WorldWideScience

Sample records for reduces muscle inflammation

  1. Grape polyphenols supplementation reduces muscle atrophy in a mouse model of chronic inflammation.

    Science.gov (United States)

    Lambert, Karen; Coisy-Quivy, Marjorie; Bisbal, Catherine; Sirvent, Pascal; Hugon, Gerald; Mercier, Jacques; Avignon, Antoine; Sultan, Ariane

    2015-10-01

    Polyphenols (PP) have demonstrated beneficial effects on low-grade inflammation and oxidative stress; however, little is known about their effect on highly inflamed muscle. The purposes of this study were (i) to evaluate muscle alteration induced by high-grade inflammation, and (ii) to test the effects of red grape PP supplementation on these alterations. We used a transgenic mice model (transforming growth factor [TGF] mice) to develop a high T cell-dependent inflammation and C57 BL/6 control (CTL) mice model. Skeletal muscles of TGF and CTL mice were investigated for inflammation, atrophy and oxidative stress markers. Isolated mitochondria from hindlimb muscles were used for respiration with pyruvate as substrate and oxidative damages were measured by Western blot. TGF mice were supplemented with a mixture of red grape polyphenols (50 mg/kg/d) for 4 wk. Data were analyzed by one-way analysis of variance (ANOVA) and post hoc Bonferroni's multiple comparison tests. TGF mice presented skeletal muscle inflammation, oxidative stress, mitochondrial alteration and muscle atrophy. Atrophy was associated with two distinct pathways: (i) one linked to inflammation, NF-κB activation and increased ubiquitin ligase expression, and (ii) one dependent on reactive oxygen species (ROS) production leading to damaged mitochondria accumulation and activation of caspase-9 and 3. Supplementation of TGF mice with a mixture of red grape polyphenols (50 mg/kg/d) for 4 wk improved mitochondrial function and highly decreased caspases activation, which allowed muscle atrophy mitigation. These observations suggest that nutritional dosages of red grape polyphenols might be beneficial for reducing skeletal muscle atrophy, even in a high-grade inflammation environment. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Black Currant Nectar Reduces Muscle Damage and Inflammation Following a Bout of High-Intensity Eccentric Contractions.

    Science.gov (United States)

    Hutchison, Alexander T; Flieller, Emily B; Dillon, Kimber J; Leverett, Betsy D

    2016-01-01

    This investigation determined the efficacy of black currant nectar (BCN) in reducing symptoms of exercise-induced muscle damage (EIMD). Sixteen college students were randomly assigned to drink either 16 oz of BCN or a placebo (PLA) twice a day for eight consecutive days. A bout of eccentric knee extensions (3 × 10 sets @ 115% of 1RM) was performed on the fourth day. Outcome measures included muscle soreness (subjective scale from 0 to 10) and blood markers of muscle damage (creatine kinase, CK), inflammation (interleukin-6, IL-6), and oxygen radical absorbance capacity (ORAC). Although there were no differences in reported soreness between groups, consumption of BCN reduced CK levels at both 48 (PLA = 82.13% vs. BCN = -6.71%, p = .042) and 96 h post exercise (PLA = 74.96% vs. BCN = -12.11%, p = .030). The change in IL-6 was higher in the PLA group (PLA = 8.84% vs. BCN = -6.54%, p = .023) at 24 h post exercise. The change in ORAC levels was higher in the treatment group (BCN = 2.68% vs. PLA = -6.02%, p = .039) at 48 h post exercise. Our results demonstrate that consumption of BCN prior to and after a bout of eccentric exercise attenuates muscle damage and inflammation.

  3. Deletion of Galgt2 (B4Galnt2) Reduces Muscle Growth in Response to Acute Injury and Increases Muscle Inflammation and Pathology in Dystrophin-Deficient Mice

    Science.gov (United States)

    Xu, Rui; Singhal, Neha; Serinagaoglu, Yelda; Chandrasekharan, Kumaran; Joshi, Mandar; Bauer, John A.; Janssen, Paulus M.L.; Martin, Paul T.

    2016-01-01

    Transgenic overexpression of Galgt2 (official name B4Galnt2) in skeletal muscle stimulates the glycosylation of α dystroglycan (αDG) and the up-regulation of laminin α2 and dystrophin surrogates known to inhibit muscle pathology in mouse models of congenital muscular dystrophy 1A and Duchenne muscular dystrophy. Skeletal muscle Galgt2 gene expression is also normally increased in the mdx mouse model of Duchenne muscular dystrophy compared with the wild-type mice. To assess whether this increased endogenous Galgt2 expression could affect disease, we quantified muscular dystrophy measures in mdx mice deleted for Galgt2 (Galgt2−/−mdx). Galgt2−/− mdx mice had increased heart and skeletal muscle pathology and inflammation, and also worsened cardiac function, relative to age-matched mdx mice. Deletion of Galgt2 in wild-type mice also slowed skeletal muscle growth in response to acute muscle injury. In each instance where Galgt2 expression was elevated (developing muscle, regenerating muscle, and dystrophic muscle), Galgt2-dependent glycosylation of αDG was also increased. Overexpression of Galgt2 failed to inhibit skeletal muscle pathology in dystroglycan-deficient muscles, in contrast to previous studies in dystrophin-deficient mdx muscles. This study demonstrates that Galgt2 gene expression and glycosylation of αDG are dynamically regulated in muscle and that endogenous Galgt2 gene expression can ameliorate the extent of muscle pathology, inflammation, and dysfunction in mdx mice. PMID:26435413

  4. Complement activation promotes muscle inflammation during modified muscle use

    Science.gov (United States)

    Frenette, J.; Cai, B.; Tidball, J. G.

    2000-01-01

    Modified muscle use can result in muscle inflammation that is triggered by unidentified events. In the present investigation, we tested whether the activation of the complement system is a component of muscle inflammation that results from changes in muscle loading. Modified rat hindlimb muscle loading was achieved by removing weight-bearing from the hindlimbs for 10 days followed by reloading through normal ambulation. Experimental animals were injected with the recombinant, soluble complement receptor sCR1 to inhibit complement activation. Assays for complement C4 or factor B in sera showed that sCR1 produced large reductions in the capacity for activation of the complement system through both the classical and alternative pathways. Analysis of complement C4 concentration in serum in untreated animals showed that the classical pathway was activated during the first 2 hours of reloading. Analysis of factor B concentration in untreated animals showed activation of the alternative pathway at 6 hours of reloading. Administration of sCR1 significantly attenuated the invasion of neutrophils (-49%) and ED1(+) macrophages (-52%) that occurred in nontreated animals after 6 hours of reloading. The presence of sCR1 also reduced significantly the degree of edema by 22% as compared to untreated animals. Together, these data show that increased muscle loading activated the complement system which then briefly contributes to the early recruitment of inflammatory cells during modified muscle loading.

  5. Diet and exercise reduce low-grade inflammation and macrophage infiltration in adipose tissue but not in skeletal muscle in severely obese subjects

    DEFF Research Database (Denmark)

    Bruun, Jens M; Helge, Jørn W; Richelsen, Bjørn

    2006-01-01

    Obesity is associated with low-grade inflammation, insulin resistance, type 2 diabetes, and cardiovascular disease. This study investigated the effect of a 15-wk lifestyle intervention (hypocaloric diet and daily exercise) on inflammatory markers in plasma, adipose tissue (AT), and skeletal muscle...... (SM) in 27 severely obese subjects (mean body mass index: 45.8 kg/m2). Plasma samples, subcutaneous abdominal AT biopsies, and vastus lateralis SM biopsies were obtained before and after the intervention and analyzed by ELISA and RT-PCR. The intervention reduced body weight (P

  6. Inflammation induced loss of skeletal muscle.

    Science.gov (United States)

    Londhe, Priya; Guttridge, Denis C

    2015-11-01

    Inflammation is an important contributor to the pathology of diseases implicated in skeletal muscle dysfunction. A number of diseases and disorders including inflammatory myopathies and Chronic Obstructive Pulmonary Disorder (COPD) are characterized by chronic inflammation or elevation of the inflammatory mediators. While these disease states exhibit different pathologies, all have in common the loss of skeletal muscle mass and a deregulated skeletal muscle physiology. Pro-inflammatory cytokines are key contributors to chronic inflammation found in many of these diseases. This section of the review focuses on some of the known inflammatory disorders like COPD, Rheumatoid Arthritis (RA) and inflammatory myopathies that display skeletal muscle atrophy and also provides the reader an overview of the mediators of inflammation, their signaling pathways, and mechanisms of action. This article is part of a Special Issue entitled "Muscle Bone Interactions".

  7. Role of Smooth Muscle in Intestinal Inflammation

    Directory of Open Access Journals (Sweden)

    Stephen M Collins

    1996-01-01

    Full Text Available The notion that smooth muscle function is altered in inflammation is prompted by clinical observations of altered motility in patients with inflammatory bowel disease (IBD. While altered motility may reflect inflammation-induced changes in intrinsic or extrinsic nerves to the gut, changes in gut hormone release and changes in muscle function, recent studies have provided in vitro evidence of altered muscle contractility in muscle resected from patients with ulcerative colitis or Crohn’s disease. In addition, the observation that smooth muscle cells are more numerous and prominent in the strictured bowel of IBD patients compared with controls suggests that inflammation may alter the growth of intestinal smooth muscle. Thus, inflammation is associated with changes in smooth muscle growth and contractility that, in turn, contribute to important symptoms of IBD including diarrhea (from altered motility and pain (via either altered motility or stricture formation. The involvement of smooth muscle in this context may be as an innocent bystander, where cells and products of the inflammatory process induce alterations in muscle contractility and growth. However, it is likely that intestinal muscle cells play a more active role in the inflammatory process via the elaboration of mediators and trophic factors, including cytokines, and via the production of collagen. The concept of muscle cells as active participants in the intestinal inflammatory process is a new concept that is under intense study. This report summarizes current knowledge as it relates to these two aspects of altered muscle function (growth and contractility in the inflamed intestine, and will focus on mechanisms underlying these changes, based on data obtained from animal models of intestinal inflammation.

  8. Muscle regeneration and inflammation in patients with facioscapulohumeral muscular dystrophy

    DEFF Research Database (Denmark)

    Hauerslev, S; Ørngreen, Mette Cathrine; Hertz, Jens Michael;

    2013-01-01

    The aim of this study was to investigate whether inflammation and regeneration are prominent in mildly affected muscles of patients with facioscapulohumeral muscular dystrophy type 1A (FSHD1A). Inflammation in muscle has been suggested by MRI studies in patients with FSHD1A.......The aim of this study was to investigate whether inflammation and regeneration are prominent in mildly affected muscles of patients with facioscapulohumeral muscular dystrophy type 1A (FSHD1A). Inflammation in muscle has been suggested by MRI studies in patients with FSHD1A....

  9. Pramipexole reduces inflammation in the experimental animal models of inflammation.

    Science.gov (United States)

    Sadeghi, Heibatollah; Parishani, Mohammad; Akbartabar Touri, Mehdi; Ghavamzadeh, Mehdi; Jafari Barmak, Mehrzad; Zarezade, Vahid; Delaviz, Hamdollah; Sadeghi, Hossein

    2017-04-01

    Pramipexole is a dopamine (DA) agonist (D2 subfamily receptors) that widely use in the treatment of Parkinson's diseases. Some epidemiological and genetic studies propose a role of inflammation in the pathophysiology of Parkinson's disease. To our knowledge, there is no study regarding the anti-inflammatory activity of pramipexol. Therefore, the aim of the study was to investigate anti-inflammatory effect of pramipexol. Anti-inflammatory effects of pramipexole were studied in three well-characterized animal models of inflammation, including carrageenan- or formalin-induced paw inflammation in rats, and 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced ear edema in mice. The animals received pramipexol (0.25, 0.5 and 1 mg/kg, I.P.) 30 min before subplantar injection of carrageenan or formalin. Pramipexol (0.5 and 1 mg/kg) was also injected 30 min before topical application of TPA on the ear mice. Serum malondialdehyde (MDA) levels were evaluated in the carrageenan test. Finally, pathological examination of the inflamed tissues was carried out. Pramipexole significantly inhibited paw inflammation 1, 2, 3 and 4 h after carrageenan challenge compared with the control group (p Pramipexol also showed considerable anti-inflammatory activity against formalin-evoked paw edema over a period of 24 h (p pramipexol (p pramipexole reduced tissue injury, neutrophil infiltration, and subcutaneous edema. Pramipexole did not alter the increased serum levels of MDA due to carrageenan injection. These data clearly indicate that pramipexol possesses significant anti-inflammatory activity. It seems that its antioxidants do not play an important role in these effects.

  10. Acupuncture to Reduce HIV-Associated Inflammation

    Directory of Open Access Journals (Sweden)

    Barbara Swanson

    2015-01-01

    Full Text Available Background. HIV infection is associated with systemic inflammation that can increase risk for cardiovascular events. Acupuncture has been shown to have immunomodulatory effects and to improve symptoms in persons with inflammatory conditions. Objective. To test the anti-inflammatory effects of an acupuncture protocol that targets the cholinergic anti-inflammatory pathway (CAIP, a neural mechanism whose activation has been shown to reduce the release of proinflammatory cytokines, in persons with HIV-associated inflammation. Design, Setting, Participants, and Interventions. Double-blind, placebo-controlled clinical trial conducted in an outpatient clinic located in a medically underserved urban neighborhood. Twenty-five clinically-stable HIV-infected persons on antiretroviral therapy were randomized to receive once weekly CAIP-based acupuncture or sham acupuncture. Main Outcome Measures. Outcomes included plasma concentrations of high sensitivity C-reactive protein and D-dimer and fasting lipids. Results. Twenty-five participants completed the protocol (treatment group n=12, control group n=13. No adverse events related to the acupuncture protocol were observed. Compared to baseline values, the two groups did not significantly differ in any outcome measures at the end of the acupuncture protocol. Conclusions. CAIP-based acupuncture did not favorably modulate inflammatory or lipid parameters. Additional studies are warranted of CAIP-based protocols of different frequencies/durations.

  11. Increased response of muscle sensory neurons to decreases in pH after muscle inflammation

    OpenAIRE

    Gautam, M; Benson, C J; Sluka, K.A.

    2010-01-01

    Acid sensing ion channels (ASIC) are found in sensory neurons, including those that innervate muscle tissue. After peripheral inflammation there is an increase in proton concentration in the inflamed tissue, which likely activates ASICs. Previous studies from our laboratory in an animal model of muscle inflammation show that hyperalgesia does not occur in ASIC3 and ASIC1 knockout mice. Therefore, in the present study we investigated if pH activated currents in sensory neurons innervating musc...

  12. Macrophage invasion does not contribute to muscle membrane injury during inflammation

    Science.gov (United States)

    Tidball, J. G.; Berchenko, E.; Frenette, J.

    1999-01-01

    Previous observations have shown that neutrophil invasion precedes macrophage invasion during muscle inflammation and that peak muscle injury is observed at the peak of ED1+ macrophage invasion. We tested the hypothesis that neutrophil invasion causes subsequent invasion by ED1+ macrophages and that ED1+ macrophages then contribute significantly to muscle membrane injury during modified muscle use. Rat hindlimbs were unloaded for 10 days followed by reloading by normal ambulation to induce inflammation. Membrane injury was measured by assaying Evans blue-bound serum protein influx through membrane lesions. Muscle neutrophil populations increased significantly during the first 2 h of reloading but ED1+ macrophages did not increase until 24 h. Neutrophil invasion was uncoupled from subsequent macrophage invasion by reloading rat hindlimbs for 2 h to cause neutrophil invasion, followed by resuspension for hours 2-24. This produced similar increases in neutrophil concentration as measured in muscles continuously reloaded for 24 h without causing an increase in macrophages. However, resuspension did not reduce the extent of muscle damage compared with that occurring in muscles that were reloaded continuously for 24 h. Thus, muscle invasion by neutrophils is not sufficient to cause invasion by ED1+ macrophages. In addition, muscle membrane injury that occurs during reloading is independent of invasion by ED1+ macrophages.

  13. Methodology for assessment of low level laser therapy (LLLT) irradiation parameters in muscle inflammation treatment

    Science.gov (United States)

    Mantineo, M.; Pinheiro, J. P.; Morgado, A. M.

    2013-11-01

    Several studies in human and animals show the clinical effectiveness of low level laser therapy (LLLT) in reducing some types of pain, treating inflammation and wound healing. However, more scientific evidence is required to prove the effectiveness of LLLT since many aspects of the cellular and molecular mechanisms triggered by irradiation of injured tissue with laser remain unknown. Here, we present a methodology that can be used to evaluate the effect of different LLLT irradiation parameters on the treatment of muscle inflammation on animals, through the quantification of four cytokines (TNF-α, IL-1β, IL-2 and IL-6) in systemic blood and histological analysis of muscle tissue. We have used this methodology to assess the effect of LLLT parameters (wavelength, dose, power and type of illumination) in the treatment of inflammation induced in the gastrocnemius muscle of Wistar rats. Results obtained for laser dose evaluation with continuous illumination are presented.

  14. New targets to alleviate skeletal muscle inflammation: role of microRNAs regulated by adiponectin.

    Science.gov (United States)

    Boursereau, Raphaël; Abou-Samra, Michel; Lecompte, Sophie; Noel, Laurence; Brichard, Sonia M

    2017-02-27

    Muscle inflammation worsens metabolic disorders as well as devastating myopathies. The hormone adiponectin (ApN) has emerged has a master regulator of inflammation/immunity in several tissues including the skeletal muscle. In this work, we explore whether microRNAs regulated by ApN may represent novel mechanisms for controlling muscle inflammation. By screening arrays, we found miR-711 as a strong candidate for mediating ApN action. Thus, ApN-knockout mice showed decreased muscular expression of miR-711 together with enhanced inflammation/oxidative stress markers, while mice overexpressing ApN showed increased miR-711 levels. Likewise, electrotransfer of the ApN gene in muscle of ApN-knockout mice upregulated miR-711 while reducing inflammation and oxidative stress. Similar data were obtained in murine C2C12 cells or in human primary myotubes treated with ApN. MiR-711 overexpression downregulated several components of the Toll-like receptor-4 (TLR4) pathway, which led to repression of NF-κB activity and downstream pro-inflammatory cytokines. MiR-711 blockade had opposite effects. Moreover, muscle electrotransfer of pre-miR-711 recapitulated in vivo the anti-inflammatory effects observed in vitro. Thus, miR-711, which is upregulated by ApN represses TLR4 signaling, acting therefore as a major mediator of the anti-inflammatory action of ApN. This novel miRNA and its related target genes may open new therapeutic perspectives for controlling muscle inflammation.

  15. Increased response of muscle sensory neurons to decreases in pH after muscle inflammation.

    Science.gov (United States)

    Gautam, M; Benson, C J; Sluka, K A

    2010-10-27

    Acid sensing ion channels (ASIC) are found in sensory neurons, including those that innervate muscle tissue. After peripheral inflammation there is an increase in proton concentration in the inflamed tissue, which likely activates ASICs. Previous studies from our laboratory in an animal model of muscle inflammation show that hyperalgesia does not occur in ASIC3 and ASIC1 knockout mice. Therefore, in the present study we investigated if pH activated currents in sensory neurons innervating muscle are altered after induction of muscle inflammation. Sensory neurons innervating mouse (C57/Bl6) muscle were retrogradely labeled with 1,1-dioctadecyl-3,3,3,3 tetramethylindocarbocyanine perchlorate (DiI). Two weeks after injection of DiI, mice were injected with 3% carrageenan to induce inflammation (n=8; 74 neurons) or pH 7.2 saline (n=5; 40 neurons, control) into the gastrocnemius muscle. 24 h later sensory neurons from L4-L6 dorsal root ganglia (DRG) were isolated and cultured. The following day the DRG neuron cultures were tested for responses to pH by whole-cell patch-clamp technique. Approximately 40% of neurons responded to pH 5 with an inward rapidly desensitizing current consistent with ASIC channels in both groups. The mean pH-evoked current amplitudes were significantly increased in muscle sensory neurons from inflamed mice (pH 5.0, 3602 ± 470 pA) in comparison to the controls (pH 7.4, 1964 ± 370 pA). In addition, the biophysical properties of ASIC-like currents were altered after inflammation. Changes in ASIC channels result in enhanced responsiveness to decreases in pH, and likely contribute to the increased hyperalgesia observed after muscle inflammation.

  16. Altered Interleukin-10 Signaling in Skeletal Muscle Regulates Obesity-Mediated Inflammation and Insulin Resistance.

    Science.gov (United States)

    Dagdeviren, Sezin; Jung, Dae Young; Lee, Eunjung; Friedline, Randall H; Noh, Hye Lim; Kim, Jong Hun; Patel, Payal R; Tsitsilianos, Nicholas; Tsitsilianos, Andrew V; Tran, Duy A; Tsougranis, George H; Kearns, Caitlyn C; Uong, Cecilia P; Kwon, Jung Yeon; Muller, Werner; Lee, Ki Won; Kim, Jason K

    2016-12-01

    Skeletal muscle insulin resistance is a major characteristic of obesity and type 2 diabetes. Although obesity-mediated inflammation is causally associated with insulin resistance, the underlying mechanism is unclear. Here, we examined the effects of chronic obesity in mice with muscle-specific overexpression of interleukin-10 (M(IL10)). After 16 weeks of a high-fat diet (HFD), M(IL10) mice became markedly obese but showed improved insulin action compared to that of wild-type mice, which was largely due to increased glucose metabolism and reduced inflammation in skeletal muscle. Since leptin regulates inflammation, the beneficial effects of interleukin-10 (IL-10) were further examined in leptin-deficient ob/ob mice. Muscle-specific overexpression of IL-10 in ob/ob mice (MCK-IL10(ob/ob)) did not affect spontaneous obesity, but MCK-IL10(ob/ob) mice showed increased glucose turnover compared to that in ob/ob mice. Last, mice with muscle-specific ablation of IL-10 receptor (M-IL10R(-/-)) were generated to determine whether IL-10 signaling in skeletal muscle is involved in IL-10 effects on glucose metabolism. After an HFD, M-IL10R(-/-) mice developed insulin resistance with reduced glucose metabolism compared to that in wild-type mice. Overall, these results demonstrate IL-10 effects to attenuate obesity-mediated inflammation and improve insulin sensitivity in skeletal muscle, and our findings implicate a potential therapeutic role of anti-inflammatory cytokines in treating insulin resistance and type 2 diabetes. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  17. Experimental knee pain reduces muscle strength

    DEFF Research Database (Denmark)

    Henriksen, Marius; Rosager, Sara; Aaboe, Jens

    2011-01-01

    Pain is the principal symptom in knee pathologies and reduced muscle strength is a common observation among knee patients. However, the relationship between knee joint pain and muscle strength remains to be clarified. This study aimed at investigating the changes in knee muscle strength following...... experimental knee pain in healthy volunteers, and if these changes were associated with the pain intensities. In a crossover study, 18 healthy subjects were tested on 2 different days. Using an isokinetic dynamometer, maximal muscle strength in knee extension and flexion was measured at angular velocities 0....... Knee pain reduced the muscle strength by 5 to 15% compared to the control conditions (P muscle strength was positively correlated to the pain intensity. Experimental knee pain significantly reduced knee extension...

  18. Effect of tibiotarsal joint inflammation on gene expression and cross-sectional area in rat soleus muscle

    Directory of Open Access Journals (Sweden)

    Carolina Ramírez

    2013-07-01

    Full Text Available BACKGROUND: Joint inflammation is a common clinical problem in patients treated by physical therapists. The hypothesis of this study is that joint inflammation induces molecular and structural changes in the soleus muscle, which is composed mainly of slow-twitch muscle fibers. OBJECTIVE: To study the effect of tibiotarsal joint inflammation on muscle fiber cross-sectional area (CSA, gene expression levels (atrogin-1, MuRF1, MyoD, myostatin, p38MAPK, NFκB, TNF-alpha, and TNF-alpha protein in the soleus muscle. METHOD: Wistar rats were randomly divided into 3 periods (2, 7 and 15 days and assigned to 4 groups (control, sham, inflammation, and immobilization. RESULTS: In the inflammation group at 2 days, MuRF1 and p38MAPK expression had increased, and NFκB mRNA levels had decreased. At 7 days, myostatin expression had decreased. At 7 and 15 days, this group had muscle fiber CSA reduction. At 2 days, the immobilization group showed increased atrogin-1, MuRF1, NFκB, MyoD, and p38MAPK expressions and reduced muscle fiber CSA. At 7 and 15 days, myostatin mRNA levels had increased, and the CSA had decreased. The sham group showed increased p38MAPK and myostatin expressions at 2 and 7 days, respectively. No changes occurred in TNF-alpha gene or protein expression. CONCLUSION: Acute joint inflammation induces gene expression related to the proteolytic pathway without reduction in muscle fiber CSA. Chronic joint inflammation induced muscle atrophy without up-regulation of important genes belonging to the proteolytic pathway. Thus, muscle adaptation may differ according to the stage of joint inflammation, which suggests that the therapeutic modalities used by physical therapists at each stage should also be different.

  19. Macrophage depletion by clodronate liposome attenuates muscle injury and inflammation following exhaustive exercise

    Directory of Open Access Journals (Sweden)

    Noriaki Kawanishi

    2016-03-01

    Full Text Available Exhaustive exercise promotes muscle injury, including myofiber lesions; however, its exact mechanism has not yet been elucidated. In this study, we tested the hypothesis that macrophage depletion by pretreatment with clodronate liposomes alters muscle injury and inflammation following exhaustive exercise. Male C57BL/6J mice were divided into four groups: rest plus control liposome (n=8, rest plus clodronate liposome (n=8, exhaustive exercise plus control liposome (n=8, and exhaustive exercise plus clodronate liposome (n=8. Mice were treated with clodronate liposome or control liposome for 48 h before undergoing exhaustive exercise on a treadmill. Twenty-four hours after exhaustive exercise, the gastrocnemius muscles were removed for histological and PCR analyses. Exhaustive exercise increased the number of macrophages in the muscle; however, clodronate liposome treatment reduced this infiltration. Although exhaustive exercise resulted in an increase in injured myofibers, clodronate liposome treatment following exhaustive exercise reduced the injured myofibers. Clodronate liposome treatment also decreased the mRNA expression levels of inflammatory cytokines (TNF-α, IL-1β, and IL-6 in the skeletal muscle after exhaustive exercise. These results suggest that macrophages play a critical role in increasing muscle injury by regulating inflammation.

  20. Secreted Frizzled-Related Protein 2 and Inflammation-Induced Skeletal Muscle Atrophy.

    Science.gov (United States)

    Zhu, Xiaoxi; Kny, Melanie; Schmidt, Franziska; Hahn, Alexander; Wollersheim, Tobias; Kleber, Christian; Weber-Carstens, Steffen; Fielitz, Jens

    2017-02-01

    In sepsis, the disease course of critically ill patients is often complicated by muscle failure leading to ICU-acquired weakness. The myokine transforming growth factor-β1 increases during inflammation and mediates muscle atrophy in vivo. We observed that the transforming growth factor-β1 inhibitor, secreted frizzled-related protein 2, was down-regulated in skeletal muscle of ICU-acquired weakness patients. We hypothesized that secreted frizzled-related protein 2 reduction enhances transforming growth factor-β1-mediated effects and investigated the interrelationship between transforming growth factor-β1 and secreted frizzled-related protein 2 in inflammation-induced atrophy. Observational study and prospective animal trial. Two ICUs and research laboratory. Twenty-six critically ill patients with Sequential Organ Failure Assessment scores greater than or equal to 8 underwent a skeletal muscle biopsy from the vastus lateralis at median day 5 in ICU. Four patients undergoing elective orthopedic surgery served as controls. To search for signaling pathways enriched in muscle of ICU-acquired weakness patients, a gene set enrichment analysis of our recently published gene expression profiles was performed. Quantitative reverse transcriptase-polymerase chain reaction, Western blot, and immunohistochemistry were used to analyze secreted frizzled-related protein 2 expression and protein content. A mouse model of inflammation-induced skeletal muscle atrophy due to polymicrobial sepsis and cultured myocytes were used for mechanistic analyses. None. Gene set enrichment analysis uncovered transforming growth factor-β1 signaling activation in vastus lateralis from ICU-acquired weakness patients. Muscular secreted frizzled-related protein 2 expression was reduced after 5 days in ICU. Likewise, muscular secreted frizzled-related protein 2 expression was decreased early and continuously in mice with inflammation-induced atrophy. In muscle, secreted frizzled-related protein 2

  1. Indomethacin in combination with exercise leads to muscle and brain inflammation in mice.

    Science.gov (United States)

    Enos, Reilly T; Davis, J Mark; McClellan, Jamie L; Murphy, E Angela

    2013-08-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) are widely used by athletes to reduce exercise-induced inflammation and pain. However, NSAID use has been linked to side effects, including mucosal damage in the gastrointestinal tract resulting in endotoxemia and inflammation. Incidentally, when NSAID use is combined with exercise there is some evidence that this effect may be exacerbated; however, this hypothesis has not been directly tested in a controlled experiment. We examined the combined effect of indomethacin (IND) and exercise on muscle and brain inflammation in mice. Male C57BL/6 mice were randomly assigned to: Exercise 0 mg/Kg IND (Ex-0), Sedentary 0 mg/Kg IND (Sed-0), Exercise 2.5 mg/Kg IND (Ex-2.5), or Sedentary 2.5 mg/Kg IND (Sed-2.5) (n=8-11/group). Mice were given IND (gavage) 1 h before exercise (treadmill run at 25 m/min, 8% grade for 90 min) or rest for 5 consecutive days. Run times and body weight were recorded daily. Muscle and brain were examined for gene expression of inflammatory mediators after 5 days of treatment. While IND and exercise alone had little effect on inflammation, the combination treatment produced substantial increases in the muscle (IL-1β, MCP-1 & TNF-α) and brain (IL-1β & MCP-1) (Pbrain inflammatory mediators. The combination of IND and exercise can lead to inflammation in both the muscle and brain that is associated with serious side effects and impaired performance in mice.

  2. Collagen VI deficiency reduces muscle pathology, but does not improve muscle function, in the γ-sarcoglycan-null mouse.

    Science.gov (United States)

    de Greef, Jessica C; Hamlyn, Rebecca; Jensen, Braden S; O'Campo Landa, Raul; Levy, Jennifer R; Kobuke, Kazuhiro; Campbell, Kevin P

    2016-04-01

    Muscular dystrophy is characterized by progressive skeletal muscle weakness and dystrophic muscle exhibits degeneration and regeneration of muscle cells, inflammation and fibrosis. Skeletal muscle fibrosis is an excessive deposition of components of the extracellular matrix including an accumulation of Collagen VI. We hypothesized that a reduction of Collagen VI in a muscular dystrophy model that presents with fibrosis would result in reduced muscle pathology and improved muscle function. To test this hypothesis, we crossed γ-sarcoglycan-null mice, a model of limb-girdle muscular dystrophy type 2C, with a Col6a2-deficient mouse model. We found that the resulting γ-sarcoglycan-null/Col6a2Δex5 mice indeed exhibit reduced muscle pathology compared with γ-sarcoglycan-null mice. Specifically, fewer muscle fibers are degenerating, fiber size varies less, Evans blue dye uptake is reduced and serum creatine kinase levels are lower. Surprisingly, in spite of this reduction in muscle pathology, muscle function is not significantly improved. In fact, grip strength and maximum isometric tetanic force are even lower in γ-sarcoglycan-null/Col6a2Δex5 mice than in γ-sarcoglycan-null mice. In conclusion, our results reveal that Collagen VI-mediated fibrosis contributes to skeletal muscle pathology in γ-sarcoglycan-null mice. Importantly, however, our data also demonstrate that a reduction in skeletal muscle pathology does not necessarily lead to an improvement of skeletal muscle function, and this should be considered in future translational studies.

  3. Restoring specific lactobacilli levels decreases inflammation and muscle atrophy markers in an acute leukemia mouse model.

    Directory of Open Access Journals (Sweden)

    Laure B Bindels

    Full Text Available The gut microbiota has recently been proposed as a novel component in the regulation of host homeostasis and immunity. We have assessed for the first time the role of the gut microbiota in a mouse model of leukemia (transplantation of BaF3 cells containing ectopic expression of Bcr-Abl, characterized at the final stage by a loss of fat mass, muscle atrophy, anorexia and inflammation. The gut microbial 16S rDNA analysis, using PCR-Denaturating Gradient Gel Electrophoresis and quantitative PCR, reveals a dysbiosis and a selective modulation of Lactobacillus spp. (decrease of L. reuteri and L. johnsonii/gasseri in favor of L. murinus/animalis in the BaF3 mice compared to the controls. The restoration of Lactobacillus species by oral supplementation with L. reuteri 100-23 and L. gasseri 311476 reduced the expression of atrophy markers (Atrogin-1, MuRF1, LC3, Cathepsin L in the gastrocnemius and in the tibialis, a phenomenon correlated with a decrease of inflammatory cytokines (interleukin-6, monocyte chemoattractant protein-1, interleukin-4, granulocyte colony-stimulating factor, quantified by multiplex immuno-assay. These positive effects are strain- and/or species-specific since L. acidophilus NCFM supplementation does not impact on muscle atrophy markers and systemic inflammation. Altogether, these results suggest that the gut microbiota could constitute a novel therapeutic target in the management of leukemia-associated inflammation and related disorders in the muscle.

  4. Ager Deletion Enhances Ischemic Muscle Inflammation, Angiogenesis, and Blood Flow Recovery in Diabetic Mice.

    Science.gov (United States)

    López-Díez, Raquel; Shen, Xiaoping; Daffu, Gurdip; Khursheed, Md; Hu, Jiyuan; Song, Fei; Rosario, Rosa; Xu, Yunlu; Li, Qing; Xi, Xiangmei; Zou, Yu Shan; Li, Huilin; Schmidt, Ann Marie; Yan, Shi Fang

    2017-08-01

    Diabetic subjects are at higher risk of ischemic peripheral vascular disease. We tested the hypothesis that advanced glycation end products (AGEs) and their receptor (RAGE) block angiogenesis and blood flow recovery after hindlimb ischemia induced by femoral artery ligation through modulation of immune/inflammatory mechanisms. Wild-type mice rendered diabetic with streptozotocin and subjected to unilateral femoral artery ligation displayed increased accumulation and expression of AGEs and RAGE in ischemic muscle. In diabetic wild-type mice, femoral artery ligation attenuated angiogenesis and impaired blood flow recovery, in parallel with reduced macrophage content in ischemic muscle and suppression of early inflammatory gene expression, including Ccl2 (chemokine [C-C motif] ligand-2) and Egr1 (early growth response gene-1) versus nondiabetic mice. Deletion of Ager (gene encoding RAGE) or transgenic expression of Glo1 (reduces AGEs) restored adaptive inflammation, angiogenesis, and blood flow recovery in diabetic mice. In diabetes mellitus, deletion of Ager increased circulating Ly6C(hi) monocytes and augmented macrophage infiltration into ischemic muscle tissue after femoral artery ligation. In vitro, macrophages grown in high glucose display inflammation that is skewed to expression of tissue damage versus tissue repair gene expression. Further, macrophages grown in high versus low glucose demonstrate blunted macrophage-endothelial cell interactions. In both settings, these adverse effects of high glucose were reversed by Ager deletion in macrophages. These findings indicate that RAGE attenuates adaptive inflammation in hindlimb ischemia; underscore microenvironment-specific functions for RAGE in inflammation in tissue repair versus damage; and illustrate that AGE/RAGE antagonism may fill a critical gap in diabetic peripheral vascular disease. © 2017 American Heart Association, Inc.

  5. Macrophage Depletion Impairs Skeletal Muscle Regeneration: the Roles of Pro-fibrotic Factors, Inflammation, and Oxidative Stress.

    Science.gov (United States)

    Xiao, Weihua; Liu, Yu; Chen, Peijie

    2016-12-01

    Muscle contusion is one of the most common muscle injuries in sports medicine. Macrophages play complex roles in the regeneration of skeletal muscle. However, the roles of macrophages, especially the mechanisms involved, in the regeneration of muscle contusion are still not fully understood. We hypothesize that the depletion of macrophages impairs skeletal muscle regeneration and that pro-fibrotic factors, inflammation, and oxidative stress may be involved in the process. To test these hypotheses, we constructed a muscle contusion injury and a macrophage depletion model and followed it up with morphological and gene expression analyses. The data showed that fibrotic scars were formed in the muscle of contusion injury, and they deteriorated in the mice of macrophage depletion. Furthermore, the sizes of regenerating myofibers were significantly reduced by macrophage depletion. Pro-fibrotic factors, inflammatory cytokines, chemokines, and oxidative stress-related enzymes increased significantly after muscle injury. Moreover, the expression of these factors was delayed by macrophage depletion. Most of them were still significantly higher in the later stage of regeneration. These results suggest that macrophage depletion impairs skeletal muscle regeneration and that pro-fibrotic factors, inflammation, and oxidative stress may play important roles in the process.

  6. Leucine-enriched essential amino acids attenuate inflammation in rat muscle and enhance muscle repair after eccentric contraction.

    Science.gov (United States)

    Kato, Hiroyuki; Miura, Kyoko; Nakano, Sayako; Suzuki, Katsuya; Bannai, Makoto; Inoue, Yoshiko

    2016-09-01

    Eccentric exercise results in prolonged muscle damage that may lead to muscle dysfunction. Although inflammation is essential to recover from muscle damage, excessive inflammation may also induce secondary damage, and should thus be suppressed. In this study, we investigated the effect of leucine-enriched essential amino acids on muscle inflammation and recovery after eccentric contraction. These amino acids are known to stimulate muscle protein synthesis via mammalian target of rapamycin (mTOR), which, is also considered to alleviate inflammation. Five sets of 10 eccentric contractions were induced by electrical stimulation in the tibialis anterior muscle of male SpragueDawley rats (8-9 weeks old) under anesthesia. Animals received a 1 g/kg dose of a mixture containing 40 % leucine and 60 % other essential amino acids or distilled water once a day throughout the experiment. Muscle dysfunction was assessed based on isometric dorsiflexion torque, while inflammation was evaluated by histochemistry. Gene expression of inflammatory cytokines and myogenic regulatory factors was also measured. We found that leucine-enriched essential amino acids restored full muscle function within 14 days, at which point rats treated with distilled water had not fully recovered. Indeed, muscle function was stronger 3 days after eccentric contraction in rats treated with amino acids than in those treated with distilled water. The amino acid mix also alleviated expression of interleukin-6 and impeded infiltration of inflammatory cells into muscle, but did not suppress expression of myogenic regulatory factors. These results suggest that leucine-enriched amino acids accelerate recovery from muscle damage by preventing excessive inflammation.

  7. Light protection of the skin after photodynamic therapy reduces inflammation

    DEFF Research Database (Denmark)

    Petersen, B; Wiegell, S R; Wulf, H C

    2014-01-01

    BACKGROUND: Photodynamic therapy (PDT) is followed by significant inflammation. Protoporphyrin (Pp)IX is still formed in the skin after PDT and patients are sensitive to daylight 24-48 h after treatment. Exposure to daylight after PDT may therefore increase inflammation. OBJECTIVES: To investigate...... whether protection with inorganic sunscreen, foundation or light-blocking plaster after PDT can reduce inflammation caused by daylight-activated PpIX. METHODS: On the right arm of 15 subjects with sun-damaged skin, four identical squares (3 × 3 cm) were given conventional PDT treatment. Immediately after...... red-light illumination the squares were either left unprotected or protected by inorganic sunscreen [sun protection factor (SPF) 50], foundation (SPF50) or light-blocking plaster. The skin was then illuminated with artificial daylight for 2 h and afterwards covered for 24 h. Fluorescence and erythema...

  8. Muscle damage and inflammation after eccentric exercise: can the repeated bout effect be removed?

    Science.gov (United States)

    Margaritelis, Nikos V; Theodorou, Anastasios A; Baltzopoulos, Vasilios; Maganaris, Constantinos N; Paschalis, Vassilis; Kyparos, Antonios; Nikolaidis, Michalis G

    2015-12-01

    The current consensus in exercise physiology is that the repeated bout effect always appears after few eccentric exercise sessions. This is the first attempt to challenge this tenet, by exploiting specificity in muscle plasticity. More specifically, we examined whether the opposing adaptations in muscle induced after concentric and eccentric exercise can attenuate and/or remove the repeated bout effect. Seventeen young men were randomly assigned into one of the following groups: (1) the alternating eccentric-concentric exercise group; and (2) the eccentric-only exercise group. Both groups performed 8 weeks of resistance exercise using the knee extensors of both legs on an isokinetic dynamometer. The alternating eccentric-concentric exercise group performed an alternating exercise protocol, switching between eccentric-only and concentric-only exercise every 4 weeks, while the eccentric-only group performed eccentric exercise. Evaluation of muscle damage using physiological (isometric torque, delayed onset muscle soreness, and range of movement) and biochemical (creatine kinase) markers and inflammation (C-reactive protein) was performed at weeks 1, 5, and 10. Baseline isometric peak torque was also evaluated at week 14 after another cycle (4 weeks) of alternating or eccentric-only exercise training. In the alternating eccentric-concentric exercise group, the concentric exercise training performed prior to eccentric exercise reduced dramatically the repeated bout effect by reversing muscle back to its unaccustomed state. On the contrary, the eccentric-only exercise group exhibited a typical manifestation of the repeated bout effect. Interestingly, muscle strength was elevated similarly for both alternating and eccentric-only exercise groups after 13 weeks of training. The alternating eccentric-concentric exercise scheme, implemented in the present study, has for the first time successfully overcame the repeated bout effect. The similarity in muscle strength

  9. North American ginseng protects against muscle damage and reduces neutrophil infiltration after an acute bout of downhill running in rats.

    Science.gov (United States)

    Estaki, Mehrbod; Noble, Earl G

    2015-02-01

    Eccentric muscle contractions such as those experienced during downhill running are associated with inflammation, delayed-onset of muscle soreness, myofiber damage, and various functional deficits. North American ginseng (Panax quinquefolius L.) has been reported to possess anti-inflammatory properties and thus may offset some of this exercise-induced damage. Hence, we tested the hypothesis that intervention with North American ginseng would reduce eccentric exercise-induced muscle damage and inflammation. Male Wistar rats were fed (300 mg/(kg·day)(-1)) of either an alcohol (AL) or aqueous (AQ) extract of North American ginseng for 14 days before a single bout of downhill running and were compared with matching nonexercised (C) groups. Plasma creatine kinase levels were significantly reduced in both ginseng treated groups compared with the C group that received a water placebo (p damage (hemotoxylin and eosin) as well as reduced levels of infiltrating neutrophils (HIS48) in the soleus muscle (p muscle damage and inflammation.

  10. Controlled Frequency Breathing Reduces Inspiratory Muscle Fatigue.

    Science.gov (United States)

    Burtch, Alex R; Ogle, Ben T; Sims, Patrick A; Harms, Craig A; Symons, Thorburn B; Folz, Rodney J; Zavorsky, Gerald S

    2016-08-16

    Controlled frequency breathing (CFB) is a common swim training modality involving holding one's breath for about 7 to 10 strokes before taking another breath. We sought to examine the effects of CFB training on reducing respiratory muscle fatigue. Competitive college swimmers were randomly divided into either the CFB group that breathed every 7 to 10 strokes, or a control group that breathed every 3-4 strokes. Twenty swimmers completed the study. The training intervention included 5-6 weeks (16 sessions) of 12x50-m repetitions with breathing 8-10 breaths per 50m (control group), or 2-3 breaths per 50-m (CFB group). Inspiratory muscle fatigue was defined as the decrease in maximal inspiratory mouth-pressure (MIP) between rest and 46s after a 200 yard free-style swimming race [115s (SD 7)]. Aerobic capacity, pulmonary diffusing capacity, and running economy were also measured pre and post-training. Pooled results demonstrated a 12% decrease in MIP at 46s post-race [-15 (SD 14) cm H2O, Effect size = -0.48, p training, only the CFB group prevented a decline in MIP values pre to 46 s post-race [-2 (13) cm H2O, p > 0.05]. However, swimming performance, aerobic capacity, pulmonary diffusing capacity, and running economy did not improve (p > 0.05) post-training in either group. In conclusion, CFB training appears to prevent inspiratory muscle fatigue yet no difference was found in performance outcomes.

  11. Systemic Inflammation in Duchenne Muscular Dystrophy: Association with Muscle Function and Nutritional Status

    Directory of Open Access Journals (Sweden)

    Oriana del Rocío Cruz-Guzmán

    2015-01-01

    Full Text Available Inflammation described in patients with Duchenne muscular dystrophy (DMD may be related to loss of muscle function or to obesity. It is unknown if circulating proinflammatory cytokines (IL-6, IL-1, and TNF-α levels are associated with muscle function. The purpose was to evaluate whether an association exists between systemic inflammation with muscle function and nutritional status in DMD patients. In 66 DMD patients without corticosteroid treatment, the following were evaluated in serum: cytokines (IL-1, IL-6, and TNF-α, C-reactive protein (CRP, leptin, adiponectin, and creatine kinase (CK. Muscle function was evaluated using Vignos Scale. Patients with better muscle function had the highest concentration of CK, IL-1, and TNF-α compared with less muscle function. No differences in IL-6 and adiponectin concentration were identified among groups with different levels of muscle function. Also, no differences were observed in the concentration of cytokines among groups with different nutritional status levels (underweight, normal weight, and overweight/obese. However, CRP and leptin were increased in the obese group compared with normal and underweight subjects. Systemic inflammation is increased in patients with better muscle function and decreases in DMD patients with poorer muscle function; nevertheless, systemic inflammation is similar among different levels of nutritional status in DMD patients.

  12. Systemic Inflammation in Duchenne Muscular Dystrophy: Association with Muscle Function and Nutritional Status

    Science.gov (United States)

    Cruz-Guzmán, Oriana del Rocío; Rodríguez-Cruz, Maricela; Escobar Cedillo, Rosa Elena

    2015-01-01

    Inflammation described in patients with Duchenne muscular dystrophy (DMD) may be related to loss of muscle function or to obesity. It is unknown if circulating proinflammatory cytokines (IL-6, IL-1, and TNF-α) levels are associated with muscle function. The purpose was to evaluate whether an association exists between systemic inflammation with muscle function and nutritional status in DMD patients. In 66 DMD patients without corticosteroid treatment, the following were evaluated in serum: cytokines (IL-1, IL-6, and TNF-α), C-reactive protein (CRP), leptin, adiponectin, and creatine kinase (CK). Muscle function was evaluated using Vignos Scale. Patients with better muscle function had the highest concentration of CK, IL-1, and TNF-α compared with less muscle function. No differences in IL-6 and adiponectin concentration were identified among groups with different levels of muscle function. Also, no differences were observed in the concentration of cytokines among groups with different nutritional status levels (underweight, normal weight, and overweight/obese). However, CRP and leptin were increased in the obese group compared with normal and underweight subjects. Systemic inflammation is increased in patients with better muscle function and decreases in DMD patients with poorer muscle function; nevertheless, systemic inflammation is similar among different levels of nutritional status in DMD patients. PMID:26380303

  13. IL-10 prevents aging-associated inflammation and insulin resistance in skeletal muscle.

    Science.gov (United States)

    Dagdeviren, Sezin; Jung, Dae Young; Friedline, Randall H; Noh, Hye Lim; Kim, Jong Hun; Patel, Payal R; Tsitsilianos, Nicholas; Inashima, Kunikazu; Tran, Duy A; Hu, Xiaodi; Loubato, Marilia M; Craige, Siobhan M; Kwon, Jung Yeon; Lee, Ki Won; Kim, Jason K

    2017-02-01

    Altered energy balance and insulin resistance are important characteristics of aging. Skeletal muscle is a major site of glucose disposal, and the role of aging-associated inflammation in skeletal muscle insulin resistance remains unclear. To investigate, we examined glucose metabolism in 18-mo-old transgenic mice with muscle-specific overexpression of IL-10 (M(IL10)) and in wild-type mice during hyperinsulinemic-euglycemic clamping. Despite similar fat mass and energy balance, M(IL10) mice were protected from aging-associated insulin resistance with significant increases in glucose infusion rates, whole-body glucose turnover, and skeletal muscle glucose uptake (∼60%; P age-matched WT mice. This protective effect was associated with decreased muscle inflammation, but no changes in adipose tissue inflammation in aging M(IL10) mice. These results demonstrate the importance of skeletal muscle inflammation in aging-mediated insulin resistance, and our findings further implicate a potential therapeutic role of anti-inflammatory cytokine in the treatment of aging-mediated insulin resistance.-Dagdeviren, S., Jung, D. Y., Friedline, R. H., Noh, H. L., Kim, J. H., Patel, P. R., Tsitsilianos, N., Inashima, K., Tran, D. A., Hu, X., Loubato, M. M., Craige, S. M., Kwon, J. Y., Lee, K. W., Kim, J. K. IL-10 prevents aging-associated inflammation and insulin resistance in skeletal muscle. © FASEB.

  14. Effects of Topical Icing on Inflammation, Angiogenesis, Revascularization, and Myofiber Regeneration in Skeletal Muscle Following Contusion Injury

    Science.gov (United States)

    Singh, Daniel P.; Barani Lonbani, Zohreh; Woodruff, Maria A.; Parker, Tony J.; Steck, Roland; Peake, Jonathan M.

    2017-01-01

    Contusion injuries in skeletal muscle commonly occur in contact sport and vehicular and industrial workplace accidents. Icing has traditionally been used to treat such injuries under the premise that it alleviates pain, reduces tissue metabolism, and modifies vascular responses to decrease swelling. Previous research has examined the effects of icing on inflammation and microcirculatory dynamics following muscle injury. However, whether icing influences angiogenesis, collateral vessel growth, or myofiber regeneration remains unknown. We compared the effects of icing vs. a sham treatment on the presence of neutrophils and macrophages; expression of CD34, von Willebrands factor (vWF), vascular endothelial growth factor (VEGF), and nestin; vessel volume; capillary density; and myofiber regeneration in skeletal after muscle contusion injury in rats. Muscle tissue was collected 1, 3, 7, and 28 d after injury. Compared with uninjured rats, muscles in rats that sustained the contusion injury exhibited major necrosis, inflammation, and increased expression of CD34, vWF, VEGF, and nestin. Compared with the sham treatment, icing attenuated and/or delayed neutrophil and macrophage infiltration; the expression of vWF, VEGF, and nestin; and the change in vessel volume within muscle in the first 7 d after injury (P < 0.05). By contrast, icing did not influence capillary density in muscle 28 d after injury (P = 0.59). The percentage of immature myofibers relative to the total number of fibers was greater in the icing group than in the sham group 28 d after injury (P = 0.026), but myofiber cross-sectional area did not differ between groups after 7 d (P = 0.35) and 28 d (P = 0.30). In conclusion, although icing disrupted inflammation and some aspects of angiogenesis/revascularization, these effects did not result in substantial differences in capillary density or muscle growth. PMID:28326040

  15. Losartan administration reduces fibrosis but hinders functional recovery after volumetric muscle loss injury.

    Science.gov (United States)

    Garg, Koyal; Corona, Benjamin T; Walters, Thomas J

    2014-11-15

    Losartan is a Food and Drug Administration approved antihypertensive medication that is recently emerging as an antifibrotic therapy. Previously, losartan has been successfully used to reduce fibrosis and improve both muscle regeneration and function in several models of recoverable skeletal muscle injuries, such as contusion and laceration. In this study, the efficacy of losartan treatment in reducing fibrosis and improving regeneration was determined in a Lewis rat model of volumetric muscle loss (VML) injury. VML has been defined as the traumatic or surgical loss of skeletal muscle with resultant functional impairment. It is among the top 10 causes for wounded service members to be medically retired from the military. This study shows that, after several weeks of recovery, VML injury results in little to no muscle regeneration, but is marked by persistent inflammation, chronic upregulation of profibrotic markers and extracellular matrix (i.e., collagen type I), and fat deposition at the defect site, which manifest irrecoverable deficits in force production. Losartan administration at 10 mg·kg(-1)·day(-1) was able to modulate the gene expression of fibrotic markers and was also effective at reducing fibrosis (i.e., the deposition of collagen type I) in the injured muscle. However, there were no improvements in muscle regeneration, and deleterious effects on muscle function were observed instead. We propose that, in the absence of regeneration, reduction in fibrosis worsens the ability of the VML injured muscle to transmit forces, which ultimately results in decreased muscle function.

  16. Cryotherapy Reduces Inflammatory Response Without Altering Muscle Regeneration Process and Extracellular Matrix Remodeling of Rat Muscle.

    Science.gov (United States)

    Vieira Ramos, Gracielle; Pinheiro, Clara Maria; Messa, Sabrina Peviani; Delfino, Gabriel Borges; Marqueti, Rita de Cássia; Salvini, Tania de Fátima; Durigan, Joao Luiz Quagliotti

    2016-01-04

    The application of cryotherapy is widely used in sports medicine today. Cooling could minimize secondary hypoxic injury through the reduction of cellular metabolism and injury area. Conflicting results have also suggested cryotherapy could delay and impair the regeneration process. There are no definitive findings about the effects of cryotherapy on the process of muscle regeneration. The aim of the present study was to evaluate the effects of a clinical-like cryotherapy on inflammation, regeneration and extracellular matrix (ECM) remodeling on the Tibialis anterior (TA) muscle of rats 3, 7 and 14 days post-injury. It was observed that the intermittent application of cryotherapy (three 30-minute sessions, every 2 h) in the first 48 h post-injury decreased inflammatory processes (mRNA levels of TNF-α, NF-κB, TGF-β and MMP-9 and macrophage percentage). Cryotherapy did not alter regeneration markers such as injury area, desmin and Myod expression. Despite regulating Collagen I and III and their growth factors, cryotherapy did not alter collagen deposition. In summary, clinical-like cryotherapy reduces the inflammatory process through the decrease of macrophage infiltration and the accumulation of the inflammatory key markers without influencing muscle injury area and ECM remodeling.

  17. Resveratrol ameliorates the chemical and microbial induction of inflammation and insulin resistance in human placenta, adipose tissue and skeletal muscle.

    Science.gov (United States)

    Tran, Ha T; Liong, Stella; Lim, Ratana; Barker, Gillian; Lappas, Martha

    2017-01-01

    Gestational diabetes mellitus (GDM), which complicates up to 20% of all pregnancies, is associated with low-grade maternal inflammation and peripheral insulin resistance. Sterile inflammation and infection are key mediators of this inflammation and peripheral insulin resistance. Resveratrol, a stilbene-type phytophenol, has been implicated to exert beneficial properties including potent anti-inflammatory and antidiabetic effects in non-pregnant humans and experimental animal models of GDM. However, studies showing the effects of resveratrol on inflammation and insulin resistance associated with GDM in human tissues have been limited. In this study, human placenta, adipose (omental and subcutaneous) tissue and skeletal muscle were stimulated with pro-inflammatory cytokines TNF-α and IL-1β, the bacterial product lipopolysaccharide (LPS) and the synthetic viral dsRNA analogue polyinosinic:polycytidylic acid (poly(I:C)) to induce a GDM-like model. Treatment with resveratrol significantly reduced the expression and secretion of pro-inflammatory cytokines IL-6, IL-1α, IL-1β and pro-inflammatory chemokines IL-8 and MCP-1 in human placenta and omental and subcutaneous adipose tissue. Resveratrol also significantly restored the defects in the insulin signalling pathway and glucose uptake induced by TNF-α, LPS and poly(I:C). Collectively, these findings suggest that resveratrol reduces inflammation and insulin resistance induced by chemical and microbial products. Resveratrol may be a useful preventative therapeutic for pregnancies complicated by inflammation and insulin resistance, like GDM.

  18. Cannabidiol reduces intestinal inflammation through the control of neuroimmune axis.

    Directory of Open Access Journals (Sweden)

    Daniele De Filippis

    Full Text Available Enteric glial cells (EGC actively mediate acute and chronic inflammation in the gut; EGC proliferate and release neurotrophins, growth factors, and pro-inflammatory cytokines which, in turn, may amplify the immune response, representing a very important link between the nervous and immune systems in the intestine. Cannabidiol (CBD is an interesting compound because of its ability to control reactive gliosis in the CNS, without any unwanted psychotropic effects. Therefore the rationale of our study was to investigate the effect of CBD on intestinal biopsies from patients with ulcerative colitis (UC and from intestinal segments of mice with LPS-induced intestinal inflammation. CBD markedly counteracted reactive enteric gliosis in LPS-mice trough the massive reduction of astroglial signalling neurotrophin S100B. Histological, biochemical and immunohistochemical data demonstrated that S100B decrease was associated with a considerable decrease in mast cell and macrophages in the intestine of LPS-treated mice after CBD treatment. Moreover the treatment of LPS-mice with CBD reduced TNF-α expression and the presence of cleaved caspase-3. Similar results were obtained in ex vivo cultured human derived colonic biopsies. In biopsies of UC patients, both during active inflammation and in remission stimulated with LPS+INF-γ, an increased glial cell activation and intestinal damage were evidenced. CBD reduced the expression of S100B and iNOS proteins in the human biopsies confirming its well documented effect in septic mice. The activity of CBD is, at least partly, mediated via the selective PPAR-gamma receptor pathway. CBD targets enteric reactive gliosis, counteracts the inflammatory environment induced by LPS in mice and in human colonic cultures derived from UC patients. These actions lead to a reduction of intestinal damage mediated by PPARgamma receptor pathway. Our results therefore indicate that CBD indeed unravels a new therapeutic strategy to

  19. Metformin reduces airway inflammation and remodeling via activation of AMP-activated protein kinase.

    Science.gov (United States)

    Park, Chan Sun; Bang, Bo-Ram; Kwon, Hyouk-Soo; Moon, Keun-Ai; Kim, Tae-Bum; Lee, Ki-Young; Moon, Hee-Bom; Cho, You Sook

    2012-12-15

    Recent reports have suggested that metformin has anti-inflammatory and anti-tissue remodeling properties. We investigated the potential effect of metformin on airway inflammation and remodeling in asthma. The effect of metformin treatment on airway inflammation and pivotal characteristics of airway remodeling were examined in a murine model of chronic asthma generated by repetitive challenges with ovalbumin and fungal-associated allergenic protease. To investigate the underlying mechanism of metformin, oxidative stress levels and AMP-activated protein kinase (AMPK) activation were assessed. To further elucidate the role of AMPK, we examined the effect of 5-aminoimidazole-4-carboxamide-1-β-4-ribofuranoside (AICAR) as a specific activator of AMPK and employed AMPKα1-deficient mice as an asthma model. The role of metformin and AMPK in tissue fibrosis was evaluated using a bleomycin-induced acute lung injury model and in vitro experiments with cultured fibroblasts. Metformin suppressed eosinophilic inflammation and significantly reduced peribronchial fibrosis, smooth muscle layer thickness, and mucin secretion. Enhanced AMPK activation and decreased oxidative stress in lungs was found in metformin-treated asthmatic mice. Similar results were observed in the AICAR-treated group. In addition, the enhanced airway inflammation and fibrosis in heterozygous AMPKα1-deficient mice were induced by both allergen and bleomycin challenges. Fibronectin and collagen expression was diminished by metformin through AMPKα1 activation in cultured fibroblasts. Therefore metformin reduced both airway inflammation and remodeling at least partially through the induction of AMPK activation and decreased oxidative stress. These data provide insight into the beneficial role of metformin as a novel therapeutic drug for chronic asthma.

  20. In cirrhotic patients reduced muscle strength is unrelated to muscle capacity for ATP turnover suggesting a central limitation

    DEFF Research Database (Denmark)

    Gam, Christiane Marie Bourgin; Nielsen, H B; Secher, Niels H.

    2011-01-01

      We investigated whether in patients with liver cirrhosis reduced muscle strength is related to dysfunction of muscle mitochondria.......  We investigated whether in patients with liver cirrhosis reduced muscle strength is related to dysfunction of muscle mitochondria....

  1. Low level laser therapy reduces inflammation in activated Achilles tendinitis

    Science.gov (United States)

    Bjordal, Jan M.; Iversen, Vegard; Lopes-Martins, Rodrigo Alvaro B.

    2006-02-01

    Objective: Low level laser therapy (LLLT) has been forwarded as therapy for osteoarthritis and tendinopathy. Results in animal and cell studies suggest that LLLT may act through a biological mechanism of inflammatory modulation. The current study was designed to investigate if LLLT has an anti-inflammatory effect on activated tendinitis of the Achilles tendon. Methods: Seven patients with bilateral Achilles tendonitis (14 tendons) who had aggravated symptoms by pain-inducing activity immediately prior to the study. LLLT (1.8 Joules for each of three points along the Achilles tendon with 904nm infrared laser) and placebo LLLT were administered to either Achilles tendons in a random order to which patients and therapist were blinded. Inflammation was examined by 1) mini-invasive microdialysis for measuring the concentration of inflammatory marker PGE II in the peritendinous tissue, 2) ultrasound with Doppler measurement of peri- and intratendinous blood flow, 3) pressure pain algometry and 4) single hop test. Results: PGE 2- levels were significantly reduced at 75, 90 and 105 minutes after active LLLT compared both to pre-treatment levels (p=0.026) and to placebo LLLT (p=0.009). Changes in pressure pain threshold (PPT) were significantly different (P=0.012) between groups. PPT increased by a mean value of 0.19 kg/cm2 [95%CI:0.04 to 0.34] after treatment in the active LLLT group, while pressure pain threshold was reduced by -0.20 kg/cm2 [95%CI:-0.45 to 0.05] after placebo LLLT. Conclusion: LLLT can be used to reduce inflammatory musculskeletal pain as it reduces inflammation and increases pressure pain threshold levels in activity-induced pain episodes of Achilles tendinopathy.

  2. Cytokines and Chemokines as Regulators of Skeletal Muscle Inflammation: Presenting the Case of Duchenne Muscular Dystrophy

    Directory of Open Access Journals (Sweden)

    Boel De Paepe

    2013-01-01

    Full Text Available Duchenne muscular dystrophy is a severe inherited muscle disease that affects 1 in 3500 boys worldwide. Infiltration of skeletal muscle by inflammatory cells is an important facet of disease pathophysiology and is strongly associated with disease severity in the individual patient. In the chronic inflammation that characterizes Duchenne muscle, cytokines and chemokines are considered essential activators and recruiters of inflammatory cells. In addition, they provide potential beneficiary effects on muscle fiber damage control and tissue regeneration. In this review, current knowledge of cytokine and chemokine expression in Duchenne muscular dystrophy and its relevant animal disease models is listed, and implications for future therapeutic avenues are discussed.

  3. Can Graduated Compressive Stockings Reduce Muscle Activity during Running?

    Science.gov (United States)

    Lucas-Cuevas, Ángel Gabriel; Priego Quesada, José Ignacio; Giménez, José Vicente; Aparicio, Inmaculada; Cortell-Tormo, Juan Manuel; Pérez-Soriano, Pedro

    2017-01-01

    Purpose: Graduated compressive stockings (GCS) have been suggested to influence performance by reducing muscle oscillations and improving muscle function and efficiency. However, no study to date has analyzed the influence of GCS on muscle activity during running. The objective of the study was to analyze the influence of GCS on the perception of…

  4. Reducing glycosphingolipid content in adipose tissue of obese mice restores insulin sensitivity, adipogenesis and reduces inflammation.

    Directory of Open Access Journals (Sweden)

    Marco van Eijk

    Full Text Available Adipose tissue is a critical mediator in obesity-induced insulin resistance. Previously we have demonstrated that pharmacological lowering of glycosphingolipids and subsequently GM3 by using the iminosugar AMP-DNM, strikingly improves glycemic control. Here we studied the effects of AMP-DNM on adipose tissue function and inflammation in detail to provide an explanation for the observed improved glucose homeostasis. Leptin-deficient obese (Lep(Ob mice were fed AMP-DNM and its effects on insulin signalling, adipogenesis and inflammation were monitored in fat tissue. We show that reduction of glycosphingolipid biosynthesis in adipose tissue of Lep(Ob mice restores insulin signalling in isolated ex vivo insulin-stimulated adipocytes. We observed improved adipogenesis as the number of larger adipocytes was reduced and expression of genes like peroxisome proliferator-activated receptor (PPAR gamma, insulin responsive glucose transporter (GLUT-4 and adipsin increased. In addition, we found that adiponectin gene expression and protein were increased by AMP-DNM. As a consequence of this improved function of fat tissue we observed less inflammation, which was characterized by reduced numbers of adipose tissue macrophages (crown-like structures and reduced levels of the macrophage chemo attractants monocyte-chemoattractant protein-1 (Mcp-1/Ccl2 and osteopontin (OPN. In conclusion, pharmacological lowering of glycosphingolipids by inhibition of glucosylceramide biosynthesis improves adipocyte function and as a consequence reduces inflammation in adipose tissue of obese animals.

  5. Niacin Suppresses Progression of Atherosclerosis by Inhibiting Vascular Inflammation and Apoptosis of Vascular Smooth Muscle Cells.

    Science.gov (United States)

    Su, Gang; Sun, Guangli; Liu, Hai; Shu, Liliang; Zhang, Jingchao; Guo, Longhui; Huang, Chen; Xu, Jing

    2015-12-29

    BACKGROUND Niacin is a broad-spectrum lipid-regulating drug used for the clinical therapy of atherosclerosis; however, the mechanisms by which niacin ameliorates atherosclerosis are not clear. MATERIAL AND METHODS The effect of niacin on atherosclerosis was assessed by detection of atherosclerotic lesion area. Adhesion molecules in arterial endothelial cells were determined by using qRT-PCR and Western blot analysis. The levels of serum inflammatory cytokines in ApoE-/- mice were detected by using ELISA. We detected the expression levels of phosphorylated nuclear factors-kB (NF-κB) p65 in aortic endothelial cells of mice using Western blot analysis. Furthermore, we investigated the anti-inflammation effect and endothelium-protecting function of niacin and their regulatory mechanisms in vitro. RESULTS Niacin inhibited the progress of atherosclerosis and decreased the levels of serum inflammatory cytokines and adhesion molecules in ApoE-/- mice. Niacin suppressed the activity of NF-κB and apoptosis of vascular smooth muscle cells (VSMCs). Furthermore, niacin induced phosphorylated focal adhesion kinase (FAK) and FAK inhibitor PF-573228 reduced the level of Bcl-2 and elevated the level of cleaved caspase-3 in VSMCs. CONCLUSIONS Niacin inhibits vascular inflammation and apoptosis of VSMCs via inhibiting the NF-κB signaling and the FAK signaling pathway, respectively, thus protecting ApoE-/- mice against atherosclerosis.

  6. Oxidative stress–induced mitochondrial dysfunction drives inflammation and airway smooth muscle remodeling in patients with chronic obstructive pulmonary disease

    Science.gov (United States)

    Wiegman, Coen H.; Michaeloudes, Charalambos; Haji, Gulammehdi; Narang, Priyanka; Clarke, Colin J.; Russell, Kirsty E.; Bao, Wuping; Pavlidis, Stelios; Barnes, Peter J.; Kanerva, Justin; Bittner, Anton; Rao, Navin; Murphy, Michael P.; Kirkham, Paul A.; Chung, Kian Fan; Adcock, Ian M.; Brightling, Christopher E.; Davies, Donna E.; Finch, Donna K.; Fisher, Andrew J.; Gaw, Alasdair; Knox, Alan J.; Mayer, Ruth J.; Polkey, Michael; Salmon, Michael; Singh, David

    2015-01-01

    Background Inflammation and oxidative stress play critical roles in patients with chronic obstructive pulmonary disease (COPD). Mitochondrial oxidative stress might be involved in driving the oxidative stress–induced pathology. Objective We sought to determine the effects of oxidative stress on mitochondrial function in the pathophysiology of airway inflammation in ozone-exposed mice and human airway smooth muscle (ASM) cells. Methods Mice were exposed to ozone, and lung inflammation, airway hyperresponsiveness (AHR), and mitochondrial function were determined. Human ASM cells were isolated from bronchial biopsy specimens from healthy subjects, smokers, and patients with COPD. Inflammation and mitochondrial function in mice and human ASM cells were measured with and without the presence of the mitochondria-targeted antioxidant MitoQ. Results Mice exposed to ozone, a source of oxidative stress, had lung inflammation and AHR associated with mitochondrial dysfunction and reflected by decreased mitochondrial membrane potential (ΔΨm), increased mitochondrial oxidative stress, and reduced mitochondrial complex I, III, and V expression. Reversal of mitochondrial dysfunction by the mitochondria-targeted antioxidant MitoQ reduced inflammation and AHR. ASM cells from patients with COPD have reduced ΔΨm, adenosine triphosphate content, complex expression, basal and maximum respiration levels, and respiratory reserve capacity compared with those from healthy control subjects, whereas mitochondrial reactive oxygen species (ROS) levels were increased. Healthy smokers were intermediate between healthy nonsmokers and patients with COPD. Hydrogen peroxide induced mitochondrial dysfunction in ASM cells from healthy subjects. MitoQ and Tiron inhibited TGF-β–induced ASM cell proliferation and CXCL8 release. Conclusions Mitochondrial dysfunction in patients with COPD is associated with excessive mitochondrial ROS levels, which contribute to enhanced inflammation and cell

  7. Sirtinol treatment reduces inflammation in human dermal microvascular endothelial cells.

    Directory of Open Access Journals (Sweden)

    Angela Orecchia

    Full Text Available Histone deacetylases (HDAC are key enzymes in the epigenetic control of gene expression. Recently, inhibitors of class I and class II HDAC have been successfully employed for the treatment of different inflammatory diseases such as rheumatoid arthritis, colitis, airway inflammation and asthma. So far, little is known so far about a similar therapeutic effect of inhibitors specifically directed against sirtuins, the class III HDAC. In this study, we investigated the expression and localization of endogenous sirtuins in primary human dermal microvascular endothelial cells (HDMEC, a cell type playing a key role in the development and maintenance of skin inflammation. We then examined the biological activity of sirtinol, a specific sirtuin inhibitor, in HDMEC response to pro-inflammatory cytokines. We found that, even though sirtinol treatment alone affected only long-term cell proliferation, it diminishes HDMEC inflammatory responses to tumor necrosis factor (TNFα and interleukin (IL-1β. In fact, sirtinol significantly reduced membrane expression of adhesion molecules in TNFã- or IL-1β-stimulated cells, as well as the amount of CXCL10 and CCL2 released by HDMEC following TNFα treatment. Notably, sirtinol drastically decreased monocyte adhesion on activated HDMEC. Using selective inhibitors for Sirt1 and Sirt2, we showed a predominant involvement of Sirt1 inhibition in the modulation of adhesion molecule expression and monocyte adhesion on activated HDMEC. Finally, we demonstrated the in vivo expression of Sirt1 in the dermal vessels of normal and psoriatic skin. Altogether, these findings indicated that sirtuins may represent a promising therapeutic target for the treatment of inflammatory skin diseases characterized by a prominent microvessel involvement.

  8. Stents Eluting 6-Mercaptopurine Reduce Neointima Formation and Inflammation while Enhancing Strut Coverage in Rabbits.

    Directory of Open Access Journals (Sweden)

    Matthijs S Ruiter

    Full Text Available The introduction of drug-eluting stents (DES has dramatically reduced restenosis rates compared with bare metal stents, but in-stent thrombosis remains a safety concern, necessitating prolonged dual anti-platelet therapy. The drug 6-Mercaptopurine (6-MP has been shown to have beneficial effects in a cell-specific fashion on smooth muscle cells (SMC, endothelial cells and macrophages. We generated and analyzed a novel bioresorbable polymer coated DES, releasing 6-MP into the vessel wall, to reduce restenosis by inhibiting SMC proliferation and decreasing inflammation, without negatively affecting endothelialization of the stent surface.Stents spray-coated with a bioresorbable polymer containing 0, 30 or 300 μg 6-MP were implanted in the iliac arteries of 17 male New Zealand White rabbits. Animals were euthanized for stent harvest 1 week after implantation for evaluation of cellular stent coverage and after 4 weeks for morphometric analyses of the lesions.Four weeks after implantation, the high dose of 6-MP attenuated restenosis with 16% compared to controls. Reduced neointima formation could at least partly be explained by an almost 2-fold induction of the cell cycle inhibiting kinase p27Kip1. Additionally, inflammation score, the quantification of RAM11-positive cells in the vessel wall, was significantly reduced in the high dose group with 23% compared to the control group. Evaluation with scanning electron microscopy showed 6-MP did not inhibit strut coverage 1 week after implantation.We demonstrate that novel stents coated with a bioresorbable polymer coating eluting 6-MP inhibit restenosis and attenuate inflammation, while stimulating endothelial coverage. The 6-MP-eluting stents demonstrate that inhibition of restenosis without leaving uncovered metal is feasible, bringing stents without risk of late thrombosis one step closer to the patient.

  9. Endoplasmic reticulum stress regulates inflammation and insulin resistance in skeletal muscle from pregnant women.

    Science.gov (United States)

    Liong, Stella; Lappas, Martha

    2016-04-15

    Sterile inflammation and infection are key mediators of inflammation and peripheral insulin resistance associated with gestational diabetes mellitus (GDM). Studies have shown endoplasmic reticulum (ER) stress to induce inflammation and insulin resistance associated with obesity and type 2 diabetes, however is paucity of studies investigating the effects of ER stress in skeletal muscle on inflammation and insulin resistance associated with GDM. ER stress proteins IRE1α, GRP78 and XBP-1s were upregulated in skeletal muscle of obese pregnant women, whereas IRE1α was increased in GDM women. Suppression of ER stress, using ER stress inhibitor tauroursodeoxycholic acid (TUDCA) or siRNA knockdown of IRE1α and GRP78, significantly downregulated LPS-, poly(I:C)- or IL-1β-induced production of IL-6, IL-8, IL-1β and MCP-1. Furthermore, LPS-, poly(I:C)- or TNF-α-induced insulin resistance was improved following suppression of ER stress, by increasing insulin-stimulated phosphorylation of IR-β, IRS-1, GLUT-4 expression and glucose uptake. In summary, our inducible obesity and GDM-like models suggests that the development of GDM may be involved in activating ER stress-induced inflammation and insulin resistance in human skeletal muscle.

  10. Adiposity, Aerobic Fitness, Muscle Fitness, and Markers of Inflammation in Children

    DEFF Research Database (Denmark)

    Steene-Johannessen, Jostein; Kolle, Elin; Andersen, Lars Bo;

    2013-01-01

    PURPOSE: The purpose of this study was to describe levels of inflammation markers in Norwegian children and to examine the associations of adiposity, aerobic fitness and muscle fitness with markers of inflammation. METHODS: In 2005-2006, 1467 9-year-olds wererandomly selected from all regions...... explosive, isometric and endurance strength. Aerobic fitness was measured directly during a maximal cycle ergometer test. Adiposity was expressed as waist circumference (WC). RESULTS: The girls had significantly higher levels of CRP, leptin, adiponectin and resistin and lower levels of TNF-α compared...... to the boys. We observed a graded association of CRP and leptin levels across quintiles of WC, aerobic fitness and muscle fitness (P ≤0.001 for all participants). The regression analyses revealed that WC, aerobic fitness and muscle fitness were independently associated with the CRP (WC β= 0.158, P

  11. Can muscle regeneration fail in chronic inflammation: a weakness in inflammatory myopathies?

    Science.gov (United States)

    Loell, I; Lundberg, I E

    2011-03-01

    Idiopathic inflammatory myopathies (IIMs), collectively termed myositis, include three major subgroups: polymyositis, dermatomyositis and inclusion body myositis. IIMs are characterized clinically by muscle weakness and reduced muscle endurance preferentially affecting the proximal skeletal muscle. In typical cases, inflammatory cell infiltrates and proinflammatory cytokines, alarmins and eicosanoids are present in muscle tissue. Treatment with glucocorticoids and other immunosuppressants results in improved performance, but complete recovery is rarely seen. The mechanisms that cause muscle weakness and reduced muscle endurance are multi-factorial, and different mechanisms predominate in different phases of disease. It is likely that a combination of immune-mediated and nonimmune-mediated mechanisms contributes to clinical muscle symptoms. Immune-mediated mechanisms include immune cell-mediated muscle fibre necrosis as well as direct effects of various cytokines on muscle fibre contractility. Among the nonimmune-mediated mechanisms, an acquired metabolic myopathy and so-called endoplasmic reticulum stress may be important. There is also a possibility of defective repair mechanisms, with an influence of both disease-related factors and glucocorticoid treatment. Several proinflammatory molecules observed in muscle tissue of myositis patients, including interleukin (IL)-1, IL-15, tumour necrosis factor, high-mobility group box-1 and eicosanoids, have a role in muscle fibre regeneration, and blocking these molecule may impair muscle repair and recovery. The delicate balance between immunosuppressive treatment to downregulate proinflammatory molecules and an inhibitory effect on muscle fibre regeneration needs to be further understood. This would also be relevant for other chronic inflammatory diseases.

  12. Exercise-induced muscle damage and inflammation: re-evaluation by proteomics.

    Science.gov (United States)

    Malm, Christer; Yu, Ji-Guo

    2012-07-01

    Using proteomics combined with immunohistochemistry (IHC), we re-evaluated our previous hypothesis that voluntary eccentric exercise does not result in inflammation or necrosis while it does lead to muscular adaptation/remodeling through Z-band related proteins. Muscle biopsies from m. vastus lateralis were taken from five control and five exercised subjects 48 h after 45 min of downhill running. General muscle morphology was examined using histology and histochemistry. Proteomics was used to reveal protein profiles and novel proteins. IHC with specific antibody against three Z-band related proteins identified by proteomics was also performed. General morphology showed no muscle degeneration or inflammation in any exercised biopsy. Proteomics revealed that out of 612 individual protein spots, the exercised biopsy presented three proteins with significant (p LDB3 are Z-band related; the former two have long been the focus of interest and were found to be up-regulated in the study; the latter two are Z-band assembly/stabilization protein and were for the first time observed to be down-regulated in exercised muscles. The other three proteins are related with either cellular metabolism or calcium homeostasis and none is related with muscle necrosis or inflammation. IHC observations that both desmin and actin were increased whereas LDB3 was completely absent in some focal areas are consistent with proteomic results and with our previous observations. The results of the study confirmed our previous findings and therefore strengthened the hypothesis that voluntary eccentric exercise does not cause human muscle necrosis or inflammation; instead, muscular remodeling occurs specifically through Z-band related proteins.

  13. Neonates with reduced neonatal lung function have systemic low-grade inflammation

    OpenAIRE

    Chawes, Bo L.K.; Stokholm, Jakob; Bønnelykke, Klaus; Pedersen, Susanne Brix; Bisgaard, Hans Flinker

    2015-01-01

    Background: Children and adults with asthma and impaired lung function have been reported to have low-grade systemic inflammation, but it is unknown whether this inflammation starts before symptoms and in particular whether low-grade inflammation is present in asymptomatic neonates with reduced lung function. ObjectiveWe sought to investigate the possible association between neonatal lung function and biomarkers of systemic inflammation. Methods: Plasma levels of high-sensitivity C-reactive p...

  14. THREE INTERMITTENT SESSIONS OF CRYOTHERAPY REDUCE THE SECONDARY MUSCLE INJURY IN SKELETAL MUSCLE OF RAT

    Directory of Open Access Journals (Sweden)

    Nuno M. L. Oliveira

    2006-06-01

    Full Text Available Although cryotherapy associated to compression is recommended as immediate treatment after muscle injury, the effect of intermittent sessions of these procedures in the area of secondary muscle injury is not established. This study examined the effect of three sessions of cryotherapy (30 min of ice pack each 2h and muscle compression (sand pack in the muscle-injured area. Twenty-four Wistar rats (312 ± 20g were evaluated. In three groups, the middle belly of tibialis anterior (TA muscle was injured by a frozen iron bar and received one of the following treatments: a three sessions of cryotherapy; b three sessions of compression; c not treated. An uninjured group received sessions of cryotherapy. Frozen muscles were cross- sectioned (10 µm and stained for the measurement of injured and uninjured muscle area. Injured muscles submitted to cryotherapy showed the smallest injured area (29.83 ± 6.6%, compared to compressed (39.2 ± 2.8%, p= 0.003 and untreated muscles (41.74 ± 4.0%, p = 0.0008. No difference was found between injured compressed and injured untreated muscles. In conclusion, three intermittent sessions of cryotherapy applied immediately after muscle damage was able to reduce the secondary muscle injury, while only the muscle compression did not provide the same effectiveness

  15. Periodontal treatment reduces chronic systemic inflammation in peritoneal dialysis patients.

    Science.gov (United States)

    Siribamrungwong, Monchai; Yothasamutr, Kasemsuk; Puangpanngam, Kutchaporn

    2014-06-01

    Chronic systemic inflammation, a non traditional risk factor of cardiovascular diseases, is associated with increasing mortality in chronic kidney disease, especially peritoneal dialysis patients. Periodontitis is a potential treatable source of systemic inflammation in peritoneal dialysis patients. Clinical periodontal status was evaluated in 32 stable chronic peritoneal dialysis patients by plaque index and periodontal disease index. Hematologic, blood chemical, nutritional, and dialysis-related data as well as highly sensitive C-reactive protein were analyzed before and after periodontal treatment. At baseline, high sensitive C-reactive protein positively correlated with the clinical periodontal status (plaque index; r = 0.57, P chronic systemic inflammation in peritoneal dialysis patients. Treatment of periodontal diseases can improve systemic inflammation, nutritional status and erythropoietin responsiveness in peritoneal dialysis patients.

  16. Peroxisome proliferator-activated receptor expression is reduced in skeletal muscle in COPD

    NARCIS (Netherlands)

    Remels, A.H.; Schrauwen, P.; Broekhuizen, R.; Willems, J.; Kersten, A.H.; Gosker, H.R.; Schols, A.M.

    2007-01-01

    Chronic obstructive pulmonary disease (COPD) is a multiorgan systemic disease. The systemic features are skeletal muscle weakness and cachexia, the latter being associated with systemic inflammation. The exact mechanisms underlying skeletal muscle dysfunction in COPD remain obscure. Recent evidence

  17. Duration of chronic inflammation alters gene expression in muscle from untreated girls with juvenile dermatomyositis

    Directory of Open Access Journals (Sweden)

    Gordish-Dressman Heather

    2008-07-01

    Full Text Available Abstract Background To evaluate the impact of the duration of chronic inflammation on gene expression in skeletal muscle biopsies (MBx from untreated children with juvenile dermatomyositis (JDM and identify genes and biological processes associated with the disease progression, expression profiling data from 16 girls with active symptoms of JDM greater than or equal to 2 months were compared with 3 girls with active symptoms less than 2 months. Results Seventy-nine genes were differentially expressed between the groups with long or short duration of untreated disease. Genes involved in immune responses and vasculature remodelling were expressed at a higher level in muscle biopsies from children with greater or equal to 2 months of symptoms, while genes involved in stress responses and protein turnover were expressed at a lower level. Among the 79 genes, expression of 9 genes showed a significant linear regression relationship with the duration of untreated disease. Five differentially expressed genes – HLA-DQA1, smooth muscle myosin heavy chain, clusterin, plexin D1 and tenomodulin – were verified by quantitative RT-PCR. The chronic inflammation of longer disease duration was also associated with increased DC-LAMP+ and BDCA2+ mature dendritic cells, identified by immunohistochemistry. Conclusion We conclude that chronic inflammation alters the gene expression patterns in muscle of untreated children with JDM. Symptoms lasting greater or equal to 2 months were associated with dendritic cell maturation and anti-angiogenic vascular remodelling, directly contributing to disease pathophysiology.

