induced by the esophageal perfusion of HCl is regulated by DVC. This study provides new insight for the mechanism of airway neurogenic inflammation related to GER.

  2. Peripheral erythrocytes decrease upon specific respiratory challenge with grass pollen allergen in sensitized mice and in human subjects.

    Directory of Open Access Journals (Sweden)

    Galateja Jordakieva

    Full Text Available BACKGROUND AND AIMS: Specific hyper-responsiveness towards an allergen and non-specific airway hyperreactivity both impair quality of life in patients with respiratory allergic diseases. We aimed to investigate cellular responses following specific and non-specific airway challenges locally and systemically in i sensitized BALB/c mice challenged with grass pollen allergen Phl p 5, and in ii grass pollen sensitized allergic rhinitis subjects undergoing specific airway challenge in the Vienna Challenge Chamber (VCC. METHODS AND RESULTS: BALB/c mice (n = 20 were intraperitoneally immunized with grass pollen allergen Phl p 5 and afterwards aerosol challenged with either the specific allergen Phl p 5 (n = 10 or the non-specific antigen ovalbumin (OVA (n = 10. A protocol for inducing allergic asthma as well as allergic rhinitis, according to the united airway concept, was used. Both groups of exposed mice showed significantly reduced physical activity after airway challenge. Specific airway challenge further resulted in goblet cell hyperplasia, enhanced mucous secretion, intrapulmonary leukocyte infiltration and lymphoid follicle formation, associated with significant expression of IL-4, IL-5 and IL-13 in splenocytes and also partially in lung tissue. Concerning circulating blood cell dynamics, we observed a significant drop of erythrocyte counts, hemoglobin and hematocrit levels in both mouse groups, challenged with allergen or OVA. A significant decrease in circulating erythrocytes and hematocrit levels after airway challenges with grass pollen allergen was also found in grass pollen sensitized human rhinitis subjects (n = 42 at the VCC. The effects on peripheral leukocyte counts in mice and humans however were opposed, possibly due to the different primary inflammation sites. CONCLUSION: Our data revealed that, besides significant leukocyte dynamics, particularly erythrocytes are involved in acute hypersensitivity reactions to respiratory allergens

  3. Temporal and Spatial Expression of Transforming Growth Factor-β after Airway Remodeling to Tobacco Smoke in Rats

    Science.gov (United States)

    Hoang, Laura L.; Nguyen, Yen P.; Aspeé, Rayza; Bolton, Sarah J.; Shen, Yi-hsin; Wang, Lei; Kenyon, Nicholas J.; Smiley-Jewell, Suzette

    2016-01-01

    Airway remodeling is strongly correlated with the progression of chronic obstructive pulmonary disease (COPD). In this study, our goal was to characterize progressive structural changes in site-specific airways, along with the temporal and spatial expression of transforming growth factor (TGF)-β in the lungs of male spontaneously hypertensive rats exposed to tobacco smoke (TS). Our studies demonstrated that TS-induced changes of the airways is dependent on airway generation and exposure duration for proximal, midlevel, and distal airways. Stratified squamous epithelial cell metaplasia was evident in the most proximal airways after 4 and 12 weeks but with minimal levels of TGF-β–positive epithelial cells after only 4 weeks of exposure. In contrast, epithelial cells in midlevel and distal airways were strongly TGF-β positive at both 4 and 12 weeks of TS exposure. Airway smooth muscle volume increased significantly at 4 and 12 weeks in midlevel airways. Immunohistochemistry of TGF-β was also found to be significantly increased at 4 and 12 weeks in lymphoid tissues and alveolar macrophages. ELISA of whole-lung homogenate demonstrated that TGF-β2 was increased after 4 and 12 weeks of TS exposure, whereas TGF-β1 was decreased at 12 weeks of TS exposure. Airway levels of messenger RNA for TGF-β2, as well as platelet-derived growth factor-A, granulocyte-macrophage colony–stimulating factor, and vascular endothelial growth factor-α, growth factors regulated by TGF-β, were significantly decreased in animals after 12 weeks of TS exposure. Our data indicate that TS increases TGF-β in epithelial and inflammatory cells in connection with airway remodeling, although the specific role of each TGF-β isoform remains to be defined in TS-induced airway injury and disease. PMID:26637070

  4. Fabrication of micromagnetic beads with molecular recognition/electron-transfer peptides for the sensing of ovalbumin

    Energy Technology Data Exchange (ETDEWEB)

    Sugawara, Kazuharu, E-mail: kzsuga@maebashi-it.ac.jp [Maebashi Institute of Technology, Gunma, 371-0816 (Japan); Kuramitz, Hideki [Department of Environmental Biology and Chemistry, Graduate School of Science and Engineering for Research, University of Toyama, Toyama, 930-8555 (Japan); Shinohara, Hiroki [Maebashi Institute of Technology, Gunma, 371-0816 (Japan)

    2017-03-15

    Electrochemical sensing of ovalbumin (OVA) was performed using magnetic beads with OVA recognition (RNRCKGTDVQAW)/electron-transfer (YYYYC) peptides. The focus of this study was to construct a highly sensitive and regenerative tool for OVA detection based on the interaction between a protein and peptide-1(RNRCKGTDVQAWYYYYC). The peptide-1 was introduced to the bead through four types of cross-linking reagents. Magnetic beads of different sizes with N-(6-maleimidocaproyloxy)sulfosuccinimide (Sulfo-EMCS) were also prepared. An oxidation peak due to tyrosine residues at 0.65 V depended on the distance of the electron-transfer peptide from the bead surface and on the surface area of the magnetic beads that contacted the electrode surface. The response of the electro-transfer peptide moiety was decreased because the protein was accumulated via the recognition peptide on the beads. When using Sulfo-EMCS and beads that were 6.0–6.9 μm in diameter, the calibration curve of OVA was linear and ranged from 8.0 × 10{sup −13} to 2.0 × 10{sup −11} M. To regenerate the magnetic beads, the measurements were achieved after removal of the OVA using a denaturing reagent. When OVA was added to fetal bovine serum containing a complex matrix, OVA was recovered at a rate of 98–100%. Consequently, these magnetic beads could be a powerful tool for the sensing of OVA in real samples. - Highlights: • Ovalbumin recognition/electron-transfer peptides were immobilized on magnetic beads. • The accumulation of the protein through the peptides on the beads caused the change of electrode response. • The magnetic beads could be reused for sensing of ovalbumin.

  5. Broncho-Vaxom attenuates allergic airway inflammation by restoring GSK3β-related T regulatory cell insufficiency.

    Directory of Open Access Journals (Sweden)

    Ran Fu

    Full Text Available BACKGROUND: Oral administration of bacterial extracts (eg, Broncho-Vaxom (BV has been proposed to attenuate asthma through modulating Treg cells. However, the underlying mechanism has not been fully characterized. This study sought to assess the effects of oral administration of BV on GSK-3β expression and Treg cells in ovalbumin (OVA-induced asthmatic mice models. METHOD: Asthmatic mice models were established with OVA challenge and treated with oral administration of BV. Next, infiltration of inflammatory cells including eosinophil and neutrophils, mucous metaplasia, levels of Th1/Th2/Treg-typed cytokines and expression of GSK3β and Foxp3 were examined in asthmatic mice models by histological analysis, Bio-Plex and western blot, respectively. Moreover, the frequencies of Treg cells were evaluated in cultured splenocytes by flow cytometry in the presence of BV or GSK3β siRNA interference. RESULTS: We found significant decrease of infiltrated inflammatory cells in bronchoalveolar lavage fluid (BALF in asthmatic mice models after oral administration of BV. Oral administration of BV was shown to significantly suppress mucus metaplasia, Th2-typed cytokine levels and GSK3β expression while increasing Foxp3 production in asthmatic mice models. Moreover, BV significantly enhanced GSK3β-related expansion of Treg cells in cultured spleen cells in vitro. CONCLUSION: Our findings provide evidence that oral administration of BV is capable of attenuating airway inflammation in asthmatic mice models, which may be associated with GSK3β-related expansion of Treg cells.

  6. Arsenic compromises conducting airway epithelial barrier properties in primary mouse and immortalized human cell cultures.

    Directory of Open Access Journals (Sweden)

    Cara L Sherwood

    Full Text Available Arsenic is a lung toxicant that can lead to respiratory illness through inhalation and ingestion, although the most common exposure is through contaminated drinking water. Lung effects reported from arsenic exposure include lung cancer and obstructive lung disease, as well as reductions in lung function and immune response. As part of their role in innate immune function, airway epithelial cells provide a barrier that protects underlying tissue from inhaled particulates, pathogens, and toxicants frequently found in inspired air. We evaluated the effects of a five-day exposure to environmentally relevant levels of arsenic {<4μM [~300 μg/L (ppb] as NaAsO2} on airway epithelial barrier function and structure. In a primary mouse tracheal epithelial (MTE cell model we found that both micromolar (3.9 μM and submicromolar (0.8 μM arsenic concentrations reduced transepithelial resistance, a measure of barrier function. Immunofluorescent staining of arsenic-treated MTE cells showed altered patterns of localization of the transmembrane tight junction proteins claudin (Cl Cl-1, Cl-4, Cl-7 and occludin at cell-cell contacts when compared with untreated controls. To better quantify arsenic-induced changes in tight junction transmembrane proteins we conducted arsenic exposure experiments with an immortalized human bronchial epithelial cell line (16HBE14o-. We found that arsenic exposure significantly increased the protein expression of Cl-4 and occludin as well as the mRNA levels of Cl-4 and Cl-7 in these cells. Additionally, arsenic exposure resulted in altered phosphorylation of occludin. In summary, exposure to environmentally relevant levels of arsenic can alter both the function and structure of airway epithelial barrier constituents. These changes likely contribute to the observed arsenic-induced loss in basic innate immune defense and increased infection in the airway.

  7. Detection of antibodies in human serum using trimellityl-erythrocytes: direct and indirect haemagglutination and haemolysis.

    Science.gov (United States)

    Turner, E S; Pruzansky, J J; Patterson, R; Zeiss, C R; Roberts, M

    1980-02-01

    Utilizing trimellityl-erythrocytes (TM-E), antibodies were detected in sera of seven workers with trimellitic anhydride (TMA) induced airway syndromes by direct haemagglutination, indirect haemagglutination with anti-human IgG, IgA or IgM or by haemolysis. Detectable levels of antibody were obtained with all three methods. The most sensitive technique was indirect haemagglutination using anti-IgG. When added as an inhibitor, TM-human serum albumin produced a 10- to 800-fold reduction in titres. TM-ovalbumin of similar epitope density was less inhibitory and sodium trimellitate the least inhibitory on a molar basis. All of the assays using haptenized human red cells were also capable of detecting anti-TM antibodies in Rhesus monkeys whose airways had been exposed to TMA. These assays are useful for detecting anti-TM antibodies and may also be adapted to demonstrate antibodies induced against other inhaled haptens in sera of environmentally exposed individuals or in animal models of such exposure.

