WorldWideScience

Sample records for reduces energy cost

  1. Device interactions in reducing the cost of tidal stream energy

    International Nuclear Information System (INIS)

    Vazquez, A.; Iglesias, G.

    2015-01-01

    Highlights: • Numerical modelling is used to estimate the levelised cost of tidal stream energy. • As a case study, a model of Lynmouth (UK) is implemented and successfully validated. • The resolution of the model allows the demarcation of individual devices on the model grid. • Device interactions reduce the available tidal resource and the cost increases significantly. - Abstract: The levelised cost of energy takes into account the lifetime generated energy and the costs associated with a project. The objective of this work is to investigate the effects of device interactions on the energy output and, therefore, on the levelised cost of energy of a tidal stream project, by means of numerical modelling. For this purpose, a case study is considered: Lynmouth (North Devon, UK), an area in the Bristol Channel in which the first tidal stream turbine was installed − a testimony of its potential as a tidal energy site. A state-of-the-art hydrodynamics model is implemented on a high-resolution computational grid, which allows the demarcation of the individual devices. The modification to the energy output resulting from interaction between turbines within the tidal farm is thus resolved for each individual turbine. The results indicate that significant changes in the levelised cost of energy values, of up to £0.221 kW h −1 , occur due to the aforementioned modifications, which should not be disregarded if the cost of tidal stream energy is to be minimised

  2. Potential for the Use of Energy Savings Performance Contracts to Reduce Energy Consumption and Provide Energy and Cost Savings in Non-Building Applications

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Charles; Green, Andrew S.; Dahle, Douglas; Barnett, John; Butler, Pat; Kerner, David

    2013-08-01

    The findings of this study indicate that potential exists in non-building applications to save energy and costs. This potential could save billions of federal dollars, reduce reliance on fossil fuels, increase energy independence and security, and reduce greenhouse gas emissions. The Federal Government has nearly twenty years of experience with achieving similar energy cost reductions, and letting the energy costs savings pay for themselves, by applying energy savings performance contracts (ESPC) inits buildings. Currently, the application of ESPCs is limited by statute to federal buildings. This study indicates that ESPCs can be a compatible and effective contracting tool for achieving savings in non-building applications.

  3. Making renewable energy competitive in India: Reducing financing costs via a government-sponsored hedging facility

    International Nuclear Information System (INIS)

    Farooquee, Arsalan Ali; Shrimali, Gireesh

    2016-01-01

    In India, a significant barrier to market-competitiveness of renewable energy is a shortage of attractive debt. Domestic debt has high cost, short tenors, and variable interest rates, adding 30% to the cost of renewable energy compared to renewable energy projects elsewhere. Foreign debt is as expensive as domestic debt because it requires costly market-based currency hedging solutions. We investigate a government-sponsored foreign exchange facility as an alternative to reducing hedging costs. Using the geometric Brownian motion (GBM) as a representative stochastic model of the INR–USD foreign exchange rate, we find that the expected cost of providing a currency hedge via this facility is 3.5 percentage points, 50% lower than market. This leads to an up to 9% reduction in the per unit cost of renewable energy. However, this requires the government to manage the risks related to unexpected currency movements appropriately. One option to manage these risks is via a capital buffer; for the facility to obtain India's sovereign rating, the capital buffer would need to be almost 30% of the underlying loan. Our findings have significant policy implications given that the Indian government can use this facility to make renewable energy more competitive and, therefore, hasten its deployment. - Highlights: • We analyze a government-sponsored foreign exchange facility in India. •We use geometric Brownian motion to represent the INR–USD exchange rate. •This facility can reduce the currency hedging costs by 50%. •This facility can reduce the levelized cost of renewable energy by 9%. •The capital buffer to reach India's sovereign rating is 30% of the original loan.

  4. Spring-like Ankle Foot Orthoses reduce the energy cost of walking by taking over ankle work.

    Science.gov (United States)

    Bregman, D J J; Harlaar, J; Meskers, C G M; de Groot, V

    2012-01-01

    In patients with central neurological disorders, gait is often limited by a reduced ability to push off with the ankle. To overcome this reduced ankle push-off, energy-storing, spring-like carbon-composite Ankle Foot Orthoses (AFO) can be prescribed. It is expected that the energy returned by the AFO in late stance will support ankle push-off, and reduce the energy cost of walking. In 10 patients with multiple sclerosis and stroke the energy cost of walking, 3D kinematics, joint power, and joint work were measured during gait, with and without the AFO. The mechanical characteristics of the AFO were measured separately, and used to calculate the contribution of the AFO to the ankle kinetics. We found a significant decrease of 9.8% in energy cost of walking when walking with the AFO. With the AFO, the range of motion of the ankle was reduced by 12.3°, and the net work around the ankle was reduced by 29%. The total net work in the affected leg remained unchanged. The AFO accounted for 60% of the positive ankle work, which reduced the total amount of work performed by the leg by 11.1% when walking with the AFO. The decrease in energy cost when walking with a spring-like energy-storing AFO in central neurological patients is not induced by an augmented net ankle push-off, but by the AFO partially taking over ankle work. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. IMPROVING ENERGY EFFICIENCY AND REDUCING COSTS IN THE DRINKING WATER SUPPLY INDUSTRY: An ENERGY STAR Resource Guide for Energy and Plant Managers

    Energy Technology Data Exchange (ETDEWEB)

    Melody, Moya; Dunham Whitehead, Camilla; Brown, Richard

    2010-09-30

    As American drinking water agencies face higher production costs, demand, and energy prices, they seek opportunities to reduce costs without negatively affecting the quality of the water they deliver. This guide describes resources for cost-effectively improving the energy efficiency of U.S. public drinking water facilities. The guide (1) describes areas of opportunity for improving energy efficiency in drinking water facilities; (2) provides detailed descriptions of resources to consult for each area of opportunity; (3) offers supplementary suggestions and information for the area; and (4) presents illustrative case studies, including analysis of cost-effectiveness.

  6. Reducing the energy penalty costs of postcombustion CCS systems with amine-storage.

    Science.gov (United States)

    Patiño-Echeverri, Dalia; Hoppock, David C

    2012-01-17

    Carbon capture and storage (CCS) can significantly reduce the amount of CO(2) emitted from coal-fired power plants but its operation significantly reduces the plant's net electrical output and decreases profits, especially during times of high electricity prices. An amine-based CCS system can be modified adding amine-storage to allow postponing 92% of all its energy consumption to times of lower electricity prices, and in this way has the potential to effectively reduce the cost of CO(2) capture by reducing the costs of the forgone electricity sales. However adding amine-storage to a CCS system implies a significant capital cost that will be outweighed by the price-arbitrage revenue only if the difference between low and high electricity prices is substantial. In this paper we find a threshold for the variability in electricity prices that make the benefits from electricity price arbitrage outweigh the capital costs of amine-storage. We then look at wholesale electricity markets in the Eastern Interconnect of the United States to determine profitability of amine-storage systems in this region. Using hourly electricity price data from years 2007 and 2008 we find that amine storage may be cost-effective in areas with high price variability.

  7. Methodology for reducing energy and resource costs in construction of trenchless crossover of pipelines

    Science.gov (United States)

    Toropov, V. S.

    2018-05-01

    The paper suggests a set of measures to select the equipment and its components in order to reduce energy costs in the process of pulling the pipeline into the well in the constructing the trenchless pipeline crossings of various materials using horizontal directional drilling technology. A methodology for reducing energy costs has been developed by regulating the operation modes of equipment during the process of pulling the working pipeline into a drilled and pre-expanded well. Since the power of the drilling rig is the most important criterion in the selection of equipment for the construction of a trenchless crossover, an algorithm is proposed for calculating the required capacity of the rig when operating in different modes in the process of pulling the pipeline into the well.

  8. Optimal distributed energy resources and the cost of reduced greenhouse gas emissions in a large retail shopping centre

    International Nuclear Information System (INIS)

    Braslavsky, Julio H.; Wall, Josh R.; Reedman, Luke J.

    2015-01-01

    Highlights: • Optimal options for distributed energy resources are analysed for a shopping centre. • A multiobjective optimisation model is formulated and solved using DER-CAM. • Cost and emission trade-offs are compared in four key optimal investment scenarios. • Moderate investment in DER technologies lowers emissions by 29.6% and costs by 8.5%. • Larger investment in DER technologies lowers emissions by 72% at 47% higher costs. - Abstract: This paper presents a case study on optimal options for distributed energy resource (DER) technologies to reduce greenhouse gas emissions in a large retail shopping centre located in Sydney, Australia. Large retail shopping centres take the largest share of energy consumed by all commercial buildings, and present a strong case for adoption of DER technologies to reduce energy costs and emissions. However, the complexity of optimally designing and operating DER systems has hindered their widespread adoption in practice. This paper examines and demonstrates the value of DER in reducing the carbon footprint of the shopping centre by formulating and solving a multiobjective optimisation problem using the Distributed Energy Resources Customer Adoption Model (DER-CAM) tool. An economic model of the shopping centre is developed in DER-CAM using on-site-specific demand, tariffs, and performance data for each DER technology option available. Four key optimal DER technology investment scenarios are then analysed by comparing: (1) solution trade-offs of costs and emissions, (2) the cost of reduced emissions attained in each investment scenario, and (3) investment benefits with respect to the business-as-usual scenario. The analysis shows that a moderate investment in combined cooling, heat and power (CCHP) technology alone can reduce annual energy costs by 8.5% and carbon dioxide-equivalent emissions by 29.6%. A larger investment in CCHP technology, in conjunction with on-site solar photovoltaic (PV) generation, can deliver

  9. Building Commissioning: A Golden Opportunity for Reducing Energy Costs and Greenhouse-gas Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Mills, Evan

    2009-07-16

    data are available revealed over 10,000 energy-related problems, resulting in 16% median whole-building energy savings in existing buildings and 13% in new construction, with payback time of 1.1 years and 4.2 years, respectively. In terms of other cost-benefit indicators, median benefit-cost ratios of 4.5 and 1.1, and cash-on-cash returns of 91% and 23% were attained for existing and new buildings, respectively. High-tech buildings were particularly cost-effective, and saved higher amounts of energy due to their energy-intensiveness. Projects with a comprehensive approach to commissioning attained nearly twice the overall median level of savings and five-times the savings of the least-thorough projects. It is noteworthy that virtually all existing building projects were cost-effective by each metric (0.4 years for the upper quartile and 2.4 years for the lower quartile), as were the majority of new-construction projects (1.5 years and 10.8 years, respectively). We also found high cost-effectiveness for each specific measure for which we have data. Contrary to a common perception, cost-effectiveness is often achieved even in smaller buildings. Thanks to energy savings valued more than the cost of the commissioning process, associated reductions in greenhouse gas emissions come at 'negative' cost. In fact, the median cost of conserved carbon is negative - -$110 per tonne for existing buildings and -$25/tonne for new construction - as compared with market prices for carbon trading and offsets in the +$10 to +$30/tonne range. Further enhancing the value of commissioning, its non-energy benefits surpass those of most other energy-management practices. Significant first-cost savings (e.g., through right-sizing of heating and cooling equipment) routinely offset at least a portion of commissioning costs - fully in some cases. When accounting for these benefits, the net median commissioning project cost was reduced by 49% on average, while in many cases they exceeded

  10. Reducing Operating Costs and Energy Consumption at Water Utilities

    Science.gov (United States)

    Due to their unique combination of high energy usage and potential for significant savings, utilities are turning to energy-efficient technologies to help save money. Learn about cost and energy saving technologies from this brochure.

  11. Reducing Idle Power Consumption in Office Spaces Saves U.S. Navy in Energy Costs (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2014-04-01

    As part of a two-year project to demonstrate energy efficiency measures, renewable energy generation, and energy systems integration, the National Renewable Energy Laboratory (NREL) has identified advanced plug load controls as a promising technology for reducing energy use and related costs in the U.S. Navy's Naval Facilities Engineering Command (NAVFAC) office spaces.

  12. Reducing Building HVAC Costs with Site-Recovery Energy

    Science.gov (United States)

    Pargeter, Stephen J.

    2012-01-01

    Building owners are caught between two powerful forces--the need to lower energy costs and the need to meet or exceed outdoor air ventilation regulations for occupant health and comfort. Large amounts of energy are wasted each day from commercial, institutional, and government building sites as heating, ventilation, and air conditioning (HVAC)…

  13. Can the household sector reduce global warming mitigation costs? sensitivity to key parameters in a TIMES techno-economic energy model

    International Nuclear Information System (INIS)

    Astudillo, Miguel F.; Vaillancourt, Kathleen; Pineau, Pierre-Olivier; Amor, Ben

    2017-01-01

    Highlights: •An energy system model of Quebec is combined with building simulation software. •Greenhouse gas emission reductions efforts increase annual electricity peak demand. •Alternative heating tech. And building envelopes can effectively reduce peak demand. •Denser urban developments massively reduced costs of global warming mitigation. •CO 2 emissions from hydropower reservoirs are relevant in global warming mitigation. -- Abstract: The transition to low carbon societies may increase peak electricity demand, which can be costly to supply with renewable energy, whose availability is uncertain. Buildings are often the main cause of peak demand, and they are believed to hold a large unrealised energy-efficiency potential. If realised, this potential could considerably mitigate the transition costs to low carbon societies, reducing average and peak electricity demands. We explore this potential in several cost-optimal global warming (GW) mitigation scenarios using a multi-sector TIMES energy system model of the province of Quebec for the period 2011–2050. Heating and conservation measures in the residential sector are modelled using building simulations and parameters’ values from the literature. The intra-annual availability of renewable energy and electricity imports is derived from time-series analysis. Additionally, the influence of key parameters such as the projections of primary energy demand and emissions from reservoir impoundment is evaluated. Finally, we discuss some of the barriers that could hamper the energy transition and how they can be overcome. Results indicate that peak demand would rise by 30% due to GW mitigation efforts, but it can be effectively reduced by interventions in the residential sector. Heat pumps are the most cost effective heating technology, despite their lower efficiencies in cold climates. Better-insulated building envelopes have an important role in new houses, reducing by 14% the GW mitigation costs and

  14. Accounting for Energy Cost When Designing Energy-Efficient Wireless Access Networks

    Directory of Open Access Journals (Sweden)

    Greta Vallero

    2018-03-01

    Full Text Available Because of the increase of the data traffic demand, wireless access networks, through which users access telecommunication services, have expanded, in terms of size and of capability and, consequently, in terms of power consumption. Therefore, costs to buy the necessary power for the supply of base stations of those networks is becoming very high, impacting the communication cost. In this study, strategies to reduce the amount of money spent for the purchase of the energy consumed by the base stations are proposed for a network powered by solar panels, energy batteries and the power grid. First, the variability of the energy prices is exploited. It provides a cost reduction of up to 30%, when energy is bought in advance. If a part of the base stations is deactivated when the energy price is higher than a given threshold, a compromise between the energy cost and the user coverage drop is needed. In the simulated scenario, the necessary energy cost can be reduced by more than 40%, preserving the user coverage by greater than 94%. Second, the network is introduced to the energy market: it buys and sells energy from/to the traditional power grid. Finally, costs are reduced by the reduction of power consumption of the network, achieved by using microcell base stations. In the considered scenario, up to a 31% cost reduction is obtained, without the deterioration of the quality of service, but a huge Capex expenditure is required.

  15. Reducing the cost of administrative justice

    International Nuclear Information System (INIS)

    Tourtellotte, J.R.

    1982-01-01

    In virtually every sector of government regulation, the complaint has been lodged that the costs of administrative justice are too high. These costs in time, money, resources, and productivity can have a profound effect on the individual consumer. When applied to an energy technology such as nuclear power, costs of administrative justice can transcent time and money to have even more profound and pervasive soeietal effects. Societal costs can be expressed in terms of their impact on important national concerns, that is, the standard of living, technological superiority, and the national energy equation. Some views are presented on the interests involved in the regulation of nuclear power and what can be done to bring those interests into better balance so as to reduce the cost of administrative justice

  16. [Reduce Energy Costs While Maintaining Healthy IAQ.] "Indoor Air Quality Tools for Schools" Update #17

    Science.gov (United States)

    US Environmental Protection Agency, 2009

    2009-01-01

    This issue of "Indoor Air Quality Tools for Schools" Update ("IAQ TfS" Update) contains the following items: (1) News and Events; (2) Feature Article: Reduce Energy Costs while Maintaining Healthy IAQ; (3) Insight into Excellence: North East Independent School District ; (4) School Building Week 2009; and (5) Have Your Questions Answered!

  17. South Korean energy scenarios show how nuclear power can reduce future energy and environmental costs

    International Nuclear Information System (INIS)

    Hong, Sanghyun; Bradshaw, Corey J.A.; Brook, Barry W.

    2014-01-01

    South Korea is an important case study for understanding the future role of nuclear power in countries with on-going economic growth, and limited renewable energy resources. We compared quantitatively the sustainability of two ‘future-mapping’ exercises (the ‘Governmental’ scenario, which relies on fossil fuels, and the Greenpeace scenario, which emphasises renewable energy and excludes nuclear power). The comparison was based on a range of environmental and technological perspectives, and contrasted against two additional nuclear scenarios that instead envisage a dominant role for nuclear energy. Sustainability metrics included energy costs, external costs (greenhouse-gas emissions, air pollutants, land transformation, water consumption and discharge, and safety) and additional costs. The nuclear-centred scenarios yielded the lowest total cost per unit of final energy consumption by 2050 ($14.37 GJ −1 ), whereas the Greenpeace scenario has the highest ($25.36 GJ −1 ). We used probabilistic simulations based on multi-factor distributional sampling of impact and cost metrics to estimate the overlapping likelihoods among scenarios to understand the effect of parameter uncertainty on the integrated recommendations. Our simulation modelling implies that, despite inherent uncertainties, pursuing a large-scale expansion of nuclear-power capacity offers the most sustainable pathway for South Korea, and that adopting a nuclear-free pathway will be more costly and produce more greenhouse-gas emissions. - Highlights: • Nuclear power has a key role to play in mitigating greenhouse-gas emissions. • The Greenpeace scenario has higher total external cost than the nuclear scenarios. • The nuclear-centred scenarios offer the most sustainable option for South Korea. • The similar conclusions are likely to apply to other Asian countries

  18. Energy and GHG abatement cost curves

    Energy Technology Data Exchange (ETDEWEB)

    Alvarenga, Rafael [BHP Billiton Base Metals (Australia)

    2010-07-01

    Global warming due to various reasons but especially to emission of green house gases (GHGs) has become a cause for serious concern. This paper discusses the steps taken by BHP Billiton to reduce energy consumption and GHG emissions using cost curves. According to forecasts, global warming is expected to impact Chile badly and the rise in temperature could be between 1 and more than 5 degrees Celsius. Mining in Chile consumes a lot of energy, particularly electricity. Total energy and electricity consumption in 2007 was 13 and 36 % respectively. BHP base metals developed a set of abatement cost curves for energy and GHG in Chile and these are shown in figures. The methodology for the curves consisted of consultant visits to each mine operation. The study also includes mass energy balance and feasibility maps. The paper concludes that it is important to evaluate the potential for reducing emissions and energy and their associated costs.

  19. Energy cost reduction in oil pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Limeira, Fabio Machado; Correa, Joao Luiz Lavoura; Costa, Luciano Macedo Josino da; Silva, Jose Luiz da; Henriques, Fausto Metzger Pessanha [Petrobras Transporte S.A. (TRANSPETRO), Rio de Janeiro, RJ (Brazil)

    2012-07-01

    One of the key questions of modern society consists on the rational use of the planet's natural resources and energy. Due to the lack of energy, many companies are forced to reduce their workload, especially during peak hours, because residential demand reaches its top and there is not enough energy to fulfill the needs of all users, which affects major industries. Therefore, using energy more wisely has become a strategic issue for any company, due to the limited supply and also for the excessive cost it represents. With the objective of saving energy and reducing costs for oil pipelines, it has been identified that the increase in energy consumption is primordially related to pumping stations and also by the way many facilities are operated, that is, differently from what was originally designed. Realizing this opportunity, in order to optimize the process, this article intends to examine the possibility of gains evaluating alternatives regarding changes in the pump scheme configuration and non-use of pump stations at peak hours. Initially, an oil pipeline with potential to reduce energy costs was chosen being followed by a history analysis, in order to confirm if there was sufficient room to change the operation mode. After confirming the pipeline choice, the system is briefly described and the literature is reviewed, explaining how the energy cost is calculated and also the main characteristics of a pumping system in series and in parallel. In that sequence, technically feasible alternatives are studied in order to operate and also to negotiate the energy demand contract. Finally, costs are calculated to identify the most economical alternative, that is, for a scenario with no increase in the actual transported volume of the pipeline and for another scenario that considers an increase of about 20%. The conclusion of this study indicates that the chosen pipeline can achieve a reduction on energy costs of up to 25% without the need for investments in new

  20. The effects of rising energy costs and transportation mode mix on forest fuel procurement costs

    International Nuclear Information System (INIS)

    Rauch, Peter; Gronalt, Manfred

    2011-01-01

    Since fossil fuels have been broadly recognized as a non-renewable energy source that threatens the climate, sustainable and CO 2 neutral energy sources - such as forest fuels - are being promoted in Europe, instead. With the expeditiously growing forest fuel demand, the strategic problem of how to design a cost-efficient distribution network has evolved. This paper presents an MILP model, comprising decisions on modes of transportation and spatial arrangement of terminals, in order to design a forest fuel supply network for Austria. The MILP model is used to evaluate the impacts of rising energy costs on procurement sources, transport mix and procurement costs on a national scale, based on the example of Austria. A 20% increase of energy costs results in a procurement cost increase of 7%, and another 20% increase of energy costs would have similar results. While domestic waterways become more important as a result of the first energy cost increase, rail only does so after the second. One way to decrease procurement costs would be to reduce the share of empty trips with truck and trailer. Reducing this share by 10% decreases the average procurement costs by up to 20%. Routing influences the modal split considerably, and the truck transport share increases from 86% to 97%, accordingly. Increasing forest fuel imports by large CHPs lowers domestic competition and also enables smaller plants to cut their procurement costs. Rising forest fuel imports via ship will not significantly decrease domestic market shares, but they will reduce procurement costs considerably. (author)

  1. Metaldyne. Plant-Wide Assessment at Royal Oak Finds Opportunities to Improve Manufacturing Effciency, Reduce Energy Use, and Achieve Sigificant Cost Savings

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2005-05-01

    This case study prepared for the U.S. Department of Energy's Industrial Technologies Program describes a plant-wide energy assessment conducted at the Metaldyne, Inc., forging plant in Royal Oak, Michigan. The assessment focused on reducing the plant's operating costs, inventory, and energy use. If the company were to implement all the recommendations that came out of the assessment, its total annual energy savings for electricity would be about 11.5 million kWh and annual cost savings would be $12.6 million.

  2. Metaldyne: Plant-Wide Assessment at Royal Oak Finds Opportunities to Improve Manufacturing Efficiency, Reduce Energy Use, and Achieve Significant Cost Savings

    Energy Technology Data Exchange (ETDEWEB)

    2005-05-01

    This case study prepared for the U.S. Department of Energy's Industrial Technologies Program describes a plant-wide energy assessment conducted at the Metaldyne, Inc., forging plant in Royal Oak, Michigan. The assessment focused on reducing the plant's operating costs, inventory, and energy use. If the company were to implement all the recommendations that came out of the assessment, its total annual energy savings for electricity would be about 11.5 million kWh and annual cost savings would be $12.6 million.

  3. Modelled Cost-Effectiveness of a Package Size Cap and a Kilojoule Reduction Intervention to Reduce Energy Intake from Sugar-Sweetened Beverages in Australia

    Science.gov (United States)

    Mantilla Herrera, Ana Maria; Neal, Bruce; Zheng, Miaobing; Lal, Anita; Sacks, Gary

    2017-01-01

    Interventions targeting portion size and energy density of food and beverage products have been identified as a promising approach for obesity prevention. This study modelled the potential cost-effectiveness of: a package size cap on single-serve sugar sweetened beverages (SSBs) >375 mL (package size cap), and product reformulation to reduce energy content of packaged SSBs (energy reduction). The cost-effectiveness of each intervention was modelled for the 2010 Australia population using a multi-state life table Markov model with a lifetime time horizon. Long-term health outcomes were modelled from calculated changes in body mass index to their impact on Health-Adjusted Life Years (HALYs). Intervention costs were estimated from a limited societal perspective. Cost and health outcomes were discounted at 3%. Total intervention costs estimated in AUD 2010 were AUD 210 million. Both interventions resulted in reduced mean body weight (package size cap: 0.12 kg; energy reduction: 0.23 kg); and HALYs gained (package size cap: 73,883; energy reduction: 144,621). Cost offsets were estimated at AUD 750.8 million (package size cap) and AUD 1.4 billion (energy reduction). Cost-effectiveness analyses showed that both interventions were “dominant”, and likely to result in long term cost savings and health benefits. A package size cap and kJ reduction of SSBs are likely to offer excellent “value for money” as obesity prevention measures in Australia. PMID:28878175

  4. Energy-efficient induction motors designing with application of a modified criterion of reduced costs

    Directory of Open Access Journals (Sweden)

    V.S. Petrushin

    2014-03-01

    Full Text Available The paper introduces a modified criterion of reduced costs that employs coefficients of operation significance and priority of ohmic loss accounting to allow matching maximum efficiency with minimum reduced costs. Impact of the inflation factor on the criterion of reduced costs is analyzed.

  5. Energy-dense fast food products cost less: an observational study of the energy density and energy cost of Australian fast foods.

    Science.gov (United States)

    Wellard, Lyndal; Havill, Michelle; Hughes, Clare; Watson, Wendy L; Chapman, Kathy

    2015-12-01

    To examine the association between energy cost and energy density of fast food products. Twenty Sydney outlets of the five largest fast food chains were surveyed four times. Price and kilojoule data were collected for all limited-time-only menu items (n=54) and a sample of standard items (n=67). Energy cost ($/kilojoule) and energy density (kilojoules/gram) of menu items were calculated. There was a significant inverse relationship between menu item energy density and energy cost (pFast food chains could provide a wider range of affordable, lower-energy foods, use proportional pricing of larger serve sizes, or change defaults in meals to healthier options. More research is required to determine the most effective strategy to reduce the negative impact of fast food on the population's diet. Current pricing in the fast food environment may encourage unhealthier purchases. © 2015 Public Health Association of Australia.

  6. Sizing Combined Heat and Power Units and Domestic Building Energy Cost Optimisation

    OpenAIRE

    Dongmin Yu; Yuanzhu Meng; Gangui Yan; Gang Mu; Dezhi Li; Simon Le Blond

    2017-01-01

    Many combined heat and power (CHP) units have been installed in domestic buildings to increase energy efficiency and reduce energy costs. However, inappropriate sizing of a CHP may actually increase energy costs and reduce energy efficiency. Moreover, the high manufacturing cost of batteries makes batteries less affordable. Therefore, this paper will attempt to size the capacity of CHP and optimise daily energy costs for a domestic building with only CHP installed. In this paper, electricity ...

  7. Cost-benefit analysis: introducing energy efficient and renewable energy appliances in Lebanese households

    Energy Technology Data Exchange (ETDEWEB)

    Ruble, Isabella [American University of Beirut, Department of Economics (Lebanon)], E-mail: economics.ir@gmail.com

    2011-07-01

    In Lebanon, neglect of the electricity sector has led to a serious shortage in installed capacity. Recently, the government of Lebanon declared its intention to raise the share of renewable energy (RE) year by year in order to reduce energy consumption. This paper gave a cost-benefit analysis and reviewed the replacement of five major traditional household appliances with their energy efficient (EE) or renewable energy counterparts. This initiative would mostly be felt in three main areas: electricity consumption, consumer costs, and government expenditure. There is a strong possibility that the electricity demand of the 1.2 million Lebanese households can be reduced by introduction of these EE household appliances. Benefits would also accrue to the government in the form of avoided subsidies and reduced need for installed capacity. This paper finds that the benefits to be expected from these policy recommendations largely outweigh the costs.

  8. Transaction costs of raising energy efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Ostertag, K.

    2003-07-01

    Part of the debate evolves around the existence and importance of energy saving potentials to reduce CO{sub 2} emissions that may be available at negative net costs, implying that the energy cost savings of one specific technology can actually more than offset the costs of investing into this technology and of using it. This so called ''no-regret'' potential would comprise measures that from a pure economic efficiency point of view would be ''worth undertaking whether or not there are climate-related reasons for doing so''. The existence of the no-regret potential is often denied by arguing, that the economic evaluation of the energy saving potentials did not take into account transaction costs. This paper will re-examine in more detail the concept of transaction costs as it is used in the current debate on no-regret potentials (section 1). Four practical examples are presented to illustrate how transaction costs and their determinants can be identified, measured and possibly influenced (section 2). In order to link the presented cases to modelling based evaluation approaches the implications for cost evaluations of energy saving measures, especially in the context of energy system modelling, will be shown (section 3). (author)

  9. Reduced-cost second-order algebraic-diagrammatic construction method for excitation energies and transition moments

    Science.gov (United States)

    Mester, Dávid; Nagy, Péter R.; Kállay, Mihály

    2018-03-01

    A reduced-cost implementation of the second-order algebraic-diagrammatic construction [ADC(2)] method is presented. We introduce approximations by restricting virtual natural orbitals and natural auxiliary functions, which results, on average, in more than an order of magnitude speedup compared to conventional, density-fitting ADC(2) algorithms. The present scheme is the successor of our previous approach [D. Mester, P. R. Nagy, and M. Kállay, J. Chem. Phys. 146, 194102 (2017)], which has been successfully applied to obtain singlet excitation energies with the linear-response second-order coupled-cluster singles and doubles model. Here we report further methodological improvements and the extension of the method to compute singlet and triplet ADC(2) excitation energies and transition moments. The various approximations are carefully benchmarked, and conservative truncation thresholds are selected which guarantee errors much smaller than the intrinsic error of the ADC(2) method. Using the canonical values as reference, we find that the mean absolute error for both singlet and triplet ADC(2) excitation energies is 0.02 eV, while that for oscillator strengths is 0.001 a.u. The rigorous cutoff parameters together with the significantly reduced operation count and storage requirements allow us to obtain accurate ADC(2) excitation energies and transition properties using triple-ζ basis sets for systems of up to one hundred atoms.

  10. Operation optimization of a distributed energy system considering energy costs and exergy efficiency

    International Nuclear Information System (INIS)

    Di Somma, M.; Yan, B.; Bianco, N.; Graditi, G.; Luh, P.B.; Mongibello, L.; Naso, V.

    2015-01-01

    Highlights: • Operation optimization model of a Distributed Energy System (DES). • Multi-objective strategy to optimize energy cost and exergy efficiency. • Exergy analysis in building energy supply systems. - Abstract: With the growing demand of energy on a worldwide scale, improving the efficiency of energy resource use has become one of the key challenges. Application of exergy principles in the context of building energy supply systems can achieve rational use of energy resources by taking into account the different quality levels of energy resources as well as those of building demands. This paper is on the operation optimization of a Distributed Energy System (DES). The model involves multiple energy devices that convert a set of primary energy carriers with different energy quality levels to meet given time-varying user demands at different energy quality levels. By promoting the usage of low-temperature energy sources to satisfy low-quality thermal energy demands, the waste of high-quality energy resources can be reduced, thereby improving the overall exergy efficiency. To consider the economic factor as well, a multi-objective linear programming problem is formulated. The Pareto frontier, including the best possible trade-offs between the economic and exergetic objectives, is obtained by minimizing a weighted sum of the total energy cost and total primary exergy input using branch-and-cut. The operation strategies of the DES under different weights for the two objectives are discussed. The operators of DESs can choose the operation strategy from the Pareto frontier based on costs, essential in the short run, and sustainability, crucial in the long run. The contribution of each energy device in reducing energy costs and the total exergy input is also analyzed. In addition, results show that the energy cost can be much reduced and the overall exergy efficiency can be significantly improved by the optimized operation of the DES as compared with the

  11. Program Potential: Estimates of Federal Energy Cost Savings from Energy Efficient Procurement

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Margaret [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Fujita, K. Sydny [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-09-17

    In 2011, energy used by federal buildings cost approximately $7 billion. Reducing federal energy use could help address several important national policy goals, including: (1) increased energy security; (2) lowered emissions of greenhouse gases and other air pollutants; (3) increased return on taxpayer dollars; and (4) increased private sector innovation in energy efficient technologies. This report estimates the impact of efficient product procurement on reducing the amount of wasted energy (and, therefore, wasted money) associated with federal buildings, as well as on reducing the needless greenhouse gas emissions associated with these buildings.

  12. Reducing Transaction Costs for Energy Efficiency Investments and Analysis of Economic Risk Associated With Building Performance Uncertainties: Small Buildings and Small Portfolios Program

    Energy Technology Data Exchange (ETDEWEB)

    Langner, R.; Hendron, B.; Bonnema, E.

    2014-08-01

    The small buildings and small portfolios (SBSP) sector face a number of barriers that inhibit SBSP owners from adopting energy efficiency solutions. This pilot project focused on overcoming two of the largest barriers to financing energy efficiency in small buildings: disproportionately high transaction costs and unknown or unacceptable risk. Solutions to these barriers can often be at odds, because inexpensive turnkey solutions are often not sufficiently tailored to the unique circumstances of each building, reducing confidence that the expected energy savings will be achieved. To address these barriers, NREL worked with two innovative, forward-thinking lead partners, Michigan Saves and Energi, to develop technical solutions that provide a quick and easy process to encourage energy efficiency investments while managing risk. The pilot project was broken into two stages: the first stage focused on reducing transaction costs, and the second stage focused on reducing performance risk. In the first stage, NREL worked with the non-profit organization, Michigan Saves, to analyze the effects of 8 energy efficiency measures (EEMs) on 81 different baseline small office building models in Holland, Michigan (climate zone 5A). The results of this analysis (totaling over 30,000 cases) are summarized in a simple spreadsheet tool that enables users to easily sort through the results and find appropriate small office EEM packages that meet a particular energy savings threshold and are likely to be cost-effective.

  13. Energy Cost Minimization in Heterogeneous Cellular Networks with Hybrid Energy Supplies

    Directory of Open Access Journals (Sweden)

    Bang Wang

    2016-01-01

    Full Text Available The ever increasing data demand has led to the significant increase of energy consumption in cellular mobile networks. Recent advancements in heterogeneous cellular networks and green energy supplied base stations provide promising solutions for cellular communications industry. In this article, we first review the motivations and challenges as well as approaches to address the energy cost minimization problem for such green heterogeneous networks. Owing to the diversities of mobile traffic and renewable energy, the energy cost minimization problem involves both temporal and spatial optimization of resource allocation. We next present a new solution to illustrate how to combine the optimization of the temporal green energy allocation and spatial mobile traffic distribution. The whole optimization problem is decomposed into four subproblems, and correspondingly our proposed solution is divided into four parts: energy consumption estimation, green energy allocation, user association, and green energy reallocation. Simulation results demonstrate that our proposed algorithm can significantly reduce the total energy cost.

  14. Reducing electrocoagulation harvesting costs for practical microalgal biodiesel production.

    Science.gov (United States)

    Dassey, Adam J; Theegala, Chandra S

    2014-01-01

    Electrocoagulation has shown potential to be a primary microalgae harvesting technique for biodiesel production. However, methods to reduce energy and electrode costs are still necessary for practical application. Electrocoagulation tests were conducted on Nannochloris sp. and Dunaliella sp. using perforated aluminium and iron electrodes under various charge densities. Aluminium electrodes were shown to be more efficient than iron electrodes when harvesting both algal species. Despite the lower harvesting efficiency, however, the iron electrodes were more energy and cost efficient. Operational costs of less than $0.03/L oil were achieved when harvesting Nannochloris sp. with iron electrodes at 35% harvest efficiency, whereas aluminium electrodes cost $0.75/L oil with 42% harvesting efficiency. Increasing the harvesting efficiencies for both aluminium and iron electrodes also increased the overall cost per litre of oil, therefore lower harvesting efficiencies with lower energy inputs was recommended. Also, increasing the culturing salinity to 2 ppt sodium chloride for freshwater Nannochloris sp. was determined practical to improve the electrocoagulation energy efficiency despite a 25% reduction in cell growth.

  15. Energy Efficiency Improvement and Cost Saving Opportunities for Breweries: An ENERGY STAR(R) Guide for Energy and Plant Managers

    Energy Technology Data Exchange (ETDEWEB)

    Galitsky, Christina; Martin, Nathan; Worrell, Ernst; Lehman, Bryan

    2003-09-01

    Annually, breweries in the United States spend over $200 million on energy. Energy consumption is equal to 38 percent of the production costs of beer, making energy efficiency improvement an important way to reduce costs, especially in times of high energy price volatility. After a summary of the beer making process and energy use, we examine energy efficiency opportunities available for breweries. We provide specific primary energy savings for each energy efficiency measure based on case studies that have implemented the measures, as well as references to technical literature. If available, we have also listed typical payback periods. Our findings suggest that given available technology, there are still opportunities to reduce energy consumption cost-effectively in the brewing industry. Brewers value highly the quality, taste and drinkability of their beer. Brewing companies have and are expected to continue to spend capital on cost-effective energy conservation measures that meet these quality, taste and drinkability requirements. For individual plants, further research on the economics of the measures, as well as their applicability to different brewing practices, is needed to assess implementation of selected technologies.

  16. How School Facilities Managers and Business Officials Are Reducing Operating Costs and Saving Money. Energy-Smart Building Choices.

    Science.gov (United States)

    Department of Energy, Washington, DC.

    This guide addresses contributions that school facility administrators and business officials can make in an effort to reduce operating costs and free up money for capital improvements. The guide explores opportunities available to utilize energy-saving strategies at any stage in a building's life, from its initial design phase through renovation.…

  17. Energy Efficiency Improvement and Cost Saving Opportunities for the Glass Industry. An ENERGY STAR Guide for Energy and Plant Managers

    Energy Technology Data Exchange (ETDEWEB)

    Galitsky, Christina; Worrell, Ernst; Galitsky, Christina; Masanet, Eric; Graus, Wina

    2008-03-01

    The U.S. glass industry is comprised of four primary industry segments--flat glass, container glass, specialty glass, and fiberglass--which together consume $1.6 billion in energy annually. On average, energy costs in the U.S. glass industry account for around 14 percent of total glass production costs. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There is a variety of opportunities available at individual plants in the U.S. glass industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, system, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the U.S. glass industry is provided along with a description of the major process steps in glass manufacturing. Expected savings in energy and energy-related costs are given for many energy efficiency measures, based on case study data from real-world applications in glass production facilities and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers in the U.S. glass industry reduce energy consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of the measures--as well on as their applicability to different production practices--is needed to assess potential implementation of selected technologies at individual plants.

  18. Energy efficiency improvement and cost saving opportunities forpetroleum refineries

    Energy Technology Data Exchange (ETDEWEB)

    Worrell, Ernst; Galitsky, Christina

    2005-02-15

    The petroleum refining industry in the United States is the largest in the world, providing inputs to virtually any economic sector,including the transport sector and the chemical industry. The industry operates 146 refineries (as of January 2004) around the country,employing over 65,000 employees. The refining industry produces a mix of products with a total value exceeding $151 billion. Refineries spend typically 50 percent of cash operating costs (i.e., excluding capital costs and depreciation) on energy, making energy a major cost factor and also an important opportunity for cost reduction. Energy use is also a major source of emissions in the refinery industry making energy efficiency improvement an attractive opportunity to reduce emissions and operating costs. Voluntary government programs aim to assist industry to improve competitiveness through increased energy efficiency and reduced environmental impact. ENERGY STAR (R), a voluntary program managed by the U.S. Environmental Protection Agency, stresses the need for strong and strategic corporate energy management programs. ENERGY STAR provides energy management tools and strategies for successful corporate energy management programs. This Energy Guide describes research conducted to support ENERGY STAR and its work with the petroleum refining industry.This research provides information on potential energy efficiency opportunities for petroleum refineries. This Energy Guide introduces energy efficiency opportunities available for petroleum refineries. It begins with descriptions of the trends, structure, and production of the refining industry and the energy used in the refining and conversion processes. Specific energy savings for each energy efficiency measure based on case studies of plants and references to technical literature are provided. If available, typical payback periods are also listed. The Energy Guide draws upon the experiences with energy efficiency measures of petroleum refineries worldwide

  19. Costs and benefits of relaunching nuclear energy in Italy

    OpenAIRE

    Ivan Faiella; Luciano Lavecchia

    2012-01-01

    This paper supplies elements for assessing the costs and benefits of electronuclear energy in order to pursue three objectives: security of supply, cost reduction, and environmental sustainability. The study reached the following conclusions: 1) the use of nuclear energy increases the diversification of the energy mix and of energy suppliers, raising energy security levels, but it does not reduce Italy�s dependence on foreign energy; 2) the use of nuclear energy would not imply a reduction ...

  20. Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers

    Energy Technology Data Exchange (ETDEWEB)

    Galitsky, Christina; Galitsky, Christina; Chang, Sheng-chieh; Worrell, Ernst; Masanet, Eric

    2008-03-01

    The U.S. pharmaceutical industry consumes almost $1 billion in energy annually. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. pharmaceutical industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy efficient technologies that can be implemented at the component, process, system, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the U.S. pharmaceutical industry is provided along with a description of the major process steps in the pharmaceutical manufacturing process. Expected savings in energy and energy-related costs are given for many energy efficiency measures, based on case study data from real-world applications in pharmaceutical and related facilities worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers reduce energy consumption in a cost-effective manner while meeting regulatory requirements and maintaining the quality of products manufactured. At individual plants, further research on the economics of the measures?as well as their applicability to different production practices?is needed to assess potential implementation of selected technologies.

  1. The delivery of low-cost, low-carbon rural energy services

    Energy Technology Data Exchange (ETDEWEB)

    Casillas, Christian E., E-mail: cecasillas@berkeley.edu [Energy and Resources Group, University of California, Berkeley (United States); Kammen, Daniel M. [Energy and Resources Group, University of California, Berkeley (United States); Goldman School of Public Policy, University of California, Berkeley, CA 94720 (United States); The World Bank, Washington, DC 20433 (United States)

    2011-08-15

    The provision of both electrical and mechanical energy services can play a critical role in poverty alleviation for the almost two billion rural users who currently lack access to electricity. Distributed generation using diesel generators remains a common means of electricity provision for rural communities throughout the world. Due to rising fuel costs, the need to address poverty, and consequences of global warming, it is necessary to develop cost efficient means of reducing fossil fuel consumption in isolated diesel microgrids. Based on a case study in Nicaragua, a set of demand and supply side measures are ordered by their annualized costs in order to approximate an energy supply curve. The curve highlights significant opportunities for reducing the costs of delivering energy services while also transitioning to a carbon-free electrical system. In particular, the study demonstrates the significant cost savings resulting from the implementation of conventional metering, efficient residential lighting, and electricity generation using renewable energy sources. - Highlights: > We present a case study of conservation measures implemented in a diesel microgrid. > An energy conservation and supply curve is constructed using additional measures. > Energy efficiency and renewable energy result in cost savings and carbon abatement. > We discuss weaknesses of energy supply and carbon abatement curve calculations

  2. Optimizing Data Centre Energy and Environmental Costs

    Science.gov (United States)

    Aikema, David Hendrik

    Data centres use an estimated 2% of US electrical power which accounts for much of their total cost of ownership. This consumption continues to grow, further straining power grids attempting to integrate more renewable energy. This dissertation focuses on assessing and reducing data centre environmental and financial costs. Emissions of projects undertaken to lower the data centre environmental footprints can be assessed and the emission reduction projects compared using an ISO-14064-2-compliant greenhouse gas reduction protocol outlined herein. I was closely involved with the development of the protocol. Full lifecycle analysis and verifying that projects exceed business-as-usual expectations are addressed, and a test project is described. Consuming power when it is low cost or when renewable energy is available can be used to reduce the financial and environmental costs of computing. Adaptation based on the power price showed 10--50% potential savings in typical cases, and local renewable energy use could be increased by 10--80%. Allowing a fraction of high-priority tasks to proceed unimpeded still allows significant savings. Power grid operators use mechanisms called ancillary services to address variation and system failures, paying organizations to alter power consumption on request. By bidding to offer these services, data centres may be able to lower their energy costs while reducing their environmental impact. If providing contingency reserves which require only infrequent action, savings of up to 12% were seen in simulations. Greater power cost savings are possible for those ceding more control to the power grid operator. Coordinating multiple data centres adds overhead, and altering at which data centre requests are processed based on changes in the financial or environmental costs of power is likely to increase this overhead. Tests of virtual machine migrations showed that in some cases there was no visible increase in power use while in others power use

  3. Energy Efficiency Improvement and Cost Saving Opportunities for the Vehicle Assembly Industry: An ENERGY STAR Guide for Energy and Plant Managers

    Energy Technology Data Exchange (ETDEWEB)

    Galitsky, Christina; Galitsky, Christina; Worrell, Ernst

    2008-01-01

    The motor vehicle industry in the U.S. spends about $3.6 billion on energy annually. In this report, we focus on auto assembly plants. In the U.S., over 70 assembly plants currently produce 13 million cars and trucks each year. In assembly plants, energy expenditures is a relatively small cost factor in the total production process. Still, as manufacturers face an increasingly competitive environment, energy efficiency improvements can provide a means to reduce costs without negatively affecting the yield or the quality of the product. In addition, reducing energy costs reduces the unpredictability associated with variable energy prices in today?s marketplace, which could negatively affect predictable earnings, an important element for publicly-traded companies such as those in the motor vehicle industry. In this report, we first present a summary of the motor vehicle assembly process and energy use. This is followed by a discussion of energy efficiency opportunities available for assembly plants. Where available, we provide specific primary energy savings for each energy efficiency measure based on case studies, as well as references to technical literature. If available, we have listed costs and typical payback periods. We include experiences of assembly plants worldwide with energy efficiency measures reviewed in the report. Our findings suggest that although most motor vehicle companies in the U.S. have energy management teams or programs, there are still opportunities available at individual plants to reduce energy consumption cost effectively. Further research on the economics of the measures for individual assembly plants, as part of an energy management program, is needed to assess the potential impact of selected technologies at these plants.

  4. The electric vehicles as a mean to reduce CO2 emissions and energy costs in isolated regions. The São Miguel (Azores) case study

    International Nuclear Information System (INIS)

    Camus, Cristina; Farias, Tiago

    2012-01-01

    Most of small islands around the world today, are dependent on imported fossil fuels for the majority of their energy needs especially for transport activities and electricity production. The use of locally renewable energy resources and the implementation of energy efficiency measures could make a significant contribution to their economic development by reducing fossil fuel imports. An electrification of vehicles has been suggested as a way to both reduce pollutant emissions and increase security of supply of the transportation sector by reducing the dependence on oil products imports and facilitate the accommodation of renewable electricity generation, such as wind and, in the case of volcanic islands like São Miguel (Azores) of the geothermal energy whose penetration has been limited by the valley electricity consumption level. In this research, three scenarios of EV penetration were studied and it was verified that, for a 15% LD fleet replacement by EVs with 90% of all energy needs occurring during the night, the accommodation of 10 MW of new geothermal capacity becomes viable. Under this scenario, reductions of 8% in electricity costs, 14% in energy, 23% in fossil fuels use and CO 2 emissions for the transportation and electricity production sectors could be expected. - Highlights: ► EVs impacts on the electric system in energy and power profiles, costs and emissions. ► At least an EV penetration of 15% is needed to allow new geothermal power production. ► Reductions in energy, fossil fuels use and CO 2 emissions of 9%, 16% and 17% respectively. ► Electricity production with more % of renewable technologies reduces unit costs.

  5. Are the Costs of Reducing Greenhouse Gases from Passenger Vehicles Negative?

    OpenAIRE

    Parry, Ian W.H.

    2006-01-01

    Energy models suggest that the cost of reducing carbon emissions from the transportation sector is high relative to other sectors, such as electricity generation. However, this paper shows that taxes to reduce passenger vehicle emissions produce large net benefits, rather than costs, when account is taken of (a) their impact on reducing non-carbon externalities from passenger vehicle use, and (b) interactions with the broader fiscal system. Both of these considerations also strengthen the cas...

  6. Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers

    Energy Technology Data Exchange (ETDEWEB)

    Neelis, Maarten; Worrell, Ernst; Masanet, Eric

    2008-09-01

    Energy is the most important cost factor in the U.S petrochemical industry, defined in this guide as the chemical industry sectors producing large volume basic and intermediate organic chemicals as well as large volume plastics. The sector spent about $10 billion on fuels and electricity in 2004. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. petrochemical industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy efficient technologies that can be implemented at the component, process, facility, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the petrochemical industry is provided along with a description of the major process technologies used within the industry. Next, a wide variety of energy efficiency measures are described. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in the petrochemical and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers in the U.S. petrochemical industry reduce energy consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures--and on their applicability to different production practices--is needed to assess their cost effectiveness at individual plants.

  7. Walking on a moving surface: energy-optimal walking motions on a shaky bridge and a shaking treadmill can reduce energy costs below normal.

    Science.gov (United States)

    Joshi, Varun; Srinivasan, Manoj

    2015-02-08

    Understanding how humans walk on a surface that can move might provide insights into, for instance, whether walking humans prioritize energy use or stability. Here, motivated by the famous human-driven oscillations observed in the London Millennium Bridge, we introduce a minimal mathematical model of a biped, walking on a platform (bridge or treadmill) capable of lateral movement. This biped model consists of a point-mass upper body with legs that can exert force and perform mechanical work on the upper body. Using numerical optimization, we obtain energy-optimal walking motions for this biped, deriving the periodic body and platform motions that minimize a simple metabolic energy cost. When the platform has an externally imposed sinusoidal displacement of appropriate frequency and amplitude, we predict that body motion entrained to platform motion consumes less energy than walking on a fixed surface. When the platform has finite inertia, a mass- spring-damper with similar parameters to the Millennium Bridge, we show that the optimal biped walking motion sustains a large lateral platform oscillation when sufficiently many people walk on the bridge. Here, the biped model reduces walking metabolic cost by storing and recovering energy from the platform, demonstrating energy benefits for two features observed for walking on the Millennium Bridge: crowd synchrony and large lateral oscillations.

  8. Rightsizing HVAC Systems to Reduce Capital Costs and Save Energy

    Science.gov (United States)

    Sebesta, James

    2010-01-01

    Nearly every institution is faced with the situation of having to reduce the cost of a construction project from time to time through a process generally referred to as "value engineering." Just the mention of those words, however, gives rise to all types of connotations, thoughts, and memories (usually negative) for those in the…

  9. The ITER reduced cost design

    International Nuclear Information System (INIS)

    Aymar, R.

    2000-01-01

    Six years of joint work under the international thermonuclear experimental reactor (ITER) EDA agreement yielded a mature design for ITER which met the objectives set for it (ITER final design report (FDR)), together with a corpus of scientific and technological data, large/full scale models or prototypes of key components/systems and progress in understanding which both validated the specific design and are generally applicable to a next step, reactor-oriented tokamak on the road to the development of fusion as an energy source. In response to requests from the parties to explore the scope for addressing ITER's programmatic objective at reduced cost, the study of options for cost reduction has been the main feature of ITER work since summer 1998, using the advances in physics and technology databases, understandings, and tools arising out of the ITER collaboration to date. A joint concept improvement task force drawn from the joint central team and home teams has overseen and co-ordinated studies of the key issues in physics and technology which control the possibility of reducing the overall investment and simultaneously achieving the required objectives. The aim of this task force is to achieve common understandings of these issues and their consequences so as to inform and to influence the best cost-benefit choice, which will attract consensus between the ITER partners. A report to be submitted to the parties by the end of 1999 will present key elements of a specific design of minimum capital investment, with a target cost saving of about 50% the cost of the ITER FDR design, and a restricted number of design variants. Outline conclusions from the work of the task force are presented in terms of physics, operations, and design of the main tokamak systems. Possible implications for the way forward are discussed

  10. Sizing Combined Heat and Power Units and Domestic Building Energy Cost Optimisation

    Directory of Open Access Journals (Sweden)

    Dongmin Yu

    2017-06-01

    Full Text Available Many combined heat and power (CHP units have been installed in domestic buildings to increase energy efficiency and reduce energy costs. However, inappropriate sizing of a CHP may actually increase energy costs and reduce energy efficiency. Moreover, the high manufacturing cost of batteries makes batteries less affordable. Therefore, this paper will attempt to size the capacity of CHP and optimise daily energy costs for a domestic building with only CHP installed. In this paper, electricity and heat loads are firstly used as sizing criteria in finding the best capacities of different types of CHP with the help of the maximum rectangle (MR method. Subsequently, the genetic algorithm (GA will be used to optimise the daily energy costs of the different cases. Then, heat and electricity loads are jointly considered for sizing different types of CHP and for optimising the daily energy costs through the GA method. The optimisation results show that the GA sizing method gives a higher average daily energy cost saving, which is 13% reduction compared to a building without installing CHP. However, to achieve this, there will be about 3% energy efficiency reduction and 7% input power to rated power ratio reduction compared to using the MR method and heat demand in sizing CHP.

  11. Toward Low-Cost, High-Energy Density, and High-Power Density Lithium-Ion Batteries

    Science.gov (United States)

    Li, Jianlin; Du, Zhijia; Ruther, Rose E.; AN, Seong Jin; David, Lamuel Abraham; Hays, Kevin; Wood, Marissa; Phillip, Nathan D.; Sheng, Yangping; Mao, Chengyu; Kalnaus, Sergiy; Daniel, Claus; Wood, David L.

    2017-09-01

    Reducing cost and increasing energy density are two barriers for widespread application of lithium-ion batteries in electric vehicles. Although the cost of electric vehicle batteries has been reduced by 70% from 2008 to 2015, the current battery pack cost (268/kWh in 2015) is still >2 times what the USABC targets (125/kWh). Even though many advancements in cell chemistry have been realized since the lithium-ion battery was first commercialized in 1991, few major breakthroughs have occurred in the past decade. Therefore, future cost reduction will rely on cell manufacturing and broader market acceptance. This article discusses three major aspects for cost reduction: (1) quality control to minimize scrap rate in cell manufacturing; (2) novel electrode processing and engineering to reduce processing cost and increase energy density and throughputs; and (3) material development and optimization for lithium-ion batteries with high-energy density. Insights on increasing energy and power densities of lithium-ion batteries are also addressed.