  18. Azithromycin reduces inflammation in a rat model of acute conjunctivitis

    Science.gov (United States)

    Fernandez-Robredo, Patricia; Recalde, Sergio; Moreno-Orduña, Maite; García-García, Laura; Zarranz-Ventura, Javier; García-Layana, Alfredo

    2013-01-01

    Purpose Macrolide antibiotics are known to have various anti-inflammatory effects in addition to their antimicrobial activity, but the mechanisms are still unclear. The effect of azithromycin on inflammatory molecules in the lipopolysaccharide-induced rat conjunctivitis model was investigated. Methods Twenty-four Wistar rats were divided into two groups receiving topical ocular azithromycin (15 mg/g) or vehicle. In total, six doses (25 µl) were administered as one dose twice a day for three days before subconjunctival lipopolysaccharide injection (3 mg/ml). Before the rats were euthanized, mucus secretion, conjunctival and palpebral edema and redness were evaluated. Real-time polymerase chain reaction was used to determine gene expression for interleukin-6, cyclooxygenase-2, tumor necrosis factor-α, matrix metalloproteinase (MMP)-2, and MMP-9. Interleukin-6 was determined with enzyme-linked immunosorbent assay, nuclear factor-kappa B with western blot, and MMP-2 activity with gelatin zymogram. Four eyes per group were processed for histology and subsequent periodic acid-Schiff staining and CD68 for immunofluorescence. The Student t test or the Wilcoxon test for independent samples was applied (SPSS v.15.0). Results Azithromycin-treated animals showed a significant reduction in all clinical signs (p<0.05) compared to controls. Interleukin-6 (p<0.05), nuclear factor-kappa B protein expression (p<0.01), and MMP-2 activity (p<0.05) in conjunctival homogenates were significantly reduced compared with the control animals. MMP-2 gene expression showed a tendency to decrease in the azithromycin group (p=0.063). Mucus secretion by goblet cells and the macrophage count in conjunctival tissue were also decreased in the azithromycin group (p<0.05). Conclusions These results suggest that azithromycin administration ameliorates induced inflammation effects in a rat model of acute conjunctivitis. PMID:23378729

  19. Respiratory muscle training increases respiratory muscle strength and reduces respiratory complications after stroke: a systematic review

    Directory of Open Access Journals (Sweden)

    Kênia KP Menezes

    2016-07-01

    Full Text Available Question: After stroke, does respiratory muscle training increase respiratory muscle strength and/or endurance? Are any benefits carried over to activity and/or participation? Does it reduce respiratory complications? Design: Systematic review of randomised or quasi-randomised trials. Participants: Adults with respiratory muscle weakness following stroke. Intervention: Respiratory muscle training aimed at increasing inspiratory and/or expiratory muscle strength. Outcome measures: Five outcomes were of interest: respiratory muscle strength, respiratory muscle endurance, activity, participation and respiratory complications. Results: Five trials involving 263 participants were included. The mean PEDro score was 6.4 (range 3 to 8, showing moderate methodological quality. Random-effects meta-analyses showed that respiratory muscle training increased maximal inspiratory pressure by 7 cmH2O (95% CI 1 to 14 and maximal expiratory pressure by 13 cmH2O (95% CI 1 to 25; it also decreased the risk of respiratory complications (RR 0.38, 95% CI 0.15 to 0.96 compared with no/sham respiratory intervention. Whether these effects carry over to activity and participation remains uncertain. Conclusion: This systematic review provided evidence that respiratory muscle training is effective after stroke. Meta-analyses based on five trials indicated that 30 minutes of respiratory muscle training, five times per week, for 5 weeks can be expected to increase respiratory muscle strength in very weak individuals after stroke. In addition, respiratory muscle training is expected to reduce the risk of respiratory complications after stroke. Further studies are warranted to investigate whether the benefits are carried over to activity and participation. Registration: PROSPERO (CRD42015020683. [Menezes KKP, Nascimento LR, Ada L, Polese JC, Avelino PR, Teixeira-Salmela LF (2016 Respiratory muscle training increases respiratory muscle strength and reduces respiratory

  20. Contribution of IL-6 to the Hsp72, Hsp25, and alphaB-crystallin [corrected] responses to inflammation and exercise training in mouse skeletal and cardiac muscle.

    Science.gov (United States)

    Huey, Kimberly A; Meador, Benjamin M

    2008-12-01

    The heat shock proteins (Hsps) Hsp72, Hsp25, and alphaB-crystallin (alphaB C) [corrected]may protect tissues during exercise and/or inflammatory insults; however, no studies have investigated whether exercise training increases both basal and inflammation-induced expression of these Hsps in skeletal or cardiac muscle. IL-6 is produced by muscle during both exercise and inflammation and has been shown to modulate Hsp expression. These studies tested the hypothesis that voluntary wheel running (RW) increases basal and inflammation-induced Hsp72, Hsp25, and alphaB C [corrected] protein through an IL-6-dependent mechanism. We compared Hsp72, Hsp25, alphaB C, [corrected] and IL-6 protein levels 4 h after systemic inflammation induced by lipopolysaccharide (LPS) in skeletal and cardiac muscles of wild-type (IL-6(+/+)) and IL-6 deficient (IL-6(-/-)) mice after 2 wk of RW or normal cage activity (Sed). LPS significantly increased skeletal Hsp72 and Hsp25 relative to saline in Sed IL-6(+/+), but not IL-6(-/-) mice. LPS increased Hsp72 relative to saline in Sed IL-6(+/+) cardiac muscle. RW increased basal Hsp72, Hsp25, and alphaB C [corrected] in skeletal muscle in IL-6(+/+) and IL-6(-/-) mice. However, LPS was not associated with increases in any Hsp in RW IL-6(+/+) or IL-6(-/-) mice. LPS increased IL-6 protein in skeletal muscle and plasma in Sed and RW groups, with a significantly greater response in RW. The major results provide the first in vivo evidence that the absence of IL-6 is associated with reduced skeletal muscle Hsp72 and Hsp25 responses to LPS, but that IL-6 is not required for exercise-induced Hsp upregulation in skeletal or cardiac muscle.

  1. Role of Redox Signaling and Inflammation in Skeletal Muscle Adaptations to Training

    Directory of Open Access Journals (Sweden)

    Maria Carmen Gomez-Cabrera

    2016-12-01

    Full Text Available The inflammatory response to exercise-induced muscle damage has been extensively described. Exercise has important modulatory effects on immune function. These effects are mediated by diverse factors including pro-inflammatory cytokines, classical stress hormones, and hemodynamic effects leading to cell redistribution. As has been reported regarding oxidative stress, inflammation can have both detrimental and beneficial effects in skeletal muscle. In this review we will address the role of inflammation on protein metabolism in skeletal muscle. Specifically, we will review studies showing that treatment with cyclooxygenase-inhibiting drugs modulate the protein synthesis response to one bout of resistance exercise and to training. Understanding how these drugs work is important for the millions of individuals worldwide that consume them regularly. We will also discuss the importance of reactive oxygen species and inflammatory cytokines in muscle adaptations to exercise and the Janus faced of the use of antioxidant and anti-inflammatory drugs by athletes for optimizing their performance, especially during the periods in which muscle hypertrophy is expected.

  2. Interventions for reducing inflammation in familial Mediterranean fever.

    Science.gov (United States)

    Wu, Bin; Xu, Ting; Li, Youping; Yin, Xi

    2015-03-20

    Familial Mediterranean fever, a hereditary auto-inflammatory disease, mainly affects ethnic groups living in the Mediterranean region. Early studies reported colchicine as a potential drug for preventing attacks of familial Mediterranean fever. For those people who are colchicine-resistant or intolerant, drugs such as rilonacept, anakinra, etanercept, infliximab, thalidomide and interferon-alpha might be beneficial. To evaluate the efficacy and safety of interventions for reducing inflammation in people with familial Mediterranean fever. We used detailed search strategies to search the following databases: CENTRAL; MEDLINE; Embase; Chinese Biomedical Literature Database (CBM), China National Knowledge Infrastructure Database (CNKI); Wan Fang; and VIP. In addition, we also searched the clinical trials registries including ClinicalTrials.gov, the International Standard Randomized Controlled Trial Number Register, the WHO International Clinical Trials Registry Platform and the Chinese Clinical Trial Registry, as well as references listed in relevant reports.Date of last search: 21 May 2014. Randomized controlled studies of people with diagnosis of familial Mediterranean fever, comparing active interventions (including colchicine, anakinra, rilonacept, etanercept, infliximab, thalidomide, interferon-alpha, ImmunoGuard™ (a herbal dietary supplement) and non-steroidal anti-inflammatory drugs) with placebo or no treatment, or comparing active drugs to each other. The authors independently selected studies, extracted data and assessed risk of bias. We pooled data to present the risk ratio or mean difference with their 95% confidence intervals. We assessed overall evidence quality according to the GRADE approach. We included four randomized placebo-controlled studies with a total of 75 participants (aged three to 53 years); three were of cross-over and one of parallel design. Two studies used the active intervention of oral colchicine (0.6 mg three times daily or 0.5 mg

  3. Creatine supplementation does not reduce muscle damage or enhance recovery from resistance exercise.

    Science.gov (United States)

    Rawson, Eric S; Conti, Michael P; Miles, Mary P

    2007-11-01

    Previous studies have shown that creatine supplementation reduces muscle damage and inflammation following running but not following high-force, eccentric exercise. Although the mechanical strain placed on muscle fibers during high-force, eccentric exercise may be too overwhelming for creatine to exert any protective effect, creatine supplementation may protect skeletal muscle stressed by a resistance training challenge that is more hypoxic in nature. The purpose of this study was to examine the effects of short-term creatine supplementation on markers of muscle damage (i.e., strength, range of motion, muscle soreness, muscle serum protein activity, C-reactive protein) to determine whether creatine supplementation offers protective effects on skeletal muscle following a hypoxic resistance exercise test. Twenty-two healthy, weight-trained men (19-27 years) ingested either creatine or a placebo for 10 days. Following 5 days of supplementation, subjects performed a squat exercise protocol (5 sets of 15-20 repetitions at 50% of 1 repetition maximum [1RM]). Assessments of creatine kinase (CK) and lactate dehydrogenase activity, high-sensitivity C-reactive protein, maximal strength, range of motion (ROM), and muscle soreness (SOR) with movement and palpation were conducted pre-exercise and during a 5-day follow up. Following the exercise test, maximal strength and ROM decreased, whereas SOR and CK increased. Creatine and placebo-supplemented subjects experienced significant decreases in maximal strength (creatine: 13.4 kg, placebo: 17.5 kg) and ROM (creatine: 2.4 degrees , placebo: 3.0 degrees ) immediately postexercise, with no difference between groups. Following the exercise test, there were significant increases in SOR with movement and palpation (p creatine supplementation does not reduce skeletal muscle damage or enhance recovery following a hypoxic resistance exercise challenge.

  4. Reduced short-interval intracortical inhibition after eccentric muscle damage in human elbow flexor muscles.

    Science.gov (United States)

    Pitman, Bradley M; Semmler, John G

    2012-09-01

    The purpose of this study was to use paired-pulse transcranial magnetic stimulation (TMS) to examine the effect of eccentric exercise on short-interval intracortical inhibition (SICI) after damage to elbow flexor muscles. Nine young (22.5 ± 0.6 yr; mean ± SD) male subjects performed maximal eccentric exercise of the elbow flexor muscles until maximal voluntary contraction (MVC) force was reduced by ∼40%. TMS was performed before, 2 h after, and 2 days after exercise under Rest and Active (5% MVC) conditions with motor-evoked potentials (MEPs) recorded from the biceps brachii (BB) muscle. Peripheral electrical stimulation of the brachial plexus was used to assess maximal M-waves, and paired-pulse TMS with a 3-ms interstimulus interval was used to assess changes in SICI at each time point. The eccentric exercise resulted in a 34% decline in strength (P muscle strength (27%, P muscle soreness (P muscle damage. When the test MEP amplitudes were matched between sessions, we found that SICI was reduced by 27% in resting and 23% in active BB muscle 2 h after exercise. SICI recovered 2 days after exercise when muscle pain and soreness were present, suggesting that delayed onset muscle soreness from eccentric exercise does not influence SICI. The change in SICI observed 2 h after exercise suggests that eccentric muscle damage has widespread effects throughout the motor system that likely includes changes in motor cortex.

  5. Inflammation of vertebral bone associated with acute calcific tendinitis of the longus colli muscle

    Energy Technology Data Exchange (ETDEWEB)

    Mihmanli, I.; Kanberoglu, K. [Dept. of Radiology, Istanbul Univ. (Turkey); Karaarslan, E. [Intermed Medical Center, Nisantasi, Istanbul (Turkey)

    2001-12-01

    We present a case of acute retropharyngeal calcific tendinitis with characteristic findings on radiographic, computed tomography, and magnetic resonance imaging (MRI). To our knowledge, this is the first acute retropharyngeal calcific tendinitis report having inflammation of both the vertebra itself and the longus colli muscle diagnosed on MRI. In patients with neck pain, acute retropharyngeal calcific tendinitis should be kept in mind in the differential diagnosis, even if these patients had vertebral pathological signals on MRI. (orig.)

  6. Simvastatin reduces fibrosis and protects against muscle weakness after massive rotator cuff tear.

    Science.gov (United States)

    Davis, Max E; Korn, Michael A; Gumucio, Jonathan P; Harning, Julie A; Saripalli, Anjali L; Bedi, Asheesh; Mendias, Christopher L

    2015-02-01

    Chronic rotator cuff tears are a common source of shoulder pain and disability, and patients with chronic cuff tears often have substantial weakness, fibrosis, inflammation, and fat accumulation. Identifying therapies to prevent the development of these pathologic processes will likely have a positive impact on clinical outcomes. Simvastatin is a drug with demonstrated anti-inflammatory and antifibrotic effects in many tissues but had not previously been studied in the context of rotator cuff tears. We hypothesized that after the induction of a massive supraspinatus tear, simvastatin would protect muscles from a loss of force production and fibrosis. We measured changes in muscle fiber contractility, histology, and biochemical markers of fibrosis and fatty infiltration in rats that received a full-thickness supraspinatus tear and were treated with either carrier alone or simvastatin. Compared with vehicle-treated controls, simvastatin did not have an appreciable effect on muscle fiber size, but treatment did increase muscle fiber specific force by 20%. Simvastatin also reduced collagen accumulation by 50% but did not affect triglyceride content of muscles. Several favorable changes in the expression of genes and other markers of inflammation, fibrosis, and regeneration were also observed. Simvastatin partially protected muscles from the weakness that occurs as a result of chronic rotator cuff tear. Fibrosis was also markedly reduced in simvastatin-treated animals. Whereas further studies are necessary, statin medication could potentially help improve outcomes for patients with rotator cuff tears. Copyright © 2015 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  7. Effects on muscle performance of NSAID treatment with Piroxicam versus placebo in geriatric patients with acute infection-induced inflammation. a double blind randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Beyer Ingo

    2011-12-01

    Full Text Available Abstract Background Inflammation is the main cause of disease-associated muscle wasting. In a previous single blind study we have demonstrated improved recovery of muscle endurance following celecoxib treatment in hospitalized geriatric patients with acute infection. Here we further evaluate NSAID treatment with piroxicam in a double blind RCT and investigate the role of cytokines and heat shock proteins (Hsp with respect to muscle performance. We hypothesized that NSAID treatment would preserve muscle performance better than antibiotic treatment alone, by reducing infection-associated inflammation and by increasing expression of cytoprotective Hsp. Methods Consecutive admissions to the geriatric ward were screened. 30 Caucasian patients, median age 84.5 years, with acute infection-induced inflammation and serum levels of CRP > 10 mg/L were included and randomized to active treatment with 10 mg piroxicam daily or placebo. Assessment comprised general clinical and biochemical parameters, 25 cytokines in serum, intra-and extracellular Hsp27 and Hsp70, Elderly Mobility Scale (EMS scores, grip strength (GS, fatigue resistance (FR and lean body mass (LBM. Patients were evaluated until discharge with a maximum of 3 weeks after treatment allocation. Results EMS scores, FR and grip work (GW, a measure taking into account GS and FR, significantly improved with piroxicam, but not with placebo. Early decreases in IL-6 serum levels with piroxicam correlated with better muscle performance at week 2. Basal expression of Hsp27 in monocytes without heat challenge (WHC was positively correlated with FR at baseline and significantly increased by treatment with piroxicam compared to placebo. Profound modifications in the relationships between cytokines or Hsp and changes in muscle parameters were observed in the piroxicam group. Conclusions Piroxicam improves clinically relevant measures of muscle performance and mobility in geriatric patients hospitalized with

  8. Hypogonadism in patients with chronic obstructive pulmonary disease: relationship with airflow limitation, muscle weakness and systemic inflammation

    Directory of Open Access Journals (Sweden)

    Rasha Galal Daabis

    2016-03-01

    Conclusion: Hypogonadism is highly prevalent in clinically stable COPD patients and is particularly related to the severity of the airway obstruction. Systemic inflammation is present in stable COPD patients and its intensity is related to the severity of the underlying disease and it predisposes to skeletal muscle weakness and exercise intolerance. However, we failed to find a significant association between hypogonadism and muscle weakness or systemic inflammation.

  9. Does Acute Static Stretching Reduce Muscle Power?

    Directory of Open Access Journals (Sweden)

    Francis M. Kozub

    2012-12-01

    Full Text Available Context: Stretching is commonly used as a technique for injury prevention in the training and clinical setting. Recently, stretching in the warm-up has been shown to decrease several muscular performance variables, but the dose-response of this effect is unknown and moreover these stretching bouts are not representative of athletes during warm up procedures, as they are usually time consuming. Our findings may improve the understanding of the neuromuscular responses to stretching and help sportsmen, coaches, physiotherapist and clinicians make decisions for integrating stretching as a part of warm up or rehabilitation treatment plan.Purpose: The aim of the present study was to examine whether acute static stretching is responsible for losses in isokinetic peak torque production and if it does, than which time of stretching effect muscle peak torque?Design: Randomized, counterbalanced, within-subjects experimental design.Setting: A university human project laboratory.Methods: Twenty (n=20 light to moderate young exercisers, male and female, from University of Limerick community, with an average age of 22.1±3.6 years, height of 175.6±5 cm, and weight of 73.1±9.9 kg, were randomly selected to take part in the study. Prior to the main study, volunteers attended the lab on two occasions to be familiarized with the knee extension protocol on the Con - trex isokinetic system and with the static stretching protocol. All participants than performed five additional static stretching protocols randomly, in non-consecutive training session. The stretching protocols were 0, 60,120, 180 and 180 with alternative pattern.Results: The results of the statistical analysis (P > 0.05 indicated that peak torque remained unchanged following the static stretching for 0-180 sec at 60 & 180° s−1 angular velocities.Conclusion: The findings suggest that an athletic stretching (shorter duration ranging from 0-180 sec does not produce decreases in peak torque. Athletes

  10. Resistance Exercise Reduces Skeletal Muscle Cachexia and Improves Muscle Function in Rheumatoid Arthritis

    Directory of Open Access Journals (Sweden)

    Salaheddin Sharif

    2011-01-01

    Full Text Available Rheumatoid arthritis (RA is a chronic, systemic, autoimmune, inflammatory disease associated with cachexia (reduced muscle and increased fat. Although strength-training exercise has been used in persons with RA, it is not clear if it is effective for reducing cachexia. A 46-year-old woman was studied to determine: (i if resistance exercise could reverse cachexia by improving muscle mass, fiber cross-sectional area, and muscle function; and (2 if elevated apoptotic signaling was involved in cachexia with RA and could be reduced by resistance training. A needle biopsy was obtained from the vastus lateralis muscle of the RA subject before and after 16 weeks of resistance training. Knee extensor strength increased by 13.6% and fatigue decreased by 2.8% Muscle mass increased by 2.1%. Average muscle fiber cross-sectional area increased by 49.7%, and muscle nuclei increased slightly after strength training from 0.08 to 0.12 nuclei/μm2. In addition, there was a slight decrease (1.6% in the number of apoptotic muscle nuclei after resistance training. This case study suggests that resistance training may be a good tool for increasing the number of nuclei per fiber area, decreasing apoptotic nuclei, and inducing fiber hypertrophy in persons with RA, thereby slowing or reversing rheumatoid cachexia.

  11. Interleukin 19 reduces inflammation in chemically induced experimental colitis.

    Science.gov (United States)

    Matsuo, Yukiko; Azuma, Yasu-Taka; Kuwamura, Mitsuru; Kuramoto, Nobuyuki; Nishiyama, Kazuhiro; Yoshida, Natsuho; Ikeda, Yoshihito; Fujimoto, Yasuyuki; Nakajima, Hidemitsu; Takeuchi, Tadayoshi

    2015-12-01

    Inflammatory bowel disease results from chronic dysregulation of the mucosal immune system and aberrant activation of both the innate and adaptive immune responses. Interleukin (IL)-19, a member of the IL-10 family, functions as an anti-inflammatory cytokine. Here, we investigated the contribution of IL-19 to intestinal inflammation in a model of T cell-mediated colitis in mice. Inflammatory responses in IL-19-deficient mice were assessed using the 2,4,6-trinitrobenzene sulfonic acid (TNBS) model of acute colitis. IL-19 deficiency aggravated TNBS-induced colitis and compromised intestinal recovery in mice. Additionally, the exacerbation of TNBS-induced colonic inflammation following genetic ablation of IL-19 was accompanied by increased production of interferon-gamma, IL-12 (p40), IL-17, IL-22, and IL-33, and decreased production of IL-4. Moreover, the exacerbation of colitis following IL-19 knockout was also accompanied by increased production of CXCL1, G-CSF and CCL5. Using this model of induced colitis, our results revealed the immunopathological relevance of IL-19 as an anti-inflammatory cytokine in intestinal inflammation in mice.

  12. Effects of Alcohol Consumption on Muscle Soreness and Inflammation During Recovery From Strenuous Exercise

    Directory of Open Access Journals (Sweden)

    Chao Yen Chen

    2014-10-01

    Full Text Available Although parties or get-togethers with alcoholic beverages after sporting competitions are popular, studies on the effects of alcohol ingestion after strenuous exercise on muscle damage and inflammation in non-drinkers’ are few and ambiguous. Therefore, the aim of this study was to investigate the effects of alcohol ingestion during recovery from an acute bout of exercise on muscle soreness and inflammatory markers in regular exercisers who do not regularly consume alcohol. Male participants (n = 15 completed two bouts of exercise on a rowing ergometer for 2000 m in a randomized fashion. All participants ingested 5 mL of alcoholic (AL or placebo (PL beverage per kg of body weight within 10 min post-exercise. Blood samples for blood alcohol, creatine kinase (CK, C-reactive protein (CRP, and interleukin (IL-6 concentrations were collected pre-exercise (T0, and at 1 (T1, 3 (T2, and 24 h (T3 post-ingestion. Self-reported muscle soreness was assessed at the same time points. Lactate levels were measured before exercise and within 1 h post-exercise. Muscle soreness was significantly lower in the AL than the PL trials at T3 (p < 0.05. Although CK, IL-6 and CRP levels were significantly higher during recovery than before exercising, there was no significant difference between the AL and PL trials. In addition, no significant difference in lactate concentrations between the two trials was evident in the 1 h after exercise. For regular exercisers, the alcoholic beverage ingested did not increase CK, IL-6, or CRP compared to their placebo trial, despite attenuated muscle soreness. Comparisons between drinkers and non-drinkers of high fitness ingesting permissible alcohol doses should be performed in the future.   Keywords: alcohol, inflammation, strenuous exercise, muscle damage

  13. Influence of Ginger and Cinnamon Intake on Inflammation and Muscle Soreness Endued by Exercise in Iranian Female Athletes

    Science.gov (United States)

    Mashhadi, Nafiseh Shokri; Ghiasvand, Reza; Askari, Gholamreza; Feizi, Awat; Hariri, Mitra; Darvishi, Leila; Barani, Azam; Taghiyar, Maryam; Shiranian, Afshin; Hajishafiee, Maryam

    2013-01-01

    Background: Ginger rhizomes (rich in gingerols, shogaols, paradols and zingerone) have been used in Asia for the treatment of asthma, diabetes, and pain, and have shown potent anti-inflammatory attributes. Common spices such as Cinnamon (including cinnamic aldehyde and cinnamyl aldehydeis) are used in food and many studies have focused on its anti-inflammatory components. Intense exercise can result in an inflammatory response to cell damage and also muscle soreness. The efficacy of dietary ginger and cinnamon as anti-inflammatory agents and their effectiveness in reducing muscle soreness has been investigated in limited studies on humans. Therefore, we have studied the effects of dietary ginger and cinnamon on inflammation and muscle soreness in Iranian female taekwondo players. Methods: Sixty healthy, trained women, aged 13-25 years, were enrolled in the six-week investigation and randomly categorized into three groups (cinnamon, ginger or placebo) and received 3 g of ginger, cinnamon or placebo powder each day, depending on the group they belonged to. The IL-6 level and Likert Scale of Muscle Soreness were evaluated at the beginning and the end of the study and compared among the groups. Results: Forty-nine of the participants completed the six-week intervention. There were no significant changes in the IL-6 cinnamon and ginger group when compared with the placebo group, whereas, there was a significant fall in muscle soreness in the cinnamon group and placebo (P < 0.1) and ginger group and placebo (P < 0.01). Conclusions: Administration of ginger and cinnamon in athlete women for six weeks did not show any significant change in the IL-6 level, but showed a decrease in muscle soreness in the cinnamon and ginger groups. PMID:23717759

  14. L-carnitine Reduces Muscle Cramps in Patients With Cirrhosis.

    Science.gov (United States)

    Nakanishi, Hiroyuki; Kurosaki, Masayuki; Tsuchiya, Kaoru; Nakakuki, Natsuko; Takada, Hitomi; Matsuda, Shuya; Gondo, Kouichi; Asano, Yu; Hattori, Nobuhiro; Tamaki, Nobuharu; Suzuki, Shoko; Yasui, Yutaka; Hosokawa, Takanori; Itakura, Jun; Takahashi, Yuka; Izumi, Namiki

    2015-08-01

    We performed a prospective study to evaluate the ability of L-carnitine, which is involved in the β-oxidation of fatty acids, to reduce muscle cramps in patients with cirrhosis. Consecutive patients with cirrhosis and muscle cramps were given L-carnitine 300 mg, 3 times/day (900 mg/day, n = 19) or 4 times/day (1200 mg/day, n = 23) for 8 weeks. The frequency of muscle cramps was assessed by questionnaires, and the degree of muscle cramping was assessed by using the visual analogue scale (VAS). Muscle cramping was reduced in 88.1% of all subjects at the end of the 8-week study period and disappeared for 28.6% of patients. Overall VAS scores decreased significantly from 69.9 ± 22.5 at baseline to 26.2 ± 29.1 after 8 weeks (P muscle cramps after 8 weeks (43.5% in the 1200 mg/day group vs 10.5% in the 900 mg/day group, P = .037) and VAS scores at 8 weeks (9.9 ± 13.5 in the 1200 mg/day group vs 39.6 ± 31.9 in the 900 mg/day group, P = .003). No adverse events were reported. Therefore, L-carnitine appears to be safe and effective for reducing liver cramps in patients with cirrhosis.

  15. Garlic Organosulfur Compounds Reduce Inflammation and Oxidative Stress during Dengue Virus Infection.

    Science.gov (United States)

    Hall, Alex; Troupin, Andrea; Londono-Renteria, Berlin; Colpitts, Tonya M

    2017-06-22

    Dengue virus (DENV) is a mosquito-borne flavivirus that causes significant global human disease and mortality. One approach to develop treatments for DENV infection and the prevention of severe disease is through investigation of natural medicines. Inflammation plays both beneficial and harmful roles during DENV infection. Studies have proposed that the oxidative stress response may be one mechanism responsible for triggering inflammation during DENV infection. Thus, blocking the oxidative stress response could reduce inflammation and the development of severe disease. Garlic has been shown to both reduce inflammation and affect the oxidative stress response. Here, we show that the garlic active compounds diallyl disulfide (DADS), diallyl sulfide (DAS) and alliin reduced inflammation during DENV infection and show that this reduction is due to the effects on the oxidative stress response. These results suggest that garlic could be used as an alternative treatment for DENV infection and for the prevention of severe disease development.

  16. Neonates with reduced neonatal lung function have systemic low-grade inflammation

    DEFF Research Database (Denmark)

    Chawes, Bo L.K.; Stokholm, Jakob; Bønnelykke, Klaus;

    2015-01-01

    Background: Children and adults with asthma and impaired lung function have been reported to have low-grade systemic inflammation, but it is unknown whether this inflammation starts before symptoms and in particular whether low-grade inflammation is present in asymptomatic neonates with reduced...... lung function. ObjectiveWe sought to investigate the possible association between neonatal lung function and biomarkers of systemic inflammation.  Methods: Plasma levels of high-sensitivity C-reactive protein (hs-CRP), IL-1β, IL-6, TNF-α, and CXCL8 (IL-8) were measured at age 6 months in 300 children...

  17. Inflammation

    DEFF Research Database (Denmark)

    Holst-Hansen, Thomas

    Inflammation is an intricate response relying on the activation and response of both the innate immune system and the infected tissue to remove a threat. The pro-inflammatory NF-kappaB pathway has been studied extensively, among others because of its key role in regulation of inflammation. However...

  18. Inflammation

    DEFF Research Database (Denmark)

    Holst-Hansen, Thomas

    Inflammation is an intricate response relying on the activation and response of both the innate immune system and the infected tissue to remove a threat. The pro-inflammatory NF-kappaB pathway has been studied extensively, among others because of its key role in regulation of inflammation. However...

  19. A clinical evaluation of statin pleiotropy: statins selectively and dose-dependently reduce vascular inflammation

    NARCIS (Netherlands)

    Meij, E van der; Koning, G.G.; Vriens, P.W.H.E.; Peeters, M.F.; Meijer, C.A.; Kortekaas, K.E.; Dalman, R.L.; Bockel, J.H. van; Hanemaaijer, R.; Kooistra, T.; Kleemann, R.; Lindeman, J.H.

    2013-01-01

    Statins are thought to reduce vascular inflammation through lipid independent mechanisms. Evaluation of such an effect in atherosclerotic disease is complicated by simultaneous effects on lipid metabolism. Abdominal aortic aneurysms (AAA) are part of the atherosclerotic spectrum of diseases. Unlike

  20. Evaluation of low level laser therapy irradiation parameters on rat muscle inflammation through systemic blood cytokines

    Science.gov (United States)

    Mantineo, Matias; Pinheiro, João. P.; Morgado, António M.

    2014-02-01

    Low level laser therapy (LLLT) has been used for inflammation treatment. Here, we evaluate the effect of different doses, using continuous (830 and 980 nm) and pulsed illumination (830 nm), in the treatment of inflammation induced in the gastrocnemius muscle of Wistar rats, through cytokines concentration in systemic blood and histological analysis of muscle tissue. Animals were randomly divided into five groups per wavelength (5 animals per group: 10, 20, 30, 40 and 50 mW) plus a control group. LLLT was applied during five days, with constant exposure time and irradiated area (3 minutes; 0.5026 cm2). Blood was collected on days 0, 3 and 6. TNF-α, IL-1β, IL-2 and IL-6 cytokines were quantified by ELISA. Rats were killed on day 6. Muscle inflammatory cells were counted using optical microscopy. Treatment effects occurred for all applied doses (largest effect at 40 mW: 7.2 J, 14 J/cm2 per irradiation), with reduction of proinflammatory TNF-α, IL-1β and IL-6 cytokines and lower number of inflammatory cells. Results were better for 830 nm. Identical methodology was used with pulsed illumination. Average power (40 mW) and duty cycle were kept constant (80%) at five frequencies (5, 25, 50, 100 and 200 Hz). Treatment effects were observed at higher frequencies, with no significant differences between them. However, the treatment effect was lower than for continuous illumination. LLLT effect on inflammation treatment can be monitored by measuring systemic blood cytokines. A larger treatment effect was observed with continuous illumination, where results seem to be compatible with a biphasic dose response.

  1. Peripheral mGluR5 antagonist attenuated craniofacial muscle pain and inflammation but not mGluR1 antagonist in lightly anesthetized rats.

    Science.gov (United States)

    Lee, Ho Jeong; Choi, Hyo Soon; Ju, Jin Sook; Bae, Yong Chul; Kim, Sung Kyo; Yoon, Young Wook; Ahn, Dong Kuk

    2006-10-16

    The present study investigated the role of peripheral group I metabotropic glutamate receptors (mGluRs) in MO-induced nociceptive behaviour and inflammation in the masseter muscles of lightly anesthetized rats. Experiments were carried out on male Sprague-Dawley rats weighing 300-400 g. After initial anesthesia with sodium pentobarbital (40 mg/kg, i.p.), one femoral vein was cannulated and connected to an infusion pump for intravenous infusion of sodium pentobarbital. The rate of infusion was adjusted to provide a constant level of anesthesia. Mustard oil (MO, 30 microl) was injected into the mid-region of the left masseter muscle via a 30-gauge needle over 10s. After 30 microl injection of 5, 10, 15, or 20% MO into the masseter muscle, the total number of hindpaw shaking behaviour and extravasated Evans' blue dye concentration in the masseter muscle were significantly higher in the MO-treated group in a dose-dependent manner compared with the vehicle (mineral oil)-treated group. Intramuscular pretreatment with 3 or 5% lidocaine reduced MO-induced hindpaw shaking behaviour and increases in extravasated Evans' blue dye concentration. Intramuscular pretreatment with 5 mM MCPG, non-selective group I/II mGluR antagonist, or MPEP, a selective group I mGluR5 antagonist, produced a significant attenuation of MO-induced hindpaw shaking behaviour and increases in extravasated Evans' blue dye concentration in the masseter muscle while LY367385, a selective group I mGluR1 antagonist, did not affect MO-induced nociceptive behaviour and inflammation in the masseter muscle. These results indicate that peripheral mGluR5 plays important role in mediating MO-induced nociceptive behaviour and inflammation in the craniofacial muscle.

  2. Alfacalcidol improves muscle power, muscle function and balance in elderly patients with reduced bone mass.

    Science.gov (United States)

    Schacht, E; Ringe, Johann D

    2012-01-01

    We investigated the effect of daily therapy with 1 mcg alfacalcidol (Doss(®)-TEVA/AWD-pharma) on muscle power, muscle function, balance performance and fear of falls in an open, multi-centered, uncontrolled, prospective study on a cohort of patients with reduced bone mass. Among the 2,097 participants, 87.1% were post-menopausal women and 12.9% were men. Mean age was 74.8 years and mean body mass index (BMI) 26.3 kg/m². A total of 75.3% of the study population had osteoporosis, 81% a diagnosis of "increased risk of falls" and 70.1% had a creatinine clearance (CrCl) of muscle function and muscle power tests at onset and after 3 and 6 months: the timed up and go test (TUG) and the chair rising test (CRT). At baseline and after 6 months, participants performed the tandem gait test (TGT) and filled out a questionnaire evaluating fear of falling. Successful performance in the muscle tests is associated with a significantly lower risk of falls and non-vertebral fractures in elderly patients (successful test performance: TUG ≤ 10 s (sec), CRT ≤ 10 s, TGT ≥ 8 steps). A significant improvement in the performance of the two muscle tests was proved already after 3 months of treatment with alfacalcidol and further increased by the end of the therapeutic intervention. There were significant increases in the number of participants able to successfully perform the tests: 24.6% at baseline and 46.3% at the end of trial for the TUG (P muscle power, muscle function and balance and reduces fear of falls. The significant improvement in the three muscle and balance tests and fear of falls may have a preventative effect on falls and fractures. We suggest that the quantitative risk tests used in this study could be reliable surrogate parameters for the risk of falls and fractures in elderly patients.

  3. Does Branched-Chain Amino Acids Supplementation Modulate Skeletal Muscle Remodeling through Inflammation Modulation? Possible Mechanisms of Action

    Directory of Open Access Journals (Sweden)

    Humberto Nicastro

    2012-01-01

    Full Text Available Skeletal muscle protein turnover is modulated by intracellular signaling pathways involved in protein synthesis, degradation, and inflammation. The proinflammatory status of muscle cells, observed in pathological conditions such as cancer, aging, and sepsis, can directly modulate protein translation initiation and muscle proteolysis, contributing to negative protein turnover. In this context, branched-chain amino acids (BCAAs, especially leucine, have been described as a strong nutritional stimulus able to enhance protein translation initiation and attenuate proteolysis. Furthermore, under inflammatory conditions, BCAA can be transaminated to glutamate in order to increase glutamine synthesis, which is a substrate highly consumed by inflammatory cells such as macrophages. The present paper describes the role of inflammation on muscle remodeling and the possible metabolic and cellular effects of BCAA supplementation in the modulation of inflammatory status of skeletal muscle and the consequences on protein synthesis and degradation.

  4. STAT4 deficiency reduces obesity-induced insulin resistance and adipose tissue inflammation.

    Science.gov (United States)

    Dobrian, Anca D; Galkina, Elena V; Ma, Qian; Hatcher, Margaret; Aye, Sabai Myo; Butcher, Mathew J; Ma, Kaiwen; Haynes, Bronson A; Kaplan, Mark H; Nadler, Jerry L

    2013-12-01

    Signal transducer and activator of transcription (STAT) 4 is one of the seven members of the STAT family. STAT4 has a prominent role in mediating interleukin-12-induced T-helper cell type 1 lineage differentiation. T cells are key players in the maintenance of adipose tissue (AT) inflammation. The role of STAT4 in obesity and AT inflammation is unknown. We sought to determine the role of STAT4 in AT inflammation in obesity-induced insulin resistance. We studied STAT4-null mice on the C57Bl6/J background. We have found that STAT4(-/-)C57Bl6/J mice develop high-fat diet-induced obesity (DIO) similar to wild-type controls, but that they have significantly improved insulin sensitivity and better glucose tolerance. Using flow cytometry and real-time PCR, we show that STAT4(-/-) mice with DIO produce significantly reduced numbers of inflammatory cytokines and chemokines in adipocytes, have reduced numbers of CD8(+) cells, and display increased alternative (M2) macrophage polarization. CD8(+) cells, but not CD4(+) cells, from STAT4(-/-) mice displayed reduced in vitro migration. Also, we found that adipocyte inflammation is reduced and insulin signaling is improved in STAT4(-/-) mice with DIO. We have identified STAT4 as a key contributor to insulin resistance and AT inflammation in DIO. Targeting STAT4 activation could be a novel approach to reducing AT inflammation and insulin resistance in obesity.

  5. Eplerenone-Mediated Aldosterone Blockade Prevents Renal Fibrosis by Reducing Renal Inflammation, Interstitial Cell Proliferation and Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Hui Chen

    2013-11-01

    Full Text Available Background/Aims: Prolonged elevation of serum aldosterone leads to renal fibrosis. Inflammation also plays a role in the pathogenesis of renal disease. We used a rat model of interstitial renal fibrosis to test the hypothesis that eplerenone-mediated aldosterone blockade prevents renal fibrosis due to its anti-inflammatory and anti-proliferative effects. Methods: Eplerenone (a selective aldosterone blocker or vehicle (control, was given to male Wistar rats (50 mg/kg, twice daily for 7 days before unilateral ureteral obstruction (UUO and for an additional 28 days after surgery. Body weight, blood pressure, renal histo-morphology, immune-staining for macrophages, monocyte chemotactic protein-1, proliferating cell nuclear antigen, α-smooth muscle actin, and serum and urine markers of renal function and oxidative stress were determined for both groups on 7, 14, and 28 days after surgery. Results: Epleronone had no effect on body weight or blood pressure. However, eplerenone inhibited the development of renal fibrosis, inflammation (macrophage and monocyte infiltration, interstitial cell proliferation, and activation of interstitial cells (α-SMA expression. Epleronone also reduced oxidative stress. Conclusion: The anti-fibrotic effect of eplerenone appears to be unrelated to its effect on blood pressure. Eplerenone inhibits renal inflammation, interstitial cell proliferation, phenotypic changes of interstitial cells, and reduces oxidative stress.

  6. Do Running and Strength Exercises Reduce Daily Muscle Inactivity Time?

    Directory of Open Access Journals (Sweden)

    Taija Finni

    2016-09-01

    neither to reduce nor induce compensatory increase in the daily muscle inactivity that is highly heterogeneous between individuals.

  7. Pharmacological inhibition of GSK-3 in a guinea pig model of LPS-induced pulmonary inflammation : II. Effects on skeletal muscle atrophy

    NARCIS (Netherlands)

    Verhees, Koen J P; Pansters, Nicholas A M; Baarsma, Hoeke A; Remels, Alexander H V; Haegens, Astrid; de Theije, Chiel C; Schols, Annemie M W J; Gosens, Reinoud; Langen, Ramon C J

    2013-01-01

    BACKGROUND: Chronic obstructive pulmonary disease (COPD) is accompanied by pulmonary inflammation and associated with extra-pulmonary manifestations, including skeletal muscle atrophy. Glycogen synthase kinase-3 (GSK-3) has been implicated in the regulation of muscle protein- and myonuclear turnover

  8. MicroRNA-155 Deficiency Attenuates Liver Steatosis and Fibrosis without Reducing Inflammation in a Mouse Model of Steatohepatitis.

    Directory of Open Access Journals (Sweden)

    Timea Csak

    Full Text Available MicroRNAs (miRs regulate hepatic steatosis, inflammation and fibrosis. Fibrosis is the consequence of chronic tissue damage and inflammation. We hypothesized that deficiency of miR-155, a master regulator of inflammation, attenuates steatohepatitis and fibrosis.Wild type (WT and miR-155-deficient (KO mice were fed methionine-choline-deficient (MCD or -supplemented (MCS control diet for 5 weeks. Liver injury, inflammation, steatosis and fibrosis were assessed.MCD diet resulted in steatohepatitis and increased miR-155 expression in total liver, hepatocytes and Kupffer cells. Steatosis and expression of genes involved in fatty acid metabolism were attenuated in miR-155 KO mice after MCD feeding. In contrast, miR-155 deficiency failed to attenuate inflammatory cell infiltration, nuclear factor κ beta (NF-κB activation and enhanced the expression of the pro-inflammatory cytokines tumor necrosis factor alpha (TNFα and monocyte chemoattractant protein-1 (MCP1 in MCD diet-fed mice. We found a significant attenuation of apoptosis (cleaved caspase-3 and reduction in collagen and α smooth muscle actin (αSMA levels in miR-155 KO mice compared to WTs on MCD diet. In addition, we found attenuation of platelet derived growth factor (PDGF, a pro-fibrotic cytokine; SMAD family member 3 (Smad3, a protein involved in transforming growth factor-β (TGFβ signal transduction and vimentin, a mesenchymal marker and indirect indicator of epithelial-to-mesenchymal transition (EMT in miR-155 KO mice. Nuclear binding of CCAAT enhancer binding protein β (C/EBPβ a miR-155 target involved in EMT was significantly increased in miR-155 KO compared to WT mice.Our novel data demonstrate that miR-155 deficiency can reduce steatosis and fibrosis without decreasing inflammation in steatohepatitis.

  9. HMGB1 and RAGE in skeletal muscle inflammation: Implications for protein accumulation in inclusion body myositis.

    Science.gov (United States)

    Muth, Ingrid E; Zschüntzsch, Jana; Kleinschnitz, Konstanze; Wrede, Arne; Gerhardt, Ellen; Balcarek, Peter; Schreiber-Katz, Olivia; Zierz, Stephan; Dalakas, Marinos C; Voll, Reinhard E; Schmidt, Jens

    2015-09-01

    Inflammation is associated with protein accumulation in IBM, but precise mechanisms are elusive. The "alarmin" HMGB1 is upregulated in muscle inflammation. Its receptor RAGE is crucial for β-amyloid-associated neurodegeneration. Relevant signaling via HMGB1/RAGE is expected in IBM pathology. By real-time-PCR, mRNA-expression levels of HMGB1 and RAGE were upregulated in muscle biopsies of patients with IBM and PM, but not in muscular dystrophy or non-myopathic controls. By immunohistochemistry, both molecules displayed the highest signal in IBM, where they distinctly co-localized to intra-fiber accumulations of β-amyloid and neurofilament/tau. In these fibers, identification of phosphorylated Erk suggested that relevant downstream activation is present upon HMGB1 signaling via RAGE. Protein expressions of HMGB1, RAGE, Erk and phosphorylated Erk were confirmed by Western blot. In a well established cell-culture model for pro-inflammatory cell-stress, exposure of human muscle-cells to IL-1β+IFN-γ induced cytoplasmic translocation of HMGB1 and subsequent release as evidenced by ELISA. Upregulation of RAGE on the cell surface was demonstrated by immunocytochemistry and flow-cytometry. Recombinant HMGB1 was equally potent as IL-1β+IFN-γ in causing amyloid-accumulation and cell-death, and both were abrogated by the HMGB1-blocker BoxA. The findings strengthen the concept of unique interactions between degenerative and inflammatory mechanisms and suggest that HMGB1/RAGE signaling is a critical pathway in IBM pathology.

  10. Inhibition of Phosphodiesterase-4 during Pneumococcal Pneumonia Reduces Inflammation and Lung Injury in Mice.

    Science.gov (United States)

    Tavares, Luciana P; Garcia, Cristiana C; Vago, Juliana P; Queiroz-Junior, Celso M; Galvão, Izabela; David, Bruna A; Rachid, Milene A; Silva, Patrícia M R; Russo, Remo C; Teixeira, Mauro M; Sousa, Lirlândia P

    2016-07-01

    Pneumococcal pneumonia is a leading cause of mortality worldwide. The inflammatory response to bacteria is necessary to control infection, but it may also contribute to tissue damage. Phosphodiesterase-4 inhibitors, such as rolipram (ROL), effectively reduce inflammation. Here, we examined the impact of ROL in a pneumococcal pneumonia murine model. Mice were infected intranasally with 10(5)-10(6) CFU of Streptococcus pneumoniae, treated with ROL in a prophylactic or therapeutic schedule in combination, or not, with the antibiotic ceftriaxone. Inflammation and bacteria counts were assessed, and ex vivo phagocytosis assays were performed. ROL treatment during S. pneumoniae infection decreased neutrophil recruitment into lungs and airways and reduced lung injury. Prophylactic ROL treatment also decreased cytokine levels in the airways. Although modulation of inflammation by ROL ameliorated pneumonia, bacteria burden was not reduced. On the other hand, antibiotic therapy reduced bacteria without reducing neutrophil infiltration, cytokine level, or lung injury. Combined ROL and ceftriaxone treatment decreased lethality rates and was more efficient in reducing inflammation, by increasing proresolving protein annexin A1 (AnxA1) expression, and bacterial burden by enhancing phagocytosis. Lack of AnxA1 increased inflammation and lethality induced by pneumococcal infection. These data show that immunomodulatory effects of phosphodiesterase-4 inhibitors are useful during severe pneumococcal pneumonia and suggest their potential benefit as adjunctive therapy during infectious diseases.

  11. Dry Needling at Myofascial Trigger Spots of Rabbit Skeletal Muscles Modulates the Biochemicals Associated with Pain, Inflammation, and Hypoxia

    Directory of Open Access Journals (Sweden)

    Yueh-Ling Hsieh

    2012-01-01

    Full Text Available Background and Purpose. Dry needling is an effective therapy for the treatment of pain associated with myofascial trigger point (MTrP. However, the biochemical effects of dry needling that are associated with pain, inflammation, and hypoxia are unclear. This study investigated the activities of β-endorphin, substance P, TNF-α, COX-2, HIF-1α, iNOS, and VEGF after different dosages of dry needling at the myofascial trigger spots (MTrSs of a skeletal muscle in rabbit. Materials and Methods. Dry needling was performed either with one dosage (1D or five dosages (5D into the biceps femoris with MTrSs in New Zealand rabbits. Biceps femoris, serum, and dorsal root ganglion (DRG were sampled immediately and 5 d after dry needling for β-endorphin, substance P, TNF-α, COX-2, HIF-1α, iNOS, and VEGF immunoassays. Results. The 1D treatment enhanced the β-endorphin levels in the biceps femoris and serum and reduced substance P in the biceps femoris and DRG. The 5D treatment reversed these effects and was accompanied by increase of TNF-α, COX-2, HIF-1α, iNOS, and VEGF production in the biceps femoris. Moreover, the higher levels of these biochemicals were still maintained 5 d after treatment. Conclusion. Dry needling at the MTrSs modulates various biochemicals associated with pain, inflammation, and hypoxia in a dose-dependent manner.

  12. Dry Needling at Myofascial Trigger Spots of Rabbit Skeletal Muscles Modulates the Biochemicals Associated with Pain, Inflammation, and Hypoxia

    Science.gov (United States)

    Hsieh, Yueh-Ling; Yang, Shun-An; Yang, Chen-Chia; Chou, Li-Wei

    2012-01-01

    Background and Purpose. Dry needling is an effective therapy for the treatment of pain associated with myofascial trigger point (MTrP). However, the biochemical effects of dry needling that are associated with pain, inflammation, and hypoxia are unclear. This study investigated the activities of β-endorphin, substance P, TNF-α, COX-2, HIF-1α, iNOS, and VEGF after different dosages of dry needling at the myofascial trigger spots (MTrSs) of a skeletal muscle in rabbit. Materials and Methods. Dry needling was performed either with one dosage (1D) or five dosages (5D) into the biceps femoris with MTrSs in New Zealand rabbits. Biceps femoris, serum, and dorsal root ganglion (DRG) were sampled immediately and 5 d after dry needling for β-endorphin, substance P, TNF-α, COX-2, HIF-1α, iNOS, and VEGF immunoassays. Results. The 1D treatment enhanced the β-endorphin levels in the biceps femoris and serum and reduced substance P in the biceps femoris and DRG. The 5D treatment reversed these effects and was accompanied by increase of TNF-α, COX-2, HIF-1α, iNOS, and VEGF production in the biceps femoris. Moreover, the higher levels of these biochemicals were still maintained 5 d after treatment. Conclusion. Dry needling at the MTrSs modulates various biochemicals associated with pain, inflammation, and hypoxia in a dose-dependent manner. PMID:23346198

  13. Exercise, skeletal muscle and inflammation: ARE-binding proteins as key regulators in inflammatory and adaptive networks.

    Science.gov (United States)

    Beiter, Thomas; Hoene, Miriam; Prenzler, Frauke; Mooren, Frank C; Steinacker, Jürgen M; Weigert, Cora; Nieß, Andreas M; Munz, Barbara

    2015-01-01

    The role of inflammation in skeletal muscle adaptation to exercise is complex and has hardly been elucidated so far. While the acute inflammatory response to exercise seems to promote skeletal muscle training adaptation and regeneration, persistent, low-grade inflammation, as seen in a multitude of chronic diseases, is obviously detrimental. The regulation of cytokine production in skeletal muscle cells has been relatively well studied, yet little is known about the compensatory and anti-inflammatory mechanisms that resolve inflammation and restore tissue homeostasis. One important strategy to ensure sequential, timely and controlled resolution of inflammation relies on the regulated stability of mRNAs encoding pro-inflammatory mediators. Many key transcripts in early immune responses are characterized by the presence of AU-rich elements (AREs) in the 3'-untranslated regions of their mRNAs, allowing efficient fine-tuning of gene expression patterns at the post-transcriptional level. AREs exert their function by recruiting particular RNA-binding proteins, resulting, in most cases, in de-stabilization of the target transcripts. The best-characterized ARE-binding proteins are HuR, CUGBP1, KSRP, AUF1, and the three ZFP36 proteins, especially TTP/ZFP36. Here, we give a general introduction into the role of inflammation in the adaptation of skeletal muscle to exercise. Subsequently, we focus on potential roles of ARE-binding proteins in skeletal muscle tissue in general and specifically exercise-induced skeletal muscle remodeling. Finally, we present novel data suggesting a specific function of TTP/ZFP36 in exercise-induced skeletal muscle plasticity.

  14. Crocin reduces the inflammation response in rheumatoid arthritis.

    Science.gov (United States)

    Li, Xiang; Jiang, Chao; Zhu, Wenyong

    2017-05-01

    This study is to determine the role and mechanism of crocin in rheumatoid arthritis (RA). Totally 60 Wistar SD rats were randomly divided into control group, RA model group, methotrexate group, crocin high dose, middle dose, and low dose groups. The paw swelling degree, arthritis score, thymus and spleen index, the mRNA and protein levels of iNOS, and the serum content of TNF-α, IL-1β, and IL-6 were evaluated. Crocin treatment significantly alleviated the paw swelling of RA rats. The arthritis score in crocin treatment groups was significantly lower than that in RA model group. Additionally, the thymus index, but not the spleen index, declined remarkably in crocin treatment groups than in RA model group. Besides, crocin administration significantly reduced the iNOS production and the serum content of TNF-α, IL-1β, and IL-6. Crocin may exert potent anti-RA effects through inhibiting cytokine.

  15. Efficacy of tart cherry juice in reducing muscle pain during running: a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Elliot Diane L

    2010-05-01

    Full Text Available Abstract Background Long distance running causes acute muscle damage resulting in inflammation and decreased force production. Endurance athletes use NSAIDs during competition to prevent or reduce pain, which carries the risk of adverse effects. Tart cherries, rich in antioxidant and anti-inflammatory properties, may have a protective effect to reduce muscle damage and pain during strenuous exercise. This study aimed to assess the effects of tart cherry juice as compared to a placebo cherry drink on pain among runners in a long distance relay race. Methods The design was a randomized, double blind, placebo controlled trial. Fifty-four healthy runners (36 male, 18 female; 35.8 ± 9.6 yrs ran an average of 26.3 ± 2.5 km over a 24 hour period. Participants ingested 355 mL bottles of tart cherry juice or placebo cherry drink twice daily for 7 days prior to the event and on the day of the race. Participants assessed level of pain on a standard 100 mm Visual Analog Scale (VAS at baseline, before the race, and after the race. Results While both groups reported increased pain after the race, the cherry juice group reported a significantly smaller increase in pain (12 ± 18 mm compared to the placebo group (37 ± 20 mm (p Conclusions Ingesting tart cherry juice for 7 days prior to and during a strenuous running event can minimize post-run muscle pain.

  16. P-Selectin Targeted Dexamethasone-Loaded Lipid Nanoemulsions: A Novel Therapy to Reduce Vascular Inflammation

    Science.gov (United States)

    Simion, Viorel; Constantinescu, Cristina Ana; Stan, Daniela; Deleanu, Mariana; Tucureanu, Monica Madalina; Butoi, Elena; Manduteanu, Ileana; Simionescu, Maya

    2016-01-01

    Inflammation is a common process associated with numerous vascular pathologies. We hypothesized that targeting the inflamed endothelium by coupling a peptide with high affinity for P-selectin to the surface of dexamethasone-loaded lipid nanoemulsions will highly increase their specific binding to activated endothelial cells (EC) and reduce the cell activation. We developed and characterized dexamethasone-loaded lipid nanoemulsions directed towards P-selectin (PLN-Dex) and monitored their anti-inflammatory effects in vitro using cultured EC (EA.hy926 cells) and in vivo using a mouse model of acute inflammation [lipopolysaccharides (LPS) intravenously administered in C57BL/6 mice]. We found that PLN-Dex bound specifically to the surface of activated EC are efficiently internalized by EC and reduced the expression of proinflammatory genes, thus preventing the monocyte adhesion and transmigration to/through activated EC. Given intravenously in mice with acute inflammation, PLN-Dex accumulated at a significant high level in the lungs (compared to nontargeted nanoemulsions) and significantly reduced mRNA expression level of key proinflammatory cytokines such as IL-1β, IL-6, and MCP-1. In conclusion, the newly developed nanoformulation, PLN-Dex, is functional in vitro and in vivo, reducing selectively the endothelium activation and the consequent monocyte infiltration and diminishing significantly the lungs' inflammation, in a mouse model of acute inflammation. PMID:27703301

  17. Do muscle synergies reduce the dimensionality of behaviour?

    Directory of Open Access Journals (Sweden)

    Naveen eKuppuswamy

    2014-06-01

    Full Text Available The muscle synergy hypothesis is an archetype of the notion of Dimensionality Reduction (DR occurring in the central nervous system due to modular organisation. Towards validating this hypothesis, it is however important to understand if muscle synergies can reduce the state-space dimensionality while suitably achieving task control. In this paper we present a scheme for investigating this reduction, utilising the temporal muscle synergy formulation. Our approach is based on the observation that constraining the control input to a weighted combination of temporal muscle synergies instead constrains the dynamic behaviour of a system in trajectory-specific manner. We compute this constrained reformulation of system dynamics and then use the method of system balancing for quantifying the DR; we term this approach as Trajectory Specific Dimensionality Analysis (TSDA. We then use this method to investigate the consequence of minimisation of this dimensionality for a given task. These methods are tested in simulation on a linear (tethered mass and a nonlinear (compliant kinematic chain system; dimensionality of various reaching trajectories is compared when using idealised temporal synergies. We show that as a consequence of this Minimum Dimensional Control (MDC model, smooth straight-line Cartesian trajectories with bell-shaped velocity profiles are obtained as the solution to reaching tasks in both of the test systems. We also investigate the effect on dimensionality due to adding via-points to a trajectory. The results indicate that a synergy basis and trajectory-specific DR of motor behaviours results from usage of muscle synergy control. The implications of these results for the synergy hypothesis, optimal motor control, developmental skill acquisition and robotics are then discussed.

  18. Systemic and pulmonary inflammation is independent of skeletal muscle changes in patients with chronic obstructive pulmonary disease.

    Science.gov (United States)

    Barker, Bethan L; McKenna, Susan; Mistry, Vijay; Pancholi, Mitesh; Patel, Hemu; Haldar, Koirobi; Barer, Michael R; Pavord, Ian D; Steiner, Michael C; Brightling, Christopher E; Bafadhel, Mona

    2014-01-01

    Nutritional depletion is an important manifestation of chronic obstructive pulmonary disease (COPD), which has been related to systemic inflammation. It remains unclear to what degree airway inflammation contributes to the presence or progression of nutritional depletion. To determine whether airway inflammation and lung bacterial colonization are related to nutritional status or predict progressive weight loss and muscle atrophy in patients with COPD. Body composition using dual energy X-ray absorptiometry, indices of airway inflammation, and bacterial colonization were measured in 234 COPD patients. Systemic inflammation was assessed from serum C reactive protein (CRP) and circulating total and differential leukocyte counts. Nutritional depletion was defined as a body mass index (BMI) less than 21 kg/m(2) and/or fat-free mass index (FFMI) less than 15 or 17 kg/m(2) in women and men, respectively. FFMI was calculated as the fat-free mass (FFM) corrected for body surface area. Measurements were repeated in 94 patients after a median 16-month follow-up. Regression analysis was used to assess the relationships of weight change and FFM change with indices of bacterial colonization and airway and systemic inflammation. Nutritional depletion occurred in 37% of patients. Lung function was worsened in patients with nutritional depletion compared to those without (forced expiratory volume in 1 second 1.17 L versus 1.41 L, mean difference 0.24, 95% confidence interval 0.10 to 0.38, Pnutritional depletion. At baseline, BMI correlated positively with serum CRP (rs=0.14, P=0.04). Change in weight and change in FFM over time could not be predicted from baseline patient characteristics. Nutritional depletion and progressive muscle atrophy are not related to airway inflammation or bacterial colonization. Overspill of pulmonary inflammation is not a key driver of muscle atrophy in COPD.

  19. The effects of cold water immersion and active recovery on inflammation and cell stress responses in human skeletal muscle after resistance exercise.

    Science.gov (United States)

    Peake, Jonathan M; Roberts, Llion A; Figueiredo, Vandre C; Egner, Ingrid; Krog, Simone; Aas, Sigve N; Suzuki, Katsuhiko; Markworth, James F; Coombes, Jeff S; Cameron-Smith, David; Raastad, Truls

    2017-02-01

    Cold water immersion and active recovery are common post-exercise recovery treatments. A key assumption about the benefits of cold water immersion is that it reduces inflammation in skeletal muscle. However, no data are available from humans to support this notion. We compared the effects of cold water immersion and active recovery on inflammatory and cellular stress responses in skeletal muscle from exercise-trained men 2, 24 and 48 h during recovery after acute resistance exercise. Exercise led to the infiltration of inflammatory cells, with increased mRNA expression of pro-inflammatory cytokines and neurotrophins, and the subcellular translocation of heat shock proteins in muscle. These responses did not differ significantly between cold water immersion and active recovery. Our results suggest that cold water immersion is no more effective than active recovery for minimizing the inflammatory and stress responses in muscle after resistance exercise. Cold water immersion and active recovery are common post-exercise recovery treatments. However, little is known about whether these treatments influence inflammation and cellular stress in human skeletal muscle after exercise. We compared the effects of cold water immersion versus active recovery on inflammatory cells, pro-inflammatory cytokines, neurotrophins and heat shock proteins (HSPs) in skeletal muscle after intense resistance exercise. Nine active men performed unilateral lower-body resistance exercise on separate days, at least 1 week apart. On one day, they immersed their lower body in cold water (10°C) for 10 min after exercise. On the other day, they cycled at a low intensity for 10 min after exercise. Muscle biopsies were collected from the exercised leg before, 2, 24 and 48 h after exercise in both trials. Exercise increased intramuscular neutrophil and macrophage counts, MAC1 and CD163 mRNA expression (P cold water immersion is no more effective than active recovery for reducing inflammation or

  20. Resveratrol attenuates peripheral and brain inflammation and reduces ischemic brain injury in aged female mice.

    Science.gov (United States)

    Jeong, Sae Im; Shin, Jin A; Cho, Sunghee; Kim, Hye Won; Lee, Ji Yoon; Kang, Jihee Lee; Park, Eun-Mi

    2016-08-01

    Resveratrol is known to improve metabolic dysfunction associated with obesity. Visceral obesity is a sign of aging and is considered a risk factor for ischemic stroke. In this study, we investigated the effects of resveratrol on inflammation in visceral adipose tissue and the brain and its effects on ischemic brain injury in aged female mice. Mice treated with resveratrol (0.1 mg/kg, p.o.) for 10 days showed reduced levels of interleukin-1β and tumor necrosis factor-α, as well as a reduction in the size of adipocytes in visceral adipose tissue. Resveratrol also reduced interleukin-1β and tumor necrosis factor-α protein levels and immunoglobulin G extravasation in the brain. Mice treated with resveratrol demonstrated smaller infarct size, improved neurological function, and blunted peripheral inflammation at 3 days postischemic stroke. These results showed that resveratrol counteracted inflammation in visceral adipose tissue and in the brain and reduced stroke-induced brain injury and peripheral inflammation in aged female mice. Therefore, resveratrol administration can be a valuable strategy for the prevention of age-associated and disease-provoked inflammation in postmenopausal women.

  1. Persistent Inflammation Leads to Proliferative Neoplasia and Loss of Smooth Muscle Cells in a Prostate Tumor Model

    Directory of Open Access Journals (Sweden)

    Andreas Birbach

    2011-08-01

    Full Text Available In prostate cancers, epidemiological data suggest a link between prostate inflammation and subsequent cancer development, but proof for this concept in a tumor model is lacking. A constitutively active version of IκB kinase 2 (IKK2, which is activated by many inflammatory stimuli, was expressed specifically in the prostate epithelium. Constitutive activation of the IKK2/nuclear factor κB axis was insufficient for prostate transformation. However, in combination with heterozygous loss of phosphatase and tensin homolog, IKK2 activation led to an increase in tumor size, formation of cribriform structures, and increase in fiber in the fibroblastic stroma. This phenotype was coupled with persistent inflammation evoked by chemokine expression in the epithelium and stroma. The hyperplastic and dysplastic epithelia correlated with changes evoked by decreased androgen receptor activation. Conversely, inflammation correlated with stromal changes highlighted by loss of smooth muscle cells around prostate ducts. Despite the loss of the smooth muscle barrier, tumors were rarely invasive in a C57BL/6 background. Data mining revealed that smooth muscle markers are also downregulated in human prostate cancers, and loss of these markers in primary tumors is associated with subsequent metastasis. In conclusion, our data show that loss of smooth muscle and invasiveness of the tumor are not coupled in our model, with inflammation leading to increased tumor size and a dedifferentiated stroma.

  2. Application of chemokine receptor antagonist with stents reduces local inflammation and suppresses cancer growth.

    Science.gov (United States)

    Mao, Ai-Wu; Jiang, Ting-Hui; Sun, Xian-Jun; Peng, Jian

    2015-11-01

    Severe pain and obstructive jaundice resulting from invasive cholangiocarcinoma or pancreatic carcinoma can be alleviated by implantation of biliary and duodenal stents. However, stents may cause local inflammation to have an adverse effect on the patients' condition and survival. So far, no efficient approaches have been applied to prevent the occurrence of stents-related inflammation. Here, we reported significantly higher levels of serum stromal cell-derived factor 1 (SDF-1) in the patients that developed stents-associated inflammation. A higher number of inflammatory cells have been detected in the cancer close to stent in the patients with high serum SDF-1. Since chemokine plays a pivotal role in the development of inflammation, we implanted an Alzet osmotic pump with the stents to gradually release AMD3100, a specific inhibitor binding of SDF-1 and its receptor C-X-C chemokine receptor 4 (CXCR4), at the site of stents in mice that had developed pancreatic cancer. We found that AMD3100 significantly reduced local inflammation and significantly inhibited cancer cell growth, resulting in improved survival of the mice that bore cancer. Moreover, the suppression of cancer growth may be conducted through modulation of CyclinD1, p21, and p27 in the cancer cells. Together, these data suggest that inhibition of chemokine signaling at the site of stents may substantially improve survival through suppression of stent-related inflammation and tumor growth.

  3. Low-level laser therapy on skeletal muscle inflammation: evaluation of irradiation parameters

    Science.gov (United States)

    Mantineo, Matías; Pinheiro, João P.; Morgado, António M.

    2014-09-01

    We evaluated the effect of different irradiation parameters in low-level laser therapy (LLLT) for treating inflammation induced in the gastrocnemius muscle of rats through cytokines concentration in systemic blood and analysis of muscle tissue. We used continuous (830 and 980 nm) and pulsed illuminations (830 nm). Animals were divided into five groups per wavelength (10, 20, 30, 40, and 50 mW), and a control group. LLLT was applied during 5 days with a constant irradiation time and area. TNF-α, IL-1β, IL-2, and IL-6 cytokines were quantified by ELISA. Inflammatory cells were counted using microscopy. Identical methodology was used with pulsed illumination. Average power (40 mW) and duty cycle were kept constant (80%) at five frequencies (5, 25, 50, 100, and 200 Hz). For continuous irradiation, treatment effects occurred for all doses, with a reduction of TNF-α, IL-1β, and IL-6 cytokines and inflammatory cells. Continuous irradiation at 830 nm was more effective, a result explained by the action spectrum of cytochrome c oxidase (CCO). Best results were obtained for 40 mW, with data suggesting a biphasic dose response. Pulsed wave irradiation was only effective for higher frequencies, a result that might be related to the rate constants of the CCO internal electron transfer process.

  4. Low-level laser therapy on skeletal muscle inflammation: evaluation of irradiation parameters.

    Science.gov (United States)

    Mantineo, Matías; Pinheiro, João P; Morgado, António M

    2014-09-01

    We evaluated the effect of different irradiation parameters in low-level laser therapy (LLLT) for treating inflammation induced in the gastrocnemius muscle of rats through cytokines concentration in systemic blood and analysis of muscle tissue. We used continuous (830 and 980 nm) and pulsed illuminations (830 nm). Animals were divided into five groups per wavelength (10, 20, 30, 40, and 50 mW), and a control group. LLLT was applied during 5 days with a constant irradiation time and area. TNF-α, IL-1β, IL-2, and IL-6 cytokines were quantified by ELISA. Inflammatory cells were counted using microscopy. Identical methodology was used with pulsed illumination. Average power (40 mW) and duty cycle were kept constant (80%) at five frequencies (5, 25, 50, 100, and 200 Hz). For continuous irradiation, treatment effects occurred for all doses, with a reduction of TNF-α, IL-1β, and IL-6 cytokines and inflammatory cells. Continuous irradiation at 830 nm was more effective, a result explained by the action spectrum of cytochrome c oxidase (CCO). Best results were obtained for 40 mW, with data suggesting a biphasic dose response. Pulsed wave irradiation was only effective for higher frequencies, a result that might be related to the rate constants of the CCO internal electron transfer process.

  5. Low Level Laser Therapy Reduces the Development of Lung Inflammation Induced by Formaldehyde Exposure.

    Directory of Open Access Journals (Sweden)

    Cristiane Miranda da Silva

    Full Text Available Lung diseases constitute an important public health problem and its growing level of concern has led to efforts for the development of new therapies, particularly for the control of lung inflammation. Low Level Laser Therapy (LLLT has been highlighted as a non-invasive therapy with few side effects, but its mechanisms need to be better understood and explored. Considering that pollution causes several harmful effects on human health, including lung inflammation, in this study, we have used formaldehyde (FA, an environmental and occupational pollutant, for the induction of neutrophilic lung inflammation. Our objective was to investigate the local and systemic effects of LLLT after FA exposure. Male Wistar rats were exposed to FA (1% or vehicle (distillated water during 3 consecutive days and treated or not with LLLT (1 and 5 hours after each FA exposure. Non-manipulated rats were used as control. 24 h after the last FA exposure, we analyzed the local and systemic effects of LLLT. The treatment with LLLT reduced the development of neutrophilic lung inflammation induced by FA, as observed by the reduced number of leukocytes, mast cells degranulated, and a decreased myeloperoxidase activity in the lung. Moreover, LLLT also reduced the microvascular lung permeability in the parenchyma and the intrapulmonary bronchi. Alterations on the profile of inflammatory cytokines were evidenced by the reduced levels of IL-6 and TNF-α and the elevated levels of IL-10 in the lung. Together, our results showed that LLLT abolishes FA-induced neutrophilic lung inflammation by a reduction of the inflammatory cytokines and mast cell degranulation. This study may provide important information about the mechanisms of LLLT in lung inflammation induced by a pollutant.

  6. Induction of Hemeoxygenase-1 Reduces Renal Oxidative Stress and Inflammation in Diabetic Spontaneously Hypertensive Rats

    Directory of Open Access Journals (Sweden)

    Ahmed A. Elmarakby

    2012-01-01

    Full Text Available The renoprotective mechanisms of hemeoxygenase-1 (HO-1 in diabetic nephropathy remain to be investigated. We hypothesize that HO-1 protects the kidney from diabetic insult via lowering renal oxidative stress and inflammation. We used control and diabetic SHR with or without HO-1 inducer cobalt protoporphyrin (CoPP treatment for 6 weeks. Urinary albumin excretion levels were significantly elevated in diabetic SHR compared to control and CoPP significantly attenuated albumin excretion. Immuno-histochemical analysis revealed an elevation in TGF-β staining together with increased urinary collagen excretion in diabetic versus control SHR, both of which were reduced with CoPP treatment. Renal oxidative stress markers were greater in diabetic SHR and reduced with CoPP treatment. The increase in renal oxidative stress was associated with an elevation in renal inflammation in diabetic SHR. CoPP treatment also significantly attenuated the markers of renal inflammation in diabetic SHR. In vitro inhibition of HO with stannous mesoporphyrin (SnMP increased glomerular NADPH oxidase activity and inflammation and blocked the anti-oxidant and anti-inflammatory effects of CoPP. These data suggest that the reduction of renal injury in diabetic SHR upon induction of HO-1 are associated with decreased renal oxidative stress and inflammation, implicating the role of HO-1 induction as a future treatment of diabetic nephropathy.

  7. Zinc sulfate inhibited inflammation of Der p2-induced airway smooth muscle cells by suppressing ERK1/2 and NF-κB phosphorylation.

    Science.gov (United States)

    Shih, Chia-Ju; Chiou, Ya-Ling

    2013-06-01

    Inflammation of airway smooth muscle cells (ASMCs) is believed to be important in causing airway hyperresponsiveness. However, zinc has been reported to be implicated in many kinds of cell inflammation. Little is known about the effect of zinc treatment on Der p2 (group II Dermatophagoides pteronyssinus)-induced inflammation from ASMCs. This study investigated effects and mechanisms of zinc in Der p2-treated ASMCs. Der p2-treated primary ASMCs were cultured with various concentrations of zinc sulfate (ZnSO₄) 6 μM, 12 μM, 24 μM, and 96 μM. The proteins and mRNAs of cytokines in ASMCs were examined by ELISA and real-time PCR. Intracellular zinc was stained with Zinquin fluorescence. The cell signaling protein expression was detected by Western blot. Der p2 was used to induce interleukin (IL)-6, IL-8, IL-1, and monocyte chemotactic protein-1 production of ASMCs. However, we found that 24 μM ZnSO₄ reduced these inflammatory mediators production of Der p2-treated primary ASMCs. Der p2-induced extracellular signal-regulated kinases (ERK) and nuclear factor-kappa B (NF-κB) phosphorylation were suppressed by supplementation of 24 μM ZnSO₄. Zinc is an anti-inflammatory agent that reduces inflammation of Der p2-treated ASMCs through the suppression of the ERK and NF-κB pathway. The results may be helpful for the development of effective treatments.

  8. Regenerated soleus muscle shows reduced creatine kinase efflux after contractile activity in vitro.

    Science.gov (United States)

    Baltusnikas, Juozas; Kilikevicius, Audrius; Venckunas, Tomas; Fokin, Andrej; Lionikas, Arimantas; Ratkevicius, Aivaras

    2015-02-01

    Regenerated skeletal muscles show less muscle damage after strenuous muscle exercise. The aim of the studies was to investigate if the regeneration is associated with reduced muscle creatine kinase (CK) efflux immediately after the exercise. Cryolesion was applied to the soleus muscle of 3-month-old C57BL/6J male mice. Then total CK efflux was assessed in vitro in the regenerated muscles without exercise or after 100 eccentric contractions. The same measurements were performed in the control muscles, which were not exposed to cryolesion. Regenerated muscles generated weaker (P resistance to damage after eccentric exercise.

  9. Oral Administration of Escin Inhibits Acute Inflammation and Reduces Intestinal Mucosal Injury in Animal Models

    Directory of Open Access Journals (Sweden)

    Minmin Li

    2015-01-01

    Full Text Available The present study aimed to investigate the effects of oral administration of escin on acute inflammation and intestinal mucosal injury in animal models. The effects of escin on carrageenan-induced paw edema in a rat model of acute inflammation, cecal ligation and puncture (CLP induced intestinal mucosal injury in a mouse model, were observed. It was shown that oral administration of escin inhibits carrageenan-induced paw edema and decreases the production of prostaglandin E2 (PGE2 and cyclooxygenase- (COX- 2. In CLP model, low dose of escin ameliorates endotoxin induced liver injury and intestinal mucosal injury and increases the expression of tight junction protein claudin-5 in mice. These findings suggest that escin effectively inhibits acute inflammation and reduces intestinal mucosal injury in animal models.

  10. Activation of AMPK improves inflammation and insulin resistance in adipose tissue and skeletal muscle from pregnant women.

    Science.gov (United States)

    Liong, Stella; Lappas, Martha

    2015-12-01

    Gestational diabetes mellitus (GDM) is characterised by maternal peripheral insulin resistance and inflammation. Sterile inflammation and bacterial infection are key mediators of this enhanced inflammatory response. Adenosine monophosphate (AMP)-activated kinase (AMPK), which is decreased in insulin resistant states, possesses potent pro-inflammatory actions. There are, however, no studies on the role of AMPK in pregnancies complicated by GDM. Thus, the aims of this study were (i) to compare the expression of AMPK in adipose tissue and skeletal muscle from women with GDM and normal glucose-tolerant (NGT) pregnant women; and (ii) to investigate the effect of AMPK activation on inflammation and insulin resistance induced by the bacterial endotoxin lipopolysaccharide (LPS) and the pro-inflammatory cytokine IL-1β. When compared to NGT pregnant women, AMPKα activity was significantly lower in women with GDM as evidenced by a decrease in threonine phosphorylation of AMPKα. Activation of AMPK, using two pharmacologically distinct compounds, AICAR or phenformin, significantly suppressed LPS- or IL-1β-induced gene expression and secretion of pro-inflammatory cytokine IL-6, the chemokines IL-8 and MCP-1, and COX-2 and subsequent prostaglandin release from adipose tissue and skeletal muscle. In addition, activators of AMPK decreased skeletal muscle insulin resistance induced by LPS or IL-1β as evidenced by increased insulin-stimulated phosphorylation of IRS-1, GLUT-4 expression and glucose uptake. These findings suggest that AMPK may play an important role in inflammation and insulin resistance.

  11. Muscle segment homeobox genes direct embryonic diapause by limiting inflammation in the uterus

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Jeeyeon; Burnum-Johnson, Kristin E.; Bartos, Amanda; Li, Yingju; Baker, Erin Shammel; Tilton, Susan C.; Webb-Robertson, Bobbie-Jo M.; Piehowski, Paul D.; Monroe, Matthew E.; Jegga, Anil; Murata, Shigeo; Hirota, Yasushi; Dey, Sudhansu K.

    2015-06-11

    Embryonic diapause (delayed implantation) is a reproductive strategy widespread in the animal kingdom. Under this condition, embryos at the blastocyst stage become dormant simultaneously with uterine quiescence until environmental or physiological conditions are favorable for the survival of the mother and newborn. Under favorable conditions, activation of the blastocyst and uterus ensues with implantation and progression of pregnancy. Although endocrine factors are known to participate in this process, the underlying molecular mechanism coordinating this phenomenon is not clearly understood. We recently found that uterine muscle segment homeobox (Msx) transcription factors are critical for the initiation and maintenance of delayed implantation in mice. To better understand why Msx genes are critical for delayed implantation, we compared uterine proteomics profiles between littermate floxed (Msx1/Msx2f/f) mice and mice with uterine deletion of Msx genes (Msx1/Msx2d/d) under delayed conditions. In Msx1/Msx2d/d uteri, pathways including protein translation, ubiquitin-proteasome system, inflammation, chaperone-mediated protein folding, and endoplasmic reticulum (ER) stress were enriched, and computational modeling showed intersection of these pathways on inflammatory responses. Indeed, increases in the ubiquitin-proteasome system and inflammation conformed to proteotoxic and ER stress in Msx1/Msx2d/d uteri under delayed conditions. Interestingly, treatment with a proteasome inhibitor bortezomib further exacerbated ER stress in Msx1/Msx2d/d uteri with aggravated inflammatory response, deteriorating rate of blastocyst recovery and failure to sustain delayed implantation. This study highlights a previously unrecognized role for Msx in preventing proteotoxic stress and inflammatory responses to coordinate embryo dormancy and uterine quiescence during embryonic diapause.

  12. Intramuscular administration of morphine reduces mustard-oil-induced craniofacial-muscle pain behavior in lightly anesthetized rats.

    Science.gov (United States)

    Han, Seung R; Lee, Min K; Lim, Koang H; Yang, Gwi Y; Jeon, Hye J; Ju, Jin S; Yoon, Young W; Kim, Sung K; Ahn, Dong K

    2008-04-01

    The present study investigated the role of peripheral opioid receptors in mustard oil-induced nociceptive behavior and inflammation in the masseter muscles of lightly anesthetized rats. Experiments were carried out on male Sprague-Dawley rats weighing between 300 and 400 g. After initial anesthesia with sodium pentobarbital (40 mg/kg, i.p.), one femoral vein was cannulated and connected to an infusion pump for the intravenous infusion of sodium pentobarbital. The rate of infusion was adjusted to provide a constant level of anesthesia. Mustard oil (MO, 30 microl) was injected into the mid-region of the left masseter muscle via a 30-gauge needle. Intramuscularly-administered morphine significantly reduced shaking behavior but not MO-induced inflammation. Intramuscular pretreatment with naloxone, an opioid receptor antagonist, reversed antinociception produced by intramuscularly-administered morphine, while intracisternal administration of naloxone did not affect the antinociception of peripheral morphine. Pretreatment with d-Pen-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2 (CTOP), a mu opioid receptor antagonist, but not naltrindole, a delta opioid receptor antagonist, nor norbinaltorphimine (nor-BNI), a kappa opioid receptor antagonist, reversed intramuscularly-administered morphine-induced antinociception. These results indicate that intramuscularly-administered morphine produces antinociception in craniofacial muscle nociception and that this intramuscularly-administered morphine-induced antinociception is mediated by a peripheral mu opioid receptor. Our observations further support the clinical approach of administering opioids in the periphery for the treatment of craniofacial muscle nociception.

  13. Curcuma oil reduces endothelial cell-mediated inflammation in postmyocardial ischemia/reperfusion in rats.

    Science.gov (United States)

    Manhas, Amit; Khanna, Vivek; Prakash, Prem; Goyal, Dipika; Malasoni, Richa; Naqvi, Arshi; Dwivedi, Anil K; Dikshit, Madhu; Jagavelu, Kumaravelu

    2014-09-01

    Endothelial cells initiated inflammation persisting in postmyocardial infarction needs to be controlled and moderated for avoiding fatal complications. Curcuma oil (C.oil, Herbal Medicament), a standardized hexane soluble fraction of Curcuma longa has possessed neuroprotective effect. However, its effect on myocardial ischemia/reperfusion (MI/RP) and endothelial cells remains incompletely defined. Here, using in vivo rat MI/RP injury model and in vitro cellular approaches using EA.hy926 endothelial cells, enzyme-linked immunosorbent assay, real-time polymerase chain reaction, and myograph, we provide evidence that with effective regimen and preconditioning of rats with C.oil (250 mg/kg, PO), before and after MI/RP surgery protects rats from MI/RP-induced injury. C.oil treatment reduces left ventricular ischemic area and endothelial cell-induced inflammation, specifically in the ischemic region (*P < 0.0001) and improved endothelial function by reducing the expression of proinflammatory genes and adhesion factors on endothelial cells both in vitro and in vivo. Furthermore, mechanistic studies have revealed that C.oil reduced the expression of adhesion factors like E-selectin (#P = 0.0016) and ICAM-1 ($P = 0.0069) in initiating endothelial cells-induced inflammation. In line to the real-time polymerase chain reaction expression data, C.oil reduced the adhesion of inflammatory cells to endothelial cells as assessed by the interaction of THP-1 monocytes with the endothelial cells using flow-based adhesion and under inflammatory conditions. These studies provide evidence that salutary effect of C.oil on MI/RP could be achieved with pretreatment and posttreatment of rats, C.oil reduced MI/RP-induced injury by reducing the endothelial cell-mediated inflammation, specifically in the ischemic zone of MI/RP rat heart.