  8. Eosinophilic airway inflammation in asthmatic patients is associated with an altered airway microbiome

    DEFF Research Database (Denmark)

    Sverrild, Asger; Kiilerich, Pia; Brejnrod, Asker Daniel

    2017-01-01

    BACKGROUND: Asthmatic patients have higher microbiome diversity and an altered composition, with more Proteobacteria and less Bacteroidetes compared with healthy control subjects. Studies comparing airway inflammation and the airway microbiome are sparse, especially in subjects not receiving anti......-inflammatory treatment. OBJECTIVE: We sought to describe the relationship between the airway microbiome and patterns of airway inflammation in steroid-free patients with asthma and healthy control subjects. METHODS: Bronchoalveolar lavage fluid was collected from 23 steroid-free nonsmoking patients with asthma and 10...... and AHR to mannitol but not airway neutrophilia. The overall composition of the airway microbiome of asthmatic patients with the lowest levels of eosinophils but not asthmatic patients with the highest levels of eosinophils deviated significantly from that of healthy subjects. Asthmatic patients...

  9. Noninvasive methods to measure airway inflammation: future considerations

    NARCIS (Netherlands)

    Magnussen, H.; Holz, O.; Sterk, P. J.; Hargreave, F. E.

    2000-01-01

    This last contribution to the series focuses on open questions regarding: 1) methodological issues; and 2) the potential clinical application of the noninvasive methods such as induced sputum and the analysis of exhaled air for the assessment of airway inflammation. In addition their potential

  10. Human airway eosinophils exhibit preferential reduction in STAT signaling capacity and increased CISH expression.

    Science.gov (United States)

    Burnham, Mandy E; Koziol-White, Cynthia J; Esnault, Stephane; Bates, Mary E; Evans, Michael D; Bertics, Paul J; Denlinger, Loren C

    2013-09-15

    Allergic asthma, a chronic respiratory disorder marked by inflammation and recurrent airflow obstruction, is associated with elevated levels of IL-5 family cytokines and elevated numbers of eosinophils (EOS). IL-5 family cytokines elongate peripheral blood EOS (EOS(PB)) viability, recruit EOS(PB) to the airways, and, at higher concentrations, induce degranulation and reactive oxygen species generation. Although airway EOS (EOS(A)) remain signal ready in that GM-CSF treatment induces degranulation, treatment of EOS(A) with IL-5 family cytokines no longer confers a survival advantage. Because the IL-5 family receptors have common signaling capacity, but are uncoupled from EOS(A) survival, whereas other IL-5 family induced endpoints remain functional, we tested the hypothesis that EOS(A) possess a JAK/STAT-specific regulatory mechanism (because JAK/STAT signaling is critical to EOS survival). We found that IL-5 family-induced STAT3 and STAT5 phosphorylation is attenuated in EOS(A) relative to blood EOS from airway allergen-challenged donors. However, IL-5 family-induced ERK1/2 phosphorylation is not altered between EOS(A) and EOS from airway allergen-challenged donors. These observations suggest EOS(A) possess a regulatory mechanism for suppressing STAT signaling distinct from ERK1/2 activation. Furthermore, we found, in EOS(PB), IL-5 family cytokines induce members of the suppressors of cytokine signaling (SOCS) genes, CISH and SOCS1. Additionally, following allergen challenge, EOS(A) express significantly more CISH and SOCS1 mRNA and CISH protein than EOS(PB) counterparts. In EOS(PB), long-term pretreatment with IL-5 family cytokines, to varying degrees, attenuates IL-5 family-induced STAT5 phosphorylation. These data support a model in which IL-5 family cytokines trigger a selective downregulation mechanism in EOS(A) for JAK/STAT pathways.

  11. Difficult Airway Response Team: A Novel Quality Improvement Program for Managing Hospital-Wide Airway Emergencies

    Science.gov (United States)

    Mark, Lynette J.; Herzer, Kurt R.; Cover, Renee; Pandian, Vinciya; Bhatti, Nasir I.; Berkow, Lauren C.; Haut, Elliott R.; Hillel, Alexander T.; Miller, Christina R.; Feller-Kopman, David J.; Schiavi, Adam J.; Xie, Yanjun J.; Lim, Christine; Holzmueller, Christine; Ahmad, Mueen; Thomas, Pradeep; Flint, Paul W.; Mirski, Marek A.

    2015-01-01

    Background Difficult airway cases can quickly become emergencies, increasing the risk of life-threatening complications or death. Emergency airway management outside the operating room is particularly challenging. Methods We developed a quality improvement program—the Difficult Airway Response Team (DART)—to improve emergency airway management outside the operating room. DART was implemented by a team of anesthesiologists, otolaryngologists, trauma surgeons, emergency medicine physicians, and risk managers in 2005 at The Johns Hopkins Hospital in Baltimore, Maryland. The DART program had three core components: operations, safety, and education. The operations component focused on developing a multidisciplinary difficult airway response team, standardizing the emergency response process, and deploying difficult airway equipment carts throughout the hospital. The safety component focused on real-time monitoring of DART activations and learning from past DART events to continuously improve system-level performance. This objective entailed monitoring the paging system, reporting difficult airway events and DART activations to a web-based registry, and using in situ simulations to identify and mitigate defects in the emergency airway management process. The educational component included development of a multispecialty difficult airway curriculum encompassing case-based lectures, simulation, and team building/communication to ensure consistency of care. Educational materials were also developed for non-DART staff and patients to inform them about the needs of patients with difficult airways and ensure continuity of care with other providers after discharge. Results Between July 2008 and June 2013, DART managed 360 adult difficult airway events comprising 8% of all code activations. Predisposing patient factors included body mass index > 40, history of head and neck tumor, prior difficult intubation, cervical spine injury, airway edema, airway bleeding, and previous

  12. Difficult airway response team: a novel quality improvement program for managing hospital-wide airway emergencies.

    Science.gov (United States)

    Mark, Lynette J; Herzer, Kurt R; Cover, Renee; Pandian, Vinciya; Bhatti, Nasir I; Berkow, Lauren C; Haut, Elliott R; Hillel, Alexander T; Miller, Christina R; Feller-Kopman, David J; Schiavi, Adam J; Xie, Yanjun J; Lim, Christine; Holzmueller, Christine; Ahmad, Mueen; Thomas, Pradeep; Flint, Paul W; Mirski, Marek A

    2015-07-01

    Difficult airway cases can quickly become emergencies, increasing the risk of life-threatening complications or death. Emergency airway management outside the operating room is particularly challenging. We developed a quality improvement program-the Difficult Airway Response Team (DART)-to improve emergency airway management outside the operating room. DART was implemented by a team of anesthesiologists, otolaryngologists, trauma surgeons, emergency medicine physicians, and risk managers in 2005 at The Johns Hopkins Hospital in Baltimore, Maryland. The DART program had 3 core components: operations, safety, and education. The operations component focused on developing a multidisciplinary difficult airway response team, standardizing the emergency response process, and deploying difficult airway equipment carts throughout the hospital. The safety component focused on real-time monitoring of DART activations and learning from past DART events to continuously improve system-level performance. This objective entailed monitoring the paging system, reporting difficult airway events and DART activations to a Web-based registry, and using in situ simulations to identify and mitigate defects in the emergency airway management process. The educational component included development of a multispecialty difficult airway curriculum encompassing case-based lectures, simulation, and team building/communication to ensure consistency of care. Educational materials were also developed for non-DART staff and patients to inform them about the needs of patients with difficult airways and ensure continuity of care with other providers after discharge. Between July 2008 and June 2013, DART managed 360 adult difficult airway events comprising 8% of all code activations. Predisposing patient factors included body mass index >40, history of head and neck tumor, prior difficult intubation, cervical spine injury, airway edema, airway bleeding, and previous or current tracheostomy. Twenty

  13. Reversible self-association of ovalbumin at air-water interfaces and the consequences for the exerted surface pressure

    NARCIS (Netherlands)

    Kudryashova, E.V.; Visser, A.J.W.G.; Jongh, H.H.J.de

    2005-01-01

    In this study the relation between the ability of protein self-association and the surface properties at air-water interfaces is investigated using a combination of spectroscopic techniques. Three forms of chicken egg ovalbumin were obtained with different self-associating behavior: native

  14. Automatic airway-artery analysis on lung CT to quantify airway wall thickening and bronchiectasis

    DEFF Research Database (Denmark)

    Perez-Rovira, Adria; Kuo, Wieying; Petersen, Jens

    2016-01-01

    Purpose: Bronchiectasis and airway wall thickening are commonly assessed in computed tomography (CT) by comparing the airway size with the size of the accompanying artery. Thus, in order to automate the quantification of bronchiectasis and wall thickening following a similar principle......, and pairs airway branches with the accompanying artery, then quantifies airway wall thickening and bronchiectasis by measuring the wall-artery ratio (WAR) and lumen and outer wall airway-artery ratio (AAR). Measurements that do not use the artery size for normalization are also extracted, including wall...... area percentage (WAP), wall thickness ratio (WTR), and airway diameters. Results: The method was thoroughly evaluated using 8000 manual annotations of airway-artery pairs from 24 full-inspiration pediatric CT scans (12 diseased and 12 controls). Limits of agreement between the automatically...

  15. Modulation of neurological related allergic reaction in mice exposed to low-level toluene

    International Nuclear Information System (INIS)

    Tin-Tin-Win-Shwe; Yamamoto, Shoji; Nakajima, Daisuke; Furuyama, Akiko; Fukushima, Atsushi; Ahmed, Sohel; Goto, Sumio; Fujimaki, Hidekazu

    2007-01-01

    The contributing role of indoor air pollution to the development of allergic disease has become increasingly evident in public health problems. It has been reported that extensive communication exists between neurons and immune cells, and neurotrophins are molecules potentially responsible for regulating and controlling this neuroimmune crosstalk. The adverse effects of volatile organic compounds which are main indoor pollutants on induction or augmentation of neuroimmune interaction have not been fully characterized yet. To investigate the effects of low-level toluene inhalation on the airway inflammatory responses, male C3H mice were exposed to filtered air (control), 9 ppm, and 90 ppm toluene for 30 min by nose-only inhalation on Days 0, 1, 2, 7, 14, 21, and 28. Some groups of mice were injected with ovalbumin intraperitoneally before starting exposure schedule and these mice were then challenged with aerosolized ovalbumin as booster dose. For analysis of airway inflammation, bronchoalveolar lavage (BAL) fluid were collected to determine inflammatory cell influx and lung tissue and blood samples were collected to determine cytokine and neurotrophin mRNA and protein expressions and plasma antibody titers using real-time RT-PCR and ELISA methods respectively. Exposure of the ovalbumin-immunized mice to low-level toluene resulted in (1) increased inflammatory cells infiltration in BAL fluid; (2) increased IL-5 mRNA, decreased nerve growth factor receptor tropomyosin-related kinase A and brain-derived neurotrophic factor mRNAs in lung; and (3) increased IgE and IgG 1 antibodies and nerve growth factor content in the plasma. These findings suggest that low-level toluene exposure aggravates the airway inflammatory responses in ovalbumin-immunized mice by modulating neuroimmune crosstalk

  16. Airway inflammation in patients affected by obstructive sleep apnea syndrome.

    Science.gov (United States)

    Salerno, F G; Carpagnano, E; Guido, P; Bonsignore, M R; Roberti, A; Aliani, M; Vignola, A M; Spanevello, A

    2004-01-01

    Obstructive sleep apnea syndrome (OSAS) has been shown to be associated to upper airway inflammation. The object of the present study was to establish the presence of bronchial inflammation in OSAS subjects. In 16 subjects affected by OSAS, and in 14 healthy volunteers, airway inflammation was detected by the cellular analysis of the induced sputum. OSAS patients, as compared to control subjects, showed a higher percentage of neutrophils (66.7+/-18.9 vs. 25.8+/-15.6) (Pbronchial inflammation characterized by a significant increase in neutrophils.

