WorldWideScience

Sample records for reduces free-fatty acids

  1. G-protein-coupled receptors for free fatty acids

    DEFF Research Database (Denmark)

    Milligan, Graeme; Ulven, Trond; Murdoch, Hannah

    2014-01-01

    of these receptors. However, ongoing clinical trials of agonists of free fatty acid receptor 1 suggest that this receptor and other receptors for free fatty acids may provide a successful strategy for controlling hyperglycaemia and providing novel approaches to treat diabetes. Receptors responsive to free fatty acid...

  2. Separation of free fatty acids from high free fatty acid crude palm oil using short-path distillation

    Science.gov (United States)

    Japir, Abd Al-Wali; Salimon, Jumat; Derawi, Darfizzi; Bahadi, Murad; Yusop, Muhammad Rahimi

    2016-11-01

    The separation of free fatty acids (FFAs) was done by using short-path distillation (SPD). The separation parameters was at their boiling points, a feed amount of 2.3 mL/min, an operating pressure of 10 Torr, a condenser temperature of 60°C, and a rotor speed of 300 rpm. The physicochemical characteristics of oil before and after SPD were determined. The results showed that FFA % of 8.7 ± 0.3 and 0.9 ± 0.1 %, iodine value of 53.1 ± 0.4 and 52.7 ± 0.5 g I2/100 g, hydroxyl value of 32.5 ± 0.6 and 13.9 ± 1.1 mg KOH/g, unsaponifiable value of 0.31 ± 0.01 and 0.20 ± 0.15%, moisture content of 0.31 ± 0.01 and 0.24 ± 0.01 % for high free fatty acid crude palm oil before and after distillation, respectively. Gas chromatography (GC) results showed that the major fatty acids in crude palm oil (CPO) were palmitic acid (44.4% - 45%) followed by oleic acid (39.6% - 39.8%). In general, high free fatty acid crude palm oil after molecular distillation (HFFA-CPOAM) showed admirably physicochemical properties.

  3. Free and Bound Fatty-Acids and Hydroxy Fatty-Acids in the Living and Decomposing Eelgrass Zostera-Marina L

    NARCIS (Netherlands)

    De Leeuw, J.; Rijpstra, W.I.C.; Nienhuis, P.H.

    1995-01-01

    Very early diagenetic processes of free, esterified and amide or glycosidically bound fatty acids and hydroxy fatty acids present in well documented samples of living and decomposing eelgrass (Zostera marina L.) were investigated. Free and esterified fatty acids decreased significantly over a period

  4. Omega-3 free fatty acids for the treatment of severe hypertriglyceridemia

    DEFF Research Database (Denmark)

    Kastelein, John J P; Maki, Kevin C; Susekov, Andrey

    2014-01-01

    Omega-3 fatty acids in free fatty acid form have enhanced bioavailability, and plasma levels are less influenced by food than for ethyl ester forms.......Omega-3 fatty acids in free fatty acid form have enhanced bioavailability, and plasma levels are less influenced by food than for ethyl ester forms....

  5. Scintigraphy with radioiodinated free fatty acids

    International Nuclear Information System (INIS)

    Visser, F.C.

    1985-01-01

    In this thesis several clinical and animal experimental studies of free fatty acids labeled with radioiodine are discussed. These radiolabeled fatty acids are used for cardiac imaging. Besides, the elimination rate of the radioactivity from the myocardium, as observed during a scintigraphic study, is correlated with fatty acid metabolism. Uptake and distribution of I-heptadecanoic acid (I-HDA) and I-phenylpentadecanoic acid (I-PPA) are compared with those of thallium-201 (Tl-201) in the normal and ischemic canine myocardium. For determination of the elimination rate (expressed in terms of halftime values) of the radioactivity from the myocardium, regions of interest have to be drawn over a scintigram. A method is described resulting in more reliable demarcation of normal and abnormal regions within the scintigram. (Auth.)

  6. (Radioiodinated free fatty acids)

    Energy Technology Data Exchange (ETDEWEB)

    Knapp, Jr., F. F.

    1987-12-11

    The traveler participated in the Second International Workshop on Radioiodinated Free Fatty Acids in Amsterdam, The Netherlands where he presented an invited paper describing the pioneering work at the Oak Ridge National Laboratory (ORNL) involving the design, development and testing of new radioiodinated methyl-branched fatty acids for evaluation of heart disease. He also chaired a technical session on the testing of new agents in various in vitro and in vivo systems. He also visited the Institute for Clinical and Experimental Nuclear Medicine in Bonn, West Germany, to review, discuss, plan and coordinate collaborative investigations with that institution. In addition, he visited the Cyclotron Research Center in Liege, Belgium, to discuss continuing collaborative studies with the Osmium-191/Iridium-191m radionuclide generator system, and to complete manuscripts and plan future studies.

  7. Inhibition of fatty acid mobilization by arterial free fatty acid concentration

    DEFF Research Database (Denmark)

    Madsen, J; Bülow, J; Nielsen, N E

    1986-01-01

    Subcutaneous, inguinal adipose tissue from dogs was perfused with blood in which the free fatty acid (FFA) concentration was varied corresponding to FFA/albumin molar ratios between 1 and 6. Otherwise the composition of the perfusate was kept constant. In order to stimulate lipolysis, isoprenaline...

  8. Efficient production of free fatty acids from soybean meal carbohydrates.

    Science.gov (United States)

    Wang, Dan; Thakker, Chandresh; Liu, Ping; Bennett, George N; San, Ka-Yiu

    2015-11-01

    Conversion of biomass feedstock to chemicals and fuels has attracted increasing attention recently. Soybean meal, containing significant quantities of carbohydrates, is an inexpensive renewable feedstock. Glucose, galactose, and fructose can be obtained by enzymatic hydrolysis of soluble carbohydrates of soybean meal. Free fatty acids (FFAs) are valuable molecules that can be used as precursors for the production of fuels and other value-added chemicals. In this study, free fatty acids were produced by mutant Escherichia coli strains with plasmid pXZ18Z (carrying acyl-ACP thioesterase (TE) and (3R)-hydroxyacyl-ACP dehydratase) using individual sugars, sugar mixtures, and enzymatic hydrolyzed soybean meal extract. For individual sugar fermentations, strain ML211 (MG1655 fadD(-) fabR(-) )/pXZ18Z showed the best performance, which produced 4.22, 3.79, 3.49 g/L free fatty acids on glucose, fructose, and galactose, respectively. While the strain ML211/pXZ18Z performed the best with individual sugars, however, for sugar mixture fermentation, the triple mutant strain XZK211 (MG1655 fadD(-) fabR(-) ptsG(-) )/pXZ18Z with an additional deletion of ptsG encoding the glucose-specific transporter, functioned the best due to relieved catabolite repression. This strain produced approximately 3.18 g/L of fatty acids with a yield of 0.22 g fatty acids/g total sugar. Maximum free fatty acids production of 2.78 g/L with a high yield of 0.21 g/g was achieved using soybean meal extract hydrolysate. The results suggested that soybean meal carbohydrates after enzymatic treatment could serve as an inexpensive feedstock for the efficient production of free fatty acids. © 2015 Wiley Periodicals, Inc.

  9. Acid esterification of a high free fatty acid crude palm oil and crude rubber seed oil blend: Optimization and parametric analysis

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Modhar A.; Yusup, Suzana; Ahmad, Murni M. [Universiti Teknologi PETRONAS, Chemical Engineering, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia)

    2010-12-15

    Free fatty acids content plays an important role in selecting the appropriate route for biodiesel production. Oils with high content of free fatty acids can be treated by acid esterification where an alcohol reacts with the given oil in the presence of acid catalyst. In the current study, an equivolume blend of crude rubber seed oil and crude palm oil is fed to the reaction with methanol as the alcohol of choice and sulfuric acid. Selected reaction parameters were optimized, using Taguchi method for design of experiments, to yield the lowest free fatty acid content in the final product. The investigated parameters include alcohol to oil ratio, temperature and amount of catalyst. The effect and significance of each parameter were then studied based on the fractional factorial design and verified by additional experiments. The optimum conditions for acid esterification which could reduce the free fatty acid content in the feedstock to lower than 0.6% (95% reduction) were 65 C, 15:1 methanol to oil ratio (by mole) and 0.5 wt% H{sub 2}SO{sub 4} after 3 h of reaction time. Temperature had been found to have the most effect on the reduction of free fatty acids followed by reactants ratio while increasing catalyst amount had nominal effect. (author)

  10. The use of fatty acid esters to enhance free acid sophorolipid synthesis.

    Science.gov (United States)

    Ashby, Richard D; Solaiman, Daniel K Y; Foglia, Thomas A

    2006-02-01

    Fatty acid esters were prepared by transesterification of soy oil with methanol (methyl-soyate, Me-Soy), ethanol (ethyl-soyate, Et-Soy) and propanol (propyl-soyate, Pro-Soy) and used with glycerol as fermentation substrates to enhance production of free-acid sophorolipids (SLs). Fed-batch fermentations of Candida bombicola resulted in SL yields of 46 +/- 4 g/l, 42 +/- 7 g/l and 18 +/- 6 g/l from Me-Soy, Et-Soy, and Pro-Soy, respectively. Liquid chromatography with atmospheric pressure ionization mass spectrometry (LC/API-MS) showed that Me-Soy resulted in 71% open-chain SLs with 59% of those molecules remaining esterified at the carboxyl end of the fatty acids. Et-Soy and Pro-Soy resulted in 43% and 80% open-chain free-acid SLs, respectively (containing linoleic acid and oleic acid as the principal fatty acid species linked to the sophorose sugar at the omega-1 position), with no evidence of residual esterification.

  11. Blood ketone response to norepinephrine-induced free fatty acid in diabetes

    Energy Technology Data Exchange (ETDEWEB)

    Blackard, W G; Omori, Yoshiaki

    1963-04-18

    During 90-minute norepinephrine infusions, blood free fatty acid and ketone responses of Japanese nondiabetic and diabetic subjects were determined. Nonobese diabetic subjects with and without fasting hyperglycemia demonstrated significantly greater blood ketone elevations than nondiabetics. An inverse correlation between obesity and blood ketone response to nonrepinephrine was observed in diabetics. This correlation could not be attributed to varying degrees of fasting hyperglycemia or free fatty acid elevation. Nonobese diabetics with mild fasting hyperglycemia (90 to 150 mg%) exhibited an unexpected greater increase in blood ketones than nonobese diabetics with moderate fasting hyperglycemia (150 to 250 mg%). Differences in free fatty acid elevations were not responsible for this apparent paradox. The magnitude of the hyperketonemic response, though dependent on free fatty elevation, seemed more sensitive to the degree of obesity and the fasting blood glucose level. Fractional ketone body measurements attributed the blood ketone elevations predominantly to ..beta..-hydroxybutyric acid increases. 43 references, 6 figures, 1 table.

  12. Esterification free fatty acid in palm fatty acid distillate using sulfonated rice husk ash catalyst

    Science.gov (United States)

    Hidayat, Arif; Sutrisno, Bachrun

    2017-01-01

    Indonesia, as one of the biggest palm oil producers and exporters in the world, is producing large amounts of low-grade oil such as Palm Fatty Acid Distillate (PFAD) from palm oil industries. The use of PFAD can reduce the cost of biodiesel production significantly, which makes PFAD a highly potential alternative feedstock for biodiesel production. In this paper, the esterification of free fatty acid (FFA) on PFAD was studied using rice husk ash (RHA) as heterogeneous catalyst. The rice husk ash catalyst was synthesized by sulfonation using concentrated sulfuric acid. The RHA catalyst were characterized by using different techniques, such as porosity analysis, Fourier transform infrared (FT-IR) spectroscopy, total number of acid sites and elemental analysis. The effects of the molar ratio of methanol to PFAD (1-10%), the molar ratio of methanol to PFAD (4:1-10:1), and the reaction temperature (40-60°C) were studied for the conversion of FFA to optimize the reaction conditions. The results showed that the optimal conditions were an methanol to PFAD molar ratio of 10:1, the catalyst amount of 10 wt% of PFAD, and reaction temperature of 60°C.

  13. Esterification of free fatty acids in biodiesel production with sulphonated pyrolysed carbohydrate catalysts

    DEFF Research Database (Denmark)

    Madsen, Anders Theilgaard; Riisager, Anders; Fehrmann, Rasmus

    The pre-treatment of free fatty acids in oils and fats in biodiesel production is of pivotal importance, and esterification in acidic medium must be done prior to basic transesterification of glycerides. The free fatty acids may be converted over an acidic catalyst of sulphonated pyrolysed...

  14. Esterification of Free Fatty Acid in Crude Palm Oil Off Grade

    Directory of Open Access Journals (Sweden)

    Muhammad Dani Supardan

    2009-12-01

    Full Text Available The esterification of free fatty acids (FFA found in crude palm oil (CPO off grade with methanol is a promising technique to convert FFA into valuable fatty acid methyl ester (FAME, biodiesel and obtain a FFA-free oil that can be further transesterified using alkali bases. In this work, the effects of the main variables involved in the esterification process i.e. alcohol to oil molar ratio, reaction temperature, agitation speed and the initial amount of FFA of oil, were studied in the presence of sulphuric acid as catalyst at concentration of 1%-w. The experimental results show that the esterification process could lead to a practical and cost effective FFA removal unit in front of typical oil transesterification for biodiesel production. Keywords: CPO off grade, esterification, free fatty acid

  15. Characterization of free and bound fatty acids in human gallstones by capillary gas liquid chromatography

    International Nuclear Information System (INIS)

    Channa, N.A.; Khand, F.D.; Noorani, M.A.; Bhanger, M.I.

    2002-01-01

    Forty-four human gallstone samples either of pure cholesterol or cholesterol and bilirubin were randomly selected and analyzed by capillary gas liquid chromatography for the relative percentage composition of free and total fatty acids. The results showed that bound fatty acids were present in higher amounts than the free fatty acids. Amongst the bound fatty acids the percentage occurrence for palmitic acid was highest followed by stearic, oleic, linoleic and myristic acids. Fatty acids myristic, palmitic and linoleic were present in higher amounts in cholesterol gallstones, whereas stearic acid in cholesterol and bilirubin gallstones. When compared, no significant difference (p < 0.05) in the levels of free and bound fatty acids were seen in gallstones of males and females. The results suggest that bound fatty acids have a role to play in the structure of gallstones. (author)

  16. Application of GPCR Structures for Modelling of Free Fatty Acid Receptors.

    Science.gov (United States)

    Tikhonova, Irina G

    2017-01-01

    Five G protein-coupled receptors (GPCRs) have been identified to be activated by free fatty acids (FFA). Among them, FFA1 (GPR40) and FFA4 (GPR120) bind long-chain fatty acids, FFA2 (GPR43) and FFA3 (GPR41) bind short-chain fatty acids and GPR84 binds medium-chain fatty acids. Free fatty acid receptors have now emerged as potential targets for the treatment of diabetes, obesity and immune diseases. The recent progress in crystallography of GPCRs has now enabled the elucidation of the structure of FFA1 and provided reliable templates for homology modelling of other FFA receptors. Analysis of the crystal structure and improved homology models, along with mutagenesis data and structure activity, highlighted an unusual arginine charge-pairing interaction in FFA1-3 for receptor modulation, distinct structural features for ligand binding to FFA1 and FFA4 and an arginine of the second extracellular loop as a possible anchoring point for FFA at GPR84. Structural data will be helpful for searching novel small-molecule modulators at the FFA receptors.

  17. Release of endothelial cell lipoprotein lipase by plasma lipoproteins and free fatty acids

    International Nuclear Information System (INIS)

    Saxena, U.; Witte, L.D.; Goldberg, I.J.

    1989-01-01

    Lipoprotein lipase (LPL) bound to the lumenal surface of vascular endothelial cells is responsible for the hydrolysis of triglycerides in plasma lipoproteins. Studies were performed to investigate whether human plasma lipoproteins and/or free fatty acids would release LPL which was bound to endothelial cells. Purified bovine milk LPL was incubated with cultured porcine aortic endothelial cells resulting in the association of enzyme activity with the cells. When the cells were then incubated with media containing chylomicrons or very low density lipoproteins (VLDL), a concentration-dependent decrease in the cell-associated LPL enzymatic activity was observed. In contrast, incubation with media containing low density lipoproteins or high density lipoproteins produced a much smaller decrease in the cell-associated enzymatic activity. The addition of increasing molar ratios of oleic acid:bovine serum albumin to the media also reduced enzyme activity associated with the endothelial cells. To determine whether the decrease in LPL activity was due to release of the enzyme from the cells or inactivation of the enzyme, studies were performed utilizing radioiodinated bovine LPL. Radiolabeled LPL protein was released from endothelial cells by chylomicrons, VLDL, and by free fatty acids (i.e. oleic acid bound to bovine serum albumin). The release of radiolabeled LPL by VLDL correlated with the generation of free fatty acids from the hydrolysis of VLDL triglyceride by LPL bound to the cells. Inhibition of LPL enzymatic activity by use of a specific monoclonal antibody, reduced the extent of release of 125 I-LPL from the endothelial cells by the added VLDL. These results demonstrated that LPL enzymatic activity and protein were removed from endothelial cells by triglyceride-rich lipoproteins (chylomicrons and VLDL) and oleic acid

  18. Effects of Ramadan fasting on plasma free fatty acids in patients with non-alcoholic fatty liver disease

    Directory of Open Access Journals (Sweden)

    Seyed Mostafa Arabi

    2016-09-01

    Full Text Available Introduction: Nonalcoholic fatty liver disease (NAFLD is a global disease which its prevalence is about 10-35%. Several factors are involved in the pathogenesis of the disease. The present study was conducted to evaluate the effect of fasting during Ramadan on plasma free fatty acids in patients with NAFLD.Methods: This cross-sectional study was performed during the month of Ramadan in June-July, 2014 (Islamic year: 1435 with 50 patients who were living in Mashhad, Iran. The participants were recruited from 18-65 years old patients. The inclusion criteria were 1 patients with NAFLD that diagnosed fatty liver by ultrasonography and 2 being at least 10 hours fasting. Levels of plasma free fatty acids (Palmitic, Elaidic and Oleic fatty acid were analyzed in blood sample of all patients by gas chromatography apparatus equipped with a flame ionization detector (GC-FID.Result: results indicated that there was no significant changes were observed in plasma levels of Palmitic, Elaidic and Oleic fatty acids in overweight patients (BMI 25-30 , but plasma levels of Elaidic acid significantly increased in obese patients (P

  19. Complex Pharmacology of Free Fatty Acid Receptors

    DEFF Research Database (Denmark)

    Milligan, Graeme; Shimpukade, Bharat; Ulven, Trond

    2017-01-01

    pharmacology have shaped understanding of the complex pharmacology of receptors that recognize and are activated by nonesterified or "free" fatty acids (FFAs). The FFA family of receptors is a recently deorphanized set of GPCRs, the members of which are now receiving substantial interest as novel targets...

  20. Radioiodinated free fatty acids; can we measure myocardial metabolism

    International Nuclear Information System (INIS)

    Visser, F.C.; Eenige, M.J. van; Duwel, C.M.B.; Roos, J.P.

    1986-01-01

    To investigate the feasibility of radioiodinated free fatty acids for ''metabolic imaging'', the kinetics and distribution pattern of metabolites of heptadecanoic acid I 131 (HDA I 131) were studied in canine myocardium throughout metabolic interventions. In control dogs and in dogs during glucose/insulin and sodium lactate infusion, biopsy specimens were taken during a go-min period after HDA I 131 administration and analyzed. Clearly distinct patterns of distribution and elimination were seen during the metabolic interventions, indicating the usefulness of iodinated fatty acids for metabolic studies. (orig.)

  1. Nanotechnology Formulations for Antibacterial Free Fatty Acids and Monoglycerides.

    Science.gov (United States)

    Jackman, Joshua A; Yoon, Bo Kyeong; Li, Danlin; Cho, Nam-Joon

    2016-03-03

    Free fatty acids and monoglycerides have long been known to possess broad-spectrum antibacterial activity that is based on lytic behavior against bacterial cell membranes. Considering the growing challenges of drug-resistant bacteria and the need for new classes of antibiotics, the wide prevalence, affordable cost, and broad spectrum of fatty acids and monoglycerides make them attractive agents to develop for healthcare and biotechnology applications. The aim of this review is to provide a brief introduction to the history of antimicrobial lipids and their current status and challenges, and to present a detailed discussion of ongoing research efforts to develop nanotechnology formulations of fatty acids and monoglycerides that enable superior in vitro and in vivo performance. Examples of nano-emulsions, liposomes, solid lipid nanoparticles, and controlled release hydrogels are presented in order to highlight the potential that lies ahead for fatty acids and monoglycerides as next-generation antibacterial solutions. Possible application routes and future directions in research and development are also discussed.

  2. Nanotechnology Formulations for Antibacterial Free Fatty Acids and Monoglycerides

    Directory of Open Access Journals (Sweden)

    Joshua A. Jackman

    2016-03-01

    Full Text Available Free fatty acids and monoglycerides have long been known to possess broad-spectrum antibacterial activity that is based on lytic behavior against bacterial cell membranes. Considering the growing challenges of drug-resistant bacteria and the need for new classes of antibiotics, the wide prevalence, affordable cost, and broad spectrum of fatty acids and monoglycerides make them attractive agents to develop for healthcare and biotechnology applications. The aim of this review is to provide a brief introduction to the history of antimicrobial lipids and their current status and challenges, and to present a detailed discussion of ongoing research efforts to develop nanotechnology formulations of fatty acids and monoglycerides that enable superior in vitro and in vivo performance. Examples of nano-emulsions, liposomes, solid lipid nanoparticles, and controlled release hydrogels are presented in order to highlight the potential that lies ahead for fatty acids and monoglycerides as next-generation antibacterial solutions. Possible application routes and future directions in research and development are also discussed.

  3. Enzymatic lipophilization of epicatechin with free fatty acids and its effect on antioxidative capacity in crude camellia seed oil.

    Science.gov (United States)

    Chen, Sa-Sa; Luo, Shui-Zhong; Zheng, Zhi; Zhao, Yan-Yan; Pang, Min; Jiang, Shao-Tong

    2017-02-01

    Crude camellia seed oil is rich in free fatty acids, which must be removed to produce an oil of acceptable quality. In the present study, we reduced the free fatty acid content of crude camellia seed oil by lipophilization of epicatechin with these free fatty acids in the presence of Candida antarctica lipase B (Novozym 435), and this may enhance the oxidative stability of the oil at the same time. The acid value of crude camellia seed oil reduced from 3.7 to 2.5 mgKOH g -1 after lipophilization. Gas chomatography-mass spectrometry analysis revealed that epicatechin oleate and epicatechin palmitate were synthesized in the lipophilized oil. The peroxide, p-anisidine, and total oxidation values during heating of the lipophilized oil were much lower than that of the crude oil and commercially available camellia seed oil, suggesting that lipophilized epicatechin derivatives could help enhance the oxidative stability of edible oil. The enzymatic process to lipophilize epicatechin with the free fatty acids in crude camellia seed oil described in the present study could decrease the acid value to meet the quality standards for commercial camellia seed oil and, at the same time, obtain a new edible camellia seed oil product with good oxidative stability. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  4. Comparative Serum Fatty Acid Profiles of Captive and Free-Ranging Cheetahs (Acinonyx jubatus) in Namibia.

    Science.gov (United States)

    Tordiffe, Adrian S W; Wachter, Bettina; Heinrich, Sonja K; Reyers, Fred; Mienie, Lodewyk J

    2016-01-01

    Cheetahs (Acinonyx jubatus) are highly specialised large felids, currently listed as vulnerable on the IUCN red data list. In captivity, they are known to suffer from a range of chronic non-infectious diseases. Although low heterozygosity and the stress of captivity have been suggested as possible causal factors, recent studies have started to focus on the contribution of potential dietary factors in the pathogenesis of these diseases. Fatty acids are an important component of the diet, not only providing a source of metabolisable energy, but serving other important functions in hormone production, cellular signalling as well as providing structural components in biological membranes. To develop a better understanding of lipid metabolism in cheetahs, we compared the total serum fatty acid profiles of 35 captive cheetahs to those of 43 free-ranging individuals in Namibia using gas chromatography-mass spectrometry. The unsaturated fatty acid concentrations differed most remarkably between the groups, with all of the polyunsaturated and monounsaturated fatty acids, except arachidonic acid and hypogeic acid, detected at significantly lower concentrations in the serum of the free-ranging animals. The influence of age and sex on the individual fatty acid concentrations was less notable. This study represents the first evaluation of the serum fatty acids of free-ranging cheetahs, providing critical information on the normal fatty acid profiles of free-living, healthy individuals of this species. The results raise several important questions about the potential impact of dietary fatty acid composition on the health of cheetahs in captivity.

  5. Simultaneous analysis of plasma free fatty acids and their 3-hydroxy analogs in fatty acid beta-oxidation disorders

    NARCIS (Netherlands)

    Costa, C. G.; Dorland, L.; Holwerda, U.; de Almeida, I. T.; Poll-The, B. T.; Jakobs, C.; Duran, M.

    1998-01-01

    We present a new derivatization procedure for the simultaneous gas chromatographic-mass spectrometric analysis of free fatty acids and 3-hydroxyfatty acids in plasma. Derivatization of target compounds involved trifluoroacetylation of hydroxyl groups and tert-butyldimethylsilylation of the carboxyl

  6. Comparative Serum Fatty Acid Profiles of Captive and Free-Ranging Cheetahs (Acinonyx jubatus) in Namibia

    Science.gov (United States)

    Wachter, Bettina; Heinrich, Sonja K.; Reyers, Fred; Mienie, Lodewyk J.

    2016-01-01

    Cheetahs (Acinonyx jubatus) are highly specialised large felids, currently listed as vulnerable on the IUCN red data list. In captivity, they are known to suffer from a range of chronic non-infectious diseases. Although low heterozygosity and the stress of captivity have been suggested as possible causal factors, recent studies have started to focus on the contribution of potential dietary factors in the pathogenesis of these diseases. Fatty acids are an important component of the diet, not only providing a source of metabolisable energy, but serving other important functions in hormone production, cellular signalling as well as providing structural components in biological membranes. To develop a better understanding of lipid metabolism in cheetahs, we compared the total serum fatty acid profiles of 35 captive cheetahs to those of 43 free-ranging individuals in Namibia using gas chromatography-mass spectrometry. The unsaturated fatty acid concentrations differed most remarkably between the groups, with all of the polyunsaturated and monounsaturated fatty acids, except arachidonic acid and hypogeic acid, detected at significantly lower concentrations in the serum of the free-ranging animals. The influence of age and sex on the individual fatty acid concentrations was less notable. This study represents the first evaluation of the serum fatty acids of free-ranging cheetahs, providing critical information on the normal fatty acid profiles of free-living, healthy individuals of this species. The results raise several important questions about the potential impact of dietary fatty acid composition on the health of cheetahs in captivity. PMID:27992457

  7. Effects of water on the esterification of free fatty acids by acid catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ji-Yeon; Kim, Deog-Keun; Lee, Jin-Suk [Korea Institute of Energy Research, 71-2, Jang-dong, Yuseong-gu, Daejeon 305-343 (Korea); Wang, Zhong-Ming [Guangzhou Institute of Energy Conversion, No. 2 Nengyuan Rd, Wushan, Tianhe, Guangzhou 510-640 (China)

    2010-03-15

    To maximize the production of biodiesel from soybean soapstock, the effects of water on the esterification of high-FFA (free fatty acid) oils were investigated. Oleic acid and high acid acid oil (HAAO) were esterified by reaction with methanol in the presence of Amberlyst-15 as a heterogeneous catalyst or sulfuric acid as a homogeneous catalyst. The yield of fatty acid methyl ester (FAME) was studied at oil to methanol molar ratios of 1:3 and 1:6 and reaction temperatures of 60 and 80 C. The rate of esterification of oleic acid significantly decreased as the initial water content increased to 20% of the oil. The activity of Amberlyst-15 decreased more rapidly than that of sulfuric acid, due to the direct poisoning of acid sites by water. Esterification using sulfuric acid was not affected by water until there was a 5% water addition at a 1:6 molar ratio of oil to methanol. FAME content of HAAO prepared from soapstock rapidly increased for the first 30 min of esterification. Following the 30-min mark, the rate of FAME production decreased significantly due to the accumulation of water. When methanol and Amberlyst-15 were removed from the HAAO after 30 min of esterification and fresh methanol and a catalyst were added, the time required to reach 85% FAME content was reduced from 6 h to 1.8 h. (author)

  8. Biodiesel from the seed oil of Treculia africana with high free fatty acid content

    Energy Technology Data Exchange (ETDEWEB)

    Adewuyi, Adewale [Redeemer' s University, Department of Chemical Sciences, Faculty of Natural Sciences, Redemption City, Ogun State (Nigeria); Oderinde, Rotimi A.; Ojo, David F.K. [University of Ibadan, Industrial Unit, Department of Chemistry, Ibadan, Oyo State (Nigeria)

    2012-12-15

    Oil was extracted from the seed of Treculia africana using hexane. The oil was characterized and used in the production of biodiesel. Biodiesel was produced from the seed oil of T. africana using a two-step reaction system. The first step was a pretreatment which involved the use of 2 % sulfuric acid in methanol, and secondly, transesterification reaction using KOH as catalyst. Saponification value of the oil was 201.70 {+-} 0.20 mg KOH/g, free fatty acid was 8.20 {+-} 0.50 %, while iodine value was 118.20 {+-} 0.50 g iodine/100 g. The most dominant fatty acid was C18:2 (44 %). The result of the method applied showed a conversion which has ester content above 98 %, flash point of 131 {+-} 1.30 C, and phosphorus content below 1 ppm in the biodiesel. The biodiesel produced exhibited properties that were in agreement with the European standard (EN 14214). This study showed that the high free fatty acid content of T. africana seed oil can be reduced in a one-step pretreatment of esterification reaction using H{sub 2}SO{sub 4} as catalyst. (orig.)

  9. Influence of free fatty acids on glucose uptake in prostate cancer cells

    DEFF Research Database (Denmark)

    Andersen, Kim Francis; Divilov, Vadim; Sevak, Kuntalkumar

    2014-01-01

    The study focuses on the interaction between glucose and free fatty acids (FFA) in malignant human prostate cancer cell lines by an in vitro observation of uptake of fluoro-2-deoxy-d-glucose (FDG) and acetate.......The study focuses on the interaction between glucose and free fatty acids (FFA) in malignant human prostate cancer cell lines by an in vitro observation of uptake of fluoro-2-deoxy-d-glucose (FDG) and acetate....

  10. Method for the routine quantitative gas chromatographic analysis of major free fatty acids in butter and cream.

    Science.gov (United States)

    Woo, A H; Lindsay, R C

    1980-07-01

    A rapid quantiative method was developed for routine analysis of the major, even carbon-numbered free fatty acids in butter and cream. Free fatty acids were isolated directly from intact samples by a modified silicic acid-potassium hydroxide arrestant column and were separated by gas chromatography with a 1.8 m x 2 mm inner diameter glass column packed with 10% neopentyl glycol adipate on 80/100 Chromosorb W. Purified, formic acid-saturated carrier gas was required for minimal peak tailing and extended column life. The accuracy and reproducibility of the mmethod was established through quantitative recovery studies of free fatty acid mixtures, free fatty acids added to butter, and replicate analysis of butter and cream samples.

  11. Non-Acidic Free Fatty Acid Receptor 4 Agonists with Antidiabetic Activity

    DEFF Research Database (Denmark)

    Goncalves de Azavedo, Carlos M. B. P.; Watterson, Kenneth R; Wargent, Ed T

    2016-01-01

    The free fatty acid receptor 4 (FFA4 or GPR120) has appeared as an interesting potential target for the treatment of metabolic disorders. At present, most FFA4 ligands are carboxylic acids that are assumed to mimic the endogenous long-chain fatty acid agonists. Here, we report preliminary structure......-activity relationship studies of a previously disclosed non-acidic sulfonamide FFA4 agonist. Mutagenesis studies indicate that the compounds are orthosteric agonists despite the absence of a carboxylate function. The preferred compounds showed full agonist activity on FFA4 and complete selectivity over FFA1, although...... a significant fraction of these non-carboxylic acids also showed partial antagonistic activity on FFA1. Studies in normal and diet-induced obese (DIO) mice with the preferred compound 34 showed improved glucose tolerance after oral dosing in an oral glucose tolerance test. Chronic dosing of 34 in DIO mice...

  12. n-3 fatty acids reduce plasma 20-hydroxyeicosatetraenoic acid and blood pressure in patients with chronic kidney disease.

    Science.gov (United States)

    Barden, Anne E; Burke, Valerie; Mas, Emilie; Beilin, Lawrence J; Puddey, Ian B; Watts, Gerald F; Irish, Ashley B; Mori, Trevor A

    2015-09-01

    Metabolism of arachidonic acid by cytochrome P450 ω-hydroxylase leads to the formation of 20-hydroxyeicosatetraenoic acid (20-HETE) that regulates vascular function, sodium homeostasis and blood pressure (BP). Supplementation with n-3 fatty acids is known to alter arachidonic acid metabolism and reduce the formation of the lipid peroxidation products F2-isoprostanes, but the effect of n-3 fatty acids on 20-HETE has not been studied. We previously reported a significant effect of n-3 fatty acids but not coenzyme Q10 (CoQ) to reduce BP in a double-blind, placebo-controlled intervention, wherein patients with chronic kidney disease (CKD) were randomized to n-3 fatty acids (4 g), CoQ (200 mg), both supplements or control (4 g olive oil), daily for 8 weeks. This study examined the effect of n-3 fatty acids on plasma and urinary 20-HETE in the same study, as well as plasma and urinary F2-isoprostanes, and relate these to changes in BP. Seventy-four patients completed the 8-week intervention. n-3 fatty acids but not CoQ significantly reduced plasma 20-HETE (P = 0.001) and F2-isoprostanes (P fatty acids. This is the first report that n-3 fatty acid supplementation reduces plasma 20-HETE in humans and that this associates with reduced BP. These results provide a plausible mechanism for the reduction in BP observed in patients with CKD following n-3 fatty acid supplementation.

  13. Topicality of identification of free fatty acids pattern in biologic substrates in the diagnosis of gastroenterological diseases

    Directory of Open Access Journals (Sweden)

    V.I. Didenko

    2017-04-01

    Full Text Available The article shows the role of free fatty acids in the pathogenesis of metabolic and gastroenterological disorders. An expediency of gas chromatography method for determination of free fatty acids pattern in biologic samples (blood serum, urine, feces and other was substantiated. The role of free fatty acids in the cell structure components formation, energetic homeostasis and signal molecules or their precursor production was shown. So, disorders of regulation of free fatty acids metabolism lead to systemic fails of insulin action, such as glucose metabolism in adipocytes, muscles and liver. Increase in several fractions of lipid pattern takes place in different pathologic states. These changes occur earlier than changes of enzymes activity or other protein markers. For example, short chain fatty acids can be used for identification of syndrome of bacterial overgrowth in the intestines. Increasе in polyunsaturated fatty acid fraction activates inflammation process, immune reactions, blood hypercoagulation, activation of lipid peroxidation. Also, arachidonic (C20:0, dodecanoic (C12:0 and linoleic (C18:3 acids are markers of inflammation processes. In addition, deficiency of free fatty acids is very important aspect of diagnois. It can’t be uncertified by standard laboratory methods. Proven fact is that essential fatty acids can be a cause of metabolic syndrome, non-alcoholic fatty liver disease formation such as other diseases associated with metabolism. So, only chromatography today is a method for determination fatty acid pattern. The advantages of gas chromatography are rapid realization and high accuracy. Thus, identification of trace concentrations (about 10–12 mole is possible. Implementation of this method into the clinical practice of gastroenterology specialists allows the early diagnosis of pathologies and choice of correct treatment.

  14. Assessment of myocardial metabolism with iodine-123 heptadecanoic acid: effect of decreased fatty acid oxidation on deiodination

    International Nuclear Information System (INIS)

    Luethy, P.C.; Chatelain, P.; Papageorgiou, I.; Schubiger, A.; Lerch, R.A.

    1988-01-01

    Terminally radioiodinated fatty acid analogs are of potential use for the noninvasive delineation of regional alterations of fatty acid metabolism by gamma imaging. Since radioactivity from extracted iodine-123 heptadecanoic acid [( 123I]HDA) is released from the myocardium in form of free radioiodide (123I-) the present study was performed to determine whether deiodination of [123I]HDA is related to free fatty acid metabolism. Myocardial production of free radioiodide was measured in rat hearts in vitro and in vivo both under control conditions and after inhibition of fatty acid oxidation. In isolated rat hearts perfused at constant flow with a medium containing [123I]HDA, release of 123I- was markedly reduced during cardioplegia and pharmacologic inhibition of mitochondrial fatty acid transfer with POCA by 67% (p less than 0.005) and 72% (p less than 0.005), respectively. In fasted rats in vivo, 1 min after i.v. injection of [123I]HDA, 51 +/- 5% of myocardial radioactivity was recovered in the aqueous phase, containing free iodide, of myocardial lipid extracts. Aqueous activity was significantly decreased in fed (20 +/- 2%; p less than 0.002) and POCA pretreated (30 +/- 3.7%; p less than 0.05) animals exhibiting reduced oxidation of [14C]palmitate. Thus, deiodination of [123I]HDA was consistently reduced during inhibition of fatty acid oxidation in vitro and in vivo. The results apply to the interpretation of myocardial clearance curves of terminally radioiodinated fatty acid analogs

  15. Effects of fatty acid activation on photosynthetic production of fatty acid-based biofuels in Synechocystis sp. PCC6803

    Directory of Open Access Journals (Sweden)

    Gao Qianqian

    2012-03-01

    Full Text Available Abstract Background Direct conversion of solar energy and carbon dioxide to drop in fuel molecules in a single biological system can be achieved from fatty acid-based biofuels such as fatty alcohols and alkanes. These molecules have similar properties to fossil fuels but can be produced by photosynthetic cyanobacteria. Results Synechocystis sp. PCC6803 mutant strains containing either overexpression or deletion of the slr1609 gene, which encodes an acyl-ACP synthetase (AAS, have been constructed. The complete segregation and deletion in all mutant strains was confirmed by PCR analysis. Blocking fatty acid activation by deleting slr1609 gene in wild-type Synechocystis sp. PCC6803 led to a doubling of the amount of free fatty acids and a decrease of alkane production by up to 90 percent. Overexpression of slr1609 gene in the wild-type Synechocystis sp. PCC6803 had no effect on the production of either free fatty acids or alkanes. Overexpression or deletion of slr1609 gene in the Synechocystis sp. PCC6803 mutant strain with the capability of making fatty alcohols by genetically introducing fatty acyl-CoA reductase respectively enhanced or reduced fatty alcohol production by 60 percent. Conclusions Fatty acid activation functionalized by the slr1609 gene is metabolically crucial for biosynthesis of fatty acid derivatives in Synechocystis sp. PCC6803. It is necessary but not sufficient for efficient production of alkanes. Fatty alcohol production can be significantly improved by the overexpression of slr1609 gene.

  16. Production and Characterization of Ethyl Ester from Crude Jatropha curcas Oil having High Free Fatty Acid Content

    Science.gov (United States)

    Kumar, Rajneesh; Dixit, Anoop; Singh, Shashi Kumar; Singh, Gursahib; Sachdeva, Monica

    2015-09-01

    The two step process was carried out to produce biodiesel from crude Jatropha curcas oil. The pretreatment process was carried out to reduce the free fatty acid content by (≤2 %) acid catalyzed esterification. The optimum reaction conditions for esterification were reported to be 5 % H2SO4, 20 % ethanol and 1 h reaction time at temperature of 65 °C. The pretreatment process reduced the free fatty acid of oil from 7 to 1.85 %. In second process, alkali catalysed transesterification of pretreated oil was carried and the effects of the varying concentrations of KOH and ethanol: oil ratios on percent ester recovery were investigated. The optimum reaction conditions for transesterification were reported to be 3 % KOH (w/v of oil) and 30 % (v/v) ethanol: oil ratio and reaction time 2 h at 65 °C. The maximum percent recovery of ethyl ester was reported to be 60.33 %.

  17. ω-3 Fatty acids reverse lipotoxity through induction of autophagy in nonalcoholic fatty liver disease.

    Science.gov (United States)

    Chen, Yi; Xu, Chengfu; Yan, Tianlian; Yu, Chaohui; Li, Youming

    2015-01-01

    The aim of this study was to evaluate the effect of ω-3 fatty acids on nonalcoholic fatty liver disease concerning hepatocyte lipid accumulation as well as apoptosis induced by free fatty acids (FFAs) and to explore the underlying mechanism involving autophagy. Hepatocytes were incubated with a mixture of free fatty acids (FFAs) to mimic in vitro lipotoxicity in the pathogenesis of nonalcoholic fatty liver disease, presented by lipid accumulation and cellular apoptosis. Chemical inhibitor or inducer of autophagy and genetic deficit cells, as well as ω-3 fatty acids were used as intervention. The autophagic role of ω-3 fatty acids was investigated using Western blot and immunofluorescence. The underlying mechanism of ω-3 fatty acids involving autophagy was preliminarily explored by quantitative real-time polymerase chain reaction and Western blot. FFAs induce lipid accumulation and apoptosis in hepatocytes. Inhibition or genetic defect of autophagy increases lipid accumulation induced by FFA, whereas induction acts inversely. ω-3 Fatty acids reduced lipid accumulation and inhibited apoptosis induced by FFA. ω-3 Fatty acids induced autophagy by downregulating stearoyl-CoA desaturase 1 expression in hepatocytes. ω-3 Fatty acids exert protective effects on hepatocytes against lipotoxicity through induction of autophagy, as demonstrated by inhibition of lipid accumulation and apoptosis. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Inhibition of fatty acid metabolism reduces human myeloma cells proliferation.

    Directory of Open Access Journals (Sweden)

    José Manuel Tirado-Vélez

    Full Text Available Multiple myeloma is a haematological malignancy characterized by the clonal proliferation of plasma cells. It has been proposed that targeting cancer cell metabolism would provide a new selective anticancer therapeutic strategy. In this work, we tested the hypothesis that inhibition of β-oxidation and de novo fatty acid synthesis would reduce cell proliferation in human myeloma cells. We evaluated the effect of etomoxir and orlistat on fatty acid metabolism, glucose metabolism, cell cycle distribution, proliferation, cell death and expression of G1/S phase regulatory proteins in myeloma cells. Etomoxir and orlistat inhibited β-oxidation and de novo fatty acid synthesis respectively in myeloma cells, without altering significantly glucose metabolism. These effects were associated with reduced cell viability and cell cycle arrest in G0/G1. Specifically, etomoxir and orlistat reduced by 40-70% myeloma cells proliferation. The combination of etomoxir and orlistat resulted in an additive inhibitory effect on cell proliferation. Orlistat induced apoptosis and sensitized RPMI-8226 cells to apoptosis induction by bortezomib, whereas apoptosis was not altered by etomoxir. Finally, the inhibitory effect of both drugs on cell proliferation was associated with reduced p21 protein levels and phosphorylation levels of retinoblastoma protein. In conclusion, inhibition of fatty acid metabolism represents a potential therapeutic approach to treat human multiple myeloma.

  19. Determination of Free Fatty Acids and Triglycerides by Gas Chromatography Using Selective Esterification Reactions

    Energy Technology Data Exchange (ETDEWEB)

    Kail, Brian W; Link, Dirk D; Morreale, Bryan D

    2012-11-01

    A method for selectively determining both free fatty acids (FFA) and triacylglycerides (TAGs) in biological oils was investigated and optimized using gas chromatography after esterification of the target species to their corresponding fatty acid methyl esters (FAMEs). The method used acid catalyzed esterification in methanolic solutions under conditions of varying severity to achieve complete conversion of more reactive FFAs while preserving the concentration of TAGs. Complete conversion of both free acids and glycerides to corresponding FAMEs was found to require more rigorous reaction conditions involving heating to 120°C for up to 2 h. Method validation was provided using gas chromatography–flame ionization detection, gas chromatography–mass spectrometry, and liquid chromatography–mass spectrometry. The method improves on existing methods because it allows the total esterified lipid to be broken down by FAMEs contributed by FFA compared to FAMEs from both FFA and TAGs. Single and mixed-component solutions of pure fatty acids and triglycerides, as well as a sesame oil sample to simulate a complex biological oil, were used to optimize the methodologies. Key parameters that were investigated included: HCl-to-oil ratio, temperature and reaction time. Pure free fatty acids were found to esterify under reasonably mild conditions (10 min at 50°C with a 2.1:1 HCl to fatty acid ratio) with 97.6 ± 2.3% recovery as FAMEs, while triglycerides were largely unaffected under these reaction conditions. The optimized protocol demonstrated that it is possible to use esterification reactions to selectively determine the free acid content, total lipid content, and hence, glyceride content in biological oils. This protocol also allows gas chromatography analysis of FAMEs as a more ideal analyte than glyceride species in their native state.

  20. Can serum free fatty acids assessment predict severe preeclampsia?

    African Journals Online (AJOL)

    Nermeen Saad El Beltagy

    2011-10-20

    Oct 20, 2011 ... Methods: Twenty cases with severe preeclampsia (blood pressure P 160/110 after 20th week of ges- tation and ... ing factor with preeclampsia in non-obese pregnant women. ... Preeclampsia (PE) is a common pregnancy disorder that is ... centration of free fatty acids in the serum was measured by an.

  1. Free fatty acids increase hepatic glycogen content in obese males

    NARCIS (Netherlands)

    Allick, G.; Sprangers, F.; Weverling, G. J.; Ackermans, M. T.; Meijer, A. J.; Romijn, J. A.; Endert, E.; Bisschop, P. H.; Sauerwein, H. P.

    2004-01-01

    Obesity is associated with increased hepatic glycogen content. In vivo and in vitro data suggest that plasma free fatty acids (FFA) may cause this increase. In this study we investigated the effect of physiological plasma FFA levels on hepatic glycogen metabolism by studying intrahepatic glucose

  2. Free Fatty Acid Storage in Human Visceral and Subcutaneous Adipose Tissue

    Science.gov (United States)

    Ali, Asem H.; Koutsari, Christina; Mundi, Manpreet; Stegall, Mark D.; Heimbach, Julie K.; Taler, Sandra J.; Nygren, Jonas; Thorell, Anders; Bogachus, Lindsey D.; Turcotte, Lorraine P.; Bernlohr, David; Jensen, Michael D.

    2011-01-01

    OBJECTIVE Because direct adipose tissue free fatty acid (FFA) storage may contribute to body fat distribution, we measured FFA (palmitate) storage rates and fatty acid (FA) storage enzymes/proteins in omental and abdominal subcutaneous fat. RESEARCH DESIGN AND METHODS Elective surgery patients received a bolus of [1-14C]palmitate followed by omental and abdominal subcutaneous fat biopsies to measure direct FFA storage. Long chain acyl-CoA synthetase (ACS) and diacylglycerol acyltransferase activities, CD36, fatty acid-binding protein, and fatty acid transport protein 1 were measured. RESULTS Palmitate tracer storage (dpm/g adipose lipid) and calculated palmitate storage rates were greater in omental than abdominal subcutaneous fat in women (1.2 ± 0.8 vs. 0.7 ± 0.4 μmol ⋅ kg adipose lipid−1 ⋅ min−1, P = 0.005) and men (0.7 ± 0.2 vs. 0.2 ± 0.1, P < 0.001), and both were greater in women than men (P < 0.0001). Abdominal subcutaneous adipose tissue palmitate storage rates correlated with ACS activity (women: r = 0.66, P = 0.001; men: r = 0.70, P = 0.007); in men, CD36 was also independently related to palmitate storage rates. The content/activity of FA storage enzymes/proteins in omental fat was dramatically lower in those with more visceral fat. In women, only omental palmitate storage rates were correlated (r = 0.54, P = 0.03) with ACS activity. CONCLUSIONS Some adipocyte FA storage factors correlate with direct FFA storage, but sex differences in this process in visceral fat do not account for sex differences in visceral fatness. The reduced storage proteins in those with greater visceral fat suggest that the storage factors we measured are not a predominant cause of visceral adipose tissue accumulation. PMID:21810594

  3. Effect of Inflammatory and Noninflammatory Stress on Beta-Hydroxybutyrate and Free Fatty Acids in Rat Blood.

    Science.gov (United States)

    fasting plus screen-restraint and fasting plus femoral fracture. Inflammatory stresses caused a marked inhibition of the normal fasting-induced ketosis ...and a reduction in the level of circulating free fatty acids. Noninflammatory stresses caused no inhibition of the normal fasting-induced ketosis but did cause a reduction in the level of circulating free fatty acids. (Author)

  4. Fatty acid compositions of triglycerides and free fatty acids in sebum depend on amount of triglycerides, and do not differ in presence or absence of acne vulgaris.

    Science.gov (United States)

    Akaza, Narifumi; Akamatsu, Hirohiko; Numata, Shigeki; Matsusue, Miyuki; Mashima, Yasuo; Miyawaki, Masaaki; Yamada, Shunji; Yagami, Akiko; Nakata, Satoru; Matsunaga, Kayoko

    2014-12-01

    To clarify the influence of the fatty acid composition of sebum in acne vulgaris, we investigated the amounts and fatty acid compositions of triglycerides (TG) and free fatty acids (FFA), and the amounts of cutaneous superficial Propionibacterium acnes in acne patients and healthy subjects. The foreheads of 18 female patients, 10 male patients, 10 healthy females and 10 healthy males were studied in a Japanese population. There were significant differences in the amounts of sebum, TG and cutaneous superficial P. acnes, as well as the fatty acid compositions of TG and FFA between acne patients and healthy subjects in females. Their fatty acid compositions were correlated with the amount of TG with or without acne. It was clarified that the fatty acid compositions of TG and FFA depended on the amount of TG, and there were no differences in the fatty acid composition in the presence and absence of acne. © 2014 Japanese Dermatological Association.

  5. Fatty acid methyl esters production: chemical process variables

    Directory of Open Access Journals (Sweden)

    Paulo César Narváez Rincón

    2004-05-01

    Full Text Available The advantages of fatty acid methyl esters as basic oleochemicals over fatty acids, the seventies world energy crisis and the use of those oleochemicals as fuels, have increased research interest on fats and oils trans-esterification. In this document, a review about basic aspects, uses, process variables and problems associated to the production process of fatty acid methyl esters is presented. A global view of recent researches, most of them focused in finding a new catalyst with same activity as the alcohol-soluble hydroxides (NaOH, KOH, and suitable to be used in transforming fats and oils with high levels of free fatty acids and water avoiding separation problems and reducing process costs, is also discussed.

  6. Improvement in cardiac function and free fatty acid metabolism in a case of dilated cardiomyopathy with CD36 deficiency.

    Science.gov (United States)

    Hirooka, K; Yasumura, Y; Ishida, Y; Komamura, K; Hanatani, A; Nakatani, S; Yamagishi, M; Miyatake, K

    2000-09-01

    A 27-year-old man diagnosed as having dilated cardiomyopathy (DCM) without myocardial accumulation of 123I-beta-methyl-iodophenylpentadecanoic acid, and he was found to have type I CD36 deficiency. This abnormality of cardiac free fatty acid metabolism was also confirmed by other methods: 18F-fluoro-2-deoxyglucose positron emission tomography, measurements of myocardial respiratory quotient and cardiac fatty acid uptake. Although the type I CD36 deficiency was reconfirmed after 3 months, the abnormal free fatty acid metabolism improved after carvedilol therapy and was accompanied by improved cardiac function. Apart from a cause-and-effect relationship, carvedilol can improve cardiac function and increase free fatty acid metabolism in patients with both DCM and CD36 deficiency.

  7. Microwave assisted esterification of free fatty acid over a heterogeneous catalyst for biodiesel production

    International Nuclear Information System (INIS)

    Liu, Wei; Yin, Ping; Liu, Xiguang; Chen, Wen; Chen, Hou; Liu, Chunping; Qu, Rongjun; Xu, Qiang

    2013-01-01

    Highlights: • Microwave assisted esterification of stearic acid with ethanol was catalyzed by D418. • D418 exhibited remarkable catalytic performance for ethyl stearate formation. • It proved possible to prepare biodiesel rapidly and with good conversions by microwave heating. • The relative catalytic kinetics study has been conducted and modeled. - Abstract: Biodiesel fuel is gaining significant attention in recent years because of its environmental benefits and the growing interest in finding new resources and alternatives for conventional fuels. Biodiesel production from waste cooking oil with high free fatty acids usually requires esterification step to produce fatty acid methyl/ethyl ester. In the present work, the heterogeneous catalyst aminophosphonic acid resin D418 has been successfully utilized in the energy-efficient microwave-assisted esterification reaction of fatty acid ethyl ester (FAEE) from free fatty acid (FFA) stearic acid with short-chain alcohol ethanol. Under the reaction conditions of 9 wt% D418 and 11: 1 M ratio of ethanol to stearic acid at 353 K and atmospheric pressure, more than 90% conversion of the esterification was achieved in 7 h by microwave heating, while it took about 12 h by conventional heating. Moreover, the kinetics of this esterification reaction has been studied, and the relevant values of activation energy and pre-exponential factor were obtained

  8. Hydrocarbon fuels from gas phase decarboxylation of hydrolyzed free fatty acid

    KAUST Repository

    Wang, Weicheng; Roberts, William L.; Stikeleather, Larry F.

    2012-01-01

    Gas phase decarboxylation of hydrolyzed free fatty acid (FFA) from canola oil has beeninvestigated in two fix-bed reactors by changing reaction parameters such as temperatures,FFA feed rates, and H 2-to-FFA molar ratios. FFA, which contains mostly C

  9. Camelina sativa Oil Deodorization: Balance Between Free Fatty Acids and Color Reduction and Isomerized Byproducts Formation

    DEFF Research Database (Denmark)

    Hrastar, Robert; Cheong, Ling-Zhi; Xu, Xuebing

    2011-01-01

    parameters for bench-scale deodorization of camelina oil. The mathematical models generated described the effects of process parameters (temperature, steam flow, time) on several deodorization quality indicators: free fatty acids (FFA), trans fatty acids (TFA), color, and polymerized triglycerides (PTG...

  10. Redirection of lipid flux toward phospholipids in yeast increases fatty acid turnover and secretion

    DEFF Research Database (Denmark)

    Ferreira, Raphael; Teixeiraa, Paulo Goncalves; Siewers, Verena

    2018-01-01

    and tightly regulated metabolic network. Here we generated a Saccharomyces cerevisiae platform strain with a simplified lipid metabolism network with high-level production of free fatty acids (FFAs) due to redirected fatty acid metabolism and reduced feedback regulation. Deletion of the main fatty acid...

  11. Optimization of reaction parameters for enzymatic glyceride synthesis from fish oil: Ethyl esters versus free fatty acids

    DEFF Research Database (Denmark)

    Ravn, Helle Christine; Damstrup, Marianne L.; Meyer, Anne S.

    2012-01-01

    Enzymatic conversion of fish oil free fatty acids (FFA) or fatty acid ethyl esters (FAE) into glycerides via esterification or transesterification was examined. The reactions catalyzed by Lipozyme™ 435, a Candida antarctica lipase, were optimized. Influence on conversion yields of fatty acid chain...... length, saturation degree, temperature, enzyme dosage, molar ratio glycerol:fatty acids, acyl source composition (w/w ratio FFA:FAE), and reaction time was evaluated collectively by multiple linear regression. All reaction variables influenced the conversion into glycerides. Transesterification of FAE...

  12. Fatty acid profile and cholesterol content of M. longissimus of free ...

    African Journals Online (AJOL)

    South African Journal of Animal Science ... Abstract. This study investigated the effects of different feeding systems (free-range versus conventional rearing) on carcass characteristics, chemical composition, fatty acid profile and cholesterol content of the musculus longissimus lumborum et thoracis (MLLT) of Mangalitsa pigs.

  13. Theoretical Study on Free Fatty Acid Elimination Mechanism for Waste Cooking Oils to Biodiesel over Acid Catalyst.

    Science.gov (United States)

    Wang, Kai; Zhang, Xiaochao; Zhang, Jilong; Zhang, Zhiqiang; Fan, Caimei; Han, Peide

    2016-05-01

    A theoretical investigation on the esterification mechanism of free fatty acid (FFA) in waste cooking oils (WCOs) has been carried out using DMol(3) module based on the density functional theory (DFT). Three potential pathways of FFA esterification reaction are designed to achieve the formation of fatty acid methyl ester (FAME), and calculated results show that the energy barrier can be efficiently reduced from 88.597kcal/mol to 15.318kcal/mol by acid catalyst. The molar enthalpy changes (ΔrHm°) of designed pathways are negative, indicating that FFA esterification reaction is an exothermic process. The obtained favorable energy pathway is: H(+) firstly activates FFA, then the intermediate combines with methanol to form a tetrahedral structure, and finally, producing FAME after removing a water molecule. The rate-determining step is the combination of the activated FFA with methanol, and the activation energy is about 11.513kcal/mol at 298.15K. Our results should provide basic and reliable theoretical data for further understanding the elimination mechanism of FFA over acid catalyst in the conversion of WCOs to biodiesel products. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. A Role for IR-β in the Free Fatty Acid Mediated Development of Hepatic Insulin Resistance?

    Directory of Open Access Journals (Sweden)

    Arthur G. Cox

    2009-10-01

    Full Text Available Several studies have been conducted to elucidate the role of free fatty acids (FFAs in the pathogenesis of type 2 diabetes, but the exact molecular mechanism by which FFAs alter glucose metabolism in the liver is still not completely understood.1-4 In a recent publication, Ragheb and co-workers have examined the effect of free fatty acid (FFA treatment on insulin signaling and insulin resistance by using immunoprecipitation and immunoblotting to study the effect of high concentrations of insulin and FFAs on insulin receptor-beta (IR-β and downstream elements in the PI3K pathway using the fructose-fed hamster model.5 Their results clearly show that free fatty acids have an insignificant effect on IR-β and supports previous findings that FFAs lead to insulin resistance in the liver via the PKC-NFĸB pathway.2,3

  15. Gas chromatography and silver-ion high-performance liquid chromatography analysis of conjugated linoleic acid isomers in free fatty acid form using sulphuric acid in methanol as catalyst.

    Science.gov (United States)

    Luna, Pilar; Juárez, Manuela; de la Fuente, Miguel Angel

    2008-09-12

    This study used GC and silver-ion HPLC to examine the effects of temperature and time on methylation of individual and mixtures of conjugated linoleic acid (CLA) isomers in free fatty acid form using sulphuric acid as catalyst. In the conditions tested (temperatures between 20 and 50 degrees C and times between 10 and 60 min) methylation was complete while avoiding isomerization of conjugated dienes and the formation of artefacts that could interfere with chromatographic determinations. An analytical method using solvent extraction of the lipids followed by selective elution of the free fatty acids from aminopropyl bonded phase columns and methylation with H(2)SO(4) in mild conditions was then applied to determine the CLA isomers in free fatty acid form in rumen fluid, and the results were evaluated.

  16. Impact of free fatty acid composition on oocyte developmental competence in dairy cows

    NARCIS (Netherlands)

    Aardema, H.

    2014-01-01

    Oleic acid protects oocytes against the detrimental effects of saturated free fatty acids During the last four decades, the fertility of high-producing dairy cows has declined dramatically. This decline in fertility has been linked to the equally marked increase in milk production, and the

  17. Effect of intravenous omega-3 fatty acid infusion and hemodialysis on fatty acid composition of free fatty acids and phospholipids in patients with end-stage renal disease.

    Science.gov (United States)

    Madsen, Trine; Christensen, Jeppe Hagstrup; Toft, Egon; Aardestrup, Inge; Lundbye-Christensen, Søren; Schmidt, Erik B

    2011-01-01

    Patients treated with hemodialysis (HD) have been reported to have decreased levels of ω-3 polyunsaturated fatty acids (PUFAs) in plasma and cells. The aim of this study was to investigate the effect of ω-3 PUFAs administered intravenously during HD, as well as the effect of HD treatment, on the fatty acid composition of plasma free fatty acids (FFAs), plasma phospholipids, and platelet phospholipids. Forty-four HD patients were randomized to groups receiving either a single dose of a lipid emulsion containing 4.1 g of ω-3 PUFAs or placebo (saline) administered intravenously during HD. Blood was drawn immediately before (baseline) and after (4 hours) HD and before the next HD session (48 hours). Fatty acid composition was measured using gas chromatography. The increase in ω-3 FFAs was greater in the ω-3 PUFA group compared with the placebo group, whereas the increase in total FFAs was similar between the 2 groups. In the ω-3 PUFA group, ω-3 PUFAs in plasma phospholipids were higher after 48 hours than at baseline, and in platelet phospholipids, ω-3 PUFAs increased after 4 hours. In the placebo group, no changes were observed in ω-3 PUFAs in plasma and platelet phospholipids. Intravenous ω-3 PUFAs administered during HD caused a transient selective increase in ω-3 FFA concentration. Furthermore, ω-3 PUFAs were rapidly incorporated into platelets, and the content of ω-3 PUFAs in plasma phospholipids increased after 48 hours.

  18. Free Fatty Acid Concentration and Carboxy methyl cellulase Activity of Some Formulas of Protected Fat-proteins Tested In Vitro

    Directory of Open Access Journals (Sweden)

    Lilis Hartati

    2015-05-01

    Full Text Available The aim of this study was to determine the levels of free fatty acids and carboxymethylcellulase activity (cmc-ase activity of some protected fat-proteins base on in vitro Tilley and Terry method. Two sources of fat, i.e. crude palm oil and fish oil and three sources of protein i.e. skim milk, soybean flour and soybean meal were used in the formulation of protected fat-protein, and thus there were six treatment combinations. The filtrate from the in vitro test was analyzed for the levels of free fatty acids and  cmcase activity. The result of this research indicates that different combinations of feed materials and fat give different content of free fatty acid in first stage and second stage in vitro, with the best results in the combination treatment of skim milk and palm oil that give the lowest result of  free fatty acid concentration in fisrt stage in vitro (0.168% and the highest result free fatty acid concentration in second stage in vitro ( 4.312% . The activity of CMC-ase was not influenced by different  sources of fat and protein. It can be concluded was that the protection of the combination between skim milk and CPO gives the highest protection results.

  19. Unsaturated fatty acids protect trophoblast cells from saturated fatty acid-induced autophagy defects.

    Science.gov (United States)

    Hong, Ye-Ji; Ahn, Hyo-Ju; Shin, Jongdae; Lee, Joon H; Kim, Jin-Hoi; Park, Hwan-Woo; Lee, Sung Ki

    2018-02-01

    Dysregulated serum fatty acids are associated with a lipotoxic placental environment, which contributes to increased pregnancy complications via altered trophoblast invasion. However, the role of saturated and unsaturated fatty acids in trophoblastic autophagy has yet to be explored. Here, we demonstrated that prolonged exposure of saturated fatty acids interferes with the invasiveness of human extravillous trophoblasts. Saturated fatty acids (but not unsaturated fatty acids) inhibited the fusion of autophagosomes and lysosomes, resulting in the formation of intracellular protein aggregates. Furthermore, when the trophoblast cells were exposed to saturated fatty acids, unsaturated fatty acids counteracted the effects of saturated fatty acids by increasing degradation of autophagic vacuoles. Saturated fatty acids reduced the levels of the matrix metalloproteinases (MMP)-2 and MMP-9, while unsaturated fatty acids maintained their levels. In conclusion, saturated fatty acids induced decreased trophoblast invasion, of which autophagy dysfunction plays a major role. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Probe-Dependent Negative Allosteric Modulators of the Long-Chain Free Fatty Acid Receptor FFA4

    DEFF Research Database (Denmark)

    Watterson, Kenneth R; Hansen, Steffen V F; Hudson, Brian D

    2017-01-01

    High-affinity and selective antagonists that are able to block the actions of both endogenous and synthetic agonists of G protein-coupled receptors are integral to analysis of receptor function and to support suggestions of therapeutic potential. Although there is great interest in the potential...... of endogenous and synthetic agonists, clear agonist probe dependence in the nature of allosteric modulation was apparent. Although AH-7614 did not antagonize the second long-chain free fatty acid receptor, free fatty acid receptor 1, the simple chemical structure of AH-7614 containing features found in many...

  1. Fatty Acid Biosynthesis IX

    DEFF Research Database (Denmark)

    Carey, E. M.; Hansen, Heinz Johs. Max; Dils, R.

    1972-01-01

    # 1. I. [I-14C]Acetate was covalently bound to rabbit mammary gland fatty acid synthetase by enzymic transacylation from [I-14C]acetyl-CoA. Per mole of enzyme 2 moles of acetate were bound to thiol groups and up to I mole of acetate was bound to non-thiol groups. # 2. 2. The acetyl-fatty acid...... synthetase complex was isolated free from acetyl-CoA. It was rapidly hydrolysed at 30°C, but hydrolysis was greatly diminished at o°C and triacetic lactone synthesis occurred. In the presence of malonyl-CoA and NADPH, all the acetate bound to fatty acid synthetase was incorporated into long-chain fatty acids....... Hydrolysis of bound acetate and incorporation of bound acetate into fatty acids were inhibited to the same extent by guanidine hydrochloride. # 3. 3. Acetate was also covalently bound to fatty acid synthetase by chemical acetylation with [I-14C]acetic anhydride in the absence of CoASH. A total of 60 moles...

  2. Rapid measurement of plasma free fatty acid concentration and isotopic enrichment using LC/MS

    Science.gov (United States)

    Persson, Xuan-Mai T.; Błachnio-Zabielska, Agnieszka Urszula; Jensen, Michael D.

    2010-01-01

    Measurements of plasma free fatty acids (FFA) concentration and isotopic enrichment are commonly used to evaluate FFA metabolism. Until now, gas chromatography-combustion-isotope ratio mass spectrometry (GC/C/IRMS) was the best method to measure isotopic enrichment in the methyl derivatives of 13C-labeled fatty acids. Although IRMS is excellent for analyzing enrichment, it requires time-consuming derivatization steps and is not optimal for measuring FFA concentrations. We developed a new, rapid, and reliable method for simultaneous quantification of 13C-labeled fatty acids in plasma using high-performance liquid chromatography-mass spectrometry (HPLC/MS). This method involves a very quick Dole extraction procedure and direct injection of the samples on the HPLC system. After chromatographic separation, the samples are directed to the mass spectrometer for electrospray ionization (ESI) and analysis in the negative mode using single ion monitoring. By employing equipment with two columns connected parallel to a mass spectrometer, we can double the throughput to the mass spectrometer, reducing the analysis time per sample to 5 min. Palmitate flux measured using this approach agreed well with the GC/C/IRMS method. This HPLC/MS method provides accurate and precise measures of FFA concentration and enrichment. PMID:20526002

  3. Meat fatty acid and cholesterol level of free-range broilers fed on grasshoppers on alpine rangeland in the Tibetan Plateau.

    Science.gov (United States)

    Sun, Tao; Liu, Zhiyun; Qin, Liping; Long, Ruijun

    2012-08-30

    Meat safety and nutrition are major concerns of consumers. The development of distinctive poultry production methods based on locally available natural resources is important. Grasshoppers are rich in important nutrients and occur in dense concentrations in most rangelands of northern China. Foraging chickens could be used to suppress grasshopper infestations. However, knowledge of the fatty acid content of meat from free-range broilers reared on alpine rangeland is required. Rearing conditions and diet did not significantly (P > 0.05) affect concentrations of saturated fatty acid (SFA), arachidonic acid, docosahexaenoic acid or the ratio of total n-6 to total n-3 fatty acids. Breast muscle of chickens that had consumed grasshoppers contained significantly (P 0.05) higher than intensively reared birds. Compared with meat from intensively reared birds, meat from free-range broilers had less cholesterol and higher concentrations of total lipid and phospholipids. Chickens eating grasshoppers in rangeland produce superior quality meat and reduce the grasshopper populations that damage the pastures. This provides an economic system of enhanced poultry-meat production, which derives benefits from natural resources rather than artificial additives. Copyright © 2012 Society of Chemical Industry.

  4. Update on the management of severe hypertriglyceridemia--focus on free fatty acid forms of omega-3.

    Science.gov (United States)

    Pirillo, Angela; Catapano, Alberico Luigi

    2015-01-01

    High levels of plasma triglycerides (TG) are a risk factor for cardiovascular diseases, often associated with anomalies in other lipids or lipoproteins. Hypertriglyceridemia (HTG), particularly at very high levels, significantly increases also the risk of acute pancreatitis. Thus, interventions to lower TG levels are required to reduce the risk of pancreatitis and cardiovascular disease. Several strategies may be adopted for TG reduction, including lifestyle changes and pharmacological interventions. Among the available drugs, the most commonly used for HTG are fibrates, nicotinic acid, and omega-3 polyunsaturated fatty acids (usually a mixture of eicosapentaenoic acid, or EPA, and docosahexaenoic acid, or DHA). These last are available under different concentrated formulations containing high amounts of omega-3 fatty acids, including a mixture of EPA and DHA or pure EPA. The most recent formulation contains a free fatty acid (FFA) form of EPA and DHA, and exhibits a significantly higher bioavailability compared with the ethyl ester forms contained in the other formulations. This is due to the fact that the ethyl ester forms, to be absorbed, need to be hydrolyzed by the pancreatic enzymes that are secreted in response to fat intake, while the FFA do not. This higher bioavailability translates into a higher TG-lowering efficacy compared with the ethyl ester forms at equivalent doses. Omega-3 FFA are effective in reducing TG levels and other lipids in hypertriglyceridemic patients as well as in high cardiovascular risk patients treated with statins and residual HTG. Currently, omega-3 FFA formulation is under evaluation to establish whether, in high cardiovascular risk subjects, the addition of omega-3 to statin therapy may prevent or reduce major cardiovascular events.

  5. Fishy Business: Effect of Omega-3 Fatty Acids on Zinc Transporters and Free Zinc Availability in Human Neuronal Cells

    Directory of Open Access Journals (Sweden)

    Damitha De Mel

    2014-08-01

    Full Text Available Omega-3 (ω-3 fatty acids are one of the two main families of long chain polyunsaturated fatty acids (PUFA. The main omega-3 fatty acids in the mammalian body are α-linolenic acid (ALA, docosahexaenoic acid (DHA and eicosapentaenoic acid (EPA. Central nervous tissues of vertebrates are characterized by a high concentration of omega-3 fatty acids. Moreover, in the human brain, DHA is considered as the main structural omega-3 fatty acid, which comprises about 40% of the PUFAs in total. DHA deficiency may be the cause of many disorders such as depression, inability to concentrate, excessive mood swings, anxiety, cardiovascular disease, type 2 diabetes, dry skin and so on. On the other hand, zinc is the most abundant trace metal in the human brain. There are many scientific studies linking zinc, especially excess amounts of free zinc, to cellular death. Neurodegenerative diseases, such as Alzheimer’s disease, are characterized by altered zinc metabolism. Both animal model studies and human cell culture studies have shown a possible link between omega-3 fatty acids, zinc transporter levels and free zinc availability at cellular levels. Many other studies have also suggested a possible omega-3 and zinc effect on neurodegeneration and cellular death. Therefore, in this review, we will examine the effect of omega-3 fatty acids on zinc transporters and the importance of free zinc for human neuronal cells. Moreover, we will evaluate the collective understanding of mechanism(s for the interaction of these elements in neuronal research and their significance for the diagnosis and treatment of neurodegeneration.

  6. Fishy business: effect of omega-3 fatty acids on zinc transporters and free zinc availability in human neuronal cells.

    Science.gov (United States)

    De Mel, Damitha; Suphioglu, Cenk

    2014-08-15

    Omega-3 (ω-3) fatty acids are one of the two main families of long chain polyunsaturated fatty acids (PUFA). The main omega-3 fatty acids in the mammalian body are α-linolenic acid (ALA), docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA). Central nervous tissues of vertebrates are characterized by a high concentration of omega-3 fatty acids. Moreover, in the human brain, DHA is considered as the main structural omega-3 fatty acid, which comprises about 40% of the PUFAs in total. DHA deficiency may be the cause of many disorders such as depression, inability to concentrate, excessive mood swings, anxiety, cardiovascular disease, type 2 diabetes, dry skin and so on. On the other hand, zinc is the most abundant trace metal in the human brain. There are many scientific studies linking zinc, especially excess amounts of free zinc, to cellular death. Neurodegenerative diseases, such as Alzheimer's disease, are characterized by altered zinc metabolism. Both animal model studies and human cell culture studies have shown a possible link between omega-3 fatty acids, zinc transporter levels and free zinc availability at cellular levels. Many other studies have also suggested a possible omega-3 and zinc effect on neurodegeneration and cellular death. Therefore, in this review, we will examine the effect of omega-3 fatty acids on zinc transporters and the importance of free zinc for human neuronal cells. Moreover, we will evaluate the collective understanding of mechanism(s) for the interaction of these elements in neuronal research and their significance for the diagnosis and treatment of neurodegeneration.

  7. A microfluidic device for the automated derivatization of free fatty acids to fatty acid methyl esters.

    Science.gov (United States)

    Duong, Cindy T; Roper, Michael G

    2012-02-21

    Free fatty acid (FFA) compositions are examined in feedstock for biodiesel production, as source-specific markers in soil, and because of their role in cellular signaling. However, sample preparation of FFAs for gas chromatography-mass spectrometry (GC-MS) analysis can be time and labor intensive. Therefore, to increase sample preparation throughput, a glass microfluidic device was developed to automate derivatization of FFAs to fatty acid methyl esters (FAMEs). FFAs were delivered to one input of the device and methanolic-HCl was delivered to a second input. FAME products were produced as the reagents traversed a 29 μL reaction channel held at 55 °C. A Design of Experiment protocol was used to determine the combination of derivatization time (T(der)) and ratio of methanolic-HCl:FFA (R(der)) that maximized the derivatization efficiencies of tridecanoic acid and stearic acid to their methyl ester forms. The combination of T(der) = 0.8 min and R(der) = 4.9 that produced optimal derivatization conditions for both FFAs within a 5 min total sample preparation time was determined. This combination of T(der) and R(der) was used to derivatize 12 FFAs with a range of derivatization efficiencies from 18% to 93% with efficiencies of 61% for tridecanoic acid and 84% for stearic acid. As compared to a conventional macroscale derivatization of FFA to FAME, the microfluidic device decreased the volume of methanolic-HCl and FFA by 20- and 1300-fold, respectively. The developed microfluidic device can be used for automated preparation of FAMEs to analyze the FFA compositions of volume-limited samples.

  8. Altered fatty acid metabolism and reduced stearoyl-coenzyme a desaturase activity in asthma.

    Science.gov (United States)

    Rodriguez-Perez, N; Schiavi, E; Frei, R; Ferstl, R; Wawrzyniak, P; Smolinska, S; Sokolowska, M; Sievi, N A; Kohler, M; Schmid-Grendelmeier, P; Michalovich, D; Simpson, K D; Hessel, E M; Jutel, M; Martin-Fontecha, M; Palomares, O; Akdis, C A; O'Mahony, L

    2017-11-01

    Fatty acids and lipid mediator signaling play an important role in the pathogenesis of asthma, yet this area remains largely underexplored. The aims of this study were (i) to examine fatty acid levels and their metabolism in obese and nonobese asthma patients and (ii) to determine the functional effects of altered fatty acid metabolism in experimental models. Medium- and long-chain fatty acid levels were quantified in serum from 161 human volunteers by LC/MS. Changes in stearoyl-coenzyme A desaturase (SCD) expression and activity were evaluated in the ovalbumin (OVA) and house dust mite (HDM) murine models. Primary human bronchial epithelial cells from asthma patients and controls were evaluated for SCD expression and activity. The serum desaturation index (an indirect measure of SCD) was significantly reduced in nonobese asthma patients and in the OVA murine model. SCD1 gene expression was significantly reduced within the lungs following OVA or HDM challenge. Inhibition of SCD in mice promoted airway hyper-responsiveness. SCD1 expression was suppressed in bronchial epithelial cells from asthma patients. IL-4 and IL-13 reduced epithelial cell SCD1 expression. Inhibition of SCD reduced surfactant protein C expression and suppressed rhinovirus-induced IP-10 secretion, which was associated with increased viral titers. This is the first study to demonstrate decreased fatty acid desaturase activity in humans with asthma. Experimental models in mice and human epithelial cells suggest that inhibition of desaturase activity leads to airway hyper-responsiveness and reduced antiviral defense. SCD may represent a new target for therapeutic intervention in asthma patients. © 2017 EAACI and John Wiley and Sons A/S. Published by John Wiley and Sons Ltd.

  9. Update on the management of severe hypertriglyceridemia – focus on free fatty acid forms of omega-3

    Directory of Open Access Journals (Sweden)

    Pirillo A

    2015-04-01

    Full Text Available Angela Pirillo,1,2 Alberico Luigi Catapano2,3 1Center for the Study of Atherosclerosis, Bassini Hospital, Cinisello Balsamo, Italy; 2IRCCS Multimedica, Milan, Italy; 3Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy Abstract: High levels of plasma triglycerides (TG are a risk factor for cardiovascular diseases, often associated with anomalies in other lipids or lipoproteins. Hypertriglyceridemia (HTG, particularly at very high levels, significantly increases also the risk of acute pancreatitis. Thus, interventions to lower TG levels are required to reduce the risk of pancreatitis and cardiovascular disease. Several strategies may be adopted for TG reduction, including lifestyle changes and pharmacological interventions. Among the available drugs, the most commonly used for HTG are fibrates, nicotinic acid, and omega-3 polyunsaturated fatty acids (usually a mixture of eicosapentaenoic acid, or EPA, and docosahexaenoic acid, or DHA. These last are available under different concentrated formulations containing high amounts of omega-3 fatty acids, including a mixture of EPA and DHA or pure EPA. The most recent formulation contains a free fatty acid (FFA form of EPA and DHA, and exhibits a significantly higher bioavailability compared with the ethyl ester forms contained in the other formulations. This is due to the fact that the ethyl ester forms, to be absorbed, need to be hydrolyzed by the pancreatic enzymes that are secreted in response to fat intake, while the FFA do not. This higher bioavailability translates into a higher TG-lowering efficacy compared with the ethyl ester forms at equivalent doses. Omega-3 FFA are effective in reducing TG levels and other lipids in hypertriglyceridemic patients as well as in high cardiovascular risk patients treated with statins and residual HTG. Currently, omega-3 FFA formulation is under evaluation to establish whether, in high cardiovascular risk

  10. Novel Omega-3 Fatty Acid Epoxygenase Metabolite Reduces Kidney Fibrosis

    Science.gov (United States)

    Sharma, Amit; Khan, Md. Abdul Hye; Levick, Scott P.; Lee, Kin Sing Stephen; Hammock, Bruce D.; Imig, John D.