  12. Energy Efficiency Improvement and Cost Saving Opportunities for the Baking Industry: An ENERGY STAR® Guide for Plant and Energy Managers

    Energy Technology Data Exchange (ETDEWEB)

    Masanet, Eric [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Therkelsen, Peter [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Worrell, Ernst [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division

    2012-12-28

    The U.S. baking industry—defined in this Energy Guide as facilities engaged in the manufacture of commercial bakery products such as breads, rolls, frozen cakes, pies, pastries, and cookies and crackers—consumes over $800 million worth of purchased fuels and electricity per year. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, facility, and organizational levels. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in food processing facilities and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. A summary of basic, proven measures for improving plant-level water efficiency is also provided. The information in this Energy Guide is intended to help energy and plant managers in the U.S. baking industry reduce energy and water consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures—as well as on their applicability to different production practices—is needed to assess their cost effectiveness at individual plants.

  13. The “cost of not doing” energy planning: The Spanish energy bubble

    International Nuclear Information System (INIS)

    Gómez, Antonio; Dopazo, César; Fueyo, Norberto

    2016-01-01

    The Spanish power generation sector is facing dire problems: generation overcapacity, various tariff hikes over recent years, uncertainty over the financial viability of many power plants and a regulatory framework that lacks stability. This situation is the consequence of both poor energy policies and the economic crisis in the late 2000s and early 2010s. In this paper we analyze the following three points from an energy planning perspective: how the country has arrived at this situation; whether other alternatives would have been possible through adequate planning; and the quantitative benefits that would have been accrued from such planning. We do so by developing a LEAP model, and building three scenarios that allow to segregate the costs of the economic crisis from the costs of the lack of planning. We find that appropriate energy planning could have reduced investments in the Spanish power sector by 2010€28.6 billion without compromising on performance in terms of sustainability or energy security, while improving affordability. The main causes of these surplus investments were two supply bubbles: those of gas combined cycles and of solar technologies. The results of this work highlight the value of rigorous, quantitative energy planning, and the high costs of not doing it. - Highlights: • We analyze the costs of the lack of quantitative planning for energy-policy making. • We separate the costs of the economic crisis in Spain from the cost of not planning. • We find the “cost of not doing” energy planning to be 28.6 billion 2010EUR.

  14. Energy Efficiency Improvement and Cost Saving Opportunities for the Dairy Processing Industry: An ENERGY STAR? Guide for Energy and Plant Managers

    Energy Technology Data Exchange (ETDEWEB)

    Brush, Adrian [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Masanet, Eric [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Worrell, Ernst [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2011-10-01

    The U.S. dairy processing industry—defined in this Energy Guide as facilities engaged in the conversion of raw milk to consumable dairy products—consumes around $1.5 billion worth of purchased fuels and electricity per year. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. dairy processing industry to reduce energy consumption and greenhouse gas emissions in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, facility, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the U.S. dairy processing industry is provided along with a description of the major process technologies used within the industry. Next, a wide variety of energy efficiency measures applicable to dairy processing plants are described. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in dairy processing facilities and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. Given the importance of water in dairy processing, a summary of basic, proven measures for improving water efficiency are also provided. The information in this Energy Guide is intended to help energy and plant managers in the U.S. dairy processing industry reduce energy and water consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures—as well as on their applicability to different production practices—is needed to assess their cost effectiveness at individual plants.

  15. The energy cost of quantum information losses

    Science.gov (United States)

    Romanelli, Alejandro; de Lima Marquezino, Franklin; Portugal, Renato; Donangelo, Raul

    2018-05-01

    We explore the energy cost of the information loss resulting from the passage of an initial density operator to a reduced one. We use the concept of entanglement temperature in order to obtain a lower bound for the energy change associated with this operation. We determine the minimal energy required for the case of the information losses associated with the trace over the space coordinates of a two-dimensional quantum walk.

  16. Energy Efficiency Improvement and Cost Saving Opportunities for the U.S. Iron and Steel Industry An ENERGY STAR(R) Guide for Energy and Plant Managers

    Energy Technology Data Exchange (ETDEWEB)

    Worrell, Ernst; Blinde, Paul; Neelis, Maarten; Blomen, Eliane; Masanet, Eric

    2010-10-21

    Energy is an important cost factor in the U.S iron and steel industry. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. iron and steel industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, facility, and organizational levels. A discussion of the structure, production trends, energy consumption, and greenhouse gas emissions of the iron and steel industry is provided along with a description of the major process technologies used within the industry. Next, a wide variety of energy efficiency measures are described. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in the steel and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers in the U.S. iron and steel industry reduce energy consumption and greenhouse gas emissions in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures?and on their applicability to different production practices?is needed to assess their cost effectiveness at individual plants.

  17. External costs from electricity generation of China up to 2030 in energy and abatement scenarios

    International Nuclear Information System (INIS)

    Zhang, Qingyu; Weili, Tian; Yumei, Wei; Yingxu, Chen

    2007-01-01

    This paper presents estimated external costs of electricity generation in China under different scenarios of long-term energy and environmental policies. Long-range Energy Alternatives Planning (LEAP) software is used to develop a simple model of electricity demand and to estimate gross electricity generation in China up to 2030 under these scenarios. Because external costs for unit of electricity from fossil fuel will vary in different government regulation periods, airborne pollutant external costs of SO 2 , NO x , PM 10 , and CO 2 from fired power plants are then estimated based on emission inventories and environmental cost for unit of pollutants, while external costs of non-fossil power generation are evaluated with external cost for unit of electricity. The developed model is run to study the impact of different energy efficiency and environmental abatement policy initiatives that would reduce total energy requirement and also reduce external costs of electricity generation. It is shown that external costs of electricity generation may reduce 24-55% with three energy policies scenarios and may further reduce by 20.9-26.7% with two environmental policies scenarios. The total reduction of external costs may reach 58.2%. (author)

  18. Marginal costs for intensified energy-efficiency measures

    International Nuclear Information System (INIS)

    Jakob, J.; Jochem, E.; Christen, K.

    2002-01-01

    The costs and benefits of investments in measures designed to improve the energy efficiency of residential buildings (in particular investments in heat insulation) were calculated as a function of increasing energy efficiency for new and renovated buildings and for single-family homes and apartment buildings. These investments in measures to improve efficiency mostly involve with the building envelope and ventilation systems and aim to successively reduce the space-heating needs of the buildings. The measures range from present-day building and renovation methods through to the 'Minergie' and 'Passive House' ('Minergie-P' in Switzerland) standards for low and very-low energy consumption buildings. Cost-benefit ratios were determined for individual building components, individual building concepts and for the whole of Switzerland, using both the average-cost as well as the pure marginal-cost methods (energy-economics level). The collection of empirical data (especially on costs) was an integral and important part of the project. The marginal costs were then compared with the benefits arising from the costs for space heating that were avoided, and, using a few typical cases as examples, with the so-called co-benefits, which are to be implemented in part by private persons and companies. For their quantification, methods were developed and used in case studies; in addition, avoided external costs are also considered. The marginal costs were also calculated for periods of time in the future, whereby they were made dynamic, according to their share of innovation, using the learning-curve method (learning and scaling effects). As far as the findings are concerned, there can be no doubt that the potential to be opened up for increasing energy efficiency using heat insulation measures is high, both for renovations and new construction work. A large portion of this potential is already economically viable and even more so when the possible risks of energy price increases

  19. Basking hamsters reduce resting metabolism, body temperature and energy costs during rewarming from torpor.

    Science.gov (United States)

    Geiser, Fritz; Gasch, Kristina; Bieber, Claudia; Stalder, Gabrielle L; Gerritsmann, Hanno; Ruf, Thomas

    2016-07-15

    Basking can substantially reduce thermoregulatory energy expenditure of mammals. We tested the hypothesis that the largely white winter fur of hamsters (Phodopus sungorus), originating from Asian steppes, may be related to camouflage to permit sun basking on or near snow. Winter-acclimated hamsters in our study were largely white and had a high proclivity to bask when resting and torpid. Resting hamsters reduced metabolic rate (MR) significantly (>30%) when basking at ambient temperatures (Ta) of ∼15 and 0°C. Interestingly, body temperature (Tb) also was significantly reduced from 34.7±0.6°C (Ta 15°C, not basking) to 30.4±2.0°C (Ta 0°C, basking), which resulted in an extremely low (thermal conductance. Induced torpor (food withheld) during respirometry at Ta 15°C occurred on 83.3±36.0% of days and the minimum torpor MR was 36% of basal MR at an average Tb of 22.0±2.6°C; movement to the basking lamp occurred at Tb50%) during radiant heat-assisted rewarming; however, radiant heat per se without an endogenous contribution by animals did not strongly affect metabolism and Tb during torpor. Our data show that basking substantially modifies thermal energetics in hamsters, with a drop of resting Tb and MR not previously observed and a reduction of rewarming costs. The energy savings afforded by basking in hamsters suggest that this behaviour is of energetic significance not only for mammals living in deserts, where basking is common, but also for P. sungorus and probably other cold-climate mammals. © 2016. Published by The Company of Biologists Ltd.

  20. Offshore wind energy storage concept for cost-of-rated-power savings

    International Nuclear Information System (INIS)

    Qin, Chao; Saunders, Gordon; Loth, Eric

    2017-01-01

    Highlights: •Investigated CAES + HPT system concept for offshore wind energy; •Validated cost model for offshore wind farm including CAPEX and OPEX items; •Quantified cost-of-rated-power savings associated with CAES + HPT concept; •Estimated savings of 21.6% with CAES + HPT for a sample $2.92 billion project. -- Abstract: The size and number of off-shore wind turbines over the next decade is expected to rapidly increase due to the high wind energy potential and the ability of such farms to provide utility-scale energy. In this future, inexpensive and efficient on-site wind energy storage can be critical to address short-time (hourly) mismatches between wind supply and energy demand. This study investigates a compressed air energy storage (CAES) and hydraulic power transmission (HPT) system concept. To assess cost impact, the NREL Cost and Scaling Model was modified to improve accuracy and robustness for offshore wind farms with large turbines. Special attention was paid to the support structure, installation, electrical interface and connections, land leasing, and operations and maintenance cost items as well as specific increased/reduced costs reductions associated with CAES + HPT systems. This cost model was validated and applied to a sample $2.92 billion project Virginia Offshore case It was found that adaption of CAES + HPT can lead to a substantial savings of 21.6% of this 20-year lifetime cost by dramatically reducing capital and operating cost of the generator and power transmission components. However, there are several additional variables that can impact the off-shore energy policy and planning for this new CAES + HPT concept. Furthermore, these cost-savings are only first-order estimates based on linear mass-cost relationships, and thus detailed engineering and economic analysis are recommended.

  1. Identifying opportunities to reduce the consumption of energy across mining and processing plants

    Energy Technology Data Exchange (ETDEWEB)

    Sterling, David; Johnson, Greg

    2010-09-15

    In addition to meeting Government Policy on Energy Efficiency Opportunities (EEOs), mining and mineral processing companies are increasing energy efficiency to reduce costs in the current financial conditions. One of the major issues with EEOs is the lack of data available on energy use, and more importantly the energy use linked to production data, that identify energy reduction opportunities. This paper looks at expanding the use of a Manufacturing Execution Systems by integrating with Energy Solutions. This will provide automatic, timely information, at a granularity that makes it easier to identify EEOs, reduce energy costs, and better predict energy use.

  2. Sound stabilizes locomotor-respiratory coupling and reduces energy cost.

    Directory of Open Access Journals (Sweden)

    Charles P Hoffmann

    Full Text Available A natural synchronization between locomotor and respiratory systems is known to exist for various species and various forms of locomotion. This Locomotor-Respiratory Coupling (LRC is fundamental for the energy transfer between the two subsystems during long duration exercise and originates from mechanical and neurological interactions. Different methodologies have been used to compute LRC, giving rise to various and often diverging results in terms of synchronization, (de-stabilization via information, and associated energy cost. In this article, the theory of nonlinear-coupled oscillators was adopted to characterize LRC, through the model of the sine circle map, and tested it in the context of cycling. Our specific focus was the sound-induced stabilization of LRC and its associated change in energy consumption. In our experimental study, participants were instructed during a cycling exercise to synchronize either their respiration or their pedaling rate with an external auditory stimulus whose rhythm corresponded to their individual preferential breathing or cycling frequencies. Results showed a significant reduction in energy expenditure with auditory stimulation, accompanied by a stabilization of LRC. The sound-induced effect was asymmetrical, with a better stabilizing influence of the metronome on the locomotor system than on the respiratory system. A modification of the respiratory frequency was indeed observed when participants cycled in synchrony with the tone, leading to a transition toward more stable frequency ratios as predicted by the sine circle map. In addition to the classical mechanical and neurological origins of LRC, here we demonstrated using the sine circle map model that information plays an important modulatory role of the synchronization, and has global energetic consequences.

  3. Assessment of Indoor Air Quality Benefits and Energy Costs of Mechanical Ventilation

    Energy Technology Data Exchange (ETDEWEB)

    Logue, J.M.; Price, P.N.; Sherman, M.H.; Singer, B.C.

    2011-07-01

    Intake of chemical air pollutants in residences represents an important and substantial health hazard. Sealing homes to reduce air infiltration can save space conditioning energy, but can also increase indoor pollutant concentrations. Mechanical ventilation ensures a minimum amount of outdoor airflow that helps reduce concentrations of indoor emitted pollutants while requiring some energy for fan(s) and thermal conditioning of the added airflow. This work demonstrates a physics based, data driven modeling framework for comparing the costs and benefits of whole-house mechanical ventilation and applied the framework to new California homes. The results indicate that, on a population basis, the health benefits from reduced exposure to indoor pollutants in New California homes are worth the energy costs of adding mechanical ventilation as specified by ASHRAE Standard 62.2.This study determines the health burden for a subset of pollutants in indoor air and the costs and benefits of ASHRAE's mechanical ventilation standard (62.2) for new California homes. Results indicate that, on a population basis, the health benefits of new home mechanical ventilation justify the energy costs.

  4. The cost of renewable energy

    International Nuclear Information System (INIS)

    Luebbert, E.

    1994-01-01

    Analyses reveal that the economic efficiency of plants for solar water heating and of wind power plants and photovoltaic power plants must be evaluated carefully. The growing photovoltaics market must be cherished and expanded. Energy demands cannot be covered by photovoltaics before 2050, and much research remains to be done until then. The efficiency and service life of plants must be improved, and the cost must be reduced considerably. (orig.) [de

  5. Renewables vs. energy efficiency: The cost of carbon emissions reduction in Spain

    International Nuclear Information System (INIS)

    López-Peña, Álvaro; Pérez-Arriaga, Ignacio; Linares, Pedro

    2012-01-01

    While support instruments have succeeded to largely deploy renewables during the 1996–2008 period, little attention has been paid to energy efficiency measures, resulting in a high energy intensity and large growth of energy demand. Energy-related CO 2 emissions have increased significantly. At the same time, important investments in combined cycle gas turbines have taken place. This paper analyses whether, from a cost minimization viewpoint, renewable support has been the best policy for reducing emissions, when compared to the promotion of energy efficiency in sectors such as transportation or buildings. We use a model of the Spanish energy sector to examine its evolution in the time period considered under different policies. It is a bottom-up, static, partial equilibrium, linear programming model of the complete Spanish energy system. We conclude that demand side management (DSM) clearly dominates renewable energy (RE) support if the reduction of emissions at minimum cost is the only concern. We also quantify the savings that could have been achieved: a total of €5 billion per year, mainly in RE subsidies and in smaller costs of meeting the reduced demand (net of DSM implementation cost). - Highlights: ► Energy efficiency is cheaper than renewables for reducing carbon emissions. ► Energy efficiency measures could have saved more than €5 billion per year in Spain. ► Savings could have been bigger without overcapacity in gas combined cycles.

  6. Energy Efficiency Improvement and Cost Saving Opportunities for the Fruit and Vegetable Processing Industry. An ENERGY STAR Guide for Energy and Plant Managers

    Energy Technology Data Exchange (ETDEWEB)

    Masanet, Eric; Masanet, Eric; Worrell, Ernst; Graus, Wina; Galitsky, Christina

    2008-01-01

    The U.S. fruit and vegetable processing industry--defined in this Energy Guide as facilities engaged in the canning, freezing, and drying or dehydrating of fruits and vegetables--consumes over $800 million worth of purchased fuels and electricity per year. Energy efficiency improvement isan important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. fruit and vegetable processing industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, facility, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the U.S. fruit and vegetable processing industry is provided along with a description of the major process technologies used within the industry. Next, a wide variety of energy efficiency measures applicable to fruit and vegetable processing plants are described. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in fruit and vegetable processing facilities and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. Given the importance of water in fruit and vegetable processing, a summary of basic, proven measures for improving plant-level water efficiency are also provided. The information in this Energy Guide is intended to help energy and plant managers in the U.S. fruit and vegetable processing industry reduce energy and water consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures--as well as on their applicability to different production

  7. Annual Energy Usage Reduction and Cost Savings of a School: End-Use Energy Analysis

    Science.gov (United States)

    Alghoul, M. A.; Bakhtyar, B.; Asim, Nilofar; Sopian, K.

    2014-01-01

    Buildings are among the largest consumers of energy. Part of the energy is wasted due to the habits of users and equipment conditions. A solution to this problem is efficient energy usage. To this end, an energy audit can be conducted to assess the energy efficiency. This study aims to analyze the energy usage of a primary school and identify the potential energy reductions and cost savings. A preliminary audit was conducted, and several energy conservation measures were proposed. The energy conservation measures, with reference to the MS1525:2007 standard, were modelled to identify the potential energy reduction and cost savings. It was found that the school's usage of electricity exceeded its need, incurring an excess expenditure of RM 2947.42. From the lighting system alone, it was found that there is a potential energy reduction of 5489.06 kWh, which gives a cost saving of RM 2282.52 via the improvement of lighting system design and its operating hours. Overall, it was found that there is a potential energy reduction and cost saving of 20.7% when the energy conservation measures are earnestly implemented. The previous energy intensity of the school was found to be 50.6 kWh/m2/year, but can theoretically be reduced to 40.19 kWh/mm2/year. PMID:25485294

  8. States reducing solar's soft costs

    Energy Technology Data Exchange (ETDEWEB)

    Meehan, Chris

    2012-07-01

    In 2012 the costs of modules will drop below the balance of system costs or 'soft costs' of solar in the US. Federal policy that nationalizes permitting processes could reduce some of the soft costs, but is unlikely. That's why states like California, Colorado, Connecticut and Vermont passed own laws to reduce soft costs by speeding solar permitting and reducing fees. (orig.)

  9. Transaction costs of raising energy efficiency. Working paper

    Energy Technology Data Exchange (ETDEWEB)

    Ostertag, K. [Fraunhofer-Institut fuer Systemtechnik und Innovationsforschung (ISI), Karlsruhe (Germany); Centre International de Recherche sur l' Environnement et le Developpement (CIRED), 94 - Nogent sur Marne (France)

    1999-05-01

    In the face of the uncertainties concerning the importance and the actual impacts of anthropogeneous climate change the extent to which measures should be adopted to avoid greenhouse gas emissions (GHG) already today and in the near future is highly controversial. More specifically, part of the debate evolves around the existence and importance of energy saving potentials to reduce CO{sub 2} emissions that may be available at negative net costs, implying that the energy cost savings of one specific technology can actually more than offset the costs of investing into this technology and of using it. This so called 'no-regret' potential would comprise measures that from a pure economic efficiency point of view would be 'worth undertaking whether or not there are climate-related reasons for doing so' (Bruce et al. 1996, p. 271). The existence of the no-regret potential is often denied by arguing, that the economic evaluation of the energy saving potentials did not take into account transaction costs (Grubb et al. 1993). This paper will examine in more detail the concept of transaction costs as it is used in the current debate on no-regret potentials (section 1). Four practical examples are presented to illustrate how transaction costs and their determinants can be identified, measured and possibly influenced (section 2). In order to link the presented cases to modelling based evaluation approaches the implications for cost evaluations of energy saving measures especially in the context of energy system modelling will be shown (section 3). (orig.)

  10. Using performance indicators to reduce cost uncertainty of China's CO2 mitigation goals

    International Nuclear Information System (INIS)

    Xu, Yuan

    2013-01-01

    Goals on absolute emissions and intensity play key roles in CO 2 mitigation. However, like cap-and-trade policies with price uncertainty, they suffer from significant uncertainty in abatement costs. This article examines whether an indicator could be established to complement CO 2 mitigation goals and help reduce cost uncertainty with a particular focus on China. Performance indicators on CO 2 emissions per unit of energy consumption could satisfy three criteria: compared with the mitigation goals, (i) they are more closely associated with active mitigation efforts and (ii) their baselines have more stable projections from historical trajectories. (iii) Their abatement costs are generally higher than other mitigation methods, particularly energy efficiency and conservation. Performance indicators could be used in the following way: if a CO 2 goal on absolute emissions or intensity is attained, the performance indicator should still reach a lower threshold as a cost floor. If the goal cannot be attained, an upper performance threshold should be achieved as a cost ceiling. The narrower cost uncertainty may encourage wider and greater mitigation efforts. - Highlights: ► CO 2 emissions per unit of energy consumption could act as performance indicators. ► Performance indicators are more closely related to active mitigation activities. ► Performance indicators have more stable historical trajectories. ► Abatement costs are higher for performance indicators than for other activities. ► Performance thresholds could reduce the cost uncertainty of CO 2 mitigation goals.

  11. Energy Efficiency Improvement and Cost Saving Oportunities for the Concrete Industry

    Energy Technology Data Exchange (ETDEWEB)

    Kermeli, Katerina; Worrell, Ernst; Masanet, Eric

    2011-12-01

    The U.S. concrete industry is the main consumer of U.S.-produced cement. The manufacturing of ready mixed concrete accounts for more than 75% of the U.S. concrete production following the manufacturing of precast concrete and masonry units. The most significant expenditure is the cost of materials accounting for more than 50% of total concrete production costs - cement only accounts for nearly 24%. In 2009, energy costs of the U.S. concrete industry were over $610 million. Hence, energy efficiency improvements along with efficient use of materials without negatively affecting product quality and yield, especially in times of increased fuel and material costs, can significantly reduce production costs and increase competitiveness. The Energy Guide starts with an overview of the U.S. concrete industry’s structure and energy use, a description of the various manufacturing processes, and identification of the major energy consuming areas in the different industry segments. This is followed by a description of general and process related energy- and cost-efficiency measures applicable to the concrete industry. Specific energy and cost savings and a typical payback period are included based on literature and case studies, when available. The Energy Guide intends to provide information on cost reduction opportunities to energy and plant managers in the U.S. concrete industry. Every cost saving opportunity should be assessed carefully prior to implementation in individual plants, as the economics and the potential energy and material savings may differ.

  12. Utilizing an Energy Management System with Distributed Resources to Manage Critical Loads and Reduce Energy Costs

    Science.gov (United States)

    2014-09-01

    significant impact that energy usage has on their operations and their ability to conduct sustained expeditionary operations. In austere environments...efficiency and reduce environmental impact is to power the fuel cell using hydrogen obtained by electrolysis of water from a renewable energy source...look at other DR. Using microturbines and other natural gas cogeneration ( energy and heat) power generation systems is a more affordable way of

  13. Cost-time management for environmental restoration activities at the Department of Energy`s Idaho National Engineering Laboratory, Idaho Chemical Processing Plant

    Energy Technology Data Exchange (ETDEWEB)

    Fourr, B.R.; Owen, A.H.; Williamson, D.J. [Westinghouse Idaho Nuclear Co., Inc., Idaho Falls, ID (United States); Nash, C.L. [USDOE Idaho Field Office, Idaho Falls, ID (United States)

    1992-05-22

    Cost-time management methods have been developed by Westinghouse to examine business applications from a cost-time perspective. The initial application of cost-time management within Westinghouse was targeted at reducing cycle time in the manufacturing sector. As a result of the tremendous success of reduced cycle time in manufacturing, Westinghouse initiated application of the management technique to Environmental Restoration activities at its Government Owned Contractor Operated facilities. The Westinghouse initiative was proposed in support of the Department of Energy`s goals for cost effective Environmental Restoration activities. This paper describes the application of the cost-time method to Environmental Restoration work currently being performed at the Idaho National Engineering Laboratory (INEL) for the Department of Energy (DOE) by Westinghouse Idaho Nuclear Company (WINCO).

  14. Energy-saving engines reduce operating cost and environmental pollution; Energiesparmotoren senken die Betriebskosten und schonen die Umwelt

    Energy Technology Data Exchange (ETDEWEB)

    Maletz, H.; Stengel, S. [Siemens AG, Erlangen (Germany). Automatisierungs- und Antriebstechnik

    1999-07-01

    Reduction of the energy cost will make production more economical and, in consequence, gain a competitive advantage. In view of high energy cost, new international legislation and increasing energy-awareness, the new generation of energy-saving engines is gaining increasing acceptance. [German] Hohe Energiekosten schlagen im Rahmen der Betriebskosten voll zu Buche. Gelingt es, sie spuerbar zu senken, wird die Produktion letzten Endes wirtschaftlicher und wettbewerbsfaehiger. Vor dem Hintergrund hoher Energiepreise, der neuen internationalen Gesetzgebung und zunehmenden Energiebewusstseins, gewinnen Energiesparmotoren der neuen Generation zunehmend an Bedeutung. (orig.)

  15. Reducing costs by reducing size

    International Nuclear Information System (INIS)

    Hayns, M.R.; Shepherd, J.

    1991-01-01

    The present paper discusses briefly the many factors, including capital cost, which have to be taken into account in determining whether a series of power stations based on a small nuclear plant can be competitive with a series based on traditional large unit sizes giving the guaranteed level of supply. The 320 MWe UK/US Safe Integral Reactor is described as a good example of how the factors discussed can be beneficially incorporated into a design using proven technology. Finally it goes on to illustrate how the overall costs of a generating system can indeed by reduced by use of the 320 MWe Safe Integral Reactor rather than conventional units of around 1200 MWe. (author). 9 figs

  16. Installation, Operation, and Maintenance Strategies to Reduce the Cost of Offshore Wind Energy

    Energy Technology Data Exchange (ETDEWEB)

    Maples, B. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Saur, G. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hand, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); van de Pietermen, R. [Energy Research Center of the Netherlands (Netherlands); Obdam, T. [Energy Research Center of the Netherlands (Netherlands)

    2013-07-01

    Currently, installation, operation, and maintenance (IO&M) costs contribute approximately 30% to the LCOE of offshore wind plants. To reduce LCOE while ensuring safety, this paper identifies principal cost drivers associated with IO&M and quantifies their impacts on LCOE. The paper identifies technology improvement opportunities and provides a basis for evaluating innovative engineering and scientific concepts developed subsequently to the study. Through the completion of a case study, an optimum IO&M strategy for a hypothetical offshore wind project is identified.

  17. Cost-benefit assessment of energy storage for utility and customers: A case study in Malaysia

    International Nuclear Information System (INIS)

    Chua, Kein Huat; Lim, Yun Seng; Morris, Stella

    2015-01-01

    Highlights: • Energy storage can replace the peaking plants. • The cost of electricity for the plants with energy storage is as competitive as fossil fuel power plants. • Energy storage can reduce CO_2 emissions and defer the reinforcement of transmissions and distributions infrastructure. • Energy storage can reduce peak demand charge for customers. - Abstract: Under the existing commercial framework of electricity in Malaysia, commercial and industrial customers are required to pay for the peak power demand charge every month. Usually, the peak demand charge can contribute up to 30% to their electricity bills due to the use of open-cycle gas power plants that deliver expensive electricity to the customers. Therefore, alternative means are sought after in order to reduce the peak demand for the customers. Distributed small-scaled energy storage can offer a good option to reduce the peak. This paper aims to identify the financial benefits of the energy storage system for utility companies and customers. An energy dispatch model is developed in HOMER to determine the cost of electricity. The model considers the heat rates of power plants in calculating the costs of electricity under different regulatory frameworks of natural gas with various prices of battery components. Apart from that, the cost-benefit for the customers under various electric tariff structures is evaluated. Four battery storage technologies, namely lead acid, vanadium redox flow, zinc-bromine, and lithium-ion are considered. The simulation results show that the storage system with lead acid batteries is more cost-effective than other battery technologies. The customers can reduce their electricity bills with the payback period of 2.8 years. The generation cost for the power system with energy storage is lower than that without energy storage. Besides, the system with energy storage has lower greenhouse gas emissions than that without energy storage. The deferral of the reinforcement of

  18. Social costs of energy consumption

    International Nuclear Information System (INIS)

    Hohmeyer, O.

    1988-01-01

    This study systematically compares the external costs and benefits of different electricity generating technologies. It covers environmental and employment effects, the depletion of natural resources, and public subsidies. Electricity production based on fossil fuels and nuclear energy compared with electricity production based on wind energy and photovoltaic systems. The study shows that wind and photovoltaic solar energy induce far less social costs than conventionally generated electricity. The impact of excluding social costs on the competitive position of the different energy technologies is analyzed. It is shown that the allocation process is seriously distorted resulting in sub-optimal investment decisions concerning competing energy technologies. This exclusion of social costs can delay the introduction of renewable energy sources by more than ten years and results in considerable losses to society. (orig./HSCH) With 17 figs., 24 tabs

  19. Green roofs: roof system reducing heating and cooling costs

    Directory of Open Access Journals (Sweden)

    Konasova, Sarka

    2016-06-01

    Full Text Available Green roofs are among the passive building systems that contribute to the thermal stability of the rooms under the roof in both summer and winter. Green roofs can provide a significant contribution to the thermal balance of the protected space. Over the past ten years, many studies have been carried out to investigate the energy benefits of green roofs in terms of the energy performance of buildings. These studies show that the installation of vegetated cover can achieve energy savings for both winter heating and summer cooling. The green roof, as a thermal insulation, reduces the amount of building operating energy costs and reduces heat losses. This article summarizes current literature and points to situations in which green roofs can play an important role in saving energy for heating and cooling due to improved thermal insulating function of the roof, in case of extensive vegetation coverage without significant overloading of the roof structure and associated over-dimensioning. It is important to note that these energy savings always depend on the particular climate, the type of building and the availability and the type of roof structure.

  20. Life cycle cost analysis of commercial buildings with energy efficient approach

    Directory of Open Access Journals (Sweden)

    Nilima N. Kale

    2016-09-01

    Full Text Available In any construction project, cost effectiveness plays a crucial role. The Life Cycle Cost (LCC analysis provides a method of determining entire cost of a structure over its expected life along with operational and maintenance cost. LCC can be improved by adopting alternative modern techniques without much alteration in the building. LCC effectiveness can be calculated at various stages of entire span of the building. Moreover this provides decision makers with the financial information necessary for maintaining, improving, and constructing facilities. Financial benefits associated with energy use can also be calculated using LCC analysis. In the present work, case study of two educational buildings has been considered. The LCC of these buildings has been calculated with existing condition and with proposed energy efficient approach (EEA using net present value method. A solar panel having minimum capacity as well as solar panel with desired capacity as per the requirements of the building has been suggested. The comparison of LCC of existing structure with proposed solar panel system shows that 4% of cost can be reduced in case of minimum capacity solar panel and 54% cost can be reduced for desired capacity solar panel system, along with other added advantages of solar energy.

  1. Reducing the Cost of Thermal Energy Storage for Parabolic Trough Solar Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Gawlik, Keith

    2013-06-25

    Thermal energy storage systems using phase change materials were evaluated for trough systems that use oil, steam, and high temperature salts as heat transfer fluids. A variety of eutectic salts and metal alloys were considered as phase change materials in a cascaded arrangement. Literature values of specific heat, latent heat, density, and other thermophysical properties were used in initial analyses. Testing laboratories were contracted to measure properties for candidate materials for comparison to the literature and for updating the models. A TRNSYS model from Phase 1 was further developed for optimizing the system, including a novel control algorithm. A concept for increasing the bulk thermal conductivity of the phase change system was developed using expanded metal sheets. Outside companies were contracted to design and cost systems using platecoil heat exchangers immersed in the phase change material. Laboratory evaluations of the one-dimensional and three-dimensional behavior of expanded metal sheets in a low conductivity medium were used to optimize the amount of thermal conductivity enhancement. The thermal energy storage systems were compared to baseline conventional systems. The best phase change system found in this project, which was for the high temperature plant, had a projected cost of $25.2 per kWhth, The best system also had a cost that was similar to the base case, a direct two-tank molten salt system.

  2. Developing macroeconomic energy cost indicators

    International Nuclear Information System (INIS)

    Oberndorfer, Ulrich

    2012-01-01

    Indicators are more and more drawn on for policy making and assessment. This is also true for energy policy. However, while numerous different energy price figures are available, subordinate energy cost indicators are lacking. This paper lays out a general concept for such indicator sets and presents a flexible framework for representative and consistent energy cost indicators with an underlying weighting principle based on consumption shares. Their application would provide interesting new insights into the relationship between energy cost burdens of different sectors and countries. It would allow for more rigorous analysis in the field of energy economics and policy, particularly with regard to market monitoring and impact assessment as well as ex-post-policy analysis.

  3. Promoting a low cost energy future in Africa

    African Journals Online (AJOL)

    Robert Kirchner

    confidence of financial institutions and investors in RETs. The publication of a national solar and wind atlas, for example, informs potential investors about suitable areas and reduces the costs for feasibility studies (Renewable. Energy Ventures, 2012). Due to a lack of knowledge and project experience with RETs, obtaining ...

  4. Optimum value engineering and integrated design methods for reducing the cost of R-2000 houses

    Energy Technology Data Exchange (ETDEWEB)

    Proskiw, G. [Proskiw Engineering Ltd., Winnipeg, MB (Canada); Parekh, A. [Natural Resources Canada, Ottawa, ON (Canada)

    2009-07-01

    Opportunities exist to reduce the incremental cost of R-2000 construction by using optimum value engineering (OVE) and integrated design (ID) techniques. OVE is a construction philosophy in which components and systems are designed to meet their intended purposes without excessive or unnecessary use of resources. This paper summarized a study that was designed to identify opportunities for reducing the costs of R-2000 houses while improving their performance. These included detailed energy and cost analysis of various OVE/ID options which were then applied to a sample of 18 representative new home designs from British Columbia, Manitoba, and New Brunswick. The paper described the OVE/ID measures studied, cost analysis, measure utilization and energy analysis. It also included a detailed discussion of individual OVE/ID measures. Examples of some of these measures were the elimination of floor system cross-bridging; support of non-load bearing partition walls; engineered wood beams; drywall clips at corners; and non-load bearing partition walls. It was concluded that significant opportunities exist to reduce the incremental cost of R-2000 houses through careful application of OVE and ID practices. 5 refs., 4 tabs., 1 fig.

  5. Energy efficiency improvement and cost saving opportunities for the Corn Wet Milling Industry: An ENERGY STAR Guide for Energy and Plant Managers

    Energy Technology Data Exchange (ETDEWEB)

    Galitsky, Christina; Worrell, Ernst; Ruth, Michael

    2003-07-01

    Corn wet milling is the most energy intensive industry within the food and kindred products group (SIC 20), using 15 percent of the energy in the entire food industry. After corn, energy is the second largest operating cost for corn wet millers in the United States. A typical corn wet milling plant in the United States spends approximately $20 to $30 million per year on energy, making energy efficiency improvement an important way to reduce costs and increase predictable earnings, especially in times of high energy-price volatility. This report shows energy efficiency opportunities available for wet corn millers. It begins with descriptions of the trends, structure and production of the corn wet milling industry and the energy used in the milling and refining process. Specific primary energy savings for each energy efficiency measure based on case studies of plants and references to technical literature are provided. If available, typical payback periods are also listed. The report draws upon the experiences of corn, wheat and other starch processing plants worldwide for energy efficiency measures. The findings suggest that given available resources and technology, there are opportunities to reduce energy consumption cost-effectively in the corn wet milling industry while maintaining the quality of the products manufactured. Further research on the economics of the measures, as well as the applicability of these to different wet milling practices, is needed to assess the feasibility of implementation of selected technologies at individual plants.

  6. RESULTS FROM THE U.S. DOE 2006 SAVE ENERGY NOW ASSESSMENT INITIATIVE: DOE's Partnership with U.S. Industry to Reduce Energy Consumption, Energy Costs, and Carbon Dioxide Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Anthony L [ORNL; Martin, Michaela A [ORNL; Gemmer, Bob [U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy; Scheihing, Paul [U.S. Department of Energy, Industrial Technologies Program; Quinn, James [U.S. Department of Energy

    2007-09-01

    In the wake of Hurricane Katrina and other severe storms in 2005, natural gas supplies were restricted, prices rose, and industry sought ways to reduce its natural gas use and costs. In October 2005, U.S. Department of Energy (DOE) Energy Secretary Bodman launched his Easy Ways to Save Energy campaign with a promise to provide energy assessments to 200 of the largest U.S. manufacturing plants. A major thrust of the campaign was to ensure that the nation's natural gas supplies would be adequate for all Americans, especially during home heating seasons. In a presentation to the National Press Club on October 3, 2005, Secretary Bodman said: 'America's businesses, factories, and manufacturing facilities use massive amounts of energy. To help them during this period of tightening supply and rising costs, our Department is sending teams of qualified efficiency experts to 200 of the nation's most energy-intensive factories. Our Energy Saving Teams will work with on-site managers on ways to conserve energy and use it more efficiently.' DOE's Industrial Technologies Program (ITP) responded to the Secretary's campaign with its Save Energy Now initiative, featuring a new and highly cost-effective form of energy assessments. The approach for these assessments drew heavily on the existing resources of ITP's Technology Delivery component. Over the years, ITP-Technology Delivery had worked with industry partners to assemble a suite of respected software decision tools, proven assessment protocols, training curricula, certified experts, and strong partnerships for deployment. Because of the program's earlier activities and the resources that had been developed, ITP was prepared to respond swiftly and effectively to the sudden need to promote improved industrial energy efficiency. Because of anticipated supply issues in the natural gas sector, the Save Energy Now initiative strategically focused on natural gas savings and targeted the

  7. Developing Information on Energy Savings and Associated Costs and Benefits of Energy Efficient Emerging Technologies Applicable in California

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Tengfang; Slaa, Jan Willem; Sathaye, Jayant

    2010-12-15

    Implementation and adoption of efficient end-use technologies have proven to be one of the key measures for reducing greenhouse gas (GHG) emissions throughout the industries. In many cases, implementing energy efficiency measures is among one of the most cost effective investments that the industry could make in improving efficiency and productivity while reducing carbon dioxide (CO2) emissions. Over the years, there have been incentives to use resources and energy in a cleaner and more efficient way to create industries that are sustainable and more productive. With the working of energy programs and policies on GHG inventory and regulation, understanding and managing the costs associated with mitigation measures for GHG reductions is very important for the industry and policy makers around the world and in California. Successful implementation of applicable emerging technologies not only may help advance productivities, improve environmental impacts, or enhance industrial competitiveness, but also can play a significant role in climate-mitigation efforts by saving energy and reducing the associated GHG emissions. Developing new information on costs and savings benefits of energy efficient emerging technologies applicable in California market is important for policy makers as well as the industries. Therefore, provision of timely evaluation and estimation of the costs and energy savings potential of emerging technologies applicable to California is the focus of this report. The overall goal of the project is to identify and select a set of emerging and under-utilized energy-efficient technologies and practices as they are important to reduce energy consumption in industry while maintaining economic growth. Specifically, this report contains the results from performing Task 3 Technology Characterization for California Industries for the project titled Research Opportunities in Emerging and Under-Utilized Energy-Efficient Industrial Technologies, sponsored by

  8. Low energy, low cost, efficient CO{sub 2} capture

    Energy Technology Data Exchange (ETDEWEB)

    Michael C. Trachtenberg; Lihong Bao; David A. Smith; Remy Dumortier [Carbozyme, Inc., Monmouth Junction, NJ (United States)

    2006-07-01

    This paper discusses the development and some characteristics of a new, enzyme-based, contained liquid membrane contactor to capture CO{sub 2}. The enzyme carbonic anhydrase catalyzes the removal of CO{sub 2} while the membrane contactor increases the surface area to allow the reduction of the size of the system. The modular system design is easily scaled to any required size reducing the investment costs. The system captures CO{sub 2} at a low energy and low cost promising to be a cost effective technology for CO{sub 2} capture. 5 refs., 7 figs.

  9. Renewable energies in the transport sector: Costs and possibilities

    International Nuclear Information System (INIS)

    Ajanovic, Amela; Haas, Reinhard

    2007-01-01

    Alternative fuels based on renewable energy sources, such as biodiesel, bioethanol and hydrogen from RES, have potential to reduce greenhouse gas emissions, climate change, to increase supply security and energy diversity. Transition from a fossil fuels based transport to future sustainable and clean transport is a long term and cost intensive process, especially for hydrogen use in transport. Hydrogen infrastructure is missing and most of hydrogen technologies are still at developing stage.This paper examines the economics of biofuels (bioethanol and biodiesel) and hydrogen production from renewable energy sources. The current and future costs of alternative fuels as well as the costs of the provided energy services are analysed in a dynamic framework till the year 2050. The goal is to identify the market chance of alternative fuels in a long term (till 2050). A rapid increase of fuel cell vehicles with hydrogen on the market is not expected before 2030, mainly because the costs of the fuel cells are still very high and because their efficiency, as well as the travelling range, is rather moderate.However, the use of alternative fuels in transport sector is very dependent on the political will. If political preferences, like e.g. zero-emission-vehicles, gain strong relevance this new fuels could accelerate its market penetration significantly

  10. Effect of fastskin suits on performance, drag, and energy cost of swimming.

    Science.gov (United States)

    Chatard, Jean-Claude; Wilson, Barry

    2008-06-01

    To investigate the effect of fastskin suits on 25- to 800-m performances, drag, and energy cost of swimming. The performances, stroke rate and distance per stroke, were measured for 14 competitive swimmers in a 25-m pool, when wearing a normal suit (N) and when wearing a full-body suit (FB) or a waist-to-ankle suit (L). Passive drag, oxygen uptake, blood lactate, and the perceived exertion were measured in a flume. There was a 3.2% +/- 2.4% performance benefit for all subjects over the six distances covered at maximal speed wearing FB and L when compared with N. When wearing L, the gain was significantly lower (1.8% +/- 2.5%, P energy cost of swimming was significantly reduced when wearing FB and L by 4.5% +/- 5.4% and 5.5% +/- 3.1%, respectively (P energy cost of submaximal swimming and an increased distance per stroke, at the same stroke rates, and reduced freestyle performance time.

  11. The High Costs of Low-Grade Inflammation: Persistent Fatigue as a Consequence of Reduced Cellular-Energy Availability and Non-adaptive Energy Expenditure.

    Science.gov (United States)

    Lacourt, Tamara E; Vichaya, Elisabeth G; Chiu, Gabriel S; Dantzer, Robert; Heijnen, Cobi J

    2018-01-01

    Chronic or persistent fatigue is a common, debilitating symptom of several diseases. Persistent fatigue has been associated with low-grade inflammation in several models of fatigue, including cancer-related fatigue and chronic fatigue syndrome. However, it is unclear how low-grade inflammation leads to the experience of fatigue. We here propose a model of an imbalance in energy availability and energy expenditure as a consequence of low-grade inflammation. In this narrative review, we discuss how chronic low-grade inflammation can lead to reduced cellular-energy availability. Low-grade inflammation induces a metabolic switch from energy-efficient oxidative phosphorylation to fast-acting, but less efficient, aerobic glycolytic energy production; increases reactive oxygen species; and reduces insulin sensitivity. These effects result in reduced glucose availability and, thereby, reduced cellular energy. In addition, emerging evidence suggests that chronic low-grade inflammation is associated with increased willingness to exert effort under specific circumstances. Circadian-rhythm changes and sleep disturbances might mediate the effects of inflammation on cellular-energy availability and non-adaptive energy expenditure. In the second part of the review, we present evidence for these metabolic pathways in models of persistent fatigue, focusing on chronic fatigue syndrome and cancer-related fatigue. Most evidence for reduced cellular-energy availability in relation to fatigue comes from studies on chronic fatigue syndrome. While the mechanistic evidence from the cancer-related fatigue literature is still limited, the sparse results point to reduced cellular-energy availability as well. There is also mounting evidence that behavioral-energy expenditure exceeds the reduced cellular-energy availability in patients with persistent fatigue. This suggests that an inability to adjust energy expenditure to available resources might be one mechanism underlying persistent fatigue.

  12. A New Method for Low Cost Production of Titanium Alloys for Reducing Energy Consumption of Mechanical Systems

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Z. Zak [Univ. of Utah, Salt Lake City, UT (United States); Chandran, Ravi [Univ. of Utah, Salt Lake City, UT (United States); Koopman, Mark [Univ. of Utah, Salt Lake City, UT (United States)

    2016-02-29

    This project investigated an innovative manufacturing process intended to minimize the cost of production of titanium materials and components, and increase the adoption of Ti components for energy consuming applications, such as automobiles. A key innovation of the proposed manufacturing approach is a novel Ti powder sintering technology for making titanium materials with ultrafine grain microstructure in the as-sintered state with minimum, or an absence, of post-sintering processes. The new sintering technology is termed Hydrogen Sintering and Phase Transformations (HSPT), and constitutes a promising manufacturing technology that can be used to produce titanium (Ti) materials and components in a near-net-shape form, thus also minimizing machining costs. Our objective was to meet, or possibly surpass, the mechanical property levels for ASTM B348 Grade 5 for wrought Ti-6Al-4V. Although specific applications call for varying mechanical property requirements, ASTM B348 was created for the demanding applications of the aerospace industry, and is the established standard for Ti-6Al-4V. While the primary goal was to meet, or exceed this standard, the team also had the goal of demonstrating this could be done at a significantly lower cost of production. Interim goals of the project were to fully develop this novel sintering process, and provide sufficient baseline testing to make the method practical and attractive to industry. By optimizing the process parameters for the sintering of titanium hydride (TiH2) powders in a hydrogen atmosphere and controlling the phase transformations during and after sintering, the HSPT process was expected to reduce the energy consumption, and thus cost, of making Ti alloys and fabricating Ti components. The process was designed such that no high temperature melting is required for producing Ti alloys; little or no post-sintering processing is needed for producing desired microstructures (and therefore enhanced mechanical

  13. Motor Challenge: Improving Efficiency of Tube Drawing Bench Reduces Energy Use by 34%

    International Nuclear Information System (INIS)

    Erika Ericksen

    1999-01-01

    The case study reveals how a manufacturer of high-precision, small-diameter steel tubing has reduced energy consumption and realized considerable electrical, labor, and materials cost savings with a more energy-efficient motor

  14. Life Cycle Cost Optimization of a Bolig+ Zero Energy Building

    DEFF Research Database (Denmark)

    Marszal, Anna Joanna

    . However, before being fully implemented in the national building codesand international standards, the ZEB concept requires a clear understanding and a uniform definition. The ZEB concept is an energy-conservation solution, whose successful adaptation in real life depends significantly on private building...... owners’ approach to it. For thisparticular target group, the cost is often an obstacle when investing money in environmental or climate friendly products. Therefore, this PhD project took theperspective of a future private ZEB owner to investigate the cost-optimal Net ZEB definition applicable...... in the Danish context. The review of the various ZEB approaches indicated a general concept of a Zero Energy Building as a building with significantly reduced energy demand that isbalanced by an equivalent energy generation from renewable sources. And, with this as a general framework, each ZEB definition...

  15. Energy Cost Optimization in a Water Supply System Case Study

    Directory of Open Access Journals (Sweden)

    Daniel F. Moreira

    2013-01-01

    Full Text Available The majority of the life cycle costs (LCC of a pump are related to the energy spent in pumping, with the rest being related to the purchase and maintenance of the equipment. Any optimizations in the energy efficiency of the pumps result in a considerable reduction of the total operational cost. The Fátima water supply system in Portugal was analyzed in order to minimize its operational energy costs. Different pump characteristic curves were analyzed and modeled in order to achieve the most efficient operation point. To determine the best daily pumping operational scheduling pattern, genetic algorithm (GA optimization embedded in the modeling software was considered in contrast with a manual override (MO approach. The main goal was to determine which pumps and what daily scheduling allowed the best economical solution. At the end of the analysis it was possible to reduce the original daily energy costs by 43.7%. This was achieved by introducing more appropriate pumps and by intelligent programming of their operation. Given the heuristic nature of GAs, different approaches were employed and the most common errors were pinpointed, whereby this investigation can be used as a reference for similar future developments.

  16. The real cost of energy

    International Nuclear Information System (INIS)

    Di Valdalbero, Domenico Rossetti

    2003-01-01

    Several studies have been carried out in recent years to assess the external costs (externalities) of energy, among them the European Commission's ExternE research project. An external cost occurs when the social or economic activities of one group of people have an impact on another group but that impact is not fully accounted for or compensated for by the first group. For example, a power station that generates emissions of pollutants and greenhouse gases imposes an external cost if these emissions cause damage to human health (fatal or non-fatal), contribute to global warming, or have adverse effects on crops and building materials. ExternE, which was carried out during the 1990s, is the most exhaustive study to date on the evaluation of the external costs associated with the production and consumption of energy and with energy-related activities. Despite the uncertainties associated with setting a value on external costs, the ExternE project has been successful in several ways and these are summarised together with the ways in which external costs to the environment and health can be taken into account or 'internalised'. One possibility is the imposition of eco-taxes. Another option would be to encourage or subsidise cleaner technologies, thereby avoiding socio-environmental costs. Renewable energy technologies, for example, have limited external costs. The results of ExternE have already been used as a basis for European Commission guidelines on state aid for environmental protection. The project's findings are also being used to support the Council of the European Union in formulating proposals for a Directive on the limits to be set for sulphur dioxide, nitrous oxides, particulates and lead in the atmosphere. In 2000, under the EU's Fifth Research and Technological Development Framework programme, a follow-up project was initiated. The purpose of NewExt (New Elements for the Assessment of External Costs from Energy Technologies) is to refine the methodology

  17. Social costs of energy

    International Nuclear Information System (INIS)

    Jones, P.M.S.

    1990-01-01

    There have been many studies over the past 20 years which have looked at the environmental and other impacts of energy production, conversion and use. A number of these have attempted to put a monetary value to the external costs which are not reflected in the prices charged for energy. The topic has received increased attention recently as a direct result of the recognition of the potentially large social costs that might arise from the depletion of the ozone layer, the consequences of global warming and the continued releases of acid gases from fossil fuel combustion. The determination of external costs was attempted in the report for the European Economic Community, EUR11519, ''Social Costs of Energy Consumption'', by O Hohmeyer. Due to its official sponsorship, this report has been afforded greater respect than it deserves and is being used in some quarters to claim that the external costs of nuclear power are high relative to those of fossil fuels. The remainder of this note looks at some of the serious deficiencies of the document and why its conclusions offer no meaningful guidance to policy makers. So far as the present author is aware no serious criticism of the Hohmeyer study has previously appeared. (author)

  18. Electrostatic direct energy converter performance and cost scaling laws

    International Nuclear Information System (INIS)

    Hoffman, M.A.

    1977-08-01

    This study is concerned with electrostatic type direct energy converters for direct recovery of a large fraction of the plasma ion energy from fusion reactors. Simplified equations are presented for each of the important loss mechanisms in both single-stage direct converters and multistage ''Venetian Blind'' type direct converters. These equations can be used to estimate the efficiency and electric power output of the direct converter subsystem. Scaling relations for the cost of each major component in the direct converter subsystem are also given; these include the vacuum tank, direct converter modules, the DC power conditioning equipment, cryogenic vacuum pumping system and the thermal bottoming plant. The performance and cost scaling laws have been developed primarily for use in overall fusion power plant systems codes. However, to illustrate their utility, cost-effectiveness studies of two specific reference direct converter designs are presented in terms of the specific capital costs (i.e., the capital cost per unit electric power produced) for the Direct Converter Subsystem alone. Some examples of design improvements which can significantly reduce the specific capital costs of the Direct Converter Subsystem are also given

  19. Reduced cost of ownership

    International Nuclear Information System (INIS)

    Wyse, W.H.; Newton, J.C.

    1995-01-01

    There is common drive throughout industry towards reduced costs of ownership of plant and equipment. Rolls-Royce and Associates Ltd. has developed the systems and expertise necessary to achieve these objectives. This Paper outlines the methods being used on existing facilities, and describes a new all embracing process called Planned Lifetime Management. This process, based on the military standard Integrated Logistic Support, ensures that all aspects of support are clearly identified at the design stage and that support is monitored to allow through-life support costs to be optimized. (author)

  20. Energy-saving behavior and marginal abatement cost for household CO2 emissions

    International Nuclear Information System (INIS)

    Hamamoto, Mitsutsugu

    2013-01-01

    This paper attempts to measure consumers' perceived net benefits (or net costs) of energy-saving measures in using energy-consuming durable goods. Using the estimated net costs and the volume of CO 2 reduced by the measures, a marginal abatement cost (MAC) curve for the average household's CO 2 emissions is produced. An analysis using the curve suggests that in order to provide households with an incentive to take actions that can lead to CO 2 emission reductions in using energy-consuming durables, a high level of carbon price is needed. In addition, a regression analysis reveals that the net benefits of the measures are larger for households that put a higher priority on energy saving, for those living in detached houses, for those with a smaller number of persons living together, and for those with less income. The result of the analysis using the MAC curve may suggest that promoting energy-saving behavior will require not only a policy to provide economic incentives but also interventions to influence psychological factors of household behavior. - Highlights: • Consumers' perceived net costs of energy-saving measures in using energy-consuming durables are measured. • Using the estimated net costs, a marginal abatement cost (MAC) curve for the average household's CO 2 emissions is produced. • A high carbon price is needed in order to provide households with an incentive to take actions for energy-savings. • Households' attributes affecting their energy-saving behavior are revealed by a regression analysis

  1. Dynamic energy conservation model REDUCE. Extension with experience curves, energy efficiency indicators and user's guide

    International Nuclear Information System (INIS)

    Uyterlinde, M.A.; Rijkers, F.A.M.