  17. Exposure to welding fumes and lower airway infection with Streptococcus pneumoniae.

    Science.gov (United States)

    Suri, Reetika; Periselneris, Jimstan; Lanone, Sophie; Zeidler-Erdely, Patti C; Melton, Geoffrey; Palmer, Keith T; Andujar, Pascal; Antonini, James M; Cohignac, Vanessa; Erdely, Aaron; Jose, Ricardo J; Mudway, Ian; Brown, Jeremy; Grigg, Jonathan

    2016-02-01

    Welders are at increased risk of pneumococcal pneumonia. The mechanism for this association is not known. The capacity of pneumococci to adhere to and infect lower airway cells is mediated by host-expressed platelet-activating factor receptor (PAFR). We sought to assess the effect of mild steel welding fumes (MS-WF) on PAFR-dependent pneumococcal adhesion and infection to human airway cells in vitro and on pneumococcal airway infection in a mouse model. The oxidative potential of MS-WF was assessed by their capacity to reduce antioxidants in vitro. Pneumococcal adhesion and infection of A549, BEAS-2B, and primary human bronchial airway cells were assessed by means of quantitative bacterial culture and expressed as colony-forming units (CFU). After intranasal instillation of MS-WF, mice were infected with Streptococcus pneumoniae, and bronchoalveolar lavage fluid (BALF) and lung CFU values were determined. PAFR protein levels were assessed by using immunofluorescence and immunohistochemistry, and PAFR mRNA expression was assessed by using quantitative PCR. PAFR was blocked by CV-3988, and oxidative stress was attenuated by N-acetylcysteine. MS-WF exhibited high oxidative potential. In A549 and BEAS-2B cells MS-WF increased pneumococcal adhesion and infection and PAFR protein expression. Both CV-3988 and N-acetylcysteine reduced MS-WF-stimulated pneumococcal adhesion and infection of airway cells. MS-WF increased mouse lung PAFR mRNA expression and increased BALF and lung pneumococcal CFU values. In MS-WF-exposed mice CV-3988 reduced BALF CFU values. Hypersusceptibility of welders to pneumococcal pneumonia is in part mediated by the capacity of welding fumes to increase PAFR-dependent pneumococcal adhesion and infection of lower airway cells. Copyright © 2015 American Academy of Allergy, Asthma & Immunology. All rights reserved.

  18. The effect of long-term administered CRAC channels blocker on the functions of respiratory epithelium in guinea pig allergic asthma model.

    Science.gov (United States)

    Sutovska, Martina; Kocmalova, Michaela; Joskova, Marta; Adamkov, Marian; Franova, Sona

    2015-04-01

    Previously, therapeutic potency of CRAC channels blocker was evidenced as a significant decrease in airway smooth muscle hyperreactivity, antitussive and anti-inflammatory effects. The major role of the respiratory epithelium in asthma pathogenesis was highlighted only recently and CRAC channels were proposed as the most significant route of Ca2+ entry into epithelial cells. The aim of the study was to analyse the impact of long-term administered CRAC channels blocker on airway epithelium, e.g. cytokine production and ciliary beat frequency (CBF) using an animal model of allergic asthma. Ovalbumin-induced allergic airway inflammation of guinea pigs was followed by long-term (14 days lasted) therapy by CRAC blocker (3-fluoropyridine-4-carboxylic acid, FPCA). The influence of long-term therapy on cytokines (IL-4, IL-5 and IL-13) in BALF and in plasma, immunohistochemical staining of pulmonary tissue (c-Fos positivity) and CBF in vitro were used for analysis. Decrease in cytokine levels and in c-Fos positivity confirmed an anti-inflammatory effect of long-term administered FPCA. Cytokine levels in BALF and distribution of c-Fos positivity suggested that FPCA was a more potent inhibitor of respiratory epithelium secretory functions than budesonide. FPCA and budesonide reduced CBF only insignificantly. All findings supported CRAC channels as promising target in the new strategy of antiasthmatic treatment.

  19. Effects of Ginger and Its Constituents on Airway Smooth Muscle Relaxation and Calcium Regulation

    Science.gov (United States)

    Siviski, Matthew E.; Zhang, Yi; Xu, Carrie; Hoonjan, Bhupinder; Emala, Charles W.

    2013-01-01

    The prevalence of asthma has increased in recent years, and is characterized by airway hyperresponsiveness and inflammation. Many patients report using alternative therapies to self-treat asthma symptoms as adjuncts to short-acting and long-acting β-agonists and inhaled corticosteroids (ICS). As many as 40% of patients with asthma use herbal therapies to manage asthma symptoms, often without proven efficacy or known mechanisms of action. Therefore, investigations of both the therapeutic and possible detrimental effects of isolated components of herbal treatments on the airway are important. We hypothesized that ginger and its active components induce bronchodilation by modulating intracellular calcium ([Ca2+]i) in airway smooth muscle (ASM). In isolated human ASM, ginger caused significant and rapid relaxation. Four purified constituents of ginger were subsequently tested for ASM relaxant properties in both guinea pig and human tracheas: [6]-gingerol, [8]-gingerol, and [6]-shogaol induced rapid relaxation of precontracted ASM (100–300 μM), whereas [10]-gingerol failed to induce relaxation. In human ASM cells, exposure to [6]-gingerol, [8]-gingerol, and [6]-shogaol, but not [10]-gingerol (100 μM), blunted subsequent Ca2+ responses to bradykinin (10 μM) and S-(−)-Bay K 8644 (10 μM). In A/J mice, the nebulization of [8]-gingerol (100 μM), 15 minutes before methacholine challenge, significantly attenuated airway resistance, compared with vehicle. Taken together, these novel data show that ginger and its isolated active components, [6]-gingerol, [8]-gingerol, and [6]-shogaol, relax ASM, and [8]-gingerol attenuates airway hyperresponsiveness, in part by altering [Ca2+]i regulation. These purified compounds may provide a therapeutic option alone or in combination with accepted therapeutics, including β2-agonists, in airway diseases such as asthma. PMID:23065130

  20. Airway Clearance Techniques (ACTs)

    Medline Plus

    Full Text Available ... Treatments and Therapies Airway Clearance Airway Clearance Techniques (ACTs) There are different ways to clear your airways. ... or caregiver. Older kids and adults can choose ACTs that they can do on their own. Share ...

  1. HEMODYNAMIC STATUS IN AIRWAY MANAGEMENT DURING GENERAL ANESTHESIA: COMPARISON OF THREE METHODS

    OpenAIRE

    K MONTAZERI; KH NAGHIBI; A.A AKHOUNDI

    2000-01-01

    Introduction. The laryngeal mask airway (LMA) was recently introduced in general anesthesia as an alternative to the face mask or tracheal intubation for airway maintenance. Methods. The effects of LMA insertion, face mask or tracheal intubation on homodynamic status were studied in 195 normotensive patients who underwent elective transurethral lithotripsy (TUL). The patients were monitored with blood pressure measurement and pulse oximetry. Anesthesia was induced with sodium thiopental,...

  2. Continuing the Original Stanford Sleep Surgery Protocol From Upper Airway Reconstruction to Upper Airway Stimulation: Our First Successful Case.

    Science.gov (United States)

    Liu, Stanley Yung; Riley, Robert Wayne

    2017-07-01

    In 1993, a surgical protocol for dynamic upper airway reconstruction in patients with obstructive sleep apnea (OSA) was published, and it became commonly known as the Stanford phase 1 and 2 sleep surgery protocol. It served as a platform on which research and clinical studies have continued to perfect the surgical care of patients with OSA. However, relapse is inevitable in a chronic condition such as OSA, and a subset of previously cured surgical patients return with complaints of excessive daytime sleepiness. This report describes a patient who was successfully treated with phase 1 and 2 operations more than a decade previously. He returned at 65 years of age with relapse of moderate OSA, and after workup with polysomnography and drug-induced sleep endoscopy, he underwent upper airway stimulation of the hypoglossal nerve that resulted in a cure of OSA. This case shows why upper airway stimulation is an appropriate option for patients with OSA relapse, after previously successful maxillomandibular advancement. Copyright © 2017. Published by Elsevier Inc.

  3. The effects of ovalbumin as a protein source during the in vitro production of bovine embryos

    Directory of Open Access Journals (Sweden)

    Tatiane Almeida Drummond Tetzner

    2011-10-01

    Full Text Available Embryo quality is influenced by the culture conditions that affect in vitro maturation (IVM, fertilization (IVF and culture (IVC rates. The present study investigated the feasibility of producing bovine embryos after the replacement of fetal calf serum (FCS and bovine serum albumin (BSA by ovalbumin (OVA. The IVM and IVC medium were supplemented with 10% FCS, 4 mg/mL BSA, or 4 mg/mL OVA. The IVF medium was supplemented with 6 mg/mL BSA or OVA. For IVM, supplementation with FCS, BSA, and OVA did not affect nuclear maturation or cortical granule migration. Higher rates of formation of two pronuclei were obtained when FCS was employed for IVM (79.97%, regardless of the supplement used for IVF, and when BSA was used for IVF (59.4%, regardless of the supplement used for IVM. Supplementation with OVA for IVM+IVC (20.40% and for IVF (22.15% was inferior to supplementation with FCS for IVM+IVC (30.47% and with BSA for IVF (28.91% for blastocyst development. Hatching rates were lower using OVA for IVM+IVC (23.02% and for IVF (28.93% compared with FCS and BSA under the same conditions (40.78 and 34.82%, respectively and BSA for IVF (36.82%. Supplementation with OVA for IVM+IVC and IVF resulted in reduced inner cell mass, trophectoderm cells and total blastocyst cell numbers (17.29, 37.88, and 55.17, respectively. In conclusion, OVA is a protein source for bovine in vitro embryo production, although the quantity and quality of bovine blastocysts using only ovalbumin in the entire in vitro production process are lower than those obtained in the presence of FCS and BSA, when used as supplements in any step of bovine in vitro embryo production.

  4. Airway Clearance Techniques (ACTs)

    Medline Plus

    Full Text Available ... to loosen mucus from airway walls. See how different airway clearance techniques work to help you clear the thick, sticky mucus ... Offer their tips for fitting ACTs into daily life Airway Clearance Techniques | Webcast ... Facebook Twitter ...