    2016-01-01

    Cytochrome P450 (CYP) monooxygenases epoxidize the omega-3 polyunsaturated fatty acid (PUFA) docosahexaenoic acid into novel epoxydocosapentaenoic acids (EDPs) that have multiple biological actions. The present study determined the ability of the most abundant EDP regioisomer, 19,20-EDP to reduce kidney injury in an experimental unilateral ureteral obstruction (UUO) renal fibrosis mouse model. Mice with UUO developed kidney tubular injury and interstitial fibrosis. UUO mice had elevated kidney hydroxyproline content and five-times greater collagen positive fibrotic area than sham control mice. 19,20-EDP treatment to UUO mice for 10 days reduced renal fibrosis with a 40%–50% reduction in collagen positive area and hydroxyproline content. There was a six-fold increase in kidney α-smooth muscle actin (α-SMA) positive area in UUO mice compared to sham control mice, and 19,20-EDP treatment to UUO mice decreased α-SMA immunopositive area by 60%. UUO mice demonstrated renal epithelial-to-mesenchymal transition (EMT) with reduced expression of the epithelial marker E-cadherin and elevated expression of multiple mesenchymal markers (FSP-1, α-SMA, and desmin). Interestingly, 19,20-EDP treatment reduced renal EMT in UUO by decreasing mesenchymal and increasing epithelial marker expression. Overall, we demonstrate that a novel omega-3 fatty acid metabolite 19,20-EDP, prevents UUO-induced renal fibrosis in mice by reducing renal EMT. PMID:27213332

  11. Expression of Vibrio harveyi acyl-ACP synthetase allows efficient entry of exogenous fatty acids into the Escherichia coli fatty acid and lipid A synthetic pathways.

    Science.gov (United States)

    Jiang, Yanfang; Morgan-Kiss, Rachael M; Campbell, John W; Chan, Chi Ho; Cronan, John E

    2010-02-02

    Although the Escherichia coli fatty acid synthesis (FAS) pathway is the best studied type II fatty acid synthesis system, a major experimental limitation has been the inability to feed intermediates into the pathway in vivo because exogenously supplied free fatty acids are not efficiently converted to the acyl-acyl carrier protein (ACP) thioesters required by the pathway. We report that expression of Vibrio harveyi acyl-ACP synthetase (AasS), a soluble cytosolic enzyme that ligates free fatty acids to ACP to form acyl-ACPs, allows exogenous fatty acids to enter the E. coli fatty acid synthesis pathway. The free fatty acids are incorporated intact and can be elongated or directly incorporated into complex lipids by acyltransferases specific for acyl-ACPs. Moreover, expression of AasS strains and supplementation with the appropriate fatty acid restored growth to E. coli mutant strains that lack essential fatty acid synthesis enzymes. Thus, this strategy provides a new tool for circumventing the loss of enzymes essential for FAS function.

  12. 1,4-Dihydroxy fatty acids: Artifacts by reduction of di- and polyunsaturated fatty acids with sodium borohydride

    Science.gov (United States)

    Thiemt, Simone; Spiteller, Gerhard

    1997-01-01

    In an effort to detect lipid peroxidation products in human blood plasma, samples were treated with NaBH4 to reduce the reactive hydroperoxides to hydroxy compounds. After saponification of the lipids, the free fatty acid fraction obtained by extraction was methylated and separated by TLC. The fractions containing polar compounds were trimethylsilylated and subjected to gas chromatography-mass spectrometry (GC/MS). Mass spectra allowed us to detect previously unknown 1,4-dihydroxy fatty acids due to their typical fragmentation pattern. If the reduction was carried out with NaBD4 instead of NaBH4, incorporation of two deuterium atoms was observed (appropriate mass shift). The two oxygen atoms of the hydroxyl groups were incorporated from air as shown by an experiment in 18O2 atmosphere. The reaction required the presence of free acids, indicating that BH3 was liberated, added to a 1,4-pentadiene system, and finally produced 1,4-diols by air oxidation.

  13. Concomitant action of structural elements and receptor phosphorylation determines arrestin-3 interaction with the free fatty acid receptor FFA4

    DEFF Research Database (Denmark)

    Butcher, Adrian J; Hudson, Brian D; Shimpukade, Bharat

    2014-01-01

    In addition to being nutrients, free fatty acids act as signaling molecules by activating a family of G protein-coupled receptors. Among these is FFA4, previously called GPR120, which responds to medium and long chain fatty acids, including health-promoting ω-3 fatty acids, which have been implic...

  14. Reaction kinetics of free fatty acids esterification in palm fatty acid distillate using coconut shell biochar sulfonated catalyst

    Science.gov (United States)

    Hidayat, Arif; Rochmadi, Wijaya, Karna; Budiman, Arief

    2015-12-01

    Recently, a new strategy of preparing novel carbon-based solid acids has been developed. In this research, the esterification reactions of Palm Fatty Acid Distillate (PFAD) with methanol, using coconut shell biochar sulfonated catalyst from biomass wastes as catalyst, were studied. In this study, the coconut shell biochar sulfonated catalysts were synthesized by sulfonating the coconut shell biochar using concentrated H2SO4. The kinetics of free fatty acid (FFA) esterification in PFAD using a coconut shell biochar sulfonated catalyst was also studied. The effects of the mass ratio of catalyst to oil (1-10%), the molar ratio of methanol to oil (6:1-12:1), and the reaction temperature (40-60°C) were studied for the conversion of PFAD to optimize the reaction conditions. The results showed that the optimal conditions were an methanol to PFAD molar ratio of 12:1, the amount of catalyst of 10%w, and reaction temperature of 60°C. The proposed kinetic model shows a reversible second order reaction and represents all the experimental data satisfactorily, providing deeper insight into the kinetics of the reaction.

  15. Omega-3 free fatty acids suppress macrophage inflammasome activation by inhibiting NF-κB activation and enhancing autophagy.

    Directory of Open Access Journals (Sweden)

    Yolanda Williams-Bey

    Full Text Available The omega-3 (ω3 fatty acid docosahexaenoic acid (DHA can suppress inflammation, specifically IL-1β production through poorly understood molecular mechanisms. Here, we show that DHA reduces macrophage IL-1β production by limiting inflammasome activation. Exposure to DHA reduced IL-1β production by ligands that stimulate the NLRP3, AIM2, and NAIP5/NLRC4 inflammasomes. The inhibition required Free Fatty Acid Receptor (FFAR 4 (also known as GPR120, a G-protein coupled receptor (GPR known to bind DHA. The exposure of cells to DHA recruited the adapter protein β-arrestin1/2 to FFAR4, but not to a related lipid receptor. DHA treatment reduced the initial inflammasome priming step by suppressing the nuclear translocation of NF-κB. DHA also reduced IL-1β levels by enhancing autophagy in the cells. As a consequence macrophages derived from mice lacking the essential autophagy protein ATG7 were partially resistant to suppressive effects of DHA. Thus, DHA suppresses inflammasome activation by two distinct mechanisms, inhibiting the initial priming step and by augmenting autophagy, which limits inflammasome activity.

  16. Reduction of free fatty acids by acipimox enhances the growth hormone (GH) responses to GH-releasing peptide 2 in elderly men

    NARCIS (Netherlands)

    Smid, HEC; de Vries, WR; Niesink, M; Bolscher, E; Waasdorp, EJ; Dieguez, C; Casanueva, FF; Koppeschaar, HPF

    2000-01-01

    GH release is increased by reducing circulating free fatty acids (FFAs). Aging is associated with decreased plasma GH concentrations. We evaluated GH releasing capacity in nine healthy elderly men after administration of GH-releasing peptide 2 (GHRP-2), with or without pretreatment with the

  17. Cardiomyocyte Triglyceride Accumulation and Reduced Ventricular Function in Mice with Obesity Reflect Increased Long Chain Fatty Acid Uptake and De Novo Fatty Acid Synthesis

    Directory of Open Access Journals (Sweden)

    Fengxia Ge

    2012-01-01

    Full Text Available A nonarteriosclerotic cardiomyopathy is increasingly seen in obese patients. Seeking a rodent model, we studied cardiac histology, function, cardiomyocyte fatty acid uptake, and transporter gene expression in male C57BL/6J control mice and three obesity groups: similar mice fed a high-fat diet (HFD and db/db and ob/ob mice. At sacrifice, all obesity groups had increased body and heart weights and fatty livers. By echocardiography, ejection fraction (EF and fractional shortening (FS of left ventricular diameter during systole were significantly reduced. The Vmax for saturable fatty acid uptake was increased and significantly correlated with cardiac triglycerides and insulin concentrations. Vmax also correlated with expression of genes for the cardiac fatty acid transporters Cd36 and Slc27a1. Genes for de novo fatty acid synthesis (Fasn, Scd1 were also upregulated. Ten oxidative phosphorylation pathway genes were downregulated, suggesting that a decrease in cardiomyocyte ATP synthesis might explain the decreased contractile function in obese hearts.

  18. Fatty acid oxidation in skeletal and cardiac muscle

    International Nuclear Information System (INIS)

    Glatz, J.F.C.

    1983-01-01

    The biochemical investigations described in this thesis deal with two aspects of fatty acid oxidation in muscle: a comparison of the use of cell-free and cellular systems for oxidation measurements, and studies on the assay and the role of the fatty acid binding protein in fatty acid metabolism. The fatty acid oxidation rates are determined radiochemically by the sum of 14 CO 2 and 14 C-labeled acid-soluble products formed during oxidation of [ 14 C]-fatty acids. A radiochemical procedure for the assay of fatty acid binding by proteins is described. (Auth.)

  19. A Spectroscopic Method for Determining Free Iodine in Iodinated Fatty-Acid Esters

    Science.gov (United States)

    Klyubin, V. V.; Klyubina, K. A.; Makovetskaya, K. N.

    2018-01-01

    It is shown that the concentration of free iodine in samples of iodinated fatty-acid esters can be measured using the electronic absorption spectra of their solutions in ethanol. The method proposed is rather simple in use and highly sensitive, allowing detection of presence of less than 10 ppm of free iodine in iodinated compounds. It is shown using the example of Lipiodol that this makes it possible to easily detect small amounts of free iodine in samples containing bound iodine in concentrations down to 40 wt %.

  20. Extracellular loop 2 of the free Fatty Acid receptor 2 mediates allosterism of a phenylacetamide ago-allosteric modulator

    DEFF Research Database (Denmark)

    Smith, Nicola J; Ward, Richard J; Stoddart, Leigh A

    2011-01-01

    Allosteric agonists are powerful tools for exploring the pharmacology of closely related G protein-coupled receptors that have nonselective endogenous ligands, such as the short chain fatty acids at free fatty acid receptors 2 and 3 (FFA2/GPR43 and FFA3/GPR41, respectively). We explored the molec...

  1. Biocatalytic acylation of carbohydrates with fatty acids from palm fatty acid distillates.

    Science.gov (United States)

    Chaiyaso, Thanongsak; H-Kittikun, Aran; Zimmermann, Wolfgang

    2006-05-01

    Palm fatty acid distillates (PFAD) are by-products of the palm oil refining process. Their use as the source of fatty acids, mainly palmitate, for the biocatalytic synthesis of carbohydrate fatty acid esters was investigated. Esters could be prepared in high yields from unmodified acyl donors and non-activated free fatty acids obtained from PFAD with an immobilized Candida antarctica lipase preparation. Acetone was found as a compatible non-toxic solvent, which gave the highest conversion yields in a heterogeneous reaction system without the complete solubilization of the sugars. Glucose, fructose, and other acyl acceptors could be employed for an ester synthesis with PFAD. The synthesis of glucose palmitate was optimized with regard to the water activity of the reaction mixture, the reaction temperature, and the enzyme concentration. The ester was obtained with 76% yield from glucose and PFAD after reaction for 74 h with 150 U ml(-1) immobilized lipase at 40 degrees C in acetone.

  2. Determination of free fatty acids in beer.

    Science.gov (United States)

    Bravi, Elisabetta; Marconi, Ombretta; Sileoni, Valeria; Perretti, Giuseppe

    2017-01-15

    Free fatty acids (FFA) content of beer affects the ability to form a stable head of foam and plays an important role in beer staling. Moreover, the presence of saturated FAs is related sometimes to gushing problems in beer. The aim of this research was to validate an analytical method for the determination of FFAs in beer. The extraction of FFAs in beer was achieved via Liquid-Liquid Cartridge Extraction (LLCE), the FFAs extract was purified by Solid Phase Extraction (SPE), methylated by boron trifluoride in methanol, and injected into GC-FID system. The performance criteria demonstrate that this method is suitable for the analysis of medium and long chain FFAs in beer. The proposed method was tested on four experimental beers. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Omega-3 Fatty Acids

    Science.gov (United States)

    Omega-3 fatty acids are used together with lifestyle changes (diet, weight-loss, exercise) to reduce the amount of triglycerides (a fat- ... in people with very high triglycerides. Omega-3 fatty acids are in a class of medications called antilipemic ...

  4. Physiological effects of γ-linolenic acid and sesamin on hepatic fatty acid synthesis and oxidation.

    Science.gov (United States)

    Ide, Takashi; Iwase, Haruka; Amano, Saaya; Sunahara, Saki; Tachihara, Ayuka; Yagi, Minako; Watanabe, Tsuyoshi

    2017-03-01

    Interrelated effects of γ-linolenic acid (GLA) and sesamin, a sesame lignan, on hepatic fatty acid synthesis and oxidation were examined. Rats were fed experimental diets supplemented with 0 or 2 g/kg sesamin (1:1 mixture of sesamin and episesamin) and containing 100 g/kg of palm oil (saturated fat), safflower oil rich in linoleic acid, or oil of evening primrose origin containing 43% GLA (GLA oil) for 18 days. In rats fed sesamin-free diets, GLA oil, compared with other oils, increased the activity and mRNA levels of various enzymes involved in fatty acid oxidation, except for some instances. Sesamin greatly increased these parameters, and the enhancing effects of sesamin on peroxisomal fatty acid oxidation rate and acyl-CoA oxidase, enoyl-CoA hydratase and acyl-CoA thioesterase activities were more exaggerated in rats fed GLA oil than in the animals fed other oils. The combination of sesamin and GLA oil also synergistically increased the mRNA levels of some peroxisomal fatty acid oxidation enzymes and of several enzymes involved in fatty acid metabolism located in other cell organelles. In the groups fed sesamin-free diets, GLA oil, compared with other oils, markedly reduced the activity and mRNA levels of various lipogenic enzymes. Sesamin reduced all these parameters, except for malic enzyme, in rats fed palm and safflower oils, but the effects were attenuated in the animals fed GLA oil. These changes by sesamin and fat type accompanied profound alterations in serum lipid levels. This may be ascribable to the changes in apolipoprotein-B-containing lipoproteins. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Effects of free fatty acids per se on glucose production, gluconeogenesis, and glycogenolysis

    DEFF Research Database (Denmark)

    Staehr, Peter; Hother-Nielsen, Ole; Landau, Bernard R

    2003-01-01

    Insulin-independent effects of a physiological increase in free fatty acid (FFA) levels on fasting glucose production, gluconeogenesis, and glycogenolysis were assessed by administering [6,6-(2)H(2)]-glucose and deuteriated water ((2)H(2)O) in 12 type 1 diabetic patients, during 6-h infusions...

  6. Short-chain free fatty acid receptors FFA2/GPR43 and FFA3/GPR41 as new potential therapeutic targets

    DEFF Research Database (Denmark)

    Ulven, Trond

    2012-01-01

    The deorphanization of the free fatty acid (FFA) receptors FFA1 (GPR40), FFA2 (GPR43), FFA3 (GPR41), GPR84, and GPR120 has made clear that the body is capable of recognizing and responding directly to nonesterified fatty acid of virtually any chain length. Colonic fermentation of dietary fiber...... produces high concentrations of the short-chain fatty acids (SCFAs) acetate, propionate and butyrate, a process which is important to health. The phylogenetically related 7-transmembrane (7TM) receptors free fatty acid receptor 2 (FFA2) and FFA3 are activated by these SCFAs, and several lines of evidence...... in general have properties that make them less than ideal as such tools, but published patent applications indicate that better tool compounds might soon become available which should enable studies critical to validate the receptors as new drug targets....

  7. Effect of pulp preconditioning on acidification, proteolysis, sugars and free fatty acids concentration during fermentation of cocoa (Theobroma cacao) beans.

    Science.gov (United States)

    Afoakwa, Emmanuel Ohene; Quao, Jennifer; Budu, Agnes Simpson; Takrama, Jemmy; Saalia, Firibu Kwesi

    2011-11-01

    Changes in acidification, proteolysis, sugars and free fatty acids (FFAs) concentrations of Ghanaian cocoa beans as affected by pulp preconditioning (pod storage or PS) and fermentation were investigated. Non-volatile acidity, pH, proteolysis, sugars (total, reducing and non-reducing) and FFAs concentrations were analysed using standard methods. Increasing PS consistently decreased the non-volatile acidity with concomitant increase in pH during fermentation of the beans. Fermentation decreased the pH of the unstored beans from 6.7 to 4.9 within the first 4 days and then increased slightly again to 5.3 by the sixth day. Protein, total sugars and non-reducing sugars decreased significantly (p cocoa beans was largely affected by fermentation than by PS.

  8. Esterification of free fatty acids in waste cooking oils (WCO): Role of ion-exchange resins

    Energy Technology Data Exchange (ETDEWEB)

    Nalan Ozbay; Nuray Oktar; N. Alper Tapan [Gazi University, Ankara (Turkey). Faculty of Engineering and Architecture, Department of Chemical Engineering

    2008-08-15

    Although WCO plays a crucial role for the economical production of biodiesel, free fatty acid (FFA) level in the nature of WCO cause saponification problems during transesterification. Acidic ion-exchange resins can be used to decrease WCO free fatty acid level. In this study, activities of resins (Amberlyst-15 (A-15), Amberlyst-35 (A-35), Amberlyst-16 (A-16) and Dowex HCR-W2) in direct FFA esterification were examined in the temperature range of 50-60{sup o}C and the effect of catalyst amount (1-2 wt%) on FFA conversion was also analyzed. FFA conversion increased with increasing reaction temperature and catalyst amount. Order of catalytic activities was found as A-15 > A-35 > A-16 > Dowex HCR-W2. This was related to the size of average pore diameters and magnitude of BET surface area. 44 refs., 11 figs., 2 tabs.

  9. Metabolism of fatty acids in rat brain in microsomal membranes

    International Nuclear Information System (INIS)

    Aeberhard, E.E.; Gan-Elepano, M.; Mead, J.F.

    1980-01-01

    Using a technique in which substrate fatty acids are incorporated into microsomal membranes followd by comparison of their rates of desaturation or elongation with those of exogenous added fatty acids it has been found that the desaturation rate is more rapid for the membrane-bound substrate than for the added fatty acid. Moreover, the product of the membrane-bound substrate is incorporated into membrane phospholipid whereas the product of the exogenous substrate is found in di- and triacyl glycerols and in free fatty acids as well. These and other findings point to a normal sequence of reaction of membrane liqids with membrane-bound substrates involving transfer of fatty acid from phospholipid to the coupled enzyme systems without ready equilibration with the free fatty acid pool

  10. FUNGAL POPULATION, AFLATOXIN AND FREE FATTY ACID CONTENTS OF PEANUTS PACKED IN DIFFERENT BAG TYPES

    Directory of Open Access Journals (Sweden)

    SONIA S.P. BULAONG

    2002-01-01

    Full Text Available Shelled peanuts of Gajah var. with initial moisture content of 7% were stored at 11 kg/bag in four bag types namely: jute bag, polypropylene bag, jute bag doubled with thin polyethylene (PE, and jute bag doubled with thick PE. Storage was done for six months under warehouse conditions with monitoring of relative humidity and temperature. Samples taken at the be ginning of storage and every month thereafter were analyzed for moisture content, fungal population, aflatoxin and free fatty acid contents. Statistical analyses showed that moisture content, fungal population, and free fatty acid contents were signifi cantly higher in jute and polypropylene bags than in PE-dou,bled jute bags. No significant differences were obtained in aflatoxin contents among bag types but at the end of six months storage, toxin level in jute bag exceeded the 30 ppb limit. Polypropylene had second highest toxin level at 23 ppb. The PE-doubled bags ha d 17 and 19 ppb total aflatoxins for thin and thick films, respectively. The results indicated that the immediate packag ing of dried shelled peanuts at safe moisture level in plastic films with water vapor transmission rated of 1 g/m2/24 hr or lower is recommended. This p ackaging will delay critical increases in moisture content, fungal population, aflatoxin and free fatty acid contents of peanut kernels at ambient storage conditions.

  11. Metabolomics of Dietary Fatty Acid Restriction in Patients with Phenylketonuria

    Science.gov (United States)

    Mütze, Ulrike; Beblo, Skadi; Kortz, Linda; Matthies, Claudia; Koletzko, Berthold; Bruegel, Mathias; Rohde, Carmen; Thiery, Joachim; Kiess, Wieland; Ceglarek, Uta

    2012-01-01

    Background Patients with phenylketonuria (PKU) have to follow a lifelong phenylalanine restricted diet. This type of diet markedly reduces the intake of saturated and unsaturated fatty acids especially long chain polyunsaturated fatty acids (LC-PUFA). Long-chain saturated fatty acids are substrates of mitochondrial fatty acid oxidation for acetyl-CoA production. LC-PUFA are discussed to affect inflammatory and haemostaseological processes in health and disease. The influence of the long term PKU diet on fatty acid metabolism with a special focus on platelet eicosanoid metabolism has been investigated in the study presented here. Methodology/Principal Findings 12 children with PKU under good metabolic control and 8 healthy controls were included. Activated fatty acids (acylcarnitines C6–C18) in dried blood and the cholesterol metabolism in serum were analyzed by liquid chromatographic tandem mass spectrometry (LC-MS/MS). Fatty acid composition of plasma glycerophospholipids was determined by gas chromatography. LC-PUFA metabolites were analyzed in supernatants by LC-MS/MS before and after platelet activation and aggregation using a standardized protocol. Patients with PKU had significantly lower free carnitine and lower activated fatty acids in dried blood compared to controls. Phytosterols as marker of cholesterol (re-) absorption were not influenced by the dietary fatty acid restriction. Fatty acid composition in glycerophospholipids was comparable to that of healthy controls. However, patients with PKU showed significantly increased concentrations of y-linolenic acid (C18:3n-6) a precursor of arachidonic acid. In the PKU patients significantly higher platelet counts were observed. After activation with collagen platelet aggregation and thromboxane B2 and thromboxane B3 release did not differ from that of healthy controls. Conclusion/Significance Long-term dietary fatty acid restriction influenced the intermediates of mitochondrial beta-oxidation. No functional

  12. Metabolomics of dietary fatty acid restriction in patients with phenylketonuria.

    Directory of Open Access Journals (Sweden)

    Ulrike Mütze

    Full Text Available BACKGROUND: Patients with phenylketonuria (PKU have to follow a lifelong phenylalanine restricted diet. This type of diet markedly reduces the intake of saturated and unsaturated fatty acids especially long chain polyunsaturated fatty acids (LC-PUFA. Long-chain saturated fatty acids are substrates of mitochondrial fatty acid oxidation for acetyl-CoA production. LC-PUFA are discussed to affect inflammatory and haemostaseological processes in health and disease. The influence of the long term PKU diet on fatty acid metabolism with a special focus on platelet eicosanoid metabolism has been investigated in the study presented here. METHODOLOGY/PRINCIPAL FINDINGS: 12 children with PKU under good metabolic control and 8 healthy controls were included. Activated fatty acids (acylcarnitines C6-C18 in dried blood and the cholesterol metabolism in serum were analyzed by liquid chromatographic tandem mass spectrometry (LC-MS/MS. Fatty acid composition of plasma glycerophospholipids was determined by gas chromatography. LC-PUFA metabolites were analyzed in supernatants by LC-MS/MS before and after platelet activation and aggregation using a standardized protocol. Patients with PKU had significantly lower free carnitine and lower activated fatty acids in dried blood compared to controls. Phytosterols as marker of cholesterol (re- absorption were not influenced by the dietary fatty acid restriction. Fatty acid composition in glycerophospholipids was comparable to that of healthy controls. However, patients with PKU showed significantly increased concentrations of y-linolenic acid (C18:3n-6 a precursor of arachidonic acid. In the PKU patients significantly higher platelet counts were observed. After activation with collagen platelet aggregation and thromboxane B(2 and thromboxane B(3 release did not differ from that of healthy controls. CONCLUSION/SIGNIFICANCE: Long-term dietary fatty acid restriction influenced the intermediates of mitochondrial beta

  13. A single extracellular amino acid in Free Fatty Acid Receptor 2 defines antagonist species selectivity and G protein selection bias

    DEFF Research Database (Denmark)

    Sergeev, Eugenia; Hansen, Anders Højgaard; Bolognini, Daniele

    2017-01-01

    selectivity and mutational swap studies confirmed this hypothesis. Extending these studies to agonist function indicated that although the lysine - arginine variation between human and mouse orthologs had limited effect on G protein-mediated signal transduction, removal of positive charge from this residue...... produced a signalling-biased variant of Free Fatty Acid Receptor 2 in which Gi-mediated signalling by both short chain fatty acids and synthetic agonists was maintained whilst there was marked loss of agonist potency for signalling via Gq/11 and G12/13 G proteins. A single residue at the extracellular face...

  14. New method for GC/FID and GC-C-IRMS analysis of plasma free fatty acid concentration and isotopic enrichment.

    Science.gov (United States)

    Kangani, Cyrous O; Kelley, David E; Delany, James P

    2008-09-15

    A simple, direct and accurate method for the determination of concentration and enrichment of free fatty acids (FFAs) in human plasma was developed. The validation and comparison to a conventional method are reported. Three amide derivatives, dimethyl, diethyl and pyrrolidide, were investigated in order to achieve optimal resolution of the individual fatty acids. This method involves the use of dimethylamine/Deoxo-Fluor to derivatize plasma free fatty acids to their dimethylamides. This derivatization method is very mild and efficient, and is selective only towards FFAs so that no separation from a total lipid extract is required. The direct method gave lower concentrations for palmitic acid and stearic acid and increased concentrations for oleic acid and linoleic acid in plasma as compared to methyl ester derivative after thin-layer chromatography. The [(13)C]palmitate isotope enrichment measured using direct method was significantly higher than that observed with the BF(3)/MeOH-TLC method. The present method provided accurate and precise measures of concentration as well as enrichment when analyzed with gas chromatography combustion-isotope ratio-mass spectrometry.

  15. Association between very long chain fatty acids in the meibomian gland and dry eye resulting from n-3 fatty acid deficiency.

    Science.gov (United States)

    Tanaka, Hideko; Harauma, Akiko; Takimoto, Mao; Moriguchi, Toru

    2015-06-01

    In our previously study, we reported lower tear volume in with an n-3 fatty acid deficient mice and that the docosahexaenoic acid and total n-3 fatty acid levels in these mice are significantly reduced in the meibomian gland, which secretes an oily tear product. Furthermore, we noted very long chain fatty acids (≥25 carbons) in the meibomian gland. To verify the detailed mechanism of the low tear volume in the n-3 fatty acid-deficient mice, we identified the very long chain fatty acids in the meibomian gland, measured the fatty acid composition in the tear product. Very long chain fatty acids were found to exist as monoesters. In particular, very long chain fatty acids with 25-29 carbons existed for the most part as iso or anteiso branched-chain fatty acids. n-3 fatty acid deficiency was decreased the amount of meibum secretion from meibomian gland without change of fatty acid composition. These results suggest that the n-3 fatty acid deficiency causes the enhancement of evaporation of tear film by reducing oily tear secretion along with the decrease of meibomian gland function. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Extra Virgin Olive Oil Reduced Polyunsaturated Fatty Acid and Cholesterol Oxidation in Rodent Liver: Is This Accounted for Hydroxytyrosol-Fatty Acid Conjugation?

    Science.gov (United States)

    Lee, Yiu Yiu; Crauste, Céline; Wang, Hualin; Leung, Ho Hang; Vercauteren, Joseph; Galano, Jean-Marie; Oger, Camille; Durand, Thierry; Wan, Jennifer Man-Fan; Lee, Jetty Chung-Yung

    2016-10-17

    The effects of extra virgin olive oil (EVOO) and carbon tetrachloride (CCl 4 ) induced oxidative stress in rats were determined by the generation of isoprostanoids. These are known to be robust biomarkers to evaluate nonenzymatic and free radical related oxidation. Other oxidative stress biomarkers such as hydroxyeicosatetraenoic acid products (HETEs) and cholesterol oxidation products (COPs) were also determined. The rodents received a control diet, high-fat diet (20% w/w) composed of extra virgin olive oil (EVOO), corn oil (CO), or lard, and high-fat diets with CCl 4 insult throughout the experimental period. The EVOO diet was found to suppress the formation of isoprostanoids and COPs compared to that of the control. EVOO also had a high total phenolic content and antioxidant activity compared to those of CO and lard and may be contributed to by the hydroxytyrosol component conjugated to fatty acids (HT-FA). This is the first study to identify HT-FA in EVOO, and it was 4-fold higher than that of olive oil, whereas none was found in corn oil. Furthermore, the EVOO diet showed reduced liver lipid vesicles in CCl 4 treated rats compared to that of the control. However, liver toxicity measurements of AST (aspartate transaminase) and ALT (alanine transaminase) activities showed augmentation with CCl 4 treatment but were not alleviated by the diets given. Our findings suggest that EVOO is a daily functional food capable of enhancing the antioxidant system for liver protection; the effect is potentially attributed to the phenolic and lipophenolic (phenol conjugated by fatty acids) content.

  17. Inhibiting mitochondrial β-oxidation selectively reduces levels of nonenzymatic oxidative polyunsaturated fatty acid metabolites in the brain.

    Science.gov (United States)

    Chen, Chuck T; Trépanier, Marc-Olivier; Hopperton, Kathryn E; Domenichiello, Anthony F; Masoodi, Mojgan; Bazinet, Richard P

    2014-03-01

    Schönfeld and Reiser recently hypothesized that fatty acid β-oxidation is a source of oxidative stress in the brain. To test this hypothesis, we inhibited brain mitochondrial β-oxidation with methyl palmoxirate (MEP) and measured oxidative polyunsaturated fatty acid (PUFA) metabolites in the rat brain. Upon MEP treatment, levels of several nonenzymatic auto-oxidative PUFA metabolites were reduced with few effects on enzymatically derived metabolites. Our finding confirms the hypothesis that reduced fatty acid β-oxidation decreases oxidative stress in the brain and β-oxidation inhibitors may be a novel therapeutic approach for brain disorders associated with oxidative stress.

  18. Nonoxidative free fatty acid disposal is greater in young women than men.

    Science.gov (United States)

    Koutsari, Christina; Basu, Rita; Rizza, Robert A; Nair, K Sreekumaran; Khosla, Sundeep; Jensen, Michael D

    2011-02-01

    Large increases in systemic free fatty acid (FFA) availability in the absence of a corresponding increase in fatty acid oxidation can create a host of metabolic abnormalities. These adverse responses are thought to be the result of fatty acids being shunted into hepatic very low-density lipoprotein-triglyceride production and/or intracellular lipid storage and signaling pathways because tissues are forced to increase nonoxidative FFA disposal. The objective of the study was to examine whether variations in postabsorptive nonoxidative FFA disposal within the usual range predict insulin resistance and hypertriglyceridemia. We measured: systemic FFA turnover using a continuous iv infusion of [9-10, (3)H]palmitate; substrate oxidation with indirect calorimetry combined with urinary nitrogen excretion; whole-body and peripheral insulin sensitivity with the labeled iv glucose tolerance test minimal model. the study was conducted at the Mayo Clinic General Clinical Research Center. Participants included healthy, postabsorptive, nonobese adults (21 women and 21 men). There were no interventions. Nonoxidative FFA disposal (micromoles per minute), defined as the FFA disappearance rate minus fatty acid oxidation. Women had 64% greater nonoxidative FFA disposal rate than men but a better lipid profile and similar insulin sensitivity. There was no significant correlation between nonoxidative FFA disposal and whole-body sensitivity, peripheral insulin sensitivity, or fasting serum triglyceride concentrations in men or women. Healthy nonobese women have greater rates of nonoxidative FFA disposal than men, but this does not appear to relate to adverse health consequences. Understanding the sex-specific interaction between adipose tissue lipolysis and peripheral FFA removal will help to discover new approaches to treat FFA-induced abnormalities.

  19. Effect of acid whey and freeze-dried cranberries on lipid oxidation and fatty acid composition of nitrite-/nitrate-free fermented sausage made from deer meat

    Directory of Open Access Journals (Sweden)

    Małgorzata Karwowska

    2017-01-01

    Full Text Available Objective This study evaluated the effect of acid whey and freeze-dried cranberries on the physicochemical characteristics, lipid oxidation and fatty acid composition of nitrite-free fermented sausage made from deer meat and pork fat. Antioxidant interactions between acid whey and cranberry compounds were also explored. Methods Four formulations of fermented venison sausage were prepared: F1 (control, F2 (with 5% liquid acid whey, F3 (with 0.06% of freeze-dried cranberries, and F4 (with 5% liquid acid whey and 0.06% of freeze-dried cranberries. Each sample was analyzed for pH, water activity (aw, heme iron content, 2-thiobarbituric acid reactive substances (TBARS value and conjugated dienes at the end of the manufacturing process and at 30 and 90 days of refrigerated storage. Fatty acid composition was measured once at the end of the manufacturing process. Results At the end of ripening, all samples presented statistically different values for a pH range of 4.47 to pH 4.59. The sum of the unsaturated fatty acids was higher, while the conjugated diene and the TBARS values were lower in sausages with freeze-dried cranberries as compared to the control sausage. The highest content of heme iron (21.52 mg/kg at day 90 was found in the sausage formulation with the addition of freeze-dried cranberries, which suggests that the addition of cranberries stabilized the porphyrin ring of the heme molecule during storage and thereby reduced the release of iron. The use of liquid acid whey in combination with cranberries appears to not be justified in view of the oxidative stability of the obtained products. Conclusion The results suggest that the application of freeze-dried cranberries can lower the intensity of oxidative changes during the storage of nitrite-free fermented sausage made from deer meat.

  20. Alterations in myocardial free fatty acid clearance precede mechanical abnormalities in canine tachycardia-induced heart failure.

    Science.gov (United States)

    Freeman, G L; Colston, J T; Miller, D D

    1994-01-01

    The purpose of this study was to evaluate whether abnormalities of free fatty acid metabolism are present before the onset of overt mechanical dysfunction in dogs with tachycardia-induced heart failure. We studied six dogs chronically instrumented to allow assessment of left ventricular function in the pressure-volume plane. Free fatty acid clearance was assessed according to the washout rate of a free fatty acid analog, iodophenylpentadecanoic acid ([123I]PPA or IPPA). IPPA clearance was measured within 1 hour of the hemodynamic assessment. The animals were studied under baseline conditions and 11.7 +/- 3.6 days after ventricular pacing at a rate of 240 beats/min. Hemodynamic studies after pacing showed a nonsignificant increase in left ventricular end-diastolic pressure (11.7 +/- 4.7 to 17.4 +/- 6.5 mm Hg) and a nonsignificant decrease in the maximum derivative of pressure with respect to time (1836 +/- 164 vs 1688 +/- 422 mm Hg/sec). There was also no change in the time constant of left ventricular relaxation, which was 34.8 +/- 7.67 msec before and 35.3 +/- 7.3 msec after pacing. However, a significant prolongation in the clearance half-time of [123I]PPA, from 86.1 +/- 23.9 to 146.5 +/- 22.6 minutes (p < 0.01) was found. Thus abnormal lipid clearance appears before the onset of significant mechanical dysfunction in tachycardia-induced heart failure. This suggests that abnormal substrate metabolism may play an important role in the pathogenesis of this condition.

  1. Omega-3 free fatty acids for the treatment of severe hypertriglyceridemia: the EpanoVa fOr Lowering Very high triglyceridEs (EVOLVE) trial.

    Science.gov (United States)

    Kastelein, John J P; Maki, Kevin C; Susekov, Andrey; Ezhov, Marat; Nordestgaard, Borge G; Machielse, Ben N; Kling, Douglas; Davidson, Michael H

    2014-01-01

    Omega-3 fatty acids in free fatty acid form have enhanced bioavailability, and plasma levels are less influenced by food than for ethyl ester forms. The aim was to evaluate the safety and lipid-altering efficacy in subjects with severe hypertriglyceridemia of an investigational pharmaceutical omega-3 free fatty acid (OM3-FFA) containing eicosapentaenoic acid and docosahexaenoic acid. This was a multinational, double-blind, randomized, out-patient study. Men and women with triglycerides (TGs) ≥ 500 mg/dL, but severe hypertriglyceridemia. This trial was registered at www.clinicaltrials.gov as NCT01242527. Copyright © 2014 National Lipid Association. Published by Elsevier Inc. All rights reserved.

  2. The role of G-protein-coupled receptors in mediating the effect of fatty acids on inflammation and insulin sensitivity.

    Science.gov (United States)

    Oh, Da Young; Lagakos, William S

    2011-07-01

    Chronic activation of inflammatory pathways mediates the pathogenesis of insulin resistance, and the macrophage/adipocyte nexus provides a key mechanism underlying decreased insulin sensitivity. Free fatty acids are important in the pathogenesis of insulin resistance, although their precise mechanisms of action have yet to be fully elucidated. Recently, a family of G-protein-coupled receptors has been identified that exhibits high affinity for fatty acids. This review summarizes recent findings on six of these receptors, their ligands, and their potential physiological functions in vivo. Upon activation, the free fatty acid receptors affect inflammation, glucose metabolism, and insulin sensitivity. Genetic deletion of GPR40 and GPR41, receptors for long-chain and short-chain fatty acids, respectively, results in resistance to diet-induced obesity. Deletion of GPR43 and GPR84 exacerbates inflammation, and deletion of the long-chain fatty acid receptors GPR119 and GPR120 reduces or is predicted to reduce glucose tolerance. These studies provide a new understanding of the general biology of gastric motility and also shed valuable insight into some potentially beneficial therapeutic targets. Furthermore, highly selective agonists or antagonists for the free fatty acid receptors have been developed and look promising for treating various metabolic diseases.

  3. Pimelic acid, the first precursor of the Bacillus subtilis biotin synthesis pathway, exists as the free acid and is assembled by fatty acid synthesis.

    Science.gov (United States)

    Manandhar, Miglena; Cronan, John E

    2017-05-01

    Biotin synthetic pathways are readily separated into two stages, synthesis of the seven carbon α, ω-dicarboxylic acid pimelate moiety and assembly of the fused heterocyclic rings. The biotin pathway genes responsible for pimelate moiety synthesis vary widely among bacteria whereas the ring synthesis genes are highly conserved. Bacillus subtilis seems to have redundant genes, bioI and bioW, for generation of the pimelate intermediate. Largely consistent with previous genetic studies it was found that deletion of bioW caused a biotin auxotrophic phenotype whereas deletion of bioI did not. BioW is a pimeloyl-CoA synthetase that converts pimelic acid to pimeloyl-CoA. The essentiality of BioW for biotin synthesis indicates that the free form of pimelic acid is an intermediate in biotin synthesis although this is not the case in E. coli. Since the origin of pimelic acid in Bacillus subtilis is unknown, 13 C-NMR studies were carried out to decipher the pathway for its generation. The data provided evidence for the role of free pimelate in biotin synthesis and the involvement of fatty acid synthesis in pimelate production. Cerulenin, an inhibitor of the key fatty acid elongation enzyme, FabF, markedly decreased biotin production by B. subtilis resting cells whereas a strain having a cerulenin-resistant FabF mutant produced more biotin. In addition, supplementation with pimelic acid fully restored biotin production in cerulenin-treated cells. These results indicate that pimelic acid originating from fatty acid synthesis pathway is a bona fide precursor of biotin in B. subtilis. © 2017 John Wiley & Sons Ltd.

  4. Identification of fatty acids and fatty acid amides in human meibomian gland secretions.

    Science.gov (United States)

    Nichols, Kelly K; Ham, Bryan M; Nichols, Jason J; Ziegler, Corrie; Green-Church, Kari B

    2007-01-01

    The complex superficial lipid layer of the tear film functions to prevent evaporation and maintain tear stability. Although classes of lipids found in the tear film have been reported, individual lipid species are currently being studied with more sophisticated. The purpose of this work was to show the identification of fatty acids and the fatty acid amides in human meibomian gland secretions by using electrospray mass spectrometry. methods. Human meibomian gland secretions (meibum) were analyzed by electrospray quadrupole time-of-flight mass spectrometry (positive- and negative-ion mode). Accurate mass determination and collision-induced dissociation of meibum, and lipid standards were used to identify lipid species. Mass analysis of meibum in an acidic chloroform-methanol solution in positive-ion mode revealed a mass peak of m/z 282.3, which was identified as the protonated molecule of oleamide [C(18)H(35)NO+H](+). The high-resolution mass analysis of the m/z 282.2788 peak (oleamide) demonstrated a mass accuracy of 3.2 parts per million (ppm). Collision-induced dissociation of this species from meibum, compared with an oleamide standard, confirmed its identification. Myristic, palmitic, stearic, and oleic free fatty acids were identified in a similar manner, as were the other fatty acid amides (myristamide, palmitamide, stearamide, and erucamide). The findings indicate that oleamide (cis-9-octadecenamide), an endogenous fatty acid primary amide, is a predominant component of meibum when examined by electrospray mass spectrometry. The novel finding of oleamide and other members of the fatty acid amide family in the tear film could lead to additional insights into the role of fatty acid amide activity in human biological systems and may indicate a new function for this lipid class of molecules in ocular surface signaling and/or in the maintenance of the complex tear film.

  5. Succinct synthesis of saturated hydroxy fatty acids and

    DEFF Research Database (Denmark)

    Kaspersen, Mads Holmgaard; Jenkins, Laura; Dunlop, Julia

    2017-01-01

    Saturated hydroxy fatty acids make up a class of underexplored lipids with potentially interesting biological activities. We report a succinct and general synthetic route to saturated hydroxy fatty acids hydroxylated at position 6 or higher, and exemplify this with the synthesis of hydroxylauric ...... acids. All regioisomers of hydroxylauric acids were tested on free fatty acid receptors FFA1, FFA4 and GPR84. The results show that the introduction of a hydroxy group and its position have a high impact on receptor activity....

  6. Increased production of free fatty acids in Aspergillus oryzae by disruption of a predicted acyl-CoA synthetase gene.

    Science.gov (United States)

    Tamano, Koichi; Bruno, Kenneth S; Koike, Hideaki; Ishii, Tomoko; Miura, Ai; Umemura, Myco; Culley, David E; Baker, Scott E; Machida, Masayuki

    2015-04-01

    Fatty acids are attractive molecules as source materials for the production of biodiesel fuel. Previously, we attained a 2.4-fold increase in fatty acid production by increasing the expression of fatty acid synthesis-related genes in Aspergillus oryzae. In this study, we achieved an additional increase in the production of fatty acids by disrupting a predicted acyl-CoA synthetase gene in A. oryzae. The A. oryzae genome is predicted to encode six acyl-CoA synthetase genes and disruption of AO090011000642, one of the six genes, resulted in a 9.2-fold higher accumulation (corresponding to an increased production of 0.23 mmol/g dry cell weight) of intracellular fatty acid in comparison to the wild-type strain. Furthermore, by introducing a niaD marker from Aspergillus nidulans to the disruptant, as well as changing the concentration of nitrogen in the culture medium from 10 to 350 mM, fatty acid productivity reached 0.54 mmol/g dry cell weight. Analysis of the relative composition of the major intracellular free fatty acids caused by disruption of AO090011000642 in comparison to the wild-type strain showed an increase in stearic acid (7 to 26 %), decrease in linoleic acid (50 to 27 %), and no significant changes in palmitic or oleic acid (each around 20-25 %).

  7. Fatty Acids, Lipid Mediators, and T-Cell Function

    Science.gov (United States)

    de Jong, Anja J.; Kloppenburg, Margreet; Toes, René E. M.; Ioan-Facsinay, Andreea

    2014-01-01

    Research toward the mechanisms underlying obesity-linked complications has intensified during the last years. As a consequence, it has become clear that metabolism and immunity are intimately linked. Free fatty acids and other lipids acquired in excess by current feeding patterns have been proposed to mediate this link due to their immune modulatory capacity. The functional differences between saturated and unsaturated fatty acids, in combination with their dietary intake are believed to modulate the outcome of immune responses. Moreover, unsaturated fatty acids can be oxidized in a tightly regulated and specific manner to generate either potent pro-inflammatory or pro-resolving lipid mediators. These oxidative derivatives of fatty acids have received detailed attention during the last years, as they have proven to have strong immune modulatory capacity, even in pM ranges. Both fatty acids and oxidized fatty acids have been studied especially in relation to macrophage and T-cells functions. In this review, we propose to focus on the effect of fatty acids and their oxidative derivatives on T-cells, as it is an active area of research during the past 5 years. The effect of fatty acids and their derivatives on activation and proliferation of T-cells, as well as the delicate balance between stimulation and lipotoxicity will be discussed. Moreover, the receptors involved in the interaction between free fatty acids and their derivatives with T-cells will be summarized. Finally, the mechanisms involved in modulation of T-cells by fatty acids will be addressed, including cellular signaling and metabolism of T-cells. The in vitro results will be placed in context of in vivo studies both in humans and mice. In this review, we summarize the latest findings on the immune modulatory function of lipids on T-cells and will point out novel directions for future research. PMID:25352844

  8. Free Fatty Acids Profiles Are Related to Gut Microbiota Signatures and Short-Chain Fatty Acids

    Directory of Open Access Journals (Sweden)

    Javier Rodríguez-Carrio

    2017-07-01

    Full Text Available A growing body of evidence highlights the relevance of free fatty acids (FFA for human health, and their role in the cross talk between the metabolic status and immune system. Altered serum FFA profiles are related to several metabolic conditions, although the underlying mechanisms remain unclear. Recent studies have highlighted the link between gut microbiota and host metabolism. However, although most of the studies have focused on different clinical conditions, evidence on the role of these mediators in healthy populations is lacking. Therefore, we have addressed the analysis of the relationship among gut microbial populations, short-chain fatty acid (SCFA production, FFA levels, and immune mediators (IFNγ, IL-6, and MCP-1 in 101 human adults from the general Spanish population. Levels of selected microbial groups, representing the major phylogenetic types present in the human intestinal microbiota, were determined by quantitative PCR. Our results showed that the intestinal abundance of Akkermansia was the main predictor of total FFA serum levels, displaying a negative association with total FFA and the pro-inflammatory cytokine IL-6. Similarly, an altered FFA profile, identified by cluster analysis, was related to imbalanced levels of Akkermansia and Lactobacillus as well as increased fecal SCFA, enhanced IL-6 serum levels, and higher prevalence of subclinical metabolic alterations. Although no differences in nutritional intakes were observed, divergent patterns in the associations between nutrient intakes with intestinal microbial populations and SCFA were denoted. Overall, these findings provide new insights on the gut microbiota–host lipid metabolism axis and its potential relevance for human health, where FFA and SCFA seem to play an important role.

  9. Identification and quantification of intermediates of unsaturated fatty acid metabolism in plasma of patients with fatty acid oxidation disorders

    NARCIS (Netherlands)

    Onkenhout, W.; Venizelos, V.; van der Poel, P. F.; van den Heuvel, M. P.; Poorthuis, B. J.

    1995-01-01

    The free fatty acid and total fatty acid profiles in plasma of nine patients with medium-chain acyl-CoA dehydrogenase (MCAD) deficiency, two with very-long-chain acyl-CoA dehydrogenase (VLCAD) deficiency and two with mild-type multiple acyl-CoA dehydrogenase (MAD-m) deficiency, were analyzed by gas

  10. Free fatty acid receptors act as nutrient sensors to regulate energy homeostasis.

    Science.gov (United States)

    Ichimura, Atsuhiko; Hirasawa, Akira; Hara, Takafumi; Tsujimoto, Gozoh

    2009-09-01

    Free fatty acids (FFAs) have been demonstrated to act as ligands of several G-protein-coupled receptors (GPCRs) (FFAR1, FFAR2, FFAR3, GPR84, and GPR120). These fatty acid receptors are proposed to play critical roles in a variety of types of physiological homeostasis. FFAR1 and GPR120 are activated by medium- and long-chain FFAs. GPR84 is activated by medium-chain, but not long-chain, FFAs. In contrast, FFAR2 and FFAR3 are activated by short-chain FFAs. FFAR1 is expressed mainly in pancreatic beta-cells and mediates insulin secretion, whereas GPR120 is expressed abundantly in the intestine and promotes the secretion of glucagon-like peptide-1 (GLP-1). FFAR3 is expressed in enteroendocrine cells and regulates host energy balance through effects that are dependent upon the gut microbiota. In this review, we summarize the identification, structure, and pharmacology of these receptors and present an essential overview of the current understanding of their physiological roles.

  11. Esterification kinetics of free fatty acids with supercritical methanol for biodiesel production

    International Nuclear Information System (INIS)

    Alenezi, R.; Leeke, G.A.; Winterbottom, J.M.; Santos, R.C.D.; Khan, A.R.

    2010-01-01

    Non-catalytic esterification of Free Fatty Acids (FFA) with supercritical methanol was studied under reaction conditions of (250-320 deg. C) at 10 MPa. A detailed experimental programme was implemented to investigate the influence of temperature, stirring rate and the molar ratio of methanol to FFA in the feed in a batch-type reaction vessel. The esterification products of FFA with supercritical methanol are Fatty Acids Methyl Esters (FAME; biodiesel) and water. The yield of FAME was found to increase with an increase in temperature, and with an increase in the molar ratio of methanol to FFA. At >850 rpm the yield of FAME was not affected by stirring rate. The rate constants and energy of activation have been numerically evaluated by solving an ordinary differential equation that describes the reaction kinetics. The proposed kinetic model shows a reversible second order reaction and represents all the experimental data satisfactorily, providing deeper insight into the kinetics of the reaction.

  12. Fatty acid uptake in normal human myocardium

    International Nuclear Information System (INIS)

    Vyska, K.; Meyer, W.; Stremmel, W.; Notohamiprodjo, G.; Minami, K.; Machulla, H.J.; Gleichmann, U.; Meyer, H.; Koerfer, R.

    1991-01-01

    Fatty acid binding protein has been found in rat aortic endothelial cell membrane. It has been identified to be a 40-kDa protein that corresponds to a 40-kDa fatty acid binding protein with high affinity for a variety of long chain fatty acids isolated from rat heart myocytes. It is proposed that this endothelial membrane fatty acid binding protein might mediate the myocardial uptake of fatty acids. For evaluation of this hypothesis in vivo, influx kinetics of tracer-labeled fatty acids was examined in 15 normal subjects by scintigraphic techniques. Variation of the plasma fatty acid concentration and plasma perfusion rate has been achieved by modulation of nutrition state and exercise conditions. The clinical results suggest that the myocardial fatty acid influx rate is saturable by increasing fatty acid plasma concentration as well as by increasing plasma flow. For analysis of these data, functional relations describing fatty acid transport from plasma into myocardial tissue in the presence and absence of an unstirred layer were developed. The fitting of these relations to experimental data indicate that the free fatty acid influx into myocardial tissue reveals the criteria of a reaction on a capillary surface in the vicinity of flowing plasma but not of a reaction in extravascular space or in an unstirred layer and that the fatty acid influx into normal myocardium is a saturable process that is characterized by the quantity corresponding to the Michaelis-Menten constant, Km, and the maximal velocity, Vmax, 0.24 ± 0.024 mumol/g and 0.37 ± 0.013 mumol/g(g.min), respectively. These data are compatible with a nondiffusional uptake process mediated by the initial interaction of fatty acids with the 40-kDa membrane fatty acid binding protein of cardiac endothelial cells

  13. Effect of Free Fatty Acids Supplementation on Digestibility, Nutritive Value and Rumen Fermentation in Local Sheep

    International Nuclear Information System (INIS)

    El-Foly, H.A.; Mohamed, A.K.; Mustafa, M.M.M.

    2014-01-01

    Twelve mature local sheep, with a mean body weight of 49.2±3 kg were randomly distributed into three digestibility trail groups to evaluate the effects of inclusion some oils industry by-products, soft fatty acid (SFA) and hard fatty acid (HFA) on dry matter intake, digestibility coefficients, nutritive values, nitrogen and energy utilization and some rumen and blood parameters. The experimental diets were basal diet un-supplemented (control) or supplemented 3% SFA (T1) and 3% HFA (T2). The results showed that non-significant differences in total dry matter intake and water consumption among the tested diets were observed.The digestibility of dry matter (DM), organic matter (OM) and nitrogen free extract (NFE) were significantly increased (P<0.05) by addition of SFA while digestibility of crude protein (CP) and ether extract (EE) was significantly increased (P<0.05) by addition of HFA as compared with control. However, digestibility of crude fiber (CF) was significantly decreased (P<0.05) in T2 as compared with control and T1. Fatty acids supplementation significantly increased (P<0.05) the nutritive values such as TDN, SV and DCP as compared with control.The nitrogen utilization was significantly improved (P<0.05) by the addition of both additives. The values of total volatile fatty acid concentrations (TVFA) and pH values after feeding were significantly increased (P<0.05) with HFA supplementation as compared with the values of other groups. However, the rumina l ammonia-N concentrations after feeding significantly decreased (P<0.05) with fatty acids supplementation as compared with control. The results of digestible and metabolizable energy showed non-significant differences between the tested groups. Blood serum urea, albumen, cholesterol, triglycerides and phosphorus values were significantly increased (P<0.05) with HFA as compared with the values of other groups.The mean values of serum alanine transaminase (ALT), aspartate transaminase (AST

  14. Supplementary Material for: In silico screening for candidate chassis strains of free fatty acid-producing cyanobacteria

    KAUST Repository

    Motwalli, Olaa Amin; Essack, Magbubah; Jankovic, Boris R.; Ji, Boyang; Liu, Xinyao; Ansari, Hifzur; Hoehndorf, Robert; Gao, Xin; Arold, Stefan T.; Mineta, Katsuhiko; Archer, John; Gojobori, Takashi; Mijakovic, Ivan; Bajic, Vladimir B.

    2017-01-01

    Abstract Background Finding a source from which high-energy-density biofuels can be derived at an industrial scale has become an urgent challenge for renewable energy production. Some microorganisms can produce free fatty acids (FFA) as precursors

  15. Free fatty acid receptor 3 is a key target of short chain fatty acid. What is the impact on the sympathetic nervous system?

    Science.gov (United States)

    López Soto, Eduardo Javier; Gambino, Luisina Ongaro; Mustafá, Emilio Román

    2014-01-01

    Nervous system (NS) activity participates in metabolic homeostasis by detecting peripheral signal molecules derived from food intake and energy balance. High quality diets are thought to include fiber-rich foods like whole grain rice, breads, cereals, and grains. Several studies have associated high consumption of fiber-enriched diets with a reduced risk of diabetes, obesity, and gastrointestinal disorders. In the lower intestine, anaerobic fermentation of soluble fibers by microbiota produces short chain fatty acids (SCFAs), key energy molecules that have a recent identified leading role in the intestinal gluconeogenesis, promoting beneficial effects on glucose tolerance and insulin resistance. SCFAs are also signaling molecules that bind to specific G-protein coupled receptors (GPCRs) named Free Fatty Acid Receptor 3 (FFA3, GPR41) and 2 (FFA2, GPR43). However, how SCFAs impact NS activity through their GPCRs is poorly understood. Recently, studies have demonstrated the presence of FFA2 and FFA3 in the sympathetic NS of rat, mouse and human. Two studies have showed that FFA3 activation by SCFAs increases firing and norepinephrine (NE) release from sympathetic neurons. However, the recent study from the Ikeda Laboratory revealed that activation of FFA3 by SCFAs impairs N-type calcium channel (NTCC) activity, which contradicts the idea of FFA3 activation leading to increased action potential evoked NE release. Here we will discuss the scope of the latter study and the putative physiological role of SCFAs and FFAs in the sympathetic NS.

  16. Dynamic myocardial scintigraphy with 123I-labelled free fatty acids

    International Nuclear Information System (INIS)

    Wall, E.E. van der.

    1981-01-01

    In this thesis, long-chain radioiodinated free fatty acids ( 123 I-FFA), 16-iodo- 123 I-cis-Δ 9 -hexadecenoic acid ( 123 I-HA) and 17-iodo- 123 I-heptade-canoic acid ( 123 I-Hsup(o)A), were employed for myocardial scintigraphy in patients with coronary artery disease. The results indicate that clearance of 123 I-FFA from the myocardium is dependent on the nature of ischemic injury. Clearance is delayed if the injury is reversible and accelerated in case of irreversible ischemia. Mechanisms responsible for divergent behaviour of FFA in patients with acute myocardial infarction versus patients with angina pectoris are purely speculative. This differential clearance from normally perfused, transiently ischemic and infarcted myocardium has practical application. The test provides a means to assess the nature of ischemic injury rapidly. These findings may have major consequences for logical management of patients presenting with chest pain and suspected coronary artery disease. (Auth.)

  17. Effect of impaired fatty acid oxidation on myocardial kinetics of 11C- and 123I-labelled fatty acids

    International Nuclear Information System (INIS)

    Lerch, R.

    1986-01-01

    Positron emission tomography with palmitate 11 C and single photon imaging with terminally radioiodinated fatty acid analogues (FFA 123 I) were evaluated for the noninvasive assessment of regional myocardial fatty acid metabolism during ischaemia. Decreased uptake of tracer and delayed clearance of activity in the ischaemic myocardium were reported for both 11 C- and 123 I-labelled compounds. However, since during ischaemia both myocardial blood flow and oxidative metabolism are reduced concomitantly, either factor can be responsible for the changes observed. Experimental preparations in which fatty acid metabolism can be modified independently of flow are helpful for the characterization of the relationship between metabolism and myocardial kinetics of labelled fatty acids. Results obtained during flow-independent inhibition of fatty acid oxidation include the following observations: - In dogs with controlled coronary perfusion the rate of clearance of palmitate 11 C-activity is decreased during diminished delivery of oxygen, regardless of whether myocardial perfusion is concomitantly reduced or not. - In isolated rabbit hearts perfused at normal flow, the extraction of FFA 123 I is decreased during hypoxia. - During pharmacological inhibition of fatty acid oxidation the deiodination of FFA 123 I is markedly reduced in rat hearts in vivo and in vitro. (orig.)

  18. High free fatty acid coconut oil as a potential feedstock for biodiesel production in Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Nakpong, Piyanuch; Wootthikanokkhan, Sasiwimol [Department of Chemistry, Faculty of Science and Technology, Rajamangala University of Technology Krungthep, 2 Nanglinchee Road, Sathorn, Bangkok 10120 (Thailand)

    2010-08-15

    Coconut oil having 12.8% free fatty acid (FFA) was used as a feedstock to produce biodiesel by a two-step process. In the first step, FFA level of the coconut oil was reduced to 0.6% by acid-catalyzed esterification. In the second step, triglycerides in product from the first step were transesterified with methanol by using an alkaline catalyst to produce methyl esters and glycerol. Effect of parameters related to these processes was studied and optimized, including methanol-to-oil ratio, catalyst concentration, reaction temperature, and reaction time. Methyl ester content of the coconut biodiesel was determined by GC to be 98.4% under the optimum condition. The viscosity of coconut biodiesel product was very close to that of Thai petroleum diesel and other measured properties met the Thai biodiesel (B100) specification. (author)

  19. The relationship between plasma free fatty acids and experimentally induced hepatic encephalopathy in the rat

    NARCIS (Netherlands)

    Smit, J. J.; Bosman, D. K.; Jörning, G. G.; de Haan, J. G.; Maas, M. A.; Chamuleau, R. A.

    1991-01-01

    Two experimental models of hepatic encephalopathy in the rat have been investigated in order to study the postulated relationship between plasma free fatty acids concentration (C6 - C22:0) and the degree of hepatic encephalopathy. As a model of chronic hepatic encephalopathy, porta caval shunted

  20. Nanocellulose coated with various free fatty acids can adsorb fumonisin B1, and decrease its toxicity.

    Science.gov (United States)

    Zadeh, Mohammad Hossein Balal; Shahdadi, Hossein

    2015-10-01

    The aim of this study was to evaluate the adsorption and biological properties of nanocellulose coated with free fatty acids (NCCFFAs). At first, nanocellulose was synthesized by acid hydrolysis, and then separately coated with different free fatty acids (FFAs), including lauric acid, alpha linoleic acid, oleic acid, and palmitic acid. Next, the serial concentrations of NCCFFAs (1, 10, 100, and 1000 μg/mL) was separately added to fumonisin B1 (FB1) at 1000 μg/mL, and separately incubated at 37 °C for 1, 2, and 3h. Then, the percentage of adsorption was calculated. In the next experiment, the viability of mouse liver cells was measured when they exposed to serial concentrations of NCCFFAs, FFAs, and FB1. This study showed that the increase of incubation time and concentration of NCCFFAs led to increase of FB1 adsorption. Although FFAs and NCCFFAs had no remarkable toxicity, the high toxicity was observed for FB1. Importantly, the toxicity of FB1 was highly decreased, when incubated together with FFAs or NCCFFAs. These novel adsorbents, NCCFFAs, can be used together with different foodstuffs to remove FB1. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Further increased production of free fatty acids by overexpressing a predicted transketolase gene of the pentose phosphate pathway in Aspergillus oryzae faaA disruptant.

    Science.gov (United States)

    Tamano, Koichi; Miura, Ai

    2016-09-01

    Free fatty acids are useful as source materials for the production of biodiesel fuel and various chemicals such as pharmaceuticals and dietary supplements. Previously, we attained a 9.2-fold increase in free fatty acid productivity by disrupting a predicted acyl-CoA synthetase gene (faaA, AO090011000642) in Aspergillus oryzae. In this study, we achieved further increase in the productivity by overexpressing a predicted transketolase gene of the pentose phosphate pathway in the faaA disruptant. The A. oryzae genome is predicted to have three transketolase genes and overexpression of AO090023000345, one of the three genes, resulted in phenotypic change and further increase (corresponding to an increased production of 0.38 mmol/g dry cell weight) in free fatty acids at 1.4-fold compared to the faaA disruptant. Additionally, the biomass of hyphae increased at 1.2-fold by the overexpression. As a result, free fatty acid production yield per liter of liquid culture increased at 1.7-fold by the overexpression.

  2. Removal of Free Fatty Acid from Plant Oil by the Adsorption Process

    Science.gov (United States)

    Chung, Tsair-Wang; Wu, Yi-Ling; Hsu, Shih-Hong

    2018-05-01

    The food oil refinery process for deacidification is ususally conducted by the neutralization after degumming. In this study, commercialized resins will be used as adsorbents to remove the free fatty acid (FFA) in food oil without using any solvent. Applying this environmental friendly green process, the energy efficiency will be increased and the waste water will be reduced compared to the traditional process. The selected adsorbent can be reused which may reduce the process cost. Instead of using alkali neutralization, the proposed process may reduce the concern of food oil security. The commercial resins A26OH and IRA900Cl were compared as adsorbents to remove the FFA in deacidification for refinery of food oil without adding any alkali chemicals. This process will be conducted to remove the FFA form peanut oil in this study. Besides, this study will get the adsorption isotherms for one of the better sorbents of A26OH or IRA900Cl to remove FFA from peanut oil under 25, 35, and 45°C. The Langmuir and Freundlich isotherm models were compared to fit the experimental data. The obtained isotherm data is important for the adsorption system design.

  3. Development and Characterization of a Potent Free Fatty Acid Receptor 1 (FFA1) Fluorescent Tracer

    DEFF Research Database (Denmark)

    Christiansen, Elisabeth; Hudson, Brian D; Hansen, Anders Højgaard

    2016-01-01

    The free fatty acid receptor 1 (FFA1/GPR40) is a potential target for treatment of type 2 diabetes. Although several potent agonists have been described, there remains a strong need for suitable tracers to interrogate ligand binding to this receptor. We address this by exploring fluorophore-tethe...

  4. Dynamic regulation of fatty acid pools for improved production of fatty alcohols in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Teixeira, Paulo Goncalves; Ferreira, Raphael; Zhou, Yongjin J.

    2017-01-01

    Background: In vivo production of fatty acid-derived chemicals in Saccharomyces cerevisiae requires strategies to increase the intracellular supply of either acyl-CoA or free fatty acids (FFAs), since their cytosolic concentrations are quite low in a natural state for this organism. Deletion...... of the fatty acyl-CoA synthetase genes FAA1 and FAA4 is an effective and straightforward way to disable re-activation of fatty acids and drastically increase FFA levels. However, this strategy causes FFA over-accumulation and consequential release to the extracellular medium, which results in a significant...... faa4 Delta strain constitutively expressing a carboxylic acid reductase from Mycobacterium marinum (MmCAR) and an endogenous alcohol dehydrogenase (Adh5) for in vivo production of fatty alcohols from FFAs. We observed production of fatty acids and fatty alcohols with different rates leading to high...

  5. Determination of fatty acid composition of {gamma}-irradiated hazelnuts, walnuts, almonds, and pistachios

    Energy Technology Data Exchange (ETDEWEB)

    Gecgel, Umit [Namik Kemal University, Agricultural Faculty, Department of Food Engineering, 59030 Tekirdag (Turkey); Gumus, Tuncay; Tasan, Murat; Daglioglu, Orhan; Arici, Muhammet [Namik Kemal University, Agricultural Faculty, Department of Food Engineering, 59030 Tekirdag (Turkey)

    2011-04-15

    Hazelnut, walnut, almonds, and pistachio nuts were treated with 1, 3, 5, and 7 kGy of gamma irradiation, respectively. Oil content, free fatty acid, peroxide value, and fatty acid composition of the nuts were investigated immediately after irradiation. The data obtained from the experiments indicated that gamma irradiation did not cause any significant change in the oil content of nuts. In contrast, free fatty acid and peroxide value of the nuts increased proportionally to the dose (p<0.05). Among the fatty acids determined, the concentration of total saturated fatty acids increased while total monounsaturated and total polyunsaturated fatty acids decreased with the irradiation dose (p<0.05 and <0.01).

  6. Determination of fatty acid composition of γ-irradiated hazelnuts, walnuts, almonds, and pistachios

    International Nuclear Information System (INIS)

    Gecgel, Umit; Gumus, Tuncay; Tasan, Murat; Daglioglu, Orhan; Arici, Muhammet

    2011-01-01

    Hazelnut, walnut, almonds, and pistachio nuts were treated with 1, 3, 5, and 7 kGy of gamma irradiation, respectively. Oil content, free fatty acid, peroxide value, and fatty acid composition of the nuts were investigated immediately after irradiation. The data obtained from the experiments indicated that gamma irradiation did not cause any significant change in the oil content of nuts. In contrast, free fatty acid and peroxide value of the nuts increased proportionally to the dose (p<0.05). Among the fatty acids determined, the concentration of total saturated fatty acids increased while total monounsaturated and total polyunsaturated fatty acids decreased with the irradiation dose (p<0.05 and <0.01).

  7. Determination of fatty acid composition of γ-irradiated hazelnuts, walnuts, almonds, and pistachios

    Science.gov (United States)

    Gecgel, Umit; Gumus, Tuncay; Tasan, Murat; Daglioglu, Orhan; Arici, Muhammet

    2011-04-01

    Hazelnut, walnut, almonds, and pistachio nuts were treated with 1, 3, 5, and 7 kGy of gamma irradiation, respectively. Oil content, free fatty acid, peroxide value, and fatty acid composition of the nuts were investigated immediately after irradiation. The data obtained from the experiments indicated that gamma irradiation did not cause any significant change in the oil content of nuts. In contrast, free fatty acid and peroxide value of the nuts increased proportionally to the dose (p<0.05). Among the fatty acids determined, the concentration of total saturated fatty acids increased while total monounsaturated and total polyunsaturated fatty acids decreased with the irradiation dose (p<0.05 and <0.01).

  8. Free radical mediated formation of 3-monochloropropanediol (3-MCPD) fatty acid diesters.

    Science.gov (United States)

    Zhang, Xiaowei; Gao, Boyan; Qin, Fang; Shi, Haiming; Jiang, Yuangrong; Xu, Xuebing; Yu, Liangli Lucy

    2013-03-13

    The present study was conducted to test the hypothesis that a free radical was formed and mediated the formation of 3-monochloropropanediol (3-MCPD) fatty acid diesters, a group of food contaminants, from diacylglycerols at high temperature under a low-moisture condition for the first time. The presence of free radicals in a vegetable oil kept at 120 °C for 20 min was demonstrated using an electron spin resonance (ESR) spectroscopy examination with 5,5-dimethylpyrroline-N-oxide (DMPO) as the spin trap agent. ESR investigation also showed an association between thermal treatment degree and the concentration of free radicals. A Fourier transform infrared spectroscopy (FT-IR) analysis of sn-1,2-stearoylglycerol (DSG) at 25 and 120 °C suggested the possible involvement of an ester carbonyl group in forming 3-MCPD diesters. On the basis of these results, a novel free radical mediated chemical mechanism was proposed for 3-MCPD diester formation. Furthermore, a quadrupole-time of flight (Q-TOF) MS/MS investigation was performed and detected the DMPO adducts with the cyclic acyloxonium free radical (CAFR) and its product MS ions, proving the presence of CAFR. Furthermore, the free radical mechanism was validated by the formation of 3-MCPD diesters through reacting DSG with a number of organic and inorganic chlorine sources including chlorine gas at 120 and 240 °C. The findings of this study might lead to the improvement of oil and food processing conditions to reduce the level of 3-MCPD diesters in foods and enhance food safety.

  9. Fatty acid biosynthesis. VIII. The fate of malonyl-CoA in fatty acid biosynthesis by purified enzymes from lactating-rabbit mammary gland

    DEFF Research Database (Denmark)

    Hansen, Heinz Johs. Max; Carey, E.M.; Dils, R.

    1971-01-01

    - 1. We have investigated the formation and utilization of malonyl-CoA in fatty acid synthesis catalysed by preparations of partially purified acetyl-CoA carboxylase and purified fatty acid synthetase from lactating-rabbit mammary gland. - 2. Carboxylation of [1-14C]acetyl-CoA was linked to fatty...... acid synthesis by the presence of fatty acid synthetase and NADPH. The rate of fatty acid formation was equal to that of acetyl-CoA carboxylation, without the accumulation of free malonyl-CoA to a concentration required to obtain the same rate of fatty acid synthesis from added [1,3-14C2]malonyl......-CoA. - 3. The preparations of acetyl-CoA carboxylase and fatty acid synthetase were each able to decarboxylate [1,3-14C2]malonyl-CoA. - 4. Both enzyme preparations acted as competitive inhibitors of 14CO2 fixation into acetyl-CoA catalysed by acetyl-CoA carboxylase in the absence of NADPH...

  10. The Polyunsaturated Fatty Acids Arachidonic Acid and Docosahexaenoic Acid Induce Mouse Dendritic Cells Maturation but Reduce T-Cell Responses In Vitro

    Science.gov (United States)

    Carlsson, Johan A.; Wold, Agnes E.; Sandberg, Ann-Sofie; Östman, Sofia M.

    2015-01-01

    Long-chain polyunsaturated fatty acids (PUFAs) might regulate T-cell activation and lineage commitment. Here, we measured the effects of omega-3 (n-3), n-6 and n-9 fatty acids on the interaction between dendritic cells (DCs) and naïve T cells. Spleen DCs from BALB/c mice were cultured in vitro with ovalbumin (OVA) with 50 μM fatty acids; α-linolenic acid, arachidonic acid (AA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), linoleic acid or oleic acid and thereafter OVA-specific DO11.10 T cells were added to the cultures. Fatty acids were taken up by the DCs, as shown by gas chromatography analysis. After culture with arachidonic acid or DHA CD11c+ CD11b+ and CD11c+ CD11bneg DCs expressed more CD40, CD80, CD83, CD86 and PDL-1, while IAd remained unchanged. However, fewer T cells co-cultured with these DCs proliferated (CellTrace Violetlow) and expressed CD69 or CD25, while more were necrotic (7AAD+). We noted an increased proportion of T cells with a regulatory T cell (Treg) phenotype, i.e., when gating on CD4+ FoxP3+ CTLA-4+, CD4+ FoxP3+ Helios+ or CD4+ FoxP3+ PD-1+, in co-cultures with arachidonic acid- or DHA-primed DCs relative to control cultures. The proportion of putative Tregs was inversely correlated to T-cell proliferation, indicating a suppressive function of these cells. With arachidonic acid DCs produced higher levels of prostaglandin E2 while T cells produced lower amounts of IL-10 and IFNγ. In conclusion arachidonic acid and DHA induced up-regulation of activation markers on DCs. However arachidonic acid- and DHA-primed DCs reduced T-cell proliferation and increased the proportion of T cells expressing FoxP3, indicating that these fatty acids can promote induction of regulatory T cells. PMID:26619195

  11. Free polyunsaturated fatty acids cause taste deterioration of salmon during frozen storage

    DEFF Research Database (Denmark)

    Refsgaard, Hanne; Brockhoff, P.M.B.; Jensen, Benny

    2000-01-01

    Increased intensity of train oil taste, bitterness, and metal taste are the most pronounced sensory changes during frozen storage of salmon (Refsgaard, H. H. F.; Brockhoff, P. B.; Jensen, B. Sensory and Chemical Changes in Farmed Atlantic Salmon (Salmo salar) during Frozen Storage. J. Agric. Food...... Chem. 1998a, 46, 3473-3479). Addition of each of the unsaturated fatty acids: palmitoleic acid (16:1, n - 7), linoleic acid (C18:2, it - 6), eicosapentaenoic acid (EPA; C20:5, it - 3) and docosahexaenoic acid (DHA; C22:6, n. - 3) to fresh minced salmon changed the sensory perception and increased...... the intensity of train oil taste, bitterness, and metal taste. The added level of each fatty acid (similar to 1 mg/g salmon meat) was equivalent to the concentration of the fatty acids determined in salmon stored as fillet at -10 degrees C for 6 months. The effect of addition of the fatty acids on the intensity...

  12. Physicochemical properties and fatty acid composition of star fruit ...

    African Journals Online (AJOL)

    PROMOTING ACCESS TO AFRICAN RESEARCH ... refractive index (1.421), acid value (0.68), free fatty acid (0.84), iodine value (140.50 ... The fatty acid profiles were revealed using Gas Chromatography Mass ... The outcome of this study showed that Averrohoa carambola seed oil may find wider industrial application and ...

  13. EFSA Panel on Dietetic Products, Nutrition, and Allergies (NDA); Scientific Opinion on Dietary Reference Values for fats, including saturated fatty acids, polyunsaturated fatty acids, monounsaturated fatty acids, trans fatty acids, and cholesterol

    DEFF Research Database (Denmark)

    Tetens, Inge

    This Opinion of the EFSA Panel on Dietetic Products, Nutrition, and Allergies (NDA) deals with the setting of Dietary Reference Values (DRVs) for fats. A lower bound of the reference intake range for total fat of 20 energy % (E%) and an upper bound of 35 E% are proposed. Fat intake in infants can......-linolenic acid (ALA) of 0.5 E%; not to set an UL for ALA; to set an AI of 250 mg for eicosapentaenoic acid (EPA) plus docosahexaenoic acid (DHA) for adults; to set an AI of 100 mg DHA for infants (>6 months) and young children...... gradually be reduced from 40 E% in the 6-12 month period to 35-40 E% in the 2nd and 3rd year of life. For specific fatty acids the following is proposed: saturated fatty acid (SFA) and trans fatty acid intake should be as low as possible; not to set any DRV for cis-monounsaturated fatty acids......; not to formulate a DRV for the intake of total cis-polyunsaturated fatty acids (PUFA); not to set specific values for the n-3/n-6 ratio; to set an Adequate Intake (AI) of 4 E% for linoleic acid (LA); not to set any DRV for arachidonic acid; not to set an UL for total or any of the n-6 PUFA; to set an AI for alpha...

  14. Role of lipase from community-associated methicillin-resistant Staphylococcus aureus strain USA300 in hydrolyzing triglycerides into growth-inhibitory free fatty acids.

    Science.gov (United States)

    Cadieux, Brigitte; Vijayakumaran, Vithooshan; Bernards, Mark A; McGavin, Martin J; Heinrichs, David E

    2014-12-01

    Part of the human host innate immune response involves the secretion of bactericidal lipids on the skin and delivery of triglycerides into abscesses to control invading pathogens. Two Staphylococcus aureus lipases, named SAL1 and SAL2, were identified in the community-associated methicillin-resistant S. aureus strain USA300, which, presumably, are produced and function to degrade triglycerides to release free fatty acids. We show that the SAL2 lipase is one of the most abundant proteins secreted by USA300 and is proteolytically processed from the 72-kDa proSAL2 to the 44-kDa mature SAL2 by the metalloprotease aureolysin. We show that spent culture supernatants had lipase activity on both short- and long-chain fatty acid substrates and that deletion of gehB, encoding SAL2, resulted in the complete loss of these activities. With the use of gas chromatography-mass spectrometry, we show that SAL2 hydrolyzed trilinolein to linoleic acid, a fatty acid with known antistaphylococcal properties. When added to cultures of USA300, trilinolein and, to a lesser extent, triolein inhibited growth in a SAL2-dependent manner. This effect was shown to be due to the enzymatic activity of SAL2 on these triglycerides, since the catalytically inactive SAL2 Ser412Ala mutant was incapable of hydrolyzing the triglycerides or yielding delayed growth in their presence. Overall, these results reveal that SAL2 hydrolyzes triglycerides of both short- and long-chain fatty acids and that the released free fatty acids have the potential to cause significant delays in growth, depending on the chemical nature of the free fatty acid. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  15. Extracellular ionic locks determine variation in constitutive activity and ligand potency between species orthologs of the free fatty acid receptors FFA2 and FFA3

    DEFF Research Database (Denmark)

    Hudson, Brian D; Tikhonova, Irina G; Pandey, Sunil K

    2012-01-01

    Free fatty acid receptors 2 and 3 (FFA2 and FFA3) are G protein-coupled receptors for short chain free fatty acids (SCFAs). They respond to the same set of endogenous ligands but with distinct rank-order of potency such that acetate (C2) has been described as FFA2-selective, whereas propionate (C...

