WorldWideScience

Sample records for reduces nerve root-mediated

  1. Trigeminal Nerve Root Demyelination Not Seen in Six Horses Diagnosed with Trigeminal-Mediated Headshaking

    Directory of Open Access Journals (Sweden)

    Veronica L. Roberts

    2017-05-01

    Full Text Available Trigeminal-mediated headshaking is an idiopathic neuropathic facial pain syndrome in horses. There are clinical similarities to trigeminal neuralgia, a neuropathic facial pain syndrome in man, which is usually caused by demyelination of trigeminal sensory fibers within either the nerve root or, less commonly, the brainstem. Our hypothesis was that the neuropathological substrate of headshaking in horses is similar to that of trigeminal neuralgia in man. Trigeminal nerves, nerve roots, ganglia, infraorbital, and caudal nasal nerves from horse abattoir specimens and from horses euthanized due to trigeminal-mediated headshaking were removed, fixed, and processed for histological assessment by a veterinary pathologist and a neuropathologist with particular experience of trigeminal neuralgia histology. No histological differences were detected between samples from horses with headshaking and those from normal horses. These results suggest that trigeminal-mediated headshaking may have a different pathological substrate from trigeminal neuralgia in man.

  2. Conjoined lumbosacral nerve roots

    International Nuclear Information System (INIS)

    Kyoshima, Kazumitsu; Nishiura, Iwao; Koyama, Tsunemaro

    1986-01-01

    Several kinds of the lumbosacral nerve root anomalies have already been recognized, and the conjoined nerve roots is the most common among them. It does not make symptoms by itself, but if there is a causation of neural entrapment, for example, disc herniation, lateral recessus stenosis, spondylolisthesis, etc., so called ''biradicular syndrome'' should occur. Anomalies of the lumbosacral nerve roots, if not properly recognized, may lead to injury of these nerves during operation of the lumbar spine. Recently, the chance of finding these anomalous roots has been increased more and more with the use of metrizamide myelography and metrizamide CT, because of the improvement of the opacification of nerve roots. We describe the findings of the anomalous roots as revealed by these two methods. They demonstrate two nerve roots running parallel and the asymmetrical wide root sleeve. Under such circumstances, it is important to distinguish the anomalous roots from the normal ventral and dorsal roots. (author)

  3. Tractography of lumbar nerve roots: initial results

    Energy Technology Data Exchange (ETDEWEB)

    Balbi, Vincent; Budzik, Jean-Francois; Thuc, Vianney le; Cotten, Anne [Hopital Roger Salengro, Service de Radiologie et d' Imagerie musculo-squelettique, Lille Cedex (France); Duhamel, Alain [Universite de Lille 2, UDSL, Lille (France); Bera-Louville, Anne [Service de Rhumatologie, Hopital Roger Salengro, Lille (France)

    2011-06-15

    The aims of this preliminary study were to demonstrate the feasibility of in vivo diffusion tensor imaging (DTI) and fibre tracking (FT) of the lumbar nerve roots, and to assess potential differences in the DTI parameters of the lumbar nerves between healthy volunteers and patients suffering from disc herniation. Nineteen patients with unilateral sciatica related to posterolateral or foraminal disc herniation and 19 healthy volunteers were enrolled in this study. DTI with tractography of the L5 or S1 nerves was performed. Mean fractional anisotropy (FA) and mean diffusivity (MD) values were calculated from tractography images. FA and MD values could be obtained from DTI-FT images in all controls and patients. The mean FA value of the compressed lumbar nerve roots was significantly lower than the FA of the contralateral nerve roots (p=0.0001) and of the nerve roots of volunteers (p=0.0001). MD was significantly higher in compressed nerve roots than in the contralateral nerve root (p=0.0002) and in the nerve roots of volunteers (p=0.04). DTI with tractography of the lumbar nerves is possible. Significant changes in diffusion parameters were found in the compressed lumbar nerves. (orig.)

  4. Tractography of lumbar nerve roots: initial results

    International Nuclear Information System (INIS)

    Balbi, Vincent; Budzik, Jean-Francois; Thuc, Vianney le; Cotten, Anne; Duhamel, Alain; Bera-Louville, Anne

    2011-01-01

    The aims of this preliminary study were to demonstrate the feasibility of in vivo diffusion tensor imaging (DTI) and fibre tracking (FT) of the lumbar nerve roots, and to assess potential differences in the DTI parameters of the lumbar nerves between healthy volunteers and patients suffering from disc herniation. Nineteen patients with unilateral sciatica related to posterolateral or foraminal disc herniation and 19 healthy volunteers were enrolled in this study. DTI with tractography of the L5 or S1 nerves was performed. Mean fractional anisotropy (FA) and mean diffusivity (MD) values were calculated from tractography images. FA and MD values could be obtained from DTI-FT images in all controls and patients. The mean FA value of the compressed lumbar nerve roots was significantly lower than the FA of the contralateral nerve roots (p=0.0001) and of the nerve roots of volunteers (p=0.0001). MD was significantly higher in compressed nerve roots than in the contralateral nerve root (p=0.0002) and in the nerve roots of volunteers (p=0.04). DTI with tractography of the lumbar nerves is possible. Significant changes in diffusion parameters were found in the compressed lumbar nerves. (orig.)

  5. Lumbar Nerve Root Occupancy in the Foramen in Achondroplasia

    Science.gov (United States)

    Modi, Hitesh N.; Song, Hae-Ryong; Yang, Jae Hyuk

    2008-01-01

    Lumbar stenosis is common in patients with achondroplasia because of narrowing of the neural canal. However, it is unclear what causes stenosis, narrowing of the central canal or foramina. We performed a morphometric analysis of the lumbar nerve roots and intervertebral foramen in 17 patients (170 nerve roots and foramina) with achondroplasia (eight symptomatic, nine asymptomatic) and compared the data with that from 20 (200 nerve roots and foramina) asymptomatic patients without achondroplasia presenting with low back pain without neurologic symptoms. The measurements were made on left and right parasagittal MRI scans of the lumbar spine. The foramen area and root area were reduced at all levels from L1 to L5 between the patients with achondroplasia (Groups I and II) and the nonachondroplasia group (Group III). The percentage of nerve root occupancy in the foramen between Group I and Group II as compared with the patients without achondroplasia was similar or lower. This implied the lumbar nerve root size in patients with achondroplasia was smaller than that of the normal population and thus there is no effective nerve root compression. Symptoms of lumbar stenosis in achondroplasia may be arising from the central canal secondary to degenerative disc disease rather than a true foraminal stenosis. Level of Evidence: Level I, prognostic study. See the Guidelines for Authors for a complete description of levels of evidence. PMID:18259829

  6. A Novel Collaborative Protocol for Successful Management of Penile Pain Mediated by Radiculitis of Sacral Spinal Nerve Roots From Tarlov Cysts

    Directory of Open Access Journals (Sweden)

    Irwin Goldstein, MD

    2017-09-01

    Goldstein I, Komisaruk BR, Rubin RS, et al. A Novel Collaborative Protocol for Successful Management of Penile Pain Mediated by Radiculitis of Sacral Spinal Nerve Roots From Tarlov Cysts. Sex Med 2017;5:e203–e211.

  7. A novel rat model of brachial plexus injury with nerve root stumps.

    Science.gov (United States)

    Fang, Jintao; Yang, Jiantao; Yang, Yi; Li, Liang; Qin, Bengang; He, Wenting; Yan, Liwei; Chen, Gang; Tu, Zhehui; Liu, Xiaolin; Gu, Liqiang

    2018-02-01

    The C5-C6 nerve roots are usually spared from avulsion after brachial plexus injury (BPI) and thus can be used as donors for nerve grafting. To date, there are no appropriate animal models to evaluate spared nerve root stumps. Hence, the aim of this study was to establish and evaluate a rat model with spared nerve root stumps in BPI. In rupture group, the proximal parts of C5-T1 nerve roots were held with the surrounding muscles and the distal parts were pulled by a sudden force after the brachial plexus was fully exposed, and the results were compared with those of sham group. To validate the model, the lengths of C5-T1 spared nerve root stumps were measured and the histologies of the shortest one and the corresponding spinal cord were evaluated. C5 nerve root stump was found to be the shortest. Histology findings demonstrated that the nerve fibers became more irregular and the continuity decreased; numbers and diameters of myelinated axons and thickness of myelin sheaths significantly decreased over time. The survival of motoneurons was reduced, and the death of motoneurons may be related to the apoptotic process. Our model could successfully create BPI model with nerve root stumps by traction, which could simulate injury mechanisms. While other models involve root avulsion or rupturing by distal nerve transection. This model would be suitable for evaluating nerve root stumps and testing new therapeutic strategies for neuroprotection through nerve root stumps in the future. Copyright © 2017. Published by Elsevier B.V.

  8. Anatomic investigation of the lumbosacral nerve roots and dorsal root ganglia by MRI

    International Nuclear Information System (INIS)

    Hasegawa, Toru; Fuse, Kenzo; Mikawa, Yoshihiro; Watanabe, Ryo

    1995-01-01

    The morphology of the lumbosacral nerve roots and dorsal root ganglia (DRG) was examined by using magnetic resonance imaging (MRI) in 11 healthy male volunteers aged 20-40 years. One hundred and twenty-three nerve roots (15 at the L1 level, 22 each at the L2-L5 levels, and 20 at the S1 level) were examined in terms of the position and angle of the bifurcation of the nerve roots, length of the nerve root, and the position and width of DRG. The nerve roots at the lower levels showed more cephalad position and smaller angle of bifurcation on MRI. The distance from the bifurcation of nerve roots to the cephalad edge of DRG was significantly longer in the upper root levels and was significantly shorter in the L5 roots than the S1 roots. The positions of DRG at the S1 level tended to become cephalad. DRG that was positioned toward more caudal direction was larger and more elliptic. MRI provided useful information concerning morphology and anatomical position of nerve roots and DRG, thereby allowing accurate diagnosis and the determination of surgical indications. (N.K.)

  9. Five Roots Pattern of Median Nerve Formation

    Directory of Open Access Journals (Sweden)

    Konstantinos Natsis

    2016-04-01

    Full Text Available An unusual combination of median nerve’s variations has been encountered in a male cadaver during routine educational dissection. In particular, the median nerve was formed by five roots; three roots originated from the lateral cord of the brachial plexus joined individually the median nerve’s medial root. The latter (fourth root was united with the lateral (fifth root of the median nerve forming the median nerve distally in the upper arm and not the axilla as usually. In addition, the median nerve was situated medial to the brachial artery. We review comprehensively the relevant variants, their embryologic development and their potential clinical applications.

  10. Myelography for nerve root avulsion in birth palsy

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, Tsutomu; Mitomo, Masanori; Hirabuki, Norio; Miura, Takashi; Kawai, Ryuji; Imakita, Satoshi; Harada, Koshi; Nakamura, Hironobu; Kozuka, Takahiro (Osaka Univ. (Japan). Faculty of Medicine)

    1990-04-01

    Myelography and CT myelography (CMT) were reviewed in 18 cases of birth palsy with clinically suspected avulsion injury. Root-somatosensory evoked potential (root-SEP) was also reviewed for myelographic evaluation of the nerve root avolusion in birth palsy. Root-SEP is not induced in case of avulsed nerve roots, but is induced in case of both normal and incompletely avulsed roots. Myelography demonstrated 58 abnormal nerve roots in 18 cases (19 limbs); 45 (78%) complete and 13 (22%) incomplete nerve root avulsions. Each of complete and incomplete avulsions was defined as total absence and partial presence of rootlets on myelography, respectively. Traumatic meningoceles were detected at 46 roots (79%) on myelography and/or CTM; 35 roots on myelography and 45 roots on CTM. CTM could not detect only a very small meningocele at one root. At 11 roots CTM was superior to myelography in delineating a meningocele because CTM is sensitive to a poorly enhanced meningocele. CTM, however, could not diagnose nerve root avulsions so accurately as myelography, since myelography detected 12 (7 completely and 5 incompletely) avulsed roots without meningocele, whereas CTM could not delineate the nerve roots clearly. Thus, myelography is indispensable to evaluate nerve root avulsions without meningocele. Root-SEP was examined in 9 patients who underwent branchial plexus exploration. SEP was negative at 22/25 roots with complete avulsion and was positive at 7/7 roots with myelographically incomplete avulsion, regardless of presence or absence of any traumatic meningocele. Myelography and root-SEP correlated well at 29 (92%) out of 32 roots in evaluating complete and incomplete avulsion injuries. Myelography and root-SEP were not considered in 3 roots. Though myelography demonstrated complete avulsions with traumatic meningocele, SEP was positive in these three roots, which were interpreted as partially avulsed roots. (J.P.N.).

  11. Myelography for nerve root avulsion in birth palsy

    International Nuclear Information System (INIS)

    Hashimoto, Tsutomu; Mitomo, Masanori; Hirabuki, Norio; Miura, Takashi; Kawai, Ryuji; Imakita, Satoshi; Harada, Koshi; Nakamura, Hironobu; Kozuka, Takahiro

    1990-01-01

    Myelography and CT myelography (CMT) were reviewed in 18 cases of birth palsy with clinically suspected avulsion injury. Root-somatosensory evoked potential (root-SEP) was also reviewed for myelographic evaluation of the nerve root avolusion in birth palsy. Root-SEP is not induced in case of avulsed nerve roots, but is induced in case of both normal and incompletely avulsed roots. Myelography demonstrated 58 abnormal nerve roots in 18 cases (19 limbs); 45 (78%) complete and 13 (22%) incomplete nerve root avulsions. Each of complete and incomplete avulsions was defined as total absence and partial presence of rootlets on myelography, respectively. Traumatic meningoceles were detected at 46 roots (79%) on myelography and/or CTM; 35 roots on myelography and 45 roots on CTM. CTM could not detect only a very small meningocele at one root. At 11 roots CTM was superior to myelography in delineating a meningocele because CTM is sensitive to a poorly enhanced meningocele. CTM, however, could not diagnose nerve root avulsions so accurately as myelography, since myelography detected 12 (7 completely and 5 incompletely) avulsed roots without meningocele, whereas CTM could not delineate the nerve roots clearly. Thus, myelography is indispensable to evaluate nerve root avulsions without meningocele. Root-SEP was examined in 9 patients who underwent branchial plexus exploration. SEP was negative at 22/25 roots with complete avulsion and was positive at 7/7 roots with myelographically incomplete avulsion, regardless of presence or absence of any traumatic meningocele. Myelography and root-SEP correlated well at 29 (92%) out of 32 roots in evaluating complete and incomplete avulsion injuries. Myelography and root-SEP were not considered in 3 roots. Though myelography demonstrated complete avulsions with traumatic meningocele, SEP was positive in these three roots, which were interpreted as partially avulsed roots. (J.P.N.)

  12. Changes in lumbosacral spinal nerve roots on diffusion tensor imaging in spinal stenosis

    Directory of Open Access Journals (Sweden)

    Zhong-jun Hou

    2015-01-01

    Full Text Available Lumbosacral degenerative disc disease is a common cause of lower back and leg pain. Conventional T1-weighted imaging (T1WI and T2-weighted imaging (T2WI scans are commonly used to image spinal cord degeneration. However, these modalities are unable to image the entire lumbosacral spinal nerve roots. Thus, in the present study, we assessed the potential of diffusion tensor imaging (DTI for quantitative assessment of compressed lumbosacral spinal nerve roots. Subjects were 20 young healthy volunteers and 31 patients with lumbosacral stenosis. T2WI showed that the residual dural sac area was less than two-thirds that of the corresponding normal area in patients from L 3 to S 1 stenosis. On T1WI and T2WI, 74 lumbosacral spinal nerve roots from 31 patients showed compression changes. DTI showed thinning and distortion in 36 lumbosacral spinal nerve roots (49% and abruption in 17 lumbosacral spinal nerve roots (23%. Moreover, fractional anisotropy values were reduced in the lumbosacral spinal nerve roots of patients with lumbosacral stenosis. These findings suggest that DTI can objectively and quantitatively evaluate the severity of lumbosacral spinal nerve root compression.

  13. Changes in lumbosacral spinal nerve roots on diffusion tensor imaging in spinal stenosis.

    Science.gov (United States)

    Hou, Zhong-Jun; Huang, Yong; Fan, Zi-Wen; Li, Xin-Chun; Cao, Bing-Yi

    2015-11-01

    Lumbosacral degenerative disc disease is a common cause of lower back and leg pain. Conventional T1-weighted imaging (T1WI) and T2-weighted imaging (T2WI) scans are commonly used to image spinal cord degeneration. However, these modalities are unable to image the entire lumbosacral spinal nerve roots. Thus, in the present study, we assessed the potential of diffusion tensor imaging (DTI) for quantitative assessment of compressed lumbosacral spinal nerve roots. Subjects were 20 young healthy volunteers and 31 patients with lumbosacral stenosis. T2WI showed that the residual dural sac area was less than two-thirds that of the corresponding normal area in patients from L3 to S1 stenosis. On T1WI and T2WI, 74 lumbosacral spinal nerve roots from 31 patients showed compression changes. DTI showed thinning and distortion in 36 lumbosacral spinal nerve roots (49%) and abruption in 17 lumbosacral spinal nerve roots (23%). Moreover, fractional anisotropy values were reduced in the lumbosacral spinal nerve roots of patients with lumbosacral stenosis. These findings suggest that DTI can objectively and quantitatively evaluate the severity of lumbosacral spinal nerve root compression.

  14. A Novel Collaborative Protocol for Successful Management of Penile Pain Mediated by Radiculitis of Sacral Spinal Nerve Roots From Tarlov Cysts.

    Science.gov (United States)

    Goldstein, Irwin; Komisaruk, Barry R; Rubin, Rachel S; Goldstein, Sue W; Elliott, Stacy; Kissee, Jennifer; Kim, Choll W

    2017-09-01

    Since 14 years of age, the patient had experienced extreme penile pain within seconds of initial sexual arousal through masturbation. Penile pain was so severe that he rarely proceeded to orgasm or ejaculation. After 7 years of undergoing multiple unsuccessful treatments, he was concerned for his long-term mental health and for his future ability to have relationships. To describe a novel collaboration among specialists in sexual medicine, neurophysiology, and spine surgery that led to successful management. Collaborating health care providers conferred with the referring physician, patient, and parents and included a review of all medical records. Elimination of postpubertal intense penile pain during sexual arousal. The patient presented to our sexual medicine facility at 21 years of age. The sexual medicine physician identifying the sexual health complaint noted a pelvic magnetic resonance imaging report of an incidental sacral Tarlov cyst. A subsequent sacral magnetic resonance image showed four sacral Tarlov cysts, with the largest measuring 18 mm. Neuro-genital testing result were abnormal. The neurophysiologist hypothesized the patient's pain at erection was produced by Tarlov cyst-induced neuropathic irritation of sensory fibers that course within the pelvic nerve. The spine surgeon directed a diagnostic injection of bupivacaine to the sacral nerve roots and subsequently morphine to the conus medullaris of the spinal cord. The bupivacaine produced general penile numbness; the morphine selectively decreased penile pain symptoms during sexual arousal without blocking penile skin sensation. The collaboration among specialties led to the conclusion that the Tarlov cysts were pathophysiologically mediating the penile pain symptoms during arousal. Long-term follow-up after surgical repair showed complete symptom elimination at 18 months after treatment. This case provides evidence that (i) Tarlov cysts can cause sacral spinal nerve root radiculitis through

  15. Use of Temporary Implantable Biomaterials to Reduce Leg Pain and Back Pain in Patients with Sciatica and Lumbar Disc Herniation

    Directory of Open Access Journals (Sweden)

    Gere S. diZerega

    2010-05-01

    Full Text Available The principle etiology of leg pain (sciatica from lumbar disc herniation is mechanical compression of the nerve root. Sciatica is reduced by decompression of the herniated disc, i.e., removing mechanical compression of the nerve root. Decompression surgery typically reduces sciatica more than lumbar back pain (LBP. Decompression surgery reduces mechanical compression of the nerve root. However, decompression surgery does not directly reduce sensitization of the sensory nerves in the epidural space and disc. In addition, sensory nerves in the annulus fibrosus and epidural space are not protected from topical interaction with pain mediators induced by decompression surgery. The secondary etiology of sciatica from lumbar disc herniation is sensitization of the nerve root. Sensitization of the nerve root results from a mechanical compression, b exposure to cellular pain mediators, and/or c exposure to biochemical pain mediators. Although decompression surgery reduces nerve root compression, sensory nerve sensitization often persists. These observations are consistent with continued exposure of tissue in the epidural space, including the nerve root, to increased cellular and biochemical pain mediators following surgery. A potential contributor to lumbar back pain (LBP is stimulation of sensory nerves in the annulus fibrosus by a cellular pain mediators and/or b biochemical pain mediators that accompany annular tears or disruption. Sensory fibers located in the outer one-third of the annulus fibrosus increase in number and depth as a result of disc herniation. The nucleus pulposus is comprised of material that can produce an autoimmune stimulation of the sensory nerves located in the annulus and epidural space leading to LBP. The sensory nerves of the annulus fibrosus and epidural space may be sensitized by topical exposure to cellular and biochemical pain mediators induced by lumbar surgery. Annulotomy or annular rupture allows the nucleus pulposus

  16. CT diagnosis of lumbosacral conjoined nerve roots

    International Nuclear Information System (INIS)

    Torricelli, P.; Martinelli, C.; Spina, V.

    1987-01-01

    The authors report the observations derived from CT evaluation of 19 cases of lumbosacral conjoined nerve roots; 11 of these have been confirmed by lumbar myelography and/or at surgery. They conclude that CT without intrathecal metrizamide allows the recognition in most cases the presence of conjoined nerve roots and to differentiate them from a herniated disk fragment; this is especially usefull avoid surgical damage of anomalous roots. (orig.)

  17. Ultrastructural changes of compressed lumbar ventral nerve roots following decompression

    International Nuclear Information System (INIS)

    El-Barrany, Wagih G.; Hamdy, Raid M.; Al-Hayani, Abdulmonem A.; Jalalah, Sawsan M.; Al-Sayyad, Mohammad J.

    2006-01-01

    To study whether there will be permanent lumbar nerve rot scanning or degeneration secondary to continuous compression followed by decompression on the nerve roots, which can account for postlaminectomy leg weakness or back pain. The study was performed at the Department of Anatomy, Faulty of Medicine, king Abdulaziz University, Jeddah, Kingdom of Saudi Arabia during 2003-2005. Twenty-six adult male New Zealand rabbits were used in the present study. The ventral roots of the left fourth lumbar nerve were clamped for 2 weeks then decompression was allowed by removal of the clips. The left ventral roots of the fourth lumbar nerve were excised for electron microscopic study. One week after nerve root decompression, the ventral root peripheral to the site of compression showed signs of Wallerian degeneration together with signs of regeneration. Schwann cells and myelinated nerve fibers showed severe degenerative changes. Two weeks after decompression, the endoneurium of the ventral root showed extensive edema with an increase in the regenerating myelinated and unmyentilated nerve fibers, and fibroblasts proliferation. Three weeks after decompression, the endoneurium showed an increase in the regenerating myelinated and unmyelinated nerve fibers with diminution of the endoneurial edema, and number of macrophages and an increase in collagen fibrils. Five and 6 weeks after decompression, the endoneurium showed marked diminution of the edema, macrophages, mast cells and fibroblasts. The enoneurium was filed of myelinated and unmyelinated nerve fibers and collagen fibrils. Decompression of the compressed roots of a spinal nerve is followed by regeneration of the nerve fibers and nerve and nerve recovery without endoneurial scarring. (author)

  18. Redundant nerve roots of the cauda equina : MR findings

    International Nuclear Information System (INIS)

    Oh, Kyu Hyen; Lee, Jung Man; Jung, Hak Young; Lee, Young Hwan; Sung, Nak Kwan; Chung, Duck Soo; Kim, Ok Dong; Lee, Sang Kwon; Suh, Kyung Jin

    1997-01-01

    To evaluate MR findings of redundant nerve roots (RNR) of the cauda equina. 17 patients with RNR were studied; eight were men and nine were women, and their ages ranged from 46 to 82 (mean 63) years. Diagroses were established on the basis of T2-weighted sagittal and coronal MRI, which showed a tortuous or coiled configuration of the nerve roots of the cauda equina. MR findings were reviewed for location, magnitude, and signal intensity of redundant nerve roots, and the relationship between magnitude of redundancy and severity of lumbar spinal canal stenosis (LSCS) was evaluated. In all 17 patients, MR showed moderate or severe LSCS caused by herniation or bulging of an intervertebral disc, osteophyte from the vertebral body or facet joint, thickening of the ligamentum flavum, degenerative spondylolisthesis, or a combination of these. T2-weighted sagittal and coronal MR images well clearly showed the location of RNR of the cauda equina;in 16 patients(94%), these were seen above the level of constriction of the spinal canal, and in one case, they were observed below the level of constriction. T2-weighted axial images showed the thecal sac filled with numerous nerve roots. The magnitude of RNR was mild in six cases (35%), moderate in five cases (30%), and severe in six cases (35%). Compared with normal nerve roots, the RNR signal on T2-weighted images was iso-intense. All patients with severe redundancy showed severe LSCS, but not all cases with severe LSCS showed severe redundancy. Redundant nerve roots of cauda equina were seen in relatively older patients with moderate or severe LSCS and T2-weighted MR images were accurate in identifying redundancy of nerve roots and evaluating their magnitude and location

  19. Is it necessary to use the entire root as a donor when transferring contralateral C7 nerve to repair median nerve?

    Science.gov (United States)

    Gao, Kai-Ming; Lao, Jie; Guan, Wen-Jie; Hu, Jing-Jing

    2018-01-01

    If a partial contralateral C 7 nerve is transferred to a recipient injured nerve, results are not satisfactory. However, if an entire contralateral C 7 nerve is used to repair two nerves, both recipient nerves show good recovery. These findings seem contradictory, as the above two methods use the same donor nerve, only the cutting method of the contralateral C 7 nerve is different. To verify whether this can actually result in different repair effects, we divided rats with right total brachial plexus injury into three groups. In the entire root group, the entire contralateral C 7 root was transected and transferred to the median nerve of the affected limb. In the posterior division group, only the posterior division of the contralateral C 7 root was transected and transferred to the median nerve. In the entire root + posterior division group, the entire contralateral C 7 root was transected but only the posterior division was transferred to the median nerve. After neurectomy, the median nerve was repaired on the affected side in the three groups. At 8, 12, and 16 weeks postoperatively, electrophysiological examination showed that maximum amplitude, latency, muscle tetanic contraction force, and muscle fiber cross-sectional area of the flexor digitorum superficialis muscle were significantly better in the entire root and entire root + posterior division groups than in the posterior division group. No significant difference was found between the entire root and entire root + posterior division groups. Counts of myelinated axons in the median nerve were greater in the entire root group than in the entire root + posterior division group, which were greater than the posterior division group. We conclude that for the same recipient nerve, harvesting of the entire contralateral C 7 root achieved significantly better recovery than partial harvesting, even if only part of the entire root was used for transfer. This result indicates that the entire root should be used as a

  20. MR imaging of nerve root impingement in the lumbar spine

    International Nuclear Information System (INIS)

    Teresi, L.M.; Bradley, W.G. Jr.; Bloze, A.E.; Davis, S.J.; Amster, J.; Berger, P.E.

    1990-01-01

    This paper determines the relationship between MR imaging findings of nerve root impingement, presenting symptoms, and physical examination findings, and physiologic data (DSEP and EMG) in a population of patients presented with classic radicular symptoms. Fifty-eight patients presenting with classic radicular pain were studied with MR imaging, DSER, and EMG, MR imaging was performed with a GE Signa imaging system with use of T1- and T2-weighted sequences and 5-mm-thick sections. Nerve root impingement in the subarticular recess (the root exiting the next lowest level) was distinguished from nerve root impingement in the superior intervertebral foramen (the root exiting the same level)

  1. Optimal imaging parameters to visualize lumbar spinal nerve roots in MRI

    Energy Technology Data Exchange (ETDEWEB)

    Yamato, Hidetada; Takahashi, Toshiyuki; Funata, Tomonari; Nitta, Masaru; Nakazawa, Yasuo [Showa Univ., Tokyo (Japan). Hospital

    2001-05-01

    Radiculopathy due to lumber spine disorders is diagnosed mainly by radiculography. Recent advances in MRI have enabled non-invasive visualization of the lumbar nerve roots. Fifty normal volunteers were evaluated for optimal imaging angle to visualize the lumbar nerve roots and optimal imaging sequences. Results showed that in the coronal oblique plane, angles that visualized the nerve roots best were L4 17, L5 29.6, and S1 36.8. In the left sagittal oblique plane, the angles were L4 17.9, L5 21.4, and S1 12.6, and in the right sagittal oblique plane, L4 16.3, L5 19.4 and S1 12.6. SPGR showed the best results both in CNR values and visually. In summary, the optimal angle by which to visualize the lumbar spinal nerve roots increased as the roots became more caudal, except for S1 of the sagittal oblique plane, where individual variations were pronounced. SPGR was the best sequence for visualizing the nerve roots. (author)

  2. Detection of the symptomatic nerve root

    International Nuclear Information System (INIS)

    Toyone, Tomoaki; Takahashi, Kazuhisa; Yamagata, Masayasu

    1993-01-01

    Twenty-five patients with lumbar disc herniation with a chief complaint of unilateral leg pain underwent gadolinium-DTPA enhanced MRI, particularly to examine the nerve root in the distal area of hernia. MRI appearance fell into three grades: 0 - no visualization (n=7), 1 - heterogeneous visualization (n=7), and 2 - homogeneous visualization (n=10). In the quantitative evaluation of the severity of sciatica using SLR and JOA scores, it was found to be associated with the degree of visualization. All patients of grade 2 were required to receive surgery because pain relief was not attained in spite of 3 months or more conservative treatment. These findings indicatd the usefulness of MRI in predicting prognosis, as well as in diagnosing the responsible level. Since blood-nerve barrier damage and intraneural edema are considered to be involved in the visualization of the nerve root on MRI, MRI will help in diagnosing radicular sciatica and elucidating the pathophysiology of the disease. (N.K.)

  3. Diffusion tensor imaging with quantitative evaluation and fiber tractography of lumbar nerve roots in sciatica.

    Science.gov (United States)

    Shi, Yin; Zong, Min; Xu, Xiaoquan; Zou, Yuefen; Feng, Yang; Liu, Wei; Wang, Chuanbing; Wang, Dehang

    2015-04-01

    To quantitatively evaluate nerve roots by measuring fractional anisotropy (FA) values in healthy volunteers and sciatica patients, visualize nerve roots by tractography, and compare the diagnostic efficacy between conventional magnetic resonance imaging (MRI) and DTI. Seventy-five sciatica patients and thirty-six healthy volunteers underwent MR imaging using DTI. FA values for L5-S1 lumbar nerve roots were calculated at three levels from DTI images. Tractography was performed on L3-S1 nerve roots. ROC analysis was performed for FA values. The lumbar nerve roots were visualized and FA values were calculated in all subjects. FA values decreased in compressed nerve roots and declined from proximal to distal along the compressed nerve tracts. Mean FA values were more sensitive and specific than MR imaging for differentiating compressed nerve roots, especially in the far lateral zone at distal nerves. DTI can quantitatively evaluate compressed nerve roots, and DTT enables visualization of abnormal nerve tracts, providing vivid anatomic information and localization of probable nerve compression. DTI has great potential utility for evaluating lumbar nerve compression in sciatica. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. Computed tomography of cystic nerve root sleeve dilatation.

    Science.gov (United States)

    Neave, V C; Wycoff, R R

    1983-10-01

    A case of cystic nerve root sleeve dilatation in the lumbar area associated with a chronic back pain syndrome is presented. Prominent computed tomography (CT) findings include: (a) rounded masses in the region of the foramina isodense with cerebrospinal fluid in the subarachnoid space; (b) associated asymmetry of epidural fat distribution; (c) enlargement of the neural foramina in axial sections with scalloped erosion of the adjacent posteriolateral vertebral body, pedicle, and pedicular-laminar junction with preservation of cortex and without bony sclerosis or infiltrative appearance; (d) prominent or ectatic dural sac with lack of usual epidural landmarks between the sac and vertebral body; and (e) multilevel abnormalities throughout the entire lumbar region. Myelographic and CT correlations are demonstrated with a review of the literature. A discussion of the various cystic abnormalities involving nerve root sheaths is undertaken in an attempt to clarify the confusing nomenclature applied to nerve root sleeve pathology.

  5. Diffusion-weighted magnetic resonance imaging of symptomatic nerve root of patients with lumbar disk herniation

    Energy Technology Data Exchange (ETDEWEB)

    Eguchi, Yawara; Ohtori, Seiji; Yamashita, Masaomi; Yamauchi, Kazuyo; Suzuki, Munetaka; Orita, Sumihisa; Kamoda, Hiroto; Arai, Gen; Ishikawa, Tetsuhiro; Miyagi, Masayuki; Ochiai, Nobuyasu; Kishida, Shunji; Inoue, Gen; Takahashi, Kazuhisa [Chiba University, Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba (Japan); Masuda, Yoshitada; Ochi, Shigehiro; Kikawa, Takashi [Chiba University Hospital, Department of Radiology, Chiba (Japan); Toyone, Tomoaki [Teikyo University Chiba Medical Center, Department of Orthopaedic Surgery, Chiba (Japan); Takaso, Masashi [Kitasato University, Department of Orthopaedic Surgery, School of Medicine, Sagamihara City, Kanagawa (Japan); Aoki, Yasuchika [Chiba Rosai Hospital, Department of Orthopedic Surgery, Ichihara, Chiba (Japan)

    2011-09-15

    Diffusion-weighted imaging (DWI) can provide valuable structural information that may be useful for evaluating pathological changes of the lumbar nerve root. Diffusion-weighted magnetic resonance (MR) neurography has recently been introduced as an alternative way to visualize nerves, but to date, quantitative DWI and MR neurography have not been applied to evaluate the pathology of lumbar nerve roots. Our purpose was to visualize lumbar nerve roots and to analyze their morphology by MR neurography, and to measure the apparent diffusion coefficient (ADC) of lumbar nerve roots compressed by herniated disks using 1.5-T MR imaging. Ten consecutive patients (median age, 48.0 and range, 20-72 years) with monoradicular symptoms caused by a lumbar herniated disk and 14 healthy volunteers were studied. Regions of interests were placed on the lumbar roots at dorsal root ganglia (DRG) and distal spinal nerves on DWI to quantify mean ADC values. The spinal nerve roots were also visualized by MR neurography. In the patients, mean ADC values were significantly greater in the compressed DRG and distal spinal nerves than in intact nerves. MR neurography also showed abnormalities such as nerve swelling at and below the compression in the symptomatic nerve root. Increased ADC values were considered to be because of edema and Wallerian degeneration of compressed nerve roots. DWI is a potential tool for analysis of the pathophysiology of lumbar nerve roots compressed by herniated disks. (orig.)

  6. Diffusion-weighted magnetic resonance imaging of symptomatic nerve root of patients with lumbar disk herniation

    International Nuclear Information System (INIS)

    Eguchi, Yawara; Ohtori, Seiji; Yamashita, Masaomi; Yamauchi, Kazuyo; Suzuki, Munetaka; Orita, Sumihisa; Kamoda, Hiroto; Arai, Gen; Ishikawa, Tetsuhiro; Miyagi, Masayuki; Ochiai, Nobuyasu; Kishida, Shunji; Inoue, Gen; Takahashi, Kazuhisa; Masuda, Yoshitada; Ochi, Shigehiro; Kikawa, Takashi; Toyone, Tomoaki; Takaso, Masashi; Aoki, Yasuchika

    2011-01-01

    Diffusion-weighted imaging (DWI) can provide valuable structural information that may be useful for evaluating pathological changes of the lumbar nerve root. Diffusion-weighted magnetic resonance (MR) neurography has recently been introduced as an alternative way to visualize nerves, but to date, quantitative DWI and MR neurography have not been applied to evaluate the pathology of lumbar nerve roots. Our purpose was to visualize lumbar nerve roots and to analyze their morphology by MR neurography, and to measure the apparent diffusion coefficient (ADC) of lumbar nerve roots compressed by herniated disks using 1.5-T MR imaging. Ten consecutive patients (median age, 48.0 and range, 20-72 years) with monoradicular symptoms caused by a lumbar herniated disk and 14 healthy volunteers were studied. Regions of interests were placed on the lumbar roots at dorsal root ganglia (DRG) and distal spinal nerves on DWI to quantify mean ADC values. The spinal nerve roots were also visualized by MR neurography. In the patients, mean ADC values were significantly greater in the compressed DRG and distal spinal nerves than in intact nerves. MR neurography also showed abnormalities such as nerve swelling at and below the compression in the symptomatic nerve root. Increased ADC values were considered to be because of edema and Wallerian degeneration of compressed nerve roots. DWI is a potential tool for analysis of the pathophysiology of lumbar nerve roots compressed by herniated disks. (orig.)

  7. Clinical significance of nerve root enhancement in contrast-enhanced MR imaging of the postoperative lumbar spine

    International Nuclear Information System (INIS)

    Lee, Yeon Soo; Lee, Eun Ja; Kang, Si Won; Choi, Eun Seok; Song, Chang June; Kim, Jong Chul

    2001-01-01

    To determine the significance of nerve root contrast enhancement in patients with residual or recurrent symptomatic postoperative lumbar spine. Eighty-eight patients with 116 postoperative lumbar disc lesions causing radiating back pain underwent enhanced MR imaging. Intradural nerve root enhancement was quantified by pixel measurement, and affected nerve roots were compared before and after contrast administration. Extradural nerve root enhancement was assessed visually, and nerve root enhancement and clinical symptoms were correlated. Associated lesions such as recurrent disc herniation, scar tissue, nerve root thickening and nerve root displacement were also evaluated. Of 26 cases (22.4%) involving intradural nerve root enhancement, 22 (84.6%) showed significant clinical symptoms (p=0.002). and of 59 (50.9%) demonstrating extradural enhancement, clinical symptoms showed significant correlation in 47 (79.7%) (p=0.001). Nerve root enhancement, including eleven cases where this was both intra-and extradural, showed highly significant association with clinical symptoms in 74 of the 116 cases (63.8%) (p=0.000). Among 33 cases (28.4%) of recurrent disc herniation, nerve root enhancement was observed in 28 (84.8%) and in 24 of these 28 (85.7%), significant correlation with clinical symptoms was observed (p=0.000). Where epidural fibrosis was present, correlation between nerve root enhancement and clinical symptoms was not significant (p>0.05). Nerve root thickening and displaced nerve root were, however, significantly associated with symptoms (87.2% and 88.6%, respectively). In patients with postoperative lumbar spine, the association between nerve root enhancement revealed by MRI and clinical symptoms was highly significant

  8. MRI of enlarged dorsal ganglia, lumbar nerve roots, and cranial nerves in polyradiculoneuropathies

    International Nuclear Information System (INIS)

    Castillo, M.; Mukherji, S.K.

    1996-01-01

    This paper describes the MRI findings in four patients with a clinical diagnosis of hypertrophic polyradiculoneuropathies. In two examination of the lumbar spine showed enlarged nerve roots and dorsal ganglia, and similar findings were present in the cervical spine in a third. The cisternal portions of the cranial nerves were enlarged in another patient. MRI allows identification of enlarged nerves in hypertrophic polyradiculopathies. (orig.)

  9. Diffusion tensor imaging with quantitative evaluation and fiber tractography of lumbar nerve roots in sciatica

    International Nuclear Information System (INIS)

    Shi, Yin; Zong, Min; Xu, Xiaoquan; Zou, Yuefen; Feng, Yang; Liu, Wei; Wang, Chuanbing; Wang, Dehang

    2015-01-01

    Highlights: •In the present study, we first elected ROIs corresponding to the proximal, medial, and distal levels of the lumbar foraminal zone. •The ROC analysis for FA values of distal nerves indicated a high level of reliability in the diagnosis of sciatica. •The declining trend of FA values from proximal to distal along the nerve tract may correlate with the disparity of axonal regeneration at different levels. •DTI is able to quantitatively evaluate compressed nerve roots and has a higher sensitivity and specificity for diagnosing sciatica than conventional MR imaging. •DTT enables visualization of abnormal nerve tracts, providing vivid anatomic information and probable localization of nerve compression. -- Abstract: Objective: To quantitatively evaluate nerve roots by measuring fractional anisotropy (FA) values in healthy volunteers and sciatica patients, visualize nerve roots by tractography, and compare the diagnostic efficacy between conventional magnetic resonance imaging (MRI) and DTI. Materials and methods: Seventy-five sciatica patients and thirty-six healthy volunteers underwent MR imaging using DTI. FA values for L5–S1 lumbar nerve roots were calculated at three levels from DTI images. Tractography was performed on L3–S1 nerve roots. ROC analysis was performed for FA values. Results: The lumbar nerve roots were visualized and FA values were calculated in all subjects. FA values decreased in compressed nerve roots and declined from proximal to distal along the compressed nerve tracts. Mean FA values were more sensitive and specific than MR imaging for differentiating compressed nerve roots, especially in the far lateral zone at distal nerves. Conclusions: DTI can quantitatively evaluate compressed nerve roots, and DTT enables visualization of abnormal nerve tracts, providing vivid anatomic information and localization of probable nerve compression. DTI has great potential utility for evaluating lumbar nerve compression in sciatica

  10. Diffusion tensor imaging with quantitative evaluation and fiber tractography of lumbar nerve roots in sciatica

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Yin; Zong, Min; Xu, Xiaoquan; Zou, Yuefen; Feng, Yang; Liu, Wei; Wang, Chuanbing; Wang, Dehang, E-mail: njmu_wangdehang@126.com

    2015-04-15

    Highlights: •In the present study, we first elected ROIs corresponding to the proximal, medial, and distal levels of the lumbar foraminal zone. •The ROC analysis for FA values of distal nerves indicated a high level of reliability in the diagnosis of sciatica. •The declining trend of FA values from proximal to distal along the nerve tract may correlate with the disparity of axonal regeneration at different levels. •DTI is able to quantitatively evaluate compressed nerve roots and has a higher sensitivity and specificity for diagnosing sciatica than conventional MR imaging. •DTT enables visualization of abnormal nerve tracts, providing vivid anatomic information and probable localization of nerve compression. -- Abstract: Objective: To quantitatively evaluate nerve roots by measuring fractional anisotropy (FA) values in healthy volunteers and sciatica patients, visualize nerve roots by tractography, and compare the diagnostic efficacy between conventional magnetic resonance imaging (MRI) and DTI. Materials and methods: Seventy-five sciatica patients and thirty-six healthy volunteers underwent MR imaging using DTI. FA values for L5–S1 lumbar nerve roots were calculated at three levels from DTI images. Tractography was performed on L3–S1 nerve roots. ROC analysis was performed for FA values. Results: The lumbar nerve roots were visualized and FA values were calculated in all subjects. FA values decreased in compressed nerve roots and declined from proximal to distal along the compressed nerve tracts. Mean FA values were more sensitive and specific than MR imaging for differentiating compressed nerve roots, especially in the far lateral zone at distal nerves. Conclusions: DTI can quantitatively evaluate compressed nerve roots, and DTT enables visualization of abnormal nerve tracts, providing vivid anatomic information and localization of probable nerve compression. DTI has great potential utility for evaluating lumbar nerve compression in sciatica.

  11. Gadolinium-DTPA enhancement of symptomatic nerve roots in MRI of the lumbar spine

    Energy Technology Data Exchange (ETDEWEB)

    Tyrrell, P.N.M.; Cassar-Pullicino, V.N.; McCall, I.W. [Department of Diagnostic Imaging, The Institute of Orthopaedics, The Robert Jones and Agnes Hunt Orthopaedic and District Hospital NHS Trust, Oswestry, Shropshire SY10 7AG (United Kingdom)

    1998-02-01

    Disc prolapse presenting with sciatica may be associated with enhancement of the symptomatic nerve root following magnetic resonance imaging (MRI) with intravenous gadolinium (Gd)-DTPA. Previous studies have shown, however, that this does not occur in all cases. The aim of this study was to assess the incidence of nerve root enhancement in patients with sciatica and disc prolapse and to try to identify any specific features that might be associated with the phenomenon. A total of 227 patients presenting with low back pain and/or sciatica underwent a MRI study of the lumbar spine with intravenous contrast enhancement. Nineteen of 81 (23.5 %) patients with disc prolapse demonstrated nerve root enhancement. Nerve root enhancement had a highly significant association with sequestrated disc lesions (13/19, 68 %; P < 0.0005), and was primarily seen in the symptomatic ipsilateral nerve root (16/19, 84 %). The sensitivity of nerve root enhancement associated with disc prolapse was 23.5 % with a specificity of 95.9 %, a positive predictive value of 76 % and a negative predictive value of 69.3 %. Nerve root enhancement may be indicative of the symptomatic level but its poor sensitivity negates the routine use of Gd-DTPA in MRI for sciatica. (orig.) With 4 figs., 1 tab., 37 refs.

  12. Gadolinium-DTPA enhancement of symptomatic nerve roots in MRI of the lumbar spine

    International Nuclear Information System (INIS)

    Tyrrell, P.N.M.; Cassar-Pullicino, V.N.; McCall, I.W.

    1998-01-01

    Disc prolapse presenting with sciatica may be associated with enhancement of the symptomatic nerve root following magnetic resonance imaging (MRI) with intravenous gadolinium (Gd)-DTPA. Previous studies have shown, however, that this does not occur in all cases. The aim of this study was to assess the incidence of nerve root enhancement in patients with sciatica and disc prolapse and to try to identify any specific features that might be associated with the phenomenon. A total of 227 patients presenting with low back pain and/or sciatica underwent a MRI study of the lumbar spine with intravenous contrast enhancement. Nineteen of 81 (23.5 %) patients with disc prolapse demonstrated nerve root enhancement. Nerve root enhancement had a highly significant association with sequestrated disc lesions (13/19, 68 %; P < 0.0005), and was primarily seen in the symptomatic ipsilateral nerve root (16/19, 84 %). The sensitivity of nerve root enhancement associated with disc prolapse was 23.5 % with a specificity of 95.9 %, a positive predictive value of 76 % and a negative predictive value of 69.3 %. Nerve root enhancement may be indicative of the symptomatic level but its poor sensitivity negates the routine use of Gd-DTPA in MRI for sciatica. (orig.)

  13. Nerve growth factor expression by PLG-mediated lipofection.

    Science.gov (United States)

    Whittlesey, Kevin J; Shea, Lonnie D

    2006-04-01

    Biomaterials capable of efficient gene delivery provide a fundamental tool for basic and applied research models, such as promoting neural regeneration. We developed a system for the encapsulation and sustained release of plasmid DNA complexed with a cationic lipid and investigated their efficacy using in vitro models of neurite outgrowth. Sustained lipoplex release was obtained for up to 50 days, with rates controlled by the fabrication conditions. Released lipoplexes retained their activity, transfecting 48.2+/-8.3% of NIH3T3 cells with luciferase activity of 3.97x10(7)RLU/mg. Expression of nerve growth factor (NGF) was employed in two models of neurite outgrowth: PC12 and primary dorsal root ganglia (DRG) co-culture. Polymer-mediated lipofection of PC12 produced bioactive NGF, eliciting robust neurite outgrowth. An EGFP/NGF dual-expression vector identified transfected cells (GFP-positive) while neurite outgrowth verified NGF secretion. A co-culture model examined the ability of NGF secretion by an accessory cell population to stimulate DRG neurite outgrowth. Polymer-mediated transfection of HEK293T with an NGF-encoding plasmid induced outgrowth by DRG neurons. This system could be fabricated as implants or nerve guidance conduits to support cellular and tissue regeneration. Combining this physical support with the ability to locally express neurotrophic factors will potentiate regeneration in nerve injury and disease models.

  14. MR imaging of the lumber spine; Visualization capability of the nerve root

    Energy Technology Data Exchange (ETDEWEB)

    Ishibashi, Kazumasa; Hieda, Hiroshi; Goto, Takeshi; Goto, Hiroshi; Koga, Hiromichi; Hiraoka, Kouji (Moji Rousai Hospital, Fukuoka (Japan))

    1991-01-01

    We studied visualization capability of the nerve root in mainly coronary section pattern using magnetic resonance imaging (MRI). MRI was carried out in 91 patients with lumbago and sciatica. Coronary section was additionally photographed in 58 cases of these patients (32 with intervertebral hernia, 20 with spinal canal stenosis, 2 with spondylolytic spondylolisthesis, 2 with compression fracture and the other 2 patients). The visualization capability of the nerve root was studied with photographing 2 pulse systems of the coronary section by using spin echo and field echo methods. The high signal area of the cerebrospinal fluid and nerve root in the normal lumbar vertebra was noted by field echo method, and pattern that is visualized by myelogram was obtained. The coincidence of the main foci (disturbed lesions of the nerve root) in the intervertebral hernia and coronary section pattern was noted in 21 of 32 cases (64.5%) with considerably high ratio. The condition of the nerve root in the blocked lesion was visualized in the spinal canal stenosis. (author).

  15. Characterization of a chondroitin sulfate hydrogel for nerve root regeneration

    Science.gov (United States)

    Conovaloff, Aaron; Panitch, Alyssa

    2011-10-01

    Brachial plexus injury is a serious medical problem that affects many patients annually, with most cases involving damage to the nerve roots. Therefore, a chondroitin sulfate hydrogel was designed to both serve as a scaffold for regenerating root neurons and deliver neurotrophic signals. Capillary electrophoresis showed that chondroitin sulfate has a dissociation constant in the micromolar range with several common neurotrophins, and this was determined to be approximately tenfold stronger than with heparin. It was also revealed that nerve growth factor exhibits a slightly stronger affinity for hyaluronic acid than for chondroitin sulfate. However, E8 chick dorsal root ganglia cultured in the presence of nerve growth factor revealed that ganglia cultured in chondroitin sulfate scaffolds showed more robust growth than those cultured in control gels of hyaluronic acid. It is hypothesized that, despite the stronger affinity of nerve growth factor for hyaluronic acid, chondroitin sulfate serves as a better scaffold for neurite outgrowth, possibly due to inhibition of growth by hyaluronic acid chains.

  16. Hindlimb spasticity after unilateral motor cortex lesion in rats is reduced by contralateral nerve root transfer.

    Science.gov (United States)

    Zong, Haiyang; Ma, Fenfen; Zhang, Laiyin; Lu, Huiping; Gong, Jingru; Cai, Min; Lin, Haodong; Zhu, Yizhun; Hou, Chunlin

    2016-12-01

    Lower extremity spasticity is a common sequela among patients with acquired brain injury. The optimum treatment remains controversial. The aim of our study was to test the feasibility and effectiveness of contralateral nerve root transfer in reducing post stroke spasticity of the affected hindlimb muscles in rats. In our study, we for the first time created a novel animal hindlimb spastic hemiplegia model in rats with photothrombotic lesion of unilateral motor cortex and we established a novel surgical procedure in reducing motor cortex lesion-induced hindlimb spastic hemiplegia in rats. Thirty six rats were randomized into three groups. In group A, rats received sham operation. In group B, rats underwent unilateral hindlimb motor cortex lesion. In group C, rats underwent unilateral hindlimb cortex lesion followed by contralateral L4 ventral root transfer to L5 ventral root of the affected side. Footprint analysis, Hoffmann reflex (H-reflex), cholera toxin subunit B (CTB) retrograde tracing of gastrocnemius muscle (GM) motoneurons and immunofluorescent staining of vesicle glutamate transporter 1 (VGLUT1) on CTB-labelled motoneurons were used to assess spasticity of the affected hindlimb. Sixteen weeks postoperatively, toe spread and stride length recovered significantly in group C compared with group B (Pmotor cortex lesion-induced hindlimb spasticity in rats. Our data indicated that this could be an alternative treatment for unilateral lower extremity spasticity after brain injury. Therefore, contralateral neurotization may exert a potential therapeutic candidate to improve the function of lower extremity in patients with spastic hemiplegia. © 2016 The Author(s).

  17. Clinical and imaging characteristics of foraminal nerve root disorders of the lumbar spine

    International Nuclear Information System (INIS)

    Nishi, Tomio; Tani, Takayuki; Suzuki, Norio; Aonuma, Hiroshi

    2009-01-01

    We analyzed cases of lumbar nerve root compression at intervertebral foramina, by comparing 19 cases of foraminal stenosis (FS), and 38 cases of foraminal hernia (FH) with 21 cases of lumbar canal stenosis (LCS). Japan Orthopedic Association (JOA) scores, intervertebral disc degeneration, anatomical measurements of the nerve root foramina and the MRI findings were reviewed. The scores for pain in the lower extremities, and walking ability were both lowest in the FS group. The scores for low back pain, lower extremities, and sensory disturbances were lowest in the FH group. Anterior-posterior diameters of the nerve root foramina were smaller in the FS group and FH group than in the LCS group. More degenerated discs and short length of upper part of the nerve root foramina were seen in FS group than in the other groups. The MRI images of so-called black out nerve root foramina were positive in 63.6% of FS cases, 75% of FH cases. (author)

  18. Diagnostic value of MRI for nerve root compression due to lumbar canal stenosis. Clinical and anatomic study

    International Nuclear Information System (INIS)

    Seki, Michihiro; Kikuchi, Shinichi; Kageyama, Kazuhiro; Katakura, Toshihiko; Suzuki, Kenji

    1995-01-01

    Magnetic resonance imaging (MRI) was undertaken in 26 patients with surgically proven nerve root compression due to lumbar canal stenosis. The findings on coronary images were compared with those of selective radiculography to assess the diagnostic ability of MRI to determine the site of nerve root compression. Intermission and partial defect, which reflect nerve root compression, were seen in only 5 (19.2%) of 26 nerve roots on MRI, as compared with 20 (76.9%) on radiculography. Thus MRI alone was difficult to diagnose nerve root compression due to lumbar canal stenosis. Furthermore, the optimum angle of coronary views was determined in 13 cadavers. Para-sagittal views were found to be optimal for the observation of the whole running of the nerve root. Three-dimensional MRI was found to have a potential to diagnose nerve root compression in the intervertebral foramen and the distal part of the intervertebral foramen. (N.K.)

  19. Intrathecal ligaments and nerve root tension: possible sources of lumbar pain during spaceflight.

    Science.gov (United States)

    Kershner, David; Binhammer, Robert

    2004-04-01

    Lumbar intrathecal ligaments have recently been demonstrated to randomly bind dorsal nerve roots to the dura within the lumbar vertebral column. Lengthening of the vertebral column and associated lumbar back pain experienced by astronauts is common in microgravity. This study was designed to investigate the relationship of lumbar intrathecal ligaments in spinal lengthening as a possible mechanism for back pain. A two-part study was designed using 36 vertebral columns from embalmed cadavers. There were 12 vertebral columns studied in mid-sagittal section to demonstrate the possible movement of the spinal cord during lengthening of the vertebral column. The remainder were assessed for the amount of tension placed on a dorsal nerve root by the lumbar intrathecal ligament during lengthening of the vertebral column. The spinal cord moves in a cephalic direction approximately 2.8 mm with 4 cm lengthening of the vertebral column. During lengthening, a loss of thoracic and lordotic curvature was noted with an increase in disk height. Tension was significantly increased on the dorsal nerve roots being tethered by the lumbar intrathecal ligaments in comparison to non-tethered nerve roots during lengthening of the vertebral column. A significant amount of tension is placed on dorsal nerve roots tethered by intrathecal ligaments within the lumbar spine during spinal lengthening. These ligaments randomly bind dorsal nerve roots in the lumbar spine and may be involved in the back pain experienced by astronauts in microgravity.

  20. Reduction in nerve root compression by the nucleus pulposus after Feng's Spinal Manipulation☆

    Science.gov (United States)

    Feng, Yu; Gao, Yan; Yang, Wendong; Feng, Tianyou

    2013-01-01

    Ninety-four patients with lumbar intervertebral disc herniation were enrolled in this study. Of these, 48 were treated with Feng's Spinal Manipulation, hot fomentation, and bed rest (treatment group). The remaining 46 patients were treated with hot fomentation and bed rest only (control group). After 3 weeks of treatment, clinical parameters including the angle of straight-leg raising, visual analogue scale pain score, and Japanese Orthopaedic Association score for low back pain were improved. The treatment group had significantly better improvement in scores than the control group. Magnetic resonance myelography three-dimensional reconstruction imaging of the vertebral canal demonstrated that filling of the compressed nerve root sleeve with cerebrospinal fluid increased significantly in the treatment group. The diameter of the nerve root sleeve was significantly larger in the treatment group than in the control group. However, the sagittal diameter index of the herniated nucleus pulposus and the angle between the nerve root sleeve and the thecal sac did not change significantly in either the treatment or control groups. The effectiveness of Feng's Spinal Manipulation for the treatment of symptoms associated with lumbar intervertebral disc herniation may be attributable to the relief of nerve root compression, without affecting the herniated nucleus pulposus or changing the morphology or position of the nerve root. PMID:25206408

  1. The usefulness of MR myelography for evaluation of nerve root avulsion in brachial plexus injury

    International Nuclear Information System (INIS)

    Nishiura, Yasumasa; Ochiai, Naoyuki; Miyauchi, Yukio; Niitsu, Mamoru

    2002-01-01

    Myelography has been the most popular and reliable method for evaluation of nerve root avulsion in brachial plexus injury. However, it is invasive because it requires the use of contrast medium, dural puncture and exposure to radiation. In addition, it has a fault. When a nerve rootlet is not filled with contrast medium, it is impossible to evaluate it. It has sometimes been a problem in the injury to upper roots. Recently, MRI also has been used for diagnosis of brachial plexus injury. But it was not until recently that it has had a high resolution to detect affected nerve rootlets. We have used MR myelography with high resolution for diagnosis of brachial plexus injury. The purpose of this study is to investigate the usefulness of it. MR myelography was preoperatively performed in 14 cases, consisting of 13 traumatic brachial plexus injuries and an obstetrical palsy. In them, 12 cases had root avulsion injuries and 2 cases had infraclavicular injuries. A 1.5 Tesla MR system (Philips) and a cervical coil were used. Coronal sections with 2 mm-overcontiguous thickness were obtained by heavily T2-weighted sequence fast spin echo (TR/TE=3000/450). The fat signal was suppressed by a presaturation inversion-pulse. The scanning time was about five minutes. The three-dimensional image was reconstructed by using maximum intensity projection (MIP) method. MIP images and individual coronal images were used for evaluation for root avulsion. In evaluation the shape of a nerve sleeve and nerve rootlets was compared on both sides. The abnormal shape of a nerve sleeve or the defect of nerve rootlets was diagnosed as root avulsion. The brachial plexus lesions were exposed operatively and examined with electrophysiologic methods (SEP and/or ESCP) in all cases. Operative findings were compared with MR myelography. Twenty-four roots had been diagnosed as normal and 46 roots had been diagnosed as root avulsion with MR myelography preoperatively. In the former only one root was

  2. Prevalence of extraforaminal nerve root compression below lumbosacral transitional vertebrae.

    Science.gov (United States)

    Porter, Neil A; Lalam, Radhesh K; Tins, Bernhard J; Tyrrell, Prudencia N M; Singh, Jaspreet; Cassar-Pullicino, Victor N

    2014-01-01

    Although pathology at the first mobile segment above a lumbosacral transitional vertebra (LSTV) is a known source of spinal symptoms, nerve root compression below an LSTV, has only sporadically been reported. Our objective was to assess the prevalence of nerve root entrapment below an LSTV, review the causes of entrapment, and correlate with presenting symptoms. A retrospective review of MR and CT examinations of the lumbar spine was performed over a 5.5-year period in which the words "transitional vertebra" were mentioned in the report. Nerve root compression below an LSTV was assessed as well as the subtype of transitional vertebra. Correlation with clinical symptoms at referral was made. MR and CT examinations were also reviewed to exclude any other cause of symptoms above the LSTV. One hundred seventy-four patients were included in the study. Neural compression by new bone formation below an LSTV was demonstrated in 23 patients (13%). In all of these patients, there was a pseudarthrosis present on the side of compression due to partial sacralization with incomplete fusion. In three of these patients (13%), there was symptomatic correlation with no other cause of radiculopathy demonstrated. A further 13 patients (57%) had correlating symptoms that may in part be attributable to compression below an LSTV. Nerve root compression below an LSTV occurs with a prevalence of 13% and can be symptomatic in up to 70% of these patients. This region should therefore be carefully assessed in all symptomatic patients with an LSTV.

  3. Optimising the image of the intradural nerve root: the value of MR radiculography

    Energy Technology Data Exchange (ETDEWEB)

    Hofman, P.A.M. [Department of Diagnostic Radiology, University Hospital Maastricht (Netherlands); Wilmink, J.T. [Department of Diagnostic Radiology, University Hospital Maastricht (Netherlands)

    1996-10-01

    We evaluated the additional value of MR radiculography for increasing the sensitivity and specificity of MRI with regard to nerve root compression in patients with sciatica. The single slices of a heavily T 2-weighted oblique coronal image set were reformatted with a maximum intensity projection protocol. This image resembles a classical contrast radiculogram and shows the intradural nerve root and its sleeve. In 43 patients studied with a standard MRI examination there was a need for further assessment of nerve root compression in 19 (44 %). In 13 (68 %) of these, MR radiculography made a definite verdict possible. (orig.). With 4 figs., 2 tabs.

  4. Optimising the image of the intradural nerve root: the value of MR radiculography

    International Nuclear Information System (INIS)

    Hofman, P.A.M.; Wilmink, J.T.

    1996-01-01

    We evaluated the additional value of MR radiculography for increasing the sensitivity and specificity of MRI with regard to nerve root compression in patients with sciatica. The single slices of a heavily T 2-weighted oblique coronal image set were reformatted with a maximum intensity projection protocol. This image resembles a classical contrast radiculogram and shows the intradural nerve root and its sleeve. In 43 patients studied with a standard MRI examination there was a need for further assessment of nerve root compression in 19 (44 %). In 13 (68 %) of these, MR radiculography made a definite verdict possible. (orig.). With 4 figs., 2 tabs

  5. MR imaging of spondylolytic spondylolisthesis: changes of intervertebral foramen and nerve root compression

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji Hyung [Ajou Univ. College of Medicine, Seoul (Korea, Republic of); Chung, Tae Sub; Kim, Young Soo [Yonsei Univ. College of Medicine, Seoul (Korea, Republic of)

    1999-08-01

    To evaluate the factors affecting intervertebral foramen stenosis and nerve root compression in spondylolytic spondylolisthesis. We investigated 120 intervertebral foramina of 60 patients with spondylolytic spondylolisthesis who had undergone lumbar MRI. A retrospective review of their MR images revealed the degree of intervertebral foramen stenosis and causes of nerve root compression. The relationship between disk height diminution following spondylolysis and degree of intervertebral foramen stenosis was also evaluated. Forty eight of 60 patients showed a similar degree of intervertebral foramen stenosis, and in 12 patients the degree of stenosis was different. In 110 intervertebral foramina, stenosis of both the superior and inferior compartments of intervertebral foramina was demonstrated. In 37 of 120 cases (30.8%), stenosis was mild ; in 44 of 120 (36.7%) it was modcrate, and in 29 of 120 (24.2%) it was severe. Stenosis of the inferior compartment was demonstrated in ten of 120 intervertebral foramina (8.3%). Nerve root compression was caused by posterior bulging of the intervertebral disk (65/120), descent of the pedicle (51/120), an isthmic bony segment above the site of spondylolytic (44/120), a bony spur formed at a spondylolytic site (11/120), and fibrocartilaginous callus at a spondylolytic site (5/48). In all cases there was degenerative change of the intervertebral disk at the affected level. There was no relationship between degree of disk height diminution and degree of intervertebral foramen stenosis (p > 0.05). The degree of intervertebral foramen stenosis and causes of nerve root compression in spondylolytic spondylolisthesis are variable, and MRI demonstrates them precisely. There was no positive relationship between degree of nerve root compression at an intervertebral foramen and degree of spondylolysis and degeneration of an intervertebral foramen. The degree of nerve root compression is believed to be another criterion for describing

  6. MR imaging of spondylolytic spondylolisthesis: changes of intervertebral foramen and nerve root compression

    International Nuclear Information System (INIS)

    Kim, Ji Hyung; Chung, Tae Sub; Kim, Young Soo

    1999-01-01

    To evaluate the factors affecting intervertebral foramen stenosis and nerve root compression in spondylolytic spondylolisthesis. We investigated 120 intervertebral foramina of 60 patients with spondylolytic spondylolisthesis who had undergone lumbar MRI. A retrospective review of their MR images revealed the degree of intervertebral foramen stenosis and causes of nerve root compression. The relationship between disk height diminution following spondylolysis and degree of intervertebral foramen stenosis was also evaluated. Forty eight of 60 patients showed a similar degree of intervertebral foramen stenosis, and in 12 patients the degree of stenosis was different. In 110 intervertebral foramina, stenosis of both the superior and inferior compartments of intervertebral foramina was demonstrated. In 37 of 120 cases (30.8%), stenosis was mild ; in 44 of 120 (36.7%) it was modcrate, and in 29 of 120 (24.2%) it was severe. Stenosis of the inferior compartment was demonstrated in ten of 120 intervertebral foramina (8.3%). Nerve root compression was caused by posterior bulging of the intervertebral disk (65/120), descent of the pedicle (51/120), an isthmic bony segment above the site of spondylolytic (44/120), a bony spur formed at a spondylolytic site (11/120), and fibrocartilaginous callus at a spondylolytic site (5/48). In all cases there was degenerative change of the intervertebral disk at the affected level. There was no relationship between degree of disk height diminution and degree of intervertebral foramen stenosis (p > 0.05). The degree of intervertebral foramen stenosis and causes of nerve root compression in spondylolytic spondylolisthesis are variable, and MRI demonstrates them precisely. There was no positive relationship between degree of nerve root compression at an intervertebral foramen and degree of spondylolysis and degeneration of an intervertebral foramen. The degree of nerve root compression is believed to be another criterion for describing

  7. Imaging features suggestive of a conjoined nerve root on routine axial MRI

    Energy Technology Data Exchange (ETDEWEB)

    Song, Su Jin; Lee, Joon Woo; Kang, Heung Sik [Seoul National University Bundang Hospital, Department of Radiology, Gyeongi-do (Korea); Choi, Ja-Young; Hong, Sung Hwan; Kim, Na Ra [Seoul National University College of Medicine, Department of Radiology, Seoul (Korea); Kim, Ki-Jeong; Chung, Sang-Ki; Kim, Hyun-Jib [Seoul National University Bundang Hospital, Department of Neurosurgery, Gyeongi-Do (Korea)

    2008-02-15

    The purpose of our study is to evaluate imaging features suggestive of a conjoined nerve root on routine axial MRI. Two radiologists and two surgeons retrospectively reviewed the MRI of three cases in which a conjoined nerve root was discovered during operation and found three suggestive signs on routine axial MR images: ''corner'' (asymmetric morphology of the anterolateral corner of the dural sac), ''fat crescent'' (intervening extradural fat between the asymmetric dura and the nerve root), and ''parallel'' signs (visualization of the entire parallel course of the nerve root at the disc level). Two radiologists prospectively found these signs during routine MRI interpretation sessions over a period of 6 months. If one or a combination of signs were noted on axial MR images, contiguous axial scans were additionally obtained. Three cases that were previously found during operations were also included. Prevalence and confidence scores for each sign were assessed on axial T1- and T2-weighted images. Twelve patients showed one or a combination of the three signs, 9 had contiguous axial MR scans. Five cases were confirmed by operation. The prevalence of the corner, fat crescent, and parallel signs were 12 out of 12 (100%), 6 out of 12 (50%), and 8 out of 12 (67.7%) on axial T1-weighted images. The overall diagnostic confidence was higher on T1- than on T2-weighted images (P < 0.05). On routine axial L-spine MRI, corner, fat crescent, and parallel signs are suggestive of and assist in the recognition of a conjoined nerve root. (orig.)

  8. How should we grade lumbar disc herniation and nerve root compression? A systematic review.

    Science.gov (United States)

    Li, Yiping; Fredrickson, Vance; Resnick, Daniel K

    2015-06-01

    MRI is the gold standard for evaluating the relationship of disc material to soft tissue and neural structures. However, terminologies used to describe lumbar disc herniation and nerve root compression have always been a source of confusion. A clear understanding of lumbar disc terminology among clinicians, radiologists, and researchers is vital for patient care and future research. Through a systematic review of the literature, the purpose of this article is to describe lumbar disc terminology and comment on the reliability of various nomenclature systems and their application to clinical practice. PubMed was used for our literature search using the following MeSH headings: "Magnetic Resonance Imaging and Intervertebral Disc Displacement" and "Lumbar Vertebrae" and terms "nomenclature" or "grading" or "classification". Ten papers evaluating lumbar disc herniation/nerve root compression using different grading criteria and providing information regarding intraobserver and interobserver agreement were identified. To date, the Combined Task Force (CTF) and van Rijn classification systems are the most reliable methods for describing lumbar disc herniation and nerve root compression, respectively. van Rijn dichotomized nerve roots from "definitely no root compression, possibly no root compression, indeterminate root compression, possible root compression, and definite root compression" into no root compression (first three categories) and root compression (last two categories). The CTF classification defines lumbar discs as normal, focal protrusion, broad-based protrusion, or extrusion. The CTF classification system excludes "disc bulges," which is a source of confusion and disagreement among many practitioners. This potentially accounts for its improved reliability compared with other proposed nomenclature systems. The main issue in the management of patients with lumbar disc disease and nerve root compression is correlation of imaging findings with clinical

  9. The brain plasticity in patients with brachial plexus root avulsion after contralateral C7 nerve-root transfer: a FDG-PET study

    International Nuclear Information System (INIS)

    Zuo, C.T.; Guan, Y.H.; Xu, W.D.; Zhao, J.; Sun, G.X.; Lin, X.T.

    2002-01-01

    Objectives: To study FDG-PET for imaging the brain plasticity in patients with brachial plexus root avulsion after contralateral C7 nerve-root transfer. Methods: One male patient with left brachial plexus root avulsion underwent a two-stage procedure (first phase: C7 root → ulnar nerve; second phase: ulnar nerve → recipient nerve) 4 years ago; Another with right brachial plexus root avulsion also underwent a two-stage procedure 3 years ago. First two patients underwent basic FDG-PET imaging, the next day FDG-PET scans were performed after initiative or passive limb movement. Using ROI and MPI tools to evaluate the images. The ratios of sensorimotor frontal cingulated Thalami to white matter were used as the semiquantitive index. Results: Whether brain plasticity had occurred was determined by whether the affected limb can perform initiative movement. The increases in glucose metabolism of left sensorimotor frontal cingulated Thalami in patient with left brachial plexus root avulsion were 40.1%, 37.9%, 48.3%, 31.9% after initiative movement, the right corresponding brain regions were 39.4%, 34.3%, 48.5%,35.4% respectively. However, the increases in glucose metabolism of left sensorimotor frontal cingulated Thalami in patient with right brachial plexus root avulsion were increased by 12.6%, 9.6%, 10.7%, 5.3% after passive movement, the right corresponding brain regions were respectively 17.9%, 12.9%, 15.4%, 10.1%. It was founded that the metabolism of bilateral sensorimotor frontal cingulated Thalami increased after initiative movement, while the metabolism of right sensorimotor frontal cingulated Thalami increased more obviously than that of the left brain regions when using MPI tool to substract the images before and after the affected limb movement. Conclusions: Sensorimotor frontal cingulated Thalami were necessary to the initiative movement. After being activated by movement, the metabolisms of plasticised brain regions increased obviously. However, the

  10. Lumbar nerve root avulsions with secondary ipsilateral hip dysplasia in a child

    Energy Technology Data Exchange (ETDEWEB)

    Polyzoidis, Konstandinos; Vranos, Georgios [Department of Neurosurgery, Medical School, University of Ioannina, 45110, Ioannina (Greece); Petropoulou, Calliope; Argyropoulou, Paraskevi I.; Argyropoulou, Maria I. [Department of Radiology, Medical School, University of Ioannina, 45110, Ioannina (Greece); Sarmas, Ioannis [Department of Neurology, Medical School, University of Ioannina, 45110, Ioannina (Greece)

    2002-09-01

    We report on an 8-year-old child with avulsions of the left L3, L4 and L5 nerve roots and traumatic meningoceles that were not associated with lumbar spine or pelvic girdle fractures. The patient had a history of a road traffic accident. Plain radiographs of the pelvis revealed left hip dysplasia. The magnetic resonance imaging findings of the lumbar spine are illustrated. The pathogenesis of lumbar nerve root avulsions and their association with ipsilateral hip dysplasia are discussed. (orig.)

  11. Lumbar nerve root avulsions with secondary ipsilateral hip dysplasia in a child

    International Nuclear Information System (INIS)

    Polyzoidis, Konstandinos; Vranos, Georgios; Petropoulou, Calliope; Argyropoulou, Paraskevi I.; Argyropoulou, Maria I.; Sarmas, Ioannis

    2002-01-01

    We report on an 8-year-old child with avulsions of the left L3, L4 and L5 nerve roots and traumatic meningoceles that were not associated with lumbar spine or pelvic girdle fractures. The patient had a history of a road traffic accident. Plain radiographs of the pelvis revealed left hip dysplasia. The magnetic resonance imaging findings of the lumbar spine are illustrated. The pathogenesis of lumbar nerve root avulsions and their association with ipsilateral hip dysplasia are discussed. (orig.)

  12. Boosted Regeneration and Reduced Denervated Muscle Atrophy by NeuroHeal in a Pre-clinical Model of Lumbar Root Avulsion with Delayed Reimplantation.

    Science.gov (United States)

    Romeo-Guitart, David; Forés, Joaquim; Navarro, Xavier; Casas, Caty

    2017-09-20

    The "gold standard" treatment of patients with spinal root injuries consists of delayed surgical reconnection of nerves. The sooner, the better, but problems such as injury-induced motor neuronal death and muscle atrophy due to long-term denervation mean that normal movement is not restored. Herein we describe a preclinical model of root avulsion with delayed reimplantation of lumbar roots that was used to establish a new adjuvant pharmacological treatment. Chronic treatment (up to 6 months) with NeuroHeal, a new combination drug therapy identified using a systems biology approach, exerted long-lasting neuroprotection, reduced gliosis and matrix proteoglycan content, accelerated nerve regeneration by activating the AKT pathway, promoted the formation of functional neuromuscular junctions, and reduced denervation-induced muscular atrophy. Thus, NeuroHeal is a promising treatment for spinal nerve root injuries and axonal regeneration after trauma.

  13. Ultrasound Guided Nerve Root Injection in Patients with Cervical Spondylytic Radicular Pain

    Directory of Open Access Journals (Sweden)

    LT Choong

    2009-05-01

    Full Text Available Selective cervical nerve root injection using a mixture of corticosteroid and lignocaine is a treatment option for managing cervical radiculopathic pain. The procedure is usually performed under image guided fluoroscopy or Computerized Tomograhy. Ultrasound-guided cervical nerve root block does not expose the patients and personnel to radiation. During injection, the fluid is mostly visualized in a real-time fashion. This retrospective study reviewed the effectiveness of ultrasound in guiding cervical peri-radicular injection for pain relief in patients with recalcitrant cervical radiculopathy. There were no complications reported in this series.

  14. MRI-guided and CT-guided cervical nerve root infiltration therapy. A cost comparison

    Energy Technology Data Exchange (ETDEWEB)

    Maurer, M.H.; Froeling, V.; Roettgen, R.; Bucourt, M. de; Hamm, B.; Streitparth, F. [Charite University Medicine Berlin (Germany). Dept. of Diagnostic and Interventional Radiology; Bretschneider, T. [Magdeburg Univ. (Germany). Dept. of Radiology and Nuclear Medicine; Hartwig, T.; Disch, A.C. [Charite University Medicine Berlin (Germany). Center for Musculoskeletal Surgery

    2014-06-15

    Purpose: To evaluate and compare the costs of MRI-guided and CT-guided cervical nerve root infiltration for the minimally invasive treatment of radicular neck pain. Materials and Methods: Between September 2009 and April 2012, 22 patients (9 men, 13 women; mean age: 48.2 years) underwent MRI-guided (1.0 Tesla, Panorama HFO, Philips) single-site periradicular cervical nerve root infiltration with 40 mg triamcinolone acetonide. A further 64 patients (34 men, 30 women; mean age: 50.3 years) were treated under CT fluoroscopic guidance (Somatom Definition 64, Siemens). The mean overall costs were calculated as the sum of the prorated costs of equipment use (purchase, depreciation, maintenance, and energy costs), personnel costs and expenditure for disposables that were identified for MRI- and CT-guided procedures. Additionally, the cost of ultrasound guidance was calculated. Results: The mean intervention time was 24.9 min. (range: 12-36 min.) for MRI-guided infiltration and 19.7 min. (range: 5-54 min.) for CT-guided infiltration. The average total costs per patient were EUR 240 for MRI-guided interventions and EUR 124 for CT-guided interventions. These were (MRI/CT guidance) EUR 150/60 for equipment use, EUR 46/40 for personnel, and EUR 44/25 for disposables. The mean overall cost of ultrasound guidance was EUR 76. Conclusion: Cervical nerve root infiltration using MRI guidance is still about twice as expensive as infiltration using CT guidance. However, since it does not involve radiation exposure for patients and personnel, MRI-guided nerve root infiltration may become a promising alternative to the CT-guided procedure, especially since a further price decrease is expected for MRI devices and MR-compatible disposables. In contrast, ultrasound remains the less expensive method for nerve root infiltration guidance. (orig.)

  15. MRI-guided and CT-guided cervical nerve root infiltration therapy. A cost comparison

    International Nuclear Information System (INIS)

    Maurer, M.H.; Froeling, V.; Roettgen, R.; Bucourt, M. de; Hamm, B.; Streitparth, F.; Bretschneider, T.; Hartwig, T.; Disch, A.C.

    2014-01-01

    Purpose: To evaluate and compare the costs of MRI-guided and CT-guided cervical nerve root infiltration for the minimally invasive treatment of radicular neck pain. Materials and Methods: Between September 2009 and April 2012, 22 patients (9 men, 13 women; mean age: 48.2 years) underwent MRI-guided (1.0 Tesla, Panorama HFO, Philips) single-site periradicular cervical nerve root infiltration with 40 mg triamcinolone acetonide. A further 64 patients (34 men, 30 women; mean age: 50.3 years) were treated under CT fluoroscopic guidance (Somatom Definition 64, Siemens). The mean overall costs were calculated as the sum of the prorated costs of equipment use (purchase, depreciation, maintenance, and energy costs), personnel costs and expenditure for disposables that were identified for MRI- and CT-guided procedures. Additionally, the cost of ultrasound guidance was calculated. Results: The mean intervention time was 24.9 min. (range: 12-36 min.) for MRI-guided infiltration and 19.7 min. (range: 5-54 min.) for CT-guided infiltration. The average total costs per patient were EUR 240 for MRI-guided interventions and EUR 124 for CT-guided interventions. These were (MRI/CT guidance) EUR 150/60 for equipment use, EUR 46/40 for personnel, and EUR 44/25 for disposables. The mean overall cost of ultrasound guidance was EUR 76. Conclusion: Cervical nerve root infiltration using MRI guidance is still about twice as expensive as infiltration using CT guidance. However, since it does not involve radiation exposure for patients and personnel, MRI-guided nerve root infiltration may become a promising alternative to the CT-guided procedure, especially since a further price decrease is expected for MRI devices and MR-compatible disposables. In contrast, ultrasound remains the less expensive method for nerve root infiltration guidance. (orig.)

  16. Role of motor-evoked potential monitoring in conjunction with temporary clipping of spinal nerve roots in posterior thoracic spine tumor surgery.

    Science.gov (United States)

    Eleraky, Mohammed A; Setzer, Matthias; Papanastassiou, Ioannis D; Baaj, Ali A; Tran, Nam D; Katsares, Kiesha M; Vrionis, Frank D

    2010-05-01

    The vascular supply of the thoracic spinal cord depends on the thoracolumbar segmental arteries. Because of the small size and ventral course of these arteries in relation to the dorsal root ganglion and ventral root, they cannot be reliably identified during surgery by anatomic or morphologic criteria. Sacrificing them will most likely result in paraplegia. The goal of this study was to evaluate a novel method of intraoperative testing of a nerve root's contribution to the blood supply of the thoracic spinal cord. This is a clinical retrospective study of 49 patients diagnosed with thoracic spine tumors. Temporary nerve root clipping combined with motor-evoked potential (MEP) and somatosensory-evoked potential (SSEP) monitoring was performed; additionally, postoperative clinical evaluation was done and reported in all cases. All cases were monitored by SSEP and MEPs. The nerve root to be sacrificed was temporarily clipped using standard aneurysm clips, and SSEP/MEP were assessed before and after clipping. Four nerve roots were sacrificed in four cases, three nerve roots in eight cases, and two nerve roots in 22 cases. Nerve roots were sacrificed bilaterally in 12 cases. Most patients (47/49) had no changes in MEP/SSEP and had no neurological deficit postoperatively. One case of a spinal sarcoma demonstrated changes in MEP after temporary clipping of the left T11 nerve root. The nerve was not sacrificed, and the patient was neurologically intact after surgery. In another case of a sarcoma, MEPs changed in the lower limbs after ligation of left T9 nerve root. It was felt that it was a global event because of anesthesia. Postoperatively, the patient had complete paraplegia but recovered almost completely after 6 months. Temporary nerve root clipping combined with MEP and SSEP monitoring may enhance the impact of neuromonitoring in the intraoperative management of patients with thoracic spine tumors and favorably influence neurological outcome. Copyright 2010 Elsevier

  17. Changes in lumbosacral spinal nerve roots on diffusion tensor imaging in spinal stenosis

    OpenAIRE

    Zhong-jun Hou; Yong Huang; Zi-wen Fan; Xin-chun Li; Bing-yi Cao

    2015-01-01

    Lumbosacral degenerative disc disease is a common cause of lower back and leg pain. Conventional T1-weighted imaging (T1WI) and T2-weighted imaging (T2WI) scans are commonly used to image spinal cord degeneration. However, these modalities are unable to image the entire lumbosacral spinal nerve roots. Thus, in the present study, we assessed the potential of diffusion tensor imaging (DTI) for quantitative assessment of compressed lumbosacral spinal nerve roots. Subjects were 20 young healthy v...

  18. Co-occurrence of lumbar spondylolysis and lumbar disc herniation with lumbosacral nerve root anomaly

    Science.gov (United States)

    Yılmaz, Tevfik; Turan, Yahya; Gülşen, İsmail; Dalbayrak, Sedat

    2014-01-01

    Lumbosacral nerve root anomalies are the leading cause of lumbar surgery failures. Although co-occurrence of lumbar spondylolysis and disc herniation is common, it is very rare to observe that a nerve root anomaly accompanies these lesions. A 49-year-old male patient presented with sudden-onset right leg pain. Examinations revealed L5/S1 lumbar spondylolysis and disc herniation. At preoperative period, he was also diagnosed with lumbosacral root anomaly. Following discectomy and root decompression, stabilization was performed. The complaints of the patient diagnosed with lumbosacral root anomaly at intraoperative period were improved at postoperative period. It should be remembered that in patients with lumbar disc herniation and spondylolysis, lumbar root anomalies may coexist when clinical and neurological picture is severe. Preoperative and perioperative assessments should be made meticulously to prevent neurological injury. PMID:25210343

  19. Co-occurrence of lumbar spondylolysis and lumbar disc herniation with lumbosacral nerve root anomaly

    Directory of Open Access Journals (Sweden)

    Tevfik Yilmaz

    2014-01-01

    Full Text Available Lumbosacral nerve root anomalies are the leading cause of lumbar surgery failures. Although co-occurrence of lumbar spondylolysis and disc herniation is common, it is very rare to observe that a nerve root anomaly accompanies these lesions. A 49-year-old male patient presented with sudden-onset right leg pain. Examinations revealed L5/S1 lumbar spondylolysis and disc herniation. At preoperative period, he was also diagnosed with lumbosacral root anomaly. Following discectomy and root decompression, stabilization was performed. The complaints of the patient diagnosed with lumbosacral root anomaly at intraoperative period were improved at postoperative period. It should be remembered that in patients with lumbar disc herniation and spondylolysis, lumbar root anomalies may coexist when clinical and neurological picture is severe. Preoperative and perioperative assessments should be made meticulously to prevent neurological injury.

  20. Detection of the symptomatic nerve root; A contrast-enhanced MR study

    Energy Technology Data Exchange (ETDEWEB)

    Toyone, Tomoaki; Takahashi, Kazuhisa; Yamagata, Masayasu (Chiba Univ. (Japan). School of Medicine) (and others)

    1993-04-01

    Twenty-five patients with lumbar disc herniation with a chief complaint of unilateral leg pain underwent gadolinium-DTPA enhanced MRI, particularly to examine the nerve root in the distal area of hernia. MRI appearance fell into three grades: 0 - no visualization (n=7), 1 - heterogeneous visualization (n=7), and 2 - homogeneous visualization (n=10). In the quantitative evaluation of the severity of sciatica using SLR and JOA scores, it was found to be associated with the degree of visualization. All patients of grade 2 were required to receive surgery because pain relief was not attained in spite of 3 months or more conservative treatment. These findings indicatd the usefulness of MRI in predicting prognosis, as well as in diagnosing the responsible level. Since blood-nerve barrier damage and intraneural edema are considered to be involved in the visualization of the nerve root on MRI, MRI will help in diagnosing radicular sciatica and elucidating the pathophysiology of the disease. (N.K.).

  1. Peripheral Nerve Stimulation of Brachial Plexus Nerve Roots and Supra-Scapular Nerve for Chronic Refractory Neuropathic Pain of the Upper Limb.

    Science.gov (United States)

    Bouche, Bénédicte; Manfiotto, Marie; Rigoard, Philippe; Lemarie, Jean; Dix-Neuf, Véronique; Lanteri-Minet, Michel; Fontaine, Denys

    2017-10-01

    We report the outcome of a consecutive series of 26 patients suffering from chronic medically-refractory neuropathic pain of the upper limb (including 16 patients with complex regional pain syndrome), topographically limited, treated by brachial plexus (BP) nerve roots or supra-scapular nerve (SSN) peripheral nerve stimulation (PNS). The technique consisted in ultrasound-guided percutaneous implantation of a cylindrical lead (Pisces-Quad, Medtronic) close to the SSN or the cervical nerve roots within the BP, depending on the pain topography. All the patients underwent a positive trial stimulation before lead connection to a subcutaneous stimulator. Chronic bipolar stimulation mean parameters were: frequency 55.5 Hertz, voltage 1.17 Volts. The voltage was set below the threshold inducing muscle contractions or paresthesias. Two patients were lost immediately after surgery. At last follow-up (mean 27.5 months), the 20 patients still using the stimulation experienced a mean pain relief of 67.1%. Seventeen patients were improved ≥50%, including 12 improved ≥70%. In 11 patients with a follow-up >2 years, the mean pain relief was 68%. At last follow-up, respectively, six out of the nine (67%) patients treated by SSN stimulation and 10 out of 17 patients (59%) treated by BP stimulation were improved ≥50%. At last follow-up, 12 out of 20 patients still using the stimulation were very satisfied, six were satisfied, and two were poorly satisfied. Complications were: stimulation intolerance due to shock-like sensations (three cases), superficial infection (1), lead fractures (2), and migration (1). In this pilot study, SSN or BP roots PNS provided a relatively safe, durable and effective option to control upper limb neuropathic pain. © 2017 International Neuromodulation Society.

  2. Mechanisms mediating the trophic effect of nerves during vertebrate limb regeneration

    International Nuclear Information System (INIS)

    Munaim, S.I.

    1986-01-01

    Salamanders regenerate their appendages after amputation and nerves are required for this process. Experiments were designed to test the idea that one way nerves could affect blastema cell proliferation is by influencing the metabolism of extracellular matrix (ECM) components and to identify neurotrophic factors which promote blastema cell mitosis. Temporal and spatial differences of glycosaminoglycans (GAGs) synthesis is innervated and denervated limbs were examined. Hyaluronic acid (HA) was found to be the major GAG produced during the proliferative period and chondroitin sulfate during differentiation. Denervation reduced synthesis of both these components by half. Dorsal root ganglia and fibroblast growth factor (FGF), a brain-derived mitogen, similarly doubled GAG synthesis in cultured blastemas, the FGF-effect being primarily on HA production. Histochemical and autoradiographical results confirmed the biochemical data. Autoradiography of the limb tissue showed heaviest labeling of the ECM with 3 H-acetate in areas which also stained most intensely with the dye, carbocyanine DBTC. Denervation reduced the staining and the radioactive labeling. These data indicate that nerves affect synthesis and accumulation of GAGs in the regenerating limb, which may be one way blastema cell proliferation is promoted

  3. Reduced Renshaw Recurrent Inhibition after Neonatal Sciatic Nerve Crush in Rats

    Directory of Open Access Journals (Sweden)

    Liang Shu

    2014-01-01

    Full Text Available Renshaw recurrent inhibition (RI plays an important gated role in spinal motion circuit. Peripheral nerve injury is a common disease in clinic. Our current research was designed to investigate the change of the recurrent inhibitory function in the spinal cord after the peripheral nerve crush injury in neonatal rat. Sciatic nerve crush was performed on 5-day-old rat puppies and the recurrent inhibition between lateral gastrocnemius-soleus (LG-S and medial gastrocnemius (MG motor pools was assessed by conditioning monosynaptic reflexes (MSR elicited from the sectioned dorsal roots and recorded either from the LG-S and MG nerves by antidromic stimulation of the synergist muscle nerve. Our results demonstrated that the MSR recorded from both LG-S or MG nerves had larger amplitude and longer latency after neonatal sciatic nerve crush. The RI in both LG-S and MG motoneuron pools was significantly reduced to virtual loss (15–20% of the normal RI size even after a long recovery period upto 30 weeks after nerve crush. Further, the degree of the RI reduction after tibial nerve crush was much less than that after sciatic nerve crush indicatig that the neuron-muscle disconnection time is vital to the recovery of the spinal neuronal circuit function during reinnervation. In addition, sciatic nerve crush injury did not cause any spinal motor neuron loss but severally damaged peripheral muscle structure and function. In conclusion, our results suggest that peripheral nerve injury during neonatal early development period would cause a more sever spinal cord inhibitory circuit damage, particularly to the Renshaw recurrent inhibition pathway, which might be the target of neuroregeneration therapy.