  5. Role of Matrix Metalloproteinases-1 and -2 in Interleukin-13-Suppressed Elastin in Airway Fibroblasts in Asthma.

    Science.gov (United States)

    Ingram, Jennifer L; Slade, David; Church, Tony D; Francisco, Dave; Heck, Karissa; Sigmon, R Wesley; Ghio, Michael; Murillo, Anays; Firszt, Rafael; Lugogo, Njira L; Que, Loretta; Sunday, Mary E; Kraft, Monica

    2016-01-01

    Elastin synthesis and degradation in the airway and lung parenchyma contribute to airway mechanics, including airway patency and elastic recoil. IL-13 mediates many features of asthma pathobiology, including airway remodeling, but the effects of IL-13 on elastin architecture in the airway wall are not known. We hypothesized that IL-13 modulates elastin expression in airway fibroblasts from subjects with allergic asthma. Twenty-five subjects with mild asthma (FEV1, 89 ± 3% predicted) and 30 normal control subjects (FEV1, 102 ± 2% predicted) underwent bronchoscopy with endobronchial biopsy. Elastic fibers were visualized in airway biopsy specimens using Weigert's resorcin-fuchsin elastic stain. Airway fibroblasts were exposed to IL-13; a pan-matrix metalloproteinase (MMP) inhibitor (GM6001); specific inhibitors to MMP-1, -2, -3, and -8; and combinations of IL-13 with MMP inhibitors in separate conditions in serum-free media for 48 hours. Elastin (ELN) expression as well as MMP secretion and activity were quantified. Results of this study show that elastic fiber staining of airway biopsy tissue was significantly associated with methacholine PC20 (i.e., the provocative concentration of methacholine resulting in a 20% fall in FEV1 levels) in patients with asthma. IL-13 significantly suppressed ELN expression in asthmatic airway fibroblasts as compared with normal control fibroblasts. The effect of IL-13 on ELN expression was significantly correlated with postbronchodilator FEV1/FVC in patients with asthma. MMP inhibition significantly stimulated ELN expression in patients with asthma as compared with normal control subjects. Specific inhibition of MMP-1 and MMP-2, but not MMP-3 or MMP-8, reversed the IL-13-induced suppression of ELN expression. In asthma, MMP-1 and MMP-2 mediate IL-13-induced suppression of ELN expression in airway fibroblasts.

  6. Resveratrol, an extract of red wine, inhibits lipopolysaccharide induced airway neutrophilia and inflammatory mediators through an NF-kappaB-independent mechanism.

    Science.gov (United States)

    Birrell, M A; McCluskie, K; Wong, S; Donnelly, L E; Barnes, P J; Belvisi, M G

    2005-05-01

    Consumption of a naturally occurring polyphenol, resveratrol, in particular through drinking moderate amounts of red wine, has been suggested to be beneficial to health. A plethora of in vitro studies published demonstrate various anti-inflammatory actions of resveratrol. The aim of this research was to determine whether any of these anti-inflammatory effects translate in vivo in a rodent model of LPS induced airway inflammation. Resveratrol reduced lung tissue neutrophilia to a similar magnitude as that achieved by treatment with budesonide. This was associated with a reduction in pro-inflammatory cytokines and prostanoid levels. Interestingly, the reduction did not appear to be due to an impact on NF-kappaB activation or the expression of the respective genes as suggested by various in vitro publications. These results suggest that resveratrol may possess anti-inflammatory properties via a novel mechanism. Elucidation of this mechanism may lead to potential new therapies for the treatment of chronic inflammation.

  7. L-citrulline supplementation reverses the impaired airway relaxation in neonatal rats exposed to hyperoxia

    Directory of Open Access Journals (Sweden)

    Sopi Ramadan B

    2012-08-01

    Full Text Available Abstract Background Hyperoxia is shown to impair airway relaxation via limiting L-arginine bioavailability to nitric oxide synthase (NOS and reducing NO production as a consequence. L-arginine can also be synthesized by L-citrulline recycling. The role of L-citrulline supplementation was investigated in the reversing of hyperoxia-induced impaired relaxation of rat tracheal smooth muscle (TSM. Methods Electrical field stimulation (EFS, 2–20 V-induced relaxation was measured under in vitro conditions in preconstricted tracheal preparations obtained from 12 day old rat pups exposed to room air or hyperoxia (>95% oxygen for 7 days supplemented with L-citrulline or saline (in vitro or in vivo. The role of the L-citrulline/L-arginine cycle under basal conditions was studied by incubation of preparations in the presence of argininosuccinate synthase (ASS inhibitor [α-methyl-D, L-aspartate, 1 mM] or argininosuccinate lyase inhibitor (ASL succinate (1 mM and/or NOS inhibitor [Nω-nitro-L-arginine methyl ester; 100 μM] with respect to the presence or absence of L-citrulline (2 mM. Results Hyperoxia impaired the EFS-induced relaxation of TSM as compared to room air control (p ; 0.5 ± 0.1% at 2 V to 50.6 ± 5.7% at 20 V in hyperoxic group: 0.7 ± 0.2 at 2 V to 80.0 ± 5.6% at 20 V in room air group. Inhibition of ASS or ASL, and L-citrulline supplementation did not affect relaxation responses under basal conditions. However, inhibition of NOS significantly reduced relaxation responses (p in vivo and in vitro also reversed the hyperoxia-impaired relaxation. The differences were significant (p ; 0.8 ± 0.3% at 2 V to 47.1 ± 4.1% at 20 V without L-citrulline; 0.9 ± 0.3% at 2 V to 68.2 ± 4.8% at 20 V with L-citrulline. Inhibition of ASS or ASL prevented this effect of L-citrulline. Conclusion The results indicate the presence of an L-citrulline/L-arginine cycle in the airways of rat pups

  8. Efficacy of Surgical Airway Plasty for Benign Airway Stenosis.

    Science.gov (United States)

    Tsukioka, Takuma; Takahama, Makoto; Nakajima, Ryu; Kimura, Michitaka; Inoue, Hidetoshi; Yamamoto, Ryoji

    2016-01-01

    Long-term patency is required during treatment for benign airway stenosis. This study investigated the effectiveness of surgical airway plasty for benign airway stenosis. Clinical courses of 20 patients, who were treated with surgical plasty for their benign airway stenosis, were retrospectively investigated. Causes of stenosis were tracheobronchial tuberculosis in 12 patients, post-intubation stenosis in five patients, malacia in two patients, and others in one patient. 28 interventional pulmonology procedures and 20 surgical plasty were performed. Five patients with post-intubation stenosis and four patients with tuberculous stenosis were treated with tracheoplasty. Eight patients with tuberculous stenosis were treated with bronchoplasty, and two patients with malacia were treated with stabilization of the membranous portion. Anastomotic stenosis was observed in four patients, and one to four additional treatments were required. Performance status, Hugh-Jones classification, and ventilatory functions were improved after surgical plasty. Outcomes were fair in patients with tuberculous stenosis and malacia. However, efficacy of surgical plasty for post-intubation stenosis was not observed. Surgical airway plasty may be an acceptable treatment for tuberculous stenosis. Patients with malacia recover well after surgical plasty. There may be untreated patients with malacia who have the potential to benefit from surgical plasty.

  9. [Airway management in a man with ankylosing spondylitis].

    Science.gov (United States)

    Gil, S; Jamart, V; Borrás, R; Miranda, A

    2007-02-01

    We report a case of difficult airway management in a 41-year-old man with ankylosing spondylitis who was scheduled for total left hip replacement surgery. After several failed attempts to achieve regional anesthesia, we converted to general anesthesia with orotracheal intubation using a fiberoptic bronchoscope. Ankylosing spondylitis leads to fibrosis, ossification, and ankylosis along the spinal column and sacroiliac articulations. Cervical column and atlantooccipital articulation mobility are reduced and in severe cases the cervical vertebrae become fixed in a flexed position. This portion of the spine is also the most susceptible to fracture, particularly in hyperextension, an event that could lead to damage to the cervical spinal cord during maneuvers to manage the airway. Patients with this condition may also have temporomandibular joint involvement, further complicating airway management. We report the case of a patient with ankylosing spondylitis with fixation along the entire spine. The airway was managed by intubation with a fiberoptic bronchoscope. Spontaneous ventilation was maintained during the maneuver, and sedation was achieved with perfusion of remifentanil as the only anesthetic agent following failure of intradural anesthesia.

  10. Effect of the anti-IL-17 antibody on allergic inflammation in an obesity-related asthma model.

    Science.gov (United States)

    Liang, Lin; Hur, Jung; Kang, Ji Young; Rhee, Chin Kook; Kim, Young Kyoon; Lee, Sook Young

    2018-04-19

    The co-occurrence of obesity aggravates asthma symptoms. Diet-induced obesity increases helper T cell (TH) 17 cell differentiation in adipose tissue and the spleen. The 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitor pravastatin can potentially be used to treat asthma in obese patients by inhibiting interleukin 17 (IL-17) expression. This study investigated the combined effects of pravastatin and anti-IL-17 antibody treatment on allergic inflammation in a mouse model of obesity-related asthma. High-fat diet (HFD)-induced obesity was induced in C57BL/6 mice with or without ovalbumin (OVA) sensitization and challenge. Mice were administered the anti-IL-17 antibody, pravastatin, or both, and pathophysiological and immunological responses were analyzed. HFD exacerbated allergic airway inflammation in the bronchoalveolar lavage fluid of HFD-OVA mice as compared to OVA mice. Blockading of the IL-17 in the HFD-OVA mice decreased airway hyper-responsiveness (AHR) and airway inflammation compared to the HFD-OVA mice. Moreover, the administration of the anti-IL-17 antibody decreased the leptin/adiponectin ratio in the HFD-OVA but not the OVA mice. Co-administration of pravastatin and anti-IL-17 inhibited airway inflammation and AHR, decreased goblet cell numbers, and increased adipokine levels in obese asthmatic mice. These results suggest that the IL-17-leptin/adiponectin axis plays a key role in airway inflammation in obesity-related asthma. Our findings suggest a potential new treatment for IL-17 as a target that may benefit obesity-related asthma patients who respond poorly to typical asthma medications.

  11. Bis(tributyltin)oxide (TBTO) decreases the food allergic response against peanut and ovalbumin in Brown Norway rats

    NARCIS (Netherlands)

    Jonge, J.D. de; Ezendam, J.; Knippels, L.M.J.; Odink, J.; Pourier, M.S.; Penninks, A.H.; Pieters, R.; Loveren, H. van

    2007-01-01

    Other factors than the allergen itself may be of importance in the development of food allergy. This report describes the influence of the immunosuppressive compound bis(tributyltin)oxide (TBTO), present in the food chain, on the development of food allergy to peanut or ovalbumin in Brown Norway

  12. Identifying airway sensitizers: cytokine mRNA profiles induced by various anhydrides

    International Nuclear Information System (INIS)

    Plitnick, L.M.; Loveless, S.E.; Ladics, G.S.; Holsapple, M.P.; Smialowicz, R.J.; Woolhiser, M.R.; Anderson, P.K.; Smith, C.; Selgrade, M.J.K.