  14. The type 2 diabetes drug liraglutide reduces chronic inflammation induced by irradiation in the mouse brain.

    Science.gov (United States)

    Parthsarathy, Vadivel; Hölscher, Christian

    2013-01-30

    Chronic inflammation in the brain is found in a range of neurodegenerative diseases such as Parkinson's or Alzheimer's disease. We have recently shown that analogues of the glucagon-like polypeptide 1 (GLP-1) such as liraglutide have potent neuroprotective properties in a mouse model of Alzheimer's disease. We also found a reduction of activated microglia in the brain. This finding suggests that GLP-1 analogues such as liraglutide have anti-inflammatory properties. To further characterise this property, we tested the effects of liraglutide on the chronic inflammation response induced by exposure of the brain to 6 Gy (X-ray). Animals were injected i.p. with 25 nmol/kg once daily for 30 days. Brains were analysed for cytokine levels, activated microglia and astrocyte levels, and nitrite levels as a measure for nitric oxide production and protein expression of iNOS. Exposure of the brain to 6 Gy induced a pronounced chronic inflammation response in the brain. The activated microglia load in the cortex and dentate gyrus region of hippocampus (Pbrains of animals treated with liraglutide. The results demonstrate that liraglutide is effective in reducing a number of parameters linked to the chronic inflammation response. Liraglutide or similar GLP-1 analogues may be a suitable treatment for reducing the chronic inflammatory response in the brain found in several neurodegenerative conditions. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Fatigue-related firing of muscle nociceptors reduces voluntary activation of ipsilateral but not contralateral lower limb muscles.

    Science.gov (United States)

    Kennedy, David S; Fitzpatrick, Siobhan C; Gandevia, Simon C; Taylor, Janet L

    2015-02-15

    During fatiguing upper limb exercise, maintained firing of group III/IV muscle afferents can limit voluntary drive to muscles within the same limb. It is not known if this effect occurs in the lower limb. We investigated the effects of group III/IV muscle afferent firing from fatigued ipsilateral and contralateral extensor muscles and ipsilateral flexor muscles of the knee on voluntary activation of the knee extensors. In three experiments, we examined voluntary activation of the knee extensors by measuring changes in superimposed twitches evoked by femoral nerve stimulation. Subjects attended on 2 days for each experiment. On one day a sphygmomanometer cuff occluded blood flow of the fatigued muscles to maintain firing of group III/IV muscle afferents. After a 2-min extensor contraction (experiment 1; n = 9), mean voluntary activation was lower with than without maintained ischemia (47 ± 19% vs. 87 ± 8%, respectively; P contraction (MVC) (experiment 2; n = 8), mean voluntary activation was also lower with than without ischemia (59 ± 21% vs. 79 ± 9%; P muscle afferents reduces voluntary activation of the fatigued muscle and nonfatigued antagonist muscles in the same leg. However, group III/IV muscle afferents from the fatigued left leg had no effect on the unfatigued right leg. This suggests that any "crossover" of central fatigue in the lower limbs is not mediated by group III/IV muscle afferents.

  16. Muscle relaxation of the foot reduces corticospinal excitability of hand muscles and enhances intracortical inhibition

    Directory of Open Access Journals (Sweden)

    Kouki eKato

    2016-05-01

    Full Text Available The object of this study was to clarify the effects of foot muscle relaxation on activity in the primary motor cortex of the hand area. Subjects were asked to volitionally relax the right foot from sustained contraction of either the dorsiflexor (tibialis anterior; TA relaxation or plantarflexor (soleus; SOL relaxation in response to an auditory stimulus. Single- and paired-pulse transcranial magnetic stimulation (TMS was delivered to the hand area of the left primary motor cortex at different time intervals before and after the onset of TA or SOL relaxation. Motor evoked potentials (MEPs were recorded from the right extensor carpi radialis (ECR and flexor carpi radialis (FCR. MEP amplitudes of ECR and FCR caused by single-pulse TMS temporarily decreased after TA and SOL relaxation onset, respectively, as compared with those of the resting control. Furthermore, short-interval intracortical inhibition (SICI of ECR evaluated with paired-pulse TMS temporarily increased after TA relaxation onset. Our findings indicate that muscle relaxation of the dorsiflexor reduced corticospinal excitability of the ipsilateral hand muscles. This is most likely caused by an increase in intracortical inhibition.

  17. Muscle Relaxation of the Foot Reduces Corticospinal Excitability of Hand Muscles and Enhances Intracortical Inhibition

    Science.gov (United States)

    Kato, Kouki; Muraoka, Tetsuro; Mizuguchi, Nobuaki; Nakagawa, Kento; Nakata, Hiroki; Kanosue, Kazuyuki

    2016-01-01

    The object of this study was to clarify the effects of foot muscle relaxation on activity in the primary motor cortex (M1) of the hand area. Subjects were asked to volitionally relax the right foot from sustained contraction of either the dorsiflexor (tibialis anterior; TA relaxation) or plantarflexor (soleus; SOL relaxation) in response to an auditory stimulus. Single- and paired-pulse transcranial magnetic stimulation (TMS) was delivered to the hand area of the left M1 at different time intervals before and after the onset of TA or SOL relaxation. Motor evoked potentials (MEPs) were recorded from the right extensor carpi radialis (ECR) and flexor carpi radialis (FCR). MEP amplitudes of ECR and FCR caused by single-pulse TMS temporarily decreased after TA and SOL relaxation onset, respectively, as compared with those of the resting control. Furthermore, short-interval intracortical inhibition (SICI) of ECR evaluated with paired-pulse TMS temporarily increased after TA relaxation onset. Our findings indicate that muscle relaxation of the dorsiflexor reduced corticospinal excitability of the ipsilateral hand muscles. This is most likely caused by an increase in intracortical inhibition. PMID:27242482

  18. Reduced HDAC2 in skeletal muscle of COPD patients

    National Research Council Canada - National Science Library

    Masako To; Elisabeth B Swallow; Kenich Akashi; Kosuke Haruki; S Amanda Natanek; Michael I Polkey; Kazuhiro Ito; Peter J Barnes

    2017-01-01

    Background Skeletal muscle weakness in chronic obstructive pulmonary disease (COPD) is an important predictor of poor prognosis, but the molecular mechanisms of muscle weakness in COPD have not been fully elucidated...

  19. Exacerbated Skeletal Muscle Inflammation and Calcification in the Acute Phase of Infection by Mexican Trypanosoma cruzi DTUI Strain

    Directory of Open Access Journals (Sweden)

    Andrea Vizcaíno-Castillo

    2014-01-01

    Full Text Available A murine model was used to study the histopathological aspects and cytokine expression levels in skeletal muscle provoked by the infection with Mexican TcI strains. BALB/c mice were inoculated with the virulent Querétaro strain and the nonvirulent Ninoa strain. Parasite numbers were counted in blood and skeletal muscle at different times post-infection, and real time-PCR expression levels of the cytokines IL-12, IL-4, IL-10, IFN-γ, and TNF-α were evaluated. In the acute phase of infection, a high parasitic load, both in blood and skeletal muscle, was detected. The histopathological analyses showed an exacerbated inflammation and granulomatous-like infiltrate with the Querétaro strain. Interestingly, extensive calcification areas were observed in the skeletal muscle surrounded by inflammatory infiltrates. TNF-α and IL-10 expression exhibited a significant increase at the peak of infection. In summary, Querétaro strain, a Mexican TcI strain, is virulent enough to induce high inflammation and calcification in skeletal muscle of the hind limbs, which could be related to high expression levels of TNF-α.

  20. Heart and skeletal muscle inflammation of farmed salmon is associated with infection with a novel reovirus.

    Directory of Open Access Journals (Sweden)

    Gustavo Palacios

    Full Text Available Atlantic salmon (Salmo salar L. mariculture has been associated with epidemics of infectious diseases that threaten not only local production, but also wild fish coming into close proximity to marine pens and fish escaping from them. Heart and skeletal muscle inflammation (HSMI is a frequently fatal disease of farmed Atlantic salmon. First recognized in one farm in Norway in 1999, HSMI was subsequently implicated in outbreaks in other farms in Norway and the United Kingdom. Although pathology and disease transmission studies indicated an infectious basis, efforts to identify an agent were unsuccessful. Here we provide evidence that HSMI is associated with infection with piscine reovirus (PRV. PRV is a novel reovirus identified by unbiased high throughput DNA sequencing and a bioinformatics program focused on nucleotide frequency as well as sequence alignment and motif analyses. Formal implication of PRV in HSMI will require isolation in cell culture and fulfillment of Koch's postulates, or prevention or modification of disease through use of specific drugs or vaccines. Nonetheless, as our data indicate that a causal relationship is plausible, measures must be taken to control PRV not only because it threatens domestic salmon production but also due to the potential for transmission to wild salmon populations.

  1. Yacon (Smallanthus sonchifolius Leaf Extract Attenuates Hyperglycemia and Skeletal Muscle Oxidative Stress and Inflammation in Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Klinsmann Carolo dos Santos

    2017-01-01

    Full Text Available The effects of hydroethanolic extract of Yacon leaves (HEYL on antioxidant, glycemic, and inflammatory biomarkers were tested in diabetic rats. Outcome parameters included glucose, insulin, interleukin-6 (IL-6, and hydrophilic antioxidant capacity (HAC in serum and IL-6, HAC, malondialdehyde (MDA, superoxide dismutase (SOD, catalase (CAT, and glutathione peroxidase (GPx in soleus. The rats (10/group were divided as follows: C, controls; C + Y, HEYL treated; DM, diabetic controls; and DM + Y, diabetic rats treated with HEYL. Diabetes mellitus was induced by administration of streptozotocin. C + Y and DM + Y groups received 100 mg/kg HEYL daily via gavage for 30 d. Hyperglycemia was improved in the DM + Y versus DM group. Insulin was reduced in DM versus C group. DM rats had higher IL-6 and MDA and lower HAC in the soleus muscle. HEYL treatment decreased IL-6 and MDA and increased HAC in DM rats. DM + Y rats had the highest CAT activity versus the other groups; GPx was higher in C + Y and DM + Y versus their respective controls. The apparent benefit of HEYL may be mediated via improving glucoregulation and ameliorating oxidative stress and inflammation, particularly in diabetic rats.

  2. Cardiac pathological changes of Atlantic salmon (Salmo salar L.) affected with heart and skeletal muscle inflammation (HSMI)

    DEFF Research Database (Denmark)

    Yousaf, Muhammad Naveed; Koppang, Erling Olaf; Skjødt, Karsten

    2012-01-01

    Heart and skeletal muscle inflammation (HSMI) is a disease of marine farmed Atlantic salmon where the pathological changes associated with the disease involve necrosis and an infiltration of inflammatory cells into different regions of the heart and skeletal muscle. The aim of this work...... was to characterize cardiac changes and inflammatory cell types associated with a clinical HSMI outbreak in Atlantic salmon using immunohistochemistry. Different immune cells and cardiac tissue responses associated with the disease were identified using different markers. The spectrum of inflammatory cells associated...

  3. Klotho expression is reduced in COPD airway epithelial cells: effects on inflammation and oxidant injury.

    Science.gov (United States)

    Gao, Wei; Yuan, Cheng; Zhang, Jingying; Li, Lingling; Yu, Like; Wiegman, Coen H; Barnes, Peter J; Adcock, Ian M; Huang, Mao; Yao, Xin

    2015-12-01

    COPD (chronic obstructive pulmonary disease) is associated with sustained inflammation, excessive injury, and accelerated lung aging. Human Klotho (KL) is an anti-aging protein that protects cells against inflammation and damage. In the present study, we quantified KL expression in the lungs of COPD patients and in an ozone-induced mouse model of COPD, and investigated the mechanisms that control KL expression and function in the airways. KL distribution and levels in human and mouse airways were measured by immunohistochemistry and Western blotting. The effect of CSE (cigarette smoke extract) on KL expression was detected in human bronchial epithelial cells. Moreover, the effect of KL on CSE-mediated inflammation and hydrogen peroxide-induced cellular injury/apoptosis was determined using siRNAs. KL expression was decreased in the lungs of smokers and further reduced in patients with COPD. Similarly, 6 weeks of exposure to ozone decreased KL levels in airway epithelial cells. CSE and TNFα (tumour necrosis factor α) decreased KL expression and release from airway epithelial cells, which was associated with enhanced pro-inflammatory cytokine expression. Moreover, KL depletion increased cell sensitivity to cigarette smoke-induced inflammation and oxidative stress-induced cell damage. These effects involved the NF-κB (nuclear factor κB), MAPK (mitogen-activated protein kinase) and Nrf2 (nuclear factor erythroid 2-related factor 2) pathways. Reduced KL expression in COPD airway epithelial cells was associated with increased oxidative stress, inflammation and apoptosis. These data provide new insights into the mechanisms associated with the accelerated lung aging in COPD development.

  4. Cerebrolysin reduces mechanical allodynia in a rodent model of peripheral inflammation.

    Science.gov (United States)

    Morales-Medina, Julio Cesar; Griffiths, Natalie H; Flores, Gonzalo; Mastranzo, Virginia M; Iannitti, Tommaso

    2017-03-06

    Cerebrolysin (Cbl) is a neuropeptide preparation of cerebroproteins that crosses the blood brain barrier displaying neuroprotective properties and promoting neurogenesis. Limited evidence exists on the efficacy of Cbl for the treatment of pain, with many studies focusing on neuropathic pain associated to diabetes. Therefore, we designed a study to test the hypothesis that Cbl would reduce mechanical allodynia in a rat model of peripheral inflammation induced by administration of complete Freund's adjuvant (CFA) in the hind paw. We found that acute administration of Cbl was effective in reducing mechanical allodynia but not peripheral inflammation in the CFA model of inflammatory pain. Our investigation supports further investigation into the therapeutic applications and mechanisms underlying the anti-allodynic effects of Cbl in inflammatory pain.

  5. Determination of Novel Strategies for Hastening Corneal Wound Healing and Reducing Tissue Inflammation

    Science.gov (United States)

    2011-10-01

    concentrations ranging from 1 to 10 f.!M, in the 375 mOsm medium, hastened complete TEER restoration to its isotonic control level. It occmTed as... CONTRACTING ORGANIZATION: REPORT DATE: October 2011 TYPE OF REPORT: Final PREPARED FOR...Wound W81XWH-09-2-0162 5a. CONTRACT NUMBER Healing and Reducing Tissue Inflammation 5b. GRANT NUMBER 5c. PROGRAM ELEMENT

  6. Reduced pain and inflammation in juvenile and adult rats fed a ketogenic diet.

    Directory of Open Access Journals (Sweden)

    David N Ruskin

    Full Text Available The ketogenic diet is a high-fat, low-carbohydrate regimen that forces ketone-based rather than glucose-based cellular metabolism. Clinically, maintenance on a ketogenic diet has been proven effective in treating pediatric epilepsy and type II diabetes, and recent basic research provides evidence that ketogenic strategies offer promise in reducing brain injury. Cellular mechanisms hypothesized to be mobilized by ketone metabolism and underlying the success of ketogenic diet therapy, such as reduced reactive oxygen species and increased central adenosine, suggest that the ketolytic metabolism induced by the diet could reduce pain and inflammation. To test the effects of a ketone-based metabolism on pain and inflammation directly, we fed juvenile and adult rats a control diet (standard rodent chow or ketogenic diet (79% fat ad libitum for 3-4 weeks. We then quantified hindpaw thermal nociception as a pain measure and complete Freund's adjuvant-induced local hindpaw swelling and plasma extravasation (fluid movement from the vasculature as inflammation measures. Independent of age, maintenance on a ketogenic diet reduced the peripheral inflammatory response significantly as measured by paw swelling and plasma extravasation. The ketogenic diet also induced significant thermal hypoalgesia independent of age, shown by increased hindpaw withdrawal latency in the hotplate nociception test. Anti-inflammatory and hypoalgesic diet effects were generally more robust in juveniles. The ketogenic diet elevated plasma ketones similarly in both age groups, but caused slowed body growth only in juveniles. These data suggest that applying a ketogenic diet or exploiting cellular mechanisms associated with ketone-based metabolism offers new therapeutic opportunities for controlling pain and peripheral inflammation, and that such a metabolic strategy may offer significant benefits for children and adults.

  7. Inflammation and Pyroptosis Mediate Muscle Expansion in an Interleukin-1β (IL-1β)-dependent Manner*

    Science.gov (United States)

    Haldar, Subhash; Dru, Christopher; Choudhury, Diptiman; Mishra, Rajeev; Fernandez, Ana; Biondi, Shea; Liu, Zhenqiu; Shimada, Kenichi; Arditi, Moshe; Bhowmick, Neil A.

    2015-01-01

    Muscle inflammation is often associated with its expansion. Bladder smooth muscle inflammation-induced cell death is accompanied by hyperplasia and hypertrophy as the primary cause for poor bladder function. In mice, DNA damage initiated by chemotherapeutic drug cyclophosphamide activated caspase 1 through the formation of the NLRP3 complex resulting in detrusor hyperplasia. A cyclophosphamide metabolite, acrolein, caused global DNA methylation and accumulation of DNA damage in a mouse model of bladder inflammation and in cultured bladder muscle cells. In correlation, global DNA methylation and NLRP3 expression was up-regulated in human chronic bladder inflammatory tissues. The epigenetic silencing of DNA damage repair gene, Ogg1, could be reversed by the use of demethylating agents. In mice, demethylating agents reversed cyclophosphamide-induced bladder inflammation and detrusor expansion. The transgenic knock-out of Ogg1 in as few as 10% of the detrusor cells tripled the proliferation of the remaining wild type counterparts in an in vitro co-culture titration experiment. Antagonizing IL-1β with Anakinra, a rheumatoid arthritis therapeutic, prevented detrusor proliferation in conditioned media experiments as well as in a mouse model of bladder inflammation. Radiation treatment validated the role of DNA damage in the NLRP3-associated caspase 1-mediated IL-1β secretory phenotype. A protein array analysis identified IGF1 to be downstream of IL-1β signaling. IL-1β-induced detrusor proliferation and hypertrophy could be reversed with the use of Anakinra as well as an IGF1 neutralizing antibody. IL-1β antagonists in current clinical practice can exploit the revealed mechanism for DNA damage-mediated muscular expansion. PMID:25596528

  8. Fatigue-related firing of distal muscle nociceptors reduces voluntary activation of proximal muscles of the same limb.

    Science.gov (United States)

    Kennedy, David S; McNeil, Chris J; Gandevia, Simon C; Taylor, Janet L

    2014-02-15

    With fatiguing exercise, firing of group III/IV muscle afferents reduces voluntary activation and force of the exercised muscles. These afferents can also act across agonist/antagonist pairs, reducing voluntary activation and force in nonfatigued muscles. We hypothesized that maintained firing of group III/IV muscle afferents after a fatiguing adductor pollicis (AP) contraction would decrease voluntary activation and force of AP and ipsilateral elbow flexors. In two experiments (n = 10) we examined voluntary activation of AP and elbow flexors by measuring changes in superimposed twitches evoked by ulnar nerve stimulation and transcranial magnetic stimulation of the motor cortex, respectively. Inflation of a sphygmomanometer cuff after a 2-min AP maximal voluntary contraction (MVC) blocked circulation of the hand for 2 min and maintained firing of group III/IV muscle afferents. After a 2-min AP MVC, maximal AP voluntary activation was lower with than without ischemia (56.2 ± 17.7% vs. 76.3 ± 14.6%; mean ± SD; P muscle afferents from the hand decreased voluntary drive and force of AP. Moreover, this effect decreased voluntary drive and torque of proximal unfatigued muscles, the elbow flexors. Fatigue-sensitive group III/IV muscle nociceptors act to limit voluntary drive not only to fatigued muscles but also to unfatigued muscles within the same limb.

  9. Host-Derived Smooth Muscle Cells Accumulate in Cardiac Allografts: Role of Inflammation and Monocyte Chemoattractant Protein 1

    OpenAIRE

    Piotr Religa; Grudzinska, Monika K; Krzysztof Bojakowski; Joanna Soin; Jerzy Nozynski; Michal Zakliczynski; Zbigniew Gaciong; Marian Zembala; Cecilia Söderberg-Nauclér

    2009-01-01

    Transplant arteriosclerosis is characterized by inflammation and intimal thickening caused by accumulation of smooth muscle cells (SMCs) both from donor and recipient. We assessed the relationship between clinical factors and the presence of host-derived SMCs in 124 myocardial biopsies from 26 consecutive patients who received hearts from opposite-sex donors. Clinical and demographic information was obtained from the patients' medical records. Host-derived SMCs accounted for 3.35+/-2.3% of ce...

  10. IGF-1 alleviates ox-LDL-induced inflammation via reducing HMGB1 release in HAECs

    Institute of Scientific and Technical Information of China (English)

    Xiaofeng Yu; Chunyan Xing; Yinghua Pan; Housheng Ma; Jie Zhang; Wenjun Li

    2012-01-01

    Atherosclerosis,a multifactorial chronic inflammatory response,is closely associated with oxidatively modified lowdensity lipoprotein (ox-LDL).High-mobility group box 1 (HMGB1) is a DNA-binding protein,which upon release from cells exhibits potent inflammatory action.Insulin-like growth factor 1 (IGF-1) can elicit a repertoire of cellular responses including proliferation and anti-apoptosis.However,the role of IGF-1 in inflammation is still unclear.In the present study,we aimed to investigate the role of IGF-1 in inflammation and the underlying mechanism.Human aortic endothelial cells were stimulated by ox-LDL (50 μg/ml) to induce inflammation.The expression of intercellular adhesion molecule 1 (ICAM-1) was assessed by western blot analysis and immunofluorescence.The release of HMGB1 was determined by enzyme-linked immunosorbent assay.IGF-1 receptor (IGF-1R) expression was assessed by reverse transcription-polymerase chain reaction and western blot analysis.IGF-1R phosphorylation was determined by western blot analysis.Ox-LDL stimulation reduced IGF-1R mRNA and protein expression but increased HMGB1 release.IGF-1 treatment decreased oxLDL-induced ICAM-1 expression potentially through reducing HMGB1 release,while picropodophyllin,an IGF-1R specific inhibitor,increased the inflammatory response.In conclusion,IGF-1 can alleviate ox-LDL-induced inflammation by reducing HMGB1 release,suggesting an unexpected beneficial role of IGF-1 in inflammatory disease.

  11. Inhibition of the prostaglandin receptor EP2 following status epilepticus reduces delayed mortality and brain inflammation.

    Science.gov (United States)

    Jiang, Jianxiong; Quan, Yi; Ganesh, Thota; Pouliot, Wendy A; Dudek, F Edward; Dingledine, Raymond

    2013-02-26

    Prostaglandin E2 is now widely recognized to play critical roles in brain inflammation and injury, although the responsible prostaglandin receptors have not been fully identified. We developed a potent and selective antagonist for the prostaglandin E2 receptor subtype EP2, TG6-10-1, with a sufficient pharmacokinetic profile to be used in vivo. We found that in the mouse pilocarpine model of status epilepticus (SE), systemic administration of TG6-10-1 completely recapitulates the effects of conditional ablation of cyclooxygenase-2 from principal forebrain neurons, namely reduced delayed mortality, accelerated recovery from weight loss, reduced brain inflammation, prevention of blood-brain barrier opening, and neuroprotection in the hippocampus, without modifying seizures acutely. Prolonged SE in humans causes high mortality and morbidity that are associated with brain inflammation and injury, but currently the only effective treatment is to stop the seizures quickly enough with anticonvulsants to prevent brain damage. Our results suggest that the prostaglandin receptor EP2 is critically involved in neuroinflammation and neurodegeneration, and point to EP2 receptor antagonism as an adjunctive therapeutic strategy to treat SE.

  12. Elevated biomarkers of inflammation are associated with reduced survival among breast cancer patients.

    Science.gov (United States)

    Pierce, Brandon L; Ballard-Barbash, Rachel; Bernstein, Leslie; Baumgartner, Richard N; Neuhouser, Marian L; Wener, Mark H; Baumgartner, Kathy B; Gilliland, Frank D; Sorensen, Bess E; McTiernan, Anne; Ulrich, Cornelia M

    2009-07-20

    PURPOSE Chronic inflammation is believed to contribute to the development and progression of breast cancer. Systemic C-reactive protein (CRP) and serum amyloid A (SAA) are measures of low-grade chronic inflammation and potential predictors of cancer survival. PATIENTS AND METHODS We evaluated the relationship between circulating markers of inflammation and breast cancer survival using data from the Health, Eating, Activity, and Lifestyle (HEAL) Study (a multiethnic prospective cohort study of women diagnosed with stage 0 to IIIA breast cancer). Circulating concentrations of CRP and SAA were measured approximately 31 months after diagnosis and tested for associations with disease-free survival (approximately 4.1 years of follow-up) and overall survival (approximately 6.9 years of follow-up) in 734 disease-free breast cancer survivors. Cox proportional hazards models were used with adjustment for potential confounding factors to generate hazard ratios (HRs) and 95% CIs. Results Elevated SAA and CRP were associated with reduced overall survival, regardless of adjustment for age, tumor stage, race, and body mass index (SAA P trend history of cardiovascular events and censoring cardiovascular disease deaths. Elevated CRP and SAA were also associated with reduced disease-free survival, although these associations were of borderline significance (SAA P trend = .04; CRP P trend = .07). CONCLUSION Circulating SAA and CRP may be important prognostic markers for long-term survival in breast cancer patients, independent of race, tumor stage, and body mass index.

  13. Modulation of visceral fat adipokine secretion by dietary fatty acids and ensuing changes in skeletal muscle inflammation.

    Science.gov (United States)

    Tishinsky, Justine M; De Boer, Anna A; Dyck, David J; Robinson, Lindsay E

    2014-01-01

    Given the link between obesity and insulin resistance, the role of adipose-derived factors in communicating with skeletal muscle to affect its function is important. We sought to determine if high fat diets modulate visceral adipose tissue (VAT) adipokines with subsequent effects on skeletal muscle inflammation and insulin sensitivity. Rats were fed (i) low fat (LF), (ii) high saturated fatty acid (SFA), or (iii) high SFA with n-3 polyunsaturated fatty acid (SFA/n-3 PUFA) diets for 4 weeks. VAT-derived adipokines were measured in adipose conditioned medium (ACM) after 72 h. Next, skeletal muscles from LF-fed rats were incubated for 8 h in (i) control buffer (CON), (ii) CON with 2 mmol·L(-1) palmitate (PALM, positive control), (iii) ACM from LF, (iv) ACM from SFA, or (v) ACM from SFA/n-3 PUFA. ACM from rats fed SFA and SFA/n-3 PUFA had increased (P ≤ 0.05) interleukin-6 (IL-6) (+31%) and monocyte chemoattractant protein-1 (MCP-1) (+30%). Adiponectin was decreased (-29%, P ≤ 0.05) in ACM from SFA, and this was prevented in SFA/n-3 PUFA ACM. Toll-like receptor 4 (TLR4) gene expression was increased (P ≤ 0.05) in PALM soleus muscle (+356%) and all ACM groups (+175%-191%). MCP-1 gene expression was elevated (P ≤ 0.05) in PALM soleus muscle (+163%) and soleus muscle incubated in ACM from animals fed SFA (+159%) and SFA/n-3 PUFA (+151%). Glucose transport was impaired (P ≤ 0.05) in PALM muscles but preserved in ACM groups. Acute exposure of muscle to fatty acid modulated adipokines affects skeletal muscle inflammatory gene expression but not insulin sensitivity.

  14. Mangiferin from Pueraria tuberosa reduces inflammation via inactivation of NLRP3 inflammasome.

    Science.gov (United States)

    Bulugonda, Ramakrishna K; Kumar, Kotha Anil; Gangappa, D; Beeda, Harshavardhan; Philip, Gundala Harold; Muralidhara Rao, Dowlathabad; Faisal, Syed M

    2017-02-20

    Recent reports have demonstrated the role of phyto-constituents in modulating inflammatory responses. Mangiferin isolated from Mangifera indica is known to induce potent anti-oxidative, anti-diabetic and anti-inflammatory activity. However, the molecular mechanism of its anti-inflammatory activity is not properly understood. In this study we have isolated Mangiferin from the tubers of Pueraria tuberosa (PT-Mangiferin) and analysed the mechanism of its potent anti-inflammatory effects in LPS stimulated RAW 264.7 mouse macrophage cell line and in a carrageenan induced air pouch model. PT-Mangiferin was non-toxic to primary cells but showed significant toxicity and apoptotic effect on cancerous cells. It significantly reduced the production of pro-inflammatory mediators (COX-2, iNOS and TNF-α) in LPS stimulated RAW 264.7 cells. Further, it has also reduced the generation of ROS and inhibited LPS induced NF-kB translocation in these cells. Additionally, PT-Mangiferin significantly reduced inflammation in a mouse air pouch model by inhibiting the infiltration of monocytes and neutrophils and reducing the production of cytokines. These effects were mediated via inactivation of NLRP3 inflammasome complex and its downstream signalling molecules. Taken together these results suggest that PT-Mangiferin is potent anti-inflammatory compound that reduces inflammation and holds promise in development of herbal based anti-inflammatory therapeutics in future.

  15. Mangiferin from Pueraria tuberosa reduces inflammation via inactivation of NLRP3 inflammasome

    Science.gov (United States)

    Bulugonda, Ramakrishna K.; kumar, Kotha Anil; Gangappa, D.; Beeda, Harshavardhan; Philip, Gundala Harold; Muralidhara Rao, Dowlathabad; Faisal, Syed M.

    2017-01-01

    Recent reports have demonstrated the role of phyto-constituents in modulating inflammatory responses. Mangiferin isolated from Mangifera indica is known to induce potent anti-oxidative, anti-diabetic and anti-inflammatory activity. However, the molecular mechanism of its anti-inflammatory activity is not properly understood. In this study we have isolated Mangiferin from the tubers of Pueraria tuberosa (PT-Mangiferin) and analysed the mechanism of its potent anti-inflammatory effects in LPS stimulated RAW 264.7 mouse macrophage cell line and in a carrageenan induced air pouch model. PT-Mangiferin was non-toxic to primary cells but showed significant toxicity and apoptotic effect on cancerous cells. It significantly reduced the production of pro-inflammatory mediators (COX-2, iNOS and TNF-α) in LPS stimulated RAW 264.7 cells. Further, it has also reduced the generation of ROS and inhibited LPS induced NF-kB translocation in these cells. Additionally, PT-Mangiferin significantly reduced inflammation in a mouse air pouch model by inhibiting the infiltration of monocytes and neutrophils and reducing the production of cytokines. These effects were mediated via inactivation of NLRP3 inflammasome complex and its downstream signalling molecules. Taken together these results suggest that PT-Mangiferin is potent anti-inflammatory compound that reduces inflammation and holds promise in development of herbal based anti-inflammatory therapeutics in future. PMID:28218280

  16. Precocious glucocorticoid exposure reduces skeletal muscle satellite cells in the fetal rat

    Science.gov (United States)

    Perinatal skeletal muscle growth rates are a function of protein and myonuclear accretion. Precocious exposure of the fetus to glucocorticoids (GLC) in utero impairs muscle growth. Reduced muscle protein synthesis rates contribute to this response, but the consequences for myonuclear hyperplasia are...

  17. Brain derived neurotrophic factor treatment reduces inflammation and apoptosis in experimental allergic encephalomyelitis.

    Science.gov (United States)

    Makar, Tapas K; Trisler, David; Sura, Karna T; Sultana, Shireen; Patel, Niraj; Bever, Christopher T

    2008-07-15

    Multiple sclerosis is an inflammatory disease of the central nervous system (CNS) which includes a neurodegenerative component. Brain derived neurotrophic factor (BDNF) is a neuroprotective agent which might be useful in preventing neurodegeneration but its application has been limited because the blood brain barrier restricts its access to the CNS. We have developed a novel delivery system for BDNF using transformed bone marrow stem cells (BMSC) and undertook studies of EAE to determine whether the delivery of BDNF could reduce inflammation and apoptosis. Mice receiving BDNF producing BMSC had reduced clinical impairment compared to control mice receiving BMSC that did not produce BDNF. Pathological examination of brain and spinal cord showed a reduction in inflammatory infiltrating cells in treated compared to control mice. Apoptosis was reduced in brain and spinal cord based on TUNEL and cleaved Caspase-3 staining. Consistent with the known mechanism of action of BDNF on apoptosis, Bcl-2 and Akt were increased in treated mice. Further studies suggested that these increases could be mediated by inhibition of both caspase dependent and caspase independent pathways. These results suggest that the BDNF delivered by the transformed bone marrow stem cells reduced clinical severity, inflammation and apoptosis in this model.

  18. A primary reduced TCA flux governs substrate oxidation in T2D skeletal muscle

    DEFF Research Database (Denmark)

    Gaster, Michael

    2012-01-01

    Our current knowledge on substrate oxidation in skeletal muscle in relation to insulin resistance and type 2 diabetes (T2D) originate mainly from in vivo studies. The oxidative capacity of skeletal muscle is highly influenced by physical activity, ageing, hormonal status, and fiber type composition...... further regulatory mechanism to our understanding of substrate oxidation in human skeletal muscle during normo- an pathophysiological conditions, focusing especially on the governing influence of a primary reduced TCA flux for the diabetic phenotype in skeletal muscle....

  19. Skeletal muscle apolipoprotein B expression reduces muscular triglyceride accumulation

    DEFF Research Database (Denmark)

    Bartels, Emil D; Ploug, Thorkil; Størling, Joachim

    2014-01-01

    . In this study, we investigated whether expression of a human apoB transgene affects triglyceride accumulation and insulin sensitivity in skeletal muscle in fat fed obese mice. Results. Expression of apoB and MTP mRNA and the human apoB transgene was seen in skeletal muscle of the transgene mice. Human apo...... insulin levels after 9 and 12 months, respectively, improved intra peritoneal glucose tolerance after 6 months, and a trend towards increased insulin-stimulated glucose uptake in isolated skeletal muscle. Conclusions. The data suggests that overexpression of apoB decreases skeletal muscle lipid......Abstract Background. Lipid accumulation in skeletal muscle is associated with impaired insulin sensitivity in type 2 diabetes. In cardiac myocytes, lipoprotein secretion controlled by apolipoproteinB (apoB) and microsomal triglyceride transfer protein (MTP) affects lipid homeostasis. Design...

  20. Sorafenib treatment during partial hepatectomy reduces tumorgenesis in an inflammation-associated liver cancer model

    Science.gov (United States)

    Salmon, Asher; Peretz, Tamar; Galun, Eithan; Axelrod, Jonathan H.; Sonnenblick, Amir

    2016-01-01

    The long-term prognosis after resection of hepatocellular carcinoma (HCC), which is one of the treatment options for early-stage HCC, remains unsatisfactory as a result of a high incidence of disease recurrence. Recent studies performed in murine models revealed a link between liver regeneration under chronic inflammation and hepatic tumorigenesis. Sorafenib is a potent drug for advanced HCC with multikinase inhibition activity. We propose that inhibition of signal transduction pathways which are activated during hepatectomy, using Sorafenib, will reduce accelerated tumorigenesis. To test this hypothesis, we studied the Mdr2-knockout (KO) mouse strain, a model of inflammation-associated cancer, which underwent partial hepatectomy (PHx) at three months of age, with or without Sorafenib. Here we show that Sorafenib treatment during PHx inhibited different signal transduction pathways at the multikinase levels, but did not result in increased morbidity or mortality. At the early stages after PHx, Sorafenib treatment had no effect on the course of proliferation, apoptosis and DNA repair in the regenerating liver, but resulted in decreased stellate cells activation and inflammatory response. Finally, we show that Sorafenib treatment during PHx at three months of age resulted in decreased fibrosis and tumor formation at 8.5 months. In conclusion our study indicates that short-term Sorafenib treatment during PHx is safe and effective in inhibiting inflammation-associated cancer, and is therefore a potential strategy for recurrence prevention in patients with early-stage HCC treated with PHx. PMID:26695439

  1. Angiotensinogen gene silencing reduces markers of inflammation and lipid accumulation in adipocytes

    Directory of Open Access Journals (Sweden)

    Wenting eXin

    2013-03-01

    Full Text Available Inflammatory adipokines secreted from adipose tissue are major contributors to obesity-associated inflammation and other metabolic dysfunctions. We and others have recently documented the contribution of adipose tissue renin-angiotensin system (RAS to the pathogenesis of obesity, inflammation and insulin resistance. We hypothesized that adipocyte-derived angiotensinogen (Agt plays a critical role in adipogenesis and/or lipogenesis as well as inflammation. This was tested using 3T3-L1 adipocytes, stably transfected with Agt-shRNA or scrambled Sc-shRNAcas a control. Transfected preadipocytes were differentiated and used to investigate the role of adipose Agt through microarray and PCR analyses and adipokine profiling. As expected, Agt gene silencing significantly reduced the expression of Agt and its hormone product angiotensin II (Ang II, as well as lipid accumulation in 3T3-L1 adipocytes. Microarray studies identified several genes involved in lipid metabolism and inflammatory pathways which were down-regulated by Agt gene inactivation, such as glycerol-3-phosphate dehydrogenase 1 (Gpd1, serum amyloid A 3 (Saa3, nucleotide-binding oligomerization domain containing 1 (Nod1 and signal transducer and activator of transcription 1 (Stat1. Mouse adipogenesis PCR arrays revealed lower expression levels of adipogenic/lipogenic genes such as peroxisome proliferator activated receptor gamma (Pparg, sterol regulatory element binding transcription factor 1 (Srebf1, adipogenin (Adig, and fatty acid binding protein 4 (Fabp4. Further, silencing of Agt gene significantly lowered expression of pro-inflammatory adipokines including interleukin-6 (IL-6, tumor necrosis factor-alpha (TNF-α, and monocyte chemotactic protein-1 (MCP-1. In conclusion, this study directly demonstrates critical effects of Agt in adipocyte metabolism and inflammation and further support a potential role for adipose Agt in the pathogenesis of obesity-associated metabolic alterations.

  2. Pharmacological inhibition of GSK-3 in a guinea pig model of LPS-induced pulmonary inflammation : II. Effects on skeletal muscle atrophy

    NARCIS (Netherlands)

    Verhees, Koen J. P.; Pansters, Nicholas A. M.; Baarsma, Hoeke A.; Remels, Alexander H. V.; Haegens, Astrid; de Theije, Chiel C.; Schols, Annemie M. W. J.; Gosens, Reinoud; Langen, Ramon C. J.

    2013-01-01

    Background: Chronic obstructive pulmonary disease (COPD) is accompanied by pulmonary inflammation and associated with extra-pulmonary manifestations, including skeletal muscle atrophy. Glycogen synthase kinase-3 (GSK-3) has been implicated in the regulation of muscle protein-and myonuclear turnover;

  3. Pharmacological inhibition of GSK-3 in a guinea pig model of LPS-induced pulmonary inflammation : II. Effects on skeletal muscle atrophy

    NARCIS (Netherlands)

    Verhees, Koen J. P.; Pansters, Nicholas A. M.; Baarsma, Hoeke A.; Remels, Alexander H. V.; Haegens, Astrid; de Theije, Chiel C.; Schols, Annemie M. W. J.; Gosens, Reinoud; Langen, Ramon C. J.

    2013-01-01

    Background: Chronic obstructive pulmonary disease (COPD) is accompanied by pulmonary inflammation and associated with extra-pulmonary manifestations, including skeletal muscle atrophy. Glycogen synthase kinase-3 (GSK-3) has been implicated in the regulation of muscle protein-and myonuclear turnover;

  4. R-roscovitine reduces lung inflammation induced by lipoteichoic acid and Streptococcus pneumoniae.

    Science.gov (United States)

    Hoogendijk, Arie J; Roelofs, Joris J T H; Duitman, Janwillem; van Lieshout, Miriam H P; Blok, Dana C; van der Poll, Tom; Wieland, Catharina W

    2012-09-25

    Bacterial pneumonia remains associated with high morbidity and mortality. The gram-positive pathogen Streptococcus pneumoniae is the most common cause of community-acquired pneumonia. Lipoteichoic acid (LTA) is an important proinflammatory component of the gram-positive bacterial cell wall. R-roscovitine, a purine analog, is a potent cyclin-dependent kinase (CDK)-1, -2, -5 and -7 inhibitor that has the ability to inhibit the cell cycle and to induce polymorphonuclear cell (PMN) apoptosis. We sought to investigate the effect of R-roscovitine on LTA-induced activation of cell lines with relevance for lung inflammation in vitro and on lung inflammation elicited by either LTA or viable S. pneumoniae in vivo. In vitro R-roscovitine enhanced apoptosis in PMNs and reduced tumor necrosis factor (TNF)-α and keratinocyte chemoattractant (KC) production in MH-S (alveolar macrophage) and MLE-12/MLE-15 (respiratory epithelial) cell lines. In vivo R-roscovitine treatment reduced PMN numbers in bronchoalveolar lavage fluid during LTA-induced lung inflammation; this effect was reversed by inhibiting apoptosis. Postponed treatment with R-roscovitine (24 and 72 h) diminished PMN numbers in lung tissue during gram-positive pneumonia; this step was associated with a transient increase in pulmonary bacterial loads. R-roscovitine inhibits proinflammatory responses induced by the gram-positive stimuli LTA and S. pneumoniae. R-roscovitine reduces PMN numbers in lungs upon LTA administration by enhancing apoptosis. The reduction in PMN numbers caused by R-roscovitine during S. pneumoniae pneumonia may hamper antibacterial defense.

  5. Dietary cocoa reduces metabolic endotoxemia and adipose tissue inflammation in high-fat fed mice.

    Science.gov (United States)

    Gu, Yeyi; Yu, Shan; Park, Jong Yung; Harvatine, Kevin; Lambert, Joshua D

    2014-04-01

    In diet-induced obesity, adipose tissue (AT) is in a chronic state of inflammation predisposing the development of metabolic syndrome. Cocoa (Theobroma cacao) is a polyphenol-rich food with putative anti-inflammatory activities. Here, we examined the impact and underlying mechanisms of action of cocoa on AT inflammation in high fat-fed mice. In the present study, male C57BL/6 J mice were fed a high fat diet (HF), a HF diet with 8% (w/w) unsweetened cocoa powder (HFC), or a low-fat diet (LF) for 18 weeks. Cocoa supplementation decreased AT mRNA levels of tumor necrosis factor-α, interleukin-6, inducible nitric oxide synthase, and EGF-like module-containing mucin-like hormone receptor-like 1 by 40-60% compared to HF group, and this was accompanied by decreased nuclear protein levels of nuclear factor-κB. Cocoa treatment reduced the levels of arachidonic acid in the AT by 33% compared to HF controls. Moreover, cocoa treatment also reduced protein levels of the eicosanoid-generating enzymes, adipose-specific phospholipase A2 and cyclooxygenase-2 by 53% and 55%, respectively, compared to HF-fed mice. Finally, cocoa treatment ameliorated metabolic endotoxemia (40% reduction in plasma endotoxin) and improved gut barrier function (as measured by increased plasma levels of glucagon-like peptide-2). In conclusion, the present study has shown for the first time that long-term cocoa supplementation can reduce AT inflammation in part by modulating eicosanoid metabolism and metabolic endotoxemia.

  6. Water-Soluble Components of Sesame Oil Reduce Inflammation and Atherosclerosis.

    Science.gov (United States)

    Narasimhulu, Chandrakala Aluganti; Selvarajan, Krithika; Burge, Kathryn Young; Litvinov, Dmitry; Sengupta, Bhaswati; Parthasarathy, Sampath

    2016-07-01

    Atherosclerosis, a major form of cardiovascular disease, is now recognized as a chronic inflammatory disease. Nonpharmacological means of treating chronic diseases have gained attention recently. We previously reported that sesame oil aqueous extract (SOAE) has anti-inflammatory properties, both in vitro and in vivo. In this study, we have investigated the antiatherosclerotic properties of SOAE, and the mechanisms, through genes and inflammatory markers, by which SOAE might modulate atherosclerosis. Low-density lipoprotein receptor (LDL-R) knockout female mice were fed with either a high-fat (HF) diet or an HF diet supplemented with SOAE. Plasma lipids and atherosclerotic lesions were quantified after 3 months of feeding. Plasma samples were used for global cytokine array. RNA was extracted from both liver tissue and the aorta, and used for gene analysis. The high-fat diet supplemented with SOAE significantly reduced atherosclerotic lesions, plasma cholesterol, and LDL cholesterol levels in LDL-R(-/-) mice. Plasma inflammatory cytokines were reduced in the SOAE diet-fed animals, but not significantly, demonstrating potential anti-inflammatory properties of SOAE. Gene analysis showed the HF diet supplemented with SOAE reduced gene expression involved in inflammation and induced genes involved in cholesterol metabolism and reverse cholesterol transport, an anti-inflammatory process. Our studies suggest that a SOAE-enriched diet could be an effective nonpharmacological treatment for atherosclerosis by controlling inflammation and regulating lipid metabolism.

  7. l-arginine modulates inflammation and muscle regulatory genes after a single session of resistance exercise in rats.

    Science.gov (United States)

    Morais, S R L; Brito, V G B; Mello, W G; Oliveira, S H P

    2017-06-26

    We investigated the skeletal muscle adaptation to l-arginine supplementation prior to a single session of resistance exercise (RE) during the early phase of muscle repair. Wistar rats were randomly assigned into non-exercised (Control), RE plus vehicle (RE); RE plus l-arginine (RE+L-arg) and RE plus aminoguanidine (RE+AG) groups. Animals received four doses of either vehicle (0.9% NaCl), l-arg (1 g/b.w.), or AG (iNOS inhibitor) (50 mg/b.w.). The animals performed a single RE session until the concentric failure (ladder climbing; 80% overload) and the skeletal muscles were harvested at 0, 8, 24, and 48 hours post-RE. The RE resulted in increased neutrophil infiltrate (24 hours post-RE) (3621 vs 11852; Pl-arginine supplementation attenuates neutrophil infiltration (5622; Pl-arg supplementation [atrogin-1 (0.6 fold; Pl-arg treated animals at 24 hours (2.8 vs 1.5 fold; Pl-arginine supplementation seems to attenuate the resolution of RE-induced muscle inflammation and up-regulates MyoD expression during the early phase of muscle repair. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Ibuprofen ingestion does not affect markers of post-exercise muscle inflammation.

    Directory of Open Access Journals (Sweden)

    Luke eVella

    2016-03-01

    Full Text Available Purpose: We investigated if oral ingestion of ibuprofen influenced leucocyte recruitment and infiltration following an acute bout of traditional resistance exercise. Methods: Sixteen male subjects were divided into two groups that received the maximum over-the-counter dose of ibuprofen (1200 mg d-1 or a similarly administered placebo following lower body resistance exercise. Muscle biopsies were taken from m.vastus lateralis and blood serum samples were obtained before and immediately after exercise, and at 3 h and 24 h after exercise. Muscle cross-sections were stained with antibodies against neutrophils (CD66b and MPO and macrophages (CD68. Muscle damage was assessed via creatine kinase and myoglobin in blood serum samples, and muscle soreness was rated on a ten-point pain scale. Results: The resistance exercise protocol stimulated a significant increase in the number of CD66b+ and MPO+ cells when measured 3 h post exercise. Serum creatine kinase, myoglobin and subjective muscle soreness all increased post-exercise. Muscle leucocyte infiltration, creatine kinase, myoglobin and subjective muscle soreness were unaffected by ibuprofen treatment when compared to placebo. There was also no association between increases in inflammatory leucocytes and any other marker of cellular muscle damage. Conclusion: Ibuprofen administration had no effect on the accumulation of neutrophils, markers of muscle damage or muscle soreness during the first 24 h of post-exercise muscle recovery.

  9. Melatonin Improves Outcomes of Heatstroke in Mice by Reducing Brain Inflammation and Oxidative Damage and Multiple Organ Dysfunction

    Directory of Open Access Journals (Sweden)

    Yu-Feng Tian

    2013-01-01

    Full Text Available We report here that when untreated mice underwent heat stress, they displayed thermoregulatory deficit (e.g., animals display hypothermia during room temperature exposure, brain (or hypothalamic inflammation, ischemia, oxidative damage, hypothalamic-pituitary-adrenal axis impairment (e.g., decreased plasma levels of both adrenocorticotrophic hormone and corticosterone during heat stress, multiple organ dysfunction or failure, and lethality. Melatonin therapy significantly reduced the thermoregulatory deficit, brain inflammation, ischemia, oxidative damage, hypothalamic-pituitary-adrenal axis impairment, multiple organ dysfunction, and lethality caused by heat stroke. Our data indicate that melatonin may improve outcomes of heat stroke by reducing brain inflammation, oxidative damage, and multiple organ dysfunction.

  10. The nociceptin/orphanin FQ receptor antagonist UFP-101 reduces microvascular inflammation to lipopolysaccharide in vivo.

    Directory of Open Access Journals (Sweden)

    Zoë L S Brookes

    Full Text Available Microvascular inflammation occurs during sepsis and the endogenous opioid-like peptide nociceptin/orphanin FQ (N/OFQ is known to regulate inflammation. This study aimed to determine the inflammatory role of N/OFQ and its receptor NOP (ORL1 within the microcirculation, along with anti-inflammatory effects of the NOP antagonist UFP-101 (University of Ferrara Peptide-101 in an animal model of sepsis (endotoxemia. Male Wistar rats (220 to 300 g were administered lipopolysaccharide (LPS for 24 h (-24 h, 1 mg kg(-1; -2 h, 1 mg kg(-1 i.v., tail vein. They were then either anesthetised for observation of the mesenteric microcirculation using fluorescent in vivo microscopy, or isolated arterioles (~200 µm were studied in vitro with pressure myography. 200 nM kg(-1 fluorescently labelled N/OFQ (FITC-N/OFQ, i.a., mesenteric artery bound to specific sites on the microvascular endothelium in vivo, indicating sparse distribution of NOP receptors. In vitro, arterioles (~200 µm dilated to intraluminal N/OFQ (10(-5M (32.6 + 8.4% and this response was exaggerated with LPS (62.0 +7.9%, p=0.031. In vivo, LPS induced macromolecular leak of FITC-BSA (0.02 g kg(-1 i.v. (LPS: 95.3 (86.7 to 97.9%, p=0.043 from post-capillary venules (<40 µm and increased leukocyte rolling as endotoxemia progressed (p=0.027, both being reduced by 150 nmol kg(-1 UFP-101 (i.v., jugular vein. Firstly, the rat mesenteric microcirculation expresses NOP receptors and secondly, NOP function (ability to induce dilation is enhanced with LPS. UFP-101 also reduced microvascular inflammation to endotoxemia in vivo. Hence inhibition of the microvascular N/OFQ-NOP pathway may have therapeutic potential during sepsis and warrants further investigation.

  11. VBP15, a glucocorticoid analogue, is effective at reducing allergic lung inflammation in mice.

    Directory of Open Access Journals (Sweden)

    Jesse M Damsker

    Full Text Available Asthma is a chronic inflammatory condition of the lower respiratory tract associated with airway hyperreactivity and mucus obstruction in which a majority of cases are due to an allergic response to environmental allergens. Glucocorticoids such as prednisone have been standard treatment for many inflammatory diseases for the past 60 years. However, despite their effectiveness, long-term treatment is often limited by adverse side effects believed to be caused by glucocorticoid receptor-mediated gene transcription. This has led to the pursuit of compounds that retain the anti-inflammatory properties yet lack the adverse side effects associated with traditional glucocorticoids. We have developed a novel series of steroidal analogues (VBP compounds that have been previously shown to maintain anti-inflammatory properties such as NFκB-inhibition without inducing glucocorticoid receptor-mediated gene transcription. This study was undertaken to determine the effectiveness of the lead compound, VBP15, in a mouse model of allergic lung inflammation. We show that VBP15 is as effective as the traditional glucocorticoid, prednisolone, at reducing three major hallmarks of lung inflammation--NFκB activity, leukocyte degranulation, and pro-inflammatory cytokine release from human bronchial epithelial cells obtained from patients with asthma. Moreover, we found that VBP15 is capable of reducing inflammation of the lung in vivo to an extent similar to that of prednisone. We found that prednisolone--but not VBP15 shortens the tibia in mice upon a 5 week treatment regimen suggesting effective dissociation of side effects from efficacy. These findings suggest that VBP15 may represent a potent and safer alternative to traditional glucocorticoids in the treatment of asthma and other inflammatory diseases.

  12. Sulforaphane inhibits restenosis by suppressing inflammation and the proliferation of vascular smooth muscle cells.

    Science.gov (United States)

    Kwon, Jin-Sook; Joung, Hosouk; Kim, Yong Sook; Shim, Young-Sun; Ahn, Youngkeun; Jeong, Myung Ho; Kee, Hae Jin

    2012-11-01

    Sulforaphane, a naturally occurring organosulfur compound in broccoli, has chemopreventive properties in cancer. However, the effects of sulforaphane in vascular diseases have not been examined. We therefore aimed to investigate the effects of sulforaphane on vascular smooth muscle cell (VSMC) proliferation and neointimal formation and the related mechanisms. The expression of vascular cell adhesion molecule 1 (VCAM-1) and intercellular adhesion molecule 1 (ICAM-1) was examined in VSMCs. The nuclear translocation of nuclear factor-κB (NF-κB) and GATA6 expression was examined in VSMCs and in a carotid artery injury model by Western blot and immunohistochemistry. We also investigated whether local delivery of sulforaphane affected neointimal formation. Sulforaphane inhibited the mRNA and protein expression of VCAM-1 induced by tumor necrosis factor (TNF)-α in VSMCs. Treatment of VSMCs with sulforaphane blocked TNF-α-induced IκBα degradation and NF-κB p65 and GATA6 expression. Furthermore, NF-κB p65 and GATA6 expression were reduced in sulforaphane-treated carotid injury sections. Notably, binding of GATA6 to the VCAM-1 promoter was dramatically reduced by sulforaphane. The MTT, BrdU incorporation, and in vitro scratch assays revealed that the proliferation and migration of VSMCs were reduced by sulforaphane. Furthermore, local administration of sulforaphane significantly reduced neointima formation 14 days after vascular injury in rats. Our results indicate that sulforaphane inhibits neointima formation via targeting of adhesion molecules through the suppression of NF-κB/GATA6. Furthermore, sulforaphane regulates migration and proliferation in VSMCs. Sulforaphane may be a potential therapeutic agent for preventing restenosis after vascular injury. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  13. Citrus flavonoid naringenin reduces mammary tumor cell viability, adipose mass, and adipose inflammation in obese ovariectomized mice.

    Science.gov (United States)

    Ke, Jia-Yu; Banh, Taylor; Hsiao, Yung-Hsuan; Cole, Rachel M; Straka, Shana R; Yee, Lisa D; Belury, Martha A

    2017-09-01

    Obesity-related metabolic dysregulation may be a link between obesity and postmenopausal breast cancer. Naringenin, a flavonoid abundant in grapefruits, displays beneficial effects on metabolic health and tumorigenesis. Here, we assessed the effects of naringenin on mammary tumor cell growth in vitro and in obese ovariectomized mice. Naringenin inhibited cell growth, increased phosphorylation of AMP-activated protein kinase (AMPK), down-regulated CyclinD1 expression, and induced cell death in E0771 mammary tumor cells. Obese ovariectomized mice were fed a high-fat (HF), high-fat diet with low naringenin (LN; 1% naringenin) or high-fat diet with high naringenin (HN; 3% naringenin) for 2 weeks and then implanted with E0771 cells in mammary adipose tissue. Three weeks after tumor cell implantation, naringenin accumulation in tumor was higher than that in mammary adipose tissue in HN mice. HN decreased body weight, adipose mass, adipocyte size, α-smooth muscle actin mRNA in mammary adipose tissue, and mRNA of inflammatory cytokines in both mammary and perigonadal adipose tissues. Compared with mice fed HF diet, HN delayed growth of tumors early but did not alter final tumor weight. Naringenin reduces adiposity and ameliorates adipose tissue inflammation, with a moderate inhibitory effect on tumor growth in obese ovariectomized mice. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Highly specific blockade of CCR5 inhibits leukocyte trafficking and reduces mucosal inflammation in murine colitis.

    Science.gov (United States)

    Mencarelli, Andrea; Cipriani, Sabrina; Francisci, Daniela; Santucci, Luca; Baldelli, Franco; Distrutti, Eleonora; Fiorucci, Stefano

    2016-08-05

    Targeted disruption of leukocyte trafficking to the gut represents a promising approach for the treatment of inflammatory bowel diseases (IBDs). CCR5, the shared receptor for MIP1α and β and RANTES, is expressed by multiple leukocytes. Here, we aimed to determine the role of CCR5 in mediating leukocyte trafficking in models of colitis, and evaluate the therapeutic potential of maraviroc, an orally active CCR5 antagonist used in the treatment of CCR5-tropic HIV. Acute and chronic colitis were induced by administration of DSS or TNBS to wild-type and CCR5(-/-) mice or adoptive transfer of splenic naïve CD4(+) T-cells from wild type or CCR5(-/-) mice into RAG-1(-/-). CCR5 gene ablation reduced the mucosal recruitment and activation of CCR5-bearing CD4(+) and CD11b(+) leukocytes, resulting in profound attenuation of signs and symptoms of inflammation in the TNBS and transfer models of colitis. In the DSS/TNBS colitis and in the transfer model, maraviroc attenuated development of intestinal inflammation by selectively reducing the recruitment of CCR5 bearing leukocytes. In summary, CCR5 regulates recruitment of blood leukocytes into the colon indicating that targeting CCR5 may offer therapeutic options in IBDs.

  15. Diethylcarbamazine Reduces Chronic Inflammation and Fibrosis in Carbon Tetrachloride- (CCl4- Induced Liver Injury in Mice

    Directory of Open Access Journals (Sweden)

    Sura Wanessa Santos Rocha

    2014-01-01

    Full Text Available This study investigated the anti-inflammatory effects of DEC on the CCl4-induced hepatotoxicity in C57BL/6 mice. Chronic inflammation was induced by i.p. administration of CCl4 0.5 μL/g of body weight through two injections a week for 6 weeks. DEC (50 mg/kg was administered by gavage for 12 days before finishing the CCl4 induction. Histological analyses of the DEC-treated group exhibited reduced inflammatory process and prevented liver necrosis and fibrosis. Immunohistochemical and immunofluorescence analyses of the DEC-treated group showed reduced COX-2, IL1β, MDA, TGF-β, and αSMA immunopositivity, besides exhibiting decreased IL1β, COX-2, NFκB, IFNγ, and TGFβ expressions in the western blot analysis. The DEC group enhanced significantly the IL-10 expression. The reduction of hepatic injury in the DEC-treated group was confirmed by the COX-2 and iNOS mRNA expression levels. Based on the results of the present study, DEC can be used as a potential anti-inflammatory drug for chronic hepatic inflammation.

  16. Enhanced fatty acid oxidation in adipocytes and macrophages reduces lipid-induced triglyceride accumulation and inflammation.

    Science.gov (United States)

    Malandrino, Maria Ida; Fucho, Raquel; Weber, Minéia; Calderon-Dominguez, María; Mir, Joan Francesc; Valcarcel, Lorea; Escoté, Xavier; Gómez-Serrano, María; Peral, Belén; Salvadó, Laia; Fernández-Veledo, Sonia; Casals, Núria; Vázquez-Carrera, Manuel; Villarroya, Francesc; Vendrell, Joan J; Serra, Dolors; Herrero, Laura

    2015-05-01

    Lipid overload in obesity and type 2 diabetes is associated with adipocyte dysfunction, inflammation, macrophage infiltration, and decreased fatty acid oxidation (FAO). Here, we report that the expression of carnitine palmitoyltransferase 1A (CPT1A), the rate-limiting enzyme in mitochondrial FAO, is higher in human adipose tissue macrophages than in adipocytes and that it is differentially expressed in visceral vs. subcutaneous adipose tissue in both an obese and a type 2 diabetes cohort. These observations led us to further investigate the potential role of CPT1A in adipocytes and macrophages. We expressed CPT1AM, a permanently active mutant form of CPT1A, in 3T3-L1 CARΔ1 adipocytes and RAW 264.7 macrophages through adenoviral infection. Enhanced FAO in palmitate-incubated adipocytes and macrophages reduced triglyceride content and inflammation, improved insulin sensitivity in adipocytes, and reduced endoplasmic reticulum stress and ROS damage in macrophages. We conclude that increasing FAO in adipocytes and macrophages improves palmitate-induced derangements. This indicates that enhancing FAO in metabolically relevant cells such as adipocytes and macrophages may be a promising strategy for the treatment of chronic inflammatory pathologies such as obesity and type 2 diabetes.

  17. Method to Reduce Muscle Fatigue During Transcutaneous Neuromuscular Electrical Stimulation in Major Knee and Ankle Muscle Groups.

    Science.gov (United States)

    Sayenko, Dimitry G; Nguyen, Robert; Hirabayashi, Tomoyo; Popovic, Milos R; Masani, Kei

    2015-09-01

    A critical limitation with transcutaneous neuromuscular electrical stimulation as a rehabilitative approach is the rapid onset of muscle fatigue during repeated contractions. We have developed a method called spatially distributed sequential stimulation (SDSS) to reduce muscle fatigue by distributing the center of electrical field over a wide area within a single stimulation site, using an array of surface electrodes. To extend the previous findings and to prove feasibility of the method by exploring the fatigue-reducing ability of SDSS for lower limb muscle groups in the able-bodied population, as well as in individuals with spinal cord injury (SCI). SDSS was delivered through 4 active electrodes applied to the knee extensors and flexors, plantarflexors, and dorsiflexors, sending a stimulation pulse to each electrode one after another with 90° phase shift between successive electrodes. Isometric ankle torque was measured during fatiguing stimulations using SDSS and conventional single active electrode stimulation lasting 2 minutes. We demonstrated greater fatigue-reducing ability of SDSS compared with the conventional protocol, as revealed by larger values of fatigue index and/or torque peak mean in all muscles except knee flexors of able-bodied individuals, and in all muscles tested in individuals with SCI. Our study has revealed improvements in fatigue tolerance during transcutaneous neuromuscular electrical stimulation using SDSS, a stimulation strategy that alternates activation of subcompartments of muscles. The SDSS protocol can provide greater stimulation times with less decrement in mechanical output compared with the conventional protocol. © The Author(s) 2014.

  18. Upregulation of skeletal muscle inflammatory genes links inflammation with insulin resistance in women with the metabolic syndrome.

    Science.gov (United States)

    Poelkens, Fleur; Lammers, Gerwen; Pardoel, Elisabeth M; Tack, Cees J; Hopman, Maria T E

    2013-10-01

    The metabolic syndrome, a combination of interrelated metabolic risk factors, is associated with insulin resistance and promotes the development of cardiovascular diseases and type 2 diabetes mellitus. There is a close link between inflammation and metabolic disease, but the responsible mechanisms remain elusive. The aim of this study was to identify differentially expressed genes in insulin-resistant skeletal muscle tissue of women with the metabolic syndrome compared with healthy control women. Women with the metabolic syndrome (n = 19) and healthy control women (n = 20) were extensively phenotyped, insulin sensitivity was measured using a hyperinsulinaemic euglycaemic clamp, and a skeletal muscle biopsy was obtained. Gene expression levels were compared between the two groups by microarrays. The upregulated genes in skeletal muscle of the women with the metabolic syndrome were primarily enriched for inflammatory response-associated genes. The three most significantly upregulated of this group, interleukin 6 receptor (IL6R), histone deacetylase 9 (HDAC9) and CD97 molecule (CD97), were significantly correlated with insulin resistance. Taken together, these findings suggest an important role for a number of inflammatory-related genes in the development of skeletal muscle insulin resistance.

  19. Muscle biopsy

    Science.gov (United States)

    ... Inflammatory diseases of muscle (such as polymyositis or dermatomyositis ) Diseases of the connective tissue and blood vessels ( ... disease that involves inflammation and a skin rash ( dermatomyositis ) Inherited muscle disorder ( Duchenne muscular dystrophy ) Inflammation of ...

  20. In Graves' disease, increased muscle tension and reduced elasticity of affected muscles is primarily caused by active muscle contraction

    NARCIS (Netherlands)

    H.J. Simonsz (Huib); G. Kommerell (Guntram)

    1989-01-01

    textabstractIn three patients with Graves' disease of recent onset, length-tension diagrams were made during surgery for squint under eyedrop anesthesia, while the other eye looked ahead, into the field of action, or out of the field of action of the muscle that was measured. The affected muscles

  1. In Graves' disease, increased muscle tension and reduced elasticity of affected muscles is primarily caused by active muscle contraction

    NARCIS (Netherlands)

    H.J. Simonsz (Huib); G. Kommerell (Guntram)

    1989-01-01

    textabstractIn three patients with Graves' disease of recent onset, length-tension diagrams were made during surgery for squint under eyedrop anesthesia, while the other eye looked ahead, into the field of action, or out of the field of action of the muscle that was measured. The affected muscles we

  2. Macrophage Plasticity and the Role of Inflammation in Skeletal Muscle Repair

    Directory of Open Access Journals (Sweden)

    Yacine Kharraz

    2013-01-01

    Full Text Available Effective repair of damaged tissues and organs requires the coordinated action of several cell types, including infiltrating inflammatory cells and resident cells. Recent findings have uncovered a central role for macrophages in the repair of skeletal muscle after acute damage. If damage persists, as in skeletal muscle pathologies such as Duchenne muscular dystrophy (DMD, macrophage infiltration perpetuates and leads to progressive fibrosis, thus exacerbating disease severity. Here we discuss how dynamic changes in macrophage populations and activation states in the damaged muscle tissue contribute to its efficient regeneration. We describe how ordered changes in macrophage polarization, from M1 to M2 subtypes, can differently affect muscle stem cell (satellite cell functions. Finally, we also highlight some of the new mechanisms underlying macrophage plasticity and briefly discuss the emerging implications of lymphocytes and other inflammatory cell types in normal versus pathological muscle repair.

  3. HIF1α deficiency reduces inflammation in a mouse model of proximal colon cancer

    Directory of Open Access Journals (Sweden)

    Dessislava N. Mladenova

    2015-09-01

    Full Text Available Hypoxia-inducible factor 1α (HIF1α is a transcription factor that regulates the adaptation of cells to hypoxic microenvironments, for example inside solid tumours. Stabilisation of HIF1α can also occur in normoxic conditions in inflamed tissue or as a result of inactivating mutations in negative regulators of HIF1α. Aberrant overexpression of HIF1α in many different cancers has led to intensive efforts to develop HIF1α-targeted therapies. However, the role of HIF1α is still poorly understood in chronic inflammation that predisposes the colon to carcinogenesis. We have previously reported that the transcription of HIF1α is upregulated and that the protein is stabilised in inflammatory lesions that are caused by the non-steroidal anti-inflammatory drug (NSAID sulindac in the mouse proximal colon. Here, we exploited this side effect of long-term sulindac administration to analyse the role of HIF1α in colon inflammation using mice with a Villin-Cre-induced deletion of Hif1α exon 2 in the intestinal epithelium (Hif1αΔIEC. We also analysed the effect of sulindac sulfide on the aryl hydrocarbon receptor (AHR pathway in vitro in colon cancer cells. Most sulindac-treated mice developed visible lesions, resembling the appearance of flat adenomas in the human colon, surrounded by macroscopically normal mucosa. Hif1αΔIEC mice still developed lesions but they were smaller than in the Hif1α-floxed siblings (Hif1αF/F. Microscopically, Hif1αΔIEC mice had significantly less severe colon inflammation than Hif1αF/F mice. Molecular analysis showed reduced MIF expression and increased E-cadherin mRNA expression in the colon of sulindac-treated Hif1αΔIEC mice. However, immunohistochemistry analysis revealed a defect of E-cadherin protein expression in sulindac-treated Hif1αΔIEC mice. Sulindac sulfide treatment in vitro upregulated Hif1α, c-JUN and IL8 expression through the AHR pathway. Taken together, HIF1α expression augments inflammation

  4. Effects of exercise training on atrophy gene expression in skeletal muscle of mice with chronic allergic lung inflammation

    Directory of Open Access Journals (Sweden)

    J.L.Q. Durigan

    2009-04-01

    Full Text Available We evaluated the effects of chronic allergic airway inflammation and of treadmill training (12 weeks of low and moderate intensity on muscle fiber cross-sectional area and mRNA levels of atrogin-1 and MuRF1 in the mouse tibialis anterior muscle. Six 4-month-old male BALB/c mice (28.5 ± 0.8 g per group were examined: 1 control, non-sensitized and non-trained (C; 2 ovalbumin sensitized (OA, 20 µg per mouse; 3 non-sensitized and trained at 50% maximum speed _ low intensity (PT50%; 4 non-sensitized and trained at 75% maximum speed _ moderate intensity (PT75%; 5 OA-sensitized and trained at 50% (OA+PT50%, 6 OA-sensitized and trained at 75% (OA+PT75%. There was no difference in muscle fiber cross-sectional area among groups and no difference in atrogin-1 and MuRF1 expression between C and OA groups. All exercised groups showed significantly decreased expression of atrogin-1 compared to C (1.01 ± 0.2-fold: PT50% = 0.71 ± 0.12-fold; OA+PT50% = 0.74 ± 0.03-fold; PT75% = 0.71 ± 0.09-fold; OA+PT75% = 0.74 ± 0.09-fold. Similarly significant results were obtained regarding MuRF1 gene expression compared to C (1.01 ± 0.23-fold: PT50% = 0.53 ± 0.20-fold; OA+PT50% = 0.55 ± 0.11-fold; PT75% = 0.35 ± 0.15-fold; OA+PT75% = 0.37 ± 0.08-fold. A short period of OA did not induce skeletal muscle atrophy in the mouse tibialis anterior muscle and aerobic training at low and moderate intensity negatively regulates the atrophy pathway in skeletal muscle of healthy mice or mice with allergic lung inflammation.

  5. Baicalein reduces airway injury in allergen and IL-13 induced airway inflammation.

    Directory of Open Access Journals (Sweden)

    Ulaganathan Mabalirajan

    Full Text Available BACKGROUND: Baicalein, a bioflavone present in the dry roots of Scutellaria baicalensis Georgi, is known to reduce eotaxin production in human fibroblasts. However, there are no reports of its anti-asthma activity or its effect on airway injury. METHODOLOGY/PRINCIPAL FINDINGS: In a standard experimental asthma model, male Balb/c mice that were sensitized with ovalbumin (OVA, treated with baicalein (10 mg/kg, ip or a vehicle control, either during (preventive use or after OVA challenge (therapeutic use. In an alternate model, baicalein was administered to male Balb/c mice which were given either IL-4 or IL-13 intranasally. Features of asthma were determined by estimating airway hyperresponsiveness (AHR, histopathological changes and biochemical assays of key inflammatory molecules. Airway injury was determined with apoptotic assays, transmission electron microscopy and assessing key mitochondrial functions. Baicalein treatment reduced AHR and inflammation in both experimental models. TGF-β₁, sub-epithelial fibrosis and goblet cell metaplasia, were also reduced. Furthermore, baicalein treatment significantly reduced 12/15-LOX activity, features of mitochondrial dysfunctions, and apoptosis of bronchial epithelia. CONCLUSION/SIGNIFICANCE: Our findings demonstrate that baicalein can attenuate important features of asthma, possibly through the reduction of airway injury and restoration of mitochondrial function.

  6. Neovestitol, an isoflavonoid isolated from Brazilian red propolis, reduces acute and chronic inflammation: involvement of nitric oxide and IL-6

    OpenAIRE

    Marcelo Franchin; Colón, David F.; da Cunha, Marcos G; Castanheira, Fernanda V. S.; André L. L. Saraiva; Bruno Bueno-Silva; Alencar,Severino M.; Cunha, Thiago M; Rosalen, Pedro L.

    2016-01-01

    Isoflavonoids have been largely studied due to their distinct biological activities identified thus far. Herein, we evaluated the activity of neovestitol, an isoflavonoid isolated from Brazilian red propolis, in acute and chronic inflammation. As for acute inflammation, we found that neovestitol reduced neutrophil migration, leukocyte rolling and adhesion, as well as expression of ICAM-1 in the mesenteric microcirculation during lipopolysaccharide-induced acute peritonitis. No changes were ob...

  7. Treatment with Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) Inhibitors to Reduce Cardiovascular Inflammation and Outcomes.

    Science.gov (United States)

    Liberale, Luca; Montecucco, Fabrizio; Camici, Giovanni G; Dallegri, Franco; Vecchie, Alessandra; Carbone, Federico; Bonaventura, Aldo

    2017-01-01

    Proprotein Convertase Subtilisin/Kexin type 9 (PCSK9) is a serine protease involved in cholesterol homeostasis. After binding to the complex low-density lipoprotein (LDL)-receptor, PCSK9 induces its intracellular degradation, thus reducing serum LDL clearance. PCSK9 is mainly secreted by the liver, but it is also expressed to a lesser extent in other organs. Apart from the well-known activity concerning hepatic LDL receptor-mediated pathway, PCSK9 has been supposed to potentially interfere with vascular inflammation in atherogenesis. Vascular smooth muscle cells have been demonstrated to produce higher amounts of PCSK9 as compared to endothelial cells especially in an inflammatory microenvironment. Low shear stress regions increase PCSK9 expression within SMCs, while higher shear stress gradually reduced PCSK9 expression. Moreover, a crosstalk between PCSK9 and reactive oxygen species has been also described. Oxidized LDL was shown to up regulate the expression of PCKS9 by influencing dose-dependently the secretion of interleukin (IL)-1α, IL-6, and tumor necrosis factor-α. After the identification of gene loss-of-function mutations and no detectable circulating protein levels, PCSK9 has attracted a great interest as an effective target for cholesterol-lowering therapies. Different strategies have been implemented to block the effects of both intracellular and circulating PCSK9. In particular, monoclonal antibodies represent the most promising approach and two of these, alirocumab and evolocumab, have been approved for clinical use in patients affected by familial hypercholesterolemia with encouraging results. In the next future, the improvement of the knowledge of the "pleiotropic" effects of PCSK9 inhibitors might unveil therapeutic potential on cardiovascular outcome independently on the cholesterol lowering activity. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. Prevention of carcinogen and inflammation-induced dermal cancer by oral rapamycin includes reducing genetic damage.

    Science.gov (United States)

    Dao, Vinh; Pandeswara, Srilakshmi; Liu, Yang; Hurez, Vincent; Dodds, Sherry; Callaway, Danielle; Liu, Aijie; Hasty, Paul; Sharp, Zelton D; Curiel, Tyler J

    2015-05-01

    Cancer prevention is a cost-effective alternative to treatment. In mice, the mTOR inhibitor rapamycin prevents distinct spontaneous, noninflammatory cancers, making it a candidate broad-spectrum cancer prevention agent. We now show that oral microencapsulated rapamycin (eRapa) prevents skin cancer in dimethylbenz(a)anthracene (DMBA)/12-O-tetradecanoylphorbol-13-acetate (TPA) carcinogen-induced, inflammation-driven carcinogenesis. eRapa given before DMBA/TPA exposure significantly increased tumor latency, reduced papilloma prevalence and numbers, and completely inhibited malignant degeneration into squamous cell carcinoma. Rapamycin is primarily an mTORC1-specific inhibitor, but eRapa did not reduce mTORC1 signaling in skin or papillomas, and did not reduce important proinflammatory factors in this model, including p-Stat3, IL17A, IL23, IL12, IL1β, IL6, or TNFα. In support of lack of mTORC1 inhibition, eRapa did not reduce numbers or proliferation of CD45(-)CD34(+)CD49f(mid) skin cancer initiating stem cells in vivo and marginally reduced epidermal hyperplasia. Interestingly, eRapa reduced DMBA/TPA-induced skin DNA damage and the hras codon 61 mutation that specifically drives carcinogenesis in this model, suggesting reduction of DNA damage as a cancer prevention mechanism. In support, cancer prevention and DNA damage reduction effects were lost when eRapa was given after DMBA-induced DNA damage in vivo. eRapa afforded picomolar concentrations of rapamycin in skin of DMBA/TPA-exposed mice, concentrations that also reduced DMBA-induced DNA damage in mouse and human fibroblasts in vitro. Thus, we have identified DNA damage reduction as a novel mechanism by which rapamycin can prevent cancer, which could lay the foundation for its use as a cancer prevention agent in selected human populations.

  9. Hyperbaric oxygen preconditioning improves postoperative cognitive dysfunction by reducing oxidant stress and inflammation.

    Science.gov (United States)

    Gao, Zhi-Xin; Rao, Jin; Li, Yuan-Hai

    2017-02-01

    Postoperative cognitive dysfunction is a crucial public health issue that has been increasingly studied in efforts to reduce symptoms or prevent its occurrence. However, effective advances remain lacking. Hyperbaric oxygen preconditioning has proved to protect vital organs, such as the heart, liver, and brain. Recently, it has been introduced and widely studied in the prevention of postoperative cognitive dysfunction, with promising results. However, the neuroprotective mechanisms underlying this phenomenon remain controversial. This review summarizes and highlights the definition and application of hyperbaric oxygen preconditioning, the perniciousness and pathogenetic mechanism underlying postoperative cognitive dysfunction, and the effects that hyperbaric oxygen preconditioning has on postoperative cognitive dysfunction. Finally, we conclude that hyperbaric oxygen preconditioning is an effective and feasible method to prevent, alleviate, and improve postoperative cognitive dysfunction, and that its mechanism of action is very complex, involving the stimulation of endogenous antioxidant and anti-inflammation defense systems.

  10. Proof of Concept: Matrix metalloproteinase inhibitor decreases inflammation and improves muscle insulin sensitivity in people with type 2 diabetes

    Directory of Open Access Journals (Sweden)

    Frankwich Karen

    2012-10-01

    Full Text Available Abstract Background Obesity is a state of subclinical inflammation resulting in loss of function of insulin receptors and decreased insulin sensitivity. Inhibition of the inflammatory enzymes, matrix metalloproteinases (MMPs, for 6 months in rodent models restores insulin receptor function and insulin sensitivity. Methods This 12-week double-blind, randomized, placebo (PL-controlled proof-of-concept study was performed to determine if the MMP inhibitor (MMPI, doxycycline, decreased global markers of inflammation and enhanced muscle insulin sensitivity in obese people with type 2 diabetes (DM2. The study included non-DM2 controls (n = 15, and DM2 subjects randomized to PL (n = 13 or doxycycline 100 mg twice daily (MMPI; n = 11. All participants were evaluated on Day 1; MMPI and PL groups were also evaluated after 84 days of treatment. Results There was a significant decrease in inflammatory markers C-reactive protein (P  Conclusions This study demonstrated short term treatment of people with diabetes with an MMPI resulted in decreased inflammation and improved insulin sensitivity. Larger, longer studies are warranted to determine if doxycycline can improve glucose control in people with diabetes. Trial Registration Clinicaltrials.gov NCT01375491

  11. Angiotensin 1-7 mediates renoprotection against diabetic nephropathy by reducing oxidative stress, inflammation, and lipotoxicity.

    Science.gov (United States)

    Mori, Jun; Patel, Vaibhav B; Ramprasath, Tharmarajan; Alrob, Osama Abo; DesAulniers, Jessica; Scholey, James W; Lopaschuk, Gary D; Oudit, Gavin Y

    2014-04-15

    The renin-angiotensin system, especially angiotensin II (ANG II), plays a key role in the development and progression of diabetic nephropathy. ANG 1-7 has counteracting effects on ANG II and is known to exert beneficial effects on diabetic nephropathy. We studied the mechanism of ANG 1-7-induced beneficial effects on diabetic nephropathy in db/db mice. We administered ANG 1-7 (0.5 mg·kg(-1)·day(-1)) or saline to 5-mo-old db/db mice for 28 days via implanted micro-osmotic pumps. ANG 1-7 treatment reduced kidney weight and ameliorated mesangial expansion and increased urinary albumin excretion, characteristic features of diabetic nephropathy, in db/db mice. ANG 1-7 decreased renal fibrosis in db/db mice, which correlated with dephosphorylation of the signal transducer and activator of transcription 3 (STAT3) pathway. ANG 1-7 treatment also suppressed the production of reactive oxygen species via attenuation of NADPH oxidase activity and reduced inflammation in perirenal adipose tissue. Furthermore, ANG 1-7 treatment decreased lipid accumulation in db/db kidneys, accompanied by increased expressions of renal adipose triglyceride lipase (ATGL). Alterations in ATGL expression correlated with increased SIRT1 expression and deacetylation of FOXO1. The upregulation of angiotensin-converting enzyme 2 levels in diabetic nephropathy was normalized by ANG 1-7. ANG 1-7 treatment exerts renoprotective effects on diabetic nephropathy, associated with reduction of oxidative stress, inflammation, fibrosis, and lipotoxicity. ANG 1-7 can represent a promising therapy for diabetic nephropathy.

  12. An Anacardiaceae preparation reduces the expression of inflammation-related genes in murine macrophages.

    Science.gov (United States)

    Leiro, J; García, D; Arranz, J A; Delgado, R; Sanmartín, M L; Orallo, F

    2004-08-01

    This study investigated the effects of an aqueous extract of the stem bark of Mangifera indica L. (Anacardiaceae; Vimang), which contains a defined mixture of components including polyphenols (principally mangiferin, MA), triterpenes, phytosteroids, fatty acids and microelements, on expression of inflammation mediators in inflammatory murine macrophages after stimulation in vitro with lipopolysaccharide (LPS) and interferon-gamma (IFN-gamma). In vitro treatment with Vimang at 4 microg/ml reduced levels of NOS-2 mRNA and NOS-2, while treatment at 40 microg/ml also reduced levels of COX-2 mRNA, COX-2, and prostaglandin E2 (PGE2). Results suggested that MA is involved in these effects. In vitro treatment with Vimang at 40 microg/ml also inhibited mRNA levels of the proinflammatory cytokines interleukin 1beta (IL-1beta), tumor necrosis factor alpha (TNF-alpha) and colony-stimulating factor (GM-CSF), but did not affect mRNA levels of IL-6 or tumor growth factor-beta (TGF-beta). Extracellular release of TNF-alpha by inflammatory macrophages was inhibited by in vitro treatment with Vimang at the same concentrations that showed inhibition of TNF-alpha mRNA levels. The inhibition of TNF-alpha production appears to be at least partially attributable to MA. Vimang at 4 microg/ml decreased mRNA levels of nuclear factor-kappaB (NF-kappaB) but did not affect expression of the NF-kappaB inhibitor (IkappaB). These data indicate that the potent anti-inflammatory effects of Vimang are due to selective modulation of the expression of inflammation-related genes, leading to attenuation of macrophage activation.

  13. Chenopodium ambrosioides L. Reduces Synovial Inflammation and Pain in Experimental Osteoarthritis.

    Directory of Open Access Journals (Sweden)

    Gustavo P Calado

    Full Text Available The chronicity of osteoarthritis (OA, characterized by pain and inflammation in the joints, is linked to a glutamate receptor, N-methyl-D-aspartate (NMDA. The use of plant species such as Chenopodium ambrosioides L. (Amaranthaceae as NMDA antagonists offers a promising perspective. This work aims to analyze the antinociceptive and anti-inflammatory responses of the crude hydroalcoholic extract (HCE of C. ambrosioides leaves in an experimental OA model. Wistar rats were separated into six groups (n = 24: clean (C, negative control (CTL-, positive control (CTL+, HCE0.5, HCE5 and HCE50. The first group received no intervention. The other groups received an intra-articular injection of sodium monoiodoacetate (MIA (8 mg/kg on day 0. After six hours, they were orally treated with saline, Maxicam plus (meloxicam + chondroitin sulfate and HCE at doses of 0.5 mg/kg, 5 mg/kg and 50 mg/kg, respectively. After three, seven and ten days, clinical evaluations were performed (knee diameter, mechanical allodynia, mechanical hyperalgesia and motor activity. On the tenth day, after euthanasia, synovial fluid and draining lymph node were collected for cellular quantification, and cartilage was collected for histopathological analysis. Finally, molecular docking was performed to evaluate the compatibility of ascaridole, a monoterpene found in HCE, with the NMDA receptor. After the third day, HCE reduced knee edema. HCE5 showed less cellular infiltrate in the cartilage and synovium and lower intensities of allodynia from the third day and of hyperalgesia from the seventh day up to the last treatment day. The HCE5 and HCE50 groups improved in forced walking. In relation to molecular docking, ascaridole showed NMDA receptor binding affinity. C. ambrosioides HCE was effective in the treatment of OA because it reduced synovial inflammation and behavioral changes due to pain. This effect may be related to the antagonistic effect of ascaridole on the NMDA receptor.

  14. Chenopodium ambrosioides L. Reduces Synovial Inflammation and Pain in Experimental Osteoarthritis.

    Science.gov (United States)

    Calado, Gustavo P; Lopes, Alberto Jorge O; Costa Junior, Livio M; Lima, Francisco das Chagas A; Silva, Lucilene A; Pereira, Wanderson S; Amaral, Flávia M M do; Garcia, João Batista S; Cartágenes, Maria do Socorro de S; Nascimento, Flávia R F

    2015-01-01

    The chronicity of osteoarthritis (OA), characterized by pain and inflammation in the joints, is linked to a glutamate receptor, N-methyl-D-aspartate (NMDA). The use of plant species such as Chenopodium ambrosioides L. (Amaranthaceae) as NMDA antagonists offers a promising perspective. This work aims to analyze the antinociceptive and anti-inflammatory responses of the crude hydroalcoholic extract (HCE) of C. ambrosioides leaves in an experimental OA model. Wistar rats were separated into six groups (n = 24): clean (C), negative control (CTL-), positive control (CTL+), HCE0.5, HCE5 and HCE50. The first group received no intervention. The other groups received an intra-articular injection of sodium monoiodoacetate (MIA) (8 mg/kg) on day 0. After six hours, they were orally treated with saline, Maxicam plus (meloxicam + chondroitin sulfate) and HCE at doses of 0.5 mg/kg, 5 mg/kg and 50 mg/kg, respectively. After three, seven and ten days, clinical evaluations were performed (knee diameter, mechanical allodynia, mechanical hyperalgesia and motor activity). On the tenth day, after euthanasia, synovial fluid and draining lymph node were collected for cellular quantification, and cartilage was collected for histopathological analysis. Finally, molecular docking was performed to evaluate the compatibility of ascaridole, a monoterpene found in HCE, with the NMDA receptor. After the third day, HCE reduced knee edema. HCE5 showed less cellular infiltrate in the cartilage and synovium and lower intensities of allodynia from the third day and of hyperalgesia from the seventh day up to the last treatment day. The HCE5 and HCE50 groups improved in forced walking. In relation to molecular docking, ascaridole showed NMDA receptor binding affinity. C. ambrosioides HCE was effective in the treatment of OA because it reduced synovial inflammation and behavioral changes due to pain. This effect may be related to the antagonistic effect of ascaridole on the NMDA receptor.

  15. Nifedipine treatment reduces resting calcium concentration, oxidative and apoptotic gene expression, and improves muscle function in dystrophic mdx mice.

    Science.gov (United States)

    Altamirano, Francisco; Valladares, Denisse; Henríquez-Olguín, Carlos; Casas, Mariana; López, Jose R; Allen, Paul D; Jaimovich, Enrique

    2013-01-01

    Duchenne Muscular Dystrophy (DMD) is a recessive X-linked genetic disease, caused by mutations in the gene encoding dystrophin. DMD is characterized in humans and in mdx mice by a severe and progressive destruction of muscle fibers, inflammation, oxidative/nitrosative stress, and cell death. In mdx muscle fibers, we have shown that basal ATP release is increased and that extracellular ATP stimulation is pro-apoptotic. In normal fibers, depolarization-induced ATP release is blocked by nifedipine, leading us to study the potential therapeutic effect of nifedipine in mdx muscles and its relation with extracellular ATP signaling. Acute exposure to nifedipine (10 µM) decreased [Ca(2+)]r, NF-κB activity and iNOS expression in mdx myotubes. In addition, 6-week-old mdx mice were treated with daily intraperitoneal injections of nifedipine, 1 mg/Kg for 1 week. This treatment lowered the [Ca(2+)]r measured in vivo in the mdx vastus lateralis. We demonstrated that extracellular ATP levels were higher in adult mdx flexor digitorum brevis (FDB) fibers and can be significantly reduced after 1 week of treatment with nifedipine. Interestingly, acute treatment of mdx FDB fibers with apyrase, an enzyme that completely degrades extracellular ATP to AMP, reduced [Ca(2+)]r to a similar extent as was seen in FDB fibers after 1-week of nifedipine treatment. Moreover, we demonstrated that nifedipine treatment reduced mRNA levels of pro-oxidative/nitrosative (iNOS and gp91(phox)/p47(phox) NOX2 subunits) and pro-apoptotic (Bax) genes in mdx diaphragm muscles and lowered serum creatine kinase (CK) levels. In addition, nifedipine treatment increased muscle strength assessed by the inverted grip-hanging test and exercise tolerance measured with forced swimming test in mdx mice. We hypothesize that nifedipine reduces basal ATP release, thereby decreasing purinergic receptor activation, which in turn reduces [Ca(2+)]r in mdx skeletal muscle cells. The results in this work open new perspectives

  16. Nifedipine treatment reduces resting calcium concentration, oxidative and apoptotic gene expression, and improves muscle function in dystrophic mdx mice.

    Directory of Open Access Journals (Sweden)

    Francisco Altamirano

    Full Text Available Duchenne Muscular Dystrophy (DMD is a recessive X-linked genetic disease, caused by mutations in the gene encoding dystrophin. DMD is characterized in humans and in mdx mice by a severe and progressive destruction of muscle fibers, inflammation, oxidative/nitrosative stress, and cell death. In mdx muscle fibers, we have shown that basal ATP release is increased and that extracellular ATP stimulation is pro-apoptotic. In normal fibers, depolarization-induced ATP release is blocked by nifedipine, leading us to study the potential therapeutic effect of nifedipine in mdx muscles and its relation with extracellular ATP signaling. Acute exposure to nifedipine (10 µM decreased [Ca(2+]r, NF-κB activity and iNOS expression in mdx myotubes. In addition, 6-week-old mdx mice were treated with daily intraperitoneal injections of nifedipine, 1 mg/Kg for 1 week. This treatment lowered the [Ca(2+]r measured in vivo in the mdx vastus lateralis. We demonstrated that extracellular ATP levels were higher in adult mdx flexor digitorum brevis (FDB fibers and can be significantly reduced after 1 week of treatment with nifedipine. Interestingly, acute treatment of mdx FDB fibers with apyrase, an enzyme that completely degrades extracellular ATP to AMP, reduced [Ca(2+]r to a similar extent as was seen in FDB fibers after 1-week of nifedipine treatment. Moreover, we demonstrated that nifedipine treatment reduced mRNA levels of pro-oxidative/nitrosative (iNOS and gp91(phox/p47(phox NOX2 subunits and pro-apoptotic (Bax genes in mdx diaphragm muscles and lowered serum creatine kinase (CK levels. In addition, nifedipine treatment increased muscle strength assessed by the inverted grip-hanging test and exercise tolerance measured with forced swimming test in mdx mice. We hypothesize that nifedipine reduces basal ATP release, thereby decreasing purinergic receptor activation, which in turn reduces [Ca(2+]r in mdx skeletal muscle cells. The results in this work open new

  17. Asynchronous Inflammation and Myogenic Cell Migration Limit Muscle Tissue Regeneration Mediated by a Cellular Scaffolds

    Science.gov (United States)

    2015-02-11

    over two-times that observed with muscle grafts, but they appeared to be less active, as gene expression of pro- and anti- inflammatory cytokines ( TNF -α...injury) the inflammatory and myogenic response to the muscle scaffold [16], which relies solely on host cell migration for regeneration [18]. Vital...cells [37] to induce myogenesis. Following injury, the type of the inflammatory response and the significance of transition from pro- to an anti

  18. Reduced muscle fiber force production and disrupted myofibril architecture in patients with chronic rotator cuff tears.

    Science.gov (United States)

    Mendias, Christopher L; Roche, Stuart M; Harning, Julie A; Davis, Max E; Lynch, Evan B; Sibilsky Enselman, Elizabeth R; Jacobson, Jon A; Claflin, Dennis R; Calve, Sarah; Bedi, Asheesh

    2015-01-01

    A persistent atrophy of muscle fibers and an accumulation of fat, collectively referred to as fatty degeneration, commonly occur in patients with chronic rotator cuff tears. The etiology of fatty degeneration and function of the residual rotator cuff musculature have not been well characterized in humans. We hypothesized that muscles from patients with chronic rotator cuff tears have reduced muscle fiber force production, disordered myofibrils, and an accumulation of fat vacuoles. The contractility of muscle fibers from biopsy specimens of supraspinatus muscles of 13 patients with chronic full-thickness posterosuperior rotator cuff tears was measured and compared with data from healthy vastus lateralis muscle fibers. Correlations between muscle fiber contractility, American Shoulder and Elbow Surgeons (ASES) scores, and tear size were analyzed. Histology and electron microscopy were also performed. Torn supraspinatus muscles had a 30% reduction in maximum isometric force production and a 29% reduction in normalized force compared with controls. Normalized supraspinatus fiber force positively correlated with ASES score and negatively correlated with tear size. Disordered sarcomeres were noted, along with an accumulation of lipid-laden macrophages in the extracellular matrix surrounding supraspinatus muscle fibers. Patients with chronic supraspinatus tears have significant reductions in muscle fiber force production. Force production also correlates with ASES scores and tear size. The structural and functional muscle dysfunction of the residual muscle fibers is independent of the additional area taken up by fibrotic tissue. This work may help establish future therapies to restore muscle function after the repair of chronically torn rotator cuff muscles. Copyright © 2015 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  19. Oral treatment with Bifidobacterium longum 51A reduced inflammation in a murine experimental model of gout.

    Science.gov (United States)

    Vieira, A T; Galvão, I; Amaral, F A; Teixeira, M M; Nicoli, J R; Martins, F S

    2015-01-01

    Gout is an acute inflammatory disease characterised by the presence of uric acid crystals in the joint. This event promotes neutrophil infiltration and activation that leads to tissue damage. We investigated here whether the oral administration of the probiotic strain Bifidobacterium longum 5(1A) (BL) could ameliorate monosodium urate crystal (MSU)-induced inflammation in a murine model of gout. Mice received oral administration of BL or saline daily for 7 days and then were injected with MSU in the knee cavity. Treatment with BL significantly alleviated the inflammatory parameters, as seen by reduced hypernociception, reduced neutrophil accumulation in the joint and myeloperoxidase activity in periarticular tissue. There was inhibition of the production of CXCL1 and interleukin(IL)-1β in joints. Levels of the anti-inflammatory cytokine IL-10 were significantly higher in the knee tissue of mice treated with than control mice injected with MSU. In conclusion, oral BL treatment reduced the inflammatory response in an experimental murine model of gout, suggesting it may be useful as an adjuvant treatment in patients with gout.

  20. The lung inflammation and skeletal muscle wasting induced by subchronic cigarette smoke exposure are not altered by a high-fat diet in mice.

    Science.gov (United States)

    Hansen, Michelle J; Chen, Hui; Jones, Jessica E; Langenbach, Shenna Y; Vlahos, Ross; Gualano, Rosa C; Morris, Margaret J; Anderson, Gary P

    2013-01-01

    Obesity and cigarette smoking independently constitute major preventable causes of morbidity and mortality and obesity is known to worsen lung inflammation in asthma. Paradoxically, higher body mass index (BMI) is associated with reduced mortality in smoking induced COPD whereas low BMI increases mortality risk. To date, no study has investigated the effect of a dietary-induced obesity and cigarette smoke exposure on the lung inflammation and loss of skeletal muscle mass in mice. Male BALB/c mice were exposed to 4 cigarettes/day, 6 days/week for 7 weeks, or sham handled. Mice consumed either standard laboratory chow (3.5 kcal/g, 12% fat) or a high fat diet (HFD, 4.3 kcal/g, 32% fat). Mice exposed to cigarette smoke for 7 weeks had significantly more inflammatory cells in the BALF (Pincreased (Pmuscles (soleus, tibialis anterior and gastrocnemius) of cigarette smoke-exposed mice weighed significantly less than sham-exposed mice (Pdecreased insulin-like growth factor-1 (IGF-1) mRNA expression in the gastrocnemius and tibialis anterior and IGF-1 protein in the gastrocnemius (Pmuscles of chow fed smoke-exposed mice (Pmuscle mass following cigarette smoke exposure in mice.

  1. A clinical evaluation of statin pleiotropy: statins selectively and dose-dependently reduce vascular inflammation.

    Directory of Open Access Journals (Sweden)

    Evelien van der Meij

    Full Text Available Statins are thought to reduce vascular inflammation through lipid independent mechanisms. Evaluation of such an effect in atherosclerotic disease is complicated by simultaneous effects on lipid metabolism. Abdominal aortic aneurysms (AAA are part of the atherosclerotic spectrum of diseases. Unlike atherosclerotic occlusive disease, AAA is not lipid driven, thus allowing direct evaluation of putative anti-inflammatory effects. The anti-inflammatory potency of increasing doses (0, 20 or 40 mg/day simvastatin or atorvastatin was evaluated in 63 patients that were at least 6 weeks on statin therapy and who underwent open AAA repair. A comprehensive analysis using immunohistochemistry, mRNA and protein analyses was applied on aortic wall samples collected during surgery. The effect of statins on AAA growth was analyzed in a separate prospective study in incorporating 142 patients. Both statins equally effectively and dose-dependently reduced aortic wall expression of NFκB regulated mediators (i.e. IL-6 (P<0.001 and MCP-1 (P<0.001; shifted macrophage polarization towards a M2 phenotype (P<0.0003; selectively reduced macrophage-related markers such as cathepsin K and S (P<0.009 and 0.0027 respectively, and ALOX5 (P<0.0009, and reduced vascular wall NFκB activity (40 mg/day group, P<0.016. No effect was found on other cell types. Evaluation of the clinical efficacy of statins to reduce AAA progression did not indicate an effect of statins on aneurysm growth (P<0.337. Hence, in the context of AAA the clinical relevance of statins pleiotropy appears minimal.

  2. Erdosteine reduces inflammation and time to first exacerbation postdischarge in hospitalized patients with AECOPD

    Directory of Open Access Journals (Sweden)

    Moretti M

    2015-10-01

    Full Text Available Maurizio Moretti,1 Stefano Fagnani2 1Respiratory Unit, Massa-Carrara Hospital and University of Pisa, Pisa, Italy; 2Medical Department, Edmond Pharma Srl, Paderno Dugnano, Milan, Italy Purpose: Mucolytics can improve disease outcome in patients with acute exacerbations of chronic obstructive pulmonary disease (AECOPD. The objectives of this study were to investigate the effects of erdosteine (ER, a mucolytic agent with antioxidant activity, on systemic inflammation, symptoms, recurrence of exacerbation, and time to first exacerbation postdischarge in hospitalized patients with AECOPD. Patients and methods: Patients admitted to hospital with AECOPD were randomized to receive either ER 900 mg daily (n=20 or a matching control (n=20. Treatment was continued for 10 days until discharge. Patients also received standard treatment with steroids, nebulized bronchodilators, and antibiotics as appropriate. Serum C-reactive protein levels, lung function, and breathlessness–cough–sputum scale were measured on hospital admission and thereafter at days 10 and 30 posttreatment. Recurrence of AECOPD-requiring antibiotics and/or oral steroids and time to first exacerbation in the 2 months (days 30 and 60 postdischarge were also assessed. Results: Mean serum C-reactive protein levels were lower in both groups at days 10 and 30, compared with those on admission, with significantly lower levels in the ER group at day 10. Improvements in symptom score and forced expiratory volume in 1 second were greater in the ER than the control group, which reached statistical significance on day 10. ER was associated with a 39% lower risk of exacerbations and a significant delay in time to first exacerbation (log-rank test P=0.009 and 0.075 at days 30 and 60, respectively compared with controls. Conclusion: Results confirm that the addition of ER (900 mg/d to standard treatment improves outcomes in patients with AECOPD. ER significantly reduced airway inflammation, improved

  3. Reduced blood flow to contracting skeletal muscle in ageing humans

    DEFF Research Database (Denmark)

    Nyberg, Michael Permin; Hellsten, Ylva

    2016-01-01

    consequences of ageing and physical inactivity can be challenging; yet, observations from cross-sectional and longitudinal studies on the effects of physical activity have provided some insight. Physical activity has the potential to offset the age-related decline in blood flow to contracting skeletal muscle...... and the ability for functional sympatholysis; an attenuation of the vasoconstrictor effect of sympathetic nervous activity. These vascular adaptations with physical activity are likely to be an effect of improved nitric oxide and ATP signaling. Collectively, precise matching of blood flow and O2 delivery to meet...

  4. Antibiotic and Antiinflammatory Therapy Transiently Reduces Inflammation and Hypercoagulation in Acutely SIV-Infected Pigtailed Macaques.

    Science.gov (United States)

    Pandrea, Ivona; Xu, Cuiling; Stock, Jennifer L; Frank, Daniel N; Ma, Dongzhu; Policicchio, Benjamin B; He, Tianyu; Kristoff, Jan; Cornell, Elaine; Haret-Richter, George S; Trichel, Anita; Ribeiro, Ruy M; Tracy, Russell; Wilson, Cara; Landay, Alan L; Apetrei, Cristian

    2016-01-01

    Increased chronic immune activation and inflammation are hallmarks of HIV/SIV infection and are highly correlated with progression to AIDS and development of non-AIDS comorbidities, such as hypercoagulability and cardiovascular disease. Intestinal dysfunction resulting in microbial translocation has been proposed as a lead cause of systemic immune activation and hypercoagulability in HIV/SIV infection. Our goal was to assess the biological and clinical impact of a therapeutic strategy designed to reduce microbial translocation through reduction of the microbial content of the intestine (Rifaximin-RFX) and of gut inflammation (Sulfasalazine-SFZ). RFX is an intraluminal antibiotic that was successfully used in patients with hepatic encephalopathy. SFZ is an antiinflammatory drug successfully used in patients with mild to moderate inflammatory bowel disease. Both these clinical conditions are associated with increased microbial translocation, similar to HIV-infected patients. Treatment was administered for 90 days to five acutely SIV-infected pigtailed macaques (PTMs) starting at the time of infection; seven untreated SIVsab-infected PTMs were used as controls. RFX+SFZ were also administered for 90 days to three chronically SIVsab-infected PTMs. RFX+SFZ administration during acute SIVsab infection of PTMs resulted in: significantly lower microbial translocation, lower systemic immune activation, lower viral replication, better preservation of mucosal CD4+ T cells and significantly lower levels of hypercoagulation biomarkers. This effect was clear during the first 40 days of treatment and was lost during the last stages of treatment. Administration of RFX+SFZ to chronically SIVsab-infected PTMs had no discernible effect on infection. Our data thus indicate that early RFX+SFZ administration transiently improves the natural history of acute and postacute SIV infection, but has no effect during chronic infection.

  5. Glucose-6-Phosphate Dehydrogenase Deficiency Improves Insulin Resistance With Reduced Adipose Tissue Inflammation in Obesity.

    Science.gov (United States)

    Ham, Mira; Choe, Sung Sik; Shin, Kyung Cheul; Choi, Goun; Kim, Ji-Won; Noh, Jung-Ran; Kim, Yong-Hoon; Ryu, Je-Won; Yoon, Kun-Ho; Lee, Chul-Ho; Kim, Jae Bum

    2016-09-01

    Glucose-6-phosphate dehydrogenase (G6PD), a rate-limiting enzyme of the pentose phosphate pathway, plays important roles in redox regulation and de novo lipogenesis. It was recently demonstrated that aberrant upregulation of G6PD in obese adipose tissue mediates insulin resistance as a result of imbalanced energy metabolism and oxidative stress. It remains elusive, however, whether inhibition of G6PD in vivo may relieve obesity-induced insulin resistance. In this study we showed that a hematopoietic G6PD defect alleviates insulin resistance in obesity, accompanied by reduced adipose tissue inflammation. Compared with wild-type littermates, G6PD-deficient mutant (G6PD(mut)) mice were glucose tolerant upon high-fat-diet (HFD) feeding. Intriguingly, the expression of NADPH oxidase genes to produce reactive oxygen species was alleviated, whereas that of antioxidant genes was enhanced in the adipose tissue of HFD-fed G6PD(mut) mice. In diet-induced obesity (DIO), the adipose tissue of G6PD(mut) mice decreased the expression of inflammatory cytokines, accompanied by downregulated proinflammatory macrophages. Accordingly, macrophages from G6PD(mut) mice greatly suppressed lipopolysaccharide-induced proinflammatory signaling cascades, leading to enhanced insulin sensitivity in adipocytes and hepatocytes. Furthermore, adoptive transfer of G6PD(mut) bone marrow to wild-type mice attenuated adipose tissue inflammation and improved glucose tolerance in DIO. Collectively, these data suggest that inhibition of macrophage G6PD would ameliorate insulin resistance in obesity through suppression of proinflammatory responses. © 2016 by the American Diabetes Association.

  6. Beta-escin has potent anti-allergic efficacy and reduces allergic airway inflammation.

    Science.gov (United States)

    Lindner, Ines; Meier, Christiane; Url, Angelika; Unger, Hermann; Grassauer, Andreas; Prieschl-Grassauer, Eva; Doerfler, Petra

    2010-05-21

    Type I hypersensitivity is characterized by the overreaction of the immune system against otherwise innocuous substances. It manifests as allergic rhinitis, allergic conjunctivitis, allergic asthma or atopic dermatitis if mast cells are activated in the respective organs. In case of systemic mast cell activation, life-threatening anaphylaxis may occur. Currently, type I hypersensitivities are treated either with glucocorticoids, anti-histamines, or mast cell stabilizers. Although these drugs exert a strong anti-allergic effect, their long-term use may be problematic due to their side-effects. In the course of a routine in vitro screening process, we identified beta-escin as a potentially anti-allergic compound. Here we tested beta-escin in two mouse models to confirm this anti-allergic effect in vivo. In a model of the early phase of allergic reactions, the murine passive cutaneous anaphylaxis model, beta-escin inhibited the effects of mast cell activation and degranulation in the skin and dose-dependently prevented the extravasation of fluids into the tissue. Beta-escin also significantly inhibited the late response after antigen challenge in a lung allergy model with ovalbumin-sensitized mice. Allergic airway inflammation was suppressed, which was exemplified by the reduction of leucocytes, eosinophils, IL-5 and IL-13 in the bronchoalveolar lavage fluid. Histopathological examinations further confirmed the reduced inflammation of the lung tissue. In both models, the inhibitory effect of beta-escin was comparable to the benchmark dexamethasone. We demonstrated in two independent murine models of type I hypersensitivity that beta-escin has potent anti-allergic properties. These results and the excellent safety profile of beta-escin suggest a therapeutic potential of this compound for a novel treatment of allergic diseases.

  7. Beta-escin has potent anti-allergic efficacy and reduces allergic airway inflammation

    Directory of Open Access Journals (Sweden)

    Unger Hermann

    2010-05-01

    Full Text Available Abstract Background Type I hypersensitivity is characterized by the overreaction of the immune system against otherwise innocuous substances. It manifests as allergic rhinitis, allergic conjunctivitis, allergic asthma or atopic dermatitis if mast cells are activated in the respective organs. In case of systemic mast cell activation, life-threatening anaphylaxis may occur. Currently, type I hypersensitivities are treated either with glucocorticoids, anti-histamines, or mast cell stabilizers. Although these drugs exert a strong anti-allergic effect, their long-term use may be problematic due to their side-effects. Results In the course of a routine in vitro screening process, we identified beta-escin as a potentially anti-allergic compound. Here we tested beta-escin in two mouse models to confirm this anti-allergic effect in vivo. In a model of the early phase of allergic reactions, the murine passive cutaneous anaphylaxis model, beta-escin inhibited the effects of mast cell activation and degranulation in the skin and dose-dependently prevented the extravasation of fluids into the tissue. Beta-escin also significantly inhibited the late response after antigen challenge in a lung allergy model with ovalbumin-sensitized mice. Allergic airway inflammation was suppressed, which was exemplified by the reduction of leucocytes, eosinophils, IL-5 and IL-13 in the bronchoalveolar lavage fluid. Histopathological examinations further confirmed the reduced inflammation of the lung tissue. In both models, the inhibitory effect of beta-escin was comparable to the benchmark dexamethasone. Conclusions We demonstrated in two independent murine models of type I hypersensitivity that beta-escin has potent anti-allergic properties. These results and the excellent safety profile of beta-escin suggest a therapeutic potential of this compound for a novel treatment of allergic diseases.

  8. Reducing Abnormal Muscle Coactivation After Stroke Using a Myoelectric-Computer Interface: A Pilot Study.

    Science.gov (United States)

    Wright, Zachary A; Rymer, W Zev; Slutzky, Marc W

    2014-06-01

    Background A significant factor in impaired movement caused by stroke is the inability to activate muscles independently. Although the pathophysiology behind this abnormal coactivation is not clear, reducing the coactivation could improve overall arm function. A myoelectric computer interface (MCI), which maps electromyographic signals to cursor movement, could be used as a treatment to help retrain muscle activation patterns. Objective To investigate the use of MCI training to reduce abnormal muscle coactivation in chronic stroke survivors. Methods A total of 5 healthy participants and 5 stroke survivors with hemiparesis participated in multiple sessions of MCI training. The level of arm impairment in stroke survivors was assessed using the upper-extremity portion of the Fugl-Meyer Motor Assessment (FMA-UE). Participants performed isometric activations of up to 5 muscles. Activation of each muscle was mapped to different directions of cursor movement. The MCI specifically targeted 1 pair of muscles in each participant for reduction of coactivation. Results Both healthy participants and stroke survivors learned to reduce abnormal coactivation of the targeted muscles with MCI training. Out of 5 stroke survivors, 3 exhibited objective reduction in arm impairment as well (improvement in FMA-UE of 3 points in each of these patients). Conclusions These results suggest that the MCI was an effective tool in directly retraining muscle activation patterns following stroke.

  9. Reduced Bone Strength and Muscle Force in Women 27 Years After Anorexia Nervosa

    National Research Council Canada - National Science Library

    Mueller, Sandro Manuel; Immoos, Marilyn; Anliker, Elmar; Drobnjak, Suzana; Boutellier, Urs; Toigo, Marco

    2015-01-01

    Context: A substantial body of research findings indicate that muscle mass and bone mass are reduced in populations of anorexic females, even in such populations whose anorexia nervosa had been in remission for longer periods. Objective...

  10. Evaluation of the effectiveness of kinesiotaping in reducing delayed onset muscle soreness of the biceps brachii

    Directory of Open Access Journals (Sweden)

    Boguszewski Dariusz

    2016-07-01

    Full Text Available biological regeneration in athletes. The aim of this study was to evaluate the effectiveness of the application of lymphatic kinesiotaping in reducing delayed onset muscle soreness of biceps brachii.

  11. Side-stream smoking reduces intestinal inflammation and increases expression of tight junction proteins

    Institute of Scientific and Technical Information of China (English)

    Hui Wang; Jun-Xing Zhao; Nan Hu; Jun Ren; Min Du; Mei-Jun Zhu

    2012-01-01

    AIM:To investigate the effect of side-stream smoking on gut microflora composition,intestinal inflammation and expression of tight junction proteins.METHODS:C57BL/6 mice were exposed to side-stream cigarette smoking for one hour daily over eight weeks.Cecal contents were collected for microbial composition analysis.Large intestine was collected for immunoblotting and quantitative reverse transcriptase polymerase chain reaction analyses of the inflammatory pathway and tight junction proteins.RESULTS:Side-stream smoking induced significant changes in the gut microbiota with increased mouse intestinal bacteria,Clostridium but decreased Fermicutes (Lactoccoci and Ruminococcus),Enterobacteriaceae family and Segmented filamentous baceteria compared to the control mice.Meanwhile,side-stream smoking inhibited the nuclear factor-κB pathway with reduced phosphorylation of p65 and IκBα,accompanied with unchanged mRNA expression of tumor necrosis factor-α or interleukin-6.The contents of tight junction proteins,claudin3 and ZO2 were up-regulated in the large intestine of mice exposed side-stream smoking.In addition,side-stream smoking increased c-Jun N-terminal kinase and p38 MAPK kinase signaling,while inhibiting AMP-activated protein kinase in the large intestine.CONCLUSION:Side-stream smoking altered gut microflora composition and reduced the inflammatory response,which was associated with increased expression of tight junction proteins.

  12. Propolis reduces Leishmania amazonensis-induced inflammation in the liver of BALB/c mice.

    Science.gov (United States)

    da Silva, Suelen S; Mizokami, Sandra S; Fanti, Jacqueline R; Miranda, Milena M; Kawakami, Natalia Y; Teixeira, Fernanda Humel; Araújo, Eduardo J A; Panis, Carolina; Watanabe, Maria A E; Sforcin, José M; Pavanelli, Wander R; Verri, Waldiceu A; Felipe, Ionice; Conchon-Costa, Ivete

    2016-04-01

    Experimental models of mouse paw infection with L. amazonensis show an induction of a strong inflammatory response in the skin, and parasitic migration may occur to secondary organs with consequent tissue injury. There are few studies focusing on the resolution of damage in secondary organs caused by Leishmania species-related cutaneous leishmaniasis. We investigated the propolis treatment effect on liver inflammation induced by Leishmania amazonensis infection in the mouse paw. BALB/c mice were infected in the hind paw with L. amazonensis (10(7)) promastigote forms. After 15 days, animals were treated daily with propolis (5 mg/kg), Glucantime (10 mg/kg), or with propolis plus Glucantime combined. After 60 days, mice were euthanized and livers were collected for inflammatory process analysis. Liver microscopic analysis showed that propolis reduced the inflammatory process compared to untreated infected control. There was a decrease of liver myeloperoxidase and N-acetyl-β-glucosaminidase activity levels, collagen fiber deposition, pro-inflammatory cytokine production, and plasma aspartate transaminase and alanine transaminase levels. Furthermore, propolis treatment enhanced anti-inflammatory cytokine levels and reversed hepatosplenomegaly. Our data demonstrated that daily low doses of Brazilian propolis reduced the secondary chronic inflammatory process in the liver caused by L. amazonensis subcutaneous infection in a susceptible mice strain.

  13. Spirulina and C-phycocyanin reduce cytotoxicity and inflammation-related genes expression of microglial cells.

    Science.gov (United States)

    Chen, Jin-Cherng; Liu, Kris Sun; Yang, Ting-Ju; Hwang, Juen-Haur; Chan, Yin-Ching; Lee, I-Te

    2012-11-01

    Our aim was to investigate the effects of Spirulina on BV-2 microglial cell cytotoxicity and inflammatory genes expression. BV-2 microglial cells were treated with lipopolysaccharide (LPS) (1 µg/ml) and various concentrations of Spirulina platensis water extract or its active component (C-phycocyanin (C-PC)) for 24 hours. Cytotoxicity (lactate dehydrogenase (LDH) release) and expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) mRNAs were assayed. LPS increased LDH production and up-regulated expression of iNOS, COX-2, TNF-α, and IL-6 by BV-2 microglial cells. However, Spirulina platensis water extract and C-PC significantly reduced LPS-induced LDH release, and expression of iNOS, COX-2, TNF-α, and IL-6 mRNAs. Spirulina can reduce the cytotoxicity and inhibit expression of inflammation-related genes of LPS-stimulated BV-2 microglial cells.

  14. Topical application of solubilized Reseda luteola extract reduces ultraviolet B-induced inflammation in vivo.

    Science.gov (United States)

    Casetti, F; Jung, W; Wölfle, U; Reuter, J; Neumann, K; Gilb, B; Wähling, A; Wagner, S; Merfort, I; Schempp, C M

    2009-09-04

    We investigated the skin tolerance and anti-inflammatory potential of a nanoparticular solubilisate of a luteolin-rich Reseda extract (s-RE) in two independent studies in vivo. Reseda luteola extract containing 40% flavonoids was solubilized with polysorbate, resulting in product micelles with a diameter of 10 (+/-1.5)nm. Standardized inflammation was induced by irradiating test areas on the back of healthy volunteers with defined doses of ultraviolet B (UVB). In the first study different concentrations of s-RE were tested in 10 volunteers to evaluate dose-dependency of anti-inflammatory effects of s-RE. In the second randomized, double-blind, placebo-controlled study a defined concentration of s-RE (2.5%w/w) was tested in 40 volunteers in comparison to the vehicle (glycerol) and hydrocortisone (1%w/w). s-RE dose-dependently reduced UVB-induced erythema when applied 30 min before irradiation. To a lesser extent, topical application of s-RE after irradiation also reduced UVB-induced erythema. s-RE was as effective as hydrocortisone, whereas the vehicle had no effect. Occlusive application of s-RE on non-irradiated test sites did not cause any skin irritation. Due to excellent skin tolerance combined with potent anti-inflammatory properties s-RE bears potential especially for the prevention but also for the treatment of inflammatory skin conditions such as UV-induced erythema.

  15. Rapamycin increases neuronal survival, reduces inflammation and astrocyte proliferation after spinal cord injury.

    Science.gov (United States)

    Goldshmit, Yona; Kanner, Sivan; Zacs, Maria; Frisca, Frisca; Pinto, Alexander R; Currie, Peter D; Pinkas-Kramarski, Ronit

    2015-09-01

    Spinal cord injury (SCI) frequently leads to a permanent functional impairment as a result of the initial injury followed by secondary injury mechanism, which is characterised by increased inflammation, glial scarring and neuronal cell death. Finding drugs that may reduce inflammatory cell invasion and activation to reduce glial scarring and increase neuronal survival is of major importance for improving the outcome after SCI. In the present study, we examined the effect of rapamycin, an mTORC1 inhibitor and an inducer of autophagy, on recovery from spinal cord injury. Autophagy, a process that facilitates the degradation of cytoplasmic proteins, is also important for maintenance of neuronal homeostasis and plays a major role in neurodegeneration after neurotrauma. We examined rapamycin effects on the inflammatory response, glial scar formation, neuronal survival and regeneration in vivo using spinal cord hemisection model in mice, and in vitro using primary cortical neurons and human astrocytes. We show that a single injection of rapamycin, inhibited p62/SQSTM1, a marker of autophagy, inhibited mTORC1 downstream effector p70S6K, reduced macrophage/neutrophil infiltration into the lesion site, microglia activation and secretion of TNFα. Rapamycin inhibited astrocyte proliferation and reduced the number of GFAP expressing cells at the lesion site. Finally, it increased neuronal survival and axonogenesis towards the lesion site. Our study shows that rapamycin treatment increased significantly p-Akt levels at the lesion site following SCI. Similarly, rapamycin treatment of neurons and astrocytes induced p-Akt elevation under stress conditions. Together, these findings indicate that rapamycin is a promising candidate for treatment of acute SCI condition and may be a useful therapeutic agent.

  16. Performance of repetitive tasks induces decreased grip strength and increased fibrogenic proteins in skeletal muscle: role of force and inflammation.

    Directory of Open Access Journals (Sweden)

    Samir M Abdelmagid

    Full Text Available BACKGROUND: This study elucidates exposure-response relationships between performance of repetitive tasks, grip strength declines, and fibrogenic-related protein changes in muscles, and their link to inflammation. Specifically, we examined forearm flexor digitorum muscles for changes in connective tissue growth factor (CTGF; a matrix protein associated with fibrosis, collagen type I (Col1; a matrix component, and transforming growth factor beta 1 (TGFB1; an upstream modulator of CTGF and collagen, in rats performing one of two repetitive tasks, with or without anti-inflammatory drugs. METHODOLOGY/RESULTS: To examine the roles of force versus repetition, rats performed either a high repetition negligible force food retrieval task (HRNF, or a high repetition high force handle-pulling task (HRHF, for up to 9 weeks, with results compared to trained only (TR-NF or TR-HF and normal control rats. Grip strength declined with both tasks, with the greatest declines in 9-week HRHF rats. Quantitative PCR (qPCR analyses of HRNF muscles showed increased expression of Col1 in weeks 3-9, and CTGF in weeks 6 and 9. Immunohistochemistry confirmed PCR results, and also showed greater increases of CTGF and collagen matrix in 9-week HRHF rats than 9-week HRNF rats. ELISA, and immunohistochemistry revealed greater increases of TGFB1 in TR-HF and 6-week HRHF, compared to 6-week HRNF rats. To examine the role of inflammation, results from 6-week HRHF rats were compared to rats receiving ibuprofen or anti-TNF-α treatment in HRHF weeks 4-6. Both treatments attenuated HRHF-induced increases in CTGF and fibrosis by 6 weeks of task performance. Ibuprofen attenuated TGFB1 increases and grip strength declines, matching our prior results with anti-TNFα. CONCLUSIONS/SIGNIFICANCE: Performance of highly repetitive tasks was associated with force-dependent declines in grip strength and increased fibrogenic-related proteins in flexor digitorum muscles. These changes were

  17. Fish protein intake induces fast-muscle hypertrophy and reduces liver lipids and serum glucose levels in rats.

    Science.gov (United States)

    Kawabata, Fuminori; Mizushige, Takafumi; Uozumi, Keisuke; Hayamizu, Kohsuke; Han, Li; Tsuji, Tomoko; Kishida, Taro

    2015-01-01

    In our previous study, fish protein was proven to reduce serum lipids and body fat accumulation by skeletal muscle hypertrophy and enhancing basal energy expenditure in rats. In the present study, we examined the precise effects of fish protein intake on different skeletal muscle fiber types and metabolic gene expression of the muscle. Fish protein increased fast-twitch muscle weight, reduced liver triglycerides and serum glucose levels, compared with the casein diet after 6 or 8 weeks of feeding. Furthermore, fish protein upregulated the gene expressions of a fast-twitch muscle-type marker and a glucose transporter in the muscle. These results suggest that fish protein induces fast-muscle hypertrophy, and the enhancement of basal energy expenditure by muscle hypertrophy and the increase in muscle glucose uptake reduced liver lipids and serum glucose levels. The present results also imply that fish protein intake causes a slow-to-fast shift in muscle fiber type.

  18. Biofeedback effectiveness to reduce upper limb muscle activity during computer work is muscle specific and time pressure dependent

    DEFF Research Database (Denmark)

    Vedsted, Pernille; Søgaard, Karen; Blangsted, Anne Katrine

    2011-01-01

    Continuous electromyographic (EMG) activity level is considered a risk factor in developing muscle disorders. EMG biofeedback is known to be useful in reducing EMG activity in working muscles during computer work. The purpose was to test the following hypotheses: (1) unilateral biofeedback from...... trapezius (TRA) can reduce bilateral TRA activity but not extensor digitorum communis (EDC) activity; (2) biofeedback from EDC can reduce activity in EDC but not in TRA; (3) biofeedback is more effective in no time constraint than in the time constraint working condition. Eleven healthy women performed...... computer work during two different working conditions (time constraint/no time constraint) while receiving biofeedback. Biofeedback was given from right TRA or EDC through two modes (visual/auditory) by the use of EMG or mechanomyography as biofeedback source. During control sessions (no biofeedback), EMG...

  19. Biofeedback effectiveness to reduce upper limb muscle activity during computer work is muscle specific and time pressure dependent

    DEFF Research Database (Denmark)

    Vedsted, Pernille; Søgaard, Karen; Blangsted, Anne Katrine

    2011-01-01

    Continuous electromyographic (EMG) activity level is considered a risk factor in developing muscle disorders. EMG biofeedback is known to be useful in reducing EMG activity in working muscles during computer work. The purpose was to test the following hypotheses: (1) unilateral biofeedback from...... trapezius (TRA) can reduce bilateral TRA activity but not extensor digitorum communis (EDC) activity; (2) biofeedback from EDC can reduce activity in EDC but not in TRA; (3) biofeedback is more effective in no time constraint than in the time constraint working condition. Eleven healthy women performed...... computer work during two different working conditions (time constraint/no time constraint) while receiving biofeedback. Biofeedback was given from right TRA or EDC through two modes (visual/auditory) by the use of EMG or mechanomyography as biofeedback source. During control sessions (no biofeedback), EMG...

  20. Neutrophilia and an Anti-Inflammatory Drug as Markers of Inflammation in Delayed Muscle Soreness.

    Science.gov (United States)

    Smith, Lucille L.; And Others

    This study reexamined the concept that delayed muscle soreness (DMS) is a form of inflammatory pain. This was accomplished by having 32 male volunteers perform exercise known to induce DMS and then assess the total and differential white blood cell changes. In addition, an anti-inflammatory drug, idomethacin, was administered to determine whether…

  1. Fibrosis and inflammation are greater in muscles of beta-sarcoglycan-null mouse than mdx mouse.

    Science.gov (United States)

    Gibertini, Sara; Zanotti, Simona; Savadori, Paolo; Curcio, Maurizio; Saredi, Simona; Salerno, Franco; Andreetta, Francesca; Bernasconi, Pia; Mantegazza, Renato; Mora, Marina

    2014-05-01

    The Sgcb-null mouse, with knocked-down β-sarcoglycan, develops severe muscular dystrophy as in type 2E human limb girdle muscular dystrophy. The mdx mouse, lacking dystrophin, is the most used model for Duchenne muscular dystrophy (DMD). Unlike DMD, the mdx mouse has mild clinical features and shows little fibrosis in limb muscles. To characterize ECM protein deposition and the progression of muscle fibrosis, we evaluated protein and transcript levels of collagens I, III and VI, decorin, and TGF-β1, in quadriceps and diaphragm, at 2, 4, 8, 12, 26, and 52 weeks in Sgcb-null mice, and protein levels at 12, 26, and 52 weeks in mdx mice. In Sgcb-null mice, severe morphological disruption was present from 4 weeks in both quadriceps and diaphragm, and included conspicuous deposition of extracellular matrix components. Histopathological features of Sgcb-null mouse muscles were similar to those of age-matched mdx muscles at all ages examined, but, in the Sgcb-null mouse, the extent of connective tissue deposition was generally greater than mdx. Furthermore, in the Sgcb-null mouse, the amount of all three collagen isoforms increased steadily, while, in the mdx, they remained stable. We also found that, at 12 weeks, macrophages were significantly more numerous in mildly inflamed areas of Sgcb-null quadriceps compared to mdx quadriceps (but not in highly inflamed regions), while, in the diaphragm, macrophages did not differ significantly between the two models, in either region. Osteopontin mRNA was also significantly greater at 12 weeks in laser-dissected highly inflamed areas of the Sgcb-null quadriceps compared to the mdx quadriceps. TGF-β1 was present in areas of degeneration-regeneration, but levels were highly variable and in general did not differ significantly between the two models and controls. The roles of the various subtypes of macrophages in muscle repair and fibrosis in the two models require further study. The Sgcb-null mouse, which develops early fibrosis

  2. Laser Phototherapy (660 nm Can Be Beneficial for Reducing Gingival Inflammation in Prosthodontics

    Directory of Open Access Journals (Sweden)

    Sávio José Cardoso Bezerra

    2015-01-01

    Full Text Available Among the new technologies developed, low power lasers have enabled new approaches to provide conservative treatment. Low power lasers act at cellular level, resulting in reduced pain, modulating inflammation, and improved tissue healing. Clinical application of the low power laser requires specific knowledge concerning laser interaction with biological tissue so that the correct irradiation protocol can be established. The present case report describes the clinical steps involved in an indirect composite resin restoration performed in a 31-year-old patient, in whom low power laser was used for soft tissue biomodulation. Laser therapy was applied with a semiconductor laser 660 nm, spot size of 0.028 cm2, energy density of 35.7 J/cm2, mean power of 100 mW, and energy per point as 1 J, in contact mode, on a total of 2 points (mesial and distal, totaling 2 J of energy. The therapy with low power laser can contribute positively to the success of an indirect restorative treatment.

  3. No effect of anti-inflammatory medication on postprandial and postexercise muscle protein synthesis in elderly men with slightly elevated systemic inflammation

    DEFF Research Database (Denmark)

    Dideriksen, Kasper Juel; Reitelseder, Søren; Malmgaard-Clausen, Nikolai Mølkjær

    2016-01-01

    BACKGROUND: Based on circulating C-reactive protein (CRP) levels, some individuals develop slightly increased inflammation as they age. In elderly inflamed rats, the muscle response to protein feeding is impaired, whereas it can be maintained by treatment with non-steroidal anti-inflammatory drug...

  4. Induction of Heme Oxygenase-1 with Hemin Reduces Obesity-Induced Adipose Tissue Inflammation via Adipose Macrophage Phenotype Switching

    Directory of Open Access Journals (Sweden)

    Thai Hien Tu

    2014-01-01

    Full Text Available Adipose macrophages with the anti-inflammatory M2 phenotype protect against obesity-induced inflammation and insulin resistance. Heme oxygenase-1 (HO-1, which elicits antioxidant and anti-inflammatory activity, modulates macrophage phenotypes and thus is implicated in various inflammatory diseases. Here, we demonstrate that the HO-1 inducer, hemin, protects against obesity-induced adipose inflammation by inducing macrophages to switch to the M2 phenotype. HO-1 induction by hemin reduced the production of proinflammatory cytokines (TNF-α and IL-6 from cocultured adipocytes and macrophages by inhibiting the activation of inflammatory signaling molecules (JNK and NF-κB in both cell types. Hemin enhanced transcript levels of M2 macrophage marker genes (IL-4, Mrc1, and Clec10a in the cocultures, while reducing transcripts of M1 macrophage markers (CD274 and TNF-α. The protective effects of hemin on adipose inflammation and macrophage phenotype switching were confirmed in mice fed a high-fat diet, and these were associated with PPARγ upregulation and STAT6 activation. These findings suggest that induction of HO-1 with hemin protects against obesity-induced adipose inflammation through M2 macrophage phenotype switching, which is induced by the PPARγ and STAT6 pathway. HO-1 inducers such as hemin may be useful for preventing obesity-induced adipose inflammation.

  5. Induction of heme oxygenase-1 with hemin reduces obesity-induced adipose tissue inflammation via adipose macrophage phenotype switching.

    Science.gov (United States)

    Tu, Thai Hien; Joe, Yeonsoo; Choi, Hye-Seon; Chung, Hun Taeg; Yu, Rina

    2014-01-01

    Adipose macrophages with the anti-inflammatory M2 phenotype protect against obesity-induced inflammation and insulin resistance. Heme oxygenase-1 (HO-1), which elicits antioxidant and anti-inflammatory activity, modulates macrophage phenotypes and thus is implicated in various inflammatory diseases. Here, we demonstrate that the HO-1 inducer, hemin, protects against obesity-induced adipose inflammation by inducing macrophages to switch to the M2 phenotype. HO-1 induction by hemin reduced the production of proinflammatory cytokines (TNF-α and IL-6) from cocultured adipocytes and macrophages by inhibiting the activation of inflammatory signaling molecules (JNK and NF-κB) in both cell types. Hemin enhanced transcript levels of M2 macrophage marker genes (IL-4, Mrc1, and Clec10a) in the cocultures, while reducing transcripts of M1 macrophage markers (CD274 and TNF-α). The protective effects of hemin on adipose inflammation and macrophage phenotype switching were confirmed in mice fed a high-fat diet, and these were associated with PPARγ upregulation and STAT6 activation. These findings suggest that induction of HO-1 with hemin protects against obesity-induced adipose inflammation through M2 macrophage phenotype switching, which is induced by the PPARγ and STAT6 pathway. HO-1 inducers such as hemin may be useful for preventing obesity-induced adipose inflammation.

  6. Crosstalk between intestinal microbiota, adipose tissue and skeletal muscle as an early event in systemic low-grade inflammation and the development of obesity and diabetes.

    Science.gov (United States)

    Bleau, Christian; Karelis, Antony D; St-Pierre, David H; Lamontagne, Lucie

    2015-09-01

    Obesity is associated with a systemic chronic low-grade inflammation that contributes to the development of metabolic disorders such as cardiovascular diseases and type 2 diabetes. However, the etiology of this obesity-related pro-inflammatory process remains unclear. Most studies have focused on adipose tissue dysfunctions and/or insulin resistance in skeletal muscle cells as well as changes in adipokine profile and macrophage recruitment as potential sources of inflammation. However, low-grade systemic inflammation probably involves a complex network of signals interconnecting several organs. Recent evidences have suggested that disturbances in the composition of the gut microbial flora and alterations in levels of gut peptides following the ingestion of a high-fat diet may be a cause of low-grade systemic inflammation that may even precede and predispose to obesity, metabolic disorders or type 2 diabetes. This hypothesis is appealing because the gastrointestinal system is first exposed to nutrients and may thereby represent the first link in the chain of events leading to the development of obesity-associated systemic inflammation. Therefore, the present review will summarize the latest advances interconnecting intestinal mucosal bacteria-mediated inflammation, adipose tissue and skeletal muscle in a coordinated circuitry favouring the onset of a high-fat diet-related systemic low-grade inflammation preceding obesity and predisposing to metabolic disorders and/or type 2 diabetes. A particular emphasis will be given to high-fat diet-induced alterations of gut homeostasis as an early initiator event of mucosal inflammation and adverse consequences contributing to the promotion of extended systemic inflammation, especially in adipose and muscular tissues.

  7. CT evaluation of soft tissue and muscle infection and inflammation: A systematic compartmental approach

    Energy Technology Data Exchange (ETDEWEB)

    Beauchamp, N.J. Jr. [Dept. of Radiology, and Radiological Science, The Johns Hopkins Medical Institutions, Baltimore, MD (United States); Scott, W.W. Jr. [Dept. of Radiology, and Radiological Science, The Johns Hopkins Medical Institutions, Baltimore, MD (United States); Gottlieb, L.M. [Dept. of Surgery, The Johns Hopkins Medical Institutions, Baltimore, MD (United States); Fishman, E.K. [Dept. of Surgery, The Johns Hopkins Medical Institutions, Baltimore, MD (United States)

    1995-07-01

    This essay presents a systematic approach to the evaluation of soft tissue and muscle infection by defining the various pathologic processes and then illustrating them through a series of CT studies with corresponding schematic diagrams. The specific processes discussed are cellulitis, lymphangitis/lymphedema, necrotizing fascitis, myositis/myonecrosis, and abscess. Key points in the differential diagnosis of these entities are discussed and illustrated. The clinical management of the specific pathologic processes is also discussed. (orig./MG)

  8. Factor XI-deficient mice display reduced inflammation, coagulopathy, and bacterial growth during listeriosis.

    Science.gov (United States)

    Luo, Deyan; Szaba, Frank M; Kummer, Lawrence W; Johnson, Lawrence L; Tucker, Erik I; Gruber, Andras; Gailani, David; Smiley, Stephen T

    2012-01-01

    In mice infected sublethally with Listeria monocytogenes, fibrin is deposited at low levels within hepatic tissue, where it functions protectively by limiting bacterial growth and suppressing hemorrhagic pathology. Here we demonstrate that mice infected with lethal doses of L. monocytogenes produce higher levels of fibrin and display evidence of systemic coagulopathy (i.e., thrombocytopenia, fibrinogen depletion, and elevated levels of thrombin-antithrombin complexes). When the hepatic bacterial burden exceeds 1×10(6) CFU, levels of hepatic fibrin correlate with the bacterial burden, which also correlates with levels of hepatic mRNA encoding the hemostatic enzyme factor XI (FXI). Gene-targeted FXI-deficient mice show significantly improved survival upon challenge with high doses of L. monocytogenes and also display reduced levels of hepatic fibrin, decreased evidence of coagulopathy, and diminished cytokine production (interleukin-6 [IL-6] and IL-10). While fibrin limits the bacterial burden during sublethal listeriosis in wild-type mice, FXI-deficient mice display a significantly improved capacity to restrain the bacterial burden during lethal listeriosis despite their reduced fibrin levels. They also show less evidence of hepatic necrosis. In conjunction with suboptimal antibiotic therapy, FXI-specific monoclonal antibody 14E11 improves survival when administered therapeutically to wild-type mice challenged with high doses of L. monocytogenes. Together, these findings demonstrate the utility of murine listeriosis as a model for dissecting qualitative differences between protective and pathological host responses and reveal novel roles for FXI in exacerbating inflammation and pathogen burden during a lethal bacterial infection.

  9. Pulsed Electromagnetic Field Exposure Reduces Hypoxia and Inflammation Damage in Neuron-Like and Microglial Cells.

    Science.gov (United States)

    Vincenzi, Fabrizio; Ravani, Annalisa; Pasquini, Silvia; Merighi, Stefania; Gessi, Stefania; Setti, Stefania; Cadossi, Ruggero; Borea, Pier Andrea; Varani, Katia

    2017-05-01

    In the present study, the effect of low-frequency, low-energy pulsed electromagnetic fields (PEMFs) has been investigated by using different cell lines derived from neuron-like cells and microglial cells. In particular, the primary aim was to evaluate the effect of PEMF exposure in inflammation- and hypoxia-induced injury in two different neuronal cell models, the human neuroblastoma-derived SH-SY5Y cells and rat pheochromocytoma PC12 cells and in N9 microglial cells. In neuron-like cells, live/dead and apoptosis assays were performed in hypoxia conditions from 2 to 48 h. Interestingly, PEMF exposure counteracted hypoxia damage significantly reducing cell death and apoptosis. In the same cell lines, PEMFs inhibited the activation of the hypoxia-inducible factor 1α (HIF-1α), the master transcriptional regulator of cellular response to hypoxia. The effect of PEMF exposure on reactive oxygen species (ROS) production in both neuron-like and microglial cells was investigated considering their key role in ischemic injury. PEMFs significantly decreased hypoxia-induced ROS generation in PC12, SH-SY5Y, and N9 cells after 24 or 48 h of incubation. Moreover, PEMFs were able to reduce some of the most well-known pro-inflammatory cytokines such as tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6, and IL-8 release in N9 microglial cells stimulated with different concentrations of LPS for 24 or 48 h of incubation time. These results show a protective effect of PEMFs on hypoxia damage in neuron-like cells and an anti-inflammatory effect in microglial cells suggesting that PEMFs could represent a potential therapeutic approach in cerebral ischemic conditions. J. Cell. Physiol. 232: 1200-1208, 2017. © 2016 Wiley Periodicals, Inc.

  10. Amlodipine Reduces Inflammation despite Promoting Albuminuria in the Streptozotocin-Induced Diabetic Rat

    Directory of Open Access Journals (Sweden)

    Elizabeth R. Flynn

    2012-07-01

    Full Text Available Amlodipine reduces blood pressure; however, its effect in the diabetic kidney irrespective of its blood pressure-lowering effects is unclear. This study examined the effects of amlodipine (0, 5, 10 and 20 mg/kg; DA0, DA5, DA10 and DA20, respectively for 12 weeks on renal functional and structural changes in the streptozotocin-induced diabetic rat, a nonhypertensive model of diabetes-associated hyperfiltration. Compared with nondiabetic rats, diabetes (D was associated with increased urine albumin excretion (UAE, 12.6 ± 3.40 vs. 3.73 ± 1.14 mg/day, glomerular filtration rate (2.17 ± 0.09 vs. 1.64 ± 0.12 ml/min/g kidney weight, glomerulosclerosis (0.21 ± 0.03 vs. 0.05 ± 0.01 AU and infiltration of inflammatory cells (18.5 ± 2.78 vs. 6.92 ± 0.70 cells/cm2, but did not affect mean arterial pressure (MAP, 110 ± 4.70 vs. 109 ± 5.33 mm Hg. While DA20 abolished glomerular hyperfiltration (1.49 ± 0.05 ml/min/g kidney weight and inflammatory cell abundance (6.0 ± 0.79 cells/cm2, it exacerbated UAE (43.5 ± 8.49 mg/day and increased MAP (132 ± 3.76 mm Hg, but had no effect on renal pathology. These data suggest that amlodipine reduces renal inflammation and abolished glomerular hyperfiltration, but increases blood pressure and exacerbates albuminuria in the rat model of normotensive diabetic kidney disease. We conclude that amlodipine may have limited renoprotective effects in the face of hyperfiltration and absence of elevated blood pressure.

  11. Smoking Is Associated with Acute and Chronic Prostatic Inflammation: Results from the REDUCE Study.

    Science.gov (United States)

    Moreira, Daniel M; Nickel, J Curtis; Gerber, Leah; Muller, Roberto L; Andriole, Gerald L; Castro-Santamaria, Ramiro; Freedland, Stephen J

    2015-04-01

    Both anti- and proinflammatory effects of cigarette smoking have been described. As prostate inflammation is common, we hypothesized smoking could contribute to prostate inflammation. Thus, we evaluated the association of smoking status with acute and chronic inflammation within the prostate of men undergoing prostate biopsy. We retrospectively analyzed 8,190 men ages 50 to 75 years with PSA levels between 2.5 and 10 ng/mL enrolled in the Reduction by Dutasteride of Prostate Cancer Events study. Smoking status was self-defined as never, former, or current. Prostate inflammation was assessed by systematic central review blinded to smoking status. The association of smoking with inflammation in the baseline, 2-year, and 4-year biopsies was evaluated with univariable and multivariable logistic regressions. At study enrollment, 1,233 (15%), 3,203 (39%), and 3,754 (46%) men were current, former, and never smokers, respectively. Current smokers were significantly younger and had smaller prostates than former and never smokers (all P chronic prostate inflammations were identified in 1,261 (15%) and 6,352 (78%) baseline biopsies, respectively. In univariable analysis, current smokers were more likely to have acute inflammation than former (OR, 1.35; P, 0.001) and never smokers (OR, 1.36; P, 0.001). The results were unchanged at 2- and 4-year biopsies. In contrast, current smoking was linked with chronic inflammation in the baseline biopsy, but not at 2- and 4-year biopsies. In conclusion, among men undergoing prostate biopsy, current smoking was independently associated with acute and possibly chronic prostate inflammations.

  12. Reduced expression of sarcospan in muscles of Fukuyama congenital muscular dystrophy.

    Science.gov (United States)

    Wakayama, Yoshihiro; Inoue, Masahiko; Kojima, Hiroko; Yamashita, Sumimasa; Shibuya, Seiji; Jimi, Takahiro; Hara, Hajime; Matsuzaki, Yoko; Oniki, Hiroaki; Kanagawa, Motoi; Kobayashi, Kazuhiro; Toda, Tatsushi

    2008-12-01

    Expression profiles of sarcospan in muscles with muscular dystrophies are scarcely reported. To examine this, we studied five Fukuyama congenital muscular dystrophy (FCMD) muscles, five Duchenne muscular dystrophy (DMD) muscles, five disease control and five normal control muscles. Immunoblot showed reactions of sarcospan markedly decreased in FCMD and DMD muscle extracts. Immunohistochemistry of FCMD muscles showed that most large diameter myofibers expressed sarcospan discontinuously at their surface membranes. Immature small diameter FCMD myofibers usually did not express sarcospan. Immunoreactivity of sarcospan in DMD muscles was similarly reduced. With regard to dystroglycans and sarcoglycans, immunohistochemistry of FCMD muscles showed selective deficiency of glycosylated alpha-dystroglycan, together with reduced expression of beta-dystroglycan and alpha-, beta-, gamma-, delta-sarcoglycans. Although the expression of glycosylated alpha-dystroglycan was lost, scattered FCMD myofibers showed positive immunoreaction with an antibody against the core protein of alpha-dystroglycan. The group mean ratios of sarcospan mRNA copy number versus GAPDH mRNA copy number by real-time RT-PCR showed that the ratios between FCMD and normal control groups were not significantly different (P>0.1 by the two-tailed t test). This study implied either O-linked glycosylation defects of alpha-dystroglycan in the Golgi apparatus of FCMD muscles may lead to decreased expression of sarcoglycan and sarcospan molecules, or selective deficiency of glycosylated alpha-dystroglycan due to impaired glycosylation in FCMD muscles may affect the molecular integrity of the basal lamina of myofibers. This, in turn, leads to decreased expression of sarcoglycans, and finally of sarcospan at the FCMD myofiber surfaces.

  13. Bulbar muscle MRI changes in patients with SMA with reduced mouth opening and dysphagia.

    Science.gov (United States)

    Wadman, Renske I; van Bruggen, H Willemijn; Witkamp, Theo D; Sparreboom-Kalaykova, Stanimira I; Stam, Marloes; van den Berg, Leonard H; Steenks, Michel H; van der Pol, W Ludo

    2014-09-16

    We performed a study in patients with proximal spinal muscular atrophy (SMA) to determine the prevalence of reduced maximal mouth opening (MMO) and its association with dysphagia as a reflection of bulbar dysfunction and visualized the underlying mechanisms using MRI. We performed a cross-sectional study of MMO in 145 patients with SMA types 1-4 and 119 healthy controls and used MRI in 12 patients to visualize mandibular condylar shape and sliding and the anatomy of muscle groups relevant for mouth opening and closing. We analyzed associations of reduced MMO with SMA severity and complaints of dysphagia. Reduced MMO was defined as an interincisal distance ≤ 35 mm and was found in none of the healthy controls and in 100%, 79%, 50%, and 7% of patients with SMA types 1, 2, 3a, and 3b/4, respectively. MRI showed severe fatty degeneration of the lateral pterygoid muscles that mediate mouth opening by allowing mandibular condylar sliding but relatively mild involvement of the mouth closing muscles in patients with reduced MMO. Reduced MMO was associated with SMA type, age, muscle weakness, and dysphagia (p SMA types 1-3a and is mainly caused by fatty degeneration of specific mouth opening muscles. Reduced MMO is a sign of bulbar dysfunction in SMA. © 2014 American Academy of Neurology.

  14. Thrombospondin1 deficiency reduces obesity-associated inflammation and improves insulin sensitivity in a diet-induced obese mouse model.

    Directory of Open Access Journals (Sweden)

    Yanzhang Li

    Full Text Available BACKGROUND: Obesity is prevalent worldwide and is associated with insulin resistance. Advanced studies suggest that obesity-associated low-grade chronic inflammation contributes to the development of insulin resistance and other metabolic complications. Thrombospondin 1 (TSP1 is a multifunctional extracellular matrix protein that is up-regulated in inflamed adipose tissue. A recent study suggests a positive correlation of TSP1 with obesity, adipose inflammation, and insulin resistance. However, the direct effect of TSP1 on obesity and insulin resistance is not known. Therefore, we investigated the role of TSP1 in mediating obesity-associated inflammation and insulin resistance by using TSP1 knockout mice. METHODOLOGY/PRINCIPAL FINDINGS: Male TSP1-/- mice and wild type littermate controls were fed a low-fat (LF or a high-fat (HF diet for 16 weeks. Throughout the study, body weight and fat mass increased similarly between the TSP1-/- mice and WT mice under HF feeding conditions, suggesting that TSP1 deficiency does not affect the development of obesity. However, obese TSP1-/- mice had improved glucose tolerance and increased insulin sensitivity compared to the obese wild type mice. Macrophage accumulation and inflammatory cytokine expression in adipose tissue were reduced in obese TSP1-/- mice. Consistent with the local decrease in pro-inflammatory cytokine levels, systemic inflammation was also decreased in the obese TSP1-/- mice. Furthermore, in vitro data demonstrated that TSP1 deficient macrophages had decreased mobility and a reduced inflammatory phenotype. CONCLUSION: TSP1 deficiency did not affect the development of high-fat diet induced obesity. However, TSP1 deficiency reduced macrophage accumulation in adipose tissue and protected against obesity related inflammation and insulin resistance. Our data demonstrate that TSP1 may play an important role in regulating macrophage function and mediating obesity-induced inflammation and insulin

  15. The effects of a multi-ingredient supplement on markers of muscle damage and inflammation following downhill running in females.

    Science.gov (United States)

    Köhne, Jessica L; Ormsbee, Michael J; McKune, Andrew J

    2016-01-01

    The effects of a multi-ingredient performance supplement (MIPS) on markers of inflammation and muscle damage, perceived soreness and lower limb performance are unknown in endurance-trained female athletes. The purpose of this study was to determine the impact of MIPS (NO-Shotgun®) pre-loaded 4 weeks prior to a single-bout of downhill running (DHR) on hsC-Reactive Protein (hsCRP), interleukin (IL)-6, creatine kinase (CK), muscle soreness, lower limb circumferences and performance. Trained female runners (n = 8; 29 ± 5.9 years) (VO2max: ≥ 50 ml(-1).kg(-1).min(-1), midfollicular phase (7-11 days post-menses) were randomly assigned in a double-blind manner into two groups: MIPS (n = 4) ingested one serving of NO Shotgun daily for 28 days prior to DHR and 30 min prior to all post-testing visits; Control (CON) (n = 4) consumed an isocaloric maltodextrin placebo in an identical manner to MIPS. hsCRP, IL-6, CK, perceived soreness, limb circumferences, and performance measures (flexibility, squat jump peak power) were tested on 5 occasions; immediately before (PRE), immediately post-DHR, 24, 48 and 72 h post-DHR. There were main effects of time for CK (p = 0.05), pain pressure threshold (right tibialis anterior (p = 0.010), right biceps femoris (p = 0.01), and left iliotibial band (ITB) (p = 0.05) across all time points), and maximum squat jump power (p = 0.04). Compared with 24 h post-DHR, maximum squat jump power was significantly lower at 48 h post-DHR (p = 0.05). Lower body perceived soreness was significantly increased at 24 h (p = 0.02) and baseline to 48 h (p = 0.02) post DHR. IL-6 peaked immediately post-DHR (p = 0.03) and hsCRP peaked at 24 h post-DHR (p = 0.06). Calculation of effect sizes indicated a moderate attenuation of hsCRP in MIPS at 72 h post-DHR. Consumption of MIPS for 4 weeks prior to a single bout of DHR attenuated inflammation three days post, but did not affect perceived

  16. Sarcopenic obesity or obese sarcopenia: A cross talk between age-associated adipose tissue and skeletal muscle inflammation as a main mechanism of the pathogenesis.

    Science.gov (United States)

    Kalinkovich, Alexander; Livshits, Gregory

    2017-05-01

    Sarcopenia, an age-associated decline in skeletal muscle mass coupled with functional deterioration, may be exacerbated by obesity leading to higher disability, frailty, morbidity and mortality rates. In the combination of sarcopenia and obesity, the state called sarcopenic obesity (SOB), some key age- and obesity-mediated factors and pathways may aggravate sarcopenia. This review will analyze the mechanisms underlying the pathogenesis of SOB. In obese adipose tissue (AT), adipocytes undergo hypertrophy, hyperplasia and activation resulted in accumulation of pro-inflammatory macrophages and other immune cells as well as dysregulated production of various adipokines that together with senescent cells and the immune cell-released cytokines and chemokines create a local pro-inflammatory status. In addition, obese AT is characterized by excessive production and disturbed capacity to store lipids, which accumulate ectopically in skeletal muscle. These intramuscular lipids and their derivatives induce mitochondrial dysfunction characterized by impaired β-oxidation capacity and increased reactive oxygen species formation providing lipotoxic environment and insulin resistance as well as enhanced secretion of some pro-inflammatory myokines capable of inducing muscle dysfunction by auto/paracrine manner. In turn, by endocrine manner, these myokines may exacerbate AT inflammation and also support chronic low grade systemic inflammation (inflammaging), overall establishing a detrimental vicious circle maintaining AT and skeletal muscle inflammation, thus triggering and supporting SOB development. Under these circumstances, we believe that AT inflammation dominates over skeletal muscle inflammation. Thus, in essence, it redirects the vector of processes from "sarcopenia→obesity" to "obesity→sarcopenia". We therefore propose that this condition be defined as "obese sarcopenia", to reflect the direction of the pathological pathway. Copyright © 2016 Elsevier B.V. All rights

  17. Dilinoleoyl-phosphatidic acid mediates reduced IRS-1 tyrosine phosphorylation in rat skeletal muscle cells and mouse muscle.

    Science.gov (United States)

    Cazzolli, R; Mitchell, T W; Burchfield, J G; Pedersen, D J; Turner, N; Biden, T J; Schmitz-Peiffer, C

    2007-08-01

    Insulin resistance in skeletal muscle is strongly associated with lipid oversupply, but the intracellular metabolites and underlying mechanisms are unclear. We therefore sought to identify the lipid intermediates through which the common unsaturated fatty acid linoleate causes defects in IRS-1 signalling in L6 myotubes and mouse skeletal muscle. Cells were pre-treated with 1 mmol/l linoleate for 24 h. Subsequent insulin-stimulated IRS-1 tyrosine phosphorylation and its association with the p85 subunit of phosphatidylinositol 3-kinase were determined by immunoblotting. Intracellular lipid species and protein kinase C activation were modulated by overexpression of diacylglycerol kinase epsilon, which preferentially converts unsaturated diacylglycerol into phosphatidic acid, or by inhibition of lysophosphatidic acid acyl transferase with lisofylline, which reduces phosphatidic acid synthesis. Phosphatidic acid species in linoleate-treated cells or muscle from insulin-resistant mice fed a safflower oil-based high-fat diet that was rich in linoleate were analysed by mass spectrometry. Linoleate pretreatment reduced IRS-1 tyrosine phosphorylation and p85 association. Overexpression of diacylglycerol kinase epsilon reversed the activation of protein kinase C isoforms by linoleate, but paradoxically further diminished IRS-1 tyrosine phosphorylation. Conversely, lisofylline treatment restored IRS-1 phosphorylation. Mass spectrometry indicated that the dilinoleoyl-phosphatidic acid content increased from undetectable levels to almost 20% of total phosphatidic acid in L6 cells and to 8% of total in the muscle of mice fed a high-fat diet. Micelles containing dilinoleoyl-phosphatidic acid specifically inhibited IRS-1 tyrosine phosphorylation and glycogen synthesis in L6 cells. These data indicate that linoleate-derived phosphatidic acid is a novel lipid species that contributes independently of protein kinase C to IRS-1 signalling defects in muscle cells in response to lipid

  18. Chinese green tea consumption reduces oxidative stress, inflammation and tissues damage in smoke exposed rats

    Directory of Open Access Journals (Sweden)

    Wajdy Al-Awaida

    2014-10-01

    Conclusion: Exposure of albino rat model to cigarette smoke caused oxidative stress, altered the cellular antioxidant defense system, induced apoptosis in lung tissue, inflammation and tissues damage, which could be prevented by supplementation of CGT.

  19. Canagliflozin, a sodium glucose cotransporter 2 inhibitor, attenuates obesity-induced inflammation in the nodose ganglion, hypothalamus, and skeletal muscle of mice.

    Science.gov (United States)

    Naznin, Farhana; Sakoda, Hideyuki; Okada, Tadashi; Tsubouchi, Hironobu; Waise, T M Zaved; Arakawa, Kenji; Nakazato, Masamitsu

    2017-01-05

    Chronic inflammation in systemic organs, such as adipose tissue, nodose ganglion, hypothalamus, and skeletal muscles, is closely associated with obesity and diabetes mellitus. Because sodium glucose cotransporter 2 (SGLT2) inhibitors exert both anti-diabetic and anti-obesity effects by promoting urinary excretion of glucose and subsequent caloric loss, we investigated the effect of canagliflozin, an SGLT2 inhibitor, on obesity-induced inflammation in neural tissues and skeletal muscles of mice. High-fat diet (HFD)-fed male C57BL/6J mice were treated with canagliflozin for 8 weeks. Canagliflozin attenuated the HFD-mediated increases in body weight, liver weight, and visceral and subcutaneous fat weight. Additionally, canagliflozin decreased blood glucose as well as the fat, triglyceride, and glycogen contents of the liver. Along with these metabolic corrections, canagliflozin attenuated the increases in the mRNA levels of the proinflammatory biomarkers Iba1 and Il6 and the number of macrophages/microglia in the nodose ganglion and hypothalamus. In the skeletal muscle of HFD-fed obese mice, canagliflozin decreased inflammatory cytokine levels, macrophage accumulation, and the mRNA level of the specific atrophic factor atrogin-1. Canagliflozin also increased the mRNA level of insulin-like growth factor 1, protected against muscle mass loss, and restored the contractile force of muscle. These findings suggested that SGLT2 inhibition disrupts the vicious cycle of obesity and inflammation, not only by promoting caloric loss, but also by suppression of obesity-related inflammation in both the nervous system and skeletal muscle.

  20. Deletion of Dicer in smooth muscle affects voiding pattern and reduces detrusor contractility and neuroeffector transmission.

    Directory of Open Access Journals (Sweden)

    Mardjaneh Karbalaei Sadegh

    Full Text Available MicroRNAs have emerged as important regulators of smooth muscle phenotype and may play important roles in pathogenesis of various smooth muscle related disease states. The aim of this study was to investigate the role of miRNAs for urinary bladder function. We used an inducible and smooth muscle specific Dicer knockout (KO mouse which resulted in significantly reduced levels of miRNAs, including miR-145, miR-143, miR-22, miR125b-5p and miR-27a, from detrusor preparations without mucosa. Deletion of Dicer resulted in a disturbed micturition pattern in vivo and reduced depolarization-induced pressure development in the isolated detrusor. Furthermore, electrical field stimulation revealed a decreased cholinergic but maintained purinergic component of neurogenic activation in Dicer KO bladder strips. The ultrastructure of detrusor smooth muscle cells was well maintained, and the density of nerve terminals was similar. Western blotting demonstrated reduced contents of calponin and desmin. Smooth muscle α-actin, SM22α and myocardin were unchanged. Activation of strips with exogenous agonists showed that depolarization-induced contraction was preferentially reduced; ATP- and calyculin A-induced contractions were unchanged. Quantitative real time PCR and western blotting demonstrated reduced expression of Cav1.2 (Cacna1c. It is concluded that smooth muscle miRNAs play an important role for detrusor contractility and voiding pattern of unrestrained mice. This is mediated in part via effects on expression of smooth muscle differentiation markers and L-type Ca(2+ channels in the detrusor.

  1. Airway Responsiveness: Role of Inflammation, Epithelium Damage and Smooth Muscle Tension

    Directory of Open Access Journals (Sweden)

    K. I. Gourgoulianis

    1999-01-01

    Full Text Available The purpose of this study was the effect of epithelium damage on mechanical responses of airway smooth muscles under different resting tension. We performed acetylcholine (ACh (10-5M-induced contraction on tracheal strips from 30 rabbits in five groups (0.5, 1, 1.5, 2 and 2.5 g before and after epithelium removal. At low resting tension (0.5-1.5g, the epithelium removal decreased the ACh-induced contractions. At 2g resting tension, the epithelium removal increased the ACh-induced contractions of airways with intact epithelium about 20%. At 2.5 g resting tension, the elevation of contraction is about 25% (p<0.01. Consequently, after epithelium loss, the resting tension determines the airway smooth muscles responsiveness. In asthma, mediators such as ACh act on already contracted inflammatory airways, which results in additional increase of contraction. In contrast, low resting tension, a condition that simulates normal tidal breathing, protects from bronchoconstriction even when the epithelium is damaged.

  2. Interrelation of inflammation and APP in sIBM: IL-1 beta induces accumulation of beta-amyloid in skeletal muscle.

    Science.gov (United States)

    Schmidt, Jens; Barthel, Konstanze; Wrede, Arne; Salajegheh, Mohammad; Bähr, Mathias; Dalakas, Marinos C

    2008-05-01

    Distinct interrelationships between inflammation and beta-amyloid-associated degeneration, the two major hallmarks of the skeletal muscle pathology in sporadic inclusion body myositis (sIBM), have remained elusive. Expression of markers relevant for these pathomechanisms were analysed in biopsies of sIBM, polymyositis (PM), dermatomyositis (DM), dystrophic and non-myopathic muscle as controls, and cultured human myotubes. By quantitative PCR, a higher upregulation was noted for the mRNA-expression of CXCL-9, CCL-3, CCL-4, IFN-gamma, TNF-alpha and IL-1 beta in sIBM muscle compared to PM, DM and controls. All inflammatory myopathies displayed overexpression of degeneration-associated markers, yet only in sIBM, expression of the mRNA of amyloid precursor protein (APP) significantly and consistently correlated with inflammation in the muscle and mRNA-levels of chemokines and IFN-gamma. Only in sIBM, immunohistochemical analysis revealed that inflammatory mediators including IL-1 beta co-localized to beta-amyloid depositions within myofibres. In human myotubes, exposure to IL-1 beta caused upregulation of APP with subsequent intracellular aggregation of beta-amyloid. Our data suggest that, in sIBM muscle, production of high amounts of pro-inflammatory mediators specifically induces beta-amyloid-associated degeneration. The observations may help to design targeted treatment strategies for chronic inflammatory disorders of the skeletal muscle.

  3. 7-Tesla Magnetic Resonance Imaging Precisely and Noninvasively Reflects Inflammation and Remodeling of the Skeletal Muscle in a Mouse Model of Antisynthetase Syndrome

    Directory of Open Access Journals (Sweden)

    Clara Sciorati

    2014-01-01

    Full Text Available Inflammatory myopathies comprise heterogeneous disorders. Their etiopathogenesis is poorly understood, because of the paucity of informative experimental models and of approaches for the noninvasive study of inflamed tissues. Magnetic resonance imaging (MRI provides information about the state of the skeletal muscle that reflects various facets of inflammation and remodeling. This technique has been scarcely used in experimental models of inflammatory myopathies. We characterized the performance of MRI in a well-established mouse model of myositis and the antisynthetase syndrome, based on the immunization of wild-type mice with the amino-terminal fragment of histidyl-tRNA synthetase (HisRS. Over an eight-week period following myositis induction, MRI enabled precise identification of pathological events taking place in muscle tissue. Areas of edema and of active inflammation identified by histopathology paralleled muscle modifications detected noninvasively by MRI. Muscles changes were chronologically associated with the establishment of autoimmunity, as reflected by the development of anti-HisRS antibodies in the blood of immunized mice. MR imaging easily appreciated muscle damage and remodeling even if actual disruption of myofiber integrity (as assessed by serum concentrations of creatinine phosphokinase was limited. Thus, MR imaging represents an informative and noninvasive analytical tool for studying in vivo immune-mediated muscle involvement.

  4. Evaluation of the role of the cyclooxygenase signaling pathway during inflammation in skin and muscle tissues of ball pythons (Python regius).

    Science.gov (United States)

    Sadler, Ryan A; Schumacher, Juergen P; Rathore, Kusum; Newkirk, Kim M; Cole, Grayson; Seibert, Rachel; Cekanova, Maria

    2016-05-01

    OBJECTIVE To determine degrees of production of cyclooxygenase (COX)-1 and -2 and other mediators of inflammation in noninflamed and inflamed skin and muscle tissues in ball pythons (Python regius). ANIMALS 6 healthy adult male ball pythons. PROCEDURES Biopsy specimens of noninflamed skin and muscle tissue were collected from anesthetized snakes on day 0. A 2-cm skin and muscle incision was then made 5 cm distal to the biopsy sites with a CO2 laser to induce inflammation. On day 7, biopsy specimens of skin and muscle tissues were collected from the incision sites. Inflamed and noninflamed tissue specimens were evaluated for production of COX-1, COX-2, phosphorylated protein kinase B (AKT), total AKT, nuclear factor κ-light-chain-enhancer of activated B cells, phosphorylated extracellular receptor kinases (ERKs) 1 and 2, and total ERK proteins by western blot analysis. Histologic evaluation was performed on H&E-stained tissue sections. RESULTS All biopsy specimens of inflamed skin and muscle tissues had higher histologic inflammation scores than did specimens of noninflamed tissue. Inflamed skin specimens had significantly greater production of COX-1 and phosphorylated ERK than did noninflamed skin specimens. Inflamed muscle specimens had significantly greater production of phosphorylated ERK and phosphorylated AKT, significantly lower production of COX-1, and no difference in production of COX-2, compared with production in noninflamed muscle specimens. CONCLUSIONS AND CLINICAL RELEVANCE Production of COX-1, but not COX-2, was significantly greater in inflamed versus noninflamed skin specimens from ball pythons. Additional research into the reptilian COX signaling pathway is warranted.

  5. Effect of cryotherapy on muscle recovery and inflammation following a bout of damaging exercise.

    Science.gov (United States)

    Crystal, Naomi J; Townson, David H; Cook, Summer B; LaRoche, Dain P

    2013-10-01

    The purpose of this study was to determine the effect of cryotherapy on the inflammatory response to muscle-damaging exercise using a randomized trial. Twenty recreationally active males completed a 40-min run at a -10 % grade to induce muscle damage. Ten of the subjects were immersed in a 5 °C ice bath for 20 min and the other ten served as controls. Knee extensor peak torque, soreness rating, and thigh circumference were obtained pre- and post-run, and 1, 6, 24, 48, and 72 h post-run. Blood samples were obtained pre- and post-run, and 1, 6 and 24 h post-run for assay of plasma chemokine ligand 2 (CCL2). Peak torque decreased from 270 ± 57 Nm at baseline to 253 ± 65 Nm post-run and increased to 295 ± 68 Nm by 72 h post-run with no differences between groups (p = 0.491). Soreness rating increased from 3.6 ± 6.0 mm out of 100 mm at baseline to 47.4 ± 28.2 mm post-run and remained elevated at all time points with no differences between groups (p = 0.696). CCL2 concentrations increased from 116 ± 31 pg mL(-1) at baseline to 293 ± 109 pg mL(-1) at 6 h post-run (control) and from 100 ± 27 pg mL(-1) at baseline to 208 ± 71 pg mL(-1) at 6 h post-run (cryotherapy). The difference between groups was not significant (p = 0.116), but there was a trend for lower CCL2 in the cryotherapy group at 6 h (p = 0.102), though this measure was highly variable. In conclusion, 20 min of cryotherapy was ineffective in attenuating the strength decrement and soreness seen after muscle-damaging exercise, but may have mitigated the rise in plasma CCL2 concentration. These results do not support the use of cryotherapy during recovery.

  6. Jun kinase-induced overexpression of leukemia-associated Rho GEF (LARG) mediates sustained hypercontraction of longitudinal smooth muscle in inflammation.

    Science.gov (United States)

    Al-Shboul, Othman; Nalli, Ancy D; Kumar, Divya P; Zhou, Ruizhe; Mahavadi, Sunila; Kuemmerle, John F; Grider, John R; Murthy, Karnam S

    2014-06-15

    The signaling pathways mediating sustained contraction of mouse colonic longitudinal smooth muscle and the mechanisms involved in hypercontractility of this muscle layer in response to cytokines and TNBS-induced colitis have not been fully explored. In control longitudinal smooth muscle cells, ACh acting via m3 receptors activated sequentially Gα12, RhoGEF (LARG), and the RhoA/Rho kinase pathway. There was abundant expression of MYPT1, minimal expression of CPI-17, and a notable absence of a PKC/CPI-17 pathway. LARG expression was increased in longitudinal muscle cells isolated from muscle strips cultured for 24 h with IL-1β or TNF-α or obtained from the colon of TNBS-treated mice. The increase in LARG expression was accompanied by a significant increase in ACh-stimulated Rho kinase and ZIP kinase activities, and sustained muscle contraction. The increase in LARG expression, Rho kinase and ZIP kinase activities, and sustained muscle contraction was abolished in cells pretreated with the Jun kinase inhibitor, SP600125. Expression of the MLCP activator, telokin, and MLCP activity were also decreased in longitudinal muscle cells from TNBS-treated mice or from strips treated with IL-1β or TNF-α. In contrast, previous studies had shown that sustained contraction in circular smooth muscle is mediated by sequential activation of Gα13, p115RhoGEF, and dual RhoA-dependent pathways involving phosphorylation of MYPT1 and CPI-17. In colonic circular smooth muscle cells isolated from TNBS-treated mice or from strips treated with IL-1β or TNF-α, CPI-17 expression and sustained muscle contraction were decreased. The disparate changes in the two muscle layers contribute to intestinal dysmotility during inflammation.

  7. Staphylococcus aureus Panton-Valentine leukocidin contributes to inflammation and muscle tissue injury.

    Directory of Open Access Journals (Sweden)

    Ching Wen Tseng

    Full Text Available Community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA threatens public health worldwide, and epidemiologic data suggest that the Panton-Valentine Leukocidin (PVL expressed by most CA-MRSA strains could contribute to severe human infections, particularly in young and immunocompetent hosts. PVL is proposed to induce cytolysis or apoptosis of phagocytes. However, recent comparisons of isogenic CA-MRSA strains with or without PVL have revealed no differences in human PMN cytolytic activity. Furthermore, many of the mouse studies performed to date have failed to demonstrate a virulence role for PVL, thereby provoking the question: does PVL have a mechanistic role in human infection? In this report, we evaluated the contribution of PVL to severe skin and soft tissue infection. We generated PVL mutants in CA-MRSA strains isolated from patients with necrotizing fasciitis and used these tools to evaluate the pathogenic role of PVL in vivo. In a model of necrotizing soft tissue infection, we found PVL caused significant damage of muscle but not the skin. Muscle injury was linked to induction of pro-inflammatory chemokines KC, MIP-2, and RANTES, and recruitment of neutrophils. Tissue damage was most prominent in young mice and in those strains of mice that more effectively cleared S. aureus, and was not significant in older mice and mouse strains that had a more limited immune response to the pathogen. PVL mediated injury could be blocked by pretreatment with anti-PVL antibodies. Our data provide new insights into CA-MRSA pathogenesis, epidemiology and therapeutics. PVL could contribute to the increased incidence of myositis in CA-MRSA infection, and the toxin could mediate tissue injury by mechanisms other than direct killing of phagocytes.

  8. A 3-day EGCG-supplementation reduces interstitial lactate concentration in skeletal muscle of overweight subjects.

    Science.gov (United States)

    Most, Jasper; van Can, Judith G P; van Dijk, Jan-Willem; Goossens, Gijs H; Jocken, Johan; Hospers, Jeannette J; Bendik, Igor; Blaak, Ellen E

    2015-12-09

    Green tea, particularly epigallocatechin-3-gallate (EGCG), may affect body weight and composition, possibly by enhancing fat oxidation. The aim of this double-blind, randomized placebo-controlled cross-over study was to investigate whether 3-day supplementation with EGCG (282 mg/day) stimulates fat oxidation and lipolysis in 24 overweight subjects (age = 30 ± 2 yrs, BMI = 27.7 ± 0.3 kg/m(2)). Energy expenditure, substrate metabolism and circulating metabolites were determined during fasting and postprandial conditions. After 6 h, a fat biopsy was collected to examine gene expression. In 12 subjects, skeletal muscle glycerol, glucose and lactate concentrations were determined using microdialysis. EGCG-supplementation did not alter energy expenditure and substrate oxidation compared to placebo. Although EGCG reduced postprandial circulating glycerol concentrations (P = 0.015), no difference in skeletal muscle lipolysis was observed. Fasting (P = 0.001) and postprandial (P = 0.003) skeletal muscle lactate concentrations were reduced after EGCG-supplementation compared to placebo, despite similar tissue blood flow. Adipose tissue leptin (P = 0.05) and FAT/CD36 expression (P = 0.08) were increased after EGCG compared to placebo. In conclusion, 3-day EGCG-supplementation decreased postprandial plasma glycerol concentrations, but had no significant effects on skeletal muscle lipolysis and whole-body fat oxidation in overweight individuals. Furthermore, EGCG decreased skeletal muscle lactate concentrations, which suggest a shift towards a more oxidative muscle phenotype.

  9. The role of inflammation resolution speed in airway smooth muscle mass accumulation in asthma: insight from a theoretical model.

    Directory of Open Access Journals (Sweden)

    Igor L Chernyavsky

    Full Text Available Despite a large amount of in vitro data, the dynamics of airway smooth muscle (ASM mass increase in the airways of patients with asthma is not well understood. Here, we present a novel mathematical model that describes qualitatively the growth dynamics of ASM cells over short and long terms in the normal and inflammatory environments typically observed in asthma. The degree of ASM accumulation can be explained by an increase in the rate at which ASM cells switch between non-proliferative and proliferative states, driven by episodic inflammatory events. Our model explores the idea that remodelling due to ASM hyperplasia increases with the frequency and magnitude of these inflammatory events, relative to certain sensitivity thresholds. It highlights the importance of inflammation resolution speed by showing that when resolution is slow, even a series of small exacerbation events can result in significant remodelling, which persists after the inflammatory episodes. In addition, we demonstrate how the uncertainty in long-term outcome may be quantified and used to design an optimal low-risk individual anti-proliferative treatment strategy. The model shows that the rate of clearance of ASM proliferation and recruitment factors after an acute inflammatory event is a potentially important, and hitherto unrecognised, target for anti-remodelling therapy in asthma. It also suggests new ways of quantifying inflammation severity that could improve prediction of the extent of ASM accumulation. This ASM growth model should prove useful for designing new experiments or as a building block of more detailed multi-cellular tissue-level models.

  10. Use of Cold-Water Immersion to Reduce Muscle Damage and Delayed-Onset Muscle Soreness and Preserve Muscle Power in Jiu-Jitsu Athletes.

    Science.gov (United States)

    Fonseca, Líllian Beatriz; Brito, Ciro J; Silva, Roberto Jerônimo S; Silva-Grigoletto, Marzo Edir; da Silva, Walderi Monteiro; Franchini, Emerson

    2016-07-01

    Cold-water immersion (CWI) has been applied widely as a recovery method, but little evidence is available to support its effectiveness. To investigate the effects of CWI on muscle damage, perceived muscle soreness, and muscle power recovery of the upper and lower limbs after jiu-jitsu training. Crossover study. Laboratory and field. A total of 8 highly trained male athletes (age = 24.0 ± 3.6 years, mass = 78.4 ± 2.4 kg, percentage of body fat = 13.1% ± 3.6%) completed all study phases. We randomly selected half of the sample for recovery using CWI (6.0°C ± 0.5°C) for 19 minutes; the other participants were allocated to the control condition (passive recovery). Treatments were reversed in the second session (after 1 week). We measured serum levels of creatine phosphokinase, lactate dehydrogenase (LDH), aspartate aminotransferase, and alanine aminotransferase enzymes; perceived muscle soreness; and recovery through visual analogue scales and muscle power of the upper and lower limbs at pretraining, postrecovery, 24 hours, and 48 hours. Athletes who underwent CWI showed better posttraining recovery measures because circulating LDH levels were lower at 24 hours postrecovery in the CWI condition (441.9 ± 81.4 IU/L) than in the control condition (493.6 ± 97.4 IU/L; P = .03). Estimated muscle power was higher in the CWI than in the control condition for both upper limbs (757.9 ± 125.1 W versus 695.9 ± 56.1 W) and lower limbs (53.7 ± 3.7 cm versus 35.5 ± 8.2 cm; both P values = .001). In addition, we observed less perceived muscle soreness (1.5 ± 1.1 arbitrary units [au] versus 3.1 ± 1.0 au; P = .004) and higher perceived recovery (8.8 ± 1.9 au versus 6.9 ± 1.7 au; P = .005) in the CWI than in the control condition at 24 hours postrecovery. Use of CWI can be beneficial to jiu-jitsu athletes because it reduces circulating LDH levels, results in less perceived muscle soreness, and helps muscle power recovery at 24 hours postrecovery.

  11. Muscle growth is reduced in 15-month-old children with cerebral palsy

    DEFF Research Database (Denmark)

    Herskind, Anna; Ritterband-Rosenbaum, Anina; Willerslev-Olsen, Maria;

    2016-01-01

    AIM: Lack of muscle growth relative to bone growth may be responsible for development of contractures in children with cerebral palsy (CP). Here, we used ultrasonography to compare growth of the medial gastrocnemius muscle in children with and without CP. METHOD: Twenty-six children with spastic CP...... developing children at 15 months of age (pBone length increased with age without significant difference (p=0.49). INTERPRETATION: Muscle growth in children with CP initially follows that of typically developing children, but decreases at 15 months of age. This may be related to reduced physical...... (15 males, 11 females; mean age 35mo, range 8-65mo) and 101 typically developing children (47 males, 54 females; mean age 29mo, range 1-69mo) were included. Functional abilities of children with CP equalled levels I to III in the Gross Motor Function Classification System. Medial gastrocnemius muscle...

  12. Creatine supplementation does not decrease oxidative stress and inflammation in skeletal muscle after eccentric exercise.

    Science.gov (United States)

    Silva, Luciano A; Tromm, Camila B; Da Rosa, Guilherme; Bom, Karoliny; Luciano, Thais F; Tuon, Talita; De Souza, Cláudio T; Pinho, Ricardo A

    2013-01-01

    Thirty-six male rats were used; divided into 6 groups (n = 6): saline; creatine (Cr); eccentric exercise (EE) plus saline 24 h (saline + 24 h); eccentric exercise plus Cr 24 h (Cr + 24 h); eccentric exercise plus saline 48 h (saline + 48 h); and eccentric exercise plus Cr 48 h (Cr + 48 h). Cr supplementation was administered as a solution of 300 mg · kg body weight(-1) · day(-1) in 1 mL water, for two weeks, before the eccentric exercise. The animals were submitted to one downhill run session at 1.0 km · h(-1) until exhaustion. Twenty-four and forty-eight hours after the exercise, the animals were killed, and the quadriceps were removed. Creatine kinase levels, superoxide production, thiobarbituric acid reactive substances (TBARS) level, carbonyl content, total thiol content, superoxide dismutase, catalase, glutathione peroxidase, interleukin-1b (IL-1β), nuclear factor kappa B (NF-kb), and tumour necrosis factor (TNF) were analysed. Cr supplementation neither decreases Cr kinase, superoxide production, lipoperoxidation, carbonylation, total thiol, IL-1β, NF-kb, or TNF nor alters the enzyme activity of superoxide dismutase, catalase, and glutathione peroxides in relation to the saline group, respectively (P eccentric exercise. The present study suggests that Cr supplementation does not decrease oxidative stress and inflammation after eccentric contraction.

  13. Macrophage-mediated inflammation and glial response in the skeletal muscle of a rat model of familial amyotrophic lateral sclerosis (ALS).

    Science.gov (United States)

    Van Dyke, Jonathan M; Smit-Oistad, Ivy M; Macrander, Corey; Krakora, Dan; Meyer, Michael G; Suzuki, Masatoshi

    2016-03-01

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive motor dysfunction and loss of large motor neurons in the spinal cord and brain stem. While much research has focused on mechanisms of motor neuron cell death in the spinal cord, degenerative processes in skeletal muscle and neuromuscular junctions (NMJs) are also observed early in disease development. Although recent studies support the potential therapeutic benefits of targeting the skeletal muscle in ALS, relatively little is known about inflammation and glial responses in skeletal muscle and near NMJs, or how these responses contribute to motor neuron survival, neuromuscular innervation, or motor dysfunction in ALS. We recently showed that human mesenchymal stem cells modified to release glial cell line-derived neurotrophic factor (hMSC-GDNF) extend survival and protect NMJs and motor neurons in SOD1(G93A) rats when delivered to limb muscles. In this study, we evaluate inflammatory and glial responses near NMJs in the limb muscle collected from a rat model of familial ALS (SOD1(G93A) transgenic rats) during disease progression and following hMSC-GDNF transplantation. Muscle samples were collected from pre-symptomatic, symptomatic, and end-stage animals. A significant increase in the expression of microglial inflammatory markers (CD11b and CD68) occurred in the skeletal muscle of symptomatic and end-stage SOD1(G93A) rats. Inflammation was confirmed by ELISA for inflammatory cytokines interleukin-1 β (IL-1β) and tumor necrosis factor-α (TNF-α) in muscle homogenates of SOD1(G93A) rats. Next, we observed active glial responses in the muscle of SOD1(G93A) rats, specifically near intramuscular axons and NMJs. Interestingly, strong expression of activated glial markers, glial fibrillary acidic protein (GFAP) and nestin, was observed in the areas adjacent to NMJs. Finally, we determined whether ex vivo trophic factor delivery influences inflammation and terminal

  14. Reducing LPS content in cockroach allergens increases pulmonary cytokine production without increasing inflammation: A randomized laboratory study

    Directory of Open Access Journals (Sweden)

    Cruikshank William

    2011-02-01

    Full Text Available Abstract Background Endotoxins are ubiquitously present in the environment and constitute a significant component of ambient air. These substances have been shown to modulate the allergic response, however a consensus has yet to be reached whether they attenuate or exacerbate asthmatic responses. The current investigation examined whether reducing the concentration of lipopolysaccharide (LPS in a house dust extract (HDE containing high concentrations of both cockroach allergens 1 and LPS would attenuate asthma-like pulmonary inflammation. Methods Mice were sensitized with CRA and challenged with the intact HDE, containing 182 ng of LPS, or an LPS-reduced HDE containing 3 ng LPS, but an equivalent amount of CRA. Multiple parameters of asthma-like pulmonary inflammation were measured. Results Compared to HDE challenged mice, the LPS-reduced HDE challenged mice had significantly reduced TNFα levels in the bronchoalveolar lavage fluid. Plasma levels of IgE and IgG1 were significantly reduced, however no change in CRA-specific IgE was detected. In HDE mice, plasma IgG2a levels were similar to naïve mice, while LPS-reduced HDE mice had significantly greater concentrations. Reduced levels of LPS in the HDE did not decrease eosinophil or neutrophil recruitment into the alveolar space. Equivalent inflammatory cell recruitment occurred despite having generally higher pulmonary concentrations of eotaxins and CXC chemokines in the LPS-reduced HDE group. LPS-reduced HDE challenge induced significantly higher concentrations of IFNγ, and IL-5 and IL-13 in the BAL fluid, but did not decrease airways hyperresponsiveness or airway resistance to methacholine challenge. Conclusion: These data show that reduction of LPS levels in the HDE does not significantly protect against the severity of asthma-like pulmonary inflammation.

  15. Aspirin-triggered resolvin D1 reduces pneumococcal lung infection and inflammation in a viral and bacterial coinfection pneumonia model.

    Science.gov (United States)

    Wang, Hao; Anthony, Desiree; Yatmaz, Selcuk; Wijburg, Odilia; Satzke, Catherine; Levy, Bruce; Vlahos, Ross; Bozinovski, Steven

    2017-09-15

    Formyl peptide receptor 2/lipoxin A4 (LXA4) receptor (Fpr2/ALX) co-ordinates the transition from inflammation to resolution during acute infection by binding to distinct ligands including serum amyloid A (SAA) and Resolvin D1 (RvD1). Here, we evaluated the proresolving actions of aspirin-triggered RvD1 (AT-RvD1) in an acute coinfection pneumonia model. Coinfection with Streptococcus pneumoniae and influenza A virus (IAV) markedly increased pneumococcal lung load and neutrophilic inflammation during the resolution phase. Fpr2/ALX transcript levels were increased in the lungs of coinfected mice, and immunohistochemistry identified prominent Fpr2/ALX immunoreactivity in bronchial epithelial cells and macrophages. Levels of circulating and lung SAA were also highly increased in coinfected mice. Therapeutic treatment with exogenous AT-RvD1 during the acute phase of infection (day 4-6 post-pneumococcal inoculation) significantly reduced the pneumococcal load. AT-RvD1 also significantly reduced neutrophil elastase (NE) activity and restored total antimicrobial activity in bronchoalveolar lavage (BAL) fluid (BALF) of coinfected mice. Pneumonia severity, as measured by quantitating parenchymal inflammation or alveolitis was significantly reduced with AT-RvD1 treatment, which also reduced the number of infiltrating lung neutrophils and monocytes/macrophages as assessed by flow cytometry. The reduction in distal lung inflammation in AT-RvD1-treated mice was not associated with a significant reduction in inflammatory and chemokine mediators. In summary, we demonstrate that in the coinfection setting, SAA levels were persistently increased and exogenous AT-RvD1 facilitated more rapid clearance of pneumococci in the lungs, while concurrently reducing the severity of pneumonia by limiting excessive leukocyte chemotaxis from the infected bronchioles to distal areas of the lungs. © 2017 The Author(s).

  16. Exendin-4 decreases liver inflammation and atherosclerosis development simultaneously by reducing macrophage infiltration

    NARCIS (Netherlands)

    Wang, Y.; Parlevliet, E.T.; Geerling, J.J.; Tuin, S.J.L. van der; Zhang, H.; Bieghs, V.; Jawad, A.H.M.; Shiri-Sverdlov, R.; Bot, I.; Jager, S.C.A. de; Havekes, L.M.; Romijn, J.A.; Willems Van Dijk, K.; Rensen, P.C.N.

    2014-01-01

    Background and Purpose The aetiology of inflammation in the liver and vessel wall, leading to non-alcoholic steatohepatitis (NASH) and atherosclerosis, respectively, shares common mechanisms including macrophage infiltration. To treat both disorders simultaneously, it is highly important to tackle t

  17. Two opposite extremes of adiposity similarly reduce inflammatory response of antigen-induced acute joint inflammation

    NARCIS (Netherlands)

    Oliveira, M.C.; Silveira, A.L.; Tavares, L.P.; Rodrigues, D.F.; Loo, F.A.J. van de; Sousa, L.P.; Teixeira, M.M.; Amaral, F.A.; Ferreira, A.V.

    2017-01-01

    OBJECTIVE: Acute inflammation is a normal response of tissue to an injury. During this process, inflammatory mediators are produced and metabolic alterations occur. Adipose tissue is metabolically activated, and upon food consumption, it disrupts the inflammatory response. However, little is known a

  18. Obesity in asthma : more neutrophilic inflammation as a possible explanation for a reduced treatment response

    NARCIS (Netherlands)

    Telenga, E. D.; Tideman, S. W.; Kerstjens, H. A. M.; ten Hacken, N. H. T.; Timens, W.; Postma, D. S.; van den Berge, M.

    2012-01-01

    Background The incidence of asthma and obesity is increasing worldwide, and reports suggest that obese patients have more severe asthma. We investigated whether obese asthma patients have more severe airway obstruction and airway hyper-responsiveness and a different type of airway inflammation than

  19. Azithromycin reduces spontaneous and induced inflammation in ΔF508 cystic fibrosis mice

    NARCIS (Netherlands)

    R. Legssyer (Rachida); F. Huaux (François); J. Lebacq (Jean); M. Delos (Monique); E. Marbaix (Etienne); P. Lebecque (Patrick); D. Lison (Dominique); B.J. Scholte (Bob); P. Wallemacq (Pierre); T. Leal (Teresinha)

    2006-01-01

    textabstractBackground: Inflammation plays a critical role in lung disease development and progression in cystic fibrosis. Azithromycin is used for the treatment of cystic fibrosis lung disease, although its mechanisms of action are poorly understood. We tested the hypothesis that azithromycin

  20. Gene networks in skeletal muscle following endurance exercise are co-expressed in blood neutrophils and linked with blood inflammation markers.

    Science.gov (United States)

    Broadbent, James A; Sampson, Dayle; Sabapathy, Surendran; Haseler, Luke J; Wagner, Karl-Heinz; Bulmer, Andrew Cameron; Peake, Jonathan M; Neubauer, Oliver

    2017-01-19

    It remains incompletely understood whether there is an association between the transcriptome profiles of skeletal muscle and blood leukocytes in response to exercise or other physiological stressors. We have previously analyzed the changes in the muscle and blood neutrophil transcriptome in eight trained men before and 3 h, 48 h and 96 h after 2 h cycling and running. Because we collected muscle and blood in the same individuals and under the same conditions, we were able to directly compare gene expression between the muscle and blood neutrophils. Applying weighted gene co-expression network analysis (WGCNA) as an advanced network-driven method to these original datasets enabled us to compare the muscle and neutrophil transcriptomes in a rigorous and systematic manner. Two gene networks were identified that were preserved between skeletal muscle and blood neutrophils, functionally related to mitochondria and post-translational processes. Strong preservation measures (Zsummary > 10) for both muscle-neutrophil gene networks were evident within the post-exercise recovery period. Muscle and neutrophil gene co-expression was strongly correlated in the mitochondria-related network (r = 0.97; p = 3.17E-2). We also identified multiple correlations between muscular gene sub-networks and exercise-induced changes in blood leukocyte counts, inflammation and muscle damage markers. These data reveal previously unidentified gene co-expression between skeletal muscle and blood neutrophils following exercise, showing the value of WGCNA to understand exercise physiology. Furthermore, these findings provide preliminary evidence in support of the notion that blood neutrophil gene networks may potentially help us to track physiological and pathophysiological changes in the muscle.

  1. Host-derived smooth muscle cells accumulate in cardiac allografts: role of inflammation and monocyte chemoattractant protein 1.

    Directory of Open Access Journals (Sweden)

    Piotr Religa

    Full Text Available Transplant arteriosclerosis is characterized by inflammation and intimal thickening caused by accumulation of smooth muscle cells (SMCs both from donor and recipient. We assessed the relationship between clinical factors and the presence of host-derived SMCs in 124 myocardial biopsies from 26 consecutive patients who received hearts from opposite-sex donors. Clinical and demographic information was obtained from the patients' medical records. Host-derived SMCs accounted for 3.35+/-2.3% of cells in arterioles (range, 0.08-12.51%. As shown by linear regression analysis, an increased number of SMCs was associated with rejection grade (mean, 1.41+/-1.03, p = 0.034 and the number of leukocytes (19.1+/-12.7 per 20 high-power fields, p = 0.01. The accumulation of host-derived SMCs was associated with an increased number of leukocytes in the allografts. In vitro, monocyte chemoattractant protein 1 (MCP-1 released from leukocytes was crucial for SMC migration. After heart allotransplantation, mice treated with MCP-1-specific antibodies had significantly fewer host-derived SMCs in the grafts than mice treated with isotypic antibody controls. We conclude that the number of host-derived SMCs in human cardiac allografts is associated with the rejection grade and that MCP-1 may play pivotal role in recruiting host-derived SMCs into cardiac allografts.

  2. Host-Derived Smooth Muscle Cells Accumulate in Cardiac Allografts: Role of Inflammation and Monocyte Chemoattractant Protein 1

    Science.gov (United States)

    Bojakowski, Krzysztof; Soin, Joanna; Nozynski, Jerzy; Zakliczynski, Michal; Gaciong, Zbigniew; Zembala, Marian; Söderberg-Nauclér, Cecilia

    2009-01-01

    Transplant arteriosclerosis is characterized by inflammation and intimal thickening caused by accumulation of smooth muscle cells (SMCs) both from donor and recipient. We assessed the relationship between clinical factors and the presence of host-derived SMCs in 124 myocardial biopsies from 26 consecutive patients who received hearts from opposite-sex donors. Clinical and demographic information was obtained from the patients' medical records. Host-derived SMCs accounted for 3.35±2.3% of cells in arterioles (range, 0.08–12.51%). As shown by linear regression analysis, an increased number of SMCs was associated with rejection grade (mean, 1.41±1.03, p = 0.034) and the number of leukocytes (19.1±12.7 per 20 high-power fields, p = 0.01). The accumulation of host-derived SMCs was associated with an increased number of leukocytes in the allografts. In vitro, monocyte chemoattractant protein 1 (MCP-1) released from leukocytes was crucial for SMC migration. After heart allotransplantion, mice treated with MCP-1-specific antibodies had significantly fewer host-derived SMCs in the grafts than mice treated with isotypic antibody controls. We conclude that the number of host-derived SMCs in human cardiac allografts is associated with the rejection grade and that MCP-1 may play pivotal role in recruiting host-derived SMCs into cardiac allografts. PMID:19142231

  3. Functional feeds reduce heart inflammation and pathology in Atlantic Salmon (Salmo salar L.) following experimental challenge with Atlantic salmon reovirus (ASRV).

    Science.gov (United States)

    Martinez-Rubio, Laura; Morais, Sofia; Evensen, Øystein; Wadsworth, Simon; Ruohonen, Kari; Vecino, Jose L G; Bell, J Gordon; Tocher, Douglas R

    2012-01-01

    Heart and Skeletal Muscle Inflammation (HSMI), recently associated with a novel Atlantic salmon reovirus (ASRV), is currently one of the most prevalent inflammatory diseases in commercial Atlantic salmon farms in Norway. Mortality varies from low to 20%, but morbidity can be very high, reducing growth performance and causing considerable financial impact. Clinical symptoms, including myocarditis, myocardial and red skeletal muscle necrosis, correlate with the intensity of the inflammatory response. In the present study, the effects of two functional feeds (FF1 and FF2) were compared to a standard commercial reference feed (ST) in Atlantic salmon subjected to an ASRV challenge. The functional feeds had reduced levels of total lipid and digestible energy, and different levels and proportions of long-chain polyunsaturated fatty acids (LC-PUFA). The objective was to determine whether these feeds could provide effective protection by decreasing the inflammatory response associated with HSMI. Histopathology, viral load, fatty acid composition and gene expression of heart tissue were assessed over a period of 16 weeks post-infection with ASRV. The viral load and histopathology scores in heart tissue in response to ASRV infection were reduced in fish fed both functional feeds, with FF1 showing the greatest effect. Microarray hierarchical cluster analysis showed that the functional feeds greatly affected expression of inflammation/immune related genes over the course of the ASRV infection. Viral load correlated with up-regulation of pro-inflammatory genes at the early-mid stages of infection in fish fed the ST diet. Expression of inflammatory genes 16-weeks after ASRV challenge reflected the difference in efficacy between the functional feeds, with fish fed FF1 showing lower expression. Thus, severity of the lesions in heart tissue correlated with the intensity of the innate immune response and was associated with tissue fatty acid compositions. The present study

  4. Functional feeds reduce heart inflammation and pathology in Atlantic Salmon (Salmo salar L. following experimental challenge with Atlantic salmon reovirus (ASRV.

    Directory of Open Access Journals (Sweden)

    Laura Martinez-Rubio

    Full Text Available Heart and Skeletal Muscle Inflammation (HSMI, recently associated with a novel Atlantic salmon reovirus (ASRV, is currently one of the most prevalent inflammatory diseases in commercial Atlantic salmon farms in Norway. Mortality varies from low to 20%, but morbidity can be very high, reducing growth performance and causing considerable financial impact. Clinical symptoms, including myocarditis, myocardial and red skeletal muscle necrosis, correlate with the intensity of the inflammatory response. In the present study, the effects of two functional feeds (FF1 and FF2 were compared to a standard commercial reference feed (ST in Atlantic salmon subjected to an ASRV challenge. The functional feeds had reduced levels of total lipid and digestible energy, and different levels and proportions of long-chain polyunsaturated fatty acids (LC-PUFA. The objective was to determine whether these feeds could provide effective protection by decreasing the inflammatory response associated with HSMI. Histopathology, viral load, fatty acid composition and gene expression of heart tissue were assessed over a period of 16 weeks post-infection with ASRV. The viral load and histopathology scores in heart tissue in response to ASRV infection were reduced in fish fed both functional feeds, with FF1 showing the greatest effect. Microarray hierarchical cluster analysis showed that the functional feeds greatly affected expression of inflammation/immune related genes over the course of the ASRV infection. Viral load correlated with up-regulation of pro-inflammatory genes at the early-mid stages of infection in fish fed the ST diet. Expression of inflammatory genes 16-weeks after ASRV challenge reflected the difference in efficacy between the functional feeds, with fish fed FF1 showing lower expression. Thus, severity of the lesions in heart tissue correlated with the intensity of the innate immune response and was associated with tissue fatty acid compositions. The present

  5. Maternal obesity reduces oxidative capacity in fetal skeletal muscle of Japanese macaques

    Science.gov (United States)

    McCurdy, Carrie E.; Hetrick, Byron; Houck, Julie; Drew, Brian G.; Kaye, Spencer; Lashbrook, Melanie; Bergman, Bryan C.; Takahashi, Diana L.; Dean, Tyler A.; Gertsman, Ilya; Hansen, Kirk C.; Philp, Andrew; Hevener, Andrea L.; Chicco, Adam J.; Aagaard, Kjersti M.; Grove, Kevin L.; Friedman, Jacob E.

    2016-01-01

    Maternal obesity is proposed to alter the programming of metabolic systems in the offspring, increasing the risk for developing metabolic diseases; however, the cellular mechanisms remain poorly understood. Here, we used a nonhuman primate model to examine the impact of a maternal Western-style diet (WSD) alone, or in combination with obesity (Ob/WSD), on fetal skeletal muscle metabolism studied in the early third trimester. We find that fetal muscle responds to Ob/WSD by upregulating fatty acid metabolism, mitochondrial complex activity, and metabolic switches (CPT-1, PDK4) that promote lipid utilization over glucose oxidation. Ob/WSD fetuses also had reduced mitochondrial content, diminished oxidative capacity, and lower mitochondrial efficiency in muscle. The decrease in oxidative capacity and glucose metabolism was persistent in primary myotubes from Ob/WSD fetuses despite no additional lipid-induced stress. Switching obese mothers to a healthy diet prior to pregnancy did not improve fetal muscle mitochondrial function. Lastly, while maternal WSD alone led only to intermediary changes in fetal muscle metabolism, it was sufficient to increase oxidative damage and cellular stress. Our findings suggest that maternal obesity or WSD, alone or in combination, leads to programmed decreases in oxidative metabolism in offspring muscle. These alterations may have important implications for future health. PMID:27734025

  6. Neovestitol, an isoflavonoid isolated from Brazilian red propolis, reduces acute and chronic inflammation: involvement of nitric oxide and IL-6

    Science.gov (United States)

    Franchin, Marcelo; Colón, David F.; da Cunha, Marcos G.; Castanheira, Fernanda V. S.; Saraiva, André L. L.; Bueno-Silva, Bruno; Alencar, Severino M.; Cunha, Thiago M.; Rosalen, Pedro L.

    2016-01-01

    Isoflavonoids have been largely studied due to their distinct biological activities identified thus far. Herein, we evaluated the activity of neovestitol, an isoflavonoid isolated from Brazilian red propolis, in acute and chronic inflammation. As for acute inflammation, we found that neovestitol reduced neutrophil migration, leukocyte rolling and adhesion, as well as expression of ICAM-1 in the mesenteric microcirculation during lipopolysaccharide-induced acute peritonitis. No changes were observed in the levels of TNF-α, CXCL1/KC and CXCL2/MIP-2 upon pretreatment with neovestitol. The administration of an inducible nitric oxide synthase (iNOS) inhibitor abolished the inhibitory effects of neovestitol in neutrophil migration and ICAM-1 expression. Nitrite levels increased upon treatment with neovestitol. No effects of neovestitol were observed on the chemotaxis of neutrophils in vitro. As for chronic inflammation, neovestitol also reduced the clinical score and joint damage in a collagen-induced arthritis model. There was no change in the frequency of IL-17-producing TCD4+ cells. In addition, pretreatment with neovestitol reduced the levels of IL-6. These results demonstrate a potential anti-inflammatory activity of neovestitol, which may be useful for therapeutic purposes and/or as a nutraceutical. PMID:27819273

  7. Silver nanoparticles reduce brain inflammation and related neurotoxicity through induction of H2S-synthesizing enzymes

    Science.gov (United States)

    Gonzalez-Carter, Daniel A.; Leo, Bey Fen; Ruenraroengsak, Pakatip; Chen, Shu; Goode, Angela E.; Theodorou, Ioannis G.; Chung, Kian Fan; Carzaniga, Raffaella; Shaffer, Milo S. P.; Dexter, David T.; Ryan, Mary P.; Porter, Alexandra E.

    2017-03-01

    Silver nanoparticles (AgNP) are known to penetrate into the brain and cause neuronal death. However, there is a paucity in studies examining the effect of AgNP on the resident immune cells of the brain, microglia. Given microglia are implicated in neurodegenerative disorders such as Parkinson’s disease (PD), it is important to examine how AgNPs affect microglial inflammation to fully assess AgNP neurotoxicity. In addition, understanding AgNP processing by microglia will allow better prediction of their long term bioreactivity. In the present study, the in vitro uptake and intracellular transformation of citrate-capped AgNPs by microglia, as well as their effects on microglial inflammation and related neurotoxicity were examined. Analytical microscopy demonstrated internalization and dissolution of AgNPs within microglia and formation of non-reactive silver sulphide (Ag2S) on the surface of AgNPs. Furthermore, AgNP-treatment up-regulated microglial expression of the hydrogen sulphide (H2S)-synthesizing enzyme cystathionine-γ-lyase (CSE). In addition, AgNPs showed significant anti-inflammatory effects, reducing lipopolysaccharide (LPS)-stimulated ROS, nitric oxide and TNFα production, which translated into reduced microglial toxicity towards dopaminergic neurons. Hence, the present results indicate that intracellular Ag2S formation, resulting from CSE-mediated H2S production in microglia, sequesters Ag+ ions released from AgNPs, significantly limiting their toxicity, concomitantly reducing microglial inflammation and related neurotoxicity.

  8. Silver nanoparticles reduce brain inflammation and related neurotoxicity through induction of H2S-synthesizing enzymes

    Science.gov (United States)

    Gonzalez-Carter, Daniel A.; Leo, Bey Fen; Ruenraroengsak, Pakatip; Chen, Shu; Goode, Angela E.; Theodorou, Ioannis G.; Chung, Kian Fan; Carzaniga, Raffaella; Shaffer, Milo S. P.; Dexter, David T.; Ryan, Mary P.; Porter, Alexandra E.

    2017-01-01

    Silver nanoparticles (AgNP) are known to penetrate into the brain and cause neuronal death. However, there is a paucity in studies examining the effect of AgNP on the resident immune cells of the brain, microglia. Given microglia are implicated in neurodegenerative disorders such as Parkinson’s disease (PD), it is important to examine how AgNPs affect microglial inflammation to fully assess AgNP neurotoxicity. In addition, understanding AgNP processing by microglia will allow better prediction of their long term bioreactivity. In the present study, the in vitro uptake and intracellular transformation of citrate-capped AgNPs by microglia, as well as their effects on microglial inflammation and related neurotoxicity were examined. Analytical microscopy demonstrated internalization and dissolution of AgNPs within microglia and formation of non-reactive silver sulphide (Ag2S) on the surface of AgNPs. Furthermore, AgNP-treatment up-regulated microglial expression of the hydrogen sulphide (H2S)-synthesizing enzyme cystathionine-γ-lyase (CSE). In addition, AgNPs showed significant anti-inflammatory effects, reducing lipopolysaccharide (LPS)-stimulated ROS, nitric oxide and TNFα production, which translated into reduced microglial toxicity towards dopaminergic neurons. Hence, the present results indicate that intracellular Ag2S formation, resulting from CSE-mediated H2S production in microglia, sequesters Ag+ ions released from AgNPs, significantly limiting their toxicity, concomitantly reducing microglial inflammation and related neurotoxicity. PMID:28251989

  9. Neovestitol, an isoflavonoid isolated from Brazilian red propolis, reduces acute and chronic inflammation: involvement of nitric oxide and IL-6.

    Science.gov (United States)

    Franchin, Marcelo; Colón, David F; da Cunha, Marcos G; Castanheira, Fernanda V S; Saraiva, André L L; Bueno-Silva, Bruno; Alencar, Severino M; Cunha, Thiago M; Rosalen, Pedro L

    2016-11-07

    Isoflavonoids have been largely studied due to their distinct biological activities identified thus far. Herein, we evaluated the activity of neovestitol, an isoflavonoid isolated from Brazilian red propolis, in acute and chronic inflammation. As for acute inflammation, we found that neovestitol reduced neutrophil migration, leukocyte rolling and adhesion, as well as expression of ICAM-1 in the mesenteric microcirculation during lipopolysaccharide-induced acute peritonitis. No changes were observed in the levels of TNF-α, CXCL1/KC and CXCL2/MIP-2 upon pretreatment with neovestitol. The administration of an inducible nitric oxide synthase (iNOS) inhibitor abolished the inhibitory effects of neovestitol in neutrophil migration and ICAM-1 expression. Nitrite levels increased upon treatment with neovestitol. No effects of neovestitol were observed on the chemotaxis of neutrophils in vitro. As for chronic inflammation, neovestitol also reduced the clinical score and joint damage in a collagen-induced arthritis model. There was no change in the frequency of IL-17-producing TCD4+ cells. In addition, pretreatment with neovestitol reduced the levels of IL-6. These results demonstrate a potential anti-inflammatory activity of neovestitol, which may be useful for therapeutic purposes and/or as a nutraceutical.

  10. Reduced sarcoplasmic reticulum content of releasable Ca2+ in rat soleus muscle fibres after eccentric contractions

    DEFF Research Database (Denmark)

    Nielsen, J S; Sahlin, K; Ørtenblad, N

    2007-01-01

    AIM: The purpose was to evaluate the effects of fatiguing eccentric contractions (EC) on calcium (Ca2+) handling properties in mammalian type I muscles. We hypothesized that EC reduces both endogenous sarcoplasmic reticulum (SR) content of releasable Ca2+ (eSRCa2+) and myofibrillar Ca2+ sensitivity...

  11. Reduced masticatory function is related to lower satellite cell numbers in masseter muscle.

    Science.gov (United States)

    Kuijpers, M A R; Grefte, S; Bronkhorst, E M; Carels, C E L; Kiliaridis, S; Von den Hoff, J W

    2014-06-01

    The physiology of masseter muscles is known to change in response to functional demands, but the effect on the satellite cell (SC) population is not known. In this study, the hypothesis is tested that a decreased functional demand of the masseter muscle causes a reduction of SCs. To this end, twelve 5-week-old male Sprague-Dawley rats were put on a soft diet (SD, n = 6) or a hard diet (HD, n = 6) and sacrificed after 14 days. Paraffin sections of the superficial masseter and the m. digastricus (control muscle) were stained with haematoxylin and eosin for tissue survey and with anti-myosin heavy chain (MHC) for slow and fast fibres. Frozen sections of both muscles were double-stained for collagen type IV and Pax7. Slow MHC fibres were equally distributed in the m. digastricus but only localized in a small area of the m. masseter. No differences between HD or SD for the m. digastricus were found. The m. masseter had more SCs per fibre in HD than in SD (0.093 ± 0.007 and 0.081 ± 0.008, respectively; P = 0.027). The m. masseter had more fibres per surface area than the m. digastricus in rats with an SD group (758.1 ± 101.6 and 568.4 ± 85.6, P = 0.047) and a HD group (737.7 ± 32.6 and 592.2 ± 82.2; P = 0.007). The m. digastricus had more SCs per fibre than the m. masseter in the SD group (0.094 ± 0.01 and 0.081 ± 0.008; P = 0.039). These results suggest that reduced masseter muscle function is related to a lower number of SCs. Reduced muscle function might decrease microdamage and hence the requirement of SCs in the muscle fibres.

  12. A COX-2 inhibitor reduces muscle soreness, but does not influence recovery and adaptation after eccentric exercise

    DEFF Research Database (Denmark)

    Paulsen, G; Egner, I M; Drange, M

    2010-01-01

    The aim of this study was to investigate the effect of a cyclooxygenase (COX)-2 inhibitor on the recovery of muscle function, inflammation, regeneration after, and adaptation to, unaccustomed eccentric exercise. Thirty-three young males and females participated in a double-blind, placebo...... by celecoxib. In summary, celecoxib, a COX-2 inhibitor, did not detectably affect recovery of muscle function or markers of inflammation and regeneration after unaccustomed eccentric exercise, nor did the drug influence the repeated-bout effect. However, it alleviated muscle soreness.......-controlled experiment. Seventy unilateral, voluntary, maximal eccentric actions with the elbow flexors were performed twice (bouts 1 and 2) with the same arm, separated by 3 weeks. The test group participants were administered 400 mg/day of celecoxib for 9 days after bout 1. After both bouts 1 and 2, concentric...

  13. Reduced rate of adenosine triphosphate synthesis by in vivo 31P nuclear magnetic resonance spectroscopy and downregulation of PGC-1beta in distal skeletal muscle following burn.

    Science.gov (United States)

    Tzika, A Aria; Mintzopoulos, Dionyssios; Padfield, Katie; Wilhelmy, Julie; Mindrinos, Michael N; Yu, Hongue; Cao, Haihui; Zhang, Qunhao; Astrakas, Loukas G; Zhang, Jiangwen; Yu, Yong-Ming; Rahme, Laurence G; Tompkins, Ronald G

    2008-02-01

    Using a mouse model of burn trauma, we tested the hypothesis that severe burn trauma corresponding to 30% of total body surface area (TBSA) causes reduction in adenosine triphosphate (ATP) synthesis in distal skeletal muscle. We employed in vivo 31P nuclear magnetic resonance (NMR) in intact mice to assess the rate of ATP synthesis, and characterized the concomitant gene expression patterns in skeletal muscle in burned (30% TBSA) versus control mice. Our NMR results showed a significantly reduced rate of ATP synthesis and were complemented by genomic results showing downregulation of the ATP synthase mitochondrial F1 F0 complex and PGC-1beta gene expression. Our findings suggest that inflammation and muscle atrophy in burns are due to a reduced ATP synthesis rate that may be regulated upstream by PGC-1beta. These findings implicate mitochondrial dysfunction in distal skeletal muscle following burn injury. That PGC-1beta is a highly inducible factor in most tissues and responds to common calcium and cyclic adenosine monophosphate (cAMP) signaling pathways strongly suggests that it may be possible to develop drugs that can induce PGC-1beta.

  14. Vegetarian diet reduces the risk of hypertension independent of abdominal obesity and inflammation: a prospective study.

    Science.gov (United States)

    Chuang, Shao-Yuan; Chiu, Tina H T; Lee, Chun-Yi; Liu, Ting-Ting; Tsao, Chwen Keng; Hsiung, Chao A; Chiu, Yen-Feng

    2016-11-01

    A vegetarian diet may prevent elevation of blood pressures and lower the risk for hypertension through lower degrees of obesity, inflammation, and insulin resistance. This study investigated the association between a vegetarian diet and hypertension incidence in a cohort of Taiwanese adult nonsmokers and examined whether this association was mediated through inflammation, abdominal obesity, or insulin resistance (using fasting glucose as a proxy). This matched cohort study was from the 1994-2008 MJ Health Screening Database. Each vegetarian was matched with five nonvegetarians by age, sex, and study site. The analysis included 4109 nonsmokers (3423 nonvegetarians and 686 vegetarians), followed for a median of 1.61 years. The outcome includes hypertension incidence, as well as SBP and DBP levels. Regression analysis was performed to assess the association between vegetarian diet and hypertension incidence or future blood pressure levels in the presence/absence of potential mediators. Vegetarians had a 34% lower risk for hypertension, adjusting for age and sex (odds ratio: 0.66, 95% confidence interval: 0.50-0.87; SBP: -3.3 mmHg, P vegetarian diet and hypertension appeared to be consistent across age groups. Taiwanese vegetarians had lower incidence of hypertension than nonvegetarians. Vegetarian diets may protect against hypertension beyond lower abdominal obesity, inflammation, and insulin resistance.

  15. Low-dose growth hormone therapy reduces inflammation in HIV-infected patients

    DEFF Research Database (Denmark)

    Lindboe, Johanne Bjerre; Langkilde, Anne; Eugen-Olsen, Jesper

    2016-01-01

    BACKGROUND: Combination antiretroviral therapy (cART) has drastically increased the life expectancy of HIV-infected patients. However, HIV-infected patients exhibit increased inflammation and 33-58% exhibit a characteristic fat re-distribution termed HIV-associated lipodystrophy syndrome (HALS...... to investigate the impact of low-dose rhGH therapy on inflammation in HIV-infected patients. METHODS: Forty-six cART-treated HIV-infected men were included in the HIV-GH low-dose (HIGH/Low) study: a randomized, placebo-controlled, double-blinded trial. Subjects were randomized 3:2 to 0.7 mg/day rhGH, or placebo......). Recombinant human growth hormone (rhGH) has been tested as treatment of HALS. Low-dose rhGH therapy improves thymopoiesis and fat distribution in HIV-infected patients and appears to be well tolerated. However, since high-dose rhGH is associated with adverse events related to inflammation, we wanted...

  16. The hallucinogenic herb Salvia divinorum and its active ingredient salvinorin A reduce inflammation-induced hypermotility in mice.

    Science.gov (United States)

    Capasso, R; Borrelli, F; Zjawiony, J; Kutrzeba, L; Aviello, G; Sarnelli, G; Capasso, F; Izzo, A A

    2008-02-01

    The hallucinogenic plant Salvia divinorum has been used for medical treatments of gastrointestinal disorders. Here, we evaluated the effect of a standardized extract from the leaves of Salvia divinorum (SDE) and of its active ingredient salvinorin A on motility in vivo, both in physiological states and during croton oil-induced intestinal inflammation. SDE (1-100 mg kg(-1)) significantly inhibited motility only in inflamed, but not in control, mice. In control mice, salvinorin A (0.01-10 mg kg(-1)) significantly inhibited motility only at the highest doses tested (3 and 10 mg kg(-1)) and this effect was not counteracted by naloxone or by the kappa-opioid receptor (KOR) antagonist nor-binaltorphimine. Inflammation significantly increased the potency of salvinorin A (but not of the KOR agonist U-50488) in reducing motility. The inhibitory effects of both salvinorin A and U-50488 in inflamed mice were counteracted by naloxone or by nor-binaltorphimine. We conclude that salvinorin A may reduce motility through activation of different targets. In physiological states, salvinorin A, at high doses, inhibited motility through a non-KOR mediated mechanism. Gut inflammation increased the potency of salvinorin A; this effect was mediated by KOR, but it was not shared by U-50488, thus suggesting that salvinorin A may have target(s) other than KOR in the inflamed gut.

  17. Cryotherapy reduces skeletal muscle damage after ischemia/reperfusion in rats.

    Science.gov (United States)

    Puntel, Gustavo O; Carvalho, Nélson R; Dobrachinski, Fernando; Salgueiro, Andréia C F; Puntel, Robson L; Folmer, Vanderlei; Barbosa, Nilda B V; Royes, Luiz F F; Rocha, João Batista T; Soares, Félix A A

    2013-02-01

    The aim of this study was to analyze the effects of cryotherapy on the biochemical and morphological changes in ischemic and reperfused (I/R) gastrocnemius muscle of rats. Forty male Wistar rats were divided into control and I/R groups, and divided based on whether or not the rats were submitted to cryotherapy. Following the reperfusion period, biochemical and morphological analyses were performed. Following cryotherapy, a reduction in thiobarbituric acid-reactive substances and dichlorofluorescein oxidation levels were observed in I/R muscle. Cryotherapy in I/R muscle also minimized effects such as decreased cellular viability, levels of non-protein thiols and calcium ATPase activity as well as increased catalase activity. Cryotherapy also limited mitochondrial dysfunction and decreased the presence of neutrophils in I/R muscle, an effect that was corroborated by reduced myeloperoxidase activity in I/R muscle treated with cryotherapy. The effects of cryotherapy are associated with a reduction in the intensity of the inflammatory response and also with a decrease in mitochondrial dysfunction.

  18. IL-19 Reduces Ligation-Mediated Neointimal Hyperplasia by Reducing Vascular Smooth Muscle Cell Activation

    Science.gov (United States)

    Ellison, Stephen; Gabunia, Khatuna; Richards, James M.; Kelemen, Sheri E.; England, Ross N.; Rudic, Dan; Azuma, Yasu-Taka; Munroy, M. Alexandra; Eguchi, Satoru; Autieri, Michael V.

    2015-01-01

    We tested the hypothesis that IL-19, a putative member of the type 2 helper T-cell family of anti-inflammatory interleukins, can attenuate intimal hyperplasia and modulate the vascular smooth muscle cell (VSMC) response to injury. Ligated carotid artery of IL-19 knockout (KO) mice demonstrated a significantly higher neointima/intima ratio compared with wild-type (WT) mice (P = 0.04). More important, the increased neointima/intima ratio in the KO could be reversed by injection of 10 ng/g per day recombinant IL-19 into the KO mouse (P = 0.04). VSMCs explanted from IL-19 KO mice proliferated significantly more rapidly than WT. This could be inhibited by addition of IL-19 to KO VSMCs (P = 0.04 and P < 0.01). IL-19 KO VSMCs migrated more rapidly compared with WT (P < 0.01). Interestingly, there was no type 1 helper T-cell polarization in the KO mouse, but there was significantly greater leukocyte infiltrate in the ligated artery in these mice compared with WT. IL-19 KO VSMCs expressed significantly greater levels of inflammatory mRNA, including IL-1β, tumor necrosis factor α, and monocyte chemoattractant protein-1 in response to tumor necrosis factor α stimulation (P < 0.01 for all). KO VSMCs expressed greater adhesion molecule expression and adherence to monocytes. Together, these data indicate that IL-19 is a previously unrecognized counterregulatory factor for VSMCs, and its expression is an important protective mechanism in regulation of vascular restenosis. PMID:24814101

  19. (--Epigallocatechin-3-gallate Reduces Cigarette Smoke-Induced Airway Neutrophilic Inflammation and Mucin Hypersecretion in Rats

    Directory of Open Access Journals (Sweden)

    Yingmin Liang

    2017-09-01

    Full Text Available Background: Cigarette smoking is the leading cause of chronic obstructive pulmonary disease. (--Epigallocatechin-3-gallate (EGCG, the major catechins in Chinese green tea, has been studied for its anti-oxidative and anti-inflammatory properties in cell and animal models. In this study, we aimed to analyze the effects of EGCG on cigarette smoke (CS-induced airway inflammation and mucus secretion in the CS-exposed rat model.Methods: Male Sprague-Dawley rats were randomly divided into either sham air (SA or CS exposure. EGCG (50 mg/kg b.wt. was given by oral gavage every other day in both SA and CS-exposed animals. Oxidative stress and inflammatory markers were determined in serum and/or bronchoalveolar lavage fluid by biochemical assays or ELISA. Lung morphological changes were examined by Periodic Acid-Schiff, Masson’s Trichrome staining and immunohistochemical analysis. Western blot analysis was performed to explore the effects of EGCG on epidermal growth factor receptor (EGFR-mediated signaling pathway.Results: (--Epigallocatechin-3-gallate treatment attenuated CS-induced oxidative stress, lung cytokine-induced neutrophil chemoattractant-1 release and neutrophil recruitment. CS exposure caused an increase in the number of goblet cells in line with MUC5AC upregulation, and increased lung collagen deposition, which were alleviated in the presence of EGCG. In addition, CS-induced phosphorylation of EGFR in rat lung was abrogated by EGCG treatment.Conclusion: (--Epigallocatechin-3-gallate treatment ameliorated CS-induced oxidative stress and neutrophilic inflammation, as well as airway mucus production and collagen deposition in rats. The present findings suggest that EGCG has a therapeutic effect on chronic airway inflammation and abnormal airway mucus production probably via inhibition of EGFR signaling pathway.

  20. Strict vegetarian diet improves the risk factors associated with metabolic diseases by modulating gut microbiota and reducing intestinal inflammation.

    Science.gov (United States)

    Kim, Min-Soo; Hwang, Seong-Soo; Park, Eun-Jin; Bae, Jin-Woo

    2013-10-01

    Low-grade inflammation of the intestine results in metabolic dysfunction, in which dysbiosis of the gut microbiota is intimately involved. Dietary fibre induces prebiotic effects that may restore imbalances in the gut microbiota; however, no clinical trials have been reported in patients with metabolic diseases. Here, six obese subjects with type 2 diabetes and/or hypertension were assigned to a strict vegetarian diet (SVD) for 1 month, and blood biomarkers of glucose and lipid metabolisms, faecal microbiota using 454-pyrosequencing of 16S ribosomal RNA genes, faecal lipocalin-2 and short-chain fatty acids were monitored. An SVD reduced body weight and the concentrations of triglycerides, total cholesterol, low-density lipoprotein cholesterol and haemoglobin A1c, and improved fasting glucose and postprandial glucose levels. An SVD reduced the Firmicutes-to-Bacteroidetes ratio in the gut microbiota, but did not alter enterotypes. An SVD led to a decrease in the pathobionts such as the Enterobacteriaceae and an increase in commensal microbes such as Bacteroides fragilis and Clostridium species belonging to clusters XIVa and IV, resulting in reduced intestinal lipocalin-2 and short-chain fatty acids levels. This study underscores the benefits of dietary fibre for improving the risk factors of metabolic diseases and shows that increased fibre intake reduces gut inflammation by changing the gut microbiota.

  1. Intramuscular fat in the longissimus muscle is reduced in lambs from sires selected for leanness.

    Science.gov (United States)

    Pannier, L; Pethick, D W; Geesink, G H; Ball, A J; Jacob, R H; Gardner, G E

    2014-02-01

    Selection for lean growth through Australian Sheep Breeding Values (ASBVs) for post weaning weight (PWWT), eye muscle depth (PEMD) and c-site fat depth (PFAT) raises concerns regarding declining intramuscular fat (IMF) levels. Reducing PFAT decreased IMF by 0.84% for Terminal sired lambs. PEMD decreased IMF by 0.18% across all sire types. Female lambs had higher IMF levels and this was unexplained by total carcass fatness. The negative phenotypic association between measures of muscling (shortloin muscle weight, eye muscle area) and IMF, and positive association between fatness and IMF, was consistent with other literature. Hot carcass weight increased IMF by 2.08% between 12 and 40 kg, reflective of development of IMF as lambs approach maturity. Selection objectives with low PFAT sires will reduce IMF, however the lower impact of PEMD and absence of a PWWT effect, will enable continued selection for lean growth without influencing IMF. Alternatively, the negative impact of PFAT could be off-set by inclusion of an IMF ASBV. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Reduced Notch signalling leads to postnatal skeletal muscle hypertrophy in Pofut1cax/cax mice.

    Science.gov (United States)

    Al Jaam, Bilal; Heu, Katy; Pennarubia, Florian; Segelle, Alexandre; Magnol, Laetitia; Germot, Agnès; Legardinier, Sébastien; Blanquet, Véronique; Maftah, Abderrahman

    2016-09-01

    Postnatal skeletal muscle growth results from the activation of satellite cells and/or an increase in protein synthesis. The Notch signalling pathway maintains satellite cells in a quiescent state, and once activated, sustains their proliferation and commitment towards differentiation. In mammals, POFUT1-mediated O-fucosylation regulates the interactions between NOTCH receptors and ligands of the DELTA/JAGGED family, thus initiating the activation of canonical Notch signalling. Here, we analysed the consequences of downregulated expression of the Pofut1 gene on postnatal muscle growth in mutant Pofut1(cax/cax) (cax, compact axial skeleton) mice and differentiation of their satellite cell-derived myoblasts (SCDMs). Pofut1(cax/cax) mice exhibited muscle hypertrophy, no hyperplasia and a decrease in satellite cell numbers compared with wild-type C3H mice. In agreement with these observations, Pofut1(cax/cax) SCDMs differentiated earlier concomitant with reduced Pax7 expression and decrease in PAX7(+)/MYOD(-) progenitor cells. In vitro binding assays showed a reduced interaction of DELTA-LIKE 1 ligand (DLL1) with NOTCH receptors expressed at the cell surface of SCDMs, leading to a decreased Notch signalling as seen by the quantification of cleaved NICD and Notch target genes. These results demonstrated that POFUT1-mediated O-fucosylation of NOTCH receptors regulates myogenic cell differentiation and affects postnatal muscle growth in mice.

  3. BIIL 284 reduces neutrophils numbers but increases P. aeruginosa bacteraemia and inflammation in mouse lungs

    Science.gov (United States)

    Döring, Gerd; Bragonzi, Alessandra; Paroni, Moira; Aktürk, Firdevs-Fatma; Cigana, Cristina; Schmidt, Annika; Gilpin, Deirdre; Heyder, Susanne; Born, Torsten; Smaczny, Christina; Kohlhäufl, Martin; Wagner, Thomas O. F.; Loebinger, Michael R.; Bilton, Diana; Tunney, Michael M.; Elborn, J. Stuart; Pier, Gerald B.; Konstan, Michael W.; Ulrich, Martina

    2014-01-01

    Background A clinical study to investigate the leukotriene B4 (LTB4)-receptor antagonist BIIL 284 in cystic fibrosis (CF) patients was prematurely terminated due to a significantly increased risk of adverse pulmonary events. We aimed to establish the effect of BIIL284 in models of Pseudomonas aeruginosa lung infection, thereby contributing to a better understanding of what could have led to adverse pulmonary events in CF patients. Methods P. aeruginosa DNA in the blood of CF patients during and after acute pulmonary exacerbations and in stable patients with non-CF bronchiectasis (NCFB) and healthy individuals was assessed by PCR. The effect of BIIL 284 treatment was tested in an agar beads murine model of Pseudomonas aeruginosa lung infection. Bacterial count and inflammation were evaluated in lung and other organs. Result Most CF patients (98%) and all patients with NCFB and healthy individuals had negative P. aeruginosa DNA in their blood. Similarly, the P. aeruginosa-infected mice showed bacterial counts in the lung but not blood or spleen. BIIL 284 treatment decreased pulmonary neutrophils and increased P. aeruginosa numbers in mouse lungs leading to significantly higher bacteremia rates and lung inflammation compared to placebo treated animals. Conclusions Decreased airway neutrophils induced lung proliferation and severe bacteraemia in a murine model of P. aeruginosa lung infection. These data suggest that caution should be taken when administering anti-inflammatory compounds to patients with bacterial infections. PMID:24183915

  4. Laser therapy reduces gelatinolytic activity in the rat trigeminal ganglion during temporomandibular joint inflammation.

    Science.gov (United States)

    Desiderá, A C; Nascimento, G C; Gerlach, R F; Leite-Panissi, C R A

    2015-07-01

    To investigate whether low-level laser therapy (LLLT) alters the expression and activity of MMP-2 and MMP-9 in the trigeminal ganglion (TG) during different stages of temporomandibular joint (TMJ) inflammation in rats. It also evaluated whether LLLT modifies mechanical allodynia and orofacial hyperalgesia. Wistar rats (±250 g) were divided into groups that received saline (SAL) or complete Freund's adjuvant (CFA, 50 μl) in the TMJ, and that later underwent LLLT (20 J cm(-2) ) at their TMJ or not (groups SAL, SAL + LLLT, CFA, and CFA + LLLT). LLLT was applied on days 3, 5, 7, and 9 after SAL or CFA. Mechanical allodynia was evaluated on days 1, 3, 5, 7, and 10; orofacial hyperalgesia was assessed on day 10. Gelatin zymography and in situ zymography aided quantification of MMPs in the TG. Low-level laser therapy abolished the reduction in the mechanical orofacial threshold and the increase in orofacial rubbing during the orofacial formalin test induced by CFA. LLLT also decreased the CFA-induced rise in the levels of MMP-9 and MMP-2 as well as the gelatinolytic activity in the TG. Low-level laser therapy could constitute an adjuvant therapy to treat temporomandibular disorders and prevent inflammation-induced alterations in the levels of MMP-2 and MMP-9 and in the gelatinolytic activity in TGs. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Anabolic Steroids Reduce Muscle Degeneration Associated With Rotator Cuff Tendon Release in Sheep.

    Science.gov (United States)

    Gerber, Christian; Meyer, Dominik C; Flück, Martin; Benn, Mario C; von Rechenberg, Brigitte; Wieser, Karl

    2015-10-01

    Chronic rotator cuff tendon tearing is associated with irreversible atrophy, fatty infiltration, and interstitial fibrosis of the corresponding muscle. Anabolic steroids can prevent musculotendinous degeneration during retraction and/or can reverse these changes after operative repair of the retracted musculotendinous unit in sheep. Controlled laboratory study. The infraspinatus tendon was released in 18 alpine sheep. All sheep underwent repair of the retracted musculotendinous unit after 16 weeks and were sacrificed after 22 weeks; 6 sheep served as controls, 6 sheep were treated with weekly intramuscular injection of 150 mg of nandrolone decanoate after infraspinatus (ISP) repair (group N6W), and 6 sheep were treated with 150 mg of nandrolone decanoate immediately after tendon release (group N22W). Muscle biopsy specimens were taken before tendon release and after 16 and 22 weeks. Muscle volume and fatty infiltration (on MRI), myotendinous retraction, and muscle density (on computed tomography) were measured immediately after ISP release, after 6 weeks, and before ISP repair and sacrifice. Muscle volume on MRI decreased to a mean (±SD) of 80% ± 8% of the original volume after 6 weeks, remained stable at 78% ± 11% after 16 weeks, and decreased further to 69% ± 9% after 22 weeks in the control group. These findings were no different from those in group N22W (72% ± 9% at 6 weeks, 73% ± 6% at 16 weeks, and 67% ± 5% at 22 weeks). Conversely, the N6W group did not show a decrease in ISP volume after repair; this finding differed significantly from the response in the control and N22W groups. Fatty infiltration (on MRI) continuously increased in the control group (12% ± 4% at tendon release, 17% ± 4% after 6 weeks, 50% ± 9% after 16 weeks, and 60% ± 8% after 22 weeks) and the N6W group. However, application of anabolic steroids at the time of tendon release (N22W group) significantly reduced fatty infiltration after 16 (16% ± 5%; P < .001) and 22 weeks (22

  6. Dystrophin-deficient dogs with reduced myostatin have unequal muscle growth and greater joint contractures.

    Science.gov (United States)

    Kornegay, Joe N; Bogan, Daniel J; Bogan, Janet R; Dow, Jennifer L; Wang, Jiahui; Fan, Zheng; Liu, Naili; Warsing, Leigh C; Grange, Robert W; Ahn, Mihye; Balog-Alvarez, Cynthia J; Cotten, Steven W; Willis, Monte S; Brinkmeyer-Langford, Candice; Zhu, Hongtu; Palandra, Joe; Morris, Carl A; Styner, Martin A; Wagner, Kathryn R

    2016-01-01

    Myostatin (Mstn) is a negative regulator of muscle growth whose inhibition promotes muscle growth and regeneration. Dystrophin-deficient mdx mice in which myostatin is knocked out or inhibited postnatally have a less severe phenotype with greater total mass and strength and less fibrosis and fatty replacement of muscles than mdx mice with wild-type myostatin expression. Dogs with golden retriever muscular dystrophy (GRMD) have previously been noted to have increased muscle mass and reduced fibrosis after systemic postnatal myostatin inhibition. Based partly on these results, myostatin inhibitors are in development for use in human muscular dystrophies. However, persisting concerns regarding the effects of long-term and profound myostatin inhibition will not be easily or imminently answered in clinical trials. To address these concerns, we developed a canine (GRippet) model by crossbreeding dystrophin-deficient GRMD dogs with Mstn-heterozygous (Mstn (+/-)) whippets. A total of four GRippets (dystrophic and Mstn (+/-)), three GRMD (dystrophic and Mstn wild-type) dogs, and three non-dystrophic controls from two litters were evaluated. Myostatin messenger ribonucleic acid (mRNA) and protein levels were downregulated in both GRMD and GRippet dogs. GRippets had more severe postural changes and larger (more restricted) maximal joint flexion angles, apparently due to further exaggeration of disproportionate effects on muscle size. Flexors such as the cranial sartorius were more hypertrophied on magnetic resonance imaging (MRI) in the GRippets, while extensors, including the quadriceps femoris, underwent greater atrophy. Myostatin protein levels negatively correlated with relative cranial sartorius muscle cross-sectional area on MRI, supporting a role in disproportionate muscle size. Activin receptor type IIB (ActRIIB) expression was higher in dystrophic versus control dogs, consistent with physiologic feedback between myostatin and ActRIIB. However, there was no

  7. A cell-impermeable cyclosporine A derivative reduces pathology in a mouse model of allergic lung inflammation.

    Science.gov (United States)

    Balsley, Molly A; Malesevic, Miroslav; Stemmy, Erik J; Gigley, Jason; Jurjus, Rosalyn A; Herzog, Dallen; Bukrinsky, Michael I; Fischer, Gunter; Constant, Stephanie L

    2010-12-15

    Although the main regulators of leukocyte trafficking are chemokines, another family of chemotactic agents is cyclophilins. Intracellular cyclophilins function as peptidyl-prolyl cis-trans isomerases and are targets of the immunosuppressive drug cyclosporine A (CsA). Cyclophilins can also be secreted in response to stress factors, with elevated levels of extracellular cyclophilins detected in several inflammatory diseases. Extracellular cyclophilins are known to have potent chemotactic properties, suggesting that they might contribute to inflammatory responses by recruiting leukocytes into tissues. The objective of the present study was to determine the impact of blocking cyclophilin activity using a cell-impermeable derivative of CsA to specifically target extracellular pools of cyclophilins. In this study, we show that treatment with this compound in a mouse model of allergic lung inflammation demonstrates up to 80% reduction in inflammation, directly inhibits the recruitment of Ag-specific CD4(+) T cells, and works equally well when delivered at 100-fold lower doses directly to the airways. Our findings suggest that cell-impermeable analogs of CsA can effectively reduce inflammatory responses by targeting leukocyte recruitment mediated by extracellular cyclophilins. Specifically blocking the extracellular functions of cyclophilins may provide an approach for inhibiting the recruitment of one of the principal immune regulators of allergic lung inflammation, Ag-specific CD4(+) T cells, into inflamed airways and lungs.

  8. Fullerenols and glucosamine fullerenes reduce infarct volume and cerebral inflammation after ischemic stroke in normotensive and hypertensive rats.

    Science.gov (United States)

    Fluri, Felix; Grünstein, Dan; Cam, Ertugrul; Ungethuem, Udo; Hatz, Florian; Schäfer, Juliane; Samnick, Samuel; Israel, Ina; Kleinschnitz, Christoph; Orts-Gil, Guillermo; Moch, Holger; Zeis, Thomas; Schaeren-Wiemers, Nicole; Seeberger, Peter

    2015-03-01

    Cerebral inflammation plays a crucial role in the pathophysiology of ischemic stroke and is involved in all stages of the ischemic cascade. Fullerene derivatives, such as fullerenol (OH-F) are radical scavengers acting as neuroprotective agents while glucosamine (GlcN) attenuates cerebral inflammation after stroke. We created novel glucosamine-fullerene conjugates (GlcN-F) to combine their protective effects and compared them to OH-F regarding stroke-induced cerebral inflammation and cellular damage. Fullerene derivatives or vehicle was administered intravenously in normotensive Wistar-Kyoto (WKY) rats and spontaneously hypertensive rats (SHR) immediately after transient middle cerebral artery occlusion (tMCAO). Infarct size was determined at day 5 and neurological outcome at days 1 and 5 after tMCAO. CD68- and NeuN-staining were performed to determine immunoreactivity and neuronal survival respectively. Cytokine and toll like receptor 4 (TLR-4) expression was assessed using quantitative real-time PCR. Magnetic resonance imaging revealed a significant reduction of infarct volume in both, WKY and SHR that were treated with fullerene derivatives. Treated rats showed an amelioration of neurological symptoms as both OH-F and GlcN-F prevented neuronal loss in the perilesional area. Cerebral immunoreactivity was reduced in treated WKY and SHR. Expression of IL-1β and TLR-4 was attenuated in OH-F-treated WKY rats. In conclusion, OH-F and GlcN-F lead to a reduction of cellular damage and inflammation after stroke, rendering these compounds attractive therapeutics for stroke.

  9. Acute resistance exercise reduces increased gene expression in muscle atrophy of ovariectomised arthritic rats

    Directory of Open Access Journals (Sweden)

    Roberto Furlanetto Jr

    2017-02-01

    Full Text Available Objective: We studied the effect of resistance exercise (RE on mRNA levels of atrogin-1, MuRF-1, and myostatin in the gastrocnemius muscle of arthritic rats after loss of ovarian function (LOF. Material and methods : Thirty female Wistar rats (nine weeks old, 195.3 ±17.4 grams were randomly allocated into five groups: control group (CT-Sham; n = 6; group with rheumatoid arthritis (RA; n = 6; group with rheumatoid arthritis subjected to RE (RAEX; n = 6; ovariectomy group with rheumatoid arthritis (RAOV; n = 6; and an ovariectomy group with rheumatoid arthritis subjected to RE (RAOVEX; n = 6. After 15 days of intra-articular injections with Met-BSA the animals were subjected to RE and six hours after workout were euthanised. Results : The rheumatoid arthritis provoked reduction in the cross-sectional area (CSA of muscle fibres, but the CSA was lower in the RAOV when compared to the RA groups. Skeletal muscle atrogin-1 mRNA level was increased in arthritic rats (RA and RAOV, but the atrogin-1 level was higher in RAOV group when compared to other arthritic groups. The Muscle MuRF-1 mRNA level was also increased in the RAOV group. The increased atrogin-1 and MuRF-1 mRNA levels were lower in the RAOVEX group than in the RAOV group. The myostatin mRNA level was similar in all groups, except for the RAOVEX group, in which it was lower than the other groups. Conclusions : LOF results in increased loss of skeletal muscle-related ubiquitin ligases (atrogin-1 and MuRF-1. However, the RE reduces the atrogin-1, MuRF-1, and myostatin mRNA levels in muscle of arthritic rats affected by LOF.

  10. Acute resistance exercise reduces increased gene expression in muscle atrophy of ovariectomised arthritic rats

    Science.gov (United States)

    Furlanetto, Roberto; de Paula Souza, Aletéia; de Oliveira, Anselmo Alves; Nunes, Paulo Ricardo Prado; Michelin, Márcia Antoniazi; Chica, Javier Emilio Lazo; Murta, Eddie Fernando Candido

    2017-01-01

    Objective We studied the effect of resistance exercise (RE) on mRNA levels of atrogin-1, MuRF-1, and myostatin in the gastrocnemius muscle of arthritic rats after loss of ovarian function (LOF). Material and methods Thirty female Wistar rats (nine weeks old, 195.3 ±17.4 grams) were randomly allocated into five groups: control group (CT-Sham; n = 6); group with rheumatoid arthritis (RA; n = 6); group with rheumatoid arthritis subjected to RE (RAEX; n = 6); ovariectomy group with rheumatoid arthritis (RAOV; n = 6); and an ovariectomy group with rheumatoid arthritis subjected to RE (RAOVEX; n = 6). After 15 days of intra-articular injections with Met-BSA the animals were subjected to RE and six hours after workout were euthanised. Results The rheumatoid arthritis provoked reduction in the cross-sectional area (CSA) of muscle fibres, but the CSA was lower in the RAOV when compared to the RA groups. Skeletal muscle atrogin-1 mRNA level was increased in arthritic rats (RA and RAOV), but the atrogin-1 level was higher in RAOV group when compared to other arthritic groups. The Muscle MuRF-1 mRNA level was also increased in the RAOV group. The increased atrogin-1 and MuRF-1 mRNA levels were lower in the RAOVEX group than in the RAOV group. The myostatin mRNA level was similar in all groups, except for the RAOVEX group, in which it was lower than the other groups. Conclusions LOF results in increased loss of skeletal muscle-related ubiquitin ligases (atrogin-1 and MuRF-1). However, the RE reduces the atrogin-1, MuRF-1, and myostatin mRNA levels in muscle of arthritic rats affected by LOF. PMID:28250722

  11. Treatment with gelsolin reduces brain inflammation and apoptotic signaling in mice following thermal injury

    Directory of Open Access Journals (Sweden)

    Sheng Zhi-Yong

    2011-09-01

    Full Text Available Abstract Background Burn survivors develop long-term cognitive impairment with increased inflammation and apoptosis in the brain. Gelsolin, an actin-binding protein with capping and severing activities, plays a crucial role in the septic response. We investigated if gelsolin infusion could attenuate neural damage in burned mice. Methods Mice with 15% total body surface area burns were injected intravenously with bovine serum albumin as placebo (2 mg/kg, or with low (2 mg/kg or high doses (20 mg/kg of gelsolin. Samples were harvested at 8, 24, 48 and 72 hours postburn. The immune function of splenic T cells was analyzed. Cerebral pathology was examined by hematoxylin/eosin staining, while activated glial cells and infiltrating leukocytes were detected by immunohistochemistry. Cerebral cytokine mRNAs were further assessed by quantitative real-time PCR, while apoptosis was evaluated by caspase-3. Neural damage was determined using enzyme-linked immunosorbent assay of neuron-specific enolase (NSE and soluble protein-100 (S-100. Finally, cerebral phospho-ERK expression was measured by western blot. Results Gelsolin significantly improved the outcomes of mice following major burns in a dose-dependent manner. The survival rate was improved by high dose gelsolin treatment compared with the placebo group (56.67% vs. 30%. Although there was no significant improvement in outcome in mice receiving low dose gelsolin (30%, survival time was prolonged against the placebo control (43.1 ± 4.5 h vs. 35.5 ± 5.0 h; P Conclusion Exogenous gelsolin infusion improves survival of mice following major burn injury by partially attenuating inflammation and apoptosis in brain, and by enhancing peripheral T lymphocyte function as well. These data suggest a novel and effective strategy to combat excessive neuroinflammation and to preserve cognition in the setting of major burns.

  12. Sulforaphane reduces advanced glycation end products (AGEs)-induced inflammation in endothelial cells and rat aorta.

    Science.gov (United States)

    Matsui, T; Nakamura, N; Ojima, A; Nishino, Y; Yamagishi, S-I

    2016-09-01

    Advanced glycation end products (AGEs)-receptor RAGE interaction evokes oxidative stress and inflammatory reactions, thereby being involved in endothelial cell (EC) damage in diabetes. Sulforaphane is generated from glucoraphanin, a naturally occurring isothiocyanate found in widely consumed cruciferous vegetables, by myrosinase. Sulforaphane has been reported to protect against oxidative stress-mediated cell and tissue injury. However, effects of sulforaphane on AGEs-induced vascular damage remain unclear. In this study, we investigated whether and how sulforaphane could inhibit inflammation in AGEs-exposed human umbilical vein ECs (HUVECs) and AGEs-injected rat aorta. Sulforaphane treatment for 4 or 24 h dose-dependently inhibited the AGEs-induced increase in RAGE, monocyte chemoattractant protein-1 (MCP-1), intercellular adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecular-1 (VCAM-1) gene expression in HUVECs. AGEs significantly stimulated MCP-1 production by, and THP-1 cell adhesion to, HUVECs, both of which were prevented by 1.6 μM sulforaphane. Sulforaphane significantly suppressed oxidative stress generation and NADPH oxidase activation evoked by AGEs in HUVECs. Furthermore, aortic RAGE, ICAM-1 and VCAM-1 expression in AGEs-injected rats were increased, which were suppressed by simultaneous infusion of sulforaphane. The present study demonstrated for the first time that sulforaphane could inhibit inflammation in AGEs-exposed HUVECs and AGEs-infused rat aorta partly by suppressing RAGE expression through its anti-oxidative properties. Inhibition of the AGEs-RAGE axis by sulforaphane might be a novel therapeutic target for vascular injury in diabetes. Copyright © 2016 The Italian Society of Diabetology, the Italian Society for the Study of Atherosclerosis, the Italian Society of Human Nutrition, and the Department of Clinical Medicine and Surgery, Federico II University. Published by Elsevier B.V. All rights reserved.

  13. Capsiate supplementation reduces oxidative cost of contraction in exercising mouse skeletal muscle in vivo.

    Directory of Open Access Journals (Sweden)

    Kazuya Yashiro

    Full Text Available Chronic administration of capsiate is known to accelerate whole-body basal energy metabolism, but the consequences in exercising skeletal muscle remain very poorly documented. In order to clarify this issue, the effect of 2-week daily administration of either vehicle (control or purified capsiate (at 10- or 100-mg/kg body weight on skeletal muscle function and energetics were investigated throughout a multidisciplinary approach combining in vivo and in vitro measurements in mice. Mechanical performance and energy metabolism were assessed strictly non-invasively in contracting gastrocnemius muscle using magnetic resonance (MR imaging and 31-phosphorus MR spectroscopy (31P-MRS. Regardless of the dose, capsiate treatments markedly disturbed basal bioenergetics in vivo including intracellular pH alkalosis and decreased phosphocreatine content. Besides, capsiate administration did affect neither mitochondrial uncoupling protein-3 gene expression nor both basal and maximal oxygen consumption in isolated saponin-permeabilized fibers, but decreased by about twofold the Km of mitochondrial respiration for ADP. During a standardized in vivo fatiguing protocol (6-min of repeated maximal isometric contractions electrically induced at a frequency of 1.7 Hz, both capsiate treatments reduced oxidative cost of contraction by 30-40%, whereas force-generating capacity and fatigability were not changed. Moreover, the rate of phosphocreatine resynthesis during the post-electrostimulation recovery period remained unaffected by capsiate. Both capsiate treatments further promoted muscle mass gain, and the higher dose also reduced body weight gain and abdominal fat content. These findings demonstrate that, in addition to its anti-obesity effect, capsiate supplementation improves oxidative metabolism in exercising muscle, which strengthen this compound as a natural compound for improving health.

  14. Obesity Appears to Be Associated With Altered Muscle Protein Synthetic and Breakdown Responses to Increased Nutrient Delivery in Older Men, but Not Reduced Muscle Mass or Contractile Function.

    Science.gov (United States)

    Murton, Andrew J; Marimuthu, Kanagaraj; Mallinson, Joanne E; Selby, Anna L; Smith, Kenneth; Rennie, Michael J; Greenhaff, Paul L

    2015-09-01

    Obesity is increasing, yet despite the necessity of maintaining muscle mass and function with age, the effect of obesity on muscle protein turnover in older adults remains unknown. Eleven obese (BMI 31.9 ± 1.1 kg · m(-2)) and 15 healthy-weight (BMI 23.4 ± 0.3 kg · m(-2)) older men (55-75 years old) participated in a study that determined muscle protein synthesis (MPS) and leg protein breakdown (LPB) under postabsorptive (hypoinsulinemic-euglycemic clamp) and postprandial (hyperinsulinemic hyperaminoacidemic-euglycemic clamp) conditions. Obesity was associated with systemic inflammation, greater leg fat mass, and patterns of mRNA expression consistent with muscle deconditioning, whereas leg lean mass, strength, and work done during maximal exercise were no different. Under postabsorptive conditions, MPS and LPB were equivalent between groups, whereas insulin and amino acid administration increased MPS in only healthy-weight subjects and was associated with lower leg glucose disposal (LGD) (63%) in obese men. Blunting of MPS in the obese men was offset by an apparent decline in LPB, which was absent in healthy-weight subjects. Lower postprandial LGD in obese subjects and blunting of MPS responses to amino acids suggest that obesity in older adults is associated with diminished muscle metabolic quality. This does not, however, appear to be associated with lower leg lean mass or strength.

  15. Spatially distributed sequential stimulation reduces fatigue in paralyzed triceps surae muscles: a case study.

    Science.gov (United States)

    Nguyen, Robert; Masani, Kei; Micera, Silvestro; Morari, Manfred; Popovic, Milos R

    2011-12-01

    Functional electrical stimulation (FES) is limited by the rapid onset of muscle fatigue caused by localized nerve excitation repeatedly activating only a subset of motor units. The purpose of this study was to investigate reducing fatigue by sequentially changing, pulse by pulse, the area of stimulation using multiple surface electrodes that cover the same area as one electrode during conventional stimulation. Paralyzed triceps surae muscles of an individual with complete spinal cord injury were stimulated, via the tibial nerve, through four active electrodes using spatially distributed sequential stimulation (SDSS) that was delivered by sending a stimulation pulse to each electrode one after another with 90° phase shift between successive electrodes. For comparison, single electrode stimulation was delivered through one active electrode. For both modes of stimulation, the resultant frequency to the muscle as a whole was 40 Hz. Isometric ankle torque was measured during fatiguing stimulations lasting 2 min. Each mode of stimulation was delivered a total of six times over 12 separate days. Three fatigue measures were used for comparison: fatigue index (final torque normalized to maximum torque), fatigue time (time for torque to drop by 3 dB), and torque-time integral (over the entire trial). The measures were all higher during SDSS (P < 0.001), by 234, 280, and 171%, respectively. The results are an encouraging first step toward addressing muscle fatigue, which is one of the greatest problems for FES.

  16. Nandrolone reduces activation of Notch signaling in denervated muscle associated with increased Numb expression

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xin-Hua [Center of Excellence for the Medical Consequences of Spinal Cord Injury, James J. Peter VA Medical Center, Bronx, NY 10468 (United States); Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029 (United States); Yao, Shen; Qiao, Rui-Fang; Levine, Alice C. [Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029 (United States); Kirschenbaum, Alexander [Department of Urology, Mount Sinai School of Medicine, New York, NY 10029 (United States); Pan, Jiangping; Wu, Yong [Center of Excellence for the Medical Consequences of Spinal Cord Injury, James J. Peter VA Medical Center, Bronx, NY 10468 (United States); Qin, Weiping [Center of Excellence for the Medical Consequences of Spinal Cord Injury, James J. Peter VA Medical Center, Bronx, NY 10468 (United States); Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029 (United States); Bauman, William A. [Center of Excellence for the Medical Consequences of Spinal Cord Injury, James J. Peter VA Medical Center, Bronx, NY 10468 (United States); Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029 (United States); Rehabilitation Medicine, Mount Sinai School of Medicine, New York, NY 10029 (United States); Cardozo, Christopher P., E-mail: chris.cardozo@mssm.edu [Center of Excellence for the Medical Consequences of Spinal Cord Injury, James J. Peter VA Medical Center, Bronx, NY 10468 (United States); Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029 (United States); Rehabilitation Medicine, Mount Sinai School of Medicine, New York, NY 10029 (United States)

    2011-10-14

    Highlights: {yields} Nerve transection increased Notch signaling in paralyzed muscle. {yields} Nandrolone prevented denervation-induced Notch signaling. {yields} Nandrolone induced the expression of an inhibitor of the Notch signaling, Numb. {yields} Reduction of denervation-induced Notch signaling by nandrolone is likely through upregulation of Numb. -- Abstract: Nandrolone, an anabolic steroid, slows denervation-atrophy in rat muscle. The molecular mechanisms responsible for this effect are not well understood. Androgens and anabolic steroids activate Notch signaling in animal models of aging and thereby mitigate sarcopenia. To explore the molecular mechanisms by which nandrolone prevents denervation-atrophy, we investigated the effects of nandrolone on Notch signaling in denervated rat gastrocnemius muscle. Denervation significantly increased Notch activity reflected by elevated levels of nuclear Notch intracellular domain (NICD) and expression of Hey1 (a Notch target gene). Activation was greatest at 7 and 35 days after denervation but remained present at 56 days after denervation. Activation of Notch in denervated muscle was prevented by nandrolone associated with upregulated expression of Numb mRNA and protein. These data demonstrate that denervation activates Notch signaling, and that nandrolone abrogates this response associated with increased expression of Numb, suggesting a potential mechanism by which nandrolone reduces denervation-atrophy.

  17. Trekking poles reduce downhill walking-induced muscle and cartilage damage in obese women.

    Science.gov (United States)

    Cho, Su Youn; Roh, Hee Tae

    2016-05-01

    [Purpose] This study investigated the effect of the use of trekking poles on muscle and cartilage damage and fatigue during downhill walking in obese women. [Subjects and Methods] Subjects included eight obese women who had a body fat percentage greater than 30. Subjects performed downhill walking without a trekking pole (NP) and with a trekking pole (TP) at 50% heart rate reserve for 30 minutes on a treadmill. The treadmill was set at a 15% downhill declination. Blood samples were collected to examine muscle damage (serum creatine kinase [CK] and lactate dehydrogenase [LDH] levels), cartilage damage (serum cartilage oligomeric matrix protein [COMP] levels), and fatigue (plasma lactate levels) at the pre-walking baseline (PWB), immediately after walking (IAW), and 2 hours post-walking (2HPW). [Results] The CK, LDH, COMP, and lactate levels were significantly increased IAW when compared with those at the PWB in both trials. In addition, in the NP trial, the CK, LDH, and COMP levels were significantly increased at 2HPW when compared with those at the PWB. [Conclusion] Downhill walking can cause muscle and cartilage damage, and our results suggest that the use of a trekking pole can reduce temporary muscle and cartilage damage after downhill walking.

  18. Effectiveness of powered hospital bed movers for reducing physiological strain and back muscle activation.

    Science.gov (United States)

    Daniell, Nathan; Merrett, Simon; Paul, Gunther

    2014-07-01

    Battery powered bed movers are becoming increasingly common within the hospital setting. The use of powered bed movers is believed to result in reduced physical efforts required by health care workers, which may be associated with a decreased risk of occupation related injuries. However, little work has been conducted assessing how powered bed movers impact on levels of physiological strain and muscle activation for the user. The muscular efforts associated with moving hospital beds using three different methods; powered StaminaLift Bed Mover (PBM1), powered Gzunda Bed Mover (PBM2) and manual pushing were measured on six male subjects. Fourteen muscles were assessed moving a weighted hospital bed along a standardized route in an Australian hospital environment. Trunk inclination and upper spine acceleration were also quantified. Powered bed movers exhibited significantly lower muscle activation levels than manual pushing for the majority of muscles. When using the PBM1, users adopted a more upright posture which was maintained while performing different tasks (e.g. turning a corner, entering a lift), while trunk inclination varied considerably for manual pushing and the PBM2. The reduction in lower back muscular activation levels may result in lower incidence of lower back injury. Copyright © 2013 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  19. Recommendations for the Avoidance of Delayed-Onset Muscle Soreness.

    Science.gov (United States)

    Szymanski, David J.

    2001-01-01

    Describes the possible causes of delayed-onset muscle soreness (DOMS), which include buildup of lactic acid in muscle, increased intracellular calcium concentration, increased intramuscular inflammation, and muscle fiber and connective tissue damage. Proposed methods to reduce DOMS include warming up before exercise and performing repeated bouts…

  20. Low-Level Laser Therapy (LLLT) in Dystrophin-Deficient Muscle Cells: Effects on Regeneration Capacity, Inflammation Response and Oxidative Stress.

    Science.gov (United States)

    Macedo, Aline Barbosa; Moraes, Luis Henrique Rapucci; Mizobuti, Daniela Sayuri; Fogaça, Aline Reis; Moraes, Fernanda Dos Santos Rapucci; Hermes, Tulio de Almeida; Pertille, Adriana; Minatel, Elaine

    2015-01-01

    The present study evaluated low-level laser therapy (LLLT) effects on some physiological pathways that may lead to muscle damage or regeneration capacity in dystrophin-deficient muscle cells of mdx mice, the experimental model of Duchenne muscular dystrophy (DMD). Primary cultures of mdx skeletal muscle cells were irradiated only one time with laser and analyzed after 24 and 48 hours. The LLLT parameter used was 830 nm wavelengths at 5 J/cm² fluence. The following groups were set up: Ctrl (untreated C57BL/10 primary muscle cells), mdx (untreated mdx primary muscle cells), mdx LA 24 (mdx primary muscle cells - LLLT irradiated and analyzed after 24 h), and mdx LA 48 (mdx primary muscle cells - LLLT irradiated and analyzed after 48 h). The mdx LA 24 and mdx LA 48 groups showed significant increase in cell proliferation, higher diameter in muscle cells and decreased MyoD levels compared to the mdx group. The mdx LA 48 group showed significant increase in Myosin Heavy Chain levels compared to the untreated mdx and mdx LA 24 groups. The mdx LA 24 and mdx LA 48 groups showed significant increase in [Ca2+]i. The mdx group showed significant increase in H2O2 production and 4-HNE levels compared to the Ctrl group and LLLT treatment reduced this increase. GSH levels and GPx, GR and SOD activities increased in the mdx group. Laser treatment reduced the GSH levels and GR and SOD activities in dystrophic muscle cells. The mdx group showed significant increase in the TNF-α and NF-κB levels, which in turn was reduced by the LLLT treatment. Together, these results suggest that the laser treatment improved regenerative capacity and decreased inflammatory response and oxidative stress in dystrophic muscle cells, indicating that LLLT could be a helpful alternative therapy to be associated with other treatment for dystrophinopathies.

  1. Low-Level Laser Therapy (LLLT in Dystrophin-Deficient Muscle Cells: Effects on Regeneration Capacity, Inflammation Response and Oxidative Stress.

    Directory of Open Access Journals (Sweden)

    Aline Barbosa Macedo

    Full Text Available The present study evaluated low-level laser therapy (LLLT effects on some physiological pathways that may lead to muscle damage or regeneration capacity in dystrophin-deficient muscle cells of mdx mice, the experimental model of Duchenne muscular dystrophy (DMD. Primary cultures of mdx skeletal muscle cells were irradiated only one time with laser and analyzed after 24 and 48 hours. The LLLT parameter used was 830 nm wavelengths at 5 J/cm² fluence. The following groups were set up: Ctrl (untreated C57BL/10 primary muscle cells, mdx (untreated mdx primary muscle cells, mdx LA 24 (mdx primary muscle cells - LLLT irradiated and analyzed after 24 h, and mdx LA 48 (mdx primary muscle cells - LLLT irradiated and analyzed after 48 h. The mdx LA 24 and mdx LA 48 groups showed significant increase in cell proliferation, higher diameter in muscle cells and decreased MyoD levels compared to the mdx group. The mdx LA 48 group showed significant increase in Myosin Heavy Chain levels compared to the untreated mdx and mdx LA 24 groups. The mdx LA 24 and mdx LA 48 groups showed significant increase in [Ca2+]i. The mdx group showed significant increase in H2O2 production and 4-HNE levels compared to the Ctrl group and LLLT treatment reduced this increase. GSH levels and GPx, GR and SOD activities increased in the mdx group. Laser treatment reduced the GSH levels and GR and SOD activities in dystrophic muscle cells. The mdx group showed significant increase in the TNF-α and NF-κB levels, which in turn was reduced by the LLLT treatment. Together, these results suggest that the laser treatment improved regenerative capacity and decreased inflammatory response and oxidative stress in dystrophic muscle cells, indicating that LLLT could be a helpful alternative therapy to be associated with other treatment for dystrophinopathies.

  2. Reduced muscle activation during exercise related to brain oxygenation and metabolism in humans

    DEFF Research Database (Denmark)

    Rasmussen, P; Nielsen, J; Overgaard, M

    2010-01-01

    to the ability to generate a maximal voluntary contraction and to the transcranial magnetic stimulated force generation. To determine the role of a reduced OCI and in central fatigue, 16 males performed low intensity, maximal intensity and hypoxic cycling exercise. Exercise fatigue was evaluated by ratings...... of perceived exertion (RPE), arm maximal voluntary force (MVC), and voluntary activation of elbow flexor muscles assessed with transcranial magnetic stimulation. Low intensity exercise did not produce any indication of central fatigue or marked cerebral metabolic deviations. Exercise in hypoxia (0.10) reduced...

  3. Leptin Administration Downregulates the Increased Expression Levels of Genes Related to Oxidative Stress and Inflammation in the Skeletal Muscle of ob/ob Mice

    Science.gov (United States)

    Sáinz, Neira; Rodríguez, Amaia; Catalán, Victoria; Becerril, Sara; Ramírez, Beatriz; Gómez-Ambrosi, Javier; Frühbeck, Gema

    2010-01-01

    Obese leptin-deficient ob/ob mice exhibit a low-grade chronic inflammation together with a low muscle mass. Our aim was to analyze the changes in muscle expression levels of genes related to oxidative stress and inflammatory responses in leptin deficiency and to identify the effect of in vivo leptin administration. Ob/ob mice were divided in three groups as follows: control ob/ob, leptin-treated ob/ob (1 mg/kg/d) and leptin pair-fed ob/ob mice. Gastrocnemius weight was lower in control ob/ob than in wild type mice (P < .01) exhibiting an increase after leptin treatment compared to control and pair-fed (P < .01) ob/ob animals. Thiobarbituric acid reactive substances, markers of oxidative stress, were higher in serum (P < .01) and gastrocnemius (P = .05) of control ob/ob than in wild type mice and were significantly decreased (P < .01) by leptin treatment. Leptin deficiency altered the expression of 1,546 genes, while leptin treatment modified the regulation of 1,127 genes with 86 of them being involved in oxidative stress, immune defense and inflammatory response. Leptin administration decreased the high expression of Crybb1, Hspb3, Hspb7, Mt4, Cat, Rbm9, Serpinc1 and Serpinb1a observed in control ob/ob mice, indicating that it improves inflammation and muscle loss. PMID:20671928

  4. Kynurenine pathway inhibition reduces central nervous system inflammation in a model of human African trypanosomiasis.

    Science.gov (United States)

    Rodgers, Jean; Stone, Trevor W; Barrett, Michael P; Bradley, Barbara; Kennedy, Peter G E

    2009-05-01

    Human African trypanosomiasis, or sleeping sickness, is caused by the protozoan parasites Trypanosoma brucei rhodesiense or Trypanosoma brucei gambiense, and is a major cause of systemic and neurological disability throughout sub-Saharan Africa. Following early-stage disease, the trypanosomes cross the blood-brain barrier to invade the central nervous system leading to the encephalitic, or late stage, infection. Treatment of human African trypanosomiasis currently relies on a limited number of highly toxic drugs, but untreated, is invariably fatal. Melarsoprol, a trivalent arsenical, is the only drug that can be used to cure both forms of the infection once the central nervous system has become involved, but unfortunately, this drug induces an extremely severe post-treatment reactive encephalopathy (PTRE) in up to 10% of treated patients, half of whom die from this complication. Since it is unlikely that any new and less toxic drug will be developed for treatment of human African trypanosomiasis in the near future, increasing attention is now being focussed on the potential use of existing compounds, either alone or in combination chemotherapy, for improved efficacy and safety. The kynurenine pathway is the major pathway in the metabolism of tryptophan. A number of the catabolites produced along this pathway show neurotoxic or neuroprotective activities, and their role in the generation of central nervous system inflammation is well documented. In the current study, Ro-61-8048, a high affinity kynurenine-3-monooxygenase inhibitor, was used to determine the effect of manipulating the kynurenine pathway in a highly reproducible mouse model of human African trypanosomiasis. It was found that Ro-61-8048 treatment had no significant effect (P = 0.4445) on the severity of the neuroinflammatory pathology in mice during the early central nervous system stage of the disease when only a low level of inflammation was present. However, a significant (P = 0.0284) reduction in

  5. Antagonizing arachidonic acid-derived eicosanoids reduces inflammatory Th17 and Th1 cell-mediated inflammation and colitis severity.

    Science.gov (United States)

    Monk, Jennifer M; Turk, Harmony F; Fan, Yang-Yi; Callaway, Evelyn; Weeks, Brad; Yang, Peiying; McMurray, David N; Chapkin, Robert S

    2014-01-01

    During colitis, activation of two inflammatory T cell subsets, Th17 and Th1 cells, promotes ongoing intestinal inflammatory responses. n-6 polyunsaturated fatty acid- (PUFA-) derived eicosanoids, such as prostaglandin E2 (PGE2), promote Th17 cell-mediated inflammation, while n-3 PUFA antagonize both Th17 and Th1 cells and suppress PGE2 levels. We utilized two genetic mouse models, which differentially antagonize PGE2 levels, to examine the effect on Th17 cells and disease outcomes in trinitrobenzene sulfonic acid- (TNBS-) induced colitis. Fat-1 mice contain the ω3 desaturase gene from C. elegans and synthesize n-3 PUFA de novo, thereby reducing the biosynthesis of n-6 PUFA-derived eicosanoids. In contrast, Fads1 Null mice contain a disrupted Δ5 desaturase gene and produce lower levels of n-6 PUFA-derived eicosanoids. Compared to Wt littermates, Fat-1 and Fads1 Null mice exhibited a similar colitic phenotype characterized by reduced colonic mucosal inflammatory eicosanoid levels and mRNA expression of Th17 cell markers (IL-17A, RORγτ, and IL-23), decreased percentages of Th17 cells and, improved colon injury scores (P ≤ 0.05). Thus, during colitis, similar outcomes were obtained in two genetically distinct models, both of which antagonize PGE2 levels via different mechanisms. Our data highlight the critical impact of n-6 PUFA-derived eicosanoids in the promotion of Th17 cell-mediated colonic inflammation.

  6. Antagonizing Arachidonic Acid-Derived Eicosanoids Reduces Inflammatory Th17 and Th1 Cell-Mediated Inflammation and Colitis Severity

    Directory of Open Access Journals (Sweden)

    Jennifer M. Monk

    2014-01-01

    Full Text Available During colitis, activation of two inflammatory T cell subsets, Th17 and Th1 cells, promotes ongoing intestinal inflammatory responses. n-6 polyunsaturated fatty acid- (PUFA- derived eicosanoids, such as prostaglandin E2 (PGE2, promote Th17 cell-mediated inflammation, while n-3 PUFA antagonize both Th17 and Th1 cells and suppress PGE2 levels. We utilized two genetic mouse models, which differentially antagonize PGE2 levels, to examine the effect on Th17 cells and disease outcomes in trinitrobenzene sulfonic acid- (TNBS- induced colitis. Fat-1 mice contain the ω3 desaturase gene from C. elegans and synthesize n-3 PUFA de novo, thereby reducing the biosynthesis of n-6 PUFA-derived eicosanoids. In contrast, Fads1 Null mice contain a disrupted Δ5 desaturase gene and produce lower levels of n-6 PUFA-derived eicosanoids. Compared to Wt littermates, Fat-1 and Fads1 Null mice exhibited a similar colitic phenotype characterized by reduced colonic mucosal inflammatory eicosanoid levels and mRNA expression of Th17 cell markers (IL-17A, RORγτ, and IL-23, decreased percentages of Th17 cells and, improved colon injury scores (P≤0.05. Thus, during colitis, similar outcomes were obtained in two genetically distinct models, both of which antagonize PGE2 levels via different mechanisms. Our data highlight the critical impact of n-6 PUFA-derived eicosanoids in the promotion of Th17 cell-mediated colonic inflammation.

  7. C-peptide attenuates acute lung inflammation in a murine model of hemorrhagic shock and resuscitation by reducing gut injury.

    Science.gov (United States)

    Kao, Raymond L C; Xu, Xuemei; Xenocostas, Anargyros; Parry, Neil; Mele, Tina; Martin, Claudio M; Rui, Tao

    2017-08-01

    The study aims to evaluate whether C-peptide can reduce gut injury during hemorrhagic shock (HS) and resuscitation (R) therefore attenuate shock-induced inflammation and subsequent acute lung injury. Twelve-week-old male mice (C57/BL6) were hemorrhaged (mean arterial blood pressure maintained at 35 mm Hg for 60 minutes) and then resuscitated with Ringer's lactate, followed by red blood cell transfusion with (HS/R) or without C-peptide (HS/R + C-peptide). Mouse gut permeability, bacterial translocation into the circulatory system and intestinal pathology, circulating HMGB1, and acute lung injury were assessed at different times after R. The mice in the control group underwent sham procedures without HS. Compared to the sham group, the mice in the HS/R group showed increased gut permeability (6.07 ± 3.41 μg of FD4/mL) and bacterial translocation into the circulatory system (10.05 ± 4.92, lipopolysaccharide [LPS] of pg/mL), and increased gut damage; conversely, mice in the HS/R + C-peptide group showed significantly reduced gut permeability (1.59 ± 1.39 μg of FD4/mL; p C-peptide group showed decreased HMGB1 (7.27 ± 1.93 ng/mL; p C-peptide exerts beneficial effects to attenuate gut injury and dysfunction, therefore diminishing lung inflammation and subsequent injury in mice with HS and R.

  8. Transient inhibition of ROR-γt therapeutically limits intestinal inflammation by reducing TH17 cells and preserving ILC3

    Science.gov (United States)

    Withers, David R.; Hepworth, Matthew R.; Wang, Xinxin; Mackley, Emma C.; Halford, Emily E.; Dutton, Emma E.; Marriott, Clare L.; Brucklacher-Waldert, Verena; Veldhoen, Marc; Kelsen, Judith; Baldassano, Robert N.; Sonnenberg, Gregory F.

    2016-01-01

    RAR-related orphan receptor γt (ROR-γt) directs differentiation of pro-inflammatory T helper 17 (TH17) cells and is a potential therapeutic target in chronic autoimmune and inflammatory diseases1–3. However, ROR-γt-dependent group 3 innate lymphoid cells (ILC3s) provide essential immunity and tissue protection in the intestine4–11, suggesting that targeting ROR-γt could also result in impaired host defense to infection or enhanced tissue damage. Here, we demonstrate that transient chemical inhibition of ROR-γt in mice selectively reduces cytokine production from TH17 cells but not ILC3s in the context of intestinal infection with Citrobacter rodentium, resulting in preserved innate immunity. Transient genetic deletion of ROR-γt in mature ILC3s also did not impair cytokine responses in the steady state or during infection. Finally, pharmacologic inhibition of ROR-γt provided therapeutic benefit in mouse models of intestinal inflammation, and reduced the frequencies of TH17 cells but not ILC3s isolated from primary intestinal samples of individuals with inflammatory bowel disease (IBD). Collectively, these results reveal differential requirements for ROR-γt in the maintenance of TH17 cell versus ILC3 responses, and suggest that transient inhibition of ROR-γt is a safe and effective therapeutic approach during intestinal inflammation. PMID:26878233

  9. Crif1 Deficiency Reduces Adipose OXPHOS Capacity and Triggers Inflammation and Insulin Resistance in Mice

    Science.gov (United States)

    Ryu, Min Jeong; Kim, Soung Jung; Kim, Yong Kyung; Choi, Min Jeong; Tadi, Surendar; Lee, Min Hee; Lee, Seong Eun; Chung, Hyo Kyun; Jung, Saet Byel; Kim, Hyun-Jin; Jo, Young Suk; Kim, Koon Soon; Lee, Sang-Hee; Kim, Jin Man; Kweon, Gi Ryang; Park, Ki Cheol; Lee, Jung Uee; Kong, Young Yun; Lee, Chul-Ho; Chung, Jongkyeong; Shong, Minho

    2013-01-01

    Impaired mitochondrial oxidative phosphorylation (OXPHOS) has been proposed as an etiological mechanism underlying insulin resistance. However, the initiating organ of OXPHOS dysfunction during the development of systemic insulin resistance has yet to be identified. To determine whether adipose OXPHOS deficiency plays an etiological role in systemic insulin resistance, the metabolic phenotype of mice with OXPHOS–deficient adipose tissue was examined. Crif1 is a protein required for the intramitochondrial production of mtDNA–encoded OXPHOS subunits; therefore, Crif1 haploinsufficient deficiency in mice results in a mild, but specific, failure of OXPHOS capacity in vivo. Although adipose-specific Crif1-haploinsufficient mice showed normal growth and development, they became insulin-resistant. Crif1-silenced adipocytes showed higher expression of chemokines, the expression of which is dependent upon stress kinases and antioxidant. Accordingly, examination of adipose tissue from Crif1-haploinsufficient mice revealed increased secretion of MCP1 and TNFα, as well as marked infiltration by macrophages. These findings indicate that the OXPHOS status of adipose tissue determines its metabolic and inflammatory responses, and may cause systemic inflammation and insulin resistance. PMID:23516375

  10. Cannabinoids reduce markers of inflammation and fibrosis in pancreatic stellate cells.

    Directory of Open Access Journals (Sweden)

    Christoph W Michalski

    Full Text Available BACKGROUND: While cannabinoids have been shown to ameliorate liver fibrosis, their effects in chronic pancreatitis and on pancreatic stellate cells (PSC are unknown. METHODOLOGY/PRINCIPAL FINDINGS: The activity of the endocannabinoid system was evaluated in human chronic pancreatitis (CP tissues. In vitro, effects of blockade and activation of cannabinoid receptors on pancreatic stellate cells were characterized. In CP, cannabinoid receptors were detected predominantly in areas with inflammatory changes, stellate cells and nerves. Levels of endocannabinoids were decreased compared with normal pancreas. Cannabinoid-receptor-1 antagonism effectuated a small PSC phenotype and a trend toward increased invasiveness. Activation of cannabinoid receptors, however, induced de-activation of PSC and dose-dependently inhibited growth and decreased IL-6 and MCP-1 secretion as well as fibronectin, collagen1 and alphaSMA levels. De-activation of PSC was partially reversible using a combination of cannabinoid-receptor-1 and -2 antagonists. Concomitantly, cannabinoid receptor activation specifically decreased invasiveness of PSC, MMP-2 secretion and led to changes in PSC phenotype accompanied by a reduction of intracellular stress fibres. CONCLUSIONS/SIGNIFICANCE: Augmentation of the endocannabinoid system via exogenously administered cannabinoid receptor agonists specifically induces a functionally and metabolically quiescent pancreatic stellate cell phenotype and may thus constitute an option to treat inflammation and fibrosis in chronic pancreatitis.

  11. Liraglutide Reduces Both Atherosclerosis and Kidney Inflammation in Moderately Uremic LDLr-/- Mice

    DEFF Research Database (Denmark)

    Bisgaard, Line S; Bosteen, Markus H; Fink, Lisbeth N

    2016-01-01

    Chronic kidney disease (CKD) leads to uremia. CKD is characterized by a gradual increase in kidney fibrosis and loss of kidney function, which is associated with a progressive increase in risk of atherosclerosis and cardiovascular death. To prevent progression of both kidney fibrosis and atherosc......Chronic kidney disease (CKD) leads to uremia. CKD is characterized by a gradual increase in kidney fibrosis and loss of kidney function, which is associated with a progressive increase in risk of atherosclerosis and cardiovascular death. To prevent progression of both kidney fibrosis...... and atherosclerosis in uremic settings, insight into new treatment options with effects on both parameters is warranted. The GLP-1 analogue liraglutide improves glucose homeostasis, and is approved for treatment of type 2 diabetes. Animal studies suggest that GLP-1 also dampens inflammation and atherosclerosis. Our...... aim was to examine effects of liraglutide on kidney fibrosis and atherosclerosis in a mouse model of moderate uremia (5/6 nephrectomy (NX)). Uremic (n = 29) and sham-operated (n = 14) atherosclerosis-prone low density lipoprotein receptor knockout mice were treated with liraglutide (1000 μg/kg, s...

  12. The Effects of Heart and Skeletal Muscle Inflammation and Cardiomyopathy Syndrome on Creatine Kinase and Lactate Dehydrogenase Levels in Atlantic Salmon (Salmo salar L.

    Directory of Open Access Journals (Sweden)

    Muhammad Naveed Yousaf

    2012-01-01

    Full Text Available Heart and skeletal muscle inflammation (HSMI and cardiomyopathy syndrome (CMS are putative viral cardiac diseases of Atlantic salmon. This study examined the levels and correlated the serum enzymes creatine kinase (CK and lactate dehydrogenase (LDH to the histopathology of clinical outbreaks of HSMI and chronic CMS in farmed Atlantic salmon. A total of 75 fish from 3 different HSMI outbreaks, 30 chronic CMS fish, and 68 fish from 3 nondiseased fish groups were used as the study population (N=173. Serum CK and LDH levels correlated significantly with the total inflammation and total necrosis scores for HSMI fish (P=0.001. However, no correlation was identified for enzyme levels and histopathology scores for chronic CMS fish. The significantly increased CK and LDH levels and their positive correlations to histopathology differentiate HSMI from CMS clinically suggesting the potential use of enzymes for screening for HSMI is promising.

  13. Hypoxia-increased expression of genes involved in inflammation, dedifferentiation, pro-fibrosis, and extracellular matrix remodeling of human bladder smooth muscle cells.

    Science.gov (United States)

    Wiafe, Bridget; Adesida, Adetola; Churchill, Thomas; Adewuyi, Esther Ekpe; Li, Zack; Metcalfe, Peter

    2017-01-01

    Partial bladder outlet obstruction (pBOO) is characterized by exaggerated stretch, hydrodynamic pressure, and inflammation which cause significant damage and fibrosis to the bladder wall. Several studies have implicated hypoxia in its pathophysiology. However, the isolated progressive effects of hypoxia on bladder cells are not yet defined. Sub-confluent normal human bladder smooth muscle cells (hbSMC) were cultured in 3% O2 tension for 2, 24, 48, and 72 h. RNA, cellular proteins, and secreted proteins were used for gene expression analysis, immunoblotting, and ELISA, respectively. Transcription of hypoxia-inducible factor (HIF)1α and HIF2α were transiently induced after 2 h of hypoxia (p inflammation, de-differentiation, pro-fibrotic changes, and increased extracellular matrix expression. This elucidates mechanisms of hypoxia-driven bladder deterioration in bladder cells, which is important in tailoring in vivo experiments and may ultimately translate into improved clinical outcomes.

  14. Use of butyrate or glutamine in enema solution reduces inflammation and fibrosis in experimental diversion colitis

    Institute of Scientific and Technical Information of China (English)

    Rodrigo Goulart Pacheco; Christiano Costa Esposito; Lucas CM Müller; Morgana TL Castelo-Branco; Leonardo Pereira Quintella; Vera Lucia A Chagas; Heitor Siffert P de Souza

    2012-01-01

    AIM:To investigate whether butyrate or glutamine enemas could diminish inflammation in experimental diversion colitis.METHODS:Wistar specific pathogen-free rats were submitted to a Hartmann's end colostomy and treated with enemas containing glutamine,butyrate,or saline.Enemas were administered twice a week in the excluded segment of the colon from 4 to 12 wk after the surgical procedure.Follow-up colonoscopy was performed every 4 wk for 12 wk.The effect of treatment was evaluated using video-endoscopic and histologic scores and measuring interleukin-1β,tumor necrosis factor-alpha,and transforming growth factor beta production in organ cultures by enzyme linked immunosorbent assay.RESULTS:Colonoscopies of the diverted segment showed mucosa with hyperemia,increased number of vessels,bleeding and mucus discharge.Treatment with either glutamine or butyrate induced significant reductions in both colonoscopic (P < 0.02) and histological scores (P < 0.01) and restored the densities of collagen fibers in tissue (P =0.015; P =0.001),the number of goblet cells (P =0.021; P =0.029),and the rate of apoptosis within the epithelium (P =0.043; P =0.011) to normal values.The high levels of cytokines in colon explants from rats with diversion colitis significantly decreased to normal values after treatment with butyrate or glutamine.CONCLUSION:The improvement of experimental diversion colitis following glutamine or butyrate enemas highlights the importance of specific luminal nutrients in the homeostasis of the colonic mucosa and supports their utilization for the treatment of human diversion colitis.

  15. VEGFR-2 reduces while combined VEGFR-2 and -3 signaling increases inflammation in apical periodontitis

    Science.gov (United States)

    Virtej, Anca; Papadakou, Panagiota; Sasaki, Hajime; Bletsa, Athanasia; Berggreen, Ellen

    2016-01-01

    Background In apical periodontitis, oral pathogens provoke an inflammatory response in the apical area that induces bone resorptive lesions. In inflammation, angio- and lymphangiogenesis take place. Vascular endothelial growth factors (VEGFs) and their receptors (VEGFRs) are key players in these processes and are expressed in immune cells and endothelial cells in the lesions. Objective We aimed at testing the role of VEGFR-2 and -3 in periapical lesion development and investigated their role in lymphangiogenesis in the draining lymph nodes. Design We induced lesions by pulp exposure in the lower first molars of C57BL/6 mice. The mice received IgG injections or blocking antibodies against VEGFR-2 (anti-R2), VEGFR-3 (anti-R3), or combined VEGFR-2 and -3, starting on day 0 until day 10 or 21 post-exposure. Results Lesions developed faster in the anti-R2 and anti-R3 group than in the control and anti-R2/R3 groups. In the anti-R2 group, a strong inflammatory response was found expressed as increased number of neutrophils and osteoclasts. A decreased level of pro-inflammatory cytokines was found in the anti-R2/R3 group. Lymphangiogenesis in the draining lymph nodes was inhibited after blocking of VEGFR-2 and/or -3, while the largest lymph node size was seen after anti-R2 treatment. Conclusions We demonstrate an anti-inflammatory effect of VEGFR-2 signaling in periapical lesions which seems to involve neutrophil regulation and is independent of angiogenesis. Combined signaling of VEGFR-2 and -3 has a pro-inflammatory effect. Lymph node lymphangiogenesis is promoted through activation of VEGFR-2 and/or VEGFR-3. PMID:27650043

  16. Secreted phospholipase A2 inhibitor modulates fatty acid composition and reduces obesity-induced inflammation in Beagle dogs.

    Science.gov (United States)

    Xu, J; Bourgeois, H; Vandermeulen, E; Vlaeminck, B; Meyer, E; Demeyere, K; Hesta, M

    2015-05-01

    Secreted phospholipase A2 inhibitor (sPLA2i) has been reported to have an anti-inflammatory function by blocking the production of inflammatory mediators. Obesity is characterized by low-grade inflammation and oxidative stress. The aim of this study was to investigate the effects of dietary supplementation of sPLA2i on inflammation, oxidative stress and serum fatty acid profile in dogs. Seven obese and seven lean Beagle dogs were used in a 28-day double blind cross-over design. Dogs were fed a control diet without supplemental sPLA2i or an sPLA2i supplemented diet. The sPLA2i diet decreased plasma fibrinogen levels and increased the protein:fibrinogen ratio in obese dogs to levels similar to those of lean dogs fed the same diet. Obese dogs had a higher plasma concentration of the lipophilic vitamin A with potential antioxidative capacity and a lower ratio of retinol binding protein 4:vitamin A compared to lean dogs, independent of the diets. A higher proportion of myristic acid (C14:0) and a lower proportion of linoleic acid (C18:2n-6) were observed in the dogs fed with the sPLA2i diet compared to dogs fed with the control diet. Furthermore, a higher ratio of n-6 to n-3, a lower proportion of n-3 polyunsaturated fatty acids and lower omega-3 index were observed in obese compared to lean dogs. The results indicate that obese dogs are characterized by a more 'proinflammatory' serum fatty acid profile and that diet inclusion of sPLA2i may reduce inflammation and alter fatty acid profile. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Reduced NOV/CCN3 Expression Limits Inflammation and Interstitial Renal Fibrosis after Obstructive Nephropathy in Mice.

    Directory of Open Access Journals (Sweden)

    Pierre-Olivier Marchal

    Full Text Available The main hallmark of chronic kidney disease (CKD is excessive inflammation leading to interstitial tissue fibrosis. It has been recently reported that NOV/CCN3 could be involved in kidney damage but its role in the progression of nephropathies is poorly known. NOV/CCN3 is a secreted multifunctional protein belonging to the CCN family involved in different physiological and pathological processes such as angiogenesis, inflammation and cancers. The purpose of our study was to determine the role of NOV/CCN3 in renal inflammation and fibrosis related to primitive tubulointerstitial injury. After unilateral ureteral obstruction (UUO, renal histology and real-time PCR were performed in NOV/CCN3-/- and wild type mice. NOV/CCN3 mRNA expression was increased in the obstructed kidneys in the early stages of the obstructive nephropathy. Interestingly, plasmatic levels of NOV/CCN3 were strongly induced after 7 days of UUO and the injection of recombinant NOV/CCN3 protein in healthy mice significantly increased CCL2 mRNA levels. Furthermore, after 7 days of UUO NOV/CCN3-/- mice displayed reduced proinflammatory cytokines and adhesion markers expression leading to restricted accumulation of interstitial monocytes, in comparison with their wild type littermates. Consequently, in NOV/CCN3-/- mice interstitial renal fibrosis was blunted after 15 days of UUO. In agreement with our experimental data, NOV/CCN3 expression was highly increased in biopsies of patients with tubulointerstitial nephritis. Thus, the inhibition of NOV/CCN3 may represent a novel target for the progression of renal diseases.

  18. Two dietary polyphenols, fisetin and luteolin, reduce inflammation but augment DNA damage-induced toxicity in human RPE cells.

    Science.gov (United States)

    Hytti, Maria; Szabó, Dora; Piippo, Niina; Korhonen, Eveliina; Honkakoski, Paavo; Kaarniranta, Kai; Petrovski, Goran; Kauppinen, Anu

    2017-04-01

    Plant-derived polyphenols are known to possess anti-inflammatory and antioxidant effects. In recent years, several studies have investigated their potential benefits for treating chronic diseases associated with prolonged inflammation and excessive oxidative stress, such as age-related macular degeneration (AMD). Previously, two polyphenols, fisetin and luteolin, have been reported to increase the survival of retinal pigment epithelial (RPE) cells suffering from oxidative stress as well as decreasing inflammation but the benefits of polyphenol therapy seem to depend on the model system used. Our aim was to analyze the effects of fisetin and luteolin on inflammation and cellular viability in a model of nonoxidative DNA damage-induced cell death in human RPE (hRPE) cells. Pretreatment of ARPE-19 or primary hRPE cells with the polyphenols augmented etoposide-induced cell death as measured by the lactate dehydrogenase and 3-(4,5-dimethyldiazol-2-yl)-2,5-diphenyltetrazolium bromide assays. However, the treatment was able to reduce the release of two proinflammatory cytokines, IL-6 and IL-8, which were determined by enzyme-linked Immunosorbent assay. Analyses of caspase 3 activity, p53 acetylation and SIRT1 protein levels revealed the apoptotic nature of etoposide-evoked cell death and that fisetin and luteolin augmented the etoposide-induced acetylation of p53 and decreased SIRT1 levels. Taken together, our findings suggest that the cytoprotective effects of fisetin and luteolin depend on the stressor they need to combat, whereas their anti-inflammatory potential is sustained over a variety of model systems. Careful consideration of disease pathways will be necessary before fisetin or luteolin can be recommended as therapeutic agents for inflammatory diseases in general and specifically AMD. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Treatment with selectin blocking antibodies after lengthening contractions of mouse muscle blunts neutrophil accumulation but does not reduce damage.

    Science.gov (United States)

    Sloboda, Darcée D; Brooks, Susan V

    2016-01-01

    P- and E-selectins are expressed on the surface of endothelial cells and may contribute to neutrophil recruitment following injurious lengthening contractions of skeletal muscle. Blunting neutrophil, but not macrophage, accumulation after lengthening contractions may provide a therapeutic benefit as neutrophils exacerbate damage to muscle fibers, while macrophages promote repair. In this study, we tested the hypothesis that P- and E-selectins contribute to neutrophil, but not macrophage, accumulation in muscles after contraction-induced injury, and that reducing neutrophil accumulation by blocking the selectins would be sufficient to reduce damage to muscle fibers. To test our hypothesis, we treated mice with antibodies to block P- and E-selectin function and assessed leukocyte accumulation and damage in muscles 2 days after lengthening contractions. Treatment with P/E-selectin blocking antibodies reduced neutrophil content by about half in muscles subjected to lengthening contractions. In spite of the reduction in neutrophil accumulation, we did not detect a decrease in damage 2 days after lengthening contractions. We conclude that P- and/or E-selectin contribute to the neutrophil accumulation associated with contraction-induced muscle damage and that only a portion of the neutrophils that typically accumulate following injurious lengthening contractions is sufficient to induce muscle fiber damage and force deficits. Thus, therapeutic interventions based on blocking the selectins or other adhesion proteins will have to reduce neutrophil numbers by more than 50% in order to provide a benefit.

  20. The masticatory system under varying functional load. Part 1: structural adaptation of rabbit jaw muscles to reduced masticatory load

    NARCIS (Netherlands)

    Vreeke, M.; Langenbach, G.E.J.; Korfage, J.A.M.; Zentner, A.; Grünheid, T.

    2011-01-01

    Skeletal muscle fibres can change their myosin heavy-chain (MyHC) isoform and cross-sectional area, which determine their contraction velocity and maximum force generation, respectively, to adapt to varying functional loads. In general, reduced muscle activity induces transition towards faster fibre

  1. Muscle injury after low-intensity downhill running reduces running economy.

    Science.gov (United States)

    Baumann, Cory W; Green, Michael S; Doyle, J Andrew; Rupp, Jeffrey C; Ingalls, Christopher P; Corona, Benjamin T

    2014-05-01

    Contraction-induced muscle injury may reduce running economy (RE) by altering motor unit recruitment, lowering contraction economy, and disturbing running mechanics, any of which may have a deleterious effect on endurance performance. The purpose of this study was to determine if RE is reduced 2 days after performing injurious, low-intensity exercise in 11 healthy active men (27.5 ± 5.7 years; 50.05 ± 1.67 VO2peak). Running economy was determined at treadmill speeds eliciting 65 and 75% of the individual's peak rate of oxygen uptake (VO2peak) 1 day before and 2 days after injury induction. Lower extremity muscle injury was induced with a 30-minute downhill treadmill run (6 × 5 minutes runs, 2 minutes rest, -12% grade, and 12.9 km·h(-1)) that elicited 55% VO2peak. Maximal quadriceps isometric torque was reduced immediately and 2 days after the downhill run by 18 and 10%, and a moderate degree of muscle soreness was present. Two days after the injury, steady-state VO2 and metabolic work (VO2 L·km(-1)) were significantly greater (4-6%) during the 65% VO2peak run. Additionally, postinjury VCO2, VE and rating of perceived exertion were greater at 65% but not at 75% VO2peak, whereas whole blood-lactate concentrations did not change pre-injury to postinjury at either intensity. In conclusion, low-intensity downhill running reduces RE at 65% but not 75% VO2peak. The results of this study and other studies indicate the magnitude to which RE is altered after downhill running is dependent on the severity of the injury and intensity of the RE test.

  2. Comparative cardiac pathological changes of Atlantic salmon (Salmo salar L.) affected with heart and skeletal muscle inflammation (HSMI), cardiomyopathy syndrome (CMS) and pancreas disease (PD)

    DEFF Research Database (Denmark)

    Yousaf, Muhammad Naveed; Koppang, Erling Olaf; Skjødt, Karsten

    2013-01-01

    The heart is considered the powerhouse of the cardiovascular system. Heart and skeletal muscle inflammation (HSMI), cardiomyopathy syndrome (CMS) and pancreas disease (PD) are cardiac diseases of marine farmed Atlantic salmon (Salmo salar) which commonly affect the heart in addition to the skeletal......) and TUNEL, and moderate levels of caspase 3 immuno-reactivity suggested a high cell turnover where DNA damage/repair might be occurring in the diseased hearts. Interestingly, the apparently similar cardiac diseases exhibited differences in the immunopathological responses in Atlantic salmon....

  3. The Effects of a Calorie Reduced Diet on Periodontal Inflammation and Disease in a Non Human Primate Model

    Science.gov (United States)

    Branch-Mays, Grishondra L.; Dawson, Dolphus R.; Gunsolley, John C.; Reynolds, Mark A.; Ebersole, Jeffrey L.; Novak, Karen F.; Mattison, Julie A.; Ingram, Donald K.; Novak, M. John

    2008-01-01

    Background Low calorie diets are commonplace for reducing body weight. However, no information is available on the effects of a reduced calorie diet on periodontal inflammation and disease. The purpose of this study was to evaluate the clinical effects of a long term calorie restricted diet (CR) on periodontitis in an animal model of periodontitis. Methods Periodontitis was induced in 55 young, healthy, adult rhesus monkeys (Macaca mulatta) by tying 2.0 silk ligatures at the gingival margins of maxillary premolar/molar teeth. Animals on a CR diet (30% CR; n=23) were compared to ad libitum diet controls (n=32). Clinical measures including plaque (PLI), probing pocket depth (PD), clinical attachment level (CAL), modified Gingival Index (GI) and bleeding on probing (BOP) were taken at baseline and 1, 2, and 3 months after ligature placement. Results Significant effects of CR were observed on the development of inflammation and the progression of periodontal destruction in this model. When compared to controls, CR resulted in a significant reduction in ligature induced GI (p<0.0001), BOP (p<0.0015), PD (p<0.0016), and CAL (p<0.0038). When viewed over time, periodontal destruction, as measured by CAL, progressed significantly more slowly in the CR animals than in the controls (p<0.001). Conclusions These clinical findings are consistent with available evidence that CR has anti-inflammatory effects. Moreover, these experimental findings are the first observations that CR dampens the inflammatory response and reduces active periodontal breakdown associated with an acute microbial challenge. PMID:18597600

  4. The Ethanol Extract of Osmanthus fragrans Flowers Reduces Oxidative Stress and Allergic Airway Inflammation in an Animal Model

    Directory of Open Access Journals (Sweden)

    Chien-Ya Hung

    2013-01-01

    Full Text Available The Osmanthus fragrans flower, a popular herb in Eastern countries, contains several antioxidant compounds. Ben Cao Gang Mu, traditional Chinese medical literature, describes the usefulness of these flowers for phlegm and stasis reduction, arrest of dysentery with blood in the bowel, and stomachache and diarrhea treatment. However, modern evidence regarding the therapeutic efficacy of these flowers is limited. This study was aimed at assessing the antioxidative effects of the ethanol extract of O. fragrans flowers (OFE in vivo and evaluating its antioxidant maintenance and therapeutic effect on an allergic airway inflammation in mice. After OFE’s oral administration to mice, the values obtained in the oxygen radical absorbance capacity assay as well as the glutathione concentration in the lungs and spleens of mice increased while thiobarbituric acid reactive substances decreased significantly, indicating OFE’s significant in vivo antioxidant activity. OFE was also therapeutically efficacious in a mouse model of ovalbumin-induced allergic airway inflammation. Orally administered OFE suppressed ovalbumin-specific IgE production and inflammatory cell infiltration in the lung. Moreover, the antioxidative state of the mice improved. Thus, our findings confirm the ability of the O. fragrans flowers to reduce phlegm and suggest that OFE may be useful as an antiallergic agent.

  5. Reducing muscle fatigue due to functional electrical stimulation using random modulation of stimulation parameters.

    Science.gov (United States)

    Thrasher, Adam; Graham, Geoffrey M; Popovic, Milos R

    2005-06-01

    A major limitation of many functional electrical stimulation (FES) applications is that muscles tend to fatigue very rapidly. It was hypothesized that FES-induced muscle fatigue could be reduced by randomly modulating the pulse frequency, amplitude, and pulse width in a range of +/-15%. Seven subjects with spinal-cord injuries participated in this study. FES was applied to quadriceps and tibialis anterior muscles using surface electrodes. Isometric force was measured, and the time for the force to drop by 3 dB (fatigue time) was compared between trials. Four different modes of FES were applied in random order: constant stimulation, randomized frequency, randomized amplitude, and randomized pulse width. There was no significant difference between the fatigue-time measurements for the four modes of stimulation (P=0.329). Therefore, random modulation appeared to have no effect. Based on an observed correlation between maximum force measurements and trial order, we concluded that having 10-min rest periods between trials was insufficient.

  6. Reduced Bone Strength and Muscle Force in Women 27 Years After Anorexia Nervosa.

    Science.gov (United States)

    Mueller, Sandro Manuel; Immoos, Marilyn; Anliker, Elmar; Drobnjak, Suzana; Boutellier, Urs; Toigo, Marco

    2015-08-01

    A substantial body of research findings indicate that muscle mass and bone mass are reduced in populations of anorexic females, even in such populations whose anorexia nervosa had been in remission for longer periods. This study aimed to investigate whether the bone of an anorexia nervosa recovery cohort is adapted to maximal muscle forces and whether there are alterations in the structure of the tibia in this population, as compared with a control group. This was a cross-sectional study of 22 women in Switzerland who have remained in stable recovery from anorexia nervosa for an average of 27 years. The measurements were compared with those of an age- and gender-matched control group (n = 73). There were no interventions. Bone characteristics of the tibia and maximal voluntary ground reaction force (Fm1LH) were measured. The variability in volumetric bone mineral content (vBMC) at the 14% site was explained by 54.7% on the grounds of Fm1LH (P gender-matched control population. Present body mass of the anorexia group correlated positively with vBMC at the 14% site (P < .001). Despite the fact that findings reflected an adaptation of bone to the acting forces, most results indicated that the test cohort generally suffered from a secondary bone defect. In addition, maximal muscle force was also impaired in the formerly anorexic women.

  7. Fish oil supplementation reduces markers of oxidative stress but not muscle soreness after eccentric exercise.

    Science.gov (United States)

    Gray, Patrick; Chappell, Andrew; Jenkinson, Alison McE; Thies, Frank; Gray, Stuart R

    2014-04-01

    Due to the potential anti-inflammatory properties of fish-derived long chain n-3 fatty acids, it has been suggested that athletes should regularly consume fish oils-although evidence in support of this recommendation is not clear. While fish oils can positively modulate immune function, it remains possible that, due to their high number of double bonds, there may be concurrent increases in lipid peroxidation. The current study aims to investigate the effect of fish oil supplementation on exercise-induced markers of oxidative stress and muscle damage. Twenty males underwent a 6-week double-blind randomized placebo-controlled supplementation trial involving two groups (fish oil or placebo). After supplementation, participants undertook 200 repetitions of eccentric knee contractions. Blood samples were taken presupplementation, postsupplementation, immediately, 24, 48, and 72 hr postexercise and muscle soreness/maximal voluntary contraction (MVC) assessed. There were no differences in creatine kinase, protein carbonyls, endogenous DNA damage, muscle soreness or MVC between groups. Plasma thiobarbituric acid reactive substances (TBARS) were lower (p < .05) at 48 and 72 hr post exercise and H2O2 stimulated DNA damage was lower (p < .05) immediately postexercise in the fish oil, compared with the control group. The current study demonstrates that fish oil supplementation reduces selected markers of oxidative stress after a single bout of eccentric exercise.

  8. Electromyographic biofeedback training for reducing muscle pain and tension on masseter and temporal muscles: A pilot study.

    Science.gov (United States)

    Criado, Laura; de La Fuente, Antonio; Heredia, Margarita; Montero, Javier; Albaladejo, Alberto; Criado, José-María

    2016-12-01

    Due to the absence of agreement about an effective unified treatment for temporomandibular disorders, non-invasive therapies such as EMG-biofeedback generate a greater interest. Furthermore, most studies to the present show methodological deficiencies that must be solved in the future, which makes important to emphasize this line of studies. Fourteen patients were selected for this case series study, and replied to a questionnaire concerning awareness of bruxism, painful muscles, and muscle tension. They also practiced an intraoral exploration (occlusal analysis and mandibular dynamics), and an extraoral exploration of the head and neck muscles and the temporomandibular joint. Before each session, patients responded to a questionnaire about the subjective perceived improvement. In each session, a period of three minutes of pre-biofeedback EMG activity of right masseter and temporal muscles was registered, then patients performed 30 iterations of visual EMG-biofeedback training and finally, a period of three minutes of post-EMG activity was also registered for those muscles. Patients performed four sessions. A decrease in painful symptoms was found for all patients since the first session. EMG activity decreases (pmuscles during the biofeedback training stage, in the four sessions. It is also observed a decrease (pmuscle at the post-biofeedback stage, in the second and third sessions. There is likewise a decrease in EMG post-biofeedback activity of the temporal muscle (pmuscles during the session. This decrease persists during the post-biofeedback period since the second session. Also there is a decrease in painful symptoms for all patients. Key words:Muscle tension, muscle pain, EMG-biofeedback, masseter muscle, temporal muscle.

  9. Berberine Attenuates Myocardial Ischemia/Reperfusion Injury by Reducing Oxidative Stress and Inflammation Response: Role of Silent Information Regulator 1

    Directory of Open Access Journals (Sweden)

    Liming Yu

    2016-01-01

    Full Text Available Berberine (BBR exerts potential protective effect against myocardial ischemia/reperfusion (MI/R injury. Activation of silent information regulator 1 (SIRT1 signaling attenuates MI/R injury by reducing oxidative damage and inflammation response. This study investigated the antioxidative and anti-inflammatory effects of BBR treatment in MI/R condition and elucidated its potential mechanisms. Sprague-Dawley rats were treated with BBR in the absence or presence of the SIRT1 inhibitor sirtinol (Stnl and then subjected to MI/R injury. BBR conferred cardioprotective effects by improving postischemic cardiac function, decreasing infarct size, reducing apoptotic index, diminishing serum creatine kinase and lactate dehydrogenase levels, upregulating SIRT1, Bcl-2 expressions, and downregulating Bax and caspase-3 expressions. Stnl attenuated these effects by inhibiting SIRT1 signaling. BBR treatment also reduced myocardium superoxide generation, gp91phox expression, malondialdehyde (MDA level, and cardiac inflammatory markers and increased myocardium superoxide dismutase (SOD level. However, these effects were also inhibited by Stnl. Consistently, BBR conferred similar antioxidative and anti-inflammatory effects against simulated ischemia reperfusion injury in cultured H9C2 cardiomyocytes. SIRT1 siRNA administration also abolished these effects. In summary, our results demonstrate that BBR significantly improves post-MI/R cardiac function recovery and reduces infarct size against MI/R injury possibly due to its strong antioxidative and anti-inflammatory activity. Additionally, SIRT1 signaling plays a key role in this process.

  10. A promising approach to effectively reduce cramp susceptibility in human muscles: a randomized, controlled clinical trial.

    Directory of Open Access Journals (Sweden)

    Michael Behringer

    Full Text Available To investigate if the cramp threshold frequency (CTF can be altered by electrical muscle stimulation in a shortened position.A total of 15 healthy male sport students were randomly allocated to an intervention (IG, n = 10 and a non-treatment control group (CG, n = 5. Calf muscles of both legs in the IG were stimulated equally twice a week over 6 weeks. The protocol was 3×5 s on, 10 s off, 150 µs impulse width, 30 Hz above the individual CTF, and was at 85% of the maximal tolerated stimulation energy. One leg was stimulated in a shortened position, inducing muscle cramps (CT, while the opposite leg was fixated in a neutral position at the ankle, hindering muscle cramps (nCT. CTF tests were performed prior to the first and 96 h after the 6(th (3 w and 12(th (6 w training session.After 3 w, the CTF had significantly (p<0.001 increased in CT calves from 23.3±5.7 Hz to 33.3±6.9 Hz, while it remained unchanged in nCT (pre: 23.6±5.7 Hz, mid: 22.3±3.5 Hz and in both legs of the CG (pre: 21.8±3.2 Hz, mid: 22.0±2.7 Hz. Only CT saw further insignificant increases in the CTF. The applied stimulation energy (mA² • µs positively correlated with the effect on the CTF (r = 0.92; p<0.001.The present study may be useful for developing new non-pharmacological strategies to reduce cramp susceptibility.German Clinical Trials Register DRKS00005312.

  11. Reduced inflammation accompanies diminished myelin damage and repair in the NG2 null mouse spinal cord

    Directory of Open Access Journals (Sweden)

    Kucharova Karolina

    2011-11-01

    Full Text Available Abstract Background Multiple sclerosis (MS is a demyelinating disease in which blood-derived immune cells and activated microglia damage myelin in the central nervous system. While oligodendrocyte progenitor cells (OPCs are essential for generating oligodendrocytes for myelin repair, other cell types also participate in the damage and repair processes. The NG2 proteoglycan is expressed by OPCs, pericytes, and macrophages/microglia. In this report we investigate the effects of NG2 on these cell types during spinal cord demyelination/remyelination. Methods Demyelinated lesions were created by microinjecting 1% lysolecithin into the lumbar spinal cord. Following demyelination, NG2 expression patterns in wild type mice were studied via immunostaining. Immunolabeling was also used in wild type and NG2 null mice to compare the extent of myelin damage, the kinetics of myelin repair, and the respective responses of OPCs, pericytes, and macrophages/microglia. Cell proliferation was quantified by studies of BrdU incorporation, and cytokine expression levels were evaluated using qRT-PCR. Results The initial volume of spinal cord demyelination in wild type mice is twice as large as in NG2 null mice. However, over the ensuing 5 weeks there is a 6-fold improvement in myelination in wild type mice, versus only a 2-fold improvement in NG2 null mice. NG2 ablation also results in reduced numbers of each of the three affected cell types. BrdU incorporation studies reveal that reduced cell proliferation is an important factor underlying NG2-dependent decreases in each of the three key cell populations. In addition, NG2 ablation reduces macrophage/microglial cell migration and shifts cytokine expression from a pro-inflammatory to anti-inflammatory phenotype. Conclusions Loss of NG2 expression leads to decreased proliferation of OPCs, pericytes, and macrophages/microglia, reducing the abundance of all three cell types in demyelinated spinal cord lesions. As a result

  12. The selective vitamin D receptor agonist, elocalcitol, reduces endometriosis development in a mouse model by inhibiting peritoneal inflammation.

    Science.gov (United States)

    Mariani, Margherita; Viganò, Paola; Gentilini, Davide; Camisa, Barbara; Caporizzo, Elvira; Di Lucia, Pietro; Monno, Antonella; Candiani, Massimo; Somigliana, Edgardo; Panina-Bordignon, Paola

    2012-07-01

    Endometriosis, which is characterized by the growth of endometrial tissue at ectopic locations as well as vascular development and inflammation, is still an unmet clinical need since an optimal drug that allows for both pain and infertility management does not exist. Since both the eutopic and the ectopic endometrium express the vitamin D receptor (VDR), and VDR agonists are endowed with anti-proliferative and anti-inflammatory properties, we evaluated the effect of elocalcitol, a VDR agonist with low calcaemic liability, in a mouse model of experimentally induced endometriosis. Endometriosis was induced by injection of syngeneic endometrial tissue fragments into adult Balb/c female mice. After having confirmed by immunohistochemistry that endometriotic lesions developing in mice expressed VDR, the mice were administered with elocalcitol (100 μg/kg) or vehicle orally, once a day, for various durations of time. In this model, elocalcitol was able to reduce total lesion weight up to 70% upon treatment for 1 week before and 2 weeks after disease induction. Interestingly, a therapeutic effect was also observed on already established lesions. Elocalcitol was shown to reduce the capacity of mouse endometrial cells to adhere to collagen. In addition in treated mice, a decreased state of peritoneal inflammation was demonstrated by the inhibition of macrophage recruitment and inflammatory cytokine secretion. The VDR agonist elocalcitol inhibits lesion development in a validated mouse model of endometriosis, and exerts a protective effect on both the implantation and organization of transferred endometrial tissue. These preliminary data in mice provide a sound rationale for further testing in primate models and eventually in humans.

  13. Matrix metalloproteinase-2 ablation in dystrophin-deficient mdx muscles reduces angiogenesis resulting in impaired growth of regenerated muscle fibers.

    Science.gov (United States)

    Miyazaki, Daigo; Nakamura, Akinori; Fukushima, Kazuhiro; Yoshida, Kunihiro; Takeda, Shin'ichi; Ikeda, Shu-ichi

    2011-05-01

    Matrix metalloproteases (MMPs) are a family of endopeptidases classified into subgroups based on substrate preference in normal physiological processes such as embryonic development and tissue remodeling, as well as in various disease processes via degradation of extracellular matrix components. Among the MMPs, MMP-9 and MMP-2 have been reported to be up-regulated in skeletal muscles in the lethal X-linked muscle disorder Duchenne muscular dystrophy (DMD), which is caused by loss of dystrophin. A recent study showed that deletion of the MMP9 gene in mdx, a mouse model for DMD, improved skeletal muscle pathology and function; however, the role of MMP-2 in the dystrophin-deficient muscle is not well known. In this study, we aimed at verifying the role of MMP-2 in the dystrophin-deficient muscle by using mdx mice with genetic ablation of MMP-2 (mdx/MMP-2(-/-)). We found impairment of regenerated muscle fiber growth with reduction of angiogenesis in mdx/MMP-2(-/-) mice at 3 months of age. Expression of vascular endothelial growth factor-A (VEGF-A), an important angiogenesis-related factor, decreased in mdx/MMP-2(-/-) mice at 3 months of age. MMP-2 had not a critical role in the degradation of dystrophin-glycoprotein complex (DGC) components such as β-dystroglycan and β-sarcoglycan in the regeneration process of the dystrophic muscle. Accordingly, MMP-2 may be essential for growth of regenerated muscle fibers through VEGF-associated angiogenesis in the dystrophin-deficient skeletal muscle.

  14. Neurotensin-loaded collagen dressings reduce inflammation and improve wound healing in diabetic mice.

    Science.gov (United States)

    Moura, Liane I F; Dias, Ana M A; Suesca, Edward; Casadiegos, Sergio; Leal, Ermelindo C; Fontanilla, Marta R; Carvalho, Lina; de Sousa, Hermínio C; Carvalho, Eugénia

    2014-01-01

    Impaired wound healing is an important clinical problem in diabetes mellitus and results in failure to completely heal diabetic foot ulcers (DFUs), which may lead to lower extremity amputations. In the present study, collagen based dressings were prepared to be applied as support for the delivery of neurotensin (NT), a neuropeptide that acts as an inflammatory modulator in wound healing. The performance of NT alone and NT-loaded collagen matrices to treat wounds in streptozotocin (STZ) diabetic induced mice was evaluated. Results showed that the prepared dressings were not-cytotoxic up to 72h after contact with macrophages (Raw 264.7) and human keratinocyte (HaCaT) cell lines. Moreover, those cells were shown to adhere to the collagen matrices without noticeable change in their morphology. NT-loaded collagen dressings induced faster healing (17% wound area reduction) in the early phases of wound healing in diabetic wounded mice. In addition, they also significantly reduced inflammatory cytokine expression namely, TNF-α (pphase). After complete healing, metalloproteinase 9 (MMP-9) is reduced in diabetic skin (phealing process. Nevertheless, a more prominent scar is observed in diabetic wounds treated with collagen when compared to the treatment with NT alone.

  15. In vivo treatment of Helicobacter pylori infection with liposomal linolenic acid reduces colonization and ameliorates inflammation

    Science.gov (United States)

    Thamphiwatana, Soracha; Gao, Weiwei; Obonyo, Marygorret; Zhang, Liangfang

    2014-01-01

    Helicobacter pylori infection is marked by a vast prevalence and strong association with various gastric diseases, including gastritis, peptic ulcers, and gastric cancer. Because of the rapid emergence of H. pylori strains resistant to existing antibiotics, current treatment regimens show a rapid decline of their eradication rates. Clearly, novel antibacterial strategies against H. pylori are urgently needed. Here, we investigated the in vivo therapeutic potential of liposomal linolenic acid (LipoLLA) for the treatment of H. pylori infection. The LipoLLA formulation with a size of ∼100 nm was prone to fusion with bacterial membrane, thereby directly releasing a high dose of linolenic acids into the bacterial membrane. LipoLLA penetrated the mucus layer of mouse stomach, and a significant portion of the administered LipoLLA was retained in the stomach lining up to 24 h after the oral administration. In vivo tests further confirmed that LipoLLA was able to kill H. pylori and reduce bacterial load in the mouse stomach. LipoLLA treatment was also shown to reduce the levels of proinflammatory cytokines including interleukin 1β, interleukin 6, and tumor necrosis factor alpha, which were otherwise elevated because of the H. pylori infection. Finally, a toxicity test demonstrated excellent biocompatibility of LipoLLA to normal mouse stomach. Collectively, results from this study indicate that LipoLLA is a promising, effective, and safe therapeutic agent for the treatment of H. pylori infection. PMID:25422427

  16. Chitosan coating of copper nanoparticles reduces in vitro toxicity and increases inflammation in the lung.

    Science.gov (United States)

    Worthington, Kristan L S; Adamcakova-Dodd, Andrea; Wongrakpanich, Amaraporn; Mudunkotuwa, Imali A; Mapuskar, Kranti A; Joshi, Vijaya B; Allan Guymon, C; Spitz, Douglas R; Grassian, Vicki H; Thorne, Peter S; Salem, Aliasger K

    2013-10-04

    Despite their potential for a variety of applications, copper nanoparticles induce very strong inflammatory responses and cellular toxicity following aerosolized delivery. Coating metallic nanoparticles with polysaccharides, such as biocompatible and antimicrobial chitosan, has the potential to reduce this toxicity. In this study, copper nanoparticles were coated with chitosan using a newly developed and facile method. The presence of coating was confirmed using x-ray photoelectron spectroscopy, rhodamine tagging of chitosan followed by confocal fluorescence imaging of coated particles and observed increases in particle size and zeta potential. Further physical and chemical characteristics were evaluated using dissolution and x-ray diffraction studies. The chitosan coating was shown to significantly reduce the toxicity of copper nanoparticles after 24 and 52 h and the generation of reactive oxygen species as assayed by DHE oxidation after 24 h in vitro. Conversely, inflammatory response, measured using the number of white blood cells, total protein, and cytokines/chemokines in the bronchoalveolar fluid of mice exposed to chitosan coated versus uncoated copper nanoparticles, was shown to increase, as was the concentration of copper ions. These results suggest that coating metal nanoparticles with mucoadhesive polysaccharides (e.g. chitosan) could increase their potential for use in controlled release of copper ions to cells, but will result in a higher inflammatory response if administered via the lung.

  17. Chitosan coating of copper nanoparticles reduces in vitro toxicity and increases inflammation in the lung

    Science.gov (United States)

    Worthington, Kristan L. S.; Adamcakova-Dodd, Andrea; Wongrakpanich, Amaraporn; Mudunkotuwa, Imali A.; Mapuskar, Kranti A.; Joshi, Vijaya B.; Guymon, C. Allan; Spitz, Douglas R.; Grassian, Vicki H.; Thorne, Peter S.; Salem, Aliasger K.

    2013-10-01

    Despite their potential for a variety of applications, copper nanoparticles induce very strong inflammatory responses and cellular toxicity following aerosolized delivery. Coating metallic nanoparticles with polysaccharides, such as biocompatible and antimicrobial chitosan, has the potential to reduce this toxicity. In this study, copper nanoparticles were coated with chitosan using a newly developed and facile method. The presence of coating was confirmed using x-ray photoelectron spectroscopy, rhodamine tagging of chitosan followed by confocal fluorescence imaging of coated particles and observed increases in particle size and zeta potential. Further physical and chemical characteristics were evaluated using dissolution and x-ray diffraction studies. The chitosan coating was shown to significantly reduce the toxicity of copper nanoparticles after 24 and 52 h and the generation of reactive oxygen species as assayed by DHE oxidation after 24 h in vitro. Conversely, inflammatory response, measured using the number of white blood cells, total protein, and cytokines/chemokines in the bronchoalveolar fluid of mice exposed to chitosan coated versus uncoated copper nanoparticles, was shown to increase, as was the concentration of copper ions. These results suggest that coating metal nanoparticles with mucoadhesive polysaccharides (e.g. chitosan) could increase their potential for use in controlled release of copper ions to cells, but will result in a higher inflammatory response if administered via the lung.

  18. Reduced nasal nitric oxide production in cystic fibrosis patients with elevated systemic inflammation markers.

    Directory of Open Access Journals (Sweden)

    Ruth K Michl

    Full Text Available BACKGROUND: Nitric oxide (NO is produced within the respiratory tract and can be detected in exhaled bronchial and nasal air. The concentration varies in specific diseases, being elevated in patients with asthma and bronchiectasis, but decreased in primary ciliary dyskinesia. In cystic fibrosis (CF, conflicting data exist on NO levels, which are reported unexplained as either decreased or normal. Functionally, NO production in the paranasal sinuses is considered as a location-specific first-line defence mechanism. The aim of this study was to investigate the correlation between upper and lower airway NO levels and blood inflammatory parameters, CF-pathogen colonisation, and clinical data. METHODS AND FINDINGS: Nasal and bronchial NO concentrations from 57 CF patients were determined using an electrochemical analyser and correlated to pathogen colonisation of the upper and lower airways which were microbiologically assessed from nasal lavage and sputum samples. Statistical analyses were performed with respect to clinical parameters (lung function, BMI, laboratory findings (CRP, leucocytes, total-IgG, fibrinogen, and anti-inflammatory and antibiotic therapy. There were significant correlations between nasal and bronchial NO levels (rho = 0.48, p<0.001, but no correlation between NO levels and specific pathogen colonisation. In patients receiving azithromycin, significantly reduced bronchial NO and a tendency to reduced nasal NO could be found. Interestingly, a significant inverse correlation of nasal NO to CRP (rho = -0.28, p = 0.04 and to leucocytes (rho = -0.41, p = 0.003 was observed. In contrast, bronchial NO levels showed no correlation to clinical or inflammatory parameters. CONCLUSION: Given that NO in the paranasal sinuses is part of the first-line defence mechanism against pathogens, our finding of reduced nasal NO in CF patients with elevated systemic inflammatory markers indicates impaired upper airway defence. This

  19. Neonates with reduced neonatal lung function have systemic low-grade inflammation

    DEFF Research Database (Denmark)

    Chawes, Bo L.K.; Stokholm, Jakob; Bønnelykke, Klaus

    2015-01-01

    of the Copenhagen Prospective Study on Asthma in Childhood2000 birth cohort who had completed neonatal lung function testing at age 4 weeks. Associations between neonatal lung function indices and inflammatory biomarkers were investigated by conventional statistics and unsupervised principal component analysis.......  Results: The neonatal forced expiratory volume at 0.5 seconds was inversely associated with hs-CRP (β-coefficient, −0.12; 95% CI, −0.21 to −0.04; P component analysis approach, including hs-CRP, IL-6......, TNF-α, and CXCL8, confirmed a uniform upregulated inflammatory profile in children with reduced forced expiratory volume at 0.5 seconds (P = .02). Adjusting for body mass index at birth, maternal smoking, older children in the home, neonatal bacterial airway colonization, infections 14 days before...

  20. Hypericum perforatum Reduces Paracetamol-Induced Hepatotoxicity and Lethality in Mice by Modulating Inflammation and Oxidative Stress.

    Science.gov (United States)

    Hohmann, Miriam S N; Cardoso, Renato D R; Fattori, Victor; Arakawa, Nilton S; Tomaz, José C; Lopes, Norberto P; Casagrande, Rubia; Verri, Waldiceu A

    2015-07-01

    Hypericum perforatum is a medicinal plant with anti-inflammatory and antioxidant properties, which is commercially available for therapeutic use in Brazil. Herein the effect of H. perforatum extract on paracetamol (acetaminophen)-induced hepatotoxicity, lethality, inflammation, and oxidative stress in male swiss mice were investigated. HPLC analysis demonstrated the presence of rutin, quercetin, hypericin, pseudohypericin, and hyperforin in H. perforatum extract. Paracetamol (0.15-3.0 g/kg, p.o.) induced dose-dependent mortality. The sub-maximal lethal dose of paracetamol (1.5 g/kg, p.o.) was chosen for the experiments in the study. H. perforatum (30-300 mg/kg, i.p.) dose-dependently reduced paracetamol-induced lethality. Paracetamol-induced increase in plasma aspartate aminotransferase (AST) and alanine aminotransferase (ALT) concentrations, and hepatic myeloperoxidase activity, IL-1β, TNF-α, and IFN-γ concentrations as well as decreased reduced glutathione (GSH) concentrations and capacity to reduce 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonate radical cation; ABTS˙(+) ) were inhibited by H. perforatum (300 mg/kg, i.p.) treatment. Therefore, H. perforatum protects mice against paracetamol-induced lethality and liver damage. This effect seems to be related to the reduction of paracetamol-induced cytokine production, neutrophil recruitment, and oxidative stress.

  1. Withania coagulans fruit extract reduces oxidative stress and inflammation in kidneys of streptozotocin-induced diabetic rats.

    Science.gov (United States)

    Ojha, Shreesh; Alkaabi, Juma; Amir, Naheed; Sheikh, Azimullah; Agil, Ahmad; Fahim, Mohamed Abdelmonem; Adem, Abdu

    2014-01-01

    The present study was carried out to investigate the changes in oxidative and inflammatory status in streptozotocin-induced diabetic rat's kidneys and serum following treatment with Withania coagulans, a popular herb of ethnomedicinal significance. The key markers of oxidative stress and inflammation such as inflammatory cytokines (IL-1β, IL-6, and TNF-α) and immunoregulatory cytokines (IL-4 and IFN-γ) were increased in kidneys along with significant hyperglycemia. However, treatment of four-month diabetic rats with Withania coagulans (10 mg/kg) for 3 weeks significantly attenuated hyperglycemia and reduced the levels of proinflammatory cytokines in kidneys. In addition, Withania coagulans treatment restored the glutathione levels and inhibited lipid peroxidation along with marked reduction in kidney hypertrophy. The present study demonstrates that Withania coagulans corrects hyperglycemia and maintained antioxidant status and reduced the proinflammatory markers in kidneys, which may subsequently reduce the development and progression of renal injury in diabetes. The results of the present study are encouraging for its potential use to delay the onset and progression of diabetic renal complications. However, the translation of therapeutic efficacy in humans requires further studies.

  2. Reduced bone mass and muscle strength in male 5α-reductase type 1 inactivated mice.

    Directory of Open Access Journals (Sweden)

    Sara H Windahl

    Full Text Available Androgens are important regulators of bone mass but the relative importance of testosterone (T versus dihydrotestosterone (DHT for the activation of the androgen receptor (AR in bone is unknown. 5α-reductase is responsible for the irreversible conversion of T to the more potent AR activator DHT. There are two well established isoenzymes of 5α-reductase (type 1 and type 2, encoded by separate genes (Srd5a1 and Srd5a2. 5α-reductase type 2 is predominantly expressed in male reproductive tissues whereas 5α-reductase type 1 is highly expressed in liver and moderately expressed in several other tissues including bone. The aim of the present study was to investigate the role of 5α-reductase type 1 for bone mass using Srd5a1⁻/⁻ mice. Four-month-old male Srd5a1⁻/⁻ mice had reduced trabecular bone mineral density (-36%, p<0.05 and cortical bone mineral content (-15%, p<0.05 but unchanged serum androgen levels compared with wild type (WT mice. The cortical bone dimensions were reduced in the male Srd5a1⁻/⁻ mice as a result of a reduced cortical periosteal circumference compared with WT mice. T treatment increased the cortical periosteal circumference (p<0.05 in orchidectomized WT mice but not in orchidectomized Srd5a1⁻/⁻ mice. Male Srd5a1⁻/⁻ mice demonstrated a reduced forelimb muscle grip strength compared with WT mice (p<0.05. Female Srd5a1⁻/⁻ mice had slightly increased cortical bone mass associated with elevated circulating levels of androgens. In conclusion, 5α-reductase type 1 inactivated male mice have reduced bone mass and forelimb muscle grip strength and we propose that these effects are due to lack of 5α-reductase type 1 expression in bone and muscle. In contrast, the increased cortical bone mass in female Srd5a1⁻/⁻ mice, is an indirect effect mediated by elevated circulating androgen levels.

  3. Loss of nNOS inhibits compensatory muscle hypertrophy and exacerbates inflammation and eccentric contraction-induced damage in mdx mice

    Science.gov (United States)

    Froehner, Stanley C.; Reed, Sarah M.; Anderson, Kendra N.; Huang, Paul L.; Percival, Justin M.

    2015-01-01

    Approaches targeting nitric oxide (NO) signaling show promise as therapies for Duchenne and Becker muscular dystrophies. However, the mechanisms by which NO benefits dystrophin-deficient muscle remain unclear, but may involve nNOSβ, a newly discovered enzymatic source of NO in skeletal muscle. Here we investigate the impact of dystrophin deficiency on nNOSβ and use mdx mice engineered to lack nNOSμ and nNOSβ to discern how the loss of nNOS impacts dystrophic skeletal muscle pathology. In mdx muscle, nNOSβ was mislocalized and its association with the Golgi complex was reduced. nNOS depletion from mdx mice prevented compensatory skeletal muscle cell hypertrophy, decreased myofiber central nucleation and increased focal macrophage cell infiltration, indicating exacerbated dystrophic muscle damage. Reductions in muscle integrity in nNOS-null mdx mice were accompanied by decreases in specific force and increased susceptibility to eccentric contraction-induced muscle damage compared with mdx controls. Unexpectedly, muscle fatigue was unaffected by nNOS depletion, revealing a novel latent compensatory mechanism for the loss of nNOS in mdx mice. Together with previous studies, these data suggest that localization of both nNOSμ and nNOSβ is disrupted by dystrophin deficiency. They also indicate that nNOS has a more complex role as a modifier of dystrophic pathology and broader therapeutic potential than previously recognized. Importantly, these findings also suggest nNOSβ as a new drug target and provide a new conceptual framework for understanding nNOS signaling and the benefits of NO therapies in dystrophinopathies. PMID:25214536

  4. Isocaloric Diets High in Animal or Plant Protein Reduce Liver Fat and Inflammation in Individuals With Type 2 Diabetes.

    Science.gov (United States)

    Markova, Mariya; Pivovarova, Olga; Hornemann, Silke; Sucher, Stephanie; Frahnow, Turid; Wegner, Katrin; Machann, Jürgen; Petzke, Klaus Jürgen; Hierholzer, Johannes; Lichtinghagen, Ralf; Herder, Christian; Carstensen-Kirberg, Maren; Roden, Michael; Rudovich, Natalia; Klaus, Susanne; Thomann, Ralph; Schneeweiss, Rosemarie; Rohn, Sascha; Pfeiffer, Andreas F H

    2017-02-01

    Nonalcoholic fatty liver disease (NAFLD) is associated with increased risk of hepatic, cardiovascular, and metabolic diseases. High-protein diets, rich in methionine and branched chain amino acids (BCAAs), apparently reduce liver fat, but can induce insulin resistance. We investigated the effects of diets high in animal protein (AP) vs plant protein (PP), which differ in levels of methionine and BCAAs, in patients with type 2 diabetes and NAFLD. We examined levels of liver fat, lipogenic indices, markers of inflammation, serum levels of fibroblast growth factor 21 (FGF21), and activation of signaling pathways in adipose tissue. We performed a prospective study of individuals with type 2 diabetes and NAFLD at a tertiary medical center in Germany from June 2013 through March 2015. We analyzed data from 37 subjects placed on a diet high in AP (rich in meat and dairy foods; n = 18) or PP (mainly legume protein; n = 19) without calorie restriction for 6 weeks. The diets were isocaloric with the same macronutrient composition (30% protein, 40% carbohydrates, and 30% fat). Participants were examined at the start of the study and after the 6-week diet period for body mass index, body composition, hip circumference, resting energy expenditure, and respiratory quotient. Body fat and intrahepatic fat were detected by magnetic resonance imaging and spectroscopy, respectively. Levels of glucose, insulin, liver enzymes, and inflammation markers, as well as individual free fatty acids and free amino acids, were measured in collected blood samples. Hyperinsulinemic euglycemic clamps were performed to determine whole-body insulin sensitivity. Subcutaneous adipose tissue samples were collected and analyzed for gene expression patterns and phosphorylation of signaling proteins. Postprandial levels of BCAAs and methionine were significantly higher in subjects on the AP vs the PP diet. The AP and PP diets each reduced liver fat by 36%-48% within 6 weeks (for AP diet P = .0002; for

  5. Influence of ginger and cinnamon intake on inflammation and muscle soreness endued by exercise in Iranian female athletes

    Directory of Open Access Journals (Sweden)

    Nafiseh Shokri Mashhadi

    2013-01-01

    Conclusions: Administration of ginger and cinnamon in athlete women for six weeks did not show any significant change in the IL-6 level, but showed a decrease in muscle soreness in the cinnamon and ginger groups.

  6. H2S Attenuates LPS-Induced Acute Lung Injury by Reducing Oxidative/Nitrative Stress and Inflammation

    Directory of Open Access Journals (Sweden)

    Hong-Xia Zhang

    2016-12-01

    Full Text Available Background: Hydrogen sulfide (H2S, known as the third endogenous gaseous transmitter, has received increasing attention because of its diverse effects, including angiogenesis, vascular relaxation and myocardial protection.We aimed to investigate the role of H2S in oxidative/nitrative stress and inflammation in acute lung injury (ALI induced by endotoxemia. Methods: Male ICR mice were divided in six groups: (1 Control group; (2 GYY4137treatment group; (3 L-NAME treatment group; (4 lipopolysaccharide (LPS treatment group; (5 LPS with GYY4137 treatment group; and (6 LPS with L-NAME treatment group. The lungs were analysed by histology, NO production in the mouse lungs determined by modified Griess (Sigma-Aldrich reaction, cytokine levels utilizing commercialkits, and protein abundance by Western blotting. Results: GYY4137, a slowly-releasing H2S donor, improved the histopathological changes in the lungs of endotoxemic mice. Treatment with NG-nitro-L-arginine methyl ester (L-NAME, a nitric oxide synthase (NOS inhibitor, increased anti-oxidant biomarkers such as thetotal antioxidant capacity (T-AOC and theactivities of catalase (CAT and superoxide dismutase (SOD but decreased a marker of peroxynitrite (ONOO- action and 3-nitrotyrosine (3-NT in endotoxemic lung. L-NAME administration also suppressed inflammation in endotoxemic lung, as evidenced by the decreased pulmonary levels of interleukin (IL-6, IL-8, and myeloperoxidase (MPO and the increased level of anti-inflammatory cytokine IL-10. GYY4137 treatment reversed endotoxin-induced oxidative/nitrative stress, as evidenced by a decrease in malondialdehyde (MDA, hydrogenperoxide (H2O2 and 3-NT and an increase in the antioxidant biomarker ratio of reduced/oxidized glutathione(GSH/GSSG ratio and T-AOC, CAT and SOD activity. GYY4137 also attenuated endotoxin-induced lung inflammation. Moreover, treatment with GYY4137 inhibited inducible NOS (iNOS expression and nitric oxide (NO production in the

  7. Andrographolide, a Novel NF-κB Inhibitor, Inhibits Vascular Smooth Muscle Cell Proliferation and Cerebral Endothelial Cell Inflammation

    Science.gov (United States)

    Chang, Chao-Chien; Duann, Yeh-Fang; Yen, Ting-Lin; Chen, Yu-Ying; Jayakumar, Thanasekaran; Ong, Eng-Thiam; Sheu, Joen-Rong

    2014-01-01

    Background Aberrant vascular smooth muscle cell (VSMC) proliferation and cerebral endothelial cell (CEC) dysfunction contribute significantly in the pathogenesis of cardiovascular diseases. Therefore, inhibition of these cellular events would be by candidate agents for treating these diseases. In the present study, the mechanism of anti-proliferative and anti-inflammatory effects of andrographolides, a novel nuclear factor-κB inhibitor, was investigated in VSMC and CEC cells. Methods VSMCs and CECs were isolated from rat artery and mouse brain, respectively, and cultured before experimentation. The effect of andro on platelet-derived growth factor-BB (PDGF-BB) induced VSMC cell proliferation was evaluated by cell number, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The expression of extracellular signal regulated kinase 1/2 (ERK1/2), proliferating cell nuclear antigen (PCNA), and the effects on lipopolysaccharide (LPS)-induced inducible nitric oxide synthase (iNOS) and, cyclooxygenase-2 (COX2) were detected by Western blotting. Results Andro significantly inhibited PDGF-BB (10 ng/ml) induced cell proliferation in a concentration (20-100 μM) dependent manner, which may be due to reducing the expression of ERK1/2, and by inhibiting the expression of PCNA. Andro also remarkably diminished LPS-induced iNOS and COX2 expression. Conclusions The results of this study suggested that the effects of andro against VSMCs proliferation and CECs dysfunction may represent a promising approach for treatment of vascular diseases. PMID:27122804

  8. Trans fatty acids induce vascular inflammation and reduce vascular nitric oxide production in endothelial cells.

    Directory of Open Access Journals (Sweden)

    Naomi G Iwata

    Full Text Available Intake of trans fatty acids (TFA, which are consumed by eating foods made from partially hydrogenated vegetable oils, is associated with a higher risk of cardiovascular disease. This relation can be explained by many factors including TFA's negative effect on endothelial function and reduced nitric oxide (NO bioavailability. In this study we investigated the effects of three different TFA (2 common isomers of C18 found in partially hydrogenated vegetable oil and a C18 isomer found from ruminant-derived-dairy products and meat on endothelial NF-κB activation and nitric oxide (NO production. Human endothelial cells were treated with increasing concentrations of Elaidic (trans-C18:1 (9 trans, Linoelaidic (trans-C18:2 (9 trans, 12 trans, and Transvaccenic (trans-C18:1 (11 trans for 3 h. Both Elaidic and Linoelaidic acids were associated with increasing NF-κB activation as measured by IL-6 levels and phosphorylation of IκBα, and impairment of endothelial insulin signaling and NO production, whereas Transvaccenic acid was not associated with these responses. We also measured superoxide production, which has been hypothesized to be necessary in fatty acid-dependent activation of NF-κB. Both Elaidic acid and Linoelaidic acid are associated with increased superoxide production, whereas Transvaccenic acid (which did not induce inflammatory responses did not increase superoxide production. We observed differential activation of endothelial superoxide production, NF-κB activation, and reduction in NO production by different C18 isomers suggesting that the location and number of trans double bonds effect endothelial NF-κB activation.

  9. Cytokine profile in PFAPA syndrome suggests continuous inflammation and reduced anti-inflammatory response.

    Science.gov (United States)

    Stojanov, Silvia; Hoffmann, Florian; Kéry, Anja; Renner, Ellen D; Hartl, Dominik; Lohse, Peter; Huss, Kristina; Fraunberger, Peter; Malley, James D; Zellerer, Stephanie; Albert, Michael H; Belohradsky, Bernd H

    2006-06-01

    PFAPA syndrome is characterized by periodic episodes of high fever, aphthous stomatitis, pharyngitis, and/or cervical adenitis. It is of unknown etiology and manifests usually before 5 years of age. We determined serum and intracellular cytokine levels in six PFAPA patients (4 males, 2 females, mean age 8 years (+/- 1.2 SEM), range 4-13) during the symptom-free period as well as 6-12 hours and 18-24 hours after fever onset. Values were compared to age-matched, healthy controls. Febrile PFAPA attacks led to a significant increase in IL-6 and IFN-gamma serum concentrations compared to symptom-free periods and to controls, with IL-1beta, TNF-alpha and IL-12p70 levels being significantly higher than in controls. Lymphocytic IFN-gamma and CD8+ IL-2 production was consistently significantly elevated compared to healthy children. During the asymptomatic period, serum concentrations of IL-1beta, IL-6, TNF-alpha and IL-12p70 were significantly increased compared to controls. Intracellular TNF-alpha synthesis was not elevated at any time point. Soluble TNFRp55 levels were even lower in between febrile episodes, reaching values comparable to controls during attacks, whereas soluble TNFRp75 levels increased during attacks compared to healthy children. Anti-inflammatory IL-4 in serum was at all times lower in PFAPA patients compared to controls with no difference in levels of intracellular IL-4 and IL-10 or serum IL-10. The observed increase of pro-inflammatory mediators, even between febrile attacks, suggests a dysregulation of the immune response in PFAPA syndrome, with continuous pro-inflammatory cytokine activation and a reduced anti-inflammatory response.

  10. Oral Delivery of a Synthetic Sterol Reduces Axonopathy and Inflammation in a Rodent Model of Glaucoma

    Science.gov (United States)

    Lambert, Wendi S.; Carlson, Brian J.; Formichella, Cathryn R.; Sappington, Rebecca M.; Ahlem, Clarence; Calkins, David J.

    2017-01-01

    Glaucoma is a group of optic neuropathies associated with aging and sensitivity to intraocular pressure (IOP). The disease is the leading cause of irreversible blindness worldwide. Early progression in glaucoma involves dysfunction of retinal ganglion cell (RGC) axons, which comprise the optic nerve. Deficits in anterograde transport along RGC axons to central visual structures precede outright degeneration, and preventing these deficits is efficacious at abating subsequent progression. HE3286 is a synthetic sterol derivative that has shown therapeutic promise in models of inflammatory disease and neurodegenerative disease. We examined the efficacy of HE3286 oral delivery in preventing loss of anterograde transport in an inducible model of glaucoma (microbead occlusion). Adult rats received HE3286 (20 or 100 mg/kg) or vehicle daily via oral gavage for 4 weeks. Microbead occlusion elevated IOP ~30% in all treatment groups, and elevation was not affected by HE3286 treatment. In the vehicle group, elevated IOP reduced anterograde axonal transport to the superior colliculus, the most distal site in the optic projection, by 43% (p = 0.003); HE3286 (100 mg/kg) prevented this reduction (p = 0.025). HE3286 increased brain-derived neurotrophic factor (BDNF) in the optic nerve head and retina, while decreasing inflammatory and pathogenic proteins associated with elevated IOP compared to vehicle treatment. Treatment with HE3286 also increased nuclear localization of the transcription factor NFκB in collicular and retinal neurons, but decreased NFκB in glial nuclei in the optic nerve head. Thus, HE3286 may have a neuroprotective influence in glaucoma, as well as other chronic neurodegenerations. PMID:28223915

  11. Medium Cut-Off (MCO) Membranes Reduce Inflammation in Chronic Dialysis Patients-A Randomized Controlled Clinical Trial.

    Science.gov (United States)

    Zickler, Daniel; Schindler, Ralf; Willy, Kevin; Martus, Peter; Pawlak, Michael; Storr, Markus; Hulko, Michael; Boehler, Torsten; Glomb, Marcus A; Liehr, Kristin; Henning, Christian; Templin, Markus; Trojanowicz, Bogusz; Ulrich, Christof; Werner, Kristin; Fiedler, Roman; Girndt, Matthias

    2017-01-01

    To increase the removal of middle-sized uremic toxins a new membrane with enhanced permeability and selectivity, called Medium Cut-Off membrane (MCO-Ci) has been developed that at the same time ensures the retention of albumin. Because many middle-sized substances may contribute to micro-inflammation we hypothesized that the use of MCO-Ci influences the inflammatory state in hemodialysis patients. The randomized crossover trial in 48 patients compared MCO-Ci dialysis to High-flux dialysis of 4 weeks duration each plus 8 weeks extension phase. Primary endpoint was the gene expression of TNF-α and IL-6 in peripheral blood mononuclear cells (PBMCs), secondary endpoints were plasma levels of specified inflammatory mediators and cytokines. After four weeks of MCO-Ci the expression of TNF-α mRNA (Relative quantification (RQ) from 0.92 ± 0.34 to 0.75 ± 0.31, -18.5%, pdialysis but increased after additional 8 weeks of MCO dialysis. Twelve weeks treatment with MCO-Ci was well tolerated regarding the number of (S)AEs. In the extension period levels of CRP, TNF-α-mRNA and IL-6 mRNA remained stable in High-flux as well as in MCO-Ci. MCO-Ci dialyzers modulate inflammation in chronic HD patients to a greater extent compared to High-flux dialyzers. Transcription of pro-inflammatory cytokines in peripheral leukocytes is markedly reduced and removal of soluble mediators is enhanced with MCO dialysis. Serum albumin concentrations stabilize after an initial drop. These results encourage further trials with longer treatment periods and clinical endpoints.

  12. Medium Cut-Off (MCO) Membranes Reduce Inflammation in Chronic Dialysis Patients—A Randomized Controlled Clinical Trial

    Science.gov (United States)

    Zickler, Daniel; Schindler, Ralf; Willy, Kevin; Martus, Peter; Pawlak, Michael; Storr, Markus; Hulko, Michael; Boehler, Torsten; Glomb, Marcus A.; Liehr, Kristin; Henning, Christian; Templin, Markus; Trojanowicz, Bogusz; Ulrich, Christof; Werner, Kristin; Fiedler, Roman; Girndt, Matthias

    2017-01-01

    Background To increase the removal of middle-sized uremic toxins a new membrane with enhanced permeability and selectivity, called Medium Cut-Off membrane (MCO-Ci) has been developed that at the same time ensures the retention of albumin. Because many middle-sized substances may contribute to micro-inflammation we hypothesized that the use of MCO-Ci influences the inflammatory state in hemodialysis patients. Methods The randomized crossover trial in 48 patients compared MCO-Ci dialysis to High-flux dialysis of 4 weeks duration each plus 8 weeks extension phase. Primary endpoint was the gene expression of TNF-α and IL-6 in peripheral blood mononuclear cells (PBMCs), secondary endpoints were plasma levels of specified inflammatory mediators and cytokines. Results After four weeks of MCO-Ci the expression of TNF-α mRNA (Relative quantification (RQ) from 0.92 ± 0.34 to 0.75 ± 0.31, -18.5%, pkappa and lambda free light chains, urea and an increase for Lp-PLA2 (PLA2G7) compared to High-flux. Albumin levels dropped significantly after 4 weeks of MCO dialysis but increased after additional 8 weeks of MCO dialysis. Twelve weeks treatment with MCO-Ci was well tolerated regarding the number of (S)AEs. In the extension period levels of CRP, TNF-α-mRNA and IL-6 mRNA remained stable in High-flux as well as in MCO-Ci. Conclusions MCO-Ci dialyzers modulate inflammation in chronic HD patients to a greater extent compared to High-flux dialyzers. Transcription of pro-inflammatory cytokines in peripheral leukocytes is markedly reduced and removal of soluble mediators is enhanced with MCO dialysis. Serum albumin concentrations stabilize after an initial drop. These results encourage further trials with longer treatment periods and clinical endpoints. PMID:28085888

  13. Role of PGC-1α in acute and low-grade inflammation

    DEFF Research Database (Denmark)

    Olesen, Jesper

    of the anti-oxidant enzyme GPX1 and appeared to reduce oxidative stress in mouse skeletal muscle, resveratrol did not elicit any antiinflammatory effects neither in mice nor in human subjects. In contrast, resveratrol even impaired the exercise training-induced reduction in protein carbonylation and TNFα m...... training reduced skeletal muscle TNFα protein content and systemic IL-6 levels in mice and skeletal muscle TNFα mRNA content in aged human subjects. This importance of physical activity in reducing inflammation is supported by results from our inactivity study (7 days of bed-rest) in young men, showing...... increased inflammation as evidenced by enhanced skeletal muscle IL-6 mRNA and adipose tissue iNOS mRNA content. In conjunction, these results may indicate that skeletal muscle inflammation is inversely related to the level of physical activity. However, no clear association between the physical activity...

  14. Reduced Appendicular Lean Body Mass, Muscle Strength, and Size of Type II Muscle Fibers in Patients with Spondyloarthritis versus Healthy Controls: A Cross-Sectional Study

    Directory of Open Access Journals (Sweden)

    Kristine Røren Nordén

    2016-01-01

    Full Text Available Introduction. The purpose of this study was to investigate body composition, muscle function, and muscle morphology in patients with spondyloarthritis (SpA. Methods. Ten male SpA patients (mean ± SD age 39±4.1 years were compared with ten healthy controls matched for sex, age, body mass index, and self-reported level of physical exercise. Body composition was measured by dual energy X-ray absorptiometry. Musculus quadriceps femoris (QF strength was assessed by maximal isometric contractions prior to test of muscular endurance. Magnetic resonance imaging of QF was used to measure muscle size and calculate specific muscle strength. Percutaneous needle biopsy samples were taken from m. vastus lateralis. Results. SpA patients presented with significantly lower appendicular lean body mass (LBM (p=0.02, but there was no difference in bone mineral density, fat mass, or total LBM. Absolute QF strength was significantly lower in SpA patients (p=0.03 with a parallel trend for specific strength (p=0.08. Biopsy samples from the SpA patients revealed significantly smaller cross-sectional area (CSA of type II muscle fibers (p=0.04, but no difference in CSA type I fibers. Conclusions. Results indicate that the presence of SpA disease is associated with reduced appendicular LBM, muscle strength, and type II fiber CSA.

  15. Four weeks of Nordic hamstring exercise reduce muscle injury risk factors in young adults.

    Science.gov (United States)

    Breno de A R Alvares, João; Marques, Vanessa Bernardes; Vaz, Marco Aurélio; Baroni, Bruno Manfredini

    2017-04-26

    The Nordic hamstring exercise (NHE) is a field-based exercise designed for knee-flexor eccentric strengthening, aimed at muscle strains prevention. However, possible effects of NHE programmes on other hamstring injury risk factors remain unclear. The purpose of this study was to investigate the effects of a NHE training programme on multiple hamstring injury risk factors. Twenty physically active young adults were allocated into two equal sized groups: control group (CG) and training group (TG). The TG was engaged in a 4-week NHE programme, twice a week, 3 sets of 6-10 repetitions; while CG received no exercise intervention. The knee flexor and extensor strength was assessed through isokinetic dynamometry, the biceps femoris long head muscle architecture through ultrasound images, and the hamstring flexibility through sit-and-reach test. The results showed that CG subjects had no significant change in any outcome. TG presented higher percent changes than CG for hamstring isometric peak torque (9%; effect size=0.27), eccentric peak torque (13%; effect size=0.60), eccentric work (18%; effect size=0.86), and functional hamstring-to-quadriceps torque ratio (13%; effect size=0.80). The NHE programme led also to increased fascicle length (22%; effect size=2.77) and reduced pennation angle (-17%; effect size=1.27) in biceps femoris long head of the TG, without significant changes on muscle thickness. In conclusion, a short-term NHE training programme (4 weeks; 8 training sessions) counteracts multiple hamstring injury risk factors in physically active young adults.

  16. Increased muscle tension and reduced elasticity of affected muscles in recent-onset Graves' disease caused primarily by active muscle contraction

    NARCIS (Netherlands)

    H.J. Simonsz (Huib); G. Kommerell (Guntram)

    1989-01-01

    textabstractIn 3 patients with Graves' disease of recent onset, length-tension diagrams were made during surgery for squint under eyedrop anesthesia. The affected muscles were found to be very stiff when the other eye looked straight ahead. It was expected that these stiff muscles would be able to

  17. Increased muscle tension and reduced elasticity of affected muscles in recent-onset Graves' disease caused primarily by active muscle contraction

    NARCIS (Netherlands)

    H.J. Simonsz (Huib); G. Kommerell (Guntram)

    1989-01-01

    textabstractIn 3 patients with Graves' disease of recent onset, length-tension diagrams were made during surgery for squint under eyedrop anesthesia. The affected muscles were found to be very stiff when the other eye looked straight ahead. It was expected that these stiff muscles would be able to s

  18. Muscle power failure in mobility-limited adults: preserved single muscle fibre function despite reduced whole muscle size, quality and neuromuscular activiation

    Science.gov (United States)

    This study investigated the physiological and gender determinants of the age-related loss of muscle power in 31 healthy middle-aged adults (aged 40-55 years), 28 healthy older adults (70-85 years) and 34 mobility-limited older adults (70-85 years). We hypothesized that leg extensor muscle power woul...

  19. Siglec-7 restores β-cell function and survival and reduces inflammation in pancreatic islets from patients with diabetes

    Science.gov (United States)

    Dharmadhikari, Gitanjali; Stolz, Katharina; Hauke, Michael; Morgan, Noel G.; Varki, Ajit; de Koning, Eelco; Kelm, Sørge; Maedler, Kathrin

    2017-01-01

    Chronic inflammation plays a key role in both type 1 and type 2 diabetes. Cytokine and chemokine production within the islets in a diabetic milieu results in β-cell failure and diabetes progression. Identification of targets, which both prevent macrophage activation and infiltration into islets and restore β-cell functionality is essential for effective diabetes therapy. We report that certain Sialic-acid-binding immunoglobulin-like-lectins (siglecs) are expressed in human pancreatic islets in a cell-type specific manner. Siglec-7 was expressed on β-cells and down-regulated in type 1 and type 2 diabetes and in infiltrating activated immune cells. Over-expression of Siglec-7 in diabetic islets reduced cytokines, prevented β-cell dysfunction and apoptosis and reduced recruiting of migrating monocytes. Our data suggest that restoration of human Siglec-7 expression may be a novel therapeutic strategy targeted to both inhibition of immune activation and preservation of β-cell function and survival. PMID:28378743

  20. Upregulation of skeletal muscle inflammatory genes links inflammation with insulin resistance in women with the metabolic syndrome

    NARCIS (Netherlands)

    Poelkens, F.; Lammers, G.; Pardoel, E.M.; Tack, C.J.J.; Hopman, M.T.E.

    2013-01-01

    The metabolic syndrome, a combination of interrelated metabolic risk factors, is associated with insulin resistance and promotes the development of cardiovascular diseases and type 2 diabetes mellitus. There is a close link between inflammation and metabolic disease, but the responsible mechanisms r

  1. Reduced Neck Muscle Strength and Altered Muscle Mechanical Properties in Cervical Dystonia Following Botulinum Neurotoxin Injections: A Prospective Study

    Directory of Open Access Journals (Sweden)

    Sirpa Mustalampi

    2016-01-01

    Full Text Available Objective To evaluate changes in the strength and mechanical properties of neck muscles and disability in patients with cervical dystonia (CD during a 12-week period following botulinum neurotoxin (BoNT injections. Methods Eight patients with CD volunteered for this prospective clinical cohort study. Patients had received BoNT injections regularly in neck muscles at three-month intervals for several years. Maximal isometric neck strength was measured by a dynamometer, and the mechanical properties of the splenius capitis were evaluated using two myotonometers. Clinical assessment was performed using the Toronto Western Spasmodic Torticollis Rating Scale (TWSTRS before and at 2, 4, 8, and 12 weeks after the BoNT injections. Results Mean maximal isometric neck strength at two weeks after the BoNT injections decreased by 28% in extension, 25% in rotation of the affected side and 17% in flexion. At four weeks, muscle stiffness of the affected side decreased by 17% and tension decreased by 6%. At eight weeks, the muscle elasticity on the affected side increased by 12%. At two weeks after the BoNT injections, the TWSTRS-severity and TWSTRS-total scores decreased by 4.3 and 6.4, respectively. The strength, muscle mechanical properties and TWSTRS scores returned to baseline values at 12 weeks. Conclusions Although maximal neck strength and muscle tone decreased after BoNT injections, the disability improved. The changes observed after BoNT injections were temporary and returned to pre-injection levels within twelve weeks. Despite having a possible negative effect on function and decreasing neck strength, the BoNT injections improved the patients reported disability.

  2. Reduced Neck Muscle Strength and Altered Muscle Mechanical Properties in Cervical Dystonia Following Botulinum Neurotoxin Injections: A Prospective Study

    Science.gov (United States)

    Mustalampi, Sirpa; Ylinen, Jari; Korniloff, Katariina; Weir, Adam; Häkkinen, Arja

    2016-01-01

    Objective To evaluate changes in the strength and mechanical properties of neck muscles and disability in patients with cervical dystonia (CD) during a 12-week period following botulinum neurotoxin (BoNT) injections. Methods Eight patients with CD volunteered for this prospective clinical cohort study. Patients had received BoNT injections regularly in neck muscles at three-month intervals for several years. Maximal isometric neck strength was measured by a dynamometer, and the mechanical properties of the splenius capitis were evaluated using two myotonometers. Clinical assessment was performed using the Toronto Western Spasmodic Torticollis Rating Scale (TWSTRS) before and at 2, 4, 8, and 12 weeks after the BoNT injections. Results Mean maximal isometric neck strength at two weeks after the BoNT injections decreased by 28% in extension, 25% in rotation of the affected side and 17% in flexion. At four weeks, muscle stiffness of the affected side decreased by 17% and tension decreased by 6%. At eight weeks, the muscle elasticity on the affected side increased by 12%. At two weeks after the BoNT injections, the TWSTRS-severity and TWSTRS-total scores decreased by 4.3 and 6.4, respectively. The strength, muscle mechanical properties and TWSTRS scores returned to baseline values at 12 weeks. Conclusions Although maximal neck strength and muscle tone decreased after BoNT injections, the disability improved. The changes observed after BoNT injections were temporary and returned to pre-injection levels within twelve weeks. Despite having a possible negative effect on function and decreasing neck strength, the BoNT injections improved the patients reported disability. PMID:26828215

  3. Bed rest reduces metabolic protein content and abolishes exercise-induced mRNA responses in human skeletal muscle

    DEFF Research Database (Denmark)

    Jørgensen, Stine Ringholm; Biensø, Rasmus S; Kiilerich, Kristian

    2011-01-01

    Background: The aim was to test the hypothesis that one week of bed rest will reduce mitochondrial number and expression and activity of oxidative proteins in human skeletal muscle, but that exercise-induced intracellular signaling as well as mRNA and microRNA (miR) responses are maintained after......-legged knee extensor exercise performed before and after bed rest. Results: Maximal oxygen uptake decreased 5% and exercise endurance decreased non-significantly 25% by bed rest. Bed rest reduced skeletal muscle mitochondrial DNA/nuclear DNA content 15%, hexokinase II and sirtuin 1 protein content ~45%, 3...... bed rest. Research Design and Methods: Twelve young, healthy, male subjects completed 7 days of bed rest with vastus lateralis muscle biopsies taken before and after bed rest. In addition, muscle biopsies were obtained from 6 of the subjects prior to, immediately after and 3h after 45 min one...

  4. Polar bears experience skeletal muscle atrophy in response to food deprivation and reduced activity in winter and summer

    Science.gov (United States)

    Whiteman, John P.; Harlow, Henry J.; Durner, George M.; Regehr, Eric V.; Rourke, Bryan C.; Robles, Manuel; Amstrup, Steven C.; Ben-David, Merav

    2017-01-01

    When reducing activity and using stored energy during seasonal food shortages, animals risk degradation of skeletal muscles, although some species avoid or minimize the resulting atrophy while experiencing these conditions during hibernation. Polar bears may be food deprived and relatively inactive during winter (when pregnant females hibernate and hunting success declines for other demographic groups) as well as summer (when sea ice retreats from key foraging habitats). We investigated muscle atrophy in samples of biceps femoris collected from free-ranging polar bears in the Southern Beaufort Sea (SBS) throughout their annual cycle. Atrophy was most pronounced in April–May as a result of food deprivation during the previous winter, with muscles exhibiting reduced protein concentration, increased water content, and lower creatine kinase mRNA. These animals increased feeding and activity in spring (when seal prey becomes more available), initiating a period of muscle recovery. During the following ice melt of late summer, ~30% of SBS bears abandon retreating sea ice for land; in August, these ‘shore’ bears exhibited no muscle atrophy, indicating that they had fully recovered from winter food deprivation. These individuals subsequently scavenged whale carcasses deposited by humans and by October, had retained good muscle condition. In contrast, ~70% of SBS bears follow the ice north in late summer, into deep water with less prey. These ‘ice’ bears fast; by October, they exhibited muscle protein loss and rapid changes in myosin heavy-chain isoforms in response to reduced activity. These findings indicate that, unlike other bears during winter hibernation, polar bears without food in summer cannot mitigate atrophy. Consequently, prolonged summer fasting resulting from climate change-induced ice loss creates a risk of greater muscle atrophy and reduced abilities to travel and hunt.

  5. FTY720 ameliorates acute ischemic stroke in mice by reducing thrombo-inflammation but not by direct neuroprotection.

    Science.gov (United States)

    Kraft, Peter; Göb, Eva; Schuhmann, Michael K; Göbel, Kerstin; Deppermann, Carsten; Thielmann, Ina; Herrmann, Alexander M; Lorenz, Kristina; Brede, Marc; Stoll, Guido; Meuth, Sven G; Nieswandt, Bernhard; Pfeilschifter, Waltraud; Kleinschnitz, Christoph

    2013-11-01

    Lymphocytes are important players in the pathophysiology of acute ischemic stroke. The interaction of lymphocytes with endothelial cells and platelets, termed thrombo-inflammation, fosters microvascular dysfunction and secondary infarct growth. FTY720, a sphingosine-1-phosphate receptor modulator, blocks the egress of lymphocytes from lymphoid organs and has been shown to reduce ischemic neurodegeneration; however, the underlying mechanisms are unclear. We investigated the mode of FTY720 action in models of cerebral ischemia. Transient middle cerebral artery occlusion (tMCAO) was induced in wild-type and lymphocyte-deficient Rag1(-/-) mice treated with FTY720 (1 mg/kg) or vehicle immediately before reperfusion. Stroke outcome was assessed 24 hours later. Immune cells in the blood and brain were counted by flow cytometry. The integrity of the blood-brain barrier was analyzed using Evans Blue dye. Thrombus formation was determined by immunohistochemistry and Western blot, and was correlated with cerebral perfusion. FTY720 significantly reduced stroke size and improved functional outcome in wild-type mice on day 1 and day 3 after transient middle cerebral artery occlusion. This protective effect was lost in lymphocyte-deficient Rag1(-/-) mice and in cultured neurons subjected to hypoxia. Less lymphocytes were present in the cerebral vasculature of FTY720-treated wild-type mice, which in turn reduced thrombosis and increased cerebral perfusion. In contrast, FTY720 was unable to prevent blood-brain barrier breakdown and transendothelial immune cell trafficking after transient middle cerebral artery occlusion. Induction of lymphocytopenia and concomitant reduction of microvascular thrombosis are key modes of FTY720 action in stroke. In contrast, our findings in Rag1(-/-) mice and cultured neurons argue against direct neuroprotective effects of FTY720.

  6. Side-to-side nerve bridges reduce muscle atrophy after peripheral nerve injury in a rodent model.

    Science.gov (United States)

    Shea, Jill E; Garlick, Jared W; Salama, Mohamed E; Mendenhall, Shaun D; Moran, Linh A; Agarwal, Jayant P

    2014-03-01

    Peripheral nerve injury can result in muscle atrophy and long-term disability. We hypothesize that creating a side-to-side bridge to link an injured nerve with a healthy nerve will reduce muscle atrophy and improve muscle function. Sprague-Dawley rats were divided into four groups (n = 7 per group). Group 1: transection only--a 10-mm gap was created in the proximal tibial nerve; group 2: transected plus repaired--the transected tibial nerve was repaired; group 3: transected plus repaired plus nerve bridge--transected nerve repaired with a distal nerve bridge between the tibial and peroneal nerves via epineurial windows; and group 4: transected plus nerve bridge--transected tibial nerve left unrepaired and distal bridge added. Gait was assessed every 2 wk. At 90 d the following measures were determined: gastrocnemius mass, muscle and nerve nuclear density, and axonal infiltration into the nerve bridge. Groups 3 and 4 had greater improvements in walking track recovery than groups 1 and 2. Group 3's gastrocnemius muscles exhibited the least amount of atrophy. Groups 1, 2, and 4 exhibited greater histologic appearance of muscle breakdown compared with group 3 and control muscle. Finally, most bridges in groups 3 and 4 had neuronal sprouting via the epineurial windows. Our study demonstrated reduced muscle atrophy with a side-to-side nerve bridge in the setting of peripheral nerve injury. These results support the application of novel side-to-side bridges in combination with traditional end-to-end neurorrhaphy to preserve muscle viability after peripheral nerve injuries. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Decreased β-Cell Function Is Associated with Reduced Skeletal Muscle Mass in Japanese Subjects without Diabetes

    Science.gov (United States)

    Sakai, Satoshi; Tanimoto, Keiji; Imbe, Ayumi; Inaba, Yuiko; Shishikura, Kanako; Tanimoto, Yoshimi; Ushiroyama, Takahisa; Terasaki, Jungo; Hanafusa, Toshiaki

    2016-01-01

    Background Decreased insulin secretion has a great impact on the incidence of type 2 diabetes in Japanese subjects. It is not clear whether β-cell function is related to muscle mass in subjects without diabetes. We investigated the relationship between β-cell function and skeletal muscle mass in Japanese subjects without diabetes. Methods The study included 1098 subjects (538 men and 560 women) aged 40 to 79 years, without diabetes (fasting glucose lower than 126 mg/dL and glycosylated hemoglobin lower than 6.5%), who consulted Osaka Medical College Health Science Clinic for a medical examination. Appendicular muscle mass was measured by bioelectrical impedance analysis. Appendicular muscle mass index was calculated as appendicular muscle mass divided by height squared (kg/m2). The homeostatic model assessment of β-cell function was used to assess β-cell function. The homeostatic model assessment of insulin resistance was used as a measure of insulin resistance. The association between appendicular muscle mass index and clinical parameters of β-cell function and insulin resistance was examined. Results Log-transformed homeostatic model assessment of β-cell function and Log-transformed homeostatic model assessment of insulin resistance showed a normal distribution. In both men and women, there was a significant positive correlation between appendicular muscle mass index and clinical parameters of β-cell function and insulin resistance. Tertile analysis, following stratification according to appendicular muscle mass index, found that low appendicular muscle mass index was significantly associated with the Log homeostatic model assessment of β-cell function and Log-transformed homeostatic model assessment of insulin resistance. Conclusion This study shows that decreased β cell function is associated with reduced skeletal muscle mass in Japanese subjects without diabetes. PMID:27612202

  8. Evaluation of Rhodiola rosea supplementation on skeletal muscle damage and inflammation in runners following a competitive marathon.

    Science.gov (United States)

    Shanely, R Andrew; Nieman, David C; Zwetsloot, Kevin A; Knab, Amy M; Imagita, Hidetaka; Luo, Beibei; Davis, Barbara; Zubeldia, José M

    2014-07-01

    Adaptogens modulate intracellular signaling and increase expression of heat shock protein 72 (HSP72). Rhodiola rosea (RR) is a medicinal plant with demonstrated adaptogenic properties. The purpose of this study was to measure the influence of RR supplementation on exercise-induced muscle damage, delayed onset of muscle soreness (DOMS), plasma cytokines, and extracellular HSP72 (eHSP72) in experienced runners completing a marathon. Experienced marathon runners were randomized to RR (n=24, 6 female, 18 male) or placebo (n=24, 7 female, 17 male) groups and under double-blinded conditions ingested 600mg/day RR extract or placebo for 30days prior to, the day of, and seven days post-marathon. Blood samples were collected, and vertical jump and DOMS assessed the day before, 15min post- and 1.5h post-marathon. DOMS was also assessed for seven days post-marathon. Marathon race performance did not differ between RR and placebo groups (3.87±0.12h and 3.93±0.12h, respectively, p=0.722). Vertical jump decreased post-marathon (time effect, p0.300). In conclusion, RR supplementation (600mg/day) for 30days before running a marathon did not attenuate the post-marathon decrease in muscle function, or increases in muscle damage, DOMS, eHSP72, or plasma cytokines in experienced runners. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Dietary Geraniol by Oral or Enema Administration Strongly Reduces Dysbiosis and Systemic Inflammation in Dextran Sulfate Sodium-Treated Mice.

    Science.gov (United States)

    De Fazio, Luigia; Spisni, Enzo; Cavazza, Elena; Strillacci, Antonio; Candela, Marco; Centanni, Manuela; Ricci, Chiara; Rizzello, Fernando; Campieri, Massimo; Valerii, Maria C

    2016-01-01

    (Trans)-3,7-Dimethyl-2,6-octadien-1-ol, commonly called geraniol (Ge-OH), is an acyclic monoterpene alcohol with well-known anti-inflammatory, antitumoral, and antimicrobial properties. It is widely used as a preservative in the food industry and as an antimicrobial agent in animal farming. The present study investigated the role of Ge-OH as an anti-inflammatory and anti-dysbiotic agent in the dextran sulfate sodium (DSS)-induced colitis mouse model. Ge-OH was orally administered to C57BL/6 mice at daily doses of 30 and 120 mg kg((-1)) body weight, starting 6 days before DSS treatment and ending the day after DSS removal. Furthermore, Ge-OH 120 mg kg((-1)) dose body weight was administered via enema during the acute phase of colitis to facilitate its on-site action. The results show that orally or enema-administered Ge-OH is a powerful antimicrobial agent able to prevent colitis-associated dysbiosis and decrease the inflammatory systemic profile of colitic mice. As a whole, Ge-OH strongly improved the clinical signs of colitis and significantly reduced cyclooxygenase-2 (COX-2) expression in colonocytes and in the gut wall. Ge-OH could be a powerful drug for the treatment of intestinal inflammation and dysbiosis.

  10. Dietary geraniol by oral or enema administration strongly reduces dysbiosis and systemic inflammation in dextran sulphate sodium-treated mice.

    Directory of Open Access Journals (Sweden)

    Luigia eDe Fazio

    2016-03-01

    Full Text Available (Trans-3,7-Dimethyl-2,6-octadien-1-ol, commonly called geraniol (Ge-OH, is an acyclic monoterpene alcohol with well-known anti-inflammatory, antitumoral and antimicrobial properties. It is widely used as a preservative in the food industry and as an antimicrobial agent in animal farming. The present study investigated the role of Ge-OH as an anti-inflammatory and anti-dysbiotic agent in the dextran sulphate sodium (DSS-induced colitis mouse model. Ge-OH was orally administered to C57BL/6 mice at daily doses of 30 and 120mg kg(-1 body weight, starting six days before DSS treatment and ending the day after DSS removal. Furthermore, Ge-OH 120 mg kg(-1 dose body weight was administered via enema during the acute phase of colitis to facilitate its on-site action. The results show that orally or enema-administered Ge-OH is a powerful antimicrobial agent able to prevent colitis-associated dysbiosis and decrease the inflammatory systemic profile of colitic mice. As a whole, Ge-OH strongly improved the clinical signs of colitis and significantly reduced cyclooxygenase-2 (COX-2 expression in colonocytes and in the gut wall. Ge-OH could be a powerful drug for the treatment of intestinal inflammation and dysbiosis.

  11. The masticatory system under varying functional load. Part 1: Structural adaptation of rabbit jaw muscles to reduced masticatory load.

    Science.gov (United States)

    Vreeke, Marloes; Langenbach, Geerling E J; Korfage, Joannes A M; Zentner, Andrej; Grünheid, Thorsten

    2011-08-01

    Skeletal muscle fibres can change their myosin heavy-chain (MyHC) isoform and cross-sectional area, which determine their contraction velocity and maximum force generation, respectively, to adapt to varying functional loads. In general, reduced muscle activity induces transition towards faster fibres and a decrease in fibre cross-sectional area. In order to investigate the effect of a reduction in masticatory load on three functionally different jaw muscles, the MyHC composition and the corresponding cross-sectional area of fibres were determined in the superficial masseter, superficial temporalis, and digastric muscles of male juvenile New Zealand White rabbits that had been raised on a soft diet (n=8) from 8 to 20 weeks of age and in those of normal diet controls (n=8). Differences between groups were tested for statistical significance using a Mann-Whitney rank sum test. The proportion and cross-sectional area of fibres co-expressing MyHC-I and MyHC-cardiac alpha were significantly smaller in the masseter muscles of the animals that had been fed soft food than in those of the controls. In contrast, the proportions and cross-sectional areas of the various fibre types in the temporalis and digastric muscles did not differ significantly between the groups. The results suggest that reducing the masticatory load during development affects the contraction velocity and maximum force generation of the jaw-closing muscles that are primarily responsible for force generation during chewing. These muscles adapt structurally to the reduced functional load with changes in the MyHC composition and cross-sectional area mainly within their slow fibre compartment.

  12. Reduction of obesity-associated white adipose tissue inflammation by rosiglitazone is associated with reduced non-alcoholic fatty liver disease in LDLr-deficient mice

    Science.gov (United States)

    Mulder, Petra; Morrison, Martine C.; Verschuren, Lars; Liang, Wen; van Bockel, J. Hajo; Kooistra, Teake; Wielinga, Peter Y.; Kleemann, Robert

    2016-01-01

    Obesity is associated with chronic low-grade inflammation that drives the development of metabolic diseases, including non-alcoholic fatty liver disease (NAFLD). We recently showed that white adipose tissue (WAT) constitutes an important source of inflammatory factors. Hence, interventions that attenuate WAT inflammation may reduce NAFLD development. Male LDLr−/− mice were fed a high-fat diet (HFD) for 9 weeks followed by 7 weeks of HFD with or without rosiglitazone. Effects on WAT inflammation and NAFLD development were analyzed using biochemical and (immuno)histochemical techniques, combined with gene expression analyses. Nine weeks of HFD feeding induced obesity and WAT inflammation, which progressed gradually until the end of the study. Rosiglitazone fully blocked progression of WAT inflammation and activated PPARγ significantly in WAT. Rosiglitazone intervention did not activate PPARγ in liver, but improved liver histology and counteracted the expression of genes associated with severe NAFLD in humans. Rosiglitazone reduced expression of pro-inflammatory factors in WAT (TNF-α, leptin) and increased expression of adiponectin, which was reflected in plasma. Furthermore, rosiglitazone lowered circulating levels of pro-inflammatory saturated fatty acids. Together, these observations provide a rationale for the observed indirect hepatoprotective effects and suggest that WAT represents a promising therapeutic target for the treatment of obesity-associated NAFLD. PMID:27545964

  13. Temporalis muscle hypertrophy and reduced skull eccentricity in Duchenne muscular dystrophy.

    Science.gov (United States)

    Straathof, C S M; Doorenweerd, N; Wokke, B H A; Dumas, E M; van den Bergen, J C; van Buchem, M A; Hendriksen, J G M; Verschuuren, J J G M; Kan, H E

    2014-10-01

    Muscle hypertrophy and muscle weakness are well known in Duchenne muscular dystrophy. Decreased muscle force can have secondary effects on skeletal growth and development such as facial and dental morphology changes. In this study, we quantified temporal muscle thickness, circumference, and eccentricity of the skull and the head on T1-weighted magnetic resonance imaging (MRI) scans of the head of 15 Duchenne muscular dystrophy patients and 15 controls. Average temporal muscle thickness was significantly increased in patients (12.9 ± 5.2 mm) compared to controls (6.8 ± 1.4 mm) (P muscle thickness and skull eccentricity were significantly negatively correlated in patients, and positively in controls. Hypertrophy of the temporal muscles and changes in skull eccentricity appear to occur early in the course of Duchenne muscular dystrophy. Further studies in younger patients are needed to confirm a causal relationship. © The Author(s) 2014.

  14. Blood flow after contraction and cuff occlusion is reduced in subjects with muscle soreness after eccentric exercise.

    Science.gov (United States)

    Souza-Silva, E; Christensen, S W; Hirata, R P; Larsen, R G; Graven-Nielsen, T

    2017-04-28

    Delayed onset muscle soreness (DOMS) occurs within 1-2 days after eccentric exercise, but the mechanism mediating hypersensitivity is unclear. This study hypothesized that eccentric exercise reduces the blood flow response following muscle contractions and cuff occlusion, which may result in accumulated algesic substances being a part of the sensitization in DOMS. Twelve healthy subjects (five women) performed dorsiflexion exercise (five sets of 10 repeated eccentric contractions) in one leg, while the contralateral leg was the control. The maximal voluntary contraction (MVC) of the tibialis anterior muscle was recorded. Blood flow was assessed by ultrasound Doppler on the anterior tibialis artery (ATA) and within the anterior tibialis muscle tissue before and immediately after 1-second MVC, 5-seconds MVC, and 5-minutes thigh cuff occlusion. Pressure pain thresholds (PPTs) were recorded on the tibialis anterior muscle. All measures were done bilaterally at day 0 (pre-exercise), day 2, and day 6 (post-exercise). Subjects scored the muscle soreness on a Likert scale for 6 days. Eccentric exercise increased Likert scores at day 1 and day 2 compared with day 0 (Pexercise (day 0), reduced PPT (~25%, Peccentric contractions decreased vessel diameter, impaired the blood flow response, and promoted hyperalgesia. Thus, the results suggest that the blood flow reduction may be involved in the increased pain response after eccentric exercise. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Denervation and high-fat diet reduce insulin signaling in T-tubules in skeletal muscle of living mice

    DEFF Research Database (Denmark)

    Lauritzen, Hans P M; Ploug, Thorkil; Ai, Hua

    2008-01-01

    OBJECTIVE: Insulin stimulates muscle glucose transport by translocation of GLUT4 to sarcolemma and T-tubules. Despite muscle glucose uptake playing a major role in insulin resistance and type 2 diabetes, the temporal and spatial changes in insulin signaling and GLUT4 translocation during...... these conditions are not well described. RESEARCH DESIGN AND METHODS: We used time-lapse confocal imaging of green fluorescent protein (GFP) ADP-ribosylation factor nucleotide-binding site opener (ARNO) (evaluation of phosphatidylinositide 3-kinase activation) and GLUT4-GFP-transfected quadriceps muscle in living...... receptors. RESULTS: Denervation and high-fat diet reduced insulin-mediated glucose transport. In denervated muscle, insulin-stimulated phosphatidylinositol 3,4,5 P(3) (PIP3) production was abolished in T-tubules, while PIP3 production at sarcolemma was increased 2.6-fold. Correspondingly, GLUT4-GFP...

  16. Genetic Deletion and Pharmacological Inhibition of PI3Kγ Reduces Neutrophilic Airway Inflammation and Lung Damage in Mice with Cystic Fibrosis-Like Lung Disease

    Directory of Open Access Journals (Sweden)

    Maria Galluzzo

    2015-01-01

    Full Text Available Purpose. Neutrophil-dominated airway inflammation is a key feature of progressive lung damage in cystic fibrosis (CF. Thus, reducing airway inflammation is a major goal to prevent lung damage in CF. However, current anti-inflammatory drugs have shown several limits. PI3Kγ plays a pivotal role in leukocyte recruitment and activation; in the present study we determined the effects of genetic deletion and pharmacologic inhibition of PI3Kγ on airway inflammation and structural lung damage in a mouse model of CF lung disease. Methods. βENaC overexpressing mice (βENaC-Tg were backcrossed with PI3Kγ-deficient (PI3KγKO mice. Tissue damage was assessed by histology and morphometry and inflammatory cell number was evaluated in bronchoalveolar lavage fluid (BALF. Furthermore, we assessed the effect of a specific PI3Kγ inhibitor (AS-605240 on inflammatory cell number in BALF. Results. Genetic deletion of PI3Kγ decreased neutrophil numbers in BALF of PI3KγKO/βENaC-Tg mice, and this was associated with reduced emphysematous changes. Treatment with the PI3Kγ inhibitor AS-605240 decreased the number of neutrophils in BALF of βENaC-Tg mice, reproducing the effect observed with genetic deletion of the enzyme. Conclusions. These results demonstrate the biological efficacy of both genetic deletion and pharmacological inhibition of PI3Kγ in reducing chronic neutrophilic inflammation in CF-like lung disease in vivo.

  17. Increased intramuscular fat induced by reduced dietary protein in finishing pigs: effects on the longissimus lumborum muscle proteome.

    Science.gov (United States)

    Pires, V M R; Madeira, M S; Dowle, A A; Thomas, J; Almeida, A M; Prates, J A M

    2016-07-19

    Due to genetic selection towards reduced subcutaneous fat, the amount of intramuscular fat (IMF) in commercial pigs has been reduced (increase IMF in pigs. We have previously shown that increased IMF promoted by RPD is mediated by lysine restriction. However, the molecular mechanisms involved remain unclear. Here we performed a proteomics study to quantify differentially regulated proteins in the longissimus lumborum muscle of pigs (n = 4) fed a normal protein diet (NPD) (16.0% CP) or a reduced protein diet (RPD) (13.0% CP). Both isobaric tags for relative and absolute quantification (iTRAQ) and label-free methods were used. Glycolysis, Krebs cycle, mitochondrion, contractile proteins, respiratory chain, and calcium signalling were significantly enriched in muscle samples. Thirty five proteins shown to be differentially expressed and were classified using gene ontology (GO) terms and functional annotation clustering, highlighting main relevant biological networks and proteins associated with muscle physiology and meat quality. Members of GO categories "muscle contraction" and "structural constituents of cytoskeleton", were the most significantly up-regulated proteins in muscle from pigs fed RPD. Conversely, in animals fed NPD most up-regulated proteins were enzymes involved in the regulation of energy metabolism. Our data revealed that RPD affects the amounts of proteins related to fibre type and structure, and energy metabolism. It is suggested that the increased IMF promoted by dietary protein reduction in growing-finishing pigs is mediated by shifting the metabolic properties of fibres from glycolytic to oxidative.

  18. Differences in inflammation and acute phase response but similar genotoxicity in mice following pulmonary exposure to graphene oxide and reduced graphene oxide

    DEFF Research Database (Denmark)

    Bengtson, Stefan; Knudsen, KB; Kyjovska, ZO

    2017-01-01

    the lowest dose was evaluated. GO induced a strong acute inflammatory response together with a pulmonary (Serum-Amyloid A, Saa3) and hepatic (Saa1) acute phase response. rGO induced less acute, but a constant and prolonged inflammation up to day 90. Lung histopathology showed particle agglomerates at day 90...... without signs of fibrosis. In addition, DNA damage in BAL cells was observed across time points and doses for both GO and rGO. In conclusion, pulmonary exposure to GO and rGO induced inflammation, acute phase response and genotoxicity but no fibrosis.......We investigated toxicity of 2-3 layered >1 μm sized graphene oxide (GO) and reduced graphene oxide (rGO) in mice following single intratracheal exposure with respect to pulmonary inflammation, acute phase response (biomarker for risk of cardiovascular disease) and genotoxicity. In addition, we...

  19. Nopal feeding reduces adiposity, intestinal inflammation and shifts the cecal microbiota and metabolism in high-fat fed rats.

    Science.gov (United States)

    Moran-Ramos, Sofia; He, Xuan; Chin, Elizabeth L; Tovar, Armando R; Torres, Nimbe; Slupsky, Carolyn M; Raybould, Helen E

    2017-01-01

    Nopal is a cactus plant widely consumed in Mexico that has been used in traditional medicine to aid in the treatment of type-2 diabetes. We previously showed that chronic consumption of dehydrated nopal ameliorated hepatic steatosis in obese (fa/fa) rats; however, description of the effects on other tissues is sparse. The aim of the present study was to investigate the effects of nopal cladode consumption on intestinal physiology, microbial community structure, adipose tissue, and serum biochemistry in diet-induced obese rats. Rats were fed either a normal fat (NF) diet or a HF diet containing 4% of dietary fiber from either nopal or cellulose for 6 weeks. Consumption of nopal counteracted HF-induced adiposity and adipocyte hypertrophy, and induced profound changes in intestinal physiology. Nopal consumption reduced biomarkers of intestinal inflammation (mRNA expression of IL-6) and oxidative stress (ROS), modfied gut microbiota composition, increasing microbial diversity and cecal fermentation (SCFA), and altered the serum metabolome. Interestingly, metabolomic analysis of dehydrated nopal revealed a high choline content, which appeared to generate high levels of serum betaine, that correlated negatively with hepatic triglyceride (TAG) levels. A parallel decrease in some of the taxa associated with the production of trimethylamine, suggest an increase in choline absorption and bioavailability with transformation to betaine. The latter may partially explain the previously observed effect of nopal on the development of hepatic steatosis. In conclusion, this study provides new evidence on the effects of nopal consumption on normal and HF-diet induced changes in the intestine, the liver and systemic metabolism.

  20. Nopal feeding reduces adiposity, intestinal inflammation and shifts the cecal microbiota and metabolism in high-fat fed rats

    Science.gov (United States)

    Moran-Ramos, Sofia; He, Xuan; Chin, Elizabeth L.; Tovar, Armando R.; Torres, Nimbe; Slupsky, Carolyn M.; Raybould, Helen E.

    2017-01-01

    Nopal is a cactus plant widely consumed in Mexico that has been used in traditional medicine to aid in the treatment of type-2 diabetes. We previously showed that chronic consumption of dehydrated nopal ameliorated hepatic steatosis in obese (fa/fa) rats; however, description of the effects on other tissues is sparse. The aim of the present study was to investigate the effects of nopal cladode consumption on intestinal physiology, microbial community structure, adipose tissue, and serum biochemistry in diet-induced obese rats. Rats were fed either a normal fat (NF) diet or a HF diet containing 4% of dietary fiber from either nopal or cellulose for 6 weeks. Consumption of nopal counteracted HF-induced adiposity and adipocyte hypertrophy, and induced profound changes in intestinal physiology. Nopal consumption reduced biomarkers of intestinal inflammation (mRNA expression of IL-6) and oxidative stress (ROS), modfied gut microbiota composition, increasing microbial diversity and cecal fermentation (SCFA), and altered the serum metabolome. Interestingly, metabolomic analysis of dehydrated nopal revealed a high choline content, which appeared to generate high levels of serum betaine, that correlated negatively with hepatic triglyceride (TAG) levels. A parallel decrease in some of the taxa associated with the production of trimethylamine, suggest an increase in choline absorption and bioavailability with transformation to betaine. The latter may partially explain the previously observed effect of nopal on the development of hepatic steatosis. In conclusion, this study provides new evidence on the effects of nopal consumption on normal and HF-diet induced changes in the intestine, the liver and systemic metabolism. PMID:28196086

  1. Early regulation of viral infection reduces inflammation and rescues mx-positive mice from lethal avian influenza infection.

    Science.gov (United States)

    Song, Min-Suk; Cho, Young-Hun; Park, Su-Jin; Pascua, Philippe Noriel Q; Baek, Yun Hee; Kwon, Hyeok-Il; Lee, Ok-Jun; Kong, Byung-Whi; Kim, Hyunggee; Shin, Eui-Cheol; Kim, Chul-Joong; Choi, Young Ki

    2013-04-01

    Differing sensitivity of influenza A viruses to antiviral effects of the Myxovirus resistance (Mx) protein implies varying global gene expression profiles in the host. The role of Mx protein during lethal avian influenza (AI) virus infection was examined using Mx1-deficient C57BL/6 (B6-Mx1(-/-)) and congenic Mx1-expressing (B6-Mx1(+/+)) mice infected with a virulent, mouse-adapted avian H5N2 Ab/Korea/ma81/07 (Av/ma81) virus. After infection, B6-Mx1(+/+) mice were completely protected from lethal AI-induced mortality, and exhibited attenuated clinical disease and reduced viral titers and pathology in the lungs, compared with B6-Mx1(-/-) mice. Transcriptional profiling of lung tissues revealed that most of the genes up-regulated after infection are involved in activation of the immune response and host defense. Notably, more abundant and sustained expression of cytokine/chemokine genes was observed up to 3 dpi in B6-Mx1(-/-) mice, and this was associated with excessive induction of cytokines and chemokines. Consequently, massive infiltration of macrophages/monocytes and granulocytes into lung resulted in severe viral pneumonia and potentially contributed to decreased survival of B6-Mx1(-/-) mice. Taken together, our data show that dysregulated gene transcriptional activity corresponded to persistent induction of cytokine/chemokines and recruitment of cytokine-producing cells that promote inflammation in B6-Mx1(-/-) mouse lungs. Thus, we provide additional evidence of the interplay of genetic, molecular, and cellular correlates governed by the Mx1 protein that critically determine disease outcome during lethal AI virus infection.

  2. Task failure during exercise to exhaustion in normoxia and hypoxia is due to reduced muscle activation caused by central mechanisms while muscle metaboreflex does not limit performance

    Directory of Open Access Journals (Sweden)

    Rafael eTorres-Peralta

    2016-01-01

    Full Text Available To determine whether task failure during incremental exercise to exhaustion (IE is principally due to reduced neural drive and increased metaboreflex activation eleven men (22±2 years performed a 10s control isokinetic sprint (IS; 80 rpm after a short warm-up. This was immediately followed by an IE in normoxia (Nx, PIO2:143 mmHg and hypoxia (Hyp, PIO2:73 mmHg in random order, separated by a 120 min resting period. At exhaustion, the circulation of both legs was occluded instantaneously (300 mmHg during 10 or 60s to impede recovery and increase metaboreflex activation. This was immediately followed by an IS with open circulation. Electromyographic recordings were obtained from the vastus medialis and lateralis. Muscle biopsies and blood gases were obtained in separate experiments. During the last 10s of the IE, pulmonary ventilation, VO2, power output and muscle activation were lower in hypoxia than in normoxia, while pedaling rate was similar. Compared to the control sprint, performance (IS-Wpeak was reduced to a greater extent after the IE-Nx (11% lower P<0.05 than IE-Hyp. The root mean square (EMGRMS was reduced by 38 and 27% during IS performed after IE-Nx and IE-Hyp, respectively (Nx vs. Hyp: P<0.05. Post-ischemia IS-EMGRMS values were higher than during the last 10s of IE. Sprint exercise mean (IS-MPF and median (IS-MdPF power frequencies, and burst duration, were more reduced after IE-Nx than IE-Hyp (P<0.05. Despite increased muscle lactate accumulation, acidification, and metaboreflex activation from 10 to 60s of ischemia, IS-Wmean (+23% and burst duration (+10% increased, while IS-EMGRMS decreased (-24%, P<0.05, with IS-MPF and IS-MdPF remaining unchanged. In conclusion, close to task failure, muscle activation is lower in hypoxia than in normoxia. Task failure is predominantly caused by central mechanisms, which recover to great extent within one minute even when the legs remain ischemic. There is dissociation between the recovery of

  3. Examination of the relationship between symptoms of prostatitis and histological inflammation: baseline data from the REDUCE chemoprevention trial.

    Science.gov (United States)

    Nickel, J Curtis; Roehrborn, Claus G; O'leary, Michael P; Bostwick, David G; Somerville, Matthew C; Rittmaster, Roger S

    2007-09-01

    Symptoms of abacterial chronic prostatitis/chronic pelvic pain syndrome are considered to be associated with prostate inflammation. The ongoing Reduction by Dutasteride of Prostate Cancer Events trial is a 4-year, phase III, placebo controlled study to determine whether 0.5 mg dutasteride daily decreases the risk of biopsy detectable prostate cancer. All men underwent biopsy before study entry, allowing review of the relationship between histological prostate inflammation and prostatitis symptoms. Eligible men were 50 to 75 years old with serum prostate specific antigen 2.5 ng/ml or greater and 10 ng/ml or less (ages 50 to 60 years), or 3.0 ng/ml or greater and 10 ng/ml or less (older than 60 years), and an International Prostate Symptom Score of less than 25 (or less than 20 if already on alpha-blocker therapy). Acute prostatitis was an exclusion criterion. The National Institutes of Health Chronic Prostatitis Symptom Index was used to assess prostatitis-like symptoms. Spearman rank correlations were used to assess the relationship between acute and chronic inflammation, and Chronic Prostatitis Symptom Index scores for the pain, urinary symptoms and quality of life domains as well as average pain, total score and prostatitis-like symptoms. Data were available on 5,597 patients. The distribution of inflammation status was similar for those with and without chronic prostatitis-like symptoms. Significant correlations were found between average chronic inflammation, and total Chronic Prostatitis Symptom Index score and subscores for urinary symptoms and quality of life but the magnitude of these correlations was small. A lack of clinically meaningful association was found between prostatitis-like pain symptoms and histological inflammation in the Reduction by Dutasteride of Prostate Cancer Events population, suggesting that the view that symptoms of chronic prostatitis/chronic pelvic pain syndrome and prostate inflammation are associated needs further scrutiny.

  4. Exercise, but not quercetin, ameliorates inflammation, mitochondrial biogenesis, and lipid metabolism in skeletal muscle after strenuous exercise by high-fat diet mice.

    Science.gov (United States)

    Kwon, Soon Mi; Park, Hee Geun; Jun, Jong Kui; Lee, Wang Lok

    2014-03-01

    The purpose of this study was to investigate whether moderate exercise and quercetin intake with a low fat diet contribute to inflammatory cytokine production, mitochondrial biogenesis, and lipid metabolism in skeletal muscle after strenuous exercise by high-fat diet mice. Male C57BL/6 mice were randomly divided into four groups: (1) High-fat for 12 weeks and low-fat diet control (C; n = 6); (2) high-fat diet for 12 weeks and low-fat diet with quercetin (Q; n = 4); (3) high-fat diet for 12 weeks and low-fat diet with exercise (E; n = 4); or (4) high-fat diet for 12 weeks and low-fat diet with exercise and quercetin (EQ; n = 5). Quercetin (10 mg/kg) was administered once per day, 5 day/week for 8 weeks. Exercise training was performed at moderate intensity for 8 weeks, 5 days/week for 30-60 min/day. Mice were subjected to a strenuous exercise bout of 60 min at a speed of 25 m/min (VO2 max 85%) conducted as an exercise-induced fatigue just before sacrifice. As results, body weights were significantly different among the groups. Exercise training significantly reduced inflammatory cytokines after strenuous exercise in skeletal muscle of high-fat diet mice. Exercise training increased Tfam mRNA in the soleus muscle after strenuous exercise. Exercise training significantly decreased lipogenesis markers in skeletal muscle of obese mice after strenuous exercise. Moderate exercise significantly increased lipolysis markers in the tibialis anterior muscle. These findings suggest that exercise training reduced inflammatory cytokine levels and improved mitochondrial biogenesis and lipid metabolism. However quercetin supplementation did not affect these parameters. Thus, long-term moderate exercise training has positive effects on obesity.

  5. GLUT4 and UBC9 protein expression is reduced in muscle from type 2 diabetic patients with severe insulin resistance.

    Directory of Open Access Journals (Sweden)

    Ulla Kampmann

    Full Text Available AIMS: Subgroups of patients with type 2 diabetes mellitus demand large insulin doses to maintain euglycemia. These patients are characterized by severe skeletal muscle insulin resistance and the underlying pathology remains unclear. The purpose of this study was to examine protein expression of the principal glucose transporter, GLUT4, and associated proteins in skeletal muscle from type 2 diabetic patients characterized by severe insulin resistance. METHODS: Seven type 2 diabetic patients with severe insulin resistance (mean insulin dose 195 IU/day were compared with seven age matched type 2 diabetic patients who did not require insulin treatment, and with an age matched healthy control group. Protein expression of GLUT4 and associated proteins was assessed in muscle and fat biopsies using standard western blotting techniques. RESULTS: GLUT4 protein expression was significantly reduced by ∼30 pct in skeletal muscle tissue from severely insulin resistant type 2 diabetic subjects, compared with both healthy controls and type 2 diabetic subjects that did not require insulin treatment. In fat tissue, GLUT4 protein expression was reduced in both diabetic groups. In skeletal muscle, the reduced GLUT4 expression in severe insulin resistance was associated with decreased ubiquitin-conjugating enzyme 9 (UBC9 expression while expression of GLUT1, TBC1D1 and AS160 was not significantly different among type 2 diabetic patients and matched controls. CONCLUSIONS: Type 2 diabetic patients with severe insulin resistance have reduced expression of GLUT4 in skeletal muscle compared to patients treated with oral antidiabetic drugs alone. GLUT4 protein levels may therefore play a role in the pathology behind type 2 diabetes mellitus among subgroups of patients, and this may explain the heterogeneous response to insulin treatment. This new finding contributes to the understanding of the underlying mechanisms for the development of extreme insulin resistance.

  6. The anti-convulsants lacosamide, lamotrigine, and rufinamide reduce myotonia in isolated human and rat skeletal muscle.

    Science.gov (United States)

    Skov, Martin; de Paoli, Frank V; Nielsen, Ole B; Pedersen, Thomas H

    2017-07-01

    In myotonia congenita, loss of ClC-1 Cl(-) channel function results in skeletal muscle hyperexcitability and myotonia. Anti-myotonic treatment has typically targeted the voltage-gated sodium channel in skeletal muscle (Nav1.4). In this study we explored whether 3 sodium channel-modulating anti-epileptics can reduce myotonia in isolated rat and human muscle. Dissected muscles were rendered myotonic by ClC-1 channel inhibition. The ability of the drugs to suppress myotonia was then assessed from subclinical to maximal clinical concentrations. Drug synergy was determined using isobole plots. All drugs were capable of abolishing myotonia in both rat and human muscles. Lamotrigine and rufinamide completely suppressed myotonia at submaximal clinical concentrations, whereas lacosamide had to be raised above the maximal clinical concentration to suppress myotonia completely. A synergistic effect of lamotrigine and rufinamide was observed. These findings suggest that lamotrigine and rufinamide could be considered for anti-myotonic treatment in myotonia congenita. Muscle Nerve 56: 136-142, 2017. © 2016 Wiley Periodicals, Inc.

  7. Quercetin Inhibits Peripheral and Spinal Cord Nociceptive Mechanisms to Reduce Intense Acute Swimming-Induced Muscle Pain in Mice

    Science.gov (United States)

    Borghi, Sergio M.; Pinho-Ribeiro, Felipe A.; Fattori, Victor; Bussmann, Allan J. C.; Vignoli, Josiane A.; Camilios-Neto, Doumit; Casagrande, Rubia; Verri, Waldiceu A.

    2016-01-01

    The present study aimed to evaluate the effects of the flavonoid quercetin (3,3´,4´,5,7-pentahydroxyflavone) in a mice model of intense acute swimming-induced muscle pain, which resembles delayed onset muscle soreness. Quercetin intraperitoneal (i.p.) treatment dose-dependently reduced muscle mechanical hyperalgesia. Quercetin inhibited myeloperoxidase (MPO) and N-acetyl-β-D- glucosaminidase (NAG) activities, cytokine production, oxidative stress, cyclooxygenase-2 (COX-2) and gp91phox mRNA expression and muscle injury (creatinine kinase [CK] blood levels and myoblast determination protein [MyoD] mRNA expression) as well as inhibited NFκB activation and induced Nrf2 and HO-1 mRNA expression in the soleus muscle. Beyond inhibiting those peripheral effects, quercetin also inhibited spinal cord cytokine production, oxidative stress and glial cells activation (glial fibrillary acidic protein [GFAP] and ionized calcium-binding adapter molecule 1 [Iba-1] mRNA expression). Concluding, the present data demonstrate that quercetin is a potential molecule for the treatment of muscle pain conditions related to unaccustomed exercise. PMID:27583449

  8. Markers of low-grade inflammation and endothelial dysfunction are related to reduced information processing speed and executive functioning in an older population - the Hoorn Study.

    Science.gov (United States)

    Heringa, S M; van den Berg, E; Reijmer, Y D; Nijpels, G; Stehouwer, C D A; Schalkwijk, C G; Teerlink, T; Scheffer, P G; van den Hurk, K; Kappelle, L J; Dekker, J M; Biessels, G J

    2014-02-01

    relation between vascular risk factors and cognitive functioning. This study shows that low-grade inflammation and endothelial dysfunction contribute to reduced information processing speed and executive functioning in an older population.

  9. Metabolic alkalosis reduces exercise-induced acidosis and potassium accumulation in human skeletal muscle interstitium

    DEFF Research Database (Denmark)

    Street, D.; Nielsen, Jens Jung; Bangsbo, Jens

    2005-01-01

    Skeletal muscle releases potassium during activity. Interstitial potassium accumulation is important for muscle function and the development of fatigue resulting from exercise. In the present study we used sodium citrate ingestion as a tool to investigate the relationship between interstitial H+ ...

  10. Reduced quantitative muscle function in tenascin-X deficient Ehlers-Danlos patients.

    NARCIS (Netherlands)

    Voermans, N.C.; Altenburg, T.M.; Hamel, B.C.J.; Haan, A. de; Engelen, B.G.M. van

    2007-01-01

    The Ehlers-Danlos Syndrome (EDS) is a heterogeneous group of heritable connective tissue disorders. Skeletal muscle features belong to the clinical criteria of EDS and are generally interpreted to result from increased tendon distensibility or exercise avoidance. However, muscle function in EDS has

  11. Rotator cuff tear reduces muscle fiber specific force production and induces macrophage accumulation and autophagy.

    Science.gov (United States)

    Gumucio, Jonathan P; Davis, Max E; Bradley, Joshua R; Stafford, Patrick L; Schiffman, Corey J; Lynch, Evan B; Claflin, Dennis R; Bedi, Asheesh; Mendias, Christopher L

    2012-12-01

    Full-thickness tears to the rotator cuff can cause severe pain and disability. Untreated tears progress in size and are associated with muscle atrophy and an infiltration of fat to the area, a condition known as "fatty degeneration." To improve the treatment of rotator cuff tears, a greater understanding of the changes in the contractile properties of muscle fibers and the molecular regulation of fatty degeneration is essential. Using a rat model of rotator cuff injury, we measured the force generating capacity of individual muscle fibers and determined changes in muscle fiber type distribution that develop after a full thickness rotator cuff tear. We also measured the expression of mRNA and miRNA transcripts involved in muscle atrophy, lipid accumulation, and matrix synthesis. We hypothesized that a decrease in specific force of rotator cuff muscle fibers, an accumulation of type IIb fibers, and an upregulation in fibrogenic, adipogenic, and inflammatory gene expression occur in torn rotator cuff muscles. Thirty days following rotator cuff tear, we observed a reduction in muscle fiber force production, an induction of fibrogenic, adipogenic, and autophagocytic mRNA and miRNA molecules, and a dramatic accumulation of macrophages in areas of fat accumulation. Copyright © 2012 Orthopaedic Research Society.

  12. Increased blood pressure can reduce fatigue of thenar muscles paralyzed after spinal cord injury

    NARCIS (Netherlands)

    Butler, JE; Ribot-Ciscar, E; Zijdewind, Inge; Thomas, CK

    The aim of this study was to evaluate whether increases in blood pressure, and presumably muscle perfusion pressure, improve the endurance of thenar muscles paralyzed chronically by cervical spinal cord injury (SCI). Resting mean arterial pressure (MAP) was low in all eight subjects (64 +/- 2 mmHg).

  13. Effect of eccentric exercise with reduced muscle glycogen on plasma interleukin-6 and neuromuscular responses of musculus quadriceps femoris.

    Science.gov (United States)

    Gavin, James P; Myers, Stephen D; Willems, Mark E T

    2016-07-01

    Eccentric exercise can result in muscle damage and interleukin-6 (IL-6) secretion. Glycogen availability is a potent stimulator of IL-6 secretion. We examined effects of eccentric exercise in a low-glycogen state on neuromuscular function and plasma IL-6 secretion. Twelve active men (23 ± 4 yr, 179 ± 5 cm, 77 ± 10 kg, means ± SD) completed two downhill treadmill runs (gradient, -12%, 5 × 8 min; speed, 12.1 ± 1.1 km/h) with normal (NG) and reduced muscle glycogen (RG) in randomized order and at least 6 wk apart. Muscle glycogen was reduced using an established cycling protocol until exhaustion and dietary manipulation the evening before the morning run. Physiological responses were measured up to 48 h after the downhill runs. During recovery, force deficits of musculus quadriceps femoris by maximal isometric contractions were similar. Changes in low-frequency fatigue were larger with RG. Voluntary activation and plasma IL-6 levels were similar in recovery between conditions. It is concluded that unaccustomed, damaging eccentric exercise with low muscle glycogen of the m. quadriceps femoris 1) exacerbated low-frequency fatigue but 2) had no additional effect on IL-6 secretion. Neuromuscular impairment after eccentric exercise with low muscle glycogen appears to have a greater peripheral component in early recovery.

  14. Delivery of interleukin-10 via injectable hydrogels improves renal outcomes and reduces systemic inflammation following ischemic acute kidney injury in mice.

    Science.gov (United States)

    Soranno, Danielle E; Rodell, Christopher B; Altmann, Christopher; Duplantis, Jane; Andres-Hernando, Ana; Burdick, Jason A; Faubel, Sarah

    2016-08-01

    Injectable hydrogels can be used to deliver drugs in situ over a sustained period of time. We hypothesized that sustained delivery of interleukin-10 (IL-10) following acute kidney injury (AKI) would mitigate the local and systemic proinflammatory cascade induced by AKI and reduce subsequent fibrosis. Wild-type C57BL/6 mice underwent ischemia-reperfusion AKI with avertin anesthesia. Three days later, mice were treated with either hyaluronic acid injectable hydrogel with or without IL-10, or IL-10 suspended in saline, injected under the capsule of the left kidney, or hydrogel with IL-10 injected subcutaneously. Untreated AKI served as controls. Serial in vivo optical imaging tracked the location and degradation of the hydrogel over time. Kidney function was assessed serially. Animals were killed 28 days following AKI and the following were evaluated: serum IL-6, lung inflammation, urine neutrophil gelatinase-associated lipocalin, and renal histology for fibroblast activity, collagen type III deposition and fibrosis via Picrosirius Red staining and second harmonic imaging. Our model shows persistent systemic inflammation, and renal inflammation and fibrosis 28 days following AKI. The hydrogels are biocompatible and reduced serum IL-6 and renal collagen type III 28 days following AKI even when delivered without IL-10. Treatment with IL-10 reduced renal and systemic inflammation, regardless of whether the IL-10 was delivered in a sustained manner via the injectable hydrogel under the left kidney capsule, as a bolus injection via saline under the left kidney capsule, or via the injectable hydrogel subcutaneously. Injectable hydrogels are suitable for local drug delivery following renal injury, are biocompatible, and help mitigate local and systemic inflammation. Copyright © 2016 the American Physiological Society.

  15. High Sugar Intake and Development of Skeletal Muscle Insulin Resistance and Inflammation in Mice: A Protective Role for PPAR-δ Agonism

    Directory of Open Access Journals (Sweden)

    Elisa Benetti

    2013-01-01

    Full Text Available Peroxisome Proliferator Activated Receptor (PPAR-δ agonists may serve for treating metabolic diseases. However, the effects of PPAR-δ agonism within the skeletal muscle, which plays a key role in whole-body glucose metabolism, remain unclear. This study aimed to investigate the signaling pathways activated in the gastrocnemius muscle by chronic administration of the selective PPAR-δ agonist, GW0742 (1 mg/kg/day for 16 weeks, in male C57Bl6/J mice treated for 30 weeks with high-fructose corn syrup (HFCS, the major sweetener in foods and soft-drinks (15% wt/vol in drinking water. Mice fed with the HFCS diet exhibited hyperlipidemia, hyperinsulinemia, hyperleptinemia, and hypoadiponectinemia. In the gastrocnemius muscle, HFCS impaired insulin and AMP-activated protein kinase signaling pathways and reduced GLUT-4 and GLUT-5 expression and membrane translocation. GW0742 administration induced PPAR-δ upregulation and improvement in glucose and lipid metabolism. Diet-induced activation of nuclear factor-κB and expression of inducible-nitric-oxide-synthase and intercellular-adhesion-molecule-1 were attenuated by drug treatment. These effects were accompanied by reduction in the serum concentration of interleukin-6 and increase in muscular expression of fibroblast growth factor-21. Overall, here we show that PPAR-δ activation protects the skeletal muscle against the metabolic abnormalities caused by chronic HFCS exposure by affecting multiple levels of the insulin and inflammatory cascades.

  16. Removal of visual feedback alters muscle activity and reduces force variability during constant isometric contractions.

    Science.gov (United States)

    Baweja, Harsimran S; Patel, Bhavini K; Martinkewiz, Julie D; Vu, Julie; Christou, Evangelos A

    2009-07-01

    feedback amplifies force error, it can reduce force variability during constant isometric contractions due to an altered activation of the primary agonist muscle most likely at moderate force levels in young adults.

  17. Inhibiting pollen reduced nicotinamide adenine dinucleotide phosphate oxidase–induced signal by intrapulmonary administration of antioxidants blocks allergic airway inflammation

    Science.gov (United States)

    Dharajiya, Nilesh; Choudhury, Barun K.; Bacsi, Attila; Boldogh, Istvan; Alam, Rafeul; Sur, Sanjiv

    2011-01-01

    Background Ragweed extract (RWE) contains NADPH oxidases that induce oxidative stress in the airways independent of adaptive immunity (signal 1) and augment antigen (signal 2)–induced allergic airway inflammation. Objective To test whether inhibiting signal 1 by administering antioxidants inhibits allergic airway inflammation in mice. Methods The ability of ascorbic acid (AA), N-acetyl cystenine (NAC), and tocopherol to scavenge pollen NADPH oxidase–generated reactive oxygen species (ROS) was measured. These antioxidants were administered locally to inhibit signal 1 in the airways of RWE-sensitized mice. Recruitment of inflammatory cells, mucin production, calcium-activated chloride channel 3, IL-4, and IL-13 mRNA expression was quantified in the lungs. Results Antioxidants inhibited ROS generation by pollen NADPH oxidases and intracellular ROS generation in cultured epithelial cells. AA in combination with NAC or Tocopherol decreased RWE-induced ROS levels in cultured bronchial epithelial cells. Coadministration of antioxidants with RWE challenge inhibited 4-hydroxynonenal adduct formation, upregulation of Clca3 and IL-4 in lungs, mucin production, recruitment of eosinophils, and total inflammatory cells into the airways. Administration of antioxidants with a second RWE challenge also inhibited airway inflammation. However, administration of AA+NAC 4 or 24 hours after RWE challenge failed to inhibit allergic inflammation. Conclusion Signal 1 plays a proinflammatory role during repeated exposure to pollen extract. We propose that inhibiting signal 1 by increasing antioxidant potential in the airways may be a novel therapeutic strategy to attenuate pollen-induced allergic airway inflammation. Clinical implications Administration of antioxidants in the airways may constitute a novel therapeutic strategy to prevent pollen induced allergic airway inflammation. PMID:17336614

  18. Inhibition of rac1 reduces PDGF-induced reactive oxygen species and proliferation in vascular smooth muscle cells.

    OpenAIRE

    2001-01-01

    In vascular smooth muscle cells, reactive oxygen species (ROS) were known to mediate platelet-derived growth factor (PDGF)-induced cell proliferation and NADH/NADPH oxidase is the major source of ROS. NADH/NADPH oxidase is controlled by rac1 in non-phagocytic cells. In this study, we examined whether the inhibition of rac1 by adenoviral-mediated gene transfer of a dominant negative rac1 gene product (Ad.N17rac1) could reduce the proliferation of rat aortic vascular smooth muscle cells (RASMC)...

  19. Involvement of trigeminal transition zone and laminated subnucleus caudalis in masseter muscle hypersensitivity associated with tooth inflammation.

    Directory of Open Access Journals (Sweden)

    Kohei Shimizu

    Full Text Available A rat model of pulpitis/periapical periodontitis was used to study mechanisms underlying extraterritorial enhancement of masseter response associated with tooth inflammation. Periapical bone loss gradually increased and peaked at 6 weeks after complete Freund's adjuvant (CFA application to the upper molar tooth pulp (M1. On day 3, the number of Fos-immunoreactive (IR cells was significantly larger in M1 CFA rats compared with M1 vehicle (veh rats in the trigeminal subnucleus interpolaris/caudalis transition zone (Vi/Vc. The number of Fos-IR cells was significantly larger in M1 CFA and masseter (Mass capsaicin applied (M1 CFA/Mass cap rats compared with M1 veh/Mass veh rats in the contralateral Vc and Vi/Vc. The number of phosphorylated extracellular signal-regulated kinase (pERK-IR cells was significantly larger in M1 CFA/Mass cap and M1 veh/Mass cap rats compared to Mass-vehicle applied rats with M1 vehicle or CFA in the Vi/Vc. Pulpal CFA application caused significant increase in the number of Fos-IR cells in the Vi/Vc but not Vc on week 6. The number of pERK-IR cells was significantly lager in the rats with capsaicin application to the Mass compared to Mass-vehicle treated rats after pulpal CFA- or vehicle-application. However, capsaicin application to the Mass did not further affect the number of Fos-IR cells in the Vi/Vc in pulpal CFA-applied rats. The digastric electromyographic (d-EMG activity after Mass-capsaicin application was significantly increased on day 3 and lasted longer at 6 weeks after pulpal CFA application, and these increase and duration were significantly attenuated by i.t. PD98059, a MEK1 inhibitor. These findings suggest that Vi/Vc and Vc neuronal excitation is involved in the facilitation of extraterritorial hyperalgesia for Mass primed with periapical periodontitis or acute pulpal-inflammation. Furthermore, phosphorylation of ERK in the Vi/Vc and Vc play pivotal roles in masseter hyperalgesia after pulpitis or

  20. l-Carnitine supplement reduces skeletal muscle atrophy induced by prolonged hindlimb suspension in rats.

    Science.gov (United States)

    Jang, Jiwoong; Park, Jonghoon; Chang, Hyukki; Lim, Kiwon

    2016-12-01

    l-Carnitine was recently found to downregulate the ubiquitin proteasome pathway (UPP) and increase insulin-like growth factor 1 concentrations in animal models. However, the effect of l-carnitine administration on disuse muscle atrophy induced by hindlimb suspension has not yet been studied. Thus, we hypothesized that l-carnitine may have a protective effect on muscle atrophy induced by hindlimb suspension via the Akt1/mTOR and/or UPP. Male Wistar rats were assigned to 3 groups: hindlimb suspension group, hindlimb suspension with l-carnitine administration (1250 mg·kg(-1)·day(-1)) group, and pair-fed group adjusted hindlimb suspension. l-Carnitine administration for 2 weeks of hindlimb suspension alleviated the decrease in weight and fiber size in the soleus muscle. In addition, l-carnitine suppressed atrogin-1 mRNA expression, which has been reported to play a pivotal role in muscle atrophy. The present study shows that l-carnitine has a protective effect against soleus muscle atrophy caused by hindlimb suspension and decreased E3 ligase messenger RNA expression, suggesting the possibility that l-carnitine protects against muscle atrophy, at least in part, through the inhibition of the UPP. These observations suggest that l-carnitine could serve as an effective supplement in the decrease of muscle atrophy caused by weightlessness in the fields of clinical and rehabilitative research.

  1. FKBP12 deficiency reduces strength deficits after eccentric contraction-induced muscle injury

    Science.gov (United States)

    Corona, Benjamin T.; Rouviere, Clement; Hamilton, Susan L.; Ingalls, Christopher P.

    2008-01-01

    Strength deficits associated with eccentric contraction-induced muscle injury stem, in part, from excitation-contraction uncoupling. FKBP12 is a 12-kDa binding protein known to bind to the skeletal muscle sarcoplasmic reticulum Ca2+ release channel [ryanodine receptor (RyR1)] and plays an important role in excitation-contraction coupling. To assess the effects of FKBP12 deficiency on muscle injury and recovery, we measured anterior crural muscle (tibialis anterior and extensor digitorum longus muscles) strength in skeletal muscle-specific FKBP12-deficient and wild-type (WT) mice before and after a single bout of 150 eccentric contractions, as well as before and after the performance of six injury bouts. Histological damage of the tibialis anterior muscle was assessed after injury. Body weight and peak isometric and eccentric torques were lower in FKBP12-deficient mice compared with WT mice. There were no differences between FKBP12-deficient and WT mice in preinjury peak isometric and eccentric torques when normalized to body weight, and no differences in the relative decreases in eccentric torque with a single or multiple injury bouts. After a single injury bout, FKBP12-deficient mice had less initial strength deficits and recovered faster (especially females) than WT mice, despite no differences in the degree of histological damage. After multiple injury bouts, FKBP12-deficient mice recovered muscle strength faster than WT mice and exhibited significantly less histological muscle damage than WT mice. In summary, FKBP12 deficiency results in less initial strength deficits and enhanced recovery from single (especially females) and repeated bouts of injury than WT mice. PMID:18511525

  2. Oral administration of the NADPH-oxidase inhibitor apocynin partially restores diminished cartilage proteoglycan synthesis and reduces inflammation in mice.

    NARCIS (Netherlands)

    Hougee, S.; Hartog, A.; Sanders, A.; Graus, Y.M.; Hoijer, M.A.; Garssen, J.; Berg, W.B. van den; Beuningen, H.M. van; Smit, H.F.

    2006-01-01

    Apocynin, an inhibitor of NADPH-oxidase, is known to partially reverse the inflammation-mediated cartilage proteoglycan synthesis in chondrocytes. More recently, it was reported that apocynin prevents cyclooxygenase (COX)-2 expression in monocytes. The present study aimed to investigate whether thes

  3. Twenty-four hours hypothermia has temporary efficacy in reducing brain infarction and inflammation in aged rats

    DEFF Research Database (Denmark)

    Sandu, Raluca Elena; Buga, Ana Maria; Balseanu, Adrian Tudor

    2016-01-01

    inflammation and infarct size. However, after 1 week, the infarct size became even larger than in controls and after 2 weeks there was no beneficial effect on regenerative processes such as neurogenesis. Behaviorally, hypothermia also had a limited beneficial effect. Finally, after hydrogen sulfide...

  4. Reduced glycogen availability is associated with an elevation in HSP72 in contracting human skeletal muscle

    DEFF Research Database (Denmark)

    Febbraio, Mark A; Steensberg, Adam; Walsh, Rory

    2002-01-01

    To test the hypothesis that a decrease in intramuscular glycogen availability may stimulate heat shock protein expression, seven men depleted one leg of muscle glycogen the day before performing 4-5 h of exhaustive, two-legged knee extensor exercise at 40 % of leg peak power output. Subjects...... then rested for a further 3 h. Muscle biopsies were obtained from the depleted and control leg before, immediately after and 3 h into recovery from exercise. These samples were analysed for muscle glycogen, and HSP72 gene and protein expression. In addition, catheters were placed in one femoral artery...... and both femoral veins and blood was sampled from these catheters prior to exercise and at 1 h intervals during exercise and into recovery for the measurement of arterial-venous differences in serum HSP72. Plasma creatine kinase (CK) was also measured from arterial blood samples. Pre-exercise muscle...

  5. Immunohistochemical detection of piscine reovirus (PRV in hearts of Atlantic salmon coincide with the course of heart and skeletal muscle inflammation (HSMI

    Directory of Open Access Journals (Sweden)

    Finstad Øystein

    2012-04-01

    Full Text Available Abstract Aquaculture is the fastest growing food production sector in the world. However, the increased production has been accompanied by the emergence of infectious diseases. Heart and skeletal muscle inflammation (HSMI is one example of an emerging disease in farmed Atlantic salmon (Salmo salar L. Since the first recognition as a disease entity in 1999 it has become a widespread and economically important disease in Norway. The disease was recently found to be associated with infection with a novel reovirus, piscine reovirus (PRV. The load of PRV, examined by RT-qPCR, correlated with severity of HSMI in naturally and experimentally infected salmon. The disease is characterized by epi-, endo- and myocarditis, myocardial necrosis, myositis and necrosis of the red skeletal muscle. The aim of this study was to investigate the presence of PRV antigens in heart tissue of Atlantic salmon and monitor the virus distribution in the heart during the disease development. This included target cell specificity, viral load and tissue location during an HSMI outbreak. Rabbit polyclonal antisera were raised against putative PRV capsid proteins μ1C and σ1 and used in immunohistochemical analysis of archived salmon heart tissue from an experimental infection. The results are consistent with the histopathological changes of HSMI and showed a sequential staining pattern with PRV antigens initially present in leukocyte-like cells and subsequently in cardiomyocytes in the heart ventricle. Our results confirm the association between PRV and HSMI, and strengthen the hypothesis of PRV being the causative agent of HSMI. Immunohistochemical detection of PRV antigens will be beneficial for the understanding of the pathogenesis of HSMI as well as for diagnostic purposes.

  6. Comparison of transcriptomic responses to pancreas disease (PD) and heart and skeletal muscle inflammation (HSMI) in heart of Atlantic salmon (Salmo salar L).

    Science.gov (United States)

    Johansen, Lill-Heidi; Thim, Hanna L; Jørgensen, Sven Martin; Afanasyev, Sergey; Strandskog, Guro; Taksdal, Torunn; Fremmerlid, Kjersti; McLoughlin, Marion; Jørgensen, Jorunn B; Krasnov, Aleksei

    2015-10-01

    Pancreas disease (PD) and heart and skeletal muscle inflammation (HSMI) are viral diseases associated with SAV (salmonid alphavirus) and PRV (piscine reovirus), which induce systemic infections and pathologies in cardiac and skeletal muscle tissue of farmed Atlantic salmon (Salmo salar L), resulting in severe morbidity and mortality. While general features of the clinical symptoms and pathogenesis of salmonid viral diseases are relatively well studied, much less is known about molecular mechanisms associated with immunity and disease-specific changes. In this study, transcriptomic analyses of heart tissue from PD and HSMI challenged Atlantic salmon were done, focusing on the mature phases of both diseases at respectively 28-35 and 42-77 days post infection. A large number of immune genes was activated in both trials with prevalence of genes associated with early innate antiviral responses, their expression levels being slightly higher in PD challenged fish. Activation of the IFN axis was in parallel with inflammatory changes that involved diverse humoral and cellular factors. Adaptive immune response genes were more pronounced in fish with HSMI, as suggested by increased expression of a large number of genes associated with differentiation and maturation of B lymphocytes and cytotoxic T cells. A similar down-regulation of non-immune genes such as myofiber and mitochondrial proteins between diseases was most likely reflecting myocardial pathology. A suite of genes important for cardiac function including B-type natriuretic peptide and four neuropeptides displayed differential expression between PD and HSMI. Comparison of results revealed common and distinct features and added to the understanding of both diseases at their mature phases with typical clinical pictures. A number of genes that showed disease-specific changes can be of interest for diagnostics.

  7. Hemodynamic responses to small muscle mass exercise in heart failure patients with reduced ejection fraction

    Science.gov (United States)

    Barrett-O'Keefe, Zachary; Lee, Joshua F.; Berbert, Amanda; Witman, Melissa A. H.; Nativi-Nicolau, Jose; Stehlik, Josef; Richardson, Russell S.

    2014-01-01

    To better understand the mechanisms responsible for exercise intolerance in heart failure with reduced ejection fraction (HFrEF), the present study sought to evaluate the hemodynamic responses to small muscle mass exercise in this cohort. In 25 HFrEF patients (64 ± 2 yr) and 17 healthy, age-matched control subjects (64 ± 2 yr), mean arterial pressure (MAP), cardiac output (CO), and limb blood flow were examined during graded static-intermittent handgrip (HG) and dynamic single-leg knee-extensor (KE) exercise. During HG exercise, MAP increased similarly between groups. CO increased significantly (+1.3 ± 0.3 l/min) in the control group, but it remained unchanged across workloads in HFrEF patients. At 15% maximum voluntary contraction (MVC), forearm blood flow was similar between groups, while HFrEF patients exhibited an attenuated increase at the two highest intensities compared with controls, with the greatest difference at the highest workload (352 ± 22 vs. 492 ± 48 ml/min, HFrEF vs. control, 45% MVC). During KE exercise, MAP and CO increased similarly across work rates between groups. However, HFrEF patients exhibited a diminished leg hyperemic response across all work rates, with the most substantial decrement at the highest intensity (1,842 ± 64 vs. 2,675 ± 81 ml/min; HFrEF vs. control, 15 W). Together, these findings indicate a marked attenuation in exercising limb perfusion attributable to impairments in peripheral vasodilatory capacity during both arm and leg exercise in patients with HFrEF, which likely plays a role in limiting exercise capacity in this patient population. PMID:25260608

  8. Antioxidant Treatment Reduces Formation of Structural Cores and Improves Muscle Function in RYR1Y522S/WT Mice

    Directory of Open Access Journals (Sweden)

    Antonio Michelucci

    2017-01-01

    Full Text Available Central core disease (CCD is a congenital myopathy linked to mutations in the ryanodine receptor type 1 (RYR1, the sarcoplasmic reticulum Ca2+ release channel of skeletal muscle. CCD is characterized by formation of amorphous cores within muscle fibers, lacking mitochondrial activity. In skeletal muscle of RYR1Y522S/WT knock-in mice, carrying a human mutation in RYR1 linked to malignant hyperthermia (MH with cores, oxidative stress is elevated and fibers present severe mitochondrial damage and cores. We treated RYR1Y522S/WT mice with N-acetylcysteine (NAC, an antioxidant provided ad libitum in drinking water for either 2 or 6 months. Our results show that 2 months of NAC treatment starting at 2 months of age, when mitochondrial and fiber damage was still minimal, (i reduce formation of unstructured and contracture cores, (ii improve muscle function, and (iii decrease mitochondrial damage. The beneficial effect of NAC treatment is also evident following 6 months of treatment starting at 4 months of age, when structural damage was at an advanced stage. NAC exerts its protective effect likely by lowering oxidative stress, as supported by the reduction of 3-NT and SOD2 levels. This work suggests that NAC administration is beneficial to prevent mitochondrial damage and formation of cores and improve muscle function in RYR1Y522S/WT mice.

  9. Amplitude and strength of muscle contraction are reduced in experimental tears of the rotator cuff.

    Science.gov (United States)

    Meyer, Dominik C; Gerber, Christian; Von Rechenberg, Brigitte; Wirth, Stephan H; Farshad, Mazda

    2011-07-01

    Chronic tendon tears lead to retraction, fatty infiltration, and atrophy of the respective muscle. These muscle changes are decision-making criteria in rotator cuff tear management. To investigate the functional implications of these morphological changes in a sheep rotator cuff tear model. Controlled laboratory study. The authors established chronic retraction of the musculotendinous unit accompanied with fatty infiltration and atrophy of the infraspinatus muscle in 20 sheep. The contractile force and passive tension of the muscle as a function of its length were measured and the active work capacity determined. After tendon release and chronic retraction (by 5.7 ± 0.9 cm), fatty infiltrated and atrophied infraspinatus muscles (with a density of 22.4 ± 10.4 Hounsfield units [HU] and a cross-sectional area of 65% ± 16% of the contralateral control side) had a mean contractile amplitude and strength of 2.7 ± 0.4 cm and 235 ± 71 N compared with the contralateral control shoulder of 4.1 ± 0.7 cm and 485 ± 78 N (P muscle was 2.8 ± 0.9 N·m for retracted and 8.8 ± 2.4 N·m for control muscles (P tears are associated not only with retraction, fatty infiltration, and atrophy but also with loss of strength and contractile amplitude. The functional changes can only indirectly and approximately be predicted by computed tomography imaging findings. The current criteria (atrophy, retraction, and fatty infiltration) may help to quantify the structural reparability of a chronically retracted musculotendinous unit after rotator cuff tendon tear but may only approximately predict the remaining function of the muscle.

  10. Muscle Deoxygenation Causes Muscle Fatigue

    Science.gov (United States)

    Murthy, G.; Hargens, A. R.; Lehman, S.; Rempel, D.

    1999-01-01

    Muscle fatigue is a common musculoskeletal disorder in the work place, and may be a harbinger for more disabling cumulative trauma disorders. Although the cause of fatigue is multifactorial, reduced blood flow and muscle oxygenation may be the primary factor in causing muscle fatigue during low intensity muscle exertion. Muscle fatigue is defined as a reduction in muscle force production, and also occurs among astronauts who are subjected to postural constraints while performing lengthy, repetitive tasks. The objectives of this research are to: 1) develop an objective tool to study the role of decreased muscle oxygenation on muscle force production, and 2) to evaluate muscle fatigue during prolonged glovebox work.

  11. Impaired mitochondrial degradation by autophagy in the skeletal muscle of the aged female interleukin 10 null mouse.

    Science.gov (United States)

    Ko, Fred; Abadir, Peter; Marx, Ruth; Westbrook, Reyhan; Cooke, Carol; Yang, Huanle; Walston, Jeremy

    2016-01-01

    Mitochondrial dysfunction, chronic inflammation and muscle aging are closely linked. Mitochondrial clearance is a process to dampen inflammation and is a critical pre-requisite to mitobiogenesis. The combined effect of aging and chronic inflammation on mitochondrial degradation by autophagy is understudied. In interleukin 10 null mouse (IL-10(tm/tm)), a rodent model of chronic inflammation, we studied the effects of aging and inflammation on mitochondrial clearance. We show that aging in IL-10(tm/tm) is associated with reduced skeletal muscle mitochondrial death signaling and altered formation of autophagosomes, compared to age-matched C57BL/6 controls. Moreover, skeletal muscles of old IL-10(tm/tm) mice have the highest levels of damaged mitochondria with disrupted mitochondrial ultrastructure and autophagosomes compared to all other groups. These observations highlight the interface between chronic inflammation and aging on altered mitochondrial biology in skeletal muscles.

  12. Marine oil dietary supplementation reduces delayed onset muscle soreness after a 30 km run

    Directory of Open Access Journals (Sweden)

    Baum K

    2013-05-01

    Full Text Available Klaus Baum,1 Richard D Telford,2 Ross B Cunningham,3 1Trainingsinstitut Prof Baum, Köln, Germany; 2College of Medicine, Biology, and Environment, Australian National University, Canberra, ACT, Australia; 3The Fenner School of Environment and Society, Australian National University, Canberra, ACT, Australia Objective: Runners are prone to delayed onset muscle soreness (DOMS during long distance training. This especially holds for unaccustomed training volumes at moderate to high intensities. We investigated the effects of a marine oil complex, PCSO-524®, derived from the New Zealand green-lipped mussel (formulated as Lyprinol® and Omega XL® on DOMS after a 30 km training run. Methods: Initially, peak oxygen uptake of 32 distance runners (4 female, 28 male; median age 45 years, range 28–53 was measured on a treadmill with a 1.5 km hour-1 increase every 4 minutes starting from 8.5 km hour-1. At least 1-week after this initial test, they participated in a 30 km road run at a speed corresponding to about 70% of their individual peak oxygen uptake on a flat terrain. Before and after (0, 24, and 48 hours the run, blood concentration of creatine kinase (CK were measured and pain sensation was determined (pain scale from 0 = no pain to 10 = extremely painful. Runners were then matched in pairs based on maximal CK and peak oxygen uptake, and allocated randomly into two different groups. One group was supplemented with 400 mg per day of PCSO-524® for 11 weeks, the other group with an olive oil placebo. After that period, CK and pain sensations were remeasured following a second 30 km run at the same speed and on the same terrain. Results: The general pattern of soreness in the PCSO-524® supplemented group was reduced by 1.1 units (standard error 0.41 compared to the placebo (P < 0.05, the effects being greater in lesser trained runners (P < 0.05. CK levels were positively associated with pain sensation (P < 0.05, but trends toward lower CK in the

  13. Dietary nitrate does not reduce oxygen cost of exercise or improve muscle mitochondrial function in mitochondrial myopathy patients.

    Science.gov (United States)

    Nabben, Miranda; Schmitz, Joep P J; Ciapaite, Jolita; Le Clercq, Carlijn M P; van Riel, Natal A; Haak, Harm R; Nicolay, Klaas; de Coo, Irenaeus F; Smeets, Hubert J M; Praet, Stephan F; van Loon, Luc J C; Prompers, Jeanine J

    2017-02-08

    Muscle weakness and exercise intolerance negatively affect the quality of life of mitochondrial myopathy patients. Short-term dietary nitrate supplementation has been shown to improve exercise performance and reduce oxygen cost of exercise in healthy humans and trained athletes. We investigated if 1 week of dietary inorganic nitrate supplementation decreases the oxygen cost of exercise and improves mitochondrial function in mitochondrial myopathy patients. Ten mitochondrial myopathy patients (40 ± 5 years, maximal whole-body oxygen uptake = 21.2 ± 3.2 mL/min/kg body weight, maximal workload = 122 ± 26 W) received 8.5 mg/kg body weight/day of inorganic nitrate (~7 mmol) for 8 days. Whole-body oxygen consumption at 50% of the maximal workload, in vivo skeletal muscle oxidative capacity (evaluated from post-exercise phosphocreatine recovery using (31)P magnetic resonance spectroscopy) and ex vivo mitochondrial oxidative capacity in permeabilized skinned muscle fibers (measured with high-resolution respirometry) were determined before and after nitrate supplementation. Despite a 6-fold increase in plasma nitrate levels, nitrate supplementation did not affect whole-body oxygen cost during submaximal exercise. Additionally, no beneficial effects of nitrate were found on in vivo or ex vivo muscle mitochondrial oxidative capacity. This is the first time that the therapeutic potential of dietary nitrate for mitochondrial myopathy patients was evaluated. We conclude that 1 week of dietary nitrate supplementation does not reduce oxygen cost of exercise or improve mitochondrial function in the group of patients tested.

  14. Superpulsed low-level laser therapy protects skeletal muscle of mdx mice against damage, inflammation and morphological changes delaying dystrophy progression.

    Directory of Open Access Journals (Sweden)

    Ernesto Cesar Pinto Leal-Junior

    Full Text Available AIM: To evaluate the effects of preventive treatment with low-level laser therapy (LLLT on progression of dystrophy in mdx mice. METHODS: Ten animals were randomly divided into 2 experimental groups treated with superpulsed LLLT (904 nm, 15 mW, 700 Hz, 1 J or placebo-LLLT at one point overlying the tibialis anterior muscle (bilaterally 5 times per week for 14 weeks (from 6th to 20th week of age. Morphological changes, creatine kinase (CK activity and mRNA gene expression were assessed in animals at 20th week of age. RESULTS: Animals treated with LLLT showed very few morphological changes in skeletal muscle, with less atrophy and fibrosis than animals treated with placebo-LLLT. CK was significantly lower (p=0.0203 in animals treated with LLLT (864.70 U.l-1, SEM 226.10 than placebo (1708.00 U.l-1, SEM 184.60. mRNA gene expression of inflammatory markers was significantly decreased by treatment with LLLT (p<0.05: TNF-α (placebo-control=0.51 µg/µl [SEM 0.12], - LLLT=0.048 µg/µl [SEM 0.01], IL-1β (placebo-control=2.292 µg/µl [SEM 0.74], - LLLT=0.12 µg/µl [SEM 0.03], IL-6 (placebo-control=3.946 µg/µl [SEM 0.98], - LLLT=0.854 µg/µl [SEM 0.33], IL-10 (placebo-control=1.116 µg/µl [SEM 0.22], - LLLT=0.352 µg/µl [SEM 0.15], and COX-2 (placebo-control=4.984 µg/µl [SEM 1.18], LLLT=1.470 µg/µl [SEM 0.73]. CONCLUSION: Irradiation of superpulsed LLLT on successive days five times per week for 14 weeks decreased morphological changes, skeletal muscle damage and inflammation in mdx mice. This indicates that LLLT has potential to decrease progression of Duchenne muscular dystrophy.

  15. Reducing body fat with altitude hypoxia training in swimmers: role of blood perfusion to skeletal muscles.

    Science.gov (United States)

    Chia, Michael; Liao, Chin-An; Huang, Chih-Yang; Lee, Wen-Chih; Hou, Chien-Wen; Yu, Szu-Hsien; Harris, M Brennan; Hsu, Tung-Shiung; Lee, Shin-Da; Kuo, Chia-Hua

    2013-02-28

    Swimmers tend to have greater body fat than athletes from other sports. The purpose of the study was to examine changes in body composition after altitude hypoxia exposure and the role of blood distribution to the skeletal muscle in swimmers. With a constant training volume of 12.3 km/day, young male swimmers (N = 10, 14.8 ± 0.5 years) moved from sea-level to a higher altitude of 2,300 meters. Body composition was measured before and after translocation to altitude using dual-energy X-ray absorptiometry (DXA) along with 8 control male subjects who resided at sea level for the same period of time. To determine the effects of hypoxia on muscle blood perfusion, total hemoglobin concentration (THC) was traced by near-infrared spectroscopy (NIRS) in the triceps and quadriceps muscles under glucose-ingested and insulin-secreted conditions during hypoxia exposure (16% O2) after training. While no change in body composition was found in the control group, subjects who trained at altitude had unequivocally decreased fat mass (-1.7 ± 0.3 kg, -11.4%) with increased lean mass (+0.8 ± 0.2 kg, +1.5%). Arterial oxygen saturation significantly decreased with increased plasma lactate during hypoxia recovery mimicking 2,300 meters at altitude (~93% versus ~97%). Intriguingly, hypoxia resulted in elevated muscle THC, and sympathetic nervous activities occurred in parallel with greater-percent oxygen saturation in both muscle groups. In conclusion, the present study provides evidence that increased blood distribution to the skeletal muscle under postprandial condition may contribute to the reciprocally increased muscle mass and decreased body mass after a 3-week altitude exposure in swimmers.

  16. Zebrafish models for nemaline myopathy reveal a spectrum of nemaline bodies contributing to reduced muscle function.

    Science.gov (United States)

    Sztal, Tamar E; Zhao, Mo; Williams, Caitlin; Oorschot, Viola; Parslow, Adam C; Giousoh, Aminah; Yuen, Michaela; Hall, Thomas E; Costin, Adam; Ramm, Georg; Bird, Phillip I; Busch-Nentwich, Elisabeth M; Stemple, Derek L; Currie, Peter D; Cooper, Sandra T; Laing, Nigel G; Nowak, Kristen J; Bryson-Richardson, Robert J

    2015-09-01

    Nemaline myopathy is characterized by muscle weakness and the presence of rod-like (nemaline) bodies. The genetic etiology of nemaline myopathy is becoming increasingly understood with mutations in ten genes now known to cause the disease. Despite this, the mechanism by which skeletal muscle weakness occurs remains elusive, with previous studies showing no correlation between the frequency of nemaline bodies and disease severity. To investigate the formation of nemaline bodies and their role in pathogenesis, we generated overexpression and loss-of-function zebrafish models for skeletal muscle α-actin (ACTA1) and nebulin (NEB). We identify three distinct types of nemaline bodies and visualize their formation in vivo, demonstrating these nemaline bodies not only exhibit different subcellular origins, but also have distinct pathological consequences within the skeletal muscle. One subtype is highly dynamic and upon breakdown leads to the accumulation of cytoplasmic actin contributing to muscle weakness. Examination of a Neb-deficient model suggests this mechanism may be common in nemaline myopathy. Another subtype results from a reduction of actin and forms a more stable cytoplasmic body. In contrast, the final type originates at the Z-disk and is associated with myofibrillar disorganization. Analysis of zebrafish and muscle biopsies from ACTA1 nemaline myopathy patients demonstrates that nemaline bodies also possess a different protein signature. In addition, we show that the ACTA1(D286G) mutation causes impaired actin incorporation and localization in the sarcomere. Together these data provide a novel examination of nemaline body origins and dynamics in vivo and identifies pathological changes that correlate with muscle weakness.

  17. Restoring Cystic Fibrosis Transmembrane Conductance Regulator Function Reduces Airway Bacteria and Inflammation in People with Cystic Fibrosis and Chronic Lung Infections.

    Science.gov (United States)

    Hisert, Katherine B; Heltshe, Sonya L; Pope, Christopher; Jorth, Peter; Wu, Xia; Edwards, Rachael M; Radey, Matthew; Accurso, Frank J; Wolter, Daniel J; Cooke, Gordon; Adam, Ryan J; Carter, Suzanne; Grogan, Brenda; Launspach, Janice L; Donnelly, Seamas C; Gallagher, Charles G; Bruce, James E; Stoltz, David A; Welsh, Michael J; Hoffman, Lucas R; McKone, Edward F; Singh, Pradeep K

    2017-06-15

    Previous work indicates that ivacaftor improves cystic fibrosis transmembrane conductance regulator (CFTR) activity and lung function in people with cystic fibrosis and G551D-CFTR mutations but does not reduce density of bacteria or markers of inflammation in the airway. These findings raise the possibility that infection and inflammation may progress independently of CFTR activity once cystic fibrosis lung disease is established. To better understand the relationship between CFTR activity, airway microbiology and inflammation, and lung function in subjects with cystic fibrosis and chronic airway infections. We studied 12 subjects with G551D-CFTR mutations and chronic airway infections before and after ivacaftor. We measured lung function, sputum bacterial content, and inflammation, and obtained chest computed tomography scans. Ivacaftor produced rapid decreases in sputum Pseudomonas aeruginosa density that began within 48 hours and continued in the first year of treatment. However, no subject eradicated their infecting P. aeruginosa strain, and after the first year P. aeruginosa densities rebounded. Sputum total bacterial concentrations also decreased, but less than P. aeruginosa. Sputum inflammatory measures decreased significantly in the first week of treatment and continued to decline over 2 years. Computed tomography scans obtained before and 1 year after ivacaftor treatment revealed that ivacaftor decreased airway mucous plugging. Ivacaftor caused marked reductions in sputum P. aeruginosa density and airway inflammation and produced modest improvements in radiographic lung disease in subjects with G551D-CFTR mutations. However, P. aeruginosa airway infection persisted. Thus, measures that control infection may be required to realize the full benefits of CFTR-targeting treatments.

  18. Reduced Pelvic Floor Muscle Tone Predisposes to Persistence of Lower Urinary Tract Symptoms after Puerperium

    Directory of Open Access Journals (Sweden)

    Chandana Bhat

    2016-01-01

    Full Text Available Pregnant primiparous women at term were enrolled in the study. ICIQ-FLUTS questionnaire was used to find out prevalence of LUTS. MOS was used to assess pelvic floor muscle strength. Women were followed up after 8–10 weeks of delivery to find out remission or persistence of these symptoms. We found that increased frequency of micturition was the most common (82% LUTS seen in primiparous women at term. More than half (51% of these women who complained of LUTS had a poor pelvic floor muscle tone (MOS grade 3. Out of those who had symptoms during pregnancy 11% remained symptomatic even after puerperium. Interestingly 61% of those with persistence of symptoms demonstrated a very poor pelvic floor muscle tone at term (MOS grade 2, while the remaining 39% also had a tone of only MOS grade 3. Thus women with LUTS during pregnancy should be screened for their pelvic floor muscle tone with simple MOS system which will help to predict the persistence of these symptoms later on. Women with a low score (three or less should be triaged for regular pelvic floor muscle exercises.

  19. Reduced task-induced variations in the distribution of activity across back muscle regions in individuals with low back pain.

    Science.gov (United States)

    Falla, Deborah; Gizzi, Leonardo; Tschapek, Marika; Erlenwein, Joachim; Petzke, Frank

    2014-05-01

    This study investigated change in the distribution of lumbar erector spinae muscle activity and pressure pain sensitivity across the low back in individuals with low back pain (LBP) and healthy controls. Surface electromyographic (EMG) signals were recorded from multiple locations over the lumbar erector spinae muscle with a 13×5 grid of electrodes from 19 people with chronic nonspecific LBP and 17 control subjects as they performed a repetitive lifting task. The EMG root mean square (RMS) was computed for each location of the grid to form a map of the EMG amplitude distribution. Pressure pain thresholds (PPT) were recorded before and after the lifting task over a similar area of the back. For the control subjects, the EMG RMS progressively increased more in the caudal region of the lumbar erector spinae during the repetitive task, resulting in a shift in the distribution of muscle activity. In contrast, the distribution of muscle activity remained unaltered in the LBP group despite an overall increase in EMG amplitude. PPT was lower in the LBP group after completion of the repetitive task compared to baseline (average across all locations: pre: 268.0±165.9 kPa; post: 242.0±166.7 kPa), whereas no change in PPT over time was observed for the control group (320.1±162.1 kPa; post: 322.0±179.5 kPa). The results demonstrate that LBP alters the normal adaptation of lumbar erector spinae muscle activity to exercise, which occurs in the presence of exercise-induced hyperalgesia. Reduced variability of muscle activity may have important implications for the provocation and recurrence of LBP due to repetitive tasks. Copyright © 2014 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  20. Reduced muscle lengthening during eccentric contractions as a mechanism underpinning the repeated-bout effect.

    Science.gov (United States)

    Lau, Wing Yin; Blazevich, Anthony J; Newton, Michael J; Wu, Sam Shi Xuan; Nosaka, Kazunori

    2015-05-15

    This study investigated biceps brachii distal myotendinous junction (MTJ) displacement during maximal eccentric elbow flexor contractions to test the hypothesis that muscle length change would be smaller (less MTJ displacement) during the second than the first exercise bout. Ten untrained men performed two eccentric exercise bouts (ECC1 and ECC2) with the same arm consisting of 10 sets of six maximal isokinetic (60°/s) eccentric elbow flexor contractions separated by 4 wk. Biceps brachii distal MTJ displacement was assessed using B-mode ultrasonography, and changes in the displacement (muscle length change) from the start to the end of each contraction during each set and over 10 sets were compared between bouts by two-way repeated-measures ANOVA. Several indirect muscle damage markers were also measured and compared between bouts by two-way repeated-measures ANOVA. The magnitude of MTJ displacement (average of six contractions) increased from set 1 (8.2 ± 4.7 mm) to set 10 (16.4 ± 4.7 mm) during ECC1 (P < 0.05), but no significant changes over sets were evident during ECC2 (set 1: 8.5 ± 4.0 mm; set 10: 9.3 ± 3.1 mm). Changes in maximal voluntary isometric contraction strength, range of motion, muscle thickness, ultrasound echo intensity, serum creatine kinase activity, and muscle soreness (visual analog scale) were smaller (P < 0.05) following ECC2 than ECC1, showing less damage in the repeated bout. These results indicate that the magnitude of muscle lengthening was less during the second than the first eccentric exercise bout, which appears to be a mechanism underpinning the repeated-bout effect. Copyright © 2015 the American Physiological Society.

  1. Cytokines: muscle protein and amino acid metabolism

    DEFF Research Database (Denmark)

    van Hall, Gerrit

    2012-01-01

    raises TNF-α and IL-6 to moderate levels, has only identified IL-6 as a potent cytokine, decreasing systemic amino acid levels and muscle protein metabolism. The marked decrease in circulatory and muscle amino acid concentrations was observed with a concomitant reduction in both the rates of muscle...... of IL-6 on the regulation of muscle protein metabolism but indirectly via IL-6 reducing amino acid availability. SUMMARY: Recent studies suggest that the best described cytokines TNF-α and IL-6 are unlikely to be the major direct mediators of muscle protein loss in inflammatory diseases. However...... protein synthesis and breakdown, that is, reduced turnover with a minor increase in net muscle degradation. Very similar observations have been made in models of acute inflammation, induced by high-dose endotoxin injection. However, these changes were suggested not to be attributed to a direct effect...

  2. Cytokines: muscle protein and amino acid metabolism

    DEFF Research Database (Denmark)

    van Hall, Gerrit

    2012-01-01

    raises TNF-α and IL-6 to moderate levels, has only identified IL-6 as a potent cytokine, decreasing systemic amino acid levels and muscle protein metabolism. The marked decrease in circulatory and muscle amino acid concentrations was observed with a concomitant reduction in both the rates of muscle...... protein synthesis and breakdown, that is, reduced turnover with a minor increase in net muscle degradation. Very similar observations have been made in models of acute inflammation, induced by high-dose endotoxin injection. However, these changes were suggested not to be attributed to a direct effect...... of IL-6 on the regulation of muscle protein metabolism but indirectly via IL-6 reducing amino acid availability. SUMMARY: Recent studies suggest that the best described cytokines TNF-α and IL-6 are unlikely to be the major direct mediators of muscle protein loss in inflammatory diseases. However...

  3. Caffeine intake improves intense intermittent exercise performance and reduces muscle interstitial potassium accumulation

    DEFF Research Database (Denmark)

    Mohr, Magni; Nielsen, Jens Jung; Bangsbo, Jens

    2011-01-01

    The effect of oral caffeine ingestion on intense intermittent exercise performance and muscle interstitial ion concentrations was examined. The study consists of two studies (S1 and S2). In S1 twelve subjects completed the Yo-Yo intermittent recovery level 2 (Yo-Yo IR2) test with prior caffeine (6...... mg/kg b.w.; CAF) or placebo (PLA) intake. In S2 six subjects performed one low intense (20 W) and three intense (50 W) 3-min (separated by 5 min) one-legged knee-extension exercise bouts with (CAF) and without (CON) prior caffeine supplementation for determination of muscle interstitial K(+) and Na...

  4. Reduced lipid oxidation in skeletal muscle from type 2 diabetic subjects may be of genetic origin: evidence from cultured myotubes.

    Science.gov (United States)

    Gaster, Michael; Rustan, Arild C; Aas, Vigdis; Beck-Nielsen, Henning

    2004-03-01

    Insulin resistance in skeletal muscle in vivo is associated with reduced lipid oxidation and lipid accumulation. It is still uncertain whether changes in lipid metabolism represent an adaptive compensation at the cellular level or a direct expression of a genetic trait. Studies of palmitate metabolism in human myotubes established from control and type 2 diabetic subjects may solve this problem, as genetic defects are preserved and expressed in vitro. In this study, total uptake of palmitic acid was similar in myotubes established from both control and type 2 diabetic subjects under basal conditions and acute insulin stimulation. Myotubes established from diabetic subjects expressed a primary reduced palmitic acid oxidation to carbon dioxide with a concomitantly increased esterification of palmitic acid into phospholipids compared with control myotubes under basal conditions. Triacylglycerol (TAG) content and the incorporation of palmitic acid into diacylglycerol (DAG) and TAG at basal conditions did not vary between the groups. Acute insulin treatment significantly increased palmitate uptake and incorporation of palmitic acid into DAG and TAG in myotubes established from both study groups, but no difference was found in myotubes established from control and diabetic subjects. These results indicate that the reduced lipid oxidation in diabetic skeletal muscle in vivo may be of genetic origin; it also appears that TAG metabolism is not primarily affected in diabetic muscles under basal physiological conditions.

  5. Piroxicam fails to reduce myocellular enzyme leakage and delayed onset muscle soreness induced by isokinetic eccentric exercise

    Directory of Open Access Journals (Sweden)

    J-L. Croisier

    1996-01-01

    Full Text Available To test the hypothesis that delayed onset muscular soreness (DOMS following intense eccentric muscle contraction could be due to increased production of prostaglandin E2 (PGE2, ten healthy male subjects were studied. Using a double-blind randomized crossover design, each subject performed two isokinetic tests separated by a period of at least 6 weeks: once with placebo, and once with piroxicam (Feldene®. They were given one capsule containing either placebo or piroxicam (20 mg per day for 6 days with initial doses given starting 3 days prior to isokinetic testing. Exercise consisted of eight stages of five maximal contractions of the knee extensor and flexor muscle groups of both legs separated by 1 min rest phases, on a Kin Trex device at 60°/s angular velocity. The subjective presence and intensity of DOMS were evaluated using a visual analogue scale immediately after, and 24 and 48 h after each test. The mean plasma concentration of PGE2 measured at rest and after exercise was significantly lower in the group treated with piroxicam (p < 0.05. However, statistical analysis (two-way ANOVA test revealed that exercise did not cause any significant change of mean plasma PGE2 over time in either of the two groups. Eccentric work was followed by severe muscle pain in extensor and flexor muscle groups. Maximal soreness was noted 48 h postexercise. Serum creatine kinase activity and the serum concentration of myoglobin increased significantly, and reached peak values 48 h after exercise in both experimental conditions (p < 0.001. By paired t-test, it appeared that there were no significant differences in the serum levels of these two markers of muscle damage between the two groups at any time point. We conclude that: (1 oral administration of piroxicam fails to reduce muscle damage and DOMS caused by strenuous eccentric exercise; and (2 the hypothetical role of increased PGE2 production in eccentric exercise-induced muscle damage, DOMS, and reduced

  6. Piroxicam fails to reduce myocellular enzyme leakage and delayed onset muscle soreness induced by isokinetic eccentric exercise

    Science.gov (United States)

    Croisier, J-L.; Monfils, T.; Deby-Dupon, G.; Fafchamps, M.; Venneman, I.; Crielaard, J-M.; Juchmès-Ferir, A.; Lhermerout, C.; Lamy, M.; Deby, C.

    1996-01-01

    To test the hypothesis that delayed onset muscular soreness (DOMS) following intense eccentric muscle contraction could be due to increased production of prostaglandin E2 (PGE2), ten healthy male subjects were studied. Using a double-blind randomized crossover design, each subject performed two isokinetic tests separated by a period of at least 6 weeks: once with placebo, and once with piroxicam (Feldene®). They were given one capsule containing either placebo or piroxicam (20 mg) per day for 6 days with initial doses given starting 3 days prior to isokinetic testing. Exercise consisted of eight stages of five maximal contractions of the knee extensor and flexor muscle groups of both legs separated by 1 min rest phases, on a Kin Trex device at 60°/s angular velocity. The subjective presence and intensity of DOMS were evaluated using a visual analogue scale immediately after, and 24 and 48 h after each test. The mean plasma concentration of PGE2 measured at rest and after exercise was significantly lower in the group treated with piroxicam (p < 0.05). However, statistical analysis (two-way ANOVA test) revealed that exercise did not cause any significant change of mean plasma PGE2 over time in either of the two groups. Eccentric work was followed by severe muscle pain in extensor and flexor muscle groups. Maximal soreness was noted 48 h postexercise. Serum creatine kinase activity and the serum concentration of myoglobin increased significantly, and reached peak values 48 h after exercise in both experimental conditions (p < 0.001). By paired t-test, it appeared that there were no significant differences in the serum levels of these two markers of muscle damage between the two groups at any time point. We conclude that: (1) oral administration of piroxicam fails to reduce muscle damage and DOMS caused by strenuous eccentric exercise; and (2) the hypothetical role of increased PGE2 production in eccentric exercise-induced muscle damage, DOMS, and reduced isokinetic

  7. Carrageenan-Induced Colonic Inflammation Is Reduced in Bcl10 Null Mice and Increased in IL-10-Deficient Mice

    Directory of Open Access Journals (Sweden)

    Sumit Bhattacharyya

    2013-01-01

    Full Text Available The common food additive carrageenan is a known activator of inflammation in mammalian tissues and stimulates both the canonical and noncanonical pathways of NF-κB activation. Exposure to low concentrations of carrageenan (10 μg/mL in the water supply has produced glucose intolerance, insulin resistance, and impaired insulin signaling in C57BL/6 mice. B-cell leukemia/lymphoma 10 (Bcl10 is a mediator of inflammatory signals from Toll-like receptor (TLR 4 in myeloid and epithelial cells. Since the TLR4 signaling pathway is activated in diabetes and by carrageenan, we addressed systemic and intestinal inflammatory responses following carrageenan exposure in Bcl10 wild type, heterozygous, and null mice. Fecal calprotectin and circulating keratinocyte chemokine (KC, nuclear RelA and RelB, phospho(Thr559-NF-κB-inducing kinase (NIK, and phospho(Ser36-IκBα in the colonic epithelial cells were significantly less (P<0.001 in the carrageenan-treated Bcl10 null mice than in controls. IL-10-deficient mice exposed to carrageenan in a germ-free environment showed an increase in activation of the canonical pathway of NF-κB (RelA activation, but without increase in RelB or phospho-Bcl10, and exogenous IL-10 inhibited only the canonical pathway of NF-κB activation in cultured colonic cells. These findings demonstrate a Bcl10 requirement for maximum development of carrageenan-induced inflammation and lack of complete suppression by IL-10 of carrageenan-induced inflammation.

  8. Walking with a four wheeled walker (rollator) significantly reduces EMG lower-limb muscle activity in healthy subjects.

    Science.gov (United States)

    Suica, Zorica; Romkes, Jacqueline; Tal, Amir; Maguire, Clare

    2016-01-01

    To investigate the immediate effect of four-wheeled- walker(rollator)walking on lower-limb muscle activity and trunk-sway in healthy subjects. In this cross-sectional design electromyographic (EMG) data was collected in six lower-limb muscle groups and trunk-sway was measured as peak-to-peak angular displacement of the centre-of-mass (level L2/3) in the sagittal and frontal-planes using the SwayStar balance system. 19 subjects walked at self-selected speed firstly without a rollator then in randomised order 1. with rollator 2. with rollator with increased weight-bearing. Rollator-walking caused statistically significant reductions in EMG activity in lower-limb muscle groups and effect-sizes were medium to large. Increased weight-bearing increased the effect. Trunk-sway in the sagittal and frontal-planes showed no statistically significant difference between conditions. Rollator-walking reduces lower-limb muscle activity but trunk-sway remains unchanged as stability is likely gained through forces generated by the upper-limbs. Short-term stability is gained but the long-term effect is unclear and requires investigation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Combined inhibition of nitric oxide and prostaglandins reduces human skeletal muscle blood flow during exercise

    DEFF Research Database (Denmark)

    Boushel, Robert Christopher; Langberg, Henning; Gemmer, Carsten;

    2002-01-01

    The vascular endothelium is an important mediator of tissue vasodilatation, yet the role of the specific substances, nitric oxide (NO) and prostaglandins (PG), in mediating the large increases in muscle perfusion during exercise in humans is unclear. Quadriceps microvascular blood flow was quanti...

  10. In utero glucocorticoid (GLC) exposure reduces fetal skeletal muscle growth in rats

    Science.gov (United States)

    Maternal undernutrition and stress expose the fetus to above normal levels of GLC and predispose to intrauterine growth restriction. The aim of this study was to determine if fetal GLC exposure impairs skeletal muscle growth independently of maternal undernutrition. Three groups (n=7/group) of timed...

  11. Muscle involvement in juvenile idiopathic arthritis.

    Science.gov (United States)

    Lindehammar, H; Lindvall, B

    2004-12-01

    An observational study of changes in muscle structure and the relation to muscle strength in juvenile idiopathic arthritis (JIA). Fifteen children and teenagers (eight girls and seven boys) with JIA, aged 9-19 yr (mean age 16.1), were studied. Muscle biopsies were obtained from the anterior tibial muscle and were examined using histopathological and immunohistochemical methods. Muscle fibre types were classified and fibre areas measured. As markers of inflammation, the major histocompatibility complex (MHC) class I and class II and the membrane attack complex (MAC) were analysed. Results were compared with biopsies from the gastrocnemius muscle in 33 young (19-23 yr) healthy controls. Isometric and isokinetic muscle strengths were measured in ankle dorsiflexion. Strength was compared with reference values for healthy age-matched controls. Nerve conduction velocities were recorded in the peroneal and sural nerves. Four of the 15 muscle biopsies were morphologically normal. Eleven biopsies showed minor unspecific changes. Two of these also showed minor signs of inflammation. MHC class II expression was found in 4/15 patients, which was significantly more than in the healthy controls (P = 0.0143). The expression of MHC class I and MAC did not differ from that in the controls. The mean area of type I fibres was lower than that of type IIA fibres in 12/13 biopsies. Muscle strength was significantly reduced in the patient group. There was a significant positive correlation between muscle fibre area and muscle strength. Nerve conduction studies were normal in all cases. Changes in leg muscle biopsies appear to be common in children and teenagers with JIA. The presence of inflammatory cells in the muscle and expression of MHC class II on muscle fibres may be a sign of inflammatory myopathy. There are no findings of type II muscle fibre hypotrophy or neuropathy, as in adults with RA.

  12. Modulation of airway inflammation and resistance in mice by a nicotinic receptor agonist.

    Science.gov (United States)

    Blanchet, M-R; Israël-Assayag, E; Cormier, Y

    2005-07-01

    Nicotinic agonists, including 1,1-dimethyl-4-phenylpiperazinium (DMPP), have anti-inflammatory properties and in some instances smooth muscle relaxing effects. Since inflammation and airway smooth muscle contraction are two major components of asthma, the present authors investigated the effects of DMPP on airway inflammation and airway resistance in a mouse model of asthma. Mice were sensitised and challenged with ovalbumin (OVA) and treated either intraperitoneally or intranasally with DMPP. The effect of DMPP was tested on airway inflammation, airway resistance and on the increase of intracellular calcium in bronchial smooth muscle cells. DMPP given either during sensitisation, OVA challenges or throughout the protocol prevented lung inflammation and decreased the serum level of OVA specific immunoglobulin E. DMPP administration reduced the number of total cells, lymphocytes and eosinophils in the bronchoalveolar lavage (BAL) fluid. Intranasal DMPP administration was as effective as dexamethasone (DEXA) in reducing total cell count and eosinophil counts in BAL fluid. DMPP, but not DEXA, reduced tissue inflammation. Intranasal DMPP, given 10 min before the test, reduced airway responsiveness to metacholine. DMPP also reduced the increase in intracellular calcium in response to bradykinin. In conclusion, these results show that 1,1-dimethyl-4-phenylpiperazinium reduces lung inflammation and prevents airway hyperresponsiveness in the mouse model of asthma.

  13. Fish oil-supplemented parenteral nutrition could alleviate acute lung injury, modulate immunity, and reduce inflammation in rats with abdominal sepsis.

    Science.gov (United States)

    Li, Xiaolong; Zhang, Xianxiang; Yang, Enqin; Zhang, Nanyang; Cao, Shougen; Zhou, Yanbing

    2015-09-01

    The objectives were to confirm that intravenous fish oil (FO) emulsions could alleviate acute lung injury, modulate immunity, and reduce inflammation in rats with abdominal sepsis and to explore the mechanisms of these effects. Thirty-six adult male Sprague-Dawley rats were divided into 4 groups randomly. Two days after central venous catheterization, rats were subjected to cecal ligation and puncture to produce abdominal sepsis. Rats were assigned to receive normal saline or total parenteral nutrition (TPN) containing standard soybean oil emulsions or FO-supplemented TPN at the onset of sepsis for 5 days. A sham operation and control treatment were performed in control group rats. Acute lung injury scores, peripheral blood lymphocyte subsets, plasma cytokines, and Foxp3 expression in the spleen were determined. Compared with the normal saline and TPN without FO, FO-supplemented TPN beneficially altered the distributions of the T-lymphocyte subsets and downregulated the acute lung injury scores, plasma cytokines, and expression of Foxp3 due to sepsis. Fish oil-supplemented TPN can decrease acute lung injury scores, alleviate histopathology, reduce the bacterial load in the peritoneal lavage fluid, modulate the lymphocyte subpopulation in the peripheral blood, downregulate Foxp3 expression in the spleen, and reduce plasma cytokines, which means that FO-supplemented TPN can alleviate acute lung injury, modulate immunity, and reduce inflammation in rats with abdominal sepsis.

  14. Ca²⁺ signals promote GLUT4 exocytosis and reduce its endocytosis in muscle cells.

    Science.gov (United States)

    Li, Q; Zhu, X; Ishikura, S; Zhang, D; Gao, J; Sun, Y; Contreras-Ferrat, A; Foley, K P; Lavandero, S; Yao, Z; Bilan, P J; Klip, A; Niu, W

    2014-07-15

    Elevating cytosolic Ca(2+) stimulates glucose uptake in skeletal muscle, but how Ca(2+) affects intracellular traffic of GLUT4 is unknown. In tissue, changes in Ca(2+) leading to contraction preclude analysis of the impact of individual, Ca(2+)-derived signals. In L6 muscle cells stably expressing GLUT4myc, the Ca(2+) ionophore ionomycin raised cytosolic Ca(2+) and caused a gain in cell surface GLUT4myc. Extra- and intracellular Ca(2+) chelators (EGTA, BAPTA-AM) reversed this response. Ionomycin activated calcium calmodulin kinase II (CaMKII), AMPK, and PKCs, but not Akt. Silencing CaMKIIδ or AMPKα1/α2 partly reduced the ionomycin-induced gain in surface GLUT4myc, as did peptidic or small molecule inhibitors of CaMKII (CN21) and AMPK (Compound C). Compared with the conventional isoenzyme PKC inhibitor Gö6976, the conventional plus novel PKC inhibitor Gö6983 lowered the ionomycin-induced gain in cell surface GLUT4myc. Ionomycin stimulated GLUT4myc exocytosis and inhibited its endocytosis in live cells. siRNA-mediated knockdown of CaMKIIδ or AMPKα1/α2 partly reversed ionomycin-induced GLUT4myc exocytosis but did not prevent its reduced endocytosis. Compared with Gö6976, Gö6983 markedly reversed the slowing of GLUT4myc endocytosis triggered by ionomycin. In summary, rapid Ca(2+) influx into muscle cells accelerates GLUT4myc exocytosis while slowing GLUT4myc endocytosis. CaMKIIδ and AMPK stimulate GLUT4myc exocytosis, whereas novel PKCs reduce endocytosis. These results identify how Ca(2+)-activated signals selectively regulate GLUT4 exocytosis and endocytosis in muscle cells.

  15. Cholesterol-induced inflammation and macrophage accumulation in adipose tissue is reduced by a low carbohydrate diet in guinea pigs.

    Science.gov (United States)

    Aguilar, David; deOgburn, Ryan C; Volek, Jeff S; Fernandez, Maria Luz

    2014-12-01

    The main objective of this study was to evaluate the effects of a high cholesterol (HC) dietary challenge on cholesterol tissue accumulation, inflammation, adipocyte differentiation, and macrophage infiltration in guinea pigs. A second objective was to assess whether macronutrient manipulation would reverse these metabolic alterations. Male Hartley guinea pigs (10/group) were assigned to either low cholesterol (LC) (0.04g/100g) or high cholesterol (HC) (0.25g/100g) diets for six weeks. For the second experiment, 20 guinea pigs were fed the HC diet for six weeks and then assigned to either a low carbohydrate (CHO) diet (L-CHO) (10% energy from CHO) or a high CHO diet (H-CHO) (54% CHO) for an additional six weeks. Higher concentrations of total (P adipose tissue and aortas of guinea pigs fed the HC compared to those in the LC group. In addition, higher concentrations of pro-inflammatory cytokines in the adipose tissue (P adipocytes in the HC group were smaller in size (P adipose and aortas as well as lower concentrations of inflammatory cytokines in adipose tissue were observed in the L-CHO group (P adipose cells and lower macrophage infiltration compared to the H-CHO group. The results of this study strongly suggest that HC induces metabolic dysregulation associated with inflammation in adipose tissue and that L-CHO is more effective than H-CHO in attenuating these detrimental effects.

  16. Grape seed and skin extract reduces pancreas lipotoxicity, oxidative stress and inflammation in high fat diet fed rats.

    Science.gov (United States)

    Aloui, Faten; Charradi, Kamel; Hichami, Aziz; Subramaniam, Selvakumar; Khan, Naim Akhtar; Limam, Ferid; Aouani, Ezzedine

    2016-12-01

    Obesity is related to an elevated risk of diabetes and the mechanisms whereby fat adversely affects the pancreas are poorly understood. We studied the effect of a high fat diet (HFD) on pancreas steatosis, oxidative stress and inflammation as well as the putative protection afforded by grape seed and skin extract (GSSE). HFD induced body weight gain, without affecting insulinemia, nor glycemia and dropped adiponectemia. HFD also provoked the ectopic deposition of cholesterol and triglyceride, and an oxidative stress characterized by increased lipoperoxidation and carbonylation, inhibition of antioxidant enzyme activities such as CAT, GPx and SOD, depletion of zinc and a concomitant increase in calcium and H2O2. HFD induced pro-inflammatory chemokines mRNA as RANTES and MCP1 as well as cytokines expression as TNFα, IL6 and IL1β. Importantly GSSE counteracted all the deleterious effects of HFD on pancreas in vivo i-e lipotoxicity, oxidative stress and inflammation. In conclusion, GSSE could find potential applications in fat-induced pancreas lipotoxicity and dysfunction. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  17. Probiotic yogurt and acidified milk similarly reduce postprandial inflammation and both alter the gut microbiota of healthy, young men.

    Science.gov (United States)

    Burton, Kathryn J; Rosikiewicz, Marta; Pimentel, Grégory; Bütikofer, Ueli; von Ah, Ueli; Voirol, Marie-Jeanne; Croxatto, Antony; Aeby, Sébastien; Drai, Jocelyne; McTernan, Philip G; Greub, Gilbert; Pralong, François P; Vergères, Guy; Vionnet, Nathalie

    2017-05-01

    Probiotic yogurt and milk supplemented with probiotics have been investigated for their role in 'low-grade' inflammation but evidence for their efficacy is inconclusive. This study explores the impact of probiotic yogurt on metabolic and inflammatory biomarkers, with a parallel study of gut microbiota dynamics. The randomised cross-over study was conducted in fourteen healthy, young men to test probiotic yogurt compared with milk acidified with 2 % d-(+)-glucono-δ-lactone during a 2-week intervention (400 g/d). Fasting assessments, a high-fat meal test (HFM) and microbiota analyses were used to assess the intervention effects. Baseline assessments for the HFM were carried out after a run-in during which normal milk was provided. No significant differences in the inflammatory response to the HFM were observed after probiotic yogurt compared with acidified milk intake; however, both products were associated with significant reductions in the inflammatory response to the HFM compared with the baseline tests (assessed by IL6, TNFα and chemokine ligand 5) (Pmicrobiota taxa, including decreased abundance of Bilophila wadsworthia after acidified milk (log 2-fold-change (FC)=-1·5, P adj=0·05) and probiotic yogurt intake (FC=-1·3, P adj=0·03), increased abundance of Bifidobacterium species after acidified milk intake (FC=1·4, P adj=0·04) and detection of Lactobacillus delbrueckii spp. bulgaricus (FC=7·0, P adjmicrobiota of healthy men. These observations could be relevant for dietary treatments that target 'low-grade' inflammation.

  18. Can the inflammation markers of patients with high peritoneal permeability on continuous ambulatory peritoneal dialysis be reduced on nocturnal intermittent peritoneal dialysis?

    Science.gov (United States)

    Cueto-Manzano, Alfonso M; Rojas-Campos, Enrique; Martínez-Ramírez, Héctor R; Valera-González, Isela; Medina, Miguel; Monteón, Francisco; Ruiz, Norma; Becerra, Mauricio; Palomeque, Miguel A; Cortés-Sanabria, Laura

    2006-01-01

    Patients with high peritoneal permeability have the greatest degree of inflammation on continuous ambulatory peritoneal dialysis (CAPD), which may be associated with their higher mortality. Nocturnal intermittent peritoneal dialysis (NIPD; "dry day") may decrease inflammation by reducing the contact between dialysate and peritoneum and/or providing better fluid overload control. Therefore, the aims of this study were to determine and compare serum and dialysate concentrations of C-reactive protein (CRP), interleukin-6 (IL-6), and tumor necrosis factor alpha (TNF-alpha) of patients with high or high-average peritoneal transport on CAPD, changed to NIPD, and ultimately to continuous cyclic peritoneal dialysis (CCPD). Crossover clinical trial in 11 randomly selected patients. All subjects had been on CAPD and were changed to NIPD, and ultimately to CCPD (6.4 +/- 3.1 months after initiation of study). All patients used glucose-based dialysate. Evaluations of clinical and biochemical parameters, dialysis adequacy, and serum and dialysis inflammation markers were performed at baseline on CAPD, 7 - 14 days after changing to NIPD, 7 - 14 days after switching to CCPD, and after 1 year of follow-up. All patients used only 1.5% glucose dialysate during evaluation days. CRP was determined by nephelometry, and IL-6 and TNF-alpha by ELISA. Seven patients were high transporters and 4 high average. Ultrafiltration increased (p permeability.

  19. Evidence that a maternal "junk food" diet during pregnancy and lactation can reduce muscle force in offspring.

    Science.gov (United States)

    Bayol, Stéphanie A; Macharia, Raymond; Farrington, Samantha J; Simbi, Bigboy H; Stickland, Neil C

    2009-02-01

    Obesity is a multi-factorial condition generally attributed to an unbalanced diet and lack of exercise. Recent evidence suggests that maternal malnutrition during pregnancy and lactation can also contribute to the development of obesity in offspring. We have developed an animal model in rats to examine the effects of maternal overeating on a westernized "junk food" diet using palatable processed foods rich in fat, sugar and salt designed for human consumption. Using this model, we have shown that such a maternal diet can promote overeating and a greater preference for junk food in offspring at the end of adolescence. The maternal junk food diet also promoted adiposity and muscle atrophy at weaning. Impaired muscle development may permanently affect the function of this tissue including its ability to generate force. The aim of this study is to determine whether a maternal junk food diet can impair muscle force generation in offspring. Twitch and tetanic tensions were measured in offspring fed either chow alone (C) or with a junk food diet (J) during gestation, lactation and/or post-weaning up to the end of adolescence such that three groups of offspring were used, namely the CCC, JJC and JJJ groups. We show that adult offspring from mothers fed the junk food diet in pregnancy and lactation display reduced muscle force (both specific twitch and tetanic tensions) regardless of the post-weaning diet compared with offspring from mothers fed a balanced diet. Maternal malnutrition can influence muscle force production in offspring which may affect an individual's ability to exercise and thereby combat obesity.

  20. S-adenosylmethionine reduces airway inflammation and fibrosis in a murine model of chronic severe asthma via suppression of oxidative stress.

    Science.gov (United States)

    Yoon, Sun-Young; Hong, Gyong Hwa; Kwon, Hyouk-Soo; Park, Sunjoo; Park, So Young; Shin, Bomi; Kim, Tae-Bum; Moon, Hee-Bom; Cho, You Sook

    2016-06-03

    Increased oxidative stress has an important role in asthmatic airway inflammation and remodeling. A potent methyl donor, S-adenosylmethionine (SAMe), is known to protect against tissue injury and fibrosis through modulation of oxidative stress. The aim of this study was to evaluate the effect of SAMe on airway inflammation and remodeling in a murine model of chronic asthma. A mouse model was generated by repeated intranasal challenge with ovalbumin and Aspergillus fungal protease twice a week for 8 weeks. SAMe was orally administered every 24 h for 8 weeks. We performed bronchoalveolar lavage (BAL) fluid analysis and histopathological examination. The levels of various cytokines and 4-hydroxy-2-nonenal (HNE) were measured in the lung tissue. Cultured macrophages and fibroblasts were employed to evaluate the underlying anti-inflammatory and antifibrotic mechanisms of SAMe. The magnitude of airway inflammation and fibrosis, as well as the total BAL cell counts, were significantly suppressed in the SAMe-treated groups. A reduction in T helper type 2 pro-inflammatory cytokines and HNE levels was observed in mouse lung tissue after SAMe administration. Macrophages cultured with SAMe also showed reduced cellular oxidative stress and pro-inflammatory cytokine production. Moreover, SAMe treatment attenuated transforming growth factor-β (TGF-β)-induced fibronectin expression in cultured fibroblasts. SAMe had a suppressive effect on airway inflammation and fibrosis in a mouse model of chronic asthma, at least partially through the attenuation of oxidative stress and TGF-β-induced fibronectin expression. The results of this study suggest a potential role for SAMe as a novel therapeutic agent in chronic asthma.

  1. Non-steroidal anti-inflammatory drugs use is associated with reduced risk of inflammation-associated cancers: NIH-AARP study.

    Directory of Open Access Journals (Sweden)

    Fatma M Shebl

    Full Text Available BACKGROUND: Chronic inflammation has been linked to cancers, and use of non-steroidal anti-inflammatory drugs (NSAIDs has been associated with reduced risk of several cancers. To further refine the magnitude of NSAID-related associations, in particular for cancers related to inflammation, such as alcohol-, infection-, obesity-, and smoking-related cancers, as well as for less common cancers, we evaluated the use of NSAIDs and cancer risk in a very large cohort. We used propensity scores to account for potential selection bias and hypothesized that NSAID use is associated with decreased cancer incidence. METHODS: We conducted a prospective study among 314,522 participants in the NIH-AARP Diet and Health Study. Individuals who completed the lifestyle questionnaire, which included NSAID use, in 1996-1997 were followed through 2006. Information on cancer incidence was ascertained by linking to cancer registries and vital status databases. FINDINGS: During 2,715,994 person-years of follow-up (median 10.1 person-years, there were 51,894 incident cancers. Compared with non-users of NSAIDs, individuals who reported use in the 12 months prior to interview had a significantly lower risk of all inflammation-related cancer, alcohol-related, infection-related, obesity-related, and smoking-related cancers [hazard ratio (HR (95% CI 0.90 (0.87-0.93, 0.80 (0.74-0.85, 0.82 (0.78-0.87, 0.88 (0.84-0.92, and 0.88 (0.85-0.92 respectively]. CONCLUSIONS: After accounting for potential selection bias, our data showed an inverse association between NSAID use and alcohol-related, infection-related, obesity-related, and smoking-related cancers and support the hypothesis that inflammation is related to an increased risk of certain cancers.

  2. Sequence analysis of the genome of piscine orthoreovirus (PRV associated with heart and skeletal muscle inflammation (HSMI in Atlantic salmon (Salmo salar.

    Directory of Open Access Journals (Sweden)

    Turhan Markussen

    Full Text Available Piscine orthoreovirus (PRV is associated with heart- and skeletal muscle inflammation (HSMI of farmed Atlantic salmon (Salmo salar. We have performed detailed sequence analysis of the PRV genome with focus on putative encoded proteins, compared with prototype strains from mammalian (MRV T3D- and avian orthoreoviruses (ARV-138, and aquareovirus (GCRV-873. Amino acid identities were low for most gene segments but detailed sequence analysis showed that many protein motifs or key amino acid residues known to be central to protein function are conserved for most PRV proteins. For M-class proteins this included a proline residue in μ2 which, for MRV, has been shown to play a key role in both the formation and structural organization of virus inclusion bodies, and affect interferon-β signaling and induction of myocarditis. Predicted structural similarities in the inner core-forming proteins λ1 and σ2 suggest a conserved core structure. In contrast, low amino acid identities in the predicted PRV surface proteins μ1, σ1 and σ3 suggested differences regarding cellular interactions between the reovirus genera. However, for σ1, amino acid residues central for MRV binding to sialic acids, and cleavage- and myristoylation sites in μ1 required for endosomal membrane penetration during infection are partially or wholly conserved in the homologous PRV proteins. In PRV σ3 the only conserved element found was a zinc finger motif. We provide evidence that the S1 segment encoding σ3 also encodes a 124 aa (p13 protein, which appears to be localized to intracellular Golgi-like structures. The S2 and L2 gene segments are also potentially polycistronic, predicted to encode a 71 aa- (p8 and a 98 aa (p11 protein, respectively. It is concluded that PRV has more properties in common with orthoreoviruses than with aquareoviruses.

  3. Piscine Orthoreovirus from Western North America Is Transmissible to Atlantic Salmon and Sockeye Salmon but Fails to Cause Heart and Skeletal Muscle Inflammation.

    Directory of Open Access Journals (Sweden)

    Kyle A Garver

    Full Text Available Heart and skeletal muscle inflammation (HSMI is a significant and often fatal disease of cultured Atlantic salmon in Norway. The consistent presence of Piscine orthoreovirus (PRV in HSMI diseased fish along with the correlation of viral load and antigen with development of lesions has supported the supposition that PRV is the etiologic agent of this condition; yet the absence of an in vitro culture system to demonstrate disease causation and the widespread prevalence of this virus in the absence of disease continues to obfuscate the etiological role of PRV with regard to HSMI. In this study, we explore the infectivity and disease causing potential of PRV from western North America-a region now considered endemic for PRV but without manifestation of HSMI-in challenge experiments modeled upon previous reports associating PRV with HSMI. We identified that western North American PRV is highly infective by intraperitoneal injection in Atlantic salmon as well as through cohabitation of both Atlantic and Sockeye salmon. High prevalence of viral RNA in peripheral blood of infected fish persisted for as long as 59 weeks post-challenge. Nevertheless, no microscopic lesions, disease, or mortality could be attributed to the presence of PRV, and only a minor transcriptional induction of the antiviral Mx gene occurred in blood and kidney samples during log-linear replication of viral RNA. Comparative analysis of the S1 segment of PRV identified high similarity between this North American sequence and previous sequences associated with HSMI, suggesting that factors such as viral co-infection, alternate PRV strains, host condition, or specific environmental circumstances may be required to cause this disease.

  4. Intra-articular injection of Botulinum toxin A reduces neurogenic inflammation in CFA-induced arthritic rat model.

    Science.gov (United States)

    Wang, Lin; Wang, Kaile; Chu, Xiao; Li, Tieshan; Shen, Nana; Fan, Chenglei; Niu, Zhenyuan; Zhang, Xiaochen; Hu, Luoman

    2017-02-01

    Currently, administration of Botulinum toxin Type A (BoNT/A) to treat arthritic pain has promising efficacy in clinical research. However, the mechanisms underlying anti-neurogenic inflammation mediated by BoNT/A remains unclear. The aim of this study was to demonstrate the effectiveness in macro and micro levels and to explore the causal mechanism of BoNT/A. Wistar rats (n = 60) were injected with 50ul complete Freund's adjuvant (CFA) in the left ankle joint capsule to establish a model of chronic monoarthritis. Pain behaviour (Evoked pain assessment) and infrared thermal imaging testing were performed at the macroscopic level to assess the effectiveness of analgesia and anti-inflammation. Western blotting and immunofluorescence staining were used at the microscopic level in an attempt to determine the mechanisms of anti-nociceptive or anti-inflammatory effects of BoNT/A. Additionally, hematoxylin-eosin staining was also used to visualise the cartilage and the synovial degenerative conditions of arthritis. By comparing the outcome of the evoked pain test and immunofluorescence staining, there was a significant improvement in BoNT/A compared with the normal saline (NS) injected control group. In addition, thermal variations showed that the temperature of ipsilateral ankle joint increased between 1 and 2 weeks following injection of CFA, but decreased after 3 weeks (still above the contralateral side). However, the temperature showed no difference between the BoNT/A group and NS group after treatment. The expression of IL-1β or TNF-α in the ankle synovial tissue was significantly decreased in the BoNT/A group compared to the NS group (p < 0.05). Based on the HE assessment, cartilage degeneration and infiltration of inflammatory cells in the BoNT/A group was alleviated compared to the NS group after treatment. In conclusion, we proposed the hypothesis that intra-articular BoNT/A administration does play an important role in anti-neurogenic inflammation. The

  5. Non-reducible knee dislocation with interposition of the vastus medialis muscle

    OpenAIRE

    2011-01-01

    Irreducibility of the knee following complete dislocation is a rare event determined by the interposition of various capsulo-ligamentous structures in the joint space. Such cases often require urgent surgical treatment. We report the case of a healthy 70-year-old man with a sprain of the left knee that occurred after a sports trauma. The patient showed knee dislocation with multiple ligamentous injuries and articular block due to interposition of a portion of the vastus medialis muscle. After...

  6. Embryonic-only arsenic exposure in killifish (Fundulus heteroclitus) reduces growth and alters muscle IGF levels one year later.

    Science.gov (United States)

    Szymkowicz, Dana B; Sims, Kaleigh C; Castro, Noemi M; Bridges, William C; Bain, Lisa J

    2017-05-01

    Arsenic is a contaminant of drinking water and crops in many parts of the world. Epidemiological studies have shown that arsenic exposure is linked to decreased birth weight, weight gain, and proper skeletal muscle function. The goal of this study was to use killifish (Fundulus heteroclitus) as a model to determine the long-term effects of embryonic-only arsenic exposure on muscle growth and the insulin-like growth factor (IGF) pathway. Killifish embryos were exposed to 0, 50, 200 or 800ppb As(III) from fertilization until hatching. Juvenile fish were reared in clean water and muscle samples were collected at 16, 28, 40 and 52 weeks of age. There were significant reductions in condition factors, ranging from 12 to 17%, in the fish exposed to arsenic at 16, 28 and 40 weeks of age. However, by 52 weeks, no significant changes in condition factors were seen. Alterations in IGF-1R and IGF-1 levels were assessed as a potential mechanism by which growth was reduced. While there no changes in hepatic IGF-1 transcripts, skeletal muscle cells can also produce their own IGF-1 and/or alter IGF-1 receptor levels to help enhance growth. After a 200 and 800ppb embryonic exposure, fish grown in clean water for 16 weeks had IGF-1R transcripts that were 2.8-fold and 2-fold greater, respectively, than unexposed fish. Through 40 weeks of age, IGF1-R remained elevated in the 200ppb and 800ppb embryonic exposure groups by 1.8-3.9-fold, while at 52 weeks of age, IGF-1R levels were still significantly increased in the 800ppb exposure group. Skeletal muscle IGF-1 transcripts were also significantly increased by 1.9-5.1 fold through the 52 weeks of grow-out in clean by water in the 800ppb embryonic exposure group. Based on these results, embryonic arsenic exposure has long-term effects in that it reduces growth and increases both IGF-1 and IGF-1R levels in skeletal muscle even 1year after the exposure has ended. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Repin1 deficiency improves insulin sensitivity and glucose metabolism in db/db mice by reducing adipose tissue mass and inflammation.

    Science.gov (United States)

    Kunath, Anne; Hesselbarth, Nico; Gericke, Martin; Kern, Matthias; Dommel, Sebastian; Kovacs, Peter; Stumvoll, Michael; Blüher, Matthias; Klöting, Nora

    2016-09-09

    Replication initiator 1 (Repin1) is a zinc finger protein playing a role in insulin sensitivity, body fat mass and lipid metabolism by regulating the expression key genes of glucose and lipid metabolism. Here, we tested the hypothesis that introgression of a Repin1 deletion into db/db mice improves glucose metabolism in vivo. We generated a whole body Repin1 deficient db/db double knockout mouse (Rep1(-/-)x db/db) and systematically characterized the consequences of Repin1 deficiency on insulin sensitivity, glucose and lipid metabolism parameters and fat mass. Hyperinsulinemic-euglycemic clamp studies revealed significantly improved insulin sensitivity in Rep1(-/-)x db/db mice, which are also characterized by lower HbA1c, lower body fat mass and reduced adipose tissue (AT) inflammation area. Our study provides evidence that loss of Repin1 in db/db mice improves insulin sensitivity and reduces chronic hyperglycemia most likely by reducing fat mass and AT inflammation. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Effects of exercise training on chronic inflammation in obesity : current evidence and potential mechanisms.

    Science.gov (United States)

    You, Tongjian; Arsenis, Nicole C; Disanzo, Beth L; Lamonte, Michael J

    2013-04-01

    Chronic, systemic inflammation is an independent risk factor for several major clinical diseases. In obesity, circulating levels of inflammatory markers are elevated, possibly due to increased production of pro-inflammatory cytokines from several tissues/cells, including macrophages within adipose tissue, vascular endothelial cells and peripheral blood mononuclear cells. Recent evidence supports that adipose tissue hypoxia may be an important mechanism through which enlarged adipose tissue elicits local tissue inflammation and further contributes to systemic inflammation. Current evidence supports that exercise training, such as aerobic and resistance exercise, reduces chronic inflammation, especially in obese individuals with high levels of inflammatory biomarkers undergoing a longer-term intervention. Several studies have reported that this effect is independent of the exercise-induced weight loss. There are several mechanisms through which exercise training reduces chronic inflammation, including its effect on muscle tissue to generate muscle-derived, anti-inflammatory 'myokine', its effect on adipose tissue to improve hypoxia and reduce local adipose tissue inflammation, its effect on endothelial cells to reduce leukocyte adhesion and cytokine production systemically, and its effect on the immune system to lower the number of pro-inflammatory cells and reduce pro-inflammatory cytokine production per cell. Of these potential mechanisms, the effect of exercise training on adipose tissue oxygenation is worth further investigation, as it is very likely that exercise training stimulates adipose tissue angiogenesis and increases blood flow, thereby reducing hypoxia and the associated chronic inflammation in adipose tissue of obese individuals.

  9. Acute inflammation reduces kisspeptin immunoreactivity at the arcuate nucleus and decreases responsiveness to kisspeptin independently of its anorectic effects

    DEFF Research Database (Denmark)

    Castellano, J M; Bentsen, A H; Romero, M;

    2010-01-01

    Severe inflammatory challenges are frequently coupled to decreased food intake and disruption of reproductive function, the latter via deregulation of different signaling pathways that impinge onto GnRH neurons. Recently, the hypothalamic Kiss1 system, a major gatekeeper of GnRH function...... of hypothalamic kisspeptin immunoreactivity (IR) and hormonal responses to kisspeptin during the acute inflammatory phase. LPS injections induced a dramatic but transient drop of serum LH and testosterone levels. Suppression of gonadotropic function was associated with a significant decrease in kisspeptin...... for the neuroendocrine control of reproduction. Our results also suggest that suppressed gonadotropic function following inflammatory challenges might involve a reduction in absolute responsiveness to kisspeptin that is independent of the anorectic effects of inflammation....

  10. Acute inflammation reduces kisspeptin immunoreactivity at the arcuate nucleus and decreases responsiveness to kisspeptin independently of its anorectic effects

    DEFF Research Database (Denmark)

    Castellano, J M; Bentsen, A H; Romero, M;

    2010-01-01

    of hypothalamic kisspeptin immunoreactivity (IR) and hormonal responses to kisspeptin during the acute inflammatory phase. LPS injections induced a dramatic but transient drop of serum LH and testosterone levels. Suppression of gonadotropic function was associated with a significant decrease in kisspeptin......-IR in the arcuate nucleus (ARC) that was not observed under conditions of metabolic stress induced by 48-h fasting. In addition, absolute responses to kisspeptin-10 (Kp-10), in terms of LH and testosterone secretion, were significantly attenuated in LPS-treated males that also displayed a decrease in food intake...... and body weight. Yet pair-fed males did not show similar alterations in LH and testosterone secretory responses to Kp-10, whose magnitude was preserved, if not augmented, during food restriction. In summary, our data document the impact of acute inflammation on kisspeptin content at the ARC as key center...

  11. Low level laser therapy before eccentric exercise reduces muscle damage markers in humans.

    Science.gov (United States)

    Baroni, Bruno Manfredini; Leal Junior, Ernesto Cesar Pinto; De Marchi, Thiago; Lopes, André Luiz; Salvador, Mirian; Vaz, Marco Aurélio

    2010-11-01

    The purpose of the present study was to determine the effect of low level laser therapy (LLLT) treatment before knee extensor eccentric exercise on indirect markers of muscle damage. Thirty-six healthy men were randomized in LLLT group (n = 18) and placebo group (n = 18). After LLLT or placebo treatment, subjects performed 75 maximal knee extensors eccentric contractions (five sets of 15 repetitions; velocity = 60° seg(-1); range of motion = 60°). Muscle soreness (visual analogue scale--VAS), lactate dehydrogenase (LDH) and creatine kinase (CK) levels were measured prior to exercise, and 24 and 48 h after exercise. Muscle function (maximal voluntary contraction--MVC) was measured before exercise, immediately after, and 24 and 48 h post-exercise. Groups had no difference on kineanthropometric characteristics and on eccentric exercise performance. They also presented similar baseline values of VAS (0.00 mm for LLLT and placebo groups), LDH (LLLT = 186 IU/l; placebo = 183 IU/l), CK (LLLT = 145 IU/l; placebo = 155 IU/l) and MVC (LLLT = 293 Nm; placebo = 284 Nm). VAS data did not show group by time interaction (P = 0.066). In the other outcomes, LLLT group presented (1) smaller increase on LDH values 48 h post-exercise (LLLT = 366 IU/l; placebo = 484 IU/l; P = 0.017); (2) smaller increase on CK values 24 h (LLLT = 272 IU/l; placebo = 498 IU/l; P = 0.020) and 48 h (LLLT = 436 IU/l; placebo = 1328 IU/l; P exercise; (3) smaller decrease on MVC immediately after exercise (LLLT = 189 Nm; placebo = 154 Nm; P = 0.011), and 24 h (LLLT = 249 Nm; placebo = 205 Nm; P = 0.004) and 48 h (LLLT = 267 Nm; placebo = 216 Nm; P = 0.001) post-exercise compared with the placebo group. In conclusion, LLLT treatment before eccentric exercise was effective in terms of attenuating the increase of muscle proteins in the blood serum and the decrease in muscle force.

  12. Gestational diabetes is characterized by reduced mitochondrial protein expression and altered calcium signaling proteins in skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Kristen E Boyle

    Full Text Available The rising prevalence of gestational diabetes mellitus (GDM affects up to 18% of pregnant women with immediate and long-term metabolic consequences for both mother and infant. Abnormal glucose uptake and lipid oxidation are hallmark features of GDM prompting us to use an exploratory proteomics approach to investigate the cellular mechanisms underlying differences in skeletal muscle metabolism between obese pregnant women with GDM (OGDM and obese pregnant women with normal glucose tolerance (ONGT. Functional validation was performed in a second cohort of obese OGDM and ONGT pregnant women. Quantitative proteomic analysis in rectus abdominus skeletal muscle tissue collected at delivery revealed reduced protein content of mitochondrial complex I (C-I subunits (NDUFS3, NDUFV2 and altered content of proteins involved in calcium homeostasis/signaling (calcineurin A, α1-syntrophin, annexin A4 in OGDM (n = 6 vs. ONGT (n = 6. Follow-up analyses showed reduced enzymatic activity of mitochondrial complexes C-I, C-III, and C-IV (-60-75% in the OGDM (n = 8 compared with ONGT (n = 10 subjects, though no differences were observed for mitochondrial complex protein content. Upstream regulators of mitochondrial biogenesis and oxidative phosphorylation were not different between groups. However, AMPK phosphorylation was dramatically reduced by 75% in the OGDM women. These data suggest that GDM is associated with reduced skeletal muscle oxidative phosphorylation and disordered calcium homeostasis. These relationships deserve further attention as they may represent novel risk factors for development of GDM and may have implications on the effectiveness of physical activity interventions on both treatment strategies for GDM and for prevention of type 2 diabetes postpartum.

  13. Ganoderma lucidum Polysaccharides Reduce Lipopolysaccharide-Induced Interleukin-1β Expression in Cultured Smooth Muscle Cells and in Thoracic Aortas in Mice

    Directory of Open Access Journals (Sweden)

    Chan-Jung Liang

    2014-01-01

    Full Text Available The expression of inflammatory cytokines on vascular walls is a critical event in vascular diseases and inflammation. The aim of the present study was to examine the effects of an extract of Ganoderma lucidum (Reishi polysaccharides (EORPs, which is effective against immunological disorders, on interleukin- (IL- 1β expression by human aortic smooth muscle cells (HASMCs and the underlying mechanism. The lipopolysaccharide- (LPS- induced IL-1β expression was significantly reduced when HASMCs were pretreated with EORP by Western blot and immunofluorescent staining. Pretreatment with 10 μg/mL EORP decreased LPS-induced ERK, p38, JNK, and Akt phosphorylation. But the increase in IL-1β expression with LPS treatment was only inhibited by pretreatment with the ERK1/2 inhibitor, while the JNK and p38 inhibitors had no effect. In addition, EORP reduced the phosphorylation and nuclear translocation of nuclear factor- (NF- κB p65 in LPS-treated HASMCs. Furthermore, in vivo, IL-1β expression was strongly expressed in thoracic aortas in LPS-treated mice. Oral administration of EORP decreased IL-1β expression. The level of IL-1β expression in LPS-treated or in LPS/EORP-treated group was very low and was similar to that of the saline-treated group in toll-like receptor 4-deficient (TLR4−/− mice. These findings suggest that EORP has the anti-inflammatory property and could prove useful in the prevention of vascular diseases and inflammatory responses.

  14. A novel JAK inhibitor JTE-052 reduces skin inflammation and ameliorates chronic dermatitis in rodent models: Comparison with conventional therapeutic agents.

    Science.gov (United States)

    Tanimoto, Atsuo; Shinozaki, Yuichi; Yamamoto, Yasuo; Katsuda, Yoshiaki; Taniai-Riya, Eriko; Toyoda, Kaoru; Kakimoto, Kochi; Kimoto, Yukari; Amano, Wataru; Konishi, Noriko; Hayashi, Mikio

    2017-04-19

    Janus kinases (JAKs) are required for several inflammatory cytokine signalling pathways and are implicated in the pathogenesis of chronic dermatitis, including atopic dermatitis and psoriasis. JAK inhibitors are therefore promising therapeutic candidates for chronic dermatitis. In this study, we evaluated the effects of the novel JAK inhibitor JTE-052 on inflammatory responses associated with chronic dermatitis, and compared its profile with those of conventional therapeutic agents in rodent models of chronic dermatitis. JTE-052 inhibited the Th1-, Th2- and Th17-type inflammatory responses of human T cells and mast cells in vitro. Oral administration of JTE-052 inhibited skin inflammation in hapten-induced chronic dermatitis in mice, associated with reduced levels of inflammatory cytokines in the skin and immunoglobulin (Ig) E in serum. In contrast, although ciclosporin partly inhibited skin inflammation, it did not reduce interleukin (IL)-4 production in skin, and enhanced IgE production in serum. Oral administration of JTE-052 also inhibited skin inflammation in mouse models of atopic dermatitis and psoriasis induced by a mite extract, thymic stromal lymphopoietin or IL-23. The maximal efficacy of JTE-052 in these dermatitis models was superior to the conventional therapeutic agents, ciclosporin and methotrexate. Topical application of JTE-052 ointment ameliorated hapten-induced chronic dermatitis in rats more effectively than tacrolimus ointment. Furthermore, JTE-052 ointment did not cause the thinning of normal skin associated with topical corticosteroids. These results indicate that JTE-052 is a promising candidate as an anti-inflammatory drug for various types of chronic dermatitis, with a distinctly different profile from conventional therapy following either oral or topical application. © 2017 The Authors. Experimental Dermatology Published by John Wiley & Sons Ltd.

  15. Intra-Articular Blockade of P2X7 Receptor Reduces the Articular Hyperalgesia and Inflammation in the Knee Joint Synovitis Especially in Female Rats.

    Science.gov (United States)

    Teixeira, Juliana Maia; Dias, Elayne Vieira; Parada, Carlos Amílcar; Tambeli, Cláudia Herrera

    2017-02-01

    Synovitis is a key factor in joint disease pathophysiology, which affects a greater proportion of women than men. P2X7 receptor activation contributes to arthritis, but whether it plays a role in articular inflammatory pain in a sex-dependent manner is unknown. We investigated whether the P2X7 receptor blockade in the knee joint of male and female rats reduces the articular hyperalgesia and inflammation induced by a carrageenan knee joint synovitis model. Articular hyperalgesia was quantified using the rat knee joint incapacitation test and the knee joint inflammation, characterized by the concentration of cytokines tumor necrosis factor-α, interleukin-1β, interleukin-6, and cytokine-induced neutrophil chemoattractant-1, and by neutrophil migration, was quantified using enzyme-linked immunosorbent assay and by myeloperoxidase enzyme activity measurement, respectively. P2X7 receptor blockade by the articular coadministration of selective P2X7 receptor antagonist A740003 with carrageenan significantly reduced articular hyperalgesia, pro-inflammatory cytokine concentrations, and myeloperoxidase activity induced by carrageenan injection into the knee joint of male and estrus female rats. However, a lower dose of P2X7 receptor antagonist was sufficient to significantly induce the antihyperalgesic and anti-inflammatory effects in estrus female but not in male rats. These results suggest that P2X7 receptor activation by endogenous adenosine 5'-triphosphate is essential to articular hyperalgesia and inflammation development in the knee joint of male and female rats. However, female rats are more responsive than male rats to the antihyperalgesic and anti-inflammatory effects induced by P2X7 receptor blockade.

  16. Indomethacin reduces glomerular and tubular damage markers but not renal inflammation in chronic kidney disease patients: a post-hoc analysis.

    Directory of Open Access Journals (Sweden)

    Martin H de Borst

    Full Text Available Under specific conditions non-steroidal anti-inflammatory drugs (NSAIDs may be used to lower therapy-resistant proteinuria. The potentially beneficial anti-proteinuric, tubulo-protective, and anti-inflammatory effects of NSAIDs may be offset by an increased risk of (renal side effects. We investigated the effect of indomethacin on urinary markers of glomerular and tubular damage and renal inflammation. We performed a post-hoc analysis of a prospective open-label crossover study in chronic kidney disease patients (n = 12 with mild renal function impairment and stable residual proteinuria of 4.7±4.1 g/d. After a wash-out period of six wks without any RAAS blocking agents or other therapy to lower proteinuria (untreated proteinuria (UP, patients subsequently received indomethacin 75 mg BID for 4 wks (NSAID. Healthy subjects (n = 10 screened for kidney donation served as controls. Urine and plasma levels of total IgG, IgG4, KIM-1, beta-2-microglobulin, H-FABP, MCP-1 and NGAL were determined using ELISA. Following NSAID treatment, 24 h -urinary excretion of glomerular and proximal tubular damage markers was reduced in comparison with the period without anti-proteinuric treatment (total IgG: UP 131[38-513] vs NSAID 38[17-218] mg/24 h, p<0.01; IgG4: 50[16-68] vs 10[1-38] mg/24 h, p<0.001; beta-2-microglobulin: 200[55-404] vs 50[28-110] ug/24 h, p = 0.03; KIM-1: 9[5]-[14] vs 5[2]-[9] ug/24 h, p = 0.01. Fractional excretions of these damage markers were also reduced by NSAID. The distal tubular marker H-FABP showed a trend to reduction following NSAID treatment. Surprisingly, NSAID treatment did not reduce urinary excretion of the inflammation markers MCP-1 and NGAL, but did reduce plasma MCP-1 levels, resulting in an increased fractional MCP-1 excretion. In conclusion, the anti-proteinuric effect of indomethacin is associated with reduced urinary excretion of glomerular and tubular damage markers, but not with reduced excretion of renal

  17. Bifidobacterium pseudocatenulatum CECT 7765 Reduces Obesity-Associated Inflammation by Restoring the Lymphocyte-Macrophage Balance and Gut Microbiota Structure in High-Fat Diet-Fed Mice.

    Directory of Open Access Journals (Sweden)

    Angela Moya-Pérez

    Full Text Available The role of intestinal dysbiosis in obesity-associated systemic inflammation via the cross-talk with peripheral tissues is under debate. Our objective was to decipher the mechanisms by which intervention in the gut ecosystem with a specific Bifidobacterium strain reduces systemic inflammation and improves metabolic dysfunction in obese high-fat diet (HFD fed mice.Adult male wild-type C57BL-6 mice were fed either a standard or HFD, supplemented with placebo or Bifidobacterium pseudocatenulatum CECT 7765, for 14 weeks. Lymphocytes, macrophages and cytokine/chemokine concentrations were quantified in blood, gut, liver and adipose tissue using bead-based multiplex assays. Biochemical parameters in serum were determined by ELISA and enzymatic assays. Histology was assessed by hematoxylin-eosin staining. Microbiota was analyzed by 16S rRNA gene pyrosequencing and quantitative PCR.B. pseudocatenulatum CECT 7765 reduced obesity-associated systemic inflammation<