  4. MRI-guided periradicular nerve root infiltration therapy in low-field (0.23-T) MRI system using optical instrument tracking

    International Nuclear Information System (INIS)

    Sequeiros, Roberto Blanco; Ojala, Risto O.; Klemola, Rauli; Jyrkinen, Lasse; Tervonen, Osmo A.; Vaara, Teuvo J.

    2002-01-01

    The purpose of this study was to evaluate the feasibility of the MRI-guided periradicular nerve root infiltration therapy. Sixty-seven nerve root infiltrations under MRI guidance were done for 61 patients suffering from lumbosacral radicular pain. Informed consent was acquired from all patients. A 0.23-T open-MRI scanner with interventional tools (Outlook Proview, Philips Medical Systems, MR Technologies, Finland) was used. A surface coil was used in all cases. Nerve root infiltration was performed with MRI-compatible 20-G needle (Chiba type MReye, Cook, Bloomington, Ind.; or Manan type, MD Tech, Florida). The evaluation of clinical outcome was achieved with 6 months of clinical follow-up and questionnaire. The effect of nerve root infiltration to the radicular pain was graded: 1=good to excellent, i.e., no pain or not disturbing pain allowing normal physical activity at 3 months from the procedure; 2=temporary, i.e., temporary relief of pain; 3=no relief of pain; and 4=worsening of pain. As an adjunct to MRI-guided positioning of the needle the correct needle localization by the nerve root was confirmed with saline injection to nerve root channel and single-shot fast spin echo (SSFSE) imaging. The MRI guidance allowed adequate needle positioning in all but 1 case (98.5%). This failure was caused by degeneration-induced changes in anatomy. Of patients, 51.5% had good to excellent effect with regard to radicular pain from the procedure, 22.7% had temporary relief, 21.2% had no effect, and in 4.5% the pain worsened. Our results show that MRI guidance is accurate and safe in performing nerve root infiltration at lumbosacral area. The results of radicular pain relief from nerve root infiltration are comparable to CT or fluoroscopy studies on the subject. (orig.)

  5. Pleural malignant mesothelioma causing cord infiltration through the nerve root. Case report.

    Science.gov (United States)

    Okura, Hidehiro; Suga, Yasuo; Akiyama, Osamu; Kudo, Kentaro; Tsutsumi, Satoshi; Abe, Yusuke; Yasumoto, Yukimasa; Ito, Masanori; Izumi, Hiroshi; Shiomi, Kazu

    2009-04-01

    A 61-year-old man presented with a rare pleural malignant mesothelioma of the spine manifesting as progressive weakness of the bilateral lower extremities, numbness in the body and both legs, and dysfunction of the bladder and bowel. He had previous occupational exposure to asbestos while working at a car repair shop and had undergone right panpleuropneumonectomy under a diagnosis of sarcomatous type mesothelioma in the right pleural space. Magnetic resonance imaging of the spine with gadolinium showed an enhanced intramedullary tumor at the T4 level. Operative findings disclosed the clouded and swollen right posterior nerve root, and the pial surface was covered by clouded arachnoid-like membrane. The removed part of the T4 posterior nerve root and intramedullary tumor revealed malignant mesothelioma with invasion spreading along the posterior nerve root. He died of respiratory failure 3 months after the diagnosis. This case shows that spinal metastasis must be considered if a patient with pleural malignant mesothelioma shows neurological worsening and neuroimaging shows an abnormal lesion in the thoracic spinal cord. However, the patient's neurological condition is very difficult to improve in the presence of spinal cord infiltration.

  6. The anatomical relationship between the roots of mandibular second molars and the inferior alveolar nerve.

    Science.gov (United States)

    Chong, B S; Quinn, A; Pawar, R R; Makdissi, J; Sidhu, S K

    2015-06-01

    To evaluate the anatomical relationship between the roots of mandibular second molars and the inferior alveolar nerve (IAN) in relation to the risk of potential nerve injury during root canal treatment. Cone-beam computed tomography (CBCT) images from the patient record database at a dental hospital were selected. The anonymized CBCT images were reconstructed and examined in three planes (coronal, axial and sagittal) using 3D viewing software. The relationship between each root apex of mandibular second molars and the IAN was evaluated by measuring the horizontal and vertical distances from coronal CBCT sections, and the actual distance was then calculated mathematically using Pythagoras' theorem. In 55% of the 272 mandibular second molar roots evaluated, from a total of 134 scans, the distance between the anatomical root apex and the IAN was ≤3 mm. In over 50% of the cases evaluated, there was an intimate relationship between the roots of mandibular second molars and the inferior alveolar nerve (IAN). Therefore, root canal treatment of mandibular second molars may pose a more significant potential risk of IAN injury; necessary precautions should be exercised, and the prudent use of CBCT should be considered if an intimate relationship is suspected. © 2014 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  7. Delayed radiation necrosis of a spinal nerve root presenting as an intra-spinal mass

    International Nuclear Information System (INIS)

    Mikhael, M.A.

    1979-01-01

    Details are given of the case history of a 16 year old male with a six week history of progressive weakness of the arms and legs seven years after his last course of radiotherapy for Hodgkin's disease. Histopathological examination of an excised hard fibrotic mass revealed delayed radiation necrosis of a spinal root nerve with no evidence of Hodgkin's disease. The mass recurred seven months later and was removed by wide excision. The spinal cord had probably received less than 2000 rad during one course of radiotherapy. The 15 MeV electron beam of the second course of radiotherapy would not have penetrated the spinal cord itself, but the nerve roots would have received a much higher dose. Nerve roots should therefore be shielded whenever possible during radiotherapy, and the possibility of radiation necrosis considered in the differential diagnosis of intraspinal masses in the field of earlier radiation therapy. (UK)

  8. The anatomy of the first sacral nerve root sheath shown by computed tomography.

    Science.gov (United States)

    Moore, N R; Dixon, A K; Freer, C E

    1989-08-01

    Analysis of 25 patients with normal computed tomographic appearances at the lumbosacral junction revealed wide variation in the anatomical level at which the first sacral nerve root sheaths were seen emerging from the theca. In nine patients (36%), the S1 nerve root sheaths were first recognized at the level of the lumbosacral disc. In 14 patients (56%), the sheaths emerged cranial to the disc; it is possible that these patients may be more prone to neurological complications related to disc or facet joint disease, especially if the sheath is laterally sited within the lateral recess. Conversely, that minority of patients (two, 8%) in whom the root sheaths emerge caudal to the disc level may be relatively protected from neurological complications.

  9. Microstructural Changes in Compressed Nerve Roots Are Consistent With Clinical Symptoms and Symptom Duration in Patients With Lumbar Disc Herniation.

    Science.gov (United States)

    Wu, Weifei; Liang, Jie; Ru, Neng; Zhou, Caisheng; Chen, Jianfeng; Wu, Yongde; Yang, Zong

    2016-06-01

    A prospective study. To investigate the association between microstructural nerve roots changes on diffusion tensor imaging (DTI) and clinical symptoms and their duration in patients with lumbar disc herniation. The ability to identify microstructural properties of the nervous system with DTI has been demonstrated in many studies. However, there are no data regarding the association between microstructural changes evaluated using DTI and symptoms assessed with the Oswestry Disability Index (ODI) and their duration. Forty consecutive patients with foraminal disc herniation affecting unilateral sacral 1 (S1) nerve roots were enrolled in this study. DTI with tractography was performed on the S1 nerve roots. Clinical symptoms were evaluated using an ODI questionnaire for each patient, and the duration of clinical symptoms was noted based on the earliest instance of leg pain and numbness. Mean fractional anisotropy (FA) and apparent diffusion coefficient (ADC) values were calculated from tractography images. The mean FA value of the compressed lumbar nerve roots was significantly lower than the FA of the contralateral nerve roots (P leg pain, indicating that the microstructure of the nerve root has been damaged. 3.

  10. Effect of the gamma knife treatment on the trigeminal nerve root in Chinese patients with primary trigeminal neuralgia.

    Science.gov (United States)

    Song, Zhi-Xiu; Qian, Wei; Wu, Yu-Quan; Sun, Fang-Jie; Fei, Jun; Huang, Run-Sheng; Fang, Jing-Yu; Wu, Cai-Zhen; An, You-Ming; Wang, Daxin; Yang, Jun

    2014-01-01

    To understand the mechanism of the gamma knife treating the trigeminal neuralgia. Using the MASEP-SRRS type gamma knife treatment system, 140 Chinese patients with trigeminal neuralgia (NT) were treated in our hospital from 2002 to 2010, in which the pain relief rate reached 95% and recurrence rate was 3% only. We investigated the effect of the gamma knife treatment on the trigeminal nerve root in 20 Chinese patients with primary trigeminal neuralgia by the magnetic resonance imager (MRI) observation. 1) The cross-sectional area of trigeminal nerve root became smaller and MRI signals were lower in the treatment side than those in the non-treatment side after the gamma knife treatment of primary trigeminal neuralgia; 2) in the treatment side, the cross-sectional area of the trigeminal nerve root decreased significantly after the gamma knife treatment; 3) there was good correlation between the clinical improvement and the MRI findings; and 4) the straight distance between the trigeminal nerve root and the brainstem did not change after the gamma knife treatment. The pain relief induced the gamma knife radiosurgery might be related with the atrophy of the trigeminal nerve root in Chinese patients with primary trigeminal neuralgia.

  11. Effects of ischemic phrenic nerve root ganglion injury on respiratory disturbances in subarachnoid hemorrhage: an experimental study.

    Science.gov (United States)

    Ulvi, Hızır; Demir, Recep; Aygül, Recep; Kotan, Dilcan; Calik, Muhammet; Aydin, Mehmet Dumlu

    2013-12-30

    Phrenic nerves have important roles on the management of respiration rhythm. Diaphragm paralysis is possible in phrenic nerve roots ischemia in subarachnoid hemorrhage (SAH). We examined whether there is a relationship between phrenic nerve root ischemia and respiratory disturbances in SAH. This study was conducted on 5 healthy control and 14 rabbits with experimentally induced SAH by injecting autologous blood into their cisterna magna. Animals were followed up via monitors for detecting the heart and respiration rhythms for 20 days and then decapitaed by humanely. Normal and degenerated neuron densities of phrenic nerve root at the level of C4 dorsal root ganglia (C4DRG) were estimated by Stereological methods. Between the mean numerical density of degenerated neurons of C4DRG and respiratory rate/minute of groups were compared statistically. Phrenic nerve roots, artery and diaphragm muscles degeneration was detected in respiratory arrest developed animals. The mean neuronal density of C4DRG was 13272 ±1201/mm3 with a mean respiration rate of 23 ±4/min in the control group. The mean degenerated neuron density was 2.240 ±450/mm(3) and respiration rhythm was 31 ±6/min in survivors. But, the mean degenerated neuron density was 5850 ±650/mm(3) and mean respiration rhythm was 34 ±7/min in respiratory arrest developed animals (n = 7). A linear relationship was noticed between the degenerated neuron density of C4DRG and respiraton rate (r = -0.758; p Phrenic nerve root ischemia may be an important factor in respiration rhythms deteriorations in SAH which has not been mentioned in the literature.

  12. CT-guided cervical nerve root injections: comparing the immediate post-injection anesthetic-related effects of the transforaminal injection with a new indirect technique

    International Nuclear Information System (INIS)

    Sutter, Reto; Pfirrmann, Christian W.A.; Peterson, Cynthia K.; Zanetti, Marco; Hodler, Juerg

    2011-01-01

    To describe an ''indirect'' cervical nerve root injection technique with a dorsal approach that should carry less inherent risk than the ''direct'' cervical transforaminal injection approach, and to compare the immediate post-injection results of the two procedures. The indirect and direct cervical nerve root injection procedures are described in detail. Fifty-three consecutive patients receiving the indirect nerve root injections during 2009-2010 were age- and gender-matched to 53 patients who underwent direct transforaminal nerve root injections performed in 2006. Pain level data were collected immediately before and 20-30 min after each procedure. The percentages of pain change in the two groups were compared using the unpaired Student's t test. Fifty-two men (mean age 49) and 54 women (mean age 55) were included. The mean percentage of pain reduction for patients receiving indirect nerve root injections was 38.4% and for those undergoing the direct nerve root injections approach it was 43.2%. This was not significantly different (P = 0.455). No immediate or late adverse effects were reported after either injection procedure. The indirect cervical nerve root injection procedure is a potentially safer alternative to direct cervical transforaminal nerve root injections. The short-term pain reduction is similar using the two injection methods. (orig.)

  13. Neuronal calcium-binding proteins 1/2 localize to dorsal root ganglia and excitatory spinal neurons and are regulated by nerve injury

    DEFF Research Database (Denmark)

    Zhang, Ming Dong; Tortoriello, Giuseppe; Hsueh, Brian

    2014-01-01

    , and nerve injury-induced regulation of NECAB1/NECAB2 in mouse dorsal root ganglia (DRGs) and spinal cord. In DRGs, NECAB1/2 are expressed in around 70% of mainly small- and medium-sized neurons. Many colocalize with calcitonin gene-related peptide and isolectin B4, and thus represent nociceptors. NECAB1....../2 neurons are much more abundant in DRGs than the Ca2+-binding proteins (parvalbumin, calbindin, calretinin, and secretagogin) studied to date. In the spinal cord, the NECAB1/2 distribution is mainly complementary. NECAB1 labels interneurons and a plexus of processes in superficial layers of the dorsal horn....... In the dorsal horn, most NECAB1/2 neurons are glutamatergic. Both NECAB1/2 are transported into dorsal roots and peripheral nerves. Peripheral nerve injury reduces NECAB2, but not NECAB1, expression in DRG neurons. Our study identifies NECAB1/2 as abundant Ca2+-binding proteins in pain-related DRG neurons...

  14. Clinical potential and limitation of MRI for degenerative lumbar spinal diseases. Comparison of MRI, myelography, CT and selective nerve root infiltration

    Energy Technology Data Exchange (ETDEWEB)

    Seki, Michihiro; Kikuchi, Shinichi [Fukushima Medical Coll. (Japan)

    1994-12-01

    To assess the clinical potential and limitations of magnetic resonance imaging (MRI) in degenerative lumbar spinal diseases, the findings of MR imaging were compared with those of myelography and CT. The subjects were 80 patients with intervertebral disc herniation (46), spondylosis (28), degenerative spondylolisthesis (5), and spondylolysis (one). There was a good correlation between sagittal MRI (T1-weighted images) and myelography in measuring the anteroposterior diameter and the compression rate of the injured dural canal in all disease categories. However, MRI was inferior, irrespective of sagittal and coronal images, to myelography in detecting blocking of the dural canal and intradural findings such as redundant nerve roots. MRI was inferior to selective nerve root infiltration in visualizing the compression of the nerve root, irrespective of diseases; however, there was no difference in abnormal findings of the running of nerve root between the two modalities. Transverse MRI was superior to CT in visualizing the nerve root. Thus, MRI alone is insufficient for the diagnosis of degenerative lumbar spinal diseases, and the other modalities should be supplementary for pathophysiological understanding of these diseases. (N.K.).

  15. Clinical potential and limitation of MRI for degenerative lumbar spinal diseases. Comparison of MRI, myelography, CT and selective nerve root infiltration

    International Nuclear Information System (INIS)

    Seki, Michihiro; Kikuchi, Shinichi

    1994-01-01

    To assess the clinical potential and limitations of magnetic resonance imaging (MRI) in degenerative lumbar spinal diseases, the findings of MR imaging were compared with those of myelography and CT. The subjects were 80 patients with intervertebral disc herniation (46), spondylosis (28), degenerative spondylolisthesis (5), and spondylolysis (one). There was a good correlation between sagittal MRI (T1-weighted images) and myelography in measuring the anteroposterior diameter and the compression rate of the injured dural canal in all disease categories. However, MRI was inferior, irrespective of sagittal and coronal images, to myelography in detecting blocking of the dural canal and intradural findings such as redundant nerve roots. MRI was inferior to selective nerve root infiltration in visualizing the compression of the nerve root, irrespective of diseases; however, there was no difference in abnormal findings of the running of nerve root between the two modalities. Transverse MRI was superior to CT in visualizing the nerve root. Thus, MRI alone is insufficient for the diagnosis of degenerative lumbar spinal diseases, and the other modalities should be supplementary for pathophysiological understanding of these diseases. (N.K.)

  16. Coronal MR imaging of the normal 3rd, 4th, and 5th lumbar and 1st sacral nerve roots

    International Nuclear Information System (INIS)

    Hald, J.K.; Nakstad, P.H.; Hauglum, B.E.

    1991-01-01

    Seven healthy volunteers underwent coronal MR imaging at 1.5 tesla of the normal 3rd, 4th, and 5th lumbar, and 1st sacral nerve roots. Coronal slices, 3-mm-thick with a 0.3-mm gap between the slices were obtained (TR/TE 600/22) through the lumbar spinal canal. All the nerve roots were visible on at least one image. One can routinely expect to demonstrate the 3rd, 4th, and 5th lumbar, and 1st sacral nerve roots on T1-weighted, 3-mm-thick coronal MR scans. We found no correlation between the degree of lumbar lordosis and the lengths of the visible nerve roots. Five patients with one of the following spinal problems: anomaly, tumor, disk herniation, and failed back surgery syndrome were examined according to our protocol. In all these cases coronal MR imaging gave the correct diagnosis. (orig.)

  17. Coronal MR imaging of the normal 3rd, 4th, and 5th lumbar and 1st sacral nerve roots

    Energy Technology Data Exchange (ETDEWEB)

    Hald, J K; Nakstad, P H; Hauglum, B E [National Hospital, Oslo (Norway). Dept. of Radiology

    1991-05-01

    Seven healthy volunteers underwent coronal MR imaging at 1.5 tesla of the normal 3rd, 4th, and 5th lumbar, and 1st sacral nerve roots. Coronal slices, 3-mm-thick with a 0.3-mm gap between the slices were obtained (TR/TE 600/22) through the lumbar spinal canal. All the nerve roots were visible on at least one image. One can routinely expect to demonstrate the 3rd, 4th, and 5th lumbar, and 1st sacral nerve roots on T1-weighted, 3-mm-thick coronal MR scans. We found no correlation between the degree of lumbar lordosis and the lengths of the visible nerve roots. Five patients with one of the following spinal problems: anomaly, tumor, disk herniation, and failed back surgery syndrome were examined according to our protocol. In all these cases coronal MR imaging gave the correct diagnosis. (orig.).

  18. Distortion-free diffusion tensor imaging for evaluation of lumbar nerve roots: Utility of direct coronal single-shot turbo spin-echo diffusion sequence.

    Science.gov (United States)

    Sakai, Takayuki; Doi, Kunio; Yoneyama, Masami; Watanabe, Atsuya; Miyati, Tosiaki; Yanagawa, Noriyuki

    2018-06-01

    Diffusion tensor imaging (DTI) based on a single-shot echo planer imaging (EPI-DTI) is an established method that has been used for evaluation of lumbar nerve disorders in previous studies, but EPI-DTI has problems such as a long acquisition time, due to a lot of axial slices, and geometric distortion. To solve these problems, we attempted to apply DTI based on a single-shot turbo spin echo (TSE-DTI) with direct coronal acquisition. Our purpose in this study was to investigate whether TSE-DTI may be more useful for evaluation of lumbar nerve disorders than EPI-DTI. First, lumbar nerve roots of five healthy volunteers were evaluated for optimization of imaging parameters with TSE-DTI including b-values and the number of motion proving gradient (MPG) directions. Subsequently, optimized TSE-DTI was quantitatively compared with conventional EPI-DTI by using fractional anisotropy (FA) values and visual scores in subjective visual evaluation of tractography. Lumbar nerve roots of six patients, who had unilateral neurologic symptoms in one leg, were evaluated by the optimized TSE-DTI. TSE-DTI with b-value of 400 s/mm 2 and 32 diffusion-directions could reduce the image distortion compared with EPI-DTI, and showed that the average FA values on the symptomatic side for six patients were significantly lower than those on the non-symptomatic side (P DTI might show damaged areas of lumbar nerve roots without severe image distortion. TSE-DTI might improve the reproducibility in measurements of FA values for quantification of a nerve disorder, and would become a useful tool for diagnosis of low back pain. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Influence of needle position on lumbar segmental nerve root block selectivity.

    Science.gov (United States)

    Wolff, André P; Groen, Gerbrand J; Wilder-Smith, Oliver H

    2006-01-01

    In patients with chronic low back pain radiating to the leg, segmental nerve root blocks (SNRBs) are performed to predict surgical outcome and identify the putative symptomatic spinal nerve. Epidural spread may lead to false interpretation, affecting clinical decision making. Systematic fluoroscopic analysis of epidural local anesthetic spread and its relationship to needle tip location has not been published to date. Study aims include assessment of epidural local anesthetic spread and its relationship to needle position during fluoroscopy-assisted blocks. Patients scheduled for L4, L5, and S1 blocks were included in this prospective observational study. Under fluoroscopy and electrostimulation, they received 0.5 mL of a mixture containing lidocaine 5 mg and iohexol 75 mg. X-rays with needle tip and contrast were scored for no epidural spread (grade 0), local spread epidurally (grade 1), or to adjacent nerve roots (grade 2). Sixty-five patients were analyzed for epidural spread, 62 for needle position. Grade 1 epidural spread occurred in 47% of L4 and 28% of L5 blocks and grade 2 spread in 3 blocks (5%; L5 n = 1, S1 n = 2). For lumbar blocks, the needle was most frequently found in the lateral upper half of the intervertebral foramen. Epidural spread occurred more frequently with medial needle positions (P = .06). The findings suggest (P = .06) that the risk of grade 1 and 2 lumbar epidural spread, which results in decreased SNRB selectivity, is greater with medial needle positions in the intervertebral foramen. The variability in anatomic position of the dorsal root ganglion necessitates electrostimulation to guide SNRB in addition to fluoroscopy.

  20. Conjoined lumbosacral nerve roots compromised by disk herniation: sagittal shoulder sign for the preoperative diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Chang Ho [University of Ulsan College of Medicine, Asan Medical Center, Department of Radiology and Research Institute of Radiology, Seoul (Korea); Korea University College of Medicine, Department of Radiology, Anam Hospital, Seoul (Korea); Shin, Myung Jin; Kim, Sung Moon; Lee, Sang Hoon; Kim, Hee Kyung; Ryu, Jeong Ah [University of Ulsan College of Medicine, Asan Medical Center, Department of Radiology and Research Institute of Radiology, Seoul (Korea); Lee, Choon-Sung [University of Ulsan College of Medicine, Asan Medical Center, Department of Orthopedic Surgery, Seoul (Korea); Kim, Sam Soo [Kangwon National University College of Medicine, Department of Radiology, Kangwon (Korea)

    2008-03-15

    The objective was to determine the importance of the ''sagittal shoulder sign'' on magnetic resonance (MR) images for the diagnosis of conjoined lumbosacral nerve roots (CLNR) that are compromised by herniated disks. Magnetic resonance images of 11 patients (6 men and 5 women; age range, 25-71 years; average age, 48.7 years) with surgically proven CLNR, which was compromised by herniated disks, were retrospectively evaluated by two musculoskeletal radiologists. MR images were evaluated for the presence or absence of the sagittal shoulder sign - a vertical structure connecting two consecutive nerve roots and overlying disk on the sagittal MR images. The radiologists noted the type of accompanying disk herniation and bony spinal canal changes, as well as other characteristic MR features of CLNR, the common passage of two consecutive nerve roots through the neural foramen on axial MR images. The sagittal shoulder sign was identified with a mean frequency of 90.9% by the two observers (in 10 of 11 patients). The common passage of two consecutive nerve roots through the neural foramen on axial MR images was identified with a mean frequency of 59.1% (in 7 and 6 out of 11 patients, by observers 1 and 2, respectively). Good interobserver agreement for the sagittal shoulder sign was present (k = 0.621, p < 0.05). Observation of the sagittal shoulder sign may prove helpful for diagnosing CLNR in patients with disk herniation. In particular, this sign appears to be useful when there is no evidence of CLNR on axial MR images. (orig.)

  1. The short- and medium-term effectiveness of CT-guided selective cervical nerve root injection for pain and disability

    Energy Technology Data Exchange (ETDEWEB)

    Desai, Amidevi; Saha, Shouvik; Sharma, Naveen; Huckerby, Lauren; Houghton, Russell [Guy' s and St. Thomas' Hospitals, Department of Radiology, London (United Kingdom)

    2014-07-15

    CT-guided cervical nerve root injection with corticosteroid and/or local anesthetic is a recognized technique in the evaluation and treatment of cervical radiculopathy. There are few prospective studies on the efficacy of the various techniques employed in cervical nerve root injection. We present our results from a 1-year prospective series using a CT-guided anterolateral transforaminal approach for cervical nerve root injection of bupivacaine and dexamethasone. Pain using a numeric rating scale was assessed at pre-injection, 15 min post-injection, 1 month, and 3 months. Disability was assessed using the Oswestry Neck Disability Index (NDI) questionnaire at pre-injection, 1 month post-injection, and 3 months. In total, 50 patients were followed for 3 months. The mean reductions in pain were: 15 min (77 %), 1 month (39 %), and 3 months (33 %). The mean reductions in NDI were: 1 month (26 %) and 3 months (also 26 %). Results were statistically significant. CT-guided selective cervical nerve root injection in the treatment of cervical radicular pain and related disability produces statistically significant reductions in pain and disability to at least 3 months post-procedure. (orig.)

  2. The short- and medium-term effectiveness of CT-guided selective cervical nerve root injection for pain and disability

    International Nuclear Information System (INIS)

    Desai, Amidevi; Saha, Shouvik; Sharma, Naveen; Huckerby, Lauren; Houghton, Russell

    2014-01-01

    CT-guided cervical nerve root injection with corticosteroid and/or local anesthetic is a recognized technique in the evaluation and treatment of cervical radiculopathy. There are few prospective studies on the efficacy of the various techniques employed in cervical nerve root injection. We present our results from a 1-year prospective series using a CT-guided anterolateral transforaminal approach for cervical nerve root injection of bupivacaine and dexamethasone. Pain using a numeric rating scale was assessed at pre-injection, 15 min post-injection, 1 month, and 3 months. Disability was assessed using the Oswestry Neck Disability Index (NDI) questionnaire at pre-injection, 1 month post-injection, and 3 months. In total, 50 patients were followed for 3 months. The mean reductions in pain were: 15 min (77 %), 1 month (39 %), and 3 months (33 %). The mean reductions in NDI were: 1 month (26 %) and 3 months (also 26 %). Results were statistically significant. CT-guided selective cervical nerve root injection in the treatment of cervical radicular pain and related disability produces statistically significant reductions in pain and disability to at least 3 months post-procedure. (orig.)

  3. The role of Gd-enhanced three-dimensional MRI fast low-angle shot (FLASH) in the evaluation of symptomatic lumbosacral nerve roots

    Energy Technology Data Exchange (ETDEWEB)

    Kikkawa, Ichiro; Sugimoto, Hideharu; Saita, Kazuo; Ookami, Hitoshi; Nakama, Sueo; Hoshino, Yuichi [Jichi Medical School, Minamikawachi, Tochigi (Japan)

    2001-07-01

    In the field of lumbar spine disorders, three-dimensional (3-D) magnetic resonance imaging (MRI) can clearly depict a lumbar nerve root from the distal region to the dorsal root ganglion. In this study, we used a gadoliniumdiethylenetriaminepentaacetic acid (Gd-DTPA) enhanced-three-dimensional (3-D) fast low-angle shot (FLASH) sequence when examining lumbosacral disorders. The subjects were 33 patients (14 men and 19 women) in whom lumbosacral neural compression had been diagnosed clinically. Twenty-one patients had lumbar disc herniation, 11 had lumbar spinal stenosis, and 1 had lumbar radiculopathy caused by rheumatoid arthritis. Five subjects with low back pain were also studied as a control group. In all patients and in all 5 of the controls, the dorsal root ganglion of every root was enhanced clearly. There was no root enhancement in the 5 controls. Enhancement of the symptomatic nerve roots, caused by compression, was found in 11 of the 33 patients. All 11 patients had rediculopathy, and muscle weakness was more frequent in patients with enhanced nerve roots than in those without enhancement. There was no enhancement of the cauda equina, even in the patients with cauda syndrome. The enhancement effect may reflect some pathological condition of the compressed nerve root and needs to be studied further. (author)

  4. The role of Gd-enhanced three-dimensional MRI fast low-angle shot (FLASH) in the evaluation of symptomatic lumbosacral nerve roots

    International Nuclear Information System (INIS)

    Kikkawa, Ichiro; Sugimoto, Hideharu; Saita, Kazuo; Ookami, Hitoshi; Nakama, Sueo; Hoshino, Yuichi

    2001-01-01

    In the field of lumbar spine disorders, three-dimensional (3-D) magnetic resonance imaging (MRI) can clearly depict a lumbar nerve root from the distal region to the dorsal root ganglion. In this study, we used a gadoliniumdiethylenetriaminepentaacetic acid (Gd-DTPA) enhanced-three-dimensional (3-D) fast low-angle shot (FLASH) sequence when examining lumbosacral disorders. The subjects were 33 patients (14 men and 19 women) in whom lumbosacral neural compression had been diagnosed clinically. Twenty-one patients had lumbar disc herniation, 11 had lumbar spinal stenosis, and 1 had lumbar radiculopathy caused by rheumatoid arthritis. Five subjects with low back pain were also studied as a control group. In all patients and in all 5 of the controls, the dorsal root ganglion of every root was enhanced clearly. There was no root enhancement in the 5 controls. Enhancement of the symptomatic nerve roots, caused by compression, was found in 11 of the 33 patients. All 11 patients had rediculopathy, and muscle weakness was more frequent in patients with enhanced nerve roots than in those without enhancement. There was no enhancement of the cauda equina, even in the patients with cauda syndrome. The enhancement effect may reflect some pathological condition of the compressed nerve root and needs to be studied further. (author)

  5. Non-canonical WOX11-mediated root branching contributes to plasticity in Arabidopsis root system architecture.

    Science.gov (United States)

    Sheng, Lihong; Hu, Xiaomei; Du, Yujuan; Zhang, Guifang; Huang, Hai; Scheres, Ben; Xu, Lin

    2017-09-01

    Lateral roots (LRs), which originate from the growing root, and adventitious roots (ARs), which are formed from non-root organs, are the main contributors to the post-embryonic root system in Arabidopsis However, our knowledge of how formation of the root system is altered in response to diverse inductive cues is limited. Here, we show that WOX11 contributes to root system plasticity. When seedlings are grown vertically on medium, WOX11 is not expressed in LR founder cells. During AR initiation, WOX11 is expressed in AR founder cells and activates LBD16 LBD16 also functions in LR formation and is activated in that context by ARF7 / 19 and not by WOX11 This indicates that divergent initial processes that lead to ARs and LRs may converge on a similar mechanism for primordium development. Furthermore, we demonstrated that when plants are grown in soil or upon wounding on medium, the primary root is able to produce both WOX11 -mediated and non- WOX11 -mediated roots. The discovery of WOX11 -mediated root-derived roots reveals a previously uncharacterized pathway that confers plasticity during the generation of root system architecture in response to different inductive cues. © 2017. Published by The Company of Biologists Ltd.

  6. Tonic aortic depressor nerve stimulation does not impede baroreflex dynamic characteristics concomitantly mediated by the stimulated nerve.

    Science.gov (United States)

    Kawada, Toru; Turner, Michael J; Shimizu, Shuji; Kamiya, Atsunori; Shishido, Toshiaki; Sugimachi, Masaru

    2018-03-01

    Although electrical activation of the carotid sinus baroreflex (baroreflex activation therapy) is being explored as a device therapy for resistant hypertension, possible effects on baroreflex dynamic characteristics of interaction between electrical stimulation and pressure inputs are not fully elucidated. To examine whether the electrical stimulation of the baroreceptor afferent nerve impedes normal short-term arterial pressure (AP) regulation mediated by the stimulated nerve, we electrically stimulated the right aortic depressor nerve (ADN) while estimating the baroreflex dynamic characteristics by imposing pressure inputs to the isolated baroreceptor region of the right ADN in nine anesthetized rats. A Gaussian white noise signal with a mean of 120 mmHg and standard deviation of 20 mmHg was used for the pressure perturbation. A tonic ADN stimulation (2 or 5 Hz, 10 V, 0.1-ms pulse width) decreased mean sympathetic nerve activity (367.0 ± 70.9 vs. 247.3 ± 47.2 arbitrary units, P ADN stimulation did not affect the slope of dynamic gain in the neural arc transfer function from pressure perturbation to sympathetic nerve activity (16.9 ± 1.0 vs. 14.7 ± 1.6 dB/decade, not significant). These results indicate that electrical stimulation of the baroreceptor afferent nerve does not significantly impede the dynamic characteristics of the arterial baroreflex concomitantly mediated by the stimulated nerve. Short-term AP regulation by the arterial baroreflex may be preserved during the baroreflex activation therapy.

  7. Electrophysiologic evaluation of lumbosacral single nerve roots using compound muscle action potentials.

    Science.gov (United States)

    Ogura, Taku; Shikata, Hideto; Hase, Hitoshi; Mori, Masaki; Hayashida, Taturo; Osawa, Toru; Mikami, Yasuo; Kubo, Toshikazu

    2003-10-01

    Transcutaneous electrical stimulation applied to the vertebral column produces compound muscle action potentials (CMAPs) from the leg muscles. Using this method, we evaluated the efferent pathways of the lumbosacral nerve roots. The subjects were 26 healthy volunteers and 31 patients with lumbar disc herniation (LDH). CMAP recordings were obtained from the bilateral vastus medialis, tibialis anterior, extensor digitorum brevis, and abductor hallucis muscles using low-output-impedance stimulation. In normal subjects, the CMAP latency increased linearly with the distance between the stimulating electrode and the recording electrode, with little difference in latency between the left and the right sides in each subject. The CMAP amplitude was significantly lower in the patients with LDH, and the latency was also prolonged when the stimulating electrode was placed above the lesion. This technique may thus be a useful noninvasive method for assessing lumbosacral nerve root function in patients with LDH.

  8. The Relationship amongst Intervertebral Disc Vertical Diameter, Lateral Foramen Diameter and Nerve Root Impingement in Lumbar Vertebra

    Directory of Open Access Journals (Sweden)

    Yusof MI

    2018-03-01

    Full Text Available Introduction: The vertical diameter of the foramen is dependent upon the vertical diameter of the corresponding intervertebral disc. A decrease in disc vertical diameter has direct anatomic consequences to the foraminal diameter and area available for the nerve root passing through it. This study is to establish the relationship amongst the intervertebral disc vertical diameter, lateral foramen diameters and nerve root compression in the lumbar vertebra. Materials and Methods: Measurements of the study parameters were performed using sagittal MRI images. The parameters studied were: intervertebral disc vertical diameter (DVD, foraminal vertical diameter (FVD, foraminal transverse diameter (FTD and nerve root diameter (NRD of both sides. The relationship between the measured parameters were then analyzed. Results: A total of 62 MRI images were available for this study. Statistical analysis showed moderate to strong correlation between DVD and FVD at all the lumbar levels except at left L23 and L5S1 and right L3L4 and L4L5. Correlation between DVD and FTD were not significant at all lumbar levels. Regression analysis showed that a decrease of 1mm of DVD was associated with 1.3, 1.7, 3.3, 3.3 and 1.3mm reduction of FVD at L1L2, L2L3, L3L4, L4L5 and L5S1 respectively. Conclusion: Reduction of DVD was associated with reduction of FVD. However, FVD was relatively wide for the nerve root even with complete loss of DVD. FTD was much narrower than the FVD making it more likely to cause nerve root compression at the exit foramina. These anatomical details should be given consideration in treating patients with lateral canal stenosis.

  9. Sacral nerve root neuromodulation: an effective treatment for refractory urge incontinence.

    Science.gov (United States)

    Shaker, H S; Hassouna, M

    1998-05-01

    Sacral foramina implants have been recognized recently as a method for treatment of refractory urinary urge incontinence. We study the outcome of the procedure with in-depth analysis of the results of 18 implanted cases. Patients with urinary urge incontinence were subjected to percutaneous nerve evaluation of the S3 roots as a temporary screening test to determine response to neuromodulation. Satisfactory responders were implanted with permanent sacral root neuroprosthesis. The study design included comprehensive voiding diaries for 4 consecutive days twice as a baseline, 1 with percutaneous nerve evaluation screening, 1 after the percutaneous nerve evaluation, 1 at the 1, 3 and 6 post-implantation visits, and every 6 months thereafter. Uroflowmetry and quality of life questionnaires were performed at the same intervals. Urodynamic study was done as a baseline and 6 months after implantation of the neuroprosthesis. All 18 patients (16 women and 2 men) with refractory urge incontinence received a sacral foramina neuroprosthesis after demonstrating a good response to the percutaneous nerve evaluation. Average patient age at presentation was 42.3+/-3.3 years (range 22 to 67) and duration of urinary symptoms was 6.6+/-1.3 years (range 1.2 to 18.8). Average followup was 18.8 months (range 3 to 83). Neuromodulation in these patients showed a marked reduction in leakage episodes from 6.49 to 1.98 times per 24 hours and in the leakage severity score. Eight patients became completely dry and 4 had average leakage episodes of 1 or less daily. Patients showed as well a decrease in urinary frequency with an increase in functional bladder capacity. Associated pelvic pain improved substantially. Cystometrograms demonstrated increased volume at first sensation by 50% and increased cystometric capacity by 15% with the disappearance of uninhibited contractions in 1 of the 4 patients who presented with it preoperatively. There was also noticeable improvement in the quality of life

  10. Accuracy of Clinical Tests in Detecting Disk Herniation and Nerve Root Compression in Subjects With Lumbar Radicular Symptoms.

    Science.gov (United States)

    Ekedahl, Harald; Jönsson, Bo; Annertz, Mårten; Frobell, Richard B

    2018-04-01

    To investigate the accuracy of 3 commonly used neurodynamic tests (slump test, straight-leg raise [SLR] test, femoral neurodynamic test) and 2 clinical assessments to determine radiculopathy (radiculopathy I, 1 neurologic sign; radiculopathy II, 2 neurologic signs corresponding to 1 specific nerve root) in detecting magnetic resonance imaging (MRI) findings (extrusion, subarticular nerve root compression, and foraminal nerve root compression). Validity study. Secondary care. We included subjects (N=99; mean age, 58y; 54% women) referred for epidural steroid injection because of lumbar radicular symptoms who had positive clinical and MRI findings. Positive clinical findings included the slump test (n=67), SLR test (n=50), femoral neurodynamic test (n=7), radiculopathy I (n=70), and radiculopathy II (n=33). Positive MRI findings included extrusion (n=27), subarticular nerve compression (n=14), and foraminal nerve compression (n=25). Not applicable. Accuracy of clinical tests in detecting MRI findings was evaluated using sensitivity, specificity, and receiver operating characteristics analysis with area under the curve (AUC). The slump test had the highest sensitivity in detecting extrusion (.78) and subarticular nerve compression (1.00), but the respective specificity was low (.36 and .38). Radiculopathy I was most sensitive in detecting foraminal nerve compression (.80) but with low specificity (.34). Only 1 assessment had a concurrent high sensitivity and specificity (ie, radiculopathy II) in detecting subarticular nerve compression (.71 and .73, respectively). The AUC for all tests in detecting extrusion, subarticular nerve compression, and foraminal nerve compression showed ranges of .48 to .60, .63 to .82, and .33 to .57, respectively. In general, the investigated neurodynamic tests or assessments for radiculopathy lacked diagnostic accuracy. The slump test was the most sensitive test, while radiculopathy II was the most specific test. Most interestingly, no

  11. Selective detrusor activation by electrical sacral nerve root stimulation in spinal cord injury

    NARCIS (Netherlands)

    Rijkhoff, N. J.; Wijkstra, H.; van Kerrebroeck, P. E.; Debruyne, F. M.

    1997-01-01

    Electrical sacral nerve root stimulation can be used in spinal cord injury patients to induce urinary bladder contraction. However, existing stimulation methods activate simultaneously both the detrusor muscle and the urethral sphincter. Urine evacuation is therefore only possible using poststimulus

  12. Proximally evoked soleus H-reflex to S1 nerve root stimulation in sensory neuronopathies (ganglionopathies).

    Science.gov (United States)

    Zhu, Dong-Qing; Zhu, Yu; Qiao, Kai; Zheng, Chao-Jun; Bradley, Scott; Weber, Robert; Chen, Xiang-Jun

    2013-11-01

    Sensory neuronopathy (SNN) mimics distal sensory axonopathy. The conventional H-reflex elicited by tibial nerve stimulation (tibial H-reflex) is usually abnormal in both conditions. We evaluated the proximally evoked soleus H-reflex in response to S1 nerve root stimulation (S1 foramen H-reflex) in SNN. Eleven patients with SNN and 6 with distal sensory axonopathy were studied. Tibial and S1 foramen H-reflexes were performed bilaterally in each patient. Tibial and S1 foramen H-reflexes were absent bilaterally in all patients with SNN. In the patients with distal sensory axonopathy, tibial H-reflexes were absent in 4 and demonstrated prolonged latencies in 2, but S1 foramen H-reflexes were normal. Characteristic absence of the H-reflex after both proximal and distal stimulation reflects primary loss of dorsal root ganglion (DRG) neurons and the distinct non-length-dependent impairment of sensory nerve fibers in SNN. Copyright © 2013 Wiley Periodicals, Inc.

  13. Relationships between the integrity and function of lumbar nerve roots as assessed by diffusion tensor imaging and neurophysiology

    Energy Technology Data Exchange (ETDEWEB)

    Chiou, S.Y.; Strutton, P.H. [Imperial College London, The Nick Davey Laboratory, Division of Surgery, Human Performance Group, Department of Surgery and Cancer, Faculty of Medicine, London (United Kingdom); Hellyer, P.J. [Imperial College London, Computational, Cognitive and Clinical Neuroimaging Laboratory, Division of Brain Sciences, London (United Kingdom); Imperial College London, Department of Bioengineering, London (United Kingdom); Sharp, D.J. [Imperial College London, Computational, Cognitive and Clinical Neuroimaging Laboratory, Division of Brain Sciences, London (United Kingdom); Newbould, R.D. [Imanova, Ltd, London (United Kingdom); Patel, M.C. [Charing Cross Hospital, Imaging Department, Imperial College Healthcare NHS Trust, London (United Kingdom)

    2017-09-15

    Diffusion tensor imaging (DTI) has shown promise in the measurement of peripheral nerve integrity, although the optimal way to apply the technique for the study of lumbar spinal nerves is unclear. The aims of this study are to use an improved DTI acquisition to investigate lumbar nerve root integrity and correlate this with functional measures using neurophysiology. Twenty healthy volunteers underwent 3 T DTI of the L5/S1 area. Regions of interest were applied to L5 and S1 nerve roots, and DTI metrics (fractional anisotropy, mean, axial and radial diffusivity) were derived. Neurophysiological measures were obtained from muscles innervated by L5/S1 nerves; these included the slope of motor-evoked potential input-output curves, F-wave latency, maximal motor response, and central and peripheral motor conduction times. DTI metrics were similar between the left and right sides and between vertebral levels. Conversely, significant differences in DTI measures were seen along the course of the nerves. Regression analyses revealed that DTI metrics of the L5 nerve correlated with neurophysiological measures from the muscle innervated by it. The current findings suggest that DTI has the potential to be used for assessing lumbar spinal nerve integrity and that parameters derived from DTI provide quantitative information which reflects their function. (orig.)

  14. Cerebellar and brainstem infarction as a complication of CT-guided transforaminal cervical nerve root block

    Energy Technology Data Exchange (ETDEWEB)

    Suresh, S. [The Royal National Orthopaedic Hospital NHS Trust, London (United Kingdom); Berman, J. [The Royal National Orthopaedic Hospital NHS Trust, Anaesthetic Department, London (United Kingdom); Connell, David A. [The Royal National Orthopaedic Hospital NHS Trust, Department of Radiology, London (United Kingdom)

    2007-05-15

    A 60-year-old man with a 4-year history of intractable neck pain and radicular pain in the C5 nerve root distribution presented to our department for a CT-guided transforaminal left C5 nerve root block. He had had a similar procedure on the right 2 months previously, and had significant improvement of his symptoms with considerable pain relief. On this occasion he was again accepted for the procedure after the risks and potential complications had been explained. Under CT guidance, a 25G spinal needle was introduced and after confirmation of the position of the needle, steroid was injected. Immediately the patient became unresponsive, and later developed a MR-proven infarct affecting the left vertebral artery (VA) territory. This is the first report of a major complication of a cervical root injection under CT guidance reported in the literature. We present this case report and the literature review of the potential complications of this procedure. (orig.)

  15. Cerebellar and brainstem infarction as a complication of CT-guided transforaminal cervical nerve root block

    International Nuclear Information System (INIS)

    Suresh, S.; Berman, J.; Connell, David A.

    2007-01-01

    A 60-year-old man with a 4-year history of intractable neck pain and radicular pain in the C5 nerve root distribution presented to our department for a CT-guided transforaminal left C5 nerve root block. He had had a similar procedure on the right 2 months previously, and had significant improvement of his symptoms with considerable pain relief. On this occasion he was again accepted for the procedure after the risks and potential complications had been explained. Under CT guidance, a 25G spinal needle was introduced and after confirmation of the position of the needle, steroid was injected. Immediately the patient became unresponsive, and later developed a MR-proven infarct affecting the left vertebral artery (VA) territory. This is the first report of a major complication of a cervical root injection under CT guidance reported in the literature. We present this case report and the literature review of the potential complications of this procedure. (orig.)

  16. Somatic modulation of spinal reflex bladder activity mediated by nociceptive bladder afferent nerve fibers in cats.

    Science.gov (United States)

    Xiao, Zhiying; Rogers, Marc J; Shen, Bing; Wang, Jicheng; Schwen, Zeyad; Roppolo, James R; de Groat, William C; Tai, Changfeng

    2014-09-15

    The goal of the present study was to determine if supraspinal pathways are necessary for inhibition of bladder reflex activity induced by activation of somatic afferents in the pudendal or tibial nerve. Cats anesthetized with α-chloralose were studied after acute spinal cord transection at the thoracic T9/T10 level. Dilute (0.25%) acetic acid was used to irritate the bladder, activate nociceptive afferent C-fibers, and trigger spinal reflex bladder contractions (amplitude: 19.3 ± 2.9 cmH2O). Hexamethonium (a ganglionic blocker, intravenously) significantly (P reflex bladder contractions to 8.5 ± 1.9 cmH2O. Injection of lidocaine (2%, 1-2 ml) into the sacral spinal cord or transection of the sacral spinal roots and spinal cord further reduced the contraction amplitude to 4.2 ± 1.3 cmH2O. Pudendal nerve stimulation (PNS) at frequencies of 0.5-5 Hz and 40 Hz but not at 10-20 Hz inhibited reflex bladder contractions, whereas tibial nerve stimulation (TNS) failed to inhibit bladder contractions at all tested frequencies (0.5-40 Hz). These results indicate that PNS inhibition of nociceptive afferent C-fiber-mediated spinal reflex bladder contractions can occur at the spinal level in the absence of supraspinal pathways, but TNS inhibition requires supraspinal pathways. In addition, this study shows, for the first time, that after acute spinal cord transection reflex bladder contractions can be triggered by activating nociceptive bladder afferent C-fibers using acetic acid irritation. Understanding the sites of action for PNS or TNS inhibition is important for the clinical application of pudendal or tibial neuromodulation to treat bladder dysfunctions. Copyright © 2014 the American Physiological Society.

  17. Radiation-induced nerve root degeneration and hypertrophic neuropathy in the lumbosacral spinal cord of rats: The relation with changes in aging rats

    International Nuclear Information System (INIS)

    Kogel, A.J. van der

    1977-01-01

    Three-month-old WAG Rij rats were irradiated with 300 kV X-rays on the lumbar region of the spinal column with doses below the level for causing paralysis due to radiation radiculomyelopathy. 8-9 months after irradiation. degeneration of predominantly the ventral nerve roots of the cauda equina was observed. Three stages were distinguishable: I) Demyelination and proliferation of Schwann cells: II) Local swelling of ventral nerve roots, with concentric layers of Schwann cells resembling hypertrophic neuropathy: III) Malignant Schwannoma, invading roots and spinal cord. It is concluded that the degenerative and proliferative lesions represent a continuous series of stages of slowly progressive lesions. The ventral nerve root degeneration (Ist stage) is similar to that observed in aging, unirradiated rats, normally developing at the age of 18-20 months. (orig.) [de

  18. RESULTS OF TREATMENT OF ACUTE LUMBAR DISC HERNIATION WITH TRANSFORAMINAL NERVE ROOT BLOCK

    Directory of Open Access Journals (Sweden)

    EMILIANO NEVES VIALLE

    Full Text Available ABSTRACT Objective: To determine the efficacy of anesthetic transforaminal nerve root block in patients with sciatica secondary to lumbar disc herniation through a prospective observational study. Methods: The study included 176 patients from a private clinic undergoing transforaminal injection performed by a single spinal surgeon. The patients were assessed after two weeks, three months and six months regarding to the improvement of the pain radiating to the lower limbs. In case of persistent symptoms, patients could choose to perform a new nerve root block and maintenance of physical therapy or be submitted to conventional microdiscectomy. Results: By the end of six-month follow-up of the 176 patients, 116 had a favorable outcome (95 after one block and 21 after two blocks, and only 43 required surgery. Conclusion: The results of our study suggest a positive effect of transforaminal block for the treatment of sciatica in patients with lumbar disc herniation.

  19. Magnetic resonance imaging of nerve root inflammation in the Guillain-Barre syndrome

    International Nuclear Information System (INIS)

    Perry, J.R.; Fung, A.; Poon, P.; Bayer, N.

    1994-01-01

    We report gadolinium-enhancing nerve root lesions in a 52-year-old man with typical Guillain-Barre syndrome (GBS). This enhancement correlates well with the perineurial inflammatory and demyelinating processes known to characterize GBS and other inflammatory neuropathies. MRI should enable further exploration of patterns of disease in GBS and, with further study, perhaps assist in evaluating therapy. (orig.)

  20. Magnetic resonance imaging of nerve root inflammation in the Guillain-Barre syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Perry, J.R. [St. Michael`s Hospital, Toronto, ON (Canada). Div. of Neurology; Fung, A. [St. Michael`s Hospital, Toronto, ON (Canada). Div. of Radiology; Poon, P. [St. Michael`s Hospital, Toronto, ON (Canada). Div. of Radiology; Bayer, N. [St. Michael`s Hospital, Toronto, ON (Canada). Div. of Neurology

    1994-02-01

    We report gadolinium-enhancing nerve root lesions in a 52-year-old man with typical Guillain-Barre syndrome (GBS). This enhancement correlates well with the perineurial inflammatory and demyelinating processes known to characterize GBS and other inflammatory neuropathies. MRI should enable further exploration of patterns of disease in GBS and, with further study, perhaps assist in evaluating therapy. (orig.)

  1. Peripheral nerve stimulation (PNS) in the trapezius muscle region alleviate chronic neuropathic pain after lower brachial plexus root avulsion lesion: A case report

    DEFF Research Database (Denmark)

    Sørensen, Jens Christian Hedemann; Meier, Kaare; Perinpam, Larshan

    Peripheral nerve stimulation (PNS) in the trapezius muscle region alleviate chronic neuropathic pain after lower brachial plexus root avulsion lesion: A case report......Peripheral nerve stimulation (PNS) in the trapezius muscle region alleviate chronic neuropathic pain after lower brachial plexus root avulsion lesion: A case report...

  2. Combined KHFAC + DC nerve block without onset or reduced nerve conductivity after block

    Science.gov (United States)

    Franke, Manfred; Vrabec, Tina; Wainright, Jesse; Bhadra, Niloy; Bhadra, Narendra; Kilgore, Kevin

    2014-10-01

    Objective. Kilohertz frequency alternating current (KHFAC) waveforms have been shown to provide peripheral nerve conductivity block in many acute and chronic animal models. KHFAC nerve block could be used to address multiple disorders caused by neural over-activity, including blocking pain and spasticity. However, one drawback of KHFAC block is a transient activation of nerve fibers during the initiation of the nerve block, called the onset response. The objective of this study is to evaluate the feasibility of using charge balanced direct current (CBDC) waveforms to temporarily block motor nerve conductivity distally to the KHFAC electrodes to mitigate the block onset-response. Approach. A total of eight animals were used in this study. A set of four animals were used to assess feasibility and reproducibility of a combined KHFAC + CBDC block. A following randomized study, conducted on a second set of four animals, compared the onset response resulting from KHFAC alone and combined KHFAC + CBDC waveforms. To quantify the onset, peak forces and the force-time integral were measured during KHFAC block initiation. Nerve conductivity was monitored throughout the study by comparing muscle twitch forces evoked by supra-maximal stimulation proximal and distal to the block electrodes. Each animal of the randomized study received at least 300 s (range: 318-1563 s) of cumulative dc to investigate the impact of combined KHFAC + CBDC on nerve viability. Main results. The peak onset force was reduced significantly from 20.73 N (range: 18.6-26.5 N) with KHFAC alone to 0.45 N (range: 0.2-0.7 N) with the combined CBDC and KHFAC block waveform (p conductivity was observed after application of the combined KHFAC + CBDC block relative to KHFAC waveforms. Significance. The distal application of CBDC can significantly reduce or even completely prevent the KHFAC onset response without a change in nerve conductivity.

  3. Neural-Dural Transition at the Thoracic and Lumbar Spinal Nerve Roots: A Histological Study of Human Late-Stage Fetuses

    Directory of Open Access Journals (Sweden)

    Kwang Ho Cho

    2016-01-01

    Full Text Available Epidural blocks have been used extensively in infants. However, little histological information is available on the immature neural-dural transition. The neural-dural transition was histologically investigated in 12 late-stage (28–30 weeks fetuses. The dural sheath of the spinal cord was observed to always continue along the nerve roots with varying thicknesses between specimens and segments, while the dorsal root ganglion sheath was usually very thin or unclear. Immature neural-dural transitions were associated with effective anesthesia. The posterior radicular artery was near the dorsal root ganglion and/or embedded in the nerve root, whereas the anterior radicular artery was separated from the nearest nerve root. The anterior radicular artery was not associated with the dural sheath but with thin mesenchymal tissue. The numbers of radicular arteries tended to become smaller in larger specimens. Likewise, larger specimens of the upper thoracic and lower lumbar segments did not show the artery. Therefore, elimination of the radicular arteries to form a single artery of Adamkiewicz was occurring in late-stage fetuses. The epidural space was filled with veins, and the loose tissue space extended ventrolaterally to the subpleural tissue between the ribs. Consequently, epidural blocks in infants require special attention although immature neural-dural transitions seemed to increase the effect.

  4. Subdural spread of injected local anesthetic in a selective transforaminal cervical nerve root block: a case report

    Directory of Open Access Journals (Sweden)

    Tofuku Katsuhiro

    2012-06-01

    Full Text Available Abstract Introduction Although uncommon, selective cervical nerve root blocks can have serious complications. The most serious complications that have been reported include cerebral infarction, spinal cord infarction, transient quadriplegia and death. Case presentation A 40-year-old Japanese woman with a history of severe right-sided cervical radicular pain was scheduled to undergo a right-sided C6 selective cervical nerve root block using a transforaminal approach under fluoroscopic guidance. An anterior oblique view of the C5-C6 intervertebral foramen was obtained, and a 23-gauge spinal needle, connected to the normal extension tube with a syringe filled with contrast medium, was introduced into the posterior-caudal aspect of the C5-C6 intervertebral foramen on the right side. In the anteroposterior view, the placement of the needle was considered satisfactory when it was placed no more medial than halfway across the width of the articular pillar. Although the spread of the contrast medium along the C6 nerve root was observed with right-sided C6 radiculography, the subdural flow of the contrast medium was not observed with real-time fluoroscopy. The extension tube used for the radiculography was removed from the spinal needle and a normal extension tube with a syringe filled with lidocaine connected in its place. We performed a negative aspiration test and then injected 1.5 mL of 1.0% lidocaine slowly around the C6 nerve root. Immediately after the injection of the local anesthetic, our patient developed acute flaccid paralysis, complained of breathing difficulties and became unresponsive; her respiratory pattern was uncoordinated. After 20 minutes, she regained consciousness and became alert, and her muscle strength in all four limbs returned to normal without any sensory deficits after receiving emergent cardiorespiratory support. Conclusions We believe that confirming maintenance of the appropriate needle position in the anteroposterior

  5. Selective stimulation of sacral nerve roots for bladder control: a study by computer modeling

    NARCIS (Netherlands)

    Rijkhoff, N. J.; Holsheimer, J.; Koldewijn, E. L.; Struijk, J. J.; van Kerrebroeck, P. E.; Debruyne, F. M.; Wijkstra, H.

    1994-01-01

    The aim of this study was to investigate theoretically the conditions for the activation of the detrusor muscle without activation of the urethral sphincter and afferent fibers, when stimulating the related sacral roots. Therefore, the sensitivity of excitation and blocking thresholds of nerve

  6. Diagnostic utility of selective nerve root blocks in the diagnosis of lumbosacral radicular pain: systematic review and update of current evidence.

    Science.gov (United States)

    Datta, Sukdeb; Manchikanti, Laxmaiah; Falco, Frank J E; Calodney, Aaron K; Atluri, Sairam; Benyamin, Ramsin M; Buenaventura, Ricardo M; Cohen, Steven P

    2013-04-01

      Lumbosacral selective nerve root blocks and/ or transforaminal epidural injections are used for diagnosis and treatment of different disorders causing low back and lower extremity pain. A clear consensus on the use of selective nerve root injections as a diagnostic tool does not currently exist. Additionally, the validity of this procedure as a diagnostic tool is not clear. To evaluate and update the accuracy of selective nerve root injections in diagnosing lumbar spinal disorders. A systematic review of selective nerve root blocks for the diagnosis of low back and lower extremity pain. Methodological quality assessment of included studies was performed using the Quality Appraisal of Reliability Studies (QAREL) checklist. Only diagnostic accuracy studies meeting at least 50% of the designated inclusion criteria were utilized for analysis. Studies scoring less than 50% are presented descriptively and analyzed critically. The level of evidence was classified as good, fair, or limited or poor based on the quality of evidence grading scale developed by the United States Preventive Services Task Force (USPSTF). Data sources included relevant literature identified through searches of PubMed and EMBASE from 1966 to September 2012, and manual searches of the bibliographies of known primary and review articles. In this review, we evaluated studies in which controlled local anesthetic blocks were performed using at least 50% pain relief as the reference standard. There is limited evidence for the accuracy of selective nerve root injections as a diagnostic tool for lumbosacral disorders. There is limited evidence for their use in the preoperative evaluation of patients with negative or inconclusive imaging studies. The limitations of this systematic review include a paucity of literature, variations in technique, and variable criterion standards for the diagnosis of lumbar radicular pain. There is limited evidence for selective nerve root injections as a diagnostic tool in

  7. Interaction of 125I-labeled botulinum neurotoxins with nerve terminals. II. Autoradiographic evidence for its uptake into motor nerves by acceptor-mediated endocytosis

    International Nuclear Information System (INIS)

    Black, J.D.; Dolly, J.O.

    1986-01-01

    Using pharmacological and autoradiographic techniques it has been shown that botulinum neurotoxin (BoNT) is translocated across the motor nerve terminal membrane to reach a postulated intraterminal target. In the present study, the nature of this uptake process was investigated using electron microscopic autoradiography. It was found that internalization is acceptor-mediated and that binding to specific cell surface acceptors involves the heavier chain of the toxin. In addition, uptake was shown to be energy and temperature-dependent and to be accelerated by nerve stimulation, a treatment which also shortens the time course of the toxin-induced neuroparalysis. These results, together with the observation that silver grains were often associated with endocytic structures within the nerve terminal, suggested that acceptor-mediated endocytosis is responsible for toxin uptake. Possible recycling of BoNT acceptors (an important aspect of acceptor-mediated endocytosis of toxins) at motor nerve terminals was indicated by comparing the extent of labeling in the presence and absence of metabolic inhibitors. On the basis of these collective results, it is concluded that BoNT is internalized by acceptor-mediated endocytosis and, hence, the data support the proposal that this toxin inhibits release of acetylcholine by interaction with an intracellular target

  8. Long term outcomes from CT-guided indirect cervical nerve root blocks and their relationship to the MRI findings. A prospective study

    Energy Technology Data Exchange (ETDEWEB)

    Bensler, Susanne; Sutter, Reto; Pfirrmann, Christian W.A.; Peterson, Cynthia K. [Orthopedic University Hospital Balgrist, Department of Radiology, Zurich (Switzerland); University of Zurich, Faculty of Medicine, Zurich (Switzerland)

    2015-11-15

    To investigate long-term pain reduction and 'improvement' in patients with indirect cervical nerve-root-blocks in comparison to MRI findings. One hundred and twelve patients with MRI confirmed cervical radiculopathy and an indirect cervical nerve-root-block were included. Two radiologists independently evaluated the MRI examinations. 12 different MRI abnormalities at the level and side of infiltration were compared to pain relief and 'improvement' at 1-month, 3-months and 1-year post injection. The proportion of patients reporting clinically relevant 'improvement' was 36.7 % at 1-month, 53.9 % at 3-months and 68.1 % at 1-year. At 1-month post injection, a statistically significantly lower percentage of patients eventually requiring surgery reported improvement and lower NRS change scores compared to those who did not undergo surgery (p = 0.001). Patients with extrusion of the disc were around 4-times more likely to have surgery. At 1-year post-injection the presence of nerve-root compromise was significantly linked to treatment outcome (p = 0.011). Patients with nerve root compression were more likely to report improvement at 1 year. Patients with disc extrusions have less pain relief and are 4 times more likely to go to surgery than patients with disc protrusions. (orig.)

  9. Long term outcomes from CT-guided indirect cervical nerve root blocks and their relationship to the MRI findings. A prospective study

    International Nuclear Information System (INIS)

    Bensler, Susanne; Sutter, Reto; Pfirrmann, Christian W.A.; Peterson, Cynthia K.

    2015-01-01

    To investigate long-term pain reduction and 'improvement' in patients with indirect cervical nerve-root-blocks in comparison to MRI findings. One hundred and twelve patients with MRI confirmed cervical radiculopathy and an indirect cervical nerve-root-block were included. Two radiologists independently evaluated the MRI examinations. 12 different MRI abnormalities at the level and side of infiltration were compared to pain relief and 'improvement' at 1-month, 3-months and 1-year post injection. The proportion of patients reporting clinically relevant 'improvement' was 36.7 % at 1-month, 53.9 % at 3-months and 68.1 % at 1-year. At 1-month post injection, a statistically significantly lower percentage of patients eventually requiring surgery reported improvement and lower NRS change scores compared to those who did not undergo surgery (p = 0.001). Patients with extrusion of the disc were around 4-times more likely to have surgery. At 1-year post-injection the presence of nerve-root compromise was significantly linked to treatment outcome (p = 0.011). Patients with nerve root compression were more likely to report improvement at 1 year. Patients with disc extrusions have less pain relief and are 4 times more likely to go to surgery than patients with disc protrusions. (orig.)

  10. Intrathecal Spread of Injectate Following an Ultrasound-Guided Selective C5 Nerve Root Injection in a Human Cadaver Model.

    Science.gov (United States)

    Falyar, Christian R; Abercrombie, Caroline; Becker, Robert; Biddle, Chuck

    2016-04-01

    Ultrasound-guided selective C5 nerve root blocks have been described in several case reports as a safe and effective means to anesthetize the distal clavicle while maintaining innervation of the upper extremity and preserving diaphragmatic function. In this study, cadavers were injected with 5 mL of 0.5% methylene blue dye under ultrasound guidance to investigate possible proximal and distal spread of injectate along the brachial plexus, if any. Following the injections, the specimens were dissected and examined to determine the distribution of dye and the structures affected. One injection revealed dye extended proximally into the epidural space, which penetrated the dura mater and was present on the spinal cord and brainstem. Dye was noted distally to the divisions in 3 injections. The anterior scalene muscle and phrenic nerve were stained in all 4 injections. It appears unlikely that local anesthetic spread is limited to the nerve root following an ultrasound-guided selective C5 nerve root injection. Under certain conditions, intrathecal spread also appears possible, which has major patient safety implications. Additional safety measures, such as injection pressure monitoring, should be incorporated into this block, or approaches that are more distal should be considered for the acute pain management of distal clavicle fractures.

  11. The analysis of the effective of preserving sacral nerve root during surgical treatment of chordoma

    International Nuclear Information System (INIS)

    Ji Yiming; Chen Kangwu; Yang Huilin; Zhu Lifan

    2010-01-01

    Objective: To analyze the effective of preserving sacral nerve root during surgical treatment of sacral chordoma. Methods: This retrospective study included 30 cases of sacral chordomas. All the cases were operated with posterior approach. The blood loss and blood transfusion during operation, the drainged blood after operation were reviewed. The sphincter muscle function of bladder and bowl were observed. Results: Tremendous reduction of blood loss during surgery was found in all cases, the blood loss was 1280 ml in average, the blood transfusion was 1080 ml in average, the drainged blood after ope-ration was 650 ml. Nine patients whose sacral nerve roots had been reserved bilaterally at and above S 3 level, the sphincter muscle function of bladder and bowl was good, whereas the function of sphincter muscle impaired in the other 21 patients and in one case colostomy and ureterocutaneostomy were used. Conclusion: Preoperative arterial embolization is effective method and can lead to excellent results. Even if the tumor is relatively huge and the upper resection margin is as high as at S 1 or S 2 level, the tumor can be removed successfully by posterior approach. Sacral nerve should be preserved as possible. (authors)

  12. Does pain relief by CT-guided indirect cervical nerve root injection with local anesthetics and steroids predict pain relief after decompression surgery for cervical nerve root compression?

    Science.gov (United States)

    Antoniadis, Alexander; Dietrich, Tobias J; Farshad, Mazda

    2016-10-01

    The relationship of pain relief from a recently presented CT-guided indirect cervical nerve root injection with local anesthetics and steroids to surgical decompression as a treatment for single-level cervical radiculopathy is not clear. This retrospective study aimed to compare the immediate and 6-week post-injection effects to the short- and long-term outcomes after surgical decompression, specifically in regard to pain relief. Patients (n = 39, age 47 ± 10 years) who had undergone CT-guided indirect injection with local anesthetics and steroids as an initial treatment for single cervical nerve root radiculopathy and who subsequently needed surgical decompression were included retrospectively. Pain levels (VAS scores) were monitored before, immediately after, and 6 weeks after injection (n = 34), as well as 6 weeks (n = 38) and a mean of 25 months (SD ± 12) after surgical decompression (n = 36). Correlation analysis was performed to find potential associations of pain relief after injection and after surgery to investigate the predictive value of post-injection pain relief. There was no correlation between immediate pain relief after injection (-32 ± 27 %) and 6 weeks later (-7 ± 19 %), (r = -0.023, p = 0.900). There was an association by tendency between immediate pain relief after injection and post-surgical pain relief at 6 weeks (-82 ± 27 %), (r = 0.28, p = 0.08). Pain relief at follow-up remained high at -70 ± 21 % and was correlated with the immediate pain amelioration effect of the injection (r = 0.37, p = 0.032). Five out of seven patients who reported no pain relief from injection had a pain relief from surgery in excess of 50 %. The amount of immediate radiculopathic pain relief after indirect cervical nerve root injection is associated with the amount of pain relief achieved at long-term follow-up after surgical decompression of single-level cervical radiculopathy

  13. New technique targeting the C5 nerve root proximal to the traditional interscalene sonoanatomical approach is analgesic for outpatient arthroscopic shoulder surgery.

    Science.gov (United States)

    Dobie, Katherine H; Shi, Yaping; Shotwell, Matthew S; Sandberg, Warren S

    2016-11-01

    Regional anesthesia and analgesia for shoulder surgery is most commonly performed via interscalene nerve block. We developed an ultrasound-guided technique that specifically targets the C5 nerve root proximal to the traditional interscalene block and assessed its efficacy for shoulder analgesia. Prospective case series. Vanderbilt Bone and Joint Surgery Center. Patients undergoing shoulder arthroscopy at an ambulatory surgery center. Thirty-five outpatient shoulder arthroscopy patients underwent an analgesic nerve block using a new technique where ultrasound visualization of the C5 nerve root served as the primary target at a level proximal to the traditional interscalene approach. The block was performed with 15mL of 0.5% plain ropivicaine. Post anesthesia care unit pain scores, opioid consumption, hand strength, and duration of block were recorded. Cadaver dissection after injection with methylene blue confirmed that the primary target under ultrasound visualization was the C5 nerve root. Pain scores revealed 97% patients had 0/10 pain at arrival to PACU, with 91% having a pain score of 3/10 or less at discharge from PACU. Medical Research Council (MRC) hand strength mean (SD) score was 4.17 (0.92) on a scale of 1-5. The mean (SD) duration of the block was 13.9 (3.5) hours. A new technique for ultrasound-guided blockade at the level of the C5 nerve root proximal to the level of the traditional interscalene block is efficacious for shoulder post-operative pain control. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Thoracic Nerve Root Entrapment by Intrathecal Catheter Coiling: Case Report and Review of the Literature.

    Science.gov (United States)

    Han, Jing L; Loriaux, Daniel B; Tybout, Caroline; Kinon, Merritt D; Rahimpour, Shervin; Runyon, Scott L; Hopkins, Thomas J; Boortz-Marx, Richard L; Lad, Shivanand P

    2016-03-01

    Intrathecal catheter placement has long-term therapeutic benefits in the management of chronic, intractable pain. Despite the diverse clinical applicability and rising prevalence of implantable drug delivery systems in pain medicine, the spectrum of complications associated with intrathecal catheterization remains largely understudied and underreported in the literature. To report a case of thoracic nerve root entrapment resulting from intrathecal catheter migration. Case report. Inpatient hospital service. A 60-year-old man status post implanted intrathecal (IT) catheter for intractable low back pain secondary to failed back surgery syndrome returned to the operating room for removal of IT pump trial catheter after experiencing relapse of preoperative pain and pump occlusion. Initial attempt at ambulatory removal of the catheter was aborted after the patient reported acute onset of lower extremity radiculopathic pain during the extraction. Noncontrast computed tomography (CT) subsequently revealed that the catheter had ascended and coiled around the T10 nerve root. The patient was taken back to the operating room for removal of the catheter under fluoroscopic guidance, with possible laminectomy for direct visualization. Removal was ultimately achieved with slow continuous tension, with complete resolution of the patient's new radicular symptoms. This report describes a single case report. This case demonstrates that any existing loops in the intrathecal catheter during initial implantation should be immediately re-addressed, as they can precipitate nerve root entrapment and irritation. Reduction of the loop or extrication of the catheter should be attempted under continuous fluoroscopic guidance to prevent further neurosurgical morbidity.

  15. UV-B Radiation Induces Root Bending Through the Flavonoid-Mediated Auxin Pathway in Arabidopsis.

    Science.gov (United States)

    Wan, Jinpeng; Zhang, Ping; Wang, Ruling; Sun, Liangliang; Wang, Wenying; Zhou, Huakun; Xu, Jin

    2018-01-01

    Ultraviolet (UV)-B radiation-induced root bending has been reported; however, the underlying mechanisms largely remain unclear. Here, we investigate whether and how auxin and flavonoids are involved in UV-B radiation-induced root bending in Arabidopsis using physiological, pharmacological, and genetic approaches. UV-B radiation modulated the direction of root growth by decreasing IAA biosynthesis and affecting auxin distribution in the root tips, where reduced auxin accumulation and asymmetric auxin distribution were observed. UV-B radiation increased the distribution of auxin on the nonradiated side of the root tips, promoting growth and causing root bending. Further analysis indicated that UV-B induced an asymmetric accumulation of flavonoids; this pathway is involved in modulating the accumulation and asymmetric distribution of auxin in root tips and the subsequent redirection of root growth by altering the distribution of auxin carriers in response to UV-B radiation. Taken together, our results indicate that UV-B radiation-induced root bending occurred through a flavonoid-mediated phototropic response to UV-B radiation.

  16. MR imaging of the lumbar disk herniation : relationship between the direction of herniated disc and pressure effect on nerve root and dural sac

    International Nuclear Information System (INIS)

    Cha, B. H.; Shon, M. Y.; Kim, K. W.; Lim, M. A.; Kwon, K. R; Kim, S. S.

    1996-01-01

    To evaluate the relationship between the direction of herniated disc and pressure effect on nerve root and dural sac, as seen on MRI. We retrospectively reviewed lumbar spine MR images of 122 cases of lumbar disk herniation 75 patients MRI findings were analyzed with regard to the relationship between the direction of the herniated disc and pressure effect on nerve root and dural sac. Pressure effect on nerve root and dural sac was arbitrarily divided into three types. Type I was defined as zero or minimal compression of nerve roots or thecal sac by the herniated disc ; type II was defined as mild to moderate compression, while III was defined as severe compression or displacement of nerve roots and/or thecal sac. Of the 122 cases seen in these 75 patients, 97(80%) were observed at L4-5 and L5-S1. The central type(71cases ; 58%) was more frequently observed than the posterolateral type(48cases ; 40%) or lateral type(3cases ; 2%). The totals of types I, II, and III were 44(36%), 43(35%) and 35 cases(29%), respectively. Seventy-seven %(34/44) of type I and 65%(28/43) of type II were of the central type but for type III, the corresponding figure was only 26%(9/35). On MR imaging, most of lumbar disk herniations were observed at L4-5 and L5-S1, with a predominance of the central type rather than the posterolateral one. Most of the central types were either type I or type II

  17. Lentiviral-mediated transfer of CDNF promotes nerve regeneration and functional recovery after sciatic nerve injury in adult rats

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Lei; Liu, Yi; Zhao, Hua; Zhang, Wen; Guo, Ying-Jun; Nie, Lin, E-mail: chengleiyx@126.com

    2013-10-18

    Highlights: •CDNF was successfully transfected by a lentiviral vector into the distal sciatic nerve. •CDNF improved S-100, NF200 expression and nerve regeneration after sciatic injury. •CDNF improved the remyelination and thickness of the regenerated sciatic nerve. •CDNF improved gastrocnemius muscle weight and sciatic functional recovery. -- Abstract: Peripheral nerve injury is often followed by incomplete and unsatisfactory functional recovery and may be associated with sensory and motor impairment of the affected limb. Therefore, a novel method is needed to improve the speed of recovery and the final functional outcome after peripheral nerve injuries. This report investigates the effect of lentiviral-mediated transfer of conserved dopamine neurotrophic factor (CDNF) on regeneration of the rat peripheral nerve in a transection model in vivo. We observed notable overexpression of CDNF protein in the distal sciatic nerve after recombinant CDNF lentiviral vector application. We evaluated sciatic nerve regeneration after surgery using light and electron microscopy and the functional recovery using the sciatic functional index and target muscle weight. HE staining revealed better ordered structured in the CDNF-treated group at 8 weeks post-surgery. Quantitative analysis of immunohistochemistry of NF200 and S-100 in the CDNF group revealed significant improvement of axonal and Schwann cell regeneration compared with the control groups at 4 weeks and 8 weeks after injury. The thickness of the myelination around the axons in the CDNF group was significantly higher than in the control groups at 8 weeks post-surgery. The CDNF group displayed higher muscle weights and significantly increased sciatic nerve index values. Our findings suggest that CDNF gene therapy could provide durable and stable CDNF protein concentration and has the potential to enhance peripheral nerve regeneration, morphological and functional recovery following nerve injury, which suggests a

  18. Lentiviral-mediated transfer of CDNF promotes nerve regeneration and functional recovery after sciatic nerve injury in adult rats

    International Nuclear Information System (INIS)

    Cheng, Lei; Liu, Yi; Zhao, Hua; Zhang, Wen; Guo, Ying-Jun; Nie, Lin

    2013-01-01

    Highlights: •CDNF was successfully transfected by a lentiviral vector into the distal sciatic nerve. •CDNF improved S-100, NF200 expression and nerve regeneration after sciatic injury. •CDNF improved the remyelination and thickness of the regenerated sciatic nerve. •CDNF improved gastrocnemius muscle weight and sciatic functional recovery. -- Abstract: Peripheral nerve injury is often followed by incomplete and unsatisfactory functional recovery and may be associated with sensory and motor impairment of the affected limb. Therefore, a novel method is needed to improve the speed of recovery and the final functional outcome after peripheral nerve injuries. This report investigates the effect of lentiviral-mediated transfer of conserved dopamine neurotrophic factor (CDNF) on regeneration of the rat peripheral nerve in a transection model in vivo. We observed notable overexpression of CDNF protein in the distal sciatic nerve after recombinant CDNF lentiviral vector application. We evaluated sciatic nerve regeneration after surgery using light and electron microscopy and the functional recovery using the sciatic functional index and target muscle weight. HE staining revealed better ordered structured in the CDNF-treated group at 8 weeks post-surgery. Quantitative analysis of immunohistochemistry of NF200 and S-100 in the CDNF group revealed significant improvement of axonal and Schwann cell regeneration compared with the control groups at 4 weeks and 8 weeks after injury. The thickness of the myelination around the axons in the CDNF group was significantly higher than in the control groups at 8 weeks post-surgery. The CDNF group displayed higher muscle weights and significantly increased sciatic nerve index values. Our findings suggest that CDNF gene therapy could provide durable and stable CDNF protein concentration and has the potential to enhance peripheral nerve regeneration, morphological and functional recovery following nerve injury, which suggests a

  19. Nerve transfer to relieve pain in upper brachial plexus injuries: Does it work?

    Science.gov (United States)

    Emamhadi, Mohammadreza; Andalib, Sasan

    2017-12-01

    Patients with C5 and C6 nerve root avulsion may complain from pain. For these patients, end-to-side nerve transfer of the superficial radial nerve into the median nerve is suggested to relieve pain. Eleven patients (with a primary brachial plexus reconstruction) undergoing end-to-side nerve transfer of the superficial radial nerve into the ulnovolar part of the median nerve were assessed. Pain before surgery was compared to that at 6-month follow-up using visual analog scale (VAS) scores. A significant difference was seen between the mean VAS before (8.5) and after surgery (0.7) (P=0.0). After the six-month follow-up, 6 patients felt no pain according to VAS, notwithstanding 5 patients with a mild pain. The evidence from the present study suggests that end-to-side nerve transfer of the superficial radial nerve into the ulnovolar part of the median nerve is an effective technique in reducing pain in patients with C5 and C6 nerve root avulsion. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Resveratrol Promotes Nerve Regeneration via Activation of p300 Acetyltransferase-Mediated VEGF Signaling in a Rat Model of Sciatic Nerve Crush Injury.

    Science.gov (United States)

    Ding, Zhuofeng; Cao, Jiawei; Shen, Yu; Zou, Yu; Yang, Xin; Zhou, Wen; Guo, Qulian; Huang, Changsheng

    2018-01-01

    Peripheral nerve injuries are generally associated with incomplete restoration of motor function. The slow rate of nerve regeneration after injury may account for this. Although many benefits of resveratrol have been shown in the nervous system, it is not clear whether resveratrol could promote fast nerve regeneration and motor repair after peripheral nerve injury. This study showed that the motor deficits caused by sciatic nerve crush injury were alleviated by daily systematic resveratrol treatment within 10 days. Resveratrol increased the number of axons in the distal part of the injured nerve, indicating enhanced nerve regeneration. In the affected ventral spinal cord, resveratrol enhanced the expression of several vascular endothelial growth factor family proteins (VEGFs) and increased the phosphorylation of p300 through Akt signaling, indicating activation of p300 acetyltransferase. Inactivation of p300 acetyltransferase reversed the resveratrol-induced expression of VEGFs and motor repair in rats that had undergone sciatic nerve crush injury. The above results indicated that daily systematic resveratrol treatment promoted nerve regeneration and led to rapid motor repair. Resveratrol activated p300 acetyltransferase-mediated VEGF signaling in the affected ventral spinal cord, which may have thus contributed to the acceleration of nerve regeneration and motor repair.

  1. Functional reorganization of human motor cortex after unaffected side C7 nerve root transposition

    International Nuclear Information System (INIS)

    Gao Gejun; Feng Xiaoyuan; Xu Wendong; Gu Yudong; Tang Weijun; Sun Guixin; Li Ke; Li Yuan; Geng Daoying

    2006-01-01

    Objective: To assess the characteristics of neuronal activity in human motor cortex after the seventh cervical nerve root transposition of the unaffected side by using functional MRI (fMRI). Methods: Thirteen patients who accepted the seventh cervical nerve root transposition of the unaffected side, due to total brachial plexus traction injury diagnosed by manifestation and operation, were examined retrospectively by using fMRI. 10 patients were injured on the left side and 3 on the right side. According to functional recovery of the affected hand, all subjects can be divided into 2 groups. The patients of the first group could not move the affected hand voluntarily. The patients of the second group could move the affected hand self-determined. 12 healthy volunteer's were also involved in this study as control. The fMRI examinations were performed by using echo-planer BOLD sequence. Then the SPM 99 software was used for post-processing. Results: The neuronal activation induced by the movement of both unaffected and affected upper' limb was seen in the contralateral PMC in all patients; Neuronal activation in the ipsilateral PMC evoked by movement of the unaffected extremity was seen in 10 cases, and induced by movement of the affected limb was seen in 7 cases. In the first group, the sharp of clusters in the contralateral PMC resulted by movement of the unaffected extremity showed normal in 9 eases, the average size of clusters resulted by the unaffected hand was 3159 (voxel), and resulted by the unaffected shoulder was 1746(voxel). The sharp of clusters in the contralateral PMC resulted by the affected shoulder or hand were revealed enlargement in 6 cases of each. In the second group, 1 case showed neuronal activation induced by movement of the affected limb in the PMC in both sides of motor cortex, and 2 cases showed neuronal activation in the contralateral PMC. Conclusions: Peripheral nerve injury was able to cause changes of motor cortex in human brain

  2. MRI-guided cryoablation of the posterior femoral cutaneous nerve for the treatment of neuropathy-mediated sitting pain

    International Nuclear Information System (INIS)

    Joshi, Dharmdev H.; Thawait, Gaurav K.; Fritz, Jan; Del Grande, Filippo

    2017-01-01

    Neuropathy of the posterior femoral cutaneous nerve may manifest as pain and paresthesia in the skin over the inferior buttocks, posterior thigh, and popliteal region. Current treatment options include physical and oral pain therapy, perineural injections, and surgical neurectomy. Perineural steroid injections may provide short-term pain relief; however, to our knowledge, there is currently no minimally invasive denervation procedure for sustained pain relief that could serve as an alternative to surgical neurectomy. Percutaneous cryoablation of nerves is a minimally invasive technique that induces a sustained nerve conduction block through temporary freezing of the neural layers. It can result in long-lasting pain relief, but has not been described for the treatment of neuropathy-mediated PFCN pain. We report a technique of MR-guided cryoablation of the posterior femoral cutaneous nerve resulting in successful treatment of PFCN-mediated sitting pain. Cryoablation of the posterior femoral cutaneous nerve seems a promising, minimally invasive treatment option that deserves further investigation. (orig.)

  3. MRI-guided cryoablation of the posterior femoral cutaneous nerve for the treatment of neuropathy-mediated sitting pain

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Dharmdev H.; Thawait, Gaurav K.; Fritz, Jan [Johns Hopkins University School of Medicine, Section of Musculoskeletal Radiology, Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD (United States); Del Grande, Filippo [Johns Hopkins University School of Medicine, Section of Musculoskeletal Radiology, Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD (United States); Ospedale Regionale di Lugano, Servizio di Radiologia, Lugano, Ticino (Switzerland)

    2017-07-15

    Neuropathy of the posterior femoral cutaneous nerve may manifest as pain and paresthesia in the skin over the inferior buttocks, posterior thigh, and popliteal region. Current treatment options include physical and oral pain therapy, perineural injections, and surgical neurectomy. Perineural steroid injections may provide short-term pain relief; however, to our knowledge, there is currently no minimally invasive denervation procedure for sustained pain relief that could serve as an alternative to surgical neurectomy. Percutaneous cryoablation of nerves is a minimally invasive technique that induces a sustained nerve conduction block through temporary freezing of the neural layers. It can result in long-lasting pain relief, but has not been described for the treatment of neuropathy-mediated PFCN pain. We report a technique of MR-guided cryoablation of the posterior femoral cutaneous nerve resulting in successful treatment of PFCN-mediated sitting pain. Cryoablation of the posterior femoral cutaneous nerve seems a promising, minimally invasive treatment option that deserves further investigation. (orig.)

  4. The chemokine CXCL12 mediates the anti-amyloidogenic action of painless human nerve growth factor.

    Science.gov (United States)

    Capsoni, Simona; Malerba, Francesca; Carucci, Nicola Maria; Rizzi, Caterina; Criscuolo, Chiara; Origlia, Nicola; Calvello, Mariantonietta; Viegi, Alessandro; Meli, Giovanni; Cattaneo, Antonino

    2017-01-01

    Nerve growth factor is a therapeutic candidate for Alzheimer's disease. Due to its pain-inducing activity, in current clinical trials nerve growth factor is delivered locally into the brain by neurosurgery, but data on the efficacy of local nerve growth factor delivery in decreasing amyloid-β deposition are not available. To reduce the nerve growth factor pain-inducing side effects, thus avoiding the need for local brain injection, we developed human painless nerve growth factor (hNGFp), inspired by the human genetic disease hereditary sensory and autonomic neuropathy type V. hNGFp has identical neurotrophic potency as wild-type human nerve growth factor, but a 10-fold lower pain sensitizing activity. In this study we first mimicked, in the 5xFAD mouse model, the intraparenchymal delivery of hNGFp used in clinical trials and found it to be ineffective in decreasing amyloid-β plaque load. On the contrary, the same dose of hNGFp delivered intranasally, which was widely biodistributed in the brain and did not induce pain, showed a potent anti-amyloidogenic action and rescued synaptic plasticity and memory deficits. We found that hNGFp acts on glial cells, modulating inflammatory proteins such as the soluble TNFα receptor II and the chemokine CXCL12. We further established that the rescuing effect by hNGFp is mediated by CXCL12, as pharmacological inhibition of CXCL12 receptor CXCR4 occludes most of hNGFp effects. These findings have significant therapeutic implications: (i) we established that a widespread exposure of the brain is required for nerve growth factor to fully exert its neuroprotective actions; and (ii) we have identified a new anti-neurodegenerative pathway as a broad target for new therapeutic opportunities for neurodegenerative diseases. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain.

  5. Inoculation with Bacillus subtilis and Azospirillum brasilense produces abscisic acid that reduces IRT1-mediated cadmium uptake of roots.

    Science.gov (United States)

    Xu, Qianru; Pan, Wei; Zhang, Ranran; Lu, Qi; Xue, Wanlei; Wu, Cainan; Song, Bixiu; Du, Shaoting

    2018-05-08

    Cadmium (Cd) contamination of agricultural soils represents a serious risk to crop safety. A new strategy using abscisic acid (ABA)-generating bacteria, Bacillus subtilis or Azospirillum brasilense, was developed to reduce the Cd accumulation in plants grown in Cd-contaminated soil. Inoculation with either bacterium resulted in a pronounced increase in the ABA level in wild-type Arabidopsis Col-0 plants, accompanied by a decrease in Cd levels in plant tissues, which mitigated the Cd toxicity. As a consequence, the growth of plants exposed to Cd was improved. Nevertheless, B. subtilis and A. brasilense inoculation had little effect on Cd levels and toxicity in the ABA-insensitive mutant snrk 2.2/2.3, indicating that the action of ABA is required for these bacteria to reduce Cd accumulation in plants. Furthermore, inoculation with either B. subtilis or A. brasilense down-regulated the expression of IRT1 (IRON-REGULATED TRANSPORTER 1) in the roots of wild-type plants and had little effect on Cd levels in the IRT1-knockout mutants irt1-1 and irt1-2. In summary, we conclude that B. subtilis and A. brasilense can reduce Cd levels in plants via an IRT1-dependent ABA-mediated mechanism.

  6. S3 Dorsal Root Ganglion/Nerve Root Stimulation for Refractory Postsurgical Perineal Pain: Technical Aspects of Anchorless Sacral Transforaminal Lead Placement

    Directory of Open Access Journals (Sweden)

    X. Zuidema

    2016-01-01

    Full Text Available Chronic perineal pain limits patients in physical and sexual activities, leading to social and psychological distress. In most cases, this pain develops after surgery in the urogenital area or as a consequence of trauma. Neuromodulation is one of the options in chronic postsurgical perineal pain treatment. We present a case of refractory perineal pain after right sided surgical resection of a Bartholin’s cyst which was treated with third sacral nerve root/dorsal root ganglion stimulation using the transforaminal approach. We describe a new anchorless lead placement technique using a unique curved lead delivery sheath. We postulate that this new posterior foraminal technique of lead placement is simple, safe, and reversible and may lower the occurrence of lead related complications.