    2003-01-01

    Exposure to low molecular weight (LMW) chemicals in the workplace has been linked to a variety of respiratory effects. Within the LMW chemicals, one of the major classes involved in these effects are the acid anhydrides. The immunological basis of respiratory hypersensitivity involves CD4+ cells. By virtue of their induction of cytokines typical of CD4+ T-helper type 2 (Th2) cells--interleukin (IL)-4, 10, and 13--respiratory sensitizers may be identified and differentiated from contact sensitizers which induce Th1 cytokines (IL-2 and IFN-γ). Our previous work suggested that the ribonuclease protection assay (RPA) was useful in identifying the respiratory sensitizer, trimellitic anhydride (TMA), based on quantitative differences in Th2 cytokine mRNA as compared to the contact sensitizer dinitrochlorobenzene (DNCB). Therefore, the purpose of the studies described in this report was to expand the chemicals tested in the RPA. To this end, four acid anhydrides with known respiratory sensitization potential, TMA, maleic anhydride (MA), phthalic anhydride (PA) and hexahydrophthalic anhydride (HHPA), were tested. Although previously determined to induce immunologically equivalent responses in a local lymph node assay (LLNA), the initial dose chosen (2.5%) failed to induce Th2 cytokine mRNA expression. To determine if the lack of cytokine expression was related to dose, LLNAs were conducted at higher doses for each of the anhydrides. The highest doses evaluated (four- to six-fold higher than those used in the initial RPA) gave equivalent proliferative responses for the various anhydrides and were used for subsequent RPA testing. At these higher doses, significant increases in Th2 versus Th1 cytokine mRNA were observed for all anhydrides tested. These results suggest that the RPA has the potential to serve as a screen for the detection of LMW airway sensitizing chemicals. However, the basis for selecting immunologically equivalent doses may require some modification

  13. Supplemental Carbon Dioxide Stabilizes the Upper Airway in Volunteers Anesthetized with Propofol.

    Science.gov (United States)

    Ruscic, Katarina Jennifer; Bøgh Stokholm, Janne; Patlak, Johann; Deng, Hao; Simons, Jeroen Cedric Peter; Houle, Timothy; Peters, Jürgen; Eikermann, Matthias

    2018-05-10

    Propofol impairs upper airway dilator muscle tone and increases upper airway collapsibility. Preclinical studies show that carbon dioxide decreases propofol-mediated respiratory depression. We studied whether elevation of end-tidal carbon dioxide (PETCO2) via carbon dioxide insufflation reverses the airway collapsibility (primary hypothesis) and impaired genioglossus muscle electromyogram that accompany propofol anesthesia. We present a prespecified, secondary analysis of previously published experiments in 12 volunteers breathing via a high-flow respiratory circuit used to control upper airway pressure under propofol anesthesia at two levels, with the deep level titrated to suppression of motor response. Ventilation, mask pressure, negative pharyngeal pressure, upper airway closing pressure, genioglossus electromyogram, bispectral index, and change in end-expiratory lung volume were measured as a function of elevation of PETCO2 above baseline and depth of propofol anesthesia. PETCO2 augmentation dose-dependently lowered upper airway closing pressure with a decrease of 3.1 cm H2O (95% CI, 2.2 to 3.9; P < 0.001) under deep anesthesia, indicating improved upper airway stability. In parallel, the phasic genioglossus electromyogram increased by 28% (23 to 34; P < 0.001). We found that genioglossus electromyogram activity was a significant modifier of the effect of PETCO2 elevation on closing pressure (P = 0.005 for interaction term). Upper airway collapsibility induced by propofol anesthesia can be reversed in a dose-dependent manner by insufflation of supplemental carbon dioxide. This effect is at least partly mediated by increased genioglossus muscle activity.

  14. Organophosphorus pesticides decrease M2 muscarinic receptor function in guinea pig airway nerves via indirect mechanisms.

    Directory of Open Access Journals (Sweden)

    Becky J Proskocil

    Full Text Available BACKGROUND: Epidemiological studies link organophosphorus pesticide (OP exposures to asthma, and we have shown that the OPs chlorpyrifos, diazinon and parathion cause airway hyperreactivity in guinea pigs 24 hr after a single subcutaneous injection. OP-induced airway hyperreactivity involves M2 muscarinic receptor dysfunction on airway nerves independent of acetylcholinesterase (AChE inhibition, but how OPs inhibit neuronal M2 receptors in airways is not known. In the central nervous system, OPs interact directly with neurons to alter muscarinic receptor function or expression; therefore, in this study we tested whether the OP parathion or its oxon metabolite, paraoxon, might decrease M2 receptor function on peripheral neurons via similar direct mechanisms. METHODOLOGY/PRINCIPAL FINDINGS: Intravenous administration of paraoxon, but not parathion, caused acute frequency-dependent potentiation of vagally-induced bronchoconstriction and increased electrical field stimulation (EFS-induced contractions in isolated trachea independent of AChE inhibition. However, paraoxon had no effect on vagally-induced bradycardia in intact guinea pigs or EFS-induced contractions in isolated ileum, suggesting mechanisms other than pharmacologic antagonism of M2 receptors. Paraoxon did not alter M2 receptor expression in cultured cells at the mRNA or protein level as determined by quantitative RT-PCR and radio-ligand binding assays, respectively. Additionally, a biotin-labeled fluorophosphonate, which was used as a probe to identify molecular targets phosphorylated by OPs, did not phosphorylate proteins in guinea pig cardiac membranes that were recognized by M2 receptor antibodies. CONCLUSIONS/SIGNIFICANCE: These data indicate that neither direct pharmacologic antagonism nor downregulated expression of M2 receptors contributes to OP inhibition of M2 function in airway nerves, adding to the growing evidence of non-cholinergic mechanisms of OP neurotoxicity.

  15. Interleukin (IL) 36 gamma induces mucin 5AC, oligomeric mucus/gel-forming expression via IL-36 receptor-extracellular signal regulated kinase 1 and 2, and p38-nuclear factor kappa-light-chain-enhancer of activated B cells in human airway epithelial cells.

    Science.gov (United States)

    Bae, Chang Hoon; Choi, Yoon Seok; Na, Hyung Gyun; Song, Si-Youn; Kim, Yong-Dae

    2018-03-01

    Mucin 5AC, oligomeric mucus/gel-forming (MUC5AC) expression is significantly increased in allergic and inflammatory airway diseases. Interleukin (IL) 36 gamma is predominantly expressed in airway epithelial cells and plays an important role in innate and adaptive immune responses. IL-36 gamma is induced by many inflammatory mediators, including cytokines and bacterial and viral infections. However, the association between IL-36 gamma and mucin secretion in human airway epithelial cells has not yet been fully investigated. The objective of this study was to determine whether IL-36 gamma might play a role in the regulation of mucin secretion in airway epithelial cells. We investigated the effect and brief signaling pathway of IL-36 gamma on MUC5AC expression in human airway epithelial cells. Enzyme immunoassay, immunoblot analysis, immunofluorescence staining, reverse transcriptase-polymerase chain reaction (PCR), and real-time PCR were performed in mucin-producing human airway epithelial NCI-H292 cells and in human nasal epithelial cells after pretreatment with IL-36 gamma, several specific inhibitors, or small interfering RNAs (siRNA). IL-36 gamma induced MUC5AC expression and activated the phosphorylation of extracellular signal regulated kinase (ERK) 1 and 2, p38, and nuclear factor-kappa-light-chain-enhancer of activated B cells (NF-kappa B). IL-36 receptor antagonist significantly attenuated these effects. The specific inhibitor and siRNA of ERK1, ERK2, p38, and NF-kappa B significantly attenuated IL-36 gamma induced MUC5AC expression. These results indicated that IL-36 gamma induced MUC5AC expression via the IL-36 receptor-mediated ERK1/2 and p38/NF-kappa B pathway in human airway epithelial cells.

  16. Prolonged ozone exposure in an allergic airway disease model: Adaptation of airway responsiveness and airway remodeling

    Directory of Open Access Journals (Sweden)

    Park Chang-Soo

    2006-02-01

    Full Text Available Abstract Background Short-term exposure to high concentrations of ozone has been shown to increase airway hyper-responsiveness (AHR. Because the changes in AHR and airway inflammation and structure after chronic ozone exposure need to be determined, the goal of this study was to investigate these effects in a murine model of allergic airway disease. Methods We exposed BALB/c mice to 2 ppm ozone for 4, 8, and 12 weeks. We measured the enhanced pause (Penh to methacholine and performed cell differentials in bronchoalveolar lavage fluid. We quantified the levels of IL-4 and IFN-γ in the supernatants of the bronchoalveolar lavage fluids using enzyme immunoassays, and examined the airway architecture under light and electron microscopy. Results The groups exposed to ozone for 4, 8, and 12 weeks demonstrated decreased Penh at methacholine concentrations of 12.5, 25, and 50 mg/ml, with a dose-response curve to the right of that for the filtered-air group. Neutrophils and eosinophils increased in the group exposed to ozone for 4 weeks compared to those in the filtered-air group. The ratio of IL-4 to INF-γ increased significantly after exposure to ozone for 8 and 12 weeks compared to the ratio for the filtered-air group. The numbers of goblet cells, myofibroblasts, and smooth muscle cells showed time-dependent increases in lung tissue sections from the groups exposed to ozone for 4, 8, and 12 weeks. Conclusion These findings demonstrate that the increase in AHR associated with the allergic airway does not persist during chronic ozone exposure, indicating that airway remodeling and adaptation following repeated exposure to air pollutants can provide protection against AHR.

  17. Human lung mast cells modulate the functions of airway smooth muscle cells in asthma.

    Science.gov (United States)

    Alkhouri, H; Hollins, F; Moir, L M; Brightling, C E; Armour, C L; Hughes, J M

    2011-09-01

    Activated mast cell densities are increased on the airway smooth muscle in asthma where they may modulate muscle functions and thus contribute to airway inflammation, remodelling and airflow obstruction. To determine the effects of human lung mast cells on the secretory and proliferative functions of airway smooth muscle cells from donors with and without asthma. Freshly isolated human lung mast cells were stimulated with IgE/anti-IgE. Culture supernatants were collected after 2 and 24 h and the mast cells lysed. The supernatants/lysates were added to serum-deprived, subconfluent airway smooth muscle cells for up to 48 h. Released chemokines and extracellular matrix were measured by ELISA, proliferation was quantified by [(3) H]-thymidine incorporation and cell counting, and intracellular signalling by phospho-arrays. Mast cell 2-h supernatants reduced CCL11 and increased CXCL8 and fibronectin production from both asthmatic and nonasthmatic muscle cells. Leupeptin reversed these effects. Mast cell 24-h supernatants and lysates reduced CCL11 release from both muscle cell types but increased CXCL8 release by nonasthmatic cells. The 24-h supernatants also reduced asthmatic, but not nonasthmatic, muscle cell DNA synthesis and asthmatic cell numbers over 5 days through inhibiting extracellular signal-regulated kinase (ERK) and phosphatidylinositol (PI3)-kinase pathways. However, prostaglandins, thromboxanes, IL-4 and IL-13 were not involved in reducing the proliferation. Mast cell proteases and newly synthesized products differentially modulated the secretory and proliferative functions of airway smooth muscle cells from donors with and without asthma. Thus, mast cells may modulate their own recruitment and airway smooth muscle functions locally in asthma. © 2011 John Wiley & Sons A/S.

  18. Airway management in neuroanesthesiology.

    Science.gov (United States)

    Aziz, Michael

    2012-06-01

    Airway management for neuroanesthesiology brings together some key principles that are shared throughout neuroanesthesiology. This article appropriately targets the cervical spine with associated injury and the challenges surrounding airway management. The primary focus of this article is on the unique airway management obstacles encountered with cervical spine injury or cervical spine surgery, and unique considerations regarding functional neurosurgery are addressed. Furthermore, topics related to difficult airway management for those with rheumatoid arthritis or pituitary surgery are reviewed. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Detonation Nanodiamond Toxicity in Human Airway Epithelial Cells Is Modulated by Air Oxidation

    Science.gov (United States)

    Detonational nanodiamonds (DND), a nanomaterial with an increasing range of industrial and biomedical applications, have previously been shown to induce a pro-inflammatory response in cultured human airway epithelial cells (HAEC). We now show that surface modifications induced by...