  16. Biooxidation of fatty acid distillates to dibasic acids by a mutant of Candida tropicalis.

    Science.gov (United States)

    Gangopadhyay, Sarbani; Nandi, Sumit; Ghosh, Santinath

    2006-01-01

    Fatty acid distillates (FADs) produced during physical refining of vegetable oil contains large amount of free fatty acid. A mutant of Candida tropicalis (M20) obtained after several stages of UV mutation are utilized to produce dicarboxylic acids (DCAs) from the fatty acid distillates of rice bran, soybean, coconut, palm kernel and palm oil. Initially, fermentation study was carried out in shake flasks for 144 h. Products were isolated and identified by GLC analysis. Finally, fermentation was carried out in a 2 L jar fermenter, which yielded 62 g/L and 48 g/L of total dibasic acids from rice bran oil fatty acid distillate and coconut oil fatty acid distillate respectively. FADs can be effectively utilized to produce DCAs of various chain lengths by biooxidation process.

  17. The role of thyroid hormones in regulating of fatty acid spectrum of brain lipids: ontogenetic aspect

    Directory of Open Access Journals (Sweden)

    Rodynskiy A.G.

    2016-05-01

    Full Text Available In experiments on rats of three age groups the role of thyroid hormones in the regulation of fatty acid spectrum of cortical and hippocampus lipids was studied. It was found that on the background of decreased thyroid status content of polyunsaturated fractions of free fatty acids, significantly changed depending on the age of the animals. In particular, in juvenile rats hypothyroidism was accompanied by a decrease almost twice the number of pentacodan acid decreased lipids viscosity in neurocortex. In old rats reduce of pentacodan acid in the cortex (38% was supplemented by significant (77% decrease in linoleic and linolenic acids. Unlike the two age groups deficiency of thyroid hormones in young animals caused accumulation of free polyunsatarated fatty acids (C18: 2.3 in the cerebral cortex by 74%, which may be associated with a decrease of this fraction in fatty acid spectrum of lipids and increase of viscosity properties of the membranes. These restruc­turing may be associated with modulation of synaptic transmission of specific neurotransmitter systems in the brain.

  18. The classification of fatty acids of lipids from seeds of Persea ...

    African Journals Online (AJOL)

    PROMOTING ACCESS TO AFRICAN RESEARCH ... Gas liquid chromatographic analyses of Persea grattisima and ... as oil seeds and the fatty-acids of seed lipids could be potential sources of industrial oil. Keywords: Classification, fatty acids, GLC and Lipids. Full Text: EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT

  19. Thioesterase activity and acyl-CoA/fatty acid cross-talk of hepatocyte nuclear factor-4{alpha}.

    Science.gov (United States)

    Hertz, Rachel; Kalderon, Bella; Byk, Tamara; Berman, Ina; Za'tara, Ghadeer; Mayer, Raphael; Bar-Tana, Jacob

    2005-07-01

    Hepatocyte nuclear factor-4alpha (HNF-4alpha) activity is modulated by natural and xenobiotic fatty acid and fatty acyl-CoA ligands as a function of their chain length, unsaturation, and substitutions. The acyl-CoA site of HNF-4alpha is reported here to consist of the E-F domain, to bind long-chain acyl-CoAs but not the respective free acids, and to catalyze the hydrolysis of bound fatty acyl-CoAs. The free acid pocket, previously reported in the x-ray structure of HNF-4alpha E-domain, entraps fatty acids but excludes acyl-CoAs. The acyl-CoA and free acid sites are distinctive and noncongruent. Free fatty acid products of HNF-4alpha thioesterase may exchange with free acids entrapped in the fatty acid pocket of HNF-4alpha. Cross-talk between the acyl-CoA and free fatty acid binding sites is abrogated by high affinity, nonhydrolyzable acyl-CoA ligands of HNF-4alpha that inhibit its thioesterase activity. Hence, HNF-4alpha transcriptional activity is controlled by its two interrelated acyl ligands and two binding sites interphased in tandem by the thioesterase activity. The acyl-CoA/free-acid and receptor/enzyme duality of HNF-4alpha extends the paradigm of nuclear receptors.

  20. Omega-3 free fatty acids for the treatment of severe hypertriglyceridemia: the EpanoVa fOr Lowering Very high triglyceridEs (EVOLVE) trial

    NARCIS (Netherlands)

    Kastelein, John J. P.; Maki, Kevin C.; Susekov, Andrey; Ezhov, Marat; Nordestgaard, Borge G.; Machielse, Ben N.; Kling, Douglas; Davidson, Michael H.

    2014-01-01

    Omega-3 fatty acids in free fatty acid form have enhanced bioavailability, and plasma levels are less influenced by food than for ethyl ester forms. The aim was to evaluate the safety and lipid-altering efficacy in subjects with severe hypertriglyceridemia of an investigational pharmaceutical

  1. Incorporated fish oil fatty acids prevent action potential shortening induced by circulating fish oil fatty acids

    Directory of Open Access Journals (Sweden)

    Hester M Den Ruijter

    2010-11-01

    Full Text Available Increased consumption of fatty fish, rich in omega-3 polyunsaturated fatty acids (3-PUFAs reduces the severity and number of arrhythmias. Long term 3-PUFA-intake modulates the activity of several cardiac ion channels leading to cardiac action potential shortening. Circulating 3-PUFAs in the bloodstream and incorporated 3-PUFAs in the cardiac membrane have a different mechanism to shorten the action potential. It is, however, unknown whether circulating 3-PUFAs in the bloodstream enhance or diminish the effects of incorporated 3-PUFAs. In the present study, we address this issue. Rabbits were fed a diet rich in fish oil (3 or sunflower oil (9, as control for 3 weeks. Ventricular myocytes were isolated by enzymatic dissociation and action potentials were measured using the perforated patch clamp technique in the absence and presence of acutely administered 3-PUFAs. Plasma of 3 fed rabbits contained more free eicosapentaenoic acid (EPA and isolated myocytes of 3 fed rabbits contained higher amounts of both EPA and docosahexaenoic acid (DHA in their sarcolemma compared to control. In the absence of acutely administered fatty acids, 3 myocytes had a shorter action potential with a more negative plateau than 9 myocytes. In the 9 myocytes, but not in the 3 myocytes, acute administration of a mixture of EPA+DHA shortened the action potential significantly. From these data we conclude that incorporated 3-PUFAs into the sarcolemma and acutely administered 3 fatty acids do not have a cumulative effect on action potential duration and morphology. As a consequence, patients with a high cardiac 3-PUFA status will probably not benefit from short term 3 supplementation as an antiarrhythmic therapy.

  2. N-3 fatty acids reduced trans fatty acids retention and increased docosahexaenoic acid levels in the brain.

    Science.gov (United States)

    Lavandera, Jimena Verónica; Saín, Juliana; Fariña, Ana Clara; Bernal, Claudio Adrián; González, Marcela Aída

    2017-09-01

    The levels of docosahexaenoic acid (DHA, 22:6n-3) and arachidonic acid (AA, 20:4n-6) are critical for the normal structure and function of the brain. Trans fatty acids (TFA) and the source of the dietary fatty acids (FA) interfere with long-chain polyunsaturated fatty acids (LC-PUFA) biosynthesis. The aim of this study was to investigate the effect of TFA supplementation in diets containing different proportions of n-9, n-6, and n-3 FA on the brain FA profile, including the retention of TFA, LC-PUFA levels, and n-6/n-3 PUFA ratios. These parameters were also investigated in the liver, considering that LC-PUFA are mainly bioconverted from their dietary precursors in this tissue and transported by serum to the brain. Also, stearoyl-CoA desaturase-1 (SCD1) and sterol regulatory element-binding protein-1c (SREBP-1c) gene expressions were evaluated. Male CF1 mice were fed (16 weeks) diets containing different oils (olive, corn, and rapeseed) with distinct proportions of n-9, n-6, and n-3 FA (55.2/17.2/0.7, 32.0/51.3/0.9, and 61.1/18.4/8.6), respectively, substituted or not with 0.75% of TFA. FA composition of the brain, liver, and serum was assessed by gas chromatography. TFA were incorporated into, and therefore retained in the brain, liver, and serum. However, the magnitude of retention was dependent on the tissue and type of isomer. In the brain, total TFA retention was lower than 1% in all diets. Dietary n-3 PUFA decreased TFA retention and increased DHA accretion in the brain. The results underscore the importance of the type of dietary FA on the retention of TFA in the brain and also on the changes of the FA profile.

  3. PPAR/RXR Regulation of Fatty Acid Metabolism and Fatty Acid -Hydroxylase (CYP4 Isozymes: Implications for Prevention of Lipotoxicity in Fatty Liver Disease

    Directory of Open Access Journals (Sweden)

    James P. Hardwick

    2009-01-01

    Full Text Available Fatty liver disease is a common lipid metabolism disorder influenced by the combination of individual genetic makeup, drug exposure, and life-style choices that are frequently associated with metabolic syndrome, which encompasses obesity, dyslipidemia, hypertension, hypertriglyceridemia, and insulin resistant diabetes. Common to obesity related dyslipidemia is the excessive storage of hepatic fatty acids (steatosis, due to a decrease in mitochondria -oxidation with an increase in both peroxisomal -oxidation, and microsomal -oxidation of fatty acids through peroxisome proliferator activated receptors (PPARs. How steatosis increases PPAR activated gene expression of fatty acid transport proteins, peroxisomal and mitochondrial fatty acid -oxidation and -oxidation of fatty acids genes regardless of whether dietary fatty acids are polyunsaturated (PUFA, monounsaturated (MUFA, or saturated (SFA may be determined by the interplay of PPARs and HNF4 with the fatty acid transport proteins L-FABP and ACBP. In hepatic steatosis and steatohepatitis, the -oxidation cytochrome P450 CYP4A gene expression is increased even with reduced hepatic levels of PPAR. Although numerous studies have suggested the role ethanol-inducible CYP2E1 in contributing to increased oxidative stress, Cyp2e1-null mice still develop steatohepatitis with a dramatic increase in CYP4A gene expression. This strongly implies that CYP4A fatty acid -hydroxylase P450s may play an important role in the development of steatohepatitis. In this review and tutorial, we briefly describe how fatty acids are partitioned by fatty acid transport proteins to either anabolic or catabolic pathways regulated by PPARs, and we explore how medium-chain fatty acid (MCFA CYP4A and long-chain fatty acid (LCFA CYP4F -hydroxylase genes are regulated in fatty liver. We finally propose a hypothesis that increased CYP4A expression with a decrease in CYP4F genes may promote the progression of steatosis to

  4. Dietary Alfalfa and Calcium Salts of Long-Chain Fatty Acids Alter Protein Utilization, Microbial Populations, and Plasma Fatty Acid Profile in Holstein Freemartin Heifers.

    Science.gov (United States)

    He, Yang; Qiu, Qinghua; Shao, Taoqi; Niu, Wenjing; Xia, Chuanqi; Wang, Haibo; Li, Qianwen; Gao, Zhibiao; Yu, Zhantao; Su, Huawei; Cao, Binghai

    2017-12-20

    This study presented the effects of alfalfa and calcium salts of long-chain fatty acids (CSFA) on feed intake, apparent digestibility, rumen fermentation, microbial community, plasma biochemical parameters, and fatty acid profile in Holstein freemartin heifers. Eight Holstein freemartin heifers were randomly divided into a 4 × 4 Latin Square experiment with 2 × 2 factorial diets, with or without alfalfa or CSFA. Dietary supplementation of CSFA significantly increased the apparent digestibility of dry matter, crude protein, neutral detergent fiber, organic matter, and significantly reduced N retention (P fatty acids in the plasma, which was expressed in reducing saturated fatty acid (ΣSFA) ratio and C14-C17 fatty acids proportion except C16:0 (P fatty acid (ΣPUFA) and unsaturated fatty acid (ΣUFA) (P fatty acids in plasma. Alfalfa and CSFA had mutual interaction effect on fat digestion and plasma triglycerides.

  5. Relationship between fatty acid delivery and fatty acid oxidation during strenuous exercise

    NARCIS (Netherlands)

    Romijn, J. A.; Coyle, E. F.; Sidossis, L. S.; Zhang, X. J.; Wolfe, R. R.

    1995-01-01

    To evaluate the extent to which decreased plasma free fatty acid (FFA) concentration contributes to the relatively low rates of fat oxidation during high-intensity exercise, we studied FFA metabolism in six endurance-trained cyclists during 20-30 min of exercise [85% of maximal O2 uptake (VO2max)].

  6. Metabolism meets immunity: The role of free fatty acid receptors in the immune system.

    Science.gov (United States)

    Alvarez-Curto, Elisa; Milligan, Graeme

    2016-08-15

    There are significant numbers of nutrient sensing G protein-coupled receptors (GPCRs) that can be found in cells of the immune system and in tissues that are involved in metabolic function, such as the pancreas or the intestinal epithelium. The family of free fatty acid receptors (FFAR1-4, GPR84), plus a few other metabolite sensing receptors (GPR109A, GPR91, GPR35) have been for this reason the focus of studies linking the effects of nutrients with immunological responses. A number of the beneficial anti-inflammatory effects credited to dietary fats such as omega-3 fatty acids are attributed to their actions on FFAR4.This might play an important protective role in the development of obesity, insulin resistance or asthma. The role of the short-chain fatty acids resulting from fermentation of fibre by the intestinal microbiota in regulating acute inflammatory responses is also discussed. Finally we assess the therapeutic potential of this family of receptors to treat pathologies where inflammation is a major factor such as type 2 diabetes, whether by the use of novel synthetic molecules or by the modulation of the individual's diet. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Continuous esterification for biodiesel production from palm fatty acid distillate using economical process

    Energy Technology Data Exchange (ETDEWEB)

    Chongkhong, S.; Tongurai, C.; Chetpattananondh, P. [Department of Chemical Engineering, Faculty of Engineering, Prince of Songkla University, Hat-Yai, Songkhla 90112 (Thailand)

    2009-04-15

    An overflow system for continuous esterification of palm fatty acid distillate (PFAD) using an economical process was developed using a continuous stirred tank reactor (CSTR). Continuous production compared to batch production at the same condition had higher product purity. The optimum condition for the esterification process was a 8.8:1:0.05 molar ratio of methanol to PFAD to sulfuric acid catalyst, 60 min of residence time at 75 C under its own pressure. The free fatty acid (FFA) content in the PFAD was reduced from 93 to less than 1.5%wt by optimum esterification. The esterified product had to be neutralized with 10.24%wt of 3 M sodium hydroxide in water solution at a reaction temperature of 80 C for 20 min to reduce the residual FFA and glycerides. The components and properties of fatty acid methyl ester (FAME) could meet the standard requirements for biodiesel fuel. Eventually the production costs were calculated to disclose its commercialization. (author)

  8. The effect of carbohydrate and fat variation in euenergetic diets on postabsorptive free fatty acid release

    NARCIS (Netherlands)

    Bisschop, PH; Ackermans, MT; Endert, E; Ruiter, AFC; Meijer, AJ; Kuipers, F; Sauerwein, HP; Romijn, JA

    Diet composition and energy content modulate free fatty acid (FFA) release. The aim of this study was to evaluate the dose-response effects of euenergetic variations in dietary carbohydrate and fat content on postabsorptive FFA release. The rate of appearance (R-a) of palmitate was measured by

  9. Omega 3 fatty acids reduce myeloid progenitor cell frequency in the bone marrow of mice and promote progenitor cell differentiation

    Directory of Open Access Journals (Sweden)

    Sollars Vincent E

    2009-03-01

    Full Text Available Abstract Background Omega 3 fatty acids have been found to inhibit proliferation, induce apoptosis, and promote differentiation in various cell types. The processes of cell survival, expansion, and differentiation are of key importance in the regulation of hematopoiesis. We investigated the role of omega 3 fatty acids in controlling the frequency of various myeloid progenitor cells in the bone marrow of mice. Increased progenitor cell frequency and blocked differentiation are characteristics of hematopoietic disorders of the myeloid lineage, such as myeloproliferative diseases and myeloid leukemias. Results We found that increasing the proportion of omega 3 fatty acids relative to the proportion of omega 6 fatty acids in the diet caused increased differentiation and reduced the frequency of myeloid progenitor cells in the bone marrow of mice. Furthermore, this had no adverse effect on peripheral white blood cell counts. Conclusion Our results indicate that omega 3 fatty acids impact hematopoietic differentiation by reducing myeloid progenitor cell frequency in the bone marrow and promoting progenitor cell differentiation. Further exploration of this discovery could lead to the use of omega 3 fatty acids as a therapeutic option for patients that have various disorders of hematopoiesis.

  10. Contribution of fatty acids released from lipolysis of plasma triglycerides to total plasma fatty acid flux and tissue-specific fatty acid uptake

    NARCIS (Netherlands)

    Teusink, Bas; Voshol, Peter J.; Dahlmans, Vivian E. H.; Rensen, Patrick C. N.; Pijl, Hanno; Romijn, Johannes A.; Havekes, Louis M.

    2003-01-01

    There is controversy over the extent to which fatty acids (FAs) derived from plasma free FAs (FFAs) or from hydrolysis of plasma triglycerides (TGFAs) form communal or separate pools and what the contribution of each FA source is to cellular FA metabolism. Chylomicrons and lipid emulsions were

  11. Free fatty acid receptors and their role in regulation of energy metabolism.

    Science.gov (United States)

    Hara, Takafumi; Kimura, Ikuo; Inoue, Daisuke; Ichimura, Atsuhiko; Hirasawa, Akira

    2013-01-01

    The free fatty acid receptor (FFAR) is a G protein-coupled receptor (GPCR) activated by free fatty acids (FFAs), which play important roles not only as essential nutritional components but also as signaling molecules in numerous physiological processes. In the last decade, FFARs have been identified by the GPCR deorphanization strategy derived from the human genome database. To date, several FFARs have been identified and characterized as critical components in various physiological processes. FFARs are categorized according to the chain length of FFA ligands that activate each FFAR; FFA2 and FFA3 are activated by short chain FFAs, GPR84 is activated by medium-chain FFAs, whereas FFA1 and GPR120 are activated by medium- or long-chain FFAs. FFARs appear to act as physiological sensors for food-derived FFAs and digestion products in the gastrointestinal tract. Moreover, they are considered to be involved in the regulation of energy metabolism mediated by the secretion of insulin and incretin hormones and by the regulation of the sympathetic nerve systems, taste preferences, and inflammatory responses related to insulin resistance. Therefore, because FFARs can be considered to play important roles in physiological processes and various pathophysiological processes, FFARs have been targeted in therapeutic strategies for the treatment of metabolic disorders including type 2 diabetes and metabolic syndrome. In this review, we present a summary of recent progress regarding the understanding of their physiological roles in the regulation of energy metabolism and their potential as therapeutic targets.

  12. Fatty acid intake in relation to reproductive hormones and testicular volume among young healthy men

    DEFF Research Database (Denmark)

    Mínguez-alarcón, Lidia; Chavarro, Jorgee; Mendiola, Jaime

    2017-01-01

    , and provided a blood sample. Linear regression was used to examine the association between each fatty acid type and reproductive hormone levels and testicular volumes. Monounsaturated fatty acids intake was inversely associated with serum blood levels of calculated free testosterone, total testosterone......, and inhibin B. A positive association was observed between the intake of polyunsaturated fatty acids, particularly of omega-6 polyunsaturated fatty acids, and luteinizing hormone concentrations. In addition, the intake of trans fatty acids was associated with lower total testosterone and calculated free...... testosterone concentrations (P trend = 0.01 and 0.02, respectively). The intake of omega-3 polyunsaturated fatty acids was positively related to testicular volume while the intake of omega-6 polyunsaturated fatty acids and trans fatty acids was inversely related to testicular volume. These data suggest...

  13. Fatty acid composition and physicochemical characteristics of Tartar (Sterculia Stigera) oil as Affected by the extraction method

    International Nuclear Information System (INIS)

    Eljack, M.; Babiker, E. E.; El Tinay, A. H.

    2004-01-01

    Fatty acid content and physicochemical characteristics of oil extracted from Tartar seeds, using two extraction methods, were studied. The results revealed that saturated fatty acid content varied from 0.2% to 33.4%, while unsaturated fatty acid content varied from 0.1% to 24.2%, with no significant difference between the extraction methods. Sterols content varied from 0.3% to 66.0%. Cyclopropenoid fatty acids ranged from 3.4% to 5.3% but were significantly reduced after refining. Glycerides content varied with maximum values of 78.03%, 4.58% and 2.82% for tri-, di-, and mono-glycerides, respectively. Physicochemical investigation of the oil showed that the colour, refractive index, free fatty acids, peroxide value, saponification value, relative viscosity, iodine value, and unsaponifiable matter were similar for both methods of extraction with minor exceptions.(Author)

  14. Antioxidant capacity and fatty acid composition of different parts of Adenocarpus complicatus (Fabaceae) from Turkey.

    Science.gov (United States)

    Berber, Adnan; Zengin, Gokhan; Aktumsek, Abdurrahman; Sanda, Murad Aydin; Uysal, Tuna

    2014-03-01

    Adenocarpus complicatus is distributed throughout the Anatolian peninsula and is widely used for human and animal nutrition. The purpose of this work was to study the antioxidant properties and fatty acid composition of different parts of this plant (fruits and mixed materials). The species was collected from Golyuzu village of the Seydisehir district near Konya province, Turkey. Fruit and mixed parts obtained from this species were ground and a 15g sample was used to prepare methanolic extracts. Powdered plant samples were extracted with 100mL methanol in a mechanical shaker. The obtained extracts were filtered and concentrated to dryness under reduced pressure and were subsequently stored at -20 degrees C. Antioxidant components, namely total phenolic and flavonoid content, were detected for each extract using spectrophotometric methods. Antioxidant capacity was evaluated by various assays including phosphomolybdenum, DPPH free radical scavenging capacity, metal chelating activity, and ferric and cupric ion reducing power. The fatty acid profiles of plant parts were also determined by using gas chromatography. The total phenolic content of fruit (36.21mgGAE/g) was higher than that of mixed materials (13.79mgGAE/g). The methanolic extract of mixed material had higher amounts of flavonoid than fruit extract. The free radical scavenging activity of extracts was expressed as IC50 value (microg/mL) (amount required to inhibit DPPH radical formation by 50%). The lower IC50 value reflects better free radical scavenging action. The radical scavenging activity of the samples was compared with BHT, it showed the mixed material to be almost two times more potent than the fruit extract. However, BHT is an excellent free radical scavenger with an IC50 of 34.061 microg/mL. The ferric and cupric reducing power potentials of the extracts were expressed as EC50 value (the effective concentration at which the absorbance was 0.5). Fruit extract exhibited strong ferric reducing

  15. Antimicrobial medium- and long-chain free fatty acids prevent PrfA-dependent activation of virulence genes in Listeria monocytogenes

    DEFF Research Database (Denmark)

    Sternkopf Lillebæk, Eva Maria; Lambert Nielsen, Stine; Scheel Thomasen, Rikke

    2017-01-01

    of virulence factors required for bacterial entry, intracellular replication and cell-to-cell spread. PrfA-dependent activation of virulence genes occurs primarily in the blood and during intracellular infection. In contrast, PrfA does not play a significant role in regulation of virulence gene expression...... antimicrobial free fatty acids act to downregulate transcription of PrfA-activated virulence genes. Interestingly, the inhibitory effect is also evident in cells encoding a constitutively active variant of PrfA. Collectively, our data suggest that antimicrobial medium- and long-chain free fatty acids may act...... as signals to prevent PrfA-mediated activation of virulence genes in environments where PrfA activation is not required, such as in food and the gastrointestinal tract....

  16. Trienoic fatty acids and plant tolerance of temperature

    Directory of Open Access Journals (Sweden)

    Routaboul Jean-Marc

    2002-01-01

    Full Text Available The biophysical reactions of light harvesting and electron transport during photosynthesis take place in a uniquely constructed bilayer, the thylakoid. In all photosynthetic eukaryotes, the complement of atypical glycerolipid molecules that form the foundation of this membrane are characterised by sugar head-groups and a very high level of unsaturation in the fatty acids that occupy the central portion of the thylakoid bilayer. alpha-linolenic (18:3 or a combination of 18:3 and hexadecatrienoic (16:3 acids typically account for approximately two-thirds of all thylakoid membrane fatty acids and over 90% of the fatty acids of monogalactosyl diacylglycerol, the major thylakoid lipid [1, 2]. The occurrence of trienoic fatty acids as a major component of the thylakoid membrane is especially remarkable since these fatty acids form highly reactive targets for active oxygen species and free radicals, which are often the by-products of oxygenic photosynthesis. Photosynthesis is one of the most temperature-sensitive functions of plant [3, 4]. There remains a widespread belief that these trienoic fatty acids might have some crucial role in plants to be of such universal occurrence, especially in photosynthesis tolerance of temperature [5].

  17. Characterization of fatty acid binding by the P2 myelin protein

    International Nuclear Information System (INIS)

    Gudaitis, P.G.; Weise, M.J.

    1987-01-01

    In recent years, significant sequence homology has been found between the P2 protein of peripheral myelin and intracellular retinoid- and fatty acid-binding proteins. They have found that salt extracts of bovine intradural nerve roots contain the P2 basic protein in association with free fatty acid. Preliminary results from quantitative analyses showed a ratio of 0.4-1.1 fatty acid (mainly oleate and palmitate) per P2 molecule. P2/ligand interactions were partially characterized using ( 3 H)-oleate in gel permeation assays and binding studies using lipidex to separated bound and free fatty acid. Methyloleate was found to displace ( 3 H)-oleate from P2, indicating that ligand binding interactions are predominantly hydrophobic in nature. On the other hand, myristic acid and retinol did not inhibit the binding of oleate to the protein, results consistent with a decided affinity for long chain fatty acids but not for the retinoids. The binding between P2 and oleic acid showed an apparent Kd in the micromolar range, a value comparable to those found for other fatty acid-binding proteins. From these results they conclude that P2 shares not only structural homology with certain fatty acid binding proteins but also an ability to bind long chain fatty acids. Although the significance of these similarities is not yet clear, they may, by analogy, expect P2 to have a role in PNS lipid metabolism

  18. DETERMINATION OF Cu, Fe, Mn, Zn AND FREE FATTY ACIDS IN PEQUI OIL

    Directory of Open Access Journals (Sweden)

    Aparecida M. S. Mimura

    2016-06-01

    Full Text Available Pequi (Caryocar brasiliense Camb., a typical fruit of the Brazilian Cerrado, is an important source of micronutrients and fatty acids. In this work, a new approach for the acid digestion (using H2SO4, HNO3 and H2O2 of pequi oil samples and the determination of Cu, Fe, Zn and Mn by flame atomic absorption spectrometry (F AAS was employed. Capillary zone electrophoresis (CZE was used for free fatty acid (FFA determination after simple and fast extraction with heated ethanol. Good results regarding precision (RSD < 10%, in most cases, sensitivity and adequate LOD and LOQ values were obtained. The accuracy was evaluated using spike tests and the recoveries were from 97 to 107%. The analytes were investigated in four different pequi oil samples. Fe was the trace element with the highest concentration (from 1.99 to 10.3 mg/100 g, followed by Zn, Mn and Cu (1.15 to 3.19, 0.42 to 0.91 and 0.31 to 0.56 mg/100 g, respectively. The main FFA found were oleic acid and palmitic acid (1.61 to 10.7 and 0.82 to 2.69 g/100 g, respectively, while linoleic acid (0.50 g/100 g was detected in only one sample. The pequi oil chemical composition showed good characteristics to be used as a food additive, in cosmetic formulations and for traditional medicine.

  19. Thermodynamic analysis of fatty acid esterification for fatty acid alkyl esters production

    International Nuclear Information System (INIS)

    Voll, Fernando A.P.; Silva, Camila da; Rossi, Carla C.R.S.; Guirardello, Reginaldo; Castilhos, Fernanda de; Oliveira, J. Vladimir; Cardozo-Filho, Lucio

    2011-01-01

    The development of renewable energy source alternatives has become a planet need because of the unavoidable fossil fuel scarcity and for that reason biodiesel production has attracted growing interest over the last decade. The reaction yield for obtaining fatty acid alkyl esters varies significantly according to the operating conditions such as temperature and the feed reactants ratio and thus investigation of the thermodynamics involved in such reactional systems may afford important knowledge on the effects of process variables on biodiesel production. The present work reports a thermodynamic analysis of fatty acid esterification reaction at low pressure. For this purpose, Gibbs free energy minimization was employed with UNIFAC and modified Wilson thermodynamic models through a nonlinear programming model implementation. The methodology employed is shown to reproduce the most relevant investigations involving experimental studies and thermodynamic analysis.

  20. Eicosapentaenoic Acid Supplementation Changes Fatty Acid Composition and Corrects Endothelial Dysfunction in Hyperlipidemic Patients

    Directory of Open Access Journals (Sweden)

    Ken Yamakawa

    2012-01-01

    Full Text Available We investigated the effects of purified eicosapentaenoic acid (EPA on vascular endothelial function and free fatty acid composition in Japanese hyperlipidemic subjects. In subjects with hyperlipidemia (total cholesterol ≥220 mg/dL and/or triglycerides ≥150 mg/dL, lipid profile and forearm blood flow (FBF during reactive hyperemia were determined before and 3 months after supplementation with 1800 mg/day EPA. Peak FBF during reactive hyperemia was lower in the hyperlipidemic group than the normolipidemic group. EPA supplementation did not change serum levels of total, HDL, or LDL cholesterol, apolipoproteins, remnant-like particle (RLP cholesterol, RLP triglycerides, or malondialdehyde-modified LDL cholesterol. EPA supplementation did not change total free fatty acid levels in serum, but changed the fatty acid composition, with increased EPA and decreased linoleic acid, γ-linolenic acid, and dihomo-γ-linolenic acid. EPA supplementation recovered peak FBF after 3 months. Peak FBF recovery was correlated positively with EPA and EPA/arachidonic acid levels and correlated inversely with dihomo-γ-linolenic acid. EPA supplementation restores endothelium-dependent vasodilatation in hyperlipidemic patients despite having no effect on serum cholesterol and triglyceride patterns. These results suggest that EPA supplementation may improve vascular function at least partly via changes in fatty acid composition.

  1. Toyocamycin attenuates free fatty acid-induced hepatic steatosis and apoptosis in cultured hepatocytes and ameliorates nonalcoholic fatty liver disease in mice.

    Science.gov (United States)

    Takahara, Ikuko; Akazawa, Yuko; Tabuchi, Maiko; Matsuda, Katsuya; Miyaaki, Hisamitsu; Kido, Youko; Kanda, Yasuko; Taura, Naota; Ohnita, Ken; Takeshima, Fuminao; Sakai, Yusuke; Eguchi, Susumu; Nakashima, Masahiro; Nakao, Kazuhiko

    2017-01-01

    A high serum level of saturated free fatty acids (FFAs) is associated with the development of nonalcoholic fatty liver disease (NAFLD). X-box binding protein-1 (XBP-1) is activated by FFA treatment upon splicing. XBP-1 is a transcription factor induced by the endoplasmic reticulum (ER) stress sensor endoribonuclease inositol-requiring enzyme 1 alpha (IRE1α). However, the role of XBP-1 in NAFLD remains relatively unexplored. Toyocamycin was recently reported to attenuate the activation of XBP-1, possibly by inducing a conformational change in IRE1α. In this study, we examined the effect of toyocamycin on hepatocyte lipoapoptosis and steatosis. We also explored the effects of toyocamycin in a mouse model of NAFLD. Huh-7 cells and isolated rat primary hepatocytes were treated with palmitic acid (PA), which is a saturated FFA, in the presence or absence of toyocamycin. In addition, male C57BL/6J mice were fed a diet rich in saturated fat, fructose, and cholesterol (FFC) for 4 months, after which the effect of toyocamycin was assessed. Toyocamycin attenuated FFA-induced steatosis. It also significantly reduced PA-induced hepatocyte lipoapoptosis. In addition, toyocamycin reduced the expression of cytosine-cytosine-adenosine-adenosine-thymidine enhancer-binding protein homologous protein (CHOP), which is a key player in ER stress-mediated apoptosis, as well as its downstream cell death modulator, death receptor 5. In the in vivo study, toyocamycin ameliorated the liver injury caused by FFC-induced NAFLD. It also reduced hepatic steatosis and the expression of lipogenic genes. The data we obtained suggest that toyocamycin attenuates hepatocyte lipogenesis and ameliorates NAFLD in vivo and may therefore be beneficial in the treatment of NAFLD in humans.

  2. Dietary fatty acids modulate associations between genetic variants and circulating fatty acids in plasma and erythrocyte membranes: meta-analysis of nine studies in the CHARGE consortium

    Science.gov (United States)

    Scope: Tissue concentrations of omega-3 fatty acids may reduce cardiovascular disease risk, and genetic variants are associated with circulating fatty acids concentrations. Whether dietary fatty acids interact with genetic variants to modify circulating omega-3 fatty acids is unclear. We evaluated i...

  3. The development of radioiodinated fatty acids for myocardial imaging

    International Nuclear Information System (INIS)

    Knapp, F.F. Jr.

    1993-01-01

    Since free fatty acids are the principal energy source for the normally oxygenated myocardium, the use of iodine-123-labeled fatty acid analogues is an attractive approach for myocardial imaging. Interest in the use of these substances results from divergent fatty acid metabolic pathways in ischemic (triglyceride storage) versus normoxic tissue (β-oxidative clearance), following flow-dependent delivery. Iodine-123-labeled fatty acids may offer a unique opportunity to identity myocardial viability using single photon emission tomography. The development of structurally-modified fatty acids became of interest because of the relatively long acquisition periods required for SPECT. The significant time required by early generation single- or dual-head SPECT systems for data acquisition requires minimal redistribution during the acquisition period to ensure accurate evaluation of the regional fatty acid distribution pattern after re-construction. Research has focussed on the evaluation of structural modifications which can be introduced into the fatty acid chain which would inhibit the subsequent β-oxidative catabolism which normally results in rapid myocardial clearance. Introduction of a methyl group in position-3 of the fatty acid carbon chain has been shown to significantly delay myocardial clearance and iodine-123-labeled 15-(p-iodophenyl)-3- R,S-methylpentadecanoic acid (BMIPP) is a new tracer based on this strategy

  4. Effect of sugar fatty acid esters on rumen fermentation in vitro.

    Science.gov (United States)

    Wakita, M; Hoshino, S

    1987-11-01

    1. The effect of sugar fatty acid esters (SFEs; currently used as food additives for human consumption) on rumen volatile fatty acids (VFA) and gas production was studied with sheep rumen contents in vitro. 2. Some SFEs having monoester contents of more than 70% increased the molar proportion of propionate in conjunction with reduction in the acetate:propionate ratio when the individual SFE was added to rumen contents in a final concentration of 4 g/l. Laurate sugar ester was the most potent propionate enhancer and rumen gas depressor, the effective dose being as low as 1 g/l in a final concentration. Fatty acid esters other than SFEs had little, if any, effect on rumen VFA production and their molar proportions. 3. Approximately 50% of laurate sugar ester was hydrolysed by in vitro incubation with rumen fluid for 2 h. The addition of fatty acids and sucrose was also effective in the alterations of rumen VFA and gas production. However, the effect of SFEs on in vitro rumen fermentation was significantly greater than that of their constituent fatty acids or sucrose, or both. Accordingly, the effect appeared to be ascribed to the complex action of SFE itself and to its constituents, free fatty acids and sucrose. 4. SFEs, at the level of 4 g/l, reduced substantially the froth formation (ingesta volume increase) and seemed to be effective for the prevention of bloat.

  5. Dietary free fatty acids form alkaline phosphatase-enriched microdomains in the intestinal brush border membrane

    DEFF Research Database (Denmark)

    Hansen, Gert H; Rasmussen, Karina; Niels-Christiansen, Lise-Lotte

    2011-01-01

    this membrane passage in organ cultured intestinal mucosal explants. We found that in addition to a rapid uptake into the cytoplasm, a fraction of the fatty acid analogs were inserted directly into the brush border membrane. Furthermore, a brief exposure of microvillar membrane vesicles to a fat mixture...... mimicking a physiological solution of dietary mixed micelles, rearranged the lipid raft microdomain organization of the membranes. Thus, the fat mixture generated a low-density subpopulation of microvillar detergent resistant membranes (DRMs) highly enriched in alkaline phosphatase (AP). Since this GPI-linked...... enzyme is the membrane protein in the brush border with the highest affinity for lipid rafts, this implies that free fatty acids selectively insert stably into these membrane microdomains. We have previously shown that absorption of dietary lipids transiently induce a selective endocytosis of AP from...

  6. Effects of Mucuna pruriens on Free Fatty Acid Levels and Histopathological Changes in the Brains of Rats Fed a High Fructose Diet.

    Science.gov (United States)

    Akgun, Bekir; Sarı, Aysel; Ozturk, Sait; Erol, Fatih Serhat; Ozercan, Ibrahim Hanifi; Ulu, Ramazan

    2017-01-01

    To investigate free fatty acid levels and histopathological changes in the brain of rats fed a high fructose diet (HFrD) and to evaluate the effects of Mucuna pruriens, known to have antidiabetic activity, on these changes. The study comprised 28 mature female Wistar rats. The rats were divided into 4 groups, each included 7 rats. Group 1: control; group 2: fed an HFrD; group 3: fed normal rat chow and M. pruriens; group 4: fed an HFrD and M. pruriens for 6 weeks. At the end of 6 weeks, the rats were decapitated, blood and brain tissues were obtained. Serum glucose and triglyceride levels were measured. Free fatty acid levels were measured in 1 cerebral hemisphere of each rat and histopathological changes in the other. The Mann-Whitney U test was used to compare quantitative continuous data between 2 independent groups, and the Kruskal-Wallis test was used to compare quantitative continuous data between more than 2 independent groups. Arachidonic acid and docosahexaenoic acid levels were significantly higher in group 2 than in group 1 (p pruriens could have therapeutic effects on free fatty acid metabolism and local inflammatory responses in the brains of rats fed an HFrD. © 2017 The Author(s) Published by S. Karger AG, Basel.

  7. Measurement of non-steady-state free fatty acid turnover

    International Nuclear Information System (INIS)

    Jensen, M.D.; Heiling, V.; Miles, J.M.

    1990-01-01

    The accuracy of non-steady-state equations for measuring changes in free fatty acid rate of appearance (Ra) is unknown. In the present study, endogenous lipolysis (traced with [ 14 C]-linoleate) was pharmacologically suppressed in six conscious mongrel dogs. A computer-responsive infusion pump was then used to deliver an intravenous oleic acid emulsion in both constant and linear gradient infusion modes. Both non-steady-state equations with various effective volumes of distribution (V) and steady-state equations were used to measure oleate Ra [( 14 C]oleate). Endogenous lipolysis did not change during the experiment. When oleate Ra increased in a linear gradient fashion, only non-steady-state equations with a large (150 ml/kg) V resulted in erroneous values (9% overestimate, P less than 0.05). In contrast, when oleate Ra decreased in a similar fashion, steady-state and standard non-steady-state equations (V = plasma volume = 50 ml/kg) overestimated total oleate Ra (18 and 7%, P less than 0.001 and P less than 0.05, respectively). Overall, non-steady-state equations with an effective V of 90 ml/kg (1.8 x plasma volume) allowed the most accurate estimates of oleate Ra

  8. Antimicrobial medium- and long-chain free fatty acids prevent PrfA-dependent activation of virulence genes in Listeria monocytogenes.

    Science.gov (United States)

    Sternkopf Lillebæk, Eva Maria; Lambert Nielsen, Stine; Scheel Thomasen, Rikke; Færgeman, Nils J; Kallipolitis, Birgitte H

    The foodborne pathogen Listeria monocytogenes is the causative agent of the invasive disease listeriosis. Infection by L. monocytogenes involves bacterial crossing of the intestinal barrier and intracellular replication in a variety of host cells. The PrfA protein is the master regulator of virulence factors required for bacterial entry, intracellular replication and cell-to-cell spread. PrfA-dependent activation of virulence genes occurs primarily in the blood and during intracellular infection. In contrast, PrfA does not play a significant role in regulation of virulence gene expression in the intestinal environment. In the gastrointestinal phase of infection, the bacterium encounters a variety of antimicrobial agents, including medium- and long-chain free fatty acids that are commonly found in our diet and as active components of bile. Here we show that subinhibitory concentrations of specific antimicrobial free fatty acids act to downregulate transcription of PrfA-activated virulence genes. Interestingly, the inhibitory effect is also evident in cells encoding a constitutively active variant of PrfA. Collectively, our data suggest that antimicrobial medium- and long-chain free fatty acids may act as signals to prevent PrfA-mediated activation of virulence genes in environments where PrfA activation is not required, such as in food and the gastrointestinal tract. Copyright © 2017 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  9. Influence of free fatty acids on glucose uptake in prostate cancer cells

    International Nuclear Information System (INIS)

    Andersen, Kim Francis; Divilov, Vadim; Sevak, Kuntalkumar; Koziorowski, Jacek; Lewis, Jason S.; Pillarsetty, NagaVaraKishore

    2014-01-01

    Introduction: The study focuses on the interaction between glucose and free fatty acids (FFA) in malignant human prostate cancer cell lines by an in vitro observation of uptake of fluoro-2-deoxy-D-glucose (FDG) and acetate. Methods: Human prostate cancer cell lines (PC3, CWR22Rv1, LNCaP, and DU145) were incubated for 2 h and 24 h in glucose-containing (5.5 mM) Dulbecco’s Modified Eagle’s Medium (DMEM) with varying concentrations of the free fatty acid palmitate (0–1.0 mM). Then the cells were incubated with [ 18 F]-FDG (1 μCi/mL; 0.037 MBq/mL) in DMEM either in presence or absence of glucose and in presence of varying concentrations of palmitate for 1 h. Standardized procedures regarding cell counting and measuring for 18 F radioactivity were applied. Cell uptake studies with 14 C-1-acetate under the same conditions were performed on PC3 cells. Results: In glucose containing media there was significantly increased FDG uptake after 24 h incubation in all cell lines, except DU145, when upper physiological levels of palmitate were added. A 4-fold increase of FDG uptake in PC3 cells (15.11% vs. 3.94%/10 6 cells) was observed in media with 1.0 mM palmitate compared to media with no palmitate. The same tendency was observed in PC3 and CWR22Rv1 cells after 2 h incubation. In glucose-free media no significant differences in FDG uptake after 24 h incubation were observed. The significant differences after 2 h incubation all pointed in the direction of increased FDG uptake when palmitate was added. Acetate uptake in PC3 cells was significantly lower when palmitate was added in glucose-free DMEM. No clear tendency when comparing FDG or acetate uptake in the same media at different time points of incubation was observed. Conclusions: Our results indicate a FFA dependent metabolic boost/switch of glucose uptake in PCa, with patterns reflecting the true heterogeneity of the disease

  10. Synthesis and release of fatty acids by human trophoblast cells in culture

    International Nuclear Information System (INIS)

    Coleman, R.A.; Haynes, E.B.

    1987-01-01

    In order to determine whether placental cells can synthesize and release fatty acids, trophoblast cells from term human placentas were established in monolayer culture. The cells continued to secrete placental lactogen and progesterone and maintained specific activities of critical enzymes of triacylglycerol and phosphatidylcholine biosynthesis for 24 to 72 hr in culture. Fatty acid was rapidly synthesized from [ 14 C]acetate and released by the cells. Palmitoleic, palmitic, and oleic acids were the major fatty acids synthesized from [ 14 C]acetate and released. Small amounts of lauric, myristic, and stearic acids were also identified. [ 14 C]acetate was also incorporated into cellular triacylglycerol, phospholipid, and cholesterol, but radiolabeled free fatty acid did not accumulate intracellularly. In a pulse-chase experiment, cellular glycerolipids were labeled with [1- 14 C]oleate; trophoblast cells then released 14 C-labeled fatty acid into the media as the cellular content of labeled phospholipid and triacylglycerol decreased without intracellular accumulation of free fatty acid. Twenty percent of the 14 C-label lost from cellular glycerolipid could not be recovered as a chloroform-extractable product, suggesting that some of the hydrolyzed fatty acid had been oxidized. These data indicate that cultured placenta trophoblast cells can release fatty acids that have either been synthesized de novo or that have been hydrolyzed from cellular glycerolipids. Trophoblast cells in monolayer culture should provide an excellent model for molecular studies of placental fatty acid metabolism and release

  11. Why does brain metabolism not favor burning of fatty acids to provide energy? Reflections on disadvantages of the use of free fatty acids as fuel for brain.

    Science.gov (United States)

    Schönfeld, Peter; Reiser, Georg

    2013-10-01

    It is puzzling that hydrogen-rich fatty acids are used only poorly as fuel in the brain. The long-standing belief that a slow passage of fatty acids across the blood-brain barrier might be the reason. However, this has been corrected by experimental results. Otherwise, accumulated nonesterified fatty acids or their activated derivatives could exert detrimental activities on mitochondria, which might trigger the mitochondrial route of apoptosis. Here, we draw attention to three particular problems: (1) ATP generation linked to β-oxidation of fatty acids demands more oxygen than glucose, thereby enhancing the risk for neurons to become hypoxic; (2) β-oxidation of fatty acids generates superoxide, which, taken together with the poor anti-oxidative defense in neurons, causes severe oxidative stress; (3) the rate of ATP generation based on adipose tissue-derived fatty acids is slower than that using blood glucose as fuel. Thus, in periods of extended continuous and rapid neuronal firing, fatty acid oxidation cannot guarantee rapid ATP generation in neurons. We conjecture that the disadvantages connected with using fatty acids as fuel have created evolutionary pressure on lowering the expression of the β-oxidation enzyme equipment in brain mitochondria to avoid extensive fatty acid oxidation and to favor glucose oxidation in brain.

  12. Tissue Fatty Acid Profile is Differently Modulated from Olive Oil and Omega-3 Polyunsaturated Fatty Acids in ApcMin/+ Mice.

    Science.gov (United States)

    Tutino, Valeria; Caruso, Maria G; De Leonardis, Giampiero; De Nunzio, Valentina; Notarnicola, Maria

    2017-11-16

    Fatty acid profile can be considered an appropriate biomarker for investigating the relations between the patterns of fatty acid metabolism and specific diseases, as cancer, cardiovascular and degenerative diseases. Aim of this study was to test the effects of diets enriched with olive oil and omega-3 Polyunsaturated Fatty Acids (PUFAs) on fatty acid profile in intestinal tissue of ApcMin/+ mice. Three groups of animals were considered: control group, receiving a standard diet; olive oilgroup, receiving a standard diet enriched with olive oil; omega-3 group, receiving a standard diet enriched with salmon fish. Tissue fatty acid profile was evaluated by gas chromatography method. Olive oil and omega-3 PUFAs in the diet differently affect the tissue fatty acid profile. Compared to control group, the levels of Saturated Fatty Acids (SFAs) were lower in olive oil group, while an increase of SFAs was found in omega-3 group. Monounsaturated Fatty Acids (MUFAs) levels were enhanced after olive oil treatment, and in particular, a significant increase of oleic acid levels was detected; MUFAs levels were instead reduced in omega-3 group in line with the decrease of oleic acid levels. The total PUFAs levels were lower in olive oil respect to control group. Moreover, a significant induction of Saturation Index (SI) levels was observed after omega-3 PUFAs treatment, while its levels were reduced in mice fed with olive oil. Our data demonstrated a different effect of olive oil and omega-3 PUFAs on tissue lipid profile in APCMin/+ mice. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. Characterization of specific membrane fatty acids as chemotaxonomic markers for sulfate-reducing bacteria involved in anaerobic oxidation of methane

    DEFF Research Database (Denmark)

    Elvert, M.; Boetius, A.; Knittel, K.

    2003-01-01

    Membrane fatty acids were extracted from a sediment core above marine gas hydrates at Hydrate Ridge, NE Pacific. Anaerobic sediments from this environment are characterized by high sulfate reduction rates driven by the anaerobic oxidation of methane (AOM). The assimilation of methane carbon......-reducing bacteria (SRB) of the Desulfosarcina/Desulfococcus group, which are present in the aggregates of AOM consortia in extremely high numbers, these specific fatty acids appear to provide a phenotypic fingerprint indicative for SRB of this group. Correlating depth profiles of specific fatty acid content...

  14. Non-equivalence of key positively charged residues of the free fatty acid 2 receptor in the recognition and function of agonist versus antagonist ligands

    DEFF Research Database (Denmark)

    Sergeev, Eugenia; Hojgaard Hansen, Anders; Pandey, Sunil K

    2016-01-01

    Short chain fatty acids (SCFAs) are produced in the gut by bacterial fermentation of poorly digested carbohydrates. A key mediator of their actions is the G protein-coupled Free Fatty Acid 2 (FFA2) receptor and this has been suggested as a therapeutic target for the treatment of both metabolic an...

  15. Docosahexaenoic Acid-Derived Fatty Acid Esters of Hydroxy Fatty Acids (FAHFAs) With Anti-inflammatory Properties.

    Science.gov (United States)

    Kuda, Ondrej; Brezinova, Marie; Rombaldova, Martina; Slavikova, Barbora; Posta, Martin; Beier, Petr; Janovska, Petra; Veleba, Jiri; Kopecky, Jan; Kudova, Eva; Pelikanova, Terezie; Kopecky, Jan

    2016-09-01

    White adipose tissue (WAT) is a complex organ with both metabolic and endocrine functions. Dysregulation of all of these functions of WAT, together with low-grade inflammation of the tissue in obese individuals, contributes to the development of insulin resistance and type 2 diabetes. n-3 polyunsaturated fatty acids (PUFAs) of marine origin play an important role in the resolution of inflammation and exert beneficial metabolic effects. Using experiments in mice and overweight/obese patients with type 2 diabetes, we elucidated the structures of novel members of fatty acid esters of hydroxy fatty acids-lipokines derived from docosahexaenoic acid (DHA) and linoleic acid, which were present in serum and WAT after n-3 PUFA supplementation. These compounds contained DHA esterified to 9- and 13-hydroxyoctadecadienoic acid (HLA) or 14-hydroxydocosahexaenoic acid (HDHA), termed 9-DHAHLA, 13-DHAHLA, and 14-DHAHDHA, and were synthesized by adipocytes at concentrations comparable to those of protectins and resolvins derived from DHA in WAT. 13-DHAHLA exerted anti-inflammatory and proresolving properties while reducing macrophage activation by lipopolysaccharides and enhancing the phagocytosis of zymosan particles. Our results document the existence of novel lipid mediators, which are involved in the beneficial anti-inflammatory effects attributed to n-3 PUFAs, in both mice and humans. © 2016 by the American Diabetes Association.

  16. Exploring the Lean Phenotype of Glutathione-Depleted Mice: Thiol, Amino Acid and Fatty Acid Profiles.

    Directory of Open Access Journals (Sweden)

    Amany K Elshorbagy

    Full Text Available Although reduced glutathione (rGSH is decreased in obese mice and humans, block of GSH synthesis by buthionine sulfoximine (BSO results in a lean, insulin-sensitive phenotype. Data is lacking about the effect of BSO on GSH precursors, cysteine and glutamate. Plasma total cysteine (tCys is positively associated with stearoyl-coenzyme A desaturase (SCD activity and adiposity in humans and animal models.To explore the phenotype, amino acid and fatty acid profiles in BSO-treated mice.Male C3H/HeH mice aged 11 weeks were fed a high-fat diet with or without BSO in drinking water (30 mmol/L for 8 weeks. Amino acid and fatty acid changes were assessed, as well as food consumption, energy expenditure, locomotor activity, body composition and liver vacuolation (steatosis.Despite higher food intake, BSO decreased particularly fat mass but also lean mass (both P<0.001, and prevented fatty liver vacuolation. Physical activity increased during the dark phase. BSO decreased plasma free fatty acids and enhanced insulin sensitivity. BSO did not alter liver rGSH, but decreased plasma total GSH (tGSH and rGSH (by ~70%, and liver tGSH (by 82%. Glutamate accumulated in plasma and liver. Urine excretion of cysteine and its precursors was increased by BSO. tCys, rCys and cystine decreased in plasma (by 23-45%, P<0.001 for all, but were maintained in liver, at the expense of decreased taurine. Free and total plasma concentrations of the SCD products, oleic and palmitoleic acids were decreased (by 27-38%, P <0.001 for all.Counterintuitively, block of GSH synthesis decreases circulating tCys, raising the question of whether the BSO-induced obesity-resistance is linked to cysteine depletion. Cysteine-supplementation of BSO-treated mice is warranted to dissect the effects of cysteine and GSH depletion on energy metabolism.

  17. Conversion of α-linolenic acid to long-chain omega-3 fatty acid derivatives and alterations of HDL density subfractions and plasma lipids with dietary polyunsaturated fatty acids in Monk parrots (Myiopsitta monachus).

    Science.gov (United States)

    Petzinger, C; Larner, C; Heatley, J J; Bailey, C A; MacFarlane, R D; Bauer, J E

    2014-04-01

    The effect of α-linolenic acid from a flaxseed (FLX)-enriched diet on plasma lipid and fatty acid metabolism and possible atherosclerosis risk factors was studied in Monk parrots (Myiopsitta monachus). Twenty-four Monk parrots were randomly assigned to diets containing either 10% ground SUNs or 10% ground FLXs. Feed intake was calculated daily. Blood samples, body condition scores and body weights were obtained at -5 weeks, day 0, 7, 14, 28, 42 and 70. Plasma samples were analysed for total cholesterol, free cholesterol, triacylglycerols and lipoproteins. Phospholipid subfraction fatty acid profiles were determined. By day 70, the FLX group had significantly higher plasma phospholipid fatty acids including 18:3n-3 (α-linolenic acid), 20:5n-3 (eicosapentaenoic acid) and 22:6n-3 (docosahexaenoic acid). The sunflower group had significantly higher plasma phospholipid levels of 20:4n-6 (arachidonic acid). By day 70, the high-density lipoprotein (HDL) peak shifted resulting in significantly different HDL peak densities between the two experimental groups (1.097 g/ml FLX group and 1.095 g/ml SUN group, p = 0.028). The plasma fatty acid results indicate that Monk parrots can readily convert α-linolenic acid to the long-chain omega-3 derivatives including docosahexaenoic acid and reduce 20:4n-6 accumulation in plasma phospholipids. The reason for a shift in the HDL peak density is unknown at this time. Journal of Animal Physiology and Animal Nutrition © 2013 Blackwell Verlag GmbH.

  18. The Cumulus Cell Layer Protects Bovine Maturing Oocyte Against Fatty Acid-Induced Lipotoxicity

    NARCIS (Netherlands)

    Lolicato, Francesca|info:eu-repo/dai/nl/314639586; Brouwers, Jos F.|info:eu-repo/dai/nl/173812694; van de Lest, Chris H.A.|info:eu-repo/dai/nl/146063570; Wubbolts, Richard|info:eu-repo/dai/nl/181688255; Aardema, Hilde|info:eu-repo/dai/nl/304824100; Priore, Paola; Roelen, Bernard A.J.|info:eu-repo/dai/nl/109291859; Helms, J. Bernd|info:eu-repo/dai/nl/080626742; Gadella, Bart M|info:eu-repo/dai/nl/115389873

    2015-01-01

    Mobilization of fatty acids from adipose tissue during metabolic stress increases the amount of free fatty acids in blood and follicular fluid and is associated with impaired female fertility. In a previous report we described the effects of the three predominant fatty acids in follicular fluid

  19. Treatment with TUG891, a free fatty acid receptor 4 agonist, restores adipose tissue metabolic dysfunction following chronic sleep fragmentation in mice

    DEFF Research Database (Denmark)

    Gozal, D; Qiao, Z; Almendros, I

    2016-01-01

    BACKGROUND: Sleep fragmentation (SF), a frequent occurrence in multiple sleep and other diseases leads to increased food intake and insulin resistance via increased macrophage activation and inflammation in visceral white adipose tissue (VWAT). Free fatty acid receptor 4 (FFA4) is reduced in pedi...... FFA4 activity may serve as potentially useful adjunctive therapies for sleep disorders accompanied by metabolic morbidity.International Journal of Obesity accepted article preview online, 16 March 2016. doi:10.1038/ijo.2016.37....

  20. Stearoyl-CoA desaturase activity in bovine cumulus cells protects the oocyte against saturated fatty acid stress

    NARCIS (Netherlands)

    Aardema, Hilde; van Tol, Helena T A; Wubbolts, Richard W; Brouwers, Jos F H M; Gadella, Bart M; Roelen, Bernard A J

    2017-01-01

    Metabolic rich and poor conditions are both characterized by elevated free fatty acid levels and have been associated with impaired female fertility. In particular, saturated free fatty acids have a dose-dependent negative impact on oocyte developmental competence, while mono-unsaturated free fatty

  1. Efficacy of Catalysts in the Batch Esterification of the Fatty Acids of ...

    African Journals Online (AJOL)

    The methyl, ethyl, propyl and butyl esters of the fatty acids of Thevetia peruviana seed oil were successfully prepared by the batch-esterification procedures. Various acid catalyst and various molar ratios of fatty acid to alcohol were investigated. H3PO4 was found to be ineffective to catalyze the esterification of the free fatty ...

  2. Physicochemical characterization and fatty acid content of 'venadillo ...

    African Journals Online (AJOL)

    From physicochemical oil evaluations, an oil density of 0.9099 mg∙ml-1 at 28°C; a refraction index of 1.4740 at 20°C; a saponification index of 159.55 mg KOH∙g-1; a peroxide index of 0.739 meq O2∙kg-1, and 0.367% free fatty acid content were shown. From chromatographic oil evaluations, eight fatty acids were identified ...

  3. Baking reduces prostaglandin, resolvin, and hydroxy-fatty acid content of farm-raised Atlantic salmon (Salmo salar).

    Science.gov (United States)

    Raatz, Susan K; Golovko, Mikhail Y; Brose, Stephen A; Rosenberger, Thad A; Burr, Gary S; Wolters, William R; Picklo, Matthew J

    2011-10-26

    The consumption of seafood enriched in n-3 polyunsaturated fatty acids (PUFA) is associated with a decreased risk of cardiovascular disease. Several n-3 oxidation products from eicosapentaenoic acid (EPA; 20:5n-3) and docosahexaenoic acid (22:6n-3) have known protective effects in the vasculature. It is not known whether the consumption of cooked seafood enriched in n-3 PUFA causes appreciable consumption of lipid oxidation products. We tested the hypothesis that baking Atlantic salmon (Salmo salar) increases the level of n-3 and n-6 PUFA oxidation products over raw salmon. We measured the contents of several monohydroxy-fatty acids (MHFA), prostanoids, and resolvins. Our data demonstrate that baking did not change the overall total levels of MHFA. However, baking resulted in selective regioisomeric loss of hydroxy fatty acids from arachidonic acid (20:4n-6) and EPA, while significantly increasing hydroxyl-linoleic acid levels. The contents of prostanoids and resolvins were reduced several-fold with baking. The inclusion of a coating on the salmon prior to baking reduced the loss of some MHFA but had no effect on prostanoid losses incurred by baking. Baking did not decrease n-3 PUFA contents, indicating that baking of salmon is an acceptable means of preparation that does not alter the potential health benefits of high n-3 seafood consumption. The extent to which the levels of MHFA, prostanoids, and resolvins in the raw or baked fish have physiologic consequence for humans needs to be determined.

  4. Experimental basis of metabolic imaging of the myocardium with radioiodinated aromatic free fatty acids

    International Nuclear Information System (INIS)

    Reske, S.N.; Knapp, F.F. Jr.; Winkler, C.

    1986-01-01

    For the investigation of myocardial perfusion and left ventricular pump function, advanced radioisotopic techniques have been established. New developments in radiopharmacology and single-photon emission computed tomography have recently enabled the investigation of parameters of regional energy metabolism in well defined areas of the heart muscle. For this purpose, various iodine ( 123 I)-labeled free fatty acids (FFA) have been synthesized. The diagnostic application of labeled FFA in heart disease may be important, since FFA are the preferred substrates for cardiac energy production at rest in the fasting state. In addition, regional myocardial FFA uptake and regional myocardial blood flow are tightly coupled in normal myocardium with beta-oxidation which is extremely sensitive to oxygen deprivation. This article outlines the basic physiologic pathways of FFA in normal and ischemic myocardium and reviews the results of animal experiments validating the application of these principles for metabolic imaging of the heart by means of the aromatic radioiodinated FFA, 15-(p-iodophenyl)pentadecanoic acid. In addition, the development, physiologic properties, and potential applications of a new generation of 3-methyl-substituted radioiodinated fatty acids that show high myocardial uptake but prolonged retention are discussed. 64 references

  5. Effect of salinity on growth, biochemical parameters and fatty acid composition in safflower (carthamus tinctorius l.)

    International Nuclear Information System (INIS)

    Javed, S.; Bukhari, S.A.; Mahmood, S.; Iftikhar, T.

    2014-01-01

    The aim of the present project is to investigate the effect of salinity on growth, biochemical parameters and fatty acid composition in six varieties of safflower as well as identification of stress tolerant variety under saline (8 d Sm-1) condition. It was observed that salinity significantly decreased the dry weight and fresh weight of safflower varieties. Nitrate reductase (NRA) and nitrite reductase (NiRA) activities were also reduced in response to salinity in all safflower genotypes but Thori-78 and PI-387820 showed less reduction which could be a useful marker for selecting salt tolerant varieties. Under salinity stress, total free amino acids, reducing, non reducing sugars and total sugars increased in all varieties. Accumulation of sugars and total free amino acids might reflect a salt protective mechanism and could be a useful criterion for selecting salt tolerant variety. Comparison among safflower genotypes indicated that Thori-78 and PI-387820 performed better than the others and successful in maintaining higher NRA, NiRA and other metabolites thus were tolerant to salinity. Differential effect upon fatty acid synthesis was observed by different varieties under salinity stress but PI-170274 and PI-387821 varieties better maintained their fatty acid composition. It can be concluded from present studies that biochemical markers can be used to select salinity tolerant safflower varieties. (author)

  6. Antioxidant capacity and fatty acid composition of different parts of Adenocarpus complicatus (Fabaceae from Turkey

    Directory of Open Access Journals (Sweden)

    Adnan Berber

    2014-03-01

    Full Text Available Adenocarpus complicatus is distributed throughout the Anatolian peninsula and is widely used for human and animal nutrition. The purpose of this work was to study the antioxidant properties and fatty acid composition of different parts of this plant (fruits and mixed materials. The species was collected from Golyuzu village of the Seydisehir district near Konya province, Turkey. Fruit and mixed parts obtained from this species were ground and a 15g sample was used to prepare methanolic extracts. Powdered plant samples were extracted with 100mL methanol in a mechanical shaker. The obtained extracts were filtered and concentrated to dryness under reduced pressure and were subsequently stored at -20°C. Antioxidant components, namely total phenolic and flavonoid content, were detected for each extract using spectrophotometric methods. Antioxidant capacity was evaluated by various assays including phosphomolybdenum, DPPH free radical scavenging capacity, metal chelating activity, and ferric and cupric ion reducing power. The fatty acid profiles of plant parts were also determined by using gas chromatography. The total phenolic content of fruit (36.21mgGAE/g was higher than that of mixed materials (13.79mgGAE/g. The methanolic extract of mixed material had higher amounts of flavonoid than fruit extract. The free radical scavenging activity of extracts was expressed as IC50 value (μg/mL (amount required to inhibit DPPH radical formation by 50%. The lower IC50 value reflects better free radical scavenging action. The radical scavenging activity of the samples was compared with BHT, it showed the mixed material to be almost two times more potent than the fruit extract. However, BHT is an excellent free radical scavenger with an IC50 of 34.061μg/mL. The ferric and cupric reducing power potentials of the extracts were expressed as EC50 value (the effective concentration at which the absorbance was 0.5. Fruit extract exhibited strong ferric reducing

  7. Effects of Fatty Acid Inclusion in a DMPC Bilayer Membrane

    DEFF Research Database (Denmark)

    Peters, Günther H.J.; Hansen, Flemming Yssing; Møller, Martin S.

    2009-01-01

    Free fatty acids in biomembranes have been proposed to be a central component in several cellular control and regulatory mechanisms. To elucidate some fundamental elements underlying this, we have applied molecular dynamics simulations and experimental density measurements to study the molecular...... packing and structure of oleic acid (HOA) and stearic acid (HSA) in fluid bilayers of dimyristoylphosphatidylcholine (DMPC). The experimental data show a small but consistent positive excess volume for fatty acid concentrations below 10 mol %. At higher concentrations the fatty acids mix ideally...... with fluid DMPC. The simulations, which were benchmarked against the densitometric data, revealed interesting differences in the structure and location of the fatty acids depending on their protonation status. Thus, the protonated (uncharged) acid is located rather deeply in the membrane with an average...

  8. Synergistic Effects of Zinc Oxide Nanoparticles and Fatty Acids on Toxicity to Caco-2 Cells

    DEFF Research Database (Denmark)

    Cao, Yi; Roursgaard, Martin; Kermanizadeh, Ali

    2015-01-01

    epithelial (Caco-2) cells. The ZnO NPs exposure concentration dependently induced cytotoxicity to Caco-2 cells showing as reduced proliferation and activity measured by 3 different assays. PA exposure induced cytotoxicity, and coexposure to ZnO NPs and PA showed the largest cytotoxic effects. The presence......Fatty acids exposure may increase sensitivity of intestinal epithelial cells to cytotoxic effects of zinc oxide (ZnO) nanoparticles (NPs). This study evaluated the synergistic effects of ZnO NPs and palmitic acid (PA) or free fatty acids (FFAs) mixture (oleic/PA 2:1) on toxicity to human colon...

  9. Testosterone-Fatty Acid esterification: a unique target for the endocrine toxicity of tributyltin to gastropods.

    Science.gov (United States)

    Leblanc, Gerald A; Gooding, Meredith P; Sternberg, Robin M

    2005-01-01

    Over the past thirty years, a global occurrence of sexual aberration has occurred whereby females among populations of prosobranch snails exhibit male sex characteristics. This condition, called imposex, has been causally associated with exposure to the biocide tributyltin. Tributyltin-exposed, imposex snails typically have elevated levels of testosterone which have led to the postulate that this endocrine dysfunction is responsible for imposex. This overview describes recent evidence that supports this postulate. Gastropods maintain circulating testosterone levels and administration of testosterone to females or castrates stimulates male sex differentiation in several snail species. Studies in the mud snail (Ilyanassa obsoleta) have shown that gastropods utilize a unique strategy for regulating free testosterone levels. Excess testosterone is converted to fatty acid esters by the action of a testosterone-inducible, high capacity/low affinity enzyme, acyl-CoA:testosterone acyl transferase, and stored within the organisms. Free testosterone levels are regulated during the reproductive cycle apparently due to changes in esterification/desterification suggesting that testosterone functions in the reproductive cycle of the organisms. Testosterone esterification provides a unique target in the testosterone regulatory machinery of snails that is altered by tributyltin. Indeed, imposex and free testosterone levels were elevated in field collected snails containing high tin levels, while testosterone-fatty acid ester pools were reduced in these organisms. These observations indicate that tributyltin elevates free testosterone by reducing the retention of testosterone as fatty acid-esters. This endocrine effect of tributyltin may be responsible for imposex.

  10. A New Insight to Bone Turnover: Role of -3 Polyunsaturated Fatty Acids

    Directory of Open Access Journals (Sweden)

    Naroa Kajarabille

    2013-01-01

    Full Text Available Background. Evidence has shown that long-chain polyunsaturated fatty acids (LCPUFA, especially the ω-3 fatty acids such as eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA are beneficial for bone health and turnover. Objectives. This review summarizes findings from both in vivo and in vitro studies and the effects of LC PUFA on bone metabolism, as well as the relationship with the oxidative stress, the inflammatory process, and obesity. Results. Some studies in humans indicate that LCPUFA can increase bone formation, affect peak bone mass in adolescents, and reduce bone loss. However, the cellular mechanisms of action of the LCPUFA are complex and involve modulation of fatty acid metabolites such as prostaglandins, resolvins and protectins, several signaling pathways, cytokines, and growth factors, although in certain aspects there is still some controversy. LCPUFA affect receptor activator of nuclear factor κβ (RANK, a receptor found on the osteoclast, causing bone resorption, which controls osteoclast formation. Conclusions. Since fatty acids are an endogenous source of reactive oxygen species, free radicals alter the process of bone turnover; however, although there are clinical evidences linking bone metabolism and dietary lipids, more clinical trials are necessary to prove whether ω-3 PUFA supplementation plays a major role in bone health.

  11. Preparation of a novel carbon-based solid acid from cassava stillage residue and its use for the esterification of free fatty acids in waste cooking oil.

    Science.gov (United States)

    Wang, Lingtao; Dong, Xiuqin; Jiang, Haoxi; Li, Guiming; Zhang, Minhua

    2014-04-01

    A novel carbon-based solid acid catalyst was prepared by the sulfonation of incompletely carbonized cassava stillage residue (CSR) with concentrated sulfuric acid, and employed to catalyze the esterification of methanol and free fatty acids (FFAs) in waste cooking oil (WCO). The effects of the carbonization and the sulfonation temperatures on the pore structure, acid density and catalytic activity of the CSR-derived catalysts were systematically investigated. Low temperature carbonization and high temperature sulfonation can cause the collapse of the carbon framework, while high temperature carbonization is not conducive to the attachment of SO3H groups on the surface. The catalyst showed high catalytic activity for esterification, and the acid value for WCO is reduced to below 2mg KOH/g after reaction. The activity of catalyst can be well maintained after five cycles. CSR can be considered a promising raw material for the production of a new eco-friendly solid acid catalyst. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Short-term increase of plasma free fatty acids does not interfere with intrinsic mitochondrial function in healthy young men

    NARCIS (Netherlands)

    Brands, Myrte; Hoeks, Joris; Sauerwein, Hans P.; Ackermans, Mariette T.; Ouwens, Margriet; Lammers, Nicolette M.; van der Plas, Mart N.; Schrauwen, Patrick; Groen, Albert K.; Serlie, Mireille J.

    2011-01-01

    Free fatty acid (FFA)- and obesity-induced insulin resistance has been associated with disturbed mitochondrial function. Elevated plasma FFA can impair insulin-induced increase of adenosine triphosphate synthesis and downregulate the expression of genes important in the biogenesis of mitochondria in

  13. Study on the Spectrophotometric Detection of Free Fatty Acids in Palm Oil Utilizing Enzymatic Reactions

    Directory of Open Access Journals (Sweden)

    Nur Hidayah Azeman

    2015-07-01

    Full Text Available In this paper, a comprehensive study has been made on the detection of free fatty acids (FFAs in palm oil via an optical technique based on enzymatic aminolysis reactions. FFAs in crude palm oil (CPO were converted into fatty hydroxamic acids (FHAs in a biphasic lipid/aqueous medium in the presence of immobilized lipase. The colored compound formed after complexation between FHA and vanadium (V ion solution was proportional to the FFA content in the CPO samples and was analyzed using a spectrophotometric method. In order to develop a rapid detection system, the parameters involved in the aminolysis process were studied. The utilization of immobilized lipase as catalyst during the aminolysis process offers simplicity in the product isolation and the possibility of conducting the process under extreme reaction conditions. A good agreement was found between the developed method using immobilized Thermomyces lanuginose lipase as catalyst for the aminolysis process and the Malaysian Palm Oil Board (MPOB standard titration method (R2 = 0.9453.

  14. The potential role of omega-3 fatty acids supplements in increasing athletic performance

    Directory of Open Access Journals (Sweden)

    Șerban GLIGOR

    2017-03-01

    Full Text Available Polyunsaturated omega-3 and omega-6 fatty acids are essential fatty acids that cannot be produced by the body itself and therefore must be provided through nutrition. Omega-6 and particularly omega-3 fatty acids have important roles in the organism, contributing to the maintenance and promotion of health. The optimal proportion of omega-6/omega-3 fatty acids is 2:1, or even better 1:1. They are involved in normal growth and development, play a role in the prevention of coronary and cardiovascular diseases, of diabetes mellitus, of arterial hypertension, arthritis and cancer. Omega-3 fatty acids mainly have an anti-inflammatory effect, but also act as hypolipidemic and antithrombotic agents. A potential role of omega-3 fatty acids is that of increasing physical performance. Their role in the physical activity refers on one side to the global health of athletes and on the other side to their anti-inflammatory effect, as high intensity physical exercise induces increased free-radical production and microtraumas, with the induction of an inflammatory status. The anti-inflammatory effect of these fatty acids manifests through an increased production of endogenous antioxidant enzymes, through decreasing the production of prostaglandins metabolites, decreasing the production of leukotriene B4, etc. They are also effective on reducing muscle pain post eccentric exercise and on decreasing the severity of bronchoconstriction induced by exercise, as well as improving pulmonary function variables. In conclusion it seems that supplementing diets with omega-3 fatty acids, apart from having benefic effects on health and on the prevention and management of certain affections, proves to be a beneficial for physical activity and athletic performance.

  15. CPT1α over-expression increases long-chain fatty acid oxidation and reduces cell viability with incremental palmitic acid concentration in 293T cells

    International Nuclear Information System (INIS)

    Jambor de Sousa, Ulrike L.; Koss, Michael D.; Fillies, Marion; Gahl, Anja; Scheeder, Martin R.L.; Cardoso, M. Cristina; Leonhardt, Heinrich; Geary, Nori; Langhans, Wolfgang; Leonhardt, Monika

    2005-01-01

    To test the cellular response to an increased fatty acid oxidation, we generated a vector for an inducible expression of the rate-limiting enzyme carnitine palmitoyl-transferase 1α (CPT1α). Human embryonic 293T kidney cells were transiently transfected and expression of the CPT1α transgene in the tet-on vector was activated with doxycycline. Fatty acid oxidation was measured by determining the conversion of supplemented, synthetic cis-10-heptadecenoic acid (C17:1n-7) to C15:ln-7. CPT1α over-expression increased mitochondrial long-chain fatty acid oxidation about 6-fold. Addition of palmitic acid (PA) decreased viability of CPT1α over-expressing cells in a concentration-dependent manner. Both, PA and CPT1α over-expression increased cell death. Interestingly, PA reduced total cell number only in cells over-expressing CPT1α, suggesting an effect on cell proliferation that requires PA translocation across the mitochondrial inner membrane. This inducible expression system should be well suited to study the roles of CPT1 and fatty acid oxidation in lipotoxicity and metabolism in vivo

  16. Development and Characterization of a Fluorescent Tracer for the Free Fatty Acid Receptor 2 (FFA2/GPR43)

    DEFF Research Database (Denmark)

    Hansen, Anders Højgaard; Sergeev, Eugenia; Pandey, Sunil K.

    2017-01-01

    The free fatty acid receptor 2 (FFA2/GPR43) is considered a potential target for treatment of metabolic and inflammatory diseases. Here we describe the development of the first fluorescent tracer for FFA2 intended as a tool for assessment of thermodynamic and kinetic binding parameters of unlabel...

  17. Fatty Acid Composition of Meat from Ruminants, with Special Emphasis on trans Fatty Acids

    DEFF Research Database (Denmark)

    Leth, Torben; Ovesen, L.; Hansen, K.

    1998-01-01

    The fatty acid composition was determined in 39 samples of beef, 20 samples of veal, and 34 samples of lamb, representative of the supply of ruminant meat in Denmark. Five cuts of beef and veal and three cuts of lamb with increasing fat content were selected, and analysis of the fatty acid methyl...... esters was performed by gas-liquid chromatography (GLC) on a polar 50-m capillary column CP Sil 88 with flame-ionization detection. Lamb had the highest content of saturated fatty acids (52.8 +/- 1.8 g/100 g fatty acids), higher than beef and veal (45.3 +/- 3.1 and 45.4 +/- 0.8 g/100 g fatty acids......, respectively). Cis monounsaturated fatty acids were 49.2 +/- 3.1, 44.9 +/- 1.8, and 37.7 +/- 1.7, and polyunsaturated fatty acids were 3.3 +/- 0.7, 5.8 +/- 2.0, and 5.0 +/- 0.1 g/100 g fatty acids in beef, veal, and lamb, respectively. Beef contained 2.1 +/- 0.8 g trans C-18:1 per 100 g fatty acids, about half...

  18. Effects of dietary conjugated linoleic acid and linoleic:linolenic acid ratio on polyunsaturated fatty acid status in laying hens.

    Science.gov (United States)

    Du, M; Ahn, D U; Sell, J L

    2000-12-01

    A study was conducted to determine the effects of dietary conjugated linoleic acid (CLA) and the ratio of linoleic:linolenic acid on long-chain polyunsaturated fatty acid status. Thirty-two 31-wk-old White Leghorn hens were randomly assigned to four diets containing 8.2% soy oil, 4.1% soy oil + 2.5% CLA (4.1% CLA source), 4.1% flax oil + 2.5% CLA, or 4.1% soy oil + 4.1% flax oil. Hens were fed the diets for 3 wk before eggs and tissues were collected for the study. Lipids were extracted from egg yolk and tissues, classes of egg yolk lipids were separated, and fatty acid concentrations of total lipids, triglyceride, phosphatidylethanolamine, and phosphatidylcholine were analyzed by gas chromatography. The concentrations of monounsaturated fatty acids and non-CLA polyunsaturated fatty acids were reduced after CLA feeding. The amount of arachidonic acid was decreased after CLA feeding in linoleic acid- and linolenic acid-rich diets, but amounts of eicosapentaenoic acid and docosahexaenoic acid were increased in the linolenic-rich diet, indicating that the synthesis or deposition of long-chain n-3 fatty acids was accelerated after CLA feeding. The increased docosahexaenoic acid and eicosapentaenoic acid contents in lipid may be compensation for the decreased arachidonic acid content. Dietary supplementation of linoleic acid increased n-6 fatty acid levels in lipids, whereas linolenic acid increased n-3 fatty acid levels. Results also suggest that CLA might not be elongated to synthesize long-chain fatty acids in significant amounts. The effect of CLA in reducing the level of n-6 fatty acids and promoting the level of n-3 fatty acids could be related to the biological effects of CLA.