  7. The excimer lamp induces cutaneous nerve degeneration and reduces scratching in a dry-skin mouse model.

    Science.gov (United States)

    Kamo, Atsuko; Tominaga, Mitsutoshi; Kamata, Yayoi; Kaneda, Kazuyuki; Ko, Kyi C; Matsuda, Hironori; Kimura, Utako; Ogawa, Hideoki; Takamori, Kenji

    2014-12-01

    Epidermal hyperinnervation, which is thought to underlie intractable pruritus, has been observed in patients with atopic dermatitis (AD). The epidermal expression of axonal guidance molecules has been reported to regulate epidermal hyperinnervation. Previously, we showed that the excimer lamp has antihyperinnervative effects in nonpruritic dry-skin model mice, although epidermal expression of axonal guidance molecules was unchanged. Therefore, we investigated the antipruritic effects of excimer lamp irradiation and its mechanism of action. A single irradiation of AD model mice significantly inhibited itch-related behavior 1 day later, following improvement in the dermatitis score. In addition, irradiation of nerve fibers formed by cultured dorsal root ganglion neurons increased bleb formation and decreased nerve fiber expression of nicotinamide mononucleotide adenylyl transferase 2, suggesting degenerative changes in these fibers. We also analyzed whether attaching a cutoff excimer filter (COF) to the lamp, thus decreasing cytotoxic wavelengths, altered hyperinnervation and the production of cyclobutane pyrimidine dimer (CPD), a DNA damage marker, in dry-skin model mice. Irradiation with COF decreased CPD production in keratinocytes, as well as having an antihyperinnervative effect, indicating that the antipruritic effects of excimer lamp irradiation with COF are due to induction of epidermal nerve degeneration and reduced DNA damage.

  8. The effect of collagenase on nerve conduction velocity of dorsal root ganglion in rats

    International Nuclear Information System (INIS)

    Zhuang Wenquan; Li Heping; Yang Jianyong; Chen Wei; Huang Yonghui; Guo Wenbo

    2006-01-01

    Objective: To study the functional effects of collagenase on dorsal root ganglion (DRG) in rats by evoked potential conduction velocity measurement. Methods: A total of 57 male healthy Sprague-Dawley rats were randomized into 7 groups: normal group, acute collagenase group, subacute collagenase group, chronic collagenase group, acute pseudo-operation group, subacute pseudo-operation group, chronic pseudo-operation group. 1200 units of collagenase was reconstituted in 4 ml isotonic saline prior for the experimental application. The left fifth lumbar DRG was exposed in each rat and followed by 1 ml collagenase solution (300 units) dropping on the exposed DRG in collagenase groups; and similarly 1 ml isotonic saline was applied to each of the exposed DRG in pseudo-operation groups. the effects of collagenase on nerve conduction velocity (NCV) were analyzed 1 hour, 1 week or 1 month after the procedure. The statistical analysis was carried out by software SPSS11.0. Results: The differences of NCV measured by evoked potential method between all groups including the normal group, collagenase groups, and pseudo-operation groups were not significant (P>0.05). Conclusion: The Neuroelectricity physiologic function of dorsal root ganglion and nerve would not be damaged by collagenase used in therapeutic concentration. (authors)

  9. Nerve growth factor reduces apoptotic cell death in rat facial motor neurons after facial nerve injury.

    Science.gov (United States)

    Hui, Lian; Yuan, Jing; Ren, Zhong; Jiang, Xuejun

    2015-01-01

    To assess the effects of nerve growth factor (NGF) on motor neurons after induction of a facial nerve lesion, and to compare the effects of different routes of NGF injection on motor neuron survival. This study was carried out in the Department of Otolaryngology Head & Neck Surgery, China Medical University, Liaoning, China from October 2012 to March 2013. Male Wistar rats (n = 65) were randomly assigned into 4 groups: A) healthy controls; B) facial nerve lesion model + normal saline injection; C) facial nerve lesion model + NGF injection through the stylomastoid foramen; D) facial nerve lesion model + intraperitoneal injection of NGF. Apoptotic cell death was detected using the terminal deoxynucleotidyl transferase dUTP nick end-labeling assay. Expression of caspase-3 and p53 up-regulated modulator of apoptosis (PUMA) was determined by immunohistochemistry. Injection of NGF significantly reduced cell apoptosis, and also greatly decreased caspase-3 and PUMA expression in injured motor neurons. Group C exhibited better efficacy for preventing cellular apoptosis and decreasing caspase-3 and PUMA expression compared with group D (pfacial nerve injury in rats. The NGF injected through the stylomastoid foramen demonstrated better protective efficacy than when injected intraperitoneally.

  10. Nerve Root Compression Increases Spinal Astrocytic Vimentin in Parallel With Sustained Pain and Endothelial Vimentin in Association With Spinal Vascular Reestablishment.

    Science.gov (United States)

    Smith, Jenell R; Lee, Jasmine; Winkelstein, Beth A

    2017-10-01

    Temporal immunohistochemistry analysis of spinal cord tissue from a rat model of cervical radiculopathy. The goal was to measure spinal endothelial and astrocytic vimentin expression after a painful nerve root compression to define spinal cellular expression of vimentin in the context of pain. The intermediate filament, vimentin, is expressed in a variety of cell types in the spinal cord and is modulated in response to neural pathologies. Early after nerve root compression spinal astrocytes become activated and blood-spinal cord barrier (BSCB) breakdown occurs in parallel with development of pain-related behaviors; these spinal responses remain activated as does the presence of pain. In addition to vimentin, glial fibrillary acidic protein (GFAP) expression is a hallmark of astrocyte activation. In contrast, vascular endothelial cells down-regulate vimentin expression in parallel with vascular breakdown. It is not known whether spinal astrocytes and endothelial cells modulate their expression of vimentin in response to a painful neural injury. Mechanical hyperalgesia was measured and spinal cord tissue was harvested at days 1 and 7 after a unilateral nerve root compression in rats. Vimentin was coimmunolabeled with GFAP to label astrocytes and von Willebrand factor (VWF) for endothelial cells in the spinal cord on the side of injury. Spinal astrocytic vimentin increases by day 7 after nerve root compression, corresponding to when mechanical hyperalgesia is maintained. Spinal endothelial vimentin increases as early as day 1 after a painful compression and is even more robust at day 7. The delayed elevation in spinal astrocytic vimentin corresponding to sustained mechanical hyperalgesia supports its having a relationship with pain maintenance. Further, since BSCB integrity has been shown to be reestablished by day 7 after a painful compression, endothelial expressed vimentin may help to fortify spinal vasculature contributing to BSCB stability. N/A.

  11. A comparison study of Agrobacterium-mediated transformation methods for root-specific promoter analysis in soybean.

    Science.gov (United States)

    Li, Caifeng; Zhang, Haiyan; Wang, Xiurong; Liao, Hong

    2014-11-01

    Both in vitro and in vivo hairy root transformation systems could not replace whole plant transformation for promoter analysis of root-specific and low-P induced genes in soybean. An efficient genetic transformation system is crucial for promoter analysis in plants. Agrobacterium-mediated transformation is the most popular method to produce transgenic hairy roots or plants. In the present study, first, we compared the two different Agrobacterium rhizogenes-mediated hairy root transformation methods using either constitutive CaMV35S or the promoters of root-preferential genes, GmEXPB2 and GmPAP21, in soybean, and found the efficiency of in vitro hairy root transformation was significantly higher than that of in vivo transformation. We compared Agrobacterium rhizogenes-mediated hairy root and Agrobacterium tumefaciens-mediated whole plant transformation systems. The results showed that low-phosphorous (P) inducible GmEXPB2 and GmPAP21 promoters could not induce the increased expression of the GUS reporter gene under low P stress in both in vivo and in vitro transgenic hairy roots. Conversely, GUS activity of GmPAP21 promoter was significantly higher at low P than high P in whole plant transformation. Therefore, both in vitro and in vivo hairy root transformation systems could not replace whole plant transformation for promoter analysis of root-specific and low-P induced genes in soybean.

  12. Ethylene Responses in Rice Roots and Coleoptiles Are Differentially Regulated by a Carotenoid Isomerase-Mediated Abscisic Acid Pathway[OPEN

    Science.gov (United States)

    Yin, Cui-Cui; Ma, Biao; Collinge, Derek Phillip; Pogson, Barry James; He, Si-Jie; Xiong, Qing; Duan, Kai-Xuan; Chen, Hui; Yang, Chao; Lu, Xiang; Wang, Yi-Qin; Zhang, Wan-Ke; Chu, Cheng-Cai; Sun, Xiao-Hong; Fang, Shuang; Chu, Jin-Fang; Lu, Tie-Gang; Chen, Shou-Yi; Zhang, Jin-Song

    2015-01-01

    Ethylene and abscisic acid (ABA) act synergistically or antagonistically to regulate plant growth and development. ABA is derived from the carotenoid biosynthesis pathway. Here, we analyzed the interplay among ethylene, carotenoid biogenesis, and ABA in rice (Oryza sativa) using the rice ethylene response mutant mhz5, which displays a reduced ethylene response in roots but an enhanced ethylene response in coleoptiles. We found that MHZ5 encodes a carotenoid isomerase and that the mutation in mhz5 blocks carotenoid biosynthesis, reduces ABA accumulation, and promotes ethylene production in etiolated seedlings. ABA can largely rescue the ethylene response of the mhz5 mutant. Ethylene induces MHZ5 expression, the production of neoxanthin, an ABA biosynthesis precursor, and ABA accumulation in roots. MHZ5 overexpression results in enhanced ethylene sensitivity in roots and reduced ethylene sensitivity in coleoptiles. Mutation or overexpression of MHZ5 also alters the expression of ethylene-responsive genes. Genetic studies revealed that the MHZ5-mediated ABA pathway acts downstream of ethylene signaling to inhibit root growth. The MHZ5-mediated ABA pathway likely acts upstream but negatively regulates ethylene signaling to control coleoptile growth. Our study reveals novel interactions among ethylene, carotenogenesis, and ABA and provides insight into improvements in agronomic traits and adaptive growth through the manipulation of these pathways in rice. PMID:25841037

  13. Ultrasound-guided approach for axillary brachial plexus, femoral nerve, and sciatic nerve blocks in dogs.

    Science.gov (United States)

    Campoy, Luis; Bezuidenhout, Abraham J; Gleed, Robin D; Martin-Flores, Manuel; Raw, Robert M; Santare, Carrie L; Jay, Ariane R; Wang, Annie L

    2010-03-01

    To describe an ultrasound-guided technique and the anatomical basis for three clinically useful nerve blocks in dogs. Prospective experimental trial. Four hound-cross dogs aged 2 +/- 0 years (mean +/- SD) weighing 30 +/- 5 kg and four Beagles aged 2 +/- 0 years and weighing 8.5 +/- 0.5 kg. Axillary brachial plexus, femoral, and sciatic combined ultrasound/electrolocation-guided nerve blocks were performed sequentially and bilaterally using a lidocaine solution mixed with methylene blue. Sciatic nerve blocks were not performed in the hounds. After the blocks, the dogs were euthanatized and each relevant site dissected. Axillary brachial plexus block Landmark blood vessels and the roots of the brachial plexus were identified by ultrasound in all eight dogs. Anatomical examination confirmed the relationship between the four ventral nerve roots (C6, C7, C8, and T1) and the axillary vessels. Three roots (C7, C8, and T1) were adequately stained bilaterally in all dogs. Femoral nerve block Landmark blood vessels (femoral artery and femoral vein), the femoral and saphenous nerves and the medial portion of the rectus femoris muscle were identified by ultrasound in all dogs. Anatomical examination confirmed the relationship between the femoral vessels, femoral nerve, and the rectus femoris muscle. The femoral nerves were adequately stained bilaterally in all dogs. Sciatic nerve block. Ultrasound landmarks (semimembranosus muscle, the fascia of the biceps femoris muscle and the sciatic nerve) could be identified in all of the dogs. In the four Beagles, anatomical examination confirmed the relationship between the biceps femoris muscle, the semimembranosus muscle, and the sciatic nerve. In the Beagles, all but one of the sciatic nerves were stained adequately. Ultrasound-guided needle insertion is an accurate method for depositing local anesthetic for axillary brachial plexus, femoral, and sciatic nerve blocks.

  14. F-18 FDG PET/CT findings of a case of sacral nerve root neurolymphomatosis that occurred during chemotherapy.

    Science.gov (United States)

    Suga, Kazuyoshi; Yasuhiko, Kawakami; Matsunaga, Naofumi; Yujiri, Toshiaki; Nakazora, Tatsuki; Ariyoshi, Kouichi

    2011-01-01

    Neurolymphomatosis (NL) is a rare, unique subtype of lymphomatous infiltration of peripheral nerves. Clinical/radiologic diagnosis of NL is challenging. We report F-18 FDG PET/CT findings of a case of breast diffuse large B-cell lymphoma, in which NL developed regardless of regression of systemic lesions during induction chemotherapy. FDG PET/CT showed characteristic findings of well-demarcated, linear abnormal FDG uptake along a sacral vertebral foramen, leading to diagnosis of NL, with the finding of thickened nerve roots on magnetic resonance imaging. Altered chemotherapeutic regimen resulted in disappearance of these abnormal FDG uptake, with recovery of neurologic symptoms. Peripheral nerve NL may occur during chemotherapy, and FDG PET/CT can be a useful imaging modality in diagnosis and monitoring of therapeutic response of this disease.

  15. γ-diketone central neuropathy: quantitative morphometric analysis of axons in rat spinal cord white matter regions and nerve roots

    International Nuclear Information System (INIS)

    LoPachin, Richard M.; Jortner, Bernard S.; Reid, Maria L.; Das, Soma

    2003-01-01

    A quantitative analytical method was used to measure myelinated axon morphometric parameters (e.g., axon area, ratio of axon area/fiber area, and index of circularity) in rat nervous tissue during intoxication with 2,5-hexanedione (HD). Parameters were assessed in nerve roots (dorsal and ventral) and in ascending (gracile fasciculus and spinocerebellar tract) and descending (corticospinal and rubrospinal tracts) spinal cord white matter tracts (L4-L5) of rats intoxicated with HD at two different daily dose-rates (175 or 400 mg HD/kg/day, gavage). For each dose-rate, tissue was sampled at four neurological endpoints: unaffected, slight, moderate, and severe toxicity, as determined by gait analysis and measurements of grip strength. Results indicate that, regardless of the HD dose-rate, axon atrophy (reduced axon area) was a widespread, abundant effect that developed in concert with neurological deficits. The atrophy response occurred contemporaneously in both ascending and descending spinal tracts, which suggests that loss of caliber developed simultaneously along the proximodistal axon axis. In contrast, swollen axons were a numerically small component and were present in nerve roots and spinal tracts only during subchronic intoxication at the lower HD dose-rate (i.e., 175 mg/kg/day). Intoxication at the higher dose-rate (400 mg/kg/day) produced neurological deficits in the absence of axonal swellings. These observations in conjunction with our previous studies of HD-induced peripheral neuropathy (Toxicol. Appl. Pharmacol. 135 (1995) 58; and Toxicol. Appl. Pharmacol. 165 (2000) 127) indicate that axon atrophy, and not axonal swelling, is a primary neuropathic phenomenon

  16. Salvage of cervical motor radiculopathy using peripheral nerve transfer reconstruction.

    Science.gov (United States)

    Afshari, Fardad T; Hossain, Taushaba; Miller, Caroline; Power, Dominic M

    2018-05-10

    Motor nerve transfer surgery involves re-innervation of important distal muscles using either an expendable motor branch or a fascicle from an adjacent functioning nerve. This technique is established as part of the reconstructive algorithm for traumatic brachial plexus injuries. The reproducible outcomes of motor nerve transfer surgery have resulted in exploration of the application of this technique to other paralysing conditions. The objective of this study is to report feasibility and increase awareness about nerve transfer as a method of improving upper limb function in patients with cervical motor radiculopathy of different aetiology. In this case series we report 3 cases with different modes of injury to the spinal nerve roots with significant and residual motor radiculopathy that have been successfully treated with nerve transfer surgery with good functional outcomes. The cases involved iatrogenic nerve root injury, tumour related root compression and degenerative root compression. Nerve transfer surgery may offer reliable reconstruction for paralysis when there has been no recovery following a period of conservative management. However the optimum timing of nerve transfer intervention is not yet identified for patients with motor radiculopathy.

  17. Low Light Availability Alters Root Exudation and Reduces Putative Beneficial Microorganisms in Seagrass Roots

    Directory of Open Access Journals (Sweden)

    Belinda C. Martin

    2018-01-01

    Full Text Available Seagrass roots host a diverse microbiome that is critical for plant growth and health. Composition of microbial communities can be regulated in part by root exudates, but the specifics of these interactions in seagrass rhizospheres are still largely unknown. As light availability controls primary productivity, reduced light may impact root exudation and consequently the composition of the root microbiome. Hence, we analyzed the influence of light availability on root exudation and community structure of the root microbiome of three co-occurring seagrass species, Halophila ovalis, Halodule uninervis and Cymodocea serrulata. Plants were grown under four light treatments in mesocosms for 2 weeks; control (100% surface irradiance (SI, medium (40% SI, low (20% SI and fluctuating light (10 days 20% and 4 days 100%. 16S rDNA amplicon sequencing revealed that microbial diversity, composition and predicted function were strongly influenced by the presence of seagrass roots, such that root microbiomes were unique to each seagrass species. Reduced light availability altered seagrass root exudation, as characterized using fluorescence spectroscopy, and altered the composition of seagrass root microbiomes with a reduction in abundance of potentially beneficial microorganisms. Overall, this study highlights the potential for above-ground light reduction to invoke a cascade of changes from alterations in root exudation to a reduction in putative beneficial microorganisms and, ultimately, confirms the importance of the seagrass root environment – a critical, but often overlooked space.

  18. Ventilator waveforms on anesthesia machine: a simple tool for intraoperative mapping of phrenic nerve and mid-cervical roots.

    Science.gov (United States)

    Georgoulis, George; Papagrigoriou, Eirini; Sindou, Marc

    2015-12-01

    A crucial aspect of surgery on the supraclavicular region, lateral neck, and mid-cervical vertebral region is the identification and sparing of the phrenic nerve and cervical (C4) root that are responsible for diaphragmatic innervation. Therefore intraoperative mapping of these nerve structures can be useful for difficult cases. Electrical stimulation with simultaneous observation of the ventilator waveforms of the anesthesia machine provides an effective method for the precise intraoperative mapping of these structures. In the literature, there is only one publication reporting the use of one of the waveforms (capnography) for this purpose. Capnography and pressure-time waveforms, two mandatory curves in anesthesiological monitoring, were studied under electrical stimulation of the phrenic nerve (one patient) and the C4 root (eight patients). The aim was to detect changes that would verify diaphragmatic contraction. No modifications in anesthesia or surgery and no additional maneuvers were required. In all patients, stimulation was followed by identifiable changes in the two waveforms, compatible with diaphragmatic contraction: acute reduction in amplitude on capnography and repetitive saw-like elevations on pressure-time curve. Frequency of patterns on pressure-time curve coincided with the frequency of stimulation; therefore the two recordings were complementary. This simple method proved effective in identifying the neural structures responsible for diaphragmatic function. We therefore suggest that it should be employed in the various types of surgery where these structures are at risk.

  19. Progranulin contributes to endogenous mechanisms of pain defense after nerve injury in mice.

    Science.gov (United States)

    Lim, Hee-Young; Albuquerque, Boris; Häussler, Annett; Myrczek, Thekla; Ding, Aihao; Tegeder, Irmgard

    2012-04-01

    Progranulin haploinsufficiency is associated with frontotemporal dementia in humans. Deficiency of progranulin led to exaggerated inflammation and premature aging in mice. The role of progranulin in adaptations to nerve injury and neuropathic pain are still unknown. Here we found that progranulin is up-regulated after injury of the sciatic nerve in the mouse ipsilateral dorsal root ganglia and spinal cord, most prominently in the microglia surrounding injured motor neurons. Progranulin knockdown by continuous intrathecal spinal delivery of small interfering RNA after sciatic nerve injury intensified neuropathic pain-like behaviour and delayed the recovery of motor functions. Compared to wild-type mice, progranulin-deficient mice developed more intense nociceptive hypersensitivity after nerve injury. The differences escalated with aging. Knockdown of progranulin reduced the survival of dissociated primary neurons and neurite outgrowth, whereas addition of recombinant progranulin rescued primary dorsal root ganglia neurons from cell death induced by nerve growth factor withdrawal. Thus, up-regulation of progranulin after neuronal injury may reduce neuropathic pain and help motor function recovery, at least in part, by promoting survival of injured neurons and supporting regrowth. A deficiency in this mechanism may increase the risk for injury-associated chronic pain. © 2011 The Authors Journal of Cellular and Molecular Medicine © 2011 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.

  20. Nitrogen Ion Form and Spatio-temporal Variation in Root Distribution Mediate Nitrogen Effects on Lifespan of Ectomycorrhizal Roots

    Science.gov (United States)

    Kou, L.; McCormack, M. L.; Chen, W.; Guo, D.; Wang, H.; Li, S.; Gao, W.; Yang, H.

    2017-12-01

    Background and Aims Absorptive roots active in soil resource uptake are often intimately associated with mycorrhizal fungi, yet it remains unclear how nitrogen (N) loading affects lifespan of absorptive roots associating with ectomycorrhizal (ECM) fungi. Methods Through a three-year minirhizotron experiment, we investigated the responses of ECM lifespan to different rates of N addition and examined the roles of N ion form, rooting depth, seasonal root cohort, and ECM morphotype in mediating the N effects on ECM lifespan in a slash pine (Pinus elliottii) forest in subtropical China. Results High rates of NH4Cl significantly decreased foliar P concentrations and increased foliar N: P ratios, and mean ECM lifespan was negatively correlated to foliar P concentration. N additions generally increased the lifespan of most ectomycorrhizas, but the specific differences were context dependent. N rates and forms exerted significant positive effects on ECM lifespan with stronger effects occurring at high N rates and under ammonium N addition. N additions extended lifespan of ectomycorrhizas in shallower soil and born in spring and autumn, but shortened lifespan of ectomycorrhizas in deeper soil and born in summer and winter. N additions reduced lifespan of dichotomous ectomycorrhizas, but increased lifespan of coralloid ectomycorrhizas. Conclusions The increased ECM lifespan in response to N additions may primarily be driven by the persistent and aggravated P limitation to plants. Our findings highlight the importance of environmental contexts in controlling ECM lifespan and the need to consider potential differences among mycorrhizal morphotypes when studying N—lifespan relationships of absorptive roots in the context of N deposition.

  1. Cervical Spinal Cord and Dorsal Nerve Root Stimulation for Neuropathic Upper Limb Pain.

    Science.gov (United States)

    Levine, Adrian B; Parrent, Andrew G; MacDougall, Keith W

    2017-01-01

    Spinal cord stimulation (SCS) is a well-established treatment for chronic neuropathic pain in the lower limbs. Upper limb pain comprises a significant proportion of neuropathic pain patients, but is often difficult to target specifically and consistently with paresthesias. We hypothesized that the use of dorsal nerve root stimulation (DNRS), as an option along with SCS, would help us better relieve pain in these patients. All 35 patients trialed with spinal stimulation for upper limb pain between July 1, 2011, and October 31, 2013, were included. We performed permanent implantation in 23/35 patients based on a visual analogue scale pain score decrease of ≥50% during trial stimulation. Both the SCS and DNRS groups had significant improvements in average visual analogue scale pain scores at 12 months compared with baseline, and the majority of patients in both groups obtained ≥50% pain relief. The majority of patients in both groups were able to reduce their opioid use, and on average had improvements in Short Form-36 quality of life scores. Complication rates did not differ significantly between the two groups. Treatment with SCS or DNRS provides meaningful long-term relief of chronic neuropathic pain in the upper limbs.

  2. Fetal alcohol exposure reduces responsiveness of taste nerves and trigeminal chemosensory neurons to ethanol and its flavor components.

    Science.gov (United States)

    Glendinning, John I; Tang, Joyce; Morales Allende, Ana Paula; Bryant, Bruce P; Youngentob, Lisa; Youngentob, Steven L

    2017-08-01

    Fetal alcohol exposure (FAE) leads to increased intake of ethanol in adolescent rats and humans. We asked whether these behavioral changes may be mediated in part by changes in responsiveness of the peripheral taste and oral trigeminal systems. We exposed the experimental rats to ethanol in utero by administering ethanol to dams through a liquid diet; we exposed the control rats to an isocaloric and isonutritive liquid diet. To assess taste responsiveness, we recorded responses of the chorda tympani (CT) and glossopharyngeal (GL) nerves to lingual stimulation with ethanol, quinine, sucrose, and NaCl. To assess trigeminal responsiveness, we measured changes in calcium levels of isolated trigeminal ganglion (TG) neurons during stimulation with ethanol, capsaicin, mustard oil, and KCl. Compared with adolescent control rats, the adolescent experimental rats exhibited diminished CT nerve responses to ethanol, quinine, and sucrose and GL nerve responses to quinine and sucrose. The reductions in taste responsiveness persisted into adulthood for quinine but not for any of the other stimuli. Adolescent experimental rats also exhibited reduced TG neuron responses to ethanol, capsaicin, and mustard oil. The lack of change in responsiveness of the taste nerves to NaCl and the TG neurons to KCl indicates that FAE altered only a subset of the response pathways within each chemosensory system. We propose that FAE reprograms development of the peripheral taste and trigeminal systems in ways that reduce their responsiveness to ethanol and surrogates for its pleasant (i.e., sweet) and unpleasant (i.e., bitterness, oral burning) flavor attributes. NEW & NOTEWORTHY Pregnant mothers are advised to avoid alcohol. This is because even small amounts of alcohol can alter fetal brain development and increase the risk of adolescent alcohol abuse. We asked how fetal alcohol exposure (FAE) produces the latter effect in adolescent rats by measuring responsiveness of taste nerves and trigeminal

  3. Diagnosis of nerve root compromise of the lumbar spine: Evaluation of the performance of three-dimensional isotropic T2-weighted turbo spin-echo SPACE sequence at 3T

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Jin Kyeong; Jee, Won Hee; Jung, Joon Yong; Jang, Jin Hee; Kim, Jin Sung; Kim, Young Hoon; Ha, Kee Yong [Seoul St. Mary' s Hospital, College of Medicine, The Catholic University of Korea, Seoul (Korea, Republic of)

    2017-01-15

    To explore the performance of three-dimensional (3D) isotropic T2-weighted turbo spin-echo (TSE) sampling perfection with application optimized contrasts using different flip angle evolution (SPACE) sequence on a 3T system, for the evaluation of nerve root compromise by disc herniation or stenosis from central to extraforaminal location of the lumbar spine, when used alone or in combination with conventional two-dimensional (2D) TSE sequence. Thirty-seven patients who had undergone 3T spine MRI including 2D and 3D sequences, and had subsequent spine surgery for nerve root compromise at a total of 39 nerve levels, were analyzed. A total of 78 nerve roots (48 symptomatic and 30 asymptomatic sites) were graded (0 to 3) using different MRI sets of 2D, 3D (axial plus sagittal), 3D (all planes), and combination of 2D and 3D sequences, with respect to the nerve root compromise caused by posterior disc herniations, lateral recess stenoses, neural foraminal stenoses, or extraforaminal disc herniations; grading was done independently by two readers. Diagnostic performance was compared between different imaging sets using the receiver operating characteristics (ROC) curve analysis. There were no statistically significant differences (p = 0.203 to > 0.999) in the ROC curve area between the imaging sets for both readers 1 and 2, except for combined 2D and 3D (0.843) vs. 2D (0.802) for reader 1 (p = 0.035), and combined 2D and 3D (0.820) vs. 3D including all planes (0.765) for reader 2 (p = 0.049). The performance of 3D isotropic T2-weighted TSE sequence of the lumbar spine, whether axial plus sagittal images, or all planes of images, was not significantly different from that of 2D TSE sequences, for the evaluation of nerve root compromise of the lumbar spine. Combining 2D and 3D might possibly improve the diagnostic accuracy compared with either one.

  4. End-to-side neurorrhaphy repairs peripheral nerve injury: sensory nerve induces motor nerve regeneration.

    Science.gov (United States)

    Yu, Qing; Zhang, She-Hong; Wang, Tao; Peng, Feng; Han, Dong; Gu, Yu-Dong

    2017-10-01

    End-to-side neurorrhaphy is an option in the treatment of the long segment defects of a nerve. It involves suturing the distal stump of the disconnected nerve (recipient nerve) to the side of the intimate adjacent nerve (donor nerve). However, the motor-sensory specificity after end-to-side neurorrhaphy remains unclear. This study sought to evaluate whether cutaneous sensory nerve regeneration induces motor nerves after end-to-side neurorrhaphy. Thirty rats were randomized into three groups: (1) end-to-side neurorrhaphy using the ulnar nerve (mixed sensory and motor) as the donor nerve and the cutaneous antebrachii medialis nerve as the recipient nerve; (2) the sham group: ulnar nerve and cutaneous antebrachii medialis nerve were just exposed; and (3) the transected nerve group: cutaneous antebrachii medialis nerve was transected and the stumps were turned over and tied. At 5 months, acetylcholinesterase staining results showed that 34% ± 16% of the myelinated axons were stained in the end-to-side group, and none of the myelinated axons were stained in either the sham or transected nerve groups. Retrograde fluorescent tracing of spinal motor neurons and dorsal root ganglion showed the proportion of motor neurons from the cutaneous antebrachii medialis nerve of the end-to-side group was 21% ± 5%. In contrast, no motor neurons from the cutaneous antebrachii medialis nerve of the sham group and transected nerve group were found in the spinal cord segment. These results confirmed that motor neuron regeneration occurred after cutaneous nerve end-to-side neurorrhaphy.

  5. Haemangioblastoma of a cervical sensory nerve root in Von Hippel-Lindau syndrome.

    Science.gov (United States)

    McEvoy, A W; Benjamin, E; Powell, M P

    2000-10-01

    Spinal haemangioblastomas are rare, accounting for only about 7% of all central nervous system cases. The case of a 40-year-old woman with a haemangioblastoma arising solely from a cervical sensory nerve root is presented. At operation via a cervical laminectomy, it was possible to resect the tumour en masse with the sensory ramus, by extending the laminectomy through the exit foramen for C6. Haemangioblastomas are commonly intramedullary, and have only been reported in this location on one previous occasion. The patient has Von Hippel-Lindau syndrome and a history of multiple solid tumours. The possible role of the Von Hippel-Lindau tumour suppressor gene in the pathogenesis of these neoplasms is discussed.

  6. A posterior approach to cervical nerve root block and pulsed radiofrequency treatment for cervical radicular pain: a retrospective study.

    Science.gov (United States)

    Xiao, Lizu; Li, Jie; Li, Disen; Yan, Dong; Yang, Jun; Wang, Daniel; Cheng, Jianguo

    2015-09-01

    Catastrophic complications have been reported for selective cervical nerve root block (SCNRB) or pulsed radiofrequency (PRF) via an anterolateral transforaminal approach. A posterior approach to these procedures under computed tomography guidance has been reported. Here, we report the clinical outcomes of 42 patients with chronic cervical radicular pain (CCRP) treated with a combination of SCNRB and PRF through a posterior approach under fluoroscopy guidance. We retrospectively reviewed the clinical outcomes of 42 consecutive patients with CCRP who received a combination of SCNRB and PRF through a posterior approach under fluoroscopy guidance. The thresholds of electrical stimulation and imaging of the nerve roots after contrast injection were used to evaluate the accuracy of needle placement. The numeric rating scale was used to measure the pain and numbness levels as primary clinical outcomes, which were evaluate in scheduled follow-up visits of up to 3 months. A total of 53 procedures were performed on 42 patients at the levels of C5-C8. All patients reported concordant paresthesia in response to electrical stimulation. The average sensory and motor thresholds of stimulation were 0.28 ± 0.14 and 0.36 ± 0.14 V, respectively. Injection of nonionic contrast resulted in excellent spread along the target nerve root in large majority of the procedures. The numeric rating scale scores for both pain and numbness improved significantly at 1 day, 1 week, and 1 and 3 months after the treatment. No serious adverse effects were observed in any of the patients. The posterior approach to combined SCNRB and PRF under fluoroscopy guidance appears to be safe and efficacious in the management of CCRP. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Root signals that mediate mutualistic interactions in the rhizosphere.

    Science.gov (United States)

    Rasmann, Sergio; Turlings, Ted Cj

    2016-08-01

    A recent boom in research on belowground ecology is rapidly revealing a multitude of fascinating interactions, in particular in the rhizosphere. Many of these interactions are mediated by photo-assimilates that are excreted by plant roots. Root exudates are not mere waste products, but serve numerous functions to control abiotic and biotic processes. These functions range from changing the chemical and physical properties of the soil, inhibiting the growth of competing plants, combatting herbivores, and regulating the microbial community. Particularly intriguing are root-released compounds that have evolved to serve mutualistic interactions with soil-dwelling organisms. These mutually beneficial plant-mediated signals are not only of fundamental ecological interest, but also exceedingly important from an agronomical perspective. Here, we attempt to provide an overview of the plant-produced compounds that have so far been implicated in mutualistic interactions. We propose that these mutualistic signals may have evolved from chemical defenses and we point out that they can be (mis)used by specialized pathogens and herbivores. We speculate that many more signals and interactions remain to be uncovered and that a good understanding of the mechanisms and ecological implications can be the basis for exploitation and manipulation of the signals for crop improvement and protection. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Initial infection of roots and leaves reveals different resistance phenotypes associated with coat protein gene-mediated resistance to Potato mop-top virus.

    Science.gov (United States)

    Germundsson, Anna; Sandgren, Maria; Barker, Hugh; Savenkov, Eugene I; Valkonen, Jari P T

    2002-05-01

    Resistance to the pomovirus Potato mop-top virus (PMTV) was studied in potato (Solanum tuberosum cv. Saturna) and Nicotiana benthamiana transformed with the coat protein (CP) gene of PMTV. The incidence of PMTV infections was reduced in tubers of the CP-transgenic potatoes grown in the field in soil infested with the viruliferous vector, Spongospora subterranea. However, in those tubers that were infected, all three virus RNAs were detected and virus titres were high. The CP-transgenic N. benthamiana plants were inoculated with PMTV using two methods. Following mechanical inoculation of leaves, no RNA 3 (the CP-encoding RNA homologous to the transgene) was detected in leaves, but in some plants low amounts of RNA 3 were detected in roots; RNA 2 was readily detected in leaves and roots of several plants. Inoculation of roots using viruliferous S. subterranea resulted in infection of roots in all plants and the three PMTV RNAs were detected. However, no systemic movement of PMTV from roots to the above-ground parts was observed, indicating a novel expression of resistance. These data indicate that the CP gene-mediated resistance to PMTV specifically restricts accumulation of PMTV RNA 3, and is more effective in leaves than roots. Furthermore, expression of resistance is different depending on whether leaves or roots are inoculated. Data do not exclude the possibility that both a protein-mediated and an RNA-mediated resistance mechanism are involved.

  9. Obturator nerve schwannoma presenting as an adnexal mass: case report

    Energy Technology Data Exchange (ETDEWEB)

    Mehta, M.; Thurston, W.A.; Merchant, N. [The Toronto Hospital, Dept. of Medical Imaging, Toronto, Ontario (Canada); Murphy, K.J. [The Toronto Hospital, Dept. of Obstetrics and Gynecology, Toronto, Ontario (Canada)

    1999-02-01

    Schwannomas are relatively common, benign nerve-sheath tumours. They arise most commonly from either cranial nerves or the dorsal root of spinal nerves. Schwannomas have also been reported to occur in peripheral nerve-root trunks, although this location is much less common. We report a case of a 45-year-old woman with a large pelvic mass originally believed to be an ovarian tumour. Following surgical excision, the tumour was found to be a schwannoma of the obturator nerve. To our knowledge, there are no reported cases of an obturator nerve schwannoma. The imaging features of schwannomas are reviewed. (author)

  10. Inflammatory lesions of the spinal cord and the nerve roots in magnetic resonance imaging

    International Nuclear Information System (INIS)

    Sartoretti-Schefer, S.; Wichmann, W.; Valavanis, A.

    1996-01-01

    The MRI examinations of 52 patients with proven inflammatory lesions (39 patients) or tumorous/postactinic lesions of the spinal cord (6 patients) and vasuclar malformations of the spinal cord (7 patients) were retrospectively analyzed. All examinations were performed on a 1.5 T MR unit, using bi- or triplanar T1-w pre- and postcontrast as well as T2-w SE sequences. Clinical and radiological examinations allow a subdivision of inflammations of the spinal cord and the nerve roots into (mening-oradiculo) myelitis and meningoradiculo (myelitis). The MRI patterns of these two inflammatory subtypes vary: Meningoradiculitis presents with an enhancement of the nerve roots and the leptomeninges; myelitis itself is characterized by single or multiple, diffuse or multifocal, with or without nodular, patchy or diffusely enhancing intramedullary lessions, with or without thickening of the cord and leptomeningeal inflammation. The immunologically suppressed patient suffers from viral infections (especially herpes simplex, varicella-zoster virus, cytomegalovirus), bacterial infections (tuberculosis), but rarely viral infections, sarcoidosis and demyelinating diseases. Idiopathic myelitis is also common. Secondary ischemic and demyelinating processes result in a complex morphology of inflammatory lesions on MRI, and therefore the whole spectrum of demyelinating, ischemic and inflammatory lesions has to be included in the differential diagnosis. Even tumors may imitate inflammatory myelitis and radiculitis. Most commonly, meningoradiculitis can be separated from myelitis. A reliable diagnosis of a specific inflammatory lesion is difficult and is mostly achieved in patients with multiple sclerosis and in patients with HIV-associated cytomegalovirus infection. (orig.) [de

  11. A diagnostic study in patients with sciatica establishing the importance of localization of worsening of pain during coughing, sneezing and straining to assess nerve root compression on MRI.

    Science.gov (United States)

    Verwoerd, Annemieke J H; Mens, Jan; El Barzouhi, Abdelilah; Peul, Wilco C; Koes, Bart W; Verhagen, Arianne P

    2016-05-01

    To test whether the localization of worsening of pain during coughing, sneezing and straining matters in the assessment of lumbosacral nerve root compression or disc herniation on MRI. Recently the diagnostic accuracy of history items to assess disc herniation or nerve root compression on magnetic resonance imaging (MRI) was investigated. A total of 395 adult patients with severe sciatica of 6-12 weeks duration were included in this study. The question regarding the influence of coughing, sneezing and straining on the intensity of pain could be answered on a 4 point scale: no worsening of pain, worsening of back pain, worsening of leg pain, worsening of back and leg pain. Diagnostic odds ratio's (DORs) were calculated for the various dichotomization options. The DOR changed into significant values when the answer option was more narrowed to worsening of leg pain. The highest DOR was observed for the answer option 'worsening of leg pain' with a DOR of 2.28 (95 % CI 1.28-4.04) for the presence of nerve root compression and a DOR of 2.50 (95 % CI 1.27-4.90) for the presence of a herniated disc on MRI. Worsening of leg pain during coughing, sneezing or straining has a significant diagnostic value for the presence of nerve root compression and disc herniation on MRI in patients with sciatica. This study also highlights the importance of the formulation of answer options in history taking.

  12. α-Synuclein pathology in the cranial and spinal nerves in Lewy body disease.

    Science.gov (United States)

    Nakamura, Keiko; Mori, Fumiaki; Tanji, Kunikazu; Miki, Yasuo; Toyoshima, Yasuko; Kakita, Akiyoshi; Takahashi, Hitoshi; Yamada, Masahito; Wakabayashi, Koichi

    2016-06-01

    Accumulation of phosphorylated α-synuclein in neurons and glial cells is a histological hallmark of Lewy body disease (LBD) and multiple system atrophy (MSA). Recently, filamentous aggregations of phosphorylated α-synuclein have been reported in the cytoplasm of Schwann cells, but not in axons, in the peripheral nervous system in MSA, mainly in the cranial and spinal nerve roots. Here we conducted an immunohistochemical investigation of the cranial and spinal nerves and dorsal root ganglia of patients with LBD. Lewy axons were found in the oculomotor, trigeminal and glossopharyngeal-vagus nerves, but not in the hypoglossal nerve. The glossopharyngeal-vagus nerves were most frequently affected, with involvement in all of 20 subjects. In the spinal nerve roots, Lewy axons were found in all of the cases examined. Lewy axons in the anterior nerves were more frequent and numerous in the thoracic and sacral segments than in the cervical and lumbar segments. On the other hand, axonal lesions in the posterior spinal nerve roots appeared to increase along a cervical-to-sacral gradient. Although Schwann cell cytoplasmic inclusions were found in the spinal nerves, they were only minimal. In the dorsal root ganglia, axonal lesions were seldom evident. These findings indicate that α-synuclein pathology in the peripheral nerves is axonal-predominant in LBD, whereas it is restricted to glial cells in MSA. © 2015 Japanese Society of Neuropathology.

  13. The effects of anticonvulsants on 4-aminopyridine-induced bursting: in vitro studies on rat peripheral nerve and dorsal roots.

    Science.gov (United States)

    Lees, G.

    1996-01-01

    1. Aminopyridines have been used as beneficial symptomatic treatments in a variety of neurological conditions including multiple sclerosis but have been associated with considerable toxicity in the form of abdominal pain, paraesthesias and (rarely) convulsions. 2. Extracellular and intracellular recording was used to characterize action potentials in rat sciatic nerves and dorsal roots and the effects of 4-aminopyridine (4-AP). 3. In sciatic nerve trunks, 1 mM 4-AP produced pronounced after potentials at room temperature secondary to regenerative firing in affected axons (5-10 spikes per stimulus). At physiological temperatures, after potentials (2-3 spikes) were greatly attenuated in peripheral axons. 4. 4-AP evoked more pronounced and prolonged after discharges in isolated dorsal roots at 37 degrees C (3-5.5 mV and 80-100 ms succeeded by a smaller inhibitory/depolarizing voltage shift) which were used to assess the effects of anticonvulsants. 5. Phenytoin, carbamazepine and lamotrigine dose-dependently reduced the area of 4-AP-induced after potentials at 100 and 320 microM but the amplitude of compound action potentials (evoked at 0.5 Hz) was depressed in parallel. 6. The tonic block of sensory action potentials by all three drugs (at 320 microM) was enhanced by high frequency stimulation (5-500 Hz). 7. The lack of selectivity of these frequency-dependent Na+ channel blockers for burst firing compared to low-frequency spikes, is discussed in contrast to their effects on 4-AP-induced seizures and paroxysmal activity in CNS tissue (which is associated with large and sustained depolarizing plateau potentials). 8. In conclusion, these in vitro results confirm the marked sensitivity of sensory axons to 4-AP (the presumptive basis for paraesthesias). Burst firing was not preferentially impaired at relatively high concentrations suggesting that anticonvulsants will not overcome the toxic peripheral actions of 4-AP in neurological patients. PMID:8821551

  14. The morphometric analysis of the intervertebral foramen and the spinal nerve root in the cervical spine

    International Nuclear Information System (INIS)

    Yoshida, Yasuo

    2008-01-01

    deg at C5 and C6, showing a significantly obtuse angle at C5 and C6 compared with at C3. The measurement at the merging section of the dorsal spinal nerve root showed that the width was about 7.0 to 7.5 mm at C3 through C6 and about 6.5 mm at C7 which was significantly low, while the cephalocaudal length was about 12.5 mm at C3, about 11.5 mm at C4, about 12 to 13 mm at C5, about 11.5 mm at C6, about 10.5 mm at C7, and about 10 mm at C8: there was a difference between the right and the left at C5, whereas no difference was observed between the right and the left at C3, C4, C6, C7, and C8. The incidence angle from the inlet of intervertebral foramen of the dorsal spinal nerve root toward the superior part of the spine indistinct a gradual obtuse angle at C3 through C5, whereas the angle gradually become an acute angle at C6 or below. The incidence angle in the inferior part was obtuse at C4 and C5, and acute at C6 or below, showing that the distance obliquely running within the dura mater tended to be short in the dorsal nerve rootlets at C4 and C5. Based on the above results, it was considered that the anatomy of the intervertebral foramen of the cervical spine and the difference by level at the origin of dorsal root have an influence on the onset of cervical myelopathy and cervical spondylotic radiculopathy as well as the occurrence of various types of disease states. (author)

  15. Asymmetry of the multifidus muscle in lumbar radicular nerve compression

    International Nuclear Information System (INIS)

    Farshad, Mazda; Gerber, Christian; Farshad-Amacker, Nadja A.; Dietrich, Tobias J.; Laufer-Molnar, Viviane; Min, Kan

    2014-01-01

    The multifidus muscle is the only paraspinal lumbar muscle that is innervated by a single nerve root. This study aimes to evaluate if the asymmetry of the multifidus muscle is related to the severity of compression of the nerve root or the duration of radiculopathy. MRI scans of 79 patients with symptomatic single level, unilateral, lumbar radiculopathy were reviewed for this retrospective case series with a nested case-control study. The cross-sectional area (CSA) of the multifidus muscle and the perpendicular distance of the multifidus to the lamina (MLD) were measured bilaterally by two radiologists and set into relation to the severity of nerve compression, duration of radiculopathy and probability of an indication for surgical decompression. In 67 recessal and 12 foraminal symptomatic nerve root compressions, neither the MLD ratio (severe 1.19 ± 0.55 vs less severe nerve compression: 1.12 ± 0.30, p = 0.664) nor the CSA ratio (severe 1 ± 0.16 vs less severe 0.98 ± 0.13, p = 0.577) nor the duration of symptoms significantly correlated with the degree of nerve compression. MR measurements of multifidus were not different in patients with (n = 20) and those without (n = 59) clinical muscle weakness in the extremity caused by nerve root compression. A MLD >1.5 was, however, associated with the probability of an indication for surgical decompression (OR 3, specificity 92 %, PPV 73 %). Asymmetry of the multifidus muscle correlates with neither the severity nor the duration of nerve root compression in the lumbar spine. Severe asymmetry with substantial multifidus atrophy seems associated with the probability of an indication of surgical decompression. (orig.)

  16. Asymmetry of the multifidus muscle in lumbar radicular nerve compression

    Energy Technology Data Exchange (ETDEWEB)

    Farshad, Mazda; Gerber, Christian; Farshad-Amacker, Nadja A.; Dietrich, Tobias J.; Laufer-Molnar, Viviane; Min, Kan [Balgrist University Hospital, University of Zuerich, Zuerich (Switzerland)

    2014-01-15

    The multifidus muscle is the only paraspinal lumbar muscle that is innervated by a single nerve root. This study aimes to evaluate if the asymmetry of the multifidus muscle is related to the severity of compression of the nerve root or the duration of radiculopathy. MRI scans of 79 patients with symptomatic single level, unilateral, lumbar radiculopathy were reviewed for this retrospective case series with a nested case-control study. The cross-sectional area (CSA) of the multifidus muscle and the perpendicular distance of the multifidus to the lamina (MLD) were measured bilaterally by two radiologists and set into relation to the severity of nerve compression, duration of radiculopathy and probability of an indication for surgical decompression. In 67 recessal and 12 foraminal symptomatic nerve root compressions, neither the MLD ratio (severe 1.19 ± 0.55 vs less severe nerve compression: 1.12 ± 0.30, p = 0.664) nor the CSA ratio (severe 1 ± 0.16 vs less severe 0.98 ± 0.13, p = 0.577) nor the duration of symptoms significantly correlated with the degree of nerve compression. MR measurements of multifidus were not different in patients with (n = 20) and those without (n = 59) clinical muscle weakness in the extremity caused by nerve root compression. A MLD >1.5 was, however, associated with the probability of an indication for surgical decompression (OR 3, specificity 92 %, PPV 73 %). Asymmetry of the multifidus muscle correlates with neither the severity nor the duration of nerve root compression in the lumbar spine. Severe asymmetry with substantial multifidus atrophy seems associated with the probability of an indication of surgical decompression. (orig.)

  17. Boric acid reduces axonal and myelin damage in experimental sciatic nerve injury

    Directory of Open Access Journals (Sweden)

    Zahir Kizilay

    2016-01-01

    Full Text Available The aim of this study was to investigate the effects of boric acid in experimental acute sciatic nerve injury. Twenty-eight adult male rats were randomly divided into four equal groups (n = 7: control (C, boric acid (BA, sciatic nerve injury (I , and sciatic nerve injury + boric acid treatment (BAI. Sciatic nerve injury was generated using a Yasargil aneurysm clip in the groups I and BAI. Boric acid was given four times at 100 mg/kg to rats in the groups BA and BAI after injury (by gavage at 0, 24, 48 and 72 hours but no injury was made in the group BA. In vivo electrophysiological tests were performed at the end of the day 4 and sciatic nerve tissue samples were taken for histopathological examination. The amplitude of compound action potential, the nerve conduction velocity and the number of axons were significantly lower and the myelin structure was found to be broken in group I compared with those in groups C and BA. However, the amplitude of the compound action potential, the nerve conduction velocity and the number of axons were significantly greater in group BAI than in group I. Moreover, myelin injury was significantly milder and the intensity of nuclear factor kappa B immunostaining was significantly weaker in group BAI than in group I. The results of this study show that administration of boric acid at 100 mg/kg after sciatic nerve injury in rats markedly reduces myelin and axonal injury and improves the electrophysiological function of injured sciatic nerve possibly through alleviating oxidative stress reactions.

  18. Deficiency in monocarboxylate transporter 1 (MCT1) in mice delays regeneration of peripheral nerves following sciatic nerve crush

    KAUST Repository

    Morrison, Brett M.; Tsingalia, Akivaga; Vidensky, Svetlana; Lee, Youngjin; Jin, Lin; Farah, Mohamed H.; Lengacher, Sylvain; Magistretti, Pierre J.; Pellerin, Luc; Rothsteinb, Jeffrey D.

    2015-01-01

    Peripheral nerve regeneration following injury occurs spontaneously, but many of the processes require metabolic energy. The mechanism of energy supply to axons has not previously been determined. In the central nervous system, monocarboxylate transporter 1 (MCT1), expressed in oligodendroglia, is critical for supplying lactate or other energy metabolites to axons. In the current study, MCT1 is shown to localize within the peripheral nervous system to perineurial cells, dorsal root ganglion neurons, and Schwann cells by MCT1 immunofluorescence in wild-type mice and tdTomato fluorescence in MCT1 BAC reporter mice. To investigate whether MCT1 is necessary for peripheral nerve regeneration, sciatic nerves of MCT1 heterozygous mice are crushed and peripheral nerve regeneration was quantified electrophysiologically and anatomically. Compound muscle action potential (CMAP) recovery is delayed from a median of 21. days in wild-type mice to greater than 38. days in MCT1 heterozygote mice. In fact, half of the MCT1 heterozygote mice have no recovery of CMAP at 42. days, while all of the wild-type mice recovered. In addition, muscle fibers remain 40% more atrophic and neuromuscular junctions 40% more denervated at 42. days post-crush in the MCT1 heterozygote mice than wild-type mice. The delay in nerve regeneration is not only in motor axons, as the number of regenerated axons in the sural sensory nerve of MCT1 heterozygote mice at 4. weeks and tibial mixed sensory and motor nerve at 3. weeks is also significantly reduced compared to wild-type mice. This delay in regeneration may be partly due to failed Schwann cell function, as there is reduced early phagocytosis of myelin debris and remyelination of axon segments. These data for the first time demonstrate that MCT1 is critical for regeneration of both sensory and motor axons in mice following sciatic nerve crush.

  19. Spermidine-mediated hydrogen peroxide signaling enhances the antioxidant capacity of salt-stressed cucumber roots.

    Science.gov (United States)

    Wu, Jianqiang; Shu, Sheng; Li, Chengcheng; Sun, Jin; Guo, Shirong

    2018-07-01

    Hydrogen peroxide (H 2 O 2 ) is a key signaling molecule that mediates a variety of physiological processes and defense responses against abiotic stress in higher plants. In this study, our aims are to clarify the role of H 2 O 2 accumulation induced by the exogenous application of spermidine (Spd) to cucumber (Cucumis sativus) seedlings in regulating the antioxidant capacity of roots under salt stress. The results showed that Spd caused a significant increase in endogenous polyamines and H 2 O 2 levels, and peaked at 2 h after salt stress. Spd-induced H 2 O 2 accumulation was blocked under salt stress by pretreatment with a H 2 O 2 scavenger and respective inhibitors of cell wall peroxidase (CWPOD; EC: 1.11.1.7), polyamine oxidase (PAO; EC: 1.5.3.11) and NADPH oxidase (NOX; EC: 1.6.3.1); among these three inhibitors, the largest decrease was found in response to the addition of the inhibitor of polyamine oxidase. In addition, we observed that exogenous Spd could increase the activities of the enzymes superoxide dismutase (SOD; EC: 1.15.1.1), peroxidase (POD; EC: 1.11.1.7) and catalase (CAT; EC: 1.11.1.6) as well as the expression of their genes in salt-stressed roots, and the effects were inhibited by H 2 O 2 scavengers and polyamine oxidase inhibitors. These results suggested that, by regulating endogenous PAs-mediated H 2 O 2 signaling in roots, Spd could enhance antioxidant enzyme activities and reduce oxidative damage; the main source of H 2 O 2 was polyamine oxidation, which was associated with improved tolerance and root growth recovery of cucumber under salt stress. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  20. A novel chondroitin sulfate hydrogel for nerve repair

    Science.gov (United States)

    Conovaloff, Aaron William

    Brachial plexus injuries affect numerous patients every year, with very debilitating results. The majority of these cases are very severe, and involve damage to the nerve roots. To date, repair strategies for these injuries address only gross tissue damage, but do not supply cells with adequate regeneration signals. As a result, functional recovery is often severely lacking. Therefore, a chondroitin sulfate hydrogel that delivers neurotrophic signals to damaged neurons is proposed as a scaffold to support nerve root regeneration. Capillary electrophoresis studies revealed that chondroitin sulfate can physically bind with a variety of neurotrophic factors, and cultures of chick dorsal root ganglia demonstrated robust neurite outgrowth in chondroitin sulfate hydrogels. Outgrowth in chondroitin sulfate gels was greater than that observed in control gels of hyaluronic acid. Furthermore, the chondroitin sulfate hydrogel's binding activity with nerve growth factor could be enhanced by incorporation of a synthetic bioactive peptide, as revealed by fluorescence recovery after photobleaching. This enhanced binding was observed only in chondroitin sulfate gels, and not in hyaluronic acid control gels. This enhanced binding activity resulted in enhanced dorsal root ganglion neurite outgrowth in chondroitin sulfate gels. Finally, the growth of regenerating dorsal root ganglia in these gels was imaged using label-free coherent anti-Stokes scattering microscopy. This technique generated detailed, high-quality images of live dorsal root ganglion neurites, which were comparable to fixed, F-actin-stained samples. Taken together, these results demonstrate the viability of this chondroitin sulfate hydrogel to serve as an effective implantable scaffold to aid in nerve root regeneration.

  1. Neurophysiological approach to disorders of peripheral nerve

    DEFF Research Database (Denmark)

    Crone, Clarissa; Krarup, Christian

    2013-01-01

    Disorders of the peripheral nerve system (PNS) are heterogeneous and may involve motor fibers, sensory fibers, small myelinated and unmyelinated fibers and autonomic nerve fibers, with variable anatomical distribution (single nerves, several different nerves, symmetrical affection of all nerves......, plexus, or root lesions). Furthermore pathological processes may result in either demyelination, axonal degeneration or both. In order to reach an exact diagnosis of any neuropathy electrophysiological studies are crucial to obtain information about these variables. Conventional electrophysiological...

  2. Inhibitory Activity of Yokukansankachimpihange against Nerve Growth Factor-Induced Neurite Growth in Cultured Rat Dorsal Root Ganglion Neurons

    Directory of Open Access Journals (Sweden)

    Chiaki Murayama

    2015-08-01

    Full Text Available Chronic pruritus is a major and distressing symptom of many cutaneous diseases, however, the treatment remains a challenge in the clinic. The traditional Chinese-Japanese medicine (Kampo medicine is a conservative and increasingly popular approach to treat chronic pruritus for both patients and medical providers. Yokukansankachimpihange (YKH, a Kampo formula has been demonstrated to be effective in the treatment of itching of atopic dermatitis in Japan although its pharmacological mechanism is unknown clearly. In an attempt to clarify its pharmacological actions, in this study, we focused on the inhibitory activity of YKH against neurite growth induced with nerve growth factor (NGF in cultured rat dorsal root ganglion (DRG neurons because epidermal hyperinnervation is deeply related to itch sensitization. YKH showed approximately 200-fold inhibitory activity against NGF-induced neurite growth than that of neurotropin (positive control, a drug used clinically for treatment of chronic pruritus. Moreover, it also found that Uncaria hook, Bupleurum root and their chemical constituents rhynchophylline, hirsutine, and saikosaponin a, d showed inhibitory activities against NGF-induced neurite growth, suggesting they should mainly contribute to the inhibitory activity of YKH. Further study on the effects of YKH against epidermal nerve density in “itch-scratch” animal models is under investigation.

  3. Quantitative evaluation of normal lumbosacral plexus nerve by using diffusion tensor imaging

    International Nuclear Information System (INIS)

    Shi Yin; Wang Chuanbing; Liu Wei; Zong Min; Sa Rina; Shi Haibin; Wang Dehang

    2014-01-01

    Objective: To observe the lumbosacral plexus nerves by diffusion tensor tractography (DTT) and quantitatively evaluate them by using diffusion tensor imaging (DTI) in healthy volunteers. Methods: A total of 60 healthy volunteers (30 males and 30 females) underwent DTI scanning. Mean FA values of the lumbosacral plexus nerves (both sides of lumbar roots L3 to S1, proximal and distal to the lumbar foraminal zone) were quantified. Differences among various segments of lumbar nerve roots were compared with ANOVA test and SNK test. Differences between two sides of the lumbar nerve roots at the same lumbar segment were compared with paired-samples t test. Differences between the proximal and the distal nerve to the the lumbar foraminal zone at the same lumbar segment were compared with paired-samples t test. The lumbosacral plexus nerve was visualized with tractography. Results: (1) The lumbosacral plexus nerve was clearly visualized with tractography. (2) Mean FA values of the lumbar nerve roots L3 to S1 were as followings: proximal to the left lumbar foraminal zone 0.202 ± 0.021, 0.201 ± 0.026, 0.201 ± 0.027, 0.191 ±0.016, distal to the left lumbar foraminal zone 0.222 ± 0.034, 0.250 ± 0.028, 0.203 ± 0.026, 0.183 ± 0.020, proximal to the right lumbar foraminal zone 0.200 ± 0.023, 0.202 ± 0.023, 0.205 ± 0.027, 0.191 ± 0.017, distal to the right lumbar foraminal zone 0.225 ± 0.032, 0.247 ± 0.027, 0.205 ± 0.033, 0.183 ± 0.021. Mean FA values were significantly different between the proximal nerve to the distal nerve in lumbar nerve roots L3, L4, S1 (t=-9.114-2.366, P<0.05), but not significantly different in L5 (P>0.05). Differences were not found between the right and left side nerves at the same lumbar segment (P>0.05). (3) The whole length of the lumbar roots nerve L3 to S1 can be visualized clearly by using DTT. Conclusions: Diffusion tensor imaging and tractography can show and provide quantitative information of human lumbosacral plexus nerves. DTI

  4. A methodological reappraisal of non invasive high voltage electrical stimulation of lumbosacral nerve roots.

    Science.gov (United States)

    Troni, Walter; Di Sapio, Alessia; Berra, Eliana; Duca, Sergio; Merola, Aristide; Sperli, Francesca; Bertolotto, Antonio

    2011-10-01

    To describe a neurophysiological method to locate the optimal stimulation site (OSS) over the vertebral column, customized to the individual subject, to achieve maximal activation of lumbosacral roots by means of non-invasive high voltage electrical stimulation (HVES). OSS was located in 30 volunteers by testing different stimulation points of a surface multi-electrode array placed over the dorso-lumbar junction of the vertebral column. The dorso-ventral stimulating montage was used (Troni et al., 1996). Motor responses to root stimulation (rCMAPs) were bilaterally recorded from Vastus Medialis (VM), Tibialis Anterior (TA), Soleus (SL) and Flexor Hallucis Brevis (FHB) muscles. The direct nature of rCMAPs was tested by delivering two maximal stimuli 50 ms apart. Except for a few subjects with large girth, maximal rCMAPs could be obtained from all muscles with a stimulating current intensity up to 550 V (1050 mA). Maximal double HVES excluded any reflex component in the recorded rCMAPs. The procedure was well tolerated and no side effects were observed. A single maximal electric shock delivered at the proper vertebral level by means of the dorso-ventral montage is able to safely achieve synchronous, bilateral maximal activation of several roots, from L3 to S1. Maximal activation of lumbosacral roots at their origin, unattainable with magnetic stimulation, is the essential requirement for direct detection of proximal nerve conduction slowing and block in lower limbs. Copyright © 2011 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  5. [Does intraoperative nerve monitoring reduce the rate of recurrent nerve palsies during thyroid surgery?].

    Science.gov (United States)

    Timmermann, W; Dralle, H; Hamelmann, W; Thomusch, O; Sekulla, C; Meyer, Th; Timm, S; Thiede, A

    2002-05-01

    Two different aspects of the influence of neuromonitoring on the possible reduction of post-operative recurrent laryngeal nerve palsies require critical examination: the nerve identification and the monitoring of it's functions. Due to the additional information from the EMG signals, neuromonitoring is the best method for identifying the nerves as compared to visual identification alone. There are still no randomized studies available that compare the visual and electrophysiological recurrent laryngeal nerve detection in thyroid operations with respect to the postoperative nerve palsies. Nevertheless, comparisons with historical collectives show that a constant low nerve-palsy-rate was achieved with electrophysiological detection in comparison to visual detection. The rate of nerve identification is normally very high and amounts to 99 % in our own patients. The data obtained during the "Quality assurance of benign and malignant Goiter" study show that in hemithyreoidectomy and subtotal resection, lower nerve-palsy-rates are achieved with neuromonitoring as compared to solely visual detection. Following subtotal resection, this discrepancy becomes even statistically significant. While monitoring the nerve functions with the presently used neuromonitoring technique, it is possible to observe the EMG-signal remaining constant or decreasing in volume. Assuming that a constant neuromonitoring signal represents a normal vocal cord, our evaluation shows that there is a small percentage of false negative and positive results. Looking at the permanent recurrent nerve palsy rates, this method has a specificity of 98 %, a sensitivity of 100 %, a positive prognostic value of 10 %, and a negative prognostic value of 100 %. Although an altered neuromonitoring signal can be taken as a clear indication of eventual nerve damage, an absolutely reliable statement about the postoperative vocal cord function is presently not possible with intraoperative neuromonitoring.

  6. Maize ZmALMT2 is a root anion transporter that mediates constitutive root malate efflux.

    Science.gov (United States)

    Ligaba, Ayalew; Maron, Lyza; Shaff, Jon; Kochian, Leon; Piñeros, Miguel

    2012-07-01

    Root efflux of organic acid anions underlies a major mechanism of plant aluminium (Al) tolerance on acid soils. This efflux is mediated by transporters of the Al-activated malate transporter (ALMT) or the multi-drug and toxin extrusion (MATE) families. ZmALMT2 was previously suggested to be involved in Al tolerance based on joint association-linkage mapping for maize Al tolerance. In the current study, we functionally characterized ZmALMT2 by heterologously expressing it in Xenopus laevis oocytes and transgenic Arabidopsis. In oocytes, ZmALMT2 mediated an Al-independent electrogenic transport product of organic and inorganic anion efflux. Ectopic overexpression of ZmALMT2 in an Al-hypersensitive Arabidopsis KO/KD line lacking the Al tolerance genes, AtALMT1 and AtMATE, resulted in Al-independent constitutive root malate efflux which partially restored the Al tolerance phenotype. The lack of correlation between ZmALMT2 expression and Al tolerance (e.g., expression not localized to the root tip, not up-regulated by Al, and higher in sensitive versus tolerance maize lines) also led us to question ZmALMT2's role in Al tolerance. The functional properties of the ZmALMT2 transporter presented here, along with the gene expression data, suggest that ZmALMT2 is not involved in maize Al tolerance but, rather, may play a role in mineral nutrient acquisition and transport. Published 2011. This article is a U.S. Government work and is in the public domain in the USA.

  7. Nitric oxide mediates strigolactone signaling in auxin and ethylene-sensitive lateral root formation in sunflower seedlings

    OpenAIRE

    Bharti, Niharika; Bhatla, Satish C

    2015-01-01

    Strigolactones (SLs) play significant role in shaping root architecture whereby auxin-SL crosstalk has been observed in SL-mediated responses of primary root elongation, lateral root formation and adventitious root (AR) initiation. Whereas GR24 (a synthetic strigolactone) inhibits LR and AR formation, the effect of SL biosynthesis inhibitor (fluridone) is just the opposite (root proliferation). Naphthylphthalamic acid (NPA) leads to LR proliferation but completely inhibits AR development. The...

  8. A ferromagnetic surgical system reduces phrenic nerve injury in redo congenital cardiac surgery.

    Science.gov (United States)

    Shinkawa, Takeshi; Holloway, Jessica; Tang, Xinyu; Gossett, Jeffrey M; Imamura, Michiaki

    2017-05-01

    A ferromagnetic surgical system (FMwand®) is a new type of dissection device expected to reduce the risk of adjacent tissue damage. We reviewed 426 congenital cardiac operations with cardiopulmonary bypass through redo sternotomy to assess if this device prevented phrenic nerve injury. The ferromagnetic surgical system was used in 203 operations (47.7%) with regular electrocautery and scissors. The preoperative and operative details were similar between the operations with or without the ferromagnetic surgical system. The incidence of phrenic nerve injury was significantly lower with the ferromagnetic surgical system (0% vs 2.7%, P = 0.031). A logistic regression model showed that the use of the ferromagnetic surgical system was significantly associated with reduced odds of phrenic nerve injury (P < 0.001). © The Author 2017. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  9. Sodium Channel Nav1.8 Underlies TTX-Resistant Axonal Action Potential Conduction in Somatosensory C-Fibers of Distal Cutaneous Nerves.

    Science.gov (United States)

    Klein, Amanda H; Vyshnevska, Alina; Hartke, Timothy V; De Col, Roberto; Mankowski, Joseph L; Turnquist, Brian; Bosmans, Frank; Reeh, Peter W; Schmelz, Martin; Carr, Richard W; Ringkamp, Matthias

    2017-05-17

    Voltage-gated sodium (Na V ) channels are responsible for the initiation and conduction of action potentials within primary afferents. The nine Na V channel isoforms recognized in mammals are often functionally divided into tetrodotoxin (TTX)-sensitive (TTX-s) channels (Na V 1.1-Na V 1.4, Na V 1.6-Na V 1.7) that are blocked by nanomolar concentrations and TTX-resistant (TTX-r) channels (Na V 1.8 and Na V 1.9) inhibited by millimolar concentrations, with Na V 1.5 having an intermediate toxin sensitivity. For small-diameter primary afferent neurons, it is unclear to what extent different Na V channel isoforms are distributed along the peripheral and central branches of their bifurcated axons. To determine the relative contribution of TTX-s and TTX-r channels to action potential conduction in different axonal compartments, we investigated the effects of TTX on C-fiber-mediated compound action potentials (C-CAPs) of proximal and distal peripheral nerve segments and dorsal roots from mice and pigtail monkeys ( Macaca nemestrina ). In the dorsal roots and proximal peripheral nerves of mice and nonhuman primates, TTX reduced the C-CAP amplitude to 16% of the baseline. In contrast, >30% of the C-CAP was resistant to TTX in distal peripheral branches of monkeys and WT and Na V 1.9 -/- mice. In nerves from Na V 1.8 -/- mice, TTX-r C-CAPs could not be detected. These data indicate that Na V 1.8 is the primary isoform underlying TTX-r conduction in distal axons of somatosensory C-fibers. Furthermore, there is a differential spatial distribution of Na V 1.8 within C-fiber axons, being functionally more prominent in the most distal axons and terminal regions. The enrichment of Na V 1.8 in distal axons may provide a useful target in the treatment of pain of peripheral origin. SIGNIFICANCE STATEMENT It is unclear whether individual sodium channel isoforms exert differential roles in action potential conduction along the axonal membrane of nociceptive, unmyelinated peripheral nerve

  10. Vasodilative effects of prostaglandin E1 derivate on arteries of nerve roots in a canine model of a chronically compressed cauda equina

    Directory of Open Access Journals (Sweden)

    Konno Shin-ichi

    2008-04-01

    Full Text Available Abstract Background Reduction of blood flow is important in the induction of neurogenic intermittent claudication (NIC in lumbar spinal canal stenosis. PGE1 improves the mean walking distance in patients with NIC type cauda equina compression. PGE1 derivate might be effective in dilating blood vessels and improving blood flow in nerve roots with chronically compressed cauda equina. The aim of this study was to assess whether PGE1 derivate has vasodilatory effects on both arteries and veins in a canine model of chronic cauda equina compression. Methods Fourteen dogs were used in this study. A plastic balloon inflated to 10 mmHg was placed under the lamina of the 7th lumbar vertebra for 1 week. OP-1206-cyclodextrin clathrate (OP-1206-CD: prostaglandin E1 derivate was administered orally. The blood vessels of the second or third sacral nerve root were identified using a specially designed surgical microscope equipped with a video camera. The diameter of the blood vessels was measured on video-recordings every 15 minutes until 90 minutes after the administration of the PGE1 derivate. Results We observed seven arteries and seven veins. The diameter and blood flow of the arteries was significantly increased compared with the veins at both 60 and 75 minutes after administration of the PGE1 derivate (p Discussion The PGE1 derivate improved blood flow in the arteries but did not induce blood stasis in the veins. Our results suggest that the PGE1 derivate might be a potential therapeutic agent, as it improved blood flow in the nerve roots in a canine model of chronic cauda equina compression.

  11. Effect of nerve injury on the number of dorsal root ganglion neurons and autotomy behavior in adult Bax-deficient mice

    Directory of Open Access Journals (Sweden)

    Lyu C

    2017-08-01

    Full Text Available Chuang Lyu,1,2 Gong-Wei Lyu,3 Aurora Martinez,4 Tie-Jun Sten Shi4 1State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China; 2Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden; 3Department of Neurology, 1st Hospital of Harbin Medical University, Harbin, People’s Republic of China; 4Department of Biomedicine, University of Bergen, Bergen, Norway Background: The proapoptotic molecule BAX, plays an important role in mitochondrial apoptotic pathway. Dorsal root ganglion (DRG neurons depend on neurotrophic factors for survival at early developmental stages. Withdrawal of neurotrophic factors will induce apoptosis in DRG neurons, but this type of cell death can be delayed or prevented in neonatal Bax knockout (KO mice. In adult animals, evidence also shows that DRG neurons are less dependent upon neurotrophic factors for survival. However, little is known about the effect of Bax deletion on the survival of normal and denervated DRG neurons in adult mice. Methods: A unilateral sciatic nerve transection was performed in adult Bax KO mice and wild-type (WT littermates. Stereological method was employed to quantify the number of lumbar-5 DRG neurons 1 month post-surgery. Nerve injury-induced autotomy behavior was also examined on days 1, 3, and 7 post-surgery. Results: There were significantly more neurons in contralateral DRGs of KO mice as compared with WT mice. The number of neurons was reduced in ipsilateral DRGs in both KO and WT mice. No changes in size distributions of DRG neuron profiles were detected before or after nerve injury. Injury-induced autotomy behavior developed much earlier and was more serious in KO mice. Conclusion: Although postnatal death or loss of DRG neurons is partially prevented by Bax deletion, this effect cannot interfere with long-term nerve injury-induced neuronal loss. The exaggerated self

  12. Microencapsulation improves inhibitory effects of transplanted olfactory ensheathing cells on pain after sciatic nerve injury

    Directory of Open Access Journals (Sweden)

    Hao Zhao

    2015-01-01

    Full Text Available Olfactory bulb tissue transplantation inhibits P2X2/3 receptor-mediated neuropathic pain. However, the olfactory bulb has a complex cellular composition, and the mechanism underlying the action of purified transplanted olfactory ensheathing cells (OECs remains unclear. In the present study, we microencapsulated OECs in alginic acid, and transplanted free and microencapsulated OECs into the region surrounding the injured sciatic nerve in rat models of chronic constriction injury. We assessed mechanical nociception in the rat models 7 and 14 days after surgery by measuring paw withdrawal threshold, and examined P2X2/3 receptor expression in L 4-5 dorsal root ganglia using immunohistochemistry. Rats that received free and microencapsulated OEC transplants showed greater withdrawal thresholds than untreated model rats, and weaker P2X2/3 receptor immunoreactivity in dorsal root ganglia. At 14 days, paw withdrawal threshold was much higher in the microencapsulated OEC-treated animals. Our results confirm that microencapsulated OEC transplantation suppresses P2X2/3 receptor expression in L 4-5 dorsal root ganglia in rat models of neuropathic pain and reduces allodynia, and also suggest that transplantation of microencapsulated OECs is more effective than transplantation of free OECs for the treatment of neuropathic pain.

  13. Patients with low back pain differ from those who also have leg pain or signs of nerve root involvement – a cross-sectional study

    Directory of Open Access Journals (Sweden)

    Kongsted Alice

    2012-11-01

    Full Text Available Abstract Background Leg pain associated with low back pain (LBP is recognized as a risk factor for a poor prognosis, and is included as a component in most LBP classification systems. The location of leg pain relative to the knee and the presence of a positive straight leg raise test have been suggested to have clinical implications. To understand differences between such leg pain subgroups, and whether differences include potentially modifiable characteristics, the purpose of this paper was to describe characteristics of patients classified into the Quebec Task Force (QTF subgroups of: 1 LBP only, 2 LBP and pain above the knee, 3 LBP and pain below the knee, and 4 LBP and signs of nerve root involvement. Methods Analysis of routine clinical data from an outpatient department. Based on patient reported data and clinical findings, patients were allocated to the QTF subgroups and described according to the domains of pain, activity limitation, work participation, psychology, general health and clinical examination findings. Results A total of 2,673 patients aged 18–95 years (median 47 who were referred for assessment of LBP were included. Increasing severity was consistently observed across the subgroups from LBP only to LBP with signs of nerve root involvement although subgroup differences were small. LBP patients with leg pain differed from those with LBP only on a wide variety of parameters, and patients with signs of nerve root involvement had a more severe profile on almost all measures compared with other patients with back-related leg pain. Conclusion LBP patients with pain referral to the legs were more severely affected than those with local LBP, and patients with signs of nerve root involvement were the ones most severily affected. These findings underpin the concurrent validity of the Quebec Task Force Classification. However, the small size of many between-subgroup differences amid the large variability in this sample of cross

  14. Transposition of branches of radial nerve innervating supinator to posterior interosseous nerve for functional reconstruction of finger and thumb extension in 4 patients with middle and lower trunk root avulsion injuries of brachial plexus.

    Science.gov (United States)

    Wu, Xia; Cong, Xiao-Bing; Huang, Qi-Shun; Ai, Fang-Xin; Liu, Yu-Tian; Lu, Xiao-Cheng; Li, Jin; Weng, Yu-Xiong; Chen, Zhen-Bing

    2017-12-01

    This study aimed to investigate the reconstruction of the thumb and finger extension function in patients with middle and lower trunk root avulsion injuries of the brachial plexus. From April 2010 to January 2015, we enrolled in this study 4 patients diagnosed with middle and lower trunk root avulsion injuries of the brachial plexus via imaging tests, electrophysiological examinations, and clinical confirmation. Muscular branches of the radial nerve, which innervate the supinator in the forearm, were transposed to the posterior interosseous nerve to reconstruct the thumb and finger extension function. Electrophysiological findings and muscle strength of the extensor pollicis longus and extensor digitorum communis, as well as the distance between the thumb tip and index finger tip, were monitored. All patients were followed up for 24 to 30 months, with an average of 27.5 months. Motor unit potentials (MUP) of the extensor digitorum communis appeared at an average of 3.8 months, while MUP of the extensor pollicis longus appeared at an average of 7 months. Compound muscle action potential (CMAP) appeared at an average of 9 months in the extensor digitorum communis, and 12 months in the extensor pollicis longus. Furthermore, the muscle strength of the extensor pollicis longus and extensor digitorum communis both reached grade III at 21 months. Lastly, the average distance between the thumb tip and index finger tip was 8.8 cm at 21 months. In conclusion, for patients with middle and lower trunk injuries of the brachial plexus, transposition of the muscular branches of the radial nerve innervating the supinator to the posterior interosseous nerve for the reconstruction of thumb and finger extension function is practicable and feasible.

  15. Surgical outcomes following nerve transfers in upper brachial plexus injuries

    Directory of Open Access Journals (Sweden)

    Bhandari P

    2009-01-01

    Full Text Available Background: Brachial plexus injuries represent devastating injuries with a poor prognosis. Neurolysis, nerve repair, nerve grafts, nerve transfer, functioning free-muscle transfer and pedicle muscle transfer are the main surgical procedures for treating these injuries. Among these, nerve transfer or neurotization is mainly indicated in root avulsion injury. Materials and Methods: We analysed the results of various neurotization techniques in 20 patients (age group 20-41 years, mean 25.7 years in terms of denervation time, recovery time and functional results. The inclusion criteria for the study included irreparable injuries to the upper roots of brachial plexus (C5, C6 and C7 roots in various combinations, surgery within 10 months of injury and a minimum follow-up period of 18 months. The average denervation period was 4.2 months. Shoulder functions were restored by transfer of spinal accessory nerve to suprascapular nerve (19 patients, and phrenic nerve to suprascapular nerve (1 patient. In 11 patients, axillary nerve was also neurotized using different donors - radial nerve branch to the long head triceps (7 patients, intercostal nerves (2 patients, and phrenic nerve with nerve graft (2 patients. Elbow flexion was restored by transfer of ulnar nerve motor fascicle to the motor branch of biceps (4 patients, both ulnar and median nerve motor fascicles to the biceps and brachialis motor nerves (10 patients, spinal accessory nerve to musculocutaneous nerve with an intervening sural nerve graft (1 patient, intercostal nerves (3rd, 4th and 5th to musculocutaneous nerve (4 patients and phrenic nerve to musculocutaneous nerve with an intervening graft (1 patient. Results: Motor and sensory recovery was assessed according to Medical Research Council (MRC Scoring system. In shoulder abduction, five patients scored M4 and three patients M3+. Fair results were obtained in remaining 12 patients. The achieved abduction averaged 95 degrees (range, 50 - 170

  16. Diabetes does not accelerate neuronal loss following nerve injury

    DEFF Research Database (Denmark)

    Severinsen, Kaare; Jakobsen, Johannes

    2007-01-01

    To determine the resistance of neuronal dorsal root ganglion (DRG) cells in experimental diabetes, we studied the neuronal cell loss after severe axonal injury in streptozotocin (STZ) diabetic rats with unilateral transection of the L5 spinal nerve for 12 weeks. Fifty 18-week-old inbred male Wistar...... nondiabetic control rats at 18 weeks and five nondiabetic control rats at 30 weeks were included to determine whether DRG cell changes occur without nerve injury during the study period. In group 1, the stereologically determined number of all neuronal DRG cells was unchanged after 12 weeks of diabetes....... The mean perikaryal volume of neuronal DRG cells of the A and B subtypes was reduced by 10% each (p

  17. Estradiol Is a Critical Mediator of Macrophage-Nerve Cross Talk in Peritoneal Endometriosis

    Science.gov (United States)

    Greaves, Erin; Temp, Julia; Esnal-Zufiurre, Arantza; Mechsner, Sylvia; Horne, Andrew W.; Saunders, Philippa T.K.

    2016-01-01

    Endometriosis occurs in approximately 10% of women and is associated with persistent pelvic pain. It is defined by the presence of endometrial tissue (lesions) outside the uterus, most commonly on the peritoneum. Peripheral neuroinflammation, a process characterized by the infiltration of nerve fibers and macrophages into lesions, plays a pivotal role in endometriosis-associated pain. Our objective was to determine the role of estradiol (E2) in regulating the interaction between macrophages and nerves in peritoneal endometriosis. By using human tissues and a mouse model of endometriosis, we demonstrate that macrophages in lesions recovered from women and mice are immunopositive for estrogen receptor β, with up to 20% being estrogen receptor α positive. In mice, treatment with E2 increased the number of macrophages in lesions as well as concentrations of mRNAs encoded by Csf1, Nt3, and the tyrosine kinase neurotrophin receptor, TrkB. By using in vitro models, we determined that the treatment of rat dorsal root ganglia neurons with E2 increased mRNA concentrations of the chemokine C-C motif ligand 2 that stimulated migration of colony-stimulating factor 1–differentiated macrophages. Conversely, incubation of colony-stimulating factor 1 macrophages with E2 increased concentrations of brain-derived neurotrophic factor and neurotrophin 3, which stimulated neurite outgrowth from ganglia explants. In summary, we demonstrate a key role for E2 in stimulating macrophage-nerve interactions, providing novel evidence that endometriosis is an estrogen-dependent neuroinflammatory disorder. PMID:26073038

  18. Effective gene expression in the rat dorsal root ganglia with a non-viral vector delivered via spinal nerve injection

    Science.gov (United States)

    Chang, Ming-Fong; Hsieh, Jung-Hsien; Chiang, Hao; Kan, Hung-Wei; Huang, Cho-Min; Chellis, Luke; Lin, Bo-Shiou; Miaw, Shi-Chuen; Pan, Chun-Liang; Chao, Chi-Chao; Hsieh, Sung-Tsang

    2016-01-01

    Delivering gene constructs into the dorsal root ganglia (DRG) is a powerful but challenging therapeutic strategy for sensory disorders affecting the DRG and their peripheral processes. The current delivery methods of direct intra-DRG injection and intrathecal injection have several disadvantages, including potential injury to DRG neurons and low transfection efficiency, respectively. This study aimed to develop a spinal nerve injection strategy to deliver polyethylenimine mixed with plasmid (PEI/DNA polyplexes) containing green fluorescent protein (GFP). Using this spinal nerve injection approach, PEI/DNA polyplexes were delivered to DRG neurons without nerve injury. Within one week of the delivery, GFP expression was detected in 82.8% ± 1.70% of DRG neurons, comparable to the levels obtained by intra-DRG injection (81.3% ± 5.1%, p = 0.82) but much higher than those obtained by intrathecal injection. The degree of GFP expression by neurofilament(+) and peripherin(+) DRG neurons was similar. The safety of this approach was documented by the absence of injury marker expression, including activation transcription factor 3 and ionized calcium binding adaptor molecule 1 for neurons and glia, respectively, as well as the absence of behavioral changes. These results demonstrated the efficacy and safety of delivering PEI/DNA polyplexes to DRG neurons via spinal nerve injection. PMID:27748450

  19. Phenolic compounds from the roots of Valeriana officinalis var. latifolia

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Peng-Cheng; Ran, Xin-Hui; Luo, Huai-Rong; Liu, Yu-Qing; Zhou Jun [State Key Laboratory of Phytochemistry and Plant Resources in West China. Kunming Institute of Botany, Chinese Academy of Sciences (China); Ma, Qing-Yun; Zhao, You-Xing, E-mail: zhoujun3264@yahoo.com.cn, E-mail: zhaoyouxing@itbb.org.cn [Key Laboratory of Biology and Genetic Resources of Tropical Crops. Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology. Chinese Academy of Tropical Agriculture Sciences (China)

    2013-09-15

    A new benzofuran neolignan, dihydrodehydrodiconiferyl alcohol 9-isovalerate, along with ten known phenolic compounds, olivil, pinoresinol, 8-hydroxypinoresinol, pinorespiol, 8-hydroxy- 7-epipinoresinol, trans-p-hydroxyphenyl- propenoic acid, cis-p-hydroxyphenyl-propenoic acid, ferulic acid, isoferulic acid and isovanillin were isolated from the roots of Valeriana officinalis var. latifolia. Their structures and configurations were elucidated on the basis of spectroscopic methods. The inhibitory activity for acetylcholinesterase (AChE) and enhancing activity on nerve growth factor (NGF)-mediated neurite outgrowth in PC12 cells of dihydrodehydrodiconiferyl alcohol 9-isovaterate and olivil were evaluated. (author)

  20. Phenolic compounds from the roots of Valeriana officinalis var. latifolia

    International Nuclear Information System (INIS)

    Wang, Peng-Cheng; Ran, Xin-Hui; Luo, Huai-Rong; Liu, Yu-Qing; Zhou Jun; Ma, Qing-Yun; Zhao, You-Xing

    2013-01-01

    A new benzofuran neolignan, dihydrodehydrodiconiferyl alcohol 9-isovalerate, along with ten known phenolic compounds, olivil, pinoresinol, 8-hydroxypinoresinol, pinorespiol, 8-hydroxy- 7-epipinoresinol, trans-p-hydroxyphenyl- propenoic acid, cis-p-hydroxyphenyl-propenoic acid, ferulic acid, isoferulic acid and isovanillin were isolated from the roots of Valeriana officinalis var. latifolia. Their structures and configurations were elucidated on the basis of spectroscopic methods. The inhibitory activity for acetylcholinesterase (AChE) and enhancing activity on nerve growth factor (NGF)-mediated neurite outgrowth in PC12 cells of dihydrodehydrodiconiferyl alcohol 9-isovaterate and olivil were evaluated. (author)

  1. 3D-MR myelography (3D-MRM) for the diagnosis of lumbal nerve root compression syndrome. A comparison with conventional myelography

    International Nuclear Information System (INIS)

    Eberhardt, K.E.W.; Hollenbach, H.P.; Huk, W.J.

    1994-01-01

    65 patients with nerve root compression syndrome were examined using a new type of MR-technique, which is comparable to the conventional X-ray myelography. The results of the prospective case study were compared with previous clinical experiences (1). For the examinations a 1.0 T whole body MR-system (Siemens Magnetom Impact) was used. A strong T 2 *-weighted 3D-FISP sequence (TR=73 ms, TE=21 ms, α=7 ) was applied in sagittal orientation using a circularly polarized oval spine coil. To obtain fat suppression a frequency selective 1-3-3-1 prepulse was applied prior to the imaging sequence. The acquired 3D-data set was evaluated using a Maximum Intensity Projection (MIP) program. Our results confirmed earlier experiences which showed that the diagnostic sensitivity of 3D-MR myelography (3D-MRM) is comparable to that of conventional X-ray myelography. In cases of severe spinal canal stenosis and spondylolisthesis, and in cases of postoperative scar tissue with nerve root compressions, the sensitivity of the 3D-MRM is higher as compared to that of conventional X-ray myelography. (orig.) [de

  2. T1-nerve root neuroma presenting with apical mass and Horner's syndrome

    Directory of Open Access Journals (Sweden)

    Podnar Simon

    2007-03-01

    Full Text Available Abstract Background The appearance of dumbbell neuroma of the first thoracic root is extremely rare. The extradural component of a T1-dumbbell neuroma may present as an apical mass. The diagnosis of hand weakness is complex and may be delayed in T1-neuroma because of absence of the palpable cervical mass. One-stage removal of a T1-root neuroma and its intrathoracic extension demanded an extended posterior midline approach in the sitting position. Case presentation A 51-year old man had suffered a traumatic partial tendon rupture of his wrist flexor muscles 6 years ago. Since the incident he occasionally felt fullness and tenderness in the affected forearm with some tingling in his fingers bilaterally. During the last two years the hand weakness was continuous and hypotrophy of the medial flexor and intrinsic hand muscles had become apparent. Electrophysiological studies revealed an ulnar neuropathy in addition to mild median and radial nerve dysfunction, including a mild contralateral carpal tunnel syndrome. The diagnostic work-up for multiple mononeuropathy in the upper extremity was negative. Repeated electrophysiological studies revealed fibrillations in the C7 paravertebral muscles on the affected side. Chest x-ray revealed a large round apical mass on the affected side. A Horner's syndrome was noted at this point of diagnostic work-up. MRI of the cervical and thoracic spine revealed a dumbbell T1 neuroma enlarging the intervertebral foramen at T1-2 and a 5 cm large extradural tumor with extension into the apex of the ipsilateral lung. The patient underwent surgery in sitting position using a left dorsal midline approach. Although the T1 root could not be preserved, the patient's neurological condition was unchanged after the surgery. Conclusion Extended posterior midline exposure described here using hemilaminectomy, unilateral facetectomy and costo-transversectomy is efficient and safe for one-stage removal of dumbbell tumors at the T1

  3. Management of low back pain with facet joint injections and nerve root blocks under computed tomography guidance. A prospective study

    International Nuclear Information System (INIS)

    Fotiadou, Anastasia; Wojcik, Andrew; Shaju, Antony

    2012-01-01

    The aim of this work was to assess the performance of facet joint and nerve root infiltrations under computed tomography guidance for the management of low back pain and to investigate the complications and patient tolerance. The study was board-certified and informed consent was obtained from all patients. In 1 year, 86 consecutive patients (47 male, 39 female, age range 47-87 years, mean age 63) with low back pain for more than 2 years were included. All patients were clinically examined and had cross-sectional imaging performed before the procedure. Fifty-five facet joint infiltrations and 31 nerve blocks were performed under computed tomography guidance. All patients completed two valid pain questionnaires before and 3 months after the procedures. At the same time, they were clinically examined by the referring Orthopaedic Surgeon. The pain response was assessed by comparing the scores of the questionnaires. The improvement in clinical examination findings was assessed as well. In patients who underwent facet joint infiltrations, long-term pain improvement was achieved in 79% and in those with nerve blocks in 85%. Immediate pain relief was demonstrated in 83% of patients with nerve infiltrations. No complications were observed. All procedures were very well tolerated by patients. Facet joint and nerve infiltrations under computed tomography guidance constitute an accurate and safe method that could be used to relieve low back pain and minimize the risk of disability. (orig.)

  4. New Treatments for Spinal Nerve Root Avulsion Injury

    Directory of Open Access Journals (Sweden)

    Thomas Carlstedt

    2016-08-01

    Full Text Available Further progress in the treatment of the longitudinal spinal cord injury has been made. In an inverted translational study, it has been demonstrated that return of sensory function can be achieved by bypassing the avulsed dorsal root ganglion neurons. Dendritic growth from spinal cord sensory neurons could replace dorsal root ganglion axons and re-establish a reflex arch. Another research avenue has led to the development of adjuvant therapy for regeneration following dorsal root to spinal cord implantation in root avulsion injury. A small, lipophilic molecule that can be given orally acts on the retinoic acid receptor system as an agonist. Upregulation of dorsal root ganglion regenerative ability and organization of glia reaction to injury were demonstrated in treated animals. The dual effect of this substance may open new avenues for the treatment of root avulsion and spinal cord injuries.