  20. Human and Mouse Eosinophils Have Antiviral Activity against Parainfluenza Virus.

    Science.gov (United States)

    Drake, Matthew G; Bivins-Smith, Elizabeth R; Proskocil, Becky J; Nie, Zhenying; Scott, Gregory D; Lee, James J; Lee, Nancy A; Fryer, Allison D; Jacoby, David B

    2016-09-01

    Respiratory viruses cause asthma exacerbations. Because eosinophils are the prominent leukocytes in the airways of 60-70% of patients with asthma, we evaluated the effects of eosinophils on a common respiratory virus, parainfluenza 1, in the lung. Eosinophils recruited to the airways of wild-type mice after ovalbumin sensitization and challenge significantly decreased parainfluenza virus RNA in the lungs 4 days after infection compared with nonsensitized animals. This antiviral effect was also seen in IL-5 transgenic mice with an abundance of airway eosinophils (NJ.1726) but was lost in transgenic eosinophil-deficient mice (PHIL) and in IL-5 transgenic mice crossed with eosinophil-deficient mice (NJ.1726-PHIL). Loss of the eosinophil granule protein eosinophil peroxidase, using eosinophil peroxidase-deficient transgenic mice, did not reduce eosinophils' antiviral effect. Eosinophil antiviral mechanisms were also explored in vitro. Isolated human eosinophils significantly reduced parainfluenza virus titers. This effect did not involve degradation of viral RNA by eosinophil granule RNases. However, eosinophils treated with a nitric oxide synthase inhibitor lost their antiviral activity, suggesting eosinophils attenuate viral infectivity through production of nitric oxide. Consequently, eosinophil nitric oxide production was measured with an intracellular fluorescent probe. Eosinophils produced nitric oxide in response to virus and to a synthetic agonist of the virus-sensing innate immune receptor, Toll-like receptor (TLR) 7. IFNγ increased expression of eosinophil TLR7 and potentiated TLR7-induced nitric oxide production. These results suggest that eosinophils promote viral clearance in the lung and contribute to innate immune responses against respiratory virus infections in humans.

  1. Role of Matrix Metalloproteinases-1 and -2 in Interleukin-13–Suppressed Elastin in Airway Fibroblasts in Asthma

    Science.gov (United States)

    Slade, David; Church, Tony D.; Francisco, Dave; Heck, Karissa; Sigmon, R. Wesley; Ghio, Michael; Murillo, Anays; Firszt, Rafael; Lugogo, Njira L.; Que, Loretta; Sunday, Mary E.; Kraft, Monica

    2016-01-01

    Elastin synthesis and degradation in the airway and lung parenchyma contribute to airway mechanics, including airway patency and elastic recoil. IL-13 mediates many features of asthma pathobiology, including airway remodeling, but the effects of IL-13 on elastin architecture in the airway wall are not known. We hypothesized that IL-13 modulates elastin expression in airway fibroblasts from subjects with allergic asthma. Twenty-five subjects with mild asthma (FEV1, 89 ± 3% predicted) and 30 normal control subjects (FEV1, 102 ± 2% predicted) underwent bronchoscopy with endobronchial biopsy. Elastic fibers were visualized in airway biopsy specimens using Weigert’s resorcin-fuchsin elastic stain. Airway fibroblasts were exposed to IL-13; a pan-matrix metalloproteinase (MMP) inhibitor (GM6001); specific inhibitors to MMP-1, -2, -3, and -8; and combinations of IL-13 with MMP inhibitors in separate conditions in serum-free media for 48 hours. Elastin (ELN) expression as well as MMP secretion and activity were quantified. Results of this study show that elastic fiber staining of airway biopsy tissue was significantly associated with methacholine PC20 (i.e., the provocative concentration of methacholine resulting in a 20% fall in FEV1 levels) in patients with asthma. IL-13 significantly suppressed ELN expression in asthmatic airway fibroblasts as compared with normal control fibroblasts. The effect of IL-13 on ELN expression was significantly correlated with postbronchodilator FEV1/FVC in patients with asthma. MMP inhibition significantly stimulated ELN expression in patients with asthma as compared with normal control subjects. Specific inhibition of MMP-1 and MMP-2, but not MMP-3 or MMP-8, reversed the IL-13–induced suppression of ELN expression. In asthma, MMP-1 and MMP-2 mediate IL-13–induced suppression of ELN expression in airway fibroblasts. PMID:26074138

  2. CXCR3 chemokine receptor-induced chemotaxis in human airway epithelial cells: role of p38 MAPK and PI3K signaling pathways.

    Science.gov (United States)

    Shahabuddin, Syed; Ji, Rong; Wang, Ping; Brailoiu, Eugene; Dun, Na; Yang, Yi; Aksoy, Mark O; Kelsen, Steven G

    2006-07-01

    Human airway epithelial cells (HAEC) constitutively express the CXC chemokine receptor CXCR3, which regulates epithelial cell movement. In diseases such as chronic obstructive pulmonary disease and asthma, characterized by denudation of the epithelial lining, epithelial cell migration may contribute to airway repair and reconstitution. This study compared the potency and efficacy of three CXCR3 ligands, I-TAC/CXCL11, IP-10/CXCL10, and Mig/CXCL9, as inducers of chemotaxis in HAEC and examined the underlying signaling pathways involved. Studies were performed in cultured HAEC from normal subjects and the 16-HBE cell line. In normal HAEC, the efficacy of I-TAC-induced chemotaxis was 349 +/- 88% (mean +/- SE) of the medium control and approximately one-half the response to epidermal growth factor, a highly potent chemoattractant. In normal HAEC, Mig, IP-10, and I-TAC induced chemotaxis with similar potency and a rank order of efficacy of I-TAC = IP-10 > Mig. Preincubation with pertussis toxin completely blocked CXCR3-induced migration. Of interest, intracellular [Ca(2+)] did not rise in response to I-TAC, IP-10, or Mig. I-TAC induced a rapid phosphorylation (5-10 min) of two of the three MAPKs, i.e., p38 and ERK1/2. Pretreatment of HAEC with the p38 inhibitor SB 20358 or the PI3K inhibitor wortmannin dose-dependently inhibited the chemotactic response to I-TAC. In contrast, the ERK1/2 inhibitor U0126 had no effect on chemotaxis. These data indicate that in HAEC, CXCR3-mediated chemotaxis involves a G protein, which activates both the p38 MAPK and PI3K pathways in a calcium-independent fashion.

  3. Waterpipe smoking induces epigenetic changes in the small airway epithelium.

    Directory of Open Access Journals (Sweden)

    Matthew S Walters

    Full Text Available Waterpipe (also called hookah, shisha, or narghile smoking is a common form of tobacco use in the Middle East. Its use is becoming more prevalent in Western societies, especially among young adults as an alternative form of tobacco use to traditional cigarettes. While the risk to cigarette smoking is well documented, the risk to waterpipe smoking is not well defined with limited information on its health impact at the epidemiologic, clinical and biologic levels with respect to lung disease. Based on the knowledge that airway epithelial cell DNA methylation is modified in response to cigarette smoke and in cigarette smoking-related lung diseases, we assessed the impact of light-use waterpipe smoking on DNA methylation of the small airway epithelium (SAE and whether changes in methylation were linked to the transcriptional output of the cells. Small airway epithelium was obtained from 7 nonsmokers and 7 light-use (2.6 ± 1.7 sessions/wk waterpipe-only smokers. Genome-wide comparison of SAE DNA methylation of waterpipe smokers to nonsmokers identified 727 probesets differentially methylated (fold-change >1.5, p<0.05 representing 673 unique genes. Dominant pathways associated with these epigenetic changes include those linked to G-protein coupled receptor signaling, aryl hydrocarbon receptor signaling and xenobiotic metabolism signaling, all of which have been associated with cigarette smoking and lung disease. Of the genes differentially methylated, 11.3% exhibited a corresponding significant (p<0.05 change in gene expression with enrichment in pathways related to regulation of mRNA translation and protein synthesis (eIF2 signaling and regulation of eIF4 and p70S6K signaling. Overall, these data demonstrate that light-use waterpipe smoking is associated with epigenetic changes and related transcriptional modifications in the SAE, the cell population demonstrating the earliest pathologic abnormalities associated with chronic cigarette smoking.

  4. Paediatric airway management: basic aspects

    DEFF Research Database (Denmark)

    Holm-Knudsen, R J; Rasmussen, L S

    2009-01-01

    Paediatric airway management is a great challenge, especially for anaesthesiologists working in departments with a low number of paediatric surgical procedures. The paediatric airway is substantially different from the adult airway and obstruction leads to rapid desaturation in infants and small...... children. This paper aims at providing the non-paediatric anaesthesiologist with a set of safe and simple principles for basic paediatric airway management. In contrast to adults, most children with difficult airways are recognised before induction of anaesthesia but problems may arise in all children...

  5. Overexpression of functional TrkA receptors after internalisation in human airway smooth muscle cells.

    Science.gov (United States)

    Freund-Michel, Véronique; Frossard, Nelly

    2008-10-01

    Trafficking of the TrkA receptor after stimulation by NGF is of emerging importance in structural cells in the context of airway inflammatory diseases. We have recently reported the expression of functional TrkA receptors in human airway smooth muscle cells (HASMC). We have here studied the TrkA trafficking mechanisms in these cells. TrkA disappearance from the cell membrane was induced within 5 min of NGF (3pM) stimulation. Co-immunoprecipitation of clathrin-TrkA was revealed, and TrkA internalisation inhibited either by clathrin inhibitors or by siRNA inducing downregulation of endogenous clathrin. TrkA internalised receptors were totally degraded in lysosomes, with no recycling phenomenon. Newly synthesized TrkA receptors were thereafter re-expressed at the cell membrane within 10 h. TrkA re-synthesis was inhibited by blockade of clathrin-dependent internalisation, but not of TrkA receptors lysosomal degradation. Finally, we observed that NGF multiple stimulations progressively increased TrkA expression in HASMC, which was associated with an increase in NGF/TrkA-dependent proliferation. In conclusion, we show here the occurrence of clathrin-dependent TrkA internalisation and lysosomal degradation in the airway smooth muscle, followed by upregulated re-synthesis of functional TrkA receptors and increased proliferative effect in the human airway smooth muscle. This may have pathophysiological consequences in airway inflammatory diseases.

  6. Integrated care pathways for airway diseases (AIRWAYS-ICPs)

    DEFF Research Database (Denmark)

    Bousquet, J; Addis, A; Adcock, I

    2014-01-01

    The objective of Integrated Care Pathways for Airway Diseases (AIRWAYS-ICPs) is to launch a collaboration to develop multi-sectoral care pathways for chronic respiratory diseases in European countries and regions. AIRWAYS-ICPs has strategic relevance to the European Union Health Strategy...... and will add value to existing public health knowledge by: 1) proposing a common framework of care pathways for chronic respiratory diseases, which will facilitate comparability and trans-national initiatives; 2) informing cost-effective policy development, strengthening in particular those on smoking...... and environmental exposure; 3) aiding risk stratification in chronic disease patients, using a common strategy; 4) having a significant impact on the health of citizens in the short term (reduction of morbidity, improvement of education in children and of work in adults) and in the long-term (healthy ageing); 5...