  19. Soybean Aphid Infestation Induces Changes in Fatty Acid Metabolism in Soybean.

    Directory of Open Access Journals (Sweden)

    Charles Kanobe

    Full Text Available The soybean aphid (Aphis glycines Matsumura is one of the most important insect pests of soybeans in the North-central region of the US. It has been hypothesized that aphids avoid effective defenses by inhibition of jasmonate-regulated plant responses. Given the role fatty acids play in jasmonate-induced plant defenses, we analyzed the fatty acid profile of soybean leaves and seeds from aphid-infested plants. Aphid infestation reduced levels of polyunsaturated fatty acids in leaves with a concomitant increase in palmitic acid. In seeds, a reduction in polyunsaturated fatty acids was associated with an increase in stearic acid and oleic acid. Soybean plants challenged with the brown stem rot fungus or with soybean cyst nematodes did not present changes in fatty acid levels in leaves or seeds, indicating that the changes induced by aphids are not a general response to pests. One of the polyunsaturated fatty acids, linolenic acid, is the precursor of jasmonate; thus, these changes in fatty acid metabolism may be examples of "metabolic hijacking" by the aphid to avoid the induction of effective defenses. Based on the changes in fatty acid levels observed in seeds and leaves, we hypothesize that aphids potentially induce interference in the fatty acid desaturation pathway, likely reducing FAD2 and FAD6 activity that leads to a reduction in polyunsaturated fatty acids. Our data support the idea that aphids block jasmonate-dependent defenses by reduction of the hormone precursor.

  20. Essential fatty acid-rich diets protect against striatal oxidative damage induced by quinolinic acid in rats.

    Science.gov (United States)

    Morales-Martínez, Adriana; Sánchez-Mendoza, Alicia; Martínez-Lazcano, Juan Carlos; Pineda-Farías, Jorge Baruch; Montes, Sergio; El-Hafidi, Mohammed; Martínez-Gopar, Pablo Eliasib; Tristán-López, Luis; Pérez-Neri, Iván; Zamorano-Carrillo, Absalom; Castro, Nelly; Ríos, Camilo; Pérez-Severiano, Francisca

    2017-09-01

    Essential fatty acids have an important effect on oxidative stress-related diseases. The Huntington's disease (HD) is a hereditary neurologic disorder in which oxidative stress caused by free radicals is an important damage mechanism. The HD experimental model induced by quinolinic acid (QUIN) has been widely used to evaluate therapeutic effects of antioxidant compounds. The aim of this study was to test whether the fatty acid content in olive- or fish-oil-rich diet prevents against QUIN-related oxidative damage in rats. Rats were fed during 20 days with an olive- or a fish-oil-rich diet (15% w/w). Posterior to diet period, rats were striatally microinjected with QUIN (240 nmol/µl) or saline solution. Then, we evaluated the neurological damage, oxidative status, and gamma isoform of the peroxisome proliferator-activated receptor (PPARγ) expression. Results showed that fatty acid-rich diet, mainly by fish oil, reduced circling behavior, prevented the fall in GABA levels, increased PPARγ expression, and prevented oxidative damage in striatal tissue. In addition none of the enriched diets exerted changes neither on triglycerides or cholesterol blood levels, nor or hepatic function. This study suggests that olive- and fish-oil-rich diets exert neuroprotective effects.

  1. Production of Biodiesel by Esterification of Free Fatty Acid over Solid Catalyst from Biomass Waste

    Science.gov (United States)

    Mukti, N. I. F.; Sutrisno, B.; Hidayat, A.

    2018-05-01

    Recently, low cost feedstocks have been utilized to replace vegetable oils in order to improve the economic feasibility of biodiesel. The esterification of free fatty acid (FFA) on Palm Fatty Acid Distillate (PFAD) with methanol using solid catalyst generated from bagasse fly ash is a promising method to convert FFA into biodiesel. In this research, the esterification of FFA on PFAD using the sulfonated bagasse fly ash catalyst was studied. The performances of the catalysts were evaluated in terms of the reaction temperatures, the molar ratios of methanol to PFAD, and the catalyst loading. The effects of the mass ratio of catalyst to oil (1-10%), the molar ratio of methanol to oil (6:1-12:1), and the reaction temperature (40-60°C) were studied for the conversion of PFAD to optimize the reaction conditions. The results showed that the optimum conditions were methanol to PFAD molar ratio of 12:1, the amount of catalyst of 10%wt. of PFAD, and reaction temperature of 6°C. The reusability of the solid acid carbon catalysts was also studied in this work. The catalytic activity decreased up to 38% after third cycle. The significant decline in catalyst esterification activity was due to acid site leaching. The physico-characteristics and acid site densities were analyzed by Nitrogen gas adsorption, surface functional groups by Fourier transform infrared spectroscopy (FT-IR), elemental analysis using X-ray fluorescent (XRF), and acid-base back titration methods for determination of acid density.

  2. Human ketone body production and utilization studied using tracer techniques: Regulation by free fatty acids, insulin, catecholamines, and thyroid hormones

    Energy Technology Data Exchange (ETDEWEB)

    Keller, U.; Lustenberger, M.; Mueller-Brand, J.G.; Gerber, P.P.; Stauffacher, W.

    1989-05-01

    Ketone body concentrations fluctuate markedly during physiological and pathological conditions. Tracer techniques have been developed in recent years to study production, utilization, and the metabolic clearance rate of ketone bodies. This review describes data on the roles of insulin, catecholamines, and thyroid hormones in the regulation of ketone body kinetics. The data indicate that insulin lowers ketone body concentrations by three independent mechanisms: first, it inhibits lipolysis, and thus lowers free fatty acid availability for ketogenesis; second, it restrains ketone body production within the liver; third, it enhances peripheral ketone body utilization. To assess these effects in humans in vivo, experimental models were developed to study insulin effects with controlled concentrations of free fatty acids, insulin, glucagon, and ketone bodies. Presently available data also support an important role of catecholamines in increasing ketone body concentrations. Evidence was presented that norepinephrine increases ketogenesis not only by stimulating lipolysis, and thus releasing free fatty acids, but also by increasing intrahepatic ketogenesis. Thyroid hormone availability was associated with lipolysis and ketogenesis. Ketone body concentrations after an overnight fast were only modestly elevated in hyperthyroidism resulting from increased peripheral ketone body clearance. There was a significant correlation between serum triiodothyronine levels and the ketone body metabolic clearance rate. Thus, ketone body homeostasis in human subjects resulted from the interaction of hormones such as insulin, catecholamines, and thyroid hormones regulating lipolysis, intrahepatic ketogenesis, and peripheral ketone body utilization. 58 references.

  3. Human ketone body production and utilization studied using tracer techniques: Regulation by free fatty acids, insulin, catecholamines, and thyroid hormones

    International Nuclear Information System (INIS)

    Keller, U.; Lustenberger, M.; Mueller-Brand, J.G.; Gerber, P.P.; Stauffacher, W.

    1989-01-01

    Ketone body concentrations fluctuate markedly during physiological and pathological conditions. Tracer techniques have been developed in recent years to study production, utilization, and the metabolic clearance rate of ketone bodies. This review describes data on the roles of insulin, catecholamines, and thyroid hormones in the regulation of ketone body kinetics. The data indicate that insulin lowers ketone body concentrations by three independent mechanisms: first, it inhibits lipolysis, and thus lowers free fatty acid availability for ketogenesis; second, it restrains ketone body production within the liver; third, it enhances peripheral ketone body utilization. To assess these effects in humans in vivo, experimental models were developed to study insulin effects with controlled concentrations of free fatty acids, insulin, glucagon, and ketone bodies. Presently available data also support an important role of catecholamines in increasing ketone body concentrations. Evidence was presented that norepinephrine increases ketogenesis not only by stimulating lipolysis, and thus releasing free fatty acids, but also by increasing intrahepatic ketogenesis. Thyroid hormone availability was associated with lipolysis and ketogenesis. Ketone body concentrations after an overnight fast were only modestly elevated in hyperthyroidism resulting from increased peripheral ketone body clearance. There was a significant correlation between serum triiodothyronine levels and the ketone body metabolic clearance rate. Thus, ketone body homeostasis in human subjects resulted from the interaction of hormones such as insulin, catecholamines, and thyroid hormones regulating lipolysis, intrahepatic ketogenesis, and peripheral ketone body utilization. 58 references

  4. Study on the metabolism of 15 p-131iodine phenyl pentadecanoic acid [p-iodine phenyl pentadecanoic acid] as a tracer of free fatty acids in comparison to 1-14C-palmitic acid (C-palmitic acid)

    International Nuclear Information System (INIS)

    Sauer, J.W.

    1986-01-01

    In an animal experiment under identical metabolic influences the metabolism of a new radiopharmaceutical, 15 p- 131 iodine phenyl pentadecanoic acid (IPPA), was compared to the marked physiological fatty acid, 1- 14 C-palmitic acid (PA). The pharmacological kinetics of both tracers in tissues with widely varied turnover rates of fatty acids (heart, lung, liver, kidney, spleen, small intestine, skeletal muscle) was studied. By alkali extraction of the tissue lipids and then a chromatographic separation of the lipid fractions quantitatively comparable statements about the metabolism of PA and IPPA were made possible. The analyses of autoradiographs of the chromatographically separated lipids show a qualitatively congruous assimilation of both markers in the major lipid fractions. The quantitative evaluation shows minor differences as a result of a preferred assimilation of IPPA in triglycerides and of PA in phospholipids. The fractionated separation of tissue lipids which had been marked with PA and IPPA in vivo agrees very well with values which have been determined by other authors using 14 C- or 3 H-marked fatty acids. The close correlation of the tissue-specific metabolism kinetics of both markers makes it clear that both fatty acids are metabolized by similar, respectively, primarily identical metabolic pathyways. In conclusion, this study makes clear the extensive congruence of the metabolism kinetics of IPPA and the kinetics of the physiological palmitic acid. As a result of the presented results of the γ-radiating radiopharmaceutical IPPA as a free fatty acid analog new possibilities for the non-invasive external comprehension of lipid metabolism are opened up, whose use especially in the diagnostic of heart diseases promises success. (orig./MG) [de

  5. Fatty Acid Incubation of Myotubues from Humans with Type 2 Diabetes Leads to Enhanced Release of Beta Oxidation Products Due to Impaired Fatty Acid Oxidation

    DEFF Research Database (Denmark)

    Wensaas, Andreas J; Rustan, Arild C; Just, Marlene

    2008-01-01

    Objective: Increased availability of fatty acids is important for accumulation of intracellular lipids and development of insulin resistance in human myotubes. It is unknown whether different types of fatty acids like eicosapentaenoic acid (EPA) or tetradecylthioacetic acid (TTA) influence...... these processes. Research Design and Methods: We examined fatty acid and glucose metabolism, and gene expression in cultured human skeletal muscle cells from control and T2D individuals after four days preincubation with EPA or TTA. Results: T2D myotubes exhibited reduced formation of CO(2) from palmitic acid (PA....... EPA markedly enhanced TAG accumulation in myotubes, more pronounced in T2D cells. TAG accumulation and fatty acid oxidation were inversely correlated only after EPA preincubation, and total level of acyl-CoA was reduced. Glucose oxidation (CO(2) formation) was enhanced and lactate production decreased...

  6. In Silico Evidence for Gluconeogenesis from Fatty Acids in Humans

    Science.gov (United States)

    Kaleta, Christoph; de Figueiredo, Luís F.; Werner, Sarah; Guthke, Reinhard; Ristow, Michael; Schuster, Stefan

    2011-01-01

    The question whether fatty acids can be converted into glucose in humans has a long standing tradition in biochemistry, and the expected answer is “No”. Using recent advances in Systems Biology in the form of large-scale metabolic reconstructions, we reassessed this question by performing a global investigation of a genome-scale human metabolic network, which had been reconstructed on the basis of experimental results. By elementary flux pattern analysis, we found numerous pathways on which gluconeogenesis from fatty acids is feasible in humans. On these pathways, four moles of acetyl-CoA are converted into one mole of glucose and two moles of CO2. Analyzing the detected pathways in detail we found that their energetic requirements potentially limit their capacity. This study has many other biochemical implications: effect of starvation, sports physiology, practically carbohydrate-free diets of inuit, as well as survival of hibernating animals and embryos of egg-laying animals. Moreover, the energetic loss associated to the usage of gluconeogenesis from fatty acids can help explain the efficiency of carbohydrate reduced and ketogenic diets such as the Atkins diet. PMID:21814506

  7. In silico evidence for gluconeogenesis from fatty acids in humans.

    Directory of Open Access Journals (Sweden)

    Christoph Kaleta

    2011-07-01

    Full Text Available The question whether fatty acids can be converted into glucose in humans has a long standing tradition in biochemistry, and the expected answer is "No". Using recent advances in Systems Biology in the form of large-scale metabolic reconstructions, we reassessed this question by performing a global investigation of a genome-scale human metabolic network, which had been reconstructed on the basis of experimental results. By elementary flux pattern analysis, we found numerous pathways on which gluconeogenesis from fatty acids is feasible in humans. On these pathways, four moles of acetyl-CoA are converted into one mole of glucose and two moles of CO₂. Analyzing the detected pathways in detail we found that their energetic requirements potentially limit their capacity. This study has many other biochemical implications: effect of starvation, sports physiology, practically carbohydrate-free diets of inuit, as well as survival of hibernating animals and embryos of egg-laying animals. Moreover, the energetic loss associated to the usage of gluconeogenesis from fatty acids can help explain the efficiency of carbohydrate reduced and ketogenic diets such as the Atkins diet.

  8. Fatty acid composition of Swedish bakery products, with emphasis on trans-fatty acids.

    Science.gov (United States)

    Trattner, Sofia; Becker, Wulf; Wretling, Sören; Öhrvik, Veronica; Mattisson, Irene

    2015-05-15

    Trans-fatty acids (TFA) have been associated with increased risk of coronary heart disease, by affecting blood lipids and inflammation factors. Current nutrition recommendations emphasise a limitation of dietary TFA intake. The aim of this study was to investigate fatty acid composition in sweet bakery products, with emphasis on TFA, on the Swedish market and compare fatty acid composition over time. Products were sampled in 2001, 2006 and 2007 and analysed for fatty acid composition by using GC. Mean TFA levels were 0.7% in 2007 and 5.9% in 2001 of total fatty acids. In 1995-97, mean TFA level was 14.3%. In 2007, 3 of 41 products had TFA levels above 2% of total fatty acids. TFA content had decreased in this product category, while the proportion of saturated (SFA) and polyunsaturated (PUFA) fatty acids had increased, mostly through increased levels of 16:0 and 18:2 n-6, respectively. The total fat content remained largely unchanged. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Dietary fatty acids modulate associations between genetic variants and circulating fatty acids in plasma and erythrocyte membranes: meta-analysis of 9 studies in the CHARGE consortium

    Science.gov (United States)

    Smith, Caren E.; Follis, Jack L.; Nettleton, Jennifer A.; Foy, Millennia; Wu, Jason H.Y.; Ma, Yiyi; Tanaka, Toshiko; Manichakul, Ani W.; Wu, Hongyu; Chu, Audrey Y.; Steffen, Lyn M.; Fornage, Myriam; Mozaffarian, Dariush; Kabagambe, Edmond K.; Ferruci, Luigi; da Chen, Yii-Der I; Rich, Stephen S.; Djoussé, Luc; Ridker, Paul M.; Tang, Weihong; McKnight, Barbara; Tsai, Michael Y.; Bandinelli, Stefania; Rotter, Jerome I.; Hu, Frank B.; Chasman, Daniel I.; Psaty, Bruce M.; Arnett, Donna K.; King, Irena B.; Sun, Qi; Wang, Lu; Lumley, Thomas; Chiuve, Stephanie E.; Siscovick, David S; Ordovás, José M.; Lemaitre, Rozenn N.

    2015-01-01

    Scope Tissue concentrations of omega-3 fatty acids may reduce cardiovascular disease risk, and genetic variants are associated with circulating fatty acids concentrations. Whether dietary fatty acids interact with genetic variants to modify circulating omega-3 fatty acids is unclear. Objective We evaluated interactions between genetic variants and fatty acid intakes for circulating alpha-linoleic acid (ALA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and docosapentaenoic acid (DPA). Methods and Results We conducted meta-analyses (N to 11,668) evaluating interactions between dietary fatty acids and genetic variants (rs174538 and rs174548 in FADS1 (fatty acid desaturase 1), rs7435 in AGPAT3 (1-acyl-sn-glycerol-3-phosphate), rs4985167 in PDXDC1 (pyridoxal-dependent decarboxylase domain-containing 1), rs780094 in GCKR (glucokinase regulatory protein) and rs3734398 in ELOVL2 (fatty acid elongase 2)). Stratification by measurement compartment (plasma vs. erthyrocyte) revealed compartment-specific interactions between FADS1 rs174538 and rs174548 and dietary ALA and linoleic acid for DHA and DPA. Conclusion Our findings reinforce earlier reports that genetically-based differences in circulating fatty acids may be partially due to differences in the conversion of fatty acid precursors. Further, fatty acids measurement compartment may modify gene-diet relationships, and considering compartment may improve the detection of gene-fatty acids interactions for circulating fatty acid outcomes. PMID:25626431

  10. Fatty acid synthesis by spinach chloroplasts, 2. The path from PGA to fatty acids

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Mitsuhiro; Nakamura, Yasunori [Tokyo Univ. (Japan). Coll. of General Education

    1975-02-01

    By incorporation of /sup 3/H/sub 2/O into the fatty acid chain in the presence of unlabelled precursor, we showed that fatty acids are synthesized from PGA, PEP and pyruvate by intact spinach chloroplasts in the light. /sup 13/C-tracer experiments confirmed that 1-C of pyruvate is decarboxylated and 2-C is incorporated into fatty acids by the chloroplasts. The patterns of fatty acids synthesized from PGA and pyruvate were the same as that from acetate. The highest rate of fatty acid synthesis was reached at the physiological concentration of PGA (3 mM) and pyruvate (1 mM). These results indicate the operation of the following path in the chloroplasts in light: PGA..-->..PEP..-->..pyruvate..-->..acetylCoA..-->..fatty acids. Since citrate and OAA were much less active and malate and glyoxylate were inert as precursors for fatty acid synthesis, PEP or pyruvate carboxylation, citrate lyase reaction and malate synthetase reaction are not involved in the formation of acetylCoA and fatty acids. Since pyruvate was much more effective as a substrate for fatty acid synthesis than lactate, acetaldehyde or acetate, direct decarboxylation path is considered to be the primary path from pyruvate to acetylCoA. The insignificant effect of chloroplast-washing on fatty acid synthesis from PGA and pyruvate indicates that the glycolytic path from PGA to pyruvate is associated with the chloroplasts. Since pyruvate was more effectively incorporated into fatty acids than acetylCoA, it is unlikely that pyruvate decarboxylation to acetylCoA is due to mitochondria contaminating the chloroplast preparation. On the basis of measurements of /sup 3/H/sub 2/O incorporation in the light and dark, the activity of fatty acid synthesis in spincah leaves appears to be shared by the activities in chloroplasts (87%) and other organelles (13%).

  11. Cytosolic fatty acid-binding proteins: subjects and tools in metabolic research

    Energy Technology Data Exchange (ETDEWEB)

    Binas, B. [Max Delbrueck Center for Molecular Medicine, Berlin-Buch (Germany)

    1998-12-31

    Fatty acid-binding proteins (FABPs) are major targets for specific binding of fatty acids in vivo. They constitute a widely expressed family of genetically related, small cytosolic proteins which very likely mediate intracellular transport of free long chain fatty acids. Genetic inhibition of FABP expression in vivo should therefore provide a useful tool to investigate and engineer fatty acid metabolism. (orig.) [Deutsch] Fettsaeurebindungsproteine (FABPs) sind wichtige Bindungsstellen fuer Fettsaeuren in vivo; sie bilden eine breit exprimierte Familie genetisch verwandter kleiner Zytosoleiweisse, die sehr wahrscheinlich den intrazellulaeren Transport unveresterter langkettiger Fettsaeuren vermitteln. Die genetische Hemmung der FABP-Expanssion in vivo bietet sich deshalb als Werkzeug zur Erforschung und gezielten Veraenderung des Fettsaeurestoffwechsels an. (orig.)

  12. Bezafibrate in skeletal muscle fatty acid oxidation disorders

    DEFF Research Database (Denmark)

    Ørngreen, Mette Cathrine; Madsen, Karen Lindhardt; Preisler, Nicolai

    2014-01-01

    OBJECTIVE: To assess whether bezafibrate increases fatty acid oxidation (FAO) and lowers heart rate (HR) during exercise in patients with carnitine palmitoyltransferase (CPT) II and very long-chain acyl-CoA dehydrogenase (VLCAD) deficiencies. METHODS: This was a 3-month, randomized, double......, triglyceride, and free fatty acid concentrations; however, there were no changes in palmitate oxidation, FAO, or HR during exercise. CONCLUSION: Bezafibrate does not improve clinical symptoms or FAO during exercise in patients with CPT II and VLCAD deficiencies. These findings indicate that previous in vitro...

  13. Canola Oil in Lactating Dairy Cow Diets Reduces Milk Saturated Fatty Acids and Improves Its Omega-3 and Oleic Fatty Acid Content.

    Science.gov (United States)

    Welter, Katiéli Caroline; Martins, Cristian Marlon de Magalhães Rodrigues; de Palma, André Soligo Vizeu; Martins, Mellory Martinson; Dos Reis, Bárbara Roqueto; Schmidt, Bárbara Laís Unglaube; Saran Netto, Arlindo

    2016-01-01

    To produce milk that is healthier for human consumption, the present study evaluated the effect of including canola oil in the diet of dairy cows on milk production and composition as well as the nutritional quality of this milk fat. Eighteen Holstein cows with an average daily milk yield of 22 (± 4) kg/d in the middle stage of lactation were used. The cows were distributed in 6 contemporary 3x3 Latin squares consisting of 3 periods and 3 treatments: control diet (without oil), 3% inclusion of canola oil in the diet and 6% inclusion of canola oil in the diet (dry matter basis). The inclusion of 6% canola oil in the diet of lactating cows linearly reduced the milk yield by 2.51 kg/d, short-chain fatty acids (FA) by 41.42%, medium chain FA by 27.32%, saturated FA by 20.24%, saturated/unsaturated FA ratio by 39.20%, omega-6/omega-3 ratio by 39.45%, and atherogenicity index by 48.36% compared with the control treatment. Moreover, with the 6% inclusion of canola oil in the diet of cows, there was an increase in the concentration of long chain FA by 45.91%, unsaturated FA by 34.08%, monounsaturated FA by 40.37%, polyunsaturated FA by 17.88%, milk concentration of omega-3 by 115%, rumenic acid (CLA) by 16.50%, oleic acid by 44.87% and h/H milk index by 94.44% compared with the control treatment. Thus, the inclusion of canola oil in the diet of lactating dairy cows makes the milk fatty acid profile nutritionally healthier for the human diet; however, the lactating performance of dairy cows is reduce.

  14. Myocardial fatty acid utilisation during exercise induced ischemia in patients with coronary artery disease

    International Nuclear Information System (INIS)

    Virtanen, K.S.; Nikkinen, P.; Lindroth, L.; Kuikka, J.T.

    2002-01-01

    Aim: Reversible or irreversible myocardial damage due to ischemia correlates with altered membrane functions of the cells. To compare myocardial free fatty acid (FFA) metabolism and flow during exercise induced ischemia we studied ten patients with coronary artery disease but without previous myocardial infarction. Methods: A series of post-exercise single-photon emission computed tomography (SPECT) measurements was performed after injection of 123 I labelled heptadecanoic acid (HDA). Myocardial perfusion was estimated from the separately performed exercise-redistribution thallium study. Fatty acid metabolic rate, thallium uptake and washout were calculated for anterior, lateral, posterior and septal segments. Results: The more reduced post-exercise FFA metabolic rate (-63±18%, mean ±1 SD) compared to flow (-36±16%) was related to the severity of myocardial ischemia and wall motion abnormalities. Conclusion: In this small group of patients, the reduced post-exercise FFA metabolic rate tentatively suggests a parsimonious workload of the exercising myocardium by reducing oxygen consumption in patients with coronary artery disease. (orig.) [de

  15. Probing fatty acid metabolism in bacteria, cyanobacteria, green microalgae and diatoms with natural and unnatural fatty acids.

    Science.gov (United States)

    Beld, Joris; Abbriano, Raffaela; Finzel, Kara; Hildebrand, Mark; Burkart, Michael D

    2016-04-01

    In both eukaryotes and prokaryotes, fatty acid synthases are responsible for the biosynthesis of fatty acids in an iterative process, extending the fatty acid by two carbon units every cycle. Thus, odd numbered fatty acids are rarely found in nature. We tested whether representatives of diverse microbial phyla have the ability to incorporate odd-chain fatty acids as substrates for their fatty acid synthases and their downstream enzymes. We fed various odd and short chain fatty acids to the bacterium Escherichia coli, cyanobacterium Synechocystis sp. PCC 6803, green microalga Chlamydomonas reinhardtii and diatom Thalassiosira pseudonana. Major differences were observed, specifically in the ability among species to incorporate and elongate short chain fatty acids. We demonstrate that E. coli, C. reinhardtii, and T. pseudonana can produce longer fatty acid products from short chain precursors (C3 and C5), while Synechocystis sp. PCC 6803 lacks this ability. However, Synechocystis can incorporate and elongate longer chain fatty acids due to acyl-acyl carrier protein synthetase (AasS) activity, and knockout of this protein eliminates the ability to incorporate these fatty acids. In addition, expression of a characterized AasS from Vibrio harveyii confers a similar capability to E. coli. The ability to desaturate exogenously added fatty acids was only observed in Synechocystis and C. reinhardtii. We further probed fatty acid metabolism of these organisms by feeding desaturase inhibitors to test the specificity of long-chain fatty acid desaturases. In particular, supplementation with thia fatty acids can alter fatty acid profiles based on the location of the sulfur in the chain. We show that coupling sensitive gas chromatography mass spectrometry to supplementation of unnatural fatty acids can reveal major differences between fatty acid metabolism in various organisms. Often unnatural fatty acids have antibacterial or even therapeutic properties. Feeding of short

  16. Inhibition of rotavirus replication by downregulation of fatty acid synthesis.

    Science.gov (United States)

    Gaunt, Eleanor R; Cheung, Winsome; Richards, James E; Lever, Andrew; Desselberger, Ulrich

    2013-06-01

    Recently the recruitment of lipid droplets (LDs) to sites of rotavirus (RV) replication was reported. LDs are polymorphic organelles that store triacylglycerols, cholesterol and cholesterol esters. The neutral fats are derived from palmitoyl-CoA, synthesized via the fatty acid biosynthetic pathway. RV-infected cells were treated with chemical inhibitors of the fatty acid biosynthetic pathway, and the effects on viral replication kinetics were assessed. Treatment with compound C75, an inhibitor of the fatty acid synthase enzyme complex (FASN), reduced RV infectivity 3.2-fold (P = 0.07) and modestly reduced viral RNA synthesis (1.2-fold). Acting earlier in the fatty acid synthesis pathway, TOFA [5-(Tetradecyloxy)-2-furoic acid] inhibits the enzyme acetyl-CoA carboxylase 1 (ACC1). TOFA reduced the infectivity of progeny RV 31-fold and viral RNA production 6-fold. The effect of TOFA on RV infectivity and RNA replication was dose-dependent, and infectivity was reduced by administering TOFA up to 4 h post-infection. Co-treatment of RV-infected cells with C75 and TOFA synergistically reduced viral infectivity. Knockdown by siRNA of FASN and ACC1 produced findings similar to those observed by inhibiting these proteins with the chemical compounds. Inhibition of fatty acid synthesis using a range of approaches uniformly had a more marked impact on viral infectivity than on viral RNA yield, inferring a role for LDs in virus assembly and/or egress. Specific inhibitors of fatty acid metabolism may help pinpoint the critical structural and biochemical features of LDs that are essential for RV replication, and facilitate the development of antiviral therapies.

  17. Engineering Escherichia coli for Biodiesel Production Utilizing a Bacterial Fatty Acid Methyltransferase▿†

    Science.gov (United States)

    Nawabi, Parwez; Bauer, Stefan; Kyrpides, Nikos; Lykidis, Athanasios

    2011-01-01

    The production of low-cost biofuels in engineered microorganisms is of great interest due to the continual increase in the world's energy demands. Biodiesel is a renewable fuel that can potentially be produced in microbes cost-effectively. Fatty acid methyl esters (FAMEs) are a common component of biodiesel and can be synthesized from either triacylglycerol or free fatty acids (FFAs). Here we report the identification of a novel bacterial fatty acid methyltransferase (FAMT) that catalyzes the formation of FAMEs and 3-hydroxyl fatty acid methyl esters (3-OH-FAMEs) from the respective free acids and S-adenosylmethionine (AdoMet). FAMT exhibits a higher specificity toward 3-hydroxy free fatty acids (3-OH-FFAs) than FFAs, synthesizing 3-hydroxy fatty acid methyl esters (3-OH-FAMEs) in vivo. We have also identified bacterial members of the fatty acyl-acyl carrier protein (ACP) thioesterase (FAT) enzyme family with distinct acyl chain specificities. These bacterial FATs exhibit increased specificity toward 3-hydroxyacyl-ACP, generating 3-OH-FFAs, which can subsequently be utilized by FAMTs to produce 3-OH-FAMEs. PhaG (3-hydroxyacyl ACP:coenzyme A [CoA] transacylase) constitutes an alternative route to 3-OH-FFA synthesis; the coexpression of PhaG with FAMT led to the highest level of accumulation of 3-OH-FAMEs and FAMEs. The availability of AdoMet, the second substrate for FAMT, is an important factor regulating the amount of methyl esters produced by bacterial cells. Our results indicate that the deletion of the global methionine regulator metJ and the overexpression of methionine adenosyltransferase result in increased methyl ester synthesis. PMID:21926202

  18. Kefir Grains Change Fatty Acid Profile of Milk during Fermentation and Storage.

    Science.gov (United States)

    Vieira, C P; Álvares, T S; Gomes, L S; Torres, A G; Paschoalin, V M F; Conte-Junior, C A

    2015-01-01

    Several studies have reported that lactic acid bacteria may increase the production of free fatty acids by lipolysis of milk fat, though no studies have been found in the literature showing the effect of kefir grains on the composition of fatty acids in milk. In this study the influence of kefir grains from different origins [Rio de Janeiro (AR), Viçosa (AV) e Lavras (AD)], different time of storage, and different fat content on the fatty acid content of cow milk after fermentation was investigated. Fatty acid composition was determined by gas chromatography. Values were considered significantly different when p<0.05. The highest palmitic acid content, which is antimutagenic compost, was seen in AV grain (36.6g/100g fatty acids), which may have contributed to increasing the antimutagenic potential in fermented milk. Higher monounsaturated fatty acid (25.8 g/100g fatty acids) and lower saturated fatty acid (72.7 g/100g fatty acids) contents were observed in AV, when compared to other grains, due to higher Δ9-desaturase activity (0.31) that improves the nutritional quality of lipids. Higher oleic acid (25.0 g/100g fatty acids) and monounsaturated fatty acid (28.2g/100g fatty acids) and lower saturated fatty acid (67.2g/100g fatty acids) contents were found in stored kefir relatively to fermented kefir leading to possible increase of antimutagenic and anticarcinogenic potential and improvement of nutritional quality of lipids in storage milk. Only high-lipidic matrix displayed increase polyunsaturated fatty acids after fermentation. These findings open up new areas of study related to optimizing desaturase activity during fermentation in order to obtaining a fermented product with higher nutritional lipid quality.

  19. The free fractions of circulating docosahexaenoic acid and eicosapentenoic acid as optimal end-point of measure in bioavailability studies on n-3 fatty acids.

    Science.gov (United States)

    Scarsi, Claudia; Levesque, Ann; Lisi, Lucia; Navarra, Pierluigi

    2015-05-01

    The high complexity of n-3 fatty acids absorption process, along with the huge amount of endogenous fraction, makes bioavailability studies with these agents very challenging and deserving special consideration. In this paper we report the results of a bioequivalence study between a new formulation of EPA+DHA ethyl esters developed by IBSA Institut Biochimique and reference medicinal product present on the Italian market. Bioequivalence was demonstrated according to the criteria established by the EMA Guideline on the Investigation of Bioequivalence. We found that the free fractions represent a better and more sensitive end-point for bioequivalence investigations on n-3 fatty acids, since: (i) the overall and intra-subject variability of PK parameters was markedly lower compared to the same variability calculated on the total DHA and EPA fractions; (ii) the absorption process was completed within 4h, and the whole PK profile could be drawn within 12-15 h from drug administration. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Fatty Acid Signaling: The New Function of Intracellular Lipases

    Directory of Open Access Journals (Sweden)

    Zuzana Papackova

    2015-02-01

    Full Text Available Until recently, intracellular triacylglycerols (TAG stored in the form of cytoplasmic lipid droplets have been considered to be only passive “energy conserves”. Nevertheless, degradation of TAG gives rise to a pleiotropic spectrum of bioactive intermediates, which may function as potent co-factors of transcription factors or enzymes and contribute to the regulation of numerous cellular processes. From this point of view, the process of lipolysis not only provides energy-rich equivalents but also acquires a new regulatory function. In this review, we will concentrate on the role that fatty acids liberated from intracellular TAG stores play as signaling molecules. The first part provides an overview of the transcription factors, which are regulated by fatty acids derived from intracellular stores. The second part is devoted to the role of fatty acid signaling in different organs/tissues. The specific contribution of free fatty acids released by particular lipases, hormone-sensitive lipase, adipose triacylglycerol lipase and lysosomal lipase will also be discussed.

  1. Physicochemical properties and analysis of Malaysian palm fatty acid distilled

    Science.gov (United States)

    Jumaah, Majd Ahmed; Yusoff, Mohamad Firdaus Mohamad; Salimon, Jumat

    2018-04-01

    Palm fatty acid distillate (PFAD) is cheap and valuable byproduct of edible oil processing industries. This study was carried out to determine the physicochemical properties of Malaysian palm fatty acid distilled (PFAD). The physicochemical properties showed that the free fatty acid (FFA %), acid value, iodine value, saponification value, unsaponifiable matter, hydroxyl value, specific gravity at 28°C, moisture content, viscosity at 40°C and colour at 28°C values were 87.04± 0.1 %, 190.6± 1 mg/g, 53.3±0.2 mg/g, 210.37±0.8 mg/g, 1.5±0.1%, 47±0.2 mg/g, 0.87 g/ml, 0.63 %, 30 cSt and yellowish respectively. Gas chromatography (GC) was used to determine the fatty acid (FA) composition in PFAD. The fatty acids were found to be comprised mostly with 48.9 % palmitic acid (C16:0), 37.4 % oleic acid (C18:1), 9.7 % linoleic acid (C18:2), 2.7 % stearic acid (C18:0) and 1.1 % myristic acid (C14:0). The analysis of high performance liquid chromatography (HPLC) has resulted with 99.2 % of FFA, while diacylglycerol and monoacylglycerol were 0.69 and 0.062 % respectively.

  2. Immunoglobulin and fatty acids

    DEFF Research Database (Denmark)

    2009-01-01

    The present invention relates to a composition comprising 0.1-10 w/w % immunoglobulin (Ig), 4-14 w/w % saturated fatty acids, 4-14 w/w % mono-unsaturated fatty acids and 0-5 w/w % poly-unsaturated fatty acids, wherein the weight percentages are based on the content of dry matter in the composition...

  3. Free fatty acids and their metabolism affect function and survival of podocytes

    Directory of Open Access Journals (Sweden)

    Jonas eSieber

    2014-10-01

    Full Text Available Podocyte injury and loss critically contribute to the pathogenesis of proteinuric kidney diseases including diabetic nephropathy. Deregulated lipid metabolism with disturbed free fatty acid (FFA metabolism is a characteristic of metabolically unhealthy obesity and type 2 diabetes and likely contributes to end-stage kidney disease irrespective of the underlying kidney disease. In the current review we summarize recent findings related to FFAs and altered renal FFA metabolism with a special focus on podocytes. We will outline the opposing effects of saturated and monounsaturated FFAs and a particular emphasis will be given to the underlying molecular mechanisms involving insulin resistance and endoplasmic reticulum homeostasis. Finally, recent data suggesting a critical role of renal FFA metabolism to adapt to an altered lipid environment will be discussed.

  4. Polyphenol fraction of extra virgin olive oil protects against endothelial dysfunction induced by high glucose and free fatty acids through modulation of nitric oxide and endothelin-1

    Directory of Open Access Journals (Sweden)

    Carolina Emilia Storniolo

    2014-01-01

    Full Text Available Epidemiological and clinical studies have reported that olive oil reduces the incidence of cardiovascular disease. However, the mechanisms involved in this beneficial effect have not been delineated. The endothelium plays an important role in blood pressure regulation through the release of potent vasodilator and vasoconstrictor agents such as nitric oxide (NO and endothelin-1 (ET-1, respectively, events that are disrupted in type 2 diabetes. Extra virgin olive oil contains polyphenols, compounds that exert a biological action on endothelial function. This study analyzes the effects of olive oil polyphenols on endothelial dysfunction using an in vitro model that simulates the conditions of type 2 diabetes. Our findings show that high glucose and linoleic and oleic acids decrease endothelial NO synthase phosphorylation, and consequently intracellular NO levels, and increase ET-1 synthesis by ECV304 cells. These effects may be related to the stimulation of reactive oxygen species production in these experimental conditions. Hydroxytyrosol and the polyphenol extract from extra virgin olive oil partially reversed the above events. Moreover, we observed that high glucose and free fatty acids reduced NO and increased ET-1 levels induced by acetylcholine through the modulation of intracellular calcium concentrations and endothelial NO synthase phosphorylation, events also reverted by hydroxytyrosol and polyphenol extract. Thus, our results suggest a protective effect of olive oil polyphenols on endothelial dysfunction induced by hyperglycemia and free fatty acids.

  5. Relationship between body fat mass and free fatty acid kinetics in men and women

    Science.gov (United States)

    Mittendorfer, Bettina; Magkos, Faidon; Fabbrini, Elisa; Mohammed, B. Selma; Klein, Samuel

    2012-01-01

    An increased release of free fatty acids (FFA) into plasma likely contributes to the metabolic complications associated with obesity. However, the relationship between body fat and FFA metabolism is unclear because of conflicting results from different studies. The goal of our study was to determine the interrelationships between body fat, sex and plasma FFA kinetics. We determined FFA rate of appearance (Ra) in plasma, by using stable isotopically labeled tracer techniques, during basal conditions in 106 lean, overweight, and obese, non-diabetic subjects (43 men and 63 women who had 7.0–56.0 % body fat). Correlation analyses demonstrated: 1) no differences between men and women in the relationship between fat mass and total FFA Ra (µmol·min−1); 2) total FFA Ra increased linearly with increasing FM (r=0.652, Pfashion with increasing FM (r=−0.806; P<0.001); 4) FFA Ra in relationship to fat-free mass was greater in obese than lean subjects and greater in women than in men; 5) abdominal fat itself was not an important determinant of total FFA Ra. We conclude that total body fat, not regional fat distribution or sex, is an important modulator of the rate of FFA release into plasma. Although increased adiposity is associated with a decrease in fatty acid release in relationship to FM, this downregulation is unable to completely compensate for the increase in FM, so total FFA Ra and FFA Ra with respect to FFM are greater in women than in men and in obese than in lean subjects. PMID:19629053

  6. Proteomic evaluation of free fatty acid biosynthesis in Jatropha ...

    African Journals Online (AJOL)

    WincoolV5

    2013-05-22

    May 22, 2013 ... was analyzed at each stage using gas chromatography after conversion to methyl esters. Fatty acid levels .... Total protein extraction .... Total RNA isolation and cDNA synthesis. Total RNA was ..... In this work, the SDS-PAGE-LC-MS based ... thesis in animals, bacteria and plants (Jackowski et al.,. 1991 ...

  7. Aspirin increases mitochondrial fatty acid oxidation

    International Nuclear Information System (INIS)

    Uppala, Radha; Dudiak, Brianne; Beck, Megan E.; Bharathi, Sivakama S.; Zhang, Yuxun; Stolz, Donna B.; Goetzman, Eric S.

    2017-01-01

    The metabolic effects of salicylates are poorly understood. This study investigated the effects of aspirin on fatty acid oxidation. Aspirin increased mitochondrial long-chain fatty acid oxidation, but inhibited peroxisomal fatty acid oxidation, in two different cell lines. Aspirin increased mitochondrial protein acetylation and was found to be a stronger acetylating agent in vitro than acetyl-CoA. However, aspirin-induced acetylation did not alter the activity of fatty acid oxidation proteins, and knocking out the mitochondrial deacetylase SIRT3 did not affect the induction of long-chain fatty acid oxidation by aspirin. Aspirin did not change oxidation of medium-chain fatty acids, which can freely traverse the mitochondrial membrane. Together, these data indicate that aspirin does not directly alter mitochondrial matrix fatty acid oxidation enzymes, but most likely exerts its effects at the level of long-chain fatty acid transport into mitochondria. The drive on mitochondrial fatty acid oxidation may be a compensatory response to altered mitochondrial morphology and inhibited electron transport chain function, both of which were observed after 24 h incubation of cells with aspirin. These studies provide insight into the pathophysiology of Reye Syndrome, which is known to be triggered by aspirin ingestion in patients with fatty acid oxidation disorders. - Highlights: • Aspirin increases mitochondrial—but inhibits peroxisomal—fatty acid oxidation. • Aspirin acetylates mitochondrial proteins including fatty acid oxidation enzymes. • SIRT3 does not influence the effect of aspirin on fatty acid oxidation. • Increased fatty acid oxidation is likely due to altered mitochondrial morphology and respiration.

  8. Fatty acid-producing hosts

    Science.gov (United States)

    Pfleger, Brian F; Lennen, Rebecca M

    2013-12-31

    Described are hosts for overproducing a fatty acid product such as a fatty acid. The hosts include an exogenous nucleic acid encoding a thioesterase and, optionally, an exogenous nucleic acid encoding an acetyl-CoA carboxylase, wherein an acyl-CoA synthetase in the hosts are functionally delected. The hosts prefereably include the nucleic acid encoding the thioesterase at an intermediate copy number. The hosts are preferably recominantly stable and growth-competent at 37.degree. C. Methods of producing a fatty acid product comprising culturing such hosts at 37.degree. C. are also described.

  9. Inhibition of telomerase by linear-chain fatty acids: a structural analysis.

    Science.gov (United States)

    Oda, Masako; Ueno, Takamasa; Kasai, Nobuyuki; Takahashi, Hirotada; Yoshida, Hiromi; Sugawara, Fumio; Sakaguchi, Kengo; Hayashi, Hideya; Mizushina, Yoshiyuki

    2002-01-01

    In the present study, we have found that mono-unsaturated linear-chain fatty acids in the cis configuration with C(18) hydrocarbon chains (i.e. oleic acid) strongly inhibited the activity of human telomerase in a cell-free enzymic assay, with an IC(50) value of 8.6 microM. Interestingly, fatty acids with hydrocarbon chain lengths below 16 or above 20 carbons substantially decreased the potency of inhibition of telomerase. Moreover, the cis-mono-unsaturated C(18) linear-chain fatty acid oleic acid was the strongest inhibitor of all the fatty acids tested. A kinetic study revealed that oleic acid competitively inhibited the activity of telomerase ( K (i)=3.06 microM) with respect to the telomerase substrate primer. The energy-minimized three-dimensional structure of the linear-chain fatty acid was calculated and modelled. A molecule width of 11.53-14.26 A (where 1 A=0.1 nm) in the C(16) to C(20) fatty acid structure was suggested to be important for telomerase inhibition. The three-dimensional structure of the telomerase active site (i.e. the substrate primer-binding site) appears to have a pocket that could bind oleic acid, with the pocket being 8.50 A long and 12.80 A wide. PMID:12121150

  10. Fatty acids are required for epidermal permeability barrier function.

    Science.gov (United States)

    Mao-Qiang, M; Elias, P M; Feingold, K R

    1993-08-01

    The permeability barrier is mediated by a mixture of ceramides, sterols, and free fatty acids arranged as extracellular lamellar bilayers in the stratum corneum. Whereas prior studies have shown that cholesterol and ceramides are required for normal barrier function, definitive evidence for the importance of nonessential fatty acids is not available. To determine whether epidermal fatty acid synthesis also is required for barrier homeostasis, we applied 5-(tetradecyloxy)-2-furancarboxylic acid (TOFA), an inhibitor of acetyl CoA carboxylase, after disruption of the barrier by acetone or tape stripping. TOFA inhibits epidermal fatty acid by approximately 50% and significantly delays barrier recovery. Moreover, coadministration of palmitate with TOFA normalizes barrier recovery, indicating that the delay is due to a deficiency in bulk fatty acids. Furthermore, TOFA treatment also delays the return of lipids to the stratum corneum and results in abnormalities in the structure of lamellar bodies, the organelle which delivers lipid to the stratum corneum. In addition, the organization of secreted lamellar body material into lamellar bilayers within the stratum corneum interstices is disrupted by TOFA treatment. Finally, these abnormalities in lamellar body and stratum corneum membrane structure are corrected by coapplication of palmitate with TOFA. These results demonstrate a requirement for bulk fatty acids in barrier homeostasis. Thus, inhibiting the epidermal synthesis of any of the three key lipids that form the extracellular, lipid-enriched membranes of the stratum corneum results in an impairment in barrier homeostasis.

  11. Short-chain free fatty acid receptors FFA2/GPR43 and FFA3/GPR41 as new potential therapeutic targets.

    Science.gov (United States)

    Ulven, Trond

    2012-01-01

    The deorphanization of the free fatty acid (FFA) receptors FFA1 (GPR40), FFA2 (GPR43), FFA3 (GPR41), GPR84, and GPR120 has made clear that the body is capable of recognizing and responding directly to nonesterified fatty acid of virtually any chain length. Colonic fermentation of dietary fiber produces high concentrations of the short-chain fatty acids (SCFAs) acetate, propionate and butyrate, a process which is important to health. The phylogenetically related 7-transmembrane (7TM) receptors free fatty acid receptor 2 (FFA2) and FFA3 are activated by these SCFAs, and several lines of evidence indicate that FFA2 and FFA3 mediate beneficial effects associated with a fiber-rich diet, and that they may be of interest as targets for treatment of inflammatory and metabolic diseases. FFA2 is highly expressed on immune cells, in particular neutrophils, and several studies suggest that the receptor plays a role in diseases involving a dysfunctional neutrophil response, such as inflammatory bowel disease (IBD). Both FFA2 and FFA3 have been implicated in metabolic diseases such as type 2 diabetes and in regulation of appetite. More research is however required to clarify the potential of the receptors as drug targets and establish if activation or inhibition would be the preferred mode of action. The availability of potent and selective receptor modulators is a prerequisite for these studies. The few modulators of FFA2 or FFA3 that have been published hitherto in the peer-reviewed literature in general have properties that make them less than ideal as such tools, but published patent applications indicate that better tool compounds might soon become available which should enable studies critical to validate the receptors as new drug targets.

  12. Short-chain free fatty acid receptors FFA2/GPR43 and FFA3/GPR41 as new potential therapeutic targets

    Directory of Open Access Journals (Sweden)

    Trond eUlven

    2012-10-01

    Full Text Available The deorphanization of the free fatty acid (FFA receptors FFA1 (GPR40, FFA2 (GPR43, FFA3 (GPR41, GPR84 and GPR120 made clear that the body is capable of recognizing and responding directly to nonesterified fatty acid of virtually any chain length. Colonic fermentation of dietary fiber produces high concentrations of the short-chain fatty acids (SCFAs acetate, propionate and butyrate, a process which is important to health. The phylogenetically related 7-transmembrane receptors free fatty acid receptor 2 (FFA2 and FFA3 are activated by these SCFAs, and several lines of evidence indicate that FFA2 and FFA3 mediate beneficial effects associated with a fiber-rich diet, and that they may be of interest as targets for treatment of inflammatory and metabolic diseases. FFA2 is highly expressed on immune cells, in particular neutrophils, and several studies suggest that the receptor plays a role in diseases involving a dysfunctional neutrophil response, such as inflammatory bowel disease (IBD. Both FFA2 and FFA3 have been implicated in metabolic diseases such as type 2 diabetes and regulation of appetite. More research is however required to clarify potential of the receptors as drug targets and establish if activation or inhibition would be the preferred mode of action. The availability of potent and selective receptor modulators is a prerequisite for these studies. The few modulators of FFA2 or FFA3 that have been published hitherto in the peer-reviewed literature in general have properties that make them less than ideal as such tools, but published patent applications indicate that the situation may soon improve, and that proper tool compounds will enable studies critical to validate the receptors as new drug targets.

  13. Chronic treatment with pioglitazone does not protect obese patients with diabetes mellitus type II from free fatty acid-induced insulin resistance

    NARCIS (Netherlands)

    Serlie, Mireille J.; Allick, Gideon; Groener, Johanna E.; Ackermans, Mariette T.; Heijligenberg, Rik; Voermans, Barbara C.; Aerts, Johannes M.; Meijer, Alfred J.; Sauerwein, Hans P.

    2007-01-01

    CONTEXT: Thiazolidinediones increase peripheral insulin sensitivity and decrease plasma free fatty acids (FFA). However, their exact mechanism of action has not been fully elucidated. OBJECTIVE: We studied the protective effect of pioglitazone on FFA-induced insulin resistance and the effects on

  14. Medium-chain fatty acids undergo elongation before β-oxidation in fibroblasts

    International Nuclear Information System (INIS)

    Jones, Patricia M.; Butt, Yasmeen; Messmer, Bette; Boriak, Richard; Bennett, Michael J.

    2006-01-01

    Although mitochondrial fatty acid β-oxidation (FAO) is considered to be well understood, further elucidation of the pathway continues through evaluation of patients with FAO defects. The FAO pathway can be examined by measuring the 3-hydroxy-fatty acid (3-OHFA) intermediates. We present a unique finding in the study of this pathway: the addition of medium-chain fatty acids to the culture media of fibroblasts results in generation of 3-OHFAs which are two carbons longer than the precursor substrate. Cultured skin fibroblasts from normal and LCHAD-deficient individuals were grown in media supplemented with various chain-length fatty acids. The cell-free medium was analyzed for 3-OHFAs by stable-isotope dilution gas-chromatography/mass-spectrometry. Our finding suggests that a novel carbon chain-length elongation process precedes the oxidation of medium-chain fatty acids. This previously undescribed metabolic step may have important implications for the metabolism of medium-chain triglycerides, components in the dietary treatment of a number of disorders

  15. Characterization and analysis of the cotton cyclopropane fatty acid synthase family and their contribution to cyclopropane fatty acid synthesis

    Directory of Open Access Journals (Sweden)

    Rawat Richa

    2011-05-01

    Full Text Available Abstract Background Cyclopropane fatty acids (CPA have been found in certain gymnosperms, Malvales, Litchi and other Sapindales. The presence of their unique strained ring structures confers physical and chemical properties characteristic of unsaturated fatty acids with the oxidative stability displayed by saturated fatty acids making them of considerable industrial interest. While cyclopropenoid fatty acids (CPE are well-known inhibitors of fatty acid desaturation in animals, CPE can also inhibit the stearoyl-CoA desaturase and interfere with the maturation and reproduction of some insect species suggesting that in addition to their traditional role as storage lipids, CPE can contribute to the protection of plants from herbivory. Results Three genes encoding cyclopropane synthase homologues GhCPS1, GhCPS2 and GhCPS3 were identified in cotton. Determination of gene transcript abundance revealed differences among the expression of GhCPS1, 2 and 3 showing high, intermediate and low levels, respectively, of transcripts in roots and stems; whereas GhCPS1 and 2 are both expressed at low levels in seeds. Analyses of fatty acid composition in different tissues indicate that the expression patterns of GhCPS1 and 2 correlate with cyclic fatty acid (CFA distribution. Deletion of the N-terminal oxidase domain lowered GhCPS's ability to produce cyclopropane fatty acid by approximately 70%. GhCPS1 and 2, but not 3 resulted in the production of cyclopropane fatty acids upon heterologous expression in yeast, tobacco BY2 cell and Arabidopsis seed. Conclusions In cotton GhCPS1 and 2 gene expression correlates with the total CFA content in roots, stems and seeds. That GhCPS1 and 2 are expressed at a similar level in seed suggests both of them can be considered potential targets for gene silencing to reduce undesirable seed CPE accumulation. Because GhCPS1 is more active in yeast than the published Sterculia CPS and shows similar activity when expressed in model

  16. MERCURY-CONTAMINATED FISH AND ESSENTIAL FATTY ACIDS: PROBLEMS AND SOLUTIONS

    Directory of Open Access Journals (Sweden)

    Cropotova Janna

    2012-06-01

    Full Text Available Fish consumption is an important part of human diet due to essential omega-3 fatty acids found naturally in this product. Many researchers from all over the world found that high mercury concentrations in the body reduced the heart-protective effects of the fatty acids in fish oils. People shouldn't be constrained by choosing between the health hazards related to toxins caused by industrial pollution and the nutritional benefits provided by consummation of essential fatty acids contained in oily fish. It is very important to find an alternative natural source of essential omega-3 fatty acids EPA and DHA to restore an optimal ratio between omega-6 and omega-3 fatty acids in the human diet.

  17. Halogenated fatty acids

    DEFF Research Database (Denmark)

    Mu, Huiling; Wesén, Clas; Sundin, Peter

    1997-01-01

    Chlorinated fatty acids have been found to be major contributors to organohalogen compounds in fish, bivalves, jellyfish, and lobster, and they have been indicated to contribute considerably to organohalogens in marine mammals. Brominated fatty acids have been found in marine sponges. Also...

  18. Fatty acid intake in relation to reproductive hormones and testicular volume among young healthy men

    Institute of Scientific and Technical Information of China (English)

    Lidia Mínguez-Alarcón; Jorge E Chavarro; Jaime Mendiola; Manuela Roca; Cigdem Tanrikut; Jesús Vioque; Niels Jørgensen; Alberto M Torres-Cantero

    2017-01-01

    Emerging evidence suggests that dietary fats may inlfuence testicular function. However, most of the published literature on this ifeld has used semen quality parameters as the only proxy for testicular function. We examined the association of fat intake with circulating reproductive hormone levels and testicular volume among healthy young Spanish men. This is a cross‑sectional study among 209 healthy male volunteers conducted between October 2010 and November 2011 in Murcia Region of Spain. Participants completed questionnaires on lifestyle, diet, and smoking, and each underwent a physical examination, and provided a blood sample. Linear regression was used to examine the association between each fatty acid type and reproductive hormone levels and testicular volumes. Monounsaturated fatty acids intake was inversely associated with serum blood levels of calculated free testosterone, total testosterone, and inhibin B. A positive association was observed between the intake of polyunsaturated fatty acids, particularly of omega‑6 polyunsaturated fatty acids, and luteinizing hormone concentrations. In addition, the intake of trans fatty acids was associated with lower total testosterone and calculated free testosterone concentrations (Ptrend=0.01 and 0.02, respectively). The intake of omega‑3 polyunsaturated fatty acids was positively related to testicular volume while the intake of omega‑6 polyunsaturated fatty acids and trans fatty acids was inversely related to testicular volume. These data suggest that fat intake, and particularly intake of omega 3, omega 6, and trans fatty acids, may inlfuence testicular function.

  19. Fatty acid intake in relation to reproductive hormones and testicular volume among young healthy men

    Directory of Open Access Journals (Sweden)

    Lidia Mínguez-Alarcón

    2017-01-01

    Full Text Available Emerging evidence suggests that dietary fats may influence testicular function. However, most of the published literature on this field has used semen quality parameters as the only proxy for testicular function. We examined the association of fat intake with circulating reproductive hormone levels and testicular volume among healthy young Spanish men. This is a cross-sectional study among 209 healthy male volunteers conducted between October 2010 and November 2011 in Murcia Region of Spain. Participants completed questionnaires on lifestyle, diet, and smoking, and each underwent a physical examination, and provided a blood sample. Linear regression was used to examine the association between each fatty acid type and reproductive hormone levels and testicular volumes. Monounsaturated fatty acids intake was inversely associated with serum blood levels of calculated free testosterone, total testosterone, and inhibin B. A positive association was observed between the intake of polyunsaturated fatty acids, particularly of omega-6 polyunsaturated fatty acids, and luteinizing hormone concentrations. In addition, the intake of trans fatty acids was associated with lower total testosterone and calculated free testosterone concentrations (P trend = 0.01 and 0.02, respectively. The intake of omega-3 polyunsaturated fatty acids was positively related to testicular volume while the intake of omega-6 polyunsaturated fatty acids and trans fatty acids was inversely related to testicular volume. These data suggest that fat intake, and particularly intake of omega 3, omega 6, and trans fatty acids, may influence testicular function.

  20. Antiarrhythmic effects of n-3 fatty acids: evidence from human studies

    NARCIS (Netherlands)

    Geelen, A.; Brouwer, I.A.; Zock, P.L.; Katan, M.B.

    2004-01-01

    Purpose of review N-3 fatty acids from fish reduce cardiovascular mortality including sudden cardiac death. In this paper, the authors discuss the results of human studies with regard to the hypothesis that n-3 fatty acids reduce the risk of fatal coronary heart disease through antiarrhythmic

  1. Fatty acid composition of meat of Sarda suckling lamb

    OpenAIRE

    Manca, Maria Grazia

    2011-01-01

    The fatty acid composition of dietary fat has an important role in human nutrition because can help to reduce the risk of appearance of some diseases. In this work fatty acid profile of meat of Sarda suckling lamb was studied in order to improve meat fat quality in relation to human health. Aim of this thesis was firstly to assess the effect of different management systems, indoor vs. outdoor, on fatty acid profile of meat of Sarda suckling lamb. Lambs which followed their mother on pasture h...

  2. Alcohol consumption and synthesis of ethyl esters of fatty acids in adipose tissue

    NARCIS (Netherlands)

    Björntorp, P; Depergola, G; Sjöberg, C; Pettersson-Kymmer, U.; Hallgren, P; Boström, K; Helander, K G; Seidell, J

    1990-01-01

    Ethyl esters of fatty acids (EEFA) have been found to be formed during ethanol metabolism. Human adipose tissue contains high concentrations of free fatty acids, the substrate for EEFA synthesis, and might therefore be a tissue with great potential for EEFA formation. In order to explore their

  3. Origin of fatty acids

    International Nuclear Information System (INIS)

    Prieur, B.E.

    1995-01-01

    The appearance of fatty acids and membranes is one of the most important events of the prebiotic world because genesis of life required the compartmentalization of molecules. Membranes allowed cells to become enriched with molecules relevant for their evolution and gave rise to gradients convertible into energy. By virtue of their hydrophobic/hydrophilic interface, membranes developed certain enzymatic activities impossible in the aqueous phase. A prebiotic cell is an energy unit but it is also an information unit. It has a past, a present and a future. The biochemistry of fatty acids involves acetylCoA, malonylCoA and an enzyme, acyl synthetase, which joins both molecules. After substitution of the acetyl group in place of the carboxyl group of malonyl derivatives, the chain is reduced and dehydrated to crotonyl derivatives. These molecules can again react with malonylCoA to form unsaturated chain; they can also undergo a new reduction step to form butyryl derivatives which can react with malonylCoA to form a longer aliphatic chain. The formation of malonylCoA consumes ATP. The reduction step needs NADPH and proton. Dehydration requires structural information because the reduction product is chiral (D configuration). It is unlikely that these steps were possible in a prebiotic environment. Thus we have to understand how fatty acids could appear in the prebiotic era. This hypothesis about the origin of fatty acids is based on the chemistry of sulfonium ylides and sulfonium salts. The most well-known among these molecules are S-melthyl-methionine and S-adenosyl methionine. The simplest sulfonium cation is the trimethylsulfonium cation. Chemists have evidence that these products can produce olefin when they are heated or flashed with UV light in some conditions. I suggest that these volatile products can allow the formation of fatty acids chains in atmospheric phase with UV and temperature using methanol as starting material. Different synthetic pathways will be

  4. Reduced triacylglycerol mobilization during seed germination and early seedling growth in Arabidopsis containing nutritionally important polyunsaturated fatty acids

    Directory of Open Access Journals (Sweden)

    Pushkar Shrestha

    2016-09-01

    Full Text Available There are now several examples of plant species engineered to synthesise and accumulate nutritionally important polyunsaturated fatty acids in their seed triacylglycerols (TAG. The utilization of such TAG in germinating seeds of such transgenic plants was unknown. In this study, we examined the TAG utilization efficiency during seed germination in transgenic Arabidopsis seeds containing several examples of these fatty acids. Seed TAG species with native fatty acids had higher utilization rate than the TAG species containing transgenically produced polyunsaturated fatty acids. Conversely, quantification of the fatty acid components remaining in the total TAG after early stages of seed germination revealed that the undigested TAGs tended to contain an elevated level of the engineered polyunsaturated fatty acids (PUFA. LC-MS analysis further revealed asymmetrical mobilization rates for the individual TAG species. TAGs which contained multiple PUFA fatty acids were mobilized slower than the species containing single PUFA. The mobilised engineered fatty acids were used in de novo membrane lipid synthesis during seedling development.

  5. Quantitative analysis of fatty-acid-based biofuels produced by wild-type and genetically engineered cyanobacteria by gas chromatography-mass spectrometry.

    Science.gov (United States)

    Guan, Wenna; Zhao, Hui; Lu, Xuefeng; Wang, Cong; Yang, Menglong; Bai, Fali

    2011-11-11

    Simple and rapid quantitative determination of fatty-acid-based biofuels is greatly important for the study of genetic engineering progress for biofuels production by microalgae. Ideal biofuels produced from biological systems should be chemically similar to petroleum, like fatty-acid-based molecules including free fatty acids, fatty acid methyl esters, fatty acid ethyl esters, fatty alcohols and fatty alkanes. This study founded a gas chromatography-mass spectrometry (GC-MS) method for simultaneous quantification of seven free fatty acids, nine fatty acid methyl esters, five fatty acid ethyl esters, five fatty alcohols and three fatty alkanes produced by wild-type Synechocystis PCC 6803 and its genetically engineered strain. Data obtained from GC-MS analyses were quantified using internal standard peak area comparisons. The linearity, limit of detection (LOD) and precision (RSD) of the method were evaluated. The results demonstrated that fatty-acid-based biofuels can be directly determined by GC-MS without derivation. Therefore, rapid and reliable quantitative analysis of fatty-acid-based biofuels produced by wild-type and genetically engineered cyanobacteria can be achieved using the GC-MS method founded in this work. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Pomegranate seed oil influences the fatty acids profile and reduces the activity of desaturases in livers of Sprague-Dawley rats.

    Science.gov (United States)

    Białek, Agnieszka; Stawarska, Agnieszka; Bodecka, Joanna; Białek, Małgorzata; Tokarz, Andrzej

    2017-07-01

    The aim of our study was to compare the influence of diet supplementation with pomegranate seed oil - as conjugated linolenic acids (CLnA) source, or conjugated linoleic acids (CLA) and to examine the mechanism of their activity. The content of fatty acids, levels of biomarkers of lipids' oxidation and the activity of key enzymes catalyzing lipids metabolism were measured. Obtained results revealed that conjugated fatty acids significantly decrease the activity of Δ5-desaturase (p=0.0001) and Δ6-desaturase (p=0.0008) and pomegranate seed oil reduces their activity in the most potent way. We confirmed that diet supplementation with pomegranate seed oil - a rich source of punicic acid leads to the increase of cis-9, trans-11 CLA content in livers (p=0.0003). Lack of side effects and beneficial influence on desaturases activity and fatty acids profile claim pomegranate seed oil to become interesting alternative for CLA as functional food. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Recent progress in synthesis and surface functionalization of mesoporous acidic heterogeneous catalysts for esterification of free fatty acid feedstocks: A review

    International Nuclear Information System (INIS)

    Soltani, Soroush; Rashid, Umer; Al-Resayes, Saud Ibrahim; Nehdi, Imededdine Arbi

    2017-01-01

    Highlights: • Mesoporous catalysts have potential to esterify the wastes feedstocks. • Surface area of mesoporous catalysts depends on materials synthesis methods. • Hydrophobic surface of sulfonated catalyst causes adsorption on FFA particles. • Mesoporous catalysts have large active sites to trap free fatty acids particles. • Recyclability of mesoporous catalyst is a key feature for biodiesel production. - Abstract: Biodiesel is considered as a sulfur free, non-toxic and biodegradable source of energy and its burning provide less pollution than petroleum based fuels. In case of using fried waste oils, animal’s fats and waste cultivated oil which contain high free fatty acid (FFA), esterification is taking place. Through esterification reaction, catalyst is an integral part which accelerates the FFA conversion to the methyl ester (ME) in shorter reaction time. Although, most of the current catalysts have some defect such as poor recyclability, less surface area and poor porosity. Mesoporous materials have been recently attracted remarkable interests because of its desirable properties, such as large and harmonized surface area, tuneable mesoporous channels with flexible pore size, excellent thermal stability, and post-functionalization surface characteristics. The combination of remarkable physico-chemical and textural properties as well as high activity has proposed them as advanced materials. In this review, it has been attempted to present the details of fundamental properties of mesoporous catalysts, various synthetic methods and formation mechanisms, and surface functionalization methodologies. The effects of various factors (such as surface area, porosity, acidity, post-calcination temperature, and reaction parameters) on esterification of different feedstocks are discussed in detail. Furthermore, the kinetic study of esterification reaction in the presence of mesoporous catalysts is also elaborated. At the end, remarkable challenges and outlooks

  8. Utilizing ultrasonic energy for reduction of free fatty acids in crude ...

    African Journals Online (AJOL)

    Ultrasonic energy was used for the reduction of FFA in CPO. FFA content was measured at different sonication intervals, and the optimum time was determined. Hydrochloric acid showed the highest catalytic activity in the reduction of FFA content in CPO, as well as in converting FFA to fatty acid methyl ester (FAME).

  9. Dietary omega-6 fatty acid lowering increases bioavailability of omega-3 polyunsaturated fatty acids in human plasma lipid pools

    Science.gov (United States)

    Taha, Ameer Y.; Cheon, Yewon; Faurot, Keturah F.; MacIntosh, Beth; Majchrzak-Hong, Sharon F.; Mann, J. Douglas; Hibbeln, Joseph R.; Ringel, Amit; Ramsden, Christopher E.

    2014-01-01

    Background Dietary linoleic acid (LA, 18:2n-6) lowering in rats reduces n-6 polyunsaturated fatty acid (PUFA) plasma concentrations and increases n-3 PUFA (eicosapentaenoic (EPA) and docosahexaenoic acid (DHA)) concentrations. Objective To evaluate the extent to which 12 weeks of dietary n-6 PUFA lowering, with or without increased dietary n-3 PUFAs, change unesterified and esterified plasma n-6 and n-3 PUFA concentrations in subjects with chronic headache. Design Secondary analysis of a randomized trial. Subjects with chronic headache were randomized for 12 weeks to: (1) average n-3, low n-6 (L6) diet; or (2) high n-3, low n-6 LA (H3-L6) diet. Esterified and unesterified plasma fatty acids were quantified at baseline (0 weeks) and after 12 weeks on a diet. Results Compared to baseline, the L6 diet reduced esterified plasma LA and increased esterified n-3 PUFA concentrations (nmol/ml), but did not significantly change plasma arachidonic acid (AA, 20:4n-6) concentration. In addition, unesterified EPA concentration was increased significantly among unesterified fatty acids. The H3-L6 diet decreased esterified LA and AA concentrations, and produced more marked increases in esterified and unesterified n-3 PUFA concentrations. Conclusion Dietary n-6 PUFA lowering for 12 weeks significantly reduces LA and increases n-3 PUFA concentrations in plasma, without altering plasma AA concentration. A concurrent increase in dietary n-3 PUFA for 12 weeks further increases n-3 PUFA plasma concentrations, but also reduces AA. PMID:24675168

  10. Dietary omega-6 fatty acid lowering increases bioavailability of omega-3 polyunsaturated fatty acids in human plasma lipid pools.

    Science.gov (United States)

    Taha, Ameer Y; Cheon, Yewon; Faurot, Keturah F; Macintosh, Beth; Majchrzak-Hong, Sharon F; Mann, J Douglas; Hibbeln, Joseph R; Ringel, Amit; Ramsden, Christopher E

    2014-05-01

    Dietary linoleic acid (LA, 18:2n-6) lowering in rats reduces n-6 polyunsaturated fatty acid (PUFA) plasma concentrations and increases n-3 PUFA (eicosapentaenoic (EPA) and docosahexaenoic acid (DHA)) concentrations. To evaluate the extent to which 12 weeks of dietary n-6 PUFA lowering, with or without increased dietary n-3 PUFAs, alters unesterified and esterified plasma n-6 and n-3 PUFA concentrations in subjects with chronic headache. Secondary analysis of a randomized trial. Subjects with chronic headache were randomized for 12 weeks to (1) average n-3, low n-6 (L6) diet; or (2) high n-3, low n-6 LA (H3-L6) diet. Esterified and unesterified plasma fatty acids were quantified at baseline (0 weeks) and after 12 weeks on a diet. Compared to baseline, the L6 diet reduced esterified plasma LA and increased esterified n-3 PUFA concentrations (nmol/ml), but did not significantly change plasma arachidonic acid (AA, 20:4n-6) concentration. In addition, unesterified EPA concentration was increased significantly among unesterified fatty acids. The H3-L6 diet decreased esterified LA and AA concentrations, and produced more marked increases in esterified and unesterified n-3 PUFA concentrations. Dietary n-6 PUFA lowering for 12 weeks significantly reduces LA and increases n-3 PUFA concentrations in plasma, without altering plasma AA concentration. A concurrent increase in dietary n-3 PUFAs for 12 weeks further increases n-3 PUFA plasma concentrations and reduces AA. Published by Elsevier Ltd.

  11. Ultrasonic-assisted incorporation of nano-encapsulated omega-3 fatty acids to enhance the fatty acid profile of pork meat.

    Science.gov (United States)

    Ojha, K Shikha; Perussello, Camila A; García, Carlos Álvarez; Kerry, Joseph P; Pando, Daniel; Tiwari, Brijesh K

    2017-10-01

    In this study, ultrasound was employed to enhance the diffusion of microencapsulated fatty acids into pork meat. Nanovesicles of fish oil composed of 42% EPA (eicosapentanoic acid) and 16% DHA (docosahexanoic acid) were prepared using two different commercial Pronanosome preparations (Lipo-N and Lipo-CAT; which yield cationic and non-cationic nanovesicles, respectively). The thin film hydration (TFH) methodology was employed for encapsulation. Pork meat (Musculus semitendinosus) was submerged in the nanovesicles suspension and subjected to ultrasound (US) treatment at 25kHz for either 30 or 60min. Samples were analysed for fatty acid composition using gas chromatography-flame ionisation (GC-FID). The content of long-chain PUFAs, especially omega-3, was found to increase following the US treatment which was higher for Lipo-CAT compared to Lipo-N nanovesicles. Samples subjected to Lipo-N had higher atherogenic and thrombogenic indices, indicating higher levels of saturated fatty acids compared to the Lipo-CAT. The omega-6/omega-3 ratio in pork meat was significantly reduced following the US treatment, thus indicating an improved fatty acid profile of pork. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Fishy Business: Effect of Omega-3 Fatty Acids on Zinc Transporters and Free Zinc Availability in Human Neuronal Cells

    OpenAIRE

    De Mel, Damitha; Suphioglu, Cenk

    2014-01-01

    Omega-3 (ω-3) fatty acids are one of the two main families of long chain polyunsaturated fatty acids (PUFA). The main omega-3 fatty acids in the mammalian body are α-linolenic acid (ALA), docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA). Central nervous tissues of vertebrates are characterized by a high concentration of omega-3 fatty acids. Moreover, in the human brain, DHA is considered as the main structural omega-3 fatty acid, which comprises about 40% of the PUFAs in total. DHA...

  13. Targeted metabolomics analysis reveals the association between maternal folic acid supplementation and fatty acids and amino acids profiles in rat pups.

    Science.gov (United States)

    Liu, Zhipeng; Liu, Rui; Chou, Jing; Yu, Jiaying; Liu, Xiaowei; Sun, Changhao; Li, Ying; Liu, Liyan

    2018-07-15

    Maternal diet during pregnancy can influence offspring's health by affecting development and metabolism. This study aimed to analyze the influence of maternal folic acid (FA) supplementation on the metabolism of rat pups using targeted metabolomics. Twenty female rats were randomly assigned to a FA supplementation (FAS group, n = 10) or control group (n = 10), which were fed AIN93G diet with 2 or 10 mg/kg FA, respectively. We then measured amino acids and their derivatives, biogenic amines, and fatty acids in the female rats and their pups by ultra-high performance liquid chromatography-triple quadrupole mass spectrometry (UHPLC/MS-MS) and gas chromatography-mass spectrometry (GC/MS-MS). In maternal rats, the significant changes of three metabolites (proline, γ-aminobutyric acid and esterified octadecatetraenoic acid, P acids (leucine, isoleucine, serine, proline) were obtained in FAS pups. Furthermore, there were the decreased esterified fatty acids (arachidonic acid, eicosapentaenoic acid, and docosatetraenoic acid) and free fatty acids (oleic acid, linoleic acid, γ-linolenic acid, octadecatetraenoic acid, arachidonic acid, eicosapentaenoic acid and selacholeic acid) in FAS pups. Metabolic changes in the FAS pups were characterized by changes in fatty acids and amino acids. These results suggested that FA supplementation during pregnancy influenced amino acids and fatty acids metabolism in rat pups. This study provides new insights into the regulation of amino acids and fatty acids metabolism during early life. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Kefir Grains Change Fatty Acid Profile of Milk during Fermentation and Storage

    Science.gov (United States)

    Vieira, C. P.; Álvares, T. S.; Gomes, L. S.; Torres, A. G.; Paschoalin, V. M. F.; Conte-Junior, C. A.

    2015-01-01

    Several studies have reported that lactic acid bacteria may increase the production of free fatty acids by lipolysis of milk fat, though no studies have been found in the literature showing the effect of kefir grains on the composition of fatty acids in milk. In this study the influence of kefir grains from different origins [Rio de Janeiro (AR), Viçosa (AV) e Lavras (AD)], different time of storage, and different fat content on the fatty acid content of cow milk after fermentation was investigated. Fatty acid composition was determined by gas chromatography. Values were considered significantly different when pkefir relatively to fermented kefir leading to possible increase of antimutagenic and anticarcinogenic potential and improvement of nutritional quality of lipids in storage milk. Only high-lipidic matrix displayed increase polyunsaturated fatty acids after fermentation. These findings open up new areas of study related to optimizing desaturase activity during fermentation in order to obtaining a fermented product with higher nutritional lipid quality. PMID:26444286

  15. Omega-3 polyunsaturated fatty acids for cardiovascular diseases: present, past and future.

    Science.gov (United States)

    Watanabe, Yasuhiro; Tatsuno, Ichiro

    2017-08-01

    Large-scale epidemiological studies on Greenlandic, Canadian and Alaskan Eskimos have examined the health benefits of omega-3 fatty acids consumed as part of the diet, and found statistically significant relative reduction in cardiovascular risk in people consuming omega-3 fatty acids. Areas covered: This article reviews studies on omega-3 fatty acids during the last 50 years, and identifies issues relevant to future studies on cardiovascular (CV) risk. Expert commentary: Although a meta-analysis of large-scale prospective cohort studies and randomized studies reported that fish and fish oil consumption reduced coronary heart disease-related mortality and sudden cardiac death, omega-3 fatty acids have not yet been shown to be effective in secondary prevention trials on patients with multiple cardiovascular disease (CVD) risk factors. The ongoing long-term CV interventional outcome studies investigate high-dose, prescription-strength omega-3 fatty acids. The results are expected to clarify the potential role of omega-3 fatty acids in reducing CV risk. The anti-inflammatory properties of omega-3 fatty acids are also important. Future clinical trials should also focus on the role of these anti-inflammatory mediators in human arteriosclerotic diseases as well as inflammatory diseases.

  16. Pretreatment by low-dose fibrates protects against acute free fatty acid-induced renal tubule toxicity by counteracting PPARα deterioration

    International Nuclear Information System (INIS)

    Takahashi, Kyoko; Kamijo, Yuji; Hora, Kazuhiko; Hashimoto, Koji; Higuchi, Makoto; Nakajima, Takero; Ehara, Takashi; Shigematsu, Hidekazu; Gonzalez, Frank J.; Aoyama, Toshifumi

    2011-01-01

    Development of a preventive strategy against tubular damage associated with proteinuria is of great importance. Recently, free fatty acid (FFA) toxicities accompanying proteinuria were found to be a main cause of tubular damage, which was aggravated by insufficiency of peroxisome proliferator-activated receptor alpha (PPARα), suggesting the benefit of PPARα activation. However, an earlier study using a murine acute tubular injury model, FFA-overload nephropathy, demonstrated that high-dose treatment of PPARα agonist (0.5% clofibrate diet) aggravated the tubular damage as a consequence of excess serum accumulation of clofibrate metabolites due to decreased kidney elimination. To induce the renoprotective effects of PPARα agonists without drug accumulation, we tried a pretreatment study using low-dose clofibrate (0.1% clofibrate diet) using the same murine model. Low-dose clofibrate pretreatment prevented acute tubular injuries without accumulation of its metabolites. The tubular protective effects appeared to be associated with the counteraction of PPARα deterioration, resulting in the decrease of FFAs influx to the kidney, maintenance of fatty acid oxidation, diminution of intracellular accumulation of undigested FFAs, and attenuation of disease developmental factors including oxidative stress, apoptosis, and NFκB activation. These effects are common to other fibrates and dependent on PPARα function. Interestingly, however, clofibrate pretreatment also exerted PPARα-independent tubular toxicities in PPARα-null mice with FFA-overload nephropathy. The favorable properties of fibrates are evident when PPARα-dependent tubular protective effects outweigh their PPARα-independent tubular toxicities. This delicate balance seems to be easily affected by the drug dose. It will be important to establish the appropriate dosage of fibrates for treatment against kidney disease and to develop a novel PPARα activator that has a steady serum concentration regardless of

  17. Lipophilic antioxidants and polyunsaturated fatty acids in lipoprotein classes: distribution and interaction

    DEFF Research Database (Denmark)

    Sunesen, V.H.; Weber, Christine; Hølmer, Gunhild Kofoed

    2001-01-01

    supplementations, but fish oil increased the amount of n-3 fatty acids at the expense of n-6 fatty acids. Conclusion: Lipoprotein distribution of CoQ(10) is markedly different from that of alpha -tocopherol, suggesting that they may be metabolised by distinct routes. alpha -Tocopherol is distributed similarly to n......Objective: To study the lipoprotein distribution of supplemented coenzyme Q(10) (CoQ(10)), vitamin E, and polyunsaturated fatty acids (PUFA). Design: Balanced three- period crossover study. Setting: University research unit. Subjects: Eighteen apparently healthy free-living non-smoking volunteers...... the first period and then after each period. Plasma and isolated lipoproteins were analysed for cholesterol, triacylglycerol, alpha- and gamma -tocopherol, CoQ(10), and fatty acid composition. Results: Significant (P

  18. Modified high-sucrose diet-induced abdominally obese and normal-weight rats developed high plasma free fatty acid and insulin resistance.

    Science.gov (United States)

    Cao, Li; Liu, Xuehui; Cao, Hongyi; Lv, Qingguo; Tong, Nanwei

    2012-01-01

    Metabolically obese but normal-weight (MONW) individuals have metabolic features of overt obesity, and abdominal adiposity is common in them. Animal models of MONW individuals are lacking. We aimed to develop an abdominally obese and normal-weight (AONW) rat model. Young male Sprague-Dawley rats were fed chow or a modified high-sucrose (HS) diet for 20 weeks. The HS diet induced increased visceral adipose tissue without increased body weight, reduced glucose disposal rates, and increased hepatic glucose output during the hyperinsulinemic-euglycemic clamp, increased plasma glucose during the intraperitoneal glucose tolerance test, and increased plasma free fatty acids. Hepatic lipidosis and hepatocyte mitochondria swelling were found in HS rats through light microscopy and transmission electron microscopy; similar impairments were not observed in muscle. RT-PCR showed that mRNA expression of uncoupling protein 3 and peroxisome proliferator-activated receptor-gamma coactivator 1α increased in muscle of HS rats, while expression of mitochondrial transcription factor A, glucose transporter type 4, and insulin receptor substrate-1 did not change significantly. AONW rats developed metabolic disorders seen in MONW individuals. Steatosis, mitochondrial morphologic changes, and insulin resistance were more serious in liver than in muscle. Genes involved in fatty acid metabolism and mitochondrial function changed in less impaired muscle.

  19. Determination of Free Fatty Acid by FT-NIR Spectroscopy in Esterification Reaction for Biodiesel Production

    Directory of Open Access Journals (Sweden)

    Djéssica Tatiana Raspe

    2013-01-01

    Full Text Available This work reports the use of FT-NIR spectroscopy coupled with multivariate calibration to determine the percentage of free fatty acids (FFA in samples obtained by the esterification of FFA in vegetable oils. The analytical method used as calibration matrix samples of the reaction medium of esterification of oleic acid in soybean oil in proportions of 0.3 to 40 wt% (by weight of oleic acid obtained under different experimental conditions and utilized the partial least squares (PLS regression. The efficiency of the method was tested to predict the content of FFA in reactions of esterification of oleic acid in soybean oil catalysed by KSF clay and Amberlyst 15 commercial resin, both in a batch mode. Good Correlations were observed between the FT-NIR/PLS method and the reference method (AOCS. The results confirm that FT-NIR spectroscopy, in combination with multivariate calibration, is a promising technique for monitoring esterification reaction for biodiesel production.

  20. Fatty Acid Content of Indonesian Aquatic Microalgae

    Directory of Open Access Journals (Sweden)

    TRI PRARTONO

    2010-12-01

    Full Text Available High utilization of fossil fuel increases the level of carbon dioxide in the atmosphere and results in global warming phenomenon. These things establish the world's thought to look for the other alternative energy that can reduce the use of fossil fuel even to be replaced by the substitute. Recently, Indonesia has been doing the research of microalgae as a feedstock of an alternative biofuel. Fatty acid content that microalgae have is also high to produce biofuel. The steps used in this research is a 7 days cultivation, harvesting, extraction using hexane, and fatty acid identification using Gas Chromatography of microalgae species. Fatty acid component in some species such as Chlorella sp., Scenedesmus sp., Nannochloropsis sp., and Isochrysis sp. is between 0.21-29.5%; 0.11-25.16%; 0.30-42.32%; 2.06-37.63%, respectively, based on dry weight calculation. The high content of fatty acid in some species of microalgae showed the potential to be the feedstock of producing biofuel in overcoming the limited utilization from petroleum (fossil fuel presently.

  1. Dietary trans-fatty acids and metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Zdzisław Kochan

    2010-12-01

    Full Text Available Trans-fatty acids (TFAs, products of partial hydrogenation of vegetable oils, have become more prevalent in our diet since the 1960s, when they replaced animal fats. TFAs also occur naturally in meat and dairy products from ruminants. There is growing evidence that dietary trans-fatty acids may increase the risk of metabolic syndrome. Several studies have demonstrated adverse effects of TFAs on plasma lipids and lipoproteins. In dietary trials, trans-fatty acids have been shown to raise the total cholesterol/HDL cholesterol ratio and Lp(a levels in blood. Moreover, a high intake of TFAs has been associated with an increased risk of coronary heart disease. Prospective cohort studies have shown that dietary trans-fatty acids promote abdominal obesity and weight gain. In addition, it appears that TFA consumption may be associated with the development of insulin resistance and type 2 diabetes. The documented adverse health effects of TFAs emphasise the importance of efforts to reduce the content of partially hydrogenated vegetable oils in foods.

  2. Carbon-to-nitrogen ratio affects the biomass composition and the fatty acid profile of heterotrophically grown Chlorella sp. TISTR 8990 for biodiesel production.

    Science.gov (United States)

    Singhasuwan, Somruethai; Choorit, Wanna; Sirisansaneeyakul, Sarote; Kokkaew, Nakhon; Chisti, Yusuf

    2015-12-20

    Chlorella sp. TISTR 8990 was cultivated heterotrophically in media with various initial carbon-to-nitrogen ratios (C/N ratio) and at different agitation speeds. The production of the biomass, its total fatty acid content and the composition of the fatty acids were affected by the C/N ratio, but not by agitation speed in the range examined. The biomass production was maximized at a C/N mass ratio of 29:1. At this C/N ratio, the biomass productivity was 0.68gL(-1)d(-1), or nearly 1.6-fold the best attainable productivity in photoautotrophic growth. The biomass yield coefficient on glucose was 0.62gg(-1) during exponential growth. The total fatty acids (TFAs) in the freeze-dried biomass were maximum (459mgg(-1)) at a C/N ratio of 95:1. Lower values of the C/N ratio reduced the fatty acid content of the biomass. The maximum productivity of TFAs (186mgL(-1)d(-1)) occurred at C/N ratios of 63:1 and higher. At these conditions, the fatty acids were mostly of the polyunsaturated type. Allowing the alga to remain in the stationary phase for a prolonged period after N-depletion, reduced the level of monounsaturated fatty acids and the level of polyunsaturated fatty acids increased. Biotin supplementation of the culture medium reduced the biomass productivity relative to biotin-free control, but had no effect on the total fatty acid content of the biomass. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Topical Formulation Comprising Fatty Acid Extract from Cod Liver Oil: Development, Evaluation and Stability Studies.

    Science.gov (United States)

    Ilievska, Biljana; Loftsson, Thorsteinn; Hjalmarsdottir, Martha Asdis; Asgrimsdottir, Gudrun Marta

    2016-06-01

    The purpose of this study was to develop a pharmaceutical formulation containing fatty acid extract rich in free omega-3 fatty acids such as eicosapentaenoic acid and docosahexaenoic acid for topical use. Although the health benefits of cod liver oil and other fish oils taken orally as a dietary supplement have been acknowledged and exploited, it is clear that their use can be extended further to cover their antibacterial properties. In vitro evaluation showed that 20% (v/v) fatty acid extract exhibits good activity against strains of the Gram-positive bacteria Staphylococcus aureus, Enterococcus faecalis, Streptoccoccus pyogenes and Streptoccoccus pneumonia. Therefore, free polyunsaturated fatty acids from cod liver oil or other fish oils can be used as safe and natural antibacterial agents. In this study, ointment compositions containing free fatty acids as active antibacterial agents were prepared by using various natural waxes and characterized. The effects of different waxes, such as carnauba wax, ozokerite wax, laurel wax, beeswax, rice bran wax, candelilla wax and microcrystalline wax, in the concentration range of 1% to 5% (w/w) on the ointment texture, consistency and stability were evaluated. The results showed significant variations in texture, sensory and rheological profiles. This was attributed to the wax's nature and chain composition. Microcrystalline wax gave the best results but laurel wax, beeswax and rice bran wax exhibited excellent texturing, similar sensory profiles and well-balanced rheological properties.

  4. Demonstration of diet-induced decoupling of fatty acid and cholesterol synthesis by combining gene expression array and 2H2O quantification.

    Science.gov (United States)

    Jensen, Kristian K; Previs, Stephen F; Zhu, Lei; Herath, Kithsiri; Wang, Sheng-Ping; Bhat, Gowri; Hu, Guanghui; Miller, Paul L; McLaren, David G; Shin, Myung K; Vogt, Thomas F; Wang, Liangsu; Wong, Kenny K; Roddy, Thomas P; Johns, Douglas G; Hubbard, Brian K

    2012-01-15

    The liver is a crossroad for metabolism of lipid and carbohydrates, with acetyl-CoA serving as an important metabolic intermediate and a precursor for fatty acid and cholesterol biosynthesis pathways. A better understanding of the regulation of these pathways requires an experimental approach that provides both quantitative metabolic flux measurements and mechanistic insight. Under conditions of high carbohydrate availability, excess carbon is converted into free fatty acids and triglyceride for storage, but it is not clear how excessive carbohydrate availability affects cholesterol biosynthesis. To address this, C57BL/6J mice were fed either a low-fat, high-carbohydrate diet or a high-fat, carbohydrate-free diet. At the end of the dietary intervention, the two groups received (2)H(2)O to trace de novo fatty acid and cholesterol synthesis, and livers were collected for gene expression analysis. Expression of lipid and glucose metabolism genes was determined using a custom-designed pathway focused PCR-based gene expression array. The expression analysis showed downregulation of cholesterol biosynthesis genes and upregulation of fatty acid synthesis genes in mice receiving the high-carbohydrate diet compared with the carbohydrate-free diet. In support of these findings, (2)H(2)O tracer data showed that fatty acid synthesis was increased 10-fold and cholesterol synthesis was reduced by 1.6-fold in mice fed the respective diets. In conclusion, by applying gene expression analysis and tracer methodology, we show that fatty acid and cholesterol synthesis are differentially regulated when the carbohydrate intake in mice is altered.

  5. [Fatty acids in confectionery products].

    Science.gov (United States)

    Daniewski, M; Mielniczuk, E; Jacórzyński, B; Pawlicka, M; Balas, J; Filipek, A; Górnicka, M

    2000-01-01

    The content of fat and fatty acids in 144 different confectionery products purchased on the market in Warsaw region during 1997-1999 have been investigated. In examined confectionery products considerable variability of both fat and fatty acids content have been found. The content of fat varied from 6.6% (coconut cookies) up to 40% (chocolate wafers). Saturated fatty acids were present in both cis and trans form. Especially trans fatty acids reach (above 50%) were fats extracted from nut wafers, coconuts wafers.

  6. Synthesis of new fatty acids amides from aminolysis of fatty acid methyl esters (FAMEs)

    International Nuclear Information System (INIS)

    Lopes, Carolina R.; Montes D'Oca, Caroline da Ros; Duarte, Rodrigo da C.; Kurz, Marcia H.S.; Primel, Ednei G.; Clementin, Rosilene M.; Villarreyes, Joaquin Ariel M.; Montes D'Oca, Marcelo G.

    2010-01-01

    Recent biochemical and pharmacological studies have led to the characterization of different fatty acid amides as a new family of biologically active lipids. Here, we describe the synthesis of new amides from C16:0, 18:0, 18:1 and 18:1, OH fatty acids (FFA) families with cyclic and acyclic amines and demonstrate for the first time that these compounds produce cytotoxic effects. Application of this method to the synthesis of fatty acid amides was performed using the esters aminolysis as a key step and various carboxylic amides were prepared in good yield from fatty acid methyl esters (FAMEs). (author)

  7. Beta-adrenergic control of plasma glucose and free fatty acid levels in the air-breathing African catfish Clarias gariepinus Burchell 1822

    NARCIS (Netherlands)

    van Heeswijk, JCF; Vianen, GJ; van den Thillart, GEEJM; Zaagsma, J

    In several water-breathing fish species, P-adrenergic receptor stimulation by noradrenaline leads to a decrease in plasma free fatty acid (FFA) levels, as opposed to an increase in air-breathing mammals. We hypothesised that this change in adrenergic control is related to the mode of breathing.

  8. Do fatty acids affect fetal programming?

    Science.gov (United States)

    Kabaran, Seray; Besler, H Tanju

    2015-08-13

    In this study discussed the primary and regulatory roles of fatty acids, and investigated the affects of fatty acids on metabolic programming. Review of the literature was carried out on three electronic databases to assess the roles of fatty acids in metabolic programming. All abstracts and full-text articles were examined, and the most relevant articles were selected for screening and inclusion in this review. The mother's nutritional environment during fetal period has important effects on long term health. Fatty acids play a primary role in growth and development. Alterations in fatty acid intake in the fetal period may increase the risk of obesity and metabolic disorders in later life. Maternal fatty acid intakes during pregnancy and lactation are passed to the fetus and the newborn via the placenta and breast milk, respectively. Imbalances in fatty acid intake during the fetal period change the fatty acid composition of membrane phospholipids, which can cause structural and functional problems in cells. Additionally, the metabolic and neuroendocrine environments of the fetus and the newborn play key roles in the regulation of energy balance. Imbalances in fatty acid intake during pregnancy and lactation may result in permanent changes in appetite control, neuroendocrine function and energy metabolism in the fetus, leading to metabolic programming. Further studies are needed to determine the role of fatty acid intake in metabolic programming.

  9. Essential fatty acid deficiency in surgical patients.

    Science.gov (United States)

    O'Neill, J A; Caldwell, M D; Meng, H C

    1977-01-01

    Parenteral nutrition may protect patients unable to eat from malnutrition almost indefinitely. If fat is not also given EFAD will occur. This outlines a prospective study of 28 surgical patients on total intravenous fat-free nutrition to determine the developmental course of EFAD and the response to therapy. Twenty-eight patients ranging from newborn to 66 years receiving parenteral nutrition without fat had regular determinations of the composition of total plasma fatty acids and the triene/tetraene ratio using gas liquid chromatography. Physical signs of EFAD were looked for also. Patients found to have evidence of EFAD were treated with 10% Intralipid. Topical safflower oil was used in three infants. Total plasma fatty acid composition was restudied following therapy. In general, infants on fat-free intravenous nutrition developed biochemical EFAD within two weeks, but dermatitis took longer to become evident. Older individuals took over four weeks to develop a diagnostic triene/tetraene ratio (greater than 0.4; range 0.4 to 3.75). Therapeutic correction of biochemical EFAD took 7 to 10 days but dermatitis took longer to correct. Cutaneous application of safflower oil alleviated the cutaneous manifestations but did not correct the triene/tetraene ratio of total plasma fatty acids. These studies indicate that surgical patients who are unable to eat for two to four weeks, depending upon age and expected fat stores, should receive fat as a part of their intravenous regimen. Images Fig. 7. PMID:404973

  10. Nitro-fatty acids reduce atherosclerosis in apolipoprotein E-deficient mice

    Czech Academy of Sciences Publication Activity Database

    Rudolph, T.K.; Rudolph, V.; Edreira, M.M.; Cole, M.P.; Bonacci, G.; Schopfer, F.J.; Woodcock, S.R.; Franek, A.; Pekarová, Michaela; Khoo, N.K.H.; Hasty, A.H.; Baldus, S.; Freeman, B.A.

    2010-01-01

    Roč. 30, č. 5 (2010), s. 938-945 ISSN 1079-5642 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : nitro-fatty acids * atherosclerosis * foam cells Subject RIV: BO - Biophysics Impact factor: 7.215, year: 2010

  11. New radiohalogenated alkenyl tellurium fatty acids

    International Nuclear Information System (INIS)

    Srivastava, P.C.; Knapp, F.F. Jr.; Kabalka, G.W.

    1987-01-01

    Radiolabeled long-chain fatty acids have diagnostic value as radiopharmaceutical tools in myocardial imaging. Some applications of these fatty acids are limited due to their natural metabolic degradation in vivo with subsequent washout of the radioactivity from the myocardium. The identification of structural features that will increase the myocardial residence time without decreasing the heart uptake of long-chain fatty acids is of interest. Fatty acids containing the tellurium heteroatom were the first modified fatty acids developed that show unique prolonged myocardial retention and low blood levels. Our detailed studies with radioiodinated vinyliodide substituted tellurium fatty acids demonstrate that heart uptake is a function of the tellurium position. New techniques of tellurium and organoborane chemistry have been developed for the synthesis of a variety of radioiodinated iodoalkenyl tellurium fatty acids. 9 refs., 3 figs., 2 tabs

  12. Arachidonic acid and other unsaturated fatty acids and some of their metabolites function as endogenous antimicrobial molecules: A review

    Directory of Open Access Journals (Sweden)

    Undurti N. Das

    2018-05-01

    Full Text Available Our body is endowed with several endogenous anti-microbial compounds such as interferon, cytokines, free radicals, etc. However, little attention has been paid to the possibility that lipids could function as antimicrobial compounds. In this short review, the antimicrobial actions of various polyunsaturated fatty acids (PUFAs, mainly free acids and their putative mechanisms of action are described. In general, PUFAs kill microbes by their direct action on microbial cell membranes, enhancing generation of free radicals, augmenting the formation of lipid peroxides that are cytotoxic, and by increasing the formation of their bioactive metabolites, such as prostaglandins, lipoxins, resolvins, protectins and maresins that enhance the phagocytic action of leukocytes and macrophages. Higher intakes of α-linolenic and cis-linoleic acids (ALA and LA respectively and fish (a rich source of eicosapentaenoic acid and docosahexaenoic acid might reduce the risk pneumonia. Previously, it was suggested that polyunsaturated fatty acids (PUFAs: linoleic, α-linolenic, γ-linolenic (GLA, dihomo-GLA (DGLA, arachidonic (AA, eicosapentaenoic (EPA, and docosahexaenoic acids (DHA function as endogenous anti-bacterial, anti-fungal, anti-viral, anti-parasitic, and immunomodulating agents. A variety of bacteria are sensitive to the growth inhibitory actions of LA and ALA in vitro. Hydrolyzed linseed oil can kill methicillin-resistant Staphylococcus aureus. Both LA and AA have the ability to inactivate herpes, influenza, Sendai, and Sindbis virus within minutes of contact. AA, EPA, and DHA induce death of Plasmodium falciparum both in vitro and in vivo. Prostaglandin E1 (PGE1 and prostaglandin A (PGA, derived from DGLA, AA, and EPA inhibit viral replication and show anti-viral activity. Oral mucosa, epidermal cells, lymphocytes and macrophages contain and release significant amounts of PUFAs on stimulation. PUFAs stimulate NADPH-dependent superoxide production by

  13. Cyclooxygenase-2 induction in macrophages is modulated by docosahexaenoic acid via interactions with free fatty acid receptor 4 (FFA4).

    Science.gov (United States)

    Li, Xinzhi; Yu, Ying; Funk, Colin D

    2013-12-01

    Cyclooxygenase-2 (COX-2)-derived prostaglandins are implicated in numerous inflammatory disorders. The purpose of these studies was to examine previously unexplored interactions between COX-2 induction and docosahexaenoic acid (DHA) via the free fatty acid receptor 4 (FFA4) signaling pathway in murine RAW 264.7 cells and peritoneal macrophages challenged with lipopolysaccharide (LPS). DHA dose (IC50=18 μM)- and time-dependently reduced COX-2 expression, without affecting COX-1. DHA (25 μM for 24 h) decreased LPS-induced prostaglandin E2 (PGE2) synthesis by 81%, primarily through reducing COX-2 (60%), as well as down-regulating microsomal prostaglandin E synthase-1 (46%), but independently of peroxisome proliferator-activated receptors. FFA4 knockdown abrogated DHA effects on COX-2 induction, PGE2 production, and interleukin 6 (IL-6) gene expression. In the presence of inhibitors of eicosanoid metabolism via COX-2, 12/15-lipoxygenase and CYP450s (rofecoxib (1 μM), PD146176 (2 μM), or MS-PPOH (20 μM)), DHA was still effective in attenuating COX-2 induction. Moreover, Toll-like receptor 4 signaling via Akt/JNK phosphorylation and p65 nuclear translocation was repressed by DHA-activated FFA4 coupling with β-arrestin 2, which was reversed by FFA4 knockdown. These data support DHA modulation of COX-2 expression and activity, in part, via FFA4, which provides a new mechanistic explanation for some of the anti-inflammatory effects of DHA.

  14. Omega-3 fatty acids and inflammatory processes: from molecules to man.

    Science.gov (United States)

    Calder, Philip C

    2017-10-15

    Inappropriate, excessive or uncontrolled inflammation contributes to a range of human diseases. Inflammation involves a multitude of cell types, chemical mediators and interactions. The present article will describe nutritional and metabolic aspects of omega-6 (n-6) and omega-3 (n-3) fatty acids and explain the roles of bioactive members of those fatty acid families in inflammatory processes. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are n-3 fatty acids found in oily fish and fish oil supplements. These fatty acids are capable of partly inhibiting many aspects of inflammation including leucocyte chemotaxis, adhesion molecule expression and leucocyte-endothelial adhesive interactions, production of eicosanoids like prostaglandins and leukotrienes from the n-6 fatty acid arachidonic acid and production of pro-inflammatory cytokines. In addition, EPA gives rise to eicosanoids that often have lower biological potency than those produced from arachidonic acid, and EPA and DHA give rise to anti-inflammatory and inflammation resolving mediators called resolvins, protectins and maresins. Mechanisms underlying the anti-inflammatory actions of EPA and DHA include altered cell membrane phospholipid fatty acid composition, disruption of lipid rafts, inhibition of activation of the pro-inflammatory transcription factor nuclear factor κB so reducing expression of inflammatory genes and activation of the anti-inflammatory transcription factor peroxisome proliferator-activated receptor γ. Animal experiments demonstrate benefit from EPA and DHA in a range of models of inflammatory conditions. Human trials demonstrate benefit of oral n-3 fatty acids in rheumatoid arthritis and in stabilizing advanced atherosclerotic plaques. Intravenous n-3 fatty acids may have benefits in critically ill patients through reduced inflammation. The anti-inflammatory and inflammation resolving actions of EPA, DHA and their derivatives are of clinical relevance. © 2017 The Author

  15. Fodder shrubs and fatty acids: strategies to reduce enteric methane production in cattle.

    Directory of Open Access Journals (Sweden)

    Juan Leonardo Cardona-Iglesias

    2016-12-01

    Full Text Available The aim of this study was to analyze the use of fodder shrubs and polyunsaturated fatty acids as a nutritional strategy to mitigate enteric methane production in cattle. Special emphasis was made on the use of Tithonia diversifolia (Hemsl. A. Gray (Mexican sun ower, as a species with antimethanogenic potential. Bibliographic information for this review was obtained between July and September 2015 by using key words. Methane is a powerful greenhouse gas (GHG, the increase of its atmospheric concentration is caused mainly by emissions from agriculture and industry, but it is also estimated that a proportion of methane is emitted by ruminants as a product of enteric and anaerobic fermentation of diet. This causes an environmental and productive problem in livestock production systems worldwide. Although there is controversy about the real contribution of methane by ruminants and its impact on environmental issues, the amount of emissions should try to be reduced.This document emphasizes the search for nutritional strategies such as supplementation with forage shrubs and sources of polyunsaturated fatty acids, which have shown potential to maintain animal production ef ciency and decrease enteric methane synthesis.

  16. Defense Priming and Jasmonates: A Role for Free Fatty Acids in Insect Elicitor-Induced Long Distance Signaling

    Science.gov (United States)

    Li, Ting; Cofer, Tristan; Engelberth, Marie; Engelberth, Jurgen

    2016-01-01

    Green leaf volatiles (GLV) prime plants against insect herbivore attack resulting in stronger and faster signaling by jasmonic acid (JA). In maize this response is specifically linked to insect elicitor (IE)-induced signaling processes, which cause JA accumulation not only around the damage site, but also in distant tissues, presumably through the activation of electrical signals. Here, we present additional data further characterizing these distal signaling events in maize. Also, we describe how exposure to GLV increases free fatty acid (fFA) levels in maize seedlings, but also in other plants, and how increased fFA levels affect IE-induced JA accumulation. Increased fFA, in particular α-linolenic acid (LnA), caused a significant increase in JA accumulation after IE treatment, while JA induced by mechanical wounding (MW) alone was not affected. We also identified treatments that significantly decreased certain fFA level including simulated wind and rain. In such treated plants, IE-induced JA accumulation was significantly reduced when compared to un-moved control plants, while MW-induced JA accumulation was not significantly affected. Since only IE-induced JA accumulation was altered by changes in the fFA composition, we conclude that changing levels of fFA affect primarily IE-induced signaling processes rather than serving as a substrate for JA. PMID:27135225

  17. Effect of γ irradiation on the fatty acid composition of soybean and soybean oil.

    Science.gov (United States)

    Minami, Ikuko; Nakamura, Yoshimasa; Todoriki, Setsuko; Murata, Yoshiyuki

    2012-01-01

    Food irradiation is a form of food processing to extend the shelf life and reduce spoilage of food. We examined the effects of γ radiation on the fatty acid composition, lipid peroxidation level, and antioxidative activity of soybean and soybean oil which both contain a large amount of unsaturated fatty acids. Irradiation at 10 to 80 kGy under aerobic conditions did not markedly change the fatty acid composition of soybean. While 10-kGy irradiation did not markedly affect the fatty acid composition of soybean oil under either aerobic or anaerobic conditions, 40-kGy irradiation considerably altered the fatty acid composition of soybean oil under aerobic conditions, but not under anaerobic conditions. Moreover, 40-kGy irradiation produced a significant amount of trans fatty acids under aerobic conditions, but not under anaerobic conditions. Irradiating soybean oil induced lipid peroxidation and reduced the radical scavenging activity under aerobic conditions, but had no effect under anaerobic conditions. These results indicate that the fatty acid composition of soybean was not markedly affected by radiation at 10 kGy, and that anaerobic conditions reduced the degradation of soybean oil that occurred with high doses of γ radiation.

  18. Exogenous fatty acid metabolism in bacteria.

    Science.gov (United States)

    Yao, Jiangwei; Rock, Charles O

    2017-10-01

    Bacterial type II fatty acid synthesis (FASII) is a target for novel antibiotic development. All bacteria encode for mechanisms to incorporate exogenous fatty acids, and some bacteria can use exogenous fatty acids to bypass FASII inhibition. Bacteria encode three different mechanisms for activating exogenous fatty acids for incorporation into phospholipid synthesis. Exogenous fatty acids are converted into acyl-CoA in Gammaproteobacteria such as E. coli. Acyl-CoA molecules constitute a separate pool from endogenously synthesized acyl-ACP. Acyl-CoA can be used for phospholipid synthesis or broken down by β-oxidation, but cannot be used for lipopolysaccharide synthesis. Exogenous fatty acids are converted into acyl-ACP in some Gram-negative bacteria. The resulting acyl-ACP undergoes the same fates as endogenously synthesized acyl-ACP. Exogenous fatty acids are converted into acyl-phosphates in Gram-positive bacteria, and can be used for phospholipid synthesis or become acyl-ACP. Only the order Lactobacillales can use exogenous fatty acids to bypass FASII inhibition. FASII shuts down completely in presence of exogenous fatty acids in Lactobacillales, allowing Lactobacillales to synthesize phospholipids entirely from exogenous fatty acids. Inhibition of FASII cannot be bypassed in other bacteria because FASII is only partially down-regulated in presence of exogenous fatty acid or FASII is required to synthesize essential metabolites such as β-hydroxyacyl-ACP. Certain selective pressures such as FASII inhibition or growth in biofilms can select for naturally occurring one step mutations that attenuate endogenous fatty acid synthesis. Although attempts have been made to estimate the natural prevalence of these mutants, culture-independent metagenomic methods would provide a better estimate. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  19. 21 CFR 172.860 - Fatty acids.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Fatty acids. 172.860 Section 172.860 Food and Drugs... Multipurpose Additives § 172.860 Fatty acids. The food additive fatty acids may be safely used in food and in... and their associated fatty acids manufactured from fats and oils derived from edible sources: Capric...

  20. Glucose and fatty acid metabolism in normal and diabetic rabbit cerebral microvessels

    International Nuclear Information System (INIS)

    Hingorani, V.; Brecher, P.

    1987-01-01

    Rabbit cerebral microvessels were used to study fatty acid metabolism and its utilization relative to glucose. Microvessels were incubated with either [6- 14 C]glucose or [1- 14 C]oleic acid and the incorporation of radioactivity into 14 CO 2 , lactate, triglyceride, cholesterol ester, and phospholipid was determined. The inclusion of 5.5 mM glucose in the incubation mixture reduced oleate oxidation by 50% and increased esterification into both phospholipid and triglyceride. Glucose oxidation to CO 2 was reduced by oleate addition, whereas lactate production was unaffected. 2'-Tetradecylglycidic acid, an inhibitor of carnitine acyltransferase I, blocked oleic acid oxidation in the presence and absence of glucose. It did not effect fatty acid esterification when glucose was absent and eliminated the inhibition of oleate on glucose oxidation. Glucose oxidation to 14 CO 2 was markedly suppressed in microvessels from alloxan-treated diabetic rabbits but lactate formation was unchanged. Fatty acid oxidation to CO 2 and incorporation into triglyceride, phospholipid, and cholesterol ester remained unchanged in the diabetic state. The experiments show that both fatty acid and glucose can be used as a fuel source by the cerebral microvessels, and the interactions found between fatty acid and glucose metabolism are similar to the fatty acid-glucose cycle, described previously

  1. Free fatty acids profiling in response to carnitine synergize with ...

    African Journals Online (AJOL)

    Background: The objective of this study was to investigate the fatty acids profiling in diabetic rats induced by sterptozocine (STZ) and their response to administration of lutein and carnitine. Materials and methods: Ninety male albino rats were divided into 6 groups as follows: Normal control. The remaining rats were injected ...

  2. Influence of different curing methods on the fatty acid composition in sausages prepared from red deer meat

    Directory of Open Access Journals (Sweden)

    Marek Šnirc

    2016-11-01

    Full Text Available These curing agents play a decisive role in obtaining the specific sensory properties, stability and hygienic safety of products such as fermented sausages, ham and, more recently, emulsion type of sausages. The effect of using two different curing agents (sodium chloride and nitrate on fatty acid compounds in dry-cured deer meat was investigated in our study. The concentration of free fatty acids in the fat depends on the hydrolytic activity of the lipases, the microbial metabolic processes, and the oxidative reactions that work on the free fatty acids released in the lipolysis. The main identified fatty acids in all different types of curing were palmitic acid (16 : 0, oleic acid (c18 : 1 cis-9, stearic acid (C18 : 0. The resulting n-6/n-3 PUFA ratio in the muscle samples of red deer showed no variation in different types of curing and was beneficially low within the range of 3.9 : 1 and 4.49 : 1. Total free fatty acids, whether saturated, monounsaturated or polyunsaturated fatty acids, did not increased (p >0.05 greatly through the processing of dry-cured deer meat. Also there was no effect of curing method on fatty acids composition in two different muscles Semitendinosus muscle (ANOVA, p >0.05, F - 0.003, F crit. - 3.041 and Triceps brachii muscle (ANOVA, p >0.05, F - 0.05, F crit. - 3.01. There were found no significant (p >0.05 differences between fatty acids content in sausages prepared by brining in NaCl and Nitrate salt. The present study revealed that game meat can function as a good source of bioactive compounds that are essential for human nutrition. 

  3. Impaired suppression of plasma free fatty acids and triglycerides by acute hyperglycaemia-induced hyperinsulinaemia and alterations in high density lipoproteins in essential hypertension

    NARCIS (Netherlands)

    Ligtenberg, JJM; vanTol, A; vanHaeften, TW; Sluiter, WJ; Dullaart, RPF

    1996-01-01

    Objectives. Essential hypertension may be associated with abnormalities in free fatty acids (FFA) and triglyceride metabolism, which could lead to alterations in high density lipoproteins (HDL). Lecithin: cholesterol acyltransferase (LCAT) and cholesteryl ester transfer protein (CETP) are key

  4. Lipotoxic effect of p21 on free fatty acid-induced steatosis in L02 cells.

    Directory of Open Access Journals (Sweden)

    Jie-wei Wang

    Full Text Available Nonalcoholic fatty liver disease (NAFLD is increasingly regarded as a hepatic manifestation of metabolic syndrome. Though with high prevalence, the mechanism is poorly understood. This study aimed to investigate the effects of p21 on free fatty acid (FFA-induced steatosis in L02 cells. We therefore analyzed the L02 cells with MG132 and siRNA treatment for different expression of p21 related to lipid accumulation and lipotoxicity. Cellular total lipid was stained by Oil Red O, while triglyceride content, cytotoxicity assays, lipid peroxidation markers and anti-oxidation levels were measured by enzymatic kits. Treatment with 1 mM FFA for 48 hr induced magnificent intracellular lipid accumulation and increased oxidative stress in p21 overload L02 cells compared to that in p21 knockdown L02 cells. By increasing oxidative stress and peroxidation, p21 accelerates FFA-induced lipotoxic effect in L02 cells and might provide information about potentially new targets for drug development and treatments of NAFLD.

  5. AMPK-independent pathways regulate skeletal muscle fatty acid oxidation

    DEFF Research Database (Denmark)

    Dzamko, Nicolas; Schertzer, Jonathan D.; Ryall, James G.

    2008-01-01

    The activation of AMP-activated protein kinase (AMPK) and phosphorylation/inhibition of acetyl-CoA carboxylase 2 (ACC2) is believed to be the principal pathway regulating fatty acid oxidation. However, during exercise AMPK activity and ACC Ser-221 phosphorylation does not always correlate...... with rates of fatty acid oxidation. To address this issue we have investigated the requirement for skeletal muscle AMPK in controlling aminoimidazole-4-carboxymide-1-beta-d-ribofuranoside (AICAR) and contraction-stimulated fatty acid oxidation utilizing transgenic mice expressing a muscle-specific kinase...... dead (KD) AMPK alpha2. In wild-type (WT) mice, AICAR and contraction increased AMPK alpha2 and alpha1 activities, the phosphorylation of ACC2 and rates of fatty acid oxidation while tending to reduce malonyl-CoA levels. Despite no activation of AMPK in KD mice, ACC2 phosphorylation was maintained...

  6. Effects of free fatty acids and acipimox, a lipolysis inhibitor, on the somatotroph responsiveness to GHRH in anorexia nervosa.

    Science.gov (United States)

    Gianotti, L; Fassino, S; Daga, G A; Lanfranco, F; De Bacco, C; Ramunni, J; Arvat, E; MacCario, M; Ghigo, E

    2000-06-01

    Anorexia nervosa is characterized by low IGF-1 and high GH and free fatty acid (FFA) levels. As FFA exerts an inhibitory feedback action on GH secretion in physiological conditions, we hypothesized that somatotroph cells could be less sensitive to the negative feedback action of FFA in anorexia nervosa. Fifteen patients with anorexia nervosa (AN, age: mean +/- SEM: 20.8 +/- 1.2 years, BMI: 15.9 +/- 0.3 kg/m2) and 12 normal female controls (NW, age 27.2 +/- 2.1 years, BMI 21.2 +/- 2.2 kg/m2). We studied the effects of lipid-heparin emulsion (Li-He, Intralipid 10% 250 ml + heparin 2500 U iv from -60 to + 90 minutes in seven AN and six NW) or acipimox (ACI, 250 mg p.o. at -60 minutes in eight AN and six NW), a lipolysis inhibitor, on the GH response to GHRH (1 microg/kg iv as a bolus at 0 minutes). Basal IGF-1 levels were lower (P anorexia nervosa occurs in presence of enhanced lipolysis, our present findings indicate that the sensitivity of somatotroph cells to the inhibitory feedback action of free fatty acid is preserved.

  7. Topical Formulation Comprising Fatty Acid Extract from Cod Liver Oil: Development, Evaluation and Stability Studies

    Directory of Open Access Journals (Sweden)

    Biljana Ilievska

    2016-06-01

    Full Text Available The purpose of this study was to develop a pharmaceutical formulation containing fatty acid extract rich in free omega-3 fatty acids such as eicosapentaenoic acid and docosahexaenoic acid for topical use. Although the health benefits of cod liver oil and other fish oils taken orally as a dietary supplement have been acknowledged and exploited, it is clear that their use can be extended further to cover their antibacterial properties. In vitro evaluation showed that 20% (v/v fatty acid extract exhibits good activity against strains of the Gram-positive bacteria Staphylococcus aureus, Enterococcus faecalis, Streptoccoccus pyogenes and Streptoccoccus pneumonia. Therefore, free polyunsaturated fatty acids from cod liver oil or other fish oils can be used as safe and natural antibacterial agents. In this study, ointment compositions containing free fatty acids as active antibacterial agents were prepared by using various natural waxes and characterized. The effects of different waxes, such as carnauba wax, ozokerite wax, laurel wax, beeswax, rice bran wax, candelilla wax and microcrystalline wax, in the concentration range of 1% to 5% (w/w on the ointment texture, consistency and stability were evaluated. The results showed significant variations in texture, sensory and rheological profiles. This was attributed to the wax’s nature and chain composition. Microcrystalline wax gave the best results but laurel wax, beeswax and rice bran wax exhibited excellent texturing, similar sensory profiles and well-balanced rheological properties.

  8. Modification of Death rate and Disturbances induced in the Levels of serum total Lipids and free fatty acids of irradiated rats by ascorbic acid and serotonin

    International Nuclear Information System (INIS)

    Mahdy, A.M.; Saada, H.N.; Osama, Z.S.

    1999-01-01

    Intraperitoneal injection of normal rats with ascorbic acid (10 mg/100 g body weight ) or serotonin (2 mg/100 g body weight) had no harmful effect on the life span. Moreover, the levels of serum total lipids and free fatty acids did not show any significant changes at 3, 7, 10 and 14 days after injection. Administration of ascorbic acid or serotonin to rats at the pre mentioned doses, 15 minutes, before gamma irradiation at 7.5 Gy (single dose ) improved the survival time of rats and the hyperlipemic state recorded after radiation exposure

  9. Fatty acid biosynthesis in pea root plastids

    International Nuclear Information System (INIS)

    Stahl, R.J.; Sparace, S.A.

    1989-01-01

    Fatty acid biosynthesis from [1- 14 C]acetate was optimized in plastids isolated from primary root tips of 7-day-old germinating pea seeds. Fatty acid synthesis was maximum at approximately 80 nmoles/hr/mg protein in the presence of 200 μM acetate, 0.5 mM each of NADH, NADPH and CoA, 6 mM each of ATP and MgCl 2 , 1 mM each of the MnCl 2 and glycerol-3-phosphate, 15 mM KHCO 3 , and 0.1M Bis-tris-propane, pH 8.0 incubated at 35C. At the standard incubation temperature of 25C, fatty acid synthesis was linear from up to 6 hours with 80 to 100 μg/mL plastid protein. ATP and CoA were absolute requirements, whereas KHCO 3 , divalent cations and reduced nucleotides all improved activity by 80 to 85%. Mg 2+ and NADH were the preferred cation and nucleotide, respectively. Dithiothreitol and detergents were generally inhibitory. The radioactive products of fatty acid biosynthesis were approximately 33% 16:0, 10% 18:0 and 56% 18:1 and generally did not vary with increasing concentrations of each cofactor

  10. Synthesis of biodiesel from waste vegetable oil with large amounts of free fatty acids using a carbon-based solid acid catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Shu, Qing; Gao, Jixian; Nawaz, Zeeshan; Liao, Yuhui; Wang, Dezheng; Wang, Jinfu [Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084 (China)

    2010-08-15

    A carbon-based solid acid catalyst was prepared by the sulfonation of carbonized vegetable oil asphalt. This catalyst was employed to simultaneously catalyze esterification and transesterification to synthesis biodiesel when a waste vegetable oil with large amounts of free fatty acids (FFAs) was used as feedstock. The physical and chemical properties of this catalyst were characterized by a variety of techniques. The maximum conversion of triglyceride and FFA reached 80.5 wt.% and 94.8 wt.% after 4.5 h at 220 C, when using a 16.8 M ratio of methanol to oil and 0.2 wt.% of catalyst to oil. The high catalytic activity and stability of this catalyst was related to its high acid site density (-OH, Broensted acid sites), hydrophobicity that prevented the hydration of -OH species, hydrophilic functional groups (-SO{sub 3}H) that gave improved accessibility of methanol to the triglyceride and FFAs, and large pores that provided more acid sites for the reactants. (author)

  11. Keap1-knockdown decreases fasting-induced fatty liver via altered lipid metabolism and decreased fatty acid mobilization from adipose tissue.

    Directory of Open Access Journals (Sweden)

    Jialin Xu

    Full Text Available AIMS: The purpose of this study was to determine whether Nrf2 activation, via Keap1-knockdown (Keap1-KD, regulates lipid metabolism and mobilization induced by food deprivation (e.g. fasting. METHODS AND RESULTS: Male C57BL/6 (WT and Keap1-KD mice were either fed ad libitum or food deprived for 24 hours. After fasting, WT mice exhibited a marked increase in hepatic lipid accumulation, but Keap1-KD mice had an attenuated increase of lipid accumulation, along with reduced expression of lipogenic genes (acetyl-coA carboxylase, stearoyl-CoA desaturase-1, and fatty acid synthase and reduced expression of genes related to fatty acid transport, such as fatty acid translocase/CD36 (CD36 and Fatty acid transport protein (FATP 2, which may attribute to the reduced induction of Peroxisome proliferator-activated receptor (Ppar α signaling in the liver. Additionally, enhanced Nrf2 activity by Keap1-KD increased AMP-activated protein kinase (AMPK phosphorylation in liver. In white adipose tissue, enhanced Nrf2 activity did not change the lipolysis rate by fasting, but reduced expression of fatty acid transporters--CD36 and FATP1, via a PPARα-dependent mechanism, which impaired fatty acid transport from white adipose tissue to periphery circulation system, and resulted in increased white adipose tissue fatty acid content. Moreover, enhanced Nrf2 activity increased glucose tolerance and Akt phosphorylation levels upon insulin administration, suggesting Nrf2 signaling pathway plays a key role in regulating insulin signaling and enhanced insulin sensitivity in skeletal muscle. CONCLUSION: Enhanced Nrf2 activity via Keap1-KD decreased fasting-induced steatosis, pointing to an important function of Nrf2 on lipid metabolism under the condition of nutrient deprivation.

  12. Omega-3 fatty acids, phenolic compounds and antioxidant characteristics of chia oil supplemented margarine.

    Science.gov (United States)

    Nadeem, Muhammad; Imran, Muhammad; Taj, Imran; Ajmal, Muhammad; Junaid, Muhammad

    2017-05-31

    Chia (Salvia hispanica L.) is known as power house of omega fatty acids which has great health benefits. It contains up to 78% linolenic acid (ω-3) and 18% linoleic acid (ω-6), which could be a great source of omega-3 fatty acids for functional foods. Therefore, in this study, margarines were prepared with supplementation of different concentrations of chia oil to enhance omega-3 fatty acids, antioxidant characteristics and oxidative stability of the product. Margarines were formulated from non-hydrogenated palm oil, palm kernel and butter. Margarines were supplemented with 5, 10, 15 and 20% chia oil (T 1 , T 2 , T 3 and T 4 ), respectively. Margarine without any addition of chia oil was kept as control. Margarine samples were stored at 5 °C for a period of 90 days. Physico-chemical (fat, moisture, refractive index, melting point, solid fat index, fatty acids profile, total phenolic contents, DPPH free radical scavenging activity, free fatty acids and peroxide value) and sensory characteristics were studied at the interval of 45 days. The melting point of T 1 , T 2 , T 3 and T 4 developed in current investigation were 34.2, 33.8, 33.1 and 32.5 °C, respectively. The solid fat index of control, T 1 , T 2 , T 3 and T 4 were 47.21, 22.71, 20.33, 18.12 and 16.58%, respectively. The α-linolenic acid contents in T 1 , T 2 , T 3 and T 4 were found 2.92, 5.85, 9.22, 12.29%, respectively. The concentration of eicosanoic acid in T 2 , T 3 and T 4 was 1.82, 3.52, 6.43 and 9.81%, respectively. The content of docosahexanoic acid in T 2 , T 3 and T 4 was present 1.26, 2.64, 3.49 and 5.19%, respectively. The omega-3 fatty acids were not detected in the control sample. Total phenolic contents of control, T 1 , T 2 , T 3 and T 4 samples were 0.27, 2.22, 4.15, 7.23 and 11.42 mg GAE/mL, respectively. DPPH free radical scavenging activity for control, T 1 , T 2 , T 3 and T 4 was noted 65.8, 5.37, 17.82, 24.95, 45.42 and 62.8%, respectively. Chlorogenic acid, caffeic acid

  13. Omega-6 Fatty Acids

    Science.gov (United States)

    Omega-6 fatty acids are types of fats. Some types are found in vegetable oils, including corn, evening primrose seed, safflower, and soybean oils. Other types of omega-6 fatty acids are found in black currant seed, borage seed, ...

  14. Protein-membrane interaction and fatty acid transfer from intestinal fatty acid-binding protein to membranes. Support for a multistep process.

    Science.gov (United States)

    Falomir-Lockhart, Lisandro J; Laborde, Lisandro; Kahn, Peter C; Storch, Judith; Córsico, Betina

    2006-05-19

    Fatty acid transfer from intestinal fatty acid-binding protein (IFABP) to phospholipid membranes occurs during protein-membrane collisions. Electrostatic interactions involving the alpha-helical "portal" region of the protein have been shown to be of great importance. In the present study, the role of specific lysine residues in the alpha-helical region of IFABP was directly examined. A series of point mutants in rat IFABP was engineered in which the lysine positive charges in this domain were eliminated or reversed. Using a fluorescence resonance energy transfer assay, we analyzed the rates and mechanism of fatty acid transfer from wild type and mutant proteins to acceptor membranes. Most of the alpha-helical domain mutants showed slower absolute fatty acid transfer rates to zwitterionic membranes, with substitution of one of the lysines of the alpha2 helix, Lys27, resulting in a particularly dramatic decrease in the fatty acid transfer rate. Sensitivity to negatively charged phospholipid membranes was also reduced, with charge reversal mutants in the alpha2 helix the most affected. The results support the hypothesis that the portal region undergoes a conformational change during protein-membrane interaction, which leads to release of the bound fatty acid to the membrane and that the alpha2 segment is of particular importance in the establishment of charge-charge interactions between IFABP and membranes. Cross-linking experiments with a phospholipid-photoactivable reagent underscored the importance of charge-charge interactions, showing that the physical interaction between wild-type intestinal fatty acid-binding protein and phospholipid membranes is enhanced by electrostatic interactions. Protein-membrane interactions were also found to be enhanced by the presence of ligand, suggesting different collisional complex structures for holo- and apo-IFABP.

  15. Identification of a potent and selective free fatty acid receptor 1 (FFA1/GPR40) agonist with favorable physicochemical and in vitro ADME properties

    DEFF Research Database (Denmark)

    Christiansen, Elisabeth; Urban, Christian; Grundmann, Manuel

    2011-01-01

    The free fatty acid receptor 1 (FFA1, also known as GPR40) enhances glucose-stimulated insulin secretion from pancreatic ß-cells and is recognized as an interesting new target for treatment of type 2 diabetes. Several series of selective FFA1 agonists are already known. Most of these are derived...... from free fatty acids (FFAs) or glitazones, and are relatively lipophilic. Aiming at the development of potent, selective and less lipophilic FFA1 agonists, the terminal phenyl of a known compound series was replaced by nitrogen containing heterocycles. This resulted in the identification of 37......, a selective FFA1 agonist with potent activity on recombinant human FFA1 receptors and on the rat insulinoma cell line INS-1E, optimal lipophilicity and excellent in vitro permeability and metabolic stability....

  16. Treatment of Fatty Acid Oxidation Disorders

    Science.gov (United States)

    ... Treatment of fatty acid oxidation disorders Treatment of fatty acid oxidation disorders E-mail to a friend Please ... this page It's been added to your dashboard . Fatty acid oxidation disorders are rare health conditions that affect ...

  17. Boosting the free fatty acid synthesis of Escherichia coli by expression of a cytosolic Acinetobacter baylyi thioesterase

    Directory of Open Access Journals (Sweden)

    Zheng Yanning

    2012-10-01

    Full Text Available Abstract Background Thioesterases remove the fatty acyl moiety from the fatty acyl-acyl carrier proteins (ACPs, releasing them as free fatty acids (FFAs, which can be further used to produce a variety of fatty acid-based biofuels, such as biodiesel, fatty alcohols and alkanes. Thioesterases play a key role in the regulation of the fatty acid synthesis in Escherichia coli. Therefore, exploring more promising thioesterases will contribute to the development of industrial microbial lipids production. Results We cloned and expressed a cytosolic Acinetobacter baylyi thioesterase (‘AcTesA in E. coli by deleting its leader sequence. Protein sequence alignment, structure modeling and site-directed mutagenesis demonstrated that Ser10, Gly48, Asn77, Asp158 and His161 residues composed the active centre of ‘AcTesA. The engineered strain that overexpressed ‘AcTesA achieved a FFAs titer of up to 501.2 mg/L in shake flask, in contrast to only 20.5 mg/L obtained in wild-type E. coli, demonstrating that the expression of ‘AcTesA indeed boosted the synthesis of FFAs. The ‘AcTesA exhibited a substrate preference towards the C8-C16 acyl groups, with C14:0, C16:1, C12:0 and C8:0 FFAs being the top four components. Optimization of expression level of ‘AcTesA made the FFAs production increase to 551.3 mg/L. The FFAs production further increased to 716.1 mg/L by optimization of the culture medium. Fed-batch fermentation was also carried out to evaluate the FFAs production in a scaleable process. Finally, 3.6 g/L FFAs were accumulated within 48 h, and a maximal FFAs yield of 6.1% was achieved in 12–16 h post induction. Conclusions For the first time, an A. baylyi thioesterase was cloned and solubly expressed in the cytosol of E. coli. This leaderless thioesterase (‘AcTesA was found to be capable of enhancing the FFAs production of E. coli. Without detailed optimization of the strain and fermentation, the finally achieved 3.6 g/L FFAs is encouraging. In

  18. Hypothalamic GPR40 signaling activated by free long chain fatty acids suppresses CFA-induced inflammatory chronic pain.

    Directory of Open Access Journals (Sweden)

    Kazuo Nakamoto

    Full Text Available GPR40 has been reported to be activated by long-chain fatty acids, such as docosahexaenoic acid (DHA. However, reports studying functional role of GPR40 in the brain are lacking. The present study focused on the relationship between pain regulation and GPR40, investigating the functional roles of hypothalamic GPR40 during chronic pain caused using a complete Freund's adjuvant (CFA-induced inflammatory chronic pain mouse model. GPR40 protein expression in the hypothalamus was transiently increased at day 7, but not at days 1, 3 and 14, after CFA injection. GPR40 was co-localized with NeuN, a neuron marker, but not with glial fibrillary acidic protein (GFAP, an astrocyte marker. At day 1 after CFA injection, GFAP protein expression was markedly increased in the hypothalamus. These increases were significantly inhibited by the intracerebroventricular injection of flavopiridol (15 nmol, a cyclin-dependent kinase inhibitor, depending on the decreases in both the increment of GPR40 protein expression and the induction of mechanical allodynia and thermal hyperalgesia at day 7 after CFA injection. Furthermore, the level of DHA in the hypothalamus tissue was significantly increased in a flavopiridol reversible manner at day 1, but not at day 7, after CFA injection. The intracerebroventricular injection of DHA (50 µg and GW9508 (1.0 µg, a GPR40-selective agonist, significantly reduced mechanical allodynia and thermal hyperalgesia at day 7, but not at day 1, after CFA injection. These effects were inhibited by intracerebroventricular pretreatment with GW1100 (10 µg, a GPR40 antagonist. The protein expression of GPR40 was colocalized with that of β-endorphin and proopiomelanocortin, and a single intracerebroventricular injection of GW9508 (1.0 µg significantly increased the number of neurons double-stained for c-Fos and proopiomelanocortin in the arcuate nucleus of the hypothalamus. Our findings suggest that hypothalamic GPR40 activated by free long

  19. Hypothalamic GPR40 signaling activated by free long chain fatty acids suppresses CFA-induced inflammatory chronic pain.

    Science.gov (United States)

    Nakamoto, Kazuo; Nishinaka, Takashi; Sato, Naoya; Mankura, Mitsumasa; Koyama, Yutaka; Kasuya, Fumiyo; Tokuyama, Shogo

    2013-01-01

    GPR40 has been reported to be activated by long-chain fatty acids, such as docosahexaenoic acid (DHA). However, reports studying functional role of GPR40 in the brain are lacking. The present study focused on the relationship between pain regulation and GPR40, investigating the functional roles of hypothalamic GPR40 during chronic pain caused using a complete Freund's adjuvant (CFA)-induced inflammatory chronic pain mouse model. GPR40 protein expression in the hypothalamus was transiently increased at day 7, but not at days 1, 3 and 14, after CFA injection. GPR40 was co-localized with NeuN, a neuron marker, but not with glial fibrillary acidic protein (GFAP), an astrocyte marker. At day 1 after CFA injection, GFAP protein expression was markedly increased in the hypothalamus. These increases were significantly inhibited by the intracerebroventricular injection of flavopiridol (15 nmol), a cyclin-dependent kinase inhibitor, depending on the decreases in both the increment of GPR40 protein expression and the induction of mechanical allodynia and thermal hyperalgesia at day 7 after CFA injection. Furthermore, the level of DHA in the hypothalamus tissue was significantly increased in a flavopiridol reversible manner at day 1, but not at day 7, after CFA injection. The intracerebroventricular injection of DHA (50 µg) and GW9508 (1.0 µg), a GPR40-selective agonist, significantly reduced mechanical allodynia and thermal hyperalgesia at day 7, but not at day 1, after CFA injection. These effects were inhibited by intracerebroventricular pretreatment with GW1100 (10 µg), a GPR40 antagonist. The protein expression of GPR40 was colocalized with that of β-endorphin and proopiomelanocortin, and a single intracerebroventricular injection of GW9508 (1.0 µg) significantly increased the number of neurons double-stained for c-Fos and proopiomelanocortin in the arcuate nucleus of the hypothalamus. Our findings suggest that hypothalamic GPR40 activated by free long chain fatty

  20. 13C Metabolic Flux Analysis for systematic metabolic engineering of S. cerevisiae for overproduction of fatty acids.

    Directory of Open Access Journals (Sweden)

    Amit Ghosh

    2016-10-01

    Full Text Available Efficient redirection of microbial metabolism into the abundant production of desired bioproducts remains non-trivial. Here we used flux-based modeling approaches to improve yields of fatty acids in S. cerevisiae. We combined 13C labeling data with comprehensive genome-scale models to shed light onto microbial metabolism and improve metabolic engineering efforts. We concentrated on studying the balance of acetyl-CoA, a precursor metabolite for the biosynthesis of fatty acids. A genome-wide acetyl-CoA balance study showed ATP citrate lyase from Y. lipolytica as a robust source of cytoplasmic acetyl-CoA and malate synthase as a desirable target for down-regulation in terms of acetyl-CoA consumption. These genetic modifications were applied to S. cerevisiae WRY2, a strain that is capable of producing 460 mg L of free fatty acids. With the addition of ATP citrate lyase and down-regulation of malate synthase the engineered strain produced 26 per cent more free fatty acids. Further increases in free fatty acid production of 33 per cent were obtained by knocking out the cytoplasmic glycerol-3-phosphate dehydrogenase, which flux analysis had shown was competing for carbon flux upstream with the carbon flux through the acetyl-CoA production pathway in the cytoplasm. In total, the genetic interventions applied in this work increased fatty acid production by 70 per cent.

  1. FACTS ABOUT TRANS FATTY ACIDS

    Directory of Open Access Journals (Sweden)

    Sedighe Asgary

    2010-12-01

    trans fatty acid on blood lipids are still incompletely understood, but may involve opposite effects on ApoA-I and LDL ApoB-100 catabolism.14 N.R. Matthan et al, Dietary hydrogenated fat increases high-density lipoprotein apoA-I catabolism and decreases low-density lipoprotein apoB-100 catabolism in hypercholesterolemic women.17,18      Consumption of TFA predicts higher risk of coronary heart disease, sudden death, cancer and possibly diabetes mellitus.19-22 Additionally, the high consumption of TFA during pregnancy has been associated with effects on intrauterine development.23 TFA may have adverse effects on growth and development by interfering with essential fatty acid metabolism, direct effects on membrane structures or metabolism, or secondary to reducing the intakes of the cis essential fatty acids in either mother or child. TFA are transported across the placenta and secreted in human milk in amounts that depend on the maternal dietary intake.24-26 Inverse associations have been shown between TFA and the essential n − 6 and n − 3 fatty acids in newborn infants, human milk and preschool children. It supports the need to reduce industrially produced TFA and improve dietary fat quality, particularly by increasing intake of n − 3 fatty acids. The use of partially hydrogenated fats and oils by industry, particularly in baked and processed foods that are widely consumed by women and children result in exposure to TFA in amounts shown to have adverse health effects on blood lipids and inflammatory markers in adults. In addition, high exposure to TFA is consistently related to lower levels of Docosahexaenoic acid, a fatty acid that is crucial for normal neural development and function.24,27-29      It has also been observed a rise in allergic diseases upon the high ingestion of this fatty acid.30 These associations are greater than would be predicted by effects of TFA on serum lipoproteins alone. Systemic inflammation and endothelial dysfunction may

  2. Production of free fatty acids from waste oil by application of ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Larissa P.; Santos, Francisco F.P.; Costa, Enio; Fernandes, Fabiano A.N. [Universidade Federal do Ceara, Departamento de Engenharia Quimica, Fortaleza, CE (Brazil)

    2012-12-15

    This paper evaluates the production of free fatty acids (FFAs) from waste oil by means of low-frequency high-intensity ultrasound application under atmospheric pressure. To evaluate the potential of this technology, the reaction between waste palm oil and ethanol was carried out. Response surface methodology (RSM) was used to evaluate the influence of alcohol-to-oil weight ratio, potassium hydroxide-to-oil weight ratio, and temperature on the yield of waste oil into FFA. Analysis of the operating conditions by RSM showed that the most important operating conditions affecting the reaction were ethanol-to-oil weight ratio and potassium hydroxide-to-oil weight ratio. The highest yield observed was of 97.3 % after 45 min of reaction. The best operating condition was obtained by applying an ethanol-to-oil weight ratio of 2.4, a potassium hydroxide-to-oil weight ratio of 0.3, and temperature of 60 C. (orig.)

  3. Modified High-Sucrose Diet-Induced Abdominally Obese and Normal-Weight Rats Developed High Plasma Free Fatty Acid and Insulin Resistance

    Directory of Open Access Journals (Sweden)

    Li Cao

    2012-01-01

    Full Text Available Introduction. Metabolically obese but normal-weight (MONW individuals have metabolic features of overt obesity, and abdominal adiposity is common in them. Animal models of MONW individuals are lacking. We aimed to develop an abdominally obese and normal-weight (AONW rat model. Methods and Results. Young male Sprague-Dawley rats were fed chow or a modified high-sucrose (HS diet for 20 weeks. The HS diet induced increased visceral adipose tissue without increased body weight, reduced glucose disposal rates, and increased hepatic glucose output during the hyperinsulinemic-euglycemic clamp, increased plasma glucose during the intraperitoneal glucose tolerance test, and increased plasma free fatty acids. Hepatic lipidosis and hepatocyte mitochondria swelling were found in HS rats through light microscopy and transmission electron microscopy; similar impairments were not observed in muscle. RT-PCR showed that mRNA expression of uncoupling protein 3 and peroxisome proliferator-activated receptor-gamma coactivator 1α increased in muscle of HS rats, while expression of mitochondrial transcription factor A, glucose transporter type 4, and insulin receptor substrate-1 did not change significantly. Conclusion. AONW rats developed metabolic disorders seen in MONW individuals. Steatosis, mitochondrial morphologic changes, and insulin resistance were more serious in liver than in muscle. Genes involved in fatty acid metabolism and mitochondrial function changed in less impaired muscle.

  4. Two-Stage Conversion of High Free Fatty Acid Jatropha curcas Oil to Biodiesel Using Brønsted Acidic Ionic Liquid and KOH as Catalysts

    Directory of Open Access Journals (Sweden)

    Subrata Das

    2014-01-01

    Full Text Available Biodiesel was produced from high free fatty acid (FFA Jatropha curcas oil (JCO by two-stage process in which esterification was performed by Brønsted acidic ionic liquid 1-(1-butylsulfonic-3-methylimidazolium chloride ([BSMIM]Cl followed by KOH catalyzed transesterification. Maximum FFA conversion of 93.9% was achieved and it reduced from 8.15 wt% to 0.49 wt% under the optimum reaction conditions of methanol oil molar ratio 12 : 1 and 10 wt% of ionic liquid catalyst at 70°C in 6 h. The ionic liquid catalyst was reusable up to four times of consecutive runs under the optimum reaction conditions. At the second stage, the esterified JCO was transesterified by using 1.3 wt% KOH and methanol oil molar ratio of 6 : 1 in 20 min at 64°C. The yield of the final biodiesel was found to be 98.6% as analyzed by NMR spectroscopy. Chemical composition of the final biodiesel was also determined by GC-MS analysis.

  5. Intake of fatty acids in Western Europe with emphasis on trans fatty acids: The TRANSFAIR study

    NARCIS (Netherlands)

    Hulshof, K.F.A.M; Erp van - Baart, M.A.; Anttolainen, M.; Becker, W.; Church, S.M.; Couet, C.; Hermann-Kunz, E.; Kesteloot, H.; Leth, T.; Martins, I.; Moreiras, O.; Moschandreas, J.; Pizzoferrato, L.; Rimestad, A.H.; Thorgeirsdottir, H.; Amelsvoort, J.M.M. van; Aro, A.; Kafatos, A.G.; Lanzmann-Petithory, D.; Poppel, G. van

    1999-01-01

    Objective: To assess the intake of trans fatty acids (TFA) and other fatty acids in 14 Western European countries. Design and subjects: A maximum of 100 foods per country were sampled and centrally analysed. Each country calculated the intake of individual trans and other fatty acids, clusters of

  6. Intake of fatty acids in Western Europe with emphasis on trans fatty acids: The TRANSFAIR study

    DEFF Research Database (Denmark)

    Hulshof, K. F. A. M.; Erp-Baart, M. A. van; Anttolainen, M.

    1999-01-01

    Objective: To assess the intake of trans fatty acids (TFA) and other fatty acids in 14 Western European countries. Design and subjects: A maximum of 100 foods per country were sampled and centrally analysed. Each country calculated the intake of individual trans and other fatty acids, clusters of...

  7. Omega-3 fatty acid deficiency selectively up-regulates delta6-desaturase expression and activity indices in rat liver: prevention by normalization of omega-3 fatty acid status.

    Science.gov (United States)

    Hofacer, Rylon; Jandacek, Ronald; Rider, Therese; Tso, Patrick; Magrisso, I Jack; Benoit, Stephen C; McNamara, Robert K

    2011-09-01

    This study investigated the effects of perinatal dietary omega-3 (n-3) fatty acid depletion and subsequent repletion on the expression of genes that regulate long-chain (LC) polyunsaturated fatty acid biosynthesis in rat liver and brain. It was hypothesized that chronic n-3 fatty acid deficiency would increase liver Fads1 and Fads2 messenger RNA (mRNA) expression/activity and that n-3 fatty acid repletion would normalize this response. Adult rats fed the n-3-free diet during perinatal development exhibited significantly lower erythrocyte, liver, and frontal cortex LCn-3 fatty acid composition and reciprocal elevations in LC omega-6 (n-6) fatty acid composition compared with controls (CONs) and repleted rats. Liver Fads2, but not Fads1, Elovl2, or Elovl5, mRNA expression was significantly greater in n-3-deficient (DEF) rats compared with CONs and was partially normalized in repleted rats. The liver 18:3n-6/18:2n-6 ratio, an index of delta6-desturase activity, was significantly greater in DEF rats compared with CON and repleted rats and was positively correlated with Fads2 mRNA expression among all rats. The liver 18:3n-6/18:2n-6 ratio, but not Fads2 mRNA expression, was also positively correlated with erythrocyte and frontal cortex LCn-6 fatty acid compositions. Neither Fads1 or Fads2 mRNA expression was altered in brain cortex of DEF rats. These results confirm previous findings that liver, but not brain, delta6-desaturase expression and activity indices are negatively regulated by dietary n-3 fatty acids. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Lipase-catalyzed synthesis of fatty acid amide (erucamide) using fatty acid and urea.

    Science.gov (United States)

    Awasthi, Neeraj Praphulla; Singh, R P

    2007-01-01

    Ammonolysis of fatty acids to the corresponding fatty acid amides is efficiently catalysed by Candida antartica lipase (Novozym 435). In the present paper lipase-catalysed synthesis of erucamide by ammonolysis of erucic acid and urea in organic solvent medium was studied and optimal conditions for fatty amides synthesis were established. In this process erucic acid gave 88.74 % pure erucamide after 48 hour and 250 rpm at 60 degrees C with 1:4 molar ratio of erucic acid and urea, the organic solvent media is 50 ml tert-butyl alcohol (2-methyl-2-propanol). This process for synthesis is economical as we used urea in place of ammonia or other amidation reactant at atmospheric pressure. The amount of catalyst used is 3 %.

  9. Erythrocyte and platelet fatty acids in retinitis pigmentosa.

    Science.gov (United States)

    Stanzial, A M; Bonomi, L; Cobbe, C; Olivieri, O; Girelli, D; Trevisan, M T; Bassi, A; Ferrari, S; Corrocher, R

    1991-05-01

    The fatty acid composition and the glutathione-peroxidase activity (GSH-Px) of erythrocytes and platelets, the production of malondialdehyde (MDA) by platelets and the activity of the main systems of transmembrane cation transport in erythrocyte have been studied in 12 patients (5 males and 7 females) affected by retinitis pigmentosa (RP). A remarkable increase of saturated fatty acids (SFA), particularly of stearic acid (C18:0), has been noted in these patients. The reduced unsaturated/saturated fatty acids ratio (PUFA/SFA) observed in both erythrocytes and platelets and the decrease of arachidonic acid in platelets may depend by an active peroxidation process as documented by the increase of MDA. Platelet glutathione-peroxidase (PTL-GSH-PX) and plasma retinol were in the normal range, whereas erythrocyte glutathione-peroxidase (E-GSH-PX), MDA and plasma alfa-toco-pherol were increased in patients with RP. The activities of Na(+)-K+ pump, cotransport and Na(+)-Li+ countertransport were normal in RP erythrocytes.

  10. Roles of unsaturated fatty acids (especially omega-3 fatty acids) in the brain at various ages and during ageing.

    Science.gov (United States)

    Bourre, J M

    2004-01-01

    constituents at any stage of life, will tend to accelerate ageing. The enzymatic activities of sytivities of synthesis of long-chain polyunsaturated fatty acids from linoleic and alpha-linolenic acids are very limited in the brain: this organ therefore depends on an exogenous supply. Consequently, fatty acids that are essential for the brain are arachidonic acid and cervonic acid, derived from the diet, unless they are synthesized by the liver from linoleic acid and alpha-linolenic acid. The age-related reduction of hepatic desaturase activities (which participate in the synthesis of long chains, together with elongases) can impair turnover of cerebral membranes. In many structures, especially in the frontal cortex, a reduction of cervonic and arachidonic acids is observed during ageing, predominantly associated with a reduction of phosphatidylethanolamines (mainly in the form of plasmalogens). Peroxisomal oxidation of polyunsaturated fatty acids decreases in the brain during ageing, participating in decreased turnover of membrane fatty acids, which are also less effectively protected against peroxidation by free radicals.

  11. Ruminal fatty acid metabolism : altering rumen biohydrolgenation to improve milk fatty acid profile of dairy cows

    NARCIS (Netherlands)

    Sterk, A.R.

    2011-01-01

    Nutritional guidelines promote a reduced intake of saturated fatty acids (FA) and increased intake of unsaturated FA by humans. Milk and dairy products contain a high proportion of saturated FA caused by extensive alterations of dietary lipids in the rumen through the processes of lipolysis and

  12. Influence of goats feeding on the fatty acids content in milk

    Directory of Open Access Journals (Sweden)

    Željka Klir

    2012-12-01

    Full Text Available Numerous studies have demonstrated the possibility of modeling the content of fatty acids of milk fat, in order to increase the contents of desirable n-3 unsaturated fatty acids and decrease saturated fatty acid with adequate nutrition of goats. Previous studies showed that the milk of goats on pasture increased content of caproic (C6:0, caprylic (C8:0, conjugated linoleic acid (CLA, rumenic acid, cis-9, trans-11 C18:2, linolenic (C18:3, eicosapentaenoic (C20:5 and docosahexaenoic (C22:6 and total content of polyunsaturated fatty acids (PUFA. In the same group of goats lower content of palmitoleic (C16:1, linoleic (C18:2 and total n-6 unsaturated fatty acids was found, as well as lower n-6/n-3 ratio compared with group of goats kept indoors and fed with alfalfa hay. In milk of goats fed with diets supplemented with safflower oil, content of CLA significantly increased, while goats fed with diets supplement with linseed oil had significantly higher content of C18:3 in milk, compared with group of goats fed without addition of these oils. Goats fed with addition of protected fish oil had significant transfer of eicosapentaenoic-EPA and docosahexaenoic-DHA fatty acids in milk. Protected fish oil reduced the negative impact of long chain fatty acids on the activity of ruminal microorganisms, consumption and digestibility of fiber, as well as inhibition of synthesis of fatty acids in milk gland. When adding unprotected fish oil, increase of stearic (C18:0 and oleic (C18:1 fatty acids occurred, because of the biohydrogenation of polyunsaturated fatty acids in rumen.

  13. Omega-3 fatty acids for breast cancer prevention and survivorship.

    Science.gov (United States)

    Fabian, Carol J; Kimler, Bruce F; Hursting, Stephen D

    2015-05-04

    Women with evidence of high intake ratios of the marine omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) relative to the omega-6 arachidonic acid have been found to have a reduced risk of breast cancer compared with those with low ratios in some but not all case-control and cohort studies. If increasing EPA and DHA relative to arachidonic acid is effective in reducing breast cancer risk, likely mechanisms include reduction in proinflammatory lipid derivatives, inhibition of nuclear factor-κB-induced cytokine production, and decreased growth factor receptor signaling as a result of alteration in membrane lipid rafts. Primary prevention trials with either risk biomarkers or cancer incidence as endpoints are underway but final results of these trials are currently unavailable. EPA and DHA supplementation is also being explored in an effort to help prevent or alleviate common problems after a breast cancer diagnosis, including cardiac and cognitive dysfunction and chemotherapy-induced peripheral neuropathy. The insulin-sensitizing and anabolic properties of EPA and DHA also suggest supplementation studies to determine whether these omega-3 fatty acids might reduce chemotherapy-associated loss of muscle mass and weight gain. We will briefly review relevant omega-3 fatty acid metabolism, and early investigations in breast cancer prevention and survivorship.

  14. Nickel Inhibits Mitochondrial Fatty Acid Oxidation

    Science.gov (United States)

    Uppala, Radha; McKinney, Richard W.; Brant, Kelly A.; Fabisiak, James P.; Goetzman, Eric S.

    2015-01-01

    Nickel exposure is associated with changes in cellular energy metabolism which may contribute to its carcinogenic properties. Here, we demonstrate that nickel strongly represses mitochondrial fatty acid oxidation—the pathway by which fatty acids are catabolized for energy—in both primary human lung fibroblasts and mouse embryonic fibroblasts. At the concentrations used, nickel suppresses fatty acid oxidation without globally suppressing mitochondrial function as evidenced by increased glucose oxidation to CO2. Pre-treatment with L-carnitine, previously shown to prevent nickel-induced mitochondrial dysfunction in neuroblastoma cells, did not prevent the inhibition of fatty acid oxidation. The effect of nickel on fatty acid oxidation occurred only with prolonged exposure (>5 hr), suggesting that direct inhibition of the active sites of metabolic enzymes is not the mechanism of action. Nickel is a known hypoxia-mimetic that activates hypoxia inducible factor-1α (HIF1α). Nickel-induced inhibition of fatty acid oxidation was blunted in HIF1α knockout fibroblasts, implicating HIF1α as one contributor to the mechanism. Additionally, nickel down-regulated the protein levels of the key fatty acid oxidation enzyme very long-chain acyl-CoA dehydrogenase (VLCAD) in a dose-dependent fashion. In conclusion, inhibition of fatty acid oxidation by nickel, concurrent with increased glucose metabolism, represents a form of metabolic reprogramming that may contribute to nickel-induced carcinogenesis. PMID:26051273

  15. Glucose-stimulated acrolein production from unsaturated fatty acids.

    Science.gov (United States)

    Medina-Navarro, R; Duran-Reyes, G; Diaz-Flores, M; Hicks, J J; Kumate, J

    2004-02-01

    Glucose auto-oxidation may be a significant source of reactive oxygen species (ROS), and also be important in the lipid peroxidation process, accompanied by the release of toxic reactive products. We wanted to demonstrate that acrolein can be formed directly and actively from free fatty acids in a hyperglycemic environment. A suspension of linoleic and arachidonic acids (2.5 mM) was exposed to different glucose concentrations (5, 10 and 15 mmol/L) in vitro. The samples were extracted with organic solvents, partitioned, followed at 255-267 nm, and analysed using capillary electrophoresis and mass spectroscopy. The total release of aldehydes significantly (P products, acrolein (5% of total) and its condensing product, 4-hydroxy-hexenal, were identified. From the results presented here, it was possible to demonstrate the production of acrolein, probably as a fatty acid product, due to free radicals generated from the glucose auto-oxidation process. The results led us to propose that acrolein, which is one of the most toxic aldehydes, is produced during hyperglycemic states, and may lead to tissue injury, as one of the initial problems to be linked to high levels of glucose in vivo.

  16. Radioiodinated fatty acid carnitine ester: synthesis and biodistribution of 15-(p-iodo[131I]-phenyl)pentadecanoyl-D,L-carnitine chloride

    International Nuclear Information System (INIS)

    Eisenhut, M.; Liefhold, J.

    1986-01-01

    After the uptake into heart muscle cells long chain fatty acids enter predominantly into the triglyceride and phospholipid pool before they are degraded in the mitochondria by β-oxidation. Therefore the formation of fatty acid esters with glycerine obscures the functional ability of the heart namely to catabolize free fatty acids. The sum of the two reaction pathways are visualized by sequential heart scintigraphy with e.g. 131 I labeled 15-(p-iodo-phenyl)-pentadecanoic acid (IPPA). Before the fatty acids can be degraded by β-oxidation they are bound to carnitine for mitochondrial membrane transport. Thus IPPA would not participate in lipid formation, if it is offered as 15-(p-iodo[ 131 I]-phenyl)-pentadecanoyl-D,L-carnitine chloride (IPPA-CE) to the heart muscle cells. Additionally carnitine esters of fatty acids are known to be better substrates for β-oxidation than free fatty acids. We were therefore interested in the biochemical fate of radioiodinated IPPA-CE in rats. (author)

  17. Defense Priming and Jasmonates: A Role for Free Fatty Acids in Insect Elicitor-Induced Long Distance Signaling

    Directory of Open Access Journals (Sweden)

    Ting Li

    2016-01-01

    Full Text Available Green leaf volatiles (GLV prime plants against insect herbivore attack resulting in stronger and faster signaling by jasmonic acid (JA. In maize this response is specifically linked to insect elicitor (IE-induced signaling processes, which cause JA accumulation not only around the damage site, but also in distant tissues, presumably through the activation of electrical signals. Here, we present additional data further characterizing these distal signaling events in maize. Also, we describe how exposure to GLV increases free fatty acid (fFA levels in maize seedlings, but also in other plants, and how increased fFA levels affect IE-induced JA accumulation. Increased fFA, in particular α-linolenic acid (LnA, caused a significant increase in JA accumulation after IE treatment, while JA induced by mechanical wounding (MW alone was not affected. We also identified treatments that significantly decreased certain fFA level including simulated wind and rain. In such treated plants, IE-induced JA accumulation was significantly reduced when compared to un-moved control plants, while MW-induced JA accumulation was not significantly affected. Since only IE-induced JA accumulation was altered by changes in the fFA composition, we conclude that changing levels of fFA affect primarily IE-induced signaling processes rather than serving as a substrate for JA.

  18. Generation of fatty acids by an acyl esterase in the bioluminescent system of Photobacterium phosphoreum

    International Nuclear Information System (INIS)

    Carey, L.M.; Rodriguez, A.; Meighen, E.

    1984-01-01

    The fatty acid reductase complex from Photobacterium phosphoreum has been discovered to have a long chain ester hydrolase activity associated with the 34K protein component of the complex. This protein has been resolved from the other components (50K and 58K) of the fatty acid reductase complex with a purity of > 95% and found to catalyze the transfer of acyl groups from acyl-CoA primarily to thiol acceptors with a low level of transfer to glycerol and water. Addition of the 50K protein of the complex caused a dramatic change in specificity increasing the transfer to oxygen acceptors. The acyl-CoA hydrolase activity increased almost 10-fold, and hence free fatty acids can be generated by the 34K protein when it is present in the fatty acid reductase complex. Hydrolysis of acyl-S-mercaptoethanol and acyl-1-glycerol and the ATP-dependent reduction of the released fatty acids to aldehyde for the luminescent reaction were also demonstrated for the reconstituted fatty acid reductase complex, raising the possibility that the immediate source of fatty acids for this reaction in vivo could be the membrane lipids and/or the fatty acid synthetase system

  19. Effect of oilseed type on milk fatty acid composition of individual cows, and also bulk tank milk fatty acid composition from commercial farms

    OpenAIRE

    Kliem, K. E.; Humphries, D. J.; Reynolds, C. K.; Morgan, R.; Givens, D. I.

    2016-01-01

    Supplementing dairy cow diets with oilseed preparations has been shown to replace milk saturated fatty acids (SFA) with mono- and/or polyunsaturated fatty acids (MUFA, PUFA), which may reduce risk factors associated with cardio-metabolic diseases in humans consuming milk and dairy products. Previous studies demonstrating this are largely detailed, highly controlled experiments involving small numbers of animals, but in order to transfer this feeding strategy to commercial situations further s...

  20. Effects of dietary flaxseed oil on the muscle fatty acid composition in ...

    African Journals Online (AJOL)

    USER

    2014-08-15

    Aug 15, 2014 ... fatty acids (PUFA) in the LD muscle (4.60 : 1 in the flaxseed diet, compared with ... reducing the consumption of linoleic fatty acid (LA), and increasing the ..... inflammatory potential because of their traditional properties of ...

  1. Demonstration of disturbed free fatty acid metabolism of myocardium in patients with non-insulin-dependent diabetes mellitus as measured with iodine-123-heptadecanoic acid

    International Nuclear Information System (INIS)

    Kuikka, J.T.; Mustonen, J.N.; Uusitupa, M.I.J.; Rautio, P.; Vanninen, E.; Laakso, M.; Laensimies, E.; Kuopio Central Hospital

    1991-01-01

    Myocardial free fatty acid metabolism and left ventricular function were evaluated in 15 middle-aged patients with non-insulin dependent diabetes mellitus (NIDDM) and in 8 healthy control subjects. The study subjects had no evidence of coronary heart disease on the basis of clinical history, exercise ECG or myocardial perfusion scintigraphy. During peak exercise, iodine-123 hepatadecanoic acid (HDA) was intravenously injected. Myocardial activity distribution of 123 I-HDA was measured 10, 30, and 50 min after exercise using single-photon emission tomography (SPET); and then further corrected by free 123 I-iodine. Venous blood samples were drawn for detecting the plasma activity of 123 I. The net extraction of 123 I-HDA into the myocardium was obtained by dividing the corrected tissue 123 I concentration by the integral of the plasma time activity curve. The net extraction was 0.40±0.06 min -1 (mean±SD) patients with NIDDM and 0.38±0.006 min -1 in control subjects (P>0.1), respectively. The faster elimination rate of 123 I-HDA was found in patients with NIDDM (0.029±0.008 min -1 ) than in control subjects (0.022±0.004 min - 1); P 123 I-HDA and the change of LVEF, as well as with exercise load (r=0.68; P<0.01). In conclusion, evidence of an increased fatty acid utilization and triglyceride synthesis rate was observed in the diabetic myocardium. (orig.)

  2. Anti-Inflammatory and Insulin-Sensitizing Effects of Free Fatty Acid Receptors.

    Science.gov (United States)

    Miyamoto, Junki; Kasubuchi, Mayu; Nakajima, Akira; Kimura, Ikuo

    2017-01-01

    Chronic low-grade inflammation in macrophages and adipose tissues can promote the development of obesity and type 2 diabetes. Free fatty acids (FFAs) have important roles in various tissues, acting as both essential energy sources and signaling molecules. FFA receptors (FFARs) can modulate inflammation in various types of cells and tissues; however the underlying mechanisms mediating these effects are unclear. FFARs are activated by specific FFAs; for example, GPR40 and GPR120 are activated by medium and long chain FFAs, GPR41 and GPR43 are activated by short chain FFAs, and GPR84 is activated by medium-chain FFAs. To date, a number of studies associated with the physiological functions of G protein-coupled receptors (GPCRs) have reported that these GPCRs are expressed in various tissues and involved in inflammatory and metabolic responses. Thus, the development of selective agonists or antagonists for various GPCRs may facilitate the establishment of novel therapies for the treatment of various diseases. In this review, we summarize current literature describing the potential of GPCRs as therapeutic targets for inflammatory and metabolic disorders.

  3. Antibacterial free fatty acids: activities, mechanisms of action and biotechnological potential.

    Science.gov (United States)

    Desbois, Andrew P; Smith, Valerie J

    2010-02-01

    Amongst the diverse and potent biological activities of free fatty acids (FFAs) is the ability to kill or inhibit the growth of bacteria. The antibacterial properties of FFAs are used by many organisms to defend against parasitic or pathogenic bacteria. Whilst their antibacterial mode of action is still poorly understood, the prime target of FFA action is the cell membrane, where FFAs disrupt the electron transport chain and oxidative phosphorylation. Besides interfering with cellular energy production, FFA action may also result from the inhibition of enzyme activity, impairment of nutrient uptake, generation of peroxidation and auto-oxidation degradation products or direct lysis of bacterial cells. Their broad spectrum of activity, non-specific mode of action and safety makes them attractive as antibacterial agents for various applications in medicine, agriculture and food preservation, especially where the use of conventional antibiotics is undesirable or prohibited. Moreover, the evolution of inducible FFA-resistant phenotypes is less problematic than with conventional antibiotics. The potential for commercial or biomedical exploitation of antibacterial FFAs, especially for those from natural sources, is discussed.

  4. Renal-protective and ameliorating impacts of omega-3 fatty acids against aspartame damaged MDCK cells.

    Science.gov (United States)

    Pandurangan, Muthuraman; Enkhtaivan, Gansukh; Veerappan, Muthuviveganandavel; Mistry, Bhupendra; Patel, Rahul; Moon, So Hyun; Nagajyothi, Patnamsetty Chidanandha; Kim, Doo Hwan

    2017-11-01

    Aspartame is widely used artificial sweeteners as food additives. Several researchers have pointed that the controversial report on the use of aspartame over more than decades. Omega-3 fatty acids are essential and unsaturated fatty acids, and it plays a remarkable role in vision, intelligence, neural development, and metabolism of neurotransmitters. Therefore, the present study was aimed to investigate the effect of omega-3 fatty acids on aspartame treated renal cells. Experimental groups were divided into three such as sham control, aspartame treated, and aspartame with omega-3 fatty acids. Cell viability was determined by sulforhodamine-b assay and flow cytometric analysis. The experimental results showed that the aspartame induced altered cell viability were reduced following treatment of aspartame with omega-3 fatty acids. Altered cell morphology was recovered by omega-3 fatty acids. DNA damage appeared in the highest concentration of aspartame used in this study. DNA damage characteristics such as comet tail and tiny head sections did not appear in the omega-3 fatty acids treated cells. Several microvilli and vesicular structures were found in aspartame treated cells. Altered morphology such as rounding, microvilli, and formation of dome-like structures did not appear in the omega-3 fatty acids with aspartame treated cells. Caspase-3 mRNA and protein expression were increased in aspartame treated cells, and these levels were reduced following omega-3 fatty acids treatment. Taking all these data together, it is suggested that the omega-3 fatty acids may be a therapeutic agent to reduce the aspartame induced biochemical and morphological alterations in normal renal cells. © 2017 BioFactors, 43(6):847-857, 2017. © 2017 International Union of Biochemistry and Molecular Biology.

  5. A novel HPLC-ESI-Q-ToF approach for the determination of fatty acids and acylglycerols in food samples.

    Science.gov (United States)

    La Nasa, Jacopo; Degano, Ilaria; Brandolini, Leonardo; Modugno, Francesca; Bonaduce, Ilaria

    2018-07-12

    We propose a new analytical method using reverse phase High performance liquid chromatography (HPLC) coupled through an electrospray source with a tandem quadrupole-time-of-flight (ESI-Q-ToF) mass spectrometric detector for the full characterization and quantitation of the different classes of fatty acids and acylglycerols in lipid samples in a single chromatographic run. In this work, we optimized the derivatization reaction for free fatty acids with 2-hydrazinoquinoline, which is a low-cost approach, using a full factorial design. This reaction does not involve transesterification, thus enabling the free fatty acids to be separated and successfully quantified in the presence of mono-, di- and triacylglycerols without altering the whole glyceride profile. This new analytical method provides a full profile of fatty acids, mono-, di- and triglycerides within a relatively short chromatographic run (less than 40 min), with low operating back-pressure (less than 110 bar). The derivatization of the free fatty acids allows their detection in positive mode, with limits of detection in the range of 0.2-1.9 ng/g, and a dynamic range of two orders of magnitude. The figures of merit of the procedure are competitive with respect to the literature. The method was validated by characterizing two different types of olive oils. Free fatty acid content was quantified, and the results are consistent with literature data. The method was applied to the characterization of cow milk and an infant formula, after the precipitation of proteins and phospholipids, and proved suitable for the detection of short chain fatty acids, free fatty acids and glycerides highlighting differences in the composition of the two milks. The proposed procedure improves the current methods for the analysis of acylglyceride based materials, such as olive oil, and proved promising for the characterization of lipids in complex matrices, such as milk. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Regional myocardial extraction of a radioiodinated branched chain fatty acid during right ventricular pressure overload due to acute pulmonary hypertension

    International Nuclear Information System (INIS)

    Hurford, W.; Lowenstein, E.; Zapol, W.; Barlai-Kovach, M.; Livni, E.; Elmaleh, D.R.; Strauss, H.W.

    1985-01-01

    To determine whether branched chain fatty acid extraction is reduced during right ventricular (RV) dysfunction due to acute pulmonary artery hypertension, studies were done in 6 anesthetized dogs. Regional branched chain fatty acid extraction was measured by comparing the myocardial uptake of I-125 labeled 15-[p-(iodophenyl)]-3-methylpentadecanoic acid (I-PDA) to myocardial blood flow. Acute pulmonary hypertension was induced by incremental intravenous injection of 100 micron diameter glass beads into six pentobarbital anesthetized, mechanically ventilated dogs. Myocardial blood flow was measured by radiolabeled microspheres both under baseline conditions and during pulmonary hypertension. Mean RV pressure rose from 12 +- 2 (mean +- SEM) to 30 +-3mmHg resulting in a 225 +- 16% increase in RV stroke work. RV ejection fraction, as assessed by gated blood pool scans fell from 39 +- 2 to 18 +- 2%. Left ventricular (LV) pressures, stroke work and ejection fraction were unchanged. Myocardial blood flow increased 132 + 59% in the RV free wall and 67 +- 22% in the RV septum. LV blood flow was unchanged. Despite increased RV work and myocardial blood flow, no differences were noted in the branched chain fatty acid extraction ratios among LV or RV free walls or septum. The authors conclude that early RV dysfunction associated with pulmonary artery hypertension is not due to inadequate myocardial blood flow or branched chain fatty acid extraction

  7. Metaloxide--ZrO2 catalysts for the esterification and transesterification of free fatty acids and triglycerides to obtain bio-diesel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Manhoe; Salley, Steven O.; Ng, K. Y. Simon

    2016-09-06

    Mixed metal oxide catalysts (ZnO, CeO, La2O3, NiO, Al203, SiO2, TiO2, Nd2O3, Yb2O3, or any combination of these) supported on zirconia (ZrO2) or hydrous zirconia are provided. These mixed metal oxide catalysts can be prepared via coprecipitation, impregnation, or sol-gel methods from metal salt precursors with/without a Zirconium salt precursor. Metal oxides/ZrO2 catalyzes both esterification and transesterification of oil containing free fatty acids in one batch or in single stage. In particular, these mixed metal oxides supported or added on zirconium oxide exhibit good activity and selectivity for esterification and transesterification. The low acid strength of this catalyst can avoid undesirable side reaction such as alcohol dehydration or cracking of fatty acids. Metal oxides/ZrO2 catalysts are not sensitive to any water generated from esterification. Thus, esterification does not require a water free condition or the presence of excess methanol to occur when using the mixed metal oxide catalyst. The FAME yield obtained with metal oxides/ZrO2 is higher than that obtained with homogeneous sulfuric acid catalyst. Metal oxides/ZrO2 catalasts can be prepared as strong pellets and in various shapes for use directly in a flow reactor. Furthermore, the pellet has a strong resistance toward dissolution to aqueous or oil phases.

  8. The molecular basis of ligand interaction at free fatty acid receptor 4 (FFA4/GPR120)

    DEFF Research Database (Denmark)

    Hudson, Brian D; Shimpukade, Bharat; Milligan, Graeme

    2014-01-01

    The long-chain fatty acid receptor FFA4 (previously GPR120) is receiving substantial interest as a novel target for the treatment of metabolic and inflammatory disease. This study examines for the first time the detailed mode of binding of both long-chain fatty acid and synthetic agonist ligands ...

  9. Nutritional Manipulation of Primate Retinas, V: Effects of Lutein, Zeaxanthin, and n–3 Fatty Acids on Retinal Sensitivity to Blue-Light–Induced Damage

    Science.gov (United States)

    Barker, Felix M.; Snodderly, D. Max; Johnson, Elizabeth J.; Schalch, Wolfgang; Koepcke, Wolfgang; Gerss, Joachim

    2011-01-01

    Purpose. Blue-light photooxidative damage has been implicated in the etiology of age-related macular degeneration (AMD). The macular pigment xanthophylls lutein (L) and zeaxanthin (Z) and n–3 fatty acids may reduce this damage and lower the risk of AMD. This study investigated the effects of the lifelong absence of xanthophylls followed by L or Z supplementation, combined with the effects of n–3 fatty acid deficiency, on acute blue-light photochemical damage. Methods. Subjects included eight rhesus monkeys with no lifelong intake of xanthophylls and no detectable macular pigment. Of these, four had low n–3 fatty acid intake and four had adequate intakes. Control subjects had typical L, Z, and n–3 fatty acid intake. Retinas received 150-μm-diameter exposures of low-power 476-nm laser light at 0.5 mm (∼2°) eccentricity, which is adjacent to the macular pigment peak, and parafoveally at 1.5 mm (∼6°). Exposures of xanthophyll-free animals were repeated after supplementation with pure L or Z for 22 to 28 weeks. Ophthalmoscopically visible lesion areas were plotted as a function of exposure energy, with greater slopes of the regression lines indicating greater sensitivity to damage. Results. In control animals, the fovea was less sensitive to blue-light–induced damage than the parafovea. Foveal protection was absent in xanthophyll-free animals but was evident after supplementation. In the parafovea, animals low in n–3 fatty acids showed greater sensitivity to damage than animals with adequate levels. Conclusions. After long-term xanthophyll deficiency, L or Z supplementation protected the fovea from blue light–induced damage, whereas adequate n–3 fatty acid levels reduced the damage in the parafovea. PMID:21245404

  10. Fatty acid synthesis by spinach chloroplasts, 2

    International Nuclear Information System (INIS)

    Yamada, Mitsuhiro; Nakamura, Yasunori

    1975-01-01

    By incorporation of 3 H 2 O into the fatty acid chain in the presence of unlabelled precursor, we showed that fatty acids are synthesized from PGA, PEP and pyruvate by intact spinach chloroplasts in the light. 13 C-tracer experiments confirmed that 1-C of pyruvate is decarboxylated and 2-C is incorporated into fatty acids by the chloroplasts. The patterns of fatty acids synthesized from PGA and pyruvate were the same as that from acetate. The highest rate of fatty acid synthesis was reached at the physiological concentration of PGA (3 mM) and pyruvate (1 mM). These results indicate the operation of the following path in the chloroplasts in light: PGA→PEP→pyruvate→acetylCoA→fatty acids. Since citrate and OAA were much less active and malate and glyoxylate were inert as precursors for fatty acid synthesis, PEP or pyruvate carboxylation, citrate lyase reaction and malate synthetase reaction are not involved in the formation of acetylCoA and fatty acids. Since pyruvate was much more effective as a substrate for fatty acid synthesis than lactate, acetaldehyde or acetate, direct decarboxylation path is considered to be the primary path from pyruvate to acetylCoA. The insignificant effect of chloroplast-washing on fatty acid synthesis from PGA and pyruvate indicates that the glycolytic path from PGA to pyruvate is associated with the chloroplasts. Since pyruvate was more effectively incorporated into fatty acids than acetylCoA, it is unlikely that pyruvate decarboxylation to acetylCoA is due to mitochondria contaminating the chloroplast preparation. On the basis of measurements of 3 H 2 O incorporation in the light and dark, the activity of fatty acid synthesis in spincah leaves appears to be shared by the activities in chloroplasts (87%) and other organelles (13%). (author)

  11. Fatty acids from oleaginous yeasts and yeast-like fungi and their potential applications.

    Science.gov (United States)

    Xue, Si-Jia; Chi, Zhe; Zhang, Yu; Li, Yan-Feng; Liu, Guang-Lei; Jiang, Hong; Hu, Zhong; Chi, Zhen-Ming

    2018-02-01

    Oleaginous yeasts, fatty acids biosynthesis and regulation in the oleaginous yeasts and the fatty acids from the oleaginous yeasts and their applications are reviewed in this article. Oleaginous yeasts such as Rhodosporidium toruloides, Yarrowia lipolytica, Rhodotorula mucilaginosa, and Aureobasidium melanogenum, which can accumulate over 50% lipid of their cell dry weight, have many advantages over other oleaginous microorganisms. The fatty acids from the oleaginous yeasts have many potential applications. Many oleaginous yeasts have now been genetically modified to over-produce fatty acids and their derivatives. The most important features of the oleaginous yeasts are that they have special enzymatic systems for enhanced biosynthesis and regulation of fatty acids in their lipid particles. Recently, some oleaginous yeasts such as R. toruloides have been found to have a unique fatty acids synthetase and other oleaginous yeasts such as A. melanogenum have a unique highly reducing polyketide synthase (HR-PKS) involved in the biosynthesis of hydroxyl fatty acids. It is necessary to further enhance lipid biosynthesis using metabolic engineering and explore new applications of fatty acids in biotechnology.

  12. Radiotherapy improves serum fatty acids and lipid profile in breast cancer.

    Science.gov (United States)

    Shaikh, Sana; Channa, Naseem Aslam; Talpur, Farha Naz; Younis, Muhammad; Tabassum, Naila

    2017-05-18

    Breast cancer is a disease with diverse clinical symptoms, molecular profiles, and its nature to response its therapeutic treatments. Radiotherapy (RT), along with surgery and chemotherapy is a part of treatment in breast cancer. The aim of present study was to investigate pre and post treatment effects of radiotherapy in serum fatty acids and its lipids profile in patients with breast cancer. In this comparative as well as follow up study, Serum fatty acids were performed by gas chromatography to investigate fatty acids and Microlab for analysis of lipid profile. Among serum free and total fatty acids the major saturated fatty acids (SFAs) in serum lipids of breast cancer patients (pre and post treated) were stearic acid (18:0) and palmitic acid (16:0). These fatty acids contributed about 35-50% of total fatty acids. The decreased concentrations of linoleic acid (C18:2) and arachidonic acid (C20:4) with a lower ratio of C18:2/C18:1 was found in pretreated breast cancer patients as compared to controls. The n-3/n-6 ratio of breast cancer patients was decreased before treatment but it was 35% increased after treatment. In addition, plasma activity of D6 desaturase was increased in the breast cancer patients, while the activity of D5 desaturase was decreased. Increased levels of SFAs, monounsaturated fatty acids (MUFAs) and decreased polyunsaturated fatty acids (PUFAs) levels in breast cancer patients (pre and post treated) as compared to controls. Serum total cholesterol (TC) (224.4 mg/dL) and low density lipoprotein cholesterol (LDL-C) (142.9 mg/dL) were significantly increased in pretreated breast cancer patients but after the radiotherapy treatment, the TC (150.2 mg/dL) and LDL-C (89.8 mg/dL) were decreased. It seems that RT would have played a potential role in the treatment of BC. After RT the serum levels of PUFAs, TC, and LDL-C are improved. Our study reinforces the important role of RT in the management of BC. The level of PUFAs, TC, and LDL-C can be

  13. Dietary monounsaturated fatty acids intake and risk of skin photoaging.

    Directory of Open Access Journals (Sweden)

    Julie Latreille

    Full Text Available Intake of monounsaturated fatty acids has been reported to reduce oxidative stress, insulin resistance and related inflammatory processes and may thus protect from skin photoaging. The objective of this study was to investigate the association between the risk of photoaging, monounsaturated fatty acids intake and the sources of monounsaturated fatty acids.A cross sectional study was conducted within the framework of the SUVIMAX cohort. The survey included 1264 women and 1655 men aged between 45 and 60 years old. Dietary monounsaturated fatty acids intakes were estimated by dietary source through at least ten 24-h diet records completed during the first 2.5 years of the follow-up period. Severity of facial skin photoaging was graded by trained investigators at baseline during a clinical examination using a 6-grade scale illustrated by photographs. A lower risk of severe photoaging was associated with higher intakes of monounsaturated fatty acids from olive oil in both sexes. Strikingly, no association was found with intake of monounsaturated fatty acids from animal sources whether from dairy products, meat or processed meat.These findings support the beneficial effect of dietary olive oil or healthy diet habits associated with olive oil consumption on the severity of facial photoaging.

  14. Chemoproteomic Profiling of Acetanilide Herbicides Reveals Their Role in Inhibiting Fatty Acid Oxidation.

    Science.gov (United States)

    Counihan, Jessica L; Duckering, Megan; Dalvie, Esha; Ku, Wan-Min; Bateman, Leslie A; Fisher, Karl J; Nomura, Daniel K

    2017-03-17

    Acetanilide herbicides are among the most widely used pesticides in the United States, but their toxicological potential and mechanisms remain poorly understood. Here, we have used chemoproteomic platforms to map proteome-wide cysteine reactivity of acetochlor (AC), the most widely used acetanilide herbicide, in vivo in mice. We show that AC directly reacts with >20 protein targets in vivo in mouse liver, including the catalytic cysteines of several thiolase enzymes involved in mitochondrial and peroxisomal fatty acid oxidation. We show that the fatty acids that are not oxidized, due to impaired fatty acid oxidation, are instead diverted into other lipid pathways, resulting in heightened free fatty acids, triglycerides, cholesteryl esters, and other lipid species in the liver. Our findings show the utility of chemoproteomic approaches for identifying novel mechanisms of toxicity associated with environmental chemicals like acetanilide herbicides.

  15. Physical chemistry and engineering of membranes for fat - fatty acid separations

    NARCIS (Netherlands)

    Keurentjes, J.

    1991-01-01

    Fatty acids have to be removed from non-mineral oil for several purposes. In the refining of edible oils and fats they have to be removed as a contaminant. In the enzymatic hydrolysis of oils, a high content in fatty acids results in a reduced conversion rate. In order to maintain a

  16. Fatty acid and sterol contents during tulip leaf senescence induced by methyl jasmonate

    Directory of Open Access Journals (Sweden)

    Marian Saniewski

    2013-12-01

    Full Text Available It has been shown previously that methyl jasmonate (JA-Me applied in lanolin paste on the bottom surface of intact tulip leaves causes a rapid and intense its senescence. The aim of this work was to study the effect of JA-Me on free and bound fatty acid and sterol contents during tulip leaf senescence. The main free and bound fatty acids of tulip leaf, in decreasing order of their abundance, were linolenic, linoleic, palmitic, oleic, stearic and myristic acids. Only the content of free linolenic acid decreased after treatment with JA-Me during visible stage of senescence. ß-Sitosterol (highest concentration, campesterol, stigmasterol and cholesterol were identified in tulip leaf. Methyl jasmonate evidently increased the level of ß-sitosterol, campesterol and stigmasterol during induced senescence. It is suggested that the increase in sterol concentrations under the influence of methyl jasmonate induced changes in membrane fluidity and permeability, which may be responsible for senescence.

  17. Relations Between Serum Essential Fatty Acids, Cytokines (IL-6 & IL ...

    African Journals Online (AJOL)

    The aim of this study was to investigate the relations between free radical generation, interleukins (IL-6 & IL-8), apoptotic marker soluble Fas (sFas), and the level of ... IL-6, IL-8 and sFas whereas serum fatty acid revealed that Linoleicacid (LA) and alpha linolenic acid (ALA) were significantly decreased in the studied cases .

  18. [The non-etherifying and free fatty acids of blood plasma. Pathogenesis of arterial hypertension and symptoms of syndrome of overeating-metabolic syndrome: a lecture].

    Science.gov (United States)

    Titov, V N

    2013-12-01

    From point of view of physiology, the metabolic syndrome is a syndrome of overeating when an optimal by the content of fatty acids in food is too much a physologically. This condition forms an omental variant of increase of body mass. The oleic triglycerides cumulate in fatty cells of omentum and after activation of lypolisis at the level of paracrinically regulating associations of cells and organs release into blood many non-etherifying fatty acids. The albumin has no possibilities to bind them all. The polar fatty acids-free fatty acids which are not bind by albumin form in blood direct heterogeneous micelles which spontaneously incorporate into plasmatic membrane of monolayer of endothelium. At that, the hydrophilic lipid pores are formed through which Ca2+, Na+ and water get into cytosol and K+ gets out. The hydration of cytosol and hypercalcinemia increase dimensions, thickness of monolayer of epithelium, narrow lumen of arterioles of muscular type and increase resistance to blood flow in distal section of arterial channel. The hydrodynamic pressure increases compensatory in proximal section of arterial channel along with the development of arterial hypertension. The late in phylogenesis insulin has no possibilities to block lipolysis in fatty cells of omentum hence these cells have no receptors to this insulin. While in blood plasma the concentration of non-etherifying acids is increased the cell will not absorb and oxidize glucose. The non-etherifying form the resistance too late in phylogenesis insulin, hyperglycemia and hyperinsulinemia. The concentration of oleic triglycerides increases in blood. The increase in omentum of number of fatty cells of loose connective tissue forms biological reaction of inflammation right up to destruction of overloaded oleic triglycerides cells on the type of apoptosis. This occurrence increases the concentration of C-reactive protein in blood plasma. All symptoms of syndrome of overeating (metabolic syndrome) are formed in

  19. Can ω-3 fatty acids and tocotrienol-rich vitamin E reduce symptoms of neurodevelopmental disorders?

    Science.gov (United States)

    Gumpricht, Eric; Rockway, Susie

    2014-01-01

    The incidence of childhood neurodevelopmental disorders, which include autism, attention-deficit hyperactivity disorders, and apraxia, are increasing worldwide and have a profound effect on the behaviors, cognitive skills, mood, and self-esteem of these children. Although the etiologies of these disorders are unclear, they often accompany genetic and biochemical abnormalities resulting in cognitive and communication difficulties. Because cognitive and neural development require essential fatty acids (particularly long-chain ω-3 fatty acids often lacking in mother's and children's diets) during critical growth periods, the potential behavior-modifying effects of these fatty acids as "brain nutrients" has attracted considerable attention. Additionally, there is compelling evidence for increased oxidative stress, altered antioxidant defenses, and neuroinflammation in these children. The purpose of this review is to provide a scientific rationale based on cellular, experimental animal model, observational, and clinical intervention studies for incorporating the combination of ω-3 fatty acids and tocotrienol-rich vitamin E as complementary nutritional therapies in children with neurodevelopmental disorders. Should this nutritional combination correct key clinical or biochemical outcomes and/or improve behavioral patterns, it would provide a safe, complementary option for these children. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Essential fatty acid composition and correlates in children with severe acute malnutrition

    DEFF Research Database (Denmark)

    Babirekere-Iriso, Esther; Lauritzen, Lotte; Mortensen, Charlotte Gylling

    2016-01-01

    Background: Severe acute malnutrition (SAM) is a common condition in children living in low-income countries and may be associated with reduced polyunsaturated fatty acids (PUFA) blood levels. The purpose of this study was to describe whole blood fatty acid composition and correlates of PUFA...

  1. An 11-bp insertion in Zea mays fatb reduces the palmitic acid content of fatty acids in maize grain.

    Directory of Open Access Journals (Sweden)

    Lin Li

    Full Text Available The ratio of saturated to unsaturated fatty acids in maize kernels strongly impacts human and livestock health, but is a complex trait that is difficult to select based on phenotype. Map-based cloning of quantitative trait loci (QTL is a powerful but time-consuming method for the dissection of complex traits. Here, we combine linkage and association analyses to fine map QTL-Pal9, a QTL influencing levels of palmitic acid, an important class of saturated fatty acid. QTL-Pal9 was mapped to a 90-kb region, in which we identified a candidate gene, Zea mays fatb (Zmfatb, which encodes acyl-ACP thioesterase. An 11-bp insertion in the last exon of Zmfatb decreases palmitic acid content and concentration, leading to an optimization of the ratio of saturated to unsaturated fatty acids while having no effect on total oil content. We used three-dimensional structure analysis to explain the functional mechanism of the ZmFATB protein and confirmed the proposed model in vitro and in vivo. We measured the genetic effect of the functional site in 15 different genetic backgrounds and found a maximum change of 4.57 mg/g palmitic acid content, which accounts for ∼20-60% of the variation in the ratio of saturated to unsaturated fatty acids. A PCR-based marker for QTL-Pal9 was developed for marker-assisted selection of nutritionally healthier maize lines. The method presented here provides a new, efficient way to clone QTL, and the cloned palmitic acid QTL sheds lights on the genetic mechanism of oil biosynthesis and targeted maize molecular breeding.

  2. An 11-bp Insertion in Zea mays fatb Reduces the Palmitic Acid Content of Fatty Acids in Maize Grain

    Science.gov (United States)

    Li, Qing; Yang, Xiaohong; Zheng, Debo; Warburton, Marilyn; Chai, Yuchao; Zhang, Pan; Guo, Yuqiu; Yan, Jianbing; Li, Jiansheng

    2011-01-01

    The ratio of saturated to unsaturated fatty acids in maize kernels strongly impacts human and livestock health, but is a complex trait that is difficult to select based on phenotype. Map-based cloning of quantitative trait loci (QTL) is a powerful but time-consuming method for the dissection of complex traits. Here, we combine linkage and association analyses to fine map QTL-Pal9, a QTL influencing levels of palmitic acid, an important class of saturated fatty acid. QTL-Pal9 was mapped to a 90-kb region, in which we identified a candidate gene, Zea mays fatb (Zmfatb), which encodes acyl-ACP thioesterase. An 11-bp insertion in the last exon of Zmfatb decreases palmitic acid content and concentration, leading to an optimization of the ratio of saturated to unsaturated fatty acids while having no effect on total oil content. We used three-dimensional structure analysis to explain the functional mechanism of the ZmFATB protein and confirmed the proposed model in vitro and in vivo. We measured the genetic effect of the functional site in 15 different genetic backgrounds and found a maximum change of 4.57 mg/g palmitic acid content, which accounts for ∼20–60% of the variation in the ratio of saturated to unsaturated fatty acids. A PCR-based marker for QTL-Pal9 was developed for marker-assisted selection of nutritionally healthier maize lines. The method presented here provides a new, efficient way to clone QTL, and the cloned palmitic acid QTL sheds lights on the genetic mechanism of oil biosynthesis and targeted maize molecular breeding. PMID:21931818

  3. Features of fatty acid synthesis in higher plants

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, M [Tokyo Univ. (Japan). Coll. of General Education; Nakamura, Y

    1975-07-01

    In the biosynthesis of fatty acid in the presence of /sup 3/H/sub 2/O, /sup 3/H is incorporated into the hydrocarbon chain of the fatty acid. The features in the fatty acid synthesis of higher plants were investigated by applying /sup 3/H/sub 2/O method to the measurement of the ability of spinach leaves synthesizing fatty acid. Sucrose, acetate, pyruvate, PGA, PEP, OAA, citrate, etc. were employed as the substrates of fatty acid synthesis to trace the process of synthesis of each fatty acid. The demand of various cofactors related to the ability of spinach chloroplast fatty acid synthesizing was also examined. Light dependence of the fatty acid synthesis of chloroplast as well as the influences of N,N'-dicyclohexyl carbodiimide, carbonylcyanide-4-trifluoromethoxy phenyl hydrazone and NH/sub 4/Cl were discussed. The results were compared with the reports on the fatty acid synthesis of avocado pear, castor bean, etc.

  4. 40 CFR 721.3620 - Fatty acid amine condensate, polycarboxylic acid salts.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Fatty acid amine condensate... Specific Chemical Substances § 721.3620 Fatty acid amine condensate, polycarboxylic acid salts. (a... a fatty acid amine condensate, polycarboxylic acid salts. (PMN P-92-445) is subject to reporting...

  5. The contribution of autochthonous microflora on free fatty acids release and flavor development in low-salt fermented fish.

    Science.gov (United States)

    Xu, Yanshun; Li, Lin; Regenstein, Joe Mac; Gao, Pei; Zang, Jinhong; Xia, Wenshui; Jiang, Qixing

    2018-08-01

    To investigate the contribution of autochthonous microflora on free fatty acids (FFA) release and flavor development in low-salt fermented fish, three groups of processed fish, including bacteriostatic-acidification group (BAG), bacteriostatic group (BG), and spontaneous fermented fish (CG) were established. Results showed that addition of NaN 3 reduced microbial load in BAG and BG below 3.5 log CFU/g after 3 weeks of incubation. Activities of lipases and lipoxygenase declined markedly with increasing time, where BG had the highest activities, followed by CG and BAG. There is a 36.3% higher in the total FFA content in CG than that in BAG, indicating both microbial and endogenous lipases contributed to the FFA liberation in fermented fish while endogenous lipases play a major role. However, compared to BAG and BG, largely higher levels of volatile compounds were observed in CG, suggesting that autochthonous microflora dominated the generation of volatile flavor compounds in fermented fish. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Improving surface functional properties of tofu whey-derived peptides by chemical modification with fatty acids.

    Science.gov (United States)

    Matemu, Athanasia Oswald; Katayama, Shigeru; Kayahara, Hisataka; Murasawa, Hisashi; Nakamura, Soichiro

    2012-04-01

    Effect of acylation with saturated fatty acids on surface functional properties of tofu whey-derived peptides was investigated. Tofu whey (TW) and soy proteins (7S, 11S, and acid-precipitated soy protein [APP]) were hydrolyzed by Protease M 'Amano' G, and resulting peptide mixtures were acylated with esterified fatty acids of different chain length (6C to 18C) to form a covalent linkage between the carboxyl group of fatty acid and the free amino groups of peptide. Acylation significantly (P properties of 7S, 11S, and APP peptides independent of fatty acid chain length. Acylation decreased water binding capacity although oil binding capacity of acylated tofu whey ultra filtered fraction (UFTW acids had shown significant higher surface hydrophobicity as in contrast with acylated UFTW acids can further affect functional properties of soy proteins. © 2012 Institute of Food Technologists®

  7. Pain and beyond: fatty acid amides and fatty acid amide hydrolase inhibitors in cardiovascular and metabolic diseases.

    Science.gov (United States)

    Pillarisetti, Sivaram; Alexander, Christopher W; Khanna, Ish

    2009-12-01

    Fatty acid amide hydrolase (FAAH) is responsible for the hydrolysis of several important endogenous fatty acid amides (FAAs), including anandamide, oleoylethanolamide and palmitoylethanolamide. Because specific FAAs interact with cannabinoid and vanilloid receptors, they are often referred to as 'endocannabinoids' or 'endovanilloids'. Initial interest in this area, therefore, has focused on developing FAAH inhibitors to augment the actions of FAAs and reduce pain. However, recent literature has shown that these FAAs - through interactions with unique receptors (extracellular and intracellular) - can induce a diverse array of effects that include appetite suppression, modulation of lipid and glucose metabolism, vasodilation, cardiac function and inflammation. This review gives an overview of FAAs and diverse FAAH inhibitors and their potential therapeutic utility in pain and non-pain indications.

  8. Conversion of polar and non-polar algae oil lipids to fatty acid methyl esters with solid acid catalysts--A model compound study.

    Science.gov (United States)

    Asikainen, Martta; Munter, Tony; Linnekoski, Juha

    2015-09-01

    Bio-based fuels are becoming more and more important due to the depleting fossil resources. The production of biodiesel from algae oil is challenging compared to terrestrial vegetable oils, as algae oil consists of polar fatty acids, such as phospholipids and glycolipids, as well as non-polar triglycerides and free fatty acids common in vegetable oils. It is shown that a single sulphonated solid acid catalyst can perform the esterification and transesterification reactions of both polar and non-polar lipids. In mild reaction conditions (60-70 °C) Nafion NR50 catalyst produces methyl palmitate (FAME) from the palmitic acid derivatives of di-, and tri-glyceride, free fatty acid, and phospholipid with over 80% yields, with the glycolipid derivative giving nearly 40% yields of FAME. These results demonstrate how the polar and non-polar lipid derivatives of algal oil can be utilised as feedstocks for biodiesel production with a single catalyst in one reaction step. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Fatty acid effects on fibroblast cholesterol synthesis

    International Nuclear Information System (INIS)

    Shireman, R.B.; Muth, J.; Lopez, C.

    1987-01-01

    Two cell lines of normal (CRL 1475, GM5565) and of familial hypercholesterolemia (FH) (CM 486,488) fibroblasts were preincubated with medium containing the growth factor ITS, 2.5 mg/ml fatty acid-free BSA, or 35.2 μmol/ml of these fatty acids complexed with 2.5 mg BSA/ml: stearic (18:0), caprylic (8:0), oleic (18:1;9), linoleic (18:2;9,12), linolenic (18:3;9,12,15), docosahexaenoic (22:6;4,7,10,13,16,19)(DHA) or eicosapentaenoic (20:5;5,8,11,14,17)(EPA). After 20 h, cells were incubated for 2 h with 0.2 μCi [ 14 C]acetate/ml. Cells were hydrolyzed; an aliquot was quantitated for radioactivity and protein. After saponification and extraction with hexane, radioactivity in the aqueous and organic phases was determined. The FH cells always incorporated 30-90% more acetate/mg protein than normal cells but the pattern of the fatty acid effects was similar in both types. When the values were normalized to 1 for the BSA-only group, cells with ITS had the greatest [ 14 C]acetate incorporation (1.45) followed by the caprylic group (1.14). Cells incubated with 18:3, 20:6 or 22:6 incorporated about the same amount as BSA-only. Those preincubated with 18:2, 18:1, 18:0 showed the least acetate incorporation (0.87, 0.59 and 0.52, respectively). The percentage of total 14 C counts which extracted into hexane was much greater in FH cells; however, these values varied with the fatty acid, e.g., 1.31(18:0) and 0.84(8:0) relative to 1

  10. Prohibitin/annexin 2 interaction regulates fatty acid transport in adipose tissue

    Science.gov (United States)

    Salameh, Ahmad; Daquinag, Alexes C.; Staquicini, Daniela I.; An, Zhiqiang; Pasqualini, Renata; Kolonin, Mikhail G.

    2016-01-01

    We have previously identified prohibitin (PHB) and annexin A2 (ANX2) as proteins interacting on the surface of vascular endothelial cells in white adipose tissue (WAT) of humans and mice. Here, we demonstrate that ANX2 and PHB also interact in adipocytes. Mice lacking ANX2 have normal WAT vascularization, adipogenesis, and glucose metabolism but display WAT hypotrophy due to reduced fatty acid uptake by WAT endothelium and adipocytes. By using cell culture systems in which ANX2/PHB binding is disrupted either genetically or through treatment with a blocking peptide, we show that fatty acid transport efficiency relies on this protein complex. We also provide evidence that the interaction between ANX2 and PHB mediates fatty acid transport from the endothelium into adipocytes. Moreover, we demonstrate that ANX2 and PHB form a complex with the fatty acid transporter CD36. Finally, we show that the colocalization of PHB and CD36 on adipocyte surface is induced by extracellular fatty acids. Together, our results suggest that an unrecognized biochemical interaction between ANX2 and PHB regulates CD36-mediated fatty acid transport in WAT, thus revealing a new potential pathway for intervention in metabolic diseases. PMID:27468426

  11. Fatty acid biosynthesis VII. Substrate control of chain-length of products synthesised by rat liver fatty acid synthetase

    DEFF Research Database (Denmark)

    Hansen, Heinz Johs. Max; Carey, E.M.; Dils, R.

    1970-01-01

    - 1. Gas-liquid and paper chromatography have been used to determine the chain-lengths of fatty acids synthesised by purified rat liver fatty acid synthetase from [1-14C]acetyl-CoA, [1,3-14C2]malonyl-CoA and from [1-14C]acetyl-CoA plus partially purified rat liver acetyl-CoA carboxylase. - 2....... A wide range (C4:0–C18:0) of fatty acids was synthesised and the proportions were modified by substrate concentrations in the same manner as for purified rabbit mammary gland fatty acid synthetase. - 3. The relative amount of radioactivity incorporated from added acetyl-CoA and malonyl-CoA depended...... of long-chain fatty acids was synthesised from carboxylated acetyl-CoA than from added malonyl-CoA. - 5. It is suggested that acetyl-CoA carboxylase may carboxylate acetate bound to fatty acid synthetase....

  12. Decreased Polyunsaturated Fatty Acid Content Contributes to Increased Survival in Human Colon Cancer

    Directory of Open Access Journals (Sweden)

    Manuela Oraldi

    2009-01-01

    Full Text Available Among diet components, some fatty acids are known to affect several stages of colon carcinogenesis, whereas others are probably helpful in preventing tumors. In light of this, our aim was to determine the composition of fatty acids and the possible correlation with apoptosis in human colon carcinoma specimens at different Duke's stages and to evaluate the effect of enriching human colon cancer cell line with the possible reduced fatty acid(s. Specimens of carcinoma were compared with the corresponding non-neoplastic mucosa: a significant decrease of arachidonic acid, PPARα, Bad, and Bax and a significant increase of COX-2, Bcl-2, and pBad were found. The importance of arachidonic acid in apoptosis was demonstrated by enriching a Caco-2 cell line with this fatty acid. It induced apoptosis in a dose- and time-dependent manner via induction of PPARα that, in turn, decreased COX-2. In conclusion, the reduced content of arachidonic acid is likely related to carcinogenic process decreasing the susceptibility of cancer cells to apoptosis.

  13. Caveolar fatty acids and acylation of caveolin-1.

    Directory of Open Access Journals (Sweden)

    Qian Cai

    Full Text Available Caveolae are cholesterol and sphingolipids rich subcellular domains on plasma membrane. Caveolae contain a variety of signaling proteins which provide platforms for signaling transduction. In addition to enriched with cholesterol and sphingolipids, caveolae also contain a variety of fatty acids. It has been well-established that acylation of protein plays a pivotal role in subcellular location including targeting to caveolae. However, the fatty acid compositions of caveolae and the type of acylation of caveolar proteins remain largely unknown. In this study, we investigated the fatty acids in caveolae and caveolin-1 bound fatty acids.Caveolae were isolated from Chinese hamster ovary (CHO cells. The caveolar fatty acids were extracted with Folch reagent, methyl esterificated with BF3, and analyzed by gas chromatograph-mass spectrometer (GC/MS. The caveolin-1 bound fatty acids were immunoprecipitated by anti-caveolin-1 IgG and analyzed with GC/MS.In contrast to the whole CHO cell lysate which contained a variety of fatty acids, caveolae mainly contained three types of fatty acids, 0.48 µg palmitic acid, 0.61 µg stearic acid and 0.83 µg oleic acid/caveolae preparation/5 × 10(7 cells. Unexpectedly, GC/MS analysis indicated that caveolin-1 was not acylated by myristic acid; instead, it was acylated by palmitic acid and stearic acid.Caveolae contained a special set of fatty acids, highly enriched with saturated fatty acids, and caveolin-1 was acylated by palmitic acid and stearic acid. The unique fatty acid compositions of caveolae and acylation of caveolin-1 may be important for caveolae formation and for maintaining the function of caveolae.

  14. Omega-3 fatty acids (image)

    Science.gov (United States)

    Omega-3 fatty acids are a form of polyunsaturated fat that the body derives from food. Omega-3s (and omega-6s) are known as essential fatty acids (EFAs) because they are important for good health. ...

  15. Influence of the addition and storage time of crude extract of tea leaves (camellia sinensis l.) toward value of free fatty acid in crude palm oil

    Science.gov (United States)

    Erwin; Wahifiyah, E.; Hairani, R.; Panggabean, A. S.

    2018-04-01

    The purpose of this study was to determine the effect of the crude extract of tea leaves (Camellia sinensis L.) and storage time on the content of free fatty acid in palm oil. The dried tea leaves were macerated and concentrated by rotary evaporator. The extract obtained was added to crude palm oil with various added mass of the extract and various storage times. Phytochemical tests indicated the presence of secondary metabolites including alkaloids, triterpenoids, steroids, phenolics and flavonoids. The ANOVA test showed a decrease in free fatty acid content in crude palm oil with the addition of tea leaves extract. The LSD (Least Significant Difference) test showed the best influence on ALB of palm oil is on the total extract mass of 2 grams and the storage time of 20 days.

  16. Fatty acid synthesis in Escherichia coli and its applications towards the production of fatty acid based biofuels

    Science.gov (United States)

    2014-01-01

    The idea of renewable and regenerative resources has inspired research for more than a hundred years. Ideally, the only spent energy will replenish itself, like plant material, sunlight, thermal energy or wind. Biodiesel or ethanol are examples, since their production relies mainly on plant material. However, it has become apparent that crop derived biofuels will not be sufficient to satisfy future energy demands. Thus, especially in the last decade a lot of research has focused on the production of next generation biofuels. A major subject of these investigations has been the microbial fatty acid biosynthesis with the aim to produce fatty acids or derivatives for substitution of diesel. As an industrially important organism and with the best studied microbial fatty acid biosynthesis, Escherichia coli has been chosen as producer in many of these studies and several reviews have been published in the fields of E. coli fatty acid biosynthesis or biofuels. However, most reviews discuss only one of these topics in detail, despite the fact, that a profound understanding of the involved enzymes and their regulation is necessary for efficient genetic engineering of the entire pathway. The first part of this review aims at summarizing the knowledge about fatty acid biosynthesis of E. coli and its regulation, and it provides the connection towards the production of fatty acids and related biofuels. The second part gives an overview about the achievements by genetic engineering of the fatty acid biosynthesis towards the production of next generation biofuels. Finally, the actual importance and potential of fatty acid-based biofuels will be discussed. PMID:24405789

  17. Cardiorespiratory fitness modifies the association between dietary fat intake and plasma fatty acids.

    Science.gov (United States)

    König, D; Väisänen, S B; Bouchard, C; Halle, M; Lakka, T A; Baumstark, M W; Alen, M; Berg, A; Rauramaa, R

    2003-07-01

    To investigate the relation between (1) cardiorespiratory fitness and plasma saturated, monounsaturated and polyunsaturated fatty acids and (2) the interactions between cardiorespiratory fitness, dietary fat intake and plasma fatty acid composition. Cross-sectional analysis. The subjects were randomly selected, 127 middle-aged Finnish men participating in the DNASCO exercise intervention study. Cardiorespiratory fitness was determined spiroergometrically, dietary intake of macro- and micronutrients by 4-day food records and plasma fatty acids by gas chromatography. The subjects were divided into tertiles of aerobic fitness. Differences between fitness tertiles were not observed for dietary intake of total fat, and saturated, monounsaturated or polyunsaturated fatty acids (percent of total energy). In contrast, plasma saturated fatty acids were significantly lower (P cardiorespiratory fitness are associated with different levels in plasma saturated and polyunsaturated fatty acids and lead to modifications in the association between dietary and plasma fatty acids. These findings can perhaps be explained by a reduced hepatic fatty acid and lipoprotein synthesis as well as by an enhanced muscular lipid utilization, which are commonly seen in those who are physically active and who exhibit a higher level of fitness.

  18. Effect of penicillin on fatty acid synthesis and excretion in Streptococcus mutans BHT

    International Nuclear Information System (INIS)

    Brissette, J.L.; Pieringer, R.A.

    1985-01-01

    Treatment of exponentially growing cultures of Streptococcus mutans BHT with growth-inhibitory concentrations (0.2 microgram/ml) of benzylpenicillin stimulates the incorporation of [2- 14 C] acetate into lipids excreted by the cells by as much as 69-fold, but does not change the amount of 14 C incorporated into intracellular lipids. At this concentration of penicillin cellular lysis does not occur. The radioactive label is incorporated exclusively into the fatty acid moieties of the glycerolipids. During a 4-hr incubation in the presence of penicillin, the extracellular fatty acid ester concentration increases 1.5 fold, even though there is no growth or cellular lysis. An indication of the relative rate of fatty acid synthesis was most readily obtained by placing S. mutans BHT in a buffer containing 14 C-acetate. Under these nongrowing conditions free fatty acids are the only lipids labeled, a factor which simplifies the assay. The addition of glycerol to the buffer causes all of the nonesterified fatty acids to be incorporated into glycerolipid. The cells excrete much of the lipid whether glycerol is present or not. Addition of penicillin to the nongrowth supporting buffer system does not stimulate the incorporation of [ 14 C]-acetate into fatty acids

  19. Oilseeds native to the Cerrado have fatty acid profile beneficial for cardiovascular health

    Directory of Open Access Journals (Sweden)

    Aline Medeiros ALVES

    Full Text Available ABSTRACT Objective: To assess and compare the fatty acid composition of edible seeds and a nut native to the Cerrado (Brazilian savannah to that of traditional oilseeds. Methods: Baru almonds, Cerrado cashew nuts, and pequi almonds were extracted from the fruits using appropriate equipment. All edible seeds and nuts were roasted, except for the Brazil nut. The sample lipids were extracted via cold pressing. The fatty acids were esterified, and the fatty acid esters were analyzed by gas chromatography. Results: The native and traditional edible seeds and nuts contain mostly monounsaturated fatty acids (42.72 g to 63.44 g/100 g, except for the Brazil nut, which showed predominance of polyunsaturated fatty acids (45.48 g/100 g. Pequi almond had the highest saturated fatty acid content (36.14 g/100 g. The fatty acids with the highest concentration were oleic and linoleic acids, and palmitic acid was also found in considerable concentration in the oilseeds studied. The Cerrado cashew nut and the traditional cashew nut have similar fatty acid profiles. As for the ratio of ω-6 to ω-3, the baru almond showed the highest ratio, 9:1, which was the closest to the recommended intake of these fatty acids. Conclusion: The fatty acid profile of the edible seeds and nuts native to the cerrado is similar to those of traditional oilseeds. We suggest the inclusion of native oilseeds in the diet aiming at reducing the risk of cardiovascular disease, especially the baru almond and the cerrado cashew nut, due to the fact they have high ratio of monounsaturated fatty acids to saturated fatty acids.

  20. Omega-3 fatty acid supplementation in cancer therapy. Does eicosapentanoic acid influence the radiosensitivity of tumor cells?

    Energy Technology Data Exchange (ETDEWEB)

    Manda, Katrin; Kriesen, Stephan; Hildebrandt, Guido [Rostock Univ. (Germany). Dept. of Radiotherapy; Fietkau, Rainer; Klautke, Gunther [Univ. Hospital Erlangen, Erlangen (Germany). Dept. of Radiation Oncology

    2011-02-15

    Purpose: The aim of this study was to evaluate whether the omega-3 polyunsaturated fatty acid cis-5,8,11,14,17-eicosapentanoic acid (EPA) can enhance the radiosensitivity of different human tumor cell lines. Materials and Methods: Colon adenocarcinoma cells HT-29, and two glioblastoma multiforme tumor cells T98G and U251 were cultured under standard conditions. Cell growth was observed during administration with different concentrations of EPA, using it as the free fatty acid dissolved in ethanol or bound to bovine serum albumin. To investigate the influence of EPA (free and bound) on radiosensitivity, tumor cells were pretreated 30 minutes or 24 hours prior to irradiation with the fatty acid. Cell survival was measured by colony-forming assays. Results: When combined with irradiation, incubation with EPA was found to result in enhanced radiosensitivity with substantial variation: while there was strong radiosensitization for HT-29 and U251 cells, almost no effect for T98G cells was observed. A marked radiosensitization was clearly dependent on the treatment schedule. Conclusion: The observations suggest that EPA is not only a nutritional adjuvant but also may be a potential candidate to enhance the efficacy of irradiation on human cancer cells. (orig.)

  1. Fatty Acid Compositions of Six Wild Edible Mushroom Species

    Science.gov (United States)

    Günç Ergönül, Pelin; Akata, Ilgaz; Kalyoncu, Fatih; Ergönül, Bülent

    2013-01-01

    The fatty acids of six wild edible mushroom species (Boletus reticulatus, Flammulina velutipes var. velutipes, Lactarius salmonicolor, Pleurotus ostreatus, Polyporus squamosus, and Russula anthracina) collected from different regions from Anatolia were determined. The fatty acids were identified and quantified by gas chromatography and studied using fruit bodies. Fatty acid composition varied among species. The dominant fatty acid in fruit bodies of all mushrooms was cis-linoleic acid (18 : 2). Percentage of cis-linoleic acid in species varied from 22.39% to 65.29%. The other major fatty acids were, respectively, cis-oleic, palmitic, and stearic acids. Fatty acids analysis of the mushrooms showed that the unsaturated fatty acids were at higher concentrations than saturated fatty acids. PMID:23844377

  2. Fatty Acid Compositions of Six Wild Edible Mushroom Species

    Directory of Open Access Journals (Sweden)

    Pelin Günç Ergönül

    2013-01-01

    Full Text Available The fatty acids of six wild edible mushroom species (Boletus reticulatus, Flammulina velutipes var. velutipes, Lactarius salmonicolor, Pleurotus ostreatus, Polyporus squamosus, and Russula anthracina collected from different regions from Anatolia were determined. The fatty acids were identified and quantified by gas chromatography and studied using fruit bodies. Fatty acid composition varied among species. The dominant fatty acid in fruit bodies of all mushrooms was cis-linoleic acid (18 : 2. Percentage of cis-linoleic acid in species varied from 22.39% to 65.29%. The other major fatty acids were, respectively, cis-oleic, palmitic, and stearic acids. Fatty acids analysis of the mushrooms showed that the unsaturated fatty acids were at higher concentrations than saturated fatty acids.

  3. Esterification free fatty acid in sludge palm oil using ZrO2/SO42- - rice husk ash catalyst

    Science.gov (United States)

    Hidayat, Arif; Sutrisno, Bachrun

    2017-05-01

    Indonesia, as one of the biggest palm oil producers and exporters in the world, is producing large amounts of low-grade oil such as sludge palm oil (SPO) from palm oil industries. The use of SPO can lower the cost of biodiesel production significantly, which makes SPO a highly potential alternative feedstock for biodiesel production. In this paper, the esterification of free fatty acid on sludge palm oil was studied using rice husk ash as heterogeneous solid catalysts. Heterogeneous solid catalysts offer significant advantages of eliminating separation, corrosion, toxicity and environmental problems. In this paper the esterification of SPO, a by-product from palm oil industry, in the presence of modified rice husk ash catalysts was studied. The rice husk ash catalysts were synthesized by impregnating of Zirconia (Zr) on rice husk ash followed by sulfonation. The rice husk ash catalysts were characterized by using different techniques, such as FT-IR, XRD, and porous analysis. The effects of the mass ratio of catalyst to oil (1 - 10%), the molar ratio of methanol to oil (4:1 - 10:1), and the reaction temperature (40 - 60°C) were studied for the conversion of free fatty acids (FFAs) to optimize the reaction conditions. The results showed that the optimal conditions were an methanol to oil molar ratio of 10:1, the amount of catalyst of 10%w, and reaction temperature of 60°C.

  4. ADS genes for reducing saturated fatty acid levels in seed oils

    Science.gov (United States)

    Heilmann, Ingo H.; Shanklin, John

    2010-02-02

    The present invention relates to enzymes involved in lipid metabolism. In particular, the present invention provides coding sequences for Arabidopsis Desaturases (ADS), the encoded ADS polypeptides, and methods for using the sequences and encoded polypeptides, where such methods include decreasing and increasing saturated fatty acid content in plant seed oils.

  5. 21 CFR 172.863 - Salts of fatty acids.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Salts of fatty acids. 172.863 Section 172.863 Food... Multipurpose Additives § 172.863 Salts of fatty acids. The food additive salts of fatty acids may be safely..., magnesium, potassium, and sodium salts of the fatty acids conforming with § 172.860 and/or oleic acid...

  6. (N-3) fatty acids do not affect electrocardiographic characteristics of healthy men and women

    NARCIS (Netherlands)

    Geelen, A.; Brouwer, I.A.; Zock, P.L.; Kors, J.A.; Swenne, C.A.; Katan, M.B.; Schouten, E.G.

    2002-01-01

    (n-3) Fatty acids may reduce the risk of sudden death by preventing life-threatening cardiac arrhythmia. A standard electrocardiogram (ECG) may be used to detect clues as to the mechanism by which (n-3) fatty acids affect the electrophysiology of the heart. An earlier study showed that (n-3) fatty

  7. Omega-3 fatty acids upregulate adult neurogenesis

    OpenAIRE

    Beltz, Barbara S.; Tlusty, Michael F.; Benton, Jeannie L.; Sandeman, David C.

    2007-01-01

    Omega-3 fatty acids play crucial roles in the development and function of the central nervous system. These components, which must be obtained from dietary sources, have been implicated in a variety of neurodevelopmental and psychiatric disorders. Furthermore, the presence of omega-6 fatty acids may interfere with omega-3 fatty acid metabolism. The present study investigated whether changes in dietary ratios of omega-3:omega-6 fatty acids influence neurogenesis in the lobster (Homarus america...

  8. [Overexpression of four fatty acid synthase genes elevated the efficiency of long-chain polyunsaturated fatty acids biosynthesis in mammalian cells].

    Science.gov (United States)

    Zhu, Guiming; Saleh, Abdulmomen Ali Mohammed; Bahwal, Said Ahmed; Wang, Kunfu; Wang, Mingfu; Wang, Didi; Ge, Tangdong; Sun, Jie

    2014-09-01

    Three long-chain polyunsaturated fatty acids, docosahexaenoic acid (DHA, 22:6n-3), eicosapentaenoic acid (EPA, 20:5n-3) and arachidonic acid (ARA, 20:4n-6), are the most biologically active polyunsaturated fatty acids in the body. They are important in developing and maintaining the brain function, and in preventing and treating many diseases such as cardiovascular disease, inflammation and cancer. Although mammals can biosynthesize these long-chain polyunsaturated fatty acids, the efficiency is very low and dietary intake is needed to meet the requirement. In this study, a multiple-genes expression vector carrying mammalian A6/A5 fatty acid desaturases and multiple-genes expression vector carrying mammalian Δ6/Δ5 fatty acid desaturases and Δ6/Δ5 fatty acid elongases coding genes was used to transfect HEK293T cells, then the overexpression of the target genes was detected. GC-MS analysis shows that the biosynthesis efficiency and level of DHA, EPA and ARA were significantly increased in cells transfected with the multiple-genes expression vector. Particularly, DHA level in these cells was 2.5 times higher than in the control cells. This study indicates mammal possess a certain mechanism for suppression of high level of biosynthesis of long chain polyunsaturated fatty acids, and the overexpression of Δ6/Δ5 fatty acid desaturases and Δ6/Δ5 fatty acid elongases broke this suppression mechanism so that the level of DHA, EPA and ARA was significantly increased. This study also provides a basis for potential applications of this gene construct in transgenic animal to produce high level of these long-chain polyunsaturated fatty acid.

  9. The clinical significance of fatty acid binding proteins

    Directory of Open Access Journals (Sweden)

    Barbara Choromańska

    2011-11-01

    Full Text Available Excessive levels of free fatty acids are toxic to cells. The human body has evolved a defense mechanism in the form of small cytoplasmic proteins called fatty acid binding proteins (FABPs that bind long-chain fatty acids (LCFA, and then refer them to appropriate intracellular disposal sites (oxidation in mitochondria and peroxisomes or storage in the endoplasmic reticulum. So far, nine types of these proteins have been described, and their name refers to the place in which they were first identified or where they can be found in the greatest concentration. The most important FABPs were isolated from the liver (L-FABP, heart (H-FABP, intestine (I-FABP, brain (B-FABP, epidermis (E-FABP and adipocytes (A-FABP. Determination of H-FABP is used in the diagnosis of myocardial infarction, and L-FABP in kidney lesions of different etiologies. It is postulated that FABPs play an important role in the pathogenesis of metabolic diseases. Elevated levels of A-FABP have been found in the pericardial fat tissue and were associated with cardiac dysfunction in obese people. A rise in A-FABP has been observed in patients with type II diabetes. I-FABP is known as a marker of cell damage in the small intestine. Increased concentration of B-FABP has been associated with human brain tumors such as glioblastoma and astrocytoma, as well as with neurodegenerative diseases (Alzheimer’s, Parkinson’s and other disorders of cognitive function. The aim of this work was to present current data on the clinical significance of fatty acid binding proteins.

  10. Disruption of the Saccharomyces cerevisiae homologue to the murine fatty acid transport protein impairs uptake and growth on long-chain fatty acids

    DEFF Research Database (Denmark)

    Færgeman, Nils J.; DiRusso, C C; Elberger, A

    1997-01-01

    decrease in the uptake of the fluorescent long-chain fatty acid analogue boron dipyrromethene difluoride dodecanoic acid (BODIPY-3823); 3) a reduced rate of exogenous oleate incorporation into phospholipids; and 4) a 2-3-fold decrease in the rates of oleate uptake. These data support the hypothesis...

  11. Interactions between fatty acid synthesis, oxidation, and esterification in the production of triglyceride-rich lipoproteins by the liver.

    Science.gov (United States)

    Fukuda, N; Ontko, J A

    1984-08-01

    triglyceride produced from both de novo fatty acid synthesis and from infused free fatty acid substrate. These observations suggest the following chain of events in the liver following TOFA treatment: inhibition of fatty acid and cholesterol synthesis; increased fatty acid oxidation and ketogenesis; decreased triglyceride synthesis as a result of inhibition of fatty acid synthesis, stimulation of fatty acid oxidation, and altered partition of diglyceride between triglyceride and phospholipid synthesis; and decreased production of VLDL. These comparative rat liver perfusion experiments indicate that free fatty acids provide the major source of substrate for the hepatic production of triglyceri

  12. Fatty acid amide supplementation decreases impulsivity in young adult heavy drinkers

    Science.gov (United States)

    van Kooten, Maria J.; Veldhuizen, Maria G.; de Araujo, Ivan E.; O’Malley, Stephanie; Small, Dana M.

    2016-01-01

    Compromised dopamine signaling in the striatum has been associated with the expression of impulsive behaviors in addiction, obesity and alcoholism. In rodents, Intragastric infusion of the fatty acid amide oleoylethanolamide increases striatal extracellular dopamine levels via vagal afferent signaling. Here we tested whether supplementation with PhosphoLean™, a dietary supplement that contains the precursor of the fatty acid amide oleoylethanolamide (N-oleyl-phosphatidylethanolamine), would reduce impulsive responding and alcohol use in heavy drinking young adults. Twenty-two individuals were assigned to a three-week supplementation regimen with PhosphoLean™ or placebo. Impulsivity was assessed with self-report questionnaires and behavioral tasks pre- and post-supplementation. Although self-report measures of impulsivity did not change, supplementation with PhosphoLean™, but not placebo, significantly reduced false alarm rate on a Go/No-Go task. In addition, an association was found between improved sensitivity on the Go/No-Go task and reduced alcohol intake. These findings provide preliminary evidence that promoting fatty acid derived gut-brain dopamine communication may have therapeutic potential for reducing impulsivity in heavy drinkers. PMID:26656766

  13. Effects of Dietary Garlic Extracts on Whole Body Amino Acid and Fatty Acid Composition, Muscle Free Amino Acid Profiles and Blood Plasma Changes in Juvenile Sterlet Sturgeon,

    Directory of Open Access Journals (Sweden)

    Dong-Hoon Lee

    2012-10-01

    Full Text Available A series of studies were carried out to investigate the supplemental effects of dietary garlic extracts (GE on whole body amino acids, whole body and muscle free amino acids, fatty acid composition and blood plasma changes in 6 month old juvenile sterlet sturgeon (Acipenser ruthenus. In the first experiment, fish with an average body weight of 59.6 g were randomly allotted to each of 10 tanks (two groups of five replicates, 20 fish/tank and fed diets with (0.5% or without (control GE respectively, at the level of 2% of fish body weight per day for 5 wks. Whole body amino acid composition between the GE and control groups were not different (p>0.05. Among free amino acids in muscle, L-glutamic acid, L-alanine, L-valine, L-leucine and L-phenylalanine were significantly (p0.05 were noticed at 12 h (74.6 vs 73.0. Plasma insulin concentrations (μIU/ml between the two groups were significantly (p<0.05 different at 1 (10.56 vs 5.06 and 24 h (32.56 vs 2.96 after feeding. The present results suggested that dietary garlic extracts could increase dietary glucose utilization through the insulin secretion, which result in improved fish body quality and feed utilization by juvenile sterlet sturgeon.

  14. Relationship between free fatty acid spectrum, blood stasis score, and macroangiopathy in patients with Type 2 Diabetes

    Directory of Open Access Journals (Sweden)

    De-Liang Liu

    2018-01-01

    Full Text Available Objective: Our aim was to investigate the correlation between free fatty acid (FFA spectrum, blood stasis (BS score, and macroangiopathy in type 2 diabetic patients with or without BS, as well as the possible relationship between BS and lipotoxicity. Methods: A total of 50 type 2 diabetes (T2D patients with or without BS were enrolled from June to December 2014 in Shenzhen Traditional Chinese Medicine (TCM Hospital, with 25 patients allocated to each of two groups. Basic information, BS score, blood glucose, blood lipids, etc., were measured for each patient. In addition, we tested the levels of interleukin (IL-6, tumor necrosis factor α (TNF-α, and IL-18 with enzyme-linked immunosorbent assay. The macroangiopathy status of patients in the two groups was examined by color ultrasound and all factors related to BS scores were analyzed. Gas chromatography-mass spectrometry was used to explore the difference in the serum FFA spectra between the two different groups. In addition, the relationship between FFA spectra, BS scores, and macroangiopathy was analyzed. Results: BS scores, total cholesterol (TC, total triglyceride (TG, low-density lipoprotein cholesterol, IL-6, TNF-α, IL-18, carotid and femoral artery plaque, carotid intima-media thickness, carotid plaque area, and femoral artery plaque area were all significantly increased in T2D patients with BS syndrome (P < 0.05. A positive correlation was observed between age, duration of diabetes, carotid intima-media thickness, carotid plaque area, femoral artery plaque area, and BS score (P < 0.05. A total of 21 fatty acids were found in the serum, and total FFA (TFFA, saturated fatty acid (SFA, lauric acid (C12:0, palmitic acid (16:0, stearic acid (C18:0, arachidonic acid (C20:4n6, behenic acid (C22:0, and lignoceric acid (C24:0 scores were all found to contribute to the difference between FFA spectrums of the two groups; of the fatty acids, C12:0, C16:0, C18:0, C22:0, TFFA, and SFA positively

  15. Effect of dietary fatty acids on the postprandial fatty acid composition of triacylglycerol-rich lipoproteins in healthy male subjects

    DEFF Research Database (Denmark)

    Bysted, Anette; Holmer, G.; Lund, Pia

    2005-01-01

    interesterified test fats with equal amounts of palmitic acid ( P fat), stearic acid (S fat), trans-18: 1 isomers (T fat), oleic acid (O fat), or linoleic acid (L fat) were tested. Subjects: A total of 16 healthy, normolipidaemic males ( age 23 +/- 2 y) were recruited. Interventions: The participants ingested fat......Objective: The aim of the present study was to investigate the effect of trans-18: 1 isomers compared to other fatty acids, especially saturates, on the postprandial fatty acid composition of triacylglycerols ( TAG) in chylomicrons and VLDL. Design: A randomised crossover experiment where five......-rich test meals ( 1 g fat per kg body weight) and the fatty acid profiles of chylomicron and VLDL TAG were followed for 8 h. Results: The postprandial fatty acid composition of chylomicron TAG resembled that of the ingested fats. The fatty acids in chylomicron TAG were randomly distributed among the three...

  16. Unsaturated Fatty Acids Supplementation Reduces Blood Lead Level in Rats

    Science.gov (United States)

    Skoczyńska, Anna; Wojakowska, Anna; Nowacki, Dorian; Bobak, Łukasz; Turczyn, Barbara; Smyk, Beata; Szuba, Andrzej; Trziszka, Tadeusz

    2015-01-01

    Some dietary factors could inhibit lead toxicity. The aim of this study was to evaluate the effect of dietary compounds rich in unsaturated fatty acids (FA) on blood lead level, lipid metabolism, and vascular reactivity in rats. Serum metallothionein and organs' lead level were evaluated with the aim of assessing the possible mechanism of unsaturated FA impact on blood lead level. For three months, male Wistar rats that were receiving drinking water with (100 ppm Pb) or without lead acetate were supplemented per os daily with virgin olive oil or linseed oil (0.2 mL/kg b.w.) or egg derived lecithin fraction: “super lecithin” (50 g/kg b.w.). Mesenteric artery was stimulated ex vivo by norepinephrine (NE) administered at six different doses. Lecithin supplementation slightly reduced pressor responses of artery to NE. Lead administered to rats attenuated the beneficial effect of unsaturated FA on lipid metabolism and vascular reactivity to adrenergic stimulation. On the other hand, the super lecithin and linseed oil that were characterized by low omega-6 to omega-3 ratio (about 1) reduced the blood lead concentration. This effect was observed in lead poisoned rats (p < 0.0001) and also in rats nonpoisoned with lead (p < 0.05). PMID:26075218

  17. Phylogenomic reconstruction of archaeal fatty acid metabolism

    Science.gov (United States)

    Dibrova, Daria V.; Galperin, Michael Y.; Mulkidjanian, Armen Y.

    2014-01-01

    While certain archaea appear to synthesize and/or metabolize fatty acids, the respective pathways still remain obscure. By analyzing the genomic distribution of the key lipid-related enzymes, we were able to identify the likely components of the archaeal pathway of fatty acid metabolism, namely, a combination of the enzymes of bacterial-type β-oxidation of fatty acids (acyl-CoA-dehydrogenase, enoyl-CoA hydratase, and 3-hydroxyacyl-CoA dehydrogenase) with paralogs of the archaeal acetyl-CoA C-acetyltransferase, an enzyme of the mevalonate biosynthesis pathway. These three β-oxidation enzymes working in the reverse direction could potentially catalyze biosynthesis of fatty acids, with paralogs of acetyl-CoA C-acetyltransferase performing addition of C2 fragments. The presence in archaea of the genes for energy-transducing membrane enzyme complexes, such as cytochrome bc complex, cytochrome c oxidase, and diverse rhodopsins, was found to correlate with the presence of the proposed system of fatty acid biosynthesis. We speculate that because these membrane complexes functionally depend on fatty acid chains, their genes could have been acquired via lateral gene transfer from bacteria only by those archaea that already possessed a system of fatty acid biosynthesis. The proposed pathway of archaeal fatty acid metabolism operates in extreme conditions and therefore might be of interest in the context of biofuel production and other industrial applications. PMID:24818264

  18. 2-Chloro-1,3-propanediol (2-MCPD) and its fatty acid esters: cytotoxicity, metabolism, and transport by human intestinal Caco-2 cells.

    Science.gov (United States)

    Buhrke, Thorsten; Frenzel, Falko; Kuhlmann, Jan; Lampen, Alfonso

    2015-12-01

    The food contaminants 3-chloro-1,2-propanediol (3-MCPD) and 3-MCPD fatty acid esters have attracted considerable attention in the past few years due to their toxic properties and their occurrence in numerous foods. Recently, significant amounts of the isomeric compounds 2-chloro-1,3-propanediol (2-MCPD) fatty acid esters have been detected in refined oils. Beside the interrogation which toxic effects might be related to the core compound 2-MCPD, the key question from the risk assessment perspective is again-as it was discussed for 3-MCPD fatty acid esters before-to which degree these esters are hydrolyzed in the gut, thereby releasing free 2-MCPD. Here, we show that free 2-MCPD but not 2-MCPD fatty acid esters were able to cross a monolayer of differentiated Caco-2 cells as an in vitro model for the human intestinal barrier. Instead, the esters were hydrolyzed by the cells, thereby releasing free 2-MCPD which was neither absorbed nor metabolized by the cells. Cytotoxicity assays revealed that free 2-MCPD as well as free 3-MCPD was not toxic to Caco-2 cells up to a level of 1 mM, whereas cellular viability was slightly decreased in the presence of a few 2-MCPD and 3-MCPD fatty acid esters at concentrations above 10 µM. The observed cytotoxic effects correlated well with the induction of caspase activity and might be attributed to the induction of apoptosis by free fatty acids which were released from the esters in the presence of Caco-2 cells.

  19. Sexually dimorphic brain fatty acid composition in low and high fat diet-fed mice.

    Science.gov (United States)

    Rodriguez-Navas, Carlos; Morselli, Eugenia; Clegg, Deborah J

    2016-08-01

    In this study, we analyzed the fatty acid profile of brains and plasma from male and female mice fed chow or a western-style high fat diet (WD) for 16 weeks to determine if males and females process fatty acids differently. Based on the differences in fatty acids observed in vivo, we performed in vitro experiments on N43 hypothalamic neuronal cells to begin to elucidate how the fatty acid milieu may impact brain inflammation. Using a comprehensive mass spectrometry fatty acid analysis, which includes a profile for 52 different fatty acid isomers, we assayed the plasma and brain fatty acid composition of age-matched male and female mice maintained on chow or a WD. Additionally, using the same techniques, we determined the fatty acid composition of N43 hypothalamic cells following exposure to palmitic and linoleic acid, alone or in combination. Our data demonstrate there is a sexual dimorphism in brain fatty acid content both following the consumption of the chow diet, as well as the WD, with males having an increased percentage of saturated fatty acids and reductions in ω6-polyunsaturated fatty acids when compared to females. Interestingly, we did not observe a sexual dimorphism in fatty acid content in the plasma of the same mice. Furthermore, exposure of N43 cells to the ω6-PUFA linoleic acid, which is higher in female brains when compared to males, reduces palmitic acid-induced inflammation. Our data suggest male and female brains, and not plasma, differ in their fatty acid profile. This is the first time, to our knowledge, lipidomic analyses has been used to directly test the hypothesis there is a sexual dimorphism in brain and plasma fatty acid composition following consumption of the chow diet, as well as following exposure to the WD.

  20. Fatty acids in non-alcoholic steatohepatitis: Focus on pentadecanoic acid.

    Directory of Open Access Journals (Sweden)

    Wonbeak Yoo

    Full Text Available Non-alcoholic fatty liver disease (NAFLD is the most common form of liver disease and ranges from isolated steatosis to NASH. To determine whether circulating fatty acids could serve as diagnostic markers of NAFLD severity and whether specific fatty acids could contribute to the pathogenesis of NASH, we analyzed two independent NAFLD patient cohorts and used the methionine- and choline-deficient diet (MCD NASH mouse model. We identified six fatty acids that could serve as non-invasive markers of NASH in patients with NAFLD. Serum levels of 15:0, 17:0 and 16:1n7t negatively correlated with NAFLD activity scores and hepatocyte ballooning scores, while 18:1n7c serum levels strongly correlated with fibrosis stage and liver inflammation. Serum levels of 15:0 and 17:0 also negatively correlated with fasting glucose and AST, while 16:1n7c and 18:1n7c levels positively correlated with AST and ferritin, respectively. Inclusion of demographic and clinical parameters improved the performance of the fatty acid panels in detecting NASH in NAFLD patients. The panel [15:0, 16:1n7t, 18:1n7c, 22:5n3, age, ferritin and APRI] predicted intermediate or advanced fibrosis in NAFLD patients, with 82% sensitivity at 90% specificity [AUROC = 0.92]. 15:0 and 18:1n7c were further selected for functional studies in vivo. Mice treated with 15:0-supplemented MCD diet showed reduced AST levels and hepatic infiltration of ceroid-laden macrophages compared to MCD-treated mice, suggesting that 15:0 deficiency contributes to liver injury in NASH. In contrast, 18:1n7c-supplemented MCD diet didn't affect liver pathology. In conclusion, 15:0 may serve as a promising biomarker or therapeutic target in NASH, opening avenues for the integration of diagnosis and treatment.

  1. Effects of simple rain-shelter cultivation on fatty acid and amino acid accumulation in 'Chardonnay' grape berries.

    Science.gov (United States)

    Meng, Nan; Ren, Zhi-Yuan; Yang, Xiao-Fan; Pan, Qiu-Hong

    2018-02-01

    Fatty acids and amino acids are the precursors of aliphatic and aromatic volatile compounds, higher alcohols and esters. They are also nutrition for yeast metabolism during fermentation. However, few reports have been concerned about the effect of viticulture practices on the accumulation of fatty acids and amino acids in wine grapes. This study aimed to explore the accumulation of these compounds in developing Vitis vinifera L. cv. Chardonnay grape berries under two vintages, and compare the influences of the rain-shelter cultivation and open-field cultivation. Fifteen fatty acids and 21 amino acids were detected in total. The rain-shelter cultivation led to an increase in the total concentration of fatty acids, and a decrease in the total concentration of amino acids compared with the open-field cultivation in 2012, while no significant difference was observed between two cultivation modes in 2013 vintage. Concentrations of palmitoleic acid, isoleucine and cysteine were significantly promoted in the rain-shelter grape berries, whereas those of tyrosine and ornithine were markedly reduced in both vintages. The rain-shelter cultivation of wine grapes in the rainy region is beneficial for improving grape quality and fermentation activity by influence on the concentration of fatty acids and amino acids. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  2. [Odd- and branched-chain fatty acids in milk fat--characteristic and health properties].

    Science.gov (United States)

    Adamska, Agata; Rutkowska, Jarosława

    2014-08-22

    This review analyzes the current state of knowledge on odd- and branched-chain fatty acids present in milk fat. Special attention is devoted to the characteristic, synthesis in ruminants, factors affecting their content in milk fat and pro-health properties of these compounds. The group of odd- and branched-chain fatty acids includes mainly saturated fatty acids with one or more methyl branches in the iso or anteiso position. These fatty acids are largely derived from ruminal bacteria and they have been transferred to ruminant tissue (milk and meat). For that reason they have been used as biomarkers of rumen fermentation. Odd- and branched-chain fatty acids are exogenous products for humans, and therefore have specific properties. The results of research from recent decades show that odd- and branched-chain fatty acids have anti-cancer activity. Branched-chain fatty acids may reduce the incidence of necrotizing enterocolitis. Additionally, these compounds have a beneficial effect on proper tissue function and on functioning and development of the infant gut, whereas odd-chain fatty acids are considered as biomarkers of milk fat intake by humans. So far, not all the mechanisms of activity of these compounds are known thoroughly. They should be more carefully studied for application of their biological effects in prevention and treatment.

  3. The effect of pH on the toxicity of fatty acids and fatty acid amides to rainbow trout gill cells.

    Science.gov (United States)

    Bertin, Matthew J; Voronca, Delia C; Chapman, Robert W; Moeller, Peter D R

    2014-01-01

    Harmful algal blooms (HABs) expose aquatic organisms to multiple physical and chemical stressors during an acute time period. Algal toxins themselves may be altered by water chemistry parameters affecting their bioavailability and resultant toxicity. The purpose of this study was to determine the effects of two abiotic parameters (pH, inorganic metal salts) on the toxicity of fatty acid amides and fatty acids, two classes of lipids produced by harmful algae, including the golden alga, Prymnesium parvum, that are toxic to aquatic organisms. Rainbow trout gill cells were used as a model of the fish gill and exposed to single compounds and mixtures of compounds along with variations in pH level and concentration of inorganic metal salts. We employed artificial neural networks (ANNs) and standard ANOVA statistical analysis to examine and predict the effects of these abiotic parameters on the toxicity of fatty acid amides and fatty acids. Our results demonstrate that increasing pH levels increases the toxicity of fatty acid amides and inhibits the toxicity of fatty acids. This phenomenon is reversed at lower pH levels. Exposing gill cells to complex mixtures of chemical factors resulted in dramatic increases in toxicity compared to tests of single compounds for both the fatty acid amides and fatty acids. These findings highlight the potential of physicochemical factors to affect the toxicity of chemicals released during algal blooms and demonstrate drastic differences in the effect of pH on fatty acid amides and fatty acids. Published by Elsevier B.V.

  4. A comprehensive study on energy absorption and exposure buildup factors for some essential amino acids, fatty acids and carbohydrates in the energy range 0.015-15 MeV up to 40 mean free path

    International Nuclear Information System (INIS)

    Kurudirek, Murat; Ozdemir, Yueksel

    2011-01-01

    The gamma ray energy absorption (EABF) and exposure buildup factors (EBF) have been calculated for some essential amino acids, fatty acids and carbohydrates in the energy region 0.015-15 MeV up to a penetration depth of 40 mfp (mean free path). The five parameter geometric progression (G-P) fitting approximation has been used to calculate both EABF and EBF. Variations of EABF and EBF with incident photon energy, penetration depth and weight fraction of elements have been studied. While the significant variations in EABF and EBF for amino acids and fatty acids have been observed at the intermediate energy region where Compton scattering is the main photon interaction process, the values of EABF and EBF appear to be almost the same for all carbohydrates in the continuous energy region. It has been observed that the fatty acids have the largest EABF and EBF at 0.08 and 0.1 MeV, respectively, whereas the maximum values of EABF and EBF have been observed for aminoacids and carbohydrates at 0.1 MeV. At the fixed energy of 1.5 MeV, the variation of EABF with penetration depth appears to be independent of the variations in chemical composition of the amino acids, fatty acids and carbohydrates. Significant variations were also observed between EABF and EBF which may be due to the variations in chemical composition of the given materials.

  5. Enantioseparation and optical rotation of flavor-relevant 4-alkyl-branched fatty acids.

    Science.gov (United States)

    Eibler, Dorothee; Vetter, Walter

    2017-07-07

    Short chain 4-alkyl-branched fatty acids are character impact compounds of the flavor of sheep and goat milk and meat. Due to their methyl or ethyl branches these volatile fatty acids are chiral, and both enantiomers are characterized by different aroma intensities. Recently, it was found that 4-methyloctanoic acid (4-Me-8:0), 4-ethyloctanoic acid (4-Et-8:0), and 4-methylnonanoic acid (4-Me-9:0) are enantiopure in goat and sheep samples, if present. Here we generated enantiopure or enantioenriched standards from racemates by means of (R)-selective esterification with lipase B and verified that 4-Me-8:0, 4-Et-8:0 and 4-Me-9:0 were (R)-enantiopure in these tissues. Determination of the optical rotation and [α] D value was carried out to show that (R)-4-Et-8:0 is dextrorotary and to verify the literature values of (R)-4-methyl-branched fatty acids. The elution order of free acids and the methyl and ethyl esters of 4-Me-8:0, 4-Et-8:0, 4-Me-9:0 and 4-methylhexanoic acid (4-Me-6:0) enantiomers was investigated on different chiral columns as well as the (-)-menthyl ester by indirect enantiomer separation on an ionic liquid phase. Different chiral recognition processes were suggested for free acid and esters of 4-Me-8:0 and 4-Me-9:0 on the one hand (decisive: 4-alkyl branch) compared to 4-Me-6:0 on the other hand (decisive: branch on antepenultimate carbon). Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Fatty acid metabolism: target for metabolic syndrome

    OpenAIRE

    Wakil, Salih J.; Abu-Elheiga, Lutfi A.

    2009-01-01

    Fatty acids are a major energy source and important constituents of membrane lipids, and they serve as cellular signaling molecules that play an important role in the etiology of the metabolic syndrome. Acetyl-CoA carboxylases 1 and 2 (ACC1 and ACC2) catalyze the synthesis of malonyl-CoA, the substrate for fatty acid synthesis and the regulator of fatty acid oxidation. They are highly regulated and play important roles in the energy metabolism of fatty acids in animals, including humans. They...

  7. Radioiodinated fatty acids for cardiological diagnosis

    International Nuclear Information System (INIS)

    Machulla, H.-J.; Knust, E.J.

    1986-01-01

    The development of fatty acids labelled with iodine-123 is reviewed. The variety of methods for producing 123 I and introducing radioiodine into the molecule is discussed and the important points of the biochemical background are recalled with the aim of finding a broad application for 123 I-labelled fatty acids. The results of the pharmacokinetic studies and biochemical analysis are presented as they prove that both 17- 123 I-heptadecanoic acid (IHA) and 15-(rho- 123 I-phenyl)pentadecanoic acid (IPPA) exhibit analogous behaviour to that of the naturally occurring fatty acids. Clinical applications demonstrated two fields of importance: (i) applications solely for imaging the heart and (ii) assessment of myocardial turnover rates of fatty acids for functional diagnosis. Moreover, very recent studies show that the provision of information about prognosis of myocardial diseases and the applied cardiological therapy appear to be possible. (author)

  8. Sexually dimorphic brain fatty acid composition in low and high fat diet-fed mice

    Directory of Open Access Journals (Sweden)

    Carlos Rodriguez-Navas

    2016-08-01

    Full Text Available Objective: In this study, we analyzed the fatty acid profile of brains and plasma from male and female mice fed chow or a western-style high fat diet (WD for 16 weeks to determine if males and females process fatty acids differently. Based on the differences in fatty acids observed in vivo, we performed in vitro experiments on N43 hypothalamic neuronal cells to begin to elucidate how the fatty acid milieu may impact brain inflammation. Methods: Using a comprehensive mass spectrometry fatty acid analysis, which includes a profile for 52 different fatty acid isomers, we assayed the plasma and brain fatty acid composition of age-matched male and female mice maintained on chow or a WD. Additionally, using the same techniques, we determined the fatty acid composition of N43 hypothalamic cells following exposure to palmitic and linoleic acid, alone or in combination. Results: Our data demonstrate there is a sexual dimorphism in brain fatty acid content both following the consumption of the chow diet, as well as the WD, with males having an increased percentage of saturated fatty acids and reductions in ω6-polyunsaturated fatty acids when compared to females. Interestingly, we did not observe a sexual dimorphism in fatty acid content in the plasma of the same mice. Furthermore, exposure of N43 cells to the ω6-PUFA linoleic acid, which is higher in female brains when compared to males, reduces palmitic acid-induced inflammation. Conclusions: Our data suggest male and female brains, and not plasma, differ in their fatty acid profile. This is the first time, to our knowledge, lipidomic analyses has been used to directly test the hypothesis there is a sexual dimorphism in brain and plasma fatty acid composition following consumption of the chow diet, as well as following exposure to the WD. Keywords: Obesity, N43, Palmitic acid, Linoleic acid, Central nervous system, Western diet, ω6-fatty acids

  9. The omega-3 fatty acid DHA dose-dependently reduces atherosclerosis: a putative role for F4-neuroprostanes a specific class of peroxidized metabolites

    Science.gov (United States)

    Objective. Consumption of long chain omega-3 polyunsaturated fatty acids is associated with reduced risks of cardiovascular disease but the role of their oxygenated metabolites remains unclear. We hypothesized that peroxidized metabolites of docosahexaenoic acid (DHA, 22:6 n-3) could play a role in ...

  10. Sodium 4-phenylbutyrate prevents murine dietary steatohepatitis caused by trans-fatty acid plus fructose.

    Science.gov (United States)

    Morinaga, Maki; Kon, Kazuyoshi; Saito, Hiroaki; Arai, Kumiko; Kusama, Hiromi; Uchiyama, Akira; Yamashina, Shunhei; Ikejima, Kenichi; Watanabe, Sumio

    2015-11-01

    Excess consumption of trans-fatty acid could increase the risk of non-alcoholic steatohepatitis (NASH); however, treatment targeting trans-fatty acid-induced NASH has not been examined. Here we focused on the influence of trans-fatty acid intake on endoplasmic reticulum (ER) stress in hepatocytes, so we investigated the effect of the chemical chaperone 4-phenylbutyric acid (PBA), on trans-fatty acid-caused steatohepatitis using diabetic KK-A(y) mice. Elaidic acid (EA, trans-fatty acid) alone did not cause definitive liver injury. In contrast, EA plus low-dose fructose induced extensive apoptosis in hepatocytes with severe fat accumulation. EA plus fructose significantly increased ER stress markers such as glucose-regulated protein 78 (GRP78), eukaryotic initiation factor 2α (eIF2α) and phosphorylated c-jun N-terminal kinase (JNK), while PBA significantly reduced this response. In vitro, EA promoted expression of GRP78 and phosphorylation of eIF2α in primary-cultured hepatocytes. EA also increased hepatocellular susceptibility to low-dose tert-butyl hydroperoxide. Treatment with PBA significantly reduced these responses. In conclusion, EA potentiates susceptibly to non-hazardous dose of fructose, and increases ER and oxidative stress. PBA improved steatohepatitis induced by EA plus fructose through amelioration of ER stress. Therefore, ER stress-targeted therapy using a chemical chaperone is a promising novel strategy for trans-fatty acid-induced steatohepatitis.

  11. Amino acid and fatty acid compositions of Rusip from fermented Anchovy fish (Stolephorussp)

    Science.gov (United States)

    Koesoemawardani, D.; Hidayati, S.; Subeki

    2018-04-01

    Rusip is a typical food of Bangka Belitung Indonesia made from fermented anchovy. This study aims to determine the properties of chemistry, microbiology, composition of amino acids and fatty acids from fermented fish spontaneously and non spontaneously. Spontaneous rusip treatment is done by anchovy fish (Stolephorussp) after cleaning and added salt 25% (w/w) and palm sugar 10% (w/w). While, non-spontaneous rusip is done by adding a culture mixture of Streptococcus, Leuconostoc, and Lactobacillus bacteria 2% (w/v). The materials are then incubated for 2 weeks. The data obtained were then performed t-test at the level of 5%. Spontaneous and non-spontaneous rusip fermentation process showed significant differences in total acid, reducing sugar, salt content, TVN, total lactic acid bacteria, total mold, and total microbial. The dominant amino acid content of spontaneous and non-spontaneous rusip are glutamic acid and aspartic acid, while the dominant fatty acids in spontaneous and non-spontaneous rusip are docosahexaenoic acid, palmitic acid, oleic acid, arachidonic acid, stearic acid, eicosapentaenoic acid, palmitoleic acid, and myristic acid.

  12. Determination of Fatty Acid in Asparagus by Gas Chromatography

    Directory of Open Access Journals (Sweden)

    Zehra HAJRULAI-MUSLIU

    2016-05-01

    Full Text Available Asparagus contain a lot of macronutrients and micronutrients including folate, dietary fibre (soluble and insoluble and phenolic compounds. Also asparagus is a good source of unsaturated linoleic and linolenic fatty acids which are precursors for Eicosapentanoic acid (EPA and Docosahexanoic acid (DHA. Unsaturated fatty acids have important biological effects and they have important role in human health. The objective of this study was to analyze fatty acid composition of asparagus as a potential source of linoleic and linolenic acid - a precursor for EPA and DHA. For this reason we analyzed fifty seven samples of asparagus collected from the local market. We used AOAC 996.06 method and analyses were performed with gas chromatograph with flame-ionization detector (GC-FID. The highest concentration of fatty acid in the asparagus was linoleic acid (C18:2n6 which content in asparagus is 25.620±1.0%. Also, asparagus is good source of -linolenic fatty acid (C18:3n3 and content of this fatty acid in asparagus is 8.840±0.3%. The omega-6 to omega-3 (n6/n3 ratio in asparagus was 3.19. Polyunsaturated fatty acids (PUFAs were higher than monounsaturated fatty acids (MUFAs, and from saturated fatty acids, palmitic acid was most frequent with 24.324±1.0%. From our study we can conclude that asparagus is very good source of unsaturated fatty acids, especially linoleic and linolenic fatty acids.

  13. 21 CFR 172.862 - Oleic acid derived from tall oil fatty acids.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Oleic acid derived from tall oil fatty acids. 172... FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.862 Oleic acid derived from tall oil fatty acids. The food additive oleic acid derived from tall oil fatty acids may be safely used in food and as...

  14. Transformation of Unsaturated Fatty Acids/Esters to Corresponding Keto Fatty Acids/Esters by Aerobic Oxidation with Pd(II)/Lewis Acid Catalyst.

    Science.gov (United States)

    Senan, Ahmed M; Zhang, Sicheng; Zeng, Miao; Chen, Zhuqi; Yin, Guochuan

    2017-08-16

    Utilization of renewable biomass to partly replace the fossil resources in industrial applications has attracted attention due to the limited fossil feedstock with the increased environmental concerns. This work introduced a modified Wacker-type oxidation for transformation of unsaturated fatty acids/esters to the corresponding keto fatty acids/esters, in which Cu 2+ cation was replaced with common nonredox metal ions, that is, a novel Pd(II)/Lewis acid (LA) catalyst. It was found that adding nonredox metal ions can effectively promote Pd(II)-catalyzed oxidation of unsaturated fatty acids/esters to the corresponding keto fatty acids/esters, even much better than Cu 2+ , and the promotional effect is highly dependent on the Lewis acidity of added nonredox metal ions. The improved catalytic efficiency is attributed to the formation of heterobimetallic Pd(II)/LA species, and the oxidation mechanism of this Pd(II)/LA catalyst is also briefly discussed.

  15. Attenuated Total Reflectance Fourier transform infrared spectroscopy for determination of long chain free fatty acid concentration in oily wastewater using the double wavenumber extrapolation technique

    Science.gov (United States)

    Long Chain Free Fatty Acids (LCFFAs) from the hydrolysis of fat, oil and grease (FOG) are major components in the formation of insoluble saponified solids known as FOG deposits that accumulate in sewer pipes and lead to sanitary sewer overflows (SSOs). A Double Wavenumber Extrapolative Technique (DW...

  16. Reciprocal effects of 5-(tetradecyloxy)-2-furoic acid on fatty acid oxidation.

    Science.gov (United States)

    Otto, D A; Chatzidakis, C; Kasziba, E; Cook, G A

    1985-10-01

    Under certain incubation conditions 5-(tetradecyloxy)-2-furoic acid (TOFA) stimulated the oxidation of palmitate by hepatocytes, as observed by others. A decrease in malonyl-CoA concentration accompanied the stimulation of oxidation. Under other conditions, however, TOFA inhibited fatty acid oxidation. The observed effects of TOFA depended on the TOFA and fatty acid concentrations, the cell concentration, the time of TOFA addition relative to the addition of fatty acid, and the nutritional state of the animal (fed or starved). The data indicate that only under limited incubation conditions may TOFA be used as an inhibitor of fatty acid synthesis without inhibition of fatty acid oxidation. When rat liver mitochondria were preincubated with TOFA, ketogenesis from palmitate was slightly inhibited (up to 20%) at TOFA concentrations that were less than that of CoA, but the inhibition became almost complete (up to 90%) when TOFA was greater than or equal to the CoA concentration. TOFA had only slight or no inhibitory effects on the oxidation of palmitoyl-CoA, palmitoyl(-)carnitine, or butyrate. Since TOFA can be converted to TOFyl-CoA, the data suggest that the inhibition of fatty acid oxidation from palmitate results from the decreased availability of CoA for extramitochondrial activation of fatty acids. These data, along with previous data of others, indicate that inhibition of fatty acid oxidation by CoA sequestration is a common mechanism of a group of carboxylic acid inhibitors. A general caution is appropriate with regard to the interpretation of results when using TOFA in studies of fatty acid oxidation.

  17. Discovery and Characterization of a Novel Small-Molecule Agonist for Medium-Chain Free Fatty Acid Receptor G Protein-Coupled Receptor 84.

    Science.gov (United States)

    Zhang, Qing; Yang, Hui; Li, Jing; Xie, Xin

    2016-05-01

    G protein-coupled receptor 84 (GPR84) is a free fatty acid receptor activated by medium-chain free fatty acids with 9-14 carbons. It is expressed mainly in the immune-related tissues, such as spleen, bone marrow, and peripheral blood leukocytes. GPR84 plays significant roles in inflammatory processes and may represent a novel drug target for the treatment of immune-mediated diseases. However, the lack of potent and specific ligands for GPR84 hindered the study of its functions and the development of potential clinical applications. Here, we report the screen of 160,000 small-molecule compounds with a calcium mobilization assay using a human embryonic kidney 293 cell line stably expressing GPR84 and Gα16, and the identification of 2-(hexylthio)pyrimidine-4,6-diol (ZQ-16) as a potent and selective agonist of GPR84 with a novel structure. ZQ-16 activates several GPR84-mediated signaling pathways, including calcium mobilization, inhibition of cAMP accumulation, phosphorylation of extracellular signal-regulated protein kinase 1/2, receptor desensitization and internalization, and receptor-β-arrestin interaction. This compound may be a useful tool to study the functions of GPR84 and a potential candidate for further structural optimization. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  18. Role of n-3 fatty acids in muscle loss and myosteatosis.

    Science.gov (United States)

    Ewaschuk, Julia B; Almasud, Alaa; Mazurak, Vera C

    2014-06-01

    Image-based methods such as computed tomography for assessing body composition enables quantification of muscle mass and muscle density and reveals that low muscle mass and myosteatosis (fat infiltration into muscle) are common in people with cancer. Myosteatosis and low muscle mass have emerged as independent risk factors for mortality in cancer; however, the characteristics and pathogenesis of these features have not been resolved. Muscle depletion is associated with low plasma eicosapentaenoic (20:5n-3) and docosahexaenoic (22:6n-3) in cancer and supplementation with n-3 fatty acids has been shown to ameliorate muscle loss and myosteatosis in clinical studies, suggesting a relationship between n-3 fatty acids and muscle health. Since the mechanisms by which n-3 fatty acids alter body composition in cancer remain unknown, related literature from other conditions associated with myosteatosis, such as insulin resistance and obesity is considered. In these noncancer conditions, it has been reported that n-3 fatty acids act by increasing insulin sensitivity, reducing inflammatory mediators, and altering adipokine profiles and transcription factors; therefore, the plausibility of these mechanisms of action in the neoplastic state are considered. The aim of this review is to summarize what is known about the effects of n-3 fatty acids with regards to muscle condition and to discuss potential mechanisms for effects of n-3 fatty acids on muscle health.

  19. Fatty acid composition of human milk and infant formulas

    Directory of Open Access Journals (Sweden)

    Ivančica Delaš

    2005-04-01

    Full Text Available The appropriate fatty acid composition of membrane lipids is necessary for structure and function of the developing nervous system. Rapid synthesis of brain tissue occurs during the last trimester of pregnancy and the early postnatal weeks. This synthesis of brain structure involves the formation of complex lipids, many of which contain significant quantities of essential fatty acids and their higher homologs. This study was undertaken to elucidate how fatty acid compositions of available diets for infants meet the requirements for essential fatty acids. Samples of infant formulas, present on the market, as well as milk samples obtained from breast feeding mothers, were extracted by chloroform : methanol mixtures in order to obtain total lipids. Fatty acid methyl esters were prepared and fatty acid composition was revealed by gas chromatography. Special interest was directed to the content of long chain polyunsaturated fatty acids. The results have shown that infant formulas, designed to substitute mothers’ breast milk, contain medium chain fatty acids (C 10:0, C 12:0, along with the other saturated fatty acids, in the amounts acceptable for infants’ energy consumption. Although linoleic acid (C18:2, n-6 was present at the level expected to cover needs for essential fatty acids, most of the tested products did not contain sufficient amounts of long chain polyunsaturated fatty acids, despite the fact that these fatty acids are necessary for undisturbed brain development, ignoring the strong recommendations that they should be used as a supplement in infants’ food.

  20. 40 CFR 721.6200 - Fatty acid polyamine condensate, phosphoric acid ester salts.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Fatty acid polyamine condensate... New Uses for Specific Chemical Substances § 721.6200 Fatty acid polyamine condensate, phosphoric acid... substances identified as fatty acid polyamine condensate, phosphate ester salts (PMNs P-90-1984 and P-90-1985...

  1. Unusual fatty acid substitution in lipids and lipopolysaccharides of Helicobacter pylori.

    OpenAIRE

    Geis, G; Leying, H; Suerbaum, S; Opferkuch, W

    1990-01-01

    Cellular fatty acids, phospholipid fatty acids, and lipopolysaccharide fatty acids of four strains of Helicobacter pylori were analyzed by gas-liquid chromatography. The presence of myristic acid, palmitic acid, stearic acid, oleic acid, linoleic acid, 19-carbon cyclopropane fatty acid, beta-hydroxypalmitic acid, and beta-hydroxystearic acid was confirmed. In phospholipids, myristic acid and 19-carbon cyclopropane fatty acid were the major fatty acids. Hydroxy fatty acids and unsaturated fatt...

  2. 21 CFR 172.848 - Lactylic esters of fatty acids.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Lactylic esters of fatty acids. 172.848 Section 172... CONSUMPTION Multipurpose Additives § 172.848 Lactylic esters of fatty acids. Lactylic esters of fatty acids... prepared from lactic acid and fatty acids meeting the requirements of § 172.860(b) and/or oleic acid...

  3. Free fatty acid palmitate activates unfolded protein response pathway and promotes apoptosis in meniscus cells.

    Science.gov (United States)

    Haywood, J; Yammani, R R

    2016-05-01

    Obesity is the major risk factor for the development of osteoarthritis (OA); however, the mechanisms involved are not clearly understood. Obesity is associated with increased production of adipokine and elevated levels of circulating free fatty acids (FFA). A recent study has shown that saturated fatty acid palmitate induced pro-inflammatory and pro-apoptotic pathways in chondrocytes. Meniscus has been shown to be more susceptible than articular cartilage to catabolic stimuli. Thus, the aim of this study was to determine the effect of FFA (specifically, palmitate) on meniscus cells. Cultured primary porcine meniscus cells were stimulated with 500 μM FFA (palmitate and oleate) for 24 h to induce endoplasmic reticulum (ER) stress. After treatment, cell lysates were prepared and immunoblotted for C/EBP homologous protein (CHOP). To determine the activation of unfolded protein response (UPR) signaling, cell lysates were probed for cJun n-terminal kinase (JNK), cleaved caspase -3 and Xbp-1s, an alternative mRNA splicing product generated due to Ire1α activation. Treatment of isolated primary meniscus cells with palmitate but not oleate induced expression of CHOP and Xbp-1s. Palmitate treatment of meniscus cells also activated JNK and increased expression of caspase-3, thus promoting apoptosis in meniscus cells. Palmitate induces ER stress and promotes apoptotic pathways in meniscus cells. This is the first study to establish ER stress as a key metabolic mechanistic link between obesity and OA, in addition to (or operating with) biomechanical factors. Copyright © 2015 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  4. Dietary effects on fatty acid metabolism of common carp.

    Science.gov (United States)

    Csengeri, I

    1996-01-01

    The paper summarises experimental data demonstrating effects of various dietary factors exerting changes in the fatty acid composition and fatty acid metabolism of the common carp (Cyprinus carpio L.). Among the dietary factors (1) supplementary feeding in fish ponds, (2) absence of essential fatty acids (EFA) in the diet, (3) starvation, and (4) ration level were studied. It was concluded that supplementary feeding in carp rearing ponds is frequently excessive in the Hungarian carp culture practice, inducing slight EFA-deficiency and enhancing de novo fatty acid synthesis. This latter caused enlarged fat depots with high oleic acid contents in the fish organs and tissues. EFA-deficient diets enhanced the synthesis of oleic acid except when high rate of de novo fatty acid synthesis was suppressed by dietary fatty acids. Feeding EFA-deficient diets caused gradual decrease in the levels of polyunsaturated fatty acids and gradual increase in that of Mead's acid: 20:3(n-9), an indicator of the EFA-deficiency. At prolonged starvation, polyunsaturated fatty acids of the structural lipids were somehow protected and mainly oleic acid was utilised for energy production. At high ration levels, excessive exogenous polyunsaturates were decomposed, and probably converted to oleic acid or energy. Starvation subsequent to the feeding the fish at various ration levels, reflected adaptive changes in the fatty acid metabolism: Below and above the ration level required for the most efficient feed utilisation for growth, decomposition processes of the fatty acid metabolism were accelerated.

  5. Omega-3 fatty acids are protective against paclitaxel-induced peripheral neuropathy: A randomized double-blind placebo controlled trial

    Directory of Open Access Journals (Sweden)

    Ghoreishi Zohreh

    2012-08-01

    Full Text Available Abstract Background Axonal sensory peripheral neuropathy is the major dose-limiting side effect of paclitaxel.Omega-3 fatty acids have beneficial effects on neurological disorders from their effects on neurons cells and inhibition of the formation of proinflammatory cytokines involved in peripheral neuropathy. Methods This study was a randomized double blind placebo controlled trial to investigate the efficacy of omega-3 fatty acids in reducing incidence and severity of paclitaxel-induced peripheral neuropathy (PIPN. Eligible patients with breast cancer randomly assigned to take omega-3 fatty acid pearls, 640 mg t.i.d during chemotherapy with paclitaxel and one month after the end of the treatment or placebo. Clinical and electrophysiological studies were performed before the onset of chemotherapy and one month after cessation of therapy to evaluate PIPN based on "reduced Total Neuropathy Score". Results Twenty one patients (70% of the group taking omega-3 fatty acid supplement (n = 30 did not develop PN while it was 40.7%( 11 patients in the placebo group(n = 27. A significant difference was seen in PN incidence (OR = 0.3, .95% CI = (0.10-0.88, p = 0.029. There was a non-significant trend for differences of PIPN severity between the two study groups but the frequencies of PN in all scoring categories were higher in the placebo group (0.95% CI = (−2.06 -0.02, p = 0.054. Conclusions Omega-3 fatty acids may be an efficient neuroprotective agent for prophylaxis against PIPN. Patients with breast cancer have a longer disease free survival rate with the aid of therapeutical agents. Finding a way to solve the disabling effects of PIPN would significantly improve the patients’ quality of life. Trial registration This trial was registered at ClinicalTrials.gov (NCT01049295

  6. In Vitro Effect of Fatty Acids Identified in the Plasma of Obese Adolescents on the Function of Pancreatic ?-Cells

    OpenAIRE

    Velasquez, Claudia; Vasquez, Juan Sebastian; Balcazar, Norman

    2017-01-01

    Background The increase in circulating free fatty acid (FFA) levels is a major factor that induces malfunction in pancreatic ?-cells. We evaluated the effect of FFAs reconstituted according to the profile of circulating fatty acids found in obese adolescents on the viability and function of the murine insulinoma cell line (mouse insulinoma [MIN6]). Methods From fatty acids obtained commercially, plasma-FFA profiles of three different youth populations were reconstituted: obese with metabolic ...

  7. A retinoic acid receptor β2 agonist reduces hepatic stellate cell activation in nonalcoholic fatty liver disease.

    Science.gov (United States)

    Trasino, Steven E; Tang, Xiao-Han; Jessurun, Jose; Gudas, Lorraine J

    2016-10-01

    Hepatic stellate cells (HSCs) are an important cellular target for the development of novel pharmacological therapies to prevent and treat nonalcoholic fatty liver diseases (NAFLD). Using a high fat diet (HFD) model of NAFLD, we sought to determine if synthetic selective agonists for retinoic acid receptor β2 (RARβ2) and RARγ can mitigate HSC activation and HSC relevant signaling pathways during early stages of NAFLD, before the onset of liver injury. We demonstrate that the highly selective RARβ2 agonist, AC261066, can reduce the activation of HSCs, marked by decreased HSC expression of α-smooth muscle actin (α-SMA), in mice with HFD-induced NAFLD. Livers of HFD-fed mice treated with AC261066 exhibited reduced steatosis, oxidative stress, and expression of pro-inflammatory mediators, such as tumor necrosis factor-alpha (TNFα), interleukin 1β (IL-1β), and monocyte chemotactic protein-1 (MCP-1). Kupffer cell (macrophage) expression of transforming growth factor-β1 (TGF-β1), which plays a critical role in early HSC activation, was markedly reduced in AC261066-treated, HFD-fed mice. In contrast, HFD-fed mice treated with an RARγ agonist (CD1530) showed no decreases in steatosis, HSC activation, or Kupffer cell TGF-β1 levels. In conclusion, our data demonstrate that RARβ2 is an attractive target for development of NAFLD therapies. • Hepatic stellate cells (HSCs) are an important pharmacological target for the prevention of nonalcoholic fatty liver diseases (NAFLD). • Retinoids and retinoic acid receptors (RARs) possess favorable metabolic modulating properties. • We show that an agonist for retinoic acid receptor-β2 (RARβ2), but not RARγ, mitigates HSC activation and NAFLD.

  8. Fatty acid solubilizer from the oral disk of the blowfly.

    Directory of Open Access Journals (Sweden)

    Yuko Ishida

    Full Text Available Blowflies are economic pests of the wool industry and potential vectors for epidemics. The establishment of a pesticide-free, environmentally friendly blowfly control strategy is necessary. Blowflies must feed on meat in order to initiate the cascade of events that are involved in reproduction including juvenile hormone synthesis, vitellogenesis, and mating. During feeding blowflies regurgitate salivary lipase, which may play a role in releasing fatty acids from triglycerides that are found in food. However, long-chain fatty acids show low solubility in aqueous solutions. In order to solubilize and ingest the released hydrophobic fatty acids, the blowflies must use a solubilizer.We applied native PAGE, Edman degradation, cDNA cloning, and RT-PCR to characterize a protein that accumulated in the oral disk of the black blowfly, Phormia regina. In situ hybridization was carried out to localize the expression at the cellular level. A fluorescence competitive binding assay was used to identify potential ligands of this protein.A protein newly identified from P. regina (PregOBP56a belonged to the classic odorant-binding protein (OBP family. This gene was expressed in a cluster of cells that was localized between pseudotracheae on the oral disk, which are not accessory cells of the taste peg chemosensory sensilla that normally synthesize OBPs. At pH 7 and pH 6, PregOBP56a bound palmitic, stearic, oleic, and linoleic acids, that are mainly found in chicken meat. The binding affinity of PregOBP56a decreased at pH 5. We propose that PregOBP56a is a protein that solubilizes fatty acids during feeding and subsequently helps to deliver the fatty acids to the midgut where it may help in the process of reproduction. As such, PregOBP56a is a potential molecular target for controlling the blowfly.

  9. [CONTENT OF TRANS FATTY ACIDS IN FOOD PRODUCTS IN SPAIN].

    Science.gov (United States)

    Robledo de Dios, Teresa; Dal Re Saavedra, M Ángeles; Villar Villalba, Carmen; Pérez-Farinós, Napoleón

    2015-09-01

    trans fatty acids are associated to several health disorders, as ischemic heart disease or diabetes mellitus. to assess the content of trans fatty acids in products in Spain, and the percentage of trans fatty acids respecting total fatty acids. 443 food products were acquired in Spain, and they were classified into groups. The content in fatty acids was analyzed using gas chromatography. Estimates of central tendency and variability of the content of trans fatty acids in each food group were computed (in g of trans fatty acids/100 g of product). The percentage of trans fatty acids respecting total fatty acids was calculated in each group. 443 products were grouped into 42 groups. Median of trans fatty acids was less than 0.55 g / 100 g of product in all groups except one. 83 % of groups had less than 2 % of trans fatty acids, and 71 % of groups had less than 1 %. the content of trans fatty acids in Spain is low, and it currently doesn't play a public health problem. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  10. Fatty acid profile in the ruminal fluid and in the m. longissimus dorsi of lambs fed herbage or concentrate with or without tannins

    Directory of Open Access Journals (Sweden)

    Alessandro Priolo

    2010-01-01

    Full Text Available Twenty-eight male lambs were divided into two groups at age 45 d. Fourteen lambs were given fresh herbage (vetch; the remaining lambs were fed a concentrate-based diet. Within each treatment, seven lambs received a supplementation of quebracho tannins. At slaughter (age 105 d the ruminal content and the muscle longissimus dorsi (LD were collected. Ruminal fluid and LD fatty acid composition was determined by gas chromatography. Among the concentrates-fed lambs, tannins supplementation reduced (P < 0.05 the concentration of C18:0 (- 49 % and increased vaccenic acid (VA; + 69 % in the ruminal fluid. When tannins were included into the concentrate, the LD contained double levels of rumenic acid (RA as compared to the LD of the lambs fed the tannins-free concentrate (0.96 vs. 0.46 % of total extracted fatty acids, respectively; P < 0.05. The concentration of PUFA was higher (P < 0.05 and SFA (P < 0.01 lower in the LD from lambs fed the tannin diets as compared to the animals receiving the tannin-free diets. In conclusion, tannins reduce the biohydrogenation of the PUFA in the rumen. This implies that tannins supplementation could be a strategy to increase the RA and PUFA content and to reduce the SFA into ruminant meats.

  11. Odd- and branched-chain fatty acids in milk fat – characteristic and health properties

    Directory of Open Access Journals (Sweden)

    Agata Adamska

    2014-08-01

    Full Text Available This review analyzes the current state of knowledge on odd- and branched-chain fatty acids present in milk fat. Special attention is devoted to the characteristic, synthesis in ruminants, factors affecting their content in milk fat and pro-health properties of these compounds. The group of odd- and branched-chain fatty acids includes mainly saturated fatty acids with one or more methyl branches in the iso or anteiso position. These fatty acids are largely derived from ruminal bacteria and they have been transferred to ruminant tissue (milk and meat. For that reason they have been used as biomarkers of rumen fermentation. Odd- and branched-chain fatty acids are exogenous products for humans, and therefore have specific properties. The results of research from recent decades show that odd- and branched-chain fatty acids have anti-cancer activity. Branched-chain fatty acids may reduce the incidence of necrotizing enterocolitis. Additionally, these compounds have a beneficial effect on proper tissue function and on functioning and development of the infant gut, whereas odd-chain fatty acids are considered as biomarkers of milk fat intake by humans. So far, not all the mechanisms of activity of these compounds are known thoroughly. They should be more carefully studied for application of their biological effects in prevention and treatment.

  12. Acylation of cellular proteins with endogenously synthesized fatty acids

    International Nuclear Information System (INIS)

    Towler, D.; Glaser, L.

    1986-01-01

    A number of cellular proteins contain covalently bound fatty acids. Previous studies have identified myristic acid and palmitic acid covalently linked to protein, the former usually attached to proteins by an amide linkage and the latter by ester or thio ester linkages. While in a few instances specific proteins have been isolated from cells and their fatty acid composition has been determined, the most frequent approach to the identification of protein-linked fatty acids is to biosynthetically label proteins with fatty acids added to intact cells. This procedure introduces possible bias in that only a selected fraction of proteins may be labeled, and it is not known whether the radioactive fatty acid linked to the protein is identical with that which is attached to the protein when the fatty acid is derived from endogenous sources. We have examined the distribution of protein-bound fatty acid following labeling with [ 3 H]acetate, a general precursor of all fatty acids, using BC 3 H1 cells (a mouse muscle cell line) and A431 cells (a human epidermoid carcinoma). Myristate, palmitate, and stearate account for essentially all of the fatty acids linked to protein following labeling with [ 3 H]acetate, but at least 30% of the protein-bound palmitate in these cells was present in amide linkage. In BC3H1 cells, exogenous palmitate becomes covalently bound to protein such that less than 10% of the fatty acid is present in amide linkage. These data are compatible with multiple protein acylating activities specific for acceptor protein fatty acid chain length and linkage

  13. Omega-3 fatty acids and dementia

    Science.gov (United States)

    Cole, Greg M.; Ma, Qiu-Lan; Frautschy, Sally A.

    2014-01-01

    More than a dozen epidemiological studies have reported that reduced levels or intake of omega-3 fatty acids or fish consumption is associated with increased risk for age-related cognitive decline or dementia such as Alzheimer's disease (AD). Increased dietary consumption or blood levels of docosahexaenoic acid (DHA) appear protective for AD and other dementia in multiple epidemiological studies; however, three studies suggest that the ApoE4 genotype limits protection. DHA is broadly neuroprotective via multiple mechanisms that include neuroprotective DHA metabolites, reduced arachidonic acid metabolites, and increased trophic factors or downstream trophic signal transduction. DHA is also protective against several risk factors for dementia including head trauma, diabetes, and cardiovascular disease. DHA is specifically protective against AD via additional mechanisms: It limits the production and accumulation of the amyloid β peptide toxin that is widely believed to drive the disease; and it also suppresses several signal transduction pathways induced by Aβ, including two major kinases that phosphorylate the microtubule associated protein tau and promote neurofibrillary tangle pathology. Based on the epidemiological and basic research data, expert panels have recommended the need for clinical trials with omega-3 fatty acids, notably DHA, for the prevention or treatment of age-related cognitive decline—with a focus on the most prevalent cause, AD. Clinical trials are underway to prevent and treat AD. Results to-date suggest that DHA may be more effective if it is begun early or used in conjunction with antioxidants. PMID:19523795

  14. Development of marker-free transgenic Jatropha plants with increased levels of seed oleic acid

    Directory of Open Access Journals (Sweden)

    Qu Jing

    2012-02-01

    Full Text Available Abstract Background Jatropha curcas is recognized as a new energy crop due to the presence of the high amount of oil in its seeds that can be converted into biodiesel. The quality and performance of the biodiesel depends on the chemical composition of the fatty acids present in the oil. The fatty acids profile of the oil has a direct impact on ignition quality, heat of combustion and oxidative stability. An ideal biodiesel composition should have more monounsaturated fatty acids and less polyunsaturated acids. Jatropha seed oil contains 30% to 50% polyunsaturated fatty acids (mainly linoleic acid which negatively impacts the oxidative stability and causes high rate of nitrogen oxides emission. Results The enzyme 1-acyl-2-oleoyl-sn-glycero-3-phosphocholine delta 12-desaturase (FAD2 is the key enzyme responsible for the production of linoleic acid in plants. We identified three putative delta 12 fatty acid desaturase genes in Jatropha (JcFAD2s through genome-wide analysis and downregulated the expression of one of these genes, JcFAD2-1, in a seed-specific manner by RNA interference technology. The resulting JcFAD2-1 RNA interference transgenic plants showed a dramatic increase of oleic acid (> 78% and a corresponding reduction in polyunsaturated fatty acids (Jatropha had around 37% oleic acid and 41% polyunsaturated fatty acids. This indicates that FAD2-1 is the major enzyme responsible for converting oleic acid to linoleic acid in Jatropha. Due to the changes in the fatty acids profile, the oil of the JcFAD2-1 RNA interference seed was estimated to yield a cetane number as high as 60.2, which is similar to the required cetane number for conventional premium diesel fuels (60 in Europe. The presence of high seed oleic acid did not have a negative impact on other Jatropha agronomic traits based on our preliminary data of the original plants under greenhouse conditions. Further, we developed a marker-free system to generate the transgenic Jatropha

  15. UV decreases the synthesis of free fatty acids and triglycerides in the epidermis of human skin in vivo, contributing to development of skin photoaging.

    Science.gov (United States)

    Kim, Eun Ju; Jin, Xing-Ji; Kim, Yeon Kyung; Oh, In Kyung; Kim, Ji Eun; Park, Chi-Hyun; Chung, Jin Ho

    2010-01-01

    Although fatty acids are known to be important in various skin functions, their roles on photoaging in human skin are poorly understood. We investigated the alteration of lipid metabolism in the epidermis by photoaging and acute UV irradiation in human skin. UV irradiated young volunteers (21-33 years, n=6) and elderly volunteers (70-75 years, n=7) skin samples were obtained by punch biopsy. Then the epidermis was separated from dermis and lipid metabolism was investigated. We observed that the amounts of free fatty acids (FFA) and triglycerides (TG) in the epidermis of photoaged or acutely UV irradiated human skin were significantly decreased. The expressions of genes related to lipid synthesis, including acetyl-CoA carboxylase (ACC), fatty acid synthase (FAS), stearoyl-CoA desaturase (SCD), sterol regulatory element binding proteins (SREBPs), and peroxisome proliferator-activated receptors (PPARgamma) were also markedly decreased. To elucidate the significance of these changes of epidermal lipids in human skin, we investigated the effects of TG or various inhibitors for the enzymes involved in TG synthesis on the expression of matrix metalloproteinase-1 (MMP-1) in cultured human epidermal keratinocytes. We demonstrated that triolein (TG) reduced basal and UV-induced MMP-1 mRNA expression. In addition, each inhibitor for various lipid synthesis enzymes, such as TOFA (ACC inhibitor), cerulenin (FAS inhibitor) and trans-10, cis-12-CLA (SCD inhibitor), increased the MMP-1 expression significantly in a dose-dependent manner. We also demonstrated that triolein could inhibit cerulenin-induced MMP-1 expression. Furthermore, topical application of triolein (10%) significantly prevented UV-induced MMP-13, COX-2, and IL-1beta expression in hairless mice. Our results suggest that TG and FFA may play important roles in photoaging of human skin. Copyright 2009 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  16. Control of bovine hepatic fatty acid oxidation

    International Nuclear Information System (INIS)

    Jesse, B.W.; Emery, R.S.; Thomas, J.W.

    1986-01-01

    Fatty acid oxidation by bovine liver slices and mitochondria was examined to determine potential regulatory sites of fatty acid oxidation. Conversion of 1-[ 14 C]palmitate to 14 CO 2 and total [ 14 C]acid-soluble metabolites was used to measure fatty acid oxidation. Oxidation of palmitate (1 mM) was linear in both liver slice weight and incubation time. Carnitine stimulated palmitate oxidation; 2 mM dl-carnitine produced maximal stimulation of palmitate oxidation to both CO 2 and acid-soluble metabolites. Propionate (10 mM) inhibited palmitate oxidation by bovine liver slices. Propionate (.5 to 10 mM) had no effect on palmitate oxidation by mitochondria, but malonyl Coenzyme A, the first committed intermediate of fatty acid synthesis, inhibited mitochondrial palmitate oxidation (inhibition constant = .3 μM). Liver mitochonndrial carnitine palmitoyltransferase exhibited Michaelis constants for palmitoyl Coenzyme A and l-carnitine of 11.5 μM and .59 mM, respectively. Long-chain fatty acid oxidation in bovine liver is regulated by mechanisms similar to those in rats but adapted to the unique digestive physiology of the bovine

  17. Characterisation of Fecal Soap Fatty Acids, Calcium Contents, Bacterial Community and Short-Chain Fatty Acids in Sprague Dawley Rats Fed with Different sn-2 Palmitic Triacylglycerols Diets.

    Science.gov (United States)

    Wan, Jianchun; Hu, Songyou; Ni, Kefeng; Chang, Guifang; Sun, Xiangjun; Yu, Liangli

    2016-01-01

    The structure of dietary triacylglycerols is thought to influence fatty acid and calcium absorption, as well as intestinal microbiota population of the host. In the present study, we investigated the impact of palmitic acid (PA) esterified at the sn-2 position on absorption of fatty acid and calcium and composition of intestinal microorganisms in rats fed high-fat diets containing either low sn-2 PA (12.1%), medium sn-2 PA (40.4%) or high sn-2 PA (56.3%), respectively. Fecal fatty acid profiles in the soaps were measured by gas chromatography (GC), while fecal calcium concentration was detected by ICP-MS. The fecal microbial composition was assessed using a 16S rRNA high-throughput sequencing technology and fecal short-chain fatty acids were detected by ion chromatograph. Dietary supplementation with a high sn-2 PA fat significantly reduced total fecal contents of fatty acids soap and calcium compared with the medium or low sn-2 PA fat groups. Diet supplementation with sn-2 PA fat did not change the entire profile of the gut microbiota community at phylum level and the difference at genera level also were minimal in the three treatment groups. However, high sn-2 PA fat diet could potentially improve total short-chain fatty acids content in the feces, suggesting that high dietary sn-2 PA fat might have a beneficial effect on host intestinal health.

  18. Expression of the short chain fatty acid receptor GPR41/FFAR3 in autonomic and somatic sensory ganglia

    DEFF Research Database (Denmark)

    Nøhr, Mark Klitgaard; Egerod, K L; Christiansen, S H

    2015-01-01

    G-protein-coupled receptor 41 (GPR41) also called free fatty acid receptor 3 (FFAR3) is a Gαi-coupled receptor activated by short-chain fatty acids (SCFAs) mainly produced from dietary complex carbohydrate fibers in the large intestine as products of fermentation by microbiota. FFAR3 is expressed...

  19. Anti-inflammatory effects of conjugated linoleic acid isomers and essential fatty acids in bovine mammary epithelial cells.

    Science.gov (United States)

    Dipasquale, D; Basiricò, L; Morera, P; Primi, R; Tröscher, A; Bernabucci, U

    2018-01-09

    Fatty acids are important modulators of inflammatory responses, in particular, n-3 and n-6 essential fatty acids and CLA have received particular attention for their ability to modulate inflammation. The objectives of this study were to compare the effects of CLA and essential fatty acids on the expression of pro and anti- inflammatory cytokines and their protective efficacy against inflammatory status in mammary gland by an in vitro model based on bovine mammary epithelial cells (BME-UV1). Bovine mammary epithelial cells were treated with complete medium containing either 50 µM of cis-9, trans-11 CLA (c9,t11 CLA) or trans-10, cis-12 CLA (t10,c12 CLA) or (α)-linolenic acid (aLnA) or (γ)-linolenic acid (gLnA) or linoleic acid (LA). After 48 h by fatty acids administration the cells were treated for 3 h with 20 µM of lipopolysaccharide (LPS) to induce inflammatory stimulus. Reactive oxygen species (ROS) production after treatments was assessed to verify and to compare the potential protection of different fatty acids against LPS-induced oxidative stress. The messenger RNA abundance of bovine pro and anti-inflammatory cytokines (tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6) and interleukine-10 (IL-10)) and peroxisome proliferator receptor-α/γ (PPARγ/α) were determined in BME-UV1 by real-time PCR. The results showed that cells treated with fatty acids and LPS increased ROS production compared with control cells. Among treatments, cells treated with c9,t11 CLA and t10,c12 CLA isomers revealed significant lower levels of ROS production compared with other fatty acids. All fatty acids reduced the gene expression of pro- and anti-inflammatory cytokines. Among fatty acids, t10,c12 CLA, LA and gLnA showed an homogeneous reduction of the three pro-inflammatory cytokines and this may correspond to more balanced and efficient physiological activity and may trigger a better protective effect. The PPARγ gene expression was

  20. Dietary fatty acids and cardiovascular disease: A review

    Directory of Open Access Journals (Sweden)

    Raquel Eccel Prates

    2015-09-01

    Full Text Available Fatty acids (FAs can be classified into saturated (SFA, unsaturated (poly- or monounsaturated and trans FA. Recent studies have found that both the quantity and quality of dietary FAs may influence their role in metabolic pathways. Due to their chemical composition, some FAs play a major role in the development and progression of cardiovascular disease. This is especially true for SFA and n-3 polyunsaturated fatty acids, which include marine eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA. The proinflammatory effects of high SFA intake may increase the risk of atherosclerosis. On the other hand, dietary n-3 intake may reduce the risk of cardiovascular disease by decreasing atherosclerosis, inflammation, and thrombotic processes. The goal of this study was to review the current literature on the role of FA intake in the prevention and risk of cardiovascular disease.

  1. Determination of the seasonal changes on total fatty acid ...

    African Journals Online (AJOL)

    Total fatty acid compositions and seasonal variations of Oncorhynchus mykiss in Ivriz Dam Lake, Turkey were investigated using gas chromatographic method. A total of 38 different fatty acids were determined in the fatty acid composition of rainbow trout. Polyunsaturated fatty acids (PUFAs) were found to be higher than ...

  2. Thermal and mechanical properties of fatty acid starch esters.

    Science.gov (United States)

    Winkler, H; Vorwerg, W; Rihm, R

    2014-02-15

    The current study examined thermal and mechanical properties of fatty acid starch esters (FASEs). All highly soluble esters were obtained by the sustainable, homogeneous transesterification of fatty acid vinyl esters in dimethylsulfoxide (DMSO). Casted films of products with a degree of substitution (DS) of 1.40-1.73 were compared with highly substituted ones (DS 2.20-2.63). All films were free of any plasticizer additives. Hydrophobic surfaces were characterized by contact angle measurements. Dynamic scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DMTA) revealed thermal transitions (T(g), T(m)) which were influenced by the internal plasticizing effect of the ester groups. Thermal gravimetric analysis (TGA) measurements showed the increased thermal stability toward native starch. Tensile tests revealed the decreasing strength and stiffness of the products with increasing ester-group chain length while the elongation increased up to the ester group laurate and after that decreased. Esters of the longest fatty acids, palmitate and stearate turned out to be brittle materials due to super molecular structures of the ester chains such as confirmed by X-ray. Summarized products with a DS 1.40-1.73 featured more "starch-like" properties with tensile strength up to outstanding 43 MPa, while products with a DS >2 behaved more "oil-like". Both classes of esters should be tested as a serious alternative to commercial starch blends and petrol-based plastics. The term Cnumber is attributed to the number of total C-Atoms of the fatty acid (e.g. C6=Hexanoate). Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Exogenous Polyunsaturated Fatty Acids Impact Membrane Remodeling and Affect Virulence Phenotypes among Pathogenic Vibrio Species.

    Science.gov (United States)

    Moravec, Anna R; Siv, Andrew W; Hobby, Chelsea R; Lindsay, Emily N; Norbash, Layla V; Shults, Daniel J; Symes, Steven J K; Giles, David K

    2017-11-15

    uptake and incorporation of fatty acids into their membranes. Both aquatic and host niches occupied by Vibrio are rife with various free fatty acids and fatty acid-containing lipids. The roles of fatty acids in the environmental survival and pathogenesis of bacteria have begun to emerge and are expected to expand significantly. The current study demonstrates the responsiveness of V. cholerae , V. parahaemolyticus , and V. vulnificus to exogenous PUFAs. In addition to phospholipid remodeling, PUFA assimilation impacts membrane permeability, motility, biofilm formation, and resistance to polymyxin B. Copyright © 2017 American Society for Microbiology.

  4. Polyunsaturated fatty acids influence differential biosynthesis of oxylipids and other lipid mediators during bovine coliform mastitis.

    Science.gov (United States)

    Mavangira, Vengai; Gandy, Jeffery C; Zhang, Chen; Ryman, Valerie E; Daniel Jones, A; Sordillo, Lorraine M

    2015-09-01

    Coliform mastitis is a severe and sometimes fatal disease characterized by an unregulated inflammatory response. The initiation, progression, and resolution of inflammatory responses are regulated, in part, by potent oxylipid metabolites derived from polyunsaturated fatty acids. The purpose of this study was to characterize the biosynthesis and diversity of oxylipid metabolites during acute bovine coliform mastitis. Eleven cows diagnosed with naturally occurring acute systemic coliform mastitis and 13 healthy control cows, matched for lactation number and days in milk, were selected for comparison of oxylipid and free fatty acid concentrations in both milk and plasma. Oxylipids and free fatty acids were quantified using liquid chromatography-tandem mass spectrometry. All polyunsaturated fatty acids quantified in milk were elevated during coliform mastitis with linoleic acid being the most abundant. Oxylipids synthesized through the lipoxygenase and cytochrome P450 pathways accounted for the majority of the oxylipid biosynthesis. This study demonstrated a complex and diverse oxylipid network, most pronounced at the level of the mammary gland. Substrate availability, biosynthetic pathways, and degree of metabolism influence the biosynthesis of oxylipids during bovine coliform mastitis. Further studies are required to identify targets for novel interventions that modulate oxylipid biosynthesis during coliform mastitis to optimize inflammation. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  5. Biological study of some labeled C16 fatty acids

    Energy Technology Data Exchange (ETDEWEB)

    Riche, F.; Mathieu, J.P.; Busquet, G.; Vidal, M.; Comet, M.; Pernin, C. (C.H.R.U. de Grenoble, 38 - La Tronche (France)); Godart, J.; Benabed, A. (Institut des Sciences Nucleaires, 38 - Grenoble (France)); Bardy, A. (C.E.A.-ORIS, 91 - Gif-sur-Yvette (France))

    1983-01-01

    The evolution of myocardial, blood, liver and kidney activity is studied in mice after I.V. injection of some labelled C16 fatty acids. With ..omega.. iodo fatty acids, the presence or absence of a double bond and the character Z or E have no influence on the tissue activity. The presence of a triple bond decreases the fixation, modifies the intramyocardial metabolism of the fatty acid and accelerates the rate of decrease of myocardial activity. ..omega.. bromo fatty acid have the same maximal fixation as ..omega.. iodo fatty acid but a more rapid decrease of myocardial activity. ..cap alpha.. iodo fatty acid has a very low myocardial fixation.

  6. Biological study of some labeled C16 fatty acids

    International Nuclear Information System (INIS)

    Riche, F.; Mathieu, J.P.; Busquet, G.; Vidal, M.; Comet, M.; Pernin, C.; Godart, J.; Benabed, A.; Bardy, A.

    1983-01-01

    The evolution of myocardial, blood, liver and kidney activity is studied in mice after I.V. injection of some labelled C16 fatty acids. With ω iodo fatty acids, the presence or absence of a double bond and the character Z or E have no influence on the tissue activity. The presence of a triple bond decreases the fixation, modifies the intramyocardial metabolism of the fatty acid and accelerates the rate of decrease of myocardial activity. ω bromo fatty acid have the same maximal fixation as ω iodo fatty acid but a more rapid decrease of myocardial activity. α iodo fatty acid has a very low myocardial fixation [fr

  7. Fads1 and 2 are promoted to meet instant need for long-chain polyunsaturated fatty acids in goose fatty liver.

    Science.gov (United States)

    Osman, Rashid H; Liu, Long; Xia, Lili; Zhao, Xing; Wang, Qianqian; Sun, Xiaoxian; Zhang, Yihui; Yang, Biao; Zheng, Yun; Gong, Daoqing; Geng, Tuoyu

    2016-07-01

    Global prevalence of non-alcoholic fatty liver disease (NAFLD) constitutes a threat to human health. Goose is a unique model of NAFLD for discovering therapeutic targets as its liver can develop severe steatosis without overt injury. Fatty acid desaturase (Fads) is a potential therapeutic target as Fads expression and mutations are associated with liver fat. Here, we hypothesized that Fads was promoted to provide a protection for goose fatty liver. To test this, goose Fads1 and Fads2 were sequenced. Fads1/2/6 expression was determined in goose liver and primary hepatocytes by quantitative PCR. Liver fatty acid composition was also analyzed by gas chromatography. Data indicated that hepatic Fads1/2/6 expression was gradually increased with the time of overfeeding. In contrast, trans-C18:1n9 fatty acid (Fads inhibitor) was reduced. However, enhanced Fads capacity for long-chain polyunsaturated fatty acid (LC-PUFA) synthesis was not sufficient to compensate for the depleted LC-PUFAs in goose fatty liver. Moreover, cell studies showed that Fads1/2/6 expression was regulated by fatty liver-associated factors. Together, these findings suggest Fads1/2 as protective components are promoted to meet instant need for LC-PUFAs in goose fatty liver, and we propose this is required for severe hepatic steatosis without liver injury.

  8. Binding of acyl CoA by fatty acid binding protein and the effect on fatty acid activation

    International Nuclear Information System (INIS)

    Burrier, R.E.; Manson, C.R.; Brecher, P.

    1987-01-01

    The ability of purified rat liver and heart fatty acid binding proteins (FABPs) to bind oleoyl CoA and modulate acyl CoA synthesis by microsomal membranes was investigated. Using binding assays employing either Lipidex 1000 or multilamellar liposomes to sequester unbound ligand, rat liver but not rat heart FABP was shown to bind radiolabeled acyl CoA. Binding studies suggest that liver FABP has a single binding site for acyl CoA which is separate from the two binding sites for fatty acids. Experiments were then performed to determine how binding may influence acyl CoA metabolism by liver microsomes or heart sarcoplasmic reticulum. Using liposomes as fatty acid donors, liver FABP stimulated acyl CoA production whereas heart FABP did not stimulate production over control values. 14 C-Fatty acid-FABP complexes were prepared, incubated with membranes and acyl CoA synthetase activity was determined. Up to 70% of the fatty acid could be converted to acyl CoA in the presence of liver FABP but in the presence of heart FABP, only 45% of the fatty acid was converted. The amount of product formed was not changed by additional membrane, enzyme cofactor, or incubation time. Liver but not heart FABP bound the acyl CoA formed and removed it from the membranes. These studies suggest that liver FABP can increase the amount of acyl CoA by binding this ligand thereby removing it from the membrane and possibly aiding transport within the cell

  9. Binding of acyl CoA by fatty acid binding protein and the effect on fatty acid activation

    Energy Technology Data Exchange (ETDEWEB)

    Burrier, R.E.; Manson, C.R.; Brecher, P.

    1987-05-01

    The ability of purified rat liver and heart fatty acid binding proteins (FABPs) to bind oleoyl CoA and modulate acyl CoA synthesis by microsomal membranes was investigated. Using binding assays employing either Lipidex 1000 or multilamellar liposomes to sequester unbound ligand, rat liver but not rat heart FABP was shown to bind radiolabeled acyl CoA. Binding studies suggest that liver FABP has a single binding site for acyl CoA which is separate from the two binding sites for fatty acids. Experiments were then performed to determine how binding may influence acyl CoA metabolism by liver microsomes or heart sarcoplasmic reticulum. Using liposomes as fatty acid donors, liver FABP stimulated acyl CoA production whereas heart FABP did not stimulate production over control values. /sup 14/C-Fatty acid-FABP complexes were prepared, incubated with membranes and acyl CoA synthetase activity was determined. Up to 70% of the fatty acid could be converted to acyl CoA in the presence of liver FABP but in the presence of heart FABP, only 45% of the fatty acid was converted. The amount of product formed was not changed by additional membrane, enzyme cofactor, or incubation time. Liver but not heart FABP bound the acyl CoA formed and removed it from the membranes. These studies suggest that liver FABP can increase the amount of acyl CoA by binding this ligand thereby removing it from the membrane and possibly aiding transport within the cell.

  10. Free fatty acid profiling of marine sentinels by nanoLC-EI-MS for the assessment of environmental pollution effects.

    Science.gov (United States)

    Albergamo, Ambrogina; Rigano, Francesca; Purcaro, Giorgia; Mauceri, Angela; Fasulo, Salvatore; Mondello, Luigi

    2016-11-15

    The present work aims to elucidate the free fatty acid (FFA) profile of the mussel Mytilus galloprovincialis caged in an anthropogenically impacted area and in a reference site through an innovative and validated analytical approach for the assessment of biological alterations induced by marine pollution. The FFA pattern is involved in the regulation of different cellular pathways and differs with respect to metabolic stimuli. To this purpose, the lipid fraction of mussels coming from both sampling areas was extracted and the FFA fractions were isolated and purified by a solid phase extraction; then, nano-scale liquid chromatography coupled to electron ionization mass spectrometry (nanoLC-EI-MS) was employed for the characterization of the two samples. A total of 19 and 17 FFAs were reliably identified in the mussels coming from the reference and polluted site, respectively. Significant qualitative and quantitative differences found in saturated, monounsaturated and polyunsaturated species may be exploited as typical pollution biomarkers (e.g. alteration of the fatty acid biosynthetic system and lipotoxicity) and explain adverse and compromising effects (e.g. oxidative stress and inflammatory processes) related to environmental pollution. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Nutritional evaluation of structured lipid containing omega 6 fatty acid synthesized from coconut oil in rats.

    Science.gov (United States)

    Rao, Reena; Lokesh, Belur R

    2003-06-01

    Coconut oil is rich in medium chain fatty acids, but deficient in polyunsaturated fatty acids (PUFA). Structured lipids (SL) enriched with omega 6 PUFA were synthesized from coconut oil triglycerides by employing enzymatic acidolysis with free fatty acids obtained from safflower oil. Rats were fed a diet containing coconut oil, coconut oil-safflower oil blend (1:0.7 w/ w) or structured lipid at 10% levels for a period of 60 days. The SL lowered serum cholesterol levels by 10.3 and 10.5% respectively in comparison with those fed coconut oil and blended oil. Similarly the liver cholesterol levels were also decreased by 35.9 and 26.6% respectively in animals fed structured lipids when compared to those fed on coconut oil or the blended oil. Most of the decrease observed in serum cholesterol levels of animals fed structured lipids was found in LDL fraction. The triglyceride levels in serum showed a decrease by 17.5 and 17.4% while in the liver it was reduced by 45.8 and 23.5% in the structured lipids fed animals as compared to those fed coconut oil or blended oil respectively. Differential scanning calorimetric studies indicated that structured lipids had lower melting points and solid fat content when compared to coconut oil or blended oils. These studies indicated that enrichment of coconut oil triglycerides with omega 6 fatty acids lowers its solid fat content. The omega 6 PUFA enriched structured lipids also exhibited hypolipidemic activity.

  12. Effect of oil extraction assisted by ultrasound on the physicochemical properties and fatty acid profile of pumpkin seed oil (Cucurbita pepo).

    Science.gov (United States)

    Hernández-Santos, Betsabé; Rodríguez-Miranda, Jesús; Herman-Lara, Erasmo; Torruco-Uco, Juan G; Carmona-García, Roselis; Juárez-Barrientos, José M; Chávez-Zamudio, Rubí; Martínez-Sánchez, Cecilia E

    2016-07-01

    The effects of amplitude and time of ultrasound-assisted extraction on the physicochemical properties and the fatty acid profile of pumpkin seed oil (Cucurbita pepo) were evaluated. Ultrasound time (5-30 min) and the response variables amplitude (25-100%), extraction yield, efficiency, oxidative stability in terms of the free fatty acids (FFA) of the plant design comprising two independent experiments variables, peroxide (PV), p-anisidine (AV), totox value (TV) and the fatty acid profile were evaluated. The results were analyzed by multiple linear regression. The time and amplitude showed significant differences (P<0.05) for all variables. The highest yield of extraction was achieved at 5 min and amplitude of 62.5% (62%). However, the optimal ultrasound-assisted extraction conditions were as follows: ultrasound time of 26.34 min and amplitude of 89.02%. All extracts showed low FFA (2.75-4.93% oleic acid), PV (1.67-4.68 meq/kg), AV (1.94-3.69) and TV (6.25-12.55) values. The main fatty acids in all the extracts were oleic and linoleic acid. Therefore, ultrasound-assisted oil extraction had increased performance and reduced extraction time without affecting the oil quality. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Fatty acid profile of the fat in selected smoked marine fish.

    Science.gov (United States)

    Regulska-Ilow, Bozena; Ilow, Rafał; Konikowska, Klaudia; Kawicka, Anna; Rózańska, Dorota; Bochińska, Agnieszka

    2013-01-01

    Fish and marine animals fat is a source of unique long chain polyunsaturated fatty acids (LC-PUFA): eicosapentaenoic (EPA), docosahexaenoic (DHA) and dipicolinic (DPA). These compounds have a beneficial influence on blood lipid profile and they reduce the risk of cardiovascular diseases, atherosclerosis and disorders of central nervous system. The proper ratio of n-6/n-3 fatty acids in diet is necessary to maintain a balance between the effects of eicosanoids synthesized from these acids in the body. The aim of this study was the evaluation of total fat and cholesterol content and percentage of fatty acids in selected commercial smoked marine fish. The studied samples were smoked marine fish such as: halibut, mackerel, bloater and sprat. The percentage total fat content in edible muscles was evaluated via the Folch modified method. The fat was extracted via the Bligh-Dyer modified method. The enzymatic hydrolysis was used to assesses cholesterol content in samples. The content of fatty acids, expressed as methyl esters, was evaluated with gas chromatography. The average content of total fat in 100 g of fillet of halibut, mackerel, bloater and sprat amounted respectively to: 14.5 g, 25.7 g, 13.9 g and 13.9 g. The average content of cholesterol in 100 g of halibut, mackerel, bloater and sprat was respectively: 54.5 mg, 51.5 mg, 57.5 mg and 130.9 mg. The amount of saturated fatty acids (SFA) was about 1/4 of total fatty acids in the analyzed samples. The oleic acid (C18:1 n-9) was the major compound among monounsaturated fatty acids (MUFA) and amounted to 44% of these fatty acids. The percentage of polyunsaturated fatty acids (PUFA) in halibut, mackerel, bloater and sprat was respectively: 31.9%, 45.4%, 40.8% and 37.0%. The percentage of n-3 PUFA in mackerel and bloater was 30.1% and 30.2%, while in halibut and sprat was lower and amounted to 22.5% and 25.6%, respectively. In terms of nutritional magnitude the meat of mackerel and herring, compared to the meat of

  14. Mice Lacking Free Fatty Acid Receptor 1 (GPR40/FFAR1) are Protected Against Conjugated Linoleic Acid-Induced Fatty Liver but Develop Inflammation and Insulin Resistance in the Brain.

    Science.gov (United States)

    Sartorius, Tina; Drescher, Andrea; Panse, Madhura; Lastovicka, Petr; Peter, Andreas; Weigert, Cora; Kostenis, Evi; Ullrich, Susanne; Häring, Hans-Ulrich

    2015-01-01

    Conjugated linoleic acids (CLAs) affect body fat distribution, induce insulin resistance and stimulate insulin secretion. The latter effect is mediated through the free fatty acid receptor-1 (GPR40/FFAR1). This study examines whether GPR40/FFAR1 interacts with tissue specific metabolic changes induced by CLAs. After chronic application of CLAs C57BL/6J wild type (WT) and GPR40/FFAR1 (Ffar1(-/-)) knockout mice developed insulin resistance. Although CLAs accumulated in liver up to 46-fold genotype-independently, hepatic triglycerides augmented only in WT mice. This triglyceride deposition was not associated with increased inflammation. In contrast, in brain of CLA fed Ffar1(-/-) mice mRNA levels of TNF-α were 2-fold higher than in brain of WT mice although CLAs accumulated genotype-independently in brain up to 4-fold. Concomitantly, Ffar1(-/-) mice did not respond to intracerebroventricular (i.c.v.) insulin injection with an increase in cortical activity while WT mice reacted as assessed by radiotelemetric electrocorticography (ECoG) measurements. In vitro incubation of primary murine astrocytes confirmed that CLAs stimulate neuronal inflammation independent of GPR40/FFAR1. This study discloses that GPR40/FFAR1 indirectly modulates organ-specific effects of CLAs: the expression of functional GPR40/FFAR1 counteracts CLA-induced inflammation and insulin resistance in the brain, but favors the development of fatty liver. © 2015 S. Karger AG, Basel.

  15. Biodiesel production from esterification of free fatty acid over PA/NaY solid catalyst

    International Nuclear Information System (INIS)

    Liu, Wei; Yin, Ping; Zhang, Jiang; Tang, Qinghua; Qu, Rongjun

    2014-01-01

    Highlights: • Biodiesel production from esterification of oleic acid was catalyzed by PA/NaY. • The influences of the process operating parameters were studied. • RSM was employed to optimize the experimental conditions. • The kinetic equation of the esterification reaction was investigated. - Abstract: Because of the incitements from increasing petroleum prices, diminishing petroleum reserves and the environmental consequences of exhaust gases from petroleum fueled engines, biodiesel has been used as a substitute of the regular diesel in recent years. In this paper, biodiesel production from the esterification of the free fatty oil oleic acid with ethanol catalyzed by PA/NaY (PA = organic phosphonic acid) was investigated, and the effect of reaction conditions such as PA loading, catalyst amount, molar ratio of alcohol to acid, reaction temperature and reaction time on the esterification reaction was examined. The process optimization using response surface methodology (RSM) was performed and the interactions between the operational variables were elucidated. The optimum values for maximum conversion ratio of oleic acid could be obtained by using a Box–Behnken center-united design with a minimum of experimental work. The oleic acid conversion reached 79.51 ± 0.68% with the molar ratio of alcohol to oleic acid being 7:1 and 1.7 g PA/NaY catalyst (20 ml of PA loading) at 105 °C for 7 h. Moreover, a kinetic model for the esterification catalyzed by PA/NaY catalyst was established. By fitting the kinetic model with the experimental results, the reaction order n = 2, activation energy of the positive reaction Ea + = 43.41 kJ/mol and that of the reverse reaction Ea − = 59.74 kJ/mol were obtained

  16. Fatty acid profile of maternal and fetal erythrocytes and placental expression of fatty acid transport proteins in normal and intrauterine growth restriction pregnancies.

    Science.gov (United States)

    Assumpção, Renata P; Mucci, Daniela B; Fonseca, Fernanda C P; Marcondes, Henrique; Sardinha, Fátima L C; Citelli, Marta; Tavares do Carmo, Maria G

    2017-10-01

    Long-chain polyunsaturated fatty acids (LC-PUFA), mainly docosahexaenoic (DHA) and arachidonic acids (AA), are critical for adequate fetal growth and development. We investigated mRNA expression of proteins involved in hydrolysis, uptake and/or transport of fatty acids in placenta of fifteen full term normal pregnancies and eleven pregnancies complicated by intrauterine growth restriction (IUGR) with normal umbilical blood flows. The mRNA expression of LPL, FATPs (-1, -2 and -4) and FABPs (-1 and -3) was increased in IUGR placentas, however, tissue profile of LC-PUFA was not different between groups. Erythrocytes from both mothers and fetuses of the IUGR group showed lower concentrations of AA and DHA and inferior DHA/ALA ratio compared to normal pregnancies (P < 0.05). We hypothesize that reduced circulating levels of AA and DHA could up-regulate mRNA expression of placental fatty acids transporters, as a compensatory mechanism, however this failed to sustain normal LC-PUFA supply to the fetus in IUGR. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Role of free fatty acid receptors in the regulation of energy metabolism.

    Science.gov (United States)

    Hara, Takafumi; Kashihara, Daiji; Ichimura, Atsuhiko; Kimura, Ikuo; Tsujimoto, Gozoh; Hirasawa, Akira

    2014-09-01

    Free fatty acids (FFAs) are energy-generating nutrients that act as signaling molecules in various cellular processes. Several orphan G protein-coupled receptors (GPCRs) that act as FFA receptors (FFARs) have been identified and play important physiological roles in various diseases. FFA ligands are obtained from food sources and metabolites produced during digestion and lipase degradation of triglyceride stores. FFARs can be grouped according to ligand profiles, depending on the length of carbon chains of the FFAs. Medium- and long-chain FFAs activate FFA1/GPR40 and FFA4/GPR120. Short-chain FFAs activate FFA2/GPR43 and FFA3/GPR41. However, only medium-chain FFAs, and not long-chain FFAs, activate GPR84 receptor. A number of pharmacological and physiological studies have shown that these receptors are expressed in various tissues and are primarily involved in energy metabolism. Because an impairment of these processes is a part of the pathology of obesity and type 2 diabetes, FFARs are considered as key therapeutic targets. Here, we reviewed recently published studies on the physiological functions of these receptors, primarily focusing on energy homeostasis. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Introduction to fatty acids and lipids.

    Science.gov (United States)

    Burdge, Graham C; Calder, Philip C

    2015-01-01

    The purpose of this article is to describe the structure, function and metabolism of fatty acids and lipids that are of particular importance in the context of parenteral nutrition. Lipids are a heterogeneous group of molecules that share the common property of hydrophobicity. Lipids range in structure from simple short hydrocarbon chains to more complex molecules, including triacylglycerols, phospholipids and sterols and their esters. Lipids within each class may differ structurally. Fatty acids are common components of complex lipids, and these differ according to chain length and the presence, number and position of double bonds in the hydrocarbon chain. Structural variation among complex lipids and among fatty acids gives rise to functional differences that result in different impacts upon metabolism and upon cell and tissue responses. Fatty acids and complex lipids exhibit a variety of structural variations that influence their metabolism and their functional effects. © 2015 S. Karger AG, Basel.

  19. Unsaturated fatty acids in the diet of inpatients

    OpenAIRE

    KONHEFROVÁ, Veronika

    2015-01-01

    The thesis with the name "Unsaturated fatty acids in the diet of inpatients" is divided into a theoretical and a research parts. The theoretical part is focused on sorting out lipids and the recommended daily dosing. Next there are described the chemical structure of fatty acids and basic differences between saturated (SFA) and unsaturated (trans and cis) fatty acids. The biggest part of the theory is formed by the unsaturated fatty acids, their characteristics, food source and their effect o...

  20. Effect of Processing on Physiochemical Properties and Fatty Acid Composition of Fluted Pumpkin (Telfairia occidentails) Seed Oil

    International Nuclear Information System (INIS)

    Alademeyin, J. O.; Arawande, J. O.

    2016-01-01

    This paper reports the physicochemical properties and fatty acid composition of the seed oil extracted from fluted pumpkin (Telfairia occidentalis). The extracted oil was degummed, neutralised and bleached. The oil yield was 42.26±0.20%. The specific gravity (at 25 degree C) of the oil was 0.923±0.003 and the refractive index (at 25 degree C) was 1.475±0.002. Processing of the crude oil resulted in progressive decrease in turbidity, colour, free fatty acid, acid value, peroxide value and saponification value. However, there was increase in smoke point (243.00±0.03 to 253.00±0.03 degree C), flash point (285.00±1.20 to 304.0 1.10 degree C) and fire point (345.001.10 to 358.0 1.55 degree C) as well as iodine value (113.00 to 121.50 g/100 g) and fatty acid composition during the processing of the oil. The fatty acids detected in the oil samples were myristic, palmitic, stearic, oleic, arachidic, behenic, linoleic and linolenic acids. The predominant fatty acid was oleic acid (47.40-47.90%) followed by linoleic acid (26.36-30.44%) while the least fatty acid was linolenic acid (0.01-0.05%). (author)

  1. Dehydration of multilamellar fatty acid membranes: Towards a computational model of the stratum corneum

    Science.gov (United States)

    MacDermaid, Christopher M.; DeVane, Russell H.; Klein, Michael L.; Fiorin, Giacomo

    2014-12-01

    The level of hydration controls the cohesion between apposed lamellae of saturated free fatty acids found in the lipid matrix of stratum corneum, the outermost layer of mammalian skin. This multilamellar lipid matrix is highly impermeable to water and ions, so that the local hydration shell of its fatty acids may not always be in equilibrium with the acidity and relative humidity, which significantly change over a course of days during skin growth. The homeostasis of the stratum corneum at each moment of its growth likely requires a balance between two factors, which affect in opposite ways the diffusion of hydrophilic species through the stratum corneum: (i) an increase in water order as the lipid lamellae come in closer contact, and (ii) a decrease in water order as the fraction of charged fatty acids is lowered by pH. Herein molecular dynamics simulations are employed to estimate the impact of both effects on water molecules confined between lamellae of fatty acids. Under conditions where membrane undulations are energetically favorable, the charged fatty acids are able to sequester cations around points of contact between lamellae that are fully dehydrated, while essentially maintaining a multilamellar structure for the entire system. This observation suggests that the undulations of the fatty acid lamellae control the diffusion of hydrophilic species through the water phase by altering the positional and rotational order of water molecules in the embedded/occluded "droplets."

  2. 40 CFR 721.3627 - Branched synthetic fatty acid.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Branched synthetic fatty acid. 721... Substances § 721.3627 Branched synthetic fatty acid. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a branched synthetic fatty acid...

  3. Fatty acid synthase plays a role in cancer metabolism beyond providing fatty acids for phospholipid synthesis or sustaining elevations in glycolytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Hopperton, Kathryn E., E-mail: kathryn.hopperton@mail.utoronto.ca [Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 3E2 (Canada); Duncan, Robin E., E-mail: robin.duncan@uwaterloo.ca [Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 3E2 (Canada); Bazinet, Richard P., E-mail: richard.bazinet@utoronto.ca [Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 3E2 (Canada); Archer, Michael C., E-mail: m.archer@utoronto.ca [Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 3E2 (Canada); Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 3E2 (Canada)

    2014-01-15

    Fatty acid synthase is over-expressed in many cancers and its activity is required for cancer cell survival, but the role of endogenously synthesized fatty acids in cancer is unknown. It has been suggested that endogenous fatty acid synthesis is either needed to support the growth of rapidly dividing cells, or to maintain elevated glycolysis (the Warburg effect) that is characteristic of cancer cells. Here, we investigate both hypotheses. First, we compared utilization of fatty acids synthesized endogenously from {sup 14}C-labeled acetate to those supplied exogenously as {sup 14}C-labeled palmitate in the culture medium in human breast cancer (MCF-7 and MDA-MB-231) and untransformed breast epithelial cells (MCF-10A). We found that cancer cells do not produce fatty acids that are different from those derived from exogenous palmitate, that these fatty acids are esterified to the same lipid and phospholipid classes in the same proportions, and that their distribution within neutral lipids is not different from untransformed cells. These results suggest that endogenously synthesized fatty acids do not fulfill a specific function in cancer cells. Furthermore, we observed that cancer cells excrete endogenously synthesized fatty acids, suggesting that they are produced in excess of requirements. We next investigated whether lipogenic activity is involved in the maintenance of high glycolytic activity by culturing both cancer and non-transformed cells under anoxic conditions. Although anoxia increased glycolysis 2–3 fold, we observed no concomitant increase in lipogenesis. Our results indicate that breast cancer cells do not have a specific qualitative or quantitative requirement for endogenously synthesized fatty acids and that increased de novo lipogenesis is not required to sustain elevations in glycolytic activity induced by anoxia in these cells. - Highlights: • Fatty acid synthase (FASN) is over-expressed in cancer but its function is unknown. • We compare

  4. Fatty acid synthase plays a role in cancer metabolism beyond providing fatty acids for phospholipid synthesis or sustaining elevations in glycolytic activity

    International Nuclear Information System (INIS)

    Hopperton, Kathryn E.; Duncan, Robin E.; Bazinet, Richard P.; Archer, Michael C.

    2014-01-01

    Fatty acid synthase is over-expressed in many cancers and its activity is required for cancer cell survival, but the role of endogenously synthesized fatty acids in cancer is unknown. It has been suggested that endogenous fatty acid synthesis is either needed to support the growth of rapidly dividing cells, or to maintain elevated glycolysis (the Warburg effect) that is characteristic of cancer cells. Here, we investigate both hypotheses. First, we compared utilization of fatty acids synthesized endogenously from 14 C-labeled acetate to those supplied exogenously as 14 C-labeled palmitate in the culture medium in human breast cancer (MCF-7 and MDA-MB-231) and untransformed breast epithelial cells (MCF-10A). We found that cancer cells do not produce fatty acids that are different from those derived from exogenous palmitate, that these fatty acids are esterified to the same lipid and phospholipid classes in the same proportions, and that their distribution within neutral lipids is not different from untransformed cells. These results suggest that endogenously synthesized fatty acids do not fulfill a specific function in cancer cells. Furthermore, we observed that cancer cells excrete endogenously synthesized fatty acids, suggesting that they are produced in excess of requirements. We next investigated whether lipogenic activity is involved in the maintenance of high glycolytic activity by culturing both cancer and non-transformed cells under anoxic conditions. Although anoxia increased glycolysis 2–3 fold, we observed no concomitant increase in lipogenesis. Our results indicate that breast cancer cells do not have a specific qualitative or quantitative requirement for endogenously synthesized fatty acids and that increased de novo lipogenesis is not required to sustain elevations in glycolytic activity induced by anoxia in these cells. - Highlights: • Fatty acid synthase (FASN) is over-expressed in cancer but its function is unknown. • We compare utilization of

  5. Topical electrophilic nitro-fatty acids potentiate cutaneous inflammation.

    Science.gov (United States)

    Mathers, Alicia R; Carey, Cara D; Killeen, Meaghan E; Salvatore, Sonia R; Ferris, Laura K; Freeman, Bruce A; Schopfer, Francisco J; Falo, Louis D

    2018-02-01

    Endogenous electrophilic fatty acids mediate anti-inflammatory responses by modulating metabolic and inflammatory signal transduction and gene expression. Nitro-fatty acids and other electrophilic fatty acids may thus be useful for the prevention and treatment of immune-mediated diseases, including inflammatory skin disorders. In this regard, subcutaneous (SC) injections of nitro oleic acid (OA-NO 2 ), an exemplary nitro-fatty acid, inhibit skin inflammation in a model of allergic contact dermatitis (ACD). Given the nitration of unsaturated fatty acids during metabolic and inflammatory processes and the growing use of fatty acids in topical formulations, we sought to further study the effect of nitro-fatty acids on cutaneous inflammation. To accomplish this, the effect of topically applied OA-NO 2 on skin inflammation was evaluated using established murine models of contact hypersensitivity (CHS). In contrast to the effects of subcutaneously injected OA-NO 2 , topical OA-NO 2 potentiated hapten-dependent inflammation inducing a sustained neutrophil-dependent inflammatory response characterized by psoriasiform histological features, increased angiogenesis, and an inflammatory infiltrate that included neutrophils, inflammatory monocytes, and γδ T cells. Consistent with these results, HPLC-MS/MS analysis of skin from psoriasis patients displayed a 56% increase in nitro-conjugated linoleic acid (CLA-NO 2 ) levels in lesional skin compared to non-lesional skin. These results suggest that nitro-fatty acids in the skin microenvironment are products of cutaneous inflammatory responses and, in high local concentrations, may exacerbate inflammatory skin diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Effect of postharvest methyl jasmonate treatment on fatty acid composition and phenolic acid content in olive fruits during storage.

    Science.gov (United States)

    Flores, Gema; Blanch, Gracia Patricia; Del Castillo, María Luisa Ruiz

    2017-07-01

    The nutritional effects of both table olives and olive oil are attributed not only to their fatty acids but also to antioxidant phenolics such as phenolic acids. Delays in oil processing usually result in undesirable oxidation and hydrolysis processes leading to formation of free fatty acids. These alterations create the need to process oil immediately after olive harvest. However, phenolic content decreases drastically during olive storage resulting in lower quality oil. In the present study we propose postharvest methyl jasmonate treatment as a mean to avoid changes in fatty acid composition and losses of phenolic acids during olive storage. Contents of fatty acids and phenolic acids were estimated in methyl jasmonate treated olives throughout 30-day storage, as compared with those of untreated olives. Significant decreases of saturated fatty acids were observed in treated samples whereas increases of oleic, linoleic and linolenic acids were respectively measured (i.e. from 50.8% to 64.5%, from 7.2% to 9.1% and from 1.5% to 9.3%). Also, phenolic acid contents increased significantly in treated olives. Particularly, increases of gallic acid from 1.35 to 6.29 mg kg -1 , chlorogenic acid from 9.18 to 16.21 mg kg -1 , vanillic acid from 9.61 to 16.99 mg kg -1 , caffeic acid from 5.12 to 12.55 mg kg -1 , p-coumaric acid from 0.96 to 5.31 mg kg -1 and ferulic acid from 4.05 to 10.43 mg kg -1 were obtained. Methyl jasmonate treatment is proposed as an alternative postharvest technique to traditional methods to guarantee olive oil quality when oil processing is delayed and olive fruits have to necessarily to be stored. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  7. Fatty acid composition of ostrich (Struthio camelus abdominal adipose tissue

    Directory of Open Access Journals (Sweden)

    Daniela Belichovska

    2015-03-01

    Full Text Available Fatty acid composition of foods has a great impact on nutrition and health. Therefore, thе determination and knowledge of the fatty acid composition of food is very important for nutrition. Due to the high nutritional characteristics of ostrich meat and its products, the research determining their quality is of topical interest. The aim of the present investigation was the determination of fatty acid composition of ostrich adipose tissue. The content of fatty acids was determined according to AOAC Official Methods of Analysis and determination was performed using a gas chromatograph with a flame-ionization detector (GC-FID. The results are expressed as a percentage of the total content of fatty acids. The method was validated and whereupon the following parameters were determined: linearity, precision, recovery, limit of detection and limit of quantification. The repeatability was within of 0.99 to 2.15%, reproducibility from 2.01 to 4.57%, while recovery ranged from 94.89 to 101.03%. According to these results, this method is accurate and precise and can be used for analysis of fatty acids in foods. It was concluded that the content of saturated fatty acids (SFA accounted 34.75%, of monounsaturated fatty acids (MUFA 38.37%, of polyunsaturated fatty acids (PUFA 26.88%, of total unsaturated fatty acids (UFA 65.25% and of desirable fatty acids (DFA (total unsaturated + stearic acid 70.37% of the analysed samples. The ratio polyunsaturated/saturated fatty acids accounted 0.77. The most present fatty acid is the oleic (C18:1n9c with 28.31%, followed by palmitic (C16:0 with 27.12% and linoleic (C18:2n6c acid with 25.08%. Other fatty acids are contained in significantly lower quantities.

  8. Chlorpromazine-induced perturbations of bile acids and free fatty acids in cholestatic liver injury prevented by the Chinese herbal compound Yin-Chen-Hao-Tang.

    Science.gov (United States)

    Yang, Qiaoling; Yang, Fan; Tang, Xiaowen; Ding, Lili; Xu, Ying; Xiong, Yinhua; Wang, Zhengtao; Yang, Li

    2015-04-16

    Yin-Chen-Hao-Tang (YCHT), a commonly used as a traditional chinese medicine for liver disease. Several studies indicated that YCHT may improving hepatic triglyceride metabolism and anti-apoptotic response as well as decreasing oxidative stress .However, little is known about the role of YCHT in chlorpromazine (CPZ) -induced chlolestatic liver injury. Therefore, we aimed to facilitate the understanding of the pathogenesis of cholestatic liver injury and evaluate the effect of Yin-Chen-Hao-Tang (YCHT) on chlorpromazine (CPZ)-induced cholestatic liver injury in rats based on the change of bile acids (BAs) and free fatty acids (FFAs) alone with the biochemical indicators and histological examination. We conducted an experiment on CPZ-induced cholestatic liver injury in Wistar rats with and without YCHT for nine consecutive days. Serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), albumin (ALB), total bilirubin (TBIL), total cholesterol (TC), triglycerides (TG), low density lipoprotein-cholesterol (LDL-C) were measured to evaluate the protective effect of YCHT against chlorpromazine (CPZ)-induced cholestatic liver injury. Histopathology of the liver tissue showed that pathological injuries were relieved after YCHT pretreatment. In addition, ultra-performance lipid chromatography coupled with quadrupole mass spectrometry (UPLC-MS) and gas chromatography coupled with mass spectrometry (GC-MS) was applied to determine the content of bile acids, free fatty acids, respectively. Obtained data showed that YCHT attenuated the effect of CPZ-induced cholestatic liver injury, which was manifested by the serum biochemical parameters and histopathology of the liver tissue. YCHT regulated the lipid levels as indicated by the reversed serum levels of TC, TG, and LDL-C. YCHT also regulated the disorder of BA and FFA metabolism by CPZ induction. Results indicated that YCHT exerted a protective effect on CPZ-induced cholestasis liver injury. The variance of

  9. Adipose tissue Fatty Acid patterns and changes in antrhropometry

    DEFF Research Database (Denmark)

    Dahm, Christina Catherine; Gorst-Rasmussen, Anders; Jakobsen, Marianne Uhre

    2011-01-01

    Introduction Diets rich in n-3 long chain polyunsaturated fatty acids (LC-PUFA), but low in n-6 LC-PUFA and 18:1 trans-fatty acids (TFA), may lower the risk of overweight and obesity. These fatty acids have often been investigated individually. We explored associations between global patterns...... in adipose tissue fatty acids and changes in anthropometry. Methods 34 fatty acid species from adipose tissue biopsies were determined in a random sample of 1100 men and women from a Danish cohort study. We used sex-specific principal component analysis and multiple linear regression to investigate...... the associations of adipose tissue fatty acid patterns with changes in weight, waist circumference (WC), and WC controlled for changes in body mass index (WCBMI), adjusting for confounders. Results 7 principal components were extracted for each sex, explaining 77.6% and 78.3% of fatty acid variation in men...

  10. Fatty acid oxidation and ketogenesis in astrocytes

    International Nuclear Information System (INIS)

    Auestad, N.

    1988-01-01

    Astrocytes were derived from cortex of two-day-old rat brain and grown in primary culture to confluence. The metabolism of the fatty acids, octanoate and palmitate, to CO 2 in oxidative respiration and to the formation of ketone bodies was examined by radiolabeled tracer methodology. The net production of acetoacetate was also determined by measurement of its mass. The enzymes in the ketogenic pathway were examined by measuring enzymic activity and/or by immunoblot analyses. Labeled CO 2 and labeled ketone bodies were produced from the oxidation of fatty acids labeled at carboxy- and ω-terminal carbons, indicating that fatty acids were oxidized by β-oxidation. The results from the radiolabeled tracer studies also indicated that a substantial proportion of the ω-terminal 4-carbon unit of the fatty acids bypassed the β-ketothiolase step of the β-oxidation pathway. The [ 14 C]acetoacetate formed from the [1- 14 C]labeled fatty acids, obligated to pass through the acetyl-CoA pool, contained 50% of the label at carbon 3 and 50% at carbon 1. In contrast, the [ 14 C]acetoacetate formed from the (ω-1)labeled fatty acids contained 90% of the label at carbon 3 and 10% at carbon 1

  11. Influence of omega-3 fatty acid status on the way rats adapt to chronic restraint stress.

    Directory of Open Access Journals (Sweden)

    Marie Hennebelle

    Full Text Available Omega-3 fatty acids are important for several neuronal and cognitive functions. Altered omega-3 fatty acid status has been implicated in reduced resistance to stress and mood disorders. We therefore evaluated the effects of repeated restraint stress (6 h/day for 21 days on adult rats fed omega-3 deficient, control or omega-3 enriched diets from conception. We measured body weight, plasma corticosterone and hippocampus glucocorticoid receptors and correlated these data with emotional and depression-like behaviour assessed by their open-field (OF activity, anxiety in the elevated-plus maze (EPM, the sucrose preference test and the startle response. We also determined their plasma and brain membrane lipid profiles by gas chromatography. Repeated restraint stress caused rats fed a control diet to lose weight. Their plasma corticosterone increased and they showed moderate behavioural changes, with increases only in grooming (OF test and entries into the open arms (EPM. Rats fed the omega-3 enriched diet had a lower stress-induced weight loss and plasma corticosterone peak, and reduced grooming. Rats chronically lacking omega-3 fatty acid exhibited an increased startle response, a stress-induced decrease in locomotor activity and exaggerated grooming. The brain omega-3 fatty acids increased as the dietary omega-3 fatty acids increased; diets containing preformed long-chain omega-3 fatty acid were better than diets containing the precursor alpha-linolenic acid. However, the restraint stress reduced the amounts of omega-3 incorporated. These data showed that the response to chronic restraint stress was modulated by the omega-3 fatty acid supply, a dietary deficiency was deleterious while enrichment protecting against stress.

  12. Choice of infusion-sampling mode for tracer studies of free fatty acid metabolism

    International Nuclear Information System (INIS)

    Jensen, M.D.; Rogers, P.J.; Ellman, M.G.; Miles, J.M.

    1988-01-01

    To determine the preferred infusion-sampling mode for isotopic studies of free fatty acid (FFA) metabolism, tracer [( 14 C]palmitate) was infused into the left ventricle of five anesthetized dogs, and tracee ([ 3 H]palmitate) was infused into three separate peripheral veins of each dog. The [ 14 C]palmitate specific activity (SA) was lower in mixed venous than arterial blood, and [ 3 H]palmitate SA was equal in both sites. The actual infusion rate of [ 3 H]palmitate [2.15 +/- 0.31 X 10(5) disintegrations/min (dpm).kg-1.min-1] could be accurately predicted (2.14 +/- 0.32 X 10(5) dpm.kg-1.min-1) using the known [ 14 C]palmitate infusion rate and the arterial plasma [ 14 C]-to-[ 3 H]palmitate ratio. In contrast, the mixed venous [ 14 C]-to-[ 3 H]palmitate ratio resulted in overestimates (P less than 0.05) of the actual [ 3 H]palmitate infusion rate. In summary, venous tracer infusion with arterial blood sampling for FFA tracer studies provides the most accurate estimates of tracee rate of appearance

  13. Carbohydrate metabolism during prolonged exercise and recovery: interactions between pyruvate dehydrogenase, fatty acids, and amino acids

    DEFF Research Database (Denmark)

    Mourtzakis, Marina; Saltin, B.; Graham, T.

    2006-01-01

    During prolonged exercise, carbohydrate oxidation may result from decreased pyruvate production and increased fatty acid supply and ultimately lead to reduced pyruvate dehydrogenase (PDH) activity. Pyruvate also interacts with the amino acids alanine, glutamine, and glutamate, whereby the decline...... amino acid taken up during exercise and recovery. Alanine and glutamine were also associated...... with pyruvate metabolism, and they comprised 68% of total amino-acid release during exercise and recovery. Thus reduced pyruvate production was primarily associated with reduced carbohydrate oxidation, whereas the greatest production of pyruvate was related to glutamate, glutamine, and alanine metabolism...

  14. Radiolytic products of irradiated authentic fatty acids and triacylglycerides

    International Nuclear Information System (INIS)

    Kim, K.-S.; Lee, Jeong-Min; Seo, Hye-Young; Kim, Jun-Hyoung; Song, Hyun-Pa; Byun, Myung-Woo; Kwon, Joong-Ho

    2004-01-01

    Radiolytic products of authentic fatty acids (palmitic, stearic, oleic, linoleic and linolenic acids) and triacylglycerides (tripalmitin, tristearin, triolein, trilinolein and trilinolenin) were determined. Concentrations of hydrocarbons from the saturated fatty acids were higher than the unsaturated fatty acids. Authentic fatty acids were mainly decomposed in the α-carbon position and C n-1 hydrocarbons occurred in higher than C n-2 hydrocarbons. Concentrations of 2-alkylcyclobutanones from the saturated fatty acids were lower than the unsaturated fatty acids. Concentrations of hydrocarbons from tripalmitin and tristearin were not a significant change compared with triolein, trilinolein and trilinolenin. For all triacylglycerides except triolein, C n-1 hydrocarbons were higher than C n-2 hydrocarbons. Radioproduction rates of 2-alkylcyclobutanones from tripalmitin and tristearin were higher than triolein, trilinolein and trilinolenin

  15. Fatty acid biomarkers: validation of food web and trophic markers using C-13-labelled fatty acids in juvenile sandeel ( Ammodytes tobianus )

    DEFF Research Database (Denmark)

    Dalsgaard, Anne Johanne Tang; St. John, Michael

    2004-01-01

    A key issue in marine science is parameterizing trophic interactions in marine food webs, thereby developing an understanding of the importance of top-down and bottom-up controls on populations of key trophic players. This study validates the utility of fatty acid food web and trophic markers usi......), respectively. Lack of temporal trends in nonlabelled fatty acids confirmed the conservative incorporation of labelled fatty acids by the fish.......A key issue in marine science is parameterizing trophic interactions in marine food webs, thereby developing an understanding of the importance of top-down and bottom-up controls on populations of key trophic players. This study validates the utility of fatty acid food web and trophic markers using...... C-13-labelled fatty acids to verify the conservative incorporation of fatty acid tracers by juvenile sandeel (Ammodytes tobianus) and assess their uptake, clearance, and metabolic turnover rates. Juvenile sandeel were fed for 16 days in the laboratory on a formulated diet enriched in (13)C16...

  16. A genomic view on syntrophic versus non-syntrophic lifestyle in anaerobic fatty acid degrading communities

    NARCIS (Netherlands)

    Worm, P.; Koehorst, J.J.; Visser, M.; Sedano Nunez, V.T.; Schaap, P.J.; Plugge, C.M.; Sousa, D.Z.; Stams, A.J.M.

    2014-01-01

    In sulfate-reducing and methanogenic environments complex biopolymers are hydrolyzed and degraded by fermentative micro-organisms that produce hydrogen, carbon dioxide and short chain fatty acids. Degradation of short chain fatty acids can be coupled to methanogenesis or to sulfate-reduction. Here

  17. Dietary fatty acids and membrane protein function.

    Science.gov (United States)

    Murphy, M G

    1990-02-01

    In recent years, there has been growing public awareness of the potential health benefits of dietary fatty acids, and of the distinction between the effects of the omega6 and omega3 polyunsaturated fatty acids that are concentrated in vegetable and fish oils, respectively. A part of the biologic effectiveness of the two families of polyunsaturated fatty acids resides in their relative roles as precursors of the eicosanoids. However, we are also beginning to appreciate that as the major components of the hydrophobic core of the membrane bilayer, they can interact with and directly influence the functioning of select integral membrane proteins. Among the most important of these are the enzymes, receptors, and ion channels that are situated in the plasma membrane of the cell, since they carry out the communication and homeostatic processes that are necessary for normal cell function. This review examines current information regarding the effects of diet-induced changes in plasma membrane fatty acid composition on several specific enzymes (adenylate cyclase, 5'-nucleotidase, Na(+)/K(+)-ATPase) and cell-surface receptors (opiate, adrenergic, insulin). Dietary manipulation studies have demonstrated a sensitivity of each to a fatty acid environment that is variably dependent on the nature of the fatty acid(s) and/or source of the membrane. The molecular mechanisms appear to involve fatty acid-dependent effects on protein conformation, on the "fluidity" and/or thickness of the membrane, or on protein synthesis. Together, the results of these studies reinforce the concept that dietary fats have the potential to regulate physiologic function and to further our understanding of how this occurs at a membrane level.

  18. Investigation on the Protein Degradation, Free Fatty Acid Content and Area Fraction of Poosti Cheese, Iranian Traditional Cheese Ripened in Skin

    Directory of Open Access Journals (Sweden)

    Mojgan Hemmatian

    2015-03-01

    Full Text Available Background and Objectives: In this study, the proteolysis and lipolysis of Poosti cheese produced from raw sheep milk in mountainous eastern regions of Iran were investigated during 90 days of ripening. Materials and Methods: Sodium dodecyl sulfate polyacrylamide gel electrophoresis for proteolysis (SDS-PAGE and gas chromatography (GC for free fatty acids (FFAs were applied to investigate the intensity of lipid degradation. To evaluate the Poosti cheese microstructural changes, the area fraction parameter of the scanning electron microscopy (SEM micrographs was also calculated by the Image J software. Results: The most alteration in protein profile was occurred in the first month of aging for high activity of the proteolytic microorganisms in this period. The amount of free fatty acids was depended on their length due to the variety of involved mechanisms. In addition, the microstructural parameter was considerably affected by the aging as a consequence of the effect of salt on the activity of raw milk and skin micro flora. Conclusions: The decline in proteolysis rate during the last stage of aging could be correlated with the inhibitory effects of salt on the engaged microorganisms, and increase in the pore fraction of the microstructure during the first month of Poosti cheese aging could be due to casein rearrangement and gas release by the fermentative activity of microorganisms. Keywords: Proteolysis, Lipolysis, Poosti cheese, Raw sheep milk.

  19. Chain-modified radioiodinated fatty acids

    International Nuclear Information System (INIS)

    Otto, C.A.

    1987-01-01

    Several carbon chain manipulations have been studied in terms of their effects on myocardial activity levels and residence time. The manipulations examined included: chain length, chain branching, chain unsaturation, and carbon-iodine bond stabilization. It was found that chain length affects myocardial activity levels for both straight-chain alkyl acids and branched chain alkyl and aryl acids. Similar results have been reported for the straight-chain aryl acids. Generally, the longer chain lengths correlated with higher myocardial activity levels and longer residence times. This behavior is attributed to storage as triglycerides. Branched chain acids are designed to be anti-metabolites but only the aryl β-methyl acids possessed the expected time course of constant or very slowly decreasing activity levels. The alkyl β-methyl acids underwent rapid deiodination - a process apparently independent of β-oxidation. Inhibition of β-oxidation by incorporation of carbon-carbon double and triple bonds was studied. Deiodination of ω-iodo alkyl fatty acids prevented an assessment of suicide inhibition using an unsaturated alkynoic acid. Stabilization of the carbon-iodine bond by attachment of iodine to a vinylic or aryl carbon was studied. The low myocardial values and high blood values observed for an eleven carbon ω-iodo vinylic fatty acid were not encouraging but ω-iodo aryl fatty acids appear to avoid the problems of rapid deiodination. (Auth.)

  20. Maternal omega-3 fatty acids regulate offspring obesity through persistent modulation of gut microbiota.

    Science.gov (United States)

    Robertson, Ruairi C; Kaliannan, Kanakaraju; Strain, Conall R; Ross, R Paul; Stanton, Catherine; Kang, Jing X

    2018-05-24

    The early-life gut microbiota plays a critical role in host metabolism in later life. However, little is known about how the fatty acid profile of the maternal diet during gestation and lactation influences the development of the offspring gut microbiota and subsequent metabolic health outcomes. Here, using a unique transgenic model, we report that maternal endogenous n-3 polyunsaturated fatty acid (PUFA) production during gestation or lactation significantly reduces weight gain and markers of metabolic disruption in male murine offspring fed a high-fat diet. However, maternal fatty acid status appeared to have no significant effect on weight gain in female offspring. The metabolic phenotypes in male offspring appeared to be mediated by comprehensive restructuring of gut microbiota composition. Reduced maternal n-3 PUFA exposure led to significantly depleted Epsilonproteobacteria, Bacteroides, and Akkermansia and higher relative abundance of Clostridia. Interestingly, offspring metabolism and microbiota composition were more profoundly influenced by the maternal fatty acid profile during lactation than in utero. Furthermore, the maternal fatty acid profile appeared to have a long-lasting effect on offspring microbiota composition and function that persisted into adulthood after life-long high-fat diet feeding. Our data provide novel evidence that weight gain and metabolic dysfunction in adulthood is mediated by maternal fatty acid status through long-lasting restructuring of the gut microbiota. These results have important implications for understanding the interaction between modern Western diets, metabolic health, and the intestinal microbiome.

  1. Comprehensive genetic study of fatty acids helps explain the role of noncoding inflammatory bowel disease associated SNPs and fatty acid metabolism in disease pathogenesis.

    Science.gov (United States)

    Jezernik, Gregor; Potočnik, Uroš

    2018-03-01

    Fatty acids and their derivatives play an important role in inflammation. Diet and genetics influence fatty acid profiles. Abnormalities of fatty acid profiles have been observed in inflammatory bowel diseases (IBD), a group of complex diseases defined by chronic gastrointestinal inflammation. IBD associated fatty acid profile abnormalities were observed independently of nutritional status or disease activity, suggesting a common genetic background. However, no study so far has attempted to look for overlap between IBD loci and fatty acid associated loci or investigate the genetics of fatty acid profiles in IBD. To this end, we conducted a comprehensive genetic study of fatty acid profiles in IBD using iCHIP, a custom microarray platform designed for deep sequencing of immune-mediated disease associated loci. This study identifies 10 loci associated with fatty acid profiles in IBD. The most significant associations were a locus near CBS (p = 7.62 × 10 -8 ) and a locus in LRRK2 (p = 1.4 × 10 -7 ). Of note, this study replicates the FADS gene cluster locus, previously associated with both fatty acid profiles and IBD pathogenesis. Furthermore, we identify 18 carbon chain trans-fatty acids (p = 1.12 × 10 -3 ), total trans-fatty acids (p = 4.49 × 10 -3 ), palmitic acid (p = 5.85 × 10 -3 ) and arachidonic acid (p = 8.58 × 10 -3 ) as significantly associated with IBD pathogenesis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Anaerobic oxidation of fatty acids by Clostridium bryantii sp. nov. : a sporeforming, obligately syntrophic bacterium

    OpenAIRE

    Stieb, Marion; Schink, Bernhard

    1985-01-01

    From marine and freshwater mud samples strictly anaerobic, Gram-positive, sporeforming bacteria were isolated which oxidized fatty acids in obligately syntrophic association with H2-utilizing bacteria. Even-numbered fatty acids with up to 10 carbon atoms were degraded to acetate and Hz, odd-numbered fatty acids with up to 11 carbon atoms including 2-methylbutyrate were degraded to acetate, propionate and H2. Neither fumarate, sulfate, thiosulfate, sulfur, nor nitrate were reduced. A marine is...

  3. The impact of short chain fatty acids on GLP-1 and PYY secretion from the isolated perfused rat colon

    DEFF Research Database (Denmark)

    Christiansen, Charlotte Bayer; Gabe, Maria Buur Nordskov; Svendsen, Berit

    2018-01-01

    chain fatty acids (SCFAs) produced by local bacterial fermentation are suggested to activate the colonic free fatty acid receptors FFAR2 (GPR43) and FFAR3 (GPR41), stimulating the colonic L-cells. We used the isolated perfused rat colon as a model of colonic endocrine secretion and studied the effects...

  4. A Review of the Metabolic Origins of Milk Fatty Acids

    Directory of Open Access Journals (Sweden)

    Anamaria COZMA

    2013-08-01

    Full Text Available Milk fat and its fatty acid profile are important determinants of the technological, sensorial, and nutritional properties of milk and dairy products. The two major processes contributing to the presence of fatty acids in ruminant milk are the mammary lipogenesis and the lipid metabolism in the rumen. Among fatty acids, 4:0 to 12:0, almost all 14:0 and about a half of 16:0 in milk fat derive from de novo synthesis within the mammary gland. De novo synthesis utilizes as precursors acetate and butyrate produced through carbohydrates ruminal fermentation and involves acetyl-CoA carboxylase and fatty acid synthetase as key enzymes. The rest of 16:0 and all of the long-chain fatty acids derive from mammary uptake of circulating lipoproteins and nonesterified fatty acids that originate from digestive absorption of lipids and body fat mobilization. Further, long-chain fatty acids as well as medium-chain fatty acids entering the mammary gland can be desaturated via Δ-9 desaturase, an enzyme that acts by adding a cis-9-double bond on the fatty acid chain. Moreover, ruminal biohydrogenation of dietary unsaturated fatty acids results in the formation of numerous fatty acids available for incorporation into milk fat. Ruminal biohydrogenation is performed by rumen microbial population as a means of protection against the toxic effects of polyunsaturated fatty acids. Within the rumen microorganisms, bacteria are principally responsible for ruminal biohydrogenation when compared to protozoa and anaerobic fungi.

  5. Nonhydrogenated cottonseed oil can be used as a deep fat frying medium to reduce trans-fatty acid content in french fries.

    Science.gov (United States)

    Daniel, Darla R; Thompson, Leslie D; Shriver, Brent J; Wu, Chih-Kang; Hoover, Linda C

    2005-12-01

    The purpose of this research study was to evaluate the fatty acid profile, in particular trans-fatty acids, of french fries fried in nonhydrogenated cottonseed oil as compared with french fries fried in partially hydrogenated canola oil and french fries fried in partially hydrogenated soybean oil. Cottonseed oil, partially hydrogenated canola oil, and partially hydrogenated soybean oil were subjected to a temperature of 177 degrees C for 8 hours per day, and six batches of french fries were fried per day for 5 consecutive days. French fries were weighed before frying, cooked for 5 minutes, allowed to drain, and reweighed. Oil was not replenished and was filtered once per day. Both the oil and the french fries were evaluated to determine fatty acid profiles, trans-fatty acids, and crude fat. A randomized block design with split plot was used to analyze the data collected. Least-squares difference was used as the means separation test. No significant differences were found between fries prepared in the three oil types for crude fat. Fatty acid profiles for the french fries remained stable. The french fries prepared in cottonseed oil were significantly lower in trans-fatty acids. The combined total of the trans-fatty acid content and saturated fatty acid content were lower in french fries prepared in cottonseed oil. Because deep fat frying remains a popular cooking technique, health professionals should educate the public and the food service industry on the benefits of using nonhydrogenated cottonseed oil as an alternative to the commonly used hydrogenated oils.

  6. Preliminary studies of 99mTc labeled fatty acid analogs for myocardial imaging

    International Nuclear Information System (INIS)

    Guo Yuzhi; Kung, H.F.; Mack, R.H.

    1988-01-01

    Radio iodine labelled fatty acid analogs are potential myocardial imaging agents for SPECT. In this paper are reported three new 99m Tc labbeled fatty acid analogs: 9 '9 m Tc-BAT-TDA, 99m Tc-BAT-PDA and 99m Tc-BAT-H x DA. Ligand exchange reaction with 99m Tc stannous glucoheptonate in 50% aqueous ethanol is used for labelling. The yield of reactions is 87%, 70%, 49% respectively. 99m Tc-fatty acid is purified by extraction into chloroform and the purity as determined by reverse phase HPLC is 98%. In order to determine the structure of Tc-BAT-fatty acid, 99 Tc-BAT-PDA is synthesized with 99 Tc ammonium pertechnetate in 50% citric acid buffer (pH=6)/ethanol using stannous chloride as the reducing agent. 99 Tc-BAT-PDA displays the expected Tc=O UV absorption at 420nm and strong peak at 900cm -1 in the FTIR spectrum. Biodistribution studies of three 99m Tc-fatty acid analogs are conducted in rats using 125 I-ω- (p-iodophenyl) -penta-decanoic acid (IPPDA) as internal standard. The initial heart uptake of them is significantly lower than that of 125 I-IPPDA

  7. Atmospheric photochemistry at a fatty acid coated air/water interface

    Science.gov (United States)

    George, Christian; Rossignol, Stéphanie; Passananti, Monica; Tinel, Liselotte; Perrier, Sebastien; Kong, Lingdong; Brigante, Marcello; Bianco, Angelica; Chen, Jianmin; Donaldson, James

    2017-04-01

    Over the past 20 years, interfacial processes have become increasingly of interest in the field of atmospheric chemistry, with many studies showing that environmental surfaces display specific chemistry and photochemistry, enhancing certain reactions and acting as reactive sinks or sources for various atmospherically relevant species. Many molecules display a free energy minimum at the air-water interface, making it a favored venue for compound accumulation and reaction. Indeed, surface active molecules have been shown to undergo specific photochemistry at the air-water interface. This presentation will address some recent surprises. Indeed, while fatty acids are believed to be photochemically inert in the actinic region, complex volatile organic compounds (VOCs) are produced during illumination of an air-water interface coated solely with a monolayer of carboxylic acid. When aqueous solutions containing nonanoic acid (NA) at bulk concentrations that give rise to just over monolayer NA coverage are illuminated with actinic radiation, saturated and unsaturated aldehydes are seen in the gas phase and more highly oxygenated products appear in the aqueous phase. This chemistry is probably initiated by triplet state NA molecules excited by direct absorption of actinic light at the water surface. As fatty acids covered interfaces are ubiquitous in the environment, such photochemical processing will have a significant impact on local ozone and particle formation. In addition, it was shown recently that a heterogeneous reaction between SO2 and oleic acid (OA; an unsaturated fatty acid) takes place and leads efficiently to the formation of organosulfur products. Here, we demonstrate that this reaction proceeds photochemically on various unsaturated fatty acids compounds, and may therefore have a general environmental impact. This is probably due to the chromophoric nature of the SO2 adduct with C=C bonds, and means that the contribution of this direct addition of SO2 could

  8. Coriander seed oil methyl esters as biodiesel fuel: Unique fatty acid composition and excellent oxidative stability

    International Nuclear Information System (INIS)

    Moser, Bryan R.; Vaughn, Steven F.

    2010-01-01

    Coriander (Coriandrum sativum L.) seed oil methyl esters were prepared and evaluated as an alternative biodiesel fuel and contained an unusual fatty acid hitherto unreported as the principle component in biodiesel fuels: petroselinic (6Z-octadecenoic; 68.5 wt%) acid. Most of the remaining fatty acid profile consisted of common 18 carbon constituents such as linoleic (9Z,12Z-octadeca-dienoic; 13.0 wt%), oleic (9Z-octadecenoic; 7.6 wt%) and stearic (octadecanoic; 3.1 wt%) acids. A standard transesterification procedure with methanol and sodium methoxide catalyst was used to provide C. sativum oil methyl esters (CSME). Acid-catalyzed pretreatment was necessary beforehand to reduce the acid value of the oil from 2.66 to 0.47 mg g -1 . The derived cetane number, kinematic viscosity, and oxidative stability (Rancimat method) of CSME was 53.3, 4.21 mm 2 s -1 (40 o C), and 14.6 h (110 o C). The cold filter plugging and pour points were -15 o C and -19 o C, respectively. Other properties such as acid value, free and total glycerol content, iodine value, as well as sulfur and phosphorous contents were acceptable according to the biodiesel standards ASTM D6751 and EN 14214. Also reported are lubricity, heat of combustion, and Gardner color, along with a comparison of CSME to soybean oil methyl esters (SME). CSME exhibited higher oxidative stability, superior low temperature properties, and lower iodine value than SME. In summary, CSME has excellent fuel properties as a result of its unique fatty acid composition.

  9. Identification of characteristic fatty acids to quantify triacylglycerols in microalgae

    Directory of Open Access Journals (Sweden)

    Peili eShen

    2016-02-01

    Full Text Available The fatty acid profiles of lipids from microalgae are unique. Polyunsaturated fatty acids are generally enriched in polar lipids, whereas saturated and monounsaturated fatty acids constitute the majority of fatty acids in triacylglycerols (TAG. Each species has characteristic fatty acids, and their content is positively or negatively correlated with TAGs. The marine oleaginous diatom Phaeodactylum tricornutum was used as the paradigm to determine the quantitative relationship between TAG and characteristic fatty acid content. Fatty acid profiles and TAG content of Phaeodactylum tricornutum were determined in a time course. C16:0/C16:1 and eicosapentaenoic acid (EPA, C20:5n3 were identified as characteristic fatty acids in TAGs and polar lipids, respectively. The percentage of those characteristic fatty acids in total fatty acids had a significant linear relationship with TAG content and thus the correlation coefficient presenting r2 were 0.96, 0.94 and 0.97 respectively. The fatty acid-based method for TAG quantification could also be applied to other microalgae such as Nannochloropsis oceanica in which the r2 of C16:0, EPA were 0.94, 0.97 respectively and Chlorella pyrenoidosa, whose r2 value correspondingly between C18:1, C18:3 and TAG content were 0.91, 0.99 as well. This characteristic fatty acid-based method provided a distinct way to quantify TAGs in microalgae, by which TAGs could be measured precisely by immediate transesterification from wet biomass rather than using conventional methods. This procedure simplified the operation and required smaller samples than conventional methods.

  10. Discovery of a potent and selective free fatty acid receptor 1 agonist with low lipophilicity and high oral bioavailability

    DEFF Research Database (Denmark)

    Christiansen, Elisabeth; Due-Hansen, Maria E; Urban, Christian

    2013-01-01

    The free fatty acid receptor 1 (FFA1, also known as GPR40) mediates enhancement of glucose-stimulated insulin secretion and is emerging as a new target for the treatment of type 2 diabetes. Several FFA1 agonists are known, but the majority of these suffer from high lipophilicity. We have previously...... reported the FFA1 agonist 3 (TUG-424). We here describe the continued structure-activity exploration and optimization of this compound series, leading to the discovery of the more potent agonist 40, a compound with low lipophilicity, excellent in vitro metabolic stability and permeability, complete oral...

  11. Cellular fatty acids and aldehydes of oral Eubacterium.

    Science.gov (United States)

    Itoh, U; Sato, M; Tsuchiya, H; Namikawa, I

    1995-02-01

    The cellular fatty acids and aldehydes of oral Eubacterium species were determined by gas chromatography-mass spectrometry. E. brachy and E. lentum contained mainly branched-chain fatty acids, whereas the others contained straight-chain acids. E. brachy, E. lentum, E. yurii ssp. yurii, E. yurii spp. margaretiae, E. limosum, E. plauti and E. aerofaciens also contained aldehydes with even carbon numbers. In addition to species-specific components, the compositional ratios of fatty acids and aldehydes characterized each individual species. The 10 species tested were divided into 5 groups by the principal component analysis. Cellular fatty acids and aldehydes would be chemical markers for interspecies differentiation of oral Eubacterium.

  12. Fatty Acid-Based Monomers as Styrene Replacements for Liquid Molding Resins

    Science.gov (United States)

    2005-05-01

    fatty acid length and unsaturation level on resin and polymer properties. Fig. 2. The addition of fatty acids ( oleic acid ) to glycidyl methacylate to...the synthetic route used to form the methacrylated fatty acids (MFA). The carboxylic acid of fatty acids undergoes a simple addition reaction with... form methacrylated fatty acid monomer

  13. Fatty acids from diet and microbiota regulate energy metabolism [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Joe Alcock

    2015-09-01

    Full Text Available A high-fat diet and elevated levels of free fatty acids are known risk factors for metabolic syndrome, insulin resistance, and visceral obesity. Although these disease associations are well established, it is unclear how different dietary fats change the risk of insulin resistance and metabolic syndrome. Here, we review emerging evidence that insulin resistance and fat storage are linked to changes in the gut microbiota. The gut microbiota and intestinal barrier function, in turn, are highly influenced by the composition of fat in the diet. We review findings that certain fats (for example, long-chain saturated fatty acids are associated with dysbiosis, impairment of intestinal barrier function, and metabolic endotoxemia. In contrast, other fatty acids, including short-chain and certain unsaturated fatty acids, protect against dysbiosis and impairment of barrier function caused by other dietary fats. These fats may promote insulin sensitivity by inhibiting metabolic endotoxemia and dysbiosis-driven inflammation. During dysbiosis, the modulation of metabolism by diet and microbiota may represent an adaptive process that compensates for the increased fuel demands of an activated immune system.

  14. Acute oral intake of a higenamine-based dietary supplement increases circulating free fatty acids and energy expenditure in human subjects

    OpenAIRE

    Lee, Sang-Rok; Schriefer, JohnHenry M; Gunnels, Trint A; Harvey, Innocence C; Bloomer, Richard J

    2013-01-01

    Background Higenamine, also known as norcoclaurine, is an herbal constituent thought to act as a beta-2 adrenergic receptor agonist—possibly stimulating lipolysis. It was the purpose of this study to determine the impact of a higenamine-based dietary supplement on plasma free fatty acids and energy expenditure following acute oral ingestion. Methods Sixteen healthy subjects (8 men; 26.1 ± 2.5 yrs; 8 women 22.4 ± 3.1 yrs) ingested a dietary supplement containing a combination of higenamine, ca...

  15. Production of extracellular fatty acid using engineered Escherichia coli

    Directory of Open Access Journals (Sweden)

    Liu Hui

    2012-04-01

    Full Text Available Abstract Background As an alternative for economic biodiesel production, the microbial production of extracellular fatty acid from renewable resources is receiving more concerns recently, since the separation of fatty acid from microorganism cells is normally involved in a series of energy-intensive steps. Many attempts have been made to construct fatty acid producing strains by targeting genes in the fatty acid biosynthetic pathway, while few studies focused on the cultivation process and the mass transfer kinetics. Results In this study, both strain improvements and cultivation process strategies were applied to increase extracellular fatty acid production by engineered Escherichia coli. Our results showed overexpressing ‘TesA and the deletion of fadL in E. coli BL21 (DE3 improved extracellular fatty acid production, while deletion of fadD didn’t strengthen the extracellular fatty acid production for an undetermined mechanism. Moreover, the cultivation process controls contributed greatly to extracellular fatty acid production with respect to titer, cell growth and productivity by adjusting the temperature, adding ampicillin and employing on-line extraction. Under optimal conditions, the E. coli strain (pACY-‘tesA-ΔfadL produced 4.8 g L−1 extracellular fatty acid, with the specific productivity of 0.02 g h−1 g−1dry cell mass, and the yield of 4.4% on glucose, while the ratios of cell-associated fatty acid versus extracellular fatty acid were kept below 0.5 after 15 h of cultivation. The fatty acids included C12:1, C12:0, C14:1, C14:0, C16:1, C16:0, C18:1, C18:0. The composition was dominated by C14 and C16 saturated and unsaturated fatty acids. Using the strain pACY-‘tesA, similar results appeared under the same culture conditions and the titer was also much higher than that ever reported previously, which suggested that the supposedly superior strain did not necessarily perform best for the efficient production of desired

  16. Amino and Fatty Acids of Wild Edible Mushrooms of the Genus Boletus

    Directory of Open Access Journals (Sweden)

    Dmitri O. Levitsky

    2010-10-01

    Full Text Available A comparative study on the free amino acids of 15 wild edible mushroom species belonging to the genus Boletus (phylum Basidiomycota was developed. The major amino acids in the fruit bodies were arginine , alanine, glutamine, and glutamic acid. The most abundant fatty acids were oleic ( 9- 18:1, linoleic acid (9,12-18:2 , and palmitic acid (16:0, but a great variation of the ester composition from one to another one was found. Chemical constituents were characterized by GC-MS, and other chemical methods.

  17. The potential for military diets to reduce depression, suicide, and impulsive aggression: a review of current evidence for omega-3 and omega-6 fatty acids.

    Science.gov (United States)

    Hibbeln, Joseph R; Gow, Rachel V

    2014-11-01

    The current burden of psychological distress and illness poses as a significant barrier to optimal force efficacy. Here we assess nutrients in military diets, specifically highly unsaturated essential fatty acids, in the reduction of risk or treatment of psychiatric distress. Moderate to strong evidence from several meta-analyses of prospective cohort trials indicate that Mediterranean diet patterns reduce risk of clinical depressions. Specific nutrients and foods of biological interest in relation to mental health outcomes are then discussed and evaluated. Moderate evidence indicates that when fish consumption decreases and simultaneously omega-6 increases, the risk of clinical depressive symptoms are elevated. One meta-analysis examining tissue compositions provides moderate to strong evidence that higher levels of omega-3 highly unsaturated fatty acids (HUFAs) (eicosapentaenoic acid, docosapentaenoic acid, and docosahexaenoic acid) are associated with decreased risk of clinical depressions. Other meta-analytic reviews of randomized placebo-controlled trials provide moderate to strong evidence of significantly improving clinically depressive symptoms when the formulation given was >50% in eicosapentaenoic acid. Finally, a meta-analysis of omega-3 HUFAs provides modest evidence of clinical efficacy for attention-deficit hyperactivity disorder. This article recommends that a rebalancing of the essential fatty acid composition of U.S. military diets, achieve tissue compositions of HUFAs consistent with traditional Mediterranean diets, may help reduce military psychiatric distress and simultaneously increase force efficacy substantially. Reprint & Copyright © 2014 Association of Military Surgeons of the U.S.

  18. Maternal adipose tissue becomes a source of fatty acids for the fetus in fasted pregnant rats given diets with different fatty acid compositions.

    Science.gov (United States)

    López-Soldado, Iliana; Ortega-Senovilla, Henar; Herrera, Emilio

    2017-11-10

    The utilization of long-chain polyunsaturated fatty acids (LCPUFA) by the fetus may exceed its capacity to synthesize them from essential fatty acids, so they have to come from the mother. Since adipose tissue lipolytic activity is greatly accelerated under fasting conditions during late pregnancy, the aim was to determine how 24 h fasting in late pregnant rats given diets with different fatty acid compositions affects maternal and fetal tissue fatty acid profiles. Pregnant Sprague-Dawley rats were given isoenergetic diets containing 10% palm-, sunflower-, olive- or fish-oil. Half the rats were fasted from day 19 of pregnancy and all were studied on day 20. Triacylglycerols (TAG), glycerol and non-esterified fatty acids (NEFA) were analyzed by enzymatic methods and fatty acid profiles were analyzed by gas chromatography. Fasting caused increments in maternal plasma NEFA, glycerol and TAG, indicating increased adipose tissue lipolytic activity. Maternal adipose fatty acid profiles paralleled the respective diets and, with the exception of animals on the olive oil diet, maternal fasting increased the plasma concentration of most fatty acids. This maintains the availability of LCPUFA to the fetus during brain development. The results show the major role played by maternal adipose tissue in the storage of dietary fatty acids during pregnancy, thus ensuring adequate availability of LCPUFA to the fetus during late pregnancy, even when food supply is restricted.

  19. The choice of animal feeding system influences fatty acid intakes of the average French diet

    Directory of Open Access Journals (Sweden)

    Schmitt Bernard

    2018-03-01

    Full Text Available Fatty acids intake of French adult population does not comply with the French Population Reference Intakes (PRI. The aim the study is to quantify the impact of a modification of animal feeding system on the fatty acids intake of French population. A 15-day diet representative of average consumption for the French adult male population was developed with animal products derived either from conventional production system (STD either from a specific production system (Bleu-Blanc-Cœur® [BBC] that acts on the fatty acids profile of animal products. The impact of a such change in feeding system on fatty acids content has been quantified. BBC diet contributes to reducing the gap between the fatty acid content of a STD diet and the PRI with highest impact on C12:0–14:0–16:0 fatty acids (−4.6 g/d, i.e. 63.3%, C18:3n-3 (+0.8 g/d, i.e. 48.2%, C20:5n-3 (+35 mg/d, i.e. 42.7%, C22:6n-3 (+49 mg/d, i.e. 35% and the C18:2n-6/C18:3n-3 ratio (−4.9 points, i.e. 43.5%. The research also shows that animal products complement one another. Consuming a variety of animal source foods derived from a specific feeding practices could help reduce the gap between actual consumption and recommended dietary intake of fatty acids.

  20. Influence of the derivatization procedure on the results of the gaschromatographic fatty acid analysis of human milk and infant formulae.

    Science.gov (United States)

    Kohn, G; van der Ploeg, P; Möbius, M; Sawatzki, G

    1996-09-01

    Many different analytical procedures for fatty acid analysis of infant formulae and human milk are described. The objective was to study possible pitfalls in the use of different acid-catalyzed procedures compared to a base-catalyzed procedure based on sodium-methoxide in methanol. The influence of the different methods on the relative fatty acid composition (wt% of total fatty acids) and the total fatty acid recovery rate (expressed as % of total lipids) was studied in two experimental LCP-containing formulae and a human milk sample. MeOH/HCl-procedures were found to result in an incomplete transesterification of triglycerides, if an additional nonpolar solvent like toluene or hexane is not added and a water-free preparation is not guaranteed. In infant formulae the low transesterification of triglycerides (up to only 37%) could result in an 100%-overestimation of the relative amount of LCP, if these fatty acids primarily derive from phospholipids. This is the case in infant formulae containing egg lipids as raw materials. In formula containing fish oils and in human milk the efficacy of esterification results in incorrect absolute amounts of fatty acids, but has no remarkable effect on the relative fatty acid distribution. This is due to the fact that in these samples LCP are primarily bound to triglycerides. Furthermore, in formulae based on butterfat the derivatization procedure should be designed in such a way that losses of short-chain fatty acids due to evaporation steps can be avoided. The procedure based on sodium methoxide was found to result in a satisfactory (about 90%) conversion of formula lipids and a reliable content of all individual fatty acids. Due to a possibly high amount of free fatty acids in human milk, which are not methylated by sodium-methoxide, caution is expressed about the use of this reagent for fatty acid analysis of mothers milk. It is concluded that accurate fatty acid analysis of infant formulae and human milk requires a careful

  1. Growth-Environment Dependent Modulation of Staphylococcus aureus Branched-Chain to Straight-Chain Fatty Acid Ratio and Incorporation of Unsaturated Fatty Acids.

    Science.gov (United States)

    Sen, Suranjana; Sirobhushanam, Sirisha; Johnson, Seth R; Song, Yang; Tefft, Ryan; Gatto, Craig; Wilkinson, Brian J

    2016-01-01

    The fatty acid composition of membrane glycerolipids is a major determinant of Staphylococcus aureus membrane biophysical properties that impacts key factors in cell physiology including susceptibility to membrane active antimicrobials, pathogenesis, and response to environmental stress. The fatty acids of S. aureus are considered to be a mixture of branched-chain fatty acids (BCFAs), which increase membrane fluidity, and straight-chain fatty acids (SCFAs) that decrease it. The balance of BCFAs and SCFAs in USA300 strain JE2 and strain SH1000 was affected considerably by differences in the conventional laboratory medium in which the strains were grown with media such as Mueller-Hinton broth and Luria broth resulting in high BCFAs and low SCFAs, whereas growth in Tryptic Soy Broth and Brain-Heart Infusion broth led to reduction in BCFAs and an increase in SCFAs. Straight-chain unsaturated fatty acids (SCUFAs) were not detected. However, when S. aureus was grown ex vivo in serum, the fatty acid composition was radically different with SCUFAs, which increase membrane fluidity, making up a substantial proportion of the total (37%) and BCFAs (>36%) making up the rest. Staphyloxanthin, an additional major membrane lipid component unique to S. aureus, tended to be greater in content in cells with high BCFAs or SCUFAs. Cells with high staphyloxanthin content had a lower membrane fluidity that was attributed to increased production of staphyloxanthin. S. aureus saves energy and carbon by utilizing host fatty acids for part of its total fatty acids when growing in serum, which may impact biophysical properties and pathogenesis given the role of SCUFAs in virulence. The nutritional environment in which S. aureus is grown in vitro or in vivo in an infection is likely to be a major determinant of membrane fatty acid composition.

  2. Exogenous fatty acid binding protein 4 promotes human prostate cancer cell progression.

    Science.gov (United States)

    Uehara, Hisanori; Takahashi, Tetsuyuki; Oha, Mina; Ogawa, Hirohisa; Izumi, Keisuke

    2014-12-01

    Epidemiologic studies have found that obesity is associated with malignant grade and mortality in prostate cancer. Several adipokines have been implicated as putative mediating factors between obesity and prostate cancer. Fatty acid binding protein 4 (FABP4), a member of the cytoplasmic fatty acid binding protein multigene family, was recently identified as a novel adipokine. Although FABP4 is released from adipocytes and mean circulating concentrations of FABP4 are linked with obesity, effects of exogenous FABP4 on prostate cancer progression are unclear. In this study, we examined the effects of exogenous FABP4 on human prostate cancer cell progression. FABP4 treatment promoted serum-induced prostate cancer cell invasion in vitro. Furthermore, oleic acid promoted prostate cancer cell invasion only if FABP4 was present in the medium. These promoting effects were reduced by FABP4 inhibitor, which inhibits FABP4 binding to fatty acids. Immunostaining for FABP4 showed that exogenous FABP4 was taken up into DU145 cells in three-dimensional culture. In mice, treatment with FABP4 inhibitor reduced the subcutaneous growth and lung metastasis of prostate cancer cells. Immunohistochemical analysis showed that the number of apoptotic cells, positive for cleaved caspase-3 and cleaved PARP, was increased in subcutaneous tumors of FABP4 inhibitor-treated mice, as compared with control mice. These results suggest that exogenous FABP4 might promote human prostate cancer cell progression by binding with fatty acids. Additionally, exogenous FABP4 activated the PI3K/Akt pathway, independently of binding to fatty acids. Thus, FABP4 might be a key molecule to understand the mechanisms underlying the obesity-prostate cancer progression link. © 2014 UICC.

  3. Modifications of proteins by polyunsaturated fatty acid peroxidation products

    DEFF Research Database (Denmark)

    Refsgaard, Hanne; Tsai, Lin; Stadtman, Earl

    2000-01-01

    The ability of unsaturated fatty acid methyl esters to modify amino acid residues in bovine serum albumin (BSA), glutamine synthetase, and insulin in the presence of a metal-catalyzed oxidation system [ascorbate/Fe(lll)/O-2] depends on the degree of unsaturation of the fatty acid. The fatty acid......-dependent generation of carbonyl groups and loss of lysine residues increased in the order methyl linoleate fatty acids were oxidized in the presence...... in the formation of protein carbonyls, These results are consistent with the proposition that metal-catalyzed oxidation of polyunsaturated fatty acids can contribute to the generation of protein carbonyls by direct interaction of lipid oxidation products (alpha,beta-unsaturated aldehydes) with lysine residues...

  4. Fatty acid composition of the cypselae of two endemic Centaurea species (Asteraceae

    Directory of Open Access Journals (Sweden)

    Janaćković Peđa

    2017-04-01

    Full Text Available The fatty acid composition of cypselae of two endemic species from Macedonia, Centaurea galicicae and C. tomorosii, is analysed for the first time, using GC/MS (gas chromatography/mass spectrometry. In the cypselae of C. galicicae, 11 fatty acids were identified, palmitic (hexadecanoic acid (32.5% being the most dominant. Other fatty acids were elaidic [(E-octadec-9-enoic] acid (13.9%, stearic (octadecanoic acid (12.8% and linoleic [(9Z,12Z-9,12-octadecadienoic] acid (10.6%. Of the 11 identified fatty acids, seven were saturated fatty acids, which represented 41.5% of total fatty acids, while unsaturated fatty acids altogether constituted 58.5%. In the cypselae of C. tomorosii, five fatty acids were identified. The major fatty acid was linolelaidic [(9E,12E-octadeca- 9,12-dienoic] acid (48.8%. The second most dominant fatty acid was oleic [(9Z-octadec-9-enoic] acid (34.2%. Thus, unsaturated fatty acids were present with 83%. The other three fatty acids identified were saturated fatty acids, which represented 17% of total fatty acids. As a minor fatty acid, levulinic (4-oxopentanoic acid was determined in both C. galicicae and C. tomorosii (0.3% and 3.2%, respectively. The obtained results differ from published data on dominant fatty acids in the cypselae of other species belonging to the same section as the species investigated in the present paper (section Arenariae, subgenus Acrolophus, genus Centaurea. They also, differ from published data referable to other genera belonging to the same tribe (Cardueae. The general chemotaxonomic significance of fatty acids is discussed.

  5. Curcumin improves alcoholic fatty liver by inhibiting fatty acid biosynthesis.

    Science.gov (United States)

    Guo, Chang; Ma, Jingfan; Zhong, Qionghong; Zhao, Mengyuan; Hu, Tianxing; Chen, Tong; Qiu, Longxin; Wen, Longping

    2017-08-01

    Alcoholic fatty liver is a threat to human health. It has been long known that abstinence from alcohol is the most effective therapy, other effective therapies are not available for the treatment in humans. Curcumin has a great potential for anti-oxidation and anti-inflammation, but the effect on metabolic reconstruction remains little known. Here we performed metabolomic analysis by gas chromatography/mass spectrometry and explored ethanol pathogenic insight as well as curcumin action pattern. We identified seventy-one metabolites in mouse liver. Carbohydrates and lipids were characteristic categories. Pathway analysis results revealed that ethanol-induced pathways including biosynthesis of unsaturated fatty acids, fatty acid biosynthesis and pentose and glucuronate interconversions were suppressed by curcumin. Additionally, ethanol enhanced galactose metabolism and pentose phosphate pathway. Glyoxylate and dicarboxylate metabolism and pyruvate metabolism were inhibited in mice fed ethanol diet plus curcumin. Stearic acid, oleic acid and linoleic acid were disease biomarkers and therapical biomarkers. These results reflect the landscape of hepatic metabolism regulation. Our findings illustrate ethanol pathological pathway and metabolic mechanism of curcumin therapy. Copyright © 2017. Published by Elsevier Inc.

  6. Beneficial effects of gamma linolenic acid supplementation on nerve conduction velocity, Na+, K+ ATPase activity, and membrane fatty acid composition in sciatic nerve of diabetic rats.

    Science.gov (United States)

    Coste, T; Pierlovisi, M; Leonardi, J; Dufayet, D; Gerbi, A; Lafont, H; Vague, P; Raccah, D

    1999-07-01

    Metabolic and vascular abnormalities are implicated in the pathogenesis of diabetic neuropathy. Two principal metabolic defects are altered lipid metabolism resulting from the impairment of delta-6-desaturase, which converts linoleic acid (LA) into gamma linolenic acid (GLA), and reduced nerve Na+, K+ ATPase activity. This reduction may be caused by a lack of incorporation of (n-6) fatty acids in membrane phospholipids. Because this ubiquitous enzyme maintains the membrane electrical potential and allows repolarization, disturbances in its activity can alter the process of nerve conduction velocity (NCV). We studied the effects of supplementation with GLA (260 mg per day) on NCV, fatty acid phospholipid composition, and Na+, K+ ATPase activity in streptozotocin-diabetic rats. Six groups of 10 rats were studied. Two groups served as controls supplemented with GLA or sunflower oil (GLA free). Two groups with different durations of diabetes were studied: 6 weeks with no supplementation and 12 weeks supplemented with sunflower oil. To test the ability of GLA to prevent or reverse the effects of diabetes, two groups of diabetic rats were supplemented with GLA, one group for 12 weeks and one group for 6 weeks, starting 6 weeks after diabetes induction. Diabetes resulted in a 25% decrease in NCV (P < 0.0001), a 45% decrease in Na+, K+ ATPase activity (P < 0.0001), and an abnormal phospholipid fatty acid composition. GLA restored NCV both in the prevention and reversal studies and partially restored Na+, K+ ATPase activity in the preventive treatment group (P < 0.0001). These effects were accompanied by a modification of phospholipid fatty acid composition in nerve membranes. Overall, the results suggest that membrane fatty acid composition plays a direct role in NCV and confirm the beneficial effect of GLA supplementation in diabetic neuropathy.

  7. Omega-3 fatty acid oxidation products prevent vascular endothelial cell activation by coplanar polychlorinated biphenyls

    International Nuclear Information System (INIS)

    Majkova, Zuzana; Layne, Joseph; Sunkara, Manjula; Morris, Andrew J.; Toborek, Michal; Hennig, Bernhard

    2011-01-01

    Coplanar polychlorinated biphenyls (PCBs) may facilitate development of atherosclerosis by stimulating pro-inflammatory pathways in the vascular endothelium. Nutrition, including fish oil-derived long-chain omega-3 fatty acids, such as docosahexaenoic acid (DHA, 22:6ω-3), can reduce inflammation and thus the risk of atherosclerosis. We tested the hypothesis that cyclopentenone metabolites produced by oxidation of DHA can protect against PCB-induced endothelial cell dysfunction. Oxidized DHA (oxDHA) was prepared by incubation of the fatty acid with the free radical generator 2,2-azo-bis(2-amidinopropane) dihydrochloride (AAPH). Cellular pretreatment with oxDHA prevented production of superoxide induced by PCB77, and subsequent activation of nuclear factor-κB (NF-κB). A 4 /J 4 -neuroprostanes (NPs) were identified and quantitated using HPLC ESI tandem mass spectrometry. Levels of these NPs were markedly increased after DHA oxidation with AAPH. The protective actions of oxDHA were reversed by treatment with sodium borohydride (NaBH 4 ), which concurrently abrogated A 4 /J 4 -NP formation. Up-regulation of monocyte chemoattractant protein-1 (MCP-1) by PCB77 was markedly reduced by oxDHA, but not by un-oxidized DHA. These protective effects were proportional to the abundance of A 4 /J 4 NPs in the oxidized DHA sample. Treatment of cells with oxidized eicosapentaenoic acid (EPA, 20:5ω-3) also reduced MCP-1 expression, but less than oxDHA. Treatment with DHA-derived cyclopentenones also increased DNA binding of NF-E2-related factor-2 (Nrf2) and downstream expression of NAD(P)H:quinone oxidoreductase (NQO1), similarly to the Nrf-2 activator sulforaphane. Furthermore, sulforaphane prevented PCB77-induced MCP-1 expression, suggesting that activation of Nrf-2 mediates the observed protection against PCB77 toxicity. Our data implicate A 4 /J 4 -NPs as mediators of omega-3 fatty acid-mediated protection against the endothelial toxicity of coplanar PCBs.

  8. Correlation of polyunsaturated fatty acids with the cold adaptation of Rhodotorula glutinis.

    Science.gov (United States)

    He, Jing; Yang, Zhaojie; Hu, Binbin; Ji, Xiuling; Wei, Yunlin; Lin, Lianbing; Zhang, Qi

    2015-11-01

    This study aimed to investigate the correlation between the cold adaptation of Rhodotorula glutinis YM25079 and the membrane fluidity, content of polyunsaturated fatty acids and mRNA expression level of the Δ(12)-desaturase gene. The optimum temperature for YM25079 growth was analysed first, then the composition changes of membrane lipid in YM25079 were detected by GC-MS and membrane fluidity was evaluated by 1-anilinonaphthalene-8-sulphonate (ANS) fluorescence. Meanwhile, the encoding sequence of Δ(12)-fatty acid desaturase in YM25079 was cloned and further transformed into Saccharomyces cerevisiae INVScl for functional analysis. The mRNA expression levels of Δ(12)-fatty acid desaturase at 15°C and 25°C were analysed by real-time PCR. YM25079 could grow at 5-30°C, with the optimum temperature of 15°C. The membrane fluidity of YM25079 was not significantly reduced when the culture temperature decreased from 25°C to 15°C, but the content of polyunsaturated fatty acids (PUFAs), including linoleic acid and α-Linolenic acid increased significantly from 29.4% to 55.39%. Furthermore, a novel Δ(12)-fatty acid desaturase gene YM25079RGD12 from YM25079 was successfully identified and characterized, and the mRNA transcription level of the Δ(12)-desaturase gene was about five-fold higher in YM25079 cells grown at 15°C than that at 25°C. These results suggests that the cold adaptation of Rhodotorula glutinis YM25079 might result from higher expression of genes, especially the Δ(12)-fatty acid desaturase gene, during polyunsaturated fatty acids biosynthesis, which increased the content of PUFAs in the cell membrane and maintained the membrane fluidity at low temperature. Copyright © 2015 John Wiley & Sons, Ltd.

  9. Radiocarbon variability of fatty acids in semi-urban aerosol samples

    International Nuclear Information System (INIS)

    Matsumoto, Kohei; Uchida, Masao; Kawamura, Kimitaka; Shibata, Yasuyuki; Morita, Masatoshi

    2004-01-01

    We analyzed radiocarbon and the stable carbon isotope ratio for individual monocarboxylic (fatty) acids in an aerosol sample (QFF 2138) and compared the results with data of the aerosol sample taken in another year. The fatty acid concentration distribution of aerosol sample QFF 2138 showed a bimodal pattern with maxima at C 16 and C 26 . Stable carbon isotope ratios of the fatty acids ranged from -30.8 per mille to -23.0 per mille which indicates the animal and/or marine algae origins for C 16 -C 19 fatty acids and mainly terrestrial C 3 plant origins for C >20 fatty acids. Δ 14 C values for fatty acids ranged from -89.7 per mille to +83.5 per mille. Compared with QFF1969, we found that the Δ 14 C values of fatty acids exhibited a wide diversity and Δ 14 C values for each fatty acid in QFF 2138 were largely different from those of QFF 1969

  10. Effects of varying levels of n-6:n-3 fatty acid ratio on plasma fatty acid ...

    African Journals Online (AJOL)

    This study investigated the effects of varying dietary levels of n-6:n-3 fatty acid ratio on plasma fatty acid composition and prostanoid synthesis in pregnant rats. Four groups consisting of seven rats per group of non pregnant rats were fed diets with either a very low n-6:n-3 ratio of 50% soybean oil (SBO): 50% cod liver oil ...

  11. Engineering plastid fatty acid biosynthesis to improve food quality and biofuel production in higher plants.

    Science.gov (United States)

    Rogalski, Marcelo; Carrer, Helaine

    2011-06-01

    The ability to manipulate plant fatty acid biosynthesis by using new biotechnological approaches has allowed the production of transgenic plants with unusual fatty acid profile and increased oil content. This review focuses on the production of very long chain polyunsaturated fatty acids (VLCPUFAs) and the increase in oil content in plants using molecular biology tools. Evidences suggest that regular consumption of food rich in VLCPUFAs has multiple positive health benefits. Alternative sources of these nutritional fatty acids are found in cold-water fishes. However, fish stocks are in severe decline because of decades of overfishing, and also fish oils can be contaminated by the accumulation of toxic compounds. Recently, there is also an increase in oilseed use for the production of biofuels. This tendency is partly associated with the rapidly rising costs of petroleum, increased concern about the environmental impact of fossil oil and the attractive need to develop renewable sources of fuel. In contrast to this scenario, oil derived from crop plants is normally contaminant free and less environmentally aggressive. Genetic engineering of the plastid genome (plastome) offers a number of attractive advantages, including high-level foreign protein expression, marker-gene excision and transgene containment because of maternal inheritance of plastid genome in most crops. Here, we describe the possibility to improve fatty acid biosynthesis in plastids, production of new fatty acids and increase their content in plants by genetic engineering of plastid fatty acid biosynthesis via plastid transformation. © 2011 The Authors. Plant Biotechnology Journal © 2011 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  12. Bacterial fatty acid metabolism in modern antibiotic discovery.

    Science.gov (United States)

    Yao, Jiangwei; Rock, Charles O

    2017-11-01

    Bacterial fatty acid synthesis is essential for many pathogens and different from the mammalian counterpart. These features make bacterial fatty acid synthesis a desirable target for antibiotic discovery. The structural divergence of the conserved enzymes and the presence of different isozymes catalyzing the same reactions in the pathway make bacterial fatty acid synthesis a narrow spectrum target rather than the traditional broad spectrum target. Furthermore, bacterial fatty acid synthesis inhibitors are single-targeting, rather than multi-targeting like traditional monotherapeutic, broad-spectrum antibiotics. The single-targeting nature of bacterial fatty acid synthesis inhibitors makes overcoming fast-developing, target-based resistance a necessary consideration for antibiotic development. Target-based resistance can be overcome through multi-targeting inhibitors, a cocktail of single-targeting inhibitors, or by making the single targeting inhibitor sufficiently high affinity through a pathogen selective approach such that target-based mutants are still susceptible to therapeutic concentrations of drug. Many of the pathogens requiring new antibiotic treatment options encode for essential bacterial fatty acid synthesis enzymes. This review will evaluate the most promising targets in bacterial fatty acid metabolism for antibiotic therapeutics development and review the potential and challenges in advancing each of these targets to the clinic and circumventing target-based resistance. This article is part of a Special Issue entitled: Bacterial Lipids edited by Russell E. Bishop. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Maternal Plasma Phosphatidylcholine Fatty Acids and Atopy and Wheeze in the Offspring at Age of 6 Years

    Directory of Open Access Journals (Sweden)

    Katharine C. Pike

    2012-01-01

    Full Text Available Variation in exposure to polyunsaturated fatty acids (PUFAs might influence the development of atopy, asthma, and wheeze. This study aimed to determine whether differences in PUFA concentrations in maternal plasma phosphatidylcholine are associated with the risk of childhood wheeze or atopy. For 865 term-born children, we measured phosphatidylcholine fatty acid composition in maternal plasma collected at 34 weeks’ gestation. Wheezing was classified using questionnaires at 6, 12, 24, and 36 months and 6 years. At age of 6 years, the children underwent skin prick testing, fractional exhaled nitric oxide (FENO measurement, and spirometry. Maternal n-6 fatty acids and the ratio of n-3 to n-6 fatty acids were not associated with childhood wheeze. However, higher maternal eicosapentaenoic acid, docosahexaenoic acid, and total n-3 fatty acids were associated with reduced risk of non-atopic persistent/late wheeze (RR 0.57, 0.67 and 0.69, resp. P=0.01, 0.015, and 0.021, resp.. Maternal arachidonic acid was positively associated with FENO (P=0.024. A higher ratio of linoleic acid to its unsaturated metabolic products was associated with reduced risk of skin sensitisation (RR 0.82, P=0.013. These associations provide some support for the hypothesis that variation in exposure to n-6 and n-3 fatty acids during pregnancy influences the risk of childhood wheeze and atopy.

  14. 14(R,S)-[18F]Fluoro-6-thia-heptadecanoic acid as a tracer of free fatty acid uptake and oxidation in myocardium and skeletal muscle

    International Nuclear Information System (INIS)

    Takala, Teemu O.; Nuutila, Pirjo; Pulkki, Kari; Oikonen, Vesa; Groenroos, Tove; Bergman, Joergen; Forsback, Sarita; Knuuti, Juhani; Savunen, Timo; Vaehaesilta, Tommi; Luotolahti, Matti; Kallajoki, Markku

    2002-01-01

    14(R,S)-[ 18 F]Fluoro-6-thia-heptadecanoic acid ([ 18 F]FTHA) is a long-chain fatty acid substrate for fatty acid metabolism. [ 18 F]FTHA has been used to study fatty acid metabolism in human heart and skeletal muscle. It has been suggested that the rate of radioactivity accumulation in the myocardium reflects the beta-oxidation rate of free fatty acids (FFAs). However, the net accumulation of FFAs in tissue always represents the sum of FFA oxidation and incorporation into triglycerides. The fraction of [ 18 F]FTHA entering directly into mitochondria for oxidation has not been previously measured. Eight anaesthetized pigs were studied with [ 18 F]FTHA and positron emission tomography (PET). Immediately after each PET experiment, tissue samples from myocardium and skeletal muscle were taken for the isolation of mitochondria and measurements of radioactivity accumulation, and for intracellular [ 18 F]FTHA metabolite analysis. Fractional [ 18 F]FTHA uptake rates were calculated both by graphical analysis of PET data and by measuring 18 F in the tissue samples. Fractional [ 18 F]FTHA uptake rates based on the analysis of tissue samples were 0.56±0.17 ml g -1 min -1 and 0.037±0.007 ml g -1 min -1 for myocardium and skeletal muscle (mean ± SD), respectively. The myocardial results obtained from the PET data (0.50±0.11 ml g -1 min -1 ) were similar to the values obtained from the tissue samples (r=0.94, P=0.002). We also found that 89%±23% (mean±SD, n=7) of the 18 F entered mitochondria in myocardium, as compared with only 36%±15% (mean±SD, n=7) in skeletal muscle. Intracellular [ 18 F]FTHA metabolite analysis showed that a major part of [ 18 F]FTHA is metabolized in the mitochondria in the heart. Our data suggest that 89% of [ 18 F]FTHA taken up by the heart enters mitochondria. This supports the hypothesis that [ 18 F]FTHA traces FFA beta-oxidation in the heart. In contrast to this, only 36% of [ 18 F]FTHA accumulated in skeletal muscle appears to directly enter

  15. Profile of Fatty Acids, Amino Acids, Carotenoid Total, and α-Tocopherol from Flying Fish Eggs

    Directory of Open Access Journals (Sweden)

    Aulia Azka

    2015-12-01

    Full Text Available Flying fish are found in waters of eastern Indonesia, which until now is still limited information about nutritional content. The purpose of this research was determine the composition of fatty acids, amino acids, total carotenoids, α-tocopherol flying fish eggs (Hyrundicthys sp.. The composition of fatty acid was measured by gas chromatography (GC, while amino acids, total carotenoids, α-tocopherol was measured by High performanced Liquid Chromatography (HPLC. Egg contained 22 fatty acids such as saturated fatty acid 29.71%, monounsaturated fatty acid 7.86%, and polysaturated fatty acid 13.64%. The result showed that eggs flying fish contained 17 amino acids, such as essential amino acid 14.96% and non-essential amino acids 20.27%. Eggs contained a total carotenoid of 245.37 ppm. α-tocopherol content of flying fish eggs by 1.06 ppm.

  16. Dietary Fatty Acids and Predementia Syndromes

    Directory of Open Access Journals (Sweden)

    Vincenzo Solfrizzi

    2009-01-01

    Full Text Available An increasing body of epidemiological evidence suggests that elevated saturated fatty acids (SFA could have negative effects on age-related cognitive decline (ARCD. Furthermore, a reduction of risk for cognitive decline and mild cognitive impairment (MCI has been found in population samples with elevated fish consumption, and high intake of monounsaturated fatty acids (MUFA and polyunsaturated fatty acids (PUFA, particularly n-3 PUFA. However, recent findings from clinical trials with n-3 PUFA supplementation showed efficacy on depressive symptoms in non–Vapolipoprotein E (APOE ε4 carriers, and on cognitive symptoms only in very mild Alzheimer's disease (AD subgroups, MCI patients, and cognitively unimpaired non-APOE ε4 carriers. These data, together with epidemiological evidence, support the idea that n-3 PUFA may play a role in maintaining adequate cognitive functioning in predementia syndromes, but not when the AD process has already taken over. Therefore, at present, no definitive dietary recommendations on fish and unsaturated fatty acids consumption, or lower intake of saturated fat, in relation to the risk for dementia and cognitive decline are possible.

  17. Lipid content and fatty acid composition of green algae Scenedesmus obliquus grown in a constant cell density apparatus

    Science.gov (United States)

    Choi, K. J.; Nakhost, Z.; Barzana, E.; Karel, M.

    1987-01-01

    The lipids of alga Scenedesmus obliquus grown under controlled conditions were separated and fractionated by column and thin-layer chromatography, and fatty acid composition of each lipid component was studied by gas-liquid chromatography (GLC). Total lipids were 11.17%, and neutral lipid, glycolipid and phospholipid fractions were 7.24%, 2.45% and 1.48% on a dry weight basis, respectively. The major neutral lipids were diglycerides, triglycerides, free sterols, hydrocarbons and sterol esters. The glycolipids were: monogalactosyl diglyceride, digalactosyl diglyceride, esterified sterol glycoside, and sterol glycoside. The phospholipids included: phosphatidyl choline, phosphatidyl glycerol and phosphatidyl ethanolamine. Fourteen fatty acids were identified in the four lipid fractions by GLC. The main fatty acids were C18:2, C16:0, C18:3(alpha), C18:1, C16:3, C16:1, and C16:4. Total unsaturated fatty acid and essential fatty acid compositions of the total algal lipids were 80% and 38%, respectively.

  18. FFAR4 (GPR120) signaling is not required for anti-inflammatory and insulin-sensitizing effects of omega-3 fatty acids

    DEFF Research Database (Denmark)

    Pærregaard, Simone Isling; Andersen, Marianne Agerholm; Serup, Annette Karen Lundbeck

    2016-01-01

    Free fatty acid receptor-4 (FFAR4), also known as GPR120, has been reported to mediate the beneficial effects of omega-3 polyunsaturated fatty acids (ω3-PUFAs) by inducing an anti-inflammatory immune response. Thus, activation of FFAR4 has been reported to ameliorate chronic low-grade inflammation...

  19. Study on analysis of waste edible oil with deterioration and removal of acid value, carbonyl value, and free fatty acid by a food additive (calcium silicate).

    Science.gov (United States)

    Ogata, Fumihiko; Tanaka, Yuko; Tominaga, Hisato; Kangawa, Moe; Inoue, Kenji; Ueda, Ayaka; Iwata, Yuka; Kawasaki, Naohito

    2013-01-01

    This study investigated the regeneration of waste edible oil using a food additive (calcium silicate, CAS). Waste edible oil was prepared by combined heat and aeration treatment. Moreover, the deterioration of edible oil by combined heat and aeration treatment was greater than that by heat treatment alone. The acid value (AV) and carbonyl value (CV) increased with increasing deterioration; conversely, the tocopherol concentration decreased with increasing deterioration. The specific surface area, pore volume, and mean pore diameter of the 3 CAS formulations used (CAS30, CAS60, and CAS90) were evaluated, and scanning electron microscopic images were taken. The specific surface area increased in the order of CAS30 (115.54 m(2)/g) edible oil was possible with CAS treatment. The AV reduced by 15.2%, 10.8%, and 23.1% by CAS30, CAS60, and CAS90 treatment, respectively, and the CV was reduced by 35.6%, 29.8%, and 31.3% by these 3 treatments, respectively. Moreover, the concentrations of tocopherol and free fatty acids did not change with CAS treatment. The characteristics of CAS were not related to the degree of change of AV and CV. However, the adsorption mechanism of polar and non-polar compounds generated in waste edible oil by CAS was related with the presence of silica gel molecules in CAS. The findings indicated that CAS was useful for the regeneration of waste edible oil.

  20. Sources and Bioactive Properties of Conjugated Dietary Fatty Acids.

    Science.gov (United States)

    Hennessy, Alan A; Ross, Paul R; Fitzgerald, Gerald F; Stanton, Catherine

    2016-04-01

    The group of conjugated fatty acids known as conjugated linoleic acid (CLA) isomers have been extensively studied with regard to their bioactive potential in treating some of the most prominent human health malignancies. However, CLA isomers are not the only group of potentially bioactive conjugated fatty acids currently undergoing study. In this regard, isomers of conjugated α-linolenic acid, conjugated nonadecadienoic acid and conjugated eicosapentaenoic acid, to name but a few, have undergone experimental assessment. These studies have indicated many of these conjugated fatty acid isomers commonly possess anti-carcinogenic, anti-adipogenic, anti-inflammatory and immune modulating properties, a number of which will be discussed in this review. The mechanisms through which these bioactivities are mediated have not yet been fully elucidated. However, existing evidence indicates that these fatty acids may play a role in modulating the expression of several oncogenes, cell cycle regulators, and genes associated with energy metabolism. Despite such bioactive potential, interest in these conjugated fatty acids has remained low relative to the CLA isomers. This may be partly attributed to the relatively recent emergence of these fatty acids as bioactives, but also due to a lack of awareness regarding sources from which they can be produced. In this review, we will also highlight the common sources of these conjugated fatty acids, including plants, algae, microbes and chemosynthesis.