  5. Phrenic Nerve Palsy and Regional Anesthesia for Shoulder Surgery: Anatomical, Physiologic, and Clinical Considerations.

    Science.gov (United States)

    El-Boghdadly, Kariem; Chin, Ki Jinn; Chan, Vincent W S

    2017-07-01

    Regional anesthesia has an established role in providing perioperative analgesia for shoulder surgery. However, phrenic nerve palsy is a significant complication that potentially limits the use of regional anesthesia, particularly in high-risk patients. The authors describe the anatomical, physiologic, and clinical principles relevant to phrenic nerve palsy in this context. They also present a comprehensive review of the strategies for reducing phrenic nerve palsy and its clinical impact while ensuring adequate analgesia for shoulder surgery. The most important of these include limiting local anesthetic dose and injection volume and performing the injection further away from the C5-C6 nerve roots. Targeting peripheral nerves supplying the shoulder, such as the suprascapular and axillary nerves, may be an effective alternative to brachial plexus blockade in selected patients. The optimal regional anesthetic approach in shoulder surgery should be tailored to individual patients based on comorbidities, type of surgery, and the principles described in this article.

  6. Role of TRPM8 in dorsal root ganglion in nerve injury-induced chronic pain

    Directory of Open Access Journals (Sweden)

    Su Lin

    2011-11-01

    Full Text Available Abstract Background Chronic neuropathic pain is an intractable pain with few effective treatments. Moderate cold stimulation can relieve pain, and this may be a novel train of thought for exploring new methods of analgesia. Transient receptor potential melastatin 8 (TRPM8 ion channel has been proposed to be an important molecular sensor for cold. Here we investigate the role of TRPM8 in the mechanism of chronic neuropathic pain using a rat model of chronic constriction injury (CCI to the sciatic nerve. Results Mechanical allodynia, cold and thermal hyperalgesia of CCI rats began on the 4th day following surgery and maintained at the peak during the period from the 10th to 14th day after operation. The level of TRPM8 protein in L5 dorsal root ganglion (DRG ipsilateral to nerve injury was significantly increased on the 4th day after CCI, and reached the peak on the 10th day, and remained elevated on the 14th day following CCI. This time course of the alteration of TRPM8 expression was consistent with that of CCI-induced hyperalgesic response of the operated hind paw. Besides, activation of cold receptor TRPM8 of CCI rats by intrathecal application of menthol resulted in the inhibition of mechanical allodynia and thermal hyperalgesia and the enhancement of cold hyperalgesia. In contrast, downregulation of TRPM8 protein in ipsilateral L5 DRG of CCI rats by intrathecal TRPM8 antisense oligonucleotide attenuated cold hyperalgesia, but it had no effect on CCI-induced mechanical allodynia and thermal hyperalgesia. Conclusions TRPM8 may play different roles in mechanical allodynia, cold and thermal hyperalgesia that develop after nerve injury, and it is a very promising research direction for the development of new therapies for chronic neuroapthic pain.

  7. Particulate versus non-particulate corticosteroids for transforaminal nerve root blocks. Comparison of outcomes in 494 patients with lumbar radiculopathy

    Energy Technology Data Exchange (ETDEWEB)

    Bensler, Susanne; Sutter, Reto; Pfirrmann, Christian W.A.; Peterson, Cynthia K. [Orthopaedic University Hospital Balgrist, Department of Radiology, Zurich (Switzerland); University of Zurich, Faculty of Medicine, Zurich (Switzerland)

    2018-03-15

    We set out to compare outcomes in CT-guided lumbar transforaminal nerve root block patients receiving either particulate or non-particulate corticosteroids. This was a retrospective comparative effectiveness outcomes study on two cohorts of lumbar radiculopathy patients. 321 received particulate and 173 non-particulate corticosteroids at CT-guided transforaminal lumbar nerve root injections. The particulate steroid was used from October 2009 until May 2014 and the non-particulate steroid was used from May 2014. Pain levels were collected at baseline using an 11-point numerical rating scale (NRS) and at 1 day, 1 week and 1 month. Overall 'improvement' was assessed using the Patients' Global Impression of Change (PGIC) at these same time points (primary outcome). The proportions of patients 'improved' were compared between the two groups using the Chi-square test. The NRS change scores were compared using the unpaired t-test. A significantly higher proportion of patients treated with particulate steroids were improved at 1 week (43.2 % vs. 27.7 %, p = 0.001) and at 1 month (44.3 % vs. 33.1 %, p = 0.019). Patients receiving particulate steroids also had significantly higher NRS change scores at 1 week (p = 0.02) and 1 month (p = 0.007). Particulate corticosteroids have significantly better outcomes than non-particulate corticosteroids. (orig.)

  8. Diaphragm-Sparing Nerve Blocks for Shoulder Surgery.

    Science.gov (United States)

    Tran, De Q H; Elgueta, Maria Francisca; Aliste, Julian; Finlayson, Roderick J

    Shoulder surgery can result in significant postoperative pain. Interscalene brachial plexus blocks (ISBs) constitute the current criterion standard for analgesia but may be contraindicated in patients with pulmonary pathology due to the inherent risk of phrenic nerve block and symptomatic hemidiaphragmatic paralysis. Although ultrasound-guided ISB with small volumes (5 mL), dilute local anesthetic (LA) concentrations, and LA injection 4 mm lateral to the brachial plexus have been shown to reduce the risk of phrenic nerve block, no single intervention can decrease its incidence below 20%. Ultrasound-guided supraclavicular blocks with LA injection posterolateral to the brachial plexus may anesthetize the shoulder without incidental diaphragmatic dysfunction, but further confirmatory trials are required. Ultrasound-guided C7 root blocks also seem to offer an attractive, diaphragm-sparing alternative to ISB. However, additional large-scale studies are needed to confirm their efficacy and to quantify the risk of periforaminal vascular breach. Combined axillary-suprascapular nerve blocks may provide adequate postoperative analgesia for minor shoulder surgery but do not compare favorably to ISB for major surgical procedures. One intriguing solution lies in the combined use of infraclavicular brachial plexus blocks and suprascapular nerve blocks. Theoretically, the infraclavicular approach targets the posterior and lateral cords, thus anesthetizing the axillary nerve (which supplies the anterior and posterior shoulder joint), as well as the subscapular and lateral pectoral nerves (both of which supply the anterior shoulder joint), whereas the suprascapular nerve block anesthetizes the posterior shoulder. Future randomized trials are required to validate the efficacy of combined infraclavicular-suprascapular blocks for shoulder surgery.

  9. Estradiol is a critical mediator of macrophage-nerve cross talk in peritoneal endometriosis.

    Science.gov (United States)

    Greaves, Erin; Temp, Julia; Esnal-Zufiurre, Arantza; Mechsner, Sylvia; Horne, Andrew W; Saunders, Philippa T K

    2015-08-01

    Endometriosis occurs in approximately 10% of women and is associated with persistent pelvic pain. It is defined by the presence of endometrial tissue (lesions) outside the uterus, most commonly on the peritoneum. Peripheral neuroinflammation, a process characterized by the infiltration of nerve fibers and macrophages into lesions, plays a pivotal role in endometriosis-associated pain. Our objective was to determine the role of estradiol (E2) in regulating the interaction between macrophages and nerves in peritoneal endometriosis. By using human tissues and a mouse model of endometriosis, we demonstrate that macrophages in lesions recovered from women and mice are immunopositive for estrogen receptor β, with up to 20% being estrogen receptor α positive. In mice, treatment with E2 increased the number of macrophages in lesions as well as concentrations of mRNAs encoded by Csf1, Nt3, and the tyrosine kinase neurotrophin receptor, TrkB. By using in vitro models, we determined that the treatment of rat dorsal root ganglia neurons with E2 increased mRNA concentrations of the chemokine C-C motif ligand 2 that stimulated migration of colony-stimulating factor 1-differentiated macrophages. Conversely, incubation of colony-stimulating factor 1 macrophages with E2 increased concentrations of brain-derived neurotrophic factor and neurotrophin 3, which stimulated neurite outgrowth from ganglia explants. In summary, we demonstrate a key role for E2 in stimulating macrophage-nerve interactions, providing novel evidence that endometriosis is an estrogen-dependent neuroinflammatory disorder. Copyright © 2015 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  10. Increased response to glutamate in small diameter dorsal root ganglion neurons after sciatic nerve injury.

    Directory of Open Access Journals (Sweden)

    Kerui Gong

    Full Text Available Glutamate in the peripheral nervous system is involved in neuropathic pain, yet we know little how nerve injury alters responses to this neurotransmitter in primary sensory neurons. We recorded neuronal responses from the ex-vivo preparations of the dorsal root ganglia (DRG one week following a chronic constriction injury (CCI of the sciatic nerve in adult rats. We found that small diameter DRG neurons (30 µm were unaffected. Puff application of either glutamate, or the selective ionotropic glutamate receptor agonists alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA and kainic acid (KA, or the group I metabotropic receptor (mGluR agonist (S-3,5-dihydroxyphenylglycine (DHPG, induced larger inward currents in CCI DRGs compared to those from uninjured rats. N-methyl-D-aspartate (NMDA-induced currents were unchanged. In addition to larger inward currents following CCI, a greater number of neurons responded to glutamate, AMPA, NMDA, and DHPG, but not to KA. Western blot analysis of the DRGs revealed that CCI resulted in a 35% increase in GluA1 and a 60% decrease in GluA2, the AMPA receptor subunits, compared to uninjured controls. mGluR1 receptor expression increased by 60% in the membrane fraction, whereas mGluR5 receptor subunit expression remained unchanged after CCI. These results show that following nerve injury, small diameter DRG neurons, many of which are nociceptive, have increased excitability and an increased response to glutamate that is associated with changes in receptor expression at the neuronal membrane. Our findings provide further evidence that glutamatergic transmission in the periphery plays a role in nociception.

  11. Disruption of prefoldin-2 protein synthesis in root-knot nematodes via host-mediated gene silencing efficiently reduces nematode numbers and thus protects plants.

    Science.gov (United States)

    Ajjappala, Hemavathi; Chung, Ha Young; Sim, Joon-Soo; Choi, Inchan; Hahn, Bum-Soo

    2015-03-01

    The aim of this study is to demonstrate the feasibility of down-regulating endogeneous prefoldin-2 root-knot nematode transcripts by expressing dsRNA with sequence identity to the nematode gene in tobacco roots under the influence of strong Arabidopsis ubiquitin (UBQ1) promoter. Root-knot nematodes (RKNs) are sedentary endoparasites infecting a wide range of plant species. They parasitise the root system, thereby disrupting water and nutrient uptake and causing major reductions in crop yields. The most reliable means of controlling RKNs is via the use of soil fumigants such as methyl bromide. With the emergence of RNA interference (RNAi) technology, which permits host-mediated nematode gene silencing, a new strategy to control plant pathogens has become available. In the present study, we investigated host-induced RNAi gene silencing of prefoldin-2 in transgenic Nicotiana benthamiana. Reductions in prefoldin-2 mRNA transcript levels were observed when nematodes were soaked in a dsRNA solution in vitro. Furthermore, nematode reproduction was suppressed in RNAi transgenic lines, as evident by reductions in the numbers of root knots (by 34-60 % in independent RNAi lines) and egg masses (by 33-58 %). Endogenous expression of prefoldin-2, analysed via real-time polymerase chain reaction and Western blotting, revealed that the gene was strongly expressed in the pre-parasitic J2 stage. Our observations demonstrate the relevance and potential importance of targeting the prefoldin gene during the nematode life cycle. The work also suggests that further improvements in silencing efficiency in economically important crops can be accomplished using RNAi directed against plant-parasitic nematodes.

  12. Upregulation of EMMPRIN (OX47 in Rat Dorsal Root Ganglion Contributes to the Development of Mechanical Allodynia after Nerve Injury

    Directory of Open Access Journals (Sweden)

    Qun Wang

    2015-01-01

    Full Text Available Matrix metalloproteinases (MMPs are widely implicated in inflammation and tissue remodeling associated with various neurodegenerative diseases and play an important role in nociception and allodynia. Extracellular Matrix Metalloproteinase Inducer (EMMPRIN plays a key regulatory role for MMP activities. However, the role of EMMPRIN in the development of neuropathic pain is not clear. Western blotting, real-time quantitative RT-PCR (qRT-PCR, and immunofluorescence were performed to determine the changes of messenger RNA and protein of EMMPRIN/OX47 and their cellular localization in the rat dorsal root ganglion (DRG after nerve injury. Paw withdrawal threshold test was examined to evaluate the pain behavior in spinal nerve ligation (SNL model. The lentivirus containing OX47 shRNA was injected into the DRG one day before SNL. The expression level of both mRNA and protein of OX47 was markedly upregulated in ipsilateral DRG after SNL. OX47 was mainly expressed in the extracellular matrix of DRG. Administration of shRNA targeted against OX47 in vivo remarkably attenuated mechanical allodynia induced by SNL. In conclusion, peripheral nerve injury induced upregulation of OX47 in the extracellular matrix of DRG. RNA interference against OX47 significantly suppressed the expression of OX47 mRNA and the development of mechanical allodynia. The altered expression of OX47 may contribute to the development of neuropathic pain after nerve injury.

  13. Serotonin neurons in the dorsal raphe mediate the anticataplectic action of orexin neurons by reducing amygdala activity.

    Science.gov (United States)

    Hasegawa, Emi; Maejima, Takashi; Yoshida, Takayuki; Masseck, Olivia A; Herlitze, Stefan; Yoshioka, Mitsuhiro; Sakurai, Takeshi; Mieda, Michihiro

    2017-04-25

    Narcolepsy is a sleep disorder caused by the loss of orexin (hypocretin)-producing neurons and marked by excessive daytime sleepiness and a sudden weakening of muscle tone, or cataplexy, often triggered by strong emotions. In a mouse model for narcolepsy, we previously demonstrated that serotonin neurons of the dorsal raphe nucleus (DRN) mediate the suppression of cataplexy-like episodes (CLEs) by orexin neurons. Using an optogenetic tool, in this paper we show that the acute activation of DRN serotonin neuron terminals in the amygdala, but not in nuclei involved in regulating rapid eye-movement sleep and atonia, suppressed CLEs. Not only did stimulating serotonin nerve terminals reduce amygdala activity, but the chemogenetic inhibition of the amygdala using designer receptors exclusively activated by designer drugs also drastically decreased CLEs, whereas chemogenetic activation increased them. Moreover, the optogenetic inhibition of serotonin nerve terminals in the amygdala blocked the anticataplectic effects of orexin signaling in DRN serotonin neurons. Taken together, the results suggest that DRN serotonin neurons, as a downstream target of orexin neurons, inhibit cataplexy by reducing the activity of amygdala as a center for emotional processing.

  14. Do L5 and s1 nerve root compressions produce radicular pain in a dermatomal pattern?

    Science.gov (United States)

    Taylor, Christopher S; Coxon, Andrew J; Watson, Paul C; Greenough, Charles G

    2013-05-20

    Observational case series. To compare the pattern of distribution of radicular pain with published dermatome charts. Dermatomal charts vary and previous studies have demonstrated significant individual subject variation. Patients with radiologically and surgically proven nerve root compression (NRC) caused by prolapsed intervertebral disc completed computerized diagrams of the distribution of pain and pins and needles. Ninety-eight patients had L5 compressions and 83 had S1 compressions. The distribution of pain and pins and needles did not correspond well with dermatomal patterns. Of those patients with L5 NRC, only 22 (22.4%) recorded any hits on the L5 dermatome on the front, and only 60 (61.2%) on the back with only 13 (13.3%) on both. Only 1 (1.0%) patient placed more than 50% of their hits within the L5 dermatome. Of those patients with S1 NRC, only 3 (3.6%) recorded any hits on the S1 dermatome on the front, and only 64 (77.1%) on the back with only 15 (18.1%) on both. No patients placed more than 50% of their hits within the S1 dermatome. Regarding pins and needles, 27 (29.7%) patients with L5 NRC recorded hits on the front alone, 27 (29.7%) on the back alone, and 14 (15.4%) on both. Nineteen (20.9%) recorded more than 50% of hits within the L5 dermatome. Three (3.6%) patients with S1 NRC recorded hits on the front alone, 44 (53.0%) on the back alone, and 18 (21.7%) on both. Twelve (14.5%) recorded more than 50% of hits within the S1 dermatome. Patient report is an unreliable method of identifying the anatomical source of pain or paresthesia caused by nerve root compression. 4.

  15. Schwann cell-mediated delivery of glial cell line-derived neurotrophic factor restores erectile function after cavernous nerve injury.

    Science.gov (United States)

    May, Florian; Buchner, Alexander; Schlenker, Boris; Gratzke, Christian; Arndt, Christian; Stief, Christian; Weidner, Norbert; Matiasek, Kaspar

    2013-03-01

    To evaluate the time-course of functional recovery after cavernous nerve injury using glial cell line-derived neurotrophic factor-transduced Schwann cell-seeded silicon tubes. Sections of the cavernous nerves were excised bilaterally (5 mm), followed by immediate bilateral surgical repair. A total of 20 study nerves per group were reconstructed by interposition of empty silicon tubes and silicon tubes seeded with either glial cell line-derived neurotrophic factor-overexpressing or green fluorescent protein-expressing Schwann cells. Control groups were either sham-operated or received bilateral nerve transection without nerve reconstruction. Erectile function was evaluated by relaparotomy, electrical nerve stimulation and intracavernous pressure recording after 2, 4, 6, 8 and 10 weeks. The animals underwent re-exploration only once, and were killed afterwards. The nerve grafts were investigated for the maturation state of regenerating nerve fibers and the fascular composition. Recovery of erectile function took at least 4 weeks in the current model. Glial cell line-derived neurotrophic factor-transduced Schwann cell grafts restored erectile function better than green fluorescent protein-transduced controls and unseeded conduits. Glial cell line-derived neurotrophic factor-transduced grafts promoted an intact erectile response (4/4) at 4, 6, 8 and 10 weeks that was overall significantly superior to negative controls (P cell line-derived neurotrophic factor-transduced grafts compared with negative controls (P = 0.018) and unseeded tubes (P = 0.034). Return of function was associated with the electron microscopic evidence of preganglionic myelinated nerve fibers and postganglionic unmyelinated axons. Schwann cell-mediated delivery of glial cell line-derived neurotrophic factor presents a viable approach for the treatment of erectile dysfunction after cavernous nerve injury. © 2013 The Japanese Urological Association.

  16. Flavonols Mediate Root Phototropism and Growth through Regulation of Proliferation-to-Differentiation Transition

    OpenAIRE

    Silva, Javier; Moreno Risueño, Miguel Ángel; Manzano, Concepción; Téllez Robledo, Bárbara; Navarro Neila, Sara; Carrasco Loba, Víctor; Pollmann, Stephan; Gallego, Javier; Pozo Benito, Juan Carlos del

    2016-01-01

    Roots normally grow in darkness, but they may be exposed to light. After perceiving light, roots bend to escape from light (root light avoidance) and reduce their growth. How root light avoidance responses are regulated is not well understood. Here, we show that illumination induces the accumulation of flavonols in Arabidopsis thaliana roots. During root illumination, flavonols rapidly accumulate at the side closer to light in the transition zone. This accumulation promotes asymmetrical cell ...

  17. Increase of transcription factor EB (TFEB) and lysosomes in rat DRG neurons and their transportation to the central nerve terminal in dorsal horn after nerve injury.

    Science.gov (United States)

    Jung, J; Uesugi, N; Jeong, N Y; Park, B S; Konishi, H; Kiyama, H

    2016-01-28

    In the spinal dorsal horn (DH), nerve injury activates microglia and induces neuropathic pain. Several studies clarified an involvement of adenosine triphosphate (ATP) in the microglial activation. However, the origin of ATP together with the release mechanism is unclear. Recent in vitro study revealed that an ATP marker, quinacrine, in lysosomes was released from neurite terminal of dorsal root ganglion (DRG) neurons to extracellular space via lysosomal exocytosis. Here, we demonstrate a possibility that the lysosomal ingredient including ATP released from DRG neurons by lysosomal-exocytosis is an additional source of the glial activation in DH after nerve injury. After rat L5 spinal nerve ligation (SNL), mRNA for transcription factor EB (TFEB), a transcription factor controlling lysosomal activation and exocytosis, was induced in the DRG. Simultaneously both lysosomal protein, LAMP1- and vesicular nuclear transporter (VNUT)-positive vesicles were increased in L5 DRG neurons and ipsilateral DH. The quinacrine staining in DH was increased and co-localized with LAMP1 immunoreactivity after nerve injury. In DH, LAMP1-positive vesicles were also co-localized with a peripheral nerve marker, Isolectin B4 (IB4) lectin. Injection of the adenovirus encoding mCherry-LAMP1 into DRG showed that mCherry-positive lysosomes are transported to the central nerve terminal in DH. These findings suggest that activation of lysosome synthesis including ATP packaging in DRG, the central transportation of the lysosome, and subsequent its exocytosis from the central nerve terminal of DRG neurons in response to nerve injury could be a partial mechanism for activation of microglia in DH. This lysosome-mediated microglia activation mechanism may provide another clue to control nociception and pain. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  18. Fluoroscopically Guided Extraforaminal Cervical Nerve Root Blocks: Analysis of Epidural Flow of the Injectate with Respect to Needle Tip Position

    Science.gov (United States)

    Shipley, Kyle; Riew, K. Daniel; Gilula, Louis A.

    2013-01-01

    Study Design Retrospective evaluation of consecutively performed fluoroscopically guided cervical nerve root blocks. Objective To describe the incidence of injectate central epidural flow with respect to needle tip position during fluoroscopically guided extraforaminal cervical nerve root blocks (ECNRBs). Methods Between February 19, 2003 and June 11, 2003, 132 consecutive fluoroscopically guided ECNRBs performed with contrast media in the final injected material (injectate) were reviewed on 95 patients with average of 1.3 injections per patient. Fluoroscopic spot images documenting the procedure were obtained as part of standard quality assurance. An independent observer not directly involved in the procedures retrospectively reviewed the images, and the data were placed into a database. Image review was performed to determine optimal needle tip positioning for injectate epidural flow. Results Central epidural injectate flow was obtained in only 28.9% of injections with the needle tip lateral to midline of the lateral mass (zone 2). 83.8% of injectate went into epidural space when the needle tip was medial to midline of the lateral mass (zone 3). 100% of injectate flowed epidurally when the needle tip was medial to or at the medial cortex of the lateral mass (zone 4). There was no statistically significant difference with regards to central epidural flow and the needle tip position on lateral view. Conclusion To ensure central epidural flow with ECNRBs one must be prepared to pass the needle tip medial to midplane of the lateral mass or to medial cortex of the lateral mass. Approximately 16% of ECNRBs with needle tip medial to midline of the lateral mass did not flow into epidural space. One cannot claim a nerve block is an epidural block unless epidural flow of injectate is observed. PMID:24494176

  19. Experimentally reduced root-microbe interactions reveal limited plasticity in functional root traits in Acer and Quercus.

    Science.gov (United States)

    Lee, Mei-Ho; Comas, Louise H; Callahan, Hilary S

    2014-02-01

    Interactions between roots and soil microbes are critical components of below-ground ecology. It is essential to quantify the magnitude of root trait variation both among and within species, including variation due to plasticity. In addition to contextualizing the magnitude of plasticity relative to differences between species, studies of plasticity can ascertain if plasticity is predictable and whether an environmental factor elicits changes in traits that are functionally advantageous. To compare functional traits and trait plasticities in fine root tissues with natural and reduced levels of colonization by microbial symbionts, trimmed and surface-sterilized root segments of 2-year-old Acer rubrum and Quercus rubra seedlings were manipulated. Segments were then replanted into satellite pots filled with control or heat-treated soil, both originally derived from a natural forest. Mycorrhizal colonization was near zero in roots grown in heat-treated soil; roots grown in control soil matched the higher colonization levels observed in unmanipulated root samples collected from field locations. Between-treatment comparisons revealed negligible plasticity for root diameter, branching intensity and nitrogen concentration across both species. Roots from treated soils had decreased tissue density (approx. 10-20 %) and increased specific root length (approx. 10-30 %). In contrast, species differences were significant and greater than treatment effects in traits other than tissue density. Interspecific trait differences were also significant in field samples, which generally resembled greenhouse samples. The combination of experimental and field approaches was useful for contextualizing trait plasticity in comparison with inter- and intra-specific trait variation. Findings that root traits are largely species dependent, with the exception of root tissue density, are discussed in the context of current literature on root trait variation, interactions with symbionts and recent

  20. Phrenic nerve transfer to the musculocutaneous nerve for the repair of brachial plexus injury: electrophysiological characteristics

    Directory of Open Access Journals (Sweden)

    Ying Liu

    2015-01-01

    Full Text Available Phrenic nerve transfer is a major dynamic treatment used to repair brachial plexus root avulsion. We analyzed 72 relevant articles on phrenic nerve transfer to repair injured brachial plexus that were indexed by Science Citation Index. The keywords searched were brachial plexus injury, phrenic nerve, repair, surgery, protection, nerve transfer, and nerve graft. In addition, we performed neurophysiological analysis of the preoperative condition and prognosis of 10 patients undergoing ipsilateral phrenic nerve transfer to the musculocutaneous nerve in our hospital from 2008 to 201 3 and observed the electromyograms of the biceps brachii and motor conduction function of the musculocutaneous nerve. Clinically, approximately 28% of patients had brachial plexus injury combined with phrenic nerve injury, and injured phrenic nerve cannot be used as a nerve graft. After phrenic nerve transfer to the musculocutaneous nerve, the regenerated potentials first appeared at 3 months. Recovery of motor unit action potential occurred 6 months later and became more apparent at 12 months. The percent of patients recovering ′excellent′ and ′good′ muscle strength in the biceps brachii was 80% after 18 months. At 12 months after surgery, motor nerve conduction potential appeared in the musculocutaneous nerve in seven cases. These data suggest that preoperative evaluation of phrenic nerve function may help identify the most appropriate nerve graft in patients with an injured brachial plexus. The functional recovery of a transplanted nerve can be dynamically observed after the surgery.

  1. Phrenic nerve transfer to the musculocutaneous nerve for the repair of brachial plexus injury: electrophysiological characteristics.

    Science.gov (United States)

    Liu, Ying; Xu, Xun-Cheng; Zou, Yi; Li, Su-Rong; Zhang, Bin; Wang, Yue

    2015-02-01

    Phrenic nerve transfer is a major dynamic treatment used to repair brachial plexus root avulsion. We analyzed 72 relevant articles on phrenic nerve transfer to repair injured brachial plexus that were indexed by Science Citation Index. The keywords searched were brachial plexus injury, phrenic nerve, repair, surgery, protection, nerve transfer, and nerve graft. In addition, we performed neurophysiological analysis of the preoperative condition and prognosis of 10 patients undergoing ipsilateral phrenic nerve transfer to the musculocutaneous nerve in our hospital from 2008 to 201 3 and observed the electromyograms of the biceps brachii and motor conduction function of the musculocutaneous nerve. Clinically, approximately 28% of patients had brachial plexus injury combined with phrenic nerve injury, and injured phrenic nerve cannot be used as a nerve graft. After phrenic nerve transfer to the musculocutaneous nerve, the regenerated potentials first appeared at 3 months. Recovery of motor unit action potential occurred 6 months later and became more apparent at 12 months. The percent of patients recovering 'excellent' and 'good' muscle strength in the biceps brachii was 80% after 18 months. At 12 months after surgery, motor nerve conduction potential appeared in the musculocutaneous nerve in seven cases. These data suggest that preoperative evaluation of phrenic nerve function may help identify the most appropriate nerve graft in patients with an injured brachial plexus. The functional recovery of a transplanted nerve can be dynamically observed after the surgery.

  2. Sulfate-reducing bacteria in rice field soil and on rice roots.

    Science.gov (United States)

    Wind, T; Stubner, S; Conrad, R

    1999-05-01

    Rice plants that were grown in flooded rice soil microcosms were examined for their ability to exhibit sulfate reducing activity. Washed excised rice roots showed sulfate reduction potential when incubated in anaerobic medium indicating the presence of sulfate-reducing bacteria. Rice plants, that were incubated in a double-chamber (phylloshpere and rhizosphere separated), showed potential sulfate reduction rates in the anoxic rhizosphere compartment. These rates decreased when oxygen was allowed to penetrate through the aerenchyma system of the plants into the anoxic root compartment, indicating that sulfate reducers on the roots were partially inhibited by oxygen or that sulfate was regenerated by oxidation of reduced S-compounds. The potential activity of sulfate reducers on rice roots was consistent with MPN enumerations showing that H2-utilizing sulfate-reducing bacteria were present in high numbers on the rhizoplane (4.1 x 10(7) g-1 root fresh weight) and in the adjacent rhizosperic soil (2.5 x 10(7) g-1 soil dry weight). Acetate-oxidizing sulfate reducers, on the other hand, showed highest numbers in the unplanted bulk soil (1.9 x 10(6) g-1 soil dry weight). Two sulfate reducing bacteria were isolated from the highest dilutions of the MPN series and were characterized physiologically and phylogenetically. Strain F1-7b which was isolated from the rhizoplane with H2 as electron donor was related to subgroup II of the family Desulfovibrionaceae. Strain EZ-2C2, isolated from the rhizoplane on acetate, grouped together with Desulforhabdus sp. and Syntrophobacter wolinii. Other strains of sulfate-reducing bacteria originated from bulk soil of rice soil microcosms and were isolated using different electron donors. From these isolates, strains R-AcA1, R-IbutA1, R-PimA1 and R-AcetonA170 were Gram-positive bacteria which were affiliated with the genus Desulfotomaculum. The other isolates were members of subgroup II of the Desulfovibrionaceae (R-SucA1 and R-LacA1), were

  3. Neurofibroma Derived from the Deep Peroneal Nerve: A Case Report

    Directory of Open Access Journals (Sweden)

    Li-Ren Chang

    2006-06-01

    Full Text Available Neurofibromas may arise anywhere along a nerve from the dorsal root ganglion to the terminal nerve branches; however, peroneal nerve involvement is not common. Surgical resection of neurofibroma with total preservation of nerve function had been thought to be difficult. Here, we report a case of an intermuscular intraneural neurofibroma derived from the deep peroneal nerve in a patient with neurofibromatosis type 1. The diagnostic criteria, characteristics of imaging studies, and operative approach are described. The function of the deep peroneal nerve was preserved, with satisfactory results.

  4. Effects of endogenous nitric oxide on adrenergic nerve-mediated vasoconstriction and calcitonin gene-related peptide-containing nerve-mediated vasodilation in pithed rats.

    Science.gov (United States)

    Yamawaki, Kousuke; Zamami, Yoshito; Kawasaki, Hiromu; Takatori, Shingo

    2017-05-05

    Vascular adrenergic nerves mainly regulate the tone of blood vessels. Calcitonin gene-related peptide-containing (CGRPergic) vasodilator nerves also participate in the regulation of vascular tone. Furthermore, there are nitric oxide (NO)-containing (nitrergic) nerves, which include NO in blood vessels as vasodilator nerves, but it remains unclear whether nitrergic nerves participate in vascular regulation. The present study investigated the role of nitrergic nerves in vascular responses to spinal cord stimulation (SCS) and vasoactive agents in pithed rats. Wistar rats were anesthetized and pithed, and vasopressor responses to SCS and injections of norepinephrine were observed. To evaluate vasorelaxant responses, the BP was increased by a continuous infusion of methoxamine with hexamethonium to block autonomic outflow. After the elevated BP stabilized, SCS and injections of acetylcholine (ACh), sodium nitroprusside (SNP), and CGRP were intravenously administered. We then evaluated the effects of the NO synthase (NOS) inhibitor, N-ω-nitro-L-arginine methylester hydrochloride (L-NAME), on these vascular responses. Pressor responses to SCS and norepinephrine in pithed rats were enhanced by L-NAME, while the combined infusion of L-NAME and L-arginine had no effect on these responses. L-NAME infusion significantly increased the release of norepinephrine evoked by SCS. In pithed rats with artificially increased BP and L-NAME infusion, depressor response to ACh (except for 0.05nmol/kg) was suppressed and SNP (only 2nmol/kg) was enhanced. However, depressor responses to SCS and CGRP were similar to control responses. The present results suggest endogenous NO regulates vascular tone through endothelium function and inhibition of adrenergic neurotransmission, but not through CGRPergic nerves. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Patterns of motor activity in the isolated nerve cord of the octopus arm.

    Science.gov (United States)

    Gutfreund, Yoram; Matzner, Henry; Flash, Tamar; Hochner, Binyamin

    2006-12-01

    The extremely flexible octopus arm provides a unique opportunity for studying movement control in a highly redundant motor system. We describe a novel preparation that allows analysis of the peripheral nervous system of the octopus arm and its interaction with the muscular and mechanosensory elements of the arm's intrinsic muscular system. First we examined the synaptic responses in muscle fibers to identify the motor pathways from the axial nerve cord of the arm to the surrounding musculature. We show that the motor axons project to the muscles via nerve roots originating laterally from the arm nerve cord. The motor field of each nerve is limited to the region where the nerve enters the arm musculature. The same roots also carry afferent mechanosensory information from the intrinsic muscle to the axial nerve cord. Next, we characterized the pattern of activity generated in the dorsal roots by electrically stimulating the axial nerve cord. The evoked activity, although far reaching and long lasting, cannot alone account for the arm extension movements generated by similar electrical stimulation. The mismatch between patterns of activity in the isolated cord and in an intact arm may stem from the involvement of mechanosensory feedback in natural arm extension.

  6. Reduction of Sodium Arsenite-Mediated Adverse Effects in Mice using Dietary Supplementation of Water Hyacinth (Eichornia crassipes) Root Powder.

    Science.gov (United States)

    Sarker, Rim Sabrina Jahan; Ahsan, Nazmul; Hossain, Khaled; Ghosh, Paritosh Kumar; Ahsan, Chowdhury Rafiqul; Akhand, Anwarul Azim

    2012-07-01

    In this study, we evaluated the protective effects of water Hyacinth Root Powder (HRP) on arsenic-mediated toxic effects in mice. Swiss albino mice, used in this study, were divided into four different groups (for each group n=5). The control group was supplied with normal feed and water, Arsenic group (As-group) was supplied with normal feed plus arsenic (sodium arsenite)-containing water, and arsenic+hyacinth group (As+Hy group) was supplied with feed supplemented with HRP plus arsenic water. The remaining Hy-group was supplied with feed supplemented with HRP plus normal water. Oral administration of arsenic reduced the normal growth of the mice as evidenced by weight loss. Interestingly, tip of the tails of these mice developed wound that caused gradual reduction of the tail length. Supplementation of HRP in feed significantly prevented mice growth retardation and tail wounding in As+Hy group mice. However, the growth pattern in Hy-group mice was observed to be almost similar to that of the control group indicating that HRP itself has no toxic or negative effect in mice. Ingested arsenic also distorted the shape of the blood cells and elevated the serum enzymes such as lactate dehydrogenase (LDH), alkaline phosphatase (ALP) and serum glutamic pyruvic transaminase (SGPT). Importantly, elevation of these enzymes and distortion of blood cell shape were partially reduced in mice belong to As+Hy group, indicating HRP-mediated reduction of arsenic toxicity. Therefore, the preventive effect of hyacinth root on arsenic-poisoned mice suggested the future application of hyacinth to reduce arsenic toxicity in animal and human.

  7. MPK6 controls H2 O2-induced root elongation by mediating Ca2+ influx across the plasma membrane of root cells in Arabidopsis seedlings.

    Science.gov (United States)

    Han, Shuan; Fang, Lin; Ren, Xuejian; Wang, Wenle; Jiang, Jing

    2015-01-01

    Mitogen-activated protein kinases (MPKs) play critical roles in signalling and growth, and Ca(2+) and H2 O2 control plant growth processes associated with abscisic acid (ABA). However, it remains unclear how MPKs are involved in H2 O2 - and Ca(2+) -mediated root elongation. Root elongation in seedlings of the loss-of-function mutant Atmpk6 (Arabidopsis thaliana MPK6) was less sensitive to moderate H2 O2 or ABA than that in wild-type (WT) plants. The enhanced elongation was a result of root cell expansion. This effect disappeared when ABA-induced H2 O2 accumulation or the cytosolic Ca(2+) increase were defective. Molecular and biochemical evidence showed that increased expression of the cell wall peroxidase PRX34 in Atmpk6 root cells enhanced apoplastic H2 O2 generation; this promoted a cytosolic Ca(2+) increase and Ca(2+) influx across the plasma membrane. The plasma membrane damage caused by high levels of H2 O2 was ameliorated in a Ca(2+) -dependent manner. These results suggested that there was intensified PRX34-mediated H2 O2 generation in the apoplast and increased Ca(2+) flux into the cytosol of Atmpk6 root cells; that is, the spatial separation of apoplastic H2 O2 from cytosolic Ca(2+) in root cells prevented H2 O2 -induced inhibition of root elongation in Atmpk6 seedlings. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  8. Brassinosteroid signaling-dependent root responses to prolonged elevated ambient temperature.

    Science.gov (United States)

    Martins, Sara; Montiel-Jorda, Alvaro; Cayrel, Anne; Huguet, Stéphanie; Roux, Christine Paysant-Le; Ljung, Karin; Vert, Grégory

    2017-08-21

    Due to their sessile nature, plants have to cope with and adjust to their fluctuating environment. Temperature elevation stimulates the growth of Arabidopsis aerial parts. This process is mediated by increased biosynthesis of the growth-promoting hormone auxin. How plant roots respond to elevated ambient temperature is however still elusive. Here we present strong evidence that temperature elevation impinges on brassinosteroid hormone signaling to alter root growth. We show that elevated temperature leads to increased root elongation, independently of auxin or factors known to drive temperature-mediated shoot growth. We further demonstrate that brassinosteroid signaling regulates root responses to elevated ambient temperature. Increased growth temperature specifically impacts on the level of the brassinosteroid receptor BRI1 to downregulate brassinosteroid signaling and mediate root elongation. Our results establish that BRI1 integrates temperature and brassinosteroid signaling to regulate root growth upon long-term changes in environmental conditions associated with global warming.Moderate heat stimulates the growth of Arabidopsis shoots in an auxin-dependent manner. Here, Martins et al. show that elevated ambient temperature modifies root growth by reducing the BRI1 brassinosteroid-receptor protein level and downregulating brassinosteroid signaling.

  9. An update-tissue engineered nerve grafts for the repair of peripheral nerve injuries.

    Science.gov (United States)

    Patel, Nitesh P; Lyon, Kristopher A; Huang, Jason H

    2018-05-01

    Peripheral nerve injuries (PNI) are caused by a range of etiologies and result in a broad spectrum of disability. While nerve autografts are the current gold standard for the reconstruction of extensive nerve damage, the limited supply of autologous nerve and complications associated with harvesting nerve from a second surgical site has driven groups from multiple disciplines, including biomedical engineering, neurosurgery, plastic surgery, and orthopedic surgery, to develop a suitable or superior alternative to autografting. Over the last couple of decades, various types of scaffolds, such as acellular nerve grafts (ANGs), nerve guidance conduits, and non-nervous tissues, have been filled with Schwann cells, stem cells, and/or neurotrophic factors to develop tissue engineered nerve grafts (TENGs). Although these have shown promising effects on peripheral nerve regeneration in experimental models, the autograft has remained the gold standard for large nerve gaps. This review provides a discussion of recent advances in the development of TENGs and their efficacy in experimental models. Specifically, TENGs have been enhanced via incorporation of genetically engineered cells, methods to improve stem cell survival and differentiation, optimized delivery of neurotrophic factors via drug delivery systems (DDS), co-administration of platelet-rich plasma (PRP), and pretreatment with chondroitinase ABC (Ch-ABC). Other notable advancements include conduits that have been bioengineered to mimic native nerve structure via cell-derived extracellular matrix (ECM) deposition, and the development of transplantable living nervous tissue constructs from rat and human dorsal root ganglia (DRG) neurons. Grafts composed of non-nervous tissues, such as vein, artery, and muscle, will be briefly discussed.

  10. DIC imaging for identification of motor and sensory nerves

    Directory of Open Access Journals (Sweden)

    Dayu Chen

    2016-09-01

    Full Text Available Identification of motor and sensory nerves is important in applications such as nerve injury repair. Conventional practice relies on time consuming staining methods for this purpose. Here, we use laser scanning infrared differential interference contrast (IR-DIC microscopy for label-free observation of the two types of nerve. Ventral and dorsal nerve roots of adult beagle dogs were collected and sections of different thicknesses were imaged with an IR-DIC microscope. Different texture patterns of the IR-DIC images of the motor and sensory nerve can be distinguished when the section thickness increases to 40μm. This suggests that nerve fibers in motor and sensory nerves have different distribution patterns. The result hints a potential new way for more rapid identification of nerve type in peripheral nerve repair surgery.

  11. Vascular mechanism of axonal degeneration in peripheral nerves in hemiplegic sides after cerebral hemorrhage: An experimental study

    Directory of Open Access Journals (Sweden)

    Bayram Ednan

    2008-04-01

    Full Text Available Abstract Background Though retrograde neuronal death and vascular insufficiency have been well established in plegics following intracerebral hemorrhage, the effects of plegia on arterial nervorums of peripheral nerves have not been reported. In this study, the histopathological effects of the intracerebral hemorrhage on the dorsal root ganglions and sciatic nerves via affecting the arterial nervorums were investigated. Methods This study was conducted on 13 male hybrid rabbits. Three animals were taken as control group and did not undergo surgery. The remaining 10 subjects were anesthetized and were injected with 0.50 ml of autologous blood into their right sensory-motor region. All rabbits were followed-up for two months and then sacrificed. Endothelial cell numbers and volume values were estimated a three dimensionally created standardized arterial nervorums model of lumbar 3. Neuron numbers of dorsal root ganglions, and axon numbers in the lumbar 3 nerve root and volume values of arterial nervorums were examined histopathologically. The results were analyzed by using a Mann-Whitney-U test. Results Left hemiplegia developed in 8 animals. On the hemiplegic side, degenerative vascular changes and volume reduction in the arterial nervorums of the sciatic nerves, neuronal injury in the dorsal root ganglions, and axonal injury in the lumbar 3 were detected. Statistical analyses showed a significant correlation between the normal or nonplegic sides and plegic sides in terms of the neurodegeneration in the dorsal root ganglions (p Conclusion Intracerebral hemorrhage resulted in neurodegeneration in the dorsal root ganglion and axonolysis in the sciatic nerves, endothelial injury, and volume reduction of the arterial nervorums in the sciatic nerves. The interruption of the neural network connection in the walls of the arterial nervorums in the sciatic nerves may be responsible for circulation disorders of the arterial nervorums, and arterial

  12. Chitosan Increases Tomato Root Colonization by Pochonia chlamydosporia and Their Combination Reduces Root-Knot Nematode Damage

    Directory of Open Access Journals (Sweden)

    Nuria Escudero

    2017-09-01

    Full Text Available The use of biological control agents could be a non-chemical alternative for management of Meloidogyne spp. [root-knot nematodes (RKN], the most damaging plant-parasitic nematodes for horticultural crops worldwide. Pochonia chlamydosporia is a fungal parasite of RKN eggs that can colonize endophytically roots of several cultivated plant species, but in field applications the fungus shows a low persistence and efficiency in RKN management. The combined use of P. chlamydosporia with an enhancer could help its ability to develop in soil and colonize roots, thereby increasing its efficiency against nematodes. Previous work has shown that chitosan enhances P. chlamydosporia sporulation and production of extracellular enzymes, as well as nematode egg parasitism in laboratory bioassays. This work shows that chitosan at low concentrations (up to 0.1 mg ml-1 do not affect the viability and germination of P. chlamydosporia chlamydospores and improves mycelial growth respect to treatments without chitosan. Tomato plants irrigated with chitosan (same dose limit increased root weight and length after 30 days. Chitosan irrigation increased dry shoot and fresh root weight of tomato plants inoculated with Meloidogyne javanica, root length when they were inoculated with P. chlamydosporia, and dry shoot weight of plants inoculated with both P. chlamydosporia and M. javanica. Chitosan irrigation significantly enhanced root colonization by P. chlamydosporia, but neither nematode infection per plant nor fungal egg parasitism was affected. Tomato plants cultivated in a mid-suppressive (29.3 ± 4.7% RKN egg infection non-sterilized clay loam soil and irrigated with chitosan had enhanced shoot growth, reduced RKN multiplication, and disease severity. Chitosan irrigation in a highly suppressive (73.7 ± 2.6% RKN egg infection sterilized-sandy loam soil reduced RKN multiplication in tomato. However, chitosan did not affect disease severity or plant growth irrespective of

  13. Indole-3-butyric acid mediates antioxidative defense systems to promote adventitious rooting in mung bean seedlings under cadmium and drought stresses.

    Science.gov (United States)

    Li, Shi-Weng; Zeng, Xiao-Ying; Leng, Yan; Feng, Lin; Kang, Xiao-Hu

    2018-06-08

    In vitro experiments were performed to determine whether auxin can mediate the formation of adventitious roots in response to heavy metal and drought stresses using a model rooting plant, mung bean [Vigna radiata (L.) Wilczek]. The treatments with CdCl 2 or mannitol alone significantly inhibited the formation and growth of adventitious roots in mung bean seedlings. In contrast, when CdCl 2 or mannitol was applied together with indole-3-butyric acid (IBA), IBA considerably cancelled the inhibition of adventitious rooting by stresses. Treatment with CdCl 2 or mannitol alone significantly increased the soluble protein and malondialdehyde (MDA) contents. CdCl 2 and mannitol stress each induced differentially significant changes in the activities of antioxidative enzyme and antioxidant levels during adventitious rooting. Notably, both CdCl 2 and mannitol stress strongly reduced the peroxidase (POD) and ascorbate peroxidase (APX) activities and glutathione (GSH) and phenols levels. Catalase and superoxide dismutase (SOD) activity were enhanced by CdCl 2 but reduced by mannitol. CdCl 2 increased the ascorbate acid (ASA) level, which was decreased by mannitol. Furthermore, when CdCl 2 or mannitol was applied together with IBA, IBA counteracted the CdCl 2 - or mannitol-induced increase or decrease in certain antioxidants, MDA, and antioxidative enzymes. These results suggest that Cd and mannitol stress inhibition of adventitious rooting is associated with the regulation of antioxidative enzymes and antioxidants in cells to defense the oxidative stress. Moreover, IBA alleviates the effects of Cd and mannitol stress on the rooting process partially through the regulation of antioxidative defense systems. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Imaging the trigeminal nerve

    International Nuclear Information System (INIS)

    Borges, Alexandra; Casselman, Jan

    2010-01-01

    Of all cranial nerves, the trigeminal nerve is the largest and the most widely distributed in the supra-hyoid neck. It provides sensory input from the face and motor innervation to the muscles of mastication. In order to adequately image the full course of the trigeminal nerve and its main branches a detailed knowledge of neuroanatomy and imaging technique is required. Although the main trunk of the trigeminal nerve is consistently seen on conventional brain studies, high-resolution tailored imaging is mandatory to depict smaller nerve branches and subtle pathologic processes. Increasing developments in imaging technique made possible isotropic sub-milimetric images and curved reconstructions of cranial nerves and their branches and led to an increasing recognition of symptomatic trigeminal neuropathies. Whereas MRI has a higher diagnostic yield in patients with trigeminal neuropathy, CT is still required to demonstrate the bony anatomy of the skull base and is the modality of choice in the context of traumatic injury to the nerve. Imaging of the trigeminal nerve is particularly cumbersome as its long course from the brainstem nuclei to the peripheral branches and its rich anastomotic network impede, in most cases, a topographic approach. Therefore, except in cases of classic trigeminal neuralgia, in which imaging studies can be tailored to the root entry zone, the full course of the trigeminal nerve has to be imaged. This article provides an update in the most recent advances on MR imaging technique and a segmental imaging approach to the most common pathologic processes affecting the trigeminal nerve.

  15. Imaging the trigeminal nerve

    Energy Technology Data Exchange (ETDEWEB)

    Borges, Alexandra [Radiology Department, Instituto Portugues de Oncologia Francisco Gentil, Centro de Lisboa, Rua Prof. Lima Basto, 1093, Lisboa (Portugal)], E-mail: borgalexandra@gmail.com; Casselman, Jan [Department of Radiology, A. Z. St Jan Brugge and A. Z. St Augustinus Antwerpen Hospitals (Belgium)

    2010-05-15

    Of all cranial nerves, the trigeminal nerve is the largest and the most widely distributed in the supra-hyoid neck. It provides sensory input from the face and motor innervation to the muscles of mastication. In order to adequately image the full course of the trigeminal nerve and its main branches a detailed knowledge of neuroanatomy and imaging technique is required. Although the main trunk of the trigeminal nerve is consistently seen on conventional brain studies, high-resolution tailored imaging is mandatory to depict smaller nerve branches and subtle pathologic processes. Increasing developments in imaging technique made possible isotropic sub-milimetric images and curved reconstructions of cranial nerves and their branches and led to an increasing recognition of symptomatic trigeminal neuropathies. Whereas MRI has a higher diagnostic yield in patients with trigeminal neuropathy, CT is still required to demonstrate the bony anatomy of the skull base and is the modality of choice in the context of traumatic injury to the nerve. Imaging of the trigeminal nerve is particularly cumbersome as its long course from the brainstem nuclei to the peripheral branches and its rich anastomotic network impede, in most cases, a topographic approach. Therefore, except in cases of classic trigeminal neuralgia, in which imaging studies can be tailored to the root entry zone, the full course of the trigeminal nerve has to be imaged. This article provides an update in the most recent advances on MR imaging technique and a segmental imaging approach to the most common pathologic processes affecting the trigeminal nerve.

  16. Regional Aggressive Root Resorption Caused by Neuronal Virus Infection

    Directory of Open Access Journals (Sweden)

    Inger Kjær

    2012-01-01

    Full Text Available During orthodontic treatment, root resorption can occur unexplainably. No clear distinction has been made between resorption located within specific regions and resorption occurring generally in the dentition. The purpose is to present cases with idiopathic (of unknown origin root resorption occurring regionally. Two cases of female patients, 26 and 28 years old, referred with aggressive root resorption were investigated clinically and radiographically. Anamnestic information revealed severe virus diseases during childhood, meningitis in one case and whooping cough in the other. One of the patients was treated with dental implants. Virus spreading along nerve paths is a possible explanation for the unexpected resorptions. In both cases, the resorptions began cervically. The extent of the resorption processes in the dentition followed the virus infected nerve paths and the resorption process stopped when reaching regions that were innervated differently and not infected by virus. In one case, histological examination revealed multinuclear dentinoclasts. The pattern of resorption in the two cases indicates that innervation is a factor, which under normal conditions may protect the root surface against resorption. Therefore, the normal nerve pattern is important for diagnostics and for predicting the course of severe unexpected root resorption.

  17. Curcumin accelerates the repair of sciatic nerve injury in rats through reducing Schwann cells apoptosis and promoting myelinization.

    Science.gov (United States)

    Zhao, Zhiwei; Li, Xiaoling; Li, Qing

    2017-08-01

    Schwann cells (SCs) play an indispensable role in the repair and regeneration of injured peripheral nerve. Curcumin can reduce SCs apoptosis, and promote the regeneration and functional recovery of injured peripheral nerves. However, the corresponding mechanisms are not clear. The article was aimed to explore the effect and corresponding mechanisms of curcumin on the repair of sciatic nerve injury in rats. After surgery induced sciatic nerve injury, the model rats were divided into three groups and treated with curcumin, curcumin+PD98059 and curcumin+IGF-1 respectively for 4days. The phosphorylation of Erk1/2 and Akt, and the expression of LC3-II, Beclin 1 and p62 were measured using western blotting. After treatment for 60days, myelination of the injured sciatic nerve was evaluated by MBP immunohistochemical staining and the expression of PMP22, Fibrin and S100 were determined using qRT-PCR and western blotting. In vitro, RSC96 cells were starved for 12h to induce autophagy, and received DMSO, curcumin, PD98059+curcumin, IGF-1+curcumin and BFA1 respectively. The phosphorylation of Erk1/2、Akt and the expression of LC3-II, Beclin 1, p62, PMP22, Fibrin and S100 were measured using western blotting, and the cell apoptosis was detected by flow cytometry. Curcumin could promote injury-induced cell autophagy, remyelination and axon regeneration in sciatic nerve of rats. In vitro, curcumin could accelerate cell autophagy through regulating autophagy related Erk1/2 and Akt pathway, prevent cell apoptosis and promote expression of PMP22 and S100, and reduced deposition of Fibrin in cultured RSC96 SCs. Curcumin could accelerate injured sciatic nerve repair in rats through reducing SCs apoptosis and promoting myelinization. Copyright © 2017. Published by Elsevier Masson SAS.

  18. Complete disintegration of the microtubular cytoskeleton precedes its auxin-mediated reconstruction in postmitotic maize root cells

    Science.gov (United States)

    Baluska, F.; Barlow, P. W.; Volkmann, D.

    1996-01-01

    The inhibitory action of 0.1 microM auxin (IAA) on maize root growth was closely associated with a rapid and complete disintegration of the microtubular (MT) cytoskeleton, as visualized by indirect immunofluorescence of tubulin, throughout the growth region. After 30 min of this treatment, only fluorescent spots were present in root cells, accumulating either around nuclei or along cell walls. Six h later, in addition to some background fluorescence, dense but partially oriented oblique or longitudinal arrays of cortical MTs (CMTs) were found in most growing cells of the root apex. After 24 h of treatment, maize roots had adapted to the auxin, as inferred from the slowly recovering elongation rate and from the reassembly of a dense and well-ordered MT cytoskeleton which showed only slight deviations from that of the control root cells. Taxol pretreatment (100 microM, 24 h) prevented not only the rapid auxin-mediated disintegration of the MT cytoskeleton but also a reorientation of the CMT arrays, from transversal to longitudinal. The only tissue to show MTs in their cells throughout the auxin treatment was the epidermis. Significant resistance of transverse CMT arrays in these cells towards auxin was confirmed using a higher auxin concentration (100 microM, 24 h). The latter auxin dose also revealed inter-tissue-specific responses to auxin: outer cortical cell files reoriented their CMTs from the transversal to longitudinal orientation, whereas inner cortical cell files lost their MTs. This high auxin-mediated response, associated with the swelling of root apices, was abolished with the pretreatment of maize root with taxol.

  19. Impact of the surgical strategy on the incidence of C5 nerve root palsy in decompressive cervical surgery.

    Directory of Open Access Journals (Sweden)

    Theresa Krätzig

    Full Text Available Our aim was to identify the impact of different surgical strategies on the incidence of C5 palsy.Degenerative cervical spinal stenosis is a steadily increasing morbidity in the ageing population. Postoperative C5 nerve root palsy is a common complication with severe impact on the patients´ quality of life.We identified 1708 consecutive patients who underwent cervical decompression surgery due to degenerative changes. The incidence of C5 palsy and surgical parameters including type and level of surgery were recorded to identify predictors for C5 nerve palsy.The overall C5 palsy rate was 4.8%, with 18.3% of cases being bilateral. For ACDF alone the palsy rate was low (1.13%, compared to 14.0% of C5 palsy rate after corpectomy. The risk increased with extension of the procedures. Hybrid constructs with corpectomy plus ACDF at C3-6 showed significantly lower rates of C5 palsy (10.7% than corpectomy of two vertebrae (p = 0.005. Multiple regression analysis identified corpectomy of C4 or C5 as a significant predictor. We observed a lower overall incidence for ventral (4.3% compared to dorsal (10.9% approaches (p<0.001. When imaging detected a postoperative shift of the spinal cord at index segment C4/5, palsy rate increased significantly (33.3% vs. 12.5%, p = 0.034.Extended surgical strategies, such as dorsal laminectomies, multilevel corpectomies and procedures with extensive spinal cord shift were shown to display a high risk of C5 palsy. The use of extended procedures should therefore be employed cautiously. Switching to combined surgical methods like ACDF plus corpectomy can reduce the rate of C5 palsy.

  20. Genetic interaction of two abscisic acid signaling regulators, HY5 and FIERY1, in mediating lateral root formation

    KAUST Repository

    Chen, Hao

    2011-01-01

    Root architecture is continuously shaped in a manner that helps plants to better adapt to the environment. Gene regulation at the transcriptional or post-transcriptional levels largely controls this environmental response. Recently, RNA silencing has emerged as an important player in gene regulation and is involved in many aspects of plant development, including lateral root formation. In a recent study, we found that FIERY1, a bifunctional abiotic stress and abscisic acid (ABA) signaling regulator and an endogenous RNA silencing suppressor, mediates auxin response during lateral root formation in Arabidopsis. We proposed that FRY1 regulates lateral root development through its activity on adenosine 3,5-bisphosphate (PAP), a strong inhibitor of exoribonucleases (XRNs). Interestingly, some of the phenotypes of fry1, such as enhanced response to light in repressing hypocotyl elongation and hypersensitivity to ABA in lateral root growth, are opposite to those of another light- and ABA-signaling mutant, hy5. Here we analyzed the hy5 fry1 double mutant for root and hypocotyl growth. We found that the hy5 mutation can suppress the enhanced light sensitivity in fry1 hypocotyl elongation and restore the lateral root formation. The genetic interaction between HY5 and FRY1 indicates that HY5 and FRY1 may act in overlapping pathways that mediate light signaling and lateral root development. © 2011 Landes Bioscience.

  1. Nasal-Type Extranodal Natural Killer/T-cell Neurolymphomatosis Confined to the Lumbar Nerve Roots: A Case Report

    International Nuclear Information System (INIS)

    Park, Jong Chun; Mun, Sung Hee; Lee, Young Hwan

    2009-01-01

    Neurolymphomatosis refers to lymphoma that has infiltrated the peripheral nervous system and this is the least common clinical presentation of nervous system lymphoma. Most neurolymphomatosis is due to B-cell non-Hodgkin lymphoma, and most patients show lymphomatous infiltration in the meninges and brain parenchyma, in addition to peripheral nervous system involvement. We diagnosed a case of neurolymphomatosis that was confined to the right 4th and 5th lumbar nerve roots without involvement of the meninges or brain parenchyma in a patient with the nasal-type extranodal natural killer/T-cell lymphoma. We made this diagnosis based on the MRI and 18F-FDG PET-CT findings and the clinical manifestations

  2. Nasal-Type Extranodal Natural Killer/T-cell Neurolymphomatosis Confined to the Lumbar Nerve Roots: A Case Report

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong Chun; Mun, Sung Hee; Lee, Young Hwan [Catholic University, Daegu (Korea, Republic of)

    2009-11-15

    Neurolymphomatosis refers to lymphoma that has infiltrated the peripheral nervous system and this is the least common clinical presentation of nervous system lymphoma. Most neurolymphomatosis is due to B-cell non-Hodgkin lymphoma, and most patients show lymphomatous infiltration in the meninges and brain parenchyma, in addition to peripheral nervous system involvement. We diagnosed a case of neurolymphomatosis that was confined to the right 4th and 5th lumbar nerve roots without involvement of the meninges or brain parenchyma in a patient with the nasal-type extranodal natural killer/T-cell lymphoma. We made this diagnosis based on the MRI and 18F-FDG PET-CT findings and the clinical manifestations.

  3. Enhancing Peripheral Nerve Regeneration with a Novel Drug-Delivering Nerve Conduit

    Science.gov (United States)

    2015-10-01

    our novel nerve conduit. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE...growth in dorsal root ganglion ( DRG ) cell culture Tasks/Subtasks: 1. In Vitro NGF/GNDF release kinetics experiments.......................... (Gale...Axonal growth of DRGs ................................................................ (Terry, Shea) (11-18months) Progress: We have started these

  4. Comparative study of phrenic nerve transfers with and without nerve graft for elbow flexion after global brachial plexus injury.

    Science.gov (United States)

    Liu, Yuzhou; Lao, Jie; Gao, Kaiming; Gu, Yudong; Zhao, Xin

    2014-01-01

    Nerve transfer is a valuable surgical technique in peripheral nerve reconstruction, especially in brachial plexus injuries. Phrenic nerve transfer for elbow flexion was proved to be one of the optimal procedures in the treatment of brachial plexus injuries in the study of Gu et al. The aim of this study was to compare phrenic nerve transfers with and without nerve graft for elbow flexion after brachial plexus injury. A retrospective review of 33 patients treated with phrenic nerve transfer for elbow flexion in posttraumatic global root avulsion brachial plexus injury was carried out. All the 33 patients were confirmed to have global root avulsion brachial plexus injury by preoperative and intraoperative electromyography (EMG), physical examination and especially by intraoperative exploration. There were two types of phrenic nerve transfers: type1 - the phrenic nerve to anterolateral bundle of anterior division of upper trunk (14 patients); type 2 - the phrenic nerve via nerve graft to anterolateral bundle of musculocutaneous nerve (19 patients). Motor function and EMG evaluation were performed at least 3 years after surgery. The efficiency of motor function in type 1 was 86%, while it was 84% in type 2. The two groups were not statistically different in terms of Medical Research Council (MRC) grade (p=1.000) and EMG results (p=1.000). There were seven patients with more than 4 month's delay of surgery, among whom only three patients regained biceps power to M3 strength or above (43%). A total of 26 patients had reconstruction done within 4 months, among whom 25 patients recovered to M3 strength or above (96%). There was a statistically significant difference of motor function between the delay of surgery within 4 months and more than 4 months (p=0.008). Phrenic nerve transfers with and without nerve graft for elbow flexion after brachial plexus injury had no significant difference for biceps reinnervation according to MRC grading and EMG. A delay of the surgery

  5. Patients with low back pain differ from those who also have leg pain or signs of nerve root involvement

    DEFF Research Database (Denmark)

    Kongsted, Alice; Kent, Peter; Albert, Hanne

    2012-01-01

    ABSTRACT: BACKGROUND: Leg pain associated with low back pain (LBP) is recognized as a risk factor for a poor prognosis, and is included as a component in most LBP classification systems. The location of leg pain relative to the knee and the presence of a positive straight leg raise test have been...... only, 2) LBP and pain above the knee, 3) LBP and pain below the knee, and 4) LBP and signs of nerve root involvement. METHODS: Analysis of routine clinical data from an outpatient department. Based on patient reported data and clinical findings, patients were allocated to the QTF subgroups...

  6. Chronic migraine is associated with reduced corneal nerve fiber density and symptoms of dry eye.

    Science.gov (United States)

    Kinard, Krista I; Smith, A Gordon; Singleton, J Robinson; Lessard, Margaret K; Katz, Bradley J; Warner, Judith E A; Crum, Alison V; Mifflin, Mark D; Brennan, Kevin C; Digre, Kathleen B

    2015-04-01

    We used in vivo corneal confocal microscopy to investigate structural differences in the sub-basal corneal nerve plexus in chronic migraine patients and a normal population. We used a validated questionnaire and tests of lacrimal function to determine the prevalence of dry eye in the same group of chronic migraine patients. Activation of the trigeminal system is involved in migraine. Corneal nociceptive sensation is mediated by trigeminal axons that synapse in the gasserian ganglion and the brainstem, and serve nociceptive, protective, and trophic functions. Noninvasive imaging of the corneal sub-basal nerve plexus is possible with in vivo corneal confocal microscopy. For this case-control study, we recruited chronic migraine patients and compared them with a sex- and age-similar group of control subjects. Patients with peripheral neuropathy, a disease known to be associated with a peripheral neuropathy, or prior corneal or intraocular surgery were excluded. Participants underwent in vivo corneal confocal microscopy using a Heidelberg Retinal Tomography III confocal microscope with a Rostock Cornea Module. Nerve fiber length, nerve branch density, nerve fiber density, and tortuosity coefficient were measured using established methodologies. Migraine participants underwent testing of basal tear production with proparacaine, corneal sensitivity assessment with a cotton-tip applicator, measurement of tear break-up time, and completion of a validated dry eye questionnaire. A total of 19 chronic migraine patients and 30 control participants completed the study. There were no significant differences in age or sex. Nerve fiber density was significantly lower in migraine patients compared with controls (48.4 ± 23.5 vs. 71.0 ± 15.0 fibers/mm2 , P dry eye syndrome. We found that in the sample used in this study, the presence of structural changes in nociceptive corneal axons lends further support to the hypothesis that the trigeminal system plays a critical role

  7. Long pacing pulses reduce phrenic nerve stimulation in left ventricular pacing.

    Science.gov (United States)

    Hjortshøj, Søren; Heath, Finn; Haugland, Morten; Eschen, Ole; Thøgersen, Anna Margrethe; Riahi, Sam; Toft, Egon; Struijk, Johannes Jan

    2014-05-01

    Phrenic nerve stimulation is a major obstacle in cardiac resynchronization therapy (CRT). Activation characteristics of the heart and phrenic nerve are different with higher chronaxie for the heart. Therefore, longer pulse durations could be beneficial in preventing phrenic nerve stimulation during CRT due to a decreased threshold for the heart compared with the phrenic nerve. We investigated if long pulse durations decreased left ventricular (LV) thresholds relatively to phrenic nerve thresholds in humans. Eleven patients, with indication for CRT and phrenic nerve stimulation at the intended pacing site, underwent determination of thresholds for the heart and phrenic nerve at different pulse durations (0.3-2.9 milliseconds). The resulting strength duration curves were analyzed by determining chronaxie and rheobase. Comparisons for those parameters were made between the heart and phrenic nerve, and between the models of Weiss and Lapicque as well. In 9 of 11 cases, the thresholds decreased faster for the LV than for the phrenic nerve with increasing pulse duration. In 3 cases, the thresholds changed from unfavorable for LV stimulation to more than a factor 2 in favor of the LV. The greatest change occurred for pulse durations up to 1.5 milliseconds. The chronaxie of the heart was significantly higher than the chronaxie of the phrenic nerve (0.47 milliseconds vs. 0.22 milliseconds [P = 0.029, Lapicque] and 0.79 milliseconds vs. 0.27 milliseconds [P = 0.033, Weiss]). Long pulse durations lead to a decreased threshold of the heart relatively to the phrenic nerve and may prevent stimulation of the phrenic nerve in a clinical setting. © 2013 Wiley Periodicals, Inc.

  8. The MEDIATOR genes MED12 and MED13 control Arabidopsis root system configuration influencing sugar and auxin responses.

    Science.gov (United States)

    Raya-González, Javier; López-Bucio, Jesús Salvador; Prado-Rodríguez, José Carlos; Ruiz-Herrera, León Francisco; Guevara-García, Ángel Arturo; López-Bucio, José

    2017-09-01

    Arabidopsis med12 and med13 mutants exhibit shoot and root phenotypes related to an altered auxin homeostasis. Sucrose supplementation reactivates both cell division and elongation in primary roots as well as auxin-responsive and stem cell niche gene expression in these mutants. An analysis of primary root growth of WT, med12, aux1-7 and med12 aux1 single and double mutants in response to sucrose and/or N-1-naphthylphthalamic acid (NPA) placed MED12 upstream of auxin transport for the sugar modulation of root growth. The MEDIATOR (MED) complex plays diverse functions in plant development, hormone signaling and biotic and abiotic stress tolerance through coordination of transcription. Here, we performed genetic, developmental, molecular and pharmacological analyses to characterize the role of MED12 and MED13 on the configuration of root architecture and its relationship with auxin and sugar responses. Arabidopsis med12 and med13 single mutants exhibit shoot and root phenotypes consistent with altered auxin homeostasis including altered primary root growth, lateral root development, and root hair elongation. MED12 and MED13 were required for activation of cell division and elongation in primary roots, as well as auxin-responsive and stem cell niche gene expression. Remarkably, most of these mutant phenotypes were rescued by supplying sucrose to the growth medium. The growth response of primary roots of WT, med12, aux1-7 and med12 aux1 single and double mutants to sucrose and application of auxin transport inhibitor N-1-naphthylphthalamic acid (NPA) revealed the correlation of med12 phenotype with the activity of the auxin intake permease and suggests that MED12 acts upstream of AUX1 in the root growth response to sugar. These data provide compelling evidence that MEDIATOR links sugar sensing to auxin transport and distribution during root morphogenesis.

  9. Neuroactivity of detonation nanodiamonds: dose-dependent changes in transporter-mediated uptake and ambient level of excitatory/inhibitory neurotransmitters in brain nerve terminals.

    Science.gov (United States)

    Pozdnyakova, Natalia; Pastukhov, Artem; Dudarenko, Marina; Galkin, Maxim; Borysov, Arsenii; Borisova, Tatiana

    2016-03-31

    Nanodiamonds are one of the most perspective nano-sized particles with superb physical and chemical properties, which are mainly composed of carbon sp(3) structures in the core with sp(2) and disorder/defect carbons on the surface. The research team recently demonstrated neuromodulatory properties of carbon nanodots with other than nanodiamonds hybridization types, i.e., sp(2) hybridized graphene islands and diamond-like sp(3) hybridized elements. In this study, neuroactive properties of uncoated nanodiamonds produced by detonation synthesis were assessed basing on their effects on transporter-mediated uptake and the ambient level of excitatory and inhibitory neurotransmitters, glutamate and γ-aminobutyric acid (GABA), in isolated rat brain nerve terminals. It was shown that nanodiamonds in a dose-dependent manner attenuated the initial velocity of Na(+)-dependent transporter-mediated uptake and accumulation of L-[(14)C]glutamate and [(3)H]GABA by nerve terminals and increased the ambient level of these neurotransmitters. Also, nanodiamonds caused a weak reduction in acidification of synaptic vesicles and depolarization of the plasma membrane of nerve terminals. Therefore, despite different types of hybridization in nanodiamonds and carbon dots, they exhibit very similar effects on glutamate and GABA transport in nerve terminals and this common feature of both nanoparticles is presumably associated with their nanoscale size. Observed neuroactive properties of pure nanodiamonds can be used in neurotheranostics for simultaneous labeling/visualization of nerve terminals and modulation of key processes of glutamate- and GABAergic neurotransmission. In comparison with carbon dots, wider medical application involving hypo/hyperthermia, external magnetic fields, and radiolabel techniques can be perspective for nanodiamonds.

  10. Anomalous Innervation of the Median Nerve in the Arm in the Absence of the Musculocutaneous Nerve

    Directory of Open Access Journals (Sweden)

    Khursheed Raza

    2017-03-01

    Full Text Available The brachial plexus innervates the upper extremities. While variations in the formation of the brachial plexus and its terminal branches are quite common, it is uncommon for the median nerve to innervate the muscles of the arm. During the dissection of an elderly male cadaver at the Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India, in 2016, the coracobrachialis muscle was found to be supplied by a direct branch from the lateral root of the median nerve and the musculocutaneous nerve was absent. The branches of the median nerve supplied the biceps brachii and brachialis muscles and the last branch continued as the lateral cutaneous nerve of the forearm. These variations may present atypically in cases of arm flexor paralysis or sensory loss on the lateral forearm. Knowledge of these variations is important in surgeries and during the administration of regional anaesthesia near the shoulder joint and upper arm.

  11. Bilateral absence of musculocutaneous nerve

    Directory of Open Access Journals (Sweden)

    Mathada V Ravishankar

    2012-01-01

    Full Text Available Brachial plexus is an important group of spinal nerve plexus that supplies the muscles of the upper limb via the ventral rami of the Cervical 5 - Thoracic 1 fibers of the spinal nerves. It is not uncommon to notice the variations during cadaveric dissections in many regions of the body, at different levels, such as, roots, trunks, division, cords, communications, and branches as reported in the literature. Although the nerve supply of the body musculature takes place in the fetal life itself, its course, branching pattern, innervations, and communication can show variable patterns as the fetal development progresses. One such anomaly was noticed during our routine cadaveric dissection in the Department of Anatomy, Jawaharlal Nehru Medical College, Belgaum, showing bilateral absence of the musculocutaneous nerve, which obviously drew the attention of the students of medicine, physiotherapy, and learning clinicians as well.

  12. Redundant nerve roots of cauda equina in clinically neurologically asymptomatic patients. A clinical and radiographic study

    International Nuclear Information System (INIS)

    Otoshi, Ken-ichi; Kikuchi, Shin-ichi; Konno, Shin-ichi; Arai, Itaru

    2005-01-01

    A radiographic study was conducted to determine the incidence of redundant nerve roots of the cauda equina (RNR) in neurologically asymptomatic patients, and to clarify whether RNR has an impact on the clinical symptom. 50 patients who had spine disease such as spondylosis and compression fracture were examined by MRI. They didn't have neurological symptom such as sciatica, leg numbness, and motor weakness of lower extremities. There were 18 men and 32 women, and their mean age was 72.4 years (range: 32-87 years). RNR was found in 18 of the 50 patients (36.0%) and in a higher percentage of the patients who had lumber spinal canal stenosis. We concluded that RNR was only a morphological change of the cauda equine and had little effect on the neurological symptom. (author)

  13. Light as stress factor to plant roots - case of root halotropism.

    Science.gov (United States)

    Yokawa, Ken; Fasano, Rossella; Kagenishi, Tomoko; Baluška, František

    2014-01-01

    Despite growing underground, largely in darkness, roots emerge to be very sensitive to light. Recently, several important papers have been published which reveal that plant roots not only express all known light receptors but also that their growth, physiology and adaptive stress responses are light-sensitive. In Arabidopsis, illumination of roots speeds-up root growth via reactive oxygen species-mediated and F-actin dependent process. On the other hand, keeping Arabidopsis roots in darkness alters F-actin distribution, polar localization of PIN proteins as well as polar transport of auxin. Several signaling components activated by phytohormones are overlapping with light-related signaling cascade. We demonstrated that the sensitivity of roots to salinity is altered in the light-grown Arabidopsis roots. Particularly, light-exposed roots are less effective in their salt-avoidance behavior known as root halotropism. Here we discuss these new aspects of light-mediated root behavior from cellular, physiological and evolutionary perspectives.

  14. Vagus Nerve Stimulation Reduces Cocaine Seeking and Alters Plasticity in the Extinction Network

    Science.gov (United States)

    Childs, Jessica E.; DeLeon, Jaime; Nickel, Emily; Kroener, Sven

    2017-01-01

    Drugs of abuse cause changes in the prefrontal cortex (PFC) and associated regions that impair inhibitory control over drug-seeking. Breaking the contingencies between drug-associated cues and the delivery of the reward during extinction learning reduces rates of relapse. Here we used vagus nerve stimulation (VNS) to induce targeted synaptic…

  15. Drug Delivery for Peripheral Nerve Regeneration

    Science.gov (United States)

    2015-11-01

    enhancement in dorsal root ganglion ( DRG ) cells with the released drug. In the first year of this 18 month project we have completed device fabrication of...the nerve guide conduit and drug delivery reservoir. We were able to release NGF at a concentration that enhancing DRG nerve growth in vitro. We next...KrF excimer laser system (Optec) and with diameters larger than 100μm using the VLS3.60 CO2 system (Universal Laser Systems )) (Figure 3). The laser

  16. Delayed peripheral nerve repair: methods, including surgical ?cross-bridging? to promote nerve regeneration

    OpenAIRE

    Gordon, Tessa; Eva, Placheta; Borschel, Gregory H.

    2015-01-01

    Despite the capacity of Schwann cells to support peripheral nerve regeneration, functional recovery after nerve injuries is frequently poor, especially for proximal injuries that require regenerating axons to grow over long distances to reinnervate distal targets. Nerve transfers, where small fascicles from an adjacent intact nerve are coapted to the nerve stump of a nearby denervated muscle, allow for functional return but at the expense of reduced numbers of innervating nerves. A 1-hour per...

  17. Evaluation of the anatomic effect of physical therapy exercises for mobilization of lumbar spinal nerves and the dura mater in dogs.

    Science.gov (United States)

    Gruenenfelder, Fredrik I; Boos, Alois; Mouwen, Marco; Steffen, Frank

    2006-10-01

    To adapt and standardize neural tissue mobilization exercises, quantify nerve root movement, and assess the anatomic effects of lumbar spinal nerve and dural mobilization in dogs. 15 canine cadavers. 5 cadavers were used in the preliminary part of the study to adapt 3 neural tissue mobilization physical therapy exercises to canine anatomy. In the other 10 cadavers, the L4 to L7 nerve roots and the dura at the level of T13 and L1 were isolated and marked. Movements during the physical therapy exercises were standardized by means of goniometric control. Movement of the nerve roots in response to each exercise was digitally measured. The effects of body weight and crownrump length on the distance of nerve root movement achieved during each exercise were also assessed. Each exercise was divided into 4 steps, and the overall distance of neural movement achieved was compared with distances achieved between steps. Neural tissue mobilization exercises elicited visible and measurable movement of nerve roots L4 to L7 and of the dura at T13 and L1 in all cadavers. The physical therapy exercises evaluated had measurable effects on nerve roots L4 to L7 and the dura mater in the T13 and L1 segments. These exercises should be evaluated in clinical trials to validate their efficacy as primary treatments or ancillary postsurgical therapy in dogs with disorders of the thoracolumbar and lumbosacral segments of the vertebral column.

  18. GLP-1 signals via ERK in peripheral nerve and prevents nerve dysfunction in diabetic mice

    DEFF Research Database (Denmark)

    Jolivalt, CG; Fineman, M; Deacon, Carolyn F.

    2011-01-01

    not affect blood sugar, insulin levels or paw thermal response latencies in either control or diabetic mice. However, the reductions of motor nerve conduction velocity and paw intraepidermal fibre density seen in diabetic mice were attenuated by exenatide treatment. Conclusions: These data show...... that the peripheral nerve of diabetic rodents exhibits functional GLP-1R and suggest that GLP-1R-mediated ERK-signalling in sciatic nerve of diabetic rodents may protect large motor fibre function and small C fibre structure by a mechanism independent of glycaemic control....

  19. BDNF gene delivery mediated by neuron-targeted nanoparticles is neuroprotective in peripheral nerve injury.

    Science.gov (United States)

    Lopes, Cátia D F; Gonçalves, Nádia P; Gomes, Carla P; Saraiva, Maria J; Pêgo, Ana P

    2017-03-01

    Neuron-targeted gene delivery is a promising strategy to treat peripheral neuropathies. Here we propose the use of polymeric nanoparticles based on thiolated trimethyl chitosan (TMCSH) to mediate targeted gene delivery to peripheral neurons upon a peripheral and minimally invasive intramuscular administration. Nanoparticles were grafted with the non-toxic carboxylic fragment of the tetanus neurotoxin (HC) to allow neuron targeting and were explored to deliver a plasmid DNA encoding for the brain-derived neurotrophic factor (BDNF) in a peripheral nerve injury model. The TMCSH-HC/BDNF nanoparticle treatment promoted the release and significant expression of BDNF in neural tissues, which resulted in an enhanced functional recovery after injury as compared to control treatments (vehicle and non-targeted nanoparticles), associated with an improvement in key pro-regenerative events, namely, the increased expression of neurofilament and growth-associated protein GAP-43 in the injured nerves. Moreover, the targeted nanoparticle treatment was correlated with a significantly higher density of myelinated axons in the distal stump of injured nerves, as well as with preservation of unmyelinated axon density as compared with controls and a protective role in injury-denervated muscles, preventing them from denervation. These results highlight the potential of TMCSH-HC nanoparticles as non-viral gene carriers to deliver therapeutic genes into the peripheral neurons and thus, pave the way for their use as an effective therapeutic intervention for peripheral neuropathies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Axon-Sorting Multifunctional Nerve Guides: Accelerating Restoration of Nerve Function

    Science.gov (United States)

    2014-10-01

    factor (singly & in selected combinations) in the organotypic model system for preferential sensory or motor axon extension. Use confocal microscopy to...track axon extension of labeled sensory or motor neurons from spinal cord slices (motor) or dorsal root ganglia ( DRG ) (sensory). 20 Thy1-YFP mice...RESEARCH ACCOMPLISHMENTS: • Established a system of color-coded mixed nerve tracking using GFP and RFP expressing motor and sensory neurons (Figure 1

  1. Hypoglossal-Facial Nerve Reconstruction Using a Y-Tube-Conduit Reduces Aberrant Synkinetic Movements of the Orbicularis Oculi and Vibrissal Muscles in Rats

    Directory of Open Access Journals (Sweden)

    Yasemin Kaya

    2014-01-01

    Full Text Available The facial nerve is the most frequently damaged nerve in head and neck trauma. Patients undergoing facial nerve reconstruction often complain about disturbing abnormal synkinetic movements of the facial muscles (mass movements, synkinesis which are thought to result from misguided collateral branching of regenerating motor axons and reinnervation of inappropriate muscles. Here, we examined whether use of an aorta Y-tube conduit during reconstructive surgery after facial nerve injury reduces synkinesis of orbicularis oris (blink reflex and vibrissal (whisking musculature. The abdominal aorta plus its bifurcation was harvested (N = 12 for Y-tube conduits. Animal groups comprised intact animals (Group 1, those receiving hypoglossal-facial nerve end-to-end coaptation alone (HFA; Group 2, and those receiving hypoglossal-facial nerve reconstruction using a Y-tube (HFA-Y-tube, Group 3. Videotape motion analysis at 4 months showed that HFA-Y-tube group showed a reduced synkinesis of eyelid and whisker movements compared to HFA alone.

  2. Hypoglossal-facial nerve reconstruction using a Y-tube-conduit reduces aberrant synkinetic movements of the orbicularis oculi and vibrissal muscles in rats.

    Science.gov (United States)

    Kaya, Yasemin; Ozsoy, Umut; Turhan, Murat; Angelov, Doychin N; Sarikcioglu, Levent

    2014-01-01

    The facial nerve is the most frequently damaged nerve in head and neck trauma. Patients undergoing facial nerve reconstruction often complain about disturbing abnormal synkinetic movements of the facial muscles (mass movements, synkinesis) which are thought to result from misguided collateral branching of regenerating motor axons and reinnervation of inappropriate muscles. Here, we examined whether use of an aorta Y-tube conduit during reconstructive surgery after facial nerve injury reduces synkinesis of orbicularis oris (blink reflex) and vibrissal (whisking) musculature. The abdominal aorta plus its bifurcation was harvested (N = 12) for Y-tube conduits. Animal groups comprised intact animals (Group 1), those receiving hypoglossal-facial nerve end-to-end coaptation alone (HFA; Group 2), and those receiving hypoglossal-facial nerve reconstruction using a Y-tube (HFA-Y-tube, Group 3). Videotape motion analysis at 4 months showed that HFA-Y-tube group showed a reduced synkinesis of eyelid and whisker movements compared to HFA alone.

  3. Light as stress factor to plant roots – case of root halotropism

    Science.gov (United States)

    Yokawa, Ken; Fasano, Rossella; Kagenishi, Tomoko; Baluška, František

    2014-01-01

    Despite growing underground, largely in darkness, roots emerge to be very sensitive to light. Recently, several important papers have been published which reveal that plant roots not only express all known light receptors but also that their growth, physiology and adaptive stress responses are light-sensitive. In Arabidopsis, illumination of roots speeds-up root growth via reactive oxygen species-mediated and F-actin dependent process. On the other hand, keeping Arabidopsis roots in darkness alters F-actin distribution, polar localization of PIN proteins as well as polar transport of auxin. Several signaling components activated by phytohormones are overlapping with light-related signaling cascade. We demonstrated that the sensitivity of roots to salinity is altered in the light-grown Arabidopsis roots. Particularly, light-exposed roots are less effective in their salt-avoidance behavior known as root halotropism. Here we discuss these new aspects of light-mediated root behavior from cellular, physiological and evolutionary perspectives. PMID:25566292

  4. Solanum paniculatum root extract reduces diarrhea in rats

    Directory of Open Access Journals (Sweden)

    Jonh A.B. Tenório

    Full Text Available Abstract Solanum paniculatum L., Solanaceae, locally known as "jurubeba", is widely used in Brazil for culinary purposes, and in folk medicine to treat of diverse disorder including gastric dysfunctions. In this study we investigated the antidiarrheal activity of S. paniculatum roots extract in rats at different concentrations (125, 250 and 500 mg/kg, p.o using different experimental models such as castor oil-induced diarrhea, enteropooling and gastrointestinal motility, determined by in vivo experimental models. The major compound of root extract was characterized as chlorogenic acid based in the IR, 1D and 2D NMR analysis. All the extract doses achieved antidiarrheal potency, as indicated by reduced weight of feces in castor oil-induced diarrhea, decreased intestinal motility and significantly inhibited castor oil-induced enteropooling compared to the vehicle group. The highest dose (500 mg/kg produced greater anti-motility effect and better reduction of enteropooling, similar to the reference drug Loperamide (5 mg/kg. Extract from S. paniculatum L. roots had antidiarrheal activity, as shown by the lower weight of the feces as well as decrease in the accumulation of intestinal fluid and slower transit, justifying the traditional use of plant for diarrhea.

  5. The significance of diagnostic MRI for visualisation of trauma-induced cervical nerve root avulsion. Case report; Die Bedeutung der MRT-Diagnostik zur Darstellung traumatisch bedingter zervikaler Wurzelausrisse. Kasuistik

    Energy Technology Data Exchange (ETDEWEB)

    Muth, C P [Carl-Thiem-Klinikum, Cottbus (Germany). Inst. fuer Radiologie; Biemelt, F [Carl-Thiem-Klinikum, Cottbus (Germany). Inst. fuer Radiologie; Kamenz, M [Carl-Thiem-Klinikum, Cottbus (Germany). Inst. fuer Radiologie

    1996-11-01

    The article is intended to show the value of MRI for diagnostic visualisation and evaluation of posttraumatic nerve root avulsion as a brachial plexus injury. (orig./MG) [Deutsch] Das Ziel der Arbeit besteht in der Darstellung des Wertes der MRT-Diagnostik bei der Abklaerung traumatischer Wurzelausrisse im Bereich des Plexus brachialis. (orig./MG)

  6. Interplays between soil-borne plant viruses and RNA silencing-mediated antiviral defense in roots

    Directory of Open Access Journals (Sweden)

    Ida Bagus Andika

    2016-09-01

    Full Text Available Although the majority of plant viruses are transmitted by arthropod vectors and invade the host plants through the aerial parts, there is a considerable number of plant viruses that infect roots via soil-inhabiting vectors such as plasmodiophorids, chytrids, and nematodes. These soil-borne viruses belong to diverse families, and many of them cause serious diseases in major crop plants. Thus, roots are important organs for the life cycle of many viruses. Compared to shoots, roots have a distinct metabolism and particular physiological characteristics due to the differences in development, cell composition, gene expression patterns, and surrounding environmental conditions. RNA silencing is an important innate defense mechanism to combat virus infection in plants, but the specific information on the activities and molecular mechanism of RNA silencing-mediated viral defense in root tissue is still limited. In this review, we summarize and discuss the current knowledge regarding RNA silencing aspects of the interactions between soil-borne viruses and host plants. Overall, research evidence suggests that soil-borne viruses have evolved to adapt to the distinct mechanism of antiviral RNA silencing in roots.

  7. Increased Nerve Growth Factor Signaling in Sensory Neurons of Early Diabetic Rats Is Corrected by Electroacupuncture

    Directory of Open Access Journals (Sweden)

    Stefania Lucia Nori

    2013-01-01

    Full Text Available Diabetic polyneuropathy (DPN, characterized by early hyperalgesia and increased nerve growth factor (NGF, evolves in late irreversible neuropathic symptoms with reduced NGF support to sensory neurons. Electroacupuncture (EA modulates NGF in the peripheral nervous system, being effective for the treatment of DPN symptoms. We hypothesize that NGF plays an important pathogenic role in DPN development, while EA could be useful in the therapy of DPN by modulating NGF expression/activity. Diabetes was induced in rats by streptozotocin (STZ injection. One week after STZ, EA was started and continued for three weeks. NGF system and hyperalgesia-related mediators were analyzed in the dorsal root ganglia (DRG and in their spinal cord and skin innervation territories. Our results show that four weeks long diabetes increased NGF and NGF receptors and deregulated intracellular signaling mediators of DRG neurons hypersensitization; EA in diabetic rats decreased NGF and NGF receptors, normalized c-Jun N-terminal and p38 kinases activation, decreased transient receptor potential vanilloid-1 ion channel, and possibly activated the nuclear factor kappa-light-chain-enhancer of activated B cells (Nf-κB. In conclusion, NGF signaling deregulation might play an important role in the development of DPN. EA represents a supportive tool to control DPN development by modulating NGF signaling in diabetes-targeted neurons.

  8. Trigeminal nerve anatomy in neuropathic and non-neuropathic orofacial pain patients.

    Science.gov (United States)

    Wilcox, Sophie L; Gustin, Sylvia M; Eykman, Elizabeth N; Fowler, Gordon; Peck, Christopher C; Murray, Greg M; Henderson, Luke A

    2013-08-01

    Trigeminal neuralgia, painful trigeminal neuropathy, and painful temporomandibular disorders (TMDs) are chronic orofacial pain conditions that are thought to have fundamentally different etiologies. Trigeminal neuralgia and neuropathy are thought to arise from damage to or pressure on the trigeminal nerve, whereas TMD results primarily from peripheral nociceptor activation. This study sought to assess the volume and microstructure of the trigeminal nerve in these 3 conditions. In 9 neuralgia, 18 neuropathy, 20 TMD, and 26 healthy controls, the trigeminal root entry zone was selected on high-resolution T1-weighted magnetic resonance images and the volume (mm(3)) calculated. Additionally, using diffusion-tensor images (DTIs), the mean diffusivity and fractional anisotropy values of the trigeminal nerve root were calculated. Trigeminal neuralgia patients displayed a significant (47%) decrease in nerve volume but no change in DTI values. Conversely, trigeminal neuropathy subjects displayed a significant (40%) increase in nerve volume but again no change in DTI values. In contrast, TMD subjects displayed no change in volume or DTI values. The data suggest that the changes occurring within the trigeminal nerve are not uniform in all orofacial pain conditions. These structural and volume changes may have implications in diagnosis and management of different forms of chronic orofacial pain. This study reveals that neuropathic orofacial pain conditions are associated with changes in trigeminal nerve volume, whereas non-neuropathic orofacial pain is not associated with any change in nerve volume. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  9. Aspects of the History of the Nerves: Bell's Theory, the Bell-Magendie Law and Controversy, and Two Forgotten Works by P.W. Lund and D.F. Eschricth

    DEFF Research Database (Denmark)

    Jørgensen, C. Barker

    2003-01-01

    History of nerves, Bell's Idea, Bell-Magendie law, Bell-Magendie controversy, Charles Bell, Francois Magendie, P.W. Lund, D.F. Eschricht, Herbert Mayo, Johannes Müller, Claude Bernard, spinal nerve roots, cranial nerves, recurrent sensitivity......History of nerves, Bell's Idea, Bell-Magendie law, Bell-Magendie controversy, Charles Bell, Francois Magendie, P.W. Lund, D.F. Eschricht, Herbert Mayo, Johannes Müller, Claude Bernard, spinal nerve roots, cranial nerves, recurrent sensitivity...

  10. IL-10 mediated by herpes simplex virus vector reduces neuropathic pain induced by HIV gp120 combined with ddC in rats.

    Science.gov (United States)

    Zheng, Wenwen; Huang, Wan; Liu, Shue; Levitt, Roy C; Candiotti, Keith A; Lubarsky, David A; Hao, Shuanglin

    2014-07-30

    HIV-associated sensory neuropathy affects over 50% of HIV patients and is a common peripheral nerve complication of HIV infection and highly active antiretroviral therapy (HAART). Evidence shows that painful HIV sensory neuropathy is influenced by neuroinflammatory events that include the proinflammatory molecules, MAP Kinase, tumor necrosis factor-α (TNFα), stromal cell-derived factor 1-α (SDF1α), and C-X-C chemokine receptor type 4 (CXCR4). However, the exact mechanisms of painful HIV sensory neuropathy are not known, which hinders our ability to develop effective treatments. In this study, we investigated whether inhibition of proinflammatory factors reduces the HIV-associated neuropathic pain state. Neuropathic pain was induced by peripheral HIV coat protein gp120 combined with 2',3'-dideoxycytidine (ddC, one of the nucleoside reverse transcriptase inhibitors (NRTIs)). Mechanical threshold was tested using von Frey filament fibers. Non-replicating herpes simplex virus (HSV) vectors expressing interleukin 10 (IL10) were inoculated into the hindpaws of rats. The expression of TNFα, SDF1α, and CXCR4 in the lumbar spinal cord and L4/5 dorsal root ganglia (DRG) was examined using western blots. IL-10 expression mediated by the HSV vectors resulted in a significant elevation of mechanical threshold. The anti-allodynic effect of IL-10 expression mediated by the HSV vectors lasted more than 3 weeks. The area under the effect-time curves (AUC) in mechanical threshold in rats inoculated with the HSV vectors expressing IL-10, was increased compared with the control vectors, indicating antinociceptive effect of the IL-10 vectors. The HSV vectors expressing IL-10 also concomitantly reversed the upregulation of p-p38, TNFα, SDF1α, and CXCR4 induced by gp120 in the lumbar spinal dorsal horn and/or the DRG at 2 and/or 4 weeks. The blocking of the signaling of these proinflammatory molecules is able to reduce HIV-related neuropathic pain, which provide a novel

  11. The effects of redox controls mediated by glutathione peroxidases on root architecture in Arabidopsis thaliana.

    Science.gov (United States)

    Passaia, Gisele; Queval, Guillaume; Bai, Juan; Margis-Pinheiro, Marcia; Foyer, Christine H

    2014-03-01

    Glutathione peroxidases (GPXs) fulfil important functions in oxidative signalling and protect against the adverse effects of excessive oxidation. However, there has been no systematic characterization of the functions of the different GPX isoforms in plants. The roles of the different members of the Arabidopsis thaliana GPX gene (AtGPX) family were therefore investigated using gpx1, gpx2, gpx3, gpx4, gpx6, gpx7, and gpx8 T-DNA insertion mutant lines. The shoot phenotypes were largely similar in all genotypes, with small differences from the wild type observed only in the gpx2, gpx3, gpx7, and gpx8 mutants. In contrast, all the mutants showed altered root phenotypes compared with the wild type. The gpx1, gpx4, gpx6, gpx7, and gpx8 mutants had a significantly greater lateral root density (LRD) than the wild type. Conversely, the gpx2 and gpx3 mutants had significantly lower LRD values than the wild type. Auxin increased the LRD in all genotypes, but the effect of auxin was significantly greater in the gpx1, gpx4, and gpx7 mutants than in the wild type. The application of auxin increased GPX4 and GPX7 transcripts, but not GPX1 mRNAs in the roots of wild-type plants. The synthetic strigolactone GR24 and abscisic acid (ABA) decreased LRD to a similar extent in all genotypes, except gpx6, which showed increased sensitivity to ABA. These data not only demonstrate the importance of redox controls mediated by AtGPXs in the control of root architecture but they also show that the plastid-localized GPX1 and GPX7 isoforms are required for the hormone-mediated control of lateral root development.

  12. Upregulated TLR3 Promotes Neuropathic Pain by Regulating Autophagy in Rat With L5 Spinal Nerve Ligation Model.

    Science.gov (United States)

    Chen, Weijia; Lu, Zhijun

    2017-02-01

    Microglia, rapidly activated following peripheral nerve injury (PNI), accumulate within the spinal cord and adopt inflammation that contributes to development and maintenance of neuropathic pain. Microglia express functional Toll-like receptors (TLRs), which play pivotal roles in regulating inflammatory processes. However, little is known about the role of TLR3 in regulating neuropathic pain after PNI. Here TLR3 expression and autophagy activation was assayed in dorsal root ganglions and in microglia following PNI by using realtime PCR, western blot and immunohistochemistry. The role of TLR3/autophagy signaling in regulating tactile allodynia was evaluated by assaying paw mechanical withdrawal threshold and cold allodynia after intrathecal administration of Poly (I:C) and 3-methyladenine (3-MA). We found that L5 spinal nerve ligation (SNL) induces the expression of TLR3 in dorsal root ganglions and in primary rat microglia at the mRNA and protein level. Meanwhile, L5 SNL results in an increased activation of autophagy, which contributes to microglial activation and subsequent inflammatory response. Intrathecal administration of Poly (I:C), a TLR3 agonist, significantly increases the activation of microglial autophagy, whereas TLR3 knockdown markedly inhibits L5 SNL-induced microglial autophagy. Poly (I:C) treatment promotes the expression of proinflammatory mediators, whereas 3-MA (a specific inhibitor of autophagy) suppresses Poly (I:C)-induced secretion of proinflammatory cytokines. Autophagy inhibition further inhibits TLR3-mediated mechanical and cold hypersensitivity following SNL. These results suggest that inhibition of TLR3/autophagy signaling contributes to alleviate neurophathic pain triggered by SNL.

  13. On the use of antibiotics to reduce rhizoplane microbial populations in root physiology and ecology investigations

    Science.gov (United States)

    Smart, D. R.; Ferro, A.; Ritchie, K.; Bugbee, B. G.

    1995-01-01

    No straightforward method exists for separating the proportion of ion exchange and respiration due to rhizoplane microbial organisms from that of root ion exchange and respiration. We examined several antibiotics that might be used for the temporary elimination of rhizoplane bacteria from hydroponically grown wheat roots (Triticum aestivum cv. Veery 10). Each antibiotic was tested for herbicidal activity and plate counts were used to enumerate bacteria and evaluate antibiotic kinetics. Only lactam antibiotics (penicillins and cephalosporins) did not reduce wheat growth rates. Aminoglycosides, the pyrimidine trimethoprim, colistin and rifampicin reduced growth rates substantially. Antibiotics acted slowly, with maximum reductions in rhizoplane bacteria occurring after more than 48 h of exposure. Combinations of nonphytotoxic antibiotics reduced platable rhizoplane bacteria by as much as 98%; however, this was generally a reduction from about 10(9) to 10(6) colony forming units per gram of dry root mass, so that many viable bacteria remained on root surfaces. We present evidence which suggests that insufficient bacterial biomass exists on root surfaces of nonstressed plants grown under well-aerated conditions to quantitatively interfere with root nitrogen absorption measurements.

  14. Replicate high-density rat genome oligonucleotide microarrays reveal hundreds of regulated genes in the dorsal root ganglion after peripheral nerve injury.

    Directory of Open Access Journals (Sweden)

    Mannion James W

    2002-10-01

    Full Text Available Abstract Background Rat oligonucleotide microarrays were used to detect changes in gene expression in the dorsal root ganglion (DRG 3 days following sciatic nerve transection (axotomy. Two comparisons were made using two sets of triplicate microarrays, naïve versus naïve and naïve versus axotomy. Results Microarray variability was assessed using the naïve versus naïve comparison. These results support use of a P 1.5-fold expression change and P 1.5-fold and P in situ hybridization verified the expression of 24 transcripts. These data showed an 83% concordance rate with the arrays; most mismatches represent genes with low expression levels reflecting limits of array sensitivity. A significant correlation was found between actual mRNA differences and relative changes between microarrays (r2 = 0.8567. Temporal patterns of individual genes regulation varied. Conclusions We identify parameters for microarray analysis which reduce error while identifying many putatively regulated genes. Functional classification of these genes suggest reorganization of cell structural components, activation of genes expressed by immune and inflammatory cells and down-regulation of genes involved in neurotransmission.

  15. Different functional reorganization of motor cortex after transfer of the contralateral C7 to different recipient nerves in young rats with total brachial plexus root avulsion.

    Science.gov (United States)

    Pan, Feng; Wei, Hai-feng; Chen, Liang; Gu, Yu-dong

    2012-12-07

    Clinically, contralateral C7 transfer is used for nerve reconstruction in brachial plexus injuries. Postoperatively, synchronous motions at the donor limb are noteworthy. This study studied if different recipient nerves influenced transhemispheric functional reorganization of motor cortex after this procedure. 90 young rats with total root avulsion of the brachial plexus were divided into groups 1-3 of contralateral C7 transfer to anterior division of the upper trunk, to both the musculocutaneous and median nerves, and to the median nerve, respectively. After reinnervation of target muscles, number of sites for forelimb representations in bilateral motor cortices was determined by intracortical microstimulation at 1.5, 3, 6, 9, and 12 months postoperatively. At nine months, transhemispheric reorganization of nerves neurotized by contralateral C7 was fulfilled in four of six rats in group 1, one of six in group 2 and none in group 3, respectively; at 12 months, that was fulfilled in five of six in group 1, four of six in groups 2 and 3, respectively. Logistic regression analysis showed that rate of fulfilled transhemispheric reorganization in group 1 was 12.19 times that in group 3 (95% CI 0.006-0.651, p=0.032). At 12 months, number of sites for hindlimb representations which had encroached upon original forelimb representations on the uninjured side was statistically more in group 3 than in group 2 (t=9.5, pmotor cortex than that to median nerve alone in rats. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  16. Thickening of the cauda equina roots: a common finding in Krabbe disease

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Misun; Rodriguez, David [Department of Radiology of University of Pittsburgh Medical Center, Pittsburgh, PA (United States); Zuccoli, Giulio; Panigrahy, Ashok [Section of Neuroradiology, Children' s Hospital of Pittsburgh of University of Pittsburgh Medical Center, Pittsburgh, PA (United States); Poe, Michele D.; Escolar, Maria L. [Department of Pediatrics at Children' s Hospital of Pittsburgh of University of Pittsburgh Medical Center, Pittsburgh, PA (United States)

    2016-10-15

    Evaluation of Krabbe disease burden and eligibility for hematopoietic stem cell transplantation are often based on neuroimaging findings using the modified Loes scoring system, which encompasses central but not peripheral nervous system changes. We show that quantitative evaluation of thickened cauda equina nerve roots may improve the evaluation of Krabbe disease and therapeutic guidance. Lumbar spine MRI scans of patients obtained between March 2013 and September 2013 were retrospectively evaluated and compared to those of controls. Quantitative evaluation of cauda equina roots was performed on the axial plane obtained approximately 5 mm below the conus medullaris. The largest nerves in the right and left anterior quadrants of the spinal canal were acquired. Fifteen symptomatic patients with Krabbe disease (5-44 months old) and eleven age-matched controls were evaluated. The average areas (mm{sup 2}) of anterior right and left nerves were 1.40 and 1.23, respectively, for patients and 0.61 and 0.60 for controls (differences: 0.79 and 0.63; p < 0.001). Cauda equina nerve root thickening is associated with Krabbe disease in both treated and untreated patients. Adding lumbar spine MRI to the current neurodiagnostic protocols, which fails to account for peripheral nerve abnormalities, will likely facilitate the diagnosis of Krabbe disease. (orig.)

  17. Soil contamination with silver nanoparticles reduces Bishop pine growth and ectomycorrhizal diversity on pine roots

    Energy Technology Data Exchange (ETDEWEB)

    Sweet, M. J., E-mail: m.sweet@derby.ac.uk [University of Derby, Environmental Sustainability Research Centre, College of Life and Natural Sciences (United Kingdom); Singleton, I. [Newcastle University, School of Biology (United Kingdom)

    2015-11-15

    Soil contamination by silver nanoparticles (AgNP) is of potential environmental concern but little work has been carried out on the effect of such contamination on ectomycorrhizal fungi (EMF). EMF are essential to forest ecosystem functions as they are known to enhance growth of trees by nutrient transfer. In this study, soil was experimentally contaminated with AgNP (0, 350 and 790 mg Ag/kg) and planted with Bishop pine seedlings. The effect of AgNP was subsequently measured, assessing variation in pine growth and ectomycorrhizal diversity associated with the root system. After only 1 month, the highest AgNP level had significantly reduced the root length of pine seedlings, which in turn had a small effect on above ground plant biomass. However, after 4 months growth, both AgNP levels utilised had significantly reduced both pine root and shoot biomass. For example, even the lower levels of AgNP (350 mg Ag/kg) soil, reduced fresh root biomass by approximately 57 %. The root systems of the plants grown in AgNP-contaminated soils lacked the lateral and fine root development seen in the control plants (no AgNP). Although, only five different genera of EMF were found on roots of the control plants, only one genus Laccaria was found on roots of plants grown in soil containing 350 mg AgNP/kg. At the higher levels of AgNP contamination, no EMF were observed. Furthermore, extractable silver was found in soils containing AgNP, indicating potential dissolution of silver ions (Ag+) from the solid AgNP.

  18. Soil contamination with silver nanoparticles reduces Bishop pine growth and ectomycorrhizal diversity on pine roots

    International Nuclear Information System (INIS)

    Sweet, M. J.; Singleton, I.

    2015-01-01

    Soil contamination by silver nanoparticles (AgNP) is of potential environmental concern but little work has been carried out on the effect of such contamination on ectomycorrhizal fungi (EMF). EMF are essential to forest ecosystem functions as they are known to enhance growth of trees by nutrient transfer. In this study, soil was experimentally contaminated with AgNP (0, 350 and 790 mg Ag/kg) and planted with Bishop pine seedlings. The effect of AgNP was subsequently measured, assessing variation in pine growth and ectomycorrhizal diversity associated with the root system. After only 1 month, the highest AgNP level had significantly reduced the root length of pine seedlings, which in turn had a small effect on above ground plant biomass. However, after 4 months growth, both AgNP levels utilised had significantly reduced both pine root and shoot biomass. For example, even the lower levels of AgNP (350 mg Ag/kg) soil, reduced fresh root biomass by approximately 57 %. The root systems of the plants grown in AgNP-contaminated soils lacked the lateral and fine root development seen in the control plants (no AgNP). Although, only five different genera of EMF were found on roots of the control plants, only one genus Laccaria was found on roots of plants grown in soil containing 350 mg AgNP/kg. At the higher levels of AgNP contamination, no EMF were observed. Furthermore, extractable silver was found in soils containing AgNP, indicating potential dissolution of silver ions (Ag+) from the solid AgNP

  19. The Ultrasound pattern sum score - UPSS. A new method to differentiate acute and subacute neuropathies using ultrasound of the peripheral nerves.

    Science.gov (United States)

    Grimm, Alexander; Décard, Bernhard F; Axer, Hubertus; Fuhr, Peter

    2015-11-01

    Ultrasound differentiation of neuropathies is a great challenge. We, therefore, suggest a standardized score to operationalize differentiation between several acute and subacute onset neuropathies. We retrospectively analyzed the ultrasound data of 61 patients with acute or subacute neuropathies, e.g. chronic immune-mediated neuropathies, Guillain-Barré syndrome (GBS), and axonal/vasculitic neuropathies. We compared these data to 28 healthy controls. Based on these results an ultrasound pattern sum score (UPSS) with three sub-scores (UPS-A for the sensorimotor nerves, UPS-B for the cervical roots and the vagal nerve and UPS-C for the sural nerve) was developed. Afterwards, the applicability of the score was prospectively validated in 10 patients with chronic neuropathies and in 14 patients with unknown acute and subacute PNP before performing additional tests. UPS-A and UPSS were significantly higher in CIDP than in other neuropathies and controls (p85%. Vasculitic neuropathies showed an intermediate type of UPSS compared to other axonal neuropathies (ppower to the method of the peripheral nerve ultrasound. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  20. Axillary nerve dysfunction

    Science.gov (United States)

    ... changes in sensation or movement No history of injury to the area No signs of nerve damage These medicines reduce swelling and pressure on the nerve. They may be injected directly into the area or taken by mouth. Other medicines include: Over-the-counter pain ...

  1. Carvedilol prevents functional deficits in peripheral nerve mitochondria of rats with oxaliplatin-evoked painful peripheral neuropathy

    International Nuclear Information System (INIS)

    Areti, Aparna; Komirishetty, Prashanth; Kumar, Ashutosh

    2017-01-01

    Oxaliplatin use as chemotherapeutic agent is frequently limited by cumulative neurotoxicity which may compromise quality of life. Reports relate this neurotoxic effect to oxidative stress and mitochondrial dysfunction in peripheral nerves and dorsal root ganglion (DRG). Carvedilol is an antihypertensive drug, has also been appreciated for its antioxidant and mitoprotective properties. Carvedilol co-treatment did not reduce the anti-tumor effects of oxaliplatin in human colon cancer cells (HT-29), but exhibited free radical scavenging activity against oxaliplatin-induced oxidative stress in neuronal cells (Neuro-2a). Hence, the present study was designed to investigate the effect of carvedilol in the experimental model of oxaliplatin-induced peripheral neuropathy (OIPN) in Sprague-Dawley rats. Oxaliplatin reduced the sensory nerve conduction velocity and produced the thermal and mechanical nociception. Carvedilol significantly (P < 0.001) attenuated these functional and sensorimotor deficits. It also counteracted oxidative/nitrosative stress by reducing the levels of nitrotyrosine and improving the mitochondrial superoxide dismutase expression in both sciatic nerve and DRG tissues. It improved the mitochondrial function and prevented the oxaliplatin-induced alteration in mitochondrial membrane potential in sciatic nerve thus prevented loss of intra epidermal nerve fiber density in the foot pads. Together the results prompt the use of carvedilol along with chemotherapy with oxaliplatin to prevent the peripheral neuropathy. - Graphical abstract: Schematic representation neuroprotective mechanisms of carvedilol in oxaliplatin-induced peripheral neuropathy. - Highlights: • Oxaliplatin-induced mitochondrial dysfunction causes neurotoxicity. • Mitochondrial dysfunction leads to bioenergetic and functional deficits. • Carvedilol alleviated oxaliplatin-induced behavioural and functional changes. • Targeting mitochondria with carvedilol attenuated neuropathic pain.

  2. Carvedilol prevents functional deficits in peripheral nerve mitochondria of rats with oxaliplatin-evoked painful peripheral neuropathy

    Energy Technology Data Exchange (ETDEWEB)

    Areti, Aparna; Komirishetty, Prashanth; Kumar, Ashutosh, E-mail: ashutosh.niperhyd@gov.in

    2017-05-01

    Oxaliplatin use as chemotherapeutic agent is frequently limited by cumulative neurotoxicity which may compromise quality of life. Reports relate this neurotoxic effect to oxidative stress and mitochondrial dysfunction in peripheral nerves and dorsal root ganglion (DRG). Carvedilol is an antihypertensive drug, has also been appreciated for its antioxidant and mitoprotective properties. Carvedilol co-treatment did not reduce the anti-tumor effects of oxaliplatin in human colon cancer cells (HT-29), but exhibited free radical scavenging activity against oxaliplatin-induced oxidative stress in neuronal cells (Neuro-2a). Hence, the present study was designed to investigate the effect of carvedilol in the experimental model of oxaliplatin-induced peripheral neuropathy (OIPN) in Sprague-Dawley rats. Oxaliplatin reduced the sensory nerve conduction velocity and produced the thermal and mechanical nociception. Carvedilol significantly (P < 0.001) attenuated these functional and sensorimotor deficits. It also counteracted oxidative/nitrosative stress by reducing the levels of nitrotyrosine and improving the mitochondrial superoxide dismutase expression in both sciatic nerve and DRG tissues. It improved the mitochondrial function and prevented the oxaliplatin-induced alteration in mitochondrial membrane potential in sciatic nerve thus prevented loss of intra epidermal nerve fiber density in the foot pads. Together the results prompt the use of carvedilol along with chemotherapy with oxaliplatin to prevent the peripheral neuropathy. - Graphical abstract: Schematic representation neuroprotective mechanisms of carvedilol in oxaliplatin-induced peripheral neuropathy. - Highlights: • Oxaliplatin-induced mitochondrial dysfunction causes neurotoxicity. • Mitochondrial dysfunction leads to bioenergetic and functional deficits. • Carvedilol alleviated oxaliplatin-induced behavioural and functional changes. • Targeting mitochondria with carvedilol attenuated neuropathic pain.

  3. Automated characterization of nerve fibers labeled fluorescently: determination of size, class and spatial distribution.

    Science.gov (United States)

    Prodanov, Dimiter; Feirabend, Hans K P

    2008-10-03

    Morphological classification of nerve fibers could help interpret the assessment of neural regeneration and the understanding of selectivity of nerve stimulation. Specific populations of myelinated nerve fibers can be investigated by retrograde tracing from a muscle followed by microscopic measurements of the labeled fibers at different anatomical levels. Gastrocnemius muscles of adult rats were injected with the retrograde tracer Fluoro-Gold. After a survival period of 3 days, cross-sections of spinal cords, ventral roots, sciatic, and tibial nerves were collected and imaged on a fluorescence microscope. Nerve fibers were classified using a variation-based criterion acting on the distribution of their equivalent diameters. The same criterion was used to classify the labeled axons using the size of the fluorescent marker. Measurements of the axons were paired to those of the entire fibers (axons+myelin sheaths) in order to establish the correspondence between so-established axonal and fiber classifications. It was found that nerve fibers in L6 ventral roots could be classified into four populations comprising two classes of Aalpha (denoted Aalpha1 and Aalpha2), Agamma, and an additional class of Agammaalpha fibers. Cut-off borders between Agamma and Agammaalpha fiber classes were estimated to be 5.00+/-0.09 microm (SEM); between Agammaalpha and Aalpha1 fiber classes to be 6.86+/-0.11 microm (SEM); and between Aalpha1 and Aalpha2 fiber classes to be 8.66+/-0.16 microm (SEM). Topographical maps of the nerve fibers that innervate the gastrocnemius muscles were constructed per fiber class for the spinal root L6. The major advantage of the presented approach consists of the combined indirect classification of nerve fiber types and the construction of topographical maps of so-identified fiber classes.

  4. Absence of musculocutaneous nerve and accessory head of biceps brachii: a case report

    Directory of Open Access Journals (Sweden)

    Arora L

    2005-01-01

    Full Text Available During dissection of a 55-year-old female cadaver, we observed that three nerve roots contributed to the formation of Median nerve in her right upper limb. Along with this variation, absence of Musculocutaneous nerve was noticed. The muscles of front of arm i.e. Biceps Brachii, Brachialis and Coracobrachialis received their nerve supply from Median nerve. The Lateral cutaneous nerve of forearm was derived from Median nerve. Also an accessory head of Biceps Brachii muscle was present in the right arm of the same cadaver. It is extremely important to be aware of these variations while planning a surgery in the region of axilla or arm as these nerves are more liable to be injured during operations.

  5. Rat whisker movement after facial nerve lesion: evidence for autonomic contraction of skeletal muscle.

    Science.gov (United States)

    Heaton, James T; Sheu, Shu Hsien; Hohman, Marc H; Knox, Christopher J; Weinberg, Julie S; Kleiss, Ingrid J; Hadlock, Tessa A

    2014-04-18

    Vibrissal whisking is often employed to track facial nerve regeneration in rats; however, we have observed similar degrees of whisking recovery after facial nerve transection with or without repair. We hypothesized that the source of non-facial nerve-mediated whisker movement after chronic denervation was from autonomic, cholinergic axons traveling within the infraorbital branch of the trigeminal nerve (ION). Rats underwent unilateral facial nerve transection with repair (N=7) or resection without repair (N=11). Post-operative whisking amplitude was measured weekly across 10weeks, and during intraoperative stimulation of the ION and facial nerves at ⩾18weeks. Whisking was also measured after subsequent ION transection (N=6) or pharmacologic blocking of the autonomic ganglia using hexamethonium (N=3), and after snout cooling intended to elicit a vasodilation reflex (N=3). Whisking recovered more quickly and with greater amplitude in rats that underwent facial nerve repair compared to resection (Pfacial-nerve-mediated whisking was elicited by electrical stimulation of the ION, temporarily diminished following hexamethonium injection, abolished by transection of the ION, and rapidly and significantly (Pfacial nerve resection. This study provides the first behavioral and anatomical evidence of spontaneous autonomic innervation of skeletal muscle after motor nerve lesion, which not only has implications for interpreting facial nerve reinnervation results, but also calls into question whether autonomic-mediated innervation of striated muscle occurs naturally in other forms of neuropathy. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  6. Peripheral Nerve Regeneration by Secretomes of Stem Cells from Human Exfoliated Deciduous Teeth.

    Science.gov (United States)

    Sugimura-Wakayama, Yukiko; Katagiri, Wataru; Osugi, Masashi; Kawai, Takamasa; Ogata, Kenichi; Sakaguchi, Kohei; Hibi, Hideharu

    2015-11-15

    Peripheral nerve regeneration across nerve gaps is often suboptimal, with poor functional recovery. Stem cell transplantation-based regenerative therapy is a promising approach for axon regeneration and functional recovery of peripheral nerve injury; however, the mechanisms remain controversial and unclear. Recent studies suggest that transplanted stem cells promote tissue regeneration through a paracrine mechanism. We investigated the effects of conditioned media derived from stem cells from human exfoliated deciduous teeth (SHED-CM) on peripheral nerve regeneration. In vitro, SHED-CM-treated Schwann cells exhibited significantly increased proliferation, migration, and the expression of neuron-, extracellular matrix (ECM)-, and angiogenesis-related genes. SHED-CM stimulated neuritogenesis of dorsal root ganglia and increased cell viability. Similarly, SHED-CM enhanced tube formation in an angiogenesis assay. In vivo, a 10-mm rat sciatic nerve gap model was bridged by silicon conduits containing SHED-CM or serum-free Dulbecco's modified Eagle's medium. Light and electron microscopy confirmed that the number of myelinated axons and axon-to-fiber ratio (G-ratio) were significantly higher in the SHED-CM group at 12 weeks after nerve transection surgery. The sciatic functional index (SFI) and gastrocnemius (target muscle) wet weight ratio demonstrated functional recovery. Increased compound muscle action potentials and increased SFI in the SHED-CM group suggested sciatic nerve reinnervation of the target muscle and improved functional recovery. We also observed reduced muscle atrophy in the SHED-CM group. Thus, SHEDs may secrete various trophic factors that enhance peripheral nerve regeneration through multiple mechanisms. SHED-CM may therefore provide a novel therapy that creates a more desirable extracellular microenvironment for peripheral nerve regeneration.

  7. Adenovirus vector-mediated ex vivo gene transfer of brain-derived neurotrophic factor (BDNF) tohuman umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs) promotescrush-injured rat sciatic nerve regeneration.

    Science.gov (United States)

    Hei, Wei-Hong; Almansoori, Akram A; Sung, Mi-Ae; Ju, Kyung-Won; Seo, Nari; Lee, Sung-Ho; Kim, Bong-Ju; Kim, Soung-Min; Jahng, Jeong Won; He, Hong; Lee, Jong-Ho

    2017-03-16

    This study was designed toinvestigate the efficacy of adenovirus vector-mediated brain-derived neurotrophic factor (BDNF) ex vivo gene transfer to human umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs) in a rat sciatic nerve crush injury model. BDNF protein and mRNA expression after infection was checked through an enzyme-linked immunosorbent assay (ELISA) and quantitative real-time polymerase chain reaction (qRT-PCR). Male Sprague-Dawley rats (200-250g, 6 weeks old) were distributed into threegroups (n=20 each): the control group, UCB-MSC group, and BDNF-adenovirus infected UCB-MSC (BDNF-Ad+UCB-MSC) group. UCB-MSCs (1×10 6 cells/10μl/rat) or BDNF-Ad+UCB-MSCs (1×10 6 cells/10μl/rat)were transplantedinto the rats at the crush site immediately after sciatic nerve injury. Cell tracking was done with PKH26-labeled UCB-MSCs and BDNF-Ad+UCB-MSCs (1×10 6 cells/10μl/rat). The rats were monitored for 4 weeks post-surgery. Results showed that expression of BDNF at both the protein and mRNA levels was higher inthe BDNF-Ad+UCB-MSC group compared to theUCB-MSC group in vitro.Moreover, BDNF mRNA expression was higher in both UCB-MSC group and BDNF-Ad+ UCB-MSC group compared tothe control group, and BDNF mRNA expression in theBDNF-Ad+UCB-MSC group was higher than inboth other groups 5days after surgeryin vivo. Labeled neurons in the dorsal root ganglia (DRG), axon counts, axon density, and sciatic function index were significantly increased in the UCB-MSC and BDNF-Ad+ UCB-MSCgroupscompared to the controlgroup four weeksaftercell transplantation. Importantly,the BDNF-Ad+UCB-MSCgroup exhibited more peripheral nerve regeneration than the other two groups.Our results indicate thatboth UCB-MSCs and BDNF-Ad+UCB-MSCscan improve rat sciatic nerve regeneration, with BDNF-Ad+UCB-MSCsshowing a greater effectthan UCB-MSCs. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Lentiviral-mediated targeted NF-kappaB blockade in dorsal spinal cord glia attenuates sciatic nerve injury-induced neuropathic pain in the rat.

    Science.gov (United States)

    Meunier, Alice; Latrémolière, Alban; Dominguez, Elisa; Mauborgne, Annie; Philippe, Stéphanie; Hamon, Michel; Mallet, Jacques; Benoliel, Jean-Jacques; Pohl, Michel

    2007-04-01

    Neuropathic pain developing after peripheral nerve injury is associated with altered neuronal and glial cell functions in the spinal cord. Activated glia produces algogenic mediators, exacerbating pain. Among the different intracellular pathways possibly involved in the modified glial function, the nuclear factor kappaB (NF-kappaB) system is of particular interest, as numerous genes encoding inflammation- and pain-related molecules are controlled by this transcription factor. NF-kappaB is a pleiotropic factor also involved in central nervous system homeostasy. To study its role in chronic pain, it is thus essential to inhibit the NF-kappaB pathway selectively in activated spinal glial cells. Here, we show that when restricted to spinal cord and targeted to glial cells, lentiviral vector-mediated delivery of NF-kappaB super- repressor IkappaBalpha resulted in an inhibition of the NF-kappaB pathway activated in the rat spinal cord after sciatic nerve injury (chronic constriction injury, CCI). Concomitantly, IkappaBalpha overproduction prevented the enhanced expression of interleukin-6 and of inducible nitric oxide synthase associated with chronic constriction injury and resulted in prolonged antihyperalgesic and antiallodynic effects. These data show that targeted blockade of NF-kappaB activity in spinal glia efficiently alleviates pain behavior in CCI rats, demonstrating the active participation of the glial NF-kappaB pathway in the development of neuropathic pain after peripheral nerve injury.

  9. Influence of minimally invasive hematoma evacuation combined with nerve growth factor preparation on neurological function injury in patients with hypertensive cerebral hemorrhage

    Directory of Open Access Journals (Sweden)

    Jiang Tao

    2017-05-01

    Full Text Available Objective: To study the influence of minimally invasive hematoma evacuation combined with nerve growth factor preparation on neurological function injury in patients with hypertensive cerebral hemorrhage. Methods: A total of 112 patients with hypertensive cerebral hemorrhage who were treated in our hospital between July 2013 and February 2016 were collected, and according to random number table, they were divided into the control group (n=56 who underwent minimally invasive hematoma evacuation therapy and the observation group (n=56 who underwent minimally invasive hematoma evacuation combined with nerve growth factor preparation therapy. Serum contents of inflammatory mediators, nerve injury indexes and neurotransmitters were compared between two groups of patients before and after treatment. Results: Before treatment, there were no significant differences in serum contents of inflammatory mediators, nerve injury indexes and neurotransmitters between the two groups. After treatment, serum contents of inflammatory mediators such as CRP, PCT, IL-1β and IL-6 in observation group were lower than those in control group; serum contents of nerve injury indexes such as NSE, S100B, GEAP and MBP were lower than those in control group; serum contents of neurotransmitters such as SP, NPY, Glu and Asp were lower than those in control group while GABA and Gly were higher than those in control group. Conclusion: Minimally invasive hematoma evacuation combined with nerve growth factor preparation can effectively reduce neurological function injury, and has positive clinical significance.

  10. ATF3 upregulation in glia during Wallerian degeneration: differential expression in peripheral nerves and CNS white matter

    Directory of Open Access Journals (Sweden)

    Coffin Robert S

    2004-03-01

    Full Text Available Abstract Background Many changes in gene expression occur in distal stumps of injured nerves but the transcriptional control of these events is poorly understood. We have examined the expression of the transcription factors ATF3 and c-Jun by non-neuronal cells during Wallerian degeneration following injury to sciatic nerves, dorsal roots and optic nerves of rats and mice, using immunohistochemistry and in situ hybridization. Results Following sciatic nerve injury – transection or transection and reanastomosis – ATF3 was strongly upregulated by endoneurial, but not perineurial cells, of the distal stumps of the nerves by 1 day post operation (dpo and remained strongly expressed in the endoneurium at 30 dpo when axonal regeneration was prevented. Most ATF3+ cells were immunoreactive for the Schwann cell marker, S100. When the nerve was transected and reanastomosed, allowing regeneration of axons, most ATF3 expression had been downregulated by 30 dpo. ATF3 expression was weaker in the proximal stumps of the injured nerves than in the distal stumps and present in fewer cells at all times after injury. ATF3 was upregulated by endoneurial cells in the distal stumps of injured neonatal rat sciatic nerves, but more weakly than in adult animals. ATF3 expression in transected sciatic nerves of mice was similar to that in rats. Following dorsal root injury in adult rats, ATF3 was upregulated in the part of the root between the lesion and the spinal cord (containing Schwann cells, beginning at 1 dpo, but not in the dorsal root entry zone or in the degenerating dorsal column of the spinal cord. Following optic nerve crush in adult rats, ATF3 was found in some cells at the injury site and small numbers of cells within the optic nerve displayed weak immunoreactivity. The pattern of expression of c-Jun in all types of nerve injury was similar to that of ATF3. Conclusion These findings raise the possibility that ATF3/c-Jun heterodimers may play a role in

  11. Designated rooting areas to reduce pasture damage by pregnant sows

    NARCIS (Netherlands)

    Mheen, van der H.; Spoolder, H.A.M.

    2005-01-01

    To assess whether rooting damage by pregnant sows can be reduced by offering a designated area for wallowing and foraging, four groups of four sows each were subjected to four treatments, during eight periods in a 4 × 4 Latin square designed experiment. During each period, each group was given

  12. Nerve growth factor delivery by ultrasound-mediated nanobubble destruction as a treatment for acute spinal cord injury in rats

    Science.gov (United States)

    Song, Zhaojun; Wang, Zhigang; Shen, Jieliang; Xu, Shengxi; Hu, Zhenming

    2017-01-01

    Background Spinal cord injuries (SCIs) can cause severe disability or death. Treatment options include surgical intervention, drug therapy, and stem cell transplantation. However, the efficacy of these methods for functional recovery remains unsatisfactory. Purpose This study was conducted to explore the effect of ultrasound (US)-mediated destruction of poly(lactic-co-glycolic acid) (PLGA) nanobubbles (NBs) expressing nerve growth factor (NGF) (NGF/PLGA NBs) on nerve regeneration in rats following SCI. Materials and methods Adult male Sprague Dawley rats were randomly divided into four treatment groups after Allen hit models of SCI were established. The groups were normal saline (NS) group, NGF and NBs group, NGF and US group, and NGF/PLGA NBs and US group. Histological changes after SCI were observed by hematoxylin and eosin staining. Neuron viability was determined by Nissl staining. Terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling staining was used to examine cell apoptosis. NGF gene and protein expressions were detected by quantitative reverse transcription polymerase chain reaction and Western blotting. Green fluorescent protein expression in the spinal cord was examined using an inverted fluorescence microscope. The recovery of neural function was determined using the Basso, Beattie, and Bresnahan test. Results NGF therapy using US-mediated NGF/PLGA NBs destruction significantly increased NGF expression, attenuated histological injury, decreased neuron loss, inhibited neuronal apoptosis in injured spinal cords, and increased BBB scores in rats with SCI. Conclusion US-mediated NGF/PLGA NBs destruction effectively transfects the NGF gene into target tissues and has a significant effect on the injured spinal cord. The combination of US irradiation and gene therapy through NGF/PLGA NBs holds great promise for the future of nanomedicine and the development of noninvasive treatment options for SCI and other diseases. PMID:28280337

  13. Salmon and human thrombin differentially regulate radicular pain, glial-induced inflammation and spinal neuronal excitability through protease-activated receptor-1.

    Directory of Open Access Journals (Sweden)

    Jenell R Smith

    Full Text Available Chronic neck pain is a major problem with common causes including disc herniation and spondylosis that compress the spinal nerve roots. Cervical nerve root compression in the rat produces sustained behavioral hypersensitivity, due in part to the early upregulation of pro-inflammatory cytokines, the sustained hyperexcitability of neurons in the spinal cord and degeneration in the injured nerve root. Through its activation of the protease-activated receptor-1 (PAR1, mammalian thrombin can enhance pain and inflammation; yet at lower concentrations it is also capable of transiently attenuating pain which suggests that PAR1 activation rate may affect pain maintenance. Interestingly, salmon-derived fibrin, which contains salmon thrombin, attenuates nerve root-induced pain and inflammation, but the mechanisms of action leading to its analgesia are unknown. This study evaluates the effects of salmon thrombin on nerve root-mediated pain, axonal degeneration in the root, spinal neuronal hyperexcitability and inflammation compared to its human counterpart in the context of their enzymatic capabilities towards coagulation substrates and PAR1. Salmon thrombin significantly reduces behavioral sensitivity, preserves neuronal myelination, reduces macrophage infiltration in the injured nerve root and significantly decreases spinal neuronal hyperexcitability after painful root compression in the rat; whereas human thrombin has no effect. Unlike salmon thrombin, human thrombin upregulates the transcription of IL-1β and TNF-α and the secretion of IL-6 by cortical cultures. Salmon and human thrombins cleave human fibrinogen-derived peptides and form clots with fibrinogen with similar enzymatic activities, but salmon thrombin retains a higher enzymatic activity towards coagulation substrates in the presence of antithrombin III and hirudin compared to human thrombin. Conversely, salmon thrombin activates a PAR1-derived peptide more weakly than human thrombin. These

  14. Novel needle guide reduces time to perform ultrasound-guided femoral nerve catheter placement: A randomised controlled trial.

    Science.gov (United States)

    Turan, Alparslan; Babazade, Rovnat; Elsharkawy, Hesham; Esa, Wael Ali Sakr; Maheshwari, Kamal; Farag, Ehab; Zimmerman, Nicole M; Soliman, Loran Mounir; Sessler, Daniel I

    2017-03-01

    Ultrasound-guided nerve blocks have become the standard when performing regional nerve blocks in anaesthesia. Infiniti Plus (CIVCO Medical Solutions, Kalona, Iowa, USA) is a needle guide that has been recently developed to help clinicians in performing ultrasound-guided nerve blocks. We tested the hypothesis that femoral nerve catheter placement carried out with the Infiniti Plus needle guide will be quicker to perform than without the Infiniti Plus. Secondary aims were to assess whether the Infiniti Plus needle guide decreased the number of block attempts and also whether it improved needle visibility. A randomised, controlled trial. Cleveland Clinic, Cleveland, Ohio, USA. We enrolled adult patients having elective total knee arthroplasty with a femoral nerve block and femoral nerve catheter. Patients, who were pregnant or those who had preexisting neuropathy involving the surgical limb, coagulopathy, infection at the block site or allergy to local anaesthetics were excluded. Patients were randomised into two groups to receive the ultrasound-guided femoral nerve catheter placement with or without the Infiniti Plus needle guide. The time taken to place the femoral nerve catheter, the number of attempts, the success rate and needle visibility were recorded. We used an overall α of 0.05 for both the primary and secondary analyses; the secondary analyses were Bonferroni corrected to control for multiple comparisons. The median (interquartile range Q1 to Q3) time to perform the femoral nerve catheter placement was 118 (100 to 150) s with Infiniti Plus and 177 (130 to 236) s without Infiniti Plus. Infiniti Plus significantly reduced the time spent performing femoral nerve catheterisation, with estimated ratio of means [(95% confidence interval), P value] of 0.67 [(0.60 to 0.75), P Infiniti Plus compared with no Infiniti Plus. However, Infiniti Plus had no effect on the odds of a successful femoral nerve catheter placement, number of attempts or percentage of perfect

  15. A Physicochemically Optimized and Neuroconductive Biphasic Nerve Guidance Conduit for Peripheral Nerve Repair.

    Science.gov (United States)

    Ryan, Alan J; Lackington, William A; Hibbitts, Alan J; Matheson, Austyn; Alekseeva, Tijna; Stejskalova, Anna; Roche, Phoebe; O'Brien, Fergal J

    2017-12-01

    Clinically available hollow nerve guidance conduits (NGCs) have had limited success in treating large peripheral nerve injuries. This study aims to develop a biphasic NGC combining a physicochemically optimized collagen outer conduit to bridge the transected nerve, and a neuroconductive hyaluronic acid-based luminal filler to support regeneration. The outer conduit is mechanically optimized by manipulating crosslinking and collagen density, allowing the engineering of a high wall permeability to mitigate the risk of neuroma formation, while also maintaining physiologically relevant stiffness and enzymatic degradation tuned to coincide with regeneration rates. Freeze-drying is used to seamlessly integrate the luminal filler into the conduit, creating a longitudinally aligned pore microarchitecture. The luminal stiffness is modulated to support Schwann cells, with laminin incorporation further enhancing bioactivity by improving cell attachment and metabolic activity. Additionally, this biphasic NGC is shown to support neurogenesis and gliogenesis of neural progenitor cells and axonal outgrowth from dorsal root ganglia. These findings highlight the paradigm that a successful NGC requires the concerted optimization of both a mechanical support phase capable of bridging a nerve defect and a neuroconductive phase with an architecture capable of supporting both Schwann cells and neurons in order to achieve functional regenerative outcome. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Vagus nerve stimulation mediates protection from kidney ischemia-reperfusion injury through α7nAChR+ splenocytes.

    Science.gov (United States)

    Inoue, Tsuyoshi; Abe, Chikara; Sung, Sun-Sang J; Moscalu, Stefan; Jankowski, Jakub; Huang, Liping; Ye, Hong; Rosin, Diane L; Guyenet, Patrice G; Okusa, Mark D

    2016-05-02

    The nervous and immune systems interact in complex ways to maintain homeostasis and respond to stress or injury, and rapid nerve conduction can provide instantaneous input for modulating inflammation. The inflammatory reflex referred to as the cholinergic antiinflammatory pathway regulates innate and adaptive immunity, and modulation of this reflex by vagus nerve stimulation (VNS) is effective in various inflammatory disease models, such as rheumatoid arthritis and inflammatory bowel disease. Effectiveness of VNS in these models necessitates the integration of neural signals and α7 nicotinic acetylcholine receptors (α7nAChRs) on splenic macrophages. Here, we sought to determine whether electrical stimulation of the vagus nerve attenuates kidney ischemia-reperfusion injury (IRI), which promotes the release of proinflammatory molecules. Stimulation of vagal afferents or efferents in mice 24 hours before IRI markedly attenuated acute kidney injury (AKI) and decreased plasma TNF. Furthermore, this protection was abolished in animals in which splenectomy was performed 7 days before VNS and IRI. In mice lacking α7nAChR, prior VNS did not prevent IRI. Conversely, adoptive transfer of VNS-conditioned α7nAChR splenocytes conferred protection to recipient mice subjected to IRI. Together, these results demonstrate that VNS-mediated attenuation of AKI and systemic inflammation depends on α7nAChR-positive splenocytes.

  17. Delayed peripheral nerve repair: methods, including surgical 'cross-bridging' to promote nerve regeneration.

    Science.gov (United States)

    Gordon, Tessa; Eva, Placheta; Borschel, Gregory H

    2015-10-01

    Despite the capacity of Schwann cells to support peripheral nerve regeneration, functional recovery after nerve injuries is frequently poor, especially for proximal injuries that require regenerating axons to grow over long distances to reinnervate distal targets. Nerve transfers, where small fascicles from an adjacent intact nerve are coapted to the nerve stump of a nearby denervated muscle, allow for functional return but at the expense of reduced numbers of innervating nerves. A 1-hour period of 20 Hz electrical nerve stimulation via electrodes proximal to an injury site accelerates axon outgrowth to hasten target reinnervation in rats and humans, even after delayed surgery. A novel strategy of enticing donor axons from an otherwise intact nerve to grow through small nerve grafts (cross-bridges) into a denervated nerve stump, promotes improved axon regeneration after delayed nerve repair. The efficacy of this technique has been demonstrated in a rat model and is now in clinical use in patients undergoing cross-face nerve grafting for facial paralysis. In conclusion, brief electrical stimulation, combined with the surgical technique of promoting the regeneration of some donor axons to 'protect' chronically denervated Schwann cells, improves nerve regeneration and, in turn, functional outcomes in the management of peripheral nerve injuries.

  18. Unilateral duplicated abducens nerve coursing through both the sphenopetroclival venous gulf and cavernous sinus: a case report.

    Science.gov (United States)

    Coquet, Thomas; Lefranc, Michel; Chenin, Louis; Foulon, Pascal; Havet, Éric; Peltier, Johann

    2018-03-15

    In this anatomy report, we describe the first case of abducens nerve duplication limited to the sphenopetroclival venous gulf and the cavernous sinus. The objective point of division of the two duplicated roots was localized at the gulfar face of the dural porus, just distal to the unique cisternal trunk of the abducens nerve, as it pierced the petroclival dural mater. In the gulfar segment, both roots traveled through a variant of Dorello's canal called the "petrosphenoidal canal" and remained separated through the posterior half of the cavernous sinus. Both roots finally fused in the anterior half of the cavernous sinus to innervate the lateral rectus muscle as a single trunk. Although many variants of the abducens nerve have been reported over the recent decades, this anatomic variation has never been previously described and enriches the continuum of abducens nerve variations reported in the literature data. Awareness of this variation is crucial for neurosurgeons, especially during clival or petrosal surgical approaches used for resection of skull base chordomas.

  19. Mobility-Related Consequences of Reduced Lower-Extremity Peripheral Nerve Function with Age

    DEFF Research Database (Denmark)

    Ward, Rachel E; Caserotti, P.; Cauley, Jane A

    2016-01-01

    -dwelling and institutionalized residents, 1 from a range of residential locations, and 1 of patients with peripheral arterial disease. Mean ages ranged from 71-82 years. Nerve function was assessed by vibration threshold (n=2); sensory measures and clinical signs and symptoms of neuropathy (n=2); motor nerve conduction (n=1......The objective of this study is to systematically review the relationship between lower-extremity peripheral nerve function and mobility in older adults. The National Library of Medicine (PubMed) was searched on March 23, 2015 with no limits on publication dates. One reviewer selected original...... research studies of older adults (>= 65 years) that assessed the relationship between lower-extremity peripheral nerve function and mobility-related outcomes. Participants, study design and methods of assessing peripheral nerve impairment were evaluated and results were reported and synthesized. Eight...

  20. Brassinosteroids antagonize gibberellin- and salicylate-mediated root immunity in rice.

    Science.gov (United States)

    De Vleesschauwer, David; Van Buyten, Evelien; Satoh, Kouji; Balidion, Johny; Mauleon, Ramil; Choi, Il-Ryong; Vera-Cruz, Casiana; Kikuchi, Shoshi; Höfte, Monica

    2012-04-01

    Brassinosteroids (BRs) are a unique class of plant steroid hormones that orchestrate myriad growth and developmental processes. Although BRs have long been known to protect plants from a suite of biotic and abiotic stresses, our understanding of the underlying molecular mechanisms is still rudimentary. Aiming to further decipher the molecular logic of BR-modulated immunity, we have examined the dynamics and impact of BRs during infection of rice (Oryza sativa) with the root oomycete Pythium graminicola. Challenging the prevailing view that BRs positively regulate plant innate immunity, we show that P. graminicola exploits BRs as virulence factors and hijacks the rice BR machinery to inflict disease. Moreover, we demonstrate that this immune-suppressive effect of BRs is due, at least in part, to negative cross talk with salicylic acid (SA) and gibberellic acid (GA) pathways. BR-mediated suppression of SA defenses occurred downstream of SA biosynthesis, but upstream of the master defense regulators NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 and OsWRKY45. In contrast, BR alleviated GA-directed immune responses by interfering at multiple levels with GA metabolism, resulting in indirect stabilization of the DELLA protein and central GA repressor SLENDER RICE1 (SLR1). Collectively, these data favor a model whereby P. graminicola coopts the plant BR pathway as a decoy to antagonize effectual SA- and GA-mediated defenses. Our results highlight the importance of BRs in modulating plant immunity and uncover pathogen-mediated manipulation of plant steroid homeostasis as a core virulence strategy.

  1. Root characteristics of cover crops and their erosion-reducing potential during concentrated runoff

    Science.gov (United States)

    de Baets, S.; Poesen, J.

    2009-04-01

    In the loam region in central Belgium, a lot of research has been conducted on the effects of cover crops for preventing splash and interrill erosion and on their nutrient pumping effectiveness. As this is a very effective erosion and environment conservation technique, planting cover crops during the winter season is widely applied in the loess belt. Most of these cover crops freeze at the beginning of the winter period. Consequently, the above-ground biomass becomes less effective in protecting the soil from water erosion. Apart from the effects of the above-ground biomass in protecting the soil against raindrop impacts and reducing flow velocities by the retarding effects of their stems, plant roots also play an important role in improving soil strength. Previous research showed that roots contribute to a large extent to the resistance of topsoils against concentrated flow erosion. Unfortunately, information on root properties of common cover crops (e.g. Sinapis alba, Phacelia tanacetifoli, Lolium perenne, Avena sativa, Secale cereale, Raphanus sativus subsp. oleiferus) is very scarce. Therefore, root density distribution with depth and their erosion-reducing effects during concentrated flow erosion were assessed by conducting root auger measurements and concentrated flow experiments at the end of the growth period (December). The preliminary results indicate that the studied cover crops are not equally effective in preventing soil loss by concentrated flow erosion at the end of the growing season. Cover crops with thick roots, such as Sinapis alba and Raphanus sativus subsp. oleiferus are less effective than cover crops with fine-branched roots such as Phacelia tanacetifoli, Lolium perenne (Ryegrass), Avena sativa (Oats) and Secale cereale (Rye) in preventing soil losses by concentrated flow erosion. These results enable soil managers to select the most suitable crops and maximize soil protection.

  2. Root deformation reduces tolerance of lodgepole pine to attack by Warren root collar weevil.

    Science.gov (United States)

    Robert, Jeanne A; Lindgren, B Staffan

    2010-04-01

    Surveys were conducted on regenerating stands of lodgepole pine to determine the relationship between root deformation and susceptibility to attack by the Warren root collar weevil, Hylobius warreni Wood. The total number of trees attacked by H. warreni did not differ between planted and natural trees. A matched case-control logistic regression suggested that root cross-sectional area was more important in predicting weevil attack for naturally regenerated trees than for planted trees, but weevils were associated with a larger reduction in height-to-diameter ratios for trees with planted root characteristics than for trees with natural root form. Neither the stability of attacked versus unattacked trees differed significantly and there was no significant interaction of weevil attack and tree type, but weevil-killed trees had different root characteristics than alive, attacked trees. Lateral distribution and root cross-sectional area were significant predictors of alive attacked trees versus weevil-killed trees, suggesting that trees with poor lateral spread or poor root cross-sectional area are more likely to die from weevil attack. We conclude that root deformation does not necessarily increase susceptibility to attack but may increase the likelihood of mortality. Thus, measures to facilitate good root form are needed when planting pine in areas with high risk of Warren root collar weevil attack.

  3. Observations at the CNS-PNS border of ventral roots connected to a neuroma

    Directory of Open Access Journals (Sweden)

    Sten Remahl

    2010-10-01

    Full Text Available Previous studies have shown that numerous sprouts originating from a neuroma, after nerve injury in neonatal animals, can invade spinal nerve roots. In this study the border between the central and peripheral nervous system (CNS-PNS border of ventral roots in kittens was examined with both light and electron microscopy after early postnatal sciatic nerve resection. A transient ingrowth of substance P positive axons was observed into the CNS, but no spouts remained 6 weeks after the injury. Using serial sections and electron microscopy it was possible to identify small bundles of unmyelinated axons that penetrated from the root fascicles for a short distance into the CNS. These axons ended blindly, sometimes with a growth cone-like terminal swelling filled with vesicles. The axon bundles were accompanied by p75 positive cells in both the root fascicles and the pia mater, but not in the CNS. It may thus be suggested that neurotrophin presenting p75 positive cells could facilitate axonal growth into the pia mater and that the lack of such cells in the CNS compartment might contribute to the failure of growth into the CNS. A maldevelopment of myelin sheaths at the CNS-PNS border of motor axons was observed and it seems possible that this could have consequences for the propagation of action potential across this region after neonatal nerve injury.

  4. Scale-Up of Agrobacterium rhizogenes-Mediated Hairy Root Cultures of Rauwolfia serpentina: A Persuasive Approach for Stable Reserpine Production.

    Science.gov (United States)

    Mehrotra, Shakti; Srivastava, Vikas; Goel, Manoj K; Kukreja, Arun K

    2016-01-01

    Roots of Rauwolfia serpentina, also known as "Sarpagandha" possess high pharmaceutical value due to the presence of reserpine and other medicinally important terpene indole alkaloids. Ever increasing commercial demand of R. serpentina roots is the major reason behind the unsystematic harvesting and fast decline of the species from its natural environment. Considering Agrobacterium rhizogenes-mediated hairy root cultures as an alternative source for the production of plant-based secondary metabolites, the present optimized protocol offers a commercially feasible method for the production of reserpine, the most potent alkaloid from R. serpentina roots. This end-to-end protocol presents the establishment of hairy root culture from the leaf explants of R. serpentina through the infection of A. rhizogenes strain A4 in liquid B5 culture medium and its up-scaling in a 5 L bench top, mechanically agitated bioreactor. The transformed nature of roots was confirmed through PCR-based rol A gene amplification in genomic DNA of putative hairy roots. The extraction and quantification of reserpine in bioreactor grown roots has been done using monolithic reverse phase high-performance liquid chromatography (HPLC).

  5. ATP secretion from nerve trunks and Schwann cells mediated by glutamate.

    Science.gov (United States)

    Liu, Guo Jun; Bennett, Max R

    2003-11-14

    ATP release from rat sciatic nerves and from cultured Schwann cells isolated from the nerves was investigated using an online bioluminescence technique. ATP was released in relatively large amounts from rat sciatic nerve trunks during electrical stimulation. This release was blocked by the sodium channel inhibitor tetrodotoxin and the non-NMDA glutamate receptor blocker 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX). Schwann cells isolated from the nerve trunks did not release ATP when electrically stimulated but did in response to glutamate in a concentration-dependent manner. Glutamate-stimulated ATP release was inhibited by specific non-competitive AMPA receptor antagonist GYKI 52466 and competitive non-NMDA receptor antagonist CNQX. Glutamate-stimulated ATP release was decreased by inhibition of anion transporter inhibitors by furosemide, cystic fibrosis transmembrane conductance regulator by glibenclamide and exocytosis by botulinum toxin A, indicating that anion transporters and exocytosis provide the main secretion mechanisms for ATP release from the Schwann cells.

  6. Changes in root cap pH are required for the gravity response of the Arabidopsis root

    Science.gov (United States)

    Fasano, J. M.; Swanson, S. J.; Blancaflor, E. B.; Dowd, P. E.; Kao, T. H.; Gilroy, S.

    2001-01-01

    Although the columella cells of the root cap have been identified as the site of gravity perception, the cellular events that mediate gravity signaling remain poorly understood. To determine if cytoplasmic and/or wall pH mediates the initial stages of root gravitropism, we combined a novel cell wall pH sensor (a cellulose binding domain peptide-Oregon green conjugate) and a cytoplasmic pH sensor (plants expressing pH-sensitive green fluorescent protein) to monitor pH dynamics throughout the graviresponding Arabidopsis root. The root cap apoplast acidified from pH 5.5 to 4.5 within 2 min of gravistimulation. Concomitantly, cytoplasmic pH increased in columella cells from 7.2 to 7.6 but was unchanged elsewhere in the root. These changes in cap pH preceded detectable tropic growth or growth-related pH changes in the elongation zone cell wall by 10 min. Altering the gravity-related columella cytoplasmic pH shift with caged protons delayed the gravitropic response. Together, these results suggest that alterations in root cap pH likely are involved in the initial events that mediate root gravity perception or signal transduction.

  7. Lentiviral-mediated Targeted NF-κB Blockade in Dorsal Spinal Cord Glia Attenuates Sciatic Nerve Injury-induced Neuropathic Pain in the Rat.

    Science.gov (United States)

    Meunier, Alice; Latrémolière, Alban; Dominguez, Elisa; Mauborgne, Annie; Philippe, Stéphanie; Hamon, Michel; Mallet, Jacques; Benoliel, Jean-Jacques; Pohl, Michel

    2007-04-01

    Neuropathic pain developing after peripheral nerve injury is associated with altered neuronal and glial cell functions in the spinal cord. Activated glia produces algogenic mediators, exacerbating pain. Among the different intracellular pathways possibly involved in the modified glial function, the nuclear factor κB (NF-κB) system is of particular interest, as numerous genes encoding inflammation- and pain-related molecules are controlled by this transcription factor. NF-κB is a pleiotropic factor also involved in central nervous system homeostasy. To study its role in chronic pain, it is thus essential to inhibit the NF-κB pathway selectively in activated spinal glial cells. Here, we show that when restricted to spinal cord and targeted to glial cells, lentiviral vector-mediated delivery of NF-κB super- repressor IκBα resulted in an inhibition of the NF-κB pathway activated in the rat spinal cord after sciatic nerve injury (chronic constriction injury, CCI). Concomitantly, IκBα overproduction prevented the enhanced expression of interleukin-6 and of inducible nitric oxide synthase associated with chronic constriction injury and resulted in prolonged antihyperalgesic and antiallodynic effects. These data show that targeted blockade of NF-κB activity in spinal glia efficiently alleviates pain behavior in CCI rats, demonstrating the active participation of the glial NF-κB pathway in the development of neuropathic pain after peripheral nerve injury. Copyright © 2007 The American Society of Gene Therapy. Published by Elsevier Inc. All rights reserved.

  8. Neuroprotective Drug for Nerve Trauma Revealed Using Artificial Intelligence

    OpenAIRE

    Romeo-Guitart, David; Forés, Joaquim; Herrando-Grabulosa, Mireia; Valls, Raquel; Leiva-Rodríguez, Tatiana; Galea, Elena; González-Pérez, Francisco; Navarro, Xavier; Petegnief, Valerie; Bosch, Assumpció; Coma, Mireia; Mas, José Manuel; Casas, Caty

    2018-01-01

    Here we used a systems biology approach and artificial intelligence to identify a neuroprotective agent for the treatment of peripheral nerve root avulsion. Based on accumulated knowledge of the neurodegenerative and neuroprotective processes that occur in motoneurons after root avulsion, we built up protein networks and converted them into mathematical models. Unbiased proteomic data from our preclinical models were used for machine learning algorithms and for restrictions to be imposed on m...

  9. Role of PAF receptor in proinflammatory cytokine expression in the dorsal root ganglion and tactile allodynia in a rodent model of neuropathic pain.

    Directory of Open Access Journals (Sweden)

    Shigeo Hasegawa

    Full Text Available BACKGROUND: Neuropathic pain is a highly debilitating chronic pain following damage to peripheral sensory neurons and is often resistant to all treatments currently available, including opioids. We have previously shown that peripheral nerve injury induces activation of cytosolic phospholipase A(2 (cPLA(2 in injured dorsal root ganglion (DRG neurons that contribute to tactile allodynia, a hallmark of neuropathic pain. However, lipid mediators downstream of cPLA(2 activation to produce tactile allodynia remain to be determined. PRINCIPAL FINDINGS: Here we provide evidence that platelet-activating factor (PAF is a potential candidate. Pharmacological blockade of PAF receptors (PAFRs reduced the development and expression of tactile allodynia following nerve injury. The expression of PAFR mRNA was increased in the DRG ipsilateral to nerve injury, which was seen mainly in macrophages. Furthermore, mice lacking PAFRs showed a reduction of nerve injury-induced tactile allodynia and, interestingly, a marked suppression of upregulation of tumor necrosis factor alpha (TNFalpha and interleukin-1beta (IL-1beta expression in the injured DRG, crucial proinflammatory cytokines involved in pain hypersensitivity. Conversely, a single injection of PAF near the DRG of naïve rats caused a decrease in the paw withdrawal threshold to mechanical stimulation in a dose-dependent manner and an increase in the expression of mRNAs for TNFalpha and IL-1beta, both of which were inhibited by pretreatment with a PAFR antagonist. CONCLUSIONS: Our results indicate that the PAF/PAFR system has an important role in production of TNFalpha and IL-1beta in the DRG and tactile allodynia following peripheral nerve injury and suggest that blocking PAFRs may be a viable therapeutic strategy for treating neuropathic pain.

  10. Mast Cells and Nerve Signal Conduction in Acupuncture

    Directory of Open Access Journals (Sweden)

    Na Yin

    2018-01-01

    Full Text Available Nerve and mast cells are densely distributed around acupoints in connective tissue. To explore the internal relations between them in acupuncture effect, we examined dorsal root potential (DRP response to acupuncture at Zusanli (ST36 under sodium cromoglicate (DSCG, a mast cell stabilizer intervention in anesthetized Sprague-Dawley (SD rats. We used single unit nerve recording techniques to collect nerve signals from DRP afferent nerves for a 45-minute period that includes 4 stages, that is, base, drug absorption, acupuncture, and recovery stages. We analyzed the recorded signals from time-domain and frequency-domain perspectives. The results showed that once acupuncture needle was inserted, twisting needle excited more nerves discharges than those at base discharges in ACU (from 35.1 ± 7.2 to 47 ± 9.2 Hz, P=0.004, and there existed the same trend in Saline + ACU group (from 23.8 ± 2.6 to 29.8 ± 4.2 Hz, P=0.059. There was no change of nerve discharges under twisting needle with injection of DSCG (from 34.8 ± 5.3 to 34.7 ± 4.4 Hz, P=0.480. We conclude that acupuncture manipulation promotes neural signal production and DSCG could partly inhibit nerve discharges.

  11. Arginase strongly impairs neuronal nitric oxide-mediated airway smooth muscle relaxation in allergic asthma

    NARCIS (Netherlands)

    Maarsingh, H; Leusink, J; Bos, I Sophie T; Zaagsma, J; Meurs, H

    2006-01-01

    Background: Using guinea pig tracheal preparations, we have recently shown that endogenous arginase activity attenuates inhibitory nonadrenergic noncholinergic (iNANC) nerve-mediated airway smooth muscle relaxation by reducing nitric oxide (NO) production - due to competition with neuronal

  12. Delayed peripheral nerve repair: methods, including surgical ′cross-bridging′ to promote nerve regeneration

    Directory of Open Access Journals (Sweden)

    Tessa Gordon

    2015-01-01

    Full Text Available Despite the capacity of Schwann cells to support peripheral nerve regeneration, functional recovery after nerve injuries is frequently poor, especially for proximal injuries that require regenerating axons to grow over long distances to reinnervate distal targets. Nerve transfers, where small fascicles from an adjacent intact nerve are coapted to the nerve stump of a nearby denervated muscle, allow for functional return but at the expense of reduced numbers of innervating nerves. A 1-hour period of 20 Hz electrical nerve stimulation via electrodes proximal to an injury site accelerates axon outgrowth to hasten target reinnervation in rats and humans, even after delayed surgery. A novel strategy of enticing donor axons from an otherwise intact nerve to grow through small nerve grafts (cross-bridges into a denervated nerve stump, promotes improved axon regeneration after delayed nerve repair. The efficacy of this technique has been demonstrated in a rat model and is now in clinical use in patients undergoing cross-face nerve grafting for facial paralysis. In conclusion, brief electrical stimulation, combined with the surgical technique of promoting the regeneration of some donor axons to ′protect′ chronically denervated Schwann cells, improves nerve regeneration and, in turn, functional outcomes in the management of peripheral nerve injuries.

  13. Dilong: Role in Peripheral Nerve Regeneration

    Directory of Open Access Journals (Sweden)

    Yung-Ming Chang

    2011-01-01

    Full Text Available Dilong, also known as earthworm, has been widely used in traditional Chinese medicine (TCM for thousands of years. Schwann cell migration and proliferation are critical for the regeneration of injured nerves and Schwann cells provide an essentially supportive role for neuron regeneration. However, the molecular mechanisms of migration and proliferation induced by dilongs in Schwann cells remain unclear. Here, we discuss the molecular mechanisms that includes (i migration signaling, MAPKs (mitogen-activated protein kinases, mediated PAs and MMP2/9 pathway; (ii survival and proliferative signaling, IGF-I (insulin-like growth factor-I-mediated PI3K/Akt pathways and (iii cell cycle regulation. Dilong stimulate RSC96 cell proliferation and migration. It can induce phosphorylation of ERK1/2 and p38, but not JNK, and activate the downstream signaling expression of PAs (plasminogen activators and MMPs (matrix metalloproteinases in a time-dependent manner. In addition, Dilong stimulated ERK1/2 and p38 phosphorylation was attenuated by pretreatment with chemical inhibitors (U0126 and SB203580, and small interfering ERK1/2 and p38 RNA, resulting in migration and uPA-related signal pathway inhibition. Dilong also induces the phosphorylation of IGF-I-mediated PI3K/Akt pathway, activates protein expression of PCNA (proliferating cell nuclear antigen and cell cycle regulatory proteins (cyclin D1, cyclin E and cyclin A in a time-dependent manner. In addition, it accelerates G1-phase progression with earlier S-phase entry and significant numbers of cells entered the S-phase. The siRNA-mediated knockdown of PI3K that significantly reduces PI3K protein expression levels, resulting in Bcl2 survival factor reduction, revealing a marked blockage of G1 to S transition in proliferating cells. These results reveal the unknown RSC96 cell migration and proliferation mechanism induced by dilong, which find use as a new medicine for nerve regeneration.

  14. Novel drug delivering conduit for peripheral nerve regeneration

    Science.gov (United States)

    Labroo, Pratima; Shea, Jill; Edwards, Kyle; Ho, Scott; Davis, Brett; Sant, Himanshu; Goodwin, Isak; Gale, Bruce; Agarwal, Jay

    2017-12-01

    Objective. This paper describes the design of a novel drug delivery apparatus integrated with a poly lactic-co-glycolic acid (PLGA) based nerve guide conduit for controlled local delivery of nerve growth factor (NGF) and application in peripheral nerve gap injury. Approach. An NGF dosage curve was acquired to determine the minimum in vitro concentration for optimal neurite outgrowth of dorsal root ganglion (DRG) cells; PLGA based drug delivery devices were then designed and tested in vitro and in vivo across 15 mm rat sciatic nerve gap injury model. Main results. The drug delivery nerve guide was able to release NGF for 28 d at concentrations (0.1-10 ng ml-1) that were shown to enhance DRG neurite growth. Furthermore, the released NGF was bioactive and able to enhance DRG neurite growth. Following these tests, optimized NGF-releasing nerve conduits were implanted across 15 mm sciatic nerve gaps in a rat model, where they demonstrated significant myelination and muscle innervation in vivo as compared to empty nerve conduits (p  design process and provides increased versatility for releasing a variety of different growth factors. This innovative device has the potential for broad applicability and allows for easier customization to change the type of drugs and dosage of individual drugs without devising a completely new biomaterial-drug conjugate each time.

  15. Short-term low-frequency electrical stimulation enhanced remyelination of injured peripheral nerves by inducing the promyelination effect of brain-derived neurotrophic factor on Schwann cell polarization.

    Science.gov (United States)

    Wan, Lidan; Xia, Rong; Ding, Wenlong

    2010-09-01

    Electrical stimulation (ES) has been found to aid repair of nerve injuries and have been shown to increase and direct neurite outgrowth during stimulation. However, the effect of ES on peripheral remyelination after nerve damage has been investigated less well, and the mechanism underlying its action remains unclear. In the present study, the crush-injured sciatic nerves in rats were subjected to 1 hr of continuous ES (20 Hz, 100 microsec, 3 V). Electron microscopy and nerve morphometry were performed to investigate the extent of regenerated nerve myelination. The expression profiles of P0, Par-3, and brain-derived neurotrophic factor (BDNF) in the injuried sciatic nerves and in the dorsal root ganglion neuron/Schwann cell cocultures were examined by Western blotting. Par-3 localization in the sciatic nerves was determined by immunohistochemistry to demonstrate Schwann cell polarization during myelination. We reported that 20-Hz ES increased the number of myelinated fibers and the thickness myelin sheath at 4 and 8 weeks postinjury. P0 level in the ES-treated groups, both in vitro and in vivo, was enhanced compared with the controls. The earlier peak of Par-3 in the ES-treated groups indicated an earlier initiation of Schwann cell myelination. Additionally, ES significantly elevated BDNF expression in nerve tissues and in cocultures. ES on the site of nerve injury potentiates axonal regrowth and myelin maturation during peripheral nerve regeneration. Furthermore, the therapeutic actions of ES on myelination are mediated via enhanced BDNF signals, which drive the promyelination effect on Schwann cells at the onset of myelination.

  16. Nitric oxide mediates strigolactone signaling in auxin and ethylene-sensitive lateral root formation in sunflower seedlings.

    Science.gov (United States)

    Bharti, Niharika; Bhatla, Satish C

    2015-01-01

    Strigolactones (SLs) play significant role in shaping root architecture whereby auxin-SL crosstalk has been observed in SL-mediated responses of primary root elongation, lateral root formation and adventitious root (AR) initiation. Whereas GR24 (a synthetic strigolactone) inhibits LR and AR formation, the effect of SL biosynthesis inhibitor (fluridone) is just the opposite (root proliferation). Naphthylphthalamic acid (NPA) leads to LR proliferation but completely inhibits AR development. The diffusive distribution of PIN1 in the provascular cells in the differentiating zone of the roots in response to GR24, fluridone or NPA treatments further indicates the involvement of localized auxin accumulation in LR development responses. Inhibition of LR formation by GR24 treatment coincides with inhibition of ACC synthase activity. Profuse LR development by fluridone and NPA treatments correlates with enhanced [Ca(2+)]cyt in the apical region and differentiating zones of LR, indicating a critical role of [Ca(2+)] in LR development in response to the coordinated action of auxins, ethylene and SLs. Significant enhancement of carotenoid cleavage dioxygenase (CCD) activity (enzyme responsible for SL biosynthesis) in tissue homogenates in presence of cPTIO (NO scavenger) indicates the role of endogenous NO as a negative modulator of CCD activity. Differences in the spatial distribution of NO in the primary and lateral roots further highlight the involvement of NO in SL-modulated root morphogenesis in sunflower seedlings. Present work provides new report on the negative modulation of SL biosynthesis through modulation of CCD activity by endogenous nitric oxide during SL-modulated LR development.

  17. Does the presence of the nerve root sedimentation sign on MRI correlate with the operative level in patients undergoing posterior lumbar decompression for lumbar stenosis?

    Science.gov (United States)

    Fazal, Akil; Yoo, Andrew; Bendo, John A

    2013-08-01

    Recent research describes the use of a nerve root sedimentation sign to diagnose lumbar spinal stenosis (LSS). The lack of sedimentation of the nerve roots (positive sedimentation sign) to the dorsal part of the dural sac is the characteristic feature of this new radiological parameter. To demonstrate how the nerve root sedimentation sign compares with other more traditional radiological parameters in patients who have been operated for LSS. A retrospective chart and image review. Preoperative magnetic resonance images (MRIs) were reviewed from 71 consecutive operative patients who presented with LSS and received spinal decompression surgery from 2006 to 2010. Preoperative T2-weighted MRIs were reviewed for each patient. One hundred thirty-four vertebral levels from L1 to L5 were measured for: sedimentation sign, cross-sectional area (CSA) and anterior/posterior (A/P) diameter of the dural sac, thickness of the ligamentum flavum, and Fujiwara grade of facet hypertrophy. Radiological measurements were made using Surgimap 1.1.2.169 software (Nemaris, Inc., New York, NY, USA). Statistical analyses were performed using the SPSS 17.0 statistical software (SPSS Inc., Chicago, IL, USA). Significance was demonstrated using unpaired t tests and chi-squared tests. Study funding was departmental. There were no study-specific conflicts of interest-associated biases. A positive sedimentation sign was determined in 120 operated levels (89.5%), whereas 14 levels (10.5%) had no sign (negative sedimentation sign). The mean CSA and A/P diameter were 140.62 mm(2) (standard deviation [SD]=53) and 11.76 mm (SD=3), respectively, for the no-sign group; the mean CSA and A/P diameter were 81.87 mm(2) (SD=35) and 8.76 mm (SD=2.2), respectively, for the sedimentation sign group (p<.001). We found that 60% of levels with Fujiwara Grade A facet hypertrophy did not have a sedimentation sign, whereas 86.3% of levels with Grade B, 93.2% of levels with Grade C, and 100.0% of levels with Grade D

  18. Do clinical features and MRI suggest the same nerve root in acute cervical radiculopathy

    Directory of Open Access Journals (Sweden)

    M. Conradie

    2006-02-01

    Full Text Available Different proposed pathophysiological mechanisms can result in variable clinical presentations of cervical radiculopathy (CR, often making it difficult to detect minor nerve root (NR conditions. This descriptive study determined (1 the level(s of  NR involvement suggested by the distribution patterns of clinical features and detected by magnetic resonance imaging (MRI and (2 the most common associations between the different variables in patients diagnosed with acute CR by a neurosurgeon. A physiotherapist blinded to the level(s of NR involvement performed a standardized interview on 21 subjects to determine the distribution patterns of pain and paraesthesia, and a neurological examination. The Fisher exact test was used to determine associations between the different variables. Only seven subjects presented clinically and radiologically with the same single-level NR involvement. Multiple- level presentations occurred which might be due to dermatomal overlapping, central sensitization or the possible involvement of two adjacent NR levels. Distribution patterns of motor weakness, pain and paraesthesia, and to a lesser extent sensory and reflex changes, have value in identifying the compressed NR level. For this sample the distri-bution patterns of radicular features identified C6 and C8 with more certainty than C7.

  19. Rat whisker movement after facial nerve lesion: Evidence for autonomic contraction of skeletal muscle.

    NARCIS (Netherlands)

    Heaton, J.T.; Sheu, S.H.; Hohman, M.H.; Knox, C.J.; Weinberg, J.S.; Kleiss, I.J.; Hadlock, T.A.

    2014-01-01

    Vibrissal whisking is often employed to track facial nerve regeneration in rats; however, we have observed similar degrees of whisking recovery after facial nerve transection with or without repair. We hypothesized that the source of non-facial nerve-mediated whisker movement after chronic

  20. Pannexin 1 Modulates Axonal Growth in Mouse Peripheral Nerves

    Directory of Open Access Journals (Sweden)

    Steven M. Horton

    2017-11-01

    Full Text Available The pannexin family of channels consists of three members—pannexin-1 (Panx1, pannexin-2 (Panx2, and pannexin-3 (Panx3 that enable the exchange of metabolites and signaling molecules between intracellular and extracellular compartments. Pannexin-mediated release of intracellular ATP into the extracellular space has been tied to a number of cellular activities, primarily through the activity of type P2 purinergic receptors. Previous work indicates that the opening of Panx1 channels and activation of purinergic receptors by extracellular ATP may cause inflammation and apoptosis. In the CNS (central nervous system and PNS (peripheral nervous system, coupled pannexin, and P2 functions have been linked to peripheral sensitization (pain pathways. Purinergic pathways are also essential for other critical processes in the PNS, including myelination and neurite outgrowth. However, whether such pathways are pannexin-dependent remains to be determined. In this study, we use a Panx1 knockout mouse model and pharmacological inhibitors of the Panx1 and the ATP-mediated signaling pathway to fill gaps in our understanding of Panx1 localization in peripheral nerves, roles for Panx1 in axonal outgrowth and myelination, and neurite extension. Our data show that Panx1 is localized to axonal, myelin, and vascular compartments of the peripheral nerves. Knockout of Panx1 gene significantly increased axonal caliber in vivo and axonal growth rate in cultured dorsal root ganglia (DRG neurons. Furthermore, genetic knockout of Panx1 or inhibition of components of purinergic signaling, by treatment with probenecid and apyrase, resulted in denser axonal outgrowth from cultured DRG explants compared to untreated wild-types. Our findings suggest that Panx1 regulates axonal growth in the peripheral nervous system.

  1. Effect of LED-mediated-photobiomodulation therapy on orthodontic tooth movement and root resorption in rats.

    Science.gov (United States)

    Ekizer, Abdullah; Uysal, Tancan; Güray, Enis; Akkuş, Derya

    2015-02-01

    The aim of this experimental study was to evaluate the effects of light-emitting diode-mediated-photobiomodulation therapy (LPT), on the rate of orthodontic tooth movement (TM) and orthodontically induced root resorption, in rats. Twenty male 12-week-old Wistar rats were separated into two groups (control and LPT) and 50 cN of force was applied between maxillary left molar and incisor with a coil spring. In the treatment group, LPT was applied with an energy density of 20 mW/cm(2) over a period of 10 consecutive days directly over the movement of the first molar teeth area. The distance between the teeth was measured with a digital caliper on days 0 (T0), 10 (T1), and 21 (T2) on dental cast models. The surface area of root resorption lacunae was measured histomorphometrically using digital photomicrographs. Mann-Whitney U and Wilcoxon tests were used for statistical evaluation at p root resorption, expressed as a percentage, showed that the average relative root resorption affecting the maxillary molars on the TM side was 0.098 ± 0.066 in the LPT group and 0.494 ± 0.224 in the control group. Statistically significant inhibition of root resorption with LPT was determined (p orthodontic tooth movement and inhibitory effects on orthodontically induced resorptive activity.

  2. Nerve Growth Factor in Cancer Cell Death and Survival

    International Nuclear Information System (INIS)

    Molloy, Niamh H.; Read, Danielle E.; Gorman, Adrienne M.

    2011-01-01

    One of the major challenges for cancer therapeutics is the resistance of many tumor cells to induction of cell death due to pro-survival signaling in the cancer cells. Here we review the growing literature which shows that neurotrophins contribute to pro-survival signaling in many different types of cancer. In particular, nerve growth factor, the archetypal neurotrophin, has been shown to play a role in tumorigenesis over the past decade. Nerve growth factor mediates its effects through its two cognate receptors, TrkA, a receptor tyrosine kinase and p75 NTR , a member of the death receptor superfamily. Depending on the tumor origin, pro-survival signaling can be mediated by TrkA receptors or by p75 NTR . For example, in breast cancer the aberrant expression of nerve growth factor stimulates proliferative signaling through TrkA and pro-survival signaling through p75 NTR . This latter signaling through p75 NTR promotes increased resistance to the induction of cell death by chemotherapeutic treatments. In contrast, in prostate cells the p75 NTR mediates cell death and prevents metastasis. In prostate cancer, expression of this receptor is lost, which contributes to tumor progression by allowing cells to survive, proliferate and metastasize. This review focuses on our current knowledge of neurotrophin signaling in cancer, with a particular emphasis on nerve growth factor regulation of cell death and survival in cancer

  3. Perineural pretreatment of bee venom attenuated the development of allodynia in the spinal nerve ligation injured neuropathic pain model; an experimental study.

    Science.gov (United States)

    Koh, Won Uk; Choi, Seong Soo; Lee, Jong Hyuk; Lee, So Hee; Lee, Sun Kyung; Lee, Yoon Kyung; Leem, Jeong Gil; Song, Jun Gol; Shin, Jin Woo

    2014-11-04

    Diluted bee venom (BV) is known to have anti-nociceptive and anti-inflammatory effects. We therefore assessed whether perineural bee venom pretreatment could attenuate the development of neuropathic pain in the spinal nerve ligation injured animal model. Neuropathic pain was surgically induced in 30 male Sprague Dawley rats by ligation of the L5 and L6 spinal nerves, with 10 rats each treated with saline and 0.05 and 0.1 mg BV. Behavioral testing for mechanical, cold, and thermal allodynia was conducted on postoperative days 3 to 29. Three rats in each group and 9 sham operated rats were sacrificed on day 9, and the expression of transient receptor potential vanilloid type 1 (TRPV1), ankyrin type 1 (TRPA1), and melastatin type 8 (TRPM8) receptors in the ipsilateral L5 dorsal root ganglion was analyzed. The perineural administration of BV to the spinal nerves attenuated the development of mechanical, thermal, and cold allodynia, and the BV pretreatment reduced the expression of TRPV1, TRPA1, TRPM8 and c - Fos in the ipsilateral dorsal root ganglion. The current study demonstrates that the perineural pretreatment with diluted bee venom before the induction of spinal nerve ligation significantly suppresses the development of neuropathic pain. Furthermore, this bee venom induced suppression was strongly related with the involvement of transient receptor potential family members.

  4. Human amniotic epithelial cell transplantation for the repair of injured brachial plexus nerve: evaluation of nerve viscoelastic properties

    Directory of Open Access Journals (Sweden)

    Hua Jin

    2015-01-01

    Full Text Available The transplantation of embryonic stem cells can effectively improve the creeping strength of nerves near an injury site in animals. Amniotic epithelial cells have similar biological properties as embryonic stem cells; therefore, we hypothesized that transplantation of amniotic epithelial cells can repair peripheral nerve injury and recover the creeping strength of the brachial plexus nerve. In the present study, a brachial plexus injury model was established in rabbits using the C 6 root avulsion method. A suspension of human amniotic epithelial cells was repeatedly injected over an area 4.0 mm lateral to the cephal and caudal ends of the C 6 brachial plexus injury site (1 × 10 6 cells/mL, 3 μL/injection, 25 injections immediately after the injury. The results showed that the decrease in stress and increase in strain at 7,200 seconds in the injured rabbit C 6 brachial plexus nerve were mitigated by the cell transplantation, restoring the viscoelastic stress relaxation and creep properties of the brachial plexus nerve. The forepaw functions were also significantly improved at 26 weeks after injury. These data indicate that transplantation of human amniotic epithelial cells can effectively restore the mechanical properties of the brachial plexus nerve after injury in rabbits and that viscoelasticity may be an important index for the evaluation of brachial plexus injury in animals.

  5. The pain drawing as an instrument for identifying cervical spine nerve involvement in chronic whiplash-associated disorders.

    Science.gov (United States)

    Bernhoff, Gabriella; Landén Ludvigsson, Maria; Peterson, Gunnel; Bertilson, Bo Christer; Elf, Madeleine; Peolsson, Anneli

    2016-01-01

    The aim of the study was to investigate the psychometric properties of a standardized assessment of pain drawing with regard to clinical signs of cervical spine nerve root involvement. This cross-sectional study included data collected in a randomized controlled study. Two hundred and sixteen patients with chronic (≥6 months) whiplash-associated disorders, grade 2 or 3, were included in this study. The validity, sensitivity, and specificity of a standardized pain drawing assessment for determining nerve root involvement were analyzed, compared to the clinical assessment. In addition, we analyzed the interrater reliability with 50 pain drawings. Agreement was poor between the standardized pain drawing assessment and the clinical assessment (kappa =0.11, 95% CI: -0.03 to 0.20). Sensitivity was high (93%), but specificity was low (19%). Interrater reliability was good (kappa =0.64, 95% CI: 0.53 to 0.76). The standardized pain drawing assessment of nerve root involvement in chronic whiplash-associated disorders was not in agreement with the clinical assessment. Further research is warranted to optimize the utilization of a pain/discomfort drawing as a supportive instrument for identifying nerve involvement in cervical spinal injuries.

  6. PERFORATION OF INFERIOR ALVEOLAR NERVE BY MAXILLARY ARTERY. Perforation of inferior alveolar nerve by maxillary artery

    Directory of Open Access Journals (Sweden)

    Prakash B Billakanti

    2016-03-01

    Full Text Available La fosa infratemporal es un área anatómica clínicamente importante para la administración de agentes anestésicos locales en odontología y cirugía maxilofacial. Fueron estudiadas variaciones en la anatomía del nervio alveolar inferior y la arteria maxilar en la disección infratemporal. Durante la disección rutinaria de la cabeza en el cadáver de un varón adulto, fue observada una variación excepcional en el origen del nervio alveolar inferior y su relación con las estructuras circundantes. El nervio alveolar inferior se originaba en el nervio mandibular por dos raíces y la primera parte de la arteria maxilar estaba incorporada entre ambas. El origen embriológico de esta variación y sus implicaciones clínicas es debatido. Dado que la arteria maxilar transcurría entre las dos raíces del nervio alveolar inferior, y el nervio estaba fijado entre el foramen oval y el foramen mandibular, el atrapamiento vásculo-nervioso pudo causar entume-cimiento o dolor de cabeza e interferir con la inyección de anestésicos locales en la fosa infratemporal.  Variaciones anatómicas en esta región deben ser tenidas en cuenta, especialmente en casos de tratamiento fallido de neuralgia del trigémino. Infratemporal fossa is clinically important anatomical area for the delivery of local anesthetic agents in dentistry and maxillofacial surgery. Variations in the anatomy of the inferior alveolar nerve and maxillary artery were studied in infratemporal dissection. During routine dissection of the head in an adult male cadaver an unusual variation in the origin of the inferior alveolar nerve and its relationship with the surrounding structures was observed. The inferior alveolar nerve originated from the mandibular nerve by two roots and the first part of the maxillary artery was incorporated between them. An embryologic origin of this variation and its clinical implications is discussed. Because the maxillary artery runs between the two roots of

  7. Development of biomaterial scaffold for nerve tissue engineering: Biomaterial mediated neural regeneration

    Science.gov (United States)

    2009-01-01

    Neural tissue repair and regeneration strategies have received a great deal of attention because it directly affects the quality of the patient's life. There are many scientific challenges to regenerate nerve while using conventional autologous nerve grafts and from the newly developed therapeutic strategies for the reconstruction of damaged nerves. Recent advancements in nerve regeneration have involved the application of tissue engineering principles and this has evolved a new perspective to neural therapy. The success of neural tissue engineering is mainly based on the regulation of cell behavior and tissue progression through the development of a synthetic scaffold that is analogous to the natural extracellular matrix and can support three-dimensional cell cultures. As the natural extracellular matrix provides an ideal environment for topographical, electrical and chemical cues to the adhesion and proliferation of neural cells, there exists a need to develop a synthetic scaffold that would be biocompatible, immunologically inert, conducting, biodegradable, and infection-resistant biomaterial to support neurite outgrowth. This review outlines the rationale for effective neural tissue engineering through the use of suitable biomaterials and scaffolding techniques for fabrication of a construct that would allow the neurons to adhere, proliferate and eventually form nerves. PMID:19939265

  8. The sensory-motor bridge neurorraphy: an anatomic study of feasibility between sensory branch of the musculocutaneous nerve and deep branch of the radial nerve.

    Science.gov (United States)

    Goubier, Jean-Noel; Teboul, Frédéric

    2011-05-01

    Restoring elbow flexion remains the first step in the management of total palsy of the brachial plexus. Non avulsed upper roots may be grafted on the musculocutaneous nerve. When this nerve is entirely grafted, some motor fibres regenerate within the sensory fibres quota. Aiming potential utilization of these lost motor fibres, we attempted suturing the sensory branch of the musculocutaneous nerve onto the deep branch of the radial nerve. The objective of our study was to assess the anatomic feasibility of such direct suturing of the terminal sensory branch of the musculocutaneous nerve onto the deep branch of the radial nerve. The study was carried out with 10 upper limbs from fresh cadavers. The sensory branch of the musculocutaneous muscle was dissected right to its division. The motor branch of the radial nerve was identified and dissected as proximally as possible into the radial nerve. Then, the distance separating the two nerves was measured so as to assess whether direct neurorraphy of the two branches was feasible. The excessive distance between the two branches averaged 6 mm (1-13 mm). Thus, direct neurorraphy of the sensory branch of the musculocutaneous nerve and the deep branch of the radial nerve was possible. When the whole musculocutaneous nerve is grafted, some of its motor fibres are lost amongst the sensory fibres (cutaneous lateral antebrachial nerve). By suturing this sensory branch onto the deep branch of the radial nerve, "lost" fibres may be retrieved, resulting in restoration of digital extension. Copyright © 2011 Wiley-Liss, Inc.

  9. Deciphering Phosphate Deficiency-Mediated Temporal Effects on Different Root Traits in Rice Grown in a Modified Hydroponic System

    Science.gov (United States)

    Negi, Manisha; Sanagala, Raghavendrarao; Rai, Vandna; Jain, Ajay

    2016-01-01

    Phosphate (Pi), an essential macronutrient for growth and development of plant, is often limiting in soils. Plants have evolved an array of adaptive strategies including modulation of root system architecture (RSA) for optimal acquisition of Pi. In rice, a major staple food, RSA is complex and comprises embryonically developed primary and seminal roots and post-embryonically developed adventitious and lateral roots. Earlier studies have used variant hydroponic systems for documenting the effects of Pi deficiency largely on primary root growth. Here, we report the temporal effects of Pi deficiency in rice genotype MI48 on 15 ontogenetically distinct root traits by using easy-to-assemble and economically viable modified hydroponic system. Effects of Pi deprivation became evident after 4 days- and 7 days-treatments on two and eight different root traits, respectively. The effects of Pi deprivation for 7 days were also evident on different root traits of rice genotype Nagina 22 (N22). There were genotypic differences in the responses of primary root growth along with lateral roots on it and the number and length of seminal and adventitious roots. Notably though, there were attenuating effects of Pi deficiency on the lateral roots on seminal and adventitious roots and total root length in both these genotypes. The study thus revealed both differential and comparable effects of Pi deficiency on different root traits in these genotypes. Pi deficiency also triggered reduction in Pi content and induction of several Pi starvation-responsive (PSR) genes in roots of MI48. Together, the analyses validated the fidelity of this modified hydroponic system for documenting Pi deficiency-mediated effects not only on different traits of RSA but also on physiological and molecular responses. PMID:27200025

  10. Hairy-root organ cultures for the production of human acetylcholinesterase

    Directory of Open Access Journals (Sweden)

    Mor Tsafrir S

    2008-12-01

    Full Text Available Abstract Background Human cholinesterases can be used as a bioscavenger of organophosphate toxins used as pesticides and chemical warfare nerve agents. The practicality of this approach depends on the availability of the human enzymes, but because of inherent supply and regulatory constraints, a suitable production system is yet to be identified. Results As a promising alternative, we report the creation of "hairy root" organ cultures derived via Agrobacterium rhizogenes-mediated transformation from human acetylcholinesterase-expressing transgenic Nicotiana benthamiana plants. Acetylcholinesterase-expressing hairy root cultures had a slower growth rate, reached to the stationary phase faster and grew to lower maximal densities as compared to wild type control cultures. Acetylcholinesterase accumulated to levels of up to 3.3% of total soluble protein, ~3 fold higher than the expression level observed in the parental plant. The enzyme was purified to electrophoretic homogeneity. Enzymatic properties were nearly identical to those of the transgenic plant-derived enzyme as well as to those of mammalian cell culture derived enzyme. Pharmacokinetic properties of the hairy-root culture derived enzyme demonstrated a biphasic clearing profile. We demonstrate that master banking of plant material is possible by storage at 4°C for up to 5 months. Conclusion Our results support the feasibility of using plant organ cultures as a successful alternative to traditional transgenic plant and mammalian cell culture technologies.

  11. Inflammatory mediators potentiate high affinity GABA(A) currents in rat dorsal root ganglion neurons.

    Science.gov (United States)

    Lee, Kwan Yeop; Gold, Michael S

    2012-06-19

    Following acute tissue injury action potentials may be initiated in afferent processes terminating in the dorsal horn of the spinal cord that are propagated back out to the periphery, a process referred to as a dorsal root reflex (DRR). The DRR is dependent on the activation of GABA(A) receptors. The prevailing hypothesis is that DRR is due to a depolarizing shift in the chloride equilibrium potential (E(Cl)) following an injury-induced activation of the Na(+)-K(+)-Cl(-)-cotransporter. Because inflammatory mediators (IM), such as prostaglandin E(2) are also released in the spinal cord following tissue injury, as well as evidence that E(Cl) is already depolarized in primary afferents, an alternative hypothesis is that an IM-induced increase in GABA(A) receptor mediated current (I(GABA)) could underlie the injury-induced increase in DRR. To test this hypothesis, we explored the impact of IM (prostaglandin E(2) (1 μM), bradykinin (10 μM), and histamine (1 μM)) on I(GABA) in dissociated rat dorsal root ganglion (DRG) neurons with standard whole cell patch clamp techniques. IM potentiated I(GABA) in a subpopulation of medium to large diameter capsaicin insensitive DRG neurons. This effect was dependent on the concentration of GABA, manifest only at low concentrations (emergence of injury-induced DRR. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  12. Apoptosis-inducing effect of selective sensory or motor nerve injury on skeletal muscle atrophy

    Directory of Open Access Journals (Sweden)

    Lei ZHAO

    2011-09-01

    Full Text Available Objective To explore the apoptosis-inducing effect of selective sensory or motor nerve injury on skeletal muscle atrophy.Methods Thirty healthy adult SD rats were randomly divided into three groups,namely,ventral root transection group(VRT group,received left L4-L6 ventral rhizotomy,dorsal root transection group(DRT group,received left L4-L6 dorsal rhizotomy,and sciatic nerve transection group(SNT group,received left sciatic nerve transection.Each group comprised 10 SD rats.The bilateral gastrocnemius was harvested 10 weeks after operation to observe the apoptosis and Fas/FasL expression of the skeletal muscle cells through fluorescent labeling,transmission electron microscopy,and immunohistochemistry.Result Ten weeks after the denervation,apoptosis-related changes,especially obvious changes of the nuclear apoptotic morphology,were observed in the skeletal muscle cells.The aggregation degree of the nucleus and the expression of Fas/FasL increased in the following order: DRT group,VRT group,and SNT group.No apoptotic body,but early apoptotic morphology,was found in the denervated gastrocnemius through transmission electron microscopy.Conclusions The effect of motor nerve injury on skeletal muscle atrophy is more serious than that of sensory nerve injury.The rebuilding of motor nerves should be preferentially considered in the clinical treatment of muscle atrophy induced by denervation.

  13. An oral form of methylglyoxal-bis-guanylhydrazone reduces monocyte activation and traffic to the dorsal root ganglia in a primate model of HIV-peripheral neuropathy.

    Science.gov (United States)

    Lakritz, Jessica R; Yalamanchili, Samshita; Polydefkis, Michael J; Miller, Andrew D; McGrath, Michael S; Williams, Kenneth C; Burdo, Tricia H

    2017-08-01

    Peripheral neuropathy (PN) is a major comorbidity of HIV infection that is caused in part by chronic immune activation. HIV-PN is associated with infiltration of monocytes/macrophages to the dorsal root ganglia (DRG) causing neuronal loss and formation of Nageotte nodules. Here, we used an oral form of methylglyoxal-bis-guanylhydrazone (MGBG), a polyamine biosynthesis inhibitor, to specifically reduce activation of myeloid cells. MGBG is selectively taken up by monocyte/macrophages in vitro and inhibits HIV p24 expression and DNA viral integration in macrophages. Here, MGBG was administered to nine SIV-infected, CD8-depleted rhesus macaques at 21 days post-infection (dpi). An additional nine SIV-infected, CD8-depleted rhesus macaques were used as untreated controls. Cell traffic to tissues was measured by in vivo BrdU pulse labeling. MGBG treatment significantly diminished DRG histopathology and reduced the number of CD68+ and CD163+ macrophages in DRG tissue. The number of recently trafficked BrdU+ cells in the DRG was significantly reduced with MGBG treatment. Despite diminished DRG pathology, intraepidermal nerve fiber density (IENFD) did not recover after treatment with MGBG. These data suggest that MGBG alleviated DRG pathology and inflammation.

  14. The longitudinal epineural incision and complete nerve transection method for modeling sciatic nerve injury

    Directory of Open Access Journals (Sweden)

    Xing-long Cheng

    2015-01-01

    Full Text Available Injury severity, operative technique and nerve regeneration are important factors to consider when constructing a model of peripheral nerve injury. Here, we present a novel peripheral nerve injury model and compare it with the complete sciatic nerve transection method. In the experimental group, under a microscope, a 3-mm longitudinal incision was made in the epineurium of the sciatic nerve to reveal the nerve fibers, which were then transected. The small, longitudinal incision in the epineurium was then sutured closed, requiring no stump anastomosis. In the control group, the sciatic nerve was completely transected, and the epineurium was repaired by anastomosis. At 2 and 4 weeks after surgery, Wallerian degeneration was observed in both groups. In the experimental group, at 8 and 12 weeks after surgery, distinct medullary nerve fibers and axons were observed in the injured sciatic nerve. Regular, dense myelin sheaths were visible, as well as some scarring. By 12 weeks, the myelin sheaths were normal and intact, and a tight lamellar structure was observed. Functionally, limb movement and nerve conduction recovered in the injured region between 4 and 12 weeks. The present results demonstrate that longitudinal epineural incision with nerve transection can stably replicate a model of Sunderland grade IV peripheral nerve injury. Compared with the complete sciatic nerve transection model, our method reduced the difficulties of micromanipulation and surgery time, and resulted in good stump restoration, nerve regeneration, and functional recovery.

  15. Development of biomaterial scaffold for nerve tissue engineering: Biomaterial mediated neural regeneration

    Directory of Open Access Journals (Sweden)

    Sethuraman Swaminathan

    2009-11-01

    Full Text Available Abstract Neural tissue repair and regeneration strategies have received a great deal of attention because it directly affects the quality of the patient's life. There are many scientific challenges to regenerate nerve while using conventional autologous nerve grafts and from the newly developed therapeutic strategies for the reconstruction of damaged nerves. Recent advancements in nerve regeneration have involved the application of tissue engineering principles and this has evolved a new perspective to neural therapy. The success of neural tissue engineering is mainly based on the regulation of cell behavior and tissue progression through the development of a synthetic scaffold that is analogous to the natural extracellular matrix and can support three-dimensional cell cultures. As the natural extracellular matrix provides an ideal environment for topographical, electrical and chemical cues to the adhesion and proliferation of neural cells, there exists a need to develop a synthetic scaffold that would be biocompatible, immunologically inert, conducting, biodegradable, and infection-resistant biomaterial to support neurite outgrowth. This review outlines the rationale for effective neural tissue engineering through the use of suitable biomaterials and scaffolding techniques for fabrication of a construct that would allow the neurons to adhere, proliferate and eventually form nerves.

  16. Hepcidin Protects Neuron from Hemin-Mediated Injury by Reducing Iron

    Directory of Open Access Journals (Sweden)

    Yu-Fu Zhou

    2017-05-01

    Full Text Available Hemin plays a key role in mediating secondary neuronal injury after intracerebral hemorrhage (ICH and the cell toxicity of hemin is thought to be due to iron that is liberated when hemin is degraded. In a recent study, we demonstrated the iron regulatory hormone hepcidin reduces brain iron in iron-overloaded rats. Therefore, we hypothesized that hepcidin might be able to reduce iron and then protect neurons from hemin or iron-mediated neurotoxicity in hemin-treated neuronal cells. Here, we tested the hypothesis and demonstrated that ad-hepcidin and hepcidin peptide both have the ability to suppress the hemin-induced increase in LDH release and apoptotic cell numbers, to reduce cell iron and ferritin contents, and to inhibit expression of transferrin receptor 1, divalent metal transporter 1, and ferroportin 1 in hemin-treated neurons. We conclude that hepcidin protects neuron from hemin-mediated injury by reducing iron via inhibition of expression of iron transport proteins.

  17. Jasmonic Acid Enhances Al-Induced Root Growth Inhibition.

    Science.gov (United States)

    Yang, Zhong-Bao; He, Chunmei; Ma, Yanqi; Herde, Marco; Ding, Zhaojun

    2017-02-01

    Phytohormones such as ethylene and auxin are involved in the regulation of the aluminum (Al)-induced root growth inhibition. Although jasmonate (JA) has been reported to play a crucial role in the regulation of root growth and development in response to environmental stresses through interplay with ethylene and auxin, its role in the regulation of root growth response to Al stress is not yet known. In an attempt to elucidate the role of JA, we found that exogenous application of JA enhanced the Al-induced root growth inhibition. Furthermore, phenotype analysis with mutants defective in either JA biosynthesis or signaling suggests that JA is involved in the regulation of Al-induced root growth inhibition. The expression of the JA receptor CORONATINE INSENSITIVE1 (COI1) and the key JA signaling regulator MYC2 was up-regulated in response to Al stress in the root tips. This process together with COI1-mediated Al-induced root growth inhibition under Al stress was controlled by ethylene but not auxin. Transcriptomic analysis revealed that many responsive genes under Al stress were regulated by JA signaling. The differential responsive of microtubule organization-related genes between the wild-type and coi1-2 mutant is consistent with the changed depolymerization of cortical microtubules in coi1 under Al stress. In addition, ALMT-mediated malate exudation and thus Al exclusion from roots in response to Al stress was also regulated by COI1-mediated JA signaling. Together, this study suggests that root growth inhibition is regulated by COI1-mediated JA signaling independent from auxin signaling and provides novel insights into the phytohormone-mediated root growth inhibition in response to Al stress. © 2017 American Society of Plant Biologists. All Rights Reserved.

  18. Homeobox gene expression in adult dorsal root ganglia: Is regeneration a recapitulation of development?

    NARCIS (Netherlands)

    Vogelaar, C.F.

    2003-01-01

    Neurons of the peripheral nervous system are able to regenerate their peripheral axons after injury, leading to complete recovery of sensory and motor function. The sciatic nerve crush model is frequently used to study peripheral nerve regeneration. Sensory neurons in the dorsal root ganglia (DRGs)

  19. Nerve Growth Factor in Cancer Cell Death and Survival

    Energy Technology Data Exchange (ETDEWEB)

    Molloy, Niamh H.; Read, Danielle E.; Gorman, Adrienne M., E-mail: adrienne.gorman@nuigalway.ie [Apoptosis Research Centre, School of Natural Sciences, National University of Ireland, Galway (Ireland)

    2011-02-01

    One of the major challenges for cancer therapeutics is the resistance of many tumor cells to induction of cell death due to pro-survival signaling in the cancer cells. Here we review the growing literature which shows that neurotrophins contribute to pro-survival signaling in many different types of cancer. In particular, nerve growth factor, the archetypal neurotrophin, has been shown to play a role in tumorigenesis over the past decade. Nerve growth factor mediates its effects through its two cognate receptors, TrkA, a receptor tyrosine kinase and p75{sup NTR}, a member of the death receptor superfamily. Depending on the tumor origin, pro-survival signaling can be mediated by TrkA receptors or by p75{sup NTR}. For example, in breast cancer the aberrant expression of nerve growth factor stimulates proliferative signaling through TrkA and pro-survival signaling through p75{sup NTR}. This latter signaling through p75{sup NTR} promotes increased resistance to the induction of cell death by chemotherapeutic treatments. In contrast, in prostate cells the p75{sup NTR} mediates cell death and prevents metastasis. In prostate cancer, expression of this receptor is lost, which contributes to tumor progression by allowing cells to survive, proliferate and metastasize. This review focuses on our current knowledge of neurotrophin signaling in cancer, with a particular emphasis on nerve growth factor regulation of cell death and survival in cancer.

  20. Influence of oculomotor nerve afferents on central endings of primary trigeminal fibers.

    Science.gov (United States)

    Manni, E; Bortolami, R; Pettorossi, V E; Lucchi, M L; Callegari, E; Draicchio, F

    1987-12-01

    Painful fibers running in the third nerve and originating from the ophthalmic trigeminal area send their central projections at level of substantia gelatinosa of nucleus caudalis trigemini. The central endings of these fibers form axoaxonic synapses with trigeminal fibers entering the brain stem through the trigeminal root. The effect of electrical stimulation of the third nerve central stump on the central endings of trigeminal afferent fibers consists in an increased excitability, possibly resulting in a presynaptic inhibition. This inhibitory influence is due to both direct and indirect connections of the third nerve afferent fibers with the trigeminal ones.

  1. Hepatic Branch Vagus Nerve Plays a Critical Role in the Recovery of Post-Ischemic Glucose Intolerance and Mediates a Neuroprotective Effect by Hypothalamic Orexin-A

    Science.gov (United States)

    Harada, Shinichi; Yamazaki, Yui; Koda, Shuichi; Tokuyama, Shogo

    2014-01-01

    Orexin-A (a neuropeptide in the hypothalamus) plays an important role in many physiological functions, including the regulation of glucose metabolism. We have previously found that the development of post-ischemic glucose intolerance is one of the triggers of ischemic neuronal damage, which is suppressed by hypothalamic orexin-A. Other reports have shown that the communication system between brain and peripheral tissues through the autonomic nervous system (sympathetic, parasympathetic and vagus nerve) is important for maintaining glucose and energy metabolism. The aim of this study was to determine the involvement of the hepatic vagus nerve on hypothalamic orexin-A-mediated suppression of post-ischemic glucose intolerance development and ischemic neuronal damage. Male ddY mice were subjected to middle cerebral artery occlusion (MCAO) for 2 h. Intrahypothalamic orexin-A (5 pmol/mouse) administration significantly suppressed the development of post-ischemic glucose intolerance and neuronal damage on day 1 and 3, respectively after MCAO. MCAO-induced decrease of hepatic insulin receptors and increase of hepatic gluconeogenic enzymes on day 1 after was reversed to control levels by orexin-A. This effect was reversed by intramedullary administration of the orexin-1 receptor antagonist, SB334867, or hepatic vagotomy. In the medulla oblongata, orexin-A induced the co-localization of cholin acetyltransferase (cholinergic neuronal marker used for the vagus nerve) with orexin-1 receptor and c-Fos (activated neural cells marker). These results suggest that the hepatic branch vagus nerve projecting from the medulla oblongata plays an important role in the recovery of post-ischemic glucose intolerance and mediates a neuroprotective effect by hypothalamic orexin-A. PMID:24759941

  2. Hepatic branch vagus nerve plays a critical role in the recovery of post-ischemic glucose intolerance and mediates a neuroprotective effect by hypothalamic orexin-A.

    Directory of Open Access Journals (Sweden)

    Shinichi Harada

    Full Text Available Orexin-A (a neuropeptide in the hypothalamus plays an important role in many physiological functions, including the regulation of glucose metabolism. We have previously found that the development of post-ischemic glucose intolerance is one of the triggers of ischemic neuronal damage, which is suppressed by hypothalamic orexin-A. Other reports have shown that the communication system between brain and peripheral tissues through the autonomic nervous system (sympathetic, parasympathetic and vagus nerve is important for maintaining glucose and energy metabolism. The aim of this study was to determine the involvement of the hepatic vagus nerve on hypothalamic orexin-A-mediated suppression of post-ischemic glucose intolerance development and ischemic neuronal damage. Male ddY mice were subjected to middle cerebral artery occlusion (MCAO for 2 h. Intrahypothalamic orexin-A (5 pmol/mouse administration significantly suppressed the development of post-ischemic glucose intolerance and neuronal damage on day 1 and 3, respectively after MCAO. MCAO-induced decrease of hepatic insulin receptors and increase of hepatic gluconeogenic enzymes on day 1 after was reversed to control levels by orexin-A. This effect was reversed by intramedullary administration of the orexin-1 receptor antagonist, SB334867, or hepatic vagotomy. In the medulla oblongata, orexin-A induced the co-localization of cholin acetyltransferase (cholinergic neuronal marker used for the vagus nerve with orexin-1 receptor and c-Fos (activated neural cells marker. These results suggest that the hepatic branch vagus nerve projecting from the medulla oblongata plays an important role in the recovery of post-ischemic glucose intolerance and mediates a neuroprotective effect by hypothalamic orexin-A.

  3. [Relevance of nerve blocks in treating and diagnosing low back pain--is the quality decisive?].

    Science.gov (United States)

    Hildebrandt, J

    2001-12-01

    predictive value of 95% and an untested negative predictive value [66]. Some studies repeatedly demonstrated that pain relief by nerve root block does not predict success by neuroablative procedures, neither by dorsal rhyzotomy nor by dorsal gangliectomy [46]. Therapeutic nerve blocks - facet joints: Intraarticular injection of steroids offer no greater benefit than injections of normal saline [8, 15] and long lasting success is lacking. In this case, a denervation of the medial branches can be considered. To date three randomized controlled studies of radiofrequency facet denervation have been published. One study [20] reported only modest outcomes and its results remained inconclusive, another study [72] with a double blind controlled design showed some effects in a small selected group of patients (adjusted odds ratio 4.8) 3, 6 and 12 months after treatment, concerning not only reduction of pain but alleviating functional disability also. The third study (34a) showed no effect 3 months after treatment. Discogenic pain: Intradiscal radiofrequency lesions, intradiscal injections of steroids and phenol have been advocated, but there are no well controlled studies. Just recently, intradiscal lesion and denervation of the anulus has been described with promising results, but a randomized controlled study is lacking up to now [31, 55]. Epidural Steroids: Steroids relieve pain by reducing inflammation and by blocking transmission of nociceptive C-fiber input. Koes et al. [33] reviewed the randomized trials of epidural steroids: To date, 15 trials have been performed to evaluate the efficacy, 11 of which showed method scores of 50 points (from 100) ore more. The trials showed inconsistent results of epidural injections. Of the 15 trials, 8 reported positive results and 7 others reported negative results. Consequently the efficacy of epidural steroid injections has not yet been established. The benefits of epidural steroid injections seem to be of short duration only. Future

  4. Retinal glia promote dorsal root ganglion axon regeneration.

    Directory of Open Access Journals (Sweden)

    Barbara Lorber

    Full Text Available Axon regeneration in the adult central nervous system (CNS is limited by several factors including a lack of neurotrophic support. Recent studies have shown that glia from the adult rat CNS, specifically retinal astrocytes and Müller glia, can promote regeneration of retinal ganglion cell axons. In the present study we investigated whether retinal glia also exert a growth promoting effect outside the visual system. We found that retinal glial conditioned medium significantly enhanced neurite growth and branching of adult rat dorsal root ganglion neurons (DRG in culture. Furthermore, transplantation of retinal glia significantly enhanced regeneration of DRG axons past the dorsal root entry zone after root crush in adult rats. To identify the factors that mediate the growth promoting effects of retinal glia, mass spectrometric analysis of retinal glial conditioned medium was performed. Apolipoprotein E and secreted protein acidic and rich in cysteine (SPARC were found to be present in high abundance, a finding further confirmed by western blotting. Inhibition of Apolipoprotein E and SPARC significantly reduced the neuritogenic effects of retinal glial conditioned medium on DRG in culture, suggesting that Apolipoprotein E and SPARC are the major mediators of this regenerative response.

  5. Multi-omics analysis identifies genes mediating the extension of cell walls in the Arabidopsis thaliana root elongation zone

    DEFF Research Database (Denmark)

    Wilson, Michael H; Holman, Tara J; Sørensen, Iben

    2015-01-01

    Plant cell wall composition is important for regulating growth rates, especially in roots. However, neither analyses of cell wall composition nor transcriptomes on their own can comprehensively reveal which genes and processes are mediating growth and cell elongation rates. This study reveals...... the benefits of carrying out multiple analyses in combination. Sections of roots from five anatomically and functionally defined zones in Arabidopsis thaliana were prepared and divided into three biological replicates. We used glycan microarrays and antibodies to identify the major classes of glycans......)cellular localization of many epitopes. Extensins were localized in epidermal and cortex cell walls, while AGP glycans were specific to different tissues from root-hair cells to the stele. The transcriptome analysis found several gene families peaking in the REZ. These included a large family of peroxidases (which...

  6. Effects of sciatic nerve transection on glucose uptake in the presence and absence of lactate in the frog dorsal root ganglia and spinal cord

    Directory of Open Access Journals (Sweden)

    F Rigon

    Full Text Available Frogs have been used as an alternative model to study pain mechanisms because the simplicity of their nervous tissue and the phylogenetic aspect of this question. One of these models is the sciatic nerve transection (SNT, which mimics the clinical symptoms of “phantom limb”, a condition that arises in humans after amputation or transverse spinal lesions. In mammals, the SNT increases glucose metabolism in the central nervous system, and the lactate generated appears to serve as an energy source for nerve cells. An answerable question is whether there is elevated glucose uptake in the dorsal root ganglia (DRG after peripheral axotomy. As glucose is the major energy substrate for frog nervous tissue, and these animals accumulate lactic acid under some conditions, bullfrogs Lithobates catesbeianus were used to demonstrate the effect of SNT on DRG and spinal cord 1-[14C] 2-deoxy-D-glucose (14C-2-DG uptake in the presence and absence of lactate. We also investigated the effect of this condition on the formation of 14CO2 from 14C-glucose and 14C-L-lactate, and plasmatic glucose and lactate levels. The 3-O-[14C] methyl-D-glucose (14C-3-OMG uptake was used to demonstrate the steady-state tissue/medium glucose distribution ratio under these conditions. Three days after SNT, 14C-2-DG uptake increased, but 14C-3-OMG uptake remained steady. The increase in 14C-2-DG uptake was lower when lactate was added to the incubation medium. No change was found in glucose and lactate oxidation after SNT, but lactate and glucose levels in the blood were reduced. Thus, our results showed that SNT increased the glucose metabolism in the frog DRG and spinal cord. The effect of lactate on this uptake suggests that glucose is used in glycolytic pathways after SNT.

  7. Neurotization of the biceps muscle by end-to-side neurorraphy between ulnar and musculocutaneous nerves. A series of five cases.

    Science.gov (United States)

    Franciosi, L F; Modestti, C; Mueller, S F

    1998-01-01

    Three patients with avulsed C5, C6, and C7 roots and two patients with avulsed C5 and C6 roots after trauma of the brachial plexus, were treated by neurotization of the biceps using nerve fibers derived from the ulnar nerve and obtained by end-to-side neurorraphy between the ulnar and musculocutaneous nerves. The age of patients ranged from 19 to 45. The interval between the accident and surgery was 2 to 13 months. Return of biceps contraction was observed 4 to 6 months after surgery. Four patients recovered grade 4 elbow flexion. One 45-year-old patient did not obtain any biceps contraction after 9 months.

  8. Morphological pattern of intrinsic nerve plexus distributed on the rabbit heart and interatrial septum

    Science.gov (United States)

    Saburkina, Inga; Gukauskiene, Ligita; Rysevaite, Kristina; Brack, Kieran E; Pauza, Audrys G; Pauziene, Neringa; Pauza, Dainius H

    2014-01-01

    Although the rabbit is routinely used as the animal model of choice to investigate cardiac electrophysiology, the neuroanatomy of the rabbit heart is not well documented. The aim of this study was to examine the topography of the intrinsic nerve plexus located on the rabbit heart surface and interatrial septum stained histochemically for acetylcholinesterase using pressure-distended whole hearts and whole-mount preparations from 33 Californian rabbits. Mediastinal cardiac nerves entered the venous part of the heart along the root of the right cranial vein (superior caval vein) and at the bifurcation of the pulmonary trunk. The accessing nerves of the venous part of the heart passed into the nerve plexus of heart hilum at the heart base. Nerves approaching the heart extended epicardially and innervated the atria, interatrial septum and ventricles by five nerve subplexuses, i.e. left and middle dorsal, dorsal right atrial, ventral right and left atrial subplexuses. Numerous nerves accessed the arterial part of the arterial part of the heart hilum between the aorta and pulmonary trunk, and distributed onto ventricles by the left and right coronary subplexuses. Clusters of intrinsic cardiac neurons were concentrated at the heart base at the roots of pulmonary veins with some positioned on the infundibulum. The mean number of intrinsic neurons in the rabbit heart is not significantly affected by aging: 2200 ± 262 (range 1517–2788; aged) vs. 2118 ± 108 (range 1513–2822; juvenile). In conclusion, despite anatomic differences in the distribution of intrinsic cardiac neurons and the presence of well-developed nerve plexus within the heart hilum, the topography of all seven subplexuses of the intrinsic nerve plexus in rabbit heart corresponds rather well to other mammalian species, including humans. PMID:24527844

  9. Recovery of the sub-basal nerve plexus and superficial nerve terminals after corneal epithelial injury in mice.

    Science.gov (United States)

    Downie, Laura E; Naranjo Golborne, Cecilia; Chen, Merry; Ho, Ngoc; Hoac, Cam; Liyanapathirana, Dasun; Luo, Carol; Wu, Ruo Bing; Chinnery, Holly R

    2018-06-01

    Our aim was to compare regeneration of the sub-basal nerve plexus (SBNP) and superficial nerve terminals (SNT) following corneal epithelial injury. We also sought to compare agreement when quantifying nerve parameters using different image analysis techniques. Anesthetized, female C57BL/6 mice received central 1-mm corneal epithelial abrasions. Four-weeks post-injury, eyes were enucleated and processed for PGP9.5 to visualize the corneal nerves using wholemount immunofluorescence staining and confocal microscopy. The percentage area of the SBNP and SNT were quantified using: ImageJ automated thresholds, ImageJ manual thresholds and manual tracings in NeuronJ. Nerve sum length was quantified using NeuronJ and Imaris. Agreement between methods was considered with Bland-Altman analyses. Four-weeks post-injury, the sum length of nerve fibers in the SBNP, but not the SNT, was reduced compared with naïve eyes. In the periphery, but not central cornea, of both naïve and injured eyes, nerve fiber lengths in the SBNP and SNT were strongly correlated. For quantifying SBNP nerve axon area, all image analysis methods were highly correlated. In the SNT, there was poor correlation between manual methods and auto-thresholding, with a trend towards underestimating nerve fiber area using auto-thresholding when higher proportions of nerve fibers were present. In conclusion, four weeks after superficial corneal injury, there is differential recovery of epithelial nerve axons; SBNP sum length is reduced, however the sum length of SNTs is similar to naïve eyes. Care should be taken when selecting image analysis methods to compare nerve parameters in different depths of the corneal epithelium due to differences in background autofluorescence. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Root rots

    Science.gov (United States)

    Kathryn Robbins; Philip M. Wargo

    1989-01-01

    Root rots of central hardwoods are diseases caused by fungi that infect and decay woody roots and sometimes also invade the butt portion of the tree. By killing and decaying roots, root rotting fungi reduce growth, decrease tree vigor, and cause windthrow and death. The most common root diseases of central hardwoods are Armillaria root rot, lnonotus root rot, and...

  11. Afferent fibers and sensory ganglion cells within the oculomotor nerve in some mammals and man. II. Electrophysiological investigations.

    Science.gov (United States)

    Manni, E; Bortolami, R; Pettorossi, V E; Lucchi, M L; Callegari, E

    1978-01-01

    The main aim of the present study was to localize with electrophysiological techniques the central projections and terminations of the aberrant trigeminal fibres contained in the oculomotor nerve of the lamb. After severing a trigeminal root, single-shock electrical stimulation of the trigeminal axons present in the central stump of the ipsilateral oculomotor nerve evoked field potentials in the area of, i) the subnucleus gelatinosus of the nucleus caudalis trigemini at the level of C1-C2; ii) the main sensory trigeminal nucleus; iii) the descending trigeminal nucleus and tract; iv) the adjacent reticular formation. Units whose discharge rate was influenced by such a stimulation were also found in the same territories. These regions actually exhibited degenerations after cutting an oculomotor nerve. We conclude, therefore, that the trigeminal fibres which leave the Vth nerve at the level of the cavernous sinus and enter the brain stem through the IIIrd nerve, end in the same structures which receive the terminations of the afferent fibres entering the brain stem through the sensory trigeminal root.

  12. Rapid, simple and direct detection of Meloidogyne hapla from infected root galls using loop-mediated isothermal amplification combined with FTA technology

    OpenAIRE

    Peng, Huan; Long, Haibo; Huang, Wenkun; Liu, Jing; Cui, Jiangkuan; Kong, Lingan; Hu, Xianqi; Gu, Jianfeng; Peng, Deliang

    2017-01-01

    The northern root-knot nematode (Meloidogyne hapla) is a damaging nematode that has caused serious economic losses worldwide. In the present study, a sensitive, simple and rapid method was developed for detection of M. hapla in infested plant roots by combining a Flinders Technology Associates (FTA) card with loop-mediated isothermal amplification (LAMP). The specific primers of LAMP were designed based on the distinction of internal transcribed spacer (ITS) sequences between M. hapla and oth...

  13. Plant-Microbe Communication Enhances Auxin Biosynthesis by a Root-Associated Bacterium, Bacillus amyloliquefaciens SQR9.

    Science.gov (United States)

    Liu, Yunpeng; Chen, Lin; Zhang, Nan; Li, Zunfeng; Zhang, Guishan; Xu, Yu; Shen, Qirong; Zhang, Ruifu

    2016-04-01

    Mechanisms by which beneficial rhizobacteria promote plant growth include tryptophan-dependent indole-3-acetic acid (IAA) synthesis. The abundance of tryptophan in the rhizosphere, however, may influence the level of benefit provided by IAA-producing rhizobacteria. This study examined the cucumber-Bacillus amyloliquefaciens SQR9 system and found that SQR9, a bacterium previously shown to enhance the growth of cucumber, increased root secretion of tryptophan by three- to fourfold. Using a split-root system, SQR9 colonization of roots in one chamber not only increased tryptophan secretion from the noninoculated roots but also increased the expression of the cucumber tryptophan transport gene but not the anthranilate synthesis gene in those roots. The increased tryptophan in isolated rhizosphere exudates was sufficient to support increased IAA production by SQR9. Moreover, SQR9 colonization of roots in one chamber in the split-root system resulted in sufficient tryptophan production by the other roots to upregulate SQR9 IAA biosynthesis genes, including a 27-fold increase in the indole-3-acetonitrilase gene yhcX during subsequent colonization of those roots. Deletion of yhcX eliminated SQR9-mediated increases in root surface area, likely by reducing IAA-stimulated lateral root growth. This study demonstrates a chemical dialogue between B. amyloliquefaciens and cucumber in which this communication contributes to bacteria-mediated plant-growth enhancement.

  14. Concepts of nerve regeneration and repair applied to brachial plexus reconstruction.

    Science.gov (United States)

    Bertelli, Jayme Augusto; Ghizoni, Marcos Flávio

    2006-01-01

    Brachial plexus injury is a serious condition that usually affects young adults. Progress in brachial plexus repair is intimately related to peripheral nerve surgery, and depends on clinical and experimental studies. We review the rat brachial plexus as an experimental model, together with its behavioral evaluation. Techniques to repair nerves, such as neurolysis, nerve coaptation, nerve grafting, nerve transfer, fascicular transfer, direct muscle neurotization, and end-to-side neurorraphy, are discussed in light of the authors' experimental studies. Intradural repair of the brachial plexus by graft implants into the spinal cord and motor rootlet transfer offer new possibilities in brachial plexus reconstruction. The clinical experience of intradural repair is presented. Surgical planning in root rupture or avulsion is proposed. In total avulsion, the authors are in favor of the reconstruction of thoraco-brachial and abdomino-antebrachial grasping, and on the transfer of the brachialis muscle to the wrist extensors if it is reinnervated. Surgical treatment of painful conditions and new drugs are also discussed.

  15. Competition-Induced Reductions in Soil Water Availability Reduced Pine Root Extension Rates

    Science.gov (United States)

    K.H. Ludovici; L.A. Morris

    1997-01-01

    The relationship between soil water availability, root extension, and shoot growth of loblolly pine seedlings (Pinus taeda L.) was evaluated in a rhizotron sand mixture in the absence and presence of crabgrass (Digitaria spp.) competition. Heights and diameters of seedlings grown with crabgrass were reduced 33 and SO%, respectively, compared with...

  16. Reciprocal regulation of nuclear factor kappa B and its inhibitor ZAS3 after peripheral nerve injury

    Directory of Open Access Journals (Sweden)

    Madiai Francesca

    2006-01-01

    Full Text Available Abstract Background NF-κB binds to the κB motif to regulate transcription of genes involved in growth, immunity and inflammation, and plays a pivotal role in the production of pro-inflammatory cytokines after nerve injuries. The zinc finger protein ZAS3 also binds to the κB or similar motif. In addition to competition for common DNA sites, in vitro experiments have shown that ZAS3 can inhibit NF-κB via the association with TRAF2 to inhibit the nuclear translocation of NF-κB. However, the physiological significance of the ZAS3-mediated inhibition of NF-κB has not been demonstrated. The purpose of this study is to characterize ZAS3 proteins in nervous tissues and to use spinal nerve ligation, a neuropathic pain model, to demonstrate a functional relationship between ZAS3 and NF-κB. Results Immunohistochemical experiments show that ZAS3 is expressed in specific regions of the central and peripheral nervous system. Abundant ZAS3 expression is found in the trigeminal ganglion, hippocampal formation, dorsal root ganglia, and motoneurons. Low levels of ZAS3 expressions are also found in the cerebral cortex and in the grey matter of the spinal cord. In those nervous tissues, ZAS3 is expressed mainly in the cell bodies of neurons and astrocytes. Together with results of Western blot analyses, the data suggest that ZAS3 protein isoforms with differential cellular distribution are produced in a cell-specific manner. Further, neuropathic pain confirmed by persistent mechanical allodynia was manifested in rats seven days after L5 and L6 lumbar spinal nerve ligation. Changes in gene expression, including a decrease in ZAS3 and an increase in the p65 subunit of NF-κB were observed in dorsal root ganglion ipsilateral to the ligation when compared to the contralateral side. Conclusion ZAS3 is expressed in nervous tissues involved in cognitive function and pain modulation. The down-regulation of ZAS3 after peripheral nerve injury may lead to activation of

  17. Pulsed Radiofrequency Applied to the Sciatic Nerve Improves Neuropathic Pain by Down-regulating The Expression of Calcitonin Gene-related Peptide in the Dorsal Root Ganglion

    Science.gov (United States)

    Ren, Hao; Jin, Hailong; Jia, Zipu; Ji, Nan; Luo, Fang

    2018-01-01

    Background: Clinical studies have shown that applying pulsed radiofrequency (PRF) to the neural stem could relieve neuropathic pain (NP), albeit through an unclear analgesic mechanism. And animal experiments have indicated that calcitonin gene-related peptide (CGRP) expressed in the dorsal root ganglion (DRG) is involved in generating and maintaining NP. In this case, it is uncertain whether PRF plays an analgesic role by affecting CGRP expression in DRG. Methods: Rats were randomly divided into four groups: Groups A, B, C, and D. In Groups C and D, the right sciatic nerve was ligated to establish the CCI model, while in Groups A and B, the sciatic nerve was isolated without ligation. After 14 days, the right sciatic nerve in Groups B and D re-exposed and was treated with PRF on the ligation site. Thermal withdrawal latency (TWL) and hindpaw withdrawal threshold (HWT) were measured before PRF treatment (Day 0) as well as after 2, 4, 8, and 14 days of treatment. At the same time points of the behavioral tests, the right L4-L6 DRG was sampled and analyzed for CGRP expression using RT-qPCR and an enzyme-linked immunosorbent assay (ELISA). Results: Fourteen days after sciatic nerve ligation, rats in Groups C and D had a shortened TWL (P 0.05). On the 8th and 14th days, the mRNA levels in Group D were restored to those of Groups A and B. Meanwhile, the CGRP content of Group D gradually dropped over time, from 76.4 pg/mg (Day 0) to 57.5 pg/mg (Day 14). Conclusions: In this study, we found that, after sciatic nerve ligation, rats exhibited apparent hyperalgesia and allodynia, and CGRP mRNA and CGRP contents in the L4-L6 DRG increased significantly. Through lowering CGRP expression in the DRG, PRF treatment might relieve the pain behaviors of NP. PMID:29333099

  18. Intolerance of uncertainty mediates reduced reward anticipation in major depressive disorder.

    Science.gov (United States)

    Nelson, Brady D; Shankman, Stewart A; Proudfit, Greg H

    2014-04-01

    Reduced reward sensitivity has long been considered a fundamental deficit of major depressive disorder (MDD). One way this deficit has been measured is by an asymmetry in electroencephalogram (EEG) activity between left and right frontal brain regions. MDD has been associated with a reduced frontal EEG asymmetry (i.e., decreased left relative to right) while anticipating reward. However, the mechanism (or mediator) of this association is unclear. The present study examined whether intolerance of uncertainty (IU) mediated the association between depression and reduced reward anticipation. Data were obtained from a prior study reporting reduced frontal EEG asymmetry while anticipating reward in early-onset MDD. Participants included 156 individuals with early-onset MDD-only, panic disorder-only, both (comorbids), or controls. Frontal EEG asymmetry was recorded during an uncertain reward anticipation task. Participants completed a self-report measure of IU. All three psychopathology groups reported greater IU relative to controls. Across all participants, greater IU was associated with a reduced frontal EEG asymmetry. Furthermore, IU mediated the relationship between MDD and frontal EEG asymmetry and results remained significant after controlling for neuroticism, suggesting effects were not due to broad negative affectivity. MDD participants were limited to those with early-onset depression. Measures were collected cross-sectionally, precluding causal relationships. IU mediated the relationship between MDD and reduced reward anticipation, independent of neuroticism. Explanations are provided regarding how IU may contribute to reduced reward anticipation in depression. Overall, IU appears to be an important mechanism for the association between depression and reduced reward anticipation. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Optical stimulation of peripheral nerves in vivo

    Science.gov (United States)

    Wells, Jonathon D.

    This dissertation documents the emergence and validation of a new clinical tool that bridges the fields of biomedical optics and neuroscience. The research herein describes an innovative method for direct neurostimulation with pulsed infrared laser light. Safety and effectiveness of this technique are first demonstrated through functional stimulation of the rat sciatic nerve in vivo. The Holmium:YAG laser (lambda = 2.12 mum) is shown to operate at an optimal wavelength for peripheral nerve stimulation with advantages over standard electrical neural stimulation; including contact-free stimulation, high spatial selectivity, and lack of a stimulation artifact. The underlying biophysical mechanism responsible for transient optical nerve stimulation appears to be a small, absorption driven thermal gradient sustained at the axonal layer of nerve. Results explicitly prove that low frequency optical stimulation can reliably stimulate without resulting in tissue thermal damage. Based on the positive results from animal studies, these optimal laser parameters were utilized to move this research into the clinic with a combined safety and efficacy study in human subjects undergoing selective dorsal rhizotomy. The clinical Holmium:YAG laser was used to effectively stimulate human dorsal spinal roots and elicit functional muscle responses recorded during surgery without evidence of nerve damage. Overall these results predict that this technology can be a valuable clinical tool in various neurosurgical applications.

  20. Anatomical etiology of “pseudo-sciatica” from superior cluneal nerve entrapment: a laboratory investigation

    Directory of Open Access Journals (Sweden)

    Konno T

    2017-11-01

    Full Text Available Tomoyuki Konno,1 Yoichi Aota,2 Hiroshi Kuniya,1 Tomoyuki Saito,1 Ning Qu,3 Shogo Hayashi,3 Shinichi Kawata,3 Masahiro Itoh3 1Department of Orthopaedic Surgery, Yokohama City University Graduate School of Medicine, 2Department of Spine & Spinal Cord Surgery, Yokohama Brain and Spine Center, Yokohama, 3Department of Anatomy, Tokyo Medical University, Tokyo, Japan Objective: The superior cluneal nerve (SCN may become entrapped where it pierces the thoracolumbar fascia over the iliac crest; this can cause low back pain (LBP and referred pain radiating into the posterior thigh, calf, and occasionally the foot, producing the condition known as “pseudo-sciatica.” Because the SCN was thought to be a cutaneous branch of the lumbar dorsal rami, originating from the dorsal roots of L1–L3, previous anatomical studies failed to explain why SCN causes “pseudo-sciatica”. The purpose of the present anatomical study was to better elucidate the anatomy and improve the understanding of “pseudo-sciatica” from SCN entrapment. Materials and methods: SCN branches were dissected from their origin to termination in subcutaneous tissue in 16 cadavers (5 male and 11 female with a mean death age of 88 years (range 81–101 years. Special attention was paid to identify SCNs from their emergence from nerve roots and passage through the fascial attachment to the iliac crest. Results: Eighty-one SCN branches were identified originating from T12 to L5 nerve roots with 13 branches passing through the osteofibrous tunnel. These 13 branches originated from L3 (two sides, L4 (six sides, and L5 (five sides. Ten of the 13 branches showed macroscopic entrapment in the tunnel. Conclusion: The majority of SCNs at risk of nerve entrapment originated from the lower lumbar nerve. These anatomical results may explain why patients with SCN entrapment often evince leg pain or tingling that mimics sciatica. Keywords: superior cluneal nerve, entrapment neuropathy, dorsal rami

  1. Allotransplanted neurons used to repair peripheral nerve injury do not elicit overt immunogenicity.

    Directory of Open Access Journals (Sweden)

    Weimin Liu

    Full Text Available A major problem hindering the development of autograft alternatives for repairing peripheral nerve injuries is immunogenicity. We have previously shown successful regeneration in transected rat sciatic nerves using conduits filled with allogeneic dorsal root ganglion (DRG cells without any immunosuppression. In this study, we re-examined the immunogenicity of our DRG neuron implanted conduits as a potential strategy to overcome transplant rejection. A biodegradable NeuraGen® tube was infused with pure DRG neurons or Schwann cells cultured from a rat strain differing from the host rats and used to repair 8 mm gaps in the sciatic nerve. We observed enhanced regeneration with allogeneic cells compared to empty conduits 16 weeks post-surgery, but morphological analyses suggest recovery comparable to the healthy nerves was not achieved. The degree of regeneration was indistinguishable between DRG and Schwann cell allografts although immunogenicity assessments revealed substantially increased presence of Interferon gamma (IFN-γ in Schwann cell allografts compared to the DRG allografts by two weeks post-surgery. Macrophage infiltration of the regenerated nerve graft in the DRG group 16 weeks post-surgery was below the level of the empty conduit (0.56 fold change from NG; p<0.05 while the Schwann cell group revealed significantly higher counts (1.29 fold change from NG; p<0.001. Major histocompatibility complex I (MHC I molecules were present in significantly increased levels in the DRG and Schwann cell allograft groups compared to the hollow NG conduit and the Sham healthy nerve. Our results confirmed previous studies that have reported Schwann cells as being immunogenic, likely due to MHC I expression. Nerve gap injuries are difficult to repair; our data suggest that DRG neurons are superior medium to implant inside conduit tubes due to reduced immunogenicity and represent a potential treatment strategy that could be preferable to the current gold

  2. Reconstruction of facial nerve injuries in children.

    Science.gov (United States)

    Fattah, Adel; Borschel, Gregory H; Zuker, Ron M

    2011-05-01

    Facial nerve trauma is uncommon in children, and many spontaneously recover some function; nonetheless, loss of facial nerve activity leads to functional impairment of ocular and oral sphincters and nasal orifice. In many cases, the impediment posed by facial asymmetry and reduced mimetic function more significantly affects the child's psychosocial interactions. As such, reconstruction of the facial nerve affords great benefits in quality of life. The therapeutic strategy is dependent on numerous factors, including the cause of facial nerve injury, the deficit, the prognosis for recovery, and the time elapsed since the injury. The options for treatment include a diverse range of surgical techniques including static lifts and slings, nerve repairs, nerve grafts and nerve transfers, regional, and microvascular free muscle transfer. We review our strategies for addressing facial nerve injuries in children.

  3. PKCɛ mediates substance P inhibition of GABAA receptors-mediated current in rat dorsal root ganglion.

    Science.gov (United States)

    Li, Li; Zhao, Lei; Wang, Yang; Ma, Ke-tao; Shi, Wen-yan; Wang, Ying-zi; Si, Jun-qiang

    2015-02-01

    The mechanism underlying the modulatory effect of substance P (SP) on GABA-activated response in rat dorsal root ganglion (DRG) neurons was investigated. In freshly dissociated rat DRG neurons, whole-cell patch-clamp technique was used to record GABA-activated current and sharp electrode intracellular recording technique was used to record GABA-induced membrane depolarization. Application of GABA (1-1000 μmol/L) induced an inward current in a concentration-dependent manner in 114 out of 127 DRG neurons (89.8 %) examined with whole-cell patch-clamp recordings. Bath application of GABA (1-1000 μmol/L) evoked a depolarizing response in 236 out of 257 (91.8%) DRG neurons examined with intracellular recordings. Application of SP (0.001-1 μmol/L) suppressed the GABA-activated inward current and membrane depolarization. The inhibitory effects were concentration-dependent and could be blocked by the selective neurokinin 1 (NK1) receptors antagonist spantide but not by L659187 and SR142801 (1 μmol/L, n=7), selective antagonists of NK2 and NK3. The inhibitory effect of SP was significantly reduced by the calcium chelator BAPTA-AM, phospholipase C (PLC) inhibitor U73122, and PKC inhibitor chelerythrine, respectively. The PKA inhibitor H-89 did not affect the SP effect. Remarkably, the inhibitory effect of SP on GABA-activated current was nearly completely removed by a selective PKCε inhibitor epilon-V1-2 but not by safingol and LY333531, selective inhibitors of PKCα and PKCβ. Our results suggest that NK1 receptor mediates SP-induced inhibition of GABA-activated current and membrane depolarization by activating intracellular PLC-Ca²⁺-PKCε cascade. SP might regulate the excitability of peripheral nociceptors through inhibition of the "pre-synaptic inhibition" evoked by GABA, which may explain its role in pain and neurogenic inflammation.

  4. Identification, Validation and Utilization of Novel Nematode-Responsive Root-Specific Promoters in Arabidopsis for Inducing Host-Delivered RNAi Mediated Root-Knot Nematode Resistance

    Directory of Open Access Journals (Sweden)

    Atul Kakrana

    2017-12-01

    Full Text Available The root-knot nematode (RKN, Meloidogyne incognita, is an obligate, sedentary endoparasite that infects a large number of crops and severely affects productivity. The commonly used nematode control strategies have their own limitations. Of late, RNA interference (RNAi has become a popular approach for the development of nematode resistance in plants. Transgenic crops capable of expressing dsRNAs, specifically in roots for disrupting the parasitic process, offer an effective and efficient means of producing resistant crops. We identified nematode-responsive and root-specific (NRRS promoters by using microarray data from the public domain and known conserved cis-elements. A set of 51 NRRS genes was identified which was narrowed down further on the basis of presence of cis-elements combined with minimal expression in the absence of nematode infection. The comparative analysis of promoters from the enriched NRRS set, along with earlier reported nematode-responsive genes, led to the identification of specific cis-elements. The promoters of two candidate genes were used to generate transgenic plants harboring promoter GUS constructs and tested in planta against nematodes. Both promoters showed preferential expression upon nematode infection, exclusively in the root in one and galls in the other. One of these NRRS promoters was used to drive the expression of splicing factor, a nematode-specific gene, for generating host-delivered RNAi-mediated nematode-resistant plants. Transgenic lines expressing dsRNA of splicing factor under the NRRS promoter exhibited upto a 32% reduction in number of galls compared to control plants.

  5. Phytotoxic grass residues reduce germination and initial root growth of ponderosa pine

    Science.gov (United States)

    W. J. Rietveld

    1975-01-01

    Extracts of green foliage of Arizona fescue and mountain muhly significantly reduced germination of ponderosa pine seeds, and retarded speed of elongation and mean radicle length. Three possible routes of release of the inhibitor were investigated: (1) leaching from live foliage, (2) root exudation, and (3) overwinter leaching from dead residues. The principal route...

  6. Terminal nerve: cranial nerve zero

    Directory of Open Access Journals (Sweden)

    Jorge Eduardo Duque Parra

    2006-12-01

    Full Text Available It has been stated, in different types of texts, that there are only twelve pairs of cranial nerves. Such texts exclude the existence of another cranial pair, the terminal nerve or even cranial zero. This paper considers the mentioned nerve like a cranial pair, specifying both its connections and its functional role in the migration of liberating neurons of the gonadotropic hormone (Gn RH. In this paper is also stated the hypothesis of the phylogenetic existence of a cerebral sector and a common nerve that integrates the terminal nerve with the olfactory nerves and the vomeronasals nerves which seem to carry out the odors detection function as well as in the food search, pheromone detection and nasal vascular regulation.

  7. Anomalous rostral lumbosacral root emergence from the thecal sac

    International Nuclear Information System (INIS)

    Peyster, R.G.; Parghi, A.; Siegal, T.; Hershey, B.L.; Yablon, J.; Jaffe, S.

    1989-01-01

    Anomalous rostral lumbosacral root emergence (AARE) has important clinical implications and has received little attention. The authors have studied the occurrence of this anomaly and presentation of cases in which it was paramount in causing radiculopathy. AARE was noted with the following occurrence rates in 500 cases: L3, 0%; L4, 1%; L5, 9%, and S1, 16%. In ARRE, the roots lie laterally between the superior facet and the annulus and are subject to compression by minimal disk bulging or facet hypertrophy. One must track the individual nerve roots on lumbar CT and MR imaging to detect this subtle condition

  8. Wet cupping therapy improves local blood perfusion and analgesic effects in patients with nerve-root type cervical spondylosis.

    Science.gov (United States)

    Meng, Xiang-Wen; Wang, Ying; Piao, Sheng-Ai; Lv, Wen-Tao; Zhu, Cheng-Hui; Mu, Ming-Yuan; Li, Dan-Dan; Liu, Hua-Peng; Guo, Yi

    2018-01-15

    To observe wet cupping therapy (WCT) on local blood perfusion and analgesic effects in patients with nerve-root type cervical spondylosis (NT-CS). Fifty-seven NT-CS patients were randomly divided into WCT group and Jiaji acupoint-acupuncture (JA) group according a random number table. WCT group (30 cases) was treated with WCT for 10 min, and JA group (27 cases) was treated with acupuncture for 10 min. The treatment effificacies were evaluated with a Visual Analogue Scale (VAS). Blood perfusion at Dazhui (GV 14) and Jianjing (GB 21) acupoints (affected side) was observed with a laser speckle flflowmetry, and its variations before and after treatment in both groups were compared as well. In both groups, the VAS scores signifificantly decreased after the intervention (P<0.01), while the blood perfusion at the two acupoints signifificantly increased after intervention (P<0.05); however, the increasement magnitude caused by WCT was obvious compared with JA (P<0.05). WCT could improve analgesic effects in patients with NT-CS, which might be related to increasing local blood perfusion of acupunct points.

  9. Composite Cucurbita pepo plants with transgenic roots as a tool to study root development.

    Science.gov (United States)

    Ilina, Elena L; Logachov, Anton A; Laplaze, Laurent; Demchenko, Nikolay P; Pawlowski, Katharina; Demchenko, Kirill N

    2012-07-01

    In most plant species, initiation of lateral root primordia occurs above the elongation zone. However, in cucurbits and some other species, lateral root primordia initiation and development takes place in the apical meristem of the parental root. Composite transgenic plants obtained by Agrobacterium rhizogenes-mediated transformation are known as a suitable model to study root development. The aim of the present study was to establish this transformation technique for squash. The auxin-responsive promoter DR5 was cloned into the binary vectors pKGW-RR-MGW and pMDC162-GFP. Incorporation of 5-ethynyl-2'-deoxyuridine (EdU) was used to evaluate the presence of DNA-synthesizing cells in the hypocotyl of squash seedlings to find out whether they were suitable for infection. Two A. rhizogenes strains, R1000 and MSU440, were used. Roots containing the respective constructs were selected based on DsRED1 or green fluorescent protein (GFP) fluorescence, and DR5::Egfp-gusA or DR5::gusA insertion, respectively, was verified by PCR. Distribution of the response to auxin was visualized by GFP fluorescence or β-glucuronidase (GUS) activity staining and confirmed by immunolocalization of GFP and GUS proteins, respectively. Based on the distribution of EdU-labelled cells, it was determined that 6-day-old squash seedlings were suited for inoculation by A. rhizogenes since their root pericycle and the adjacent layers contain enough proliferating cells. Agrobacterium rhizogenes R1000 proved to be the most virulent strain on squash seedlings. Squash roots containing the respective constructs did not exhibit the hairy root phenotype and were morphologically and structurally similar to wild-type roots. The auxin response pattern in the root apex of squash resembled that in arabidopsis roots. Composite squash plants obtained by A. rhizogenes-mediated transformation are a good tool for the investigation of root apical meristem development and root branching.

  10. Regeneration of Optic Nerve

    Directory of Open Access Journals (Sweden)

    Kwok-Fai So

    2011-05-01

    Full Text Available The optic nerve is part of the central nervous system (CNS and has a structure similar to other CNS tracts. The axons that form the optic nerve originate in the ganglion cell layer of the retina and extend through the optic tract. As a tissue, the optic nerve has the same organization as the white matter of the brain in regard to its glia. There are three types of glial cells: Oligodendrocytes, astrocytes, and microglia. Little structural and functional regeneration of the CNS takes place spontaneously following injury in adult mammals. In contrast, the ability of the mammalian peripheral nervous system (PNS to regenerate axons after injury is well documented. A number of factors are involved in the lack of CNS regeneration, including: (i the response of neuronal cell bodies against the damage; (ii myelin-mediated inhibition by oligodendrocytes; (iii glial scarring, by astrocytes; (iv macrophage infiltration; and (v insufficient trophic factor support. The fundamental difference in the regenerative capacity between CNS and PNS neuronal cell bodies has been the subject of intensive research. In the CNS the target normally conveys a retrograde trophic signal to the cell body. CNS neurons die because of trophic deprivation. Damage to the optic nerve disconnects the neuronal cell body from its target-derived trophic peptides, leading to the death of retinal ganglion cells. Furthermore, the axontomized neurons become less responsive to the peptide trophic signals they do receive. On the other hand, adult PNS neurons are intrinsically responsive to neurotrophic factors and do not lose trophic responsiveness after axotomy. In this talk different strategies to promote optic-nerve regeneration in adult mammals are reviewed. Much work is still needed to resolve many issues. This is a very important area of neuroregeneration and neuroprotection, as currently there is no cure after traumatic optic nerve injury or retinal disease such as glaucoma, which

  11. Comparison of the fastest regenerating motor and sensory myelinated axons in the same peripheral nerve

    DEFF Research Database (Denmark)

    Moldovan, Mihai; Sørensen, Jesper; Krarup, Christian

    2006-01-01

    Functional outcome after peripheral nerve regeneration is often poor, particularly involving nerve injuries far from their targets. Comparison of sensory and motor axon regeneration before target reinnervation is not possible in the clinical setting, and previous experimental studies addressing...... the question of differences in growth rates of different nerve fibre populations led to conflicting results. We developed an animal model to compare growth and maturation of the fastest growing sensory and motor fibres within the same mixed nerve after Wallerian degeneration. Regeneration of cat tibial nerve...... after crush (n = 13) and section (n = 7) was monitored for up to 140 days, using implanted cuff electrodes placed around the sciatic and tibial nerves and wire electrodes at plantar muscles. To distinguish between sensory and motor fibres, recordings were carried out from L6-S2 spinal roots using cuff...

  12. Functional role of peripheral opioid receptors in the regulation of cardiac spinal afferent nerve activity during myocardial ischemia

    Science.gov (United States)

    Longhurst, John C.

    2013-01-01

    Thinly myelinated Aδ-fiber and unmyelinated C-fiber cardiac sympathetic (spinal) sensory nerve fibers are activated during myocardial ischemia to transmit the sensation of angina pectoris. Although recent observations showed that myocardial ischemia increases the concentrations of opioid peptides and that the stimulation of peripheral opioid receptors inhibits chemically induced visceral and somatic nociception, the role of opioids in cardiac spinal afferent signaling during myocardial ischemia has not been studied. The present study tested the hypothesis that peripheral opioid receptors modulate cardiac spinal afferent nerve activity during myocardial ischemia by suppressing the responses of cardiac afferent nerve to ischemic mediators like bradykinin and extracellular ATP. The nerve activity of single unit cardiac afferents was recorded from the left sympathetic chain (T2–T5) in anesthetized cats. Forty-three ischemically sensitive afferent nerves (conduction velocity: 0.32–3.90 m/s) with receptive fields in the left and right ventricles were identified. The responses of these afferent nerves to repeat ischemia or ischemic mediators were further studied in the following protocols. First, epicardial administration of naloxone (8 μmol), a nonselective opioid receptor antagonist, enhanced the responses of eight cardiac afferent nerves to recurrent myocardial ischemia by 62%, whereas epicardial application of vehicle (PBS) did not alter the responses of seven other cardiac afferent nerves to ischemia. Second, naloxone applied to the epicardial surface facilitated the responses of seven cardiac afferent nerves to epicardial ATP by 76%. Third, administration of naloxone enhanced the responses of seven other afferent nerves to bradykinin by 85%. In contrast, in the absence of naloxone, cardiac afferent nerves consistently responded to repeated application of ATP (n = 7) or bradykinin (n = 7). These data suggest that peripheral opioid peptides suppress the

  13. Reduced ventral cingulum integrity and increased behavioral problems in children with isolated optic nerve hypoplasia and mild to moderate or no visual impairment.

    Science.gov (United States)

    Webb, Emma A; O'Reilly, Michelle A; Clayden, Jonathan D; Seunarine, Kiran K; Dale, Naomi; Salt, Alison; Clark, Chris A; Dattani, Mehul T

    2013-01-01

    To assess the prevalence of behavioral problems in children with isolated optic nerve hypoplasia, mild to moderate or no visual impairment, and no developmental delay. To identify white matter abnormalities that may provide neural correlates for any behavioral abnormalities identified. Eleven children with isolated optic nerve hypoplasia (mean age 5.9 years) underwent behavioral assessment and brain diffusion tensor imaging, Twenty four controls with isolated short stature (mean age 6.4 years) underwent MRI, 11 of whom also completed behavioral assessments. Fractional anisotropy images were processed using tract-based spatial statistics. Partial correlation between ventral cingulum, corpus callosum and optic radiation fractional anisotropy, and child behavioral checklist scores (controlled for age at scan and sex) was performed. Children with optic nerve hypoplasia had significantly higher scores on the child behavioral checklist (pchildren with optic nerve hypoplasia. Right ventral cingulum fractional anisotropy correlated with total and externalising child behavioral checklist scores (r = -0.52, pchildren with optic nerve hypoplasia and mild to moderate or no visual impairment require behavioral assessment to determine the presence of clinically significant behavioral problems. Reduced structural integrity of the ventral cingulum correlated with behavioral scores, suggesting that these white matter abnormalities may be clinically significant. The presence of reduced fractional anisotropy in the optic radiations of children with mild to moderate or no visual impairment raises questions as to the pathogenesis of these changes which will need to be addressed by future studies.

  14. Activation of KCNQ Channels Suppresses Spontaneous Activity in Dorsal Root Ganglion Neurons and Reduces Chronic Pain after Spinal Cord Injury.

    Science.gov (United States)

    Wu, Zizhen; Li, Lin; Xie, Fuhua; Du, Junhui; Zuo, Yan; Frost, Jeffrey A; Carlton, Susan M; Walters, Edgar T; Yang, Qing

    2017-03-15

    A majority of people who have sustained spinal cord injury (SCI) experience chronic pain after injury, and this pain is highly resistant to available treatments. Contusive SCI in rats at T10 results in hyperexcitability of primary sensory neurons, which contributes to chronic pain. KCNQ channels are widely expressed in nociceptive dorsal root ganglion (DRG) neurons, are important for controlling their excitability, and their activation has proven effective in reducing pain in peripheral nerve injury and inflammation models. The possibility that activators of KCNQ channels could be useful for treating SCI-induced chronic pain is strongly supported by the following findings. First, SCI, unlike peripheral nerve injury, failed to decrease the functional or biochemical expression of KCNQ channels in DRG as revealed by electrophysiology, real-time quantitative polymerase chain reaction, and Western blot; therefore, these channels remain available for pharmacological targeting of SCI pain. Second, treatment with retigabine, a specific KCNQ channel opener, profoundly decreased spontaneous activity in primary sensory neurons of SCI animals both in vitro and in vivo without changing the peripheral mechanical threshold. Third, retigabine reversed SCI-induced reflex hypersensitivity, adding to our previous demonstration that retigabine supports the conditioning of place preference after SCI (an operant measure of spontaneous pain). In contrast to SCI animals, naïve animals showed no effects of retigabine on reflex sensitivity or conditioned place preference by pairing with retigabine, indicating that a dose that blocks chronic pain-related behavior has no effect on normal pain sensitivity or motivational state. These results encourage the further exploration of U.S. Food and Drug Administration-approved KCNQ activators for treating SCI pain, as well as efforts to develop a new generation of KCNQ activators that lack central side effects.

  15. Ultrasound and nerve stimulator guided continuous femoral nerve block analgesia after total knee arthroplasty: a multicenter randomized controlled study

    Directory of Open Access Journals (Sweden)

    Fen Wang

    2015-02-01

    Full Text Available BACKGROUND AND OBJECTIVES: Postoperative analgesia is crucial for early functional excise after total knee arthroplasty. To investigate the clinical efficacy of ultrasound and nerve stimulator guided continuous femoral nerve block analgesia after total knee arthroplasty. METHODS: 46 patients with ASA grade I-III who underwent total knee arthroplasty received postoperative analgesia from October 2012 to January 2013. In 22 patients, ultrasound and nerve stimulator guided continuous femoral nerve block were performed for analgesia (CFNB group; in 24 patients, epidural analgesia was done (PCEA group. The analgesic effects, side effects, articular recovery and complications were compared between two groups. RESULTS: At 6 h and 12 h after surgery, the knee pain score (VAS score during functional tests after active exercise and after passive excise in CFNB were significantly reduced when compared with PCEA group. The amount of parecoxib used in CFNB patients was significantly reduced when compared with PCEA group. At 48 h after surgery, the muscle strength grade in CFNB group was significantly higher, and the time to ambulatory activity was shorter than those in PCEA group. The incidence of nausea and vomiting in CFNB patients was significantly reduced when compared with PCEA group. CONCLUSION: Ultrasound and nerve stimulator guided continuous femoral nerve block provide better analgesia at 6 h and 12 h, demonstrated by RVAS and PVAS. The amount of parecoxib also reduces, the incidence of nausea and vomiting decreased, the influence on muscle strength is compromised and patients can perform ambulatory activity under this condition.

  16. Reduced ventral cingulum integrity and increased behavioral problems in children with isolated optic nerve hypoplasia and mild to moderate or no visual impairment.

    Directory of Open Access Journals (Sweden)

    Emma A Webb

    Full Text Available OBJECTIVES: To assess the prevalence of behavioral problems in children with isolated optic nerve hypoplasia, mild to moderate or no visual impairment, and no developmental delay. To identify white matter abnormalities that may provide neural correlates for any behavioral abnormalities identified. PATIENTS AND METHODS: Eleven children with isolated optic nerve hypoplasia (mean age 5.9 years underwent behavioral assessment and brain diffusion tensor imaging, Twenty four controls with isolated short stature (mean age 6.4 years underwent MRI, 11 of whom also completed behavioral assessments. Fractional anisotropy images were processed using tract-based spatial statistics. Partial correlation between ventral cingulum, corpus callosum and optic radiation fractional anisotropy, and child behavioral checklist scores (controlled for age at scan and sex was performed. RESULTS: Children with optic nerve hypoplasia had significantly higher scores on the child behavioral checklist (p<0.05 than controls (4 had scores in the clinically significant range. Ventral cingulum, corpus callosum and optic radiation fractional anisotropy were significantly reduced in children with optic nerve hypoplasia. Right ventral cingulum fractional anisotropy correlated with total and externalising child behavioral checklist scores (r = -0.52, p<0.02, r = -0.46, p<0.049 respectively. There were no significant correlations between left ventral cingulum, corpus callosum or optic radiation fractional anisotropy and behavioral scores. CONCLUSIONS: Our findings suggest that children with optic nerve hypoplasia and mild to moderate or no visual impairment require behavioral assessment to determine the presence of clinically significant behavioral problems. Reduced structural integrity of the ventral cingulum correlated with behavioral scores, suggesting that these white matter abnormalities may be clinically significant. The presence of reduced fractional anisotropy in the optic

  17. Radiation impairs perineural invasion by modulating the nerve microenvironment.

    Directory of Open Access Journals (Sweden)

    Richard L Bakst

    Full Text Available Perineural invasion (PNI by cancer cells is an ominous clinical event that is associated with increased local recurrence and poor prognosis. Although radiation therapy (RT may be delivered along the course of an invaded nerve, the mechanisms through which radiation may potentially control PNI remain undefined.An in vitro co-culture system of dorsal root ganglia (DRG and pancreatic cancer cells was used as a model of PNI. An in vivo murine sciatic nerve model was used to study how RT to nerve or cancer affects nerve invasion by cancer.Cancer cell invasion of the DRG was partially dependent on DRG secretion of glial-derived neurotrophic factor (GDNF. A single 4 Gy dose of radiation to the DRG alone, cultured with non-radiated cancer cells, significantly inhibited PNI and was associated with decreased GDNF secretion but intact DRG viability. Radiation of cancer cells alone, co-cultured with non-radiated nerves, inhibited PNI through predominantly compromised cancer cell viability. In a murine model of PNI, a single 8 Gy dose of radiation to the sciatic nerve prior to implantation of non-radiated cancer cells resulted in decreased GDNF expression, decreased PNI by imaging and histology, and preservation of sciatic nerve motor function.Radiation may impair PNI through not only direct effects on cancer cell viability, but also an independent interruption of paracrine mechanisms underlying PNI. RT modulation of the nerve microenvironment may decrease PNI, and hold significant therapeutic implications for RT dosing and field design for patients with cancers exhibiting PNI.

  18. Dorsal root potential produced by a TTX-insensitive micro-circuitry in the turtle spinal cord

    DEFF Research Database (Denmark)

    Russo, R E; Delgado-Lezama, R; Hounsgaard, J

    2000-01-01

    1, The mechanisms underlying the dorsal root potential (DRP) were studied in transverse slices of turtle spinal cord. DRPs were evoked by stimulating one filament in a dorsal root and were recorded from another such filament. 2. The DRP evoked at supramaximal stimulus intensity was reduced....... 5. Our results show that part of the DRP is generated by a TTX-resistant, probably non-spiking micro-circuit with separate components mediated by GABA and glutamate....

  19. Electrical stimulation of paralyzed vibrissal muscles reduces endplate reinnervation and does not promote motor recovery after facial nerve repair in rats.

    Science.gov (United States)

    Sinis, Nektarios; Horn, Frauke; Genchev, Borislav; Skouras, Emmanouil; Merkel, Daniel; Angelova, Srebrina K; Kaidoglou, Katerina; Michael, Joern; Pavlov, Stoyan; Igelmund, Peter; Schaller, Hans-Eberhard; Irintchev, Andrey; Dunlop, Sarah A; Angelov, Doychin N

    2009-10-01

    The outcome of peripheral nerve injuries requiring surgical repair is poor. Recent work has suggested that electrical stimulation (ES) of denervated muscles could be beneficial. Here we tested whether ES has a positive influence on functional recovery after injury and surgical repair of the facial nerve. Outcomes at 2 months were compared to animals receiving sham stimulation (SS). Starting on the first day after end-to-end suture (facial-facial anastomosis), electrical stimulation (square 0.1 ms pulses at 5 Hz at an ex tempore established threshold amplitude of between 3.0 and 5.0V) was delivered to the vibrissal muscles for 5 min a day, 3 times a week. Restoration of vibrissal motor performance following ES or SS was evaluated using the video-based motion analysis and correlated with the degree of collateral axonal branching at the lesion site, the number of motor endplates in the target musculature and the quality of their reinnervation, i.e. the degree of mono- versus poly-innervation. Neither protocol reduced collateral branching. ES did not improve functional outcome, but rather reduced the number of innervated motor endplates to approximately one-fifth of normal values and failed to reduce the proportion of poly-innervated motor endplates. We conclude that ES is not beneficial for recovery of whisker function after facial nerve repair in rats.

  20. Plant-microbe rhizosphere interactions mediated by Rehmannia glutinosa root exudates under consecutive monoculture

    Science.gov (United States)

    Wu, Linkun; Wang, Juanying; Huang, Weimin; Wu, Hongmiao; Chen, Jun; Yang, Yanqiu; Zhang, Zhongyi; Lin, Wenxiong

    2015-10-01

    Under consecutive monoculture, the biomass and quality of Rehmannia glutinosa declines significantly. Consecutive monoculture of R. glutinosa in a four-year field trial led to significant growth inhibition. Most phenolic acids in root exudates had cumulative effects over time under sterile conditions, but these effects were not observed in the rhizosphere under monoculture conditions. It suggested soil microbes might be involved in the degradation and conversion of phenolic acids from the monocultured plants. T-RFLP and qPCR analysis demonstrated differences in both soil bacterial and fungal communities during monoculture. Prolonged monoculture significantly increased levels of Fusarium oxysporum, but decreased levels of Pseudomonas spp. Abundance of beneficial Pseudomonas spp. with antagonistic activity against F. oxysporum was lower in extended monoculture soils. Phenolic acid mixture at a ratio similar to that found in the rhizosphere could promote mycelial growth, sporulation, and toxin (3-Acetyldeoxynivalenol, 15-O-Acetyl-4-deoxynivalenol) production of pathogenic F. oxysporum while inhibiting growth of the beneficial Pseudomonas sp. W12. This study demonstrates that extended monoculture can alter the microbial community of the rhizosphere, leading to relatively fewer beneficial microorganisms and relatively more pathogenic and toxin-producing microorganisms, which is mediated by the root exudates.

  1. Engineering a multimodal nerve conduit for repair of injured peripheral nerve

    Science.gov (United States)

    Quigley, A. F.; Bulluss, K. J.; Kyratzis, I. L. B.; Gilmore, K.; Mysore, T.; Schirmer, K. S. U.; Kennedy, E. L.; O'Shea, M.; Truong, Y. B.; Edwards, S. L.; Peeters, G.; Herwig, P.; Razal, J. M.; Campbell, T. E.; Lowes, K. N.; Higgins, M. J.; Moulton, S. E.; Murphy, M. A.; Cook, M. J.; Clark, G. M.; Wallace, G. G.; Kapsa, R. M. I.

    2013-02-01

    Injury to nerve tissue in the peripheral nervous system (PNS) results in long-term impairment of limb function, dysaesthesia and pain, often with associated psychological effects. Whilst minor injuries can be left to regenerate without intervention and short gaps up to 2 cm can be sutured, larger or more severe injuries commonly require autogenous nerve grafts harvested from elsewhere in the body (usually sensory nerves). Functional recovery is often suboptimal and associated with loss of sensation from the tissue innervated by the harvested nerve. The challenges that persist with nerve repair have resulted in development of nerve guides or conduits from non-neural biological tissues and various polymers to improve the prognosis for the repair of damaged nerves in the PNS. This study describes the design and fabrication of a multimodal controlled pore size nerve regeneration conduit using polylactic acid (PLA) and (PLA):poly(lactic-co-glycolic) acid (PLGA) fibers within a neurotrophin-enriched alginate hydrogel. The nerve repair conduit design consists of two types of PLGA fibers selected specifically for promotion of axonal outgrowth and Schwann cell growth (75:25 for axons; 85:15 for Schwann cells). These aligned fibers are contained within the lumen of a knitted PLA sheath coated with electrospun PLA nanofibers to control pore size. The PLGA guidance fibers within the nerve repair conduit lumen are supported within an alginate hydrogel impregnated with neurotrophic factors (NT-3 or BDNF with LIF, SMDF and MGF-1) to provide neuroprotection, stimulation of axonal growth and Schwann cell migration. The conduit was used to promote repair of transected sciatic nerve in rats over a period of 4 weeks. Over this period, it was observed that over-grooming and self-mutilation (autotomy) of the limb implanted with the conduit was significantly reduced in rats implanted with the full-configuration conduit compared to rats implanted with conduits containing only an alginate

  2. Multiple locations of nerve compression: an unusual cause of persistent lower limb paresthesia.

    Science.gov (United States)

    Ang, Chia-Liang; Foo, Leon Siang Shen

    2014-01-01

    A paucity of appreciation exists that the "double crush" phenomenon can account for persistent leg symptoms even after spinal neural decompression surgery. We present an unusual case of multiple locations of nerve compression causing persistent lower limb paresthesia in a 40-year old male patient. The patient's lower limb paresthesia was persistent after an initial spinal surgery to treat spinal lateral recess stenosis thought to be responsible for the symptoms. It was later discovered that he had peroneal muscle herniations that had caused superficial peroneal nerve entrapments at 2 separate locations. The patient obtained much symptomatic relief after decompression of the peripheral nerve. The "double crush" phenomenon and multiple levels of nerve compression should be considered when evaluating lower limb neurogenic symptoms, especially after spinal nerve root surgery. Copyright © 2014 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  3. Retrograde tracing and toe spreading after experimental autologous nerve transplantation and crush injury of the sciatic nerve: a descriptive methodological study

    Directory of Open Access Journals (Sweden)

    van Neerven Sabien GA

    2012-04-01

    Full Text Available Abstract Evaluation of functional and structural recovery after peripheral nerve injury is crucial to determine the therapeutic effect of a nerve repair strategy. In the present study, we examined the relationship between the structural evaluation of regeneration by means of retrograde tracing and the functional analysis of toe spreading. Two standardized rat sciatic nerve injury models were used to address this relationship. As such, animals received either a 2 cm sciatic nerve defect (neurotmesis followed by autologous nerve transplantation (ANT animals or a crush injury with spontaneous recovery (axonotmesis; CI animals. Functional recovery of toe spreading was observed over an observation period of 84 days. In contrast to CI animals, ANT animals did not reach pre-surgical levels of toe spreading. After the observation period, the lipophilic dye DiI was applied to label sensory and motor neurons in dorsal root ganglia (DRG; sensory neurons and spinal cord (motor neurons, respectively. No statistical difference in motor or sensory neuron counts could be detected between ANT and CI animals. In the present study we could indicate that there was no direct relationship between functional recovery (toe spreading measured by SSI and the number of labelled (motor and sensory neurons evaluated by retrograde tracing. The present findings demonstrate that a multimodal approach with a variety of independent evaluation tools is essential to understand and estimate the therapeutic benefit of a nerve repair strategy.

  4. Vitamin B complex attenuated heat hyperalgesia following infraorbital nerve constriction in rats and reduced capsaicin in vivo and in vitro effects.

    Science.gov (United States)

    Kopruszinski, Caroline M; Reis, Renata C; Bressan, Elisangela; Reeh, Peter W; Chichorro, Juliana G

    2015-09-05

    Vitamins of the B complex attenuate some neuropathic pain sensory aspects in various animal models and in patients, but the mechanisms underlying their effects remain to be elucidated. Herein it was investigated if the treatment with a vitamin B complex (VBC) reduces heat hyperalgesia in rats submitted to infraorbital nerve constriction and the possibility that TRPV1 receptors represent a target for B vitamins. In the present study, the VBC refers to a combination of vitamins B1, B6 and B12 at low- (18, 18 and 1.8mg/kg, respectively) or high- (180, 180 and 18mg/kg, respectively) doses. Acute treatment of rats with either the low- or the high-doses combination reduced heat hyperalgesia after nerve injury, but the high-doses combination resulted in a long-lasting effect. Repeated treatment with the low-dose combination reduced heat hyperalgesia on day four after nerve injury and showed a synergist effect with a single injection of carbamazepine (3 or 10mg/kg), which per se failed to modify the heat threshold. In naïve rats, acute treatment with the high-dose of VBC or B1 and B12 vitamins independently reduced heat hyperalgesia evoked by capsaicin (3µg into the upper lip). Moreover, the VBC, as well as, each one of the B vitamins independently reduced the capsaicin-induced calcium responses in HEK 293 cells transiently transfected with the human TRPV1 channels. Altogether, these results indicate that B vitamins can be useful to control heat hyperalgesia associated with trigeminal neuropathic pain and that modulation of TRPV1 receptors may contribute to their anti-hyperalgesic effects. Copyright © 2015. Published by Elsevier B.V.

  5. Composite potato plants with transgenic roots on non-transgenic shoots: a model system for studying gene silencing in roots.

    Science.gov (United States)

    Horn, Patricia; Santala, Johanna; Nielsen, Steen Lykke; Hühns, Maja; Broer, Inge; Valkonen, Jari P T

    2014-12-01

    Composite potato plants offer an extremely fast, effective and reliable system for studies on gene functions in roots using antisense or inverted-repeat but not sense constructs for gene inactivation. Composite plants, with transgenic roots on a non-transgenic shoot, can be obtained by shoot explant transformation with Agrobacterium rhizogenes. The aim of this study was to generate composite potato plants (Solanum tuberosum) to be used as a model system in future studies on root-pathogen interactions and gene silencing in the roots. The proportion of transgenic roots among the roots induced was high (80-100%) in the four potato cultivars tested (Albatros, Desirée, Sabina and Saturna). No wild-type adventitious roots were formed at mock inoculation site. All strains of A. rhizogenes tested induced phenotypically normal roots which, however, showed a reduced response to cytokinin as compared with non-transgenic roots. Nevertheless, both types of roots were infected to a similar high rate with the zoospores of Spongospora subterranea, a soilborne potato pathogen. The transgenic roots of composite potato plants expressed significantly higher amounts of β-glucuronidase (GUS) than the roots of a GUS-transgenic potato line event. Silencing of the uidA transgene (GUS) was tested by inducing roots on the GUS-transgenic cv. Albatros event with strains of A. rhizogenes over-expressing either the uidA sense or antisense transcripts, or inverted-repeat or hairpin uidA RNA. The three last mentioned constructs caused 2.5-4.0 fold reduction in the uidA mRNA expression. In contrast, over-expression of uidA resulted in over 3-fold increase in the uidA mRNA and GUS expression, indicating that sense-mediated silencing (co-suppression) was not functional in roots. The results suggest that composite plants offer a useful experimental system for potato research, which has gained little previous attention.

  6. Electron microscopy of human peripheral nerves of clinical relevance to the practice of nerve blocks. A structural and ultrastructural review based on original experimental and laboratory data.

    Science.gov (United States)

    Reina, M A; Arriazu, R; Collier, C B; Sala-Blanch, X; Izquierdo, L; de Andrés, J

    2013-12-01

    The goal is to describe the ultrastructure of normal human peripheral nerves, and to highlight key aspects that are relevant to the practice of peripheral nerve block anaesthesia. Using samples of sciatic nerve obtained from patients, and dural sac, nerve root cuff and brachial plexus dissected from fresh human cadavers, an analysis of the structure of peripheral nerve axons and distribution of fascicles and topographic composition of the layers that cover the nerve is presented. Myelinated and unmyelinated axons, fascicles, epineurium, perineurium and endoneurium obtained from patients and fresh cadavers were studied by light microscopy using immunohistochemical techniques, and transmission and scanning electron microscopy. Structure of perineurium and intrafascicular capillaries, and its implications in blood-nerve barrier were revised. Each of the anatomical elements is analyzed individually with regard to its relevance to clinical practice to regional anaesthesia. Routine practice of regional anaesthetic techniques and ultrasound identification of nerve structures has led to conceptions, which repercussions may be relevant in future applications of these techniques. In this regard, the ultrastructural and histological perspective accomplished through findings of this study aims at enlightening arising questions within the field of regional anaesthesia. Copyright © 2013 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor. Published by Elsevier España. All rights reserved.

  7. Disentangling the rhizosphere effect on nitrate reducers and denitrifiers: insight into the role of root exudates.

    Science.gov (United States)

    Henry, S; Texier, S; Hallet, S; Bru, D; Dambreville, C; Chèneby, D; Bizouard, F; Germon, J C; Philippot, L

    2008-11-01

    To determine to which extent root-derived carbon contributes to the effects of plants on nitrate reducers and denitrifiers, four solutions containing different proportions of sugar, organic acids and amino acids mimicking maize root exudates were added daily to soil microcosms at a concentration of 150 microg C g(-1) of soil. Water-amended soils were used as controls. After 1 month, the size and structure of the nitrate reducer and denitrifier communities were analysed using the narG and napA, and the nirK, nirS and nosZ genes as molecular markers respectively. Addition of artificial root exudates (ARE) did not strongly affect the structure or the density of nitrate reducer and denitrifier communities whereas potential nitrate reductase and denitrification activities were stimulated by the addition of root exudates. An effect of ARE composition was also observed on N(2)O production with an N(2)O:(N(2)O + N(2)) ratio of 0.3 in microcosms amended with ARE containing 80% of sugar and of 1 in microcosms amended with ARE containing 40% of sugar. Our study indicated that ARE stimulated nitrate reduction or denitrification activity with increases in the range of those observed with the whole plant. Furthermore, we demonstrated that the composition of the ARE affected the nature of the end-product of denitrification and could thus have a putative impact on greenhouse gas emissions.

  8. Cytokine-mediated inflammation mediates painful neuropathy from metabolic syndrome.

    Directory of Open Access Journals (Sweden)

    Can Zhang

    Full Text Available Painful neuropathy (PN is a prevalent condition in patients with metabolic syndrome (MetS. However, the pathogenic mechanisms of metabolic syndrome-associated painful neuropathy (MetSPN remain unclear. In the current study, high-fat-fed mice (HF mice were used to study MetSPN. HF mice developed MetS phenotypes, including increased body weight, elevated plasma cholesterol levels, and insulin resistance in comparison with control-fat-fed (CF mice. Subsequently, HF mice developed mechanical allodynia and thermal hyperalgesia in hind paws after 8 wk of diet treatment. These pain behaviors coincided with increased densities of nociceptive epidermal nerve fibers and inflammatory cells such as Langerhans cells and macrophages in hind paw skin. To study the effect of MetS on profiles of cytokine expression in HF mice, we used a multiplex cytokine assay to study the protein expression of 12 pro-inflammatory and anti-inflammatory cytokines in dorsal root ganglion and serum samples. This method detected the elevated levels of proinflammatory cytokines, including tumor necrosis factor (TNF-α, and interleukin (IL-6, IL-1β as well as reduced anti-inflammatory IL-10 in lumbar dorsal root ganglia (LDRG of HF mice. Intraperitoneal administration of IL-10 reduced the upregulation of pro-inflammatory cytokines and alleviated pain behaviors in HF mice without affecting MetS phenotypes. Our findings suggested targeting HF-induced cytokine dysregulation could be an effective strategy for treating MetSPN.

  9. On the nature of the afferent fibers of oculomotor nerve.

    Science.gov (United States)

    Manni, E; Draicchio, F; Pettorossi, V E; Carobi, C; Grassi, S; Bortolami, R; Lucchi, M L

    1989-03-01

    The oculogyric nerves contain afferent fibers originating from the ophthalmic territory, the somata of which are located in the ipsilateral semilunar ganglion. These primary sensory neurons project to the Subnucleus Gelatinosus of the Nucleus Caudalis Trigemini, where they make presynaptic contact with the central endings of the primary trigeminal afferents running in the fifth cranial nerve. After complete section of the trigeminal root, the antidromic volleys elicited in the trunk of the third cranial nerve by stimulating SG of NCT consisted of two waves belonging to the A delta and C groups. The area of both components of the antidromic volleys decreased both after bradykinin and hystamine injection into the corresponding cutaneous region and after thermic stimulation of the ipsilateral trigeminal ophthalmic territory. The reduction of such potentials can be explained in terms of collision between the antidromic volleys and those elicited orthodromically by chemical and thermic stimulation. Also, capsaicin applied on the nerve induced an immediate increase, followed by a long lasting decrease, of orthodromic evoked response area. These findings bring further support to the nociceptive nature of the afferent fibers running into the oculomotor nerve.

  10. Trends in the design of nerve guidance channels in peripheral nerve tissue engineering.

    Science.gov (United States)

    Chiono, Valeria; Tonda-Turo, Chiara

    2015-08-01

    The current trend of peripheral nerve tissue engineering is the design of advanced nerve guidance channels (NGCs) acting as physical guidance for regeneration of nerves across lesions. NGCs should present multifunctional properties aiming to direct the sprouting of axons from the proximal nerve end, to concentrate growth factors secreted by the injured nerve ends, and to reduce the ingrowth of scar tissue into the injury site. A critical aspect in the design of NGCs is conferring them the ability to provide topographic, chemotactic and haptotactic cues that lead to functional nerve regeneration thus increasing the axon growth rate and avoiding or minimizing end-organ (e.g. muscle) atrophy. The present work reviews the recent state of the art in NGCs engineering and defines the external guide and internal fillers structural and compositional requirements that should be satisfied to improve nerve regeneration, especially in the case of large gaps (>2 cm). Techniques for NGCs fabrication were described highlighting the innovative approaches direct to enhance the regeneration of axon stumps compared to current clinical treatments. Furthermore, the possibility to apply stem cells as internal cues to the NGCs was discussed focusing on scaffold properties necessary to ensure cell survival. Finally, the optimized features for NGCs design were summarized showing as multifunctional cues are needed to produce NGCs having improved results in clinics. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Theobromine inhibits sensory nerve activation and cough.

    Science.gov (United States)

    Usmani, Omar S; Belvisi, Maria G; Patel, Hema J; Crispino, Natascia; Birrell, Mark A; Korbonits, Márta; Korbonits, Dezso; Barnes, Peter J

    2005-02-01

    Cough is a common and protective reflex, but persistent coughing is debilitating and impairs quality of life. Antitussive treatment using opioids is limited by unacceptable side effects, and there is a great need for more effective remedies. The present study demonstrates that theobromine, a methylxanthine derivative present in cocoa, effectively inhibits citric acid-induced cough in guinea-pigs in vivo. Furthermore, in a randomized, double-blind, placebo-controlled study in man, theobromine suppresses capsaicin-induced cough with no adverse effects. We also demonstrate that theobromine directly inhibits capsaicin-induced sensory nerve depolarization of guinea-pig and human vagus nerve suggestive of an inhibitory effect on afferent nerve activation. These data indicate the actions of theobromine appear to be peripherally mediated. We conclude theobromine is a novel and promising treatment, which may form the basis for a new class of antitussive drugs.

  12. Experimentally reduced root–microbe interactions reveal limited plasticity in functional root traits in Acer and Quercus

    Science.gov (United States)

    Lee, Mei-Ho; Comas, Louise H.; Callahan, Hilary S.

    2014-01-01

    Background and Aims Interactions between roots and soil microbes are critical components of below-ground ecology. It is essential to quantify the magnitude of root trait variation both among and within species, including variation due to plasticity. In addition to contextualizing the magnitude of plasticity relative to differences between species, studies of plasticity can ascertain if plasticity is predictable and whether an environmental factor elicits changes in traits that are functionally advantageous. Methods To compare functional traits and trait plasticities in fine root tissues with natural and reduced levels of colonization by microbial symbionts, trimmed and surface-sterilized root segments of 2-year-old Acer rubrum and Quercus rubra seedlings were manipulated. Segments were then replanted into satellite pots filled with control or heat-treated soil, both originally derived from a natural forest. Mycorrhizal colonization was near zero in roots grown in heat-treated soil; roots grown in control soil matched the higher colonization levels observed in unmanipulated root samples collected from field locations. Key Results Between-treatment comparisons revealed negligible plasticity for root diameter, branching intensity and nitrogen concentration across both species. Roots from treated soils had decreased tissue density (approx. 10–20 %) and increased specific root length (approx. 10–30 %). In contrast, species differences were significant and greater than treatment effects in traits other than tissue density. Interspecific trait differences were also significant in field samples, which generally resembled greenhouse samples. Conclusions The combination of experimental and field approaches was useful for contextualizing trait plasticity in comparison with inter- and intra-specific trait variation. Findings that root traits are largely species dependent, with the exception of root tissue density, are discussed in the context of current literature on root

  13. Strontium ranelate improved tooth anchorage and reduced root resorption in orthodontic treatment of rats.

    Science.gov (United States)

    Kirschneck, Christian; Wolf, Michael; Reicheneder, Claudia; Wahlmann, Ulrich; Proff, Peter; Roemer, Piero

    2014-12-05

    The anchorage mechanisms currently used in orthodontic treatment have various disadvantages. The objective of this study was to determine the applicability of the osteoporosis medication strontium ranelate in pharmacologically induced orthodontic tooth anchorage. In 48 male Wistar rats, a constant orthodontic force of 0.25 N was reciprocally applied to the upper first molar and the incisors by means of a Sentalloy(®) closed coil spring for two to four weeks. 50% of the animals received strontium ranelate at a daily oral dosage of 900 mg per kilogramme of body weight. Bioavailability was determined by blood analyses. The extent of tooth movement was measured both optometrically and cephalometrically (CBCT). Relative alveolar gene expression of osteoclastic markers and OPG-RANKL was assessed by qRT-PCR and root resorption area and osteoclastic activity were determined in TRAP-stained histologic sections of the alveolar process. Compared to controls, the animals treated with strontium ranelate showed up to 40% less tooth movement after four weeks of orthodontic treatment. Gene expression and histologic analyses showed significantly less osteoclastic activity and a significantly smaller root resorption area. Blood analyses confirmed sufficient bioavailability of strontium ranelate. Because of its pharmacologic effects on bone metabolism, strontium ranelate significantly reduced tooth movement and root resorption in orthodontic treatment of rats. Strontium ranelate may be a viable agent for inducing tooth anchorage and reducing undesired root resorption in orthodontic treatment. Patients under medication of strontium ranelate have to expect prolonged orthodontic treatment times. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Reduced rates of controlled-release fertilizer lower potential nitrogen leaching from a Wisconsin bare-root tree nursery

    Science.gov (United States)

    Ryosuke Fujinuma; Nick J. Balster; Hyung-Kyung. Lee

    2011-01-01

    Controlled-release fertilizer (CRF) typically increases nitrogen (N) fertilizer uptake and lowers N lost from the rooting zone via leaching. However, questions remain as to whether lower rates of CRF could further increase this efficiency, especially in sandy bare-root nurseries in Wisconsin. We hypothesized that: 1) a reduced CRF application at 60 percent of the...

  15. Analgesic effect of continuous femoral nerve block combined with infiltration anesthesia after total knee replacement

    Directory of Open Access Journals (Sweden)

    Jian-Guo Tan

    2016-06-01

    Full Text Available Objective: To study the analgesic effect of continuous femoral nerve block combined with infiltration anesthesia after total knee replacement. Methods: Patients who received unilateral total knee replacement in our hospital from May 2012 to August 2015 were included for study and randomly divided into experimental group who received continuous femoral nerve block combined with infiltration anesthesia and control group who received continuous femoral nerve block, and then the contents of postoperative serum pain-promoting-related mediators, painsuppressing-related mediators and pain-related signal molecules were detected. Results: Serum CGRP, PS, Hist, 5-HT, AM and BK contents of experimental group were significantly lower than those of control group, AEA, β-EP, RvE1, LXA4 and LXB4 contents were significantly higher than those of control group, and P2X2, P2X7, P2X3, P2X4, P2Y1, P2Y2, P2Y4, P2Y6, P2Y 13, P2Y14, p38MAPK and PI3K contents were significantly lower than those of control group. Conclusions: Continuous femoral nerve block combined with infiltration anesthesia after total knee replacement can increase the generation of pain-suppressing mediators, decrease the generation of pain-promoting mediators and achieve more exact analgesic effect.

  16. Expression patterns and role of PTEN in rat peripheral nerve development and injury.

    Science.gov (United States)

    Chen, Hui; Xiang, Jianping; Wu, Junxia; He, Bo; Lin, Tao; Zhu, Qingtang; Liu, Xiaolin; Zheng, Canbin

    2018-05-29

    Studies have suggested that phosphatase and tensin homolog (PTEN) plays an important role in neuroprotection and neuronal regeneration. To better understand the potential role of PTEN with respect to peripheral nerve development and injury, we investigated the expression pattern of PTEN at different stages of rat peripheral nerve development and injury and subsequently assessed the effect of pharmacological inhibition of PTEN using bpV(pic) on axonal regeneration in a rat sciatic nerve crush injury model. During the early stages of development, PTEN exhibits low expression in neuronal cell bodies and axons. From embryonic day (E) 18.5 and postnatal day (P)5 to adult, PTEN protein becomes more detectable, with high expression in the dorsal root ganglia (DRG) and axons. PTEN expression is inhibited in peripheral nerves, preceding myelination during neuronal development and remyelination after acute nerve injury. Low PTEN expression after nerve injury promotes Akt/mammalian target of rapamycin (mTOR) signaling pathway activity. In vivo pharmacological inhibition of PTEN using bpV(pic) promoted axonal regrowth, increased the number of myelinated nerve fibers, improved locomotive recovery and enhanced the amplitude response and nerve conduction velocity following stimulation in a rat sciatic nerve crush injury model. Thus, we suggest that PTEN may play potential roles in peripheral nerve development and regeneration and that inhibition of PTEN expression is beneficial for nerve regeneration and functional recovery after peripheral nerve injury. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Endogenous neurotrophin-3 promotes neuronal sprouting from dorsal root ganglia.

    Science.gov (United States)

    Wang, Xu-Yang; Gu, Pei-Yuan; Chen, Shi-Wen; Gao, Wen-Wei; Tian, Heng-Li; Lu, Xiang-He; Zheng, Wei-Ming; Zhuge, Qi-Chuan; Hu, Wei-Xing

    2015-11-01

    In the present study, we investigated the role of endogenous neurotrophin-3 in nerve terminal sprouting 2 months after spinal cord dorsal root rhizotomy. The left L1-5 and L7-S2 dorsal root ganglia in adult cats were exposed and removed, preserving the L6 dorsal root ganglia. Neurotrophin-3 was mainly expressed in large neurons in the dorsal root ganglia and in some neurons in spinal lamina II. Two months after rhizotomy, the number of neurotrophin-3-positive neurons in the spared dorsal root ganglia and the density of neurite sprouts emerging from these ganglia were increased. Intraperitoneal injection of an antibody against neurotrophin-3 decreased the density of neurite sprouts. These findings suggest that endogenous neurotrophin-3 is involved in spinal cord plasticity and regeneration, and that it promotes axonal sprouting from the dorsal root ganglia after spinal cord dorsal root rhizotomy.

  18. Comparison of ultrasound and ultrasound plus nerve stimulator guidance axillary plexus block

    International Nuclear Information System (INIS)

    Demirelli, G.; Baskan, S.; Karabeyoglu, I.; Aytac, I.; Omek, D.H.; Erdogmus, A.; Baydar, M.

    2017-01-01

    To evaluate the characteristics of axillary plexus blockade applied using ultrasound only and using ultrasound together with nerve stimulator in patients undergoing planned forearm, wrist or hand surgery. Methods: This randomised, prospective, double-blinded, single-centre study was conducted at Ankara Numune Training and Research Hospital, Ankara, Turkey, from November 2014 to August 2015, and comprised patients undergoing forearm, wrist or hand surgery. Participants were separated into 2 groups. In Group 1, the nerve roots required for the surgical site were located one by one and local anaesthetic was applied separately to each nerve for the block. In Group 2, the vascular nerve bundle was located under ultrasound guidance and a total block was achieved by administering all the local anaesthetic within the nerve sheath. In the operating room, standard monitorisation was applied. Following preparation of the skin, the axillary region nerve roots and branches and vascular structures were observed by examination with a high-frequency ultrasound probe. In both groups, a 22-gauge, 5cm block needle was entered to the axillary region with visualisation of the whole needle on ultrasound and 20ml local anaesthetic of 0.5% bupivacaine was injected. SPSS 19 was used for data analysis. Results: Of the 60 participants, there were 30(50%) in each group. The mean age was 39.1+-15 years in the group 1 which was the ultrasound nerve stimulation group, and 41.5+-14.3 years in group 2. The duration of the procedure was longer in group I than in group 2 (p<0.05). Patient satisfaction values during the procedure were higher in group 2(p<0.05). In the ulnar sensory examination, the values of the patients in group 1 were higher at 10, 15, 20 and 25 minutes (p<0.05). In the median, radial and ulnar motor examination, the values of the patients in group 1were higher at 15 and 20 minutes (p<0.05). Conclusion: Brachial plexus blockade via axillary approach guided by ultrasound offered

  19. Inferior alveolar nerve paresthesia after overfilling of endodontic sealer into the mandibular canal.

    Science.gov (United States)

    González-Martín, Maribel; Torres-Lagares, Daniel; Gutiérrez-Pérez, José Luis; Segura-Egea, Juan José

    2010-08-01

    The present study describes a case of endodontic sealer (AH Plus) penetration within and along the mandibular canal from the periapical zone of a lower second molar after endodontic treatment. The clinical manifestations comprised anesthesia of the left side of the lower lip, paresthesia and anesthesia of the gums in the third quadrant, and paresthesia and anesthesia of the left mental nerve, appearing immediately after endodontic treatment. The paresthesia and anesthesia of the lip and gums were seen to decrease, but the mental nerve paresthesia and anesthesia persisted after 3.5 years. This case illustrates the need to expend great care with all endodontic techniques when performing nonsurgical root canal therapy, especially when the root apices are in close proximity to vital anatomic structures such as the inferior alveolar canal. Copyright 2010 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  20. Efficient generation of mutations mediated by CRISPR/Cas9 in the hairy root transformation system of Brassica carinata.

    Science.gov (United States)

    Kirchner, Thomas W; Niehaus, Markus; Debener, Thomas; Schenk, Manfred K; Herde, Marco

    2017-01-01

    A protocol for the induction of site-directed deletions and insertions in the genome of Brassica carinata with CRISPR is described. The construct containing the Cas9 nuclease and the guide RNA (gRNA) was delivered by the hairy root transformation technique, and a successful transformation was monitored by GFP fluorescence. PAGE analysis of an amplified region, presumably containing the deletions and insertions, demonstrated up to seven different indels in one transgenic root and in all analyzed roots a wildtype allele of the modified gene was not detectable. Interestingly, many of these mutations consisted of relatively large indels with up to 112 bp. The exact size of the deletions was determined to allow an estimation whether the targeted gene was not functional due to a considerable deletion or a frame shift within the open reading frame. This allowed a direct phenotypic assessment of the previously characterized roots and, in fact, deletions in FASCICLIN-LIKE ARABINOGALACTAN PROTEIN 1 (BcFLA1)-a gene with an expression pattern consistent with a role in root hair architecture-resulted in shorter root hairs compared to control roots ectopically expressing an allele of the gene that cannot be targeted by the gRNA in parallel to the CRISPR construct. As an additional line of evidence, we monitored BcFLA1 expression with qPCR and detected a significant reduction of the transcript in roots with an active CRISPR construct compared to the control, although residual amounts of the transcript were detected, possibly due to inefficient nonsense-mediated mRNA decay. Additionally, the presence of deletions and insertions were verified by Sanger sequencing of the respective amplicons. In summary we demonstrate the successful application of CRISPR/Cas9 in hairy roots of B. carinata, the proof of its effectiveness and its effect on the root hair phenotype. This study paves the way for experimental strategies involving the phenotypic assessment of gene lesions by CRISPR which

  1. Efficient generation of mutations mediated by CRISPR/Cas9 in the hairy root transformation system of Brassica carinata.

    Directory of Open Access Journals (Sweden)

    Thomas W Kirchner

    Full Text Available A protocol for the induction of site-directed deletions and insertions in the genome of Brassica carinata with CRISPR is described. The construct containing the Cas9 nuclease and the guide RNA (gRNA was delivered by the hairy root transformation technique, and a successful transformation was monitored by GFP fluorescence. PAGE analysis of an amplified region, presumably containing the deletions and insertions, demonstrated up to seven different indels in one transgenic root and in all analyzed roots a wildtype allele of the modified gene was not detectable. Interestingly, many of these mutations consisted of relatively large indels with up to 112 bp. The exact size of the deletions was determined to allow an estimation whether the targeted gene was not functional due to a considerable deletion or a frame shift within the open reading frame. This allowed a direct phenotypic assessment of the previously characterized roots and, in fact, deletions in FASCICLIN-LIKE ARABINOGALACTAN PROTEIN 1 (BcFLA1-a gene with an expression pattern consistent with a role in root hair architecture-resulted in shorter root hairs compared to control roots ectopically expressing an allele of the gene that cannot be targeted by the gRNA in parallel to the CRISPR construct. As an additional line of evidence, we monitored BcFLA1 expression with qPCR and detected a significant reduction of the transcript in roots with an active CRISPR construct compared to the control, although residual amounts of the transcript were detected, possibly due to inefficient nonsense-mediated mRNA decay. Additionally, the presence of deletions and insertions were verified by Sanger sequencing of the respective amplicons. In summary we demonstrate the successful application of CRISPR/Cas9 in hairy roots of B. carinata, the proof of its effectiveness and its effect on the root hair phenotype. This study paves the way for experimental strategies involving the phenotypic assessment of gene lesions

  2. Unusual facial pain secondary to inferior alveolar nerve compression caused by impacted mandibular second molar

    Directory of Open Access Journals (Sweden)

    Urvashi Sharma

    2014-01-01

    Full Text Available Symptoms of inferior alveolar nerve (IAN compression are reported during endodontic procedures, placement of implants, third molar surgeries, inferior alveolar nerve block injections, trauma, orthognathic injuries, ablative surgeries or use of medicaments. Presented is a rare case of a 15-year-old girl who reported severe pain in relation to an impacted permanent mandibular left second molar, the roots of which had entrapped the mandibular canal causing compression of IAN. Timely surgical intervention and sectional removal of the impacted molar is indicated to relieve the symptoms and avoid permanent damage to the nerve.

  3. Anatomical relationship between mental foramen, mandibular teeth and risk of nerve injury with endodontic treatment.

    Science.gov (United States)

    Chong, Bun San; Gohil, Kajal; Pawar, Ravikiran; Makdissi, Jimmy

    2017-01-01

    The objective of the present study was to evaluate the anatomical relationship between mental foramen (MF), including the incidence of the anterior loop of the inferior alveolar nerve (AL), and roots of mandibular teeth in relation to risk of nerve injury with endodontic treatment. Cone-beam computed tomography (CBCT) images, which included teeth either side of the MF, were randomly selected. The anonymised CBCT images were reconstructed and examined in coronal, axial and sagittal planes, using three-dimensional viewing software, to determine the relationship and distance between MF and adjacent mandibular teeth. The actual distance between the root apex and MF was calculated mathematically using Pythagoras' theorem. If present, the incidence of an AL in the axial plane was also recorded. The root apex of the mandibular second premolar (70 %), followed by the first premolar (18 %) and then the first molar (12 %), was the closest to the MF. Ninety-six percent of root apices evaluated were >3 mm from the MF. An AL was present in 88 % of the cases. With regards to endodontic treatment, the risk of nerve injury in the vicinity of the MF would appear to be low. However, the high incidence of the AL highlights the need for clinicians to be aware and careful of this important anatomical feature. The risk of injury to the MN with endodontic treatment would appear to be low, but given the high incidence, it is important to be aware and be careful of the AL.

  4. Regeneration of long-distance peripheral nerve defects after delayed reconstruction in healthy and diabetic rats is supported by immunomodulatory chitosan nerve guides

    OpenAIRE

    Stenberg, Lena; Stã¶ãŸel, Maria; Ronchi, Giulia; Geuna, Stefano; Yin, Yaobin; Mommert, Susanne; Mã¥rtensson, Lisa; Metzen, Jennifer; Grothe, Claudia; Dahlin, Lars B.; Haastert-Talini, Kirsten

    2017-01-01

    Background Delayed reconstruction of transection or laceration injuries of peripheral nerves is inflicted by a reduced regeneration capacity. Diabetic conditions, more frequently encountered in clinical practice, are known to further impair regeneration in peripheral nerves. Chitosan nerve guides (CNGs) have recently been introduced as a new generation of medical devices for immediate peripheral nerve reconstruction. Here, CNGs were used for 45?days delayed reconstruction of critical length 1...

  5. Effect of Pulsed Radiofrequency on Rat Sciatic Nerve Chronic Constriction Injury: A Preliminary Study

    Directory of Open Access Journals (Sweden)

    Duo-Yi Li

    2015-01-01

    Full Text Available Background: Pulsed radiofrequency (PRF application to the dorsal root ganglia can reduce neuropathic pain (NP in animal models, but the effect of PRF on damaged peripheral nerves has not been examined. We investigated the effect of PRF to the rat sciatic nerve (SN on pain-related behavior and SN ultrastructure following chronic constriction injury (CCI. Methods: The analgesic effect was measured by hindpaw mechanical withdrawal threshold (MWT and thermal withdrawal latency (TWL. Twenty rats with NP induced by ligating the common SN were then randomly divided into a PRF treatment group and a sham group. The contralateral SN served as a control. The MWT and TWL were determined again 2, 4, 6, 8, 10, 12, and 14 days after the PRF or sham treatment. On day 14, ipsilateral and contralateral common SNs were excised and examined by electron microscopy. Results: Ipsilateral MWT was significantly reduced and TWL significantly shorter compared to the contralateral side 14 days after CCI (both P = 0.000. In the PRF group, MWT was significantly higher and TWL significantly longer 14 days after the PRF treatment compared to before PRF treatment (both P = 0.000, while no such difference was observed in the sham group (P > 0.05. Electron microscopy revealed extensive demyelination and collagen fiber formation in the ipsilateral SN of sham-treated rats but sparse demyelination and some nerve fiber regrowth in the PRF treatment group. Conclusions: Hyperalgesia is relieved, and ultrastructural damage ameliorated after direct PRF treatment to the SN in the CCI rat model of NP.

  6. Effect of Pulsed Radiofrequency on Rat Sciatic Nerve Chronic Constriction Injury: A Preliminary Study

    Science.gov (United States)

    Li, Duo-Yi; Meng, Lan; Ji, Nan; Luo, Fang

    2015-01-01

    Background: Pulsed radiofrequency (PRF) application to the dorsal root ganglia can reduce neuropathic pain (NP) in animal models, but the effect of PRF on damaged peripheral nerves has not been examined. We investigated the effect of PRF to the rat sciatic nerve (SN) on pain-related behavior and SN ultrastructure following chronic constriction injury (CCI). Methods: The analgesic effect was measured by hindpaw mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL). Twenty rats with NP induced by ligating the common SN were then randomly divided into a PRF treatment group and a sham group. The contralateral SN served as a control. The MWT and TWL were determined again 2, 4, 6, 8, 10, 12, and 14 days after the PRF or sham treatment. On day 14, ipsilateral and contralateral common SNs were excised and examined by electron microscopy. Results: Ipsilateral MWT was significantly reduced and TWL significantly shorter compared to the contralateral side 14 days after CCI (both P = 0.000). In the PRF group, MWT was significantly higher and TWL significantly longer 14 days after the PRF treatment compared to before PRF treatment (both P = 0.000), while no such difference was observed in the sham group (P > 0.05). Electron microscopy revealed extensive demyelination and collagen fiber formation in the ipsilateral SN of sham-treated rats but sparse demyelination and some nerve fiber regrowth in the PRF treatment group. Conclusions: Hyperalgesia is relieved, and ultrastructural damage ameliorated after direct PRF treatment to the SN in the CCI rat model of NP. PMID:25673460

  7. In vitro and in vivo gene therapy with CMV vector-mediated presumed dog beta-nerve growth factor in pyridoxine-induced neuropathy dogs.

    Science.gov (United States)

    Chung, Jin Young; Choi, Jung Hoon; Shin, Il Seob; Choi, Eun Wha; Hwang, Cheol Yong; Lee, Sang Koo; Youn, Hwa Young

    2008-12-01

    Due to the therapeutic potential of gene therapy for neuronal injury, many studies of neurotrophic factors, vectors, and animal models have been performed. The presumed dog beta-nerve growth factor (pdbeta-NGF) was generated and cloned and its expression was confirmed in CHO cells. The recombinant pdbeta-NGF protein reacted with a human beta-NGF antibody and showed bioactivity in PC12 cells. The pdbeta-NGF was shown to have similar bioactivity to the dog beta-NGF. The recombinant pdbeta-NGF plasmid was administrated into the intrathecal space in the gene therapy group. Twenty-four hours after the vector inoculation, the gene therapy group and the positive control group were intoxicated with excess pyridoxine for seven days. Each morning throughout the test period, the dogs' body weight was taken and postural reaction assessments were made. Electrophysiological recordings were performed twice, once before the experiment and once after the test period. After the experimental period, histological analysis was performed. Dogs in the gene therapy group had no weight change and were normal in postural reaction assessments. Electrophysiological recordings were also normal for the gene therapy group. Histological analysis showed that neither the axons nor the myelin of the dorsal funiculus of L4 were severely damaged in the gene therapy group. In addition, the dorsal root ganglia of L4 and the peripheral nerves (sciatic nerve) did not experience severe degenerative changes in the gene therapy group. This study is the first to show the protective effect of NGF gene therapy in a dog model.

  8. Dietary supplement with fermented soybeans, natto, improved the neurobehavioral deficits after sciatic nerve injury in rats.

    Science.gov (United States)

    Pan, Hung-Chuan; Cheng, Fu-Chou; Chen, Chun-Jung; Lai, Shu-Zhen; Liu, Mu-Jung; Chang, Ming-Hong; Wang, Yeou-Chih; Yang, Dar-Yu; Ho, Shu-Peng

    2009-06-01

    Clearance of fibrin and associated inflammatory cytokines by tissue-type plasminogen activator (t-PA) is related to improved regeneration in neurological disorder. The biological activity of fermented soybean (natto) is very similar to that of t-PA. We investigated the effect of the dietary supplement of natto on peripheral nerve regeneration. The peripheral nerve injury was produced by crushing the left sciatic nerve with a vessel clamp in Sprague-Dawley rats. The injured animals were fed orally either with saline or natto (16 mg/day) for seven consecutive days after injury. Increased functional outcome such as sciatic nerve functional index, angle of ankle, compound muscle action potential and conduction latency were observed in natto-treated group. Histological examination demonstrated that natto treatment improved injury-induced vacuole formation, S-100 and vessel immunoreactivities and axon loss. Oral intake of natto prolonged prothrombin time and reduced fibrinogen but did not change activated partial thromboplastin time and bleeding time. Furthermore, natto decreased injury-induced fibrin deposition, indicating a tolerant fibrinolytic activity. The treatment of natto significantly improved injury-induced disruption of blood-nerve barrier and loss of matrix component such as laminin and fibronectin. Sciatic nerve crush injury induced elevation of tumor necrosis factor alpha (TNF-alpha) production and caused apoptosis. The increased production of TNF-alpha and apoptosis were attenuated by natto treatment. These findings indicate that oral intake of natto has the potential to augment regeneration in peripheral nerve injury, possibly mediated by the clearance of fibrin and decreased production of TNF-alpha.

  9. Hericium erinaceus (Bull.: Fr.) Pers., a medicinal mushroom, activates peripheral nerve regeneration.

    Science.gov (United States)

    Wong, Kah-Hui; Kanagasabapathy, Gowri; Naidu, Murali; David, Pamela; Sabaratnam, Vikineswary

    2016-10-01

    To study the ability of aqueous extract of Hericium erinaceus mushroom in the treatment of nerve injury following peroneal nerve crush in Sprague-Dawley rats. Aqueous extract of Hericium erinaceus was given by daily oral administration following peroneal nerve crush injury in Sprague-Dawley rats. The expression of protein kinase B (Akt) and mitogen-activated protein kinase (MAPK) signaling pathways; and c-Jun and c-Fos genes were studied in dorsal root ganglia (DRG) whereas the activity of protein synthesis was assessed in peroneal nerves by immunohistochemical method. Peripheral nerve injury leads to changes at the axonal site of injury and remotely located DRG containing cell bodies of sensory afferent neurons. Immunofluorescence studies showed that DRG neurons ipsilateral to the crush injury in rats of treated groups expressed higher immunoreactivities for Akt, MAPK, c-Jun and c-Fos as compared with negative control group (P <0.05). The intensity of nuclear ribonucleoprotein in the distal segments of crushed nerves of treated groups was significantly higher than in the negative control group (P <0.05). H. erinaceus is capable of promoting peripheral nerve regeneration after injury. Potential signaling pathways include Akt, MAPK, c-Jun, and c-Fos, and protein synthesis have been shown to be involved in its action.

  10. Primary olfactory projections and the nervus terminalis in the African lungfish: implications for the phylogeny of cranial nerves.

    Science.gov (United States)

    von Bartheld, C S; Claas, B; Münz, H; Meyer, D L

    1988-08-01

    Primary olfactory and central projections of the nervus terminalis were investigated by injections of horseradish peroxidase into the olfactory epithelium in the African lungfish. In addition, gonadotropin-releasing hormone (GnRH) immunoreactivity of the nervus terminalis system was investigated. The primary olfactory projections are restricted to the olfactory bulb located at the rostral pole of the telencephalon; they do not extend into caudal parts of the telencephalon. A vomeronasal nerve and an accessory olfactory bulb could not be identified. The nervus terminalis courses through the dorsomedial telencephalon. Major targets include the nucleus of the anterior commissure and the nucleus praeopticus pars superior. some fibers cross to the contralateral side. A few fibers reach the diencephalon and mesencephalon. No label is present in the "posterior root of the nervus terminalis" (= "Pinkus's nerve" or "nervus praeopticus"). GnRH immunoreactivity is lacking in the "anterior root of the nervus terminalis," whereas it is abundant in nervus praeopticus (Pinkus's nerve). These findings may suggest that the nervus terminalis system originally consisted of two distinct cranial nerves, which have fused-in evolution-in most vertebrates. Theories of cranial nerve phylogeny are discussed in the light of the assumed "binerval origin" of the nervus terminalis system.

  11. Effect of rocuronium on the level and mode of pre-synaptic acetylcholine release by facial and somatic nerves, and changes following facial nerve injury in rabbits.

    Science.gov (United States)

    Tan, Jinghua; Xu, Jing; Xing, Yian; Chen, Lianhua; Li, Shitong

    2015-01-01

    Muscles innervated by the facial nerve show differential sensitivities to muscle relaxants than muscles innervated by somatic nerves. The evoked electromyography (EEMG) response is also proportionally reduced after facial nerve injury. This forms the theoretical basis for proper utilization of muscle relaxants to balance EEMG monitoring and immobility under general anesthesia. (1) To observe the relationships between the level and mode of acetylcholine (ACh) release and the duration of facial nerve injury, and the influence of rocuronium in an in vitro rabbit model. (2) To explore the pre-synaptic mechanisms of discrepant responses to a muscle relaxant. Quantal and non-quantal ACh release were measured by using intracellular microelectrode recording in the orbicularis oris 1 to 42 days after graded facial nerve injury and in the gastrocnemius with/without rocuronium. Quantal ACh release was significantly decreased by rocuronium in the orbicularis oris and gastrocnemius, but significantly more so in gastrocnemius. Quantal release was reduced after facial nerve injury, which was significantly correlated with the severity of nerve injury in the absence but not in the presence of rocuronium. Non-quantal ACh release was reduced after facial nerve injury, with many relationships observed depending on the extent of the injury. The extent of inhibition of non-quantal release by rocuronium correlated with the grade of facial nerve injury. These findings may explain why EEMG amplitude might be diminished after acute facial nerve injury but relatively preserved after chronic injury and differential responses in sensitivity to rocuronium.

  12. Microbial processes associated with roots of bulbous rush coated with iron plaques

    Energy Technology Data Exchange (ETDEWEB)

    Kusel, K.; Chabbi, A.; Trinkwalter, T. [University of Bayreuth, Bayreuth (Germany). BITOEK

    2003-11-01

    The objectives of this work were to enumerate the microbes involved in the turnover of iron and organic root exudates in the rhizoplane, to investigate the effect of oxygen and pH on the utilization of these exudates by the rhizobacteria, and to study the ability of the root-colonizing microbiota to reduce sulfate. Enumeration studies done at pH 3 demonstrated that 10{sup 6} Fe(III) reducers and 10{sup 7} Fe(II) oxidizers g (fresh wt root){sup -1} were associated with Juncus roots. When roots were incubated in goethite-containing medium without and with supplemental glucose, Fe(II) was formed at rates approximating 1.1 mmol g (fresh wt root) {sup -1} d{sup -1} and 3.6 mmol g (fresh wt root){sup -1} d{sup -1} under anoxic conditions, respectively. These results suggest that a rapid microbially mediated cycling of iron occurs in the rhizosphere of Juncus roots under changing redox conditions. Most-probable-number estimates of aerobes and anaerobes capable of consuming root exudates at pH 3 were similar in the rhizosphere sediment and in Juncus roots, but numbers of aerobes were significantly higher than those of anaerobes. At pH 3, supplemental organic exudates were primarily subject to aerobic oxidation to CO{sub 2} and not subject to fermentation. However, at pH 4.5, root exudates were also rapidly utilized under anoxic conditions. Root-associated sulfate reduction was not observed at pH 3 to 4.5 but was observed at pH 4.9. The pH increased during all root-incubation studies both under oxic and anoxic conditions. Thus, as result of the microbial turnover of organic root exudates, pH and CO{sub 2} levels might be elevated at the root surface and favor Juncus plants to colonize acidic habitats.

  13. Examining the effects of age, sex, and body mass index on normative median motor nerve excitability measurements.

    LENUS (Irish Health Repository)

    McHugh, John C

    2012-02-01

    OBJECTIVES: The purpose of this study was to build a large reference database of excitability measures in normal subjects and to examine the effects of age, sex, and BMI. METHODS: One hundred and five healthy subjects had median motor nerve excitability testing performed at the wrist using the automated threshold-tracking program, QTRAC. Statistical linear regression was used to explore relationships between nerve excitability and the independent variables. RESULTS: The main effect of age is a reduced superexcitability. Lesser effects are flattening of the normalized stimulus response curve and reduction in threshold change following strong hyperpolarizing currents. Females have lower thresholds than males and small but significant differences in voltage-gated potassium channel (KCNQ) mediated properties (late subexcitability, accommodation half time, and threshold undershoot following depolarizing electrotonus), as well as a small increase in superexcitability. BMI has no influence on nerve excitability data and does not explain sex-related differences in threshold. CONCLUSIONS: Age and sex have few and small effects on excitability parameters. SIGNIFICANCE: The expression of nodal KCNQ channels appears to be greater in females. Age-related increases in subexcitability may be attributable to changes in the muscle fibre and not the nerve.

  14. Partial Root-Zone Drying of Olive (Olea europaea var. 'Chetoui' Induces Reduced Yield under Field Conditions.

    Directory of Open Access Journals (Sweden)

    Soumaya Dbara

    Full Text Available The productivity of olive trees in arid and semi-arid environments is closely linked to irrigation. It is necessary to improve the efficiency of irrigation techniques to optimise the amount of olive fruit produced in relation to the volume of water used. Partial root-zone drying (PRD is a water saving irrigation technique that theoretically allows the production of a root-to-shoot signal that modifies the physiology of the above-ground parts of the plant; specifically reducing stomatal conductance (gs and improving water use efficiency (WUE. Partial root-zone drying has been successfully applied under field conditions to woody and non-woody crops; yet the few previous trials with olive trees have produced contrasting results. Thirty year-old olive trees (Olea europaea 'var. Chetoui' in a Tunisian grove were exposed to four treatments from May to October for three-years: 'control' plants received 100% of the potential evapotranspirative demand (ETc applied to the whole root-zone; 'PRD100' were supplied with an identical volume of water to the control plants alternated between halves of the root-zone every ten-days; 'PRD50' were given 50% of ETc to half of the root-system, and; 'rain-fed' plants received no supplementary irrigation. Allowing part of the root-zone to dry resulted in reduced vegetative growth and lower yield: PRD100 decreased yield by ~47% during productive years. During the less productive years of the alternate bearing cycle, irrigation had no effect on yield; this suggests that withholding of water during 'off-years' may enhance the effectiveness of irrigation over a two-year cycle. The amount and quality of oil within the olive fruit was unaffected by the irrigation treatment. Photosynthesis declined in the PRD50 and rain-fed trees due to greater diffusive limitations and reduced biochemical uptake of CO2. Stomatal conductance and the foliar concentration of abscisic acid (ABA were not altered by PRD100 irrigation, which may

  15. Partial Root-Zone Drying of Olive (Olea europaea var. 'Chetoui') Induces Reduced Yield under Field Conditions.

    Science.gov (United States)

    Dbara, Soumaya; Haworth, Matthew; Emiliani, Giovani; Ben Mimoun, Mehdi; Gómez-Cadenas, Aurelio; Centritto, Mauro

    2016-01-01

    The productivity of olive trees in arid and semi-arid environments is closely linked to irrigation. It is necessary to improve the efficiency of irrigation techniques to optimise the amount of olive fruit produced in relation to the volume of water used. Partial root-zone drying (PRD) is a water saving irrigation technique that theoretically allows the production of a root-to-shoot signal that modifies the physiology of the above-ground parts of the plant; specifically reducing stomatal conductance (gs) and improving water use efficiency (WUE). Partial root-zone drying has been successfully applied under field conditions to woody and non-woody crops; yet the few previous trials with olive trees have produced contrasting results. Thirty year-old olive trees (Olea europaea 'var. Chetoui') in a Tunisian grove were exposed to four treatments from May to October for three-years: 'control' plants received 100% of the potential evapotranspirative demand (ETc) applied to the whole root-zone; 'PRD100' were supplied with an identical volume of water to the control plants alternated between halves of the root-zone every ten-days; 'PRD50' were given 50% of ETc to half of the root-system, and; 'rain-fed' plants received no supplementary irrigation. Allowing part of the root-zone to dry resulted in reduced vegetative growth and lower yield: PRD100 decreased yield by ~47% during productive years. During the less productive years of the alternate bearing cycle, irrigation had no effect on yield; this suggests that withholding of water during 'off-years' may enhance the effectiveness of irrigation over a two-year cycle. The amount and quality of oil within the olive fruit was unaffected by the irrigation treatment. Photosynthesis declined in the PRD50 and rain-fed trees due to greater diffusive limitations and reduced biochemical uptake of CO2. Stomatal conductance and the foliar concentration of abscisic acid (ABA) were not altered by PRD100 irrigation, which may indicate the

  16. The bean rhizosphere Pseudomonas aeruginosa strain RZ9 strongly reduces Fusarium culmorum growth and infectiveness of plant roots

    Energy Technology Data Exchange (ETDEWEB)

    Haddoudi, I.; Sendi, Y.; Batnini, M.; Romdhane, S.B.; Mhadhbi, H.; Mrabet, M.

    2017-07-01

    A faba bean rhizospheric Pseudomonas aeruginosa isolate RZ9 was used for studying its antifungal activity and protecting effects of faba bean and common bean against the root pathogen Fusarium culmorum strain MZB47. The dual culture tests showed that RZ9 inhibits MZB47 in vitro growth by 56%. When mixing RZ9 cell suspension with MZB47 macroconidia at equal proportion, the macroconidia viability was reduced with 70%. Pathogenicity tests conducted in sterile conditions showed that MZB47 caused an intense root rotting in faba bean ‘Aquadulce’ plantlets and a slight level in common bean ‘Coco blanc’. This was associated to significant decreases in plant growth only in ‘Aquadulce’, reducing shoot dry weight (DW) by 82% and root DW by 70%. In soil samples, MZB47 caused severe root rotting and induced significant decreases in shoot DW (up to 51%) and root DW (up to 60%) for both beans. It was associated to a decrease in nodule number by 73% and 52% for faba bean and common bean, respectively. Biocontrol assays revealed that the inoculation of RZ9 to MZB47-treated plantlets enhanced shoot DWs (25% and 110%) and root DWs (29% and 67%), in faba bean and common bean, respectively. Moreover, root rotting levels decreased and nodule number increased in treated compared to untreated plantlets. Collected data highlighted the disease severity of F. culmorum and demonstrated the potential of using RZ9 in controlling Fusaria root diseases in beans. Thereby, the current study represents the first report on the biocontrol effectiveness of P. aeruginosa against F. culmorum in beans.

  17. The bean rhizosphere Pseudomonas aeruginosa strain RZ9 strongly reduces Fusarium culmorum growth and infectiveness of plant roots

    Directory of Open Access Journals (Sweden)

    Imen Haddoudi

    2017-07-01

    Full Text Available A faba bean rhizospheric Pseudomonas aeruginosa isolate RZ9 was used for studying its antifungal activity and protecting effects of faba bean and common bean against the root pathogen Fusarium culmorum strain MZB47. The dual culture tests showed that RZ9 inhibits MZB47 in vitro growth by 56%. When mixing RZ9 cell suspension with MZB47 macroconidia at equal proportion, the macroconidia viability was reduced with 70%. Pathogenicity tests conducted in sterile conditions showed that MZB47 caused an intense root rotting in faba bean ‘Aquadulce’ plantlets and a slight level in common bean ‘Coco blanc’. This was associated to significant decreases in plant growth only in ‘Aquadulce’, reducing shoot dry weight (DW by 82% and root DW by 70%. In soil samples, MZB47 caused severe root rotting and induced significant decreases in shoot DW (up to 51% and root DW (up to 60% for both beans. It was associated to a decrease in nodule number by 73% and 52% for faba bean and common bean, respectively. Biocontrol assays revealed that the inoculation of RZ9 to MZB47-treated plantlets enhanced shoot DWs (25% and 110% and root DWs (29% and 67%, in faba bean and common bean, respectively. Moreover, root rotting levels decreased and nodule number increased in treated compared to untreated plantlets. Collected data highlighted the disease severity of F. culmorum and demonstrated the potential of using RZ9 in controlling Fusaria root diseases in beans. Thereby, the current study represents the first report on the biocontrol effectiveness of P. aeruginosa against F. culmorum in beans.

  18. Topographical and functional anatomy of trapezius muscle innervation by spinal accessory nerve and C2 to C4 nerves of cervical plexus.

    Science.gov (United States)

    Gavid, M; Mayaud, A; Timochenko, A; Asanau, A; Prades, J M

    2016-10-01

    The aim of this study was to determine the existence and the frequency of communicating branches between the spinal accessory nerve (SAN) and the C2, C3 and C4 roots of the cervical plexus. The present study also aimed to elucidate whether these branches contain motor fibers or not. Dissection of the cervical region was performed on twelve adult cadavers. A powered operating microscope was necessary to dissect the SAN and its branches and also to dissect C2, C3 and C4 nerve branches. In a second step, data from 13 patients who underwent 25 modified neck dissections under trapezius muscle's monitoring were collected. At the end of surgery, intraoperative stimulation on the SAN, C2, C3 and C4 nerve branches was performed. Registered potentials in the three parts of the trapezius muscle, using the NIM Medtronic system, were analyzed. During cadaver dissection, 18 (78 %) communicating branches were identified between the SAN and C2, 11 (48 %) between the SAN and C3, 12 (52 %) between the SAN and C4. Intraoperative stimulation of the SAN and its branch for the trapezius muscle provided a significant electroneurographic response in the three parts of the trapezius muscle in all subjects. Intraoperative stimulation of C3 led to recordable contractions of the trapezius muscle in 5 (20 %) modified neck surgeries, stimulation of C4 led to recordable contractions during 5 (20 %) modified neck dissections. One case of contraction was recorded after intraoperative stimulation of C2 (7 %). Although we were able to identify at least one communicating branch between the SAN and the roots of the cervical plexus in each cadaver dissection, the cervical plexus is not always involved in trapezius motor innervation. Intraoperative electroneurography demonstrated that a motor input from the cervical plexus to the trapezius muscle was provided in only 32 % of cases. Therefore, SAN trunk and C3-C4 roots should be carefully preserved during modified neck dissection to protect

  19. Cutaneous nociceptors lack sensitisation, but reveal μ-opioid receptor-mediated reduction in excitability to mechanical stimulation in neuropathy

    Directory of Open Access Journals (Sweden)

    Schmidt Yvonne

    2012-11-01

    Full Text Available Abstract Background Peripheral nerve injuries often trigger a hypersensitivity to tactile stimulation. Behavioural studies demonstrated efficient and side effect-free analgesia mediated by opioid receptors on peripheral sensory neurons. However, mechanistic approaches addressing such opioid properties in painful neuropathies are lacking. Here we investigated whether opioids can directly inhibit primary afferent neuron transmission of mechanical stimuli in neuropathy. We analysed the mechanical thresholds, the firing rates and response latencies of sensory fibres to mechanical stimulation of their cutaneous receptive fields. Results Two weeks following a chronic constriction injury of the saphenous nerve, mice developed a profound mechanical hypersensitivity in the paw innervated by the damaged nerve. Using an in vitro skin-nerve preparation we found no changes in the mechanical thresholds and latencies of sensory fibres from injured nerves. The firing rates to mechanical stimulation were unchanged or reduced following injury. Importantly, μ-opioid receptor agonist [D-Ala2,N-Me-Phe4,Gly5]-ol-enkephalin (DAMGO significantly elevated the mechanical thresholds of nociceptive Aδ and C fibres. Furthermore, DAMGO substantially diminished the mechanically evoked discharges of C nociceptors in injured nerves. These effects were blocked by DAMGO washout and pre-treatment with the selective μ-opioid receptor antagonist Cys2-Tyr3-Orn5-Pen7-amide. DAMGO did not alter the responses of sensory fibres in uninjured nerves. Conclusions Our findings suggest that behaviourally manifested neuropathy-induced mechanosensitivity does not require a sensitised state of cutaneous nociceptors in damaged nerves. Yet, nerve injury renders nociceptors sensitive to opioids. Prevention of action potential generation or propagation in nociceptors might represent a cellular mechanism underlying peripheral opioid-mediated alleviation of mechanical hypersensitivity in neuropathy.

  20. Membrane transporters mediating root signalling and adaptive responses to oxygen deprivation and soil flooding.

    Science.gov (United States)

    Shabala, Sergey; Shabala, Lana; Barcelo, Juan; Poschenrieder, Charlotte

    2014-10-01

    This review provides a comprehensive assessment of a previously unexplored topic: elucidating the role that plasma- and organelle-based membrane transporters play in plant-adaptive responses to flooding. We show that energy availability and metabolic shifts under hypoxia and anoxia are critical in regulating membrane-transport activity. We illustrate the high tissue and time dependence of this regulation, reveal the molecular identity of transporters involved and discuss the modes of their regulation. We show that both reduced oxygen availability and accumulation of transition metals in flooded roots result in a reduction in the cytosolic K(+) pool, ultimately determining the cell's fate and transition to programmed cell death (PCD). This process can be strongly affected by hypoxia-induced changes in the amino acid pool profile and, specifically, ϒ-amino butyric acid (GABA) accumulation. It is suggested that GABA plays an important regulatory role, allowing plants to proceed with H2 O2 signalling to activate a cascade of genes that mediate plant adaptation to flooding while at the same time, preventing the cell from entering a 'suicide program'. We conclude that progress in crop breeding for flooding tolerance can only be achieved by pyramiding the numerous physiological traits that confer efficient energy maintenance, cytosolic ion homeostasis, and reactive oxygen species (ROS) control and detoxification. © 2014 John Wiley & Sons Ltd.

  1. Membrane attack complex of complement is not essential for immune mediated demyelination in experimental autoimmune neuritis.

    Science.gov (United States)

    Tran, Giang T; Hodgkinson, Suzanne J; Carter, Nicole M; Killingsworth, Murray; Nomura, Masaru; Verma, Nirupama D; Plain, Karren M; Boyd, Rochelle; Hall, Bruce M

    2010-12-15

    Antibody deposition and complement activation, especially membrane attack complex (MAC) formation are considered central for immune mediated demyelination. To examine the role of MAC in immune mediated demyelination, we studied experimental allergic neuritis (EAN) in Lewis rats deficient in complement component 6 (C6) that cannot form MAC. A C6 deficient Lewis (Lewis/C6-) strain of rats was bred by backcrossing the defective C6 gene, from PVG/C6- rats, onto the Lewis background. Lewis/C6- rats had the same C6 gene deletion as PVG/C6- rats and their sera did not support immune mediated haemolysis unless C6 was added. Active EAN was induced in Lewis and Lewis/C6- rats by immunization with bovine peripheral nerve myelin in complete Freund's adjuvant (CFA), and Lewis/C6- rats had delayed clinical EAN compared to the Lewis rats. Peripheral nerve demyelination in Lewis/C6- was also delayed but was similar in extent at the peak of disease. Compared to Lewis, Lewis/C6- nerves had no MAC deposition, reduced macrophage infiltrate and IL-17A, but similar T cell infiltrate and Th1 cytokine mRNA expression. ICAM-1 and P-selectin mRNA expression and immunostaining on vascular endothelium were delayed in Lewis C6- compared to Lewis rats' nerves. This study found that MAC was not required for immune mediated demyelination; but that MAC enhanced early symptoms and early demyelination in EAN, either by direct lysis or by sub-lytic induction of vascular endothelial expression of ICAM-1 and P-selectin. Copyright © 2010 Elsevier B.V. All rights reserved.

  2. Artemisia tilesii Ledeb hairy roots establishment using Agrobacterium rhizogenes-mediated transformation.

    Science.gov (United States)

    Matvieieva, N A; Shakhovsky, A M; Belokurova, V B; Drobot, K O

    2016-05-18

    An efficient and rapid protocol for the establishment of Artemisia tilesii "hairy" root culture is reported. Leaf explants of aseptically growing plants were cocultured with Agrobacterium rhizogenes A4 wild strain or A. rhizogenes carrying the plasmids with nptII and ifn-α2b genes. Root formation on the explants started in 5-6 days after their cocultivation with bacterial suspension. Prolongation of explant cultivation time on the medium without cefotaxime led to stimulation of root growth. The effects of sucrose concentration as well as of the levels of synthetic indole-3-butyric acid (IBA) and native growth regulator Emistim on the stimulation of A. tilesii "hairy" root growth were studied. Maximum stimulating effect both for the control and for transgenic roots was observed in case of root cultivation on the media supplemented with IBA-up to 7.95- and 9.1-fold biomass increase, respectively. Cultivation on the medium with 10 μl/L Emistime has also led to the control roots growth stimulation (up to 2.75-fold). Emistime at 5 μl/L concentration led to 5.46-fold mass increase in only one "hairy" root line. Higher sucrose content (40 g/L) stimulated growth of two hairy root lines but had no effect on growth of the control roots.

  3. Farris-Tang retractor in optic nerve sheath decompression surgery.

    Science.gov (United States)

    Spiegel, Jennifer A; Sokol, Jason A; Whittaker, Thomas J; Bernard, Benjamin; Farris, Bradley K

    2016-01-01

    Our purpose is to introduce the use of the Farris-Tang retractor in optic nerve sheath decompression surgery. The procedure of optic nerve sheath fenestration was reviewed at our tertiary care teaching hospital, including the use of the Farris-Tang retractor. Pseudotumor cerebri is a syndrome of increased intracranial pressure without a clear cause. Surgical treatment can be effective in cases in which medical therapy has failed and disc swelling with visual field loss progresses. Optic nerve sheath decompression surgery (ONDS) involves cutting slits or windows in the optic nerve sheath to allow cerebrospinal fluid to escape, reducing the pressure around the optic nerve. We introduce the Farris-Tang retractor, a retractor that allows for excellent visualization of the optic nerve sheath during this surgery, facilitating the fenestration of the sheath and visualization of the subsequent cerebrospinal fluid egress. Utilizing a medial conjunctival approach, the Farris-Tang retractor allows for easy retraction of the medial orbital tissue and reduces the incidence of orbital fat protrusion through Tenon's capsule. The Farris-Tang retractor allows safe, easy, and effective access to the optic nerve with good visualization in optic nerve sheath decompression surgery. This, in turn, allows for greater surgical efficiency and positive patient outcomes.

  4. Cysteine- and glutathione-mediated uptake of lead and cadmium into Zea mays and Brassica napus roots

    International Nuclear Information System (INIS)

    Vadas, Timothy M.; Ahner, Beth A.

    2009-01-01

    This study examines a new mechanism for the uptake of Pb and Cd into Brassica napus and Zea mays roots. During hydroponic experiments, the uptake of Pb and Cd was enhanced in the presence of cysteine and glutathione, whereas no or very low uptake was observed in EDTA and penicillamine controls. Uptake rates were also enhanced after pre-exposure to cysteine or glutathione and inhibited in the presence of vanadate, suggesting a biological mechanism of uptake. Increasing concentrations of glutathione in solution resulted in decreasing Pb uptake rates, indicating competition for transport between free-glutathione and Pb-glutathione species. Pb uptake in the presence of increasing cysteine concentrations resulted in decreased uptake initially but linearly increasing uptake at higher concentrations. Experimentation showed concentration dependent Pb uptake rates. We speculate that there are specific transporters for these thiol ligands and describe what barriers remain for application of this novel transport mechanism in chelator-assisted phytoremediation. - Cysteine and glutathione mediate the transport of lead and cadmium into plant roots.

  5. Cysteine- and glutathione-mediated uptake of lead and cadmium into Zea mays and Brassica napus roots

    Energy Technology Data Exchange (ETDEWEB)

    Vadas, Timothy M., E-mail: tvadas@umbc.ed [Department of Biological and Environmental Engineering, Cornell University, 320 Riley-Robb Hall, Ithaca, NY 14853 (United States); Ahner, Beth A., E-mail: baa7@cornell.ed [Department of Biological and Environmental Engineering, Cornell University, 320 Riley-Robb Hall, Ithaca, NY 14853 (United States)

    2009-08-15

    This study examines a new mechanism for the uptake of Pb and Cd into Brassica napus and Zea mays roots. During hydroponic experiments, the uptake of Pb and Cd was enhanced in the presence of cysteine and glutathione, whereas no or very low uptake was observed in EDTA and penicillamine controls. Uptake rates were also enhanced after pre-exposure to cysteine or glutathione and inhibited in the presence of vanadate, suggesting a biological mechanism of uptake. Increasing concentrations of glutathione in solution resulted in decreasing Pb uptake rates, indicating competition for transport between free-glutathione and Pb-glutathione species. Pb uptake in the presence of increasing cysteine concentrations resulted in decreased uptake initially but linearly increasing uptake at higher concentrations. Experimentation showed concentration dependent Pb uptake rates. We speculate that there are specific transporters for these thiol ligands and describe what barriers remain for application of this novel transport mechanism in chelator-assisted phytoremediation. - Cysteine and glutathione mediate the transport of lead and cadmium into plant roots.

  6. Left phrenic nerve anatomy relative to the coronary venous system: Implications for phrenic nerve stimulation during cardiac resynchronization therapy.

    Science.gov (United States)

    Spencer, Julianne H; Goff, Ryan P; Iaizzo, Paul A

    2015-07-01

    The objective of this study was to quantitatively characterize anatomy of the human phrenic nerve in relation to the coronary venous system, to reduce undesired phrenic nerve stimulation during left-sided lead implantations. We obtained CT scans while injecting contrast into coronary veins of 15 perfusion-fixed human heart-lung blocs. A radiopaque wire was glued to the phrenic nerve under CT, then we created three-dimensional models of anatomy and measured anatomical parameters. The left phrenic nerve typically coursed over the basal region of the anterior interventricular vein, mid region of left marginal veins, and apical region of inferior and middle cardiac veins. There was large variation associated with the average angle between nerve and veins. Average angle across all coronary sinus tributaries was fairly consistent (101.3°-111.1°). The phrenic nerve coursed closest to the middle cardiac vein and left marginal veins. The phrenic nerve overlapped a left marginal vein in >50% of specimens. © 2015 Wiley Periodicals, Inc.

  7. Afferent nerves regulating the cough reflex: Mechanisms and Mediators of Cough in Disease

    Science.gov (United States)

    Canning, Brendan J.

    2010-01-01

    Bronchopulmonary C-fibers and acid-sensitive, capsaicin-insensitive mechanoreceptors innervating the larynx, trachea and large bronchi regulate the cough reflex. These vagal afferent nerves may interact centrally with sensory input arising from afferent nerves innervating the intrapulmonary airways or even extrapulmonary afferents such as those innervating the nasal mucosa and esophagus to produce chronic cough or enhanced cough responsiveness. The mechanisms of cough initiation in health and in disease are briefly described. PMID:20172253

  8. Extrinsic control of the release of galanin and VIP from intrinsic nerves of isolated, perfused, porcine ileum

    DEFF Research Database (Denmark)

    Messell, T; Harling, H; Poulsen, Steen Seier

    1992-01-01

    By immunohistochemistry galanin-like immunoreactivity and vasoactive intestinal polypeptide (VIP)-like immunoreactivity were found in nerve cell bodies mostly in the submucous plexus and in nerve fibres in the mucosa, submucosa and muscularis including the myenteric plexus of the porcine ileum an...... was not influenced by atropine. Our results suggest that the galanin- and VIP-producing intrinsic neurons receive inhibitory signals by noradrenergic nerve fibers and stimulatory signals mediated by cholinergic nerves, possibly via a cholinergic interneuron....

  9. Administration of Oxygen Ultra-Fine Bubbles Improves Nerve Dysfunction in a Rat Sciatic Nerve Crush Injury Model

    Directory of Open Access Journals (Sweden)

    Hozo Matsuoka

    2018-05-01

    Full Text Available Ultra-fine bubbles (<200 nm in diameter have several unique properties and have been tested in various medical fields. The purpose of this study was to investigate the effects of oxygen ultra-fine bubbles (OUBs on a sciatic nerve crush injury (SNC model rats. Rats were intraperitoneally injected with 1.5 mL saline, OUBs diluted in saline, or nitrogen ultra-fine bubbles (NUBs diluted in saline three times per week for 4 weeks in four groups: (1 control, (sham operation + saline; (2 SNC, (crush + saline; (3 SNC+OUB, (crush + OUB-saline; (4 SNC+NUB, (crush + NUB-saline. The effects of the OUBs on dorsal root ganglion (DRG neurons and Schwann cells (SCs were examined by serial dilution of OUB medium in vitro. Sciatic functional index, paw withdrawal thresholds, nerve conduction velocity, and myelinated axons were significantly decreased in the SNC group compared to the control group; these parameters were significantly improved in the SNC+OUB group, although NUB treatment did not affect these parameters. In vitro, OUBs significantly promoted neurite outgrowth in DRG neurons by activating AKT signaling and SC proliferation by activating ERK1/2 and JNK/c-JUN signaling. OUBs may improve nerve dysfunction in SNC rats by promoting neurite outgrowth in DRG neurons and SC proliferation.

  10. Roles of abscisic acid and auxin in shoot-supplied ammonium inhibition of root system development.

    Science.gov (United States)

    Li, Baohai; Li, Qing; Kronzucker, Herbert J; Shi, Weiming

    2011-10-01

    A plastic root system is a prerequisite for successful plant acclimation to variable environments. The normally functioning root system is the result of a complex interaction of root-borne signals and shoot-derived regulators. We recently demonstrated that AUX1, a well-studied component of auxin transport, mediates shoot-supplied ammonium (SSA) inhibition of lateral root (LR) formation in Arabidopsis. By contrast, the response did not involve ABA pathways, via which several other abiotic stresses affect LR formation. We proposed that SSA regulates LR emergence by interrupting AUX1-mediated auxin transport from shoot to root. Here, by analyzing both ABA- and auxin-related mutants, we show that AUX1 is also required for SSA-mediated suppression of primary root growth. Ammonium content in shoots was furthermore shown to increase linearly with shoot-, but not root-supplied, ammonium, suggesting it may represent the internal trigger for SSA inhibition of root development. Taken together, our data identify AUX1-mediated auxin transport as a key transmission step in the sensing of excessive ammonium exposure and its inhibitory effect on root development. 

  11. Ethylene-Induced Inhibition of Root Growth Requires Abscisic Acid Function in Rice (Oryza sativa L.) Seedlings

    Science.gov (United States)

    He, Si-Jie; Lu, Xiang; Zhang, Wan-Ke; Lu, Tie-Gang; Chen, Shou-Yi; Zhang, Jin-Song

    2014-01-01

    Ethylene and abscisic acid (ABA) have a complicated interplay in many developmental processes. Their interaction in rice is largely unclear. Here, we characterized a rice ethylene-response mutant mhz4, which exhibited reduced ethylene-response in roots but enhanced ethylene-response in coleoptiles of etiolated seedlings. MHZ4 was identified through map-based cloning and encoded a chloroplast-localized membrane protein homologous to Arabidopsis thaliana (Arabidopsis) ABA4, which is responsible for a branch of ABA biosynthesis. MHZ4 mutation reduced ABA level, but promoted ethylene production. Ethylene induced MHZ4 expression and promoted ABA accumulation in roots. MHZ4 overexpression resulted in enhanced and reduced ethylene response in roots and coleoptiles, respectively. In root, MHZ4-dependent ABA pathway acts at or downstream of ethylene receptors and positively regulates root ethylene response. This ethylene-ABA interaction mode is different from that reported in Arabidopsis, where ethylene-mediated root inhibition is independent of ABA function. In coleoptile, MHZ4-dependent ABA pathway acts at or upstream of OsEIN2 to negatively regulate coleoptile ethylene response, possibly by affecting OsEIN2 expression. At mature stage, mhz4 mutation affects branching and adventitious root formation on stem nodes of higher positions, as well as yield-related traits. Together, our findings reveal a novel mode of interplay between ethylene and ABA in control of rice growth and development. PMID:25330236

  12. Coronectomy - A viable alternative to prevent inferior alveolar nerve injury

    Directory of Open Access Journals (Sweden)

    Alok Sagtani

    2015-12-01

    Full Text Available Background and Objectives: Coronectomy is a relatively new method to prevent the risk of Inferior Alveolar Nerve (IAN injury during removal of lower third molars with limited scientific literature among Nepalese patients. Thus, a study was designed to evaluate coronectomy regarding its use, outcomes and complications.Materials and Methods: A descriptive study was conducted from December 2012 to December 2013 among patients attending Department of Oral and Maxillofacial Surgery, College of Dental Sciences, BP Koirala Institute of Health Sciences, Dharan, Nepal for removal of mandibular third molars. After reviewing the radiograph for proximity of third molar to the IAN, coronectomy was advised. A written informed consent was obtained from the patients and coronectomy was performed. Patients were recalled after one week. The outcome measures in the follow-up visit were primary healing, pain, infection, dry socket, root exposure and IAN injury. The prevalence of IAN proximity of lower third molars and incidence of complications were calculated.Results: A total 300 mandibular third molars were extracted in 278 patients during the study period. Out of 300 impacted mandibular third molar, 41 (13.7% showed close proximity to inferior alveolar nerve . The incidence of complications and failed procedure was 7.4% among the patients who underwent coronectomy. During the follow up visit, persistent pain and root exposure was reported while other complications like inferior alveolar nerve injury, dry socket and infection was not experienced by the study patients.Conclusion: With a success rate of 92.6% among the 41 patients, coronectomy is a viable alternative to conventional total extraction for mandibular third molars who have a higher risk for damage to the inferior alveolar nerve.JCMS Nepal. 2015;11(3:1-5.

  13. Pregabalin reduces acute inflammatory and persistent pain associated with nerve injury and cancer in rat models of orofacial pain.

    Science.gov (United States)

    Hummig, Wagner; Kopruszinski, Caroline Machado; Chichorro, Juliana Geremias

    2014-01-01

    To assess the analgesic effect of pregabalin in orofacial models of acute inflammatory pain and of persistent pain associated with nerve injury and cancer, and so determine its effectiveness in controlling orofacial pains having different underlying mechanisms. Orofacial capsaicin and formalin tests were employed in male Wistar rats to assess the influence of pregabalin (or vehicle) pretreatment in acute pain models, and the results from these experiments were analyzed by one-way analysis of variance (ANOVA) followed by Newman Keuls post-hoc test. Pregabalin (or vehicle) treatment was also tested on the facial heat hyperalgesia that was evaluated in rats receiving injection of the inflammatory irritant carrageenan into the upper lip, as well as after constriction of the infraorbital nerve (a model of trigeminal neuropathic pain), or after inoculation of tumor cells into the facial vibrissal pad; two-way repeated measures ANOVA followed by Newman-Keuls post-hoc test was used to analyze data from these experiments. Facial grooming induced by capsaicin was abolished by pretreatment with pregabalin at 10 and 30 mg/kg. However, pregabalin failed to modify the first phase of the formalin response, but reduced the second phase at both doses (10 and 30 mg/kg). In addition, treatment of rats with pregabalin reduced the heat hyperalgesia induced by carrageenan, as well as by nerve injury and facial cancer. Pregabalin produced a marked antinociceptive effect in rat models of facial inflammatory pain as well as in facial neuropathic and cancer pain models, suggesting that it may represent an important agent for the clinical control of orofacial pain.

  14. Olfactory bulb glomerular NMDA receptors mediate olfactory nerve potentiation and odor preference learning in the neonate rat.

    Directory of Open Access Journals (Sweden)

    Rebecca Lethbridge

    Full Text Available Rat pup odor preference learning follows pairing of bulbar beta-adrenoceptor activation with olfactory input. We hypothesize that NMDA receptor (NMDAR-mediated olfactory input to mitral cells is enhanced during training, such that increased calcium facilitates and shapes the critical cAMP pattern. Here, we demonstrate, in vitro, that olfactory nerve stimulation, at sniffing frequencies, paired with beta-adrenoceptor activation, potentiates olfactory nerve-evoked mitral cell firing. This potentiation is blocked by a NMDAR antagonist and by increased inhibition. Glomerular disinhibition also induces NMDAR-sensitive potentiation. In vivo, in parallel, behavioral learning is prevented by glomerular infusion of an NMDAR antagonist or a GABA(A receptor agonist. A glomerular GABA(A receptor antagonist paired with odor can induce NMDAR-dependent learning. The NMDA GluN1 subunit is phosphorylated in odor-specific glomeruli within 5 min of training suggesting early activation, and enhanced calcium entry, during acquisition. The GluN1 subunit is down-regulated 3 h after learning; and at 24 h post-training the GluN2B subunit is down-regulated. These events may assist memory stability. Ex vivo experiments using bulbs from trained rat pups reveal an increase in the AMPA/NMDA EPSC ratio post-training, consistent with an increase in AMPA receptor insertion and/or the decrease in NMDAR subunits. These results support a model of a cAMP/NMDA interaction in generating rat pup odor preference learning.

  15. Temporary Mental Nerve Paresthesia Originating from Periapical Infection

    OpenAIRE

    Genc Sen, Ozgur; Kaplan, Volkan

    2015-01-01

    Many systemic and local factors can cause paresthesia, and it is rarely caused by infections of dental origin. This report presents a case of mental nerve paresthesia caused by endodontic infection of a mandibular left second premolar. Resolution of the paresthesia began two weeks after conventional root canal treatment associated with antibiotic therapy and was completed in eight weeks. One year follow-up radiograph indicated complete healing of the radiolucent periapical lesion. The too...

  16. Restoration of diaphragmatic function after diaphragm reinnervation by inferior laryngeal nerve; experimental study in rabbits

    Directory of Open Access Journals (Sweden)

    de Barros Angelique

    2006-01-01

    Full Text Available Abstract Objectives To assess the possibilities of reinnervation in a paralyzed hemidiaphragm via an anastomosis between phrenic nerve and inferior laryngeal nerve in rabbits. Reinnervation of a paralyzed diaphragm could be an alternative to treat patients with ventilatory insufficiency due to upper cervical spine injuries. Material and method Rabbits were divided into five groups of seven rabbits each. Groups I and II were respectively the healthy and the denervated control groups. The 3 other groups were all reinnervated using three different surgical procedures. In groups III and IV, phrenic nerve was respectively anastomosed with the abductor branch of the inferior laryngeal nerve and with the trunk of the inferior laryngeal nerve. In group V, the fifth and fourth cervical roots were respectively anastomosed with the abductor branch of the inferior laryngeal nerve and with the nerve of the sternothyroid muscle (originating from the hypoglossal nerve. Animals were evaluated 4 months later using electromyography, transdiaphragmatic pressure measurements, sonomicrometry and histological examination. Results A poor inspiratory activity was found in quiet breathing in the reinnervated groups, with an increasing pattern of activity during effort. In the reinnervated groups, transdiaphragmatic pressure measurements and sonomicrometry were higher in group III with no significant differencewith groups IV and V. Conclusion Inspiratory contractility of an hemidiaphragm could be restored with immediate anastomosis after phrenic nerve section between phrenic nerve and inferior laryngeal nerve.

  17. Effect of cochlear nerve electrocautery on the adult cochlear nucleus.

    Science.gov (United States)

    Iseli, Claire E; Merwin, William H; Klatt-Cromwell, Cristine; Hutson, Kendall A; Ewend, Matthew G; Adunka, Oliver F; Fitzpatrick, Douglas C; Buchman, Craig A

    2015-04-01

    Electrocauterization and subsequent transection of the cochlear nerve induce greater injury to the cochlear nucleus than sharp transection alone. Some studies show that neurofibromatosis Type 2 (NF2) patients fit with auditory brainstem implants (ABIs) fail to achieve speech perception abilities similar to ABI recipients without NF2. Reasons for these differences remain speculative. One hypothesis posits poorer performance to surgically induced trauma to the cochlear nucleus from electrocautery. Sustained electrosurgical depolarization of the cochlear nerve may cause excitotoxic-induced postsynaptic nuclear injury. Equally plausible is that cautery in the vicinity of the cochlear nucleus induces necrosis. The cochlear nerve was transected in anesthetized adult gerbils sharply with or without bipolar electrocautery at varying intensities. Gerbils were perfused at 1, 3, 5, and 7 days postoperatively; their brainstem and cochleas were embedded in paraffin and sectioned at 10 μm. Alternate sections were stained with flourescent markers for neuronal injury or Nissl substance. In additional experiments, anterograde tracers were applied directly to a sectioned eighth nerve to verify that fluorescent-labeled profiles seen were terminating auditory nerve fibers. Cochlear nerve injury was observed from 72 hours postoperatively and was identical across cases regardless of surgical technique. Postsynaptic cochlear nucleus injury was not seen after distal transection of the nerve. By contrast, proximal transection was associated with trauma to the cochlear nucleus. Distal application of bipolar electrocautery seems safe for the cochlear nucleus. Application near the root entry zone must be used cautiously because this may compromise nuclear viability needed to support ABI stimulation.

  18. Root resorption: Focus on signs and symptoms of importance for avoiding root resorption during orthodontic treatment

    Directory of Open Access Journals (Sweden)

    Inger Kjaer

    2014-01-01

    Full Text Available Introduction: This paper summarizes the different conditions, which have a well-known influence on the resorption of tooth roots, exemplified by trauma and orthodontic treatment. The concept of the paper is to summarize and explain symptoms and signs of importance for avoiding resorption during orthodontic treatment. The Hypothesis: The hypothesis in this paper is that three different tissue layers covering the root in the so-called periroot sheet can explain signs and symptoms of importance for avoiding root resorption during orthodontic treatment. These different tissue layers are; outermost - an ectodermal tissue layer (Malassez′s epithelium, a middle layer - composed by the collagen-mesodermal tissue layer, and an innermost root-close innervation layer. Abnormalities in one of these tissue layers are thought to cause inflammatory processes in the periodontal membrane comparable to inflammatory processes provoked by trauma and orthodontic pressure. Inflammatory reactions are followed by resorptive processes in the periroot sheet and along the root surface. Evaluation of the Hypothesis: Different morphologies in the dentition are signs of abnormal epithelium or an abnormal mesodermal layer. It has formerly been demonstrated how demyelinization of the myelin sheaths in the peripheral nerves close to the root provoke resorption. Accordingly, conditions affecting these tissue layers can be associated not only with different morphologies but also with general symptoms and diseases (e.g., ectodermal dysplasia and hypophosphatasia.

  19. A free vein graft cap influences neuroma formation after nerve transection.

    Science.gov (United States)

    Galeano, Mariarosaria; Manasseri, Benedetto; Risitano, Giovanni; Geuna, Stefano; Di Scipio, Federica; La Rosa, Paola; Delia, Gabriele; D'Alcontres, Francesco Stagno; Colonna, Michele R

    2009-01-01

    : Neuroma formation is a major problem in nerve surgery and consensus about its prevention has not been reached. It has been suggested that vein covering can reduce neuroma formation in transected nerves. In this article, the Authors propose an easy and novel method of covering by nerve stump capping with a free vein graft. : Neuroma-like lesions were created on the rat thigh sectioning the femoral nerve above its division in 16 animals. The proximal nerve stump was invaginated into the lumen of a 1.5 cm long femoral free vein graft on the right side, and the vein was closed on itself by microsurgical sutures to form a cap for the nerve stump. On the left side acting as the control neuroma, the nerve was cut and left uncovered. Histological and immunohistochemical assessment was used to quantify the degree of neuroma formation. : Significant differences were found in both neuroma size and axon-glia organization between the treated and control sides indicating that free vein graft capping reduced neuroma formation in comparison to uncovered nerve stumps. : Our results confirm that vein-covering of a transected nerve stump can be effective in reducing neuroma formation. Moreover, unlike previous works that buried the nerve into an adjacent vein left in place, our experiments showed that also the use of a free vein graft cap can hinder neuroma formation. Although translation of rat experiments to the clinics should be dealt with caution, our data suggest a careful clinical use of the technique. (c) 2009 Wiley-Liss, Inc. Microsurgery, 2009.

  20. Nerve Blocks

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z Nerve Blocks A nerve block is an injection to ... the limitations of Nerve Block? What is a Nerve Block? A nerve block is an anesthetic and/ ...

  1. Rehabilitation, Using Guided Cerebral Plasticity, of a Brachial Plexus Injury Treated with Intercostal and Phrenic Nerve Transfers.

    Science.gov (United States)

    Dahlin, Lars B; Andersson, Gert; Backman, Clas; Svensson, Hampus; Björkman, Anders

    2017-01-01

    Recovery after surgical reconstruction of a brachial plexus injury using nerve grafting and nerve transfer procedures is a function of peripheral nerve regeneration and cerebral reorganization. A 15-year-old boy, with traumatic avulsion of nerve roots C5-C7 and a non-rupture of C8-T1, was operated 3 weeks after the injury with nerve transfers: (a) terminal part of the accessory nerve to the suprascapular nerve, (b) the second and third intercostal nerves to the axillary nerve, and (c) the fourth to sixth intercostal nerves to the musculocutaneous nerve. A second operation-free contralateral gracilis muscle transfer directly innervated by the phrenic nerve-was done after 2 years due to insufficient recovery of the biceps muscle function. One year later, electromyography showed activation of the biceps muscle essentially with coughing through the intercostal nerves, and of the transferred gracilis muscle by deep breathing through the phrenic nerve. Voluntary flexion of the elbow elicited clear activity in the biceps/gracilis muscles with decreasing activity in intercostal muscles distal to the transferred intercostal nerves (i.e., corresponding to eighth intercostal), indicating cerebral plasticity, where neural control of elbow flexion is gradually separated from control of breathing. To restore voluntary elbow function after nerve transfers, the rehabilitation of patients operated with intercostal nerve transfers should concentrate on transferring coughing function, while patients with phrenic nerve transfers should focus on transferring deep breathing function.

  2. Morphological plasticity of root growth under mild water stress increases water use efficiency without reducing yield in maize

    Science.gov (United States)

    Cai, Qian; Zhang, Yulong; Sun, Zhanxiang; Zheng, Jiaming; Bai, Wei; Zhang, Yue; Liu, Yang; Feng, Liangshan; Feng, Chen; Zhang, Zhe; Yang, Ning; Evers, Jochem B.; Zhang, Lizhen

    2017-08-01

    A large yield gap exists in rain-fed maize (Zea mays L.) production in semi-arid regions, mainly caused by frequent droughts halfway through the crop-growing period due to uneven distribution of rainfall. It is questionable whether irrigation systems are economically required in such a region since the total amount of rainfall does generally meet crop requirements. This study aimed to quantitatively determine the effects of water stress from jointing to grain filling on root and shoot growth and the consequences for maize grain yield, above- and below-ground dry matter, water uptake (WU) and water use efficiency (WUE). Pot experiments were conducted in 2014 and 2015 with a mobile rain shelter to achieve conditions of no, mild or severe water stress. Maize yield was not affected by mild water stress over 2 years, while severe stress reduced yield by 56 %. Both water stress levels decreased root biomass slightly but shoot biomass substantially. Mild water stress decreased root length but increased root diameter, resulting in no effect on root surface area. Due to the morphological plasticity in root growth and the increase in root / shoot ratio, WU under water stress was decreased, and overall WUE for both above-ground dry matter and grain yield increased. Our results demonstrate that an irrigation system might be not economically and ecologically necessary because the frequently occurring mild water stress did not reduce crop yield much. The study helps us to understand crop responses to water stress during a critical water-sensitive period (middle of the crop-growing season) and to mitigate drought risk in dry-land agriculture.

  3. A preconditioning nerve lesion inhibits mechanical pain hypersensitivity following subsequent neuropathic injury

    Directory of Open Access Journals (Sweden)

    Wu Ann

    2011-01-01

    Full Text Available Abstract Background A preconditioning stimulus can trigger a neuroprotective phenotype in the nervous system - a preconditioning nerve lesion causes a significant increase in axonal regeneration, and cerebral preconditioning protects against subsequent ischemia. We hypothesized that a preconditioning nerve lesion induces gene/protein modifications, neuronal changes, and immune activation that may affect pain sensation following subsequent nerve injury. We examined whether a preconditioning lesion affects neuropathic pain and neuroinflammation after peripheral nerve injury. Results We found that a preconditioning crush injury to a terminal branch of the sciatic nerve seven days before partial ligation of the sciatic nerve (PSNL; a model of neuropathic pain induced a significant attenuation of pain hypersensitivity, particularly mechanical allodynia. A preconditioning lesion of the tibial nerve induced a long-term significant increase in paw-withdrawal threshold to mechanical stimuli and paw-withdrawal latency to thermal stimuli, after PSNL. A preconditioning lesion of the common peroneal induced a smaller but significant short-term increase in paw-withdrawal threshold to mechanical stimuli, after PSNL. There was no difference between preconditioned and unconditioned animals in neuronal damage and macrophage and T-cell infiltration into the dorsal root ganglia (DRGs or in astrocyte and microglia activation in the spinal dorsal and ventral horns. Conclusions These results suggest that prior exposure to a mild nerve lesion protects against adverse effects of subsequent neuropathic injury, and that this conditioning-induced inhibition of pain hypersensitivity is not dependent on neuroinflammation in DRGs and spinal cord. Identifying the underlying mechanisms may have important implications for the understanding of neuropathic pain due to nerve injury.

  4. Differential expression of the capsaicin receptor TRPV1 and related novel receptors TRPV3, TRPV4 and TRPM8 in normal human tissues and changes in traumatic and diabetic neuropathy

    Directory of Open Access Journals (Sweden)

    Bountra Chas

    2007-05-01

    Full Text Available Abstract Background Transient receptor potential (TRP receptors expressed by primary sensory neurons mediate thermosensitivity, and may play a role in sensory pathophysiology. We previously reported that human dorsal root ganglion (DRG sensory neurons co-expressed TRPV1 and TRPV3, and that these were increased in injured human DRG. Related receptors TRPV4, activated by warmth and eicosanoids, and TRPM8, activated by cool and menthol, have been characterised in pre-clinical models. However, the role of TRPs in common clinical sensory neuropathies needs to be established. Methods We have studied TRPV1, TRPV3, TRPV4, and TRPM8 in nerves (n = 14 and skin from patients with nerve injury, avulsed dorsal root ganglia (DRG (n = 11, injured spinal nerve roots (n = 9, diabetic neuropathy skin (n = 8, non-diabetic neuropathic nerve biopsies (n = 6, their respective control tissues, and human post mortem spinal cord, using immunohistological methods. Results TRPV1 and TRPV3 were significantly increased in injured brachial plexus nerves, and TRPV1 in hypersensitive skin after nerve repair, whilst TRPV4 was unchanged. TRPM8 was detected in a few medium diameter DRG neurons, and was unchanged in DRG after avulsion injury, but was reduced in axons and myelin in injured nerves. In diabetic neuropathy skin, TRPV1 expressing sub- and intra-epidermal fibres were decreased, as was expression in surviving fibres. TRPV1 was also decreased in non-diabetic neuropathic nerves. Immunoreactivity for TRPV3 was detected in basal keratinocytes, with a significant decrease of TRPV3 in diabetic skin. TRPV1-immunoreactive nerves were present in injured dorsal spinal roots and dorsal horn of control spinal cord, but not in ventral roots, while TRPV3 and TRPV4 were detected in spinal cord motor neurons. Conclusion The accumulation of TRPV1 and TRPV3 in peripheral nerves after injury, in spared axons, matches our previously reported changes in avulsed DRG. Reduction of TRPV1 levels

  5. Low Frequency Electroacupuncture Alleviated Spinal Nerve Ligation Induced Mechanical Allodynia by Inhibiting TRPV1 Upregulation in Ipsilateral Undamaged Dorsal Root Ganglia in Rats

    Directory of Open Access Journals (Sweden)

    Yong-Liang Jiang

    2013-01-01

    Full Text Available Neuropathic pain is an intractable problem in clinical practice. Accumulating evidence shows that electroacupuncture (EA with low frequency can effectively relieve neuropathic pain. Transient receptor potential vanilloid type 1 (TRPV1 plays a key role in neuropathic pain. The study aimed to investigate whether neuropathic pain relieved by EA administration correlates with TRPV1 inhibition. Neuropathic pain was induced by right L5 spinal nerve ligation (SNL in rats. 2 Hz EA stimulation was administered. SNL induced mechanical allodynia in ipsilateral hind paw. SNL caused a significant reduction of TRPV1 expression in ipsilateral L5 dorsal root ganglia (DRG, but a significant up-regulation in ipsilateral L4 and L6 DRGs. Calcitonin gene-related peptide (CGRP change was consistent with that of TRPV1. EA alleviated mechanical allodynia, and inhibited TRPV1 and CGRP overexpressions in ipsilateral L4 and L6 DRGs. SNL did not decrease pain threshold of contralateral hind paw, and TRPV1 expression was not changed in contralateral L5 DRG. 0.001, 0.01 mg/kg TRPV1 agonist 6′-IRTX fully blocked EA analgesia in ipsilateral hind paw. 0.01 mg/kg 6′-IRTX also significantly decreased pain threshold of contralateral paw. These results indicated that inhibition of TRPV1 up-regulation in ipsilateral adjacent undamaged DRGs contributed to low frequency EA analgesia for mechanical allodynia induced by spinal nerve ligation.

  6. Depression and reduced heart rate variability after cardiac surgery: the mediating role of emotion regulation.

    Science.gov (United States)

    Patron, Elisabetta; Messerotti Benvenuti, Simone; Favretto, Giuseppe; Gasparotto, Renata; Palomba, Daniela

    2014-02-01

    Heart rate variability (HRV), as an index of autonomic nervous system (ANS) functioning, is reduced by depression after cardiac surgery, but the underlying mechanisms of this relationship are poorly understood. Poor emotion regulation as a core symptom of depression has also been associated with altered ANS functioning. The present study aimed to examine whether emotion dysregulation could be a mediator of the depression-reduced HRV relationship observed after cardiac surgery. Self-reported emotion regulation and four-minute HRV were measured in 25 depressed and 43 nondepressed patients after cardiac surgery. Mediation analysis was conducted to evaluate emotion regulation as a mediator of the depression-reduced HRV relationship. Compared to nondepressed patients, those with depression showed lower standard deviation of normal-to-normal (NN) intervals (pbehavior partially mediated the effect of depression on LF n.u. and HF n.u. Results confirmed previous findings showing that depression is associated with reduced HRV, especially a reduced vagal tone and a sympathovagal imbalance, after cardiac surgery. This study also provides preliminary evidence that increased trait levels of suppression of emotion-expressive behavior may mediate the depression-related sympathovagal imbalance after cardiac surgery. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Pathophysiology, diagnosis and treatment of intermittent claudication in patients with lumbar canal stenosis.

    Science.gov (United States)

    Kobayashi, Shigeru

    2014-04-18

    Spinal nerve roots have a peculiar structure, different from the arrangements in the peripheral nerve. The nerve roots are devoid of lymphatic vessels but are immersed in the cerebrospinal fluid (CSF) within the subarachnoid space. The blood supply of nerve roots depends on the blood flow from both peripheral direction (ascending) and the spinal cord direction (descending). There is no hypovascular region in the nerve root, although there exists a so-called water-shed of the bloodstream in the radicular artery itself. Increased mechanical compression promotes the disturbance of CSF flow, circulatory disturbance starting from the venous congestion and intraradicular edema formation resulting from the breakdown of the blood-nerve barrier. Although this edema may diffuse into CSF when the subarachnoid space is preserved, the endoneurial fluid pressure may increase when the area is closed by increased compression. On the other hand, the nerve root tissue has already degenerated under the compression and the numerous macrophages releasing various chemical mediators, aggravating radicular symptoms that appear in the area of Wallerian degeneration. Prostaglandin E1 (PGE1) is a potent vasodilator as well as an inhibitor of platelet aggregation and has therefore attracted interest as a therapeutic drug for lumbar canal stenosis. However, investigations in the clinical setting have shown that PGE1 is effective in some patients but not in others, although the reason for this is unclear.

  8. Optogenetic probing of nerve and muscle function after facial nerve lesion in the mouse whisker system

    Science.gov (United States)

    Bandi, Akhil; Vajtay, Thomas J.; Upadhyay, Aman; Yiantsos, S. Olga; Lee, Christian R.; Margolis, David J.

    2018-02-01

    Optogenetic modulation of neural circuits has opened new avenues into neuroscience research, allowing the control of cellular activity of genetically specified cell types. Optogenetics is still underdeveloped in the peripheral nervous system, yet there are many applications related to sensorimotor function, pain and nerve injury that would be of great benefit. We recently established a method for non-invasive, transdermal optogenetic stimulation of the facial muscles that control whisker movements in mice (Park et al., 2016, eLife, e14140)1. Here we present results comparing the effects of optogenetic stimulation of whisker movements in mice that express channelrhodopsin-2 (ChR2) selectively in either the facial motor nerve (ChAT-ChR2 mice) or muscle (Emx1-ChR2 or ACTA1-ChR2 mice). We tracked changes in nerve and muscle function before and up to 14 days after nerve transection. Optogenetic 460 nm transdermal stimulation of the distal cut nerve showed that nerve degeneration progresses rapidly over 24 hours. In contrast, the whisker movements evoked by optogenetic muscle stimulation were up-regulated after denervation, including increased maximum protraction amplitude, increased sensitivity to low-intensity stimuli, and more sustained muscle contractions (reduced adaptation). Our results indicate that peripheral optogenetic stimulation is a promising technique for probing the timecourse of functional changes of both nerve and muscle, and holds potential for restoring movement after paralysis induced by nerve damage or motoneuron degeneration.

  9. Human umbilical cord mesenchymal stem cells promote peripheral nerve repair via paracrine mechanisms

    Directory of Open Access Journals (Sweden)

    Zhi-yuan Guo

    2015-01-01

    Full Text Available Human umbilical cord-derived mesenchymal stem cells (hUCMSCs represent a promising young-state stem cell source for cell-based therapy. hUCMSC transplantation into the transected sciatic nerve promotes axonal regeneration and functional recovery. To further clarify the paracrine effects of hUCMSCs on nerve regeneration, we performed human cytokine antibody array analysis, which revealed that hUCMSCs express 14 important neurotrophic factors. Enzyme-linked immunosorbent assay and immunohistochemistry showed that brain-derived neurotrophic factor, glial-derived neurotrophic factor, hepatocyte growth factor, neurotrophin-3, basic fibroblast growth factor, type I collagen, fibronectin and laminin were highly expressed. Treatment with hUCMSC-conditioned medium enhanced Schwann cell viability and proliferation, increased nerve growth factor and brain-derived neurotrophic factor expression in Schwann cells, and enhanced neurite growth from dorsal root ganglion explants. These findings suggest that paracrine action may be a key mechanism underlying the effects of hUCMSCs in peripheral nerve repair.

  10. Raman spectroscopic detection of peripheral nerves towards nerve-sparing surgery

    Science.gov (United States)

    Minamikawa, Takeo; Harada, Yoshinori; Takamatsu, Tetsuro

    2017-02-01

    The peripheral nervous system plays an important role in motility, sensory, and autonomic functions of the human body. Preservation of peripheral nerves in surgery, namely nerve-sparing surgery, is now promising technique to avoid functional deficits of the limbs and organs following surgery as an aspect of the improvement of quality of life of patients. Detection of peripheral nerves including myelinated and unmyelinated nerves is required for the nerve-sparing surgery; however, conventional nerve identification scheme is sometimes difficult to identify peripheral nerves due to similarity of shape and color to non-nerve tissues or its limited application to only motor peripheral nerves. To overcome these issues, we proposed a label-free detection technique of peripheral nerves by means of Raman spectroscopy. We found several fingerprints of peripheral myelinated and unmyelinated nerves by employing a modified principal component analysis of typical spectra including myelinated nerve, unmyelinated nerve, and adjacent tissues. We finally realized the sensitivity of 94.2% and the selectivity of 92.0% for peripheral nerves including myelinated and unmyelinated nerves against adjacent tissues. Although further development of an intraoperative Raman spectroscopy system is required for clinical use, our proposed approach will serve as a unique and powerful tool for peripheral nerve detection for nerve-sparing surgery in the future.

  11. Abscisic acid regulates root growth under osmotic stress conditions via an interacting hormonal network with cytokinin, ethylene and auxin.

    Science.gov (United States)

    Rowe, James H; Topping, Jennifer F; Liu, Junli; Lindsey, Keith

    2016-07-01

    Understanding the mechanisms regulating root development under drought conditions is an important question for plant biology and world agriculture. We examine the effect of osmotic stress on abscisic acid (ABA), cytokinin and ethylene responses and how they mediate auxin transport, distribution and root growth through effects on PIN proteins. We integrate experimental data to construct hormonal crosstalk networks to formulate a systems view of root growth regulation by multiple hormones. Experimental analysis shows: that ABA-dependent and ABA-independent stress responses increase under osmotic stress, but cytokinin responses are only slightly reduced; inhibition of root growth under osmotic stress does not require ethylene signalling, but auxin can rescue root growth and meristem size; osmotic stress modulates auxin transporter levels and localization, reducing root auxin concentrations; PIN1 levels are reduced under stress in an ABA-dependent manner, overriding ethylene effects; and the interplay among ABA, ethylene, cytokinin and auxin is tissue-specific, as evidenced by differential responses of PIN1 and PIN2 to osmotic stress. Combining experimental analysis with network construction reveals that ABA regulates root growth under osmotic stress conditions via an interacting hormonal network with cytokinin, ethylene and auxin. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  12. Morphometric analysis of the fiber populations of the rat sciatic nerve, its spinal roots, and its major branches

    NARCIS (Netherlands)

    Prodanov, D.P.; Feierabend, H.K.P.

    2007-01-01

    Correspondence between the nerve composition and the functional characteristics of its fiber populations is not always evident. To investigate such correspondence and to give a systematic picture of the morphology of the rat hind limb nerves, extensive morphometric study was performed on the sciatic

  13. Acellular Nerve Allografts in Peripheral Nerve Regeneration: A Comparative Study

    Science.gov (United States)

    Moore, Amy M.; MacEwan, Matthew; Santosa, Katherine B.; Chenard, Kristofer E.; Ray, Wilson Z.; Hunter, Daniel A.; Mackinnon, Susan E.; Johnson, Philip J.

    2011-01-01

    Background Processed nerve allografts offer a promising alternative to nerve autografts in the surgical management of peripheral nerve injuries where short deficits exist. Methods Three established models of acellular nerve allograft (cold-preserved, detergent-processed, and AxoGen® -processed nerve allografts) were compared to nerve isografts and silicone nerve guidance conduits in a 14 mm rat sciatic nerve defect. Results All acellular nerve grafts were superior to silicone nerve conduits in support of nerve regeneration. Detergent-processed allografts were similar to isografts at 6 weeks post-operatively, while AxoGen®-processed and cold-preserved allografts supported significantly fewer regenerating nerve fibers. Measurement of muscle force confirmed that detergent-processed allografts promoted isograft-equivalent levels of motor recovery 16 weeks post-operatively. All acellular allografts promoted greater amounts of motor recovery compared to silicone conduits. Conclusions These findings provide evidence that differential processing for removal of cellular constituents in preparing acellular nerve allografts affects recovery in vivo. PMID:21660979

  14. Tenascin-C in peripheral nerve morphogenesis.

    Science.gov (United States)

    Chiquet, M; Wehrle-Haller, B

    1994-01-01

    The extracellular matrix (ECM) molecule tenascin/cytotactin (TN-C) is expressed at a high level by satellite (glial precursor) cells in developing peripheral nerves of the chick embryo; synthesis of its mRNA peaks at the time period when axonal growth is maximal. When offered as a substrate in vitro, TN-C mediates neurite outgrowth by both motor and sensory neurons. The ability to grow neurites on TN-C is developmentally regulated: sensory neurons from 4-day chick embryos (the stage at which peripheral nerves start to develop) grow immediately and rapidly, whereas neurons from older embryos respond with a long delay. A TN-C domain responsible for this activity is located within the C-terminal (distal) portion of TN-C subunits. Integrin receptors seem to be involved on peripheral neurites because their growth on TN-C is completely blocked by antibodies to beta 1 integrins. In striking contrast to neuronal processes, nerve satellite cells can attach to a TN-C substrate but are completely inhibited in their migratory activity. Artificial substrate borders between tenascin and fibronectin or laminin act as selective barriers that allow neurites to pass while holding up satellite cells. The repulsive action of TN-C on satellite cells is similar to that observed for other cell types and is likely to be mediated by additional TN-C domains. In view of these data, it is surprising that mice seem to develop normally without a functional TN-C gene. TN-C is likely to be redundant, that is, its dual action on cell adhesion is shared by other molecules.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Transcutaneous electrical nerve stimulation reduces acute low back pain during emergency transport.

    Science.gov (United States)

    Bertalanffy, Alexander; Kober, Alexander; Bertalanffy, Petra; Gustorff, Burkhard; Gore, Odette; Adel, Sharam; Hoerauf, Klaus

    2005-07-01

    Patients with acute low back pain may require emergency transport because of pain and immobilization. Transcutaneous electrical nerve stimulation (TENS) is a nonpharmaceutical therapy for patients with low back pain. To evaluate the efficacy of paramedic-administered TENS in patients with acute low back pain during emergency transport. This was a prospective, randomized study involving 74 patients transported to hospital. The patients were randomly assigned to two groups: group 1 (n = 36) was treated with true TENS, while group 2 (n = 36) was treated with sham TENS. The authors recorded pain and anxiety as the main outcome variables using a visual analog scale (VAS). The authors recorded a significant (p pain reduction (mean +/- standard deviation) during transport in group 1 (79.2 +/- 6.5 mm VAS to 48.9 +/- 8.2 mm VAS), whereas pain scores remained unchanged in group 2 (75.9 +/- 16.4 mm VAS and 77.1 +/- 11.2 mm VAS). Similarly, the scores for anxiety were significantly reduced (p TENS was found to be effective and rapid in reducing pain during emergency transport of patients with acute low back pain and should be considered due to its ease of use and lack of side effects in the study population.

  16. The imaging of abducens nerve in normal volunteers and palsy cases using 1.5T MRI 3-D CISS

    International Nuclear Information System (INIS)

    Takahashi, Mayu; Ezuka, Isamu; Kakinuma, Kenichi; Yamada, Haruyuki; Harada, Atsukuni; Kanazawa, Tsutomu

    2002-01-01

    The purpose of this study was to identify the cisternal segment of the abducens nerve and to investigate its anatomical features using three-dimensional Fourier transform constructive interference in steady-state (3-D CISS) sequence with a 1.5-tesla magnetic resonance (MR) imaging system. Images of abducens nerve palsy were also studied. Using this imaging system, the following procedures were performed to identify the abducens nerve. First, gray scale of the original images was inverted (inverted image). Second, Dollero's canal was identified, which contains the abducens nerve, and third, the nerve was followed to the root exit zone with a multiple-planar reconstruction method. Twenty-one volunteers and 3 patients with abducens nerve palsies participated in this study and following results were derived: all nerves in volunteers were clearly identified in the coronal and sagittal planes, the images closely resembled autopsy cases, seven nerves in asymptomatic cases were remarkably distorted by the vessels, and the cause of the palsy was not clear by their shapes in the images; this technique, however, can play a great role in evaluating abducens nerve palsy. (author)

  17. Vascularized nerve grafts for lower extremity nerve reconstruction.

    Science.gov (United States)

    Terzis, Julia K; Kostopoulos, Vasileios K

    2010-02-01

    Vascularized nerve grafts (VNG) were introduced in 1976 but since then, there have been no reports of their usage in lower extremity reconstruction systematically. The factors influencing outcomes as well as a comparison with conventional nerve grafts will be presented.Since 1981, 14 lower extremity nerve injuries in 12 patients have been reconstructed with VNG. Common peroneal nerve was injured in 12 and posterior tibial nerve in 5 patients. The level of the injury was at the knee or thigh. Twelve sural nerves were used as VNG with or without concomitant vascularized posterior calf fascia.All patients regained improved sensibility and adequate posterior tibial nerve function. For common peroneal nerve reconstructions, all patients with denervation time less than 6 months regained muscle strength of grade at least 4, even when long grafts were used for defects of 20 cm or more. Late cases, yielded inadequate muscle function even with the use of VNG.Denervation time of 6 months or less was critical for reconstruction with vascularized nerve graft. Not only the results were statistically significant compared with late cases, but also all early operated patients achieved excellent results. VNG are strongly recommended in traction avulsion injuries of the lower extremity with lengthy nerve damage.

  18. Neural tissue engineering options for peripheral nerve regeneration.

    Science.gov (United States)

    Gu, Xiaosong; Ding, Fei; Williams, David F

    2014-08-01

    Tissue engineered nerve grafts (TENGs) have emerged as a potential alternative to autologous nerve grafts, the gold standard for peripheral nerve repair. Typically, TENGs are composed of a biomaterial-based template that incorporates biochemical cues. A number of TENGs have been used experimentally to bridge long peripheral nerve gaps in various animal models, where the desired outcome is nerve tissue regeneration and functional recovery. So far, the translation of TENGs to the clinic for use in humans has met with a certain degree of success. In order to optimize the TENG design and further approach the matching of TENGs with autologous nerve grafts, many new cues, beyond the traditional ones, will have to be integrated into TENGs. Furthermore, there is a strong requirement for monitoring the real-time dynamic information related to the construction of TENGs. The aim of this opinion paper is to specifically and critically describe the latest advances in the field of neural tissue engineering for peripheral nerve regeneration. Here we delineate new attempts in the design of template (or scaffold) materials, especially in the context of biocompatibility, the choice and handling of support cells, and growth factor release systems. We further discuss the significance of RNAi for peripheral nerve regeneration, anticipate the potential application of RNAi reagents for TENGs, and speculate on the possible contributions of additional elements, including angiogenesis, electrical stimulation, molecular inflammatory mediators, bioactive peptides, antioxidant reagents, and cultured biological constructs, to TENGs. Finally, we consider that a diverse array of physicochemical and biological cues must be orchestrated within a TENG to create a self-consistent coordinated system with a close proximity to the regenerative microenvironment of the peripheral nervous system. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Nerve Cross-Bridging to Enhance Nerve Regeneration in a Rat Model of Delayed Nerve Repair

    Science.gov (United States)

    2015-01-01

    There are currently no available options to promote nerve regeneration through chronically denervated distal nerve stumps. Here we used a rat model of delayed nerve repair asking of prior insertion of side-to-side cross-bridges between a donor tibial (TIB) nerve and a recipient denervated common peroneal (CP) nerve stump ameliorates poor nerve regeneration. First, numbers of retrogradely-labelled TIB neurons that grew axons into the nerve stump within three months, increased with the size of the perineurial windows opened in the TIB and CP nerves. Equal numbers of donor TIB axons regenerated into CP stumps either side of the cross-bridges, not being affected by target neurotrophic effects, or by removing the perineurium to insert 5-9 cross-bridges. Second, CP nerve stumps were coapted three months after inserting 0-9 cross-bridges and the number of 1) CP neurons that regenerated their axons within three months or 2) CP motor nerves that reinnervated the extensor digitorum longus (EDL) muscle within five months was determined by counting and motor unit number estimation (MUNE), respectively. We found that three but not more cross-bridges promoted the regeneration of axons and reinnervation of EDL muscle by all the CP motoneurons as compared to only 33% regenerating their axons when no cross-bridges were inserted. The same 3-fold increase in sensory nerve regeneration was found. In conclusion, side-to-side cross-bridges ameliorate poor regeneration after delayed nerve repair possibly by sustaining the growth-permissive state of denervated nerve stumps. Such autografts may be used in human repair surgery to improve outcomes after unavoidable delays. PMID:26016986

  20. Clinical efficacy of computed tomography and coronectomy for prevention of postoperative inferior alveolar nerve injury occurring after impacted mandibular third molar surgery

    International Nuclear Information System (INIS)

    Hata, Tsuyoshi; Mandai, Toshiko; Ishida, Kohsei; Deguchi, Hiroyo; Hosoda, Masaru

    2012-01-01

    Our aim was to evaluate the clinical efficacy of computed tomography and coronectomy for preventing postoperative inferior alveolar nerve injury after impacted mandibular third molar surgery. Among the patients who visited Kawasaki Medical School Hospital between January 2009 and December 2010, 12 patients with high-risk signs of inferior alveolar nerve injury on panoramic imaging were examined for the extraction of impacted mandibular third molar by computed tomography (CT). CT examinations were performed in order to examine the relationship between the root apex of impacted mandibular third molar and inferior alveolar canal for 16 teeth. Based on the imaging findings, the patients were informed about treatment methods and their consent was obtained. We compared the CT and panoramic findings and discussed the relationship between the impacted third molar and the inferior alveolar nerve. Medical records were also examined for the presence of abnormal postoperative complications. Interruption of the cortical white line of the inferior alveolar canal was identified in 13 panoramic radiographs, and bending of the inferior alveolar canal was observed in 2 panoramic radiographs. CT findings indicated type 2 inferior alveolar nerve proximity in 13 teeth, and there was no proximity in 3 teeth. The observation was selected in 10 teeth showing nerve proximity in CT findings. Traditional third molar removal was performed for the 3 teeth with no nerve proximity. Coronectomy was performed in 3 teeth with nerve proximity. The clinical course was uneventful. To prevent inferior alveolar nerve injury, coronectomy may be a better means of removing the crown of an impacted third molar while leaving the roots intact, in cases where teeth might be in proximity with the inferior alveolar nerve. (author)

  1. Nerve conduction and excitability studies in peripheral nerve disorders

    DEFF Research Database (Denmark)

    Krarup, Christian; Moldovan, Mihai

    2009-01-01

    counterparts in the peripheral nervous system, in some instances without peripheral nervous system symptoms. Both hereditary and acquired demyelinating neuropathies have been studied and the effects on nerve pathophysiology have been compared with degeneration and regeneration of axons. SUMMARY: Excitability......PURPOSE OF REVIEW: The review is aimed at providing information about the role of nerve excitability studies in peripheral nerve disorders. It has been known for many years that the insight into peripheral nerve pathophysiology provided by conventional nerve conduction studies is limited. Nerve...... excitability studies are relatively novel but are acquiring an increasingly important role in the study of peripheral nerves. RECENT FINDINGS: By measuring responses in nerve that are related to nodal function (strength-duration time constant, rheobase and recovery cycle) and internodal function (threshold...

  2. Morphological plasticity of root growth under mild water stress increases water use efficiency without reducing yield in maize

    Directory of Open Access Journals (Sweden)

    Q. Cai

    2017-08-01

    Full Text Available A large yield gap exists in rain-fed maize (Zea mays L. production in semi-arid regions, mainly caused by frequent droughts halfway through the crop-growing period due to uneven distribution of rainfall. It is questionable whether irrigation systems are economically required in such a region since the total amount of rainfall does generally meet crop requirements. This study aimed to quantitatively determine the effects of water stress from jointing to grain filling on root and shoot growth and the consequences for maize grain yield, above- and below-ground dry matter, water uptake (WU and water use efficiency (WUE. Pot experiments were conducted in 2014 and 2015 with a mobile rain shelter to achieve conditions of no, mild or severe water stress. Maize yield was not affected by mild water stress over 2 years, while severe stress reduced yield by 56 %. Both water stress levels decreased root biomass slightly but shoot biomass substantially. Mild water stress decreased root length but increased root diameter, resulting in no effect on root surface area. Due to the morphological plasticity in root growth and the increase in root ∕ shoot ratio, WU under water stress was decreased, and overall WUE for both above-ground dry matter and grain yield increased. Our results demonstrate that an irrigation system might be not economically and ecologically necessary because the frequently occurring mild water stress did not reduce crop yield much. The study helps us to understand crop responses to water stress during a critical water-sensitive period (middle of the crop-growing season and to mitigate drought risk in dry-land agriculture.

  3. Influence of root-water-uptake parameterization on simulated heat transport in a structured forest soil

    Science.gov (United States)

    Votrubova, Jana; Vogel, Tomas; Dohnal, Michal; Dusek, Jaromir

    2015-04-01

    Coupled simulations of soil water flow and associated transport of substances have become a useful and increasingly popular tool of subsurface hydrology. Quality of such simulations is directly affected by correctness of its hydraulic part. When near-surface processes under vegetation cover are of interest, appropriate representation of the root water uptake becomes essential. Simulation study of coupled water and heat transport in soil profile under natural conditions was conducted. One-dimensional dual-continuum model (S1D code) with semi-separate flow domains representing the soil matrix and the network of preferential pathways was used. A simple root water uptake model based on water-potential-gradient (WPG) formulation was applied. As demonstrated before [1], the WPG formulation - capable of simulating both the compensatory root water uptake (in situations when reduced uptake from dry layers is compensated by increased uptake from wetter layers), and the root-mediated hydraulic redistribution of soil water - enables simulation of more natural soil moisture distribution throughout the root zone. The potential effect on heat transport in a soil profile is the subject of the present study. [1] Vogel T., M. Dohnal, J. Dusek, J. Votrubova, and M. Tesar. 2013. Macroscopic modeling of plant water uptake in a forest stand involving root-mediated soil-water redistribution. Vadose Zone Journal, 12, 10.2136/vzj2012.0154. The research was supported by the Czech Science Foundation Project No. 14-15201J.

  4. Allotransplanted DRG neurons or Schwann cells affect functional recovery in a rodent model of sciatic nerve injury.

    Science.gov (United States)

    Dayawansa, Samantha; Wang, Ernest W; Liu, Weimin; Markman, John D; Gelbard, Harris A; Huang, Jason H

    2014-11-01

    In this study, the functional recoveries of Sprague-Dawley rats following repair of a complete sciatic nerve transection using allotransplanted dorsal root ganglion (DRG) neurons or Schwann cells were examined using a number of outcome measures. Four groups were compared: (1) repair with a nerve guide conduit seeded with allotransplanted Schwann cells harvested from Wistar rats, (2) repair with a nerve guide conduit seeded with DRG neurons, (3) repair with solely a nerve guide conduit, and (4) sham-surgery animals where the sciatic nerve was left intact. The results corroborated our previous reported histology findings and measures of immunogenicity. The Wistar-DRG-treated group achieved the best recovery, significantly outperforming both the Wistar-Schwann group and the nerve guide conduit group in the Von Frey assay of touch response (P DRG and Wistar-Schwann seeded repairs showed lower frequency and severity in an autotomy measure of the self-mutilation of the injured leg because of neuralgia. These results suggest that in complete peripheral nerve transections, surgical repair using nerve guide conduits with allotransplanted DRG and Schwann cells may improve recovery, especially DRG neurons, which elicit less of an immune response.

  5. Temporary Mental Nerve Paresthesia Originating from Periapical Infection

    Science.gov (United States)

    Genc Sen, Ozgur; Kaplan, Volkan

    2015-01-01

    Many systemic and local factors can cause paresthesia, and it is rarely caused by infections of dental origin. This report presents a case of mental nerve paresthesia caused by endodontic infection of a mandibular left second premolar. Resolution of the paresthesia began two weeks after conventional root canal treatment associated with antibiotic therapy and was completed in eight weeks. One year follow-up radiograph indicated complete healing of the radiolucent periapical lesion. The tooth was asymptomatic and functional. PMID:26345692

  6. 4.7-T diffusion tensor imaging of acute traumatic peripheral nerve injury.

    Science.gov (United States)

    Boyer, Richard B; Kelm, Nathaniel D; Riley, D Colton; Sexton, Kevin W; Pollins, Alonda C; Shack, R Bruce; Dortch, Richard D; Nanney, Lillian B; Does, Mark D; Thayer, Wesley P

    2015-09-01

    Diagnosis and management of peripheral nerve injury is complicated by the inability to assess microstructural features of injured nerve fibers via clinical examination and electrophysiology. Diffusion tensor imaging (DTI) has been shown to accurately detect nerve injury and regeneration in crush models of peripheral nerve injury, but no prior studies have been conducted on nerve transection, a surgical emergency that can lead to permanent weakness or paralysis. Acute sciatic nerve injuries were performed microsurgically to produce multiple grades of nerve transection in rats that were harvested 1 hour after surgery. High-resolution diffusion tensor images from ex vivo sciatic nerves were obtained using diffusion-weighted spin-echo acquisitions at 4.7 T. Fractional anisotropy was significantly reduced at the injury sites of transected rats compared with sham rats. Additionally, minor eigenvalues and radial diffusivity were profoundly elevated at all injury sites and were negatively correlated to the degree of injury. Diffusion tensor tractography showed discontinuities at all injury sites and significantly reduced continuous tract counts. These findings demonstrate that high-resolution DTI is a promising tool for acute diagnosis and grading of traumatic peripheral nerve injuries.

  7. Coronectomy versus surgical removal of the lower third molars with a high risk of injury to the inferior alveolar nerve. A bibliographical review

    Science.gov (United States)

    Moreno-Vicente, Javier; Schiavone-Mussano, Rocío; Clemente-Salas, Enrique; Marí-Roig, Antoni; Jané-Salas, Enric

    2015-01-01

    Background Coronectomy is the surgical removal of the crown of the tooth deliberately leaving part of its roots. This is done with the hope of eliminating the pathology caused, and since the roots are still intact, the integrity of the inferior alveolar nerve is preserved. Objectives The aim is to carry out a systematic review in order to be able to provide results and conclusions with the greatest scientific evidence possible. Material and Methods A literature review is carried out through the following search engines: Pubmed MEDLINE, Scielo, Cochrane library and EMI. The level of evidence criteria from the Agency for Healthcare Research and Quality was applied, and the clinical trials’ level of quality was analyzed by means of the JADAD criteria. Results The following articles were obtained which represents a total of 17: 1 systematic review, 2 randomized clinical trials and 2 non-randomized clinical trials, 3 cohort studies, 2 retrospective studies, 3 case studies and 4 literature reviews. Conclusions Coronectomy is an adequate preventative technique in protecting the inferior alveolar nerve, which is an alternative to the conventional extraction of third molars, which unlike the former technique, presents a high risk of injury to the inferior alveolar nerve. However, there is a need for new clinical studies, with a greater number of samples and with a longer follow-up period in order to detect potential adverse effects of the retained roots. Key words: Coronectomy, inferior alveolar nerve, nerve injury, wisdom tooth removal, paresthesia, and systematic review. PMID:25858081

  8. Cavernous nerve stimulation and recording of intracavernous pressure in a rat

    DEFF Research Database (Denmark)

    Hox, Morten; Mann-Gow, Travis; Lund, Lars

    2018-01-01

    of the CN, without the need for lifting and drying, was achieved by using a 125 µm bipolar silver electrode and biocompatible silicon glue to isolate the electrode-nerve complex. This method prevents neuropraxia by reducing stretching and drying the nerve and provides complete isolation of the nerve...

  9. The Proximal Medial Sural Nerve Biopsy Model: A Standardised and Reproducible Baseline Clinical Model for the Translational Evaluation of Bioengineered Nerve Guides

    Directory of Open Access Journals (Sweden)

    Ahmet Bozkurt

    2014-01-01

    Full Text Available Autologous nerve transplantation (ANT is the clinical gold standard for the reconstruction of peripheral nerve defects. A large number of bioengineered nerve guides have been tested under laboratory conditions as an alternative to the ANT. The step from experimental studies to the implementation of the device in the clinical setting is often substantial and the outcome is unpredictable. This is mainly linked to the heterogeneity of clinical peripheral nerve injuries, which is very different from standardized animal studies. In search of a reproducible human model for the implantation of bioengineered nerve guides, we propose the reconstruction of sural nerve defects after routine nerve biopsy as a first or baseline study. Our concept uses the medial sural nerve of patients undergoing diagnostic nerve biopsy (≥2 cm. The biopsy-induced nerve gap was immediately reconstructed by implantation of the novel microstructured nerve guide, Neuromaix, as part of an ongoing first-in-human study. Here we present (i a detailed list of inclusion and exclusion criteria, (ii a detailed description of the surgical procedure, and (iii a follow-up concept with multimodal sensory evaluation techniques. The proximal medial sural nerve biopsy model can serve as a preliminarynature of the injuries or baseline nerve lesion model. In a subsequent step, newly developed nerve guides could be tested in more unpredictable and challenging clinical peripheral nerve lesions (e.g., following trauma which have reduced comparability due to the different nature of the injuries (e.g., site of injury and length of nerve gap.

  10. Constriction of the buccal branch of the facial nerve produces unilateral craniofacial allodynia.

    Science.gov (United States)

    Lewis, Susannah S; Grace, Peter M; Hutchinson, Mark R; Maier, Steven F; Watkins, Linda R

    2017-08-01

    Despite pain being a sensory experience, studies of spinal cord ventral root damage have demonstrated that motor neuron injury can induce neuropathic pain. Whether injury of cranial motor nerves can also produce nociceptive hypersensitivity has not been addressed. Herein, we demonstrate that chronic constriction injury (CCI) of the buccal branch of the facial nerve results in long-lasting, unilateral allodynia in the rat. An anterograde and retrograde tracer (3000MW tetramethylrhodamine-conjugated dextran) was not transported to the trigeminal ganglion when applied to the injury site, but was transported to the facial nucleus, indicating that this nerve branch is not composed of trigeminal sensory neurons. Finally, intracisterna magna injection of interleukin-1 (IL-1) receptor antagonist reversed allodynia, implicating the pro-inflammatory cytokine IL-1 in the maintenance of neuropathic pain induced by facial nerve CCI. These data extend the prior evidence that selective injury to motor axons can enhance pain to supraspinal circuits by demonstrating that injury of a facial nerve with predominantly motor axons is sufficient for neuropathic pain, and that the resultant pain has a neuroimmune component. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. External laryngeal nerve in thyroid surgery: is the nerve stimulator necessary?

    Science.gov (United States)

    Aina, E N; Hisham, A N

    2001-09-01

    To find out the incidence and type of external laryngeal nerves during operations on the thyroid, and to assess the role of a nerve stimulator in detecting them. Prospective, non-randomised study. Teaching hospital, Malaysia. 317 patients who had 447 dissections between early January 1998 and late November 1999. Number and type of nerves crossing the cricothyroid space, and the usefulness of the nerve stimulator in finding them. The nerve stimulator was used in 206/447 dissections (46%). 392 external laryngeal nerves were seen (88%), of which 196/206 (95%) were detected with the stimulator. However, without the stimulator 196 nerves were detected out of 241 dissections (81%). The stimulator detected 47 (23%) Type I nerves (nerve > 1 cm from the upper edge of superior pole); 86 (42%) Type IIa nerves (nerve edge of superior pole); and 63 (31%) Type IIb nerves (nerve below upper edge of superior pole). 10 nerves were not detected. When the stimulator was not used the corresponding figures were 32 (13%), 113 (47%), and 51 (21%), and 45 nerves were not seen. If the nerve cannot be found we recommend dissection of capsule close to the medial border of the upper pole of the thyroid to avoid injury to the nerve. Although the use of the nerve stimulator seems desirable, it confers no added advantage in finding the nerve. In the event of uncertainty about whether a structure is the nerve, the stimulator may help to confirm it. However, exposure of the cricothyroid space is most important for good exposure in searching for the external laryngeal nerve.

  12. Reducing strength prevailing at root surface of plants promotes reduction of Ag+ and generation of Ag(0/Ag2O nanoparticles exogenously in aqueous phase.

    Directory of Open Access Journals (Sweden)

    Peddisetty Pardha-Saradhi

    Full Text Available Potential of root system of plants from wide range of families to effectively reduce membrane impermeable ferricyanide to ferrocyanide and blue coloured 2,6-dichlorophenol indophenol (DCPIP to colourless DCPIPH2 both under non-sterile and sterile conditions, revealed prevalence of immense reducing strength at root surface. As generation of silver nanoparticles (NPs from Ag+ involves reduction, present investigations were carried to evaluate if reducing strength prevailing at surface of root system can be exploited for reduction of Ag+ and exogenous generation of silver-NPs. Root system of intact plants of 16 species from 11 diverse families of angiosperms turned clear colorless AgNO3 solutions, turbid brown. Absorption spectra of these turbid brown solutions showed silver-NPs specific surface plasmon resonance peak. Transmission electron microscope coupled with energy dispersive X-ray confirmed the presence of distinct NPs in the range of 5-50 nm containing Ag. Selected area electron diffraction and powder X-ray diffraction patterns of the silver NPs showed Bragg reflections, characteristic of crystalline face-centered cubic structure of Ag(0 and cubic structure of Ag2O. Root system of intact plants raised under sterile conditions also generated Ag(0/Ag2O-NPs under strict sterile conditions in a manner similar to that recorded under non-sterile conditions. This revealed the inbuilt potential of root system to generate Ag(0/Ag2O-NPs independent of any microorganism. Roots of intact plants reduced triphenyltetrazolium to triphenylformazon and impermeable ferricyanide to ferrocyanide, suggesting involvement of plasma membrane bound dehydrogenases in reduction of Ag+ and formation of Ag(0/Ag2O-NPs. Root enzyme extract reduced triphenyltetrazolium to triphenylformazon and Ag+ to Ag(0 in presence of NADH, clearly establishing potential of dehydrogenases to reduce Ag+ to Ag(0, which generate Ag(0/Ag2O-NPs. Findings presented in this manuscript put

  13. Functional connectivity of motor cortical network in patients with brachial plexus avulsion injury after contralateral cervical nerve transfer: a resting-state fMRI study

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Aihong; Cheng, Xiaoguang; Liang, Wei; Bai, Rongjie [The 4th Medical College of Peking University, Department of Radiology, Beijing Jishuitan Hospital, Xicheng Qu, Beijing (China); Wang, Shufeng; Xue, Yunhao; Li, Wenjun [The 4th Medical College of Peking University, Department of Hand Surgery, Beijing Jishuitan Hospital, Beijing (China)

    2017-03-15

    The purpose of this study is to assess the functional connectivity of the motor cortical network in patients with brachial plexus avulsion injury (BPAI) after contralateral C7 nerve transfer, using resting-state functional magnetic resonance imaging (RS-fMRI). Twelve patients with total brachial plexus root avulsion underwent RS-fMRI after contralateral C7 nerve transfer. Seventeen healthy volunteers were also included in this fMRI study as controls. The hand motor seed regions were defined as region of interests in the bilateral hemispheres. The seed-based functional connectivity was calculated in all the subjects. Differences in functional connectivity of the motor cortical network between patients and healthy controls were compared. The inter-hemispheric functional connectivity of the M1 areas was increased in patients with BPAI compared with the controls. The inter-hemispheric functional connectivity between the supplementary motor areas was reduced bilaterally. The resting-state inter-hemispheric functional connectivity of the bilateral M1 areas is altered in patients after contralateral C7 nerve transfer, suggesting a functional reorganization of cerebral cortex. (orig.)

  14. Functional connectivity of motor cortical network in patients with brachial plexus avulsion injury after contralateral cervical nerve transfer: a resting-state fMRI study

    International Nuclear Information System (INIS)

    Yu, Aihong; Cheng, Xiaoguang; Liang, Wei; Bai, Rongjie; Wang, Shufeng; Xue, Yunhao; Li, Wenjun

    2017-01-01

    The purpose of this study is to assess the functional connectivity of the motor cortical network in patients with brachial plexus avulsion injury (BPAI) after contralateral C7 nerve transfer, using resting-state functional magnetic resonance imaging (RS-fMRI). Twelve patients with total brachial plexus root avulsion underwent RS-fMRI after contralateral C7 nerve transfer. Seventeen healthy volunteers were also included in this fMRI study as controls. The hand motor seed regions were defined as region of interests in the bilateral hemispheres. The seed-based functional connectivity was calculated in all the subjects. Differences in functional connectivity of the motor cortical network between patients and healthy controls were compared. The inter-hemispheric functional connectivity of the M1 areas was increased in patients with BPAI compared with the controls. The inter-hemispheric functional connectivity between the supplementary motor areas was reduced bilaterally. The resting-state inter-hemispheric functional connectivity of the bilateral M1 areas is altered in patients after contralateral C7 nerve transfer, suggesting a functional reorganization of cerebral cortex. (orig.)

  15. Schwann cell autophagy, myelinophagy, initiates myelin clearance from injured nerves

    NARCIS (Netherlands)

    Gomez-Sanchez, Jose A.; Carty, Lucy; Iruarrizaga-Lejarreta, Marta; Palomo-Irigoyen, Marta; Varela-Rey, Marta; Griffith, Megan; Hantke, Janina; Macias-Camara, Nuria; Azkargorta, Mikel; Aurrekoetxea, Igor; de Juan, Virginia Gutiérrez; Jefferies, Harold B. J.; Aspichueta, Patricia; Elortza, Félix; Aransay, Ana M.; Martínez-Chantar, María L.; Baas, Frank; Mato, José M.; Mirsky, Rhona; Woodhoo, Ashwin; Jessen, Kristján R.

    2015-01-01

    Although Schwann cell myelin breakdown is the universal outcome of a remarkably wide range of conditions that cause disease or injury to peripheral nerves, the cellular and molecular mechanisms that make Schwann cell-mediated myelin digestion possible have not been established. We report that

  16. Swimming Training Reduces Neuroma Pain by Regulating Neurotrophins.

    Science.gov (United States)

    Tian, Jinge; Yu, Tingting; Xu, Yongming; Pu, Shaofeng; Lv, Yingying; Zhang, Xin; DU, Dongping

    2018-01-01

    Neuroma formation after peripheral nerve transection leads to severe neuropathic pain in amputees. Previous studies suggested that physical exercise could bring beneficial effect on alleviating neuropathic pain. However, the effect of exercise on neuroma pain still remained unclear. In addition, long-term exercise can affect the expression of neurotrophins (NT), such as nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF), which play key roles in nociceptor sensitization and nerve sprouting after nerve injury. Here, we investigated whether long-term swimming exercise could relieve neuroma pain by modulating NT expression. We used a tibial neuroma transposition (TNT) rat model to mimic neuroma pain. After TNT surgery, rats performed swimming exercise for 5 wk. Neuroma pain and tactile sensitivities were detected using von Frey filaments. Immunofluorescence was applied to analyze neuroma formation. NGF and BDNF expressions in peripheral neuroma, dorsal root ganglion, and the spinal cord were measured using enzyme-linked immunosorbent assay and Western blotting. TNT led to neuroma formation, induced neuroma pain, and mechanical allodynia in hind paw. Five-week swimming exercise inhibited neuroma formation and relieved mechanical allodynia in the hind paw and neuroma pain in the lateral ankle. The analgesic effect lasted for at least 1 wk, even when the exercise ceased. TNT elevated the expressions of BDNF and NGF in peripheral neuroma, dorsal root ganglion, and the spinal cord to different extents. Swimming also decreased the elevation of NT expression. Swimming exercise not only inhibits neuroma formation induced by nerve transection but also relieves pain behavior. These effects might be associated with the modulation of NT.

  17. Chitin biological absorbable catheters bridging sural nerve grafts transplanted into sciatic nerve defects promote nerve regeneration.

    Science.gov (United States)

    Wang, Zhi-Yong; Wang, Jian-Wei; Qin, Li-Hua; Zhang, Wei-Guang; Zhang, Pei-Xun; Jiang, Bao-Guo

    2018-06-01

    To investigate the efficacy of chitin biological absorbable catheters in a rat model of autologous nerve transplantation. A segment of sciatic nerve was removed to produce a sciatic nerve defect, and the sural nerve was cut from the ipsilateral leg and used as a graft to bridge the defect, with or without use of a chitin biological absorbable catheter surrounding the graft. The number and morphology of regenerating myelinated fibers, nerve conduction velocity, nerve function index, triceps surae muscle morphology, and sensory function were evaluated at 9 and 12 months after surgery. All of the above parameters were improved in rats in which the nerve graft was bridged with chitin biological absorbable catheters compared with rats without catheters. The results of this study indicate that use of chitin biological absorbable catheters to surround sural nerve grafts bridging sciatic nerve defects promotes recovery of structural, motor, and sensory function and improves muscle fiber morphology. © 2018 John Wiley & Sons Ltd.

  18. A novel method of lengthening the accessory nerve for direct coaptation during nerve repair and nerve transfer procedures.

    Science.gov (United States)

    Tubbs, R Shane; Maldonado, Andrés A; Stoves, Yolanda; Fries, Fabian N; Li, Rong; Loukas, Marios; Oskouian, Rod J; Spinner, Robert J

    2018-01-01

    OBJECTIVE The accessory nerve is frequently repaired or used for nerve transfer. The length of accessory nerve available is often insufficient or marginal (under tension) for allowing direct coaptation during nerve repair or nerve transfer (neurotization), necessitating an interpositional graft. An attractive maneuver would facilitate lengthening of the accessory nerve for direct coaptation. The aim of the present study was to identify an anatomical method for such lengthening. METHODS In 20 adult cadavers, the C-2 or C-3 connections to the accessory nerve were identified medial to the sternocleidomastoid (SCM) muscle and the anatomy of the accessory nerve/cervical nerve fibers within the SCM was documented. The cervical nerve connections were cut. Lengths of the accessory nerve were measured. Samples of the cut C-2 and C-3 nerves were examined using immunohistochemistry. RESULTS The anatomy and adjacent neural connections within the SCM are complicated. However, after the accessory nerve was "detethered" from within the SCM and following transection, the additional length of the accessory nerve increased from a mean of 6 cm to a mean of 10.5 cm (increase of 4.5 cm) after cutting the C-2 connections, and from a mean of 6 cm to a mean length of 9 cm (increase of 3.5 cm) after cutting the C-3 connections. The additional length of accessory nerve even allowed direct repair of an infraclavicular target (i.e., the proximal musculocutaneous nerve). The cervical nerve connections were shown not to contain motor fibers. CONCLUSIONS An additional length of the accessory nerve made available in the posterior cervical triangle can facilitate direct repair or neurotization procedures, thus eliminating the need for an interpositional nerve graft, decreasing the time/distance for regeneration and potentially improving clinical outcomes.

  19. Regeneration of unmyelinated and myelinated sensory nerve fibres studied by a retrograde tracer method

    DEFF Research Database (Denmark)

    Lozeron, Pierre; Krarup, Christian; Schmalbruch, Henning

    2004-01-01

    of axons. Axonal counts do not reflect the number of regenerated neurons because of axonal branching and because myelinated axons form unmyelinated sprouts. Two days to 10 weeks after crushing, the distal sural or peroneal nerves were cut and exposed to fluoro-dextran. Large and small dorsal root ganglion...

  20. Nerves Regulate Cardiomyocyte Proliferation and Heart Regeneration.

    Science.gov (United States)

    Mahmoud, Ahmed I; O'Meara, Caitlin C; Gemberling, Matthew; Zhao, Long; Bryant, Donald M; Zheng, Ruimao; Gannon, Joseph B; Cai, Lei; Choi, Wen-Yee; Egnaczyk, Gregory F; Burns, Caroline E; Burns, C Geoffrey; MacRae, Calum A; Poss, Kenneth D; Lee, Richard T

    2015-08-24

    Some organisms, such as adult zebrafish and newborn mice, have the capacity to regenerate heart tissue following injury. Unraveling the mechanisms of heart regeneration is fundamental to understanding why regeneration fails in adult humans. Numerous studies have revealed that nerves are crucial for organ regeneration, thus we aimed to determine whether nerves guide heart regeneration. Here, we show using transgenic zebrafish that inhibition of cardiac innervation leads to reduction of myocyte proliferation following injury. Specifically, pharmacological inhibition of cholinergic nerve function reduces cardiomyocyte proliferation in the injured hearts of both zebrafish and neonatal mice. Direct mechanical denervation impairs heart regeneration in neonatal mice, which was rescued by the administration of neuregulin 1 (NRG1) and nerve growth factor (NGF) recombinant proteins. Transcriptional analysis of mechanically denervated hearts revealed a blunted inflammatory and immune response following injury. These findings demonstrate that nerve function is required for both zebrafish and mouse heart regeneration. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Renal sympathetic nerve ablation for treatment-resistant hypertension

    Science.gov (United States)

    Krum, Henry; Schlaich, Markus; Sobotka, Paul

    2013-01-01

    Hypertension is a major risk factor for increased cardiovascular events with accelerated sympathetic nerve activity implicated in the pathogenesis and progression of disease. Blood pressure is not adequately controlled in many patients, despite the availability of effective pharmacotherapy. Novel procedure- as well as device-based strategies, such as percutaneous renal sympathetic nerve denervation, have been developed to improve blood pressure in these refractory patients. Renal sympathetic denervation not only reduces blood pressure but also renal as well as systemic sympathetic nerve activity in such patients. The reduction in blood pressure appears to be sustained over 3 years after the procedure, which suggests absence of re-innervation of renal sympathetic nerves. Safety appears to be adequate. This approach may also have potential in other disorders associated with enhanced sympathetic nerve activity such as congestive heart failure, chronic kidney disease and metabolic syndrome. This review will focus on the current status of percutaneous renal sympathetic nerve denervation, clinical efficacy and safety outcomes and prospects beyond refractory hypertension. PMID:23819768

  2. High-throughput microarray mapping of cell wall polymers in roots and tubers during the viscosity-reducing process

    DEFF Research Database (Denmark)

    Huang, Yuhong; Willats, William George Tycho; Lange, Lene

    2016-01-01

    the viscosity-reducing process are poorly characterized. Comprehensive microarray polymer profiling, which is a high-throughput microarray, was used for the first time to map changes in the cell wall polymers of sweet potato (Ipomoea batatas), cassava (Manihot esculenta), and Canna edulis Ker. over the entire...... viscosity-reducing process. The results indicated that the composition of cell wall polymers among these three roots and tubers was markedly different. The gel-like matrix and glycoprotein network in the C. edulis Ker. cell wall caused difficulty in viscosity reduction. The obvious viscosity reduction......Viscosity reduction has a great impact on the efficiency of ethanol production when using roots and tubers as feedstock. Plant cell wall-degrading enzymes have been successfully applied to overcome the challenges posed by high viscosity. However, the changes in cell wall polymers during...

  3. Brassinosteroids Antagonize Gibberellin- and Salicylate-Mediated Root Immunity in Rice1[C][W][OA

    Science.gov (United States)

    De Vleesschauwer, David; Van Buyten, Evelien; Satoh, Kouji; Balidion, Johny; Mauleon, Ramil; Choi, Il-Ryong; Vera-Cruz, Casiana; Kikuchi, Shoshi; Höfte, Monica

    2012-01-01

    Brassinosteroids (BRs) are a unique class of plant steroid hormones that orchestrate myriad growth and developmental processes. Although BRs have long been known to protect plants from a suite of biotic and abiotic stresses, our understanding of the underlying molecular mechanisms is still rudimentary. Aiming to further decipher the molecular logic of BR-modulated immunity, we have examined the dynamics and impact of BRs during infection of rice (Oryza sativa) with the root oomycete Pythium graminicola. Challenging the prevailing view that BRs positively regulate plant innate immunity, we show that P. graminicola exploits BRs as virulence factors and hijacks the rice BR machinery to inflict disease. Moreover, we demonstrate that this immune-suppressive effect of BRs is due, at least in part, to negative cross talk with salicylic acid (SA) and gibberellic acid (GA) pathways. BR-mediated suppression of SA defenses occurred downstream of SA biosynthesis, but upstream of the master defense regulators NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 and OsWRKY45. In contrast, BR alleviated GA-directed immune responses by interfering at multiple levels with GA metabolism, resulting in indirect stabilization of the DELLA protein and central GA repressor SLENDER RICE1 (SLR1). Collectively, these data favor a model whereby P. graminicola coopts the plant BR pathway as a decoy to antagonize effectual SA- and GA-mediated defenses. Our results highlight the importance of BRs in modulating plant immunity and uncover pathogen-mediated manipulation of plant steroid homeostasis as a core virulence strategy. PMID:22353574

  4. ROS and CDPK-like kinase-mediated activation of MAP kinase in rice roots exposed to lead.

    Science.gov (United States)

    Huang, Tsai-Lien; Huang, Hao-Jen

    2008-04-01

    Lead (Pb2+) is a cytotoxic metal ion in plants, the mechanism of which is not yet established. The aim of this study is to investigate the signalling pathways that are activated by elevated concentrations of Pb2+ in rice roots. Root growth was stunted and cell death was accelerated when exposed to different dosages of Pb2+ during extended time periods. Using ROS-sensitive dye and Ca2+ indicator, we demonstrated that Pb2+ induced ROS production and Ca2+ accumulation, respectively. In addition, Pb2+ elicited a remarkable increase in myelin basic protein (MBP) kinase activities. By immunoblot and immunoprecipitation analysis, 40- and 42-kDa MBP kinases that were activated by Pb2+ were identified to be mitogen-activated protein (MAP) kinases. Pre-treatment of rice roots with an antioxidant and a NADPH oxidase inhibitor, glutathione (GSH) and diphenylene iodonium (DPI), effectively reduced Pb2+-induced cell death and MAP kinase activation. Moreover, calcium-dependent protein kinase (CDPK) antagonist, W7, attenuated Pb2+-induced cell death and MAP kinase activation. These results suggested that the ROS and CDPK may function in the Pb2+-triggered cell death and MAP kinase signalling pathway in rice roots.

  5. Post-surgical functional recovery, lumbar lordosis, and range of motion associated with MR-detectable redundant nerve roots in lumbar spinal stenosis.

    Science.gov (United States)

    Chen, Jinshui; Wang, Juying; Wang, Benhai; Xu, Hao; Lin, Songqing; Zhang, Huihao

    2016-01-01

    T1- and T2-weighted magnetic resonance images (MRI) can reveal lumbar redundant nerve roots (RNRs), a result of chronic compression and nerve elongation associated with pathogenesis of cauda equina claudication (CEC) in degenerative lumbar canal stenosis (DLCS). The study investigated effects of lumbar lordosis angle and range of motion on functional recovery in lumbar stenosis patents with and without RNRs. A retrospective study was conducted of 93 lumbar spinal stenosis patients who underwent decompressive surgery. Eligible records were assessed by 3 independent blinded radiologists for presence or absence of RNRs on sagittal T2-weighted MR (RNR and non-RNR groups), pre- and post-operative JOA score, lumbar lordosis angle, and range of motion. Of 93 total patients, the RNR group (n=37, 21/37 female) and non-RNR group (n=56; 31/56 female) had similar preoperative conditions (JOA score) and were not significantly different in age (mean 64.19 ± 8.25 vs. 62.8 ± 9.41 years), symptom duration (30.92 ± 22.43 vs. 28.64 ± 17.40 months), or follow-up periods (17.35 ± 4.02 vs. 17.75 ± 4.29 mo) (all p>0.4). The non-RNR group exhibited significantly better final JOA score (p=0.015) and recovery rate (p=0.002). RNR group patients exhibited larger lumbar lordosis angles in the neutral position (p=0.009) and extension (p=0.021) and larger range of motion (p=0.008). Poorer surgical outcomes in patients with RNRs indicated that elevated lumbar lordosis angle and range of motion increased risks of RNR formation, which in turn may cause poorer post-surgical recovery, this information is possibly useful in prognostic assessment of lumbar stenosis complicated by RNRs. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Potential mediating pathways through which sports participation relates to reduced risk of suicidal ideation.

    Science.gov (United States)

    Taliaferro, Lindsay A; Rienzo, Barbara A; Miller, M David; Pigg, R Morgan; Dodd, Virginia J

    2010-09-01

    Suicide ranks as the third leading cause of death for American youth. Researchers examining sport participation and suicidal behavior have regularly found inverse relationships. This study represents the first effort to test a model depicting potential mechanisms through which sport participation relates to reduced risk of suicidal ideation. The participants were 450 undergraduate students. Measures assessed participants' involvement in university-run sports and other activities; frequency of physical activity; and perceived social support, self-esteem, depression, hopelessness, loneliness, and suicidal ideation. Regression analyses confirmed a path model and tested for mediation effects. Vigorous activity mediated relationships between sport participation and self-esteem and depression; and self-esteem and depression mediated the relationship between vigorous activity and suicidal ideation. Social support mediated relationships between sport participation and depression, hopelessness, and loneliness; and each of these risk factors partially mediated the relationship between social support and suicidal ideation. However no variable fully mediated the relationship between sport participation and suicidal ideation. This study provides a foundation for research designed to examine pathways through which sport participation relates to reduced risk of suicidal behavior.

  7. Interest of Electrostimulation of Peripheral Motor Nerves during Percutaneous Thermal Ablation

    International Nuclear Information System (INIS)

    Tsoumakidou, Georgia; Garnon, Julien; Ramamurthy, Nitin; Buy, Xavier; Gangi, Afshin

    2013-01-01

    Purpose: We present our experience of utilizing peripheral nerve electrostimulation as a complementary monitoring technique during percutaneous thermal ablation procedures; and we highlight its utility and feasibility in the prevention of iatrogenic neurologic thermal injury. Methods: Peripheral motor nerve electrostimulation was performed in 12 patients undergoing percutaneous image-guided thermal ablations of spinal/pelvic lesions in close proximity to the spinal cord and nerve roots. Electrostimulation was used in addition to existing insulation (active warming/cooling with hydrodissection, passive insulation with CO 2 insufflation) and temperature monitoring (thermocouples) techniques. Impending neurologic deficit was defined as a visual reduction of muscle response or need for a stronger electric current to evoke muscle contraction, compared with baseline. Results: Significant reduction of the muscle response to electrostimulation was observed in three patients during the ablation, necessitating temporary interruption, followed by injection of warm/cool saline. This resulted in complete recovery of the muscle response in two cases, while for the third patient the response did not improve and the procedure was terminated. No patient experienced postoperative motor deficit. Conclusion: Peripheral motor nerve electrostimulation is a simple, easily accessible technique allowing early detection of impending neurologic injury during percutaneous image-guided thermal ablation. It complements existing monitoring techniques and provides a functional assessment along the whole length of the nerve

  8. Interest of Electrostimulation of Peripheral Motor Nerves during Percutaneous Thermal Ablation

    Energy Technology Data Exchange (ETDEWEB)

    Tsoumakidou, Georgia, E-mail: gtsoumakidou@yahoo.com; Garnon, Julien, E-mail: juliengarnon@gmail.com; Ramamurthy, Nitin, E-mail: nitin_ramamurthy@hotmail.com; Buy, Xavier, E-mail: xbuy@ymail.com; Gangi, Afshin, E-mail: gangi@unistra.fr [University Hospital of Strasbourg (France)

    2013-12-15

    Purpose: We present our experience of utilizing peripheral nerve electrostimulation as a complementary monitoring technique during percutaneous thermal ablation procedures; and we highlight its utility and feasibility in the prevention of iatrogenic neurologic thermal injury. Methods: Peripheral motor nerve electrostimulation was performed in 12 patients undergoing percutaneous image-guided thermal ablations of spinal/pelvic lesions in close proximity to the spinal cord and nerve roots. Electrostimulation was used in addition to existing insulation (active warming/cooling with hydrodissection, passive insulation with CO{sub 2} insufflation) and temperature monitoring (thermocouples) techniques. Impending neurologic deficit was defined as a visual reduction of muscle response or need for a stronger electric current to evoke muscle contraction, compared with baseline. Results: Significant reduction of the muscle response to electrostimulation was observed in three patients during the ablation, necessitating temporary interruption, followed by injection of warm/cool saline. This resulted in complete recovery of the muscle response in two cases, while for the third patient the response did not improve and the procedure was terminated. No patient experienced postoperative motor deficit. Conclusion: Peripheral motor nerve electrostimulation is a simple, easily accessible technique allowing early detection of impending neurologic injury during percutaneous image-guided thermal ablation. It complements existing monitoring techniques and provides a functional assessment along the whole length of the nerve.

  9. Nanofiber Nerve Guide for Peripheral Nerve Repair and Regeneration

    Science.gov (United States)

    2016-04-01

    1 Award Number: W81XWH-11-2-0047 TITLE: Nanofiber Nerve Guide for Peripheral Nerve Repair and Regeneration PRINCIPAL INVESTIGATOR: Ahmet Höke...TITLE AND SUBTITLE 5a. CONTRACT NUMBER W81XWH-11-2-0047 Nanofiber nerve guide for peripheral nerve repair and regeneration 5b. GRANT NUMBER...goal of this collaborative research project was to develop next generation engineered nerve guide conduits (NGCs) with aligned nanofibers and

  10. Reducing Variability in Stress Drop with Root-Mean Acceleration

    Science.gov (United States)

    Crempien, J.; Archuleta, R. J.

    2012-12-01

    Stress drop is a fundamental property of the earthquake source. For a given tectonic region stress drop is assumed to be constant allowing for the scaling of earthquake spectra. However, the variability of the stress drop, either for worldwide catalogs or regional catalogs, is quite large. The variability around the median value is on the order of 1.5 in log10 units. One question that continues to pervade the analysis of stress drop is whether this variability is an inherent characteristic of the Earth or is an artifact of the determination of stress drop via the use of the spectral analysis. It is simple to see that the stress drop determined by seismic moment times corner frequency cubed that errors in the corner frequency will strongly influence the variability in the stress drop. To avoid this strong dependence on corner frequency cubed, we have examined the determination of stress drop based on the approach proposed by Hanks (1979), namely using the root-mean-square acceleration. The stress drop determined using rms acceleration may be advantageous because the stress drop is only affected by the square root of the corner frequency. To test this approach we have determined stress drops for the 2000 Tottori earthquake and its aftershocks. We use both the classic method of fitting to a spectrum as well as using rms acceleration. For a preliminary analysis of eight aftershocks and the mainshock we find that the variability in stress drop is reduced by about a factor of two. This approach needs more careful analysis of more events, which will be shown at the meeting.

  11. Radial nerve dysfunction

    Science.gov (United States)

    Neuropathy - radial nerve; Radial nerve palsy; Mononeuropathy ... Damage to one nerve group, such as the radial nerve, is called mononeuropathy . Mononeuropathy means there is damage to a single nerve. Both ...

  12. Matrix metalloproteinase-2 is downregulated in sciatic nerve by streptozotocin induced diabetes and/or treatment with minocycline: Implications for nerve regeneration

    Science.gov (United States)

    Ali, Sumia; Driscoll, Heather E.; Newton, Victoria L.; Gardiner, Natalie J.

    2014-01-01

    Minocycline is an inhibitor of matrix metalloproteinases (MMPs) and has been shown to have analgesic effects. Whilst increased expression of MMPs is associated with neuropathic pain, MMPs also play crucial roles in Wallerian degeneration and nerve regeneration. In this study we examined the expression of MMP-2, MMP-9 and tissue inhibitor of metalloproteinase (TIMP)-1/-2 in the sciatic nerve of control and streptozotocin-induced diabetic rats treated with either vehicle or minocycline by quantitative PCR and gelatin zymography. We assessed the effects of minocycline on nerve conduction velocity and intraepidermal nerve fibre (IENF) deficits in diabetic neuropathy and investigated the effects of minocycline or MMP-2 on neurite outgrowth from primary cultures of dissociated adult rat sensory neurons. We show that MMP-2 is expressed constitutively in the sciatic nerve in vivo and treatment with minocycline or diabetes leads to downregulation of MMP-2 expression and activity. The functional consequence of this is IENF deficits in minocycline-treated nondiabetic rats and an unsupportive microenvironment for regeneration in diabetes. Minocycline reduces levels of MMP-2 mRNA and nerve growth factor-induced neurite outgrowth. Furthermore, in vivo minocycline treatment reduces preconditioning-induced in vitro neurite outgrowth following a sciatic nerve crush. In contrast, the addition of active MMP-2 facilitates neurite outgrowth in the absence of neurotrophic support and pre-treatment of diabetic sciatic nerve substrata with active MMP-2 promotes a permissive environment for neurite outgrowth. In conclusion we suggest that MMP-2 downregulation may contribute to the regenerative deficits in diabetes. Minocycline treatment also downregulates MMP-2 activity and is associated with inhibitory effects on sensory neurons. Thus, caution should be exhibited with its use as the balance between beneficial and detrimental outcomes may be critical in assessing the benefits of using

  13. Malignant peripheral nerve sheath tumor of the oculomotor nerve

    DEFF Research Database (Denmark)

    Kozic, D; Nagulic, M; Ostojic, J

    2006-01-01

    We present the short-term follow-up magnetic resonance (MR) studies and 1H-MR spectroscopy in a child with malignant peripheral nerve sheath tumor of the oculomotor nerve associated with other less aggressive cranial nerve schwannomas. The tumor revealed perineural extension and diffuse nerve...

  14. Scaffoldless tissue-engineered nerve conduit promotes peripheral nerve regeneration and functional recovery after tibial nerve injury in rats

    Institute of Scientific and Technical Information of China (English)

    Aaron M. Adams; Keith W. VanDusen; Tatiana Y. Kostrominova; Jacob P. Mertens; Lisa M. Larkin

    2017-01-01

    Damage to peripheral nerve tissue may cause loss of function in both the nerve and the targeted muscles it innervates. This study compared the repair capability of engineered nerve conduit (ENC), engineered fibroblast conduit (EFC), and autograft in a 10-mm tibial nerve gap. ENCs were fabricated utilizing primary fibroblasts and the nerve cells of rats on embryonic day 15 (E15). EFCs were fabricated utilizing primary fi-broblasts only. Following a 12-week recovery, nerve repair was assessed by measuring contractile properties in the medial gastrocnemius muscle, distal motor nerve conduction velocity in the lateral gastrocnemius, and histology of muscle and nerve. The autografts, ENCs and EFCs reestablished 96%, 87% and 84% of native distal motor nerve conduction velocity in the lateral gastrocnemius, 100%, 44% and 44% of native specific force of medical gastrocnemius, and 63%, 61% and 67% of native medial gastrocnemius mass, re-spectively. Histology of the repaired nerve revealed large axons in the autograft, larger but fewer axons in the ENC repair, and many smaller axons in the EFC repair. Muscle histology revealed similar muscle fiber cross-sectional areas among autograft, ENC and EFC repairs. In conclusion, both ENCs and EFCs promot-ed nerve regeneration in a 10-mm tibial nerve gap repair, suggesting that the E15 rat nerve cells may not be necessary for nerve regeneration, and EFC alone can suffice for peripheral nerve injury repair.

  15. Bacterial antagonists of fungal pathogens also control root-knot nematodes by induced systemic resistance of tomato plants.

    Directory of Open Access Journals (Sweden)

    Mohamed Adam

    Full Text Available The potential of bacterial antagonists of fungal pathogens to control the root-knot nematode Meloidogyne incognita was investigated under greenhouse conditions. Treatment of tomato seeds with several strains significantly reduced the numbers of galls and egg masses compared with the untreated control. Best performed Bacillus subtilis isolates Sb4-23, Mc5-Re2, and Mc2-Re2, which were further studied for their mode of action with regard to direct effects by bacterial metabolites or repellents, and plant mediated effects. Drenching of soil with culture supernatants significantly reduced the number of egg masses produced by M. incognita on tomato by up to 62% compared to the control without culture supernatant. Repellence of juveniles by the antagonists was shown in a linked twin-pot set-up, where a majority of juveniles penetrated roots on the side without inoculated antagonists. All tested biocontrol strains induced systemic resistance against M. incognita in tomato, as revealed in a split-root system where the bacteria and the nematodes were inoculated at spatially separated roots of the same plant. This reduced the production of egg masses by up to 51%, while inoculation of bacteria and nematodes in the same pot had only a minor additive effect on suppression of M. incognita compared to induced systemic resistance alone. Therefore, the plant mediated effect was the major reason for antagonism rather than direct mechanisms. In conclusion, the bacteria known for their antagonistic potential against fungal pathogens also suppressed M. incognita. Such "multi-purpose" bacteria might provide new options for control strategies, especially with respect to nematode-fungus disease complexes that cause synergistic yield losses.

  16. Bacterial antagonists of fungal pathogens also control root-knot nematodes by induced systemic resistance of tomato plants.

    Science.gov (United States)

    Adam, Mohamed; Heuer, Holger; Hallmann, Johannes

    2014-01-01

    The potential of bacterial antagonists of fungal pathogens to control the root-knot nematode Meloidogyne incognita was investigated under greenhouse conditions. Treatment of tomato seeds with several strains significantly reduced the numbers of galls and egg masses compared with the untreated control. Best performed Bacillus subtilis isolates Sb4-23, Mc5-Re2, and Mc2-Re2, which were further studied for their mode of action with regard to direct effects by bacterial metabolites or repellents, and plant mediated effects. Drenching of soil with culture supernatants significantly reduced the number of egg masses produced by M. incognita on tomato by up to 62% compared to the control without culture supernatant. Repellence of juveniles by the antagonists was shown in a linked twin-pot set-up, where a majority of juveniles penetrated roots on the side without inoculated antagonists. All tested biocontrol strains induced systemic resistance against M. incognita in tomato, as revealed in a split-root system where the bacteria and the nematodes were inoculated at spatially separated roots of the same plant. This reduced the production of egg masses by up to 51%, while inoculation of bacteria and nematodes in the same pot had only a minor additive effect on suppression of M. incognita compared to induced systemic resistance alone. Therefore, the plant mediated effect was the major reason for antagonism rather than direct mechanisms. In conclusion, the bacteria known for their antagonistic potential against fungal pathogens also suppressed M. incognita. Such "multi-purpose" bacteria might provide new options for control strategies, especially with respect to nematode-fungus disease complexes that cause synergistic yield losses.

  17. Effect of Medium Supplements on Agrobacterium rhizogenes Mediated Hairy Root Induction from the Callus Tissues of Camellia sinensis var. sinensis.

    Science.gov (United States)

    Rana, Mohammad M; Han, Zhuo-Xiao; Song, Da-Peng; Liu, Guo-Feng; Li, Da-Xiang; Wan, Xiao-Chun; Karthikeyan, Alagarsamy; Wei, Shu

    2016-07-15

    Tea (Camellia sinensis L.) is recalcitrant to Agrobacterium-mediated genetic transformation largely due to the bactericidal effects of tea polyphenols and phenolics oxidation induced by necrosis of explant tissue over the process of transformation. In this study, different antioxidants/adsorbents were added as supplements to the co-cultivation and post co-cultivation media to overcome these problems for the transformation improvement. Tea-cotyledon-derived calli were used as explants and Agrobacterium rhizognes strain ATCC 15834 was used as a mediator. Results showed that Agrobacterium growth, virulence (vir) gene expression and browning of explant tissue were greatly influenced by different supplements. Murashige and Skoog (MS) basal salts medium supplemented with 30 g·L(-1) sucrose, 0.1 g·L(-1) l-glutamine and 5 g·L(-1) polyvinylpolypyrrolidone (PVPP) as co-cultivation and post co-cultivation media could maintain these parameters better that ultimately led to significant improvement of hairy root generation efficiency compared to that in the control (MS + 30 g·L(-1) sucrose). Additionally, the reporter genes β-glucuronidase (gusA) and cyan fluorescent protein (cfp) were also stably expressed in the transgenic hairy roots. Our study would be helpful in establishing a feasible approach for tea biological studies and genetic improvement of tea varieties.

  18. Effect of Medium Supplements on Agrobacterium rhizogenes Mediated Hairy Root Induction from the Callus Tissues of Camellia sinensis var. sinensis

    Directory of Open Access Journals (Sweden)

    Mohammad M. Rana

    2016-07-01

    Full Text Available Tea (Camellia sinensis L. is recalcitrant to Agrobacterium-mediated genetic transformation largely due to the bactericidal effects of tea polyphenols and phenolics oxidation induced by necrosis of explant tissue over the process of transformation. In this study, different antioxidants/adsorbents were added as supplements to the co-cultivation and post co-cultivation media to overcome these problems for the transformation improvement. Tea-cotyledon-derived calli were used as explants and Agrobacterium rhizognes strain ATCC 15834 was used as a mediator. Results showed that Agrobacterium growth, virulence (vir gene expression and browning of explant tissue were greatly influenced by different supplements. Murashige and Skoog (MS basal salts medium supplemented with 30 g·L−1 sucrose, 0.1 g·L−1 l-glutamine and 5 g·L−1 polyvinylpolypyrrolidone (PVPP as co-cultivation and post co-cultivation media could maintain these parameters better that ultimately led to significant improvement of hairy root generation efficiency compared to that in the control (MS + 30 g·L−1 sucrose. Additionally, the reporter genes β-glucuronidase (gusA and cyan fluorescent protein (cfp were also stably expressed in the transgenic hairy roots. Our study would be helpful in establishing a feasible approach for tea biological studies and genetic improvement of tea varieties.

  19. Communication between radial nerve and medial cutaneous nerve of forearm

    Directory of Open Access Journals (Sweden)

    R R Marathe

    2010-01-01

    Full Text Available Radial nerve is usually a branch of the posterior cord of the brachial plexus. It innervates triceps, anconeous, brachialis, brachioradialis, extensor carpi radialis longus muscles and gives the posterior cutaneous nerve of the arm, lower lateral cutaneous nerve of arm, posterior cutaneous nerve of forearm; without exhibiting any communication with the medial cutaneous nerve of forearm or any other nerve. We report communication between the radial nerve and medial cutaneous nerve of forearm on the left side in a 58-year-old male cadaver. The right sided structures were found to be normal. Neurosurgeons should keep such variations in mind while performing the surgeries of axilla and upper arm.

  20. Arterial relationships to the nerves and some rigid structures in the posterior cranial fossa.

    Science.gov (United States)

    Surchev, N

    2008-09-01

    The close relationships between the cranial nerves and the arterial vessels in the posterior cranial fossa are one of the predisposing factors for artery-nerve compression. The aim of this study was to examine the relationships of the vertebral and basilar arteries to some skull and dural structures and the nerves in the posterior cranial fossa. For this purpose, the skull bases and brains of 70 cadavers were studied. The topographic relationships of the vertebral and basilar arteries to the cranial nerves in the posterior cranial fossa were studied and the distances between the arteries and some osseous formations were measured. The most significant variations in arterial position were registered in the lower half of the basilar artery. Direct contact with an artery was established for the hypoglossal canal, jugular tubercle, and jugular foramen. The results reveal additional information about the relationships of the nerves and arteries to the skull and dural formations in the posterior cranial fossa. New quantitative information is given to illustrate them. The conditions for possible artery-nerve compression due to arterial dislocation are discussed and two groups (lines) of compression points are suggested. The medial line comprises of the brain stem points, usually the nerve root entry/exit zone. The lateral line includes the skull eminences, on which the nerves lie, or skull and dural foramina through which they exit the cranial cavity. (c) 2008 Wiley-Liss, Inc.

  1. Ulnar nerve dysfunction

    Science.gov (United States)

    Neuropathy - ulnar nerve; Ulnar nerve palsy; Mononeuropathy; Cubital tunnel syndrome ... Damage to one nerve group, such as the ulnar nerve, is called mononeuropathy . Mononeuropathy means there is damage to a single nerve. Both ...

  2. Intramuscular Distribution of the Abducens Nerve in the Lateral Rectus Muscle for the Management of Strabismus.

    Science.gov (United States)

    Shin, Hyun Jin; Lee, Shin-Hyo; Shin, Kang-Jae; Koh, Ki-Seok; Song, Wu-Chul

    2018-06-01

    To elucidate the intramuscular distribution and branching patterns of the abducens nerve in the lateral rectus (LR) muscle so as to provide anatomical confirmation of the presence of compartmentalization, including for use in clinical applications such as botulinum toxin injections. Thirty whole-mount human cadaver specimens were dissected and then Sihler's stain was applied. The basic dimensions of the LR and its intramuscular nerve distribution were investigated. The distances from the muscle insertion to the point at which the abducens nerve enters the LR and to the terminal nerve plexus were also measured. The LR was 46.0 mm long. The abducens nerve enters the muscle on the posterior one-third of the LR and then typically divides into a few branches (average of 1.8). This supports a segregated abducens nerve selectively innervating compartments of the LR. The intramuscular nerve distribution showed a Y-shaped ramification with root-like arborization. The intramuscular nerve course finished around the middle of the LR (24.8 mm posterior to the insertion point) to form the terminal nerve plexus. This region should be considered the optimal target site for botulinum toxin injections. We have also identified the presence of an overlapping zone and communicating nerve branches between the neighboring LR compartments. Sihler's staining is a useful technique for visualizing the entire nerve network of the LR. Improving the knowledge of the nerve distribution patterns is important not only for researchers but also clinicians to understand the functions of the LR and the diverse pathophysiology of strabismus.

  3. Absence of the musculocutaneous nerve with innervation of coracobrachialis, biceps brachii, brachialis and the lateral border of the forearm by branches from the lateral cord of the brachial plexus

    Science.gov (United States)

    NAKATANI, TOSHIO; TANAKA, SHIGENORI; MIZUKAMI, SHIGEKI

    1997-01-01

    Anomalies of the brachial plexus and its terminal branches are not uncommon. Variations in the course and branches of the musculocutaneous nerve have been noted (Clemente, 1985; Bergman et al. 1988) and its absence was reported by Le Minor (1990). Several anomalies were present in the left plexus of a 59-y-old Japanese man (Fig.). There were no anterior and posterior divisions of the middle trunk, although there were communications between the posterior, medial and lateral cords. The musculocutaneous nerve was absent (Le Minor, 1990) and the medial and lateral roots of the median nerve did not unite in the axillary fossa but in the upper arm about 5 cm distal to the lower border of latissimus dorsi (Adachi, 1928; Buch-Hansen, 1955). The hitherto unreported findings were branches arising directly from the lateral cord to supply coracobrachialis, both heads of biceps brachii and brachialis. The lateral cutaneous nerve of the forearm was derived from the lateral cord with a small contribution from the medial root of the median nerve. Since there were communications between the posterior cord (a continuation of the middle trunk) and the medial and lateral cords, it is theoretically possibly, but not proven, that the root values of branches innervating the flexor muscles of the arm and forearm and the skin of lateral border of the forearm were normal. PMID:9419004

  4. Targeting of liposomes to cells bearing nerve growth factor receptors mediated by biotinylated NGF

    International Nuclear Information System (INIS)

    Rosenberg, M.B.

    1986-01-01

    Previous studies of liposome targeting have concentrated on immunological systems, the use of ligand-receptor interactions has received little attention. The protein hormone beta-nerve growth factor (NGF) was modified by biotinylation via carboxyl group substitution (C-bio-NGF) under reaction conditions that yielded an average of 3 biotin additions per NGF subunit. NGF was also biotinylated through amino group substitution to produce derivatives with ratios of 1, 2 and 4 biotin moieties per NGF subunit (N-bio-NGF). These derivatives were compared with native NGF for their ability to compete with 125 I-NGF for binding to NGF receptors on rat pheochromocytoma (PC 12) cells at 4 0 C. C-bio-NGF was as effective as native NGF in binding to NGF receptors, while N-bio-NGF containing 1 biotin per NGF subunit was only 28% as active in binding as native NGF. C-bio-NGF, but not N-bio-NGF, mediated the specific binding of 125 I-streptavidin to PC12 cells. Biocytin-NGF, a derivative of C-bio-NGF with an extended spacer chain, was also synthesized and retained full biological and receptor binding activities. C-bio-NGF and biocytin-NGF were as effective as native NGF in a bioassay involving induction of neurite outgrowth from PC12 cells

  5. Elevated CO2 plus chronic warming reduce nitrogen uptake and levels or activities of nitrogen-uptake and -assimilatory proteins in tomato roots.

    Science.gov (United States)

    Jayawardena, Dileepa M; Heckathorn, Scott A; Bista, Deepesh R; Mishra, Sasmita; Boldt, Jennifer K; Krause, Charles R

    2017-03-01

    Atmospheric CO 2 enrichment is expected to often benefit plant growth, despite causing global warming and nitrogen (N) dilution in plants. Most plants primarily procure N as inorganic nitrate (NO 3 - ) or ammonium (NH 4 + ), using membrane-localized transport proteins in roots, which are key targets for improving N use. Although interactive effects of elevated CO 2 , chronic warming and N form on N relations are expected, these have not been studied. In this study, tomato (Solanum lycopersicum) plants were grown at two levels of CO 2 (400 or 700 ppm) and two temperature regimes (30 or 37°C), with NO 3 - or NH 4 + as the N source. Elevated CO 2 plus chronic warming severely inhibited plant growth, regardless of N form, while individually they had smaller effects on growth. Although %N in roots was similar among all treatments, elevated CO 2 plus warming decreased (1) N-uptake rate by roots, (2) total protein concentration in roots, indicating an inhibition of N assimilation and (3) shoot %N, indicating a potential inhibition of N translocation from roots to shoots. Under elevated CO 2 plus warming, reduced NO 3 - -uptake rate per g root was correlated with a decrease in the concentration of NO 3 - -uptake proteins per g root, reduced NH 4 + uptake was correlated with decreased activity of NH 4 + -uptake proteins and reduced N assimilation was correlated with decreased concentration of N-assimilatory proteins. These results indicate that elevated CO 2 and chronic warming can act synergistically to decrease plant N uptake and assimilation; hence, future global warming may decrease both plant growth and food quality (%N). © 2016 Scandinavian Plant Physiology Society.

  6. Hydrostatic Pressure–Induced Release of Stored Calcium in Cultured Rat Optic Nerve Head Astrocytes

    Science.gov (United States)

    Mandal, Amritlal; Delamere, Nicholas A.

    2010-01-01

    Purpose. Elevated intraocular pressure is associated with glaucomatous optic nerve damage. Other investigators have shown functional changes in optic nerve head astrocytes subjected to elevated hydrostatic pressure (HP) for 1 to 5 days. Recently, the authors reported ERK1/2, p90RSK and NHE1 phosphorylation after 2 hours. Here they examine calcium responses at the onset of HP to determine what precedes ERK1/2 phosphorylation. Methods. Cytoplasmic calcium concentration ([Ca2+]i) was measured in cultured rat optic nerve astrocytes loaded with fura-2. The cells were placed in a closed imaging chamber and subjected to an HP increase of 15 mm Hg. Protein phosphorylation was detected by Western blot analysis. Results. The increase of HP caused an immediate slow increase in [Ca2+]i. The response persisted in calcium-free solution and when nickel chloride (4 mM) was added to suppress channel-mediated calcium entry. Previous depletion of the ER calcium stores by cyclopiazonic acid abolished the HP-induced calcium level increase. The HP-induced increase persisted in cells exposed to xestospongin C, an inhibitor of IP3R-mediated calcium release. In contrast, ryanodine receptor (RyR) antagonist ruthenium red (10 μM) or dantrolene (25 μM) inhibited the HP-induced calcium increase. The HP-induced calcium increase was abolished when ryanodine-sensitive calcium stores were pre-depleted with caffeine (3 mM). HP caused ERK1/2 phosphorylation. The magnitude of the ERK1/2 phosphorylation response was reduced by ruthenium red and dantrolene. Conclusions. Increasing HP causes calcium release from a ryanodine-sensitive cytoplasmic store and subsequent ERK1/2 activation. Calcium store release appears to be a required early step in the initial astrocyte response to an HP increase. PMID:20071675

  7. Adipose-derived mesenchymal stem cells accelerate nerve regeneration and functional recovery in a rat model of recurrent laryngeal nerve injury

    Directory of Open Access Journals (Sweden)

    Yun Li

    2017-01-01

    Full Text Available Medialization thyroplasty or injection laryngoplasty for unilateral vocal fold paralysis cannot restore mobility of the vocal fold. Recent studies have shown that transplantation of mesenchymal stem cells is effective in the repair of nerve injuries. This study investigated whether adipose-derived stem cell transplantation could repair recurrent laryngeal nerve injury. Rat models of recurrent laryngeal nerve injury were established by crushing with micro forceps. Adipose-derived mesenchymal stem cells (ADSCs; 8 × 105 or differentiated Schwann-like adipose-derived mesenchymal stem cells (dADSCs; 8 × 105 or extracellular matrix were injected at the site of injury. At 2, 4 and 6 weeks post-surgery, a higher density of myelinated nerve fiber, thicker myelin sheath, improved vocal fold movement, better recovery of nerve conduction capacity and reduced thyroarytenoid muscle atrophy were found in ADSCs and dADSCs groups compared with the extracellular matrix group. The effects were more pronounced in the ADSCs group than in the dADSCs group. These experimental results indicated that ADSCs transplantation could be an early interventional strategy to promote regeneration after recurrent laryngeal nerve injury.

  8. AGO6 functions in RNA-mediated transcriptional gene silencing in shoot and root meristems in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Changho Eun

    Full Text Available RNA-directed DNA methylation (RdDM is a small interfering RNA (siRNA-mediated epigenetic modification that contributes to transposon silencing in plants. RdDM requires a complex transcriptional machinery that includes specialized RNA polymerases, named Pol IV and Pol V, as well as chromatin remodelling proteins, transcription factors, RNA binding proteins, and other plant-specific proteins whose functions are not yet clarified. In Arabidopsis thaliana, DICER-LIKE3 and members of the ARGONAUTE4 group of ARGONAUTE (AGO proteins are involved, respectively, in generating and using 24-nt siRNAs that trigger methylation and transcriptional gene silencing of homologous promoter sequences. AGO4 is the main AGO protein implicated in the RdDM pathway. Here we report the identification of the related AGO6 in a forward genetic screen for mutants defective in RdDM and transcriptional gene silencing in shoot and root apical meristems in Arabidopsis thaliana. The identification of AGO6, and not AGO4, in our screen is consistent with the primary expression of AGO6 in shoot and root growing points.

  9. The First Experience of Triple Nerve Transfer in Proximal Radial Nerve Palsy.

    Science.gov (United States)

    Emamhadi, Mohammadreza; Andalib, Sasan

    2018-01-01

    Injury to distal portion of posterior cord of brachial plexus leads to palsy of radial and axillary nerves. Symptoms are usually motor deficits of the deltoid muscle; triceps brachii muscle; and extensor muscles of the wrist, thumb, and fingers. Tendon transfers, nerve grafts, and nerve transfers are options for surgical treatment of proximal radial nerve palsy to restore some motor functions. Tendon transfer is painful, requires a long immobilization, and decreases donor muscle strength; nevertheless, nerve transfer produces promising outcomes. We present a patient with proximal radial nerve palsy following a blunt injury undergoing triple nerve transfer. The patient was involved in a motorcycle accident with complete palsy of the radial and axillary nerves. After 6 months, on admission, he showed spontaneous recovery of axillary nerve palsy, but radial nerve palsy remained. We performed triple nerve transfer, fascicle of ulnar nerve to long head of the triceps branch of radial nerve, flexor digitorum superficialis branch of median nerve to extensor carpi radialis brevis branch of radial nerve, and flexor carpi radialis branch of median nerve to posterior interosseous nerve, for restoration of elbow, wrist, and finger extensions, respectively. Our experience confirmed functional elbow, wrist, and finger extensions in the patient. Triple nerve transfer restores functions of the upper limb in patients with debilitating radial nerve palsy after blunt injuries. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Detection of Oil Palm Root Penetration by Agrobacterium-Mediated Transformed Ganoderma boninense, Expressing Green Fluorescent Protein.

    Science.gov (United States)

    Govender, Nisha; Wong, Mui-Yun

    2017-04-01

    A highly efficient and reproducible Agrobacterium-mediated transformation protocol for Ganoderma boninense was developed to facilitate observation of the early stage infection of basal stem rot (BSR). The method was proven amenable to different explants (basidiospore, protoplast, and mycelium) of G. boninense. The transformation efficiency was highest (62%) under a treatment combination of protoplast explant and Agrobacterium strain LBA4404, with successful expression of an hyg marker gene and gus-gfp fusion gene under the control of heterologous p416 glyceraldehyde 3-phosphate dehydrogenase promoter. Optimal transformation conditions included a 1:100 Agrobacterium/explant ratio, induction of Agrobacterium virulence genes in the presence of 250 μm acetosyringone, co-cultivation at 22°C for 2 days on nitrocellulose membrane overlaid on an induction medium, and regeneration of transformants on potato glucose agar prepared with 0.6 M sucrose and 20 mM phosphate buffer. Evaluated transformants were able to infect root tissues of oil palm plantlets with needle-like microhyphae during the penetration event. The availability of this model pathogen system for BSR may lead to a better understanding of the pathogenicity factors associated with G. boninense penetration into oil palm roots.

  11. Iatrogenic nerve injury in a national no-fault compensation scheme: an observational cohort study.

    Science.gov (United States)

    Moore, A E; Zhang, J; Stringer, M D

    2012-04-01

    Iatrogenic nerve injury causes distress and disability, and often leads to litigation. The scale and profile of these injuries has only be estimated from published case reports/series and analyses of medicolegal claims.   To determine the current spectrum of iatrogenic nerve injury in New Zealand by analysing treatment injury claims accepted by a national no-fault compensation scheme. The Accident Compensation Corporation (ACC) provides national no-fault personal accident insurance cover, which extends to patients who have sustained a treatment injury from a registered healthcare professional. Nerve injury claims identified from 5227 treatment injury claims accepted by the ACC in 2009 were analysed. From 327 claims, 292 (89.3%) documenting 313 iatrogenic nerve injuries contained sufficient information for analysis. Of these, 211 (67.4%) occurred in 11 surgical specialties, particularly orthopaedics and general surgery; the remainder involved phlebotomy services, anaesthesia and various medical specialties. The commonest causes of injury were malpositioning (n = 40), venepuncture (n = 26), intravenous cannulation (n = 21) and hip arthroplasty (n = 21). Most commonly injured were the median nerve and nerve roots (n = 32 each), brachial plexus (n = 26), and the ulnar nerve (n = 25). At least 34 (11.6%) patients were referred for surgical management of their nerve injury. Iatrogenic nerve injuries are not rare and occur in almost all branches of medicine, with malpositioning under general anaesthesia and venepuncture as leading causes. Some of these injuries are probably unavoidable, but greater awareness of which nerves are at risk and in what context should facilitate the development and/or wider implementation of preventive strategies. © 2012 Blackwell Publishing Ltd.

  12. Morphology and nanomechanics of sensory neurons growth cones following peripheral nerve injury.

    Directory of Open Access Journals (Sweden)

    Marta Martin

    Full Text Available A prior peripheral nerve injury in vivo, promotes a rapid elongated mode of sensory neurons neurite regrowth in vitro. This in vitro model of conditioned axotomy allows analysis of the cellular and molecular mechanisms leading to an improved neurite re-growth. Our differential interference contrast microscopy and immunocytochemistry results show that conditioned axotomy, induced by sciatic nerve injury, did not increase somatic size of adult lumbar sensory neurons from mice dorsal root ganglia sensory neurons but promoted the appearance of larger neurites and growth cones. Using atomic force microscopy on live neurons, we investigated whether membrane mechanical properties of growth cones of axotomized neurons were modified following sciatic nerve injury. Our data revealed that neurons having a regenerative growth were characterized by softer growth cones, compared to control neurons. The increase of the growth cone membrane elasticity suggests a modification in the ratio and the inner framework of the main structural proteins.

  13. One-stage human acellular nerve allograft reconstruction for digital nerve defects

    Directory of Open Access Journals (Sweden)

    Xue-yuan Li

    2015-01-01

    Full Text Available Human acellular nerve allografts have a wide range of donor origin and can effectively avoid nerve injury in the donor area. Very little is known about one-stage reconstruction of digital nerve defects. The present study observed the feasibility and effectiveness of human acellular nerve allograft in the reconstruction of < 5-cm digital nerve defects within 6 hours after injury. A total of 15 cases of nerve injury, combined with nerve defects in 18 digits from the Department of Emergency were enrolled in this study. After debridement, digital nerves were reconstructed using human acellular nerve allografts. The patients were followed up for 6-24 months after reconstruction. Mackinnon-Dellon static two-point discrimination results showed excellent and good rates of 89%. Semmes-Weinstein monofilament test demonstrated that light touch was normal, with an obvious improvement rate of 78%. These findings confirmed that human acellular nerve allograft for one-stage reconstruction of digital nerve defect after hand injury is feasible, which provides a novel trend for peripheral nerve reconstruction.

  14. Laser-activated protein solder for peripheral nerve repair

    Science.gov (United States)

    Trickett, Rodney I.; Lauto, Antonio; Dawes, Judith M.; Owen, Earl R.

    1995-05-01

    A 100 micrometers core optical fiber-coupled 75 mW diode laser operating at a wavelength of 800 nm has been used in conjunction with a protein solder to stripe weld severed rat tibial nerves, reducing the long operating time required for microsurgical nerve repair. Welding is produced by selective laser denaturation of the albumin based solder which contains the dye indocyanine green. Operating time for laser soldering was 10 +/- 5 min. (n equals 20) compared to 23 +/- 9 min. (n equals 10) for microsuturing. The laser solder technique resulted in patent welds with a tensile strength of 15 +/- 5 g, while microsutured nerves had a tensile strength of 40 +/- 10 g. Histopathology of the laser soldered nerves, conducted immediately after surgery, displayed solder adhesion to the outer membrane with minimal damage to the inner axons of the nerves. An in vivo study is under way comparing laser solder repaired tibial nerves to conventional microsuture repair. At the time of submission 15 laser soldered nerves and 7 sutured nerves were characterized at 3 months and showed successful regeneration with compound muscle action potentials of 27 +/- 8 mV and 29 +/- 8 mW respectively. A faster, less damaging and long lasting laser based anastomotic technique is presented.

  15. Diffuse noxious inhibitory controls and nerve injury: restoring an imbalance between descending monoamine inhibitions and facilitations.

    Science.gov (United States)

    Bannister, Kirsty; Patel, Ryan; Goncalves, Leonor; Townson, Louisa; Dickenson, Anthony H

    2015-09-01

    Diffuse noxious inhibitory controls (DNICs) utilize descending inhibitory controls through poorly understood brain stem pathways. The human counterpart, conditioned pain modulation, is reduced in patients with neuropathy aligned with animal data showing a loss of descending inhibitory noradrenaline controls together with a gain of 5-HT3 receptor-mediated facilitations after neuropathy. We investigated the pharmacological basis of DNIC and whether it can be restored after neuropathy. Deep dorsal horn neurons were activated by von Frey filaments applied to the hind paw, and DNIC was induced by a pinch applied to the ear in isoflurane-anaesthetized animals. Spinal nerve ligation was the model of neuropathy. Diffuse noxious inhibitory control was present in control rats but abolished after neuropathy. α2 adrenoceptor mechanisms underlie DNIC because the antagonists, yohimbine and atipamezole, markedly attenuated this descending inhibition. We restored DNIC in spinal nerve ligated animals by blocking 5-HT3 descending facilitations with the antagonist ondansetron or by enhancing norepinephrine modulation through the use of reboxetine (a norepinephrine reuptake inhibitor, NRI) or tapentadol (μ-opioid receptor agonist and NRI). Additionally, ondansetron enhanced DNIC in normal animals. Diffuse noxious inhibitory controls are reduced after peripheral nerve injury illustrating the central impact of neuropathy, leading to an imbalance in descending excitations and inhibitions. Underlying noradrenergic mechanisms explain the relationship between conditioned pain modulation and the use of tapentadol and duloxetine (a serotonin, NRI) in patients. We suggest that pharmacological strategies through manipulation of the monoamine system could be used to enhance DNIC in patients by blocking descending facilitations with ondansetron or enhancing norepinephrine inhibitions, so possibly reducing chronic pain.

  16. Nerves and nerve endings in the skin of tropical cattle.

    Science.gov (United States)

    Amakiri, S F; Ozoya, S E; Ogunnaike, P O

    1978-01-01

    The nerves and nerve endings in the skin of tropical cattle were studied using histological and histochemical techniques. Many nerve trunks and fibres were present in the reticular and papillary dermis in both hairy and non-hairy skin sites. In non-hairy skin locations such as the muzzle and lower lip, encapsulated endings akin to Krause and Ruffini end bulbs, which arise from myelinated nerve trunks situated lower down the dermis were observed at the upper papillary layer level. Some fibre trunks seen at this level extended upwards to terminate within dermal papillae as bulb-shaped longitudinally lamellated Pacinian-type endings, while other onion-shaped lamellated nerve structures were located either within dermal papillae or near the dermo-epidermal area. Intraepidermal free-ending nerve fibres, appearing non-myelinated were observed in areas with thick epidermis. Intraepidermal free-ending nerve fibres, appearing non-myelinated were observed in areas with thick epidermis. On hairy skin sites, however, organized nerve endings or intraepidermal nerve endings were not readily identifiable.

  17. Diagnostic nerve ultrasonography

    International Nuclear Information System (INIS)

    Baeumer, T.; Grimm, A.; Schelle, T.

    2017-01-01

    For the diagnostics of nerve lesions an imaging method is necessary to visualize peripheral nerves and their surrounding structures for an etiological classification. Clinical neurological and electrophysiological investigations provide functional information about nerve lesions. The information provided by a standard magnetic resonance imaging (MRI) examination is inadequate for peripheral nerve diagnostics; however, MRI neurography is suitable but on the other hand a resource and time-consuming method. Using ultrasonography for peripheral nerve diagnostics. With ultrasonography reliable diagnostics of entrapment neuropathies and traumatic nerve lesions are possible. The use of ultrasonography for neuropathies shows that a differentiation between different forms is possible. Nerve ultrasonography is an established diagnostic tool. In addition to the clinical examination and clinical electrophysiology, structural information can be obtained, which results in a clear improvement in the diagnostics. Ultrasonography has become an integral part of the diagnostic work-up of peripheral nerve lesions in neurophysiological departments. Nerve ultrasonography is recommended for the diagnostic work-up of peripheral nerve lesions in addition to clinical and electrophysiological investigations. It should be used in the clinical work-up of entrapment neuropathies, traumatic nerve lesions and spacy-occupying lesions of nerves. (orig.) [de

  18. Nerve ultrasound shows subclinical peripheral nerve involvement in neurofibromatosis type 2.

    Science.gov (United States)

    Telleman, Johan A; Stellingwerff, Menno D; Brekelmans, Geert J; Visser, Leo H

    2018-02-01

    Neurofibromatosis type 2 (NF2) is mainly associated with central nervous system (CNS) tumors. Peripheral nerve involvement is described in symptomatic patients, but evidence of subclinical peripheral nerve involvement is scarce. We conducted a cross-sectional pilot study in 2 asymptomatic and 3 minimally symptomatic patients with NF2 to detect subclinical peripheral nerve involvement. Patients underwent clinical examination, nerve conduction studies (NCS), and high-resolution ultrasonography (HRUS). A total of 30 schwannomas were found, divided over 20 nerve segments (33.9% of all investigated nerve segments). All patients had at least 1 schwannoma. Schwannomas were identified with HRUS in 37% of clinically unaffected nerve segments and 50% of nerve segments with normal NCS findings. HRUS shows frequent subclinical peripheral nerve involvement in NF2. Clinicians should consider peripheral nerve involvement as a cause of weakness and sensory loss in the extremities in patients with this disease. Muscle Nerve 57: 312-316, 2018. © 2017 Wiley Periodicals, Inc.

  19. Testing Mediators of Reduced Drinking for Veterans in Alcohol Care Management.

    Science.gov (United States)

    Moskal, Dezarie; Maisto, Stephen A; Possemato, Kyle; Lynch, Kevin G; Oslin, David W

    2018-03-26

    Alcohol Care Management (ACM) is a manualized treatment provided by behavioral health providers working in a primary care team aimed at increasing patients' treatment engagement and decreasing their alcohol use. Research has shown that ACM is effective in reducing alcohol consumption; however, the mechanisms of ACM are unknown. Therefore, the purpose of this study is to examine the mechanisms of change in ACM in the context of a randomized clinical trial evaluating the effectiveness of ACM. This study performed secondary data analysis of existing data from a larger study that involved a sample of U.S. veterans (N = 163) who met criteria for current alcohol dependence. Upon enrollment into the study, participants were randomized to receive either ACM or standard care. ACM was delivered in-person or by telephone within the primary care clinic and focused on the use of oral naltrexone and manualized psychosocial support. According to theory, we hypothesized several ACM treatment components that would mediate alcohol consumption outcomes: engagement in addiction treatment, reduced craving, and increased readiness to change. Parallel mediation models were performed by the PROCESS macro Model 4 in SPSS to test study hypotheses. The institutional review boards at each of the participating facilities approved all study procedures before data collection. As hypothesized, results showed that treatment engagement mediated the relation between treatment and both measures of alcohol consumption outcomes, the percentage of alcohol abstinent days, and the percentage of heavy drinking days. Neither craving nor readiness to change mediated the treatment effect on either alcohol consumption outcome. Findings suggest that ACM may be effective in changing drinking patterns partially due to an increase in treatment engagement. Future research may benefit from evaluating the specific factors that underlie increased treatment engagement. The current study provides evidence that alcohol

  20. Regeneration of unmyelinated and myelinated sensory nerve fibres studied by a retrograde tracer method

    DEFF Research Database (Denmark)

    Lozeron, Pierre; Krarup, Christian; Schmalbruch, Henning

    2004-01-01

    cells that had been labelled, i.e., that had regenerated axons towards or beyond the injection site, were counted in serial sections. Large and small neurons with presumably myelinated and unmyelinated axons, respectively, were classified by immunostaining for neurofilaments. The axonal growth rate......Regeneration of myelinated and unmyelinated sensory nerve fibres after a crush lesion of the rat sciatic nerve was investigated by means of retrograde labelling. The advantage of this method is that the degree of regeneration is estimated on the basis of sensory somata rather than the number...... of axons. Axonal counts do not reflect the number of regenerated neurons because of axonal branching and because myelinated axons form unmyelinated sprouts. Two days to 10 weeks after crushing, the distal sural or peroneal nerves were cut and exposed to fluoro-dextran. Large and small dorsal root ganglion...