  7. Airway delivery of soluble factors from plastic-adherent bone marrow cells prevents murine asthma.

    Science.gov (United States)

    Ionescu, Lavinia I; Alphonse, Rajesh S; Arizmendi, Narcy; Morgan, Beverly; Abel, Melanie; Eaton, Farah; Duszyk, Marek; Vliagoftis, Harissios; Aprahamian, Tamar R; Walsh, Kenneth; Thébaud, Bernard

    2012-02-01

    Asthma affects an estimated 300 million people worldwide and accounts for 1 of 250 deaths and 15 million disability-adjusted life years lost annually. Plastic-adherent bone marrow-derived cell (BMC) administration holds therapeutic promise in regenerative medicine. However, given the low cell engraftment in target organs, including the lung, cell replacement cannot solely account for the reported therapeutic benefits. This suggests that BMCs may act by secreting soluble factors. BMCs also possess antiinflammatory and immunomodulatory properties and may therefore be beneficial for asthma. Our objective was to investigate the therapeutic potential of BMC-secreted factors in murine asthma. In a model of acute and chronic asthma, intranasal instillation of BMC conditioned medium (CdM) prevented airway hyperresponsiveness (AHR) and inflammation. In the chronic asthma model, CdM prevented airway smooth muscle thickening and peribronchial inflammation while restoring blunted salbutamol-induced bronchodilation. CdM reduced lung levels of the T(H)2 inflammatory cytokines IL-4 and IL-13 and increased levels of IL-10. CdM up-regulated an IL-10-induced and IL-10-secreting subset of T regulatory lymphocytes and promoted IL-10 expression by lung macrophages. Adiponectin (APN), an antiinflammatory adipokine found in CdM, prevented AHR, airway smooth muscle thickening, and peribronchial inflammation, whereas the effect of CdM in which APN was neutralized or from APN knock-out mice was attenuated compared with wild-type CdM. Our study provides evidence that BMC-derived soluble factors prevent murine asthma and suggests APN as one of the protective factors. Further identification of BMC-derived factors may hold promise for novel approaches in the treatment of asthma.

  8. Airway management in trauma.

    Science.gov (United States)

    Langeron, O; Birenbaum, A; Amour, J

    2009-05-01

    Maintenance of a patent and prevention of aspiration are essential for the management of the trauma patient, that requires experienced physicians in airway control techniques. Difficulties of the airway control in the trauma setting are increased by the vital failures, the risk of aspiration, the potential cervical spine injury, the combative patient, and the obvious risk of difficult tracheal intubation related to specific injury related to the trauma. Endotracheal intubation remains the gold standard in trauma patient airway management and should be performed via the oral route with a rapid sequence induction and a manual in-line stabilization maneuver, to decrease the risks previously mentioned. Different techniques to control the airway in trauma patients are presented: improvement of the laryngoscopic vision, lighted stylet tracheal intubation, retrograde technique for orotracheal intubation, the laryngeal mask and the intubating laryngeal mask airways, the combitube and cricothyroidotomy. Management of the airway in trauma patients requires regular training in these techniques and the knowledge of complementary techniques allowing tracheal intubation or oxygenation to overcome difficult intubation and to prevent major complications as hypoxemia and aspiration.

  9. Oxidative stress decreases functional airway mannose binding lectin in COPD.

    Directory of Open Access Journals (Sweden)

    Hai B Tran

    Full Text Available We have previously established that a defect in the ability of alveolar macrophages (AM to phagocytose apoptotic cells (efferocytosis and pathogens is a potential therapeutic target in COPD. We further showed that levels of mannose binding lectin (MBL; required for effective macrophage phagocytic function were reduced in the airways but not circulation of COPD patients. We hypothesized that increased oxidative stress in the airway could be a cause for such disturbances. We therefore studied the effects of oxidation on the structure of the MBL molecule and its functional interactions with macrophages. Oligomeric structure of plasma derived MBL (pdMBL before and after oxidation (oxMBL with 2,2'-azobis(2-methylpropionamidinedihydrochroride (AAPH was investigated by blue native PAGE. Macrophage function in the presence of pd/oxMBL was assessed by measuring efferocytosis, phagocytosis of non-typeable Haemophilus influenzae (NTHi and expression of macrophage scavenger receptors. Oxidation disrupted higher order MBL oligomers. This was associated with changed macrophage function evident by a significantly reduced capacity to phagocytose apoptotic cells and NTHi in the presence of oxMBL vs pdMBL (eg, NTHi by 55.9 and 27.0% respectively. Interestingly, oxidation of MBL significantly reduced macrophage phagocytic ability to below control levels. Flow cytometry and immunofluorescence revealed a significant increase in expression of macrophage scavenger receptor (SRA1 in the presence of pdMBL that was abrogated in the presence of oxMBL. We show the pulmonary macrophage dysfunction in COPD may at least partially result from an oxidative stress-induced effect on MBL, and identify a further potential therapeutic strategy for this debilitating disease.

  10. Therapeutic potential of combined anti-IL-1β IgY and anti-TNF-α IgY in guinea pigs with allergic rhinitis induced by ovalbumin.

    Science.gov (United States)

    Guo-Zhu, Hu; Xi-Ling, Zhu; Zhu, Wen; Li-Hua, Wu; Dan, He; Xiao-Mu, Wu; Wen-Yun, Zhou; Wei-Xu, Hu

    2015-03-01

    We have previously demonstrated that anti-IL-1β immunoglobulin yolk(IgY) inhibits pathological responses in allergic asthma guinea pigs induced by ovalbumin(OVA). This study aims to determine whether the combined blockade of IL-1β and TNF-α can more effectively inhibit allergic inflammation in allergic rhinitis(AR) guinea pigs induced by OVA. Healthy guinea pigs treated with saline were used as the healthy control. The AR guinea pigs induced by OVA were randomly divided into (1) the AR model group containing negative control animals treated with intranasal saline; (2) the 0.1% non-specific IgY treatment group treated with non-specific IgY; (3) the 0.1% anti-TNF-α IgY treatment group treated with 0.1% anti-TNF-α IgY; (4) the 0.1% anti-IL-1β IgY treatment group treated with 0.1% anti-IL-1β IgY; (5) the 0.1% combined anti-IL-1β IgY and anti-TNF-α IgY treatment group treated with 0.1% combined anti-IL-1β IgY and anti-TNF-α IgY; and (6) the fluticasone propionate treatment group treated with fluticasone propionate. Cytokines were measured using an enzyme-linked immunosorbent assay. The results showed that IL-1β, IL-5, IL-9, IL-13, IL-18, IL-22, IL-33, TNF-α, TGF-β1 and OVA-specific IgE levels in the peripheral blood (PB) and nasal lavage fluid (NLF) significantly decreased at 2h, 4h or 8h in the 0.1% combined anti-IL-1β IgY and anti-TNF-α IgY treatment group compared to the AR model group and the 0.1% non-specific IgY treatment group (P<0.05). The data suggest that blockade of IL-1β and TNF-α by intranasal instillation of combined anti-IL-1β IgY and anti-TNF-α IgY could be a potential alternative strategy for preventing and treating allergic rhinitis. Copyright © 2014. Published by Elsevier B.V.

  11. Airway necrosis after salvage esophagectomy

    International Nuclear Information System (INIS)

    Tanaka, Norimitsu; Hokamura, Nobukazu; Tachimori, Yuji

    2010-01-01

    Salvage esophagectomy is the sole curative intent treatment for patients with persistent or recurrent locoregional disease after definitive chemoradiotherapy (CRT) for esophageal carcinoma. However, salvage esophagectomy is a very high-risk operation, and airway necrosis is a fatal complication. Between 1997 and 2007, 49 patients with thoracic esophageal cancer underwent salvage esophagectomy after definitive CRT. We retrospectively compared patients with and without airway necrosis, and investigated operative procedures related to airway necrosis. Airway necrosis occurred in five patients (10.2%), of four patients (80%) died during their hospitalization. Airway necrosis seemed to be closely related to operative procedures, such as resection of bronchial artery and cervical and subcarinal lymph node dissection. Bronchogastric fistula following necrosis of gastric conduit occured in 2 patients reconstructed through posterior mediastinal route. Airway necrosis is a highly lethal complication after salvage esophagectomy. It is important in salvage esophagectomy to take airway blood supply into consideration sufficiently and to reconstruct through retrosternal route to prevent bronchogastric fistula. (author)

  12. Relapsing polychondritis and airway involvement.

    Science.gov (United States)

    Ernst, Armin; Rafeq, Samaan; Boiselle, Phillip; Sung, Arthur; Reddy, Chakravarthy; Michaud, Gaetane; Majid, Adnan; Herth, Felix J F; Trentham, David

    2009-04-01

    To assess the prevalence and characteristics of airway involvement in relapsing polychondritis (RP). Retrospective chart review and data analysis of RP patients seen in the Rheumatology Clinic and the Complex Airway Center at Beth Israel Deaconess Medical Center from January 2004 through February 2008. RP was diagnosed in 145 patients. Thirty-one patients had airway involvement, a prevalence of 21%. Twenty-two patients were women (70%), and they were between 11 and 61 years of age (median age, 42 years) at the time of first symptoms. Airway symptoms were the first manifestation of disease in 17 patients (54%). Dyspnea was the most common symptom in 20 patients (64%), followed by cough, stridor, and hoarseness. Airway problems included the following: subglottic stenosis (n = 8; 26%); focal and diffuse malacia (n = 15; 48%); and focal stenosis in different areas of the bronchial tree in the rest of the patients. Twelve patients (40%) required and underwent intervention including balloon dilatation, stent placement, tracheotomy, or a combination of the above with good success. The majority of patients experienced improvement in airway symptoms after intervention. One patient died during the follow-up period from the progression of airway disease. The rest of the patients continue to undergo periodic evaluation and intervention. In this largest cohort described in the English language literature, we found symptomatic airway involvement in RP to be common and at times severe. The nature of airway problems is diverse, with tracheomalacia being the most common. Airway intervention is frequently required and in experienced hands results in symptom improvement.

  13. The effect of body weight on distal airway function and airway inflammation.

    Science.gov (United States)

    van de Kant, Kim D G; Paredi, Paolo; Meah, Sally; Kalsi, Harpal S; Barnes, Peter J; Usmani, Omar S

    Obesity is a global health problem that adversely influences the respiratory system. We assessed the effects of body mass index (BMI) on distal airway function and airway inflammation. Impulse oscillometry (IOS) as a measure of distal airway function, together with spirometry, were assessed in adults with a range of different BMIs. Airway inflammation was assessed with the fraction of exhaled nitric oxide (FeNO) and participants exhaled at various exhalation flows to determine alveolar and bronchial NO. In total 34 subjects were enrolled in the study; 19 subjects had a normal BMI (18.50-24.99), whilst 15 subjects were overweight (BMI 25.00-29.99), or obese (BMI ≥30). All subjects had normal spirometry. However, IOS measures of airway resistance (R) at 5Hz, 20Hz and frequency dependence (R 5-20 ) were elevated in overweight/obese individuals, compared to subjects with a normal BMI (median (interquartile range)); 5Hz: 0.41 (0.37, 0.45) vs. 0.32 (0.30, 0.37)kPa/l/s; 20Hz: 0.34 (0.30, 0.37) vs. 0.30 (0.26, 0.33)kPa/l/s; R 5-20 : 0.06 (0.04, 0.11) vs. 0.03 (0.01, 0.05)kPa/l/s; plimitation) and FeNO inflammatory measures, did not differ between groups (p>0.05). Being overweight has significant effects on distal and central airway function as determined by IOS, which is not detected by spirometry. Obesity does not influence airway inflammation as measured by FeNO. IOS is a reliable technique to identify airway abnormalities in the presence of normal spirometry in overweight people. Copyright © 2015 Asia Oceania Association for the Study of Obesity. Published by Elsevier Ltd. All rights reserved.