    1999-12-01

    The main objective of the energy conservation model REDUCE (Reduction of Energy Demand by Utilization of Conservation of Energy) is the evaluation of the effectiveness of economical, financial, institutional, and regulatory measures for improving the rational use of energy in end-use sectors. This report presents the results of additional model development activities, partly based on the first experiences in a previous project. Energy efficiency indicators have been added as an extra tool for output analysis in REDUCE. The methodology is described and some examples are given. The model has been extended with a method for modelling the effects of technical development on production costs, by means of an experience curve. Finally, the report provides a 'users guide', by describing in more detail the input data specification as well as all menus and buttons. 19 refs

  2. Think Green: Teach Students Smart Ways to Reduce Home Energy Use

    Science.gov (United States)

    Roman, Harry T.

    2008-01-01

    Energy conservation and reducing heat loss in buildings is a very powerful way to lower energy costs. Sometimes great savings can be realized with simple measures. This subject provides a great vehicle for teaching science content that is very relevant to everyone's daily life--and financial well-being. In this article, the author first discusses…

  3. Capital and operating cost estimates for high temperature superconducting magnetic energy storage

    International Nuclear Information System (INIS)

    Schoenung, S.M.; Meier, W.R.; Fagaly, R.L.; Heiberger, M.; Stephens, R.B.; Leuer, J.A.; Guzman, R.A.

    1992-01-01

    Capital and operating costs have been estimated for mid-scale (2 to 200 Mwh) superconducting magnetic energy storage (SMES) designed to use high temperature superconductors (HTS). Capital costs are dominated by the cost of superconducting materials. Operating costs, primarily for regeneration, are significantly reduced for HTS-SMES in comparison to low temperature, conventional systems. This cost component is small compared to other O and M and capital components, when levelized annual costs are projected. In this paper, the developments required for HTS-SMES feasibility are discussed

  4. Electricity generation from renewable energy sources in Italy: the costs of the System Inefficiencies

    International Nuclear Information System (INIS)

    Bano, L.; Lorenzoni, A.

    2008-01-01

    The promotion of electricity from renewable energy sources (RES) is a high European Union (E U) priority for several reasons, including the security and diversification of energy supply, environmental protection and social and economic cohesion. The Eu Council's decision of 9 March 2007 points towards increasing renewable penetration to 20% of total primary energy supply by 2020 (binding target). There are both costs and benefits associated with the achievement of such an ambitious target. For renewable technologies, the industrial cost is often higher compared to other energy sources. however, due to learning curve effects and market diffusion, technology related costs are coming down considerably. In some cases, when the external costs are taken into account by the price system, renewable can now be close to competitive with fossil fuels. With particular reference to renewable electricity in Italy, its development is often hampered by burdensome and time consuming authorisation procedures with the consequence of a high mortality rate for the investments in the sector, leading to increased costs for the project management. Therefore, in these projects an important cost factor is the high cost of capital due to risk. The analysis of the various renewables' support mechanisms currently in place in the E U shows that some types of incentive have proven to be more efficient than others in reducing the risk perception of investors and financing institutions, therefore making projects less expensive by reducing the cost of capital (both debt and equity). Therefore the focus here is on the electricity generation costs of some renewable technologies and on the costs related to the additional risk perceived by investors/lenders in the sector. The authors estimate the additional cost of capital which investors pay when operating in a risky environment. Some policy indications are finally given to reduce the non-technology related costs for a faster and more efficient growth

  5. Electricity cost effects of expanding wind power and integrating energy sectors

    DEFF Research Database (Denmark)

    Rodriguez, Victor Adrian Maxwell; Sperling, Karl; Hvelplund, Frede Kloster

    2015-01-01

    Recently, questions have arisen in Denmark as to how and why public funding should be allocated to wind power producers. This is, among other reasons, due to pressure from industrial electricity consumers who want their overall energy costs lowered. Utilising existing wind power subsidies across...... conditions which could allow wind power producers to reduce their reliance on subsidies. It is found that the strategy may be effective in lowering the overall energy costs of electricity consumers. Further, it is found possible to scale up this strategy and realise benefits on a national scale....

  6. REDUCING ENVIRONMENTAL IMPACT AND COST OF PRODUCTION FOR DRYING FRUITS

    Directory of Open Access Journals (Sweden)

    Murad Erol

    2013-12-01

    Full Text Available To reduce the production costs for heat used in drying fruit plants was studied using of local biomass from tree branch pruning. The average annual get 3 t / ha biomass whit energy potential of 37 GJ/ha at a cost of up to 60 €/t. biomass at 10 - 50 mm chopped and dried below 20% can be gasefied with TLUD process characterized by high energy conversion efficiency, stability and safety in operation, emissions of CO and PM very low. TLUD process produces on average and 15% biochar that can be used as fuel or as agricultural amendment to increase fertility and for atmospheric carbon sequestration. There have been experiments simulated by model of USCMER 30/60MGB dryer equipped with two thermal modules TLUD FORTE-40 for apple slices drying heat of the apple prinings. Biomass used and biochar resulting chemical and energy were defined as micro-gasification process TLUD. That can dry 205 kg of apple slices in 6 hours with 74 kg of dry biomass to 10% of that remains and 12.2 kg biochar, biochar with or without 52 kg biomass, which costs € 8.55 or € 5.97, ie 4.3 or 6.1 times cheaper than diesel. On dry ton of sliced apple it can produce 59.6 kg biochar with soil seize -174.8 kg. CO2.

  7. Improving performance and reducing costs of cooling towers

    International Nuclear Information System (INIS)

    Bartz, J.A.

    1992-01-01

    Cooling towers represent a significant capital investment at a steam electric power station. In addition, deficiencies in thermal performance can result in major operating penalties of fuel cost, replacement energy, and capacity addition. This paper summarizes two recent EPRI research projects aimed at reducing thermal performance deficiencies and decreasing installed costs of evaporative cooling towers. First, EPRI Research Project 2113, Cooling Tower Performance Prediction and Improvement, is summarized. This project has resulted in published data sets on the measured thermal performance characteristics of a variety of cooling tower packings, computer codes to predict tower performance, and computer code validation through large-scale tower performance measurements. Principal results are contained in an EPRIGEMS software module, Cooling Tower Advisor. This PC- based software contains a tutorial plus codes to predict tower thermal performance, arranged in a user-friendly format. The second EPRI effort, Research Project 2819-10/11, Fabric Structures for Power Plant Applications, has resulted in designs and costs of large structures with shells constructed of recently-developed fabrics. Primary power plant applications for such structures are the shells of natural draft cooling towers and coal-pile covers. Fabric structures offer low initial cost, acceptable life, and seismic superiority, among other advantages. Detailed conceptual designs and installed cost data are reviewed. 8 refs., 9 figs., 3 tabs

  8. Life Cycle Cost Optimization of a BOLIG+ Zero Energy Building

    DEFF Research Database (Denmark)

    Marszal, Anna Joanna

    . However, before being fully implemented in the national building codes and international standards, the ZEB concept requires a clear understanding and a uniform definition. The ZEB concept is an energy-conservation solution, whose successful adaptation in real life depends significantly on private...... building owners’ approach to it. For this particular target group, the cost is often an obstacle when investing money in environmental or climate friendly products. Therefore, this PhD project took the perspective of a future private ZEB owner to investigate the cost-optimal Net ZEB definition applicable...... in the Danish context. The review of the various ZEB approaches indicated a general concept of a Zero Energy Building as a building with significantly reduced energy demand that is balanced by an equivalent energy generation from renewable sources. And, with this as a general framework, each ZEB definition...

  9. Improving cost-effectiveness and mitigating risks of renewable energy requirements

    Science.gov (United States)

    Griffin, James P.

    Policy makers at the federal and state levels of government are debating actions to reduce U.S. greenhouse gas emissions and dependence on oil as an energy source. Several concerns drive this debate: sharp rises in energy prices, increasing unease about the risks of climate change, energy security, and interest in expanding the domestic renewable energy industry. Renewable energy requirements are frequently proposed to address these concerns, and are currently in place, in various forms, at the federal and state levels of government. These policies specify that a certain portion of the energy supply come from renewable energy sources. This dissertation focuses on a specific proposal, known as 25 X 25, which requires 25% of electricity and motor vehicle transportation fuels supplied to U.S. consumers to come from renewable energy sources, such as wind power and ethanol, by 2025. This dissertation builds on prior energy policy analysis, and more specifically analyses of renewable energy requirements, by assessing the social welfare implications of a 25 x 25 policy and applying new methods of uncertainty analysis to multiple policy options decision makers can use to implement the policy. These methods identify policy options that can improve the cost-effectiveness and reduce the risks of renewable energy requirements. While the dissertation focuses on a specific policy, the research methods and findings are applicable to other renewable energy requirement policies. In the dissertation, I analyze six strategies for implementing a 25 x 25 policy across several hundred scenarios that represent plausible futures for uncertainties in energy markets, such as renewable energy costs, energy demand, and fossil fuel prices. The strategies vary in the availability of resources that qualify towards the policy requirement and the use of a "safety valve" that allows refiners and utilities to pay a constant fee after renewable energy costs reach a predetermined threshold. I test

  10. Classification of nuclear plant cost to energy

    International Nuclear Information System (INIS)

    Long, G.A.

    1983-01-01

    In order to understand why the fixed-cost/variable-cost method of classifying nuclear plant costs can lead to rate discontinuities, the author must examine the factors which lead to the decision to build a nuclear power plant and the interrelationship between demand (KW) and energy (KWH). The problems and inequities associated with the nuclear plants can be avoided by recognizing that fixed costs are related to both demand and energy and by using a costing methodology which closely relates to the functional purpose of the plant. Generally, this leads to classifying fixed costs of nuclear plants primarily to the energy function in an embedded cost-of-service study and through either implicit or explicit recognition of fuel savings in a marginal cost study. The large rate discontinuities which occurred in the scenario can be resolved. Costs associated with demand or energy charges remain relatively stable compared to actual capacity costs and customers would not experience large changes in their bills due solely to a particular costing convention

  11. Operating Costs Reducing in MDF Manufacturing Industries

    Directory of Open Access Journals (Sweden)

    José Augusto Coeve Florino

    2014-05-01

    Full Text Available The sustained efforts by electric motors when subjected to cutting, trimming or finishing are directly related to the material being machined and the angle of attack of the tool. Choosing the right tool for this operation depends on an expected result. So the engines behave differently to each operation. The optimization between strength, speed, power, material and type of operation, can be found to reduce operational costs of production, besides determining the exact time to make the set-up of worn tool. The reduction in operating costs is an item of sustainability that outlines the strategic positioning on companies to become competitive in the global marketplace. With the great technological development present today, this issue goes away with the very latest products on the market for professionals who productivity will be dealt with in these modern maintenance equipment such as power quality analyzer, Imager, profile projector and microscope for research. The result of this work is the optimization of the cutting operation and energy consumption thereby demonstrating an optimum point of operation in a case study presented in this work.

  12. Comparing the Mass, Energy, and Cost Effects of Lightweighting in Conventional and Electric Passenger Vehicles

    OpenAIRE

    Hofer, Johannes; Wilhelm, Erik; Schenler, Warren

    2014-01-01

    In this work the effect of weight reduction using advanced lightweight materials on the mass, energy use, and cost of conventional and battery electric passenger vehicles is compared. Analytic vehicle simulation is coupled with cost assessment to find the optimal degree of weight reduction minimizing manufacturing and total costs. The results show a strong secondary weight and cost saving potential for the battery electric vehicles, but a higher sensitivity of vehicle energy use to mass reduc...

  13. Economic feasibility of invesment alternatives for reducing torula yeast' production cost

    International Nuclear Information System (INIS)

    Torres Fernández, Alfredo; Díaz de los Ríos, Manuel; Saura Laria, Gustavo

    2016-01-01

    The prices of ammonium salts which are used in the torula yeast production technology are very high nowadays. In the other hand, this technology has very high energy costs which are consumed by blowers in fermentation, separators machines and in the concentration and drying of yeast. In this paper, different technical alternatives are analyzed for reducing the production cost of torula yeast, through changes in production inputs, electric motors and the replacement of a portion of the fuel used for drying by biogas. Then, the economic feasibility in both currencies is evaluated for practical application. (author)

  14. ECONOMIC FEASIBILITY OF INVESMENT ALTERNATIVES FOR REDUCING TORULA YEAST' PRODUCTION COST

    Directory of Open Access Journals (Sweden)

    Alfredo Torres Fernández

    2016-01-01

    Full Text Available The prices of ammonium salts which are used in the torula yeast production technology are very high nowadays. In the other hand, this technology has very high energy costs which are consumed by blowers in fermentation, separators machines and in the concentration and drying of yeast. In this paper, different technical alternatives are analyzed for reducing the production cost of torula yeast, through changes in production inputs, electric motors and the replacement of a portion of the fuel used for drying by biogas. Then, the economic feasibility in both currencies is evaluated for practical application.

  15. Optimal Power Cost Management Using Stored Energy in Data Centers

    OpenAIRE

    Urgaonkar, Rahul; Urgaonkar, Bhuvan; Neely, Michael J.; Sivasubramaniam, Anand

    2011-01-01

    Since the electricity bill of a data center constitutes a significant portion of its overall operational costs, reducing this has become important. We investigate cost reduction opportunities that arise by the use of uninterrupted power supply (UPS) units as energy storage devices. This represents a deviation from the usual use of these devices as mere transitional fail-over mechanisms between utility and captive sources such as diesel generators. We consider the problem of opportunistically ...

  16. Spring-like Ankle Foot Orthoses reduce the energy cost of walking by taking over ankle work

    NARCIS (Netherlands)

    Bregman, D.J.J.; Harlaar, J.; Meskers, C.G.M.; de Groot, V.

    2012-01-01

    In patients with central neurological disorders, gait is often limited by a reduced ability to push off with the ankle. To overcome this reduced ankle push-off, energy-storing, spring-like carbon-composite Ankle Foot Orthoses (AFO) can be prescribed. It is expected that the energy returned by the

  17. Energy costs form European wind farms

    Energy Technology Data Exchange (ETDEWEB)

    Milborrow, D [Windpower Monthly, Knebel (Denmark)

    1996-12-31

    Energy generation costs from European wind farms span a very wide range. Reasons for these variations, include differences in capital and operating costs, wind speeds and differing legislative and regulatory frameworks. This article compares costs, wind speeds and discount rates for British and German windfarms and sets these alongside data from elsewhere in the European Union. In this way it is possible to determine the reasons for differences in energy generation costs. (author)

  18. Energy costs form European wind farms

    Energy Technology Data Exchange (ETDEWEB)

    Milborrow, D. [Windpower Monthly, Knebel (Denmark)

    1995-12-31

    Energy generation costs from European wind farms span a very wide range. Reasons for these variations, include differences in capital and operating costs, wind speeds and differing legislative and regulatory frameworks. This article compares costs, wind speeds and discount rates for British and German windfarms and sets these alongside data from elsewhere in the European Union. In this way it is possible to determine the reasons for differences in energy generation costs. (author)

  19. Energy costs form European wind farms

    International Nuclear Information System (INIS)

    Milborrow, D.

    1995-01-01

    Energy generation costs from European wind farms span a very wide range. Reasons for these variations, include differences in capital and operating costs, wind speeds and differing legislative and regulatory frameworks. This article compares costs, wind speeds and discount rates for British and German windfarms and sets these alongside data from elsewhere in the European Union. In this way it is possible to determine the reasons for differences in energy generation costs. (author)

  20. Climate impacts on the cost of solar energy

    International Nuclear Information System (INIS)

    Flowers, Mallory E.; Smith, Matthew K.; Parsekian, Ara W.; Boyuk, Dmitriy S.; McGrath, Jenna K.; Yates, Luke

    2016-01-01

    Photovoltaic (PV) Levelized Cost of Energy (LCOE) estimates are widely utilized by decision makers to predict the long-term cost and benefits of solar PV installations, but fail to consider local climate, which impacts PV panel lifetime and performance. Specific types of solar PV panels are known to respond to climate factors differently. Mono-, poly-, and amorphous-silicon (Si) PV technologies are known to exhibit varying degradation rates and instantaneous power losses as a function of operating temperature, humidity, thermal cycling, and panel soiling. We formulate an extended LCOE calculation, which considers PV module performance and lifespan as a function of local climate. The LCOE is then calculated for crystalline and amorphous Si PV technologies across several climates. Finally, we assess the impact of various policy incentives on reducing the firm's cost of solar deployment when controlling for climate. This assessment is the first to quantify tradeoffs between technologies, geographies, and policies in a unified manner. Results suggest crystalline Si solar panels as the most promising candidate for commercial-scale PV systems due to their low degradation rates compared to amorphous technologies. Across technologies, we note the strong ability of investment subsidies in removing uncertainty and reducing the LCOE, compared to production incentives. - Highlights: •We integrate local climate into the Levelized Cost of photovoltaic technology. •Climate dictates panel degradation rates and the impact of temperature on efficiency. •We compare LCOE under policy scenarios for three technologies in four U. S. states. •Degradation is highly variable, increasing costs by shortening panel life in many regions. •Incentives targeting investment are most effective at reducing solar deployment costs.

  1. Reducing operating costs: A collaborative approach between industry and electric utilities

    International Nuclear Information System (INIS)

    Tyers, B.; Sibbald, L.

    1993-01-01

    The unit cost of electricity to industrial consumers is expected to increase at a rate of 5% annually in the 1990s. The partnership that has been created between Amoco Canada Petroleum Company and TransAlta Utilities to control the cost of electricity is described. To allow the company to receive lower rates for interruptible power, a number of measures have been taken. The Amoco Whitecourt plant has standby generators in reserve that can be used when utility power is not available. A Pembina compressor can be turned off for up to 12 hours, at 30 minutes notice, without affecting field pressure. At the East Crossfield plant sales gas can be compressed using electricity or a gas-driven engine. Spot market energy is used in a number of plants allowing electric drive alternatives to plant operators and offering short term energy markets. TransAlta invests in electrical equipment such as switchgear as well as transmission lines and transformers. New rate alternatives offered by TransAlta Utilities include review of the need for a demand ratchet, additional time of use rates, unbundling of rates allowing power purchase from alternative sources, rates that follow product costs, reduced rates for conversion of gas to electric drives certain circumstances, energy audits, and power factor credits. 5 figs

  2. Life-cycle cost analysis of energy efficiency design options for residential furnaces and boilers

    International Nuclear Information System (INIS)

    Lutz, James; Lekov, Alex; Chan, Peter; Whitehead, Camilla Dunham; Meyers, Steve; McMahon, James

    2006-01-01

    In 2001, the US Department of Energy (DOE) initiated a rulemaking process to consider whether to amend the existing energy efficiency standards for furnaces and boilers. A key factor in DOE's consideration of new standards is the economic impacts on consumers of possible revisions to energy-efficiency standards. Determining cost-effectiveness requires an appropriate comparison of the additional first cost of energy efficiency design options with the savings in operating costs. DOE's preferred approach involves comparing the total life-cycle cost (LCC) of owning and operating a more efficient appliance with the LCC for a baseline design. This study describes the method used to conduct the LCC analysis and presents the estimated change in LCC associated with more energy-efficient equipment. The results indicate that efficiency improvement relative to the baseline design can reduce the LCC in each of the product classes considered

  3. Cost-benefit analysis of multi-regional nuclear energy systems deployment

    International Nuclear Information System (INIS)

    Van Den Durpel, L.G.G.; Wade, D.C.; Yacout, A.M.

    2007-01-01

    The paper describes the preliminary results of a cost/benefit-analysis of multi-regional nuclear energy system approaches with a focus on how multi-regional approaches may benefit a growing nuclear energy system in various world regions also being able to limit, or even reduce, the costs associated with the nuclear fuel cycle and facilitating the introduction of nuclear energy in various regions in the world. The paper highlights the trade-off one might envisage in deploying such multi-regional approaches but also the pay backs possible and concludes on the economical benefits one may associate to regional fuel cycle centres serving a world-fleet of STAR (small fast reactors of long refueling interval) where these STARs may be competitive compared to the LWRs (Light Water Reactors) as a base-case nuclear reactor option. (authors)

  4. A Bit String Content Aware Chunking Strategy for Reduced CPU Energy on Cloud Storage

    Directory of Open Access Journals (Sweden)

    Bin Zhou

    2015-01-01

    Full Text Available In order to achieve energy saving and reduce the total cost of ownership, green storage has become the first priority for data center. Detecting and deleting the redundant data are the key factors to the reduction of the energy consumption of CPU, while high performance stable chunking strategy provides the groundwork for detecting redundant data. The existing chunking algorithm greatly reduces the system performance when confronted with big data and it wastes a lot of energy. Factors affecting the chunking performance are analyzed and discussed in the paper and a new fingerprint signature calculation is implemented. Furthermore, a Bit String Content Aware Chunking Strategy (BCCS is put forward. This strategy reduces the cost of signature computation in chunking process to improve the system performance and cuts down the energy consumption of the cloud storage data center. On the basis of relevant test scenarios and test data of this paper, the advantages of the chunking strategy are verified.

  5. Reducing operational costs through MIPS management

    NARCIS (Netherlands)

    Kwiatkowski, L.M.; Verhoef, C.

    2015-01-01

    We focus on an approach to reducing the costs of running applications. MIPS, which is a traditional acronym for millions of instructions per second, have evolved to become a measurement of processing power and CPU resource consumption. The need for controlling MIPS attributed costs is indispensable

  6. Nonrenewable energy cost of corn-ethanol in China

    International Nuclear Information System (INIS)

    Yang, Q.; Chen, G.Q.

    2012-01-01

    Nonrenewable energy cost is accounted for the believed renewable biofuel of corn-ethanol in China. By a process-based energy analysis, nonrenewable energy cost in the corn-ethanol production process incorporating agricultural crop production, industrial conversion and wastewater treatment is conservatively estimated as 1.70 times that of the ethanol energy produced, corresponding to a negative energy return in contrast to the positive ones previously reported. Nonrenewable energy cost associated with wastewater treatment usually ignored in previous researches is shown important in the energy balance. Denoting the heavy nonrenewability of the produced corn-ethanol, the calculated nonrenewable energy cost would rise to 3.64 folds when part of the nonrenewable energy cost associated with water consumption, transportation and environmental remediation is included. Due to the coal dominated nonrenewable energy structure in China, corn-ethanol processes in China are mostly a conversion of coal to ethanol. Validations and discussions are also presented to reveal policy implications against corn based ethanol as an alternative energy in long term energy security planning. - Highlights: ► Nonrenewable energy (NE) cost is conservatively accounted for corn-ethanol in China. ► Corn cultivation, ethanol conversion and wastewater treatment are included. ► NE cost is estimated as 1.70 times that of the ethanol energy produced. ► Corn-ethanol processes in China are mostly a conversion of coal to ethanol.

  7. Energy cost of seed drying

    Directory of Open Access Journals (Sweden)

    Weerachet Jittanit

    2017-11-01

    Full Text Available In this work, the energy costs of drying corn, rice and wheat seeds between 3 drying options were compared. They consisted of 1 two-stage drying by using fluidised bed dryer (FBD in the 1st stage and in-store dryer (ISD in the 2nd stage, 2 single-stage drying by fixed bed dryer (FXD and 3 two-stage drying by using FXD in the 1st  stage and ISD in the 2nd  stage. The drying conditions selected for comparison were proved to be safe for seed viability by the previous studies. The results showed that the drying options 2 and 3 consumed less energy than option 1. However, the benefits from lower energy cost must be weighed against some advantages of using FBD. Furthermore, it appeared that running the burners of FXD and ISD for warming up the ambient air during humid weather condition could shorten drying time significantly with a little higher energy cost.

  8. Life Cycle Cost optimization of a BOLIG+ Zero Energy Building

    Energy Technology Data Exchange (ETDEWEB)

    Marszal, A.J.

    2011-12-15

    Buildings consume approximately 40% of the world's primary energy use. Considering the total energy consumption throughout the whole life cycle of a building, the energy performance and supply is an important issue in the context of climate change, scarcity of energy resources and reduction of global energy consumption. An energy consuming as well as producing building, labelled as the Zero Energy Building (ZEB) concept, is seen as one of the solutions that could change the picture of energy consumption in the building sector, and thus contribute to the reduction of the global energy use. However, before being fully implemented in the national building codes and international standards, the ZEB concept requires a clear understanding and a uniform definition. The ZEB concept is an energy-conservation solution, whose successful adaptation in real life depends significantly on private building owners' approach to it. For this particular target group, the cost is often an obstacle when investing money in environmental or climate friendly products. Therefore, this PhD project took the perspective of a future private ZEB owner to investigate the cost-optimal Net ZEB definition applicable in the Danish context. The review of the various ZEB approaches indicated a general concept of a Zero Energy Building as a building with significantly reduced energy demand that is balanced by an equivalent energy generation from renewable sources. And, with this as a general framework, each ZEB definition should further specify: (1) the connection or the lack of it to the energy infrastructure, (2) the unit of the balance, (3) the period of the balance, (4) the types of energy use included in the balance, (5) the minimum energy performance requirements (6) the renewable energy supply options, and if applicable (7) the requirements of the building-grid interaction. Moreover, the study revealed that the future ZEB definitions applied in Denmark should mostly be focused on grid

  9. Life-cycle cost analysis of energy efficiency design options for residential furnaces and boilers

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, J.; Lekov, A.; Chan, P.; Dunham Whitehead, C.; Meyers, S.; McMahon, J. [Lawrence Berkeley National Laboratory, Berkeley, CA (United States). Environmental Energy Technologies Div.

    2006-03-01

    In 2001, the US Department of Energy (DOE) initiated a rulemaking process to consider whether to amend the existing energy efficiency standards for furnaces and boilers. A key factor in DOE's consideration of new standards is the economic impacts on consumers of possible revisions to energy-efficiency standards. Determining cost-effectiveness requires an appropriate comparison of the additional first cost of energy efficiency design options with the savings in operating costs. DOE's preferred approach involves comparing the total life-cycle cost (LCC) of owning and operating a more efficient appliance with the LCC for a baseline design. This study describes the method used to conduct the LCC analysis and presents the estimated change in LCC associated with more energy-efficient equipment. The results indicate that efficiency improvement relative to the baseline design can reduce the LCC in each of the product classes considered. (author)

  10. Potential for, and costs of, reducing greenhouse gas emissions from non-energy sources in South Africa

    CSIR Research Space (South Africa)

    Taviv, R

    2008-11-01

    Full Text Available The South African Government commissioned a detailed study entitled Long-Term Mitigation Scenarios (LTMS). This study defined and quantified the mitigation options and associated costs available under several energy and economic futures. Following a...

  11. A systems approach to reduce urban rail energy consumption

    International Nuclear Information System (INIS)

    González-Gil, A.; Palacin, R.; Batty, P.; Powell, J.P.

    2014-01-01

    Highlights: • An insightful overview of energy usage in urban rail systems is given. • The principal measures to reduce urban rail energy consumption are appraised. • A methodology is proposed to help implement energy saving schemes in urban rail. • Regenerative braking is shown to offer the greatest energy saving potential. - Abstract: There is increasing interest in the potential of urban rail to reduce the impact of metropolitan transportation due to its high capacity, reliability and absence of local emissions. However, in a context characterised by increasing capacity demands and rising energy costs, and where other transport modes are considerably improving their environmental performance, urban rail must minimise its energy use without affecting its service quality. Urban rail energy consumption is defined by a wide range of interdependent factors; therefore, a system wide perspective is required, rather than focusing on energy savings at subsystem level. This paper contributes to the current literature by proposing an holistic approach to reduce the overall energy consumption of urban rail. Firstly, a general description of this transport mode is given, which includes an assessment of its typical energy breakdown. Secondly, a comprehensive appraisal of the main practices, strategies and technologies currently available to minimise its energy use is provided. These comprise: regenerative braking, energy-efficient driving, traction losses reduction, comfort functions optimisation, energy metering, smart power management and renewable energy micro-generation. Finally, a clear, logical methodology is described to optimally define and implement energy saving schemes in urban rail systems. This includes general guidelines for a qualitative assessment and comparison of measures alongside a discussion on the principal interdependences between them. As a hypothetical example of application, the paper concludes that the energy consumption in existing urban

  12. Environmental costs of fossil fuel energy production

    International Nuclear Information System (INIS)

    Riva, A.; Trebeschi, C.

    1997-01-01

    The costs of environmental impacts caused by fossil fuel energy production are external to the energy economy and normally they are not reflected in energy prices. To determine the environmental costs associated with an energy source a detailed analysis of all environmental impacts of the complete energy cycle is required. The economic evaluation of environmental damages is presented caused by atmospheric emissions produced by fossil fuel combustion for different uses. Considering the emission factors of sulphur oxides, nitrogen oxides, dust and carbon dioxide and the economic evaluation of their environmental damages reported in literature, a range of environmental costs associated with different fossil fuels and technologies is presented. A comparison of environmental costs resulting from atmospheric emissions produced by fossil-fuel combustion for energy production shows that natural gas has a significantly higher environmental value than other fossil fuels. (R.P.)

  13. Energy audit: A case study to reduce lighting cost for an industrial site

    CSIR Research Space (South Africa)

    Dzobo, O

    2017-06-01

    Full Text Available were done using lux meter. 2. Data Analysis: Detailed analysis of collected data was done from the database that was generated. This forms the baseline case which is used later to quantify any energy cost savings achieved as a result of recommended... in the plant and selected offices were measured during day time by using a lux/light meter. Measurements were taken at a number of points and averaged. For offices the light levels were also determined with the lights OFF and window-blinds fully open...

  14. THE COSTS OF ENERGY SUPPLY SECURITY

    Energy Technology Data Exchange (ETDEWEB)

    Rogner, H.H.; Langlois, L.M.; McDonald, A.; Weisser, D.; Howells, M.

    2007-07-01

    In general, increasing a country's energy supply security does not come for free. It costs money to build up a strategic reserve, to increase supply diversity or even to accelerate energy efficiency improvements. Nor are all investments in increasing energy supply security cost effective, even if the shocks they are designed to insure against can be predicted with 100% accuracy. The first half of the paper surveys different definitions and strategies associated with the concept of energy supply security, and compares current initiatives to establish an 'assured supply of nuclear fuel' to the International Energy Agency's (IEA's) system of strategic national oil reserves. The second half of the paper presents results from several case studies of the costs and effectiveness of selected energy supply security policies. One case study examines alternative strategies for Lithuania following the scheduled closure of the Ignalina-2 nuclear reactor in 2009. The second case study examines, for countries with different energy resources and demand structures, the effectiveness of a policy to increase supply diversity by expanding renewable energy supplies. (auth)

  15. Method for Cost-Benefit Analysis of Improved Indoor Climate Conditions and Reduced Energy Consumption in Office Buildings

    Directory of Open Access Journals (Sweden)

    Viktoras Dorosevas

    2013-09-01

    Full Text Available Indoor climate affects health and productivity of the occupants in office buildings, yet in many buildings of this type indoor climate conditions are not well-controlled due to insufficient heating or cooling capacity, high swings of external or internal heat loads, improper control or operation of heating, ventilation and air conditioning (HVAC equipment, etc. However, maintenance of good indoor environmental conditions in buildings requires increased investments and possible higher energy consumption. This paper focuses on the relation between investment costs for retrofitting HVAC equipment as well as decreased energy use and improved performance of occupants in office buildings. The cost-benefit analysis implementation algorithm is presented in this paper, including energy survey of the building, estimation of occupants dissatisfied by key indoor climate indicators using questionnaire survey and measurements. Technique for Order Preference by Similarity to Ideal Solution (TOPSIS analysis is used in the proposed method for data processing. A case study of an office building is presented in order to introduce an application example of the proposed method. Results of the study verify the applicability of the proposed algorithm and TOPSIS analysis as a practical tool for office building surveys in order to maximize productivity by means of cost efficient technical building retrofitting solutions.

  16. Opportunities to improve energy efficiency and reduce greenhouse gas emissions in the US pulp and paper industry

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Nathan; Anglani, N.; Einstein, D.; Khrushch, M.; Worrell, E.; Price, L.K.

    2000-07-01

    The pulp and paper industry accounts for over 12% of total manufacturing energy use in the US (US EIA 1997a), contributing 9% to total manufacturing carbon dioxide emissions. In the last twenty-five years primary energy intensity in the pulp and paper industry has declined by an average of 1% per year. However, opportunities still exist to reduce energy use and greenhouse gas emissions in the manufacture of paper in the US This report analyzes the pulp and paper industry (Standard Industrial Code (SIC) 26) and includes a detailed description of the processes involved in the production of paper, providing typical energy use in each process step. We identify over 45 commercially available state-of-the-art technologies and measures to reduce energy use and calculate potential energy savings and carbon dioxide emissions reductions. Given the importance of paper recycling, our analysis examines two cases. Case A identifies potential primary energy savings without accounting for an increase in recycling, while Case B includes increasing paper recycling. In Case B the production volume of pulp is reduced to account for additional pulp recovered from recycling. We use a discount rate of 30% throughout our analysis to reflect the investment decisions taken in a business context. Our Case A results indicate that a total technical potential primary energy savings of 31% (1013 PJ) exists. For case A we identified a cost-effective savings potential of 16% (533 PJ). Carbon dioxide emission reductions from the energy savings in Case A are 25% (7.6 MtC) and 14% (4.4 MtC) for technical and cost-effective potential, respectively. When recycling is included in Case B, overall technical potential energy savings increase to 37% (1215 PJ) while cost-effective energy savings potential is 16%. Increasing paper recycling to high levels (Case B) is nearly cost-effective assuming a cut-off for cost-effectiveness of a simple payback period of 3 years. If this measure is included, then the

  17. Design meeting on reduced technical objectives/reduced cost ITER options

    International Nuclear Information System (INIS)

    Spears, W.

    1999-01-01

    At this meeting, which took place at Garching, Germany in January 1999, means of reducing the overall cost for ITER to 50% where discussed. It was felt that a smaller plasma of high elongation and high triangularity was a step in the right direction. Further steps would include cheaper magnetic field coils, cheaper in-vessel components and also costly buildings

  18. Energy-Smart Building Choices: How School Facilities Managers and Business Officials Are Reducing Operating Costs and Saving Money

    International Nuclear Information System (INIS)

    Energy Smart Schools Team

    2001-01-01

    Most K-12 schools could save 25% of their energy costs by being smart about energy. Nationwide, the savings potential is$6 billion. While improving energy use in buildings and busses, schools are likely to create better places for teaching and learning, with better lighting, temperature control, acoustics, and air quality. This brochure, targeted to school facilities managers and business officials, describes how schools can become more energy efficient

  19. Offshore windfarm proposal to reduce costs of foundations and installations.

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-09-04

    The principle aim of this project is to develop innovative pile insertion, installation vessel pile handling and pile transfer systems that reduce the installed cost per kW of offshore wind turbine foundation installation. The project was to accomplish this by first developing a novel method of handling foundation piles without the use of craneage thereby allowing long piles of 5-6m diameter to be lifted safely in shallow water. This would extend the operating envelope by allowing work to continue without the weather constraints associated with lifting heavy loads by crane. The method would eventually reduce the size of the pile installation barge resulting in reduced installation costs. This part of the project has been satisfactorily completed, resulting in an innovative pile handling technique. Secondly a nonpercussive pile insertion method would be developed suitable for large diameter piles. The targeted aims of this method are as follows: To reduce or negate the need to handle and dispose of large amounts of spoil. To eliminate the need for piling hammers large enough to drive 6m diameter piles. These would be too heavy for the present generation of offshore cranes to lift, and the rental costs exorbitant. The advantages of these aims are: A reduction in the noise pollution produced by all percussive methods of pile driving and in particular large hammers. These noise levels are unacceptable to present and future environmental constraints. Because of the reduced drill spoil being handled compared to an industry standard full face drill, the energy consumption and therefore cost, is also reduced. Owing to the high cost and risk associated with mobilising and operating the equipment necessary for field trials in a marine environment (the cost for mobilising and operating a construction jack-up barge, all backup marine support craft, pile driving hammers and test piles can be several times the available grant funding), it was decided and agreed at an early stage

  20. Central Plant Optimization for Waste Energy Reduction (CPOWER). ESTCP Cost and Performance Report

    Science.gov (United States)

    2016-12-01

    meet all demands, and not necessarily for fuel economy or energy efficiency. Plant operators run the equipment according to a pre-set, fixed strategy ...exchanger, based on the site protocol. Thermal Energy Storage Tank Site-specific optimal operating strategies were developed for the chilled water...being served by the central plant Hypothesis The hypothesis tested that the optimized operation reduces wasted energy and energy costs by smart

  1. Offshore Wind Energy Cost Modeling Installation and Decommissioning

    CERN Document Server

    Kaiser, Mark J

    2012-01-01

    Offshore wind energy is one of the most promising and fastest growing alternative energy sources in the world. Offshore Wind Energy Cost Modeling provides a methodological framework to assess installation and decommissioning costs, and using examples from the European experience, provides a broad review of existing processes and systems used in the offshore wind industry. Offshore Wind Energy Cost Modeling provides a step-by-step guide to modeling costs over four sections. These sections cover: ·Background and introductory material, ·Installation processes and vessel requirements, ·Installation cost estimation, and ·Decommissioning methods and cost estimation.  This self-contained and detailed treatment of the key principles in offshore wind development is supported throughout by visual aids and data tables. Offshore Wind Energy Cost Modeling is a key resource for anyone interested in the offshore wind industry, particularly those interested in the technical and economic aspects of installation and decom...

  2. On the Costs of Nuclear Energy

    International Nuclear Information System (INIS)

    Cintra do Prado, L.

    1966-01-01

    In considering the use of nuclear energy as a primary source of electricity the important thing is not that it should be ''cheap'' in absolute terms but that it should be competitive, that is to say that the cost of nuclear electricity should be produced at a cost comparable with or less than that of electricity generated by conventional sources - hydroelectric plants or thermo-plants based on coal, natural gas or oil. If energy is vital to a country's development one must be prepared to pay what it is worth; the problem is to obtain the energy at the lowest possible cost

  3. Promotional programmes for energy conservation and CO2 avoidance. Efficiency and costs

    International Nuclear Information System (INIS)

    Lechtenboehmer, S.; Bach, W.

    1994-01-01

    Least-cost planning and demand-side management are attempts to bring into accord company policies of the energy utility with the targets of environmental and climate protection and resource savings. Since 1982 also the Stadtwerke Muenster have promotional programmes for heating system modernization. With the example of three current promotional programmes the article analysis the costs of such programmes, their impact with regard to energy conservation and CO 2 avoidance and their status within the scope of local climate protection. Moreover the volume of investment is assessed which is necessary in Muenster to reduce the heating energy consumption of existing residential buildings till 2005 by more than one third. (orig./UA) [de

  4. Energy assessments

    International Nuclear Information System (INIS)

    Unruh, T.D.

    1998-01-01

    Energy industry initiatives during the 1970s and during the 1990s are compared. During the 1970s, the objective was to reduce energy consumption and to reduce dependency on foreign fuel. Today, the emphasis is on reducing energy costs and to improve net operating income. The challenges posed by the drive to reduce energy costs are discussed. As a tool in the drive to reduce energy cost, the energy assessment process was described. The process entails a detailed analysis of energy consumption, an investigation of energy rates and an assessment of site conditions and equipment, with a view towards an optimum combination that will lead to energy cost reductions

  5. Cost and primary energy efficiency of small-scale district heating systems

    International Nuclear Information System (INIS)

    Truong, Nguyen Le; Gustavsson, Leif

    2014-01-01

    Highlights: • We analyzed minimum-cost options for small-scale DHSs under different contexts. • District heat production cost increases with reduced DHS scales. • Fewer technical options are suitable for small-scale DHSs. • Systems with combined technologies are less sensitive to changes in fuel prices. - Abstract: Efficient district heat production systems (DHSs) can contribute to achieving environmental targets and energy security for countries that have demands for space and water heating. The optimal options for a DHS vary with the environmental and social-political contexts and the scale of district heat production, which further depends on the size of the community served and the local climatic conditions. In this study, we design a small-scale, minimum-cost DHS that produces approximately 100 GWh heat per year and estimate the yearly production cost and primary energy use of this system. We consider conventional technologies, such as heat-only boilers, electric heat pumps and combined heat and power (CHP) units, as well as emerging technologies, such as biomass-based organic Rankine cycle (BORC) and solar water heating (SWH). We explore how different environmental and social-political situations influence the design of a minimum-cost DHS and consider both proven and potential technologies for small-scale applications. Our calculations are based on the real heat load duration curve for a town in southern Sweden. We find that the district heat production cost increases and that the potential for cogeneration decreases with smaller district heat production systems. Although the selection of technologies for a minimum-cost DHS depends on environmental and social-political contexts, fewer technical options are suitable for small-scale systems. Emerging technologies such as CHP-BORC and SWH improve the efficiency of primary energy use for heat production, but these technologies are more costly than conventional heat-only boilers. However, systems with

  6. Concepts for reducing nuclear utility inventory carrying costs

    International Nuclear Information System (INIS)

    Graybill, R.E.; DiCola, F.E.; Solanas, C.H.

    1985-01-01

    Nuclear utilities are under pressure to reduce their operating and maintenance expenses such that the total cost of generating electricity through nuclear power remains an economically attractive option. One area in which expenses may be reduced is total inventory carrying cost. The total inventory carrying cost consists of financing an inventory, managing the inventory, assuring quality, engineering of acceptable parts specifications, and procuring initial and replenishment stock. Concepts and methodology must be developed to reduce the remaining expenses of a utility's total inventory carrying cost. Currently, two concepts exist: pooled inventory management system (PIMS), originally established by General Electric Company and a group of boiling water reactor owners, and Nuclear Parts Associates' (NUPA) shared inventory management program (SIMP). Both concepts share or pool parts and components among utilities. The SIMP program objectives and technical activities are summarized

  7. Steam Pressure-Reducing Station Safety and Energy Efficiency Improvement Project

    Energy Technology Data Exchange (ETDEWEB)

    Lower, Mark D [ORNL; Christopher, Timothy W [ORNL; Oland, C Barry [ORNL

    2011-06-01

    reduce its overall utility costs by decreasing the amount of fuel used to generate steam. Reduced fuel consumption also decreased air emissions. These improvements also helped lower the risk of burn injuries to workers and helped prevent shrapnel injuries resulting from missiles produced by pressurized component failures. In most cases, the economic benefit and cost effectiveness of the SPRS Safety and Energy Efficiency Improvement Project is reflected in payback periods of 1 year or less.

  8. The energy cost of water independence: the case of Singapore.

    Science.gov (United States)

    Vincent, Lenouvel; Michel, Lafforgue; Catherine, Chevauché; Pauline, Rhétoré

    2014-01-01

    Finding alternative resources to secure or increase water availability is a key issue in most urban areas. This makes the research of alternative and local water resources of increasing importance. In the context of political tension with its main water provider (Malaysia), Singapore has been implementing a comprehensive water policy for some decades, which relies on water demand management and local water resource mobilisation in order to reach water self-sufficiency by 2060. The production of water from alternative resources through seawater desalination or water reclamation implies energy consumptive technologies such as reverse osmosis. In the context of increasing energy costs and high primary energy dependency, this water self-sufficiency objective is likely to be an important challenge for Singapore. The aim of this paper is to quantify the long-term impact of Singapore's water policy on the national electricity bill and to investigate the impact of Singapore's projects to reduce its water energy footprint. We estimate that 2.0% of the Singaporean electricity demand is already dedicated to water and wastewater treatment processes. If its water-energy footprint dramatically increases in the coming decades, ambitious research projects may buffer the energy cost of water self-sufficiency.

  9. Retrofitting Inefficient Rooftop Air-Conditioning Units Reduces U.S. Navy Energy Use (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2014-04-01

    As part of the U.S. Navy's overall energy strategy, the National Renewable Energy Laboratory (NREL) partnered with the Naval Facilities Engineering Command (NAVFAC) to demonstrate market-ready energy efficiency measures, renewable energy generation, and energy systems integration. One such technology - retrofitting rooftop air-conditioning units with an advanced rooftop control system - was identified as a promising source for reducing energy use and costs, and can contribute to increasing energy security.

  10. Lean Manufacturing Implementation: an Approach to Reduce Production Cost

    Directory of Open Access Journals (Sweden)

    Iraswari

    2012-04-01

    Full Text Available Abstract: Lean Manufacturing Implementation: An Approach To Reduce Production Cost. Opportunities to improve production processes and reduce production cost through the implementation of lean manufacturing in small medium garment manufacturing are presented in this research. This research shows that there is a possibility of decrease in production cost and increase in return on sales. Lean manufacturing implementation can eliminate waste in the production process. This is a set of techniques for identification and elimination of waste gathered from The Ford Production, Statistical Process Control and other techniques. Improvement of quality could be carried out while time and cost of production are being reduced.

  11. 2015 Cost of Wind Energy Review

    Energy Technology Data Exchange (ETDEWEB)

    Mone, Christopher; Hand, Maureen; Bolinger, Mark; Rand, Joseph; Heimiller, Donna; Ho, Jonathan

    2017-04-05

    This report uses representative commercial projects to estimate the levelized cost of energy (LCOE) for both land-based and offshore wind plants in the United States for 2015. Scheduled to be published on an annual basis, the analysis relies on both market and modeled data to maintain an up-to-date understanding of wind generation cost trends and drivers. It is intended to provide insight into current component-level costs and a basis for understanding variability in the LCOE across the industry. Data and tools developed by the National Renewable Energy Laboratory (NREL) are used in this analysis to inform wind technology cost projections, goals, and improvement opportunities.

  12. 2014 Cost of Wind Energy Review

    Energy Technology Data Exchange (ETDEWEB)

    Mone, Christopher [National Renewable Energy Lab. (NREL), Golden, CO (United States); Stehly, Tyler [National Renewable Energy Lab. (NREL), Golden, CO (United States); Maples, Ben [National Renewable Energy Lab. (NREL), Golden, CO (United States); Settle, Edward [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-10-01

    This report uses representative commercial projects to estimate the levelized cost of energy (LCOE) for both land-based and offshore wind plants in the United States for 2014. Scheduled to be published on an annual basis, the analysis relies on both market and modeled data to maintain an up-to-date understanding of wind generation cost trends and drivers. It is intended to provide insight into current component-level costs and a basis for understanding variability in the LCOE across the industry. Data and tools developed by the National Renewable Energy Laboratory (NREL) are used in this analysis to inform wind technology cost projections, goals, and improvement opportunities.

  13. 76 FR 64931 - Building Energy Codes Cost Analysis

    Science.gov (United States)

    2011-10-19

    ...-0046] Building Energy Codes Cost Analysis AGENCY: Office of Energy Efficiency and Renewable Energy... reopening of the time period for submitting comments on the request for information on Building Energy Codes... the request for information on Building Energy Code Cost Analysis and provide docket number EERE-2011...

  14. A Simple Exoskeleton That Assists Plantarflexion Can Reduce the Metabolic Cost of Human Walking

    Science.gov (United States)

    Malcolm, Philippe; Derave, Wim; Galle, Samuel; De Clercq, Dirk

    2013-01-01

    Background Even though walking can be sustained for great distances, considerable energy is required for plantarflexion around the instant of opposite leg heel contact. Different groups attempted to reduce metabolic cost with exoskeletons but none could achieve a reduction beyond the level of walking without exoskeleton, possibly because there is no consensus on the optimal actuation timing. The main research question of our study was whether it is possible to obtain a higher reduction in metabolic cost by tuning the actuation timing. Methodology/Principal Findings We measured metabolic cost by means of respiratory gas analysis. Test subjects walked with a simple pneumatic exoskeleton that assists plantarflexion with different actuation timings. We found that the exoskeleton can reduce metabolic cost by 0.18±0.06 W kg−1 or 6±2% (standard error of the mean) (p = 0.019) below the cost of walking without exoskeleton if actuation starts just before opposite leg heel contact. Conclusions/Significance The optimum timing that we found concurs with the prediction from a mathematical model of walking. While the present exoskeleton was not ambulant, measurements of joint kinetics reveal that the required power could be recycled from knee extension deceleration work that occurs naturally during walking. This demonstrates that it is theoretically possible to build future ambulant exoskeletons that reduce metabolic cost, without power supply restrictions. PMID:23418524

  15. Measuring the Efficacy of an Energy and Environmental Awareness Campaign to Effectively Reduce Water Consumption

    Science.gov (United States)

    Miller, Laura Little

    2010-01-01

    Increased energy costs and a move toward environmental stewardship are driving many organizations, including universities, to engage in awareness efforts to reduce both energy consumption and their carbon footprint. The purpose of this paper is to determine whether organizational programs aimed at energy and environmental awareness have a…

  16. Opportunities to improve energy efficiency and reduce greenhouse gas emissions in the U.S. pulp and paper industry

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Nathan; Anglani, N.; Einstein, D.; Khrushch, M.; Worrell, E.; Price, L.K.

    2000-07-01

    The pulp and paper industry accounts for over 12% of total manufacturing energy use in the U.S. (U.S. EIA 1997a), contributing 9% to total manufacturing carbon dioxide emissions. In the last twenty-five years primary energy intensity in the pulp and paper industry has declined by an average of 1% per year. However, opportunities still exist to reduce energy use and greenhouse gas emissions in the manufacture of paper in the U.S. This report analyzes the pulp and paper industry (Standard Industrial Code (SIC) 26) and includes a detailed description of the processes involved in the production of paper, providing typical energy use in each process step. We identify over 45 commercially available state-of-the-art technologies and measures to reduce energy use and calculate potential energy savings and carbon dioxide emissions reductions. Given the importance of paper recycling, our analysis examines two cases. Case A identifies potential primary energy savings without accounting for an increase in recycling, while Case B includes increasing paper recycling. In Case B the production volume of pulp is reduced to account for additional pulp recovered from recycling. We use a discount rate of 30% throughout our analysis to reflect the investment decisions taken in a business context. Our Case A results indicate that a total technical potential primary energy savings of 31% (1013 PJ) exists. For case A we identified a cost-effective savings potential of 16% (533 PJ). Carbon dioxide emission reductions from the energy savings in Case A are 25% (7.6 MtC) and 14% (4.4 MtC) for technical and cost-effective potential, respectively. When recycling is included in Case B, overall technical potential energy savings increase to 37% (1215 PJ) while cost-effective energy savings potential is 16%. Increasing paper recycling to high levels (Case B) is nearly cost-effective assuming a cut-off for cost-effectiveness of a simple payback period of 3 years. If this measure is included, then

  17. Energy Prices and Internal Costs in Croatian Energy System Restructuring

    International Nuclear Information System (INIS)

    Potocnik, V. , Magdic, M.

    1995-01-01

    After social and political changes in 1990, energy prices in Croatia have been getting closer to the West European averages, faster than in the most European countries in transition. The energy prices for industry are almost at the West European level, while the energy prices of electricity and natural gas for households and those of the gasoline are well behind. If the population purchasing power parity (PPP) is taken into account, these relations change. While the internalization of external energy costs is under way in the developed world, it has not practically started yet in Croatia. The Croatian energy system restructuring shall require gradual adjustment of energy prices, together with multistage internalization of external energy costs. (author). 6 refs., 3 tabs., 2 figs

  18. Understanding Cost-Effectiveness of Energy Efficiency Programs

    Science.gov (United States)

    Discusses the five standard tests used to assess the cost-effectiveness of energy efficiency, how states are using these tests, and how the tests can be used to determine the cost-effectiveness of energy efficiency measures.

  19. Long-term cost targets for nuclear energy

    International Nuclear Information System (INIS)

    Rogner, H.H.; McDonald, A.

    2004-01-01

    In 2000 the International Atomic Energy Agency (IAEA) began the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) to help guide nuclear R and D strategies targeted on anticipated mid-century energy system needs. One part of INPRO seeks to develop cost targets for new designs to be competitive in mid-century markets. The starting point was the 40 scenarios of the Special Report on Emissions Scenarios (SRES) of the Intergovernmental Panel on Climate Change. This paper summarizes four of the SRES scenarios, one from each of the four SRES scenario families. It discusses their implications for nuclear energy, including cost targets, and develops for each an 'aggressive nuclear' variant. The aggressive nuclear variants estimate the potential market for nuclear energy if, by improving faster than assumed by the SRES authors, nuclear energy can make inroads into vulnerable market shares projected for its competitors. In addition to projected demands for nuclear generated electricity, hydrogen and heat, the aggressive variants include prospective demand for nuclear desalination and use in upgrading fossil fuels. The paper then presents learning rates and implied cost targets consistent with the aggressive nuclear variants of the SRES scenarios. One provocative initial result is that many of the scenarios with substantial nuclear expansion do not seem to require big reductions in nuclear investment costs. One interpretation discussed at the end of the paper highlights the difference between cost reductions consistent with long-term energy system optimization based on perfect foresight, and cost reductions necessary to attract private investment in today's 'deregulating' and uncertain energy markets. (orig.)

  20. Costs comparison of electric energy in Brazil

    International Nuclear Information System (INIS)

    Goncalves, D.; Menegassi, J.

    1981-01-01

    A cost comparison study of various sources of electric energy generation was performed using uniform analysis criteria. The results indicate higher costs for coal, followed by nuclear and hidro. It was verified that presently, large hidro-power plants can only be located far from the load centers, with increasing costs of hidro-power energy in Brazil. These costs become higher than the nuclear plant if the hidro plant is located at distances exceeding 1000 Km. (Author) [pt

  1. Control Motion Approach of a Lower Limb Orthosis to Reduce Energy Consumption

    Directory of Open Access Journals (Sweden)

    Daniel Sanz-Merodio

    2012-12-01

    Full Text Available By analysing the dynamic principles of the human gait, an economic gait-control analysis is performed, and passive elements are included to increase the energy efficiency in the motion control of active orthoses. Traditional orthoses use position patterns from the clinical gait analyses (CGAs of healthy people, which are then de-normalized and adjusted to each user. These orthoses maintain a very rigid gait, and their energy cost is very high, reducing the autonomy of the user. First, to take advantage of the inherent dynamics of the legs, a state machine pattern with different gains in each state is applied to reduce the actuator energy consumption. Next, different passive elements, such as springs and brakes in the joints, are analysed to further reduce energy consumption. After an off-line parameter optimization and a heuristic improvement with genetic algorithms, a reduction in energy consumption of 16.8% is obtained by applying a state machine control pattern, and a reduction of 18.9% is obtained by using passive elements. Finally, by combining both strategies, a more natural gait is obtained, and energy consumption is reduced by 24.6% compared with a pure CGA pattern.

  2. Cost of photovoltaic energy systems as determined by balance-of-system costs

    Science.gov (United States)

    Rosenblum, L.

    1978-01-01

    The effect of the balance-of-system (BOS), i.e., the total system less the modules, on photo-voltaic energy system costs is discussed for multikilowatt, flat-plate systems. Present BOS costs are in the range of 10 to 16 dollars per peak watt (1978 dollars). BOS costs represent approximately 50% of total system cost. The possibility of future BOS cost reduction is examined. It is concluded that, given the nature of BOS costs and the lack of comprehensive national effort focussed on cost reduction, it is unlikely that BOS costs will decline greatly in the next several years. This prognosis is contrasted with the expectations of the Department of Energy National Photovoltaic Program goals and pending legislation in the Congress which require a BOS cost reduction of an order of magnitude or more by the mid-1980s.

  3. Energy and cost associated with ventilating office buildings in a tropical climate.

    Science.gov (United States)

    Rim, Donghyun; Schiavon, Stefano; Nazaroff, William W

    2015-01-01

    Providing sufficient amounts of outdoor air to occupants is a critical building function for supporting occupant health, well-being and productivity. In tropical climates, high ventilation rates require substantial amounts of energy to cool and dehumidify supply air. This study evaluates the energy consumption and associated cost for thermally conditioning outdoor air provided for building ventilation in tropical climates, considering Singapore as an example locale. We investigated the influence on energy consumption and cost of the following factors: outdoor air temperature and humidity, ventilation rate (L/s per person), indoor air temperature and humidity, air conditioning system coefficient of performance (COP), and cost of electricity. Results show that dehumidification of outdoor air accounts for more than 80% of the energy needed for building ventilation in Singapore's tropical climate. Improved system performance and/or a small increase in the indoor temperature set point would permit relatively large ventilation rates (such as 25 L/s per person) at modest or no cost increment. Overall, even in a thermally demanding tropical climate, the energy cost associated with increasing ventilation rate up to 25 L/s per person is less than 1% of the wages of an office worker in an advanced economy like Singapore's. This result implies that the benefits of increasing outdoor air ventilation rate up to 25 L/s per person--which is suggested to provide for productivity increases, lower sick building syndrome symptom prevalence, and reduced sick leave--can be much larger than the incremental cost of ventilation.

  4. Energy-Recovery Pressure-Reducer in District Heating System

    Directory of Open Access Journals (Sweden)

    Dariusz Borkowski

    2018-06-01

    Full Text Available Already existing man-made infrastructures that create water flow and unused pressure are interesting energy sources to which micro-hydropower plants can be applied. Apart from water supply systems (WSSs, which are widely described in the literature, significant hydropower potential can also be found in district heating systems (DHSs. In this paper, a prototype, a so-called energy-recovery pressure-reducer (ERPR, utilized for a DHS, is presented. It consisted of a pump as a turbine coupled to a permanent magnet synchronous generator (PMSG. The latter was connected to the power grid through the power electronic unit (PEU. The variable-speed operation allowed one to modify the turbine characteristics to match the substation’s hydraulic conditions. The proposed ERPR device could be installed in series to the existing classic pressure reducing valve (PRV as an independent device that reduces costs and simplifies system installation. The test results of the prototype system located in a substation of Cracow’s DHS are presented. The steady-state curves and regulation characteristics show the prototype’s operating range and efficiency. In this study, the pressure-reducer impact on the electrical and hydraulic systems, and on the environment, were analyzed. The operation tests during the annual heating season revealed an average system’s efficiency of 49%.

  5. Reduce operational cost and extend the life of pipeline infrastructure by automating remote cathodic protection systems

    Energy Technology Data Exchange (ETDEWEB)

    Rosado, Elroy [Freewave Technologies, Inc., Boulder, CO (United States). Latin America

    2009-07-01

    Energy and Pipeline Companies wrestle to control operating costs largely affected by new government regulations, ageing buried metal assets, rising steel prices, expanding pipeline operations, new interference points, HCA encroachment, restrictive land use policies, heightened network security, and an ageing soon-to-retire work force. With operating costs on the rise, seemingly out of control, many CP and Operations Professionals look to past best practices in cost containment through automation. Many companies achieve solid business results through deployment of telemetry and SCADA automation of remote assets and now hope to expand this success to further optimize operations by automating remote cathodic protection systems. This presentation will provide examples of how new remote cathodic protection systems are helping energy and pipeline companies address the growing issue of the aging pipeline infrastructure and reduce their costs while optimizing their operations. (author)

  6. The effect of ankle foot orthosis stiffness on the energy cost of walking: a simulation study.

    Science.gov (United States)

    Bregman, D J J; van der Krogt, M M; de Groot, V; Harlaar, J; Wisse, M; Collins, S H

    2011-11-01

    In stroke and multiple sclerosis patients, gait is frequently hampered by a reduced ability to push-off with the ankle caused by weakness of the plantar-flexor muscles. To enhance ankle push-off and to decrease the high energy cost of walking, spring-like carbon-composite Ankle Foot Orthoses are frequently prescribed. However, it is unknown what Ankle Foot Orthoses stiffness should be used to obtain the most efficient gait. The aim of this simulation study was to gain insights into the effect of variation in Ankle Foot Orthosis stiffness on the amount of energy stored in the Ankle Foot Orthosis and the energy cost of walking. We developed a two-dimensional forward-dynamic walking model with a passive spring at the ankle representing the Ankle Foot Orthosis and two constant torques at the hip for propulsion. We varied Ankle Foot Orthosis stiffness while keeping speed and step length constant. We found an optimal stiffness, at which the energy delivered at the hip joint was minimal. Energy cost decreased with increasing energy storage in the ankle foot orthosis, but the most efficient gait did not occur with maximal energy storage. With maximum storage, push-off occurred too late to reduce the impact of the contralateral leg with the floor. Maximum return prior to foot strike was also suboptimal, as push-off occurred too early and its effects were subsequently counteracted by gravity. The optimal Ankle Foot Orthosis stiffness resulted in significant push-off timed just prior to foot strike and led to greater ankle plantar-flexion velocity just before contralateral foot strike. Our results suggest that patient energy cost might be reduced by the proper choice of Ankle Foot Orthosis stiffness. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Socio-economic and Engineering Assessments of Renewable Energy Cost Reduction Potential

    Science.gov (United States)

    Seel, Joachim

    energy applications: Wind energy supply has grown rapidly over the last decade. However, the long-term contribution of wind to future energy supply, and the degree to which policy support is necessary to motivate higher levels of deployment, depends on the future costs of both onshore and offshore wind. Here, I summarize the results of an expert elicitation survey of 163 of the world's foremost wind experts, aimed at better understanding future costs and technology advancement possibilities. Results suggest significant opportunities for cost reductions, but also underlying uncertainties. Costs could be even lower: experts predict a 10% chance that reductions will be more than 40% by 2030 and more than 50% by 2050. The main identified drivers for near term cost reductions are rotor-related advancements and taller towers for onshore installations, fixed-bottom offshore turbines can benefit from an upscaling in generator capacity, streamlined foundation design and reduced financing costs, while floating offshore turbines require further progress in buoyant support structure design and installation process efficiencies. Insights gained through this expert elicitation complement other tools for evaluating cost-reduction potential, and help inform policy, planning, R&D, and industry strategy. (Abstract shortened by ProQuest.).

  8. Barriers to Building Energy Efficiency (BEE) promotion: A transaction costs perspective

    Science.gov (United States)

    Qian Kun, Queena

    Worldwide, buildings account for a surprisingly high 40% of global energy consumption, and the resulting carbon footprint significantly exceeds that of all forms of transportation combined. Large and attractive opportunities exist to reduce buildings' energy use at lower costs and higher returns than in other sectors. This thesis analyzes the concerns of the market stakeholders, mainly real estate developers and end-users, in terms of transaction costs as they make decisions about investing in Building Energy Efficiency (BEE). It provides a detailed analysis of the current situation and future prospects for BEE adoption by the market's stakeholders. It delineates the market and lays out the economic and institutional barriers to the large-scale deployment of energy-efficient building techniques. The aim of this research is to investigate the barriers raised by transaction costs that hinder market stakeholders from investing in BEES. It explains interactions among stakeholders in general and in the specific case of Hong Kong as they consider transaction costs. It focuses on the influence of transaction costs on the decision-making of the stakeholders during the entire process of real estate development. The objectives are: 1) To establish an analytical framework for understanding the barriers to BEE investment with consideration of transaction costs; 2) To build a theoretical game model of decision making among the BEE market stakeholders; 3) To study the empirical data from questionnaire surveys of building designers and from focused interviews with real estate developers in Hong Kong; 4) To triangulate the study's empirical findings with those of the theoretical model and analytical framework. The study shows that a coherent institutional framework needs to be established to ensure that the design and implementation of BEE policies acknowledge the concerns of market stakeholders by taking transaction costs into consideration. Regulatory and incentive options

  9. Costs of renewable energies in France. Release 2016

    International Nuclear Information System (INIS)

    Guillerminet, Marie-Laure; Marchal, David; Gerson, Raphael; Berrou, Yolene; Grouzard, Patrice

    2016-12-01

    For each renewable energy, this study reports the assessment of the range of the theoretical variation of costs with respect to the most important parameters of the concerned sector. Low range notably corresponds to particularly favourable financing modalities added to a good field quality and to low investment costs. At the opposite, the capital cost is particularly high for high ranges. Thus, after a presentation of the adopted methodology, the report addresses the costs of electric power generation for on-shore wind energy, offshore wind energy, sea hydraulics, photovoltaic, thermodynamic solar, and geothermal energy. The next part addresses heat production costs in the case of individuals (biomass, individual thermal solar, individual heat pumps) and of collective housing and office and industrial buildings (collective biomass with or without heat network, industrial biomass, thermal solar in collective housing of in network, collective geothermal heat pumps, deep geothermal energy). The fourth chapter addresses the cost of power and heat production by co-generation (biomass co-generation, methanization). Appendices provide computation hypotheses, and reference data

  10. Cutting costs by achieving energy efficiency using monitoring, targeting and teamwork

    Energy Technology Data Exchange (ETDEWEB)

    Dittburner, D. [Unilever Canada, Toronto, ON (Canada)

    2004-07-01

    Unilever is a world leader of consumer goods with annual sales of $70 billion. This paper focuses on energy management projects developed at Unilever's Rexdale Plant, where 180 million pounds of edible oils and margarine are produced annually. The project is a response to corporate and market pressures to reduce costs. An overview of Unilever's relationship with Natural Resources Canada was provided. Results of the overall project were highlighted and included: $3 million in annual savings from increased efficiency in operations and equipment retrofits. An outline of the energy team at Unilever was presented, with their mission statement, rules and achievements, as well the company's overall goal of total productive manufacturing. A list of awards and financial incentives was presented, as well as details of financial savings incurred at the Rexdale Plant. Total energy reductions were presented, with a natural gas year to year comparison and utility to production ratios from 1999 to the present. A statement concerning the issue of corporate support by the vice president was provided. Seven steps to savings were presented, as well as details of the company's implementation of the steps. Details of the extended team involved in the project were provided, as well as extensive details about the employee awareness program instigated by the company, including a database of ideas achieved since 2001, as well as details of specific projects accomplished, with estimated savings for each project. An outline of the company's business model and methodology was presented, along with details of reduced costs, risk and improved management and communications. An outline of scoping studies was presented as well as a flow chart of projects and target-setting goals. Success factors were reviewed. Montage applications included energy management; performance contracting; energy forecasting; emissions and waste minimization; and cost allocation. tabs., figs.

  11. 2015 Cost of Wind Energy Review

    Energy Technology Data Exchange (ETDEWEB)

    Moné, Christopher [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hand, Maureen [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bolinger, Mark [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Rand, Joseph [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Heimiller, Donna [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ho, Jonathan [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-06-27

    This report uses representative utility-scale projects to estimate the levelized cost of energy (LCOE) for land-based and offshore wind plants in the United States. Data and results detailed here are derived from 2015 commissioned plants. More specifically, analysis detailed here relies on recent market data and state-of-the-art modeling capabilities to maintain an up-to-date understanding of wind energy cost trends and drivers. It is intended to provide insight into current component-level costs as well as a basis for understanding variability in LCOE across the industry. This publication reflects the fifth installment of this annual report.

  12. Starship Sails Propelled by Cost-Optimized Directed Energy

    Science.gov (United States)

    Benford, J.

    Microwave and laser-propelled sails are a new class of spacecraft using photon acceleration. It is the only method of interstellar flight that has no physics issues. Laboratory demonstrations of basic features of beam-driven propulsion, flight, stability (`beam-riding'), and induced spin, have been completed in the last decade, primarily in the microwave. It offers much lower cost probes after a substantial investment in the launcher. Engineering issues are being addressed by other applications: fusion (microwave, millimeter and laser sources) and astronomy (large aperture antennas). There are many candidate sail materials: carbon nanotubes and microtrusses, beryllium, graphene, etc. For acceleration of a sail, what is the cost-optimum high power system? Here the cost is used to constrain design parameters to estimate system power, aperture and elements of capital and operating cost. From general relations for cost-optimal transmitter aperture and power, system cost scales with kinetic energy and inversely with sail diameter and frequency. So optimal sails will be larger, lower in mass and driven by higher frequency beams. Estimated costs include economies of scale. We present several starship point concepts. Systems based on microwave, millimeter wave and laser technologies are of equal cost at today's costs. The frequency advantage of lasers is cancelled by the high cost of both the laser and the radiating optic. Cost of interstellar sailships is very high, driven by current costs for radiation source, antennas and especially electrical power. The high speeds necessary for fast interstellar missions make the operating cost exceed the capital cost. Such sailcraft will not be flown until the cost of electrical power in space is reduced orders of magnitude below current levels.

  13. The difference between energy consumption and energy cost: Modelling energy tariff structures for water resource recovery facilities.

    Science.gov (United States)

    Aymerich, I; Rieger, L; Sobhani, R; Rosso, D; Corominas, Ll

    2015-09-15

    The objective of this paper is to demonstrate the importance of incorporating more realistic energy cost models (based on current energy tariff structures) into existing water resource recovery facilities (WRRFs) process models when evaluating technologies and cost-saving control strategies. In this paper, we first introduce a systematic framework to model energy usage at WRRFs and a generalized structure to describe energy tariffs including the most common billing terms. Secondly, this paper introduces a detailed energy cost model based on a Spanish energy tariff structure coupled with a WRRF process model to evaluate several control strategies and provide insights into the selection of the contracted power structure. The results for a 1-year evaluation on a 115,000 population-equivalent WRRF showed monthly cost differences ranging from 7 to 30% when comparing the detailed energy cost model to an average energy price. The evaluation of different aeration control strategies also showed that using average energy prices and neglecting energy tariff structures may lead to biased conclusions when selecting operating strategies or comparing technologies or equipment. The proposed framework demonstrated that for cost minimization, control strategies should be paired with a specific optimal contracted power. Hence, the design of operational and control strategies must take into account the local energy tariff. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Reducing Operating Room Costs Through Real-Time Cost Information Feedback: A Pilot Study.

    Science.gov (United States)

    Tabib, Christian H; Bahler, Clinton D; Hardacker, Thomas J; Ball, Kevin M; Sundaram, Chandru P

    2015-08-01

    To create a protocol for providing real-time operating room (OR) cost feedback to surgeons. We hypothesize that this protocol will reduce costs in a responsible way without sacrificing quality of care. All OR costs were obtained and recorded for robot-assisted partial nephrectomy and laparoscopic donor nephrectomy. Before the beginning of this project, costs pertaining to the 20 most recent cases were analyzed. Items were identified from previous cases as modifiable for replacement or omission. Timely feedback of total OR costs and cost of each item used was provided to the surgeon after each case, and costs were analyzed. A cost analysis of the robot-assisted partial nephrectomy before the washout period indicates expenditures of $5243.04 per case. Ten recommended modifiable items were found to have an average per case cost of $1229.33 representing 23.4% of the total cost. A postwashout period cost analysis found the total OR cost decreased by $899.67 (17.2%) because of changes directly related to the modifiable items. Therefore, 73.2% of the possible identified savings was realized. The same stepwise approach was applied to laparoscopic donor nephrectomies. The average total cost per case before the washout period was $3530.05 with $457.54 attributed to modifiable items. After the washout period, modifiable items costs were reduced by $289.73 (8.0%). No complications occurred in the donor nephrectomy cases while one postoperative complication occurred in the partial nephrectomy group. Providing surgeons with feedback related to OR costs may lead to a change in surgeon behavior and decreased overall costs. Further studies are needed to show equivalence in patient outcomes.

  15. Characterizing Synergistic Water and Energy Efficiency at the Residential Scale Using a Cost Abatement Curve Approach

    Science.gov (United States)

    Stillwell, A. S.; Chini, C. M.; Schreiber, K. L.; Barker, Z. A.

    2015-12-01

    Energy and water are two increasingly correlated resources. Electricity generation at thermoelectric power plants requires cooling such that large water withdrawal and consumption rates are associated with electricity consumption. Drinking water and wastewater treatment require significant electricity inputs to clean, disinfect, and pump water. Due to this energy-water nexus, energy efficiency measures might be a cost-effective approach to reducing water use and water efficiency measures might support energy savings as well. This research characterizes the cost-effectiveness of different efficiency approaches in households by quantifying the direct and indirect water and energy savings that could be realized through efficiency measures, such as low-flow fixtures, energy and water efficient appliances, distributed generation, and solar water heating. Potential energy and water savings from these efficiency measures was analyzed in a product-lifetime adjusted economic model comparing efficiency measures to conventional counterparts. Results were displayed as cost abatement curves indicating the most economical measures to implement for a target reduction in water and/or energy consumption. These cost abatement curves are useful in supporting market innovation and investment in residential-scale efficiency.

  16. A fuzzy levelised energy cost method for renewable energy technology assessment

    International Nuclear Information System (INIS)

    Wright, Daniel G.; Dey, Prasanta K.; Brammer, John G.

    2013-01-01

    Renewable energy project development is highly complex and success is by no means guaranteed. Decisions are often made with approximate or uncertain information yet the current methods employed by decision-makers do not necessarily accommodate this. Levelised energy costs (LEC) are one such commonly applied measure utilised within the energy industry to assess the viability of potential projects and inform policy. The research proposes a method for achieving this by enhancing the traditional discounting LEC measure with fuzzy set theory. Furthermore, the research develops the fuzzy LEC (F-LEC) methodology to incorporate the cost of financing a project from debt and equity sources. Applied to an example bioenergy project, the research demonstrates the benefit of incorporating fuzziness for project viability, optimal capital structure and key variable sensitivity analysis decision-making. The proposed method contributes by incorporating uncertain and approximate information to the widely utilised LEC measure and by being applicable to a wide range of energy project viability decisions. -- Highlights: •Proposes a fuzzy levelised energy cost (F-LEC) methodology to support energy project development. •Incorporates the terms and cost of project finance into the F-LEC method. •Applies the F-LEC method to an example bioenergy project development case

  17. 2011 Cost of Wind Energy Review

    Energy Technology Data Exchange (ETDEWEB)

    Tegen, S.; Lantz, E.; Hand, M.; Maples, B.; Smith, A.; Schwabe, P.

    2013-03-01

    This report describes the levelized cost of energy (LCOE) for a typical land-based wind turbine installed in the United States in 2011, as well as the modeled LCOE for a fixed-bottom offshore wind turbine installed in the United States in 2011. Each of the four major components of the LCOE equation are explained in detail, such as installed capital cost, annual energy production, annual operating expenses, and financing, and including sensitivity ranges that show how each component can affect LCOE. These LCOE calculations are used for planning and other purposes by the U.S. Department of Energy's Wind Program.

  18. Manual for Reducing Educational Unit Costs in Latin American Countries.

    Science.gov (United States)

    Centro Multinacional de Investigacion Educativa, San Jose (Costa Rica).

    Designed for educational administrators, this manual provides suggestions for reducing educational unit costs in Latin America without reducing the quality of the education. Chapter one defines unit cost concepts and compares the costs of the Latin American countries. Chapter two deals with the different policies which could affect the principal…

  19. Estimating the cost of saving electricity through U.S. utility customer-funded energy efficiency programs

    International Nuclear Information System (INIS)

    Hoffman, Ian M.; Goldman, Charles A.; Rybka, Gregory; Leventis, Greg; Schwartz, Lisa; Sanstad, Alan H.; Schiller, Steven

    2017-01-01

    The program administrator and total cost of saved energy allow comparison of the cost of efficiency across utilities, states, and program types, and can identify potential performance improvements. Comparing program administrator cost with the total cost of saved energy can indicate the degree to which programs leverage investment by participants. Based on reported total costs and savings information for U.S. utility efficiency programs from 2009 to 2013, we estimate the savings-weighted average total cost of saved electricity across 20 states at $0.046 per kilowatt-hour (kW h), comparing favorably with energy supply costs and retail rates. Programs targeted on the residential market averaged $0.030 per kW h compared to $0.053 per kW h for non-residential programs. Lighting programs, with an average total cost of $0.018 per kW h, drove lower savings costs in the residential market. We provide estimates for the most common program types and find that program administrators and participants on average are splitting the costs of efficiency in half. More consistent, standardized and complete reporting on efficiency programs is needed. Differing definitions and quantification of costs, savings and savings lifetimes pose challenges for comparing program results. Reducing these uncertainties could increase confidence in efficiency as a resource among planners and policymakers. - Highlights: • The cost of saved energy allows comparisons among energy resource investments. • Findings from the most expansive collection yet of total energy efficiency program costs. • The weighted average total cost of saved electricity was $0.046 for 20 states in 2009–2013. • Averages in the residential and non-residential sectors were $0.030 and $0.053 per kW h, respectively. • Results strongly indicate need for more consistent, reliable and complete reporting on efficiency programs.

  20. A novel minimum cost maximum power algorithm for future smart home energy management.

    Science.gov (United States)

    Singaravelan, A; Kowsalya, M

    2017-11-01

    With the latest development of smart grid technology, the energy management system can be efficiently implemented at consumer premises. In this paper, an energy management system with wireless communication and smart meter are designed for scheduling the electric home appliances efficiently with an aim of reducing the cost and peak demand. For an efficient scheduling scheme, the appliances are classified into two types: uninterruptible and interruptible appliances. The problem formulation was constructed based on the practical constraints that make the proposed algorithm cope up with the real-time situation. The formulated problem was identified as Mixed Integer Linear Programming (MILP) problem, so this problem was solved by a step-wise approach. This paper proposes a novel Minimum Cost Maximum Power (MCMP) algorithm to solve the formulated problem. The proposed algorithm was simulated with input data available in the existing method. For validating the proposed MCMP algorithm, results were compared with the existing method. The compared results prove that the proposed algorithm efficiently reduces the consumer electricity consumption cost and peak demand to optimum level with 100% task completion without sacrificing the consumer comfort.

  1. Energy storage systems cost update : a study for the DOE Energy Storage Systems Program.

    Energy Technology Data Exchange (ETDEWEB)

    Schoenung, Susan M. (Longitude 122 West, Menlo Park, CA)

    2011-04-01

    This paper reports the methodology for calculating present worth of system and operating costs for a number of energy storage technologies for representative electric utility applications. The values are an update from earlier reports, categorized by application use parameters. This work presents an update of energy storage system costs assessed previously and separately by the U.S. Department of Energy (DOE) Energy Storage Systems Program. The primary objective of the series of studies has been to express electricity storage benefits and costs using consistent assumptions, so that helpful benefit/cost comparisons can be made. Costs of energy storage systems depend not only on the type of technology, but also on the planned operation and especially the hours of storage needed. Calculating the present worth of life-cycle costs makes it possible to compare benefit values estimated on the same basis.

  2. 2016 Cost of Wind Energy Review

    Energy Technology Data Exchange (ETDEWEB)

    Stehly, Tyler J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Heimiller, Donna M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Scott, George N. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-12-29

    This report uses representative utility-scale projects to estimate the levelized cost of energy (LCOE) for land-based and offshore wind power plants in the United States. Data and results detailed here are derived from 2016 commissioned plants. More specifically, analysis detailed here relies on recent market data and state-of-the-art modeling capabilities to maintain an up-to-date understanding of wind energy cost trends and drivers. This report is intended to provide insight into current component-level costs as well as a basis for understanding variability in LCOE across the country. This publication represents the sixth installment of this annual report.

  3. Facility Management as a Way of Reducing Costs in Transport Companies

    Science.gov (United States)

    Matusova, Dominika; Gogolova, Martina

    2017-10-01

    For facility management exists a several interpretations. These interpretations emerged progressively. At the time of the notion of facility management was designed to manage an administrative building, in the United States (US). They can ensure their operation and maintenance. From the US, this trend is further moved to Europe and now it start becoming a current and actual topic also in Slovakia. Facility management is contractually agreed scheme of services, semantically recalls traditional building management. There by finally pushed for activities related to real estates. For facility management is fundamental - certification and certification systems. Therefore, is essential to know, the cost structure of certification. The most commonly occurring austerity measures include: heat pumps, use of renewable energy, solar panels and water savings. These measures can reduce the cost.

  4. Low cost energy in Canada: The view from downstream

    International Nuclear Information System (INIS)

    Irving, K.

    1993-01-01

    The key cost determinants of energy in Canada are analyzed and recommendations are made to ensure the competitiveness of Canadian energy costs and energy-consuming industries in the North American and world markets. Oil supplies 45% of world energy and has a key role in determining prices of all other energy forms since it serves as an incremental source of energy: its consumption changes according to economic growth, changes in weather patterns, and other factors. North America currently accounts for about a third of world oil consumption. North American oil demand is expected to remain flat over the next few decades. As Canada only produces ca 3% of world oil supply, it cannot determine oil prices. However, with an efficient downstream industry, Canada can influence the end-user price of energy. The cost structure of refined products in Canada is analyzed. The cost of raw materials is the single biggest determinant of the final product cost, followed by taxes, operating costs, and profit margin. For gasoline in Ontario, taxes account for half the retail cost, crude oil prices ca 30%, and refining costs ca 4%. Refining costs comprise about two thirds labor costs and one third energy costs. Refiner margins have not exceeded 2 cents/l since 1981, creating reluctance to invest in the refining sector. By 1994, some 200,000 bbl/d of refining capacity is expected to be shut down in Canada. Compared to refineries in the USA, Canadian refineries are smaller and have a much lower capacity to upgrade residual fuel oil to light products. Future challenges to the industry include a projected need for $5 billion in investment, largely to fund new environmental initiatives. Such an investment cannot be met through current industry profits. 12 figs., 3 tabs

  5. Renewable Energy Cost Modeling. A Toolkit for Establishing Cost-Based Incentives in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Gifford, Jason S. [Sustainable Energy Advantage, LLC, Framington, MA (United States); Grace, Robert C. [Sustainable Energy Advantage, LLC, Framington, MA (United States); Rickerson, Wilson H. [Meister Consultants Group, Inc., Boston, MA (United States)

    2011-05-01

    This report serves as a resource for policymakers who wish to learn more about levelized cost of energy (LCOE) calculations, including cost-based incentives. The report identifies key renewable energy cost modeling options, highlights the policy implications of choosing one approach over the other, and presents recommendations on the optimal characteristics of a model to calculate rates for cost-based incentives, FITs, or similar policies. These recommendations shaped the design of NREL's Cost of Renewable Energy Spreadsheet Tool (CREST), which is used by state policymakers, regulators, utilities, developers, and other stakeholders to assist with analyses of policy and renewable energy incentive payment structures. Authored by Jason S. Gifford and Robert C. Grace of Sustainable Energy Advantage LLC and Wilson H. Rickerson of Meister Consultants Group, Inc.

  6. Listen, wind energy costs nothing

    International Nuclear Information System (INIS)

    Poizat, F.

    2008-09-01

    The author discusses the affirmation of the ADEME and the Environmental and sustainable development Ministry: the french wind park will costs in 2008 0,5 euro year for each household. He criticizes strongly this calculi, bringing many data on energy real cost today and in the next 10 years. Many references are provided. (A.L.B.)

  7. Methodology for Evaluating Cost-effectiveness of Commercial Energy Code Changes

    Energy Technology Data Exchange (ETDEWEB)

    Hart, Philip R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Liu, Bing [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-01-31

    This document lays out the U.S. Department of Energy’s (DOE’s) method for evaluating the cost-effectiveness of energy code proposals and editions. The evaluation is applied to provisions or editions of the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) Standard 90.1 and the International Energy Conservation Code (IECC). The method follows standard life-cycle cost (LCC) economic analysis procedures. Cost-effectiveness evaluation requires three steps: 1) evaluating the energy and energy cost savings of code changes, 2) evaluating the incremental and replacement costs related to the changes, and 3) determining the cost-effectiveness of energy code changes based on those costs and savings over time.

  8. 2010 Cost of Wind Energy Review

    Energy Technology Data Exchange (ETDEWEB)

    Tegen, S. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hand, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Maples, B. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lantz, E. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Schwabe, P. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Smith, A. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2012-04-01

    This document provides a detailed description of NREL's levelized cost of wind energy equation, assumptions, and results in 2010, including historical cost trends and future projections for land-based and offshore utility-scale wind.

  9. 2010 Cost of Wind Energy Review

    Energy Technology Data Exchange (ETDEWEB)

    Tegen, S.; Hand, M.; Maples, B.; Lantz, E.; Schwabe, P.; Smith, A.

    2012-04-01

    This document provides a detailed description of NREL's levelized cost of wind energy equation, assumptions and results in 2010, including historical cost trends and future projections for land-based and offshore utility-scale wind.

  10. DEPENDENCE OF ENERGY EFFICIENCY AND COST OF PRODUCTION

    Directory of Open Access Journals (Sweden)

    D. Sklyarov

    2016-01-01

    Full Text Available Economic systems exist on condition of receipt and spending of energy. Energy consumption is a necessary condition for the existence and functioning of the economic systems of any scale: macroeconomics, microeconomics, regional economy or the world economy.The economic system operates on the scale at which it is able to produce energy and get access to energy. Moreover, receipt and consumption of energy in the operation of the economic system is mainly determined by, the level of energy production from energy sources, since this level is determined by the level of energy consumption by industries and enterprises of the economy.Currently, the economic system does not produce energy in reserve. Thus, the question of energy effi ciency and energy saving was always acute.The article describes the energy efficiency and energy saving effect on the cost of production. Were used two methods: “costs and release” matrix and “price - value added” matrix. The result is the equation of dependence of energy efficiency and costs.

  11. Energy Efficiency Improvement and Cost Saving Opportunities for Cement Making An ENERGY STAR® Guide for Energy and Plant Managers

    NARCIS (Netherlands)

    Worrell, E.; Kermeli, Katerina; Galitsky, Christina

    The cost of energy as part of the total production costs in the cement industry is significant, typically at 20 to 40% of operational costs, warranting attention for energy efficiency to improve the bottom line. Historically, energy intensity has declined, although more recently energy intensity

  12. 76 FR 13168 - Energy Conservation Program for Consumer Products: Representative Average Unit Costs of Energy

    Science.gov (United States)

    2011-03-10

    ... average unit costs of residential energy in a Federal Register notice entitled, ``Energy Conservation... DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy Energy Conservation Program for Consumer Products: Representative Average Unit Costs of Energy AGENCY: Office of Energy Efficiency...

  13. Reducing maintenance costs

    International Nuclear Information System (INIS)

    Zaiss, W.; Reuschle, K.; Baier, B.

    2002-01-01

    The increasingly more expensive maintenance measures, cuts in the cost budget, and the loss of know-how on the part of vendors all require a change of policy with respect to maintenance concepts of the part of operators. This also applies to the existing valve concepts, the drives included. Under these aspects, the current drive, which is self-actuated and actuated by outside media, for a parallel-plate valve of a nomial width of 700 was reconsidered. The effort served to reduce maintenance costs and, at the same time, simplify the drive concept as well as cut back on the number of in-service inspections. Moreover, the number of active components were to be minimized and installation conditions in the plant were to be improved. When the boundary conditions to be observed with respect to process technology had been laid down, the competent technical department developed a concept of modification of the drive. A major constituent part was the demonstration of the functioning capability of the new drive under accident conditions. It was achieved mainly by an analytical approach. In the resultant drive concept, the same control valves are employed to actuate a driving cylinder by means of self-actuation or by an outside medium as a function of pressure. (orig.) [de

  14. Cost, Energy, and Environmental Impact of Automated Electric Taxi Fleets in Manhattan.

    Science.gov (United States)

    Bauer, Gordon S; Greenblatt, Jeffery B; Gerke, Brian F

    2018-04-17

    Shared automated electric vehicles (SAEVs) hold great promise for improving transportation access in urban centers while drastically reducing transportation-related energy consumption and air pollution. Using taxi-trip data from New York City, we develop an agent-based model to predict the battery range and charging infrastructure requirements of a fleet of SAEVs operating on Manhattan Island. We also develop a model to estimate the cost and environmental impact of providing service and perform extensive sensitivity analysis to test the robustness of our predictions. We estimate that costs will be lowest with a battery range of 50-90 mi, with either 66 chargers per square mile, rated at 11 kW or 44 chargers per square mile, rated at 22 kW. We estimate that the cost of service provided by such an SAEV fleet will be $0.29-$0.61 per revenue mile, an order of magnitude lower than the cost of service of present-day Manhattan taxis and $0.05-$0.08/mi lower than that of an automated fleet composed of any currently available hybrid or internal combustion engine vehicle (ICEV). We estimate that such an SAEV fleet drawing power from the current NYC power grid would reduce GHG emissions by 73% and energy consumption by 58% compared to an automated fleet of ICEVs.

  15. Electric energy costs and firm productivity in the countries of the Pacific Alliance

    Science.gov (United States)

    Camacho, Anamaria

    This paper explores the relation between energy as an input of production and firm-level productivity for Chile, Colombia, Mexico and Peru, all country members of the Pacific Alliance economic bloc. The empirical literature, has explored the impact of infrastructure on productivity; however there is limited analysis on the impact of particular infrastructure variables, such as energy, on productivity at the firm level in Latin America. Therefore, this study conducts a quantitative assessment of the responsiveness of productivity to energy cost and quality for Chile, Colombia, Mexico and Peru. For this, the empirical strategy is to estimate a Cobb-Douglas production function using the World Bank's Enterprise Survey to obtain comparable measures of output and inputs of production. This approach provides estimates of input factor elasticities for all of the factors of production including energy. The results indicate that electric energy costs explain cross-country differences in firm level productivity. For the particular case of Colombia, the country exhibits the lowest capital and labor productivity of the PA, and firm output is highly responsive to changes in energy use. As a result, the evidence suggests that policies reducing electric energy costs are an efficient alternative to increase firm performance, particularly in the case of Colombia.

  16. Impacts of optimum cost effective energy efficiency standards

    International Nuclear Information System (INIS)

    Brancic, A.B.; Peters, J.S.; Arch, M.

    1991-01-01

    Building Codes are increasingly required to be responsive to social and economic policy concerns. In 1990 the State of Connecticut passes An Act Concerning Global Warming, Public Act 90-219, which mandates the revision of the state building code to require that buildings and building elements be designed to provide optimum cost-effective energy efficiency over the useful life of the building. Further, such revision must meet the American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE) Standard 90.1 - 1989. As the largest electric energy supplier in Connecticut, Northeast Utilities (NU) sponsored a pilot study of the cost effectiveness of alternative building code standards for commercial construction. This paper reports on this study which analyzed design and construction means, building elements, incremental construction costs, and energy savings to determine the optimum cost-effective building code standard. Findings are that ASHRAE 90.1 results in 21% energy savings and alternative standards above it result in significant additional savings. Benefit/cost analysis showed that both are cost effective

  17. Reducing Interaction Costs for Self-interested Agents

    Science.gov (United States)

    Zhang, Yunqi; Larson, Kate

    In many multiagent systems, agents are not able to freely interact with each other or with a centralized mechanism. They may be limited in their interactions by cost or by the inherent structure of the system. Using a combinatorial auction application as motivation, we study the impact of interaction costs and structure on the strategic behaviour of self-interested agents. We present a particular model of costly agent-interaction, and argue that self-interested agents may wish to coordinate their actions with their neighbours so as to reduce their individual costs. We highlight the issues that arise in such a setting, propose a cost-sharing mechanism that agents can use, and discuss group coordination procedures. Experimental work validates our model.

  18. Harvesting forest biomass for energy in Minnesota: An assessment of guidelines, costs and logistics

    Science.gov (United States)

    Saleh, Dalia El Sayed Abbas Mohamed

    The emerging market for renewable energy in Minnesota has generated a growing interest in utilizing more forest biomass for energy. However, this growing interest is paralleled with limited knowledge of the environmental impacts and cost effectiveness of utilizing this resource. To address environmental and economic viability concerns, this dissertation has addressed three areas related to biomass harvest: First, existing biomass harvesting guidelines and sustainability considerations are examined. Second, the potential contribution of biomass energy production to reduce the costs of hazardous fuel reduction treatments in these trials is assessed. Third, the logistics of biomass production trials are analyzed. Findings show that: (1) Existing forest related guidelines are not sufficient to allow large-scale production of biomass energy from forest residue sustainably. Biomass energy guidelines need to be based on scientific assessments of how repeated and large scale biomass production is going to affect soil, water and habitat values, in an integrated and individual manner over time. Furthermore, such guidelines would need to recommend production logistics (planning, implementation, and coordination of operations) necessary for a potential supply with the least site and environmental impacts. (2) The costs of biomass production trials were assessed and compared with conventional treatment costs. In these trials, conventional mechanical treatment costs were lower than biomass energy production costs less income from biomass sale. However, a sensitivity analysis indicated that costs reductions are possible under certain site, prescriptions and distance conditions. (3) Semi-structured interviews with forest machine operators indicate that existing fuel reduction prescriptions need to be more realistic in making recommendations that can overcome operational barriers (technical and physical) and planning and coordination concerns (guidelines and communications

  19. Cost Modeling for Fabrication of Direct Drive Inertial Fusion Energy Targets

    International Nuclear Information System (INIS)

    Rickman, William Samuel; Goodin, Daniel T.

    2003-01-01

    Chemical engineering analyses are underway for a commercial-scale [1000-MW(electric)] divinyl benzene foam-based Inertial Fusion Energy (IFE) Target Fabrication Facility (TFF). This facility is designed to supply 500,000, 4-mm-outer diameter targets per day - coated via interfacial polycondensation, dried with supercritical CO 2 , sputter coated with Au and/or Pd, and filled with deuterium-tritium layered at cryogenic temperatures and injected into the fusion chamber. Such targets would be used in a direct-drive IFE power plant.The work uses manufacturing processes being developed in the laboratory, chemical engineering scaleup principles, and established cost-estimating methods. The plant conceptual design includes a process flow diagram, mass and energy balances, equipment sizing and sketches, storage tanks, and facility views.The cost estimate includes both capital and operating costs. Initial results for a TFF dedicated to one 1000-MW(electric) plant indicate that the costs per target are well within the commercially viable range. Larger TFF plants [3000 MW(electric)] are projected to lead to significantly reduced costs per injected target. Additional cost reductions are possible by producing dried, sputter-coated empty shells at a central facility that services multiple power plants.The results indicate that the installed capital cost is about $100 million and the annual operating costs will be about $20 million, for a cost per target of about $0.17 each. These design and cost projections assume that a significant process development and scaleup program is successfully completed for all of the basic unit operations included in the facility

  20. Energy efficiency of residential buildings. Energy consumption and investment costs of different building energy standards; Energieeffizienz von Wohngebaeuden. Energieverbraeuche und Investitionskosten energetischer Gebaeudestandards

    Energy Technology Data Exchange (ETDEWEB)

    Beecken, Christoph; Schulze, Stephan [Bow Ingenieure GmbH, Braunschweig (Germany)

    2011-12-15

    In view of the impending energy transition in Germany, turning away from fossil fuels and atomic power and leading to renewable energy sources, the construction of very energy efficient new buildings gains more and more in importance. Because the saving of energy with efficient buildings offers the highest potential to achieve the energy transition without loss of comfort and also complying with the climate protection target of limitation of the carbon dioxide emission. For new buildings in the initial project planning phase, the client needs qualified consulting concerning a reasonable energy standard for his building. The consulting should comprise the multitude of energy efficiency standards and the related financial incentives and not only cover the minimum standard of the German Building Energy Conservation Regulation EnEV (Energieeinsparverordnung). But the architect can hardly quantify the potentials to reduce energy consumption of buildings considering the multitude of existing standards with multifarious effects on energy consumption, technical requirements and building costs. With the help of an example multi-storey residential building in Hannover, current energy standards for residential buildings are compared. Besides the building construction also the building services like heating, hot water generation and ventilation are considered and the most important results concerning energy consumption and investment costs are compared.

  1. Wind resource assessment and wind energy system cost analysis: Fort Huachuca, Arizona

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, T.L. [Tim Olsen Consulting, Denver, CO (United States); McKenna, E. [National Renewable Energy Lab., Golden, CO (United States)

    1997-12-01

    The objective of this joint DOE and National Renewable Energy Laboratory (NREL) Strategic Environmental Research and Development Program (SERDP) project is to determine whether wind turbines can reduce costs by providing power to US military facilities in high wind areas. In support of this objective, one year of data on the wind resources at several Fort Huachuca sites was collected. The wind resource data were analyzed and used as input to an economic study for a wind energy installation at Fort Huachuca. The results of this wind energy feasibility study are presented in the report.

  2. Costs and Benefits to EU Member States of 2030 Climate and Energy Targets - February 2014

    International Nuclear Information System (INIS)

    2014-01-01

    Costs and Benefits to EU Member States of 2030 Climate and Energy Targets is based on analyses using the POLES-Enerdata model and presents an overview of the main European energy and climate policies: reduction of CO_2 emissions, development of renewable energies, and promotion of energy efficiency. The report looks forward to 2030 and beyond to evaluate possible targets and the goal of maintaining global temperature rise to 2 deg. C. This publication was produced by Enerdata's Global Energy Forecasting team, including the modelling and scenario analysis, within the framework of an external service contract to the UK's Department of Energy and Climate Change. This project looks ahead to 2030. To do this, scenarios were developed using the POLES-Enerdata model, a world energy-economy model that fully describes the energy system and associated GHG emissions. This report analyses the costs and benefits to all EU Member States under different scenarios of the level and type of EU targets defined within a 2030 climate and energy framework. Scenarios include progressively more stringent GHG targets in 2030 (40%, 50%, and 60% reductions compared to 1990), alternative assumptions on access to international credits (0%, 5% and 10% of 1990 emissions), the addition of RES burden shares by Member State, accelerated CCS commercial availability and reduced renewables learning rates. These are the sensitivities commissioned as part of this report; however, they are not a comprehensive range covering all possible outcomes that could arise in reality. What are the costs and benefits to Member States under different scenarios of the level and type of EU targets? The analysis assesses the benefits of different scenarios to improved air quality and health, diversity of energy supply, and reduced costs of meeting longer term emission reduction targets (notably the EU's commitment to reduce emissions by 80-95% by 2050). Relying on more low-carbon, domestic, or diversified sources of

  3. Autonomous Droop Scheme With Reduced Generation Cost

    DEFF Research Database (Denmark)

    Nutkani, Inam Ullah; Loh, Poh Chiang; Wang, Peng

    2014-01-01

    ) of the microgrid. To reduce this TGC without relying on fast communication links, an autonomous droop scheme is proposed here, whose resulting power sharing is decided by the individual DG generation costs. Comparing it with the traditional scheme, the proposed scheme retains its simplicity and it is hence more....... This objective might, however, not suit microgrids well since DGs are usually of different types, unlike synchronous generators. Other factors like cost, efficiency, and emission penalty of each DG at different loading must be considered since they contribute directly to the total generation cost (TGC...

  4. 78 FR 17648 - Energy Conservation Program for Consumer Products: Representative Average Unit Costs of Energy

    Science.gov (United States)

    2013-03-22

    ... Conservation Program for Consumer Products: Representative Average Unit Costs of Energy'', dated April 26, 2012... DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy Energy Conservation Program for Consumer Products: Representative Average Unit Costs of Energy AGENCY: Office of Energy Efficiency...

  5. Analysis of energy efficiency and energy consumption costs: a case study for regional wastewater treatment plant in Malaysia

    Directory of Open Access Journals (Sweden)

    Nor Azuana Ramli

    2017-03-01

    Full Text Available The objective of this study is to analyze the possibilities of increasing energy efficiency in the central region wastewater treatment plant by focusing on two aspects: biogas production and prediction of energy production. The analysis is based on one of the biggest central region wastewater treatment plants in Malaysia. After studying the energy efficiency, which consists of optimization of energy consumption and enhancing gas generation, the prediction of power consumption is performed using an autoregressive integrated moving average (ARIMA model. The prediction results are compared with the linear regression method. Comparison shows that even though the total cost of savings is greater by using linear regression, the prediction through ARIMA is more accurate and has smaller root mean square error. The implementation of these two aspects managed to increase energy efficiency by 10% of energy recovery that could further reduce electricity cost and reduction of sludge cake disposal off site. The study recommends other aspects, such as modification in setting up the frequency of variable speed drive for aerators and blowers and optimizing number of feeds into train unit processes within aeration tanks in increasing energy efficiency.

  6. The Cost of Enforcing Building Energy Codes: Phase 1

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Alison [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Vine, Ed [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Price, Sarah [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sturges, Andrew [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Rosenquist, Greg [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2013-04-01

    The purpose of this literature review is to summarize key findings regarding the costs associated with enforcing building energy code compliance—primarily focusing on costs borne by local government. The review takes into consideration over 150 documents that discuss, to some extent, code enforcement. This review emphasizes those documents that specifically focus on costs associated with energy code enforcement. Given the low rates of building energy code compliance that have been reported in existing studies, as well as the many barriers to both energy code compliance and enforcement, this study seeks to identify the costs of initiatives to improve compliance and enforcement. Costs are reported primarily as presented in the original source. Some costs are given on a per home or per building basis, and others are provided for jurisdictions of a certain size. This literature review gives an overview of state-based compliance rates, barriers to code enforcement, and U.S. Department of Energy (DOE) and key stakeholder involvement in improving compliance with building energy codes. In addition, the processes and costs associated with compliance and enforcement of building energy codes are presented. The second phase of this study, which will be presented in a different report, will consist of surveying 34 experts in the building industry at the national and state or local levels in order to obtain additional cost information, building on the findings from the first phase, as well as recommendations for where to most effectively spend money on compliance and enforcement.

  7. Renewable portfolio standards and cost-effective energy-efficiency investment

    International Nuclear Information System (INIS)

    Mahone, A.; Woo, C.K.; Williams, J.; Horowitz, I.

    2009-01-01

    Renewable portfolio standards (RPSs) and mandates to invest in cost-effective energy efficiency (EE) are increasingly popular policy tools to combat climate change and dependence on fossil fuels. These supply-side and demand-side policies, however, are often uncoordinated. Using California as a case in point, this paper demonstrates that states could improve resource allocation if these two policies were coordinated by incorporating renewable-energy procurement cost into the cost-effectiveness determination for EE investment. In particular, if renewable energy is relatively expensive when compared to conventional energy, increasing the RPS target raises the cost-effective level of EE investment

  8. Cost minimization in a full-scale conventional wastewater treatment plant: associated costs of biological energy consumption versus sludge production.

    Science.gov (United States)

    Sid, S; Volant, A; Lesage, G; Heran, M

    2017-11-01

    Energy consumption and sludge production minimization represent rising challenges for wastewater treatment plants (WWTPs). The goal of this study is to investigate how energy is consumed throughout the whole plant and how operating conditions affect this energy demand. A WWTP based on the activated sludge process was selected as a case study. Simulations were performed using a pre-compiled model implemented in GPS-X simulation software. Model validation was carried out by comparing experimental and modeling data of the dynamic behavior of the mixed liquor suspended solids (MLSS) concentration and nitrogen compounds concentration, energy consumption for aeration, mixing and sludge treatment and annual sludge production over a three year exercise. In this plant, the energy required for bioreactor aeration was calculated at approximately 44% of the total energy demand. A cost optimization strategy was applied by varying the MLSS concentrations (from 1 to 8 gTSS/L) while recording energy consumption, sludge production and effluent quality. An increase of MLSS led to an increase of the oxygen requirement for biomass aeration, but it also reduced total sludge production. Results permit identification of a key MLSS concentration allowing identification of the best compromise between levels of treatment required, biological energy demand and sludge production while minimizing the overall costs.

  9. Costs of reducing nutrient losses in Denmark

    DEFF Research Database (Denmark)

    Jacobsen, Brian H.; Abildtrup, Jens; Jensen, Jørgen Dejgård

    to the eastern part of Denmark. The final plan for the Aquatic Environment III from 2004 included a 13% reduction of N-leaching until 2015 based on cost effective administrative measures like wetlands and catch crops. Also a tax on mineral phosphorus in feedstuffs was included in order to half the phosphorus......The economic calculations carried out prior to the Plan for the Aquatic Environment III included a comparison of regulation systems aimed at reducing nitrogen leaching, analyses of measures for reducing phosphorus losses and estimation of administrative costs. The conclusions were that taxation...... surplus. The measures in the Plan will have to be supplemented by more measures to meet the targets in the EU's Water Framework Directive....

  10. Quantifying the benefits: Energy, cost, and employment impacts of advanced industrial technologies

    International Nuclear Information System (INIS)

    Sullivan, G.P.; Roop, J.M.; Schultz, R.W.

    1997-01-01

    This development effort was supported by the Technologies Partnerships Program established through the US Department of Energy's Office of Energy Efficiency and Renewable Energy via the Office of Industrial Technology (OIT). This program supports research, development, and demonstration of industrial technologies aimed at improving energy efficiency and productivity while reducing pollution, material waste, and operations/maintenance costs. The goal of this program is to develop cost-shared partnerships with industry, government and non-government organizations to foster improved efficiency, productivity, and pollution prevention technologies. This partnership program is believed to be one way that energy efficiency will be delivered to industry in the 21st Century. This paper reports on the development of the Industrial Technology Employment Analysis Model (ITEAM) which calculates economy-wide employment impacts of specific partnership program technologies, using data developed by the technology partner. ITEAM is a desk-top computer model that allows users to evaluate base-case partnership data and/or run sensitivity tests using its graphical-user-interface features. To demonstrate the capabilities of ITEAM, an analysis is presented for the chemicals industry. In addition, the following major industries have been analyzed and summary data are presented: aluminum, stone/clay/glass, forest products, chemicals, metal casting, steel, and petroleum. This paper addresses the development, function, and use of ITEAM. Included is a presentation of key assumptions along with user inputs and a discussion of sensitivities. The results of ITEAM runs for over 20 technology projects in 7 program areas are reported. The paper also explains how the project data are used to modify the 1987 I/O table to impact output and employment. The calculations are explained and the approach is rationalized. The argument for this approach rests on the proposition that improvements in efficiency

  11. Renewable energy costs, potentials, barriers: Conceptual issues

    International Nuclear Information System (INIS)

    Verbruggen, Aviel; Fischedick, Manfred; Moomaw, William; Weir, Tony; Nadai, Alain; Nilsson, Lars J.; Nyboer, John; Sathaye, Jayant

    2010-01-01

    Renewable energy can become the major energy supply option in low-carbon energy economies. Disruptive transformations in all energy systems are necessary for tapping widely available renewable energy resources. Organizing the energy transition from non-sustainable to renewable energy is often described as the major challenge of the first half of the 21st century. Technological innovation, the economy (costs and prices) and policies have to be aligned to achieve full renewable energy potentials, and barriers impeding that growth need to be removed. These issues are also covered by IPCC's special report on renewable energy and climate change to be completed in 2010. This article focuses on the interrelations among the drivers. It clarifies definitions of costs and prices, and of barriers. After reviewing how the third and fourth assessment reports of IPCC cover mitigation potentials and commenting on definitions of renewable energy potentials in the literature, we propose a consistent set of potentials of renewable energy supplies.

  12. Costs of emission-reducing manure application

    NARCIS (Netherlands)

    Huijsmans, J.F.M.; Verwijs, B.; Rodhe, L.; Smith, K.

    2004-01-01

    Favourable economics of handling and application of manure are of fundamental importance to encourage the implementation of emission-reducing application techniques. The economics of manure application depend on the costs of the equipment and the time to carry out the field operation. In this study

  13. Cost-time management for environmental restoration activities at the Department of Energy's Idaho National Engineering Laboratory, Idaho Chemical Processing Plant

    International Nuclear Information System (INIS)

    Fourr, B.R.; Owen, A.H.; Williamson, D.J.; Nash, C.L.

    1992-01-01

    Cost-time management methods have been developed by Westinghouse to examine business applications from a cost-time perspective. The initial application of cost-time management within Westinghouse was targeted at reducing cycle time in the manufacturing sector. As a result of the tremendous success of reduced cycle time in manufacturing, Westinghouse initiated application of the management technique to Environmental Restoration activities at its Government Owned Contractor Operated facilities. The Westinghouse initiative was proposed in support of the Department of Energy's goals for cost effective Environmental Restoration activities. This paper describes the application of the cost-time method to Environmental Restoration work currently being performed at the Idaho National Engineering Laboratory (INEL) for the Department of Energy (DOE) by Westinghouse Idaho Nuclear Company (WINCO)

  14. Reducing capital and operating costs in gas processing, liquefaction, and storage

    Energy Technology Data Exchange (ETDEWEB)

    Krusen, III, L C [Phillips Petroleum Co., Bartlesville, OK (United States). Research Div.

    1997-06-01

    The LNG industry is unanimous that capital costs must be reduced throughout the chain, and especially at the liquefaction facility including associated gas processing and LNG storage. The Ken ai LNG plant provides an example of how both reduced capital and operating costs were attained. This paper will cover cost production strategies that can be applied to liquefaction processes in general, and will than focus on their realization in the Phillips Optimized Cascade LNG process. The paper concludes that reduced LNG plant costs are attainable. (Author).

  15. Reducing capital and operating costs in gas processing, liquefaction, and storage

    International Nuclear Information System (INIS)

    Krusen, L.C. III

    1997-01-01

    The LNG industry is unanimous that capital costs must be reduced throughout the chain, and especially at the liquefaction facility including associated gas processing and LNG storage. The Ken ai LNG plant provides an example of how both reduced capital and operating costs were attained. This paper will cover cost production strategies that can be applied to liquefaction processes in general, and will than focus on their realization in the Phillips Optimized Cascade LNG process. The paper concludes that reduced LNG plant costs are attainable. (Author)

  16. Reducing Design Cycle Time and Cost Through Process Resequencing

    Science.gov (United States)

    Rogers, James L.

    2004-01-01

    In today's competitive environment, companies are under enormous pressure to reduce the time and cost of their design cycle. One method for reducing both time and cost is to develop an understanding of the flow of the design processes and the effects of the iterative subcycles that are found in complex design projects. Once these aspects are understood, the design manager can make decisions that take advantage of decomposition, concurrent engineering, and parallel processing techniques to reduce the total time and the total cost of the design cycle. One software tool that can aid in this decision-making process is the Design Manager's Aid for Intelligent Decomposition (DeMAID). The DeMAID software minimizes the feedback couplings that create iterative subcycles, groups processes into iterative subcycles, and decomposes the subcycles into a hierarchical structure. The real benefits of producing the best design in the least time and at a minimum cost are obtained from sequencing the processes in the subcycles.

  17. Operational Energy Metrics: Increasing Flexibility While Reducing Vulnerability

    Science.gov (United States)

    2010-03-01

    procurement decisions with a greater level of fidelity concerning the cost- benefit analysis for systems lifetime cost of energy. Furthermore, it...or we have to RTB, we’re BINGO -fuel48”? As General Ronald Keys, USAF (RET.) stated when discussing energy efficiency and mission effectiveness...of Defense change to fully value the delivered cost of fuel, the sooner joint force commanders will reap the “strategic benefits of reallocating

  18. 10 CFR 436.17 - Establishing energy or water cost data.

    Science.gov (United States)

    2010-01-01

    ... with § 436.14(c). (b) When energy costs begin to accrue in the base year, the present value of energy... present value of energy costs over the delay, calculated using the adjusted, modified uniform present worth factor for the period of delay, from the present value of energy costs over the study period or...

  19. A novel minimum cost maximum power algorithm for future smart home energy management

    Directory of Open Access Journals (Sweden)

    A. Singaravelan

    2017-11-01

    Full Text Available With the latest development of smart grid technology, the energy management system can be efficiently implemented at consumer premises. In this paper, an energy management system with wireless communication and smart meter are designed for scheduling the electric home appliances efficiently with an aim of reducing the cost and peak demand. For an efficient scheduling scheme, the appliances are classified into two types: uninterruptible and interruptible appliances. The problem formulation was constructed based on the practical constraints that make the proposed algorithm cope up with the real-time situation. The formulated problem was identified as Mixed Integer Linear Programming (MILP problem, so this problem was solved by a step-wise approach. This paper proposes a novel Minimum Cost Maximum Power (MCMP algorithm to solve the formulated problem. The proposed algorithm was simulated with input data available in the existing method. For validating the proposed MCMP algorithm, results were compared with the existing method. The compared results prove that the proposed algorithm efficiently reduces the consumer electricity consumption cost and peak demand to optimum level with 100% task completion without sacrificing the consumer comfort.

  20. Selected bibliography: cost and energy savings of conservation and renewable energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-05-01

    This bibliography is a compilation of reports on the cost and energy savings of conservation and renewable energy applications throughout the United States. It is part of an overall effort to inform utilities of technological developments in conservation and renewable energy technologies and so aid utilities in their planning process to determine the most effective and economic combination of capital investments to meet customer needs. Department of Energy assessments of the applications, current costs and cost goals for the various technologies included in this bibliography are presented. These assessments are based on analyses performed by or for the respective DOE Program Offices. The results are sensitive to a number of variables and assumptions; however, the estimates presented are considered representative. These assessments are presented, followed by some conclusions regarding the potential role of the conservation and renewable energy alternative. The approach used to classify the bibliographic citations and abstracts is outlined.

  1. Reliability and cost evaluation of small isolated power systems containing photovoltaic and wind energy

    Science.gov (United States)

    Karki, Rajesh

    Renewable energy application in electric power systems is growing rapidly worldwide due to enhanced public concerns for adverse environmental impacts and escalation in energy costs associated with the use of conventional energy sources. Photovoltaics and wind energy sources are being increasingly recognized as cost effective generation sources. A comprehensive evaluation of reliability and cost is required to analyze the actual benefits of utilizing these energy sources. The reliability aspects of utilizing renewable energy sources have largely been ignored in the past due the relatively insignificant contribution of these sources in major power systems, and consequently due to the lack of appropriate techniques. Renewable energy sources have the potential to play a significant role in the electrical energy requirements of small isolated power systems which are primarily supplied by costly diesel fuel. A relatively high renewable energy penetration can significantly reduce the system fuel costs but can also have considerable impact on the system reliability. Small isolated systems routinely plan their generating facilities using deterministic adequacy methods that cannot incorporate the highly erratic behavior of renewable energy sources. The utilization of a single probabilistic risk index has not been generally accepted in small isolated system evaluation despite its utilization in most large power utilities. Deterministic and probabilistic techniques are combined in this thesis using a system well-being approach to provide useful adequacy indices for small isolated systems that include renewable energy. This thesis presents an evaluation model for small isolated systems containing renewable energy sources by integrating simulation models that generate appropriate atmospheric data, evaluate chronological renewable power outputs and combine total available energy and load to provide useful system indices. A software tool SIPSREL+ has been developed which generates

  2. A compilation of energy costs of physical activities.

    Science.gov (United States)

    Vaz, Mario; Karaolis, Nadine; Draper, Alizon; Shetty, Prakash

    2005-10-01

    There were two objectives: first, to review the existing data on energy costs of specified activities in the light of the recommendations made by the Joint Food and Agriculture Organization/World Health Organization/United Nations University (FAO/WHO/UNU) Expert Consultation of 1985. Second, to compile existing data on the energy costs of physical activities for an updated annexure of the current Expert Consultation on Energy and Protein Requirements. Electronic and manual search of the literature (predominantly English) to obtain published data on the energy costs of physical activities. The majority of the data prior to 1955 were obtained using an earlier compilation of Passmore and Durnin. Energy costs were expressed as physical activity ratio (PAR); the energy cost of the activity divided by either the measured or predicted basal metabolic rate (BMR). The compilation provides PARs for an expanded range of activities that include general personal activities, transport, domestic chores, occupational activities, sports and other recreational activities for men and women, separately, where available. The present compilation is largely in agreement with the 1985 compilation, for activities that are common to both compilations. The present compilation has been based on the need to provide data on adults for a wide spectrum of human activity. There are, however, lacunae in the available data for many activities, between genders, across age groups and in various physiological states.

  3. Simple Levelized Cost of Energy (LCOE) Calculator Documentation | Energy

    Science.gov (United States)

    ;M, performance and fuel costs. Note that this doesn't include financing issues, discount issues ). This means that the LCOE is the minimum price at which energy must be sold for an energy project to the balance between debt-financing and equity-financing, and an assessment of the financial risk

  4. Long distance bioenergy logistics. An assessment of costs and energy consumption for various biomass energy transport chains

    International Nuclear Information System (INIS)

    Suurs, R.

    2002-01-01

    compensated. Energy consumption figures for the drying step can possibly be reduced to a large extent by utilising waste heat. By far the most influential parameters are the operation window of the system and the harvest window. Other factors of importance are the interest rate and the international transport distance. Pretreatment operations do contribute an important share to the total costs and energy use, however energy costs and load factor figures, determining the application of pretreatment equipment exert a relatively weak influence. Weak spots within this study are the shortage of data with respect to storage and transport of liquid fuels

  5. Exergy costing for energy saving in combined heating and cooling applications

    International Nuclear Information System (INIS)

    Nguyen, Chan; Veje, Christian T.; Willatzen, Morten; Andersen, Peer

    2014-01-01

    Highlights: • We investigate the basis for cost apportioning of simultaneous heating and cooling. • Two thermoeconomic methods based on energy and exergy costing is demonstrated. • The unit cost of heating and cooling for a heat pump system is found and compared. • Energy costing may obstruct efficient use of energy. • Exergy costing provides the most rational cost apportioning for energy saving. - Abstract: The aim of this study is to provide a price model that motivates energy saving for a combined district heating and cooling system. A novel analysis using two thermoeconomic methods for apportioning the costs to heating and cooling provided simultaneously by an ammonia heat pump is demonstrated. In the first method, referred to as energy costing, a conventional thermoeconomic analysis is used. Here the ammonia heat pump is subject to a thermodynamic analysis with mass and energy balance equations. In the second method referred to as exergy costing, an exergy based economic analysis is used, where exergy balance equations are used in conjunction with mass and energy balance equations. In both costing methods the thermodynamic analysis is followed by an economic analysis which includes investment and operating costs. For both methods the unit costs of heating and cooling are found and compared. The analysis shows that the two methods yield significantly different results. Rather surprisingly, it is demonstrated that the exergy costing method results in about three times higher unit cost for heating than for cooling as opposed to equal unit costs when using the energy method. Further the exergy-based cost for heating changes considerably with the heating temperature while that of cooling is much less affected

  6. 2013 Cost of Wind Energy Review

    Energy Technology Data Exchange (ETDEWEB)

    Mone, C. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Smith, A. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Maples, B. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hand, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-02-01

    This report uses representative project types to estimate the levelized cost of wind energy (LCOE) in the United States for 2013. Scheduled to be published on an annual basis, it relies on both market and modeled data to maintain a current understanding of wind generation cost trends and drivers. It is intended to provide insight into current component-level costs and a basis for understanding current component-level costs and a basis for understanding variability in the LCOE across the industry. Data and tools developed from this analysis are used to inform wind technology cost projections, goals, and improvement opportunities.

  7. Calculation of economic viability and environmental costs of photovoltaic solar energy for the Brazilian Northeast region

    International Nuclear Information System (INIS)

    Stecher, Luiza C.; Sabundjian, Gaiane; Menzel, Francine

    2013-01-01

    The availability of energy resources is a central point to economic development. The energy matrix of most countries is based on the consumption of fossil fuels, which adds annually over 5 billion tons of carbon into the atmosphere. The energy consumption in developing countries has quadrupled since the 60s further aggravating global environmental conditions. The need to implement alternative energy sources to the energy matrix was proved. In addition, Brazil has a large number of people without access to electricity, which affects the quality of life of these populations. In this context, it is necessary to think in economic development way, and then the sustainable and alternative sources appear as an option for its features and its availability in Brazil. The solar energy captured by photovoltaic cells can be highlighted in the Brazilian scenario because of its wide availability, especially in the Northeast. The aim of this paper is to estimate the economic feasibility of insertion of solar systems in small communities in the Brazilian Northeast, considering environmental costs involved in electricity generation. The methodology is based on economic concepts and economic valuation of environmental resources. The results shows that solar power is becoming increasingly competitive due to reduced costs of components and due to the environmental costs reduced when compared with fossil fuels. (author)

  8. Calculation of economic viability and environmental costs of photovoltaic solar energy for the Brazilian Northeast region

    Energy Technology Data Exchange (ETDEWEB)

    Stecher, Luiza C.; Sabundjian, Gaianes; Menzel, Francine, E-mail: luizastecher@usp.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    The availability of energy resources is a central point to economic development. The energy matrix of most countries is based on the consumption of fossil fuels, which adds annually over 5 billion tons of carbon into the atmosphere. The energy consumption in developing countries has quadrupled since the 60s further aggravating global environmental conditions. The need to implement alternative energy sources to the energy matrix was proved. In addition, Brazil has a large number of people without access to electricity, which affects the quality of life of these populations. In this context, it is necessary to think in economic development way, and then the sustainable and alternative sources appear as an option for its features and its availability in Brazil. The solar energy captured by photovoltaic cells can be highlighted in the Brazilian scenario because of its wide availability, especially in the Northeast. The aim of this paper is to estimate the economic feasibility of insertion of solar systems in small communities in the Brazilian Northeast, considering environmental costs involved in electricity generation. The methodology is based on economic concepts and economic valuation of environmental resources. The results shows that solar power is becoming increasingly competitive due to reduced costs of components and due to the environmental costs reduced when compared with fossil fuels. (author)

  9. International bioenergy transport costs and energy balance

    International Nuclear Information System (INIS)

    Hamelinck, Carlo N.; Suurs, Roald A.A.; Faaij, Andre P.C.

    2005-01-01

    To supply biomass from production areas to energy importing regions, long-distance international transport is necessary, implying additional logistics, costs, energy consumption and material losses compared to local utilisation. A broad variety of bioenergy chains can be envisioned, comprising different biomass feedstock production systems, pre-treatment and conversion operations, and transport of raw and refined solid biomass and liquid bio-derived fuels. A tool was developed to consistently compare the possible bioenergy supply chains and assess the influence of key parameters, such as distance, timing and scale on performance. Chains of European and Latin American bioenergy carriers delivered to Western Europe were analysed using generic data. European biomass residues and crops can be delivered at 90 and 70 euros/tonne dry (4.7 and 3.7 euros/GJ HHV ) when shipped as pellets. South American crops are produced against much lower costs. Despite the long shipping distance, the costs in the receiving harbour can be as low as 40 euros/tonne dry or 2.1 euros/GJ HHV ; the crop's costs account for 25-40% of the delivered costs. The relatively expensive truck transport from production site to gathering point restricts the size of the production area; therefore, a high biomass yield per hectare is vital to enable large-scale systems. In all, 300 MW HHV Latin American biomass in biomass integrated gasification/combined cycle plants may result in cost of electricity as little as 3.5 euros cent/kWh, competitive with fossil electricity. Methanol produced in Latin America and delivered to Europe may cost 8-10 euros/GJ HHV , when the pellets to methanol conversion is done in Europe the delivered methanol costs are higher. The energy requirement to deliver solid biomass from both crops and residues from the different production countries is 1.2-1.3 MJ primary /MJ delivered (coal ∼ 1.1 MJ/MJ). International bioenergy trade is possible against low costs and modest energy loss

  10. Investigation of Cost and Energy Optimization of Drinking Water Distribution Systems.

    Science.gov (United States)

    Cherchi, Carla; Badruzzaman, Mohammad; Gordon, Matthew; Bunn, Simon; Jacangelo, Joseph G

    2015-11-17

    Holistic management of water and energy resources through energy and water quality management systems (EWQMSs) have traditionally aimed at energy cost reduction with limited or no emphasis on energy efficiency or greenhouse gas minimization. This study expanded the existing EWQMS framework and determined the impact of different management strategies for energy cost and energy consumption (e.g., carbon footprint) reduction on system performance at two drinking water utilities in California (United States). The results showed that optimizing for cost led to cost reductions of 4% (Utility B, summer) to 48% (Utility A, winter). The energy optimization strategy was successfully able to find the lowest energy use operation and achieved energy usage reductions of 3% (Utility B, summer) to 10% (Utility A, winter). The findings of this study revealed that there may be a trade-off between cost optimization (dollars) and energy use (kilowatt-hours), particularly in the summer, when optimizing the system for the reduction of energy use to a minimum incurred cost increases of 64% and 184% compared with the cost optimization scenario. Water age simulations through hydraulic modeling did not reveal any adverse effects on the water quality in the distribution system or in tanks from pump schedule optimization targeting either cost or energy minimization.

  11. Least cost analysis of renewable energy projects

    International Nuclear Information System (INIS)

    Cosgrove-Davies, M.; Cabraal, A.

    1994-01-01

    This paper describes the methodology for evaluating dispersed and centralized rural energy options on a least cost basis. In defining the load to be served, each supply alternative must provide equivalent levels of service. The village to be served is defined by the number of loads, load density, distance from the nearest power distribution line, and load growth. Appropriate rural energy alternatives are identified and sized to satisfy the defined load. Lastly, a net present value analysis (including capital, installation, O and M, fuel, and replacement costs, etc.) is performed to identify the least cost option. A spreadsheet-based analytical tool developed by the World Bank's Asia Alternative Energy Unit (ASTAE) incorporates this approach and has been applied to compare photovoltaic solar home systems with other rural energy supply options in Indonesia. Load size and load density are found to be the critical factors in choosing between a grid and off-grid solution

  12. Levelized Cost of Energy of the Weptos wave energy converter

    DEFF Research Database (Denmark)

    Pecher, Arthur; Kofoed, Jens Peter

    This report presents the cost of energy calculations of a wave energy array of 90 MW, consisting of 25 x 3.6 MW Weptos wave energy converters. The calculation has been made in analogy with a publically available document presented by the UK government, covering the case of a similar size wind...

  13. Sources, availability and costs of future energy

    International Nuclear Information System (INIS)

    Hart, R.G.

    1977-08-01

    An attempt is made to put the future energy scene in perspective by quantitatively examining energy resources, energy utilization and energy costs. Available data on resources show that conventional oil and gas are in short supply and that alternative energy sources are going to have to replace oil and gas in the not too distant future. Cost/applications assessments indicate that a mix of energy sources are likely to best meet our energy needs of the future. Hydro, nuclear and coal are all practical alternatives for meeting electrical needs and electricity is a practical alternative for space heating. Coal appears to be the most practical alternative for meeting much of the industrial energy need and frontier oil or oil from the tar sands appear to be the most practical alternatives for meeting the transportation need. Solar energy shows promise of meeting some of the space heating load in Canada if economical energy storage systems can be developed. The general conclusion is that the basic energy problem is energy conversion. (author)

  14. Cost-effectiveness of pharmacotherapy to reduce obesity.

    Directory of Open Access Journals (Sweden)

    J Lennert Veerman

    Full Text Available AIMS: Obesity causes a high disease burden in Australia and across the world. We aimed to analyse the cost-effectiveness of weight reduction with pharmacotherapy in Australia, and to assess its potential to reduce the disease burden due to excess body weight. METHODS: We constructed a multi-state life-table based Markov model in Excel in which body weight influences the incidence of stroke, ischemic heart disease, hypertensive heart disease, diabetes mellitus, osteoarthritis, post-menopausal breast cancer, colon cancer, endometrial cancer and kidney cancer. We use data on effectiveness identified from PubMed searches, on mortality from Australian Bureau of Statistics, on disease costs from the Australian Institute of Health and Welfare, and on drug costs from the Department of Health and Ageing. We evaluate 1-year pharmacological interventions with sibutramine and orlistat targeting obese Australian adults free of obesity-related disease. We use a lifetime horizon for costs and health outcomes and a health sector perspective for costs. Incremental Cost-Effectiveness Ratios (ICERs below A$50 000 per Disability Adjusted Life Year (DALY averted are considered good value for money. RESULTS: The ICERs are A$130 000/DALY (95% uncertainty interval [UI] 93 000-180 000 for sibutramine and A$230 000/DALY (170 000-340 000 for orlistat. The interventions reduce the body weight-related disease burden at the population level by 0.2% and 0.1%, respectively. Modest weight loss during the interventions, rapid post-intervention weight regain and low adherence limit the health benefits. CONCLUSIONS: Treatment with sibutramine or orlistat is not cost-effective from an Australian health sector perspective and has a negligible impact on the total body weight-related disease burden.

  15. The real cost of energy

    International Nuclear Information System (INIS)

    Hubbard, H.M.

    1991-01-01

    Gas prices only seem high. When you say fillerup, you pay but a fraction of the actual cost. Not included are the tens of billions (close to $50 for each barrel of oil) the military spends annually to protect oil fields in the Persian Gulf. Then tack on the hidden costs of environmental degradation, health effects, lost employment, government subsidies and more. Sooner or later, the public pays the entire price. Bringing market prices in line with energy's hidden burdens will be one of the great challenges of the coming decades. The author describes these hidden costs and makes estimates of them

  16. Cost, energy, global warming, eutrophication and local human health impacts of community water and sanitation service options.

    Science.gov (United States)

    Schoen, Mary E; Xue, Xiaobo; Wood, Alison; Hawkins, Troy R; Garland, Jay; Ashbolt, Nicholas J

    2017-02-01

    We compared water and sanitation system options for a coastal community across selected sustainability metrics, including environmental impact (i.e., life cycle eutrophication potential, energy consumption, and global warming potential), equivalent annual cost, and local human health impact. We computed normalized metric scores, which we used to discuss the options' strengths and weaknesses, and conducted sensitivity analysis of the scores to changes in variable and uncertain input parameters. The alternative systems, which combined centralized drinking water with sanitation services based on the concepts of energy and nutrient recovery as well as on-site water reuse, had reduced environmental and local human health impacts and costs than the conventional, centralized option. Of the selected sustainability metrics, the greatest advantages of the alternative community water systems (compared to the conventional system) were in terms of local human health impact and eutrophication potential, despite large, outstanding uncertainties. Of the alternative options, the systems with on-site water reuse and energy recovery technologies had the least local human health impact; however, the cost of these options was highly variable and the energy consumption was comparable to on-site alternatives without water reuse or energy recovery, due to on-site reuse treatment. Future work should aim to reduce the uncertainty in the energy recovery process and explore the health risks associated with less costly, on-site water treatment options. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Energy Hub’s Structural and Operational Optimization for Minimal Energy Usage Costs in Energy Systems

    Directory of Open Access Journals (Sweden)

    Thanh Tung Ha

    2018-03-01

    Full Text Available The structural and optimal operation of an Energy Hub (EH has a tremendous influence on the hub’s performance and reliability. This paper envisions an innovative methodology that prominently increases the synergy between structural and operational optimization and targets system cost affordability. The generalized energy system structure is presented theoretically with all selective hub sub-modules, including electric heater (EHe and solar sources block sub-modules. To minimize energy usage cost, an energy hub is proposed that consists of 12 kinds of elements (i.e., energy resources, conversion, and storage functions and is modeled mathematically in a General Algebraic Modeling System (GAMS, which indicates the optimal hub structure’s corresponding elements with binary variables (0, 1. Simulation results contrast with 144 various scenarios established in all 144 categories of hub structures, in which for each scenario the corresponding optimal operation cost is previously calculated. These case studies demonstrate the effectiveness of the suggested model and methodology. Finally, avenues for future research are also prospected.

  18. Reducing of thermal power energy-intensive pro-cesses costs in the mixed fodders technology

    Directory of Open Access Journals (Sweden)

    L. I. Lytkina

    2016-01-01

    Full Text Available Methodological approach to the creation of energy-efficient processes with direct involvement in the produc-tion process of heat pump technology for the preparation of of energy resources in obtaining of mixed fodders of the given particle size distribution was formed. Completed experimental and analytical studies paved the way for the development of energy efficient technolo-gies of mixed fodders with a vapor compression connection (VCHP and steam ejector (SEHP heat pumps on the closed thermody-namic schemes. It was shown that the strategy of the operational management of process parameters in the allowable technological properties of the resulting mixed fodder production does not allow a compromise between the conflicting technical and economic param-eters and let the main technical contradiction between productivity and power consumption. The control problem becomes much more complicated when there is no practical possibility of a detailed description of thermal processes occurring in the closed thermodynamic recycles based on the phenomenological laws of thermodynamics considering a balance of material and energy flows in the technologi-cal system. There is a need for adaptive control systems based on the extreme characteristics of the controlled object. The adaptation effect is achieved by obtaining information about the processes occurring in the conditions of technological line of mixed fodders pro-duction equalized particle size distribution, which allows to generate a control signal for the extreme value of the objective function. The scheme of automatic optimization ensuring continuous monitoring of the minimum value of the specific heat energy costs is proposed. It provides optimal consumption of the starting loose mixed fodder and rational strain on the line equipment.

  19. Minimizing Wind Power Producer's Balancing Costs Using Electrochemical Energy Storage: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Miettinen, J.; Tikka, V.; Lassila, J.; Partanen, J.; Hodge, B. M.

    2014-08-01

    This paper examines how electrochemical energy storage can be used to decrease the balancing costs of a wind power producer in the Nordic market. Because electrochemical energy storage is developing in both technological and financial terms, a sensitivity analysis was carried out for the most important variables in the wind-storage hybrid system. The system was studied from a wind power producer's point of view. The main result is that there are no technical limitations to using storage for reducing the balancing costs. However, in terms of economic feasibility, installing hybrid wind-storage systems such as the one studied in this paper faces challenges in both the short and long terms.

  20. Marginal costs and co-benefits of energy efficiency investments

    International Nuclear Information System (INIS)

    Jakob, Martin

    2006-01-01

    Key elements of present investment decision-making regarding energy efficiency of new buildings and the refurbishment of existing buildings are the marginal costs of energy efficiency measures and incomplete knowledge of investors and architects about pricing, co-benefits and new technologies. This paper reports on a recently completed empirical study for the Swiss residential sector. It empirically quantifies the marginal costs of energy efficiency investments (i.e. additional insulation, improved window systems, ventilation and heating systems and architectural concepts). For the private sector, first results on the economic valuation of co-benefits such as improved comfort of living, improved indoor air quality, better protection against external noise, etc. may amount to the same order of magnitude as the energy-related benefits are given. The cost-benefit analysis includes newly developed technologies that show large variations in prices due to pioneer market pricing, add-on of learning costs and risk components of the installers. Based on new empirical data on the present cost-situation and past techno-economic progress, the potential of future cost reduction was estimated applying the experience curve concept. The paper shows, for the first time, co-benefits and cost dynamics of energy efficiency investments, of which decision makers in the real estate sector, politics and administrations are scarcely aware

  1. Strategies and costs for reducing CO2 emissions in Finland

    International Nuclear Information System (INIS)

    Lehtilae, A.; Pirilae, P.

    1993-01-01

    In this study cost-efficient measures for the abatement of energy-related CO 2 emissions in Finland are analyzed, and the direct costs of such measures are estimated. The time frame considered is the period up to the year 2010. Furthermore, the probable impacts of an energy/CO 2 -tax on the Finnish energy system are worked out, and an attempt is made to assess the effectiveness of a tax scheme as an economic instrument for achieving CO 2 emission targets. The primary methodological tool in the analyses has been the model of the Finnish energy system developed at the Technical Research Centre of Finland (VTT) within the project. The model facilitates the search for cost-efficient emission control strategies over a period of several decades. Structural and technological changes in the energy system, e.g. fuel and technology substitution, new technologies, efficiency improvements, and energy-saving measures have been allowed for in the model. The results of the analyses show that achieving the target of returning the CO 2 emissions to the 1990 level by the year 2000 would be very difficult and costly in Finland. In the case of a nuclear moratorium it would be reasonable to delay the target by ten years. Even in the delayed cases achieving the target would require extensive structural changes and substantial energy-saving measures in the absence of additional nuclear energy. Coal use would have to be severely restricted, whereas the use of biomass and natural gas should be more than doubled compared to the 1990 levels. According to the results, a CO 2 tax would clearly be a more efficient instrument than a tax based on the energy content of a fuel

  2. Formosa Plastics Corporation: Plant-Wide Assessment of Texas Plant Identifies Opportunities for Improving Process Efficiency and Reducing Energy Costs

    Energy Technology Data Exchange (ETDEWEB)

    None

    2005-01-01

    At Formosa Plastics Corporation's plant in Point Comfort, Texas, a plant-wide assessment team analyzed process energy requirements, reviewed new technologies for applicability, and found ways to improve the plant's energy efficiency. The assessment team identified the energy requirements of each process and compared actual energy consumption with theoretical process requirements. The team estimated that total annual energy savings would be about 115,000 MBtu for natural gas and nearly 14 million kWh for electricity if the plant makes several improvements, which include upgrading the gas compressor impeller, improving the vent blower system, and recovering steam condensate for reuse. Total annual cost savings could be $1.5 million. The U.S. Department of Energy's Industrial Technologies Program cosponsored this assessment.

  3. Reduction in energy consumption and operating cost in a dried corn warehouse using logistics techniques

    Directory of Open Access Journals (Sweden)

    Korrakot Y. Tippayawong

    2013-06-01

    Full Text Available Corn is one of the major economic crops in Thailand. Corn postharvest operation involves various practices that consume a large amount of energy. Different energy conservation measures have been implemented but logistics consideration is not normally employed. In this work, attempt has been made to demonstrate that logistics techniques can offer a significant reduction in energy and cost. The main objective of this work is to identify and demonstrate possible approaches to improving energy efficiency and reducing operating cost for a dried corn warehouse operator. Three main problems are identified: (i relatively high fuel consumption for internal transfer process, (ii low quality of dried corn, and (iii excess expenditure on outbound transportation. Solutions are proposed and implemented using logistics operations. Improvement is achieved using plant layout and shortest path techniques, resulting in a reduction of almost 50% in energy consumption for the internal transfer process. Installation of an air distributor in the grain storage unit results in a decrease in loss due to poor-quality dried corn from 17% to 10%. Excess expenditure on dried corn distribution is reduced by 6% with application of a global positioning system.

  4. Cost of supplying energy from New Zealand resources

    Energy Technology Data Exchange (ETDEWEB)

    Norman, Robert G.

    1977-10-15

    The kinds of costs which face the community when a power project is promoted are broadly discussed. Sometimes, costs such as social, economic, and environmental impacts do not appear often in budgetary form. The growth of public participation is discussed. Components (investigation costs, development costs, distribution costs, social costs, environmental costs, etc.) which contribute to the cost of energy production and supply are examined in some detail.

  5. Renewable energies: the cost of intermittency

    International Nuclear Information System (INIS)

    Crassous, Renaud; Roques, Fabien

    2013-01-01

    The authors indicate the different adaptations which will be required for the electric system to cope with the intermittency of solar and wind energy production, and propose an approximate assessment of the associated costs. Different types of adaptation are addressed: secure production in case of absence of wind or sun (electricity imports, construction of additional power stations), use of more flexible production means (gas turbines), grid extensions (connection to offshore production sites, routing of production one part of the country to the other). They think that beyond a 20 per cent share for renewable energies, these costs could rapidly increase

  6. Leveraging Technology to Reduce Patient Transaction Costs.

    Science.gov (United States)

    Edlow, Richard C

    2015-01-01

    Medical practices are under significant pressure to provide superior customer service in an environment of declining or flat reimbursement. The solution for many practices involves the integration of a variety of third-party technologies that conveniently interface with one's electronic practice management and medical records systems. Typically, the applications allow the practice to reduce the cost of each patient interaction. Drilling down to quantify the cost of each individual patient interaction helps to determine the practicality of implementation.

  7. Evaluation of Strategies to Reducing Traction Energy Consumption of Metro Systems Using an Optimal Train Control Simulation Model

    Directory of Open Access Journals (Sweden)

    Shuai Su

    2016-02-01

    Full Text Available Increasing attention is being paid to the energy efficiency in metro systems to reduce the operational cost and to advocate the sustainability of railway systems. Classical research has studied the energy-efficient operational strategy and the energy-efficient system design separately to reduce the traction energy consumption. This paper aims to combine the operational strategies and the system design by analyzing how the infrastructure and vehicle parameters of metro systems influence the operational traction energy consumption. Firstly, a solution approach to the optimal train control model is introduced, which is used to design the Optimal Train Control Simulator(OTCS. Then, based on the OTCS, the performance of some important energy-efficient system design strategies is investigated to reduce the trains’ traction energy consumption, including reduction of the train mass, improvement of the kinematic resistance, the design of the energy-saving gradient, increasing the maximum traction and braking forces, introducing regenerative braking and timetable optimization. As for these energy-efficient strategies, the performances are finally evaluated using the OTCS with the practical operational data of the Beijing Yizhuang metro line. The proposed approach gives an example to quantitatively analyze the energy reduction of different strategies in the system design procedure, which may help the decision makers to have an overview of the energy-efficient performances and then to make decisions by balancing the costs and the benefits.

  8. Bookending the Opportunity to Lower Wind’s LCOE by Reducing the Uncertainty Surrounding Annual Energy Production

    Energy Technology Data Exchange (ETDEWEB)

    Bolinger, Mark [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Analysis and Environmental Impacts Div.

    2017-06-01

    Reducing the performance risk surrounding a wind project can potentially lead to a lower weighted-average cost of capital (WACC), and hence a lower levelized cost of energy (LCOE), through an advantageous shift in capital structure, and possibly also a reduction in the cost of capital. Specifically, a reduction in performance risk will move the 1-year P99 annual energy production (AEP) estimate closer to the P50 AEP estimate, which in turn reduces the minimum debt service coverage ratio (DSCR) required by lenders, thereby allowing the project to be financed with a greater proportion of low-cost debt. In addition, a reduction in performance risk might also reduce the cost of one or more of the three sources of capital that are commonly used to finance wind projects: sponsor or cash equity, tax equity, and/or debt. Preliminary internal LBNL analysis of the maximum possible LCOE reduction attainable from reducing the performance risk of a wind project found a potentially significant opportunity for LCOE reduction of ~$10/MWh, by reducing the P50 DSCR to its theoretical minimum value of 1.0 (Bolinger 2015b, 2014) and by reducing the cost of sponsor equity and debt by one-third to one-half each (Bolinger 2015a, 2015b). However, with FY17 funding from the U.S. Department of Energy’s Atmosphere to Electrons (A2e) Performance Risk, Uncertainty, and Finance (PRUF) initiative, LBNL has been revisiting this “bookending” exercise in more depth, and now believes that its earlier preliminary assessment of the LCOE reduction opportunity was overstated. This reassessment is based on two new-found understandings: (1) Due to ever-present and largely irreducible inter-annual variability (IAV) in the wind resource, the minimum required DSCR cannot possibly fall to 1.0 (on a P50 basis), and (2) A reduction in AEP uncertainty will not necessarily lead to a reduction in the cost of capital, meaning that a shift in capital structure is perhaps the best that can be expected (perhaps

  9. A parametric costing model for wave energy technology

    International Nuclear Information System (INIS)

    1992-01-01

    This document describes the philosophy and technical approach to a parametric cost model for offshore wave energy systems. Consideration is given both to existing known devices and other devices yet to be conceptualised. The report is complementary to a spreadsheet based cost estimating model. The latter permits users to derive capital cost estimates using either inherent default data or user provided data, if a particular scheme provides sufficient design definition for more accurate estimation. The model relies on design default data obtained from wave energy device designs and a set of specifically collected cost data. (author)

  10. Reducing biosolids disposal costs using land application in forested areas

    International Nuclear Information System (INIS)

    Huffines, R.L.

    1995-01-01

    Switching biosolids land application from a reclamation site to a forested site significantly reduced the cost of biosolids disposal at the Savannah River Site. Previous beneficial reuse programs focused on reclamation of existing borrow pits. While extremely beneficial, this program became very costly due to the regulatory requirements for groundwater monitoring, soil monitoring and frequent biosolids analyses. A new program was developed to reuse biosolids in forested areas where the biosolids could be used as a soil conditioner and fertilizer to enhance timber yield. The forested land application site was designed so that groundwater monitoring and soil monitoring could be eliminated while biosolids monitoring and site maintenance were minimized. Monitoring costs alone were reduced by 80%. Capital costs for site preparation were also significantly reduced since there was no longer a need for expensive groundwater monitoring wells

  11. Cost analysis of energy storage systems for electric utility applications

    Energy Technology Data Exchange (ETDEWEB)

    Akhil, A. [Sandia National Lab., Albuquerque, NM (United States); Swaminathan, S.; Sen, R.K. [R.K. Sen & Associates, Inc., Bethesda, MD (United States)

    1997-02-01

    Under the sponsorship of the Department of Energy, Office of Utility Technologies, the Energy Storage System Analysis and Development Department at Sandia National Laboratories (SNL) conducted a cost analysis of energy storage systems for electric utility applications. The scope of the study included the analysis of costs for existing and planned battery, SMES, and flywheel energy storage systems. The analysis also identified the potential for cost reduction of key components.

  12. Reducing health care costs - potential and limitations of local ...

    African Journals Online (AJOL)

    Reducing health care costs - potential and limitations of local authority health services. ... both the quality and the cost-effectiveness of health care would be improved. ... LAs offer an appropriate structure for effective community control over the ...

  13. Hydrogen Production Costs of Various Primary Energy Sources

    International Nuclear Information System (INIS)

    Choi, Jae Hyuk; Tak, Nam Il; Kim, Yong Hee; Park, Won Seok

    2005-11-01

    Many studies on the economical aspects of hydrogen energy technologies have been conducted with the increase of the technical and socioeconomic importance of the hydrogen energy. However, there is still no research which evaluates the economy of hydrogen production from the primary energy sources in consideration of Korean situations. In this study, the hydrogen production costs of major primary energy sources are compared in consideration of the Korean situations such as feedstock price, electricity rate, and load factor. The evaluation methodology is based on the report of the National Academy of Science (NAS) of U.S. The present study focuses on the possible future technology scenario defined by NAS. The scenario assumes technological improvement that may be achieved if present research and development (R and D) programs are successful. The production costs by the coal and natural gas are 1.1 $/kgH 2 and 1.36 $/kgH 2 , respectively. However, the fossil fuels are susceptible to the price variation depending on the oil and the raw material prices, and the hydrogen production cost also depends on the carbon tax. The economic competitiveness of the renewable energy sources such as the wind, solar, and biomass are relatively low when compared with that of the other energy sources. The estimated hydrogen production costs from the renewable energy sources range from 2.35 $/kgH 2 to 6.03 $/kgH 2 . On the other hand, the production cost by nuclear energy is lower than that of natural gas or coal when the prices of the oil and soft coal are above $50/barrel and 138 $/ton, respectively. Taking into consideration the recent rapid increase of the oil and soft coal prices and the limited fossil resource, the nuclear-hydrogen option appears to be the most economical way in the future

  14. Hybrid 21 MW wind-solar system to limit energy costs at an industrial plant

    International Nuclear Information System (INIS)

    López, C.

    2016-01-01

    Ereda has undertaken a project that aims to analyse the possibility of limiting the cost of the energy supply to a medium-sized industrial plant, with an installed capacity of over 26 MW, located in the south-west of Kazakhstan. The cost of electricity for its processes accounts for an important part of its production cost, achieving values in excess of 40%. The price of electricity in the country is expected to rise over the coming years. In addition, the plant is now required to reduce CO2 emissions from its industrial activity, which is why a further cost arising from the acquisition of emissions rights is expected in future. (Author)

  15. Large-scale offshore wind energy. Cost analysis and integration in the Dutch electricity market

    International Nuclear Information System (INIS)

    De Noord, M.

    1999-02-01

    the total construction time is reduced to 7 years. Different financing options are regarded: a required internal rate of return of 10% or even 5% reduces the kWh cost price with 27% up to 50%. The effect of including the lifetimes of components in the price calculations is analysed, as well as the effect of considering the electrical grid as part of the public grid. With a maximum public effort the kWh cost price could be reduced to 8 ct. Integration of large-scale offshore wind energy in the distribution system can cause several technical and economic effects. These effects are caused by the variable wind supply, and can vary from insufficient grid connection capacity to the potential danger of a black out in the distribution system and large price fluctuations on the electricity market. To solve these problems, the application of backup power is introduced. Three types are regarded: an old coal plant, a new STEG plant, and hydroelectric power from Norway. Calculations show a moderate effect on the wind energy price due to backup power: this price increases with 6% up to 13%. In the backup power calculations an assumed market price is used, which makes it possible to predict a provisional value of an OWE green certificate. Finally, a comparison is made between the effect of possible technology improvements, public incentive effects and the effect of using backup power. This results in the conclusion that the feasibility of large-scale offshore wind energy depends more on public policy than on technology. 22 refs

  16. Energy transition. A complete view on costs, performance, flexibility and prices of energies - Journal nr 11

    International Nuclear Information System (INIS)

    Boncorps, Jean-Claude; Larzilliere, Marc; Bomo, Nicole; Bruder, Michel; Buscailhon, Jean-Marie; Cappe, Daniel; DobiaS, Georges; Fregere, Jean-Pierre; Garipuy, Yves; Hougueres, Gerard; Martin, Jean-Loup; Mollard, Dominique; Moncomble, Jean-Eudes; Wiltz, Bruno; Roudier, Jacques

    2013-02-01

    This publication aims at proposing information on the issues of energy prices, of energy production costs and of energy delivery costs, and at showing their complexity while clearing up some wrong ideas about them. After an introduction on the addressed problematic, on information sources and on uncertainties, the authors give a general overview of the definitions of a cost, of a price, of primary, secondary and final energies, of user diversity and energy demand variation in time, of energy production variations in time, and present energy taxing in France and in the European Union, the CO 2 market, and energy savings in France in various sectors (transports, buildings, industry). Then, they address the various primary energies (coal, oil, natural gas, biomass, geothermal heat, thermal solar) and secondary energies (nuclear, hydroelectricity, ground-based wind energy, renewable sea energies, geothermal electricity, electricity grids, heat networks and co-generation) and discuss for each or some of them issues like: world market, costs and pricing, perspectives, resources and constraints, technologies

  17. Department of Energy Environmental Management cost infrastructure development program: Cost analysis requirements

    International Nuclear Information System (INIS)

    Custer, W.R. Jr.; Messick, C.D.

    1996-01-01

    This report was prepared to support development of the Department of Energy Environmental Management cost infrastructure -- a new capability to independently estimate and analyze costs. Currently, the cost data are reported according to a structure that blends level of effort tasks with product and process oriented tasks. Also. the budgetary inputs are developed from prior year funding authorizations and from contractor-developed parametric estimates that have been adjusted to planned funding levels or appropriations. Consequently, it is difficult for headquarters and field-level activities to use actual cost data and technical requirements to independently assess the costs generated and identify trends, potential cost savings from process improvements, and cost reduction strategies

  18. Cost reducing investments and spatial competition

    OpenAIRE

    Domenico Scalera; Alberto Zazzaro

    2005-01-01

    In this paper we analyze the relationship between competition and cost reducing investments in the context of a location model. In particular, we derive the symmetric subgame-perfect equilibrium of a three-stage circular city model with closed-loop strategies, and study the effects of changes in competition fundamentals under both a given number of firms and free entry

  19. New Air Cleaning Strategies for Reduced Commercial Building Ventilation Energy

    Energy Technology Data Exchange (ETDEWEB)

    Sidheswaran, Meera; Destaillats, Hugo; Sullivan, Douglas P.; Fisk, William J.

    2010-10-27

    Approximately ten percent of the energy consumed in U.S. commercial buildings is used by HVAC systems to condition outdoor ventilation air. Reducing ventilation rates would be a simple and broadly-applicable energy retrofit option, if practical counter measures were available that maintained acceptable concentrations of indoor-generated air pollutants. The two general categories of countermeasures are: 1) indoor pollutant source control, and 2) air cleaning. Although pollutant source control should be used to the degree possible, source control is complicated by the large number and changing nature of indoor pollutant sources. Particle air cleaning is already routinely applied in commercial buildings. Previous calculations indicate that particle filtration consumes only 10percent to 25percent of the energy that would otherwise be required to achieve an equivalent amount of particle removal with ventilation. If cost-effective air cleaning technologies for volatile organic compounds (VOCs) were also available, outdoor air ventilation rates could be reduced substantially and broadly in the commercial building stock to save energy. The research carried out in this project focuses on developing novel VOC air cleaning technologies needed to enable energy-saving reductions in ventilation rates. The minimum required VOC removal efficiency to counteract a 50percent reduction in ventilation rate for air cleaning systems installed in the HVAC supply airstream is modest (generally 20percent or less).

  20. Energy saving and cost saving cooling; Energie und Kosten sparende Kuehlung

    Energy Technology Data Exchange (ETDEWEB)

    Koenig, Klaus W. [Architektur- und Fachpressebuero Klaus W. Koenig, Ueberlingen (Germany)

    2012-07-01

    In the case of cost reduction, energy conservation and resource savings, rain water is an ideal medium offering more advantages in comparison to the cooling with drinking water. There are no fees for the drinking water and drainage of rain water. It is not necessary to soften rain water so that further operational costs for the treatment and drainage of waste water can be saved. The avoidance of the related material flows and necessary energy is a practiced environmental protection and climate protection.

  1. The analysis of security cost for different energy sources

    International Nuclear Information System (INIS)

    Jun, Eunju; Kim, Wonjoon; Chang, Soon Heung

    2009-01-01

    Global concerns for the security of energy have steadily been on the increase and are expected to become a major issue over the next few decades. Urgent policy response is thus essential. However, little attempt has been made at defining both energy security and energy metrics. In this study, we provide such metrics and apply them to four major energy sources in the Korean electricity market: coal, oil, liquefied natural gas, and nuclear. In our approach, we measure the cost of energy security in terms of supply disruption and price volatility, and we consider the degree of concentration in energy supply and demand using the Hirschman-Herfindahl index (HHI). Due to its balanced fuel supply and demand, relatively stable price, and high abundance, we find nuclear energy to be the most competitive energy source in terms of energy security in the Korean electricity market. LNG, on the other hand, was found to have the highest cost in term of energy security due to its high concentration in supply and demand, and its high price volatility. In addition, in terms of cost, we find that economic security dominates supply security, and as such, it is the main factor in the total security cost. Within the confines of concern for global energy security, our study both broadens our understanding of energy security and enables a strategic approach in the portfolio management of energy consumption.

  2. The Dynamics of Bertrand Price Competition with Cost-Reducing Investments

    DEFF Research Database (Denmark)

    Iskhakov, Fedor; Rust, John; Schjerning, Bertel

    We present a dynamic extension of the classic static model of Bertrand price competition that allows competing duopolists to undertake cost-reducing investments in an attempt to “leapfrog” their rival to attain low-cost leadership – at least temporarily. We show that leapfrogging occurs in equili......We present a dynamic extension of the classic static model of Bertrand price competition that allows competing duopolists to undertake cost-reducing investments in an attempt to “leapfrog” their rival to attain low-cost leadership – at least temporarily. We show that leapfrogging occurs...... in equilibrium, resolving the Bertrand investment paradox., i.e. leapfrogging explains why firms have an ex ante incentive to undertake cost-reducing investments even though they realize that simultaneous investments to acquire the state of the art production technology would result in Bertrand price competition...... leader. We show that the equilibrium involves investment preemption only when the firms invest in a deterministically alternating fashion and technological progress is deterministic. We prove that when technological progress is deterministic and firms move in an alternating fashion, the game has a unique...

  3. Estimation of cost and value of energy from wind turbines

    International Nuclear Information System (INIS)

    Tande, J.O.; Fransden, S.

    1995-01-01

    The International Energy Agency expert group on recommended practices for wind turbine testing and evaluation is finalizing a second edition of the E stimation of cost of energy from wind energy conversion systems . This paper summarizes those recommendations. Further, the value of wind energy in terms of the associated savings is discussed, and a case study is undertaken to illustrate wind energy cost/benefit analyses. The paper concludes that while the recommended practices on cost estimation may be useful in connection with wind energy feasibility studies there is still a need for further international agreement upon guidelines on how to assess wind energy benefits. (author)

  4. Investigations of a Cost-Optimal Zero Energy Balance

    DEFF Research Database (Denmark)

    Marszal, Anna Joanna; Nørgaard, Jesper; Heiselberg, Per

    2012-01-01

    The Net Zero Energy Building (Net ZEB) concept is worldwide recognised as a promising solution for decreasing buildings’ energy use. Nevertheless, a consistent definition of the Net ZEB concept is constantly under discussion. One of the points on the Net ZEB agenda is the zero energy balance...... and taken a view point of private building owner to investigate what types of energy uses should be included in the cost-optimal zero energy balance. The analysis is conducted for five renewable energy supply systems and five user profiles with a study case of a multi-storey residential Net ZEB. The results...... have indicated that with current energy prices and technology, a cost-optimal Net ZEB zero energy balance accounts for only the building related energy use. Moreover, with high user related energy use is even more in favour of excluding appliances from the zero energy balance....

  5. Greenhouse gases mitigation potential and costs for Brazil's energy system from 2010 to 2030

    Energy Technology Data Exchange (ETDEWEB)

    Borba, Bruno S.M.C.; Lucena, Andre F.P. de; Rathmann, Regis; Costa, Isabella V.L. da; Nogueira, Larissa P.P.; Rochedo, Pedro R.R.; H. Junior, Mauricio F.; Szklo, Alexandre; Schaeffer, Roberto [Coordenacao dos Programas de Pos-Graduacao de Engenharia (PPE/COPPE/UFRJ), RJ (Brazil). Programa de Planejamento Energetico

    2012-07-01

    This paper analyses the potential for energy-related greenhouse gas (GHG) emission reductions and their abatement costs in the energy system of Brazil. The analysis of mitigation options and their costs focuses on the following sectors: industry, transportation and energy supply (electricity generation and oil refining), given their large contribution to the Brazil's GHGs emissions. For the industrial and oil refining sectors, the paper estimated abatement costs based on the investments along with the energy and operational costs of the measures considered. Two discount rates were used: 15% a year (private discount rate) and 8% a year (social discount rate). Compared to a business-as-usual reference scenario, results show a potential to reduce future energy-related GHG emissions by 27% in 2030. This study shows, however, that in relation to a reference year (2007), the examined abatement measures, along with the socioeconomic dynamics of an emerging country such as Brazil, would not be enough to attain absolute reductions in GHG emissions by 2030. This result is valid both each sector individually and for the sum of the emissions from all the sectors analyzed. (author)

  6. In Brief: Hidden environment and health costs of energy

    Science.gov (United States)

    Showstack, Randy

    2009-10-01

    The hidden costs of energy production and use in the United States amounted to an estimated $120 billion in 2005, according to a 19 October report by the U.S. National Research Council. The report, “Hidden Costs of Energy: Unpriced Consequences of Energy Production and Use,” examines hidden costs, including the cost of air pollution damage to human health, which are not reflected in market prices of energy sources, electricity, or gasoline. The report found that in 2005, the total annual external damages from sulfur dioxide, nitrogen oxides, and particulate matter created by coal-burning power plants that produced 95% of the nation's coal-generated electricity were about $62 billion, with nonclimate damages averaging about 3.2 cents for every kilowatt-hour of energy produced. It is estimated that by 2030, nonclimate damages will fall to 1.7 cents per kilowatt-hour. The 2030 figure assumes that new policies already slated for implementation are put in place.

  7. Assessing the Cost of Energy Independence

    NARCIS (Netherlands)

    Jongerden, M.R.; Hüls, Jannik; Haverkort, Boudewijn R.H.M.; Remke, Anne Katharina Ingrid

    Battery management strategies that reserve a certain capacity for power outages are able to increase the energy independence of a smart home. However, such strategies come at a certain cost, since these storage strategies are less flexible and energy from the grid may have to be bought at a high

  8. Energy balance, costs and CO2 analysis of tillage technologies in maize cultivation

    International Nuclear Information System (INIS)

    Šarauskis, Egidijus; Buragienė, Sidona; Masilionytė, Laura; Romaneckas, Kęstutis; Avižienytė, Dovile; Sakalauskas, Antanas

    2014-01-01

    To achieve energy independence, Lithuania and other Baltic countries are searching for new ways to produce energy. Maize is a crop that is suitable for both food and forage, as well as for the production of bioenergy. The objective of this work was to assess the energy efficiency of maize cultivation technologies in different systems of reduced tillage. The experimental research and energy assessment was carried out for five different tillage systems: DP (deep ploughing), SP (), DC (deep cultivation), SC (shallow cultivation) and NT (no tillage). The assessment of the fuel inputs for these systems revealed that the greatest amount of diesel fuel (67.2 l ha −1 ) was used in the traditional DP system. The reduced tillage systems required 12–58% less fuel. Lower fuel consumption reduces the costs of technological operations and reduces CO 2 emissions, which are associated with the greenhouse effect. The agricultural machinery used in reduced tillage technologies emits 107–223 kg ha −1 of CO 2 gas into the environment, whereas DP emits 253 kg ha −1 of CO 2 . The energy analysis conducted in this study showed that the greatest total energy input (approximately 18.1 GJ ha −1 ) was associated with the conventional deep-ploughing tillage technology. The energy inputs associated with the reduced-tillage technologies, namely SP, DC and SC, ranged from 17.1 to 17.6 GJ ha −1 . The lowest energy input (16.2 GJ ha −1 ) was associated with the NT technology. Energy efficiency ratios for the various technologies were calculated as a function of the yield of maize grain and biomass. The best energy balance and the highest energy efficiency ratio (14.0) in maize cultivation was achieved with the NT technology. The energy efficiency ratios for DP, SP, DC and SC were 12.4, 13.4, 11.3 and 12.0, respectively. - Highlights: • Energetical and economic analysis of maize cultivation was done. • Reduced tillage technology reduces working time, fuel consumption

  9. Potential and cost-effectiveness of CO{sub 2}-reducing measures in the pulp and paper industry

    Energy Technology Data Exchange (ETDEWEB)

    Moellersten, K.; Westermark, M.; Yan, J. [Royal Institute of Technology (KTH), Stockholm (Sweden). Dept. of Chemical Engineering and Technology/Energy Processes

    2001-07-01

    Using the two criteria of potential CO{sub 2} reduction and cost of CO{sub 2} reduction several technical options in the pulp and paper industry are investigated. Principal CO{sub 2} reducing measures include: decreasing fuel consumption through improved heat exchanging or new processes with lower heat demand, decreasing electricity consumption, substituting fossil fuels with biofuels, exporting refined biofuels for external use, increasing CO{sub 2} neutral electricity generation, improving waste heat utilization and decreasing specific raw material consumption. The results show that electricity conservation and improvement of existing steam power cycles are the most cost-effective options that have a large potential to reduce CO{sub 2} emissions. Outsourcing of industrial energy operations to utilities may enable CO{sub 2} reducing measures that would not be carried out by industry due to differences in demands for profit on spent capita. 21 refs., 1 fig., 2 tabs.

  10. Pulmonary arterial hypertension reduces energy efficiency of right, but not left, rat ventricular trabeculae.

    Science.gov (United States)

    Pham, Toan; Nisbet, Linley; Taberner, Andrew; Loiselle, Denis; Han, June-Chiew

    2018-04-01

    Pulmonary arterial hypertension (PAH) triggers right ventricle (RV) hypertrophy and left ventricle (LV) atrophy, which progressively leads to heart failure. We designed experiments under conditions mimicking those encountered by the heart in vivo that allowed us to investigate whether consequent structural and functional remodelling of the ventricles affects their respective energy efficiencies. We found that peak work output was lower in RV trabeculae from PAH rats due to reduced extent and velocity of shortening. However, their suprabasal enthalpy was unaffected due to increased activation heat, resulting in reduced suprabasal efficiency. There was no effect of PAH on LV suprabasal efficiency. We conclude that the mechanism underlying the reduced energy efficiency of hypertrophied RV tissues is attributable to the increased energy cost of Ca 2+ cycling, whereas atrophied LV tissues still maintain normal mechano-energetic performance. Pulmonary arterial hypertension (PAH) greatly increases the afterload on the right ventricle (RV), triggering RV hypertrophy, which progressively leads to RV failure. In contrast, the disease reduces the passive filling pressure of the left ventricle (LV), resulting in LV atrophy. We investigated whether these distinct structural and functional consequences to the ventricles affect their respective energy efficiencies. We studied trabeculae isolated from both ventricles of Wistar rats with monocrotaline-induced PAH and their respective Control groups. Trabeculae were mounted in a calorimeter at 37°C. While contracting at 5 Hz, they were subjected to stress-length work-loops over a wide range of afterloads. They were subsequently required to undergo a series of isometric contractions at various muscle lengths. In both protocols, stress production, length change and suprabasal heat output were simultaneously measured. We found that RV trabeculae from PAH rats generated higher activation heat, but developed normal active stress. Their

  11. Developing a Cost Model and Methodology to Estimate Capital Costs for Thermal Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    Glatzmaier, G.

    2011-12-01

    This report provides an update on the previous cost model for thermal energy storage (TES) systems. The update allows NREL to estimate the costs of such systems that are compatible with the higher operating temperatures associated with advanced power cycles. The goal of the Department of Energy (DOE) Solar Energy Technology Program is to develop solar technologies that can make a significant contribution to the United States domestic energy supply. The recent DOE SunShot Initiative sets a very aggressive cost goal to reach a Levelized Cost of Energy (LCOE) of 6 cents/kWh by 2020 with no incentives or credits for all solar-to-electricity technologies.1 As this goal is reached, the share of utility power generation that is provided by renewable energy sources is expected to increase dramatically. Because Concentrating Solar Power (CSP) is currently the only renewable technology that is capable of integrating cost-effective energy storage, it is positioned to play a key role in providing renewable, dispatchable power to utilities as the share of power generation from renewable sources increases. Because of this role, future CSP plants will likely have as much as 15 hours of Thermal Energy Storage (TES) included in their design and operation. As such, the cost and performance of the TES system is critical to meeting the SunShot goal for solar technologies. The cost of electricity from a CSP plant depends strongly on its overall efficiency, which is a product of two components - the collection and conversion efficiencies. The collection efficiency determines the portion of incident solar energy that is captured as high-temperature thermal energy. The conversion efficiency determines the portion of thermal energy that is converted to electricity. The operating temperature at which the overall efficiency reaches its maximum depends on many factors, including material properties of the CSP plant components. Increasing the operating temperature of the power generation

  12. Cost-time management for environmental restoration activities at the Department of Energy's Idaho National Engineering Laboratory, Idaho Chemical Processing Plant

    Energy Technology Data Exchange (ETDEWEB)

    Fourr, B.R.; Owen, A.H.; Williamson, D.J. (Westinghouse Idaho Nuclear Co., Inc., Idaho Falls, ID (United States)); Nash, C.L. (USDOE Idaho Field Office, Idaho Falls, ID (United States))

    1992-05-22

    Cost-time management methods have been developed by Westinghouse to examine business applications from a cost-time perspective. The initial application of cost-time management within Westinghouse was targeted at reducing cycle time in the manufacturing sector. As a result of the tremendous success of reduced cycle time in manufacturing, Westinghouse initiated application of the management technique to Environmental Restoration activities at its Government Owned Contractor Operated facilities. The Westinghouse initiative was proposed in support of the Department of Energy's goals for cost effective Environmental Restoration activities. This paper describes the application of the cost-time method to Environmental Restoration work currently being performed at the Idaho National Engineering Laboratory (INEL) for the Department of Energy (DOE) by Westinghouse Idaho Nuclear Company (WINCO).

  13. Smart campus: Data on energy generation costs from distributed generation systems of electrical energy in a Nigerian University.

    Science.gov (United States)

    Okeniyi, Joshua O; Atayero, Aderemi A; Popoola, Segun I; Okeniyi, Elizabeth T; Alalade, Gbenga M

    2018-04-01

    This data article presents comparisons of energy generation costs from gas-fired turbine and diesel-powered systems of distributed generation type of electrical energy in Covenant University, Ota, Nigeria, a smart university campus driven by Information and Communication Technologies (ICT). Cumulative monthly data of the energy generation costs, for consumption in the institution, from the two modes electric power, which was produced at locations closed to the community consuming the energy, were recorded for the period spanning January to December 2017. By these, energy generation costs from the turbine system proceed from the gas-firing whereas the generation cost data from the diesel-powered generator also include data on maintenance cost for this mode of electrical power generation. These energy generation cost data that were presented in tables and graphs employ descriptive probability distribution and goodness-of-fit tests of statistical significance as the methods for the data detailing and comparisons. Information details from this data of energy generation costs are useful for furthering research developments and aiding energy stakeholders and decision-makers in the formulation of policies on energy generation modes, economic valuation in terms of costing and management for attaining energy-efficient/smart educational environment.

  14. Effect of scale and quantity on the cost and performance of energy technologies: a literature review

    International Nuclear Information System (INIS)

    Hill, D.

    1983-11-01

    Traditionally, a six-tenths power law stated that cost increased by only half with a doubling of plant size, reducing cost per unit of capacity to 75%. Problems during construction in the past two decades have largely nullified the expected savings. Thermal efficiency improves with size in both coal and nuclear plants, but plant availability declines. These trends suggest that an optimal size for nuclear plants may be somewhat less than 1000 MW(e). Judged by a study of the cost of electricity generated during the 1970s, however, operational savings substantially restored economies of scale to nuclear plants but not to coal plants. The alternative to building larger plants is to build more small plants. In field construction, a second plant at the same site costs about 90% of the first, and a doubling of the number of plants built by an architect-engineer appears to reduce average cost to about 93%. In a variety of manufacturing industries, the learning curve is steeper. In the few cases where learning curves are mentioned in manufacturing studies of new energy technologies, however, a reduction in cost to only about 90% with a doubling of quantity is assumed. Most of the cost of new energy technologies such as photovoltaic arrays and fuel cells will be due to conventional equipment, structure, and manufacturing methods. It should therefore be possible to estimate size-quantity cost tradeoffs with some confidence to help establish optimal plant or module sizes

  15. Impact of Financial Structure on the Cost of Solar Energy

    Energy Technology Data Exchange (ETDEWEB)

    Mendelsohn, M.; Kreycik, C.; Bird, L.; Schwabe, P.; Cory, K.

    2012-03-01

    To stimulate investment in renewable energy generation projects, the federal government developed a series of support structures that reduce taxes for eligible investors--the investment tax credit, the production tax credit, and accelerated depreciation. The nature of these tax incentives often requires an outside investor and a complex financial arrangement to allocate risk and reward among the parties. These financial arrangements are generally categorized as 'advanced financial structures.' Among renewable energy technologies, advanced financial structures were first widely deployed by the wind industry and are now being explored by the solar industry to support significant scale-up in project development. This report describes four of the most prevalent financial structures used by the renewable sector and evaluates the impact of financial structure on energy costs for utility-scale solar projects that use photovoltaic and concentrating solar power technologies.

  16. Reducing rotor weight

    Energy Technology Data Exchange (ETDEWEB)

    Cheney, M.C. [PS Enterprises, Inc., Glastonbury, CT (United States)

    1997-12-31

    The cost of energy for renewables has gained greater significance in recent years due to the drop in price in some competing energy sources, particularly natural gas. In pursuit of lower manufacturing costs for wind turbine systems, work was conducted to explore an innovative rotor designed to reduce weight and cost over conventional rotor systems. Trade-off studies were conducted to measure the influence of number of blades, stiffness, and manufacturing method on COE. The study showed that increasing number of blades at constant solidity significantly reduced rotor weight and that manufacturing the blades using pultrusion technology produced the lowest cost per pound. Under contracts with the National Renewable Energy Laboratory and the California Energy Commission, a 400 kW (33m diameter) turbine was designed employing this technology. The project included tests of an 80 kW (15.5m diameter) dynamically scaled rotor which demonstrated the viability of the design.

  17. Design, performance and cost of energy from high concentration and flat-plate utility-scale PV systems

    International Nuclear Information System (INIS)

    Stolte, W.J.; Whisnant, R.A.; McGowin, C.R.

    1993-01-01

    This paper presents the results of a recent study to assess the near-term cost of power in central station applications. Three PV technologies were evaluated: Fresnel-lens high-concentration photovoltaic (HCPV), central receiver HCPV, and flat-plate PV using thin-film copper indium diselenide (CIS) cell technology. Baseline assumptions included PV cell designs and performances projected for the 1995 timeframe, 25 and 100 MW/year cell manufacturing rates, 50 MW power plant size, and mature technology cost and performance estimates. The plant design characteristics are highlighted. Potential sites were evaluated and selected for the PV power plants (Carrisa Plains, CA and Apalachicola, FL) and cell manufacturing plants (Dallas-Fort Worth, TX). Conceptual designs and cost estimates were developed for the plants and their components. Plant performance was modeled and the designs were optimized to minimize levelized energy costs. Overall, the flat plate design exhibited the lowest energy costs among the designs evaluated. Its levelized energy costs at the Carrisa Plains site were estimated to be 11.8 and 10.8 cents/kWh (1990 $) for 25 and 100 MW/year module production rates, respectively. This meets the 12 cents/kWh DOE near-term goal. The energy cost of the Fresnel lens plant (at Carrisa Plains and a 100 MW/year cell production rate) was estimated to be 12.4 cents/kWh and the corresponding central receiver energy cost was estimated to be 13.1 cents/kWh, both of which are very close to the DOE goal. Further design optimization efforts are still warranted and can be expected to reduce plant capital costs

  18. Smart campus: Data on energy generation costs from distributed generation systems of electrical energy in a Nigerian University

    Directory of Open Access Journals (Sweden)

    Joshua O. Okeniyi

    2018-04-01

    Full Text Available This data article presents comparisons of energy generation costs from gas-fired turbine and diesel-powered systems of distributed generation type of electrical energy in Covenant University, Ota, Nigeria, a smart university campus driven by Information and Communication Technologies (ICT. Cumulative monthly data of the energy generation costs, for consumption in the institution, from the two modes electric power, which was produced at locations closed to the community consuming the energy, were recorded for the period spanning January to December 2017. By these, energy generation costs from the turbine system proceed from the gas-firing whereas the generation cost data from the diesel-powered generator also include data on maintenance cost for this mode of electrical power generation. These energy generation cost data that were presented in tables and graphs employ descriptive probability distribution and goodness-of-fit tests of statistical significance as the methods for the data detailing and comparisons. Information details from this data of energy generation costs are useful for furthering research developments and aiding energy stakeholders and decision-makers in the formulation of policies on energy generation modes, economic valuation in terms of costing and management for attaining energy-efficient/smart educational environment. Keywords: Smart campus, Energy consumption, Energy efficiency, Load forecasting, Energy management, Learning analytics, Nigerian university, Education data mining

  19. A model for energy pricing with stochastic emission costs

    International Nuclear Information System (INIS)

    Elliott, Robert J.; Lyle, Matthew R.; Miao, Hong

    2010-01-01

    We use a supply-demand approach to value energy products exposed to emission cost uncertainty. We find closed form solutions for a number of popularly traded energy derivatives such as: forwards, European call options written on spot prices and European Call options written on forward contracts. Our modeling approach is to first construct noisy supply and demand processes and then equate them to find an equilibrium price. This approach is very general while still allowing for sensitivity analysis within a valuation setting. Our assumption is that, in the presence of emission costs, traditional supply growth will slow down causing output prices of energy products to become more costly over time. However, emission costs do not immediately cause output price appreciation, but instead expose individual projects, particularly those with high emission outputs, to much more extreme risks through the cost side of their profit stream. Our results have implications for hedging and pricing for producers operating in areas facing a stochastic emission cost environment. (author)

  20. The cost-effectiveness of household photovoltaic systems in reducing greenhouse gas emissions in Australia: Linking subsidies with emission reductions

    International Nuclear Information System (INIS)

    Burtt, D.; Dargusch, P.

    2015-01-01

    Highlights: • Payback period for Australian household PV fell to four years in 2011 and 2012. • PV became attractive due to high feed-in tariffs and declining PV costs. • Cost was AU$200/t CO 2 e in 2010, expected to be AU$65 to AU$100/t CO 2 e by 2020. • PV resulted in greenhouse gas emissions reducing by 3.7 million t CO 2 e in 2013. • PV expected to reduce greenhouse gas emissions by 8 million t CO 2 e in 2020. - Abstract: This paper examines the cost-effectiveness of subsidies (feed-in tariffs and renewable energy credits) paid for by electricity consumers to support the uptake of roof top photovoltaic (PV) systems by households in Australia. We estimate annual payback periods, and then regress these against the actual uptake of household PV and associated emission reductions, creating a relationship not apparent in other research. Sensitivity analysis reveals that the declining cost of PV panels had most impact on PV uptake followed by feed-in tariffs, renewable energy credits and the increasing cost of household electricity tariffs. Our modelling shows that feed-in tariffs were higher than necessary to achieve the resultant levels of PV uptake and that the low cost of PV panels and comparatively high electricity tariffs are likely to result in a continuing strong uptake of household PV in Australia. Our modelling shows that subsidies peaked in 2011 and 2012, with payback periods of three to four years, having since increased to five to six years. Emission reduction costs are expected to reduce from over AU$200 per t CO 2 e in 2013 to between AU$65 and AU$100 per t CO 2 e in 2020. Household PV reduced Australia’s emissions by 3.7 million t CO 2 e in 2013 (1.7% of Australia’s total emissions) and is expected to reach eight million tonnes (3.7% of Australia’s total emissions) by 2020

  1. Exploring No-Cost Opportunities for Public Sector Information Systems Energy Efficiency: A Tennessee Application

    Directory of Open Access Journals (Sweden)

    Kendra Abkowitz Brooks

    2015-11-01

    Full Text Available The Tennessee Department of Environment and Conservation (TDEC completed a pilot project within its Central Office spaces to test the utilization of computer power management (CPM technologies to implement power saving settings on state-owned, network-connected computer equipment. Currently, the State of Tennessee has no clear protocol regarding energy-conserving power settings on state-owned machines. Activation of monitor sleep modes and system standby and hibernation modes on 615 Central Office computers over an 18-month period reduced energy consumption by an estimated 8093 kWh and $526 per month, amounting to approximately $6312 in cost savings for Tennessee annually. If implemented throughout State of Tennessee executive agencies across the state, energy cost savings could amount to an estimated $323,341 annually. The research endeavored to understand both positive and negative impacts that strategic power management approaches can have on energy consumption, worker productivity, network security, and state budgets. Nearly all impacts discussed were positive. Based on successful results within TDEC Central Office spaces in Tennessee Tower, and considering the potential cost savings that could be achieved, expansion of the implementation of computer power management policies to machines in offices across the state was recommended.

  2. Building Energy and Cost Performance: An Analysis of Thirty Melbourne Case Studies

    Directory of Open Access Journals (Sweden)

    Yu Lay Langston

    2012-11-01

    Full Text Available This study investigates the energy and cost performance of thirty recent buildings in Melbourne, Australia. Commonly, building design decisions are based on issues pertaining to construction cost, and consideration of energy performance is made only within the context of the initial project budget. Even where energy is elevated to more importance, operating energy is seen as the focus and embodied energy is nearly always ignored. For the first time, a large sample of buildings has been assembled and analyzed to improve the understanding of both energy and cost performance over their full life cycle, which formed the basis of a wider doctoral study into the inherent relationship between energy and cost. The aim of this paper is to report on typical values for embodied energy, operating energy, capital cost and operating cost per square metre for a range of building functional types investigated in this research. The conclusion is that energy and cost have quite different profiles across projects, and yet the mean GJ/m2 or cost/m2 have relatively low coefficients of variation and therefore may be useful as benchmarks of typical building performance.  

  3. Methodology to Calculate the Costs of a Floating Offshore Renewable Energy Farm

    Directory of Open Access Journals (Sweden)

    Laura Castro-Santos

    2016-04-01

    Full Text Available This paper establishes a general methodology to calculate the life-cycle cost of floating offshore renewable energy devices, applying it to wave energy and wind energy devices. It is accounts for the contributions of the six main phases of their life-cycle: concept definition, design and development, manufacturing, installation, exploitation and dismantling, the costs of which have been defined. Moreover, the energy produced is also taken into account to calculate the Levelized Cost of Energy of a floating offshore renewable energy farm. The methodology proposed has been applied to two renewable energy devices: a floating offshore wave energy device and a floating offshore wind energy device. Two locations have been considered: Aguçadoura and São Pedro de Moel, both in Portugal. Results indicate that the most important cost in terms of the life-cycle of a floating offshore renewable energy farm is the exploitation cost, followed by the manufacturing and the installation cost. In addition, the best area in terms of costs is the same independently of the type of floating offshore renewable energy considered: Aguçadoura. However, the results in terms of Levelized Cost of Energy are different: Aguçadoura is better when considering wave energy technology and the São Pedro de Moel region is the best option when considering floating wind energy technology. The method proposed aims to give a direct approach to calculate the main life-cycle cost of a floating offshore renewable energy farm. It helps to assess its feasibility and evaluating the relevant characteristics that influence it the most.

  4. Governmental costs and revenues associated with geothermal energy development in Imperial County. Special Publication 3241

    Energy Technology Data Exchange (ETDEWEB)

    Goldman, G.; Strong, D.

    1977-10-01

    This study estimates the cost and revenue impacts to local governments of three geothermal energy growth scenarios in Imperial County. The level of geothermal energy potential for the three development scenarios tested is 2,000, 4,000 and 8,000 MW--enough power to serve 270,000 to 1,000,000 people. The government agencies involved do not expect any substantial additional capital costs due to geothermal energy development; therefore, average costing techniques have been used for projecting public service costs and government revenues. The analysis of the three growth scenarios tested indicates that county population would increase by 3, 7 and 19 percent and assessed values would increase by 20, 60, and 165 percent for Alternatives No. 1, No. 2 and No. 3 respectively. Direct and indirect effects would increase new jobs in the county by 1,000, 3,000 and 8,000. Government revenues would tend to exceed public service costs for county and school districts, while city costs would tend to exceed revenues. In each of the alternatives, if county, cities and school districts are grouped together, the revenues exceed costs by an estimated $1,600 per additional person either directly or indirectly related to geothermal energy development in the operational stages. In the tenth year of development, while facilities are still being explored, developed and constructed, the revenues would exceed costs by an approximate $1,000 per additional person for each alternative. School districts with geothermal plants in their boundaries would be required by legislation SB 90 to reduce their tax rates by 15 to 87 percent, depending on the level of energy development. Revenue limits and school taxing methods will be affected by the Serrano-Priest decision and by new school legislation in process.

  5. A Low-Cost Neutral Zinc-Iron Flow Battery with High Energy Density for Stationary Energy Storage.

    Science.gov (United States)

    Xie, Congxin; Duan, Yinqi; Xu, Wenbin; Zhang, Huamin; Li, Xianfeng

    2017-11-20

    Flow batteries (FBs) are one of the most promising stationary energy-storage devices for storing renewable energy. However, commercial progress of FBs is limited by their high cost and low energy density. A neutral zinc-iron FB with very low cost and high energy density is presented. By using highly soluble FeCl 2 /ZnBr 2 species, a charge energy density of 56.30 Wh L -1 can be achieved. DFT calculations demonstrated that glycine can combine with iron to suppress hydrolysis and crossover of Fe 3+ /Fe 2+ . The results indicated that an energy efficiency of 86.66 % can be obtained at 40 mA cm -2 and the battery can run stably for more than 100 cycles. Furthermore, a low-cost porous membrane was employed to lower the capital cost to less than $ 50 per kWh, which was the lowest value that has ever been reported. Combining the features of low cost, high energy density and high energy efficiency, the neutral zinc-iron FB is a promising candidate for stationary energy-storage applications. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. On the “cost-optimal levels” of energy performance requirements and its economic evaluation in Italy

    Directory of Open Access Journals (Sweden)

    Lamberto Tronchin

    2014-10-01

    Full Text Available The European energy policies about climate and energy package, known as the “20-20-20” targets define ambitious, but achievable, national energy objectives. As regards the Directives closely related to the 2020 targets, the EU Energy Performance of Buildings Directive (EPBD Recast- DIR 2010/31/EU is the main European legislative instrument for improving the energy performance of buildings, taking into account outdoor climatic and local conditions, as well as indoor climate requirements and cost-effectiveness. The EPBD recast now requests that Member States shall ensure that minimum energy performance requirements for buildings are set “with a view to achieving cost-optimal levels”. The cost optimum level shall be calculated in accordance with a comparative methodology framework, leaving the Member States to determine which of these calculations is to become the national benchmark against which national minimum energy performance requirements will be assessed. The European standards (ENs- Umbrella Document V7 (prCEN/TR 15615 are intended to support the EPBD by providing the calculation methods and associated material to obtain the overall energy performance of a building. For Italy the Energy Performance of Building Simulations EPBS must be calculated with standard UNITS 11300. The energy building behaviour is referred to standard and not to real use, nor climate or dynamic energy evaluation. Since retrofitting of existing buildings offers significant opportunities for reducing energy consumption and greenhouse gas emissions, a case study of retrofitting is described and the CostOptimal Level EU procedure in an Italian context is analysed. Following this procedure, it is shown not only that the energy cost depends on several conditions and most of them are not indexed at national level but also that the cost of improvement depends on local variables and contract tender. The case study highlights the difficulties to apply EU rules, and

  7. Reducing the Cost of Grid Extension for Rural Electrification

    OpenAIRE

    NRECA International, Ltd.

    2000-01-01

    This study first reviews the cost of grid extension in a number of countries. It then identifies ways to reduce costs by examining how they are affected by a variety of factors. An electricity supply system may be divided into two discrete components: the grid extension and the low-voltage distribution system. This study will focus on the first of these two components, the cost of grid ext...

  8. The real cost of desalted water and how to reduce it further

    International Nuclear Information System (INIS)

    Nisan, S.; Blank, J.E.; Tusel, G.F.

    2007-01-01

    Freshwater scarcity on a worldwide level is now a burning problem, widely discussed in media inter-views and in major newspapers. In this context, the majority of the media are underlining the importance of seawater desalination as an attractive and logical alternative source to fight the freshwater scarcity. Unfortunately the majority of all these discussions are providing a totally wrong picture of the real cost of freshwater production from seawater. Figures for desalted water costs from below 0.25 Euro/m 3 to over 0.6 Euro/m 3 for large-scale realisation are frequently quoted. In some media, however, the costs given for desalted water production are too prohibitive for large-scale applications. Many so-called experts are enhancing the confusion with incorrect or in incomplete statements. Even simple considerations, such as water cost ex desalination plant vs. water cost at consumer tap, are neglected. Yet another neglected point is that freshwater of any kind is either highly subsidized or overpriced to finance costs which are not water-related costs. Even in the EU Commission the real cost of seawater desalination is sometimes incorrectly perceived. In principle, the calculation of specific freshwater cost is simple and based on a few clear parameters such as investment cost for a given desalting capacity, energy cost, cost for distribution, amortization period and concept, financing cost, inflation rate, operation and maintenance cost and, last but not least, plant availability and lifetime. A typical example to illustrate the reigning confusion is the primary energy cost. Today, the barrel of crude oil costs in the world market approximately 70 US dollars or more. However, many tenders or BOT projects compare the water and energy cost on a 5 US dollars/barrel level. With this energy cost level and other unrealistic conditions even old-fashioned, low-GOR MSF plant can produce freshwater for a nominal cost of 0.60 Euro/m 3 . With today's world-market prices

  9. Climate policy and energy-intensive manufacturing: A comprehensive analysis of the effectiveness of cost mitigation provisions in the American Energy and Security Act of 2009

    International Nuclear Information System (INIS)

    Bassi, Andrea M.; Yudken, Joel S.

    2011-01-01

    In response to the ongoing climate policy debates, this study examines the cost impacts of carbon-pricing legislation on selected US energy-intensive manufacturing industries. Specifically, it evaluates output-based rebate measures and the border adjustment provision specified in the bill, and tests the effectiveness of cost containment features of the policy, such as the international offsets, under various market assumptions. Results of the examination confirm that in all policy cases or industries, the output-based rebates would effectively mitigate the manufacturers' carbon-pricing costs in the short-to-medium term. However as the rebates decline after 2020, especially in a case where low-carbon electricity generation or international offsets are not readily available or implemented, these industries would suffer greater declines in profitability. At the same time, the study's findings were mixed concerning the effectiveness of the border adjustment measure in reducing cost impacts after 2020. While border adjustments could reduce costs to US manufacturing sectors, at least temporarily, they could create problems for domestic downstream producers and exports, under cost pass-along conditions. However at best, the output-based rebates, international offset, and border adjustment and measures primarily buy time for manufacturers. The only long-term solution is for EITE industries to invest in energy-saving and next-generation low-carbon technologies. - Highlights: → The output-based rebates would effectively mitigate the costs of carbon-pricing for EITE industries. → After 2021 economic impacts on the EITE industries would escalate. → The BA measure would support US firms passing through their emissions costs to their US customers. → The BA measure would not alleviate the higher production costs of US. EITE exports. → In the medium term the only true solution is for US. EITE manufacturers to invest in energy-saving technologies.

  10. Cost evolution of electric energy in Brazil

    International Nuclear Information System (INIS)

    Oliveira, A. de; Contreras, E.C.A.

    1981-01-01

    An analysis of electric energy costs in Brazil is presented. Hydro, coal and nuclear costs are analysed and the final conclusion seems to indicate that nuclear power plants are not economically interesting untill the Brazilian electric capacity attains 110 GW average power. (Author) [pt

  11. Selecting HVAC Systems to Achieve Comfortable and Cost-effective Residential Net-Zero Energy Buildings.

    Science.gov (United States)

    Wu, Wei; Skye, Harrison M; Domanski, Piotr A

    2018-02-15

    HVAC is responsible for the largest share of energy use in residential buildings and plays an important role in broader implementation of net-zero energy building (NZEB). This study investigated the energy, comfort and economic performance of commercially-available HVAC technologies for a residential NZEB. An experimentally-validated model was used to evaluate ventilation, dehumidification, and heat pump options for the NZEB in the mixed-humid climate zone. Ventilation options were compared to mechanical ventilation without recovery; a heat recovery ventilator (HRV) and energy recovery ventilator (ERV) respectively reduced the HVAC energy by 13.5 % and 17.4 % and reduced the building energy by 7.5 % and 9.7 %. There was no significant difference in thermal comfort between the ventilation options. Dehumidification options were compared to an air-source heat pump (ASHP) with a separate dehumidifier; the ASHP with dedicated dehumidification reduced the HVAC energy by 7.3 % and the building energy by 3.9 %. The ASHP-only option (without dedicated dehumidification) reduced the initial investment but provided the worst comfort due to high humidity levels. Finally, ground-source heat pump (GSHP) alternatives were compared to the ASHP; the GSHP with two and three boreholes reduced the HVAC energy by 26.0 % and 29.2 % and the building energy by 13.1 % and 14.7 %. The economics of each HVAC configuration was analyzed using installation cost data and two electricity price structures. The GSHPs with the ERV and dedicated dehumidification provided the highest energy savings and good comfort, but were the most expensive. The ASHP with dedicated dehumidification and the ERV (or HRV) provided reasonable payback periods.

  12. The Cost of Enforcing Building Energy Codes: Phase 2

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Alison [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Price, Sarah K. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Vine, Ed [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2014-10-15

    The purpose of this study is to present key findings regarding costs associated with enforcing building energy code compliance–primarily focusing on costs borne by local government. Building codes, if complied with, have the ability to save a significant amount of energy. However, energy code compliance rates have been significantly lower than 100%. Renewed interest in building energy codes has focused efforts on increasing compliance, particularly as a result of the 2009 American Recovery and Reinvestment Act (ARRA) requirement that in order for states to receive additional energy grants, they must have “a plan for the jurisdiction achieving compliance with the building energy code…in at least 90 percent of new and renovated residential and commercial building space” by 2017 (Public Law 111-5, Section 410(2)(C)). One study by the Institute for Market Transformation (IMT) estimated the costs associated with reaching 90% compliance to be $810 million, or $610 million in additional funding over existing expenditures, a non-trivial value. [Majersik & Stellberg 2010] In this context, Lawrence Berkeley National Laboratory (LBNL) conducted a study to better pinpoint the costs of enforcement through a two-phase process.

  13. Structure of production costs of different energy sources (fossile fuels and nuclear energy) (group 11)

    International Nuclear Information System (INIS)

    Girard, Ph.

    2002-01-01

    This article is the work of a group of students from the ''Ecole Nationale d'Administration'', they had to study the structure of the costs of the different energy sources. This analysis shows some common features between the energy sources. The cost is very dependent on the partial costs of technological constraints due to exploration, production, transport and distribution. For primary energies the market appears to be not very competitive, the price depends strongly on the market power of the operator and benefits are generally important. In France, taxes play a role to assure competitiveness of gas and coal against oil. Uranium fuel presents the lowest production and transformation costs at the same energy content. Transport costs are important for natural gas which implies a strong mutual dependence between gas producers and consumers. The irreplaceable use of oil in transport assures regular high revenues for oil companies. (A.C.)

  14. Reduced cost and improved figure of sapphire optical components

    Science.gov (United States)

    Walters, Mark; Bartlett, Kevin; Brophy, Matthew R.; DeGroote Nelson, Jessica; Medicus, Kate

    2015-10-01

    Sapphire presents many challenges to optical manufacturers due to its high hardness and anisotropic properties. Long lead times and high prices are the typical result of such challenges. The cost of even a simple 'grind and shine' process can be prohibitive. The high precision surfaces required by optical sensor applications further exacerbate the challenge of processing sapphire thereby increasing cost further. Optimax has demonstrated a production process for such windows that delivers over 50% time reduction as compared to traditional manufacturing processes for sapphire, while producing windows with less than 1/5 wave rms figure error. Optimax's sapphire production process achieves significant improvement in cost by implementation of a controlled grinding process to present the best possible surface to the polishing equipment. Following the grinding process is a polishing process taking advantage of chemical interactions between slurry and substrate to deliver excellent removal rates and surface finish. Through experiments, the mechanics of the polishing process were also optimized to produce excellent optical figure. In addition to reducing the cost of producing large sapphire sensor windows, the grinding and polishing technology Optimax has developed aids in producing spherical sapphire components to better figure quality. In addition to reducing the cost of producing large sapphire sensor windows, the grinding and polishing technology Optimax has developed aids in producing spherical sapphire components to better figure quality. Through specially developed polishing slurries, the peak-to-valley figure error of spherical sapphire parts is reduced by over 80%.

  15. Costs and profitability of renewable energies in metropolitan France - ground-based wind energy, biomass, solar photovoltaic. Analysis

    International Nuclear Information System (INIS)

    2014-04-01

    After a general presentation of the framework of support to renewable energies and co-generation (purchasing obligation, tendering, support funding), of the missions of the CRE (Commission for Energy Regulation) within the frame of the purchasing obligation, and of the methodology adopted for this analysis, this document reports an analysis of production costs for three different renewable energy sectors: ground-based wind energy, biomass energy, and solar photovoltaic energy. For each of them, the report recalls the context (conditions of purchasing obligation, winning bid installations, installed fleet in France at the end of 2012), indicates the installations taken into consideration in this study, analyses the installation costs and funding (investment costs, exploitation and maintenance costs, project funding, production costs), and assesses the profitability in terms of capital and for stakeholders

  16. Cost analysis of low energy electron accelerator for film curing

    International Nuclear Information System (INIS)

    Ochi, Masafumi

    2003-01-01

    Low energy electron accelerators are recognized as one of the advanced curing means of converting processes for films and papers. In the last three years the price of the accelerator equipment has been greatly reduced. The targeted application areas are mainly processes of curing inks, coatings, and adhesives to make packaging materials. The operating cost analyses were made for electron beam (EB) processes over the conventional ones without EB. Then three new proposals for cost reduction of EB processes are introduced. Also being developed are new EB chemistries such as coatings, laminating adhesives and inks. EB processes give instantaneous cure and EB chemistries are basically non solvent causing less VOC emission to the environment. These developments of both equipment and chemistries might have a potential to change conventional packaging film industries. (author)

  17. Managing Your Energy; An Energy Star Guide for Identifying Energy Savings in Manufacturing Plants

    NARCIS (Netherlands)

    Worrell, E.; Angelini, T.; Masanet, E.

    2010-01-01

    In the United States, industry spends over $100 billion annually to power its manufacturing plants. Companies also spend on maintenance, capital outlay, and energy services. Improving energy efficiency is vital to reduce these costs and increase earnings. Many cost-effective opportunities to reduce

  18. Cost-optimal levels for energy performance requirements

    DEFF Research Database (Denmark)

    Thomsen, Kirsten Engelund; Aggerholm, Søren; Kluttig-Erhorn, Heike

    2011-01-01

    The CA conducted a study on experiences and challenges for setting cost optimal levels for energy performance requirements. The results were used as input by the EU Commission in their work of establishing the Regulation on a comparative methodology framework for calculating cost optimal levels...... of minimum energy performance requirements. In addition to the summary report released in August 2011, the full detailed report on this study is now also made available, just as the EC is about to publish its proposed Regulation for MS to apply in their process to update national building requirements....

  19. Life cycle cost-based risk model for energy performance contracting retrofits

    Science.gov (United States)

    Berghorn, George H.

    Buildings account for 41% of the primary energy consumption in the United States, nearly half of which is accounted for by commercial buildings. Among the greatest energy users are those in the municipalities, universities, schools, and hospitals (MUSH) market. Correctional facilities are in the upper half of all commercial building types for energy intensity. Public agencies have experienced reduced capital budgets to fund retrofits; this has led to the increased use of energy performance contracts (EPC), which are implemented by energy services companies (ESCOs). These companies guarantee a minimum amount of energy savings resulting from the retrofit activities, which in essence transfers performance risk from the owner to the contractor. Building retrofits in the MUSH market, especially correctional facilities, are well-suited to EPC, yet despite this potential and their high energy intensities, efficiency improvements lag behind that of other public building types. Complexities in project execution, lack of support for data requests and sub-metering, and conflicting project objectives have been cited as reasons for this lag effect. As a result, project-level risks must be understood in order to support wider adoption of retrofits in the public market, in particular the correctional facility sub-market. The goal of this research is to understand risks related to the execution of energy efficiency retrofits delivered via EPC in the MUSH market. To achieve this goal, in-depth analysis and improved understanding was sought with regard to ESCO risks that are unique to EPC in this market. The proposed work contributes to this understanding by developing a life cycle cost-based risk model to improve project decision making with regard to risk control and reduction. The specific objectives of the research are: (1) to perform an exploratory analysis of the EPC retrofit process and identify key areas of performance risk requiring in-depth analysis; (2) to construct a

  20. 76 FR 57982 - Building Energy Codes Cost Analysis

    Science.gov (United States)

    2011-09-19

    ... DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy [Docket No. EERE-2011-BT-BC-0046] Building Energy Codes Cost Analysis Correction In notice document 2011-23236 beginning on page...-23236 Filed 9-16-11; 8:45 am] BILLING CODE 1505-01-P ...

  1. Reducing BWR O and M costs through on-line performance monitoring

    International Nuclear Information System (INIS)

    Jonas, T.; Gross, R.; Logback, F.; Josyula, R.

    1995-01-01

    Competition in the electric power industry has placed significant emphasis on reducing operating and maintenance (O and M) costs at nuclear facilities. Therefore, on-line performance monitoring to locate power losses for boiling water reactor (BWR) plants is creating tremendous interest. In addition, the ability to automate activities such as data collection, analysis, and reporting increases the efficiency of plant engineers and gives them more time to concentrate on solving plant efficiency problems. This capability is now available with a unique software product called GEBOPS. GE Nuclear Energy, in conjunction with Joint Venture partner Black and Veatch, has undertaken development of the General Electric/Black and Veatch On-line Performance System (GEBOPS), an on-line performance monitoring system for BWR plants. The experience and expertise of GE Nuclear Energy with BWR plants, coupled with the proven on-line monitoring software development experience and capability of Black and Veatch, provide the foundation for a unique product which addresses the needs of today's BWR plants

  2. Production of Low Cost Carbon-Fiber through Energy Optimization of Stabilization Process

    Directory of Open Access Journals (Sweden)

    Gelayol Golkarnarenji

    2018-03-01

    Full Text Available To produce high quality and low cost carbon fiber-based composites, the optimization of the production process of carbon fiber and its properties is one of the main keys. The stabilization process is the most important step in carbon fiber production that consumes a large amount of energy and its optimization can reduce the cost to a large extent. In this study, two intelligent optimization techniques, namely Support Vector Regression (SVR and Artificial Neural Network (ANN, were studied and compared, with a limited dataset obtained to predict physical property (density of oxidative stabilized PAN fiber (OPF in the second zone of a stabilization oven within a carbon fiber production line. The results were then used to optimize the energy consumption in the process. The case study can be beneficial to chemical industries involving carbon fiber manufacturing, for assessing and optimizing different stabilization process conditions at large.

  3. Development of the Croatian Energy Sector by 2050 in Terms of Reducing Carbon Dioxide Emissions

    International Nuclear Information System (INIS)

    Granic, G.; Pesut, D.; Tot, M.; Juric, Z.; Horvath, L.; Bacan, A.; Kulisic, B.; Majstorovic, G.

    2012-01-01

    The paper analyzes the question: is it possible to achieve and what would be the consequences of energy development while reducing CO 2 emissions by 80% by year 2050. Thereby, the growth of costs is not the only expected consequence, but there are also desirable and possible impacts of the energy sector on technological development, science, the economy and increasing the added value. In paper, the development of the energy sector by 2050 is modeled and simulated using two models for the evaluation of the energy systems: model for the analysis of energy consumption (MAED - Model for Energy System Analysis ) and model for optimization of energy supply systems (MESSAGE - Model for Energy Supply Strategy Alternatives and their General Environmental Impacts ). MESSAGE use the results of MAED model as input assumptions and data. Development opportunities in the sectors of industry, households, services and transport were modeled in the simulation, i.e. possible trajectories of development were considered, in order to achieve the objectives of the sectoral reducing of CO 2 emissions in line with the stated objectives which are discussed at the EU level. The average cost of electricity production in year 2050 will increase by nearly 140% compared to the year 2015. The answer is: the reduction of CO 2 emissions in Croatia by 80% in total and by 95% in the power sector is possible from a technical and technological point of view, but with the high financial impact and significant changes in the energy sector, to which should precede changes in scientific and industrial development.(author)

  4. SunShot solar power reduces costs and uncertainty in future low-carbon electricity systems.

    Science.gov (United States)

    Mileva, Ana; Nelson, James H; Johnston, Josiah; Kammen, Daniel M

    2013-08-20

    The United States Department of Energy's SunShot Initiative has set cost-reduction targets of $1/watt for central-station solar technologies. We use SWITCH, a high-resolution electricity system planning model, to study the implications of achieving these targets for technology deployment and electricity costs in western North America, focusing on scenarios limiting carbon emissions to 80% below 1990 levels by 2050. We find that achieving the SunShot target for solar photovoltaics would allow this technology to provide more than a third of electric power in the region, displacing natural gas in the medium term and reducing the need for nuclear and carbon capture and sequestration (CCS) technologies, which face technological and cost uncertainties, by 2050. We demonstrate that a diverse portfolio of technological options can help integrate high levels of solar generation successfully and cost-effectively. The deployment of GW-scale storage plays a central role in facilitating solar deployment and the availability of flexible loads could increase the solar penetration level further. In the scenarios investigated, achieving the SunShot target can substantially mitigate the cost of implementing a carbon cap, decreasing power costs by up to 14% and saving up to $20 billion ($2010) annually by 2050 relative to scenarios with Reference solar costs.

  5. Superconducting magnetic energy storage for electric utility load leveling: A study of cost vs. stored energy

    International Nuclear Information System (INIS)

    Luongo, C.A.; Loyd, R.J.

    1987-01-01

    Superconducting Magnetic Energy Storage (SMES) is a promising technology for electric utility load leveling. This paper presents the results of a study to establish the capital cost of SMES as a function of stored energy. Energy-related coil cost and total installed plant cost are given for construction in nominal soil and in competent rock. Economic comparisons are made between SMES and other storage technologies and peaking gas turbines. SMES is projected to be competitive at stored energies as low as 1000 MWh

  6. Pricing district heating by marginal cost

    International Nuclear Information System (INIS)

    Difs, Kristina; Trygg, Louise

    2009-01-01

    A vital measure for industries when redirecting the energy systems towards sustainability is conversion from electricity to district heating (DH). This conversion can be achieved for example, by replacing electrical heating with DH and compression cooling with heat-driven absorption cooling. Conversion to DH must, however, always be an economically attractive choice for an industry. In this paper the effects for industries and the local DH supplier are analysed when pricing DH by marginal cost in combination with industrial energy efficiency measures. Energy audits have shown that the analysed industries can reduce their annual electricity use by 30% and increase the use of DH by 56%. When marginal costs are applied as DH tariffs and the industrial energy efficiency measures are implemented, the industrial energy costs can be reduced by 17%. When implementing the industrial energy efficiency measures and also considering a utility investment in the local energy system, the local DH supplier has a potential to reduce the total energy system cost by 1.6 million EUR. Global carbon dioxide emissions can be reduced by 25,000 tonnes if the industrial energy efficiency measures are implemented and when coal-condensing power is assumed to be the marginal electricity source

  7. A new energy paradigm for Turkey: A political risk-inclusive cost analysis for sustainable energy

    International Nuclear Information System (INIS)

    Oksay, Serhan; Iseri, Emre

    2011-01-01

    Implementing sustainable development policies in order to achieve economic and social development while maintaining adequate environmental protection to minimize the damage inflicted by the constantly increasing world population must be a major priority in the 21st century. While the emerging global debate on potential cost-effective responses has produced potential solutions such as cap and trade systems and/or carbon taxes as part of evolving sustainable energy/environmental policies, this kind of intellectual inquiry does not seem to be an issue among Turkish policy-making elites. This is mainly due to their miscalculation that pursuing sustainable energy policies is much more expensive in comparison to the utilization of fossil fuels such as natural gas. Nevertheless, the pegged prices of an energy sector dominated by natural gas are illusive, as both the political risks and environmental damage have not been incorporated into the current cost calculations. This paper evaluates energy policies through a lens of risk management and takes an alternative approach to calculating energy costs by factoring in political risks. This formulation reveals that the cost of traditional fossil-based energy is in fact more expensive than renewable energy. In addition to being environmentally friendly, the paradigm shift towards renewable energy policies would provide Turkey with a significant opportunity to stimulate its economy by being one of the first countries to develop green technologies and as a result this burgeoning sector would prompt job creation as well; mainly due to the externalities. - Research highlights: → This paper evaluates Turkish energy policies through risk management scope and takes an alternative approach on calculating electricity costs by factoring in political risks. → The cost of traditional fossil-based energy turns out to be more expensive than renewable energy. → The paradigm shift towards renewable energy policies could provide Turkey

  8. A new energy paradigm for Turkey: A political risk-inclusive cost analysis for sustainable energy

    Energy Technology Data Exchange (ETDEWEB)

    Oksay, Serhan, E-mail: serhano@khas.edu.t [Kadir Has University, Department of Business Administration (Turkey); Iseri, Emre, E-mail: eiseri@khas.edu.t [Kadir Has University, Department of International Relations, Cibali Campus, Kadir Has Caddesi 34083, Istanbul (Turkey)

    2011-05-15

    Implementing sustainable development policies in order to achieve economic and social development while maintaining adequate environmental protection to minimize the damage inflicted by the constantly increasing world population must be a major priority in the 21st century. While the emerging global debate on potential cost-effective responses has produced potential solutions such as cap and trade systems and/or carbon taxes as part of evolving sustainable energy/environmental policies, this kind of intellectual inquiry does not seem to be an issue among Turkish policy-making elites. This is mainly due to their miscalculation that pursuing sustainable energy policies is much more expensive in comparison to the utilization of fossil fuels such as natural gas. Nevertheless, the pegged prices of an energy sector dominated by natural gas are illusive, as both the political risks and environmental damage have not been incorporated into the current cost calculations. This paper evaluates energy policies through a lens of risk management and takes an alternative approach to calculating energy costs by factoring in political risks. This formulation reveals that the cost of traditional fossil-based energy is in fact more expensive than renewable energy. In addition to being environmentally friendly, the paradigm shift towards renewable energy policies would provide Turkey with a significant opportunity to stimulate its economy by being one of the first countries to develop green technologies and as a result this burgeoning sector would prompt job creation as well; mainly due to the externalities. - Research highlights: {yields} This paper evaluates Turkish energy policies through risk management scope and takes an alternative approach on calculating electricity costs by factoring in political risks. {yields} The cost of traditional fossil-based energy turns out to be more expensive than renewable energy. {yields} The paradigm shift towards renewable energy policies could

  9. Impact of solar energy cost on water production cost of seawater desalination plants in Egypt

    International Nuclear Information System (INIS)

    Lamei, A.; Zaag, P. van der; Munch, E.

    2008-01-01

    Many countries in North Africa and the Middle East are experiencing localized water shortages and are now using desalination technologies with either reverse osmosis (RO) or thermal desalination to overcome part of this shortage. Desalination is performed using electricity, mostly generated from fossil fuels with associated greenhouse gas emissions. Increased fuel prices and concern over climate change are causing a push to shift to alternative sources of energy, such as solar energy, since solar radiation is abundant in this region all year round. This paper presents unit production costs and energy costs for 21 RO desalination plants in the region. An equation is proposed to estimate the unit production costs of RO desalination plants as a function of plant capacity, price of energy and specific energy consumption. This equation is used to calculate unit production costs for desalinated water using photovoltaic (PV) solar energy based on current and future PV module prices. Multiple PV cells are connected together to form a module or a panel. Unit production costs of desalination plants using solar energy are compared with conventionally generated electricity considering different prices for electricity. The paper presents prices for both PV and solar thermal energy. The paper discusses at which electricity price solar energy can be considered economical to be used for RO desalination; this is independent of RO plant capacity. For countries with electricity prices of 0.09 US$/kWh, solar-generated electricity (using PV) can be competitive starting from 2 US$/W p (W p is the number of Watts output under standard conditions of sunlight). For Egypt (price of 0.06 US$/kWh), solar-generated electricity starts to be competitive from 1 US$/W p . Solar energy is not cost competitive at the moment (at a current module price for PV systems including installation of 8 US$/W p ), but advances in the technology will continue to drive the prices down, whilst penalties on usage

  10. Comparison of cost effectiveness of risk reduction among different energy systems: French case studies. Final report of the co-ordinated research programme

    International Nuclear Information System (INIS)

    Lochard, Jacques

    1989-08-01

    This report presents the three French case studies performed in the framework of the coordinated research program on 'Comparison of Cost-effectiveness of Risk Reduction among different Energy Systems': Cost effectiveness of robotics and remote tooling for occupational risk reduction at a nuclear fuel fabrication facility; Cost-effectiveness of protection actions to reduce occupational exposures in underground uranium mines; Cost-effectiveness of safety measures to reduce public risk associated with the transportation of UF 6 by truck and trains

  11. Managing Your Energy: An ENERGY STAR(R) Guide for Identifying Energy Savings in Manufacturing Plants

    Energy Technology Data Exchange (ETDEWEB)

    Worrell, Ernst; Angelini, Tana; Masanet, Eric

    2010-07-27

    In the United States, industry spends over $100 billion annually to power its manufacturing plants. Companies also spend on maintenance, capital outlay, and energy services. Improving energy efficiency is vital to reduce these costs and increase earnings. Many cost-effective opportunities to reduce energy consumption are available, and this Energy Guide discusses energy-efficiency practices and energy-efficient technologies that can be applied over a broad spectrum of companies. Strategies in the guide address hot water and steam, compressed air, pumps, motors, fans, lighting, refrigeration, and heating, ventilation, and air conditioning. This guide includes descriptions of expected energy and cost savings, based on real-world applications, typical payback periods, and references to more detailed information. The information in this Energy Guide is intended to help energy and plant managers achieve cost-effective energy reductions while maintaining product quality. Further research on the economics of all measures--as well as on their applicability to different production practices?is needed to assess their cost effectiveness at individual plants.

  12. Strategies Used by Adults to Reduce Their Prescription Drug Costs

    Science.gov (United States)

    ... data from the 2011 National Health Interview Survey (NHIS). Keywords: National Health Interview Survey, alternative therapies, medication ... to cost ( 9 ) that are not measured in NHIS. Definitions Strategies for reducing prescription drug costs : Based ...

  13. No Cost – Low Cost Compressed Air System Optimization in Industry

    Science.gov (United States)

    Dharma, A.; Budiarsa, N.; Watiniasih, N.; Antara, N. G.

    2018-04-01

    Energy conservation is a systematic, integrated of effort, in order to preserve energy sources and improve energy utilization efficiency. Utilization of energy in efficient manner without reducing the energy usage it must. Energy conservation efforts are applied at all stages of utilization, from utilization of energy resources to final, using efficient technology, and cultivating an energy-efficient lifestyle. The most common way is to promote energy efficiency in the industry on end use and overcome barriers to achieve such efficiency by using system energy optimization programs. The facts show that energy saving efforts in the process usually only focus on replacing tools and not an overall system improvement effort. In this research, a framework of sustainable energy reduction work in companies that have or have not implemented energy management system (EnMS) will be conducted a systematic technical approach in evaluating accurately a compressed-air system and potential optimization through observation, measurement and verification environmental conditions and processes, then processing the physical quantities of systems such as air flow, pressure and electrical power energy at any given time measured using comparative analysis methods in this industry, to provide the potential savings of energy saving is greater than the component approach, with no cost to the lowest cost (no cost - low cost). The process of evaluating energy utilization and energy saving opportunities will provide recommendations for increasing efficiency in the industry and reducing CO2 emissions and improving environmental quality.

  14. Exergy costing for energy saving in combined heating and cooling applications

    DEFF Research Database (Denmark)

    Nguyen, Chan; Veje, Christian T.; Willatzen, Morten

    2014-01-01

    . In the first method, referred to as energy costing, a conventional thermoeconomic analysis is used. Here the ammonia heat pump is subject to a thermodynamic analysis with mass and energy balance equations. In the second method referred to as exergy costing, an exergy based economic analysis is used, where...... exergy balance equations are used in conjunction with mass and energy balance equations. In both costing methods the thermodynamic analysis is followed by an economic analysis which includes investment and operating costs. For both methods the unit costs of heating and cooling are found and compared...

  15. Encouraging energy conservation in multifamily housing: RUBS and other methods of allocating energy costs to residents

    Energy Technology Data Exchange (ETDEWEB)

    McClelland, L

    1980-10-01

    Methods of encouraging energy conservation in multifamily housing by allocating energy costs to residents are discussed; specifically, methods appropriate for use in master metered buildings without equipment to monitor energy consumption in individual apartments are examined. Several devices available for monitoring individual energy consumption are also discussed plus methods of comparing the energy savings and cost effectiveness of monitoring devices with those of other means of promoting conservation. Specific information in Volume I includes a comparison study on energy use in master and individually metered buildings; types of appropriate conservation programs for master metered buildings; a description of the Resident Utility Billing System (RUBS); energy savings associated with RUBS; Resident reactions to RUBS; cost effectiveness of RUBS for property owners; potential abuses, factors limiting widespread use, and legal status of RUBS. Part I of Volume II contains a cost allocation decision guide and Part II in Volume II presents the RUBS Operations Manual. Pertinent appendices to some chapters are attached. (MCW)

  16. Reducing conflicts between climate policy and energy policy in the US: The important role of the states

    International Nuclear Information System (INIS)

    Peterson, Thomas D.; Rose, Adam Z.

    2006-01-01

    The absence of US national action on global climate change policy has prompted initiatives by the US Congress, cities, states, and regions toward what is likely to become a long-term, collaborative effort to harmonize national energy and climate policies. This upward evolution in the face of a reluctant administration is historically consistent with the development of national legislation on other environmental and social issues in the US. At the heart of this movement is the need to resolve conflicts between high-intensity use of low-cost fossil energy supplies, and the dominating impact of carbon dioxide emissions on global climate change. US states are among the largest carbon dioxide emitters in the world and play a critical role in supplying and transforming energy, as well as consuming it, for economic advantage. State governments are also likely to have to shoulder some of the cost of potentially extensive climate damages and bear the brunt of the cost of implementing future federal mandates. As a result, many are taking proactive stances on the development of climate mitigation policy to prepare for, accelerate, and/or guide national policy. As US states show leadership on addressing greenhouse gas emissions, they also play an important role in forging policies and measures that reduce economic conflict between energy and climate goals. A number have launched or completed greenhouse gas mitigation plans and other major policies in the past few years that address these conflicts through: (1) finding ways to reduce mitigation costs, including the use of incentive-based policy instruments; (2) promoting an open and democratic policy process that includes major stakeholders; (3) promoting equity across socioeconomic groups, regions, and generations; and (4) promoting interregional cooperation. The results are promising and suggest that the state arena for climate and energy policy is evolving quickly and constructively toward alternatives that reduce conflict

  17. Levelized cost of energy and sensitivity analysis for the hydrogen-bromine flow battery

    Science.gov (United States)

    Singh, Nirala; McFarland, Eric W.

    2015-08-01

    The technoeconomics of the hydrogen-bromine flow battery are investigated. Using existing performance data the operating conditions were optimized to minimize the levelized cost of electricity using individual component costs for the flow battery stack and other system units. Several different configurations were evaluated including use of a bromine complexing agent to reduce membrane requirements. Sensitivity analysis of cost is used to identify the system elements most strongly influencing the economics. The stack lifetime and round-trip efficiency of the cell are identified as major factors on the levelized cost of electricity, along with capital components related to hydrogen storage, the bipolar plate, and the membrane. Assuming that an electrocatalyst and membrane with a lifetime of 2000 cycles can be identified, the lowest cost market entry system capital is 220 kWh-1 for a 4 h discharge system and for a charging energy cost of 0.04 kWh-1 the levelized cost of the electricity delivered is 0.40 kWh-1. With systems manufactured at large scales these costs are expected to be lower.

  18. The cost - effective solar energy applications in Canada

    International Nuclear Information System (INIS)

    Pape, A.

    1999-01-01

    This paper outlines several cost-effective solar energy application in Canada, and estimates the GHG emission reduction potential for each. The applications include: (1) passive solar building design; (2) solar water heating applications; (3) solar photovoltaics for remote power; and (4) solar assisted space heating and cooling in industrial buildings. Each technology is briefly profiled in terms of functionality, cost characteristics, energy production characteristics and potential emission reduction benefits. Real-life examples of each application are also included. Finally, the paper concludes on the potential role of solar energy in the reduction of Canadian GHG emissions. (author)

  19. Nuclear energy: the cost of opting-out

    International Nuclear Information System (INIS)

    Mueller, U.

    2003-01-01

    This article discusses the results of a study made on the financial and ecological costs that would be incurred if Switzerland opted out of the use of nuclear energy. Figures are quoted for the costs if two Swiss popular initiatives on the subject of opting out of nuclear energy were accepted in voting. The disadvantages offered by the alternatives such as combined gas and steam-turbine power plant, photovoltaics and wind power are quoted. Possible negative effects of opting out on the Swiss economy are looked at and the political aspects of renewing operational permits for nuclear power stations are discussed

  20. Audit of the management and cost of the Department of Energy`s protective forces

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-01

    The Department of Energy`s safeguards and security program is designed to provide appropriate, efficient, and effective protection of the Department`s nuclear weapons, nuclear materials, facilities, and classified information. These items must be protected against theft, sabotage, espionage, and terrorist activity, with continuing emphasis on protection against the insider threat. The purpose of the audit was to determine if protective forces were efficiently managed and appropriately sized in light of the changing missions and current budget constraints. The authors found that the cost of physical security at some sites had grown beyond those costs incurred when the site was in full production. This increase was due to a combination of factors, including concerns about the adequacy of physical security, reactions to the increase in terrorism in the early 1980s with the possibility of hostile attacks, and the selection of security system upgrades without adequate consideration of cost effectiveness. Ongoing projects to upgrade security systems were not promptly reassessed when missions changed and levels of protection were not determined in a way which considered the attractiveness of the material being protected. The authors also noted several opportunities for the Department to improve the operational efficiency of its protective force operations, including, eluminating overtime paid to officers prior to completion of the basic 40-hour workweek, paying hourly wages of unarmed guards which are commensurate with their duties, consolidating protective force units, transferring law enforcement duties to local law agencies, eliminating or reducing paid time to exercise, and standardizing supplies and equipment used by protective force members.

  1. Comparison of the metabolic energy cost of overground and treadmill walking in older adults.

    Science.gov (United States)

    Berryman, Nicolas; Gayda, Mathieu; Nigam, Anil; Juneau, Martin; Bherer, Louis; Bosquet, Laurent

    2012-05-01

    We assessed whether the metabolic energy cost of walking was higher when measured overground or on a treadmill in a population of healthy older adults. We also assessed the association between the two testing modes. Participants (n = 20, 14 men and 6 women aged between 65 and 83 years of age) were randomly divided into two groups. Half of them went through the overground-treadmill sequence while the other half did the opposite order. A familiarization visit was held for each participant prior to the actual testing. For both modes of testing, five walking speeds were experimented (0.67, 0.89, 1.11, 1.33 and 1.67 m s(-1)). Oxygen uptake was monitored for all walking speeds. We found a significant difference between treadmill and track metabolic energy cost of walking, whatever the walking speed. The results show that walking on the treadmill requires more metabolic energy than walking overground for all experimental speeds (P < 0.05). The association between both measures was low to moderate (0.17 < ICC < 0.65), and the standard error of measurement represented 6.9-15.7% of the average value. These data indicate that metabolic energy cost of walking results from a treadmill test does not necessarily apply in daily overground activities. Interventions aiming at reducing the metabolic energy cost of walking should be assessed with the same mode as it was proposed during the intervention. If the treadmill mode is necessary for any purposes, functional overground walking tests should be implemented to obtain a more complete and specific evaluation.

  2. Comparison of cost effectiveness of risk reduction among different energy systems: French case studies. Final report of the co-ordinated research programme

    Energy Technology Data Exchange (ETDEWEB)

    Lochard, Jacques [ed.

    1989-08-01

    This report presents the three French case studies performed in the framework of the coordinated research program on 'Comparison of Cost-effectiveness of Risk Reduction among different Energy Systems': Cost effectiveness of robotics and remote tooling for occupational risk reduction at a nuclear fuel fabrication facility; Cost-effectiveness of protection actions to reduce occupational exposures in underground uranium mines; Cost-effectiveness of safety measures to reduce public risk associated with the transportation of UF{sub 6} by truck and trains.

  3. Enrichment: CRISLA [chemical reaction by isotope selective activation] aims to reduce costs

    International Nuclear Information System (INIS)

    Eerkens, J.W.

    1989-01-01

    Every year, more than $3 billion is spent on enriching uranium. CRISLA (Chemical Reaction by Isotope Selective Activation) uses a laser-catalyzed chemical reaction which, its proponents claim, could substantially reduce these costs. In CRISLA, an infrared CO laser illuminates the intracavity reaction cell (IC) at a frequency tuned to excite primarily UF 6 . When UF 6 and co-reactant RX are passed through the IC, the tuned laser photons preferentially enhance the reaction of UF 6 with RX ten-thousand-fold over the thermal reaction rate. Thus the laser serves as an activator and the chemical energy for separation is largely chemical. (author)

  4. The production of reduced graphene oxide by a low-cost vacuum system for supercapacitors applications

    International Nuclear Information System (INIS)

    Cardoso, Q.A.; Sakata, S.K.; Faria, R.N.; Silva, F.M.; Vieira, L.S.; Casini, J.C.S.

    2016-01-01

    Graphene (G) has attracted great interest for its excellent electrical properties. However, the large-scale production of graphene is still currently under investigations. Graphene oxide (GO) can be partially reduced to graphene-like sheets by removing the oxygen-containing groups with the recovery of a conjugated structure. It can be produced using inexpensive graphite as raw material by cost-effective chemical methods. High vacuum and temperature (10 -7 mbar/1100 deg C) is well established as an effective route for reduced powder preparation on a laboratory scale. However, a high vacuum reduction system, which can be routinely operated at 10 -7 mbar, has a considerable capital, operational and maintenance cost to be used in a large scale. In the present work, a low-cost route aiming large scale reduction of graphene oxide has been investigated. A stainless steel vessel has been evacuated to backing-pump pressure (10 -2 mbar) to process graphene oxide at low and high temperatures. Attempts of reducing GO powder using low vacuum pressures have been carried out and investigated by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The experimental results of processing graphene oxide powder at various temperatures (200-1000°C) at relatively low pressures have been reported. The microstructures of the processed material have been investigated using scanning electron microscopy (SEM) and chemical microanalyses employing energy dispersive X-ray analysis (EDX). (author)

  5. Implementation strategy to reduce environmental impact of energy related activities in Zimbabwe

    International Nuclear Information System (INIS)

    1997-01-01

    In 1992 UNEP-Collaborating Centre on Energy and Environment (UNEP-CCEE), Denmark and Southern Centre for Energy and Environment (SCEE), Zimbabwe, prepared a country report for Zimbabwe on Greenhouse Gas (GHG) Abatement Costing. Abatement technologies for both supply and demand side were identified in order to reduce GHG emission. The present study addresses environmental impacts of the entire energy cycle focusing on coal use in industry and power generation. Zimbabwe has proven coal reserves of more than 700 million tonnes, and the potential of geological coal resources is estimated beyond 30 billion tonnes. The conventional applications of coal include electricity generation, steam traction in railway transport, industrial boilers, tobacco curing and coking. As coal is the major source of energy for Zimbabwe, the present study aims at identification of environmental impacts of the entire coal cycle from mining to end-users of electrical energy. (EG)

  6. Activity-based costing of security services for a Department of Energy nuclear site

    International Nuclear Information System (INIS)

    Togo, D.F.

    1997-01-01

    Department of Energy (DOE) nuclear facilities are being encouraged to reduce costs but the accounting data typically in use by the financial organizations at these laboratories cannot easily be used to determine which security activities offer the best reduction in cost. For example, labor costs have historically been aggregated over various activities, making it difficult to determine the true costs of performing each activity. To illustrate how this problem can be solved, a study was performed applying activity-based costing (ABC) to a hypothetical DOE facility. ABC is a type of cost-accounting developed expressly to determine truer costs of company activities. The hypothetical facility was defined to have features similar to those found across the DOE nuclear complex. ABC traced costs for three major security functions - Protective Force Operations, Material Control and Accountability, and Technical Security - to various activities. Once these costs had been allocated, we compared the cost of three fictitious upgrades: (1) an improvement in training or weapons that allows the protective force to have better capabilities instead of adding more response forces; (2) a change in the frequency of inventories; and (3) a reduction in the annual frequencies of perimeter sensor tests

  7. Multi-Site Project Management A Program for Reducing the Cost of Technology Deployment at Department of Energy Sites

    International Nuclear Information System (INIS)

    Davis, N.R.; Selden, E.R.; Little, D.B.; Coleman, M.C.; Bennett, J.T.

    2009-01-01

    Retrieval and processing of High Level Waste (HLW) stored in Department of Energy (DOE) waste tanks is performed to support closure of the tanks as required by site specific regulatory agreements. Currently, there are four sites in the DOE Complex that have HLW tanks and must process and disposition HLW. As such, there is an opportunity to achieve an economy of scale and reduce duplication of efforts. Two or more sites typically have similar technology development and deployment needs. Technology development is already executed at the national level. As the technology is matured, the next step is to commission a design/build project. Typically each site performs this separately due to differences in waste type, tank design, site specific considerations such as proximity to the water table or to the site boundary. The focus of the individual sites tends to be on the differences between sites versus on the similarities thus there is an opportunity to minimize the cost for similar deployments. A team of engineers and project management professionals from the Savannah River Site has evaluated technology needs at the four HLW sites and determined that there is an economy of scale that can be achieved by specific technology deployments in the area of waste retrieval, waste pretreatment and waste disposition. As an example, the Waste on Wheels tank retrieval system (presented in the 2006 Waste Management Symposium) was designed and fabricated in portable modules that could be installed in HLW tanks at Hanford, Savannah River or Idaho. This same concept could be used for modular in-tank cesium removal process and equipment, tank cleaning mechanical equipment, and chemical tank cleaning process and equipment. The purpose of this paper is to present a multi-site project management approach that will reduce deployment costs and be consistent with DOE Order 413.3 project management principles. The approach will describe how projects can be managed by a lead site with

  8. Informing Intervention Strategies to Reduce Energy Drink Consumption in Young People: Findings From Qualitative Research.

    Science.gov (United States)

    Francis, Jacinta; Martin, Karen; Costa, Beth; Christian, Hayley; Kaur, Simmi; Harray, Amelia; Barblett, Ann; Oddy, Wendy Hazel; Ambrosini, Gina; Allen, Karina; Trapp, Gina

    2017-10-01

    To determine young people's knowledge of energy drinks (EDs), factors influencing ED consumption, and intervention strategies to decrease ED consumption in young people. Eight group interviews with young people (aged 12-25 years). Community groups and secondary schools in Perth, Western Australia. Forty-one young people, 41% of whom were male and 73% of whom consumed EDs. Factors influencing ED consumption and intervention strategies informed by young people to reduce ED consumption. Two researchers conducted a qualitative content analysis on the data using NVivo software. Facilitators of ED consumption included enhanced energy, pleasant taste, low cost, peer pressure, easy availability, and ED promotions. Barriers included negative health effects, unpleasant taste, high cost, and parents' disapproval. Strategies to reduce ED consumption included ED restrictions, changing ED packaging, increasing ED prices, reducing visibility in retail outlets, and research and education. Because many countries allow the sale of EDs to people aged consumption. In addition to more research and education, these strategies included policy changes targeting ED sales, packaging, price, and visibility. Future research might examine the feasibility of implementing such interventions. Copyright © 2017 Society for Nutrition Education and Behavior. Published by Elsevier Inc. All rights reserved.

  9. CHARACTERIZING COSTS, SAVINGS AND BENEFITS OF A SELECTION OF ENERGY EFFICIENT EMERGING TECHNOLOGIES IN THE UNITED STATES

    Energy Technology Data Exchange (ETDEWEB)

    Xu, T.; Slaa, J.W.; Sathaye, J.

    2010-12-15

    Implementation and adoption of efficient end-use technologies have proven to be one of the key measures for reducing greenhouse gas (GHG) emissions throughout the industries. In many cases, implementing energy efficiency measures is among one of the most cost effective investments that the industry could make in improving efficiency and productivity while reducing CO2 emissions. Over the years, there have been incentives to use resources and energy in a cleaner and more efficient way to create industries that are sustainable and more productive. With the working of energy programs and policies on GHG inventory and regulation, understanding and managing the costs associated with mitigation measures for GHG reductions is very important for the industry and policy makers around the world. Successful implementation of emerging technologies not only can help advance productivities and competitiveness but also can play a significant role in mitigation efforts by saving energy. Providing evaluation and estimation of the costs and energy savings potential of emerging technologies is the focus of our work in this project. The overall goal of the project is to identify and select emerging and under-utilized energy-efficient technologies and practices as they are important to reduce energy consumption in industry while maintaining economic growth. This report contains the results from performing Task 2"Technology evaluation" for the project titled"Research Opportunities in Emerging and Under-Utilized Energy-Efficient Industrial Technologies," which was sponsored by California Energy Commission and managed by CIEE. The project purpose is to analyze market status, market potential, and economic viability of selected technologies applicable to the U.S. In this report, LBNL first performed re-assessments of all of the 33 emerging energy-efficient industrial technologies, including re-evaluation of the 26 technologies that were previously identified by Martin et al. (2000) and

  10. Costs, CO{sub 2}- and primary energy balances of forest-fuel recovery systems at different forest productivity

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, Lisa; Gustavsson, Leif [Ecotechnology, Department of Engineering and Sustainable Development, Mid Sweden University, SE-831 25 Oestersund (Sweden)

    2010-05-15

    Here we examine the cost, primary energy use, and net carbon emissions associated with removal and use of forest residues for energy, considering different recovery systems, terrain, forwarding distance and forest productivity. We show the potential recovery of forest fuel for Sweden, its costs and net carbon emissions from primary energy use and avoided fossil carbon emissions. The potential annual net recovery of forest fuel is about 66 TWh, which would cost one billion EUR{sub 2005} to recover and would reduce fossil emissions by 6.9 Mt carbon if coal were replaced. Of the forest fuel, 56% is situated in normal terrain with productivity of >30 t dry-matter ha{sup -1} and of this, 65% has a forwarding distance of <400 m. In normal terrain with >30 t dry-matter ha{sup -1} the cost increase for the recovery of forest fuel, excluding stumps, is around 4-6% and 8-11% for medium and longer forwarding distances, respectively. The stump and small roundwood systems are less cost-effective at lower forest fuel intensity per area. For systems where loose material is forwarded, less dry-matter per hectare increases costs by 6-7%, while a difficult terrain increases costs by 3-4%. Still, these systems are quite cost-effective. The cost of spreading ash is around 40 EUR{sub 2005} ha{sup -1}, while primary energy use for spreading ash in areas where logging residues, stumps, and small roundwood are recovered is about 0.025% of the recovered bioenergy. (author)

  11. New transmission interconnection reduces consumer costs

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2008-09-15

    The Central American electric interconnection system (SIEPAC) project will involve the construction of a 1830 km 230 kV transmission system that will link Guatemala, El Salvador, Honduras, Costa Rica, Nicaragua, and Panama. The system is expected to alleviate the region's power shortages and reduce electricity costs for consumers. Costs for the SIEPAC project have been estimated at $370 million. The system will serve approximately 37 million customers, and will include 15 substations. The contract for building the electrical equipment has been awarded to Schweitzer Engineering Laboratories (SEL) who plan to manufacture components at a plant in Mexico. The equipment will include high speed line protection, automation, and control systems. Line current differential systems and satellite-synchronized clocks will also be used. The new transmission system is expected to be fully operational by 2009. 1 fig.

  12. Assessment of electricity generation and energy cost of wind energy conversion systems in north-central Nigeria

    International Nuclear Information System (INIS)

    Adaramola, M.S.; Paul, S.S.; Oyedepo, S.O.

    2011-01-01

    Highlights: → The wind energy potential and economic analysis in selected six locations in north central part of Nigeria are investigated. → Economical evaluation of the wind energy in the selected sites was made by using the levelised cost method. → Locations that are suitable electricity generation and small scale applications are identified. - Abstract: In this study, the wind energy potential and economic analysis in selected six locations in north central part of Nigeria were investigated using wind speed data that span between 19 and 37 years measured at 10 m height. The performance of small to medium size commercial wind turbine models were examined and economic evaluation of the wind energy in the selected sites was made by using the levelised cost method. The results showed that the cost of energy production per kWh for the selected sites vary between cents 4.02 and cents 166.79. It was shown that Minna is most viable site while Bida is found to be least among the sites considered. Using three selected wind turbine models (in Minna) as case study, an increase in the escalation rate of operating and maintenance cost from 0% to 10%, lead to an increase in the unit energy cost by about 7%. It was further shown that by increasing the escalation rate of inflation from 0% to 5%, the cost of energy decreases by about 29% while the discount rate (return on investment) decreases from 11.54% to 6.23%.

  13. The hidden costs of nuclear energy

    International Nuclear Information System (INIS)

    Sweet, C.

    1978-01-01

    A lynch pin of the pro-nuclear argument is that atomic energy provides cheap electricity. Many are sceptical of such claims, realising that a lot of figures have been omitted from the accounting - the cost of R and D, of dismantling the obsolete stations and of waste management - but having no access to all the figures, such scepticism has remained little more than a hunch. Using conventional economic accounting it is shown that nuclear power must be considerably more costly than has ever been admitted by any of the authorities. The CEGB claims that reprocessing amounts to no more than 8 per cent of the total costs of nuclear generated electricity. According to the present author the costs are 20 per cent - and that 20 per cent is of a much higher figure. (author)

  14. Data on cost-optimal Nearly Zero Energy Buildings (NZEBs across Europe

    Directory of Open Access Journals (Sweden)

    Delia D'Agostino

    2018-04-01

    Full Text Available This data article refers to the research paper A model for the cost-optimal design of Nearly Zero Energy Buildings (NZEBs in representative climates across Europe [1]. The reported data deal with the design optimization of a residential building prototype located in representative European locations. The study focus on the research of cost-optimal choices and efficiency measures in new buildings depending on the climate. The data linked within this article relate to the modelled building energy consumption, renewable production, potential energy savings, and costs. Data allow to visualize energy consumption before and after the optimization, selected efficiency measures, costs and renewable production. The reduction of electricity and natural gas consumption towards the NZEB target can be visualized together with incremental and cumulative costs in each location. Further data is available about building geometry, costs, CO2 emissions, envelope, materials, lighting, appliances and systems.

  15. Data on cost-optimal Nearly Zero Energy Buildings (NZEBs) across Europe.

    Science.gov (United States)

    D'Agostino, Delia; Parker, Danny

    2018-04-01

    This data article refers to the research paper A model for the cost-optimal design of Nearly Zero Energy Buildings (NZEBs) in representative climates across Europe [1]. The reported data deal with the design optimization of a residential building prototype located in representative European locations. The study focus on the research of cost-optimal choices and efficiency measures in new buildings depending on the climate. The data linked within this article relate to the modelled building energy consumption, renewable production, potential energy savings, and costs. Data allow to visualize energy consumption before and after the optimization, selected efficiency measures, costs and renewable production. The reduction of electricity and natural gas consumption towards the NZEB target can be visualized together with incremental and cumulative costs in each location. Further data is available about building geometry, costs, CO 2 emissions, envelope, materials, lighting, appliances and systems.

  16. Reported Energy and Cost Savings from the DOE ESPC Program: FY 2014

    Energy Technology Data Exchange (ETDEWEB)

    Slattery, Bob S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-03-01

    The objective of this work was to determine the realization rate of energy and cost savings from the Department of Energy’s Energy Savings Performance Contract (ESPC) program based on information reported by the energy services companies (ESCOs) that are carrying out ESPC projects at federal sites. Information was extracted from 156 Measurement and Verification (M&V) reports to determine reported, estimated, and guaranteed cost savings and reported and estimated energy savings for the previous contract year. Because the quality of the reports varied, it was not possible to determine all of these parameters for each project. For all 156 projects, there was sufficient information to compare estimated, reported, and guaranteed cost savings. For this group, the total estimated cost savings for the reporting periods addressed were $210.6 million, total reported cost savings were $215.1 million, and total guaranteed cost savings were $204.5 million. This means that on average: ESPC contractors guaranteed 97% of the estimated cost savings; projects reported achieving 102% of the estimated cost savings; and projects reported achieving 105% of the guaranteed cost savings. For 155 of the projects examined, there was sufficient information to compare estimated and reported energy savings. On the basis of site energy, estimated savings for those projects for the previous year totaled 11.938 million MMBtu, and reported savings were 12.138 million MMBtu, 101.7% of the estimated energy savings. On the basis of source energy, total estimated energy savings for the 155 projects were 19.052 million MMBtu, and reported saving were 19.516 million MMBtu, 102.4% of the estimated energy savings.

  17. Nuclear energy: the real costs; and reply

    International Nuclear Information System (INIS)

    Jeffery, J.W.; Jones, P.M.S.

    1982-01-01

    Comments are made on a review by Jones (Atom. 306 April 1982) of 'Nuclear Energy: the Real Costs' - a special report by the Committee for the Study of the Economics of Nuclear Electricity, and criticisms contained in the review of the analysis of nuclear costs presented in the report are discussed. Dr Jones replies. (U.K.)

  18. Evaluation of ways and procedures to reduce construction cost and increase competition.

    Science.gov (United States)

    2009-01-01

    Construction cost inflation is affecting many state highway agencies including the Texas Department of : Transportation While some of this increase can be attributed to factors such as soaring cost of energy, : reports of large variations in cost of ...

  19. Reducing CO2 emissions and energy consumption of heat-integrated distillation systems.

    Science.gov (United States)

    Gadalla, Mamdouh A; Olujic, Zarko; Jansens, Peter J; Jobson, Megan; Smith, Robin

    2005-09-01

    Distillation systems are energy and power intensive processes and contribute significantly to the greenhouse gases emissions (e.g. carbon dioxide). Reducing CO2 emissions is an absolute necessity and expensive challenge to the chemical process industries in orderto meetthe environmental targets as agreed in the Kyoto Protocol. A simple model for the calculation of CO2 emissions from heat-integrated distillation systems is introduced, considering typical process industry utility devices such as boilers, furnaces, and turbines. Furnaces and turbines consume large quantities of fuels to provide electricity and process heats. As a result, they produce considerable amounts of CO2 gas to the atmosphere. Boilers are necessary to supply steam for heating purposes; besides, they are also significant emissions contributors. The model is used in an optimization-based approach to optimize the process conditions of an existing crude oil atmospheric tower in order to reduce its CO2 emissions and energy demands. It is also applied to generate design options to reduce the emissions from a novel internally heat-integrated distillation column (HIDiC). A gas turbine can be integrated with these distillation systems for larger emissions reduction and further energy savings. Results show that existing crude oil installations can save up to 21% in energy and 22% in emissions, when the process conditions are optimized. Additionally, by integrating a gas turbine, the total emissions can be reduced further by 48%. Internal heat-integrated columns can be a good alternative to conventional heat pump and other energy intensive close boiling mixtures separations. Energy savings can reach up to 100% with respect to reboiler heat requirements. Emissions of these configurations are cut down by up to 83%, compared to conventional units, and by 36%, with respect to heat pump alternatives. Importantly, cost savings and more profit are gained in parallel to emissions minimization.

  20. Quantifying the costs and benefits of energy

    International Nuclear Information System (INIS)

    Lindell, B.

    1975-06-01

    A number of principles which have been developed for cost-benefit assessments in the radiation field are applied to the more general cost-benefit assessment of energy production. Sources of energy may be assessed in relation to a reference practice. If this is done for one and the same electricity production, the main objective is to assess detriments in comparable terms. Detriment rates may be integrated in space and time and might also be expressed in equivalent monetary units. Although there are several practical limitations to any theoretical treatment of the problem, the basic principles may form a useful background to more realistic although more complicated approaches to the task. (author)

  1. The Program Administrator Cost of Saved Energy for Utility Customer-Funded Energy Efficiency Programs

    Energy Technology Data Exchange (ETDEWEB)

    Billingsley, Megan A.; Hoffman, Ian M.; Stuart, Elizabeth; Schiller, Steven R.; Goldman, Charles A.; LaCommare, Kristina

    2014-03-19

    End-use energy efficiency is increasingly being relied upon as a resource for meeting electricity and natural gas utility system needs within the United States. There is a direct connection between the maturation of energy efficiency as a resource and the need for consistent, high-quality data and reporting of efficiency program costs and impacts. To support this effort, LBNL initiated the Cost of Saved Energy Project (CSE Project) and created a Demand-Side Management (DSM) Program Impacts Database to provide a resource for policy makers, regulators, and the efficiency industry as a whole. This study is the first technical report of the LBNL CSE Project and provides an overview of the project scope, approach, and initial findings, including: • Providing a proof of concept that the program-level cost and savings data can be collected, organized, and analyzed in a systematic fashion; • Presenting initial program, sector, and portfolio level results for the program administrator CSE for a recent time period (2009-2011); and • Encouraging state and regional entities to establish common reporting definitions and formats that would make the collection and comparison of CSE data more reliable. The LBNL DSM Program Impacts Database includes the program results reported to state regulators by more than 100 program administrators in 31 states, primarily for the years 2009–2011. In total, we have compiled cost and energy savings data on more than 1,700 programs over one or more program-years for a total of more than 4,000 program-years’ worth of data, providing a rich dataset for analyses. We use the information to report costs-per-unit of electricity and natural gas savings for utility customer-funded, end-use energy efficiency programs. The program administrator CSE values are presented at national, state, and regional levels by market sector (e.g., commercial, industrial, residential) and by program type (e.g., residential whole home programs, commercial new

  2. Evaluating the approach to reduce the overrun cost of grid connected PV systems for the Spanish electricity sector: Performance analysis of the period 2010–2012

    International Nuclear Information System (INIS)

    Hoz, Jordi de la; Martín, Helena; Ballart, Jordi; Monjo, Lluis

    2014-01-01

    Highlights: • The cost of the Spanish PV promotion policy from 1998 to 2008 is formulated. • The range of scenarios for the cost evolution is determined. • The PV legal measures addressed to reduce the cost are formulated. • The savings range for the Spanish electricity sector has been determined. • The profitability loss of the facilities due to cost containment measures is assessed. - Abstract: A methodology for calculating the overrun cost to the Spanish electricity system caused by the large overshoot of the PV power targets under the RD 661/2007 is here presented. The elements influencing the cost have been identified, which has allowed proposing different scenarios for its possible evolution. Applying the same methodology, the range of savings achievable by the new energy policy developed in 2010–2012 to reduce this cost has been quantified. Inverting the point of view, the profitability reduction that these energy measures might have caused on the PV facilities has been also assessed. The conclusions obtained from the case of four specific facilities may give some insight about the general economic effects on the installations of the 2010–2012 new energy policy, and the consequences for the investors when the inadequacies of the regulatory schemes are tried to be corrected ex-post

  3. Regional energy autarky: Potentials, costs and consequences for an Austrian region

    International Nuclear Information System (INIS)

    Schmidt, J.; Schönhart, M.; Biberacher, M.; Guggenberger, T.; Hausl, S.; Kalt, G.; Leduc, S.; Schardinger, I.; Schmid, E.

    2012-01-01

    Local actors at community level often thrive for energy autarky to decrease the dependence on imported energy resources. We assess the potentials and trade-offs between benefits and costs of increasing levels of energy autarky for a small rural region of around 21,000 inhabitants in Austria. We use a novel modeling approach which couples a regional energy system model with a regional land use optimization model. We have collected and processed data on the spatial distribution of energy demand and potentials of biomass, photovoltaics and solar thermal resources. The impacts of increasing biomass production on the agricultural sector are assessed with a land-use optimization model that allows deriving regional biomass supply curves. An energy system model is subsequently applied to find the least cost solution for supplying the region with energy resources. Model results indicate that fossil fuel use for heating can be replaced at low costs by increasing forestry and agricultural biomass production. However, autarky in the electricity and the heating sector would significantly increase biomass production and require a full use of the potentials of photovoltaics on roof tops. Attaining energy autarky implies high costs to consumers and a decline in the local production of food and feed. - Highlights: ► Energy autarky strong vision for many regional actors. ► Assessment of consequences of energy autarky for a rural region in Austria. ► Novel modeling approach coupling energy system model with land use model. ► Power and heat autarky causes high costs and decline in regional food and feed production. ► Heat autarky achievable at lower costs by utilizing regional forestry and agricultural biomass.

  4. Cost considerations for an ionising energy treatment facility

    International Nuclear Information System (INIS)

    Culpitt, R.A.

    1985-01-01

    Variables influencing the cost of food irradiation can be included under three broad headings: the physical characteristics of products to be treated; the operational characteristics of the plant to be used; costs of establishment and operation of an ionising energy treatment

  5. Cost/benefit comparison of thermal solar energy systems in Switzerland

    International Nuclear Information System (INIS)

    Suter, J.M.

    1991-10-01

    A comparison is made between thermal solar energy systems of different size for five different applications in the three main climatic zones in Switzerland. Conventional ways of energy conservation are also included in the comparison. A cost/benefit ratio is calculated for each system. The investment is used as a cost indicator whereas the useful solar heat or the conventional energy saving is chosen as benefit. It is shown that the most systems sold today in Switzerland - combined hot water and space heating systems for single family houses - have the poorest cost/benefit ratio among all systems considered in the analysis. Four applications with more favourable cost/benefit ratio are identified. Large systems have generally a better cost/benefit ratio than smaller ones, although the total investment is higher. Photovoltaics is even less favourable than all thermal systems considered. The large scale penetration of technologies with good cost/benefit ratio lies in the public interest. Supporting activities should consider the priority set by the cost/benefit ratio. (author) 1 fig., 14 refs

  6. Atmospheric and geological CO2 damage costs in energy scenarios

    International Nuclear Information System (INIS)

    Smekens, K.E.L.; Van der Zwaan, B.C.C.

    2006-05-01

    Geological carbon dioxide capture and storage (CCS) is currently seriously considered for addressing, in the near term, the problem of climate change. CCS technology is available today and is expected to become an increasingly affordable CO2 abatement alternative. Whereas the rapidly growing scientific literature on CCS as well as experimental and commercial practice demonstrate the technological and economic feasibility of implementing this clean fossil fuel option on a large scale, relatively little attention has been paid so far to the risks and environmental externalities of geological storage of CO2. This paper assesses the effects of including CCS damage costs in a long-term energy scenario analysis for Europe. An external cost sensitivity analysis is performed with a bottom-up energy technology model that accounts not only for CCS technologies but also for their external costs. Our main conclusion is that in a business-as-usual scenario (i.e. without climate change intervention or externality internalisation), CCS technologies are likely to be deployed at least to some extent, mainly in the power generation sector, given the economic benefits of opportunities such as enhanced coal bed methane, oil and gas recovery. Under a strict climate (CO2 emissions) constraint, CCS technologies are deployed massively. With the simultaneous introduction of both CO2 and CCS taxation in the power sector, designed to internalise the external atmospheric and geological effects of CO2 emissions and storage, respectively, we find that CCS will only be developed if the climate change damage costs are at least of the order of 100 euro/t CO2 or the CO2 storage damage costs not more than a few euro/t CO2. When the internalised climate change damage costs are as high as 67 euro/t CO2, the expensive application of CCS to biomass-fuelled power plants (with negative net CO2 emissions) proves the most effective CCS alternative to reduce CO2 emissions, rather than CCS applied to fossil

  7. Annual meeting on nuclear technology '96. Technical session: Energy costs

    International Nuclear Information System (INIS)

    1996-08-01

    The two papers of this session deal with the costs of two different energy generation systems, one is based on photovoltaic energy conversion, and the other is the nuclear fuel cycle and nuclear energy generation. The author shows that the costs of these two energy systems in Germany are much more governed by decisions taken in the political domain than is the case in other countries. Although German science and technology in these two engineering fields hold a top rank worldwide, the high costs that seem inevitable in Germany are expected to be a major reason why the photovoltaic industry will have to leave the country and go abroad to exploit the better chances there. (DG) [de

  8. How Do Dietary Choices Influence the Energy-System Cost of Stabilizing the Climate?

    Directory of Open Access Journals (Sweden)

    David Bryngelsson

    2017-02-01

    Full Text Available We investigate how different global dietary scenarios affect the constraints on, and costs of, transforming the energy system to reach a global temperature stabilization limit of 2 °C above the pre-industrial level. A global food and agriculture model, World Food Supply Model (WOFSUM, is used to create three dietary scenarios and to calculate the CH4 and N2O emissions resulting from their respective food-supply chains. The diets are: (i a reference diet based on current trends; (ii a diet with high (reference-level meat consumption, but without ruminant products (i.e., no beef, lamb, or dairy, only pork and poultry; and (iii a vegan diet. The estimated CH4 and N2O emissions from food production are fed into a coupled energy and climate-system optimization model to quantify the energy system implications of the different dietary scenarios, given a 2 °C target. The results indicate that a phase-out of ruminant products substantially increases the emission space for CO2 by about 250 GtC which reduces the necessary pace of the energy system transition and cuts the net present value energy-system mitigation costs by 25%, for staying below 2 °C. Importantly, the additional cost savings with a vegan diet––beyond those achieved with a phase-out of ruminant products––are marginal (only one additional percentage point. This means that a general reduction of meat consumption is a far less effective strategy for meeting the 2 °C target than a reduction of beef and dairy consumption.

  9. Windscapes shape seabird instantaneous energy costs but adult behavior buffers impact on offspring.

    Science.gov (United States)

    Elliott, Kyle Hamish; Chivers, Lorraine S; Bessey, Lauren; Gaston, Anthony J; Hatch, Scott A; Kato, Akiko; Osborne, Orla; Ropert-Coudert, Yan; Speakman, John R; Hare, James F

    2014-01-01

    Windscapes affect energy costs for flying animals, but animals can adjust their behavior to accommodate wind-induced energy costs. Theory predicts that flying animals should decrease air speed to compensate for increased tailwind speed and increase air speed to compensate for increased crosswind speed. In addition, animals are expected to vary their foraging effort in time and space to maximize energy efficiency across variable windscapes. We examined the influence of wind on seabird (thick-billed murre Uria lomvia and black-legged kittiwake Rissa tridactyla) foraging behavior. Airspeed and mechanical flight costs (dynamic body acceleration and wing beat frequency) increased with headwind speed during commuting flights. As predicted, birds adjusted their airspeed to compensate for crosswinds and to reduce the effect of a headwind, but they could not completely compensate for the latter. As we were able to account for the effect of sampling frequency and wind speed, we accurately estimated commuting flight speed with no wind as 16.6 ms(?1) (murres) and 10.6 ms(?1) (kittiwakes). High winds decreased delivery rates of schooling fish (murres), energy (murres) and food (kittiwakes) but did not impact daily energy expenditure or chick growth rates. During high winds, murres switched from feeding their offspring with schooling fish, which required substantial above-water searching, to amphipods, which required less above-water searching. Adults buffered the adverse effect of high winds on chick growth rates by switching to other food sources during windy days or increasing food delivery rates when weather improved.

  10. Directions of organisational and low-cost energy saving of engineering enterprises

    Directory of Open Access Journals (Sweden)

    Dzhedzhula Viacheslav V.

    2014-01-01

    Full Text Available The article analyses directions of energy saving of industrial enterprises. Taking into account the tendency to continuous growth of cost of energy resources, introduction of measures that would allow reduction of energy consumption of enterprises is an urgent task. One of the most important obstacles in the process of introduction of energy efficient solutions are fund limits and low awareness of owners and managers of industrial enterprises. The article offers a new classification of energy saving measures: apart from traditional expense and organisation measures it introduces the low-cost measures notion. It offers to consider low-cost those measures that are realised by the enterprise by means of own funds, moreover, their repayment term is not more than one year. It offers analytical expression for identification of annual funds saving from introduction of low-cost measures. It considers the process of identification of saving of funds from introduction of some of the main low-cost measures in detail: replacement of lighting units, balancing of ventilation networks and elimination of water leakages from pipelines and water supply equipment. Based on the analysis of bibliography information the article provides a list of main measures on energy saving, which could be referred to the low-cost ones. The proposed approaches would allow paying more attention to practical aspects of realisation of the concept of energy saving in the industry.

  11. The avoided external costs of using wind energy

    Energy Technology Data Exchange (ETDEWEB)

    Markandya, A [Harvard Inst. for International Development, Cambridge, MA (United States)

    1996-12-31

    This article discusses the external costs of electricity generated by conventional fossil fuel sources, such as coal and nuclear power. It compares the costs of electricity generated with coal with that generated with wind. A measure of the benefits of wind energy is the difference between these two external costs. The methodology used for the estimation of the external costs, as well as the estimates of these costs, are taken from the EC ExternE study, financed by DGXII of the European Commission. The present author was a lead economist for that study. (author)

  12. The avoided external costs of using wind energy

    Energy Technology Data Exchange (ETDEWEB)

    Markandya, A. [Harvard Inst. for International Development, Cambridge, MA (United States)

    1995-12-31

    This article discusses the external costs of electricity generated by conventional fossil fuel sources, such as coal and nuclear power. It compares the costs of electricity generated with coal with that generated with wind. A measure of the benefits of wind energy is the difference between these two external costs. The methodology used for the estimation of the external costs, as well as the estimates of these costs, are taken from the EC ExternE study, financed by DGXII of the European Commission. The present author was a lead economist for that study. (author)

  13. The avoided external costs of using wind energy

    International Nuclear Information System (INIS)

    Markandya, A.

    1995-01-01

    This article discusses the external costs of electricity generated by conventional fossil fuel sources, such as coal and nuclear power. It compares the costs of electricity generated with coal with that generated with wind. A measure of the benefits of wind energy is the difference between these two external costs. The methodology used for the estimation of the external costs, as well as the estimates of these costs, are taken from the EC ExternE study, financed by DGXII of the European Commission. The present author was a lead economist for that study. (author)

  14. Cost Minimization for Joint Energy Management and Production Scheduling Using Particle Swarm Optimization

    Science.gov (United States)

    Shah, Rahul H.

    Production costs account for the largest share of the overall cost of manufacturing facilities. With the U.S. industrial sector becoming more and more competitive, manufacturers are looking for more cost and resource efficient working practices. Operations management and production planning have shown their capability to dramatically reduce manufacturing costs and increase system robustness. When implementing operations related decision making and planning, two fields that have shown to be most effective are maintenance and energy. Unfortunately, the current research that integrates both is limited. Additionally, these studies fail to consider parameter domains and optimization on joint energy and maintenance driven production planning. Accordingly, production planning methodology that considers maintenance and energy is investigated. Two models are presented to achieve well-rounded operating strategy. The first is a joint energy and maintenance production scheduling model. The second is a cost per part model considering maintenance, energy, and production. The proposed methodology will involve a Time-of-Use electricity demand response program, buffer and holding capacity, station reliability, production rate, station rated power, and more. In practice, the scheduling problem can be used to determine a joint energy, maintenance, and production schedule. Meanwhile, the cost per part model can be used to: (1) test the sensitivity of the obtained optimal production schedule and its corresponding savings by varying key production system parameters; and (2) to determine optimal system parameter combinations when using the joint energy, maintenance, and production planning model. Additionally, a factor analysis on the system parameters is conducted and the corresponding performance of the production schedule under variable parameter conditions, is evaluated. Also, parameter optimization guidelines that incorporate maintenance and energy parameter decision making in the

  15. Reduced cost mission design using surrogate models

    Science.gov (United States)

    Feldhacker, Juliana D.; Jones, Brandon A.; Doostan, Alireza; Hampton, Jerrad

    2016-01-01

    This paper uses surrogate models to reduce the computational cost associated with spacecraft mission design in three-body dynamical systems. Sampling-based least squares regression is used to project the system response onto a set of orthogonal bases, providing a representation of the ΔV required for rendezvous as a reduced-order surrogate model. Models are presented for mid-field rendezvous of spacecraft in orbits in the Earth-Moon circular restricted three-body problem, including a halo orbit about the Earth-Moon L2 libration point (EML-2) and a distant retrograde orbit (DRO) about the Moon. In each case, the initial position of the spacecraft, the time of flight, and the separation between the chaser and the target vehicles are all considered as design inputs. The results show that sample sizes on the order of 102 are sufficient to produce accurate surrogates, with RMS errors reaching 0.2 m/s for the halo orbit and falling below 0.01 m/s for the DRO. A single function call to the resulting surrogate is up to two orders of magnitude faster than computing the same solution using full fidelity propagators. The expansion coefficients solved for in the surrogates are then used to conduct a global sensitivity analysis of the ΔV on each of the input parameters, which identifies the separation between the spacecraft as the primary contributor to the ΔV cost. Finally, the models are demonstrated to be useful for cheap evaluation of the cost function in constrained optimization problems seeking to minimize the ΔV required for rendezvous. These surrogate models show significant advantages for mission design in three-body systems, in terms of both computational cost and capabilities, over traditional Monte Carlo methods.

  16. Parametric study of variable renewable energy integration in Europe: Advantages and costs of transmission grid extensions

    International Nuclear Information System (INIS)

    Schaber, Katrin; Steinke, Florian; Mühlich, Pascal; Hamacher, Thomas

    2012-01-01

    Wind and solar energy will play an important role in the decarbonization of the European electricity generation. However, high shares of these variable renewable energies (VREs) challenge the power system considerably due to their temporal fluctuations and geographical dispersion. In this paper, we systematically analyze transmission grid extensions as an integration measure for VREs in Europe. We show the effects of grid extensions for fundamental properties of the power system as a function of the penetration and mix of wind and solar energy. Backup capacity requirements and overproduction are reduced with a powerful overlay transmission grid. We determine the costs of the grid extensions in dependence of the VRE penetration and mix and find that the grid integration costs remain below 25% of the VRE investment costs for all conceivable VRE configurations. Furthermore, robust design features of future power systems in terms of grid geometry and flexibility requirements for backup technologies are identified. We apply a spatially and temporally highly resolved techno-economic model of the European power system for our analysis. - Highlights: ► Quantification of the advantages and costs of a European overlay transmission grid. ► Grid integration costs for VREs in Europe remain below 6€/MWh. ► Application of a detailed power system model to a wide parameter space.

  17. Reducing consumption of electric current and energy carriers. [USSR

    Energy Technology Data Exchange (ETDEWEB)

    Ruppo, A.S.; Gruzdev, Yu.M.

    1985-01-01

    Evaluates the energy conservation program developed by the Giproshakht research institute is evaluated. The program was used in the Afanas'evo hydraulic mine in the Tulaugol association (with annual coal output of 2.1 Mt). Energy conservation program consisted of 2 groups of tasks: reducing energy consumption of the mine, and reducing energy consumption during the maximum demand hours in the morning and evening. The following methods were used: reducing idle running of chain and belt conveyors, separate draining of mine water free of dust and rock particles (reducing range of water cleaning), use of automatic control systems for mine blowers, automatic control of the system for coal drying, more efficient use of coal and materials transport in the mine. Energy demand of the mine during peak demand hours was reduced by adjusting fluctuations of energy consumption of the mine to fluctuations of energy demand in the power system of the area, e.g. by reducing mine draining in the morning and evening and operating at full capacity during the time of reduced energy demand. Using the energy conservation measures economized 4,324,300 kWh electric energy annually.

  18. Low-Cost In-Fill Installation for High-Energy-Saving, Dynamic Windows

    Science.gov (United States)

    2017-07-01

    increase 2% annually. This is consistent with national recognized energy prediction models. Electrical Labor costs: Electrical labor cost for wiring...Technology Description: ................................................................................................ 3 2.1.2 Energy Consumption ...22 Figure 15. Energy Consumption for the Calibration Period of 9/2/2015 - 9/16/2015

  19. Fair Division of Costs in Green Energy Markets

    DEFF Research Database (Denmark)

    Hougaard, Jens Leth; Kronborg, Dorte; Smilgins, Aleksandrs

    2017-01-01

    This paper considers cost allocation in networks where agents are characterized by stochastic demand and supply of a non-storable good, e.g. green energy. The grid itself creates possibilities of exchanging energy between agents and we propose to allocate common costs in proportion to the economi...... gain of being part of the grid. Our model includes a set of fundamental requirements for the associated trading platform. In particular, it is argued that a suitable mechanism deviates from a traditional market. The approach is illustrated by simulations....

  20. Summary of the presentations at the international workshop on reducing carbon dioxide emissions from the developing world: Assessment of benefits, costs and barriers

    International Nuclear Information System (INIS)

    Sathaye, J.; Goldman, N.

    1991-06-01

    The ''International Workshop on Reducing Carbon Dioxide Emissions from the Developing World: Assessment of Benefits, Costs and Barriers'' was the second workshop held as part of a project being conducted by the International Energy Studies Group of Lawrence Berkeley Laboratory, in collaboration with experts from leading institutions across the developing world. The goal of the project is to analyze long-range energy consumption in developing countries and its potential contribution to global climate change. The US Environmental Protection Agency (EPA) is supporting this work, the results of which already have made a key contribution to the technical analysis being used as the basis for discussion by the Energy and Industry Sub-group of the Intergovernmental Panel on Climate Change (IPCC). The main purpose of this workshop was two-fold: (1) to discuss the feasibility of implementing the efficiency improvements and fuel switching measures incorporated into the long-term energy scenarios created for 17 developing countries and (2) to examine the costs and benefits of reducing energy-related carbon dioxide emissions generated by developing countries

  1. Reducing Reforestation Costs in Lebanon: Adaptive Field Trials

    Directory of Open Access Journals (Sweden)

    Garabet (Garo Haroutunian

    2017-05-01

    Full Text Available Lebanon’s Ministry of Environment initiated a project in 2009 to determine low-cost reforestation techniques for stone pine (Pinus pinea and Lebanon cedar (Cedrus libani for large-scale land rehabilitation activities in the arid Middle East. Irrigation (several techniques vs. no water, planting (8- to 18-month-old seedlings, seeding, and soil preparation methods were evaluated in three sets of adaptive management field trials. The aim was to reduce reforestation costs while still achieving sufficient regeneration. A key result for management was that non-irrigated seed planting of stone pine and possibly of Lebanon cedar showed promise for cost-effective reforestation and could be competitive with seedlings, given correct seed source and planting conditions. Stone pine seeds collected from nearby mother trees and planted without irrigation on sandy soil showed 35% survival for <600 USD/ha; seedlings planted without irrigation cost about 2500 USD/ha and achieved 50–70% survival (costs based on 800 seedlings/ha. Water supplements increased establishment costs over 2 years without concomitant improvements to survival. Future studies should evaluate how soil texture and soil preparation interact with other factors to affect seed germination and survival for each species.

  2. Investing in CenteringPregnancy™ Group Prenatal Care Reduces Newborn Hospitalization Costs.

    Science.gov (United States)

    Crockett, Amy; Heberlein, Emily C; Glasscock, Leah; Covington-Kolb, Sarah; Shea, Karen; Khan, Imtiaz A

    CenteringPregnancy™ group prenatal care is an innovative model with promising evidence of reducing preterm birth. The outpatient costs of offering CenteringPregnancy pose barriers to model adoption. Enhanced provider reimbursement for group prenatal care may improve birth outcomes and generate newborn hospitalization cost savings for insurers. To investigate potential cost savings for investment in CenteringPregnancy, we evaluated the impact on newborn hospital admission costs of a pilot incentive project, where BlueChoice Health Plan South Carolina Medicaid managed care organization paid an obstetric practice offering CenteringPregnancy $175 for each patient who participated in at least five group prenatal care sessions. Using a one to many case-control matching without replacement, each CenteringPregnancy participant was matched retrospectively on propensity score, age, race, and clinical risk factors with five individual care participants. We estimated the odds of newborn hospital admission type (neonatal intensive care unit [NICU] or well-baby admission) for matched CenteringPregnancy and individual care cohorts with four or more visits using multivariate logistic regression. Cost savings were calculated using mean costs per admission type at the delivery hospital. Of the CenteringPregnancy newborns, 3.5% had a NICU admission compared with 12.0% of individual care newborns (p Investing in CenteringPregnancy for 85 patients ($14,875) led to an estimated net savings for the managed care organization of $67,293 in NICU costs. CenteringPregnancy may reduce costs through fewer NICU admissions. Enhanced reimbursement from payers to obstetric practices supporting CenteringPregnancy sustainability may improve birth outcomes and reduce associated NICU costs. Copyright © 2016 Jacobs Institute of Women's Health. Published by Elsevier Inc. All rights reserved.

  3. Spatial analyses of cost efficient measures to reduce N-leaching

    DEFF Research Database (Denmark)

    Jacobsen, Brian H.; Abildtrup, Jens; Ørum, Jens Erik

    (WFD). The analysis shows that the geographical position of the measures are very important in order to achieve the expected nutrient reduction. The current income varies a lot in the River basin and this might influence the choice of cost effective measures to reduce nutrient load. Furthermore a close......The Nitrate Directive has only been implemented satisfactorily in a few EU countries. The Commission have accepted the Danish implementation of the directive based on the Plan for the Aquatic Environment II. The costs of this plan has been calculated to 70 million € or 2,0 € per kg N in reduced...... leaching. The farmers have paid 60% of the costs. The paper then describes an example of a regional analysis covering the River Basin of Ringkøbing Fjord in Denmark, which indicates the type of calculations needed to find the measures and costs in order to comply with parts of the Water Framework Directive...

  4. Cost/benefit tradeoffs for reducing the energy consumption of the commercial air transportation system. Volume 1: Technical analysis

    Science.gov (United States)

    Kraus, E. F.

    1976-01-01

    The effectiveness and associated costs of operational and technical options for reduced fuel consumption by Douglas aircraft in the domestic airline fleet are assessed. Areas explored include alternative procedures for airline and flight operations, advanced and state of the art technology, modification and derivative configurations, new near-term aircraft, turboprop configuration studies, and optimum aircraft geometry. Data for each aircraft studied is presented in tables and graphs.

  5. Using collaborative work groups to reduce O ampersand M costs

    International Nuclear Information System (INIS)

    Francoeur, R.; Jones, J.N.

    1995-01-01

    Commonwealth Edison Company (ComEd) entered the nineties burdened with external distractions from its core business of power generation. Its unresolved 1987 rate case continued to face intervention in the courts. Some of its largest industrial and municipal customers were exploring more economical alternatives. The new convention facility in Chicago actually engaged an independent energy supplier. Retail wheeling was the hot topic, and internal problems were present. Operations and Maintenance (O ampersand M) costs were steadily increasing. Two of their six nuclear stations were on the Nuclear Regulatory Commission's Watch List. Immediate changes had to occur if ComEd was to ensure its future competitiveness. At ComEd Braidwood Nuclear Power Station some untraditional work methodologies were embarked upon to help the parent company reduce its O ampersand M costs. Various types of collaborative work groups were formed, and have succeeded in lowering O ampersand M costs through shorter refueling outages and the use of fewer contracted personnel. These collaborative work groups are listed below and are described in detail in the remainder of this paper: (1) A core group of Maintenance Modification Contractor (MMC) supervision integrated into the Owner's Maintenance Staff, (2) A Corporate Outage Support Group of supervisory personnel which supplements the site's Maintenance Staff, (3) The Integrated Outage and Turbine Overhaul Contractor using a mixture of its own and Maintenance Staff supervisory personnel during outages with the Owner supplementing craft support using a third-party, (4) Six nuclear stations sharing key MMC personnel to insure experienced individuals are used effectively, and (5) Composite teams of maintenance personnel working across defined disciplines Braidwood Station has capitalized on the strategy of positive collaboration to become one of the lowest cost producers of nuclear power. Its use has enabled the Station to successfully complete the

  6. How much electricity really costs. Comparison of the state subsidisation and overall social costs of conventional and renewable energy resources

    International Nuclear Information System (INIS)

    Kuechler, Swantje; Meyer, Bettina

    2012-01-01

    This study explains how the costs of electricity are an aggregate of different components. The electricity price paid by the end consumer contains not only the actual costs of energy production, which make up only about a third of the actual price in an average household, but also different surcharges such as network charges, electricity tax, value added tax and the concession levy. It furthermore contains the allocation charge stipulated by the Renewable Energy Law (EEG reallocation charge) as a means of allocating the costs of the subsidisation of electricity from renewable resources to the consumers. On the other hand conventional energy resources such as nuclear energy, hard coal and brown coal have substantially benefited over many decades from state subsidies in the form of financial aids, tax rebates and other promotive measures. The main difference between this and the subsidisation of renewable energy is that the costs of conventional energy resources are largely charged to the state budget rather than being made transparent in the electricity price. Based on an evaluation of the literature, data, interviews and the authors' own methodological deliberations this study makes a systematic comparison of the direct as well as indirect state subsidisation of renewable and conventional energy resources during the period from 1970 until 2012. The annual totals obtained for each energy resources are then set in relation to the share of that resource in overall electricity production, yielding specific subsidisation rates in terms of cents per kWh for each resource. This does not yet take into account the high consequential costs in the form of environmental damage and climate-related damage caused by fossil and nuclear fuels as well as the risks associated with the latter (collectively referred to as ''external costs''), all of which are charged to the polluters only at a small fraction of the true amount. The two cost categories of state

  7. What will abandonment of nuclear energy cost?

    International Nuclear Information System (INIS)

    Schneider, H.K.

    1988-01-01

    The Federal Republic of Germany holds position five on the list of the world's biggest energy consumers. This alone is a fact that puts special emphasis on the public discussion about the peaceful use of nuclear energy, in addition to the current events such as incidents and accidents in nuclear installations. A sober review of the pros and cons of nuclear energy for power generation has to take into account the economic effects and the costs to be borne by the national economy as a result of immediate abandonment of nuclear energy. The article in hand discusses chances, problems, and alternatives to nuclear energy (solar energy and wind power). (orig.) [de

  8. Comparison of three methods to reduce energy density. Effects on daily energy intake.

    Science.gov (United States)

    Williams, Rachel A; Roe, Liane S; Rolls, Barbara J

    2013-07-01

    Reductions in food energy density can decrease energy intake, but it is not known if the effects depend on the way that energy density is reduced. We investigated whether three methods of reducing energy density (decreasing fat, increasing fruit and vegetables, and adding water) differed in their effects on energy intake across the day. In a crossover design, 59 adults ate breakfast, lunch, and dinner in the laboratory once a week for 4 weeks. Across conditions, the entrées were either standard in energy density or were reduced in energy density by 20% using one of the three methods. Each meal included a manipulated entrée along with unmanipulated side dishes, and all foods were consumed ad libitum. Reducing the energy density of entrées significantly decreased daily energy intake compared to standard entrées (mean intake 2667 ± 77 kcal/day; 11,166 ± 322 kJ/day). The mean decrease was 396 ± 44 kcal/day (1658 ± 184 kJ/day) when fat was reduced, 308 ± 41 kcal/day (1290 ± 172 kJ/day) when fruit and vegetables were increased, and 230 ± 35 kcal/day (963 ± 147 kJ/day) when water was added. Daily energy intake was lower when fat was decreased compared to the other methods. These findings indicate that a variety of diet compositions can be recommended to reduce overall dietary energy density in order to moderate energy intake. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. An analysis of energy conservation measure costs

    International Nuclear Information System (INIS)

    Jones, R.; Ellis, R.; Gellineau, D.

    1990-01-01

    This paper reports on a Denver Support Office project to evaluate cost estimation in the Institutional Conservation Program. Unit cost characteristics and cost prediction accuracy were evaluated from 1,721 Energy Conservation Measures (ECMs) and 390 Technical Assistance (TA) reports funded in the last six years. This information is especially useful to state and DOE review engineers in determining the reasonableness of future cost estimates. The estimated cost provisions for TA report grants were generally adequate to cover the actual costs. Individually, there was a tendency for TA reports to cost less than estimated by about 10%. TA report unit costs averaged $.09 to $.11 per square foot, and decreased as the building size increased. Individually, there was a tendency for ECMs to cost more than estimated by about 17%. Overall, the estimated costs of the 1,721 measures were $20.4 minion, while the actual costs were $21.4 million. This 4.6% difference indicates that, overall, ECM cost estimates have provided a reasonable basis for grant awards. There was a high variation in ECM unit costs. The data did not support speculation that there is a tendency to manipulate cost estimates to fit ECMs within the simple payback eligibility criteria of 2 to 10 years

  10. Overall analysis of the cost key factors for the nuclear energy

    International Nuclear Information System (INIS)

    Caero, M.

    1996-01-01

    In 1995, 25,8 % of the world electricity consumption was of nuclear origin, while in the EU this figure is increased up to 50,6 %. In order to maintain and even to increase its share in the electricity generation, Nuclear Energy needs to achieve a good economic performance as a base load source when compared with its competitors, basically coal and gas fired plants. Fossil-fired generation costs have declined over the past ten years, mainly due to lower fossil fuel prices. This factor together with the recently observed tendency of higher discount rates to be applied are challenging the attractiveness of the nuclear energy. Nuclear energy is a capital intensive option. Taken into account extensive standardization programs has been established aiming at cost reductions as well as to increase efficiency of nuclear energy utilization, among their main purposes. Externalities play an important role, as they are already internalized in nuclear generation costs. This is not true for many existing coal-fired plants. Even a great uncertainly exists on greenhouse gas effects. Also decisions on greenhouse gas control and their impact on carbonaceous fuel generation costs cannot be clearly predicted, even in the immediate future. Macroeconomic factors like employment, competitiveness, energy conservation, energy availability, energy demand control, etc are positively influenced by the use of nuclear energy. A sustainable economic development cannot be achieved only relying on fossil fuel generation. As a wrap up sustainable development demands nuclear energy in order to cover the future objectives of energy availability, environmental control and energy cost control. (author)

  11. 10 CFR 434.508 - Determination of the design energy consumption and design energy cost.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Determination of the design energy consumption and design... Alternative § 434.508 Determination of the design energy consumption and design energy cost. 508.1The Design Energy Consumption shall be calculated by modeling the Proposed Design using the same methods...

  12. The production of reduced graphene oxide by a low-cost vacuum system for supercapacitors applications

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso, Q.A.; Sakata, S.K.; Faria, R.N. [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil); Silva, F.M.; Vieira, L.S.; Casini, J.C.S., E-mail: julio.casini@ifro.edu.br [Instituto Federal de Ciencia e Tecnologia de Rondonia (IFRO), RO (Brazil)

    2016-07-01

    Graphene (G) has attracted great interest for its excellent electrical properties. However, the large-scale production of graphene is still currently under investigations. Graphene oxide (GO) can be partially reduced to graphene-like sheets by removing the oxygen-containing groups with the recovery of a conjugated structure. It can be produced using inexpensive graphite as raw material by cost-effective chemical methods. High vacuum and temperature (10{sup -7}mbar/1100 deg C) is well established as an effective route for reduced powder preparation on a laboratory scale. However, a high vacuum reduction system, which can be routinely operated at 10{sup -7} mbar, has a considerable capital, operational and maintenance cost to be used in a large scale. In the present work, a low-cost route aiming large scale reduction of graphene oxide has been investigated. A stainless steel vessel has been evacuated to backing-pump pressure (10{sup -2} mbar) to process graphene oxide at low and high temperatures. Attempts of reducing GO powder using low vacuum pressures have been carried out and investigated by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The experimental results of processing graphene oxide powder at various temperatures (200-1000°C) at relatively low pressures have been reported. The microstructures of the processed material have been investigated using scanning electron microscopy (SEM) and chemical microanalyses employing energy dispersive X-ray analysis (EDX). (author)

  13. Production costs and operative margins in electric energy generation from biogas. Full-scale case studies in Italy.

    Science.gov (United States)

    Riva, C; Schievano, A; D'Imporzano, G; Adani, F

    2014-08-01

    The purpose of this study was to observe the economic sustainability of three different biogas full scale plants, fed with different organic matrices: energy crops (EC), manure, agro-industrial (Plants B and C) and organic fraction of municipal solid waste (OFMSW) (Plant A). The plants were observed for one year and total annual biomass feeding, biomass composition and biomass cost (€ Mg(-1)), initial investment cost and plant electric power production were registered. The unit costs of biogas and electric energy (€ Sm(-3)biogas, € kWh(-1)EE) were differently distributed, depending on the type of feed and plant. Plant A showed high management/maintenance cost for OFMSW treatment (0.155 € Sm(-3)biogas, 45% of total cost), Plant B suffered high cost for EC supply (0.130 € Sm(-3)biogas, 49% of total cost) and Plant C showed higher impact on the total costs because of the depreciation charge (0.146 € Sm(-3)biogas, 41% of total costs). The breakeven point for the tariff of electric energy, calculated for the different cases, resulted in the range 120-170 € MWh(-1)EE, depending on fed materials and plant scale. EC had great impact on biomass supply costs and should be reduced, in favor of organic waste and residues; plant scale still heavily influences the production costs. The EU States should drive incentives in dependence of these factors, to further develop this still promising sector. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Software Cuts Homebuilding Costs, Increases Energy Efficiency

    Science.gov (United States)

    2015-01-01

    To sort out the best combinations of technologies for a crewed mission to Mars, NASA Headquarters awarded grants to MIT's Department of Aeronautics and Astronautics to develop an algorithm-based software tool that highlights the most reliable and cost-effective options. Utilizing the software, Professor Edward Crawley founded Cambridge, Massachussetts-based Ekotrope, which helps homebuilders choose cost- and energy-efficient floor plans and materials.

  15. Comparing surgical trays with redundant instruments with trays with reduced instruments: a cost analysis.

    Science.gov (United States)

    John-Baptiste, A; Sowerby, L J; Chin, C J; Martin, J; Rotenberg, B W

    2016-01-01

    When prearranged standard surgical trays contain instruments that are repeatedly unused, the redundancy can result in unnecessary health care costs. Our objective was to estimate potential savings by performing an economic evaluation comparing the cost of surgical trays with redundant instruments with surgical trays with reduced instruments ("reduced trays"). We performed a cost-analysis from the hospital perspective over a 1-year period. Using a mathematical model, we compared the direct costs of trays containing redundant instruments to reduced trays for 5 otolaryngology procedures. We incorporated data from several sources including local hospital data on surgical volume, the number of instruments on redundant and reduced trays, wages of personnel and time required to pack instruments. From the literature, we incorporated instrument depreciation costs and the time required to decontaminate an instrument. We performed 1-way sensitivity analyses on all variables, including surgical volume. Costs were estimated in 2013 Canadian dollars. The cost of redundant trays was $21 806 and the cost of reduced trays was $8803, for a 1-year cost saving of $13 003. In sensitivity analyses, cost savings ranged from $3262 to $21 395, based on the surgical volume at the institution. Variation in surgical volume resulted in a wider range of estimates, with a minimum of $3253 for low-volume to a maximum of $52 012 for high-volume institutions. Our study suggests moderate savings may be achieved by reducing surgical tray redundancy and, if applied to other surgical specialties, may result in savings to Canadian health care systems.

  16. Reducing elevator energy use: A comparison of posted feedback and reduced elevator convenience

    Science.gov (United States)

    Houten, Ron Van; Nau, Paul A.; Merrigan, Michael

    1981-01-01

    The effects of two different procedures for reducing elevator energy use were assessed using a multiple-baseline design. In the first procedure, feedback about the amount of energy consumed by the elevators each week was posted on each elevator door. Later, signs advocating the use of stairs to save energy and improve health were posted next to the feedback signs. In the second procedure, the time required to travel between floors was increased by adding a delay to the elevator door closing mechanisms. Results indicated that neither feedback alone nor feedback plus educational signs reduced the amount of energy consumed by the elevators. However, use of the door delay reduced consumption by one-third in all elevators. A second experiment replicated the effect of the door delay on energy consumption and, in addition, demonstrated that the door delay also produced a reduction in the number of persons using the elevator. The second experiment also showed that, following an initial period during which a full delay was in effect, a gradual reduction of the delay interval resulted in continued energy conservation. Reduced convenience as a general strategy for energy conservation is discussed. PMID:16795648

  17. Cost, energy use and GHG emissions for forest biomass harvesting operations

    International Nuclear Information System (INIS)

    Zhang, Fengli; Johnson, Dana M.; Wang, Jinjiang; Yu, Chunxia

    2016-01-01

    For forest-based biomass to become a significant contribution to the United States' energy portfolio, harvesting operations must be physically feasible and economically viable. An assessment of cost, energy and greenhouse gas (GHG) emissions of forest biomass harvesting was conducted. The assessment differentiates harvesting systems by cut-to-length and whole tree; harvest types of 30%, 70%, and 100% cut; and forest types of hardwoods, softwoods, mixed hardwood/softwood, and softwood plantations. Harvesting cost models were developed for economic assessment and life cycle energy and emission assessment was applied to calculate energy and emissions for different harvesting scenarios, considering material and energy inputs (machinery, diesel, etc.) and outputs (GHG emissions) for each harvesting process (felling, forwarding/skidding, etc.). The developed harvesting cost models and the life cycle energy and emission assessment method were applied in Michigan, U.S. using information collected from different sources. A sensitivity analysis was performed for selected input variables for the harvesting operations in order to explore their relative importance. The results indicated that productivity had the largest impact on harvesting cost followed by machinery purchase price, yearly scheduled hours, and expected utilization. Productivity and fuel use, as well as fuel factors, are the most influential environmental impacts of harvesting operations. - Highlights: • Life cycle energy and emissions for forest biomass harvesting operations. • Harvesting cost models were developed for economic assessment. • Productivity had the largest impact on harvesting cost. • Fuel use contributes the most emissions while lubricants contribute the least.

  18. Aquifer thermal-energy-storage costs with a seasonal-chill source

    Science.gov (United States)

    Brown, D. R.

    1983-01-01

    The cost of energy supplied by an aquifer thermal energy storage (ATES) ystem from a seasonal chill source was investigated. Costs were estimated for point demand and residential development ATES systems using the computer code AQUASTOR. AQUASTOR was developed at PNL specifically for the economic analysis of ATES systems. In this analysis the cost effect of varying a wide range of technical and economic parameters was examined. Those parameters exhibiting a substantial influence on the costs of ATES delivered chill were: system size; well flow rate; transmission distance; source temperature; well depth; and cost of capital. The effects of each parameter are discussed. Two primary constraints of ATES chill systems are the extremely low energy density of the storage fluid and the prohibitive costs of lengthly pipelines for delivering chill to residential users. This economic analysis concludes that ATES-delivered chill will not be competitive for residential cooling applications. The otherwise marginal attractiveness of ATES chill systems vanishes under the extremely low load factors characteristic of residential cooling systems. (LCL)

  19. City-scale analysis of water-related energy identifies more cost-effective solutions.

    Science.gov (United States)

    Lam, Ka Leung; Kenway, Steven J; Lant, Paul A

    2017-02-01

    Energy and greenhouse gas management in urban water systems typically focus on optimising within the direct system boundary of water utilities that covers the centralised water supply and wastewater treatment systems, despite a greater energy influence by the water end use. This work develops a cost curve of water-related energy management options from a city perspective for a hypothetical Australian city. It is compared with that from the water utility perspective. The curves are based on 18 water-related energy management options that have been implemented or evaluated in Australia. In the studied scenario, the cost-effective energy saving potential from a city perspective (292 GWh/year) is far more significant than that from a utility perspective (65 GWh/year). In some cases, for similar capital cost, if regional water planners invested in end use options instead of utility options, a greater energy saving potential at a greater cost-effectiveness could be achieved in urban water systems. For example, upgrading a wastewater treatment plant for biogas recovery at a capital cost of $27.2 million would save 31 GWh/year with a marginal cost saving of $63/MWh, while solar hot water system rebates at a cost of $28.6 million would save 67 GWh/year with a marginal cost saving of $111/MWh. Options related to hot water use such as water-efficient shower heads, water-efficient clothes washers and solar hot water system rebates are among the most cost-effective city-scale opportunities. This study demonstrates the use of cost curves to compare both utility and end use options in a consistent framework. It also illustrates that focusing solely on managing the energy use within the utility would miss substantial non-utility water-related energy saving opportunities. There is a need to broaden the conventional scope of cost curve analysis to include water-related energy and greenhouse gas at the water end use, and to value their management from a city perspective. This

  20. CANDU 9 - reducing capital costs through advanced construction

    International Nuclear Information System (INIS)

    Hedges, K.; Yu, S.; Hopwood, J.

    1996-01-01

    Reducing costs is a clear priority in nuclear markets where capital reaches billions and financing is hard-won. To address that priority, AECL introduced the use of advanced construction techniques. This has been one of the key thrusts behind its development of CANDU 9. (author)

  1. Reducing patient drug acquisition costs can lower diabetes health claims.

    Science.gov (United States)

    Mahoney, John J

    2005-08-01

    Concerned about rising prevalence and costs of diabetes among its employees, Pitney Bowes Inc recently revamped its drug benefit design to synergize with ongoing efforts in its disease management and patient education programs. Specifically, based on a predictive model showing that low medication adherence was linked to subsequent increases in healthcare costs in patients with diabetes, the company shifted all diabetes drugs and devices from tier 2 or 3 formulary status to tier 1. The rationale was that reducing patient out-of-pocket costs would eliminate financial barriers to preventive care, and thereby increase adherence, reduce costly complications, and slow the overall rate of rising healthcare costs. This single change in pharmaceutical benefit design immediately made critical brand-name drugs available to most Pitney Bowes employees and their covered dependents for 10% coinsurance, the same coinsurance level as for generic drugs, versus the previous cost share of 25% to 50%. After 2 to 3 years, preliminary results in plan participants with diabetes indicate that medication possession rates have increased significantly, use of fixed-combination drugs has increased (possibly related to easier adherence), average total pharmacy costs have decreased by 7%, and emergency department visits have decreased by 26%. Hospital admission rates, although increasing slightly, remain below the demographically adjusted Medstat benchmark. Overall direct healthcare costs per plan participant with diabetes decreased by 6%. In addition, the rate of increase in overall per-plan-participant health costs at Pitney Bowes has slowed markedly, with net per-plan-participant costs in 2003 at about 4000 dollars per year versus 6500 dollars for the industry benchmark. This recent moderation in overall corporate health costs may be related to these strategic changes in drug benefit design for diabetes, asthma, and hypertension and also to ongoing enhancements in the company's disease

  2. Assessing energy supply security: Outage costs in private households

    International Nuclear Information System (INIS)

    Praktiknjo, Aaron J.; Hähnel, Alexander; Erdmann, Georg

    2011-01-01

    The objective of this paper is to contribute to the topic of energy supply security by proposing a Monte Carlo-based and a survey based model to analyze the costs of power interruptions. Outage cost estimations are particularly important when deciding on investments to improve supply security (e.g. additional transmission lines) in order to compare costs to benefits. But also other policy decisions on measures that have direct or indirect consequences for the supply security (e.g. a phasing out of nuclear energy) need to be based on results from outage cost estimations. The main focus of this paper lies with residential consumers, but the model is applied to commercial, industrial and governmental consumers as well. There are limited studies that have approached the problem of evaluating outage cost. When comparing the results of these studies, they often display a high degree of diversification. As consumers have different needs and dependencies towards the supply of electricity because of varying circumstances and preferences, a great diversity in outage cost is a logical consequence. To take the high degree of uncertainties into account, a Monte Carlo simulation was conducted in this study for the case of private households in Germany. - Highlights: ► A macroeconomic model to assess outage cost is proposed. ► Possibilities for substitution are considered by analyzing individual preferences for the time-use. ► Uncertainties are taken into account by using a Monte Carlo simulation. ► This study reveals the distribution of outage costs to different electricity consumers. ► Implications for energy policy decisions are discussed.

  3. How accurate are forecasts of costs of energy? A methodological contribution

    International Nuclear Information System (INIS)

    Siddons, Craig; Allan, Grant; McIntyre, Stuart

    2015-01-01

    Forecasts of the cost of energy are typically presented as point estimates; however forecasts are seldom accurate, which makes it important to understand the uncertainty around these point estimates. The scale of the differences between forecasts and outturns (i.e. contemporary estimates) of costs may have important implications for government decisions on the appropriate form (and level) of support, modelling energy scenarios or industry investment appraisal. This paper proposes a methodology to assess the accuracy of cost forecasts. We apply this to levelised costs of energy for different generation technologies due to the availability of comparable forecasts and contemporary estimates, however the same methodology could be applied to the components of levelised costs, such as capital costs. The estimated “forecast errors” capture the accuracy of previous forecasts and can provide objective bounds to the range around current forecasts for such costs. The results from applying this method are illustrated using publicly available data for on- and off-shore wind, Nuclear and CCGT technologies, revealing the possible scale of “forecast errors” for these technologies. - Highlights: • A methodology to assess the accuracy of forecasts of costs of energy is outlined. • Method applied to illustrative data for four electricity generation technologies. • Results give an objective basis for sensitivity analysis around point estimates.

  4. The effect of ankle foot orthosis stiffness on the energy cost of walking : A simulation study

    NARCIS (Netherlands)

    Bregman, D.J.J.; Van der Krogt, M.M.; De Groot, V.; Harlaar, J.; Wisse, M.; Collins, S.H.

    2011-01-01

    Background In stroke and multiple sclerosis patients, gait is frequently hampered by a reduced ability to push-off with the ankle caused by weakness of the plantar-flexor muscles. To enhance ankle push-off and to decrease the high energy cost of walking, spring-like carbon-composite Ankle Foot

  5. The effect of ankle foot orthosis stiffness on the energy cost of walking: A simulation study.

    NARCIS (Netherlands)

    Bregman, D.J.J.; van der Krogt, M.M.; de Groot, V.; Harlaar, J.; Wisse, M.; Collins, S.H.

    2011-01-01

    Background: In stroke and multiple sclerosis patients, gait is frequently hampered by a reduced ability to push-off with the ankle caused by weakness of the plantar-flexor muscles. To enhance ankle push-off and to decrease the high energy cost of walking, spring-like carbon-composite Ankle Foot

  6. Distribution costs -- the cost of local delivery

    International Nuclear Information System (INIS)

    Winger, N.; Zarnett, P.; Carr, J.

    2000-01-01

    Most of the power transmission system in the province of Ontario is owned and operated as a regulated monopoly by Ontario Hydro Services Company (OHSC). Local distribution systems deliver to end-users from bulk supply points within a service territory. OHSC distributes to approximately one million, mostly rural customers, while the approximately 250 municipal utilities together serve about two million, mostly urban customers. Under the Energy Competition Act of 1998 local distribution companies will face some new challenges, including unbundled billing systems, a broader range of distribution costs, increased costs, made up of corporate taxes or payments in lieu of taxes and added costs for regulatory affairs. The consultants provide a detailed discussion of the components of distribution costs, the three components of the typical budget process (capital expenditures, (CAPEX), operating and maintenance (O and M) and administration and corporate (GA and C), a summary of some typical distribution costs in Ontario, and the estimated impacts of the Energy Competition Act (ECA) compliance on charges and rates. Various mitigation strategies are also reviewed. Among these are joint ventures by local distribution companies to reduce ECA compliance costs, re-examination of controllable costs, temporary reduction of the allowable return on equity (ROE) by 50 per cent, and/or reducing the competitive transition charge (CTC). It is estimated that either one of these two reductions could eliminate the full amount of the five to seven per cent uplift in delivered energy service costs. The conclusion of the consultants is that local distribution delivery charges will make up a greater proportion of end-user cost in the future than it has in the past. An increase to customers of about five per cent is expected when the competitive electricity market opens and unbundled billing begins. The cost increase could be mitigated by a combination of actions that would be needed for about

  7. The Role of Cellars in Reducing Energy Consumption in the Residential Architecture of Iran

    Directory of Open Access Journals (Sweden)

    Hossein Soltanzadeh

    2015-03-01

    Full Text Available According to research, between 15 to 20 percent of the total energy consumption of every country is used for residential spaces. This amount is explanatory of the high cost and will follow the destruction of natural resources and environmental demolition. The aim of this research is to recognize earth thermal ability and its usage in public buildings and especially in private buildings in order to reduce energy consumption which can lead to huge savings in natural resources. It is intended to pay attention to the role of cellars as underground spaces in reducing energy consumption in residential spaces in this research. Cellars which are one of the climatic elements were very useful in residential spaces in the past and underground spaces in cities and public spaces are using in the contemporary era. Native Iranian architecture has exclusive features in residential spaces. One of the reducing energy consumption techniques is using ground depth and underground spaces in private and public buildings. Pit gardens, Shovadan, aqueducts, lavers, cellars with natural abilities in coldness, warmness and support are examples of underground space uses (providing cooling, heating and storing food and goods in Iranian cities. The Main questions of this research are: what the role of undergrounds or cellars was in native Iranian architecture and how impressionable it was in reducing energy consumption. The theoretical framework of this study indicates that several factors had positive impacts on reducing energy consumption in cellars. To do this research, descriptive-analytical methods were uses and were analyzed according to case studies in Qazvin houses. The results of this study reveal that cellars had a main role in human thermal comfort and they caused reducing energy consumption in residential and even public spaces. Also, several factors such as the cellar's depth, height and dimensions had impacts on the reduction amount of energy consumption and the

  8. Cost-effectiveness and incidence of renewable energy promotion in Germany

    Energy Technology Data Exchange (ETDEWEB)

    Boehringer, Christoph [Oldenburg Univ. (Germany). Dept. of Economics; Landis, Florian [Eidgenoessische Technische Hochschule, Zurich (Switzerland); Tovar Reanos, Miguel Angel [Zentrum fuer Europaeische Wirtschaftsforschung GmbH (ZEW), Mannheim (Germany)

    2017-08-01

    Over the last decade Germany has boosted renewable energy in power production by means of massive subsidies. The flip side are very high electricity prices which raises concerns that the transition cost towards a renewable energy system will be mainly borne by poor households. In this paper, we combine computable general equilibrium and microsimulation analysis to investigate the cost-effectiveness and incidence of Germany's renewable energy promotion. We find that the regressive effects of renewable energy promotion could be ameliorated by alternative subsidy financing mechanisms which achieve the same level of electricity generation from renewable energy sources.

  9. Renewables, nuclear, or fossil fuels? Scenarios for Great Britain’s power system considering costs, emissions and energy security

    International Nuclear Information System (INIS)

    Pfenninger, Stefan; Keirstead, James

    2015-01-01

    Highlights: • We compare a large number of cost-optimal future power systems for Great Britain. • Scenarios are assessed on cost, emissions reductions, and energy security. • Up to 60% of variable renewable capacity is possible with little cost increase. • Higher shares require storage, imports or dispatchable renewables such as tidal range. - Abstract: Mitigating climate change is driving the need to decarbonize the electricity sector, for which various possible technological options exist, alongside uncertainty over which options are preferable in terms of cost, emissions reductions, and energy security. To reduce this uncertainty, we here quantify two questions for the power system of Great Britain (England, Wales and Scotland): First, when compared within the same high-resolution modeling framework, how much do different combinations of technologies differ in these three respects? Second, how strongly does the cost and availability of grid-scale storage affect overall system cost, and would it favor some technology combinations above others? We compare three main possible generation technologies: (1) renewables, (2) nuclear, and (3) fossil fuels (with/without carbon capture and storage). Our results show that across a wide range of these combinations, the overall costs remain similar, implying that different configurations are equally feasible both technically and economically. However, the most economically favorable scenarios are not necessarily favorable in terms of emissions or energy security. The availability of grid-scale storage in scenarios with little dispatchable generation can reduce overall levelized electricity cost by up to 50%, depending on storage capacity costs. The UK can rely on its domestic wind and solar PV generation at lower renewable shares, with levelized costs only rising more than 10% above the mean of 0.084 GBP/kWh for shares of 50% and below at a 70% share, which is 35% higher. However, for more than an 80% renewable

  10. Concepts of increasing productivity and reducing the processing cost of machine parts

    Directory of Open Access Journals (Sweden)

    О. С. Кленов

    2017-06-01

    Full Text Available The basic conditions to reduce the cost of processing technology and improve productivity through the use of modern cutting tools produced by leading foreign firms producing tools have been appraised from theory in the work. Theoretically, it has been found that an increase in the cost of processing varies according to extremum dependence, passing the minimum point. It is possible to reduce the minimum processing cost due to the increase of productivity using cutting edge tools, characterized by a high capacity for work in high cutting temperatures. The criterion showing the technological price cost minimum is the ratio of the expenditures on workers’ wages to the expenditures on the cutting tools, it being quite specific for various processing conditions. To analyze the possibilities of practical use of the proposed criterion, a complex of experimental researches of the technological prime cost and productivity of the processing with hard alloy cutting tools with wear-resistant coatings produced by the company «Iscar» has been carried out. It has been established that their use makes it possible by more than one half to reduce the labour consumption and overall costs as compared to the hard alloy cutting tools traditionally used in home industry. It has been shown that this effect is achieved by increasing the cutting speed and feed due to increased wear resistance and heat resistance of the «Iscar» company tools. It was established that it is much more possible to achieve low processing cost at milling than at turning. It was stated with regard to all major expenditures including the workers' wages, the cost of the cutting tools, equipment and other costs, allowing more correctly estimate the cost-effectiveness of mechanical processing. Experiments confirmed that the main condition for reducing the processing cost to its minimum value is to increase the processing performance through the use of a heat-resistant and wear-resistant cutting

  11. How Expensive Is Expensive Enough? Opportunities for Cost Reductions in Offshore Wind Energy Logistics

    DEFF Research Database (Denmark)

    Poulsen, Thomas; Hasager, Charlotte Bay

    2016-01-01

    This paper reveals that logistics may conservatively amount to 18% of the levelized cost of energy for offshore wind farms. This is the key finding from an extensive case study carried out within the organization of the world’s leading offshore wind farm developer and operator. The case study aimed...... to, and produced, a number of possible opportunities for offshore wind cost reductions through logistics innovation; however, within the case study company, no company-wide logistics organization existed to focus horizontally on reducing logistics costs in general. Logistics was not well defined...... within the case study company, and a logistics strategy did not exist. With full life-cycle costs of offshore wind farms still high enough to present a political challenge within the European Union in terms of legislation to ensure offshore wind diffusion beyond 2020, our research presents logistics...

  12. The costs, benefits, and cost-effectiveness of interventions to reduce maternal morbidity and mortality in Mexico.

    Directory of Open Access Journals (Sweden)

    Delphine Hu

    Full Text Available BACKGROUND: In Mexico, the lifetime risk of dying from maternal causes is 1 in 370 compared to 1 in 2,500 in the U.S. Although national efforts have been made to improve maternal services in the last decade, it is unclear if Millennium Development Goal 5--to reduce maternal mortality by three-quarters by 2015--will be met. METHODOLOGY/PRINCIPAL FINDINGS: We developed an empirically calibrated model that simulates the natural history of pregnancy and pregnancy-related complications in a cohort of 15-year-old women followed over their lifetime. After synthesizing national and sub-national trends in maternal mortality, the model was calibrated to current intervention-specific coverage levels and validated by comparing model-projected life expectancy, total fertility rate, crude birth rate and maternal mortality ratio with Mexico-specific data. Using both published and primary data, we assessed the comparative health and economic outcomes of alternative strategies to reduce maternal morbidity and mortality. A dual approach that increased coverage of family planning by 15%, and assured access to safe abortion for all women desiring elective termination of pregnancy, reduced mortality by 43% and was cost saving compared to current practice. The most effective strategy added a third component, enhanced access to comprehensive emergency obstetric care for at least 90% of women requiring referral. At a national level, this strategy reduced mortality by 75%, cost less than current practice, and had an incremental cost-effectiveness ratio of $300 per DALY relative to the next best strategy. Analyses conducted at the state level yielded similar results. CONCLUSIONS/SIGNIFICANCE: Increasing the provision of family planning and assuring access to safe abortion are feasible, complementary and cost-effective strategies that would provide the greatest benefit within a short-time frame. Incremental improvements in access to high-quality intrapartum and emergency

  13. Costs of reducing water use of concentrating solar power to sustainable levels: Scenarios for North Africa

    International Nuclear Information System (INIS)

    Damerau, Kerstin; Williges, Keith; Patt, Anthony G.; Gauche, Paul

    2011-01-01

    Concentrating solar power (CSP) has the potential to become a leading sustainable energy technology for the European electricity system. In order to reach a substantial share in the energy mix, European investment in CSP appears most profitable in North Africa, where solar potential is significantly higher than in southern Europe. As well as sufficient solar irradiance, however, the majority of today's CSP plants also require a considerable amount of water, primarily for cooling purposes. In this paper we examine water usage associated with CSP in North Africa, and the cost penalties associated with technologies that could reduce those needs. We inspect four representative sites to compare the ecological and economical drawbacks from conventional and alternative cooling systems, depending on the local environment, and including an outlook with climate change to the mid-century. Scaling our results up to a regional level indicates that the use of wet cooling technologies would likely be unsustainable. Dry cooling systems, as well as sourcing of alternative water supplies, would allow for sustainable operation. Their cost penalty would be minor compared to the variance in CSP costs due to different average solar irradiance values. - Highlights: → Scaling up CSP with wet cooling from ground water will be unsustainable in North Africa. → Desalination and alternative cooling systems can assure a sustainable water supply. → On large-scale, the cost penalties of alternative cooling technologies appear minor.

  14. Reducing the cost of back-contact module technology

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, I.J.; Eerenstein, W.; Rosca, V. [ECN Solar Energy, P.O. Box 1, 1755 ZG Petten (Netherlands)

    2013-07-01

    Back-contact modules made using a conductive back-sheet foil have a number of advantages over standard H-pattern modules including a higher power output, compatibility with very thin cells and high throughput, high yield manufacturing. For a conductive back-sheet based module the most cost critical components are the conductive back-sheet and the conductive adhesives used to make the contact between the cells and the conductive back-sheet. In this paper a number of methods for reducing the module materials cost will be presented. Climate chamber testing of low cost foils without isolation coating and without silver contacts demonstrated that this type of foil is reliable in damp-heat, reaching 2000 hours at 85%RH and 85{sup o}C with a loss in fill-factor of less than 2%.

  15. Cost-effectiveness and incidence of renewable energy promotion in Germany

    OpenAIRE

    Böhringer, Christoph; Landis, Florian; Tovar Reaños, Miguel Angel

    2017-01-01

    Over the last decade Germany has boosted renewable energy in power production by means of massive subsidies. The flip side are very high electricity prices which raises concerns that the transition cost towards a renewable energy system will be mainly borne by poor households. In this paper, we combine computable general equilibrium and microsimulation analysis to investigate the cost-effectiveness and incidence of Germany's renewable energy promotion. We find that the regressive effects of r...

  16. COST-EFFECTIVE TARGET FABRICATION FOR INERTIAL FUSION ENERGY

    International Nuclear Information System (INIS)

    GOODIN, D.T; NOBILE, A; SCHROEN, D.G; MAXWELL, J.L; RICKMAN, W.S

    2004-03-01

    A central feature of an Inertial Fusion Energy (IFE) power plant is a target that has been compressed and heated to fusion conditions by the energy input of the driver. The IFE target fabrication programs are focusing on methods that will scale to mass production, and working closely with target designers to make material selections that will satisfy a wide range of required and desirable characteristics. Targets produced for current inertial confinement fusion experiments are estimated to cost about $2500 each. Design studies of cost-effective power production from laser and heavy-ion driven IFE have found a cost requirement of about $0.25-0.30 each. While four orders of magnitude cost reduction may seem at first to be nearly impossible, there are many factors that suggest this is achievable. This paper summarizes the paradigm shifts in target fabrication methodologies that will be needed to economically supply targets and presents the results of ''nth-of-a-kind'' plant layouts and concepts for IFE power plant fueling. Our engineering studies estimate the cost of the target supply in a fusion economy, and show that costs are within the range of commercial feasibility for laser-driven and for heavy ion driven IFE

  17. Conference 'onshore and offshore wind energy cost reduction: challenges and opportunities for the industry in France and in Germany'

    International Nuclear Information System (INIS)

    Abadie, Pierre-Marie; Hinsch, Thomas; Wallasch, Anna-Kathrin; Giese, Norbert; Guyet, Quentin; Lenhardt, Edouard; Beinke, Thies; Bodenstab, Marc; Wolff, Nicolas; Burkhardt, Claus; Lessmeister, Andreas L.

    2012-01-01

    The French-German office for Renewable energies (OFAEnR) organised a conference on cost reduction in onshore and offshore wind energy. In the framework of this French-German exchange of experience, about 140 participants exchanged views on the cost allocation in onshore wind energy projects, on their financing, and on the transport and logistics profitability challenges. Concrete examples of operating and maintenance cost reductions in offshore wind energy projects were presented as well. This document brings together the available presentations (slides) made during this event: 1 - Overview of France's onshore and offshore wind support policies (Pierre-Marie Abadie); 2 - Keynote: Framework conditions for cost reductions in the German wind energy sector (Thomas Hinsch); 3 - Cost of onshore wind energy projects in Germany - Status and experience feedback (Anna-Kathrin Wallasch); 4 - Crown estate's Offshore Wind Cost Reduction Pathways Study: how to transpose the conclusions to the German case (Norbert Giese); 5 - Combined Forces for Reliable Supply Chain - French-German Convergence of expertise: strategic partnerships for offshore projects implementation (Quentin Guyet, Edouard Lenhardt); 6 - Reducing costs of onshore and offshore wind energy. Mon2Sea research project - Real-time monitoring of transport and cargo handling of components for the offshore installation of wind turbines (Thies Beinke, Marc Bodenstab); 7 - expertise, Innovation and reduction of cost of energy: Vestas experience (Nicolas Wolff); 8 - Far-Offshore-Wind projects. Results of the First German Offshore Windpark alpha ventus (Claus Burkhardt); 9 - Maintenance for Offshore-Wind parks: examples and good practices for the future (Andreas L. Lessmeister)

  18. Introduction to cost-effectiveness analysis of risk reduction measures in energy systems

    International Nuclear Information System (INIS)

    1986-07-01

    The aim of this report is to introduce readers to methods of cost-effectiveness analysis and their application in risk reduction, especially in connection with the energy-producing industries. The background to the assessment of risk and the problems in estimating it quantitatively are outlined. The methodology of cost-effectiveness analysis is then described, particular attention being given to the way in which results are derived and the overall use that can be made of them. This is followed by a discussion of quantitative applications and an outline of the methods that may be used to derive estimates both of risk and the cost of reducing it. The use of cost-effectiveness analysis is illustrated in an appendix, which gives as a worked example a case study on the reduction of public risk associated with radioactive releases during normal operation of a PWR. After drawing some general conclusions the report recommends that such analyses should normally be used as an aid to risk management whenever several alternative risk reduction measures are under consideration

  19. Analysis of Costs and Time Frame for Reducing CO2 Emissions by 70% in the U.S. Auto and Energy Sectors by 2050.

    Science.gov (United States)

    Supekar, Sarang D; Skerlos, Steven J

    2017-10-03

    Using a least-cost optimization framework, it is shown that unless emissions reductions beyond those already in place begin at the latest by 2025 (±2 years) for the U.S. automotive sector, and by 2026 (-3 years) for the U.S. electric sector, 2050 targets to achieve necessary within-sector preventative CO 2 emissions reductions of 70% or more relative to 2010 will be infeasible. The analysis finds no evidence to justify delaying climate action in the name of reducing technological costs. Even without considering social and environmental damage costs, delaying aggressive climate action does not reduce CO 2 abatement costs even under the most optimistic trajectories for improvements in fuel efficiencies, demand, and technology costs in the U.S. auto and electric sectors. In fact, the abatement cost for both sectors is found to increase sharply with every year of delay beyond 2020. When further considering reasonable limits to technology turnover, retirements, and new capacity additions, these costs would be higher, and the feasible time frame for initiating successful climate action on the 70% by 2050 target would be shorter, perhaps having passed already. The analysis also reveals that optimistic business-as-usual scenarios in the U.S. will, conservatively, release 79-108 billion metric tons of CO 2 . This could represent up to 13% of humanity's remaining carbon budget through 2050.

  20. Use of commercial grade item dedication to reduce procurement costs

    International Nuclear Information System (INIS)

    Rosch, F.

    1995-01-01

    In the mid-1980s, the Nuclear Regulatory Industry (NRC) began inspecting utility practices of procuring and dedicating commercial grade items intended for plant safety-related applications. As a result of the industry efforts to address NRC concerns, nuclear utilities have enhanced existing programs and procedures for dedication of commercial grade items. Though these programs were originally enhanced to meet NRC concerns, utilities have discovered that the dedication of commercial grade items can also reduce overall procurement costs. This paper will discuss the enhancement of utility dedication programs and demonstrates how utilities have utilized them to reduce procurement costs

  1. Mind your step: Energy cost while walking at an enforced gait pattern

    NARCIS (Netherlands)

    Wezenberg, D.; de Haan, A.; van Bennekom, C.A.M.; Houdijk, J.H.P.

    2011-01-01

    The energy cost of walking could be attributed to energy related to the walking movement and energy related to balance control. In order to differentiate between both components we investigated the energy cost of walking an enforced step pattern, thereby perturbing balance while the walking movement

  2. Mind your step: metabolic energy cost while walking an enforced gait pattern

    NARCIS (Netherlands)

    Wezenberg, D.; de Haan, A.; van Bennekom, C. A. M.; Houdijk, H.

    2011-01-01

    The energy cost of walking could be attributed to energy related to the walking movement and energy related to balance control. In order to differentiate between both components we investigated the energy cost of walking an enforced step pattern, thereby perturbing balance while the walking movement

  3. A Summary of: 25 Ways to Reduce the Cost of College

    Science.gov (United States)

    Center for College Affordability and Productivity (NJ1), 2010

    2010-01-01

    Almost everyone agrees that colleges have become costly to attend and are a growing burden on society to finance. Rising tuition costs threaten the ability and desire of students to attend college. Are there things that can be done to significantly reduce the cost of college? The answer is an emphatic "yes." The Center for College Affordability…

  4. Cost Assessment Methodology and Economic Viability of Tidal Energy Projects

    Directory of Open Access Journals (Sweden)

    Eva Segura

    2017-11-01

    Full Text Available The exploitation of technologies with which to harness the energy from ocean currents will have considerable possibilities in the future thanks to their enormous potential for electricity production and their high predictability. In this respect, the development of methodologies for the economic viability of these technologies is fundamental to the attainment of a consistent quantification of their costs and the discovery of their economic viability, while simultaneously attracting investment in these technologies. This paper presents a methodology with which to determine the economic viability of tidal energy projects, which includes a technical study of the life-cycle costs into which the development of a tidal farm can be decomposed: concept and definition, design and development, manufacturing, installation, operation and maintenance and dismantling. These cost structures are additionally subdivided by considering their sub-costs and bearing in mind the main components of the tidal farm: the nacelle, the supporting tidal energy converter structure and the export power system. Furthermore, a technical study is developed in order to obtain an estimation of the annual energy produced (and, consequently, the incomes generated if the electric tariff is known by considering its principal attributes: the characteristics of the current, the ability of the device to capture energy and its ability to convert and export the energy. The methodology has been applied (together with a sensibility analysis to the particular case of a farm composed of first generation tidal energy converters in one of the Channel Island Races, the Alderney Race, in the U.K., and the results have been attained by means of the computation of engineering indexes, such as the net present value, the internal rate of return, the discounted payback period and the levelized cost of energy, which indicate that the proposed project is economically viable for all the case studies.

  5. Two-Stage Coordinated Operational Strategy for Distributed Energy Resources Considering Wind Power Curtailment Penalty Cost

    Directory of Open Access Journals (Sweden)

    Jing Qiu

    2017-07-01

    Full Text Available The concept of virtual power plant (VPP has been proposed to facilitate the integration of distributed renewable energy. VPP behaves similar to a single entity that aggregates a collection of distributed energy resources (DERs such as distributed generators, storage devices, flexible loads, etc., so that the aggregated power outputs can be flexibly dispatched and traded in electricity markets. This paper presents an optimal scheduling model for VPP participating in day-ahead (DA and real-time (RT markets. In the DA market, VPP aims to maximize the expected profit and reduce the risk in relation to uncertainties. The risk is measured by a risk factor based on the mean-variance Markowitz theory. In the RT market, VPP aims to minimize the imbalance cost and wind power curtailment by adjusting the scheduling of DERs in its portfolio. In case studies, the benefits (e.g., surplus profit and reduced wind power curtailment of aggregated VPP operation are assessed. Moreover, we have investigated how these benefits are affected by different risk-aversion levels and uncertainty levels. According to the simulation results, the aggregated VPP scheduling approach can effectively help the integration of wind power, mitigate the impact of uncertainties, and reduce the cost of risk-aversion.

  6. Integrated assessment of energy efficiency technologies and CO_2 abatement cost curves in China’s road passenger car sector

    International Nuclear Information System (INIS)

    Peng, Bin-Bin; Fan, Ying; Xu, Jin-Hua

    2016-01-01

    Highlights: • Energy efficiency technologies in Chinese passenger cars are classified in detail. • CO_2-reduction potential and abatement cost are analyzed for technology bundles. • Marginal abatement cost curve is established from both micro and macro perspectives. • Spark ignition, diesel and hybrid electric vehicle paths should be firstly promoted. • Technology promotion should start from the area of taxies and high-performance cars. - Abstract: Road transport is one of the main sources of energy consumption and CO_2 emissions. It is essential to conserve energy and reduce emissions by promoting energy efficiency technologies (EETs) in this sector. This study first identifies EETs for the passenger cars and then classifies them into various technology bundles. It then analyzes the CO_2-reduction potentials and emissions abatement costs of 55 type-path, 246 type-path-technology, and 465 type-path-subtechnology bundles from micro-vehicular and macro-industrial perspectives during 2010–2030, based on which marginal abatement cost (MAC) curve for China’s road passenger car sector is established. Results show that the cumulative CO_2-reduction potential of EETs on passenger cars in China during 2010–2030 is about 2698.8 Mt, but only 4% is cost-effective. The EETs with low emissions abatement costs are mainly available in the spark ignition (SI), diesel, and hybrid electric vehicle (HEV) paths on the taxis and high-performance cars, and also in the transmission, vehicle body and SI technologies on the private cars, which could be promoted at present. The technologies with large emissions reduction potential are mainly available in the plug-in hybrid electric vehicle (PHEV) and electric vehicle (EV) paths, which would be the main channels for reducing carbon emissions in the long run.

  7. Assessing Potential Energy Cost Savings from Increased Energy Code Compliance in Commercial Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, Michael I.; Hart, Philip R.; Athalye, Rahul A.; Zhang, Jian; Wang, Weimin

    2016-02-15

    The US Department of Energy’s most recent commercial energy code compliance evaluation efforts focused on determining a percent compliance rating for states to help them meet requirements under the American Recovery and Reinvestment Act (ARRA) of 2009. That approach included a checklist of code requirements, each of which was graded pass or fail. Percent compliance for any given building was simply the percent of individual requirements that passed. With its binary approach to compliance determination, the previous methodology failed to answer some important questions. In particular, how much energy cost could be saved by better compliance with the commercial energy code and what are the relative priorities of code requirements from an energy cost savings perspective? This paper explores an analytical approach and pilot study using a single building type and climate zone to answer those questions.

  8. Identifying Cost-Effective Residential Energy Efficiency Opportunities for the Kauai Island Utility Cooperative

    Energy Technology Data Exchange (ETDEWEB)

    Busche, S.; Hockett, S.

    2010-06-01

    This analysis is an update to the 2005 Energy Efficiency Potential Study completed by KEMA for the Kauai Island Utility Cooperative (KIUC) and identifies potential energy efficiency opportunities in the residential sector on Kauai (KEMA 2005). The Total Resource Cost (TRC) test is used to determine which of the energy efficiency measures analyzed in the KEMA report are cost effective for KIUC to include in a residential energy efficiency program. This report finds that there remains potential energy efficiency savings that could be cost-effectively incentivized through a utility residential demand-side management program on Kauai if implemented in such a way that the program costs per measure are consistent with the current residential program costs.

  9. Economic assessment of Operational Energy reduction options in a house using Marginal Benefit and Marginal Cost: A case in Bangi, Malaysia

    International Nuclear Information System (INIS)

    Wan Rahmah Mohd Zaki; Abdul Hadi Nawawi; Sabarinah Sh Ahmad

    2010-01-01

    Energy Efficient (EE) appliances such as Compact Fluorescent Light (CFL) bulbs and Renewable Energy (RE), namely solar Photovoltaic (PV) can help to reduce Operational Energy (OE) in a house. In addition, a house should also incorporate Passive Architecture (PA) design strategies which in the hot and humid tropical climate, mean avoiding direct heat gain, encouraging natural cross ventilation and optimising the abundant daylight. Nevertheless, reducing OE must also mean economic gain to households to encourage their participation. Common economic gauges such as Return on Investment, Payback Period, Cost Benefit Analysis, Life Cycle Assessment and Life Cycle Cost are not suitable to validate OE options in households. These economic gauges approach economic assessment as an end-result on the cost side of the product and may result for good intention to be shelved, primarily because EE equipment and RE have high capital cost compared with the alternatives. On the other hand, reducing OE in houses is actually a continual progression from the status quo and there is always a marginal gain in doing so. The challenge is to know how much is the marginal benefit against the marginal cost of investing in EE and RE. In Economics, the ratio of Marginal Cost (MC) and Marginal Benefits (MB) measure additional benefits of every additional costs of investment at a specific level of production and consumption; and Economists suggests that effective gain and loss should be compared to the status quo, i.e., Relative Position (RP). The Economics theories of MC, MB and RP are being adapted to measure the progression of reducing OE. The living/dining area in two types of houses: with and without PA design strategies are simulated to use conventional incandescent light bulbs and CFL as well as solar PV in lieu of the mains electricity supply. The power requirement for artificial lighting in every case is translated into monetary value and the ratio of MB against MC for each case shows

  10. Autonomous exoskeleton reduces metabolic cost of human walking during load carriage

    Science.gov (United States)

    2014-01-01

    Background Many soldiers are expected to carry heavy loads over extended distances, often resulting in physical and mental fatigue. In this study, the design and testing of an autonomous leg exoskeleton is presented. The aim of the device is to reduce the energetic cost of loaded walking. In addition, we present the Augmentation Factor, a general framework of exoskeletal performance that unifies our results with the varying abilities of previously developed exoskeletons. Methods We developed an autonomous battery powered exoskeleton that is capable of providing substantial levels of positive mechanical power to the ankle during the push-off region of stance phase. We measured the metabolic energy consumption of seven subjects walking on a level treadmill at 1.5 m/s, while wearing a 23 kg vest. Results During the push-off portion of the stance phase, the exoskeleton applied positive mechanical power with an average across the gait cycle equal to 23 ± 2 W (11.5 W per ankle). Use of the autonomous leg exoskeleton significantly reduced the metabolic cost of walking by 36 ± 12 W, which was an improvement of 8 ± 3% (p = 0.025) relative to the control condition of not wearing the exoskeleton. Conclusions In the design of leg exoskeletons, the results of this study highlight the importance of minimizing exoskeletal power dissipation and added limb mass, while providing substantial positive power during the walking gait cycle. PMID:24885527

  11. Cost-effectiveness analysis of algae energy production in the EU

    International Nuclear Information System (INIS)

    Kovacevic, Vujadin; Wesseler, Justus

    2010-01-01

    Today's society relies heavily on fossil fuels as a main energy source. Global energy demand increase, energy security and climate change are the main drivers of the transition towards alternative energy sources. This paper analyses algal biodiesel production for the EU road transportation and compares it to the fossil fuels and 1st generation biofuels. A cost-effectiveness analysis was used to aggregate private and external costs and derive the social cost of each fuel. The following externalities were internalized: emissions (GHG and non-GHG), food prices impact, pesticides/fertilizers use and security of supply. Currently the social cost of producing algal biodiesel at 52.3 EUR GJ -1 is higher than rapeseed biodiesel (36.0 EUR GJ -1 ) and fossil fuels (15.8 EUR GJ -1 ). Biotechnology development, high crude oil prices and high carbon value are the key features of the scenario where algal biodiesel outcompetes all other fuels. A substantial investment into the biotechnology sector and comprehensive environmental research and policy are required to make that scenario a reality. (author)

  12. Renewable Energy Cost Modeling: A Toolkit for Establishing Cost-Based Incentives in the United States; March 2010 -- March 2011

    Energy Technology Data Exchange (ETDEWEB)

    Gifford, J. S.; Grace, R. C.; Rickerson, W. H.

    2011-05-01

    This report is intended to serve as a resource for policymakers who wish to learn more about establishing cost-based incentives. The report will identify key renewable energy cost modeling options, highlight the policy implications of choosing one approach over the other, and present recommendations on the optimal characteristics of a model to calculate rates for cost-based incentives, feed-in tariffs (FITs), or similar policies. These recommendations will be utilized in designing the Cost of Renewable Energy Spreadsheet Tool (CREST). Three CREST models will be publicly available and capable of analyzing the cost of energy associated with solar, wind, and geothermal electricity generators. The CREST models will be developed for use by state policymakers, regulators, utilities, developers, and other stakeholders to assist them in current and future rate-setting processes for both FIT and other renewable energy incentive payment structures and policy analyses.

  13. Influence of standing position on mechanical and energy costs in uphill cycling.

    Science.gov (United States)

    Bouillod, Anthony; Pinot, Julien; Valade, Aurélien; Cassirame, Johan; Soto-Romero, Georges; Grappe, Frédéric

    2018-04-27

    This study was designed to examine the influence of standing position (vs. seated) during uphill cycling on both mechanical cost (MC) and energy cost (EC) in elite cyclists. For the study, thirteen elite cyclists (VO 2max : 71.4 ± 8.0 ml·min -1 ·kg -1 ) performed, in a randomised order, three sets of exercises. Each set comprised 2 min of exercise, alternating every 30 s between seated and standing postures, using different slopes and intensity levels on a motorised treadmill. MC was calculated from the measurement of power output and speed, whereas EC was calculated from the measurement of oxygen consumption and speed. MC was significantly higher (+4.3%, p tire manufacturers to reduce the increase in rolling resistance between the two positions. Considering the relationship observed between the MC and bicycle sways, cyclists would be well advised to decrease the bicycle sways in order to reduce the MC of locomotion. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. How Expensive Is Expensive Enough? Opportunities for Cost Reductions in Offshore Wind Energy Logistics

    Directory of Open Access Journals (Sweden)

    Thomas Poulsen

    2016-06-01

    Full Text Available This paper reveals that logistics may conservatively amount to 18% of the levelized cost of energy for offshore wind farms. This is the key finding from an extensive case study carried out within the organization of the world’s leading offshore wind farm developer and operator. The case study aimed to, and produced, a number of possible opportunities for offshore wind cost reductions through logistics innovation; however, within the case study company, no company-wide logistics organization existed to focus horizontally on reducing logistics costs in general. Logistics was not well defined within the case study company, and a logistics strategy did not exist. With full life-cycle costs of offshore wind farms still high enough to present a political challenge within the European Union in terms of legislation to ensure offshore wind diffusion beyond 2020, our research presents logistics as a next frontier for offshore wind constituencies. This important area of the supply chain is ripe to academically and professionally cultivate and harvest in terms of offshore wind energy cost reductions. Our paper suggests that a focused organizational approach for logistics both horizontally and vertically within the company organizations could be the way forward, coupled with a long-term legislative environment to enable the necessary investments in logistics assets and transport equipment.

  15. Cost-optimal energy performance renovation measures of educational buildings in cold climate

    International Nuclear Information System (INIS)

    Niemelä, Tuomo; Kosonen, Risto; Jokisalo, Juha

    2016-01-01

    Highlights: • The proposed national nZEB target can be cost-effectively achieved in renovations. • Energy saving potential of HVAC systems is significant compared to the building envelope. • Modern renewable energy production technologies are cost-efficient and recommendable. • Improving the indoor climate conditions in deep renovations is recommendable. • Simulation-based optimization method is efficient in building performance analyzes. - Abstract: The paper discusses cost-efficient energy performance renovation measures for typical educational buildings built in the 1960s and 1970s in cold climate regions. The study analyzes the impact of different energy renovation measures on the energy efficiency and economic viability in a Finnish case study educational building located in Lappeenranta University of Technology (LUT) campus area. The main objective of the study was to determine the cost-optimal energy performance renovation measures to meet the proposed national nearly zero-energy building (nZEB) requirements, which are defined according to the primary energy consumption of buildings. The main