  14. Propofol Attenuates Airway Inflammation in a Mast Cell-Dependent Mouse Model of Allergic Asthma by Inhibiting the Toll-like Receptor 4/Reactive Oxygen Species/Nuclear Factor κB Signaling Pathway.

    Science.gov (United States)

    Li, Hong-Yi; Meng, Jing-Xia; Liu, Zhen; Liu, Xiao-Wen; Huang, Yu-Guang; Zhao, Jing

    2018-06-01

    Propofol, an intravenous anesthetic agent widely used in clinical practice, is the preferred anesthetic for asthmatic patients. This study was designed to determine the protective effect and underlying mechanisms of propofol on airway inflammation in a mast cell-dependent mouse model of allergic asthma. Mice were sensitized by ovalbumin (OVA) without alum and challenged with OVA three times. Propofol was given intraperitoneally 0.5 h prior to OVA challenge. The inflammatory cell count and production of cytokines in the bronchoalveolar lavage fluid (BALF) were detected. The changes of lung histology and key molecules of the toll-like receptor 4 (TLR4)/reactive oxygen species (ROS)/NF-κB signaling pathway were also measured. The results showed that propofol significantly decreased the number of eosinophils and the levels of IL-4, IL-5, IL-6, IL-13, and TNF-α in BALF. Furthermore, propofol significantly attenuated airway inflammation, as characterized by fewer infiltrating inflammatory cells and decreased mucus production and goblet cell hyperplasia. Meanwhile, the expression of TLR4, and its downstream signaling adaptor molecules--myeloid differentiation factor 88 (MyD88) and NF-κB, were inhibited by propofol. The hydrogen peroxide and methane dicarboxylic aldehyde levels were decreased by propofol, and the superoxide dismutase activity was increased in propofol treatment group. These findings indicate that propofol may attenuate airway inflammation by inhibiting the TLR4/MyD88/ROS/NF-κB signaling pathway in a mast cell-dependent mouse model of allergic asthma.

  15. Hydrogen-rich saline inhibits tobacco smoke-induced chronic obstructive pulmonary disease by alleviating airway inflammation and mucus hypersecretion in rats.

    Science.gov (United States)

    Liu, Zibing; Geng, Wenye; Jiang, Chuanwei; Zhao, Shujun; Liu, Yong; Zhang, Ying; Qin, Shucun; Li, Chenxu; Zhang, Xinfang; Si, Yanhong

    2017-09-01

    Chronic obstructive pulmonary disease induced by tobacco smoke has been regarded as a great health problem worldwide. The purpose of this study is to evaluate the protective effect of hydrogen-rich saline, a novel antioxidant, on chronic obstructive pulmonary disease and explore the underlying mechanism. Sprague-Dawley rats were made chronic obstructive pulmonary disease models via tobacco smoke exposure for 12 weeks and the rats were treated with 10 ml/kg hydrogen-rich saline intraperitoneally during the last 4 weeks. Lung function testing indicated hydrogen-rich saline decreased lung airway resistance and increased lung compliance and the ratio of forced expiratory volume in 0.1 s/forced vital capacity in chronic obstructive pulmonary disease rats. Histological analysis revealed that hydrogen-rich saline alleviated morphological impairments of lung in tobacco smoke-induced chronic obstructive pulmonary disease rats. ELISA assay showed hydrogen-rich saline lowered the levels of pro-inflammatory cytokines (IL-8 and IL-6) and anti-inflammatory cytokine IL-10 in bronchoalveolar lavage fluid and serum of chronic obstructive pulmonary disease rats. The content of malondialdehyde in lung tissue and serum was also determined and the data indicated hydrogen-rich saline suppressed oxidative stress reaction. The protein expressions of mucin MUC5C and aquaporin 5 involved in mucus hypersecretion were analyzed by Western blot and ELISA and the data revealed that hydrogen-rich saline down-regulated MUC5AC level in bronchoalveolar lavage fluid and lung tissue and up-regulated aquaporin 5 level in lung tissue of chronic obstructive pulmonary disease rats. In conclusion, these results suggest that administration of hydrogen-rich saline exhibits significant protective effect on chronic obstructive pulmonary disease through alleviating inflammation, reducing oxidative stress and lessening mucus hypersecretion in tobacco smoke-induced chronic obstructive pulmonary disease rats

  16. Vagal afferents contribute to exacerbated airway responses following ozone and allergen challenge.

    Science.gov (United States)

    Schelegle, Edward S; Walby, William F

    2012-05-31

    Brown-Norway rats (n=113) sensitized and challenged with nDer f 1 allergen were used to examine the contribution of lung sensory nerves to ozone (O(3)) exacerbation of asthma. Prior to their third challenge rats inhaled 1.0ppm O(3) for 8h. There were three groups: (1) control; (2) vagus perineural capsaicin treatment (PCT) with or without hexamethonium; and (3) vagotomy. O(3) inhalation resulted in a significant increase in lung resistance (R(L)) and an exaggerated response to subsequent allergen challenge. PCT abolished the O(3)-induced increase in R(L) and significantly reduced the increase in R(L) induced by a subsequent allergen challenge, while hexamethonium treatment reestablished bronchoconstriction induced by allergen challenge. Vagotomy resulted in a significant increase in the bronchoconstriction induced by O(3) inhalation and subsequent challenge with allergen. In this model of O(3) exacerbation of asthma, vagal C-fibers initiate reflex bronchoconstriction, vagal myelinated fibers initiate reflex bronchodilation, and mediators released within the airway initiate bronchoconstriction. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. THE BUFFER CAPACITY OF AIRWAY EPITHELIAL SECRETIONS

    Directory of Open Access Journals (Sweden)

    Dusik eKim

    2014-06-01

    Full Text Available The pH of airway epithelial secretions influences bacterial killing and mucus properties and is reduced by acidic pollutants, gastric reflux, and respiratory diseases such as cystic fibrosis (CF. The effect of acute acid loads depends on buffer capacity, however the buffering of airway secretions has not been well characterized. In this work we develop a method for titrating micro-scale (30 µl volumes and use it to study fluid secreted by the human airway epithelial cell line Calu-3, a widely used model for submucosal gland serous cells. Microtitration curves revealed that HCO3- is the major buffer. Peak buffer capacity (β increased from 17 to 28 mM/pH during forskolin stimulation, and was reduced by >50% in fluid secreted by cystic fibrosis transmembrane conductance regulator (CFTR-deficient Calu-3 monolayers, confirming an important role of CFTR in HCO3- secretion. Back-titration with NaOH revealed non-volatile buffer capacity due to proteins synthesized and released by the epithelial cells. Lysozyme and mucin concentrations were too low to buffer Calu-3 fluid significantly, however model titrations of porcine gastric mucins at concentrations near the sol-gel transition suggest that mucins may contribute to the buffer capacity of ASL in vivo. We conclude that CFTR-dependent HCO3- secretion and epithelially-derived proteins are the predominant buffers in Calu-3 secretions.

  18. Relationship between loss in parenchymal elastic recoil pressure and maximal airway narrowing in subjects with alpha1-antitrypsin deficiency

    NARCIS (Netherlands)

    Cheung, D.; Schot, R.; Zwinderman, A. H.; Zagers, H.; Dijkman, J. H.; Sterk, P. J.

    1997-01-01

    Airway hyperresponsiveness is characterized by an increase in sensitivity and excessive airway narrowing to inhaled bronchoconstrictor stimuli. There is experimental evidence that maximal airway narrowing is related to lung elasticity in normal and asthmatic subjects. We hypothesized that reduced

  19. Lung macrophages contribute to house dust mite driven airway remodeling via HIF-1α.

    Directory of Open Access Journals (Sweden)

    Adam J Byrne

    Full Text Available HIF-1α is a transcription factor that is activated during hypoxia and inflammation and is a key regulator of angiogenesis in vivo. During the development of asthma, peribronchial angiogenesis is induced in response to aeroallergens and is thought to be an important feature of sustained chronic allergic inflammation. Recently, elevated HIF-1α levels have been demonstrated in both the lung tissue and bronchoalveolar lavage of allergic patients, respectively. Therefore, we investigated the role of HIF-1α on the development of angiogenesis and inflammation following acute and chronic allergen exposure. Our data shows that intranasal exposure to house dust mite (HDM increases the expression of HIF-1α in the lung, whilst reducing the expression of the HIF-1α negative regulators, PHD1 and PHD3. Blockade of HIF-1α in vivo, significantly decreased allergic inflammation and eosinophilia induced by allergen, due to a reduction in the levels of IL-5 and Eotaxin-2. Importantly, HIF-1α blockade significantly decreased levels of VEGF-A and CXCL1 in the lungs, which in turn led to a profound decrease in the recruitment of endothelial progenitor cells and a reduction of peribronchial angiogenesis. Furthermore, HDM or IL-4 treatment of primary lung macrophages resulted in significant production of both VEGF-A and CXCL1; inhibition of HIF-1α activity abrogated the production of these factors via an up-regulation of PHD1 and PHD3. These findings suggest that novel strategies to reduce the expression and activation of HIF-1α in lung macrophages may be used to attenuate allergen-induced airway inflammation and angiogenesis through the modulation of VEGF-A and CXCL1 expression.This study provides new insights into the role of HIF-1α in the development of peribronchial angiogenesis and inflammation in a murine model of allergic airway disease. These findings indicate that strategies to reduce activation of macrophage derived HIF-1α may be used as a target to

  20. Differential transcriptional regulation of IL-8 expression by human airway epithelial cells exposed to diesel exhaust particles

    International Nuclear Information System (INIS)

    Tal, Tamara L.; Simmons, Steven O.; Silbajoris, Robert; Dailey, Lisa; Cho, Seung-Hyun; Ramabhadran, Ram; Linak, William; Reed, William; Bromberg, Philip A.; Samet, James M.

    2010-01-01

    Exposure to diesel exhaust particles (DEP) induces inflammatory signaling characterized by MAP kinase-mediated activation of NFkB and AP-1 in vitro and in bronchial biopsies obtained from human subjects exposed to DEP. NFkB and AP-1 activation results in the upregulation of genes involved in promoting inflammation in airway epithelial cells, a principal target of inhaled DEP. IL-8 is a proinflammatory chemokine expressed by the airway epithelium in response to environmental pollutants. The mechanism by which DEP exposure induces IL-8 expression is not well understood. In the current study, we sought to determine whether DEP with varying organic content induces IL-8 expression in lung epithelial cells, as well as, to develop a method to rapidly evaluate the upstream mechanism(s) by which DEP induces IL-8 expression. Exposure to DEP with varying organic content differentially induced IL-8 expression and IL-8 promoter activity human airway epithelial cells. Mutational analysis of the IL-8 promoter was also performed using recombinant human cell lines expressing reporters linked to the mutated promoters. Treatment with a low organic-containing DEP stimulated IL-8 expression by a mechanism that is predominantly NFkB-dependent. In contrast, exposure to high organic-containing DEP induced IL-8 expression independently of NFkB through a mechanism that requires AP-1 activity. Our study reveals that exposure to DEP of varying organic content induces proinflammatory gene expression through multiple specific mechanisms in human airway epithelial cells. The approaches used in the present study demonstrate the utility of a promoter-reporter assay ensemble for identifying transcriptional pathways activated by pollutant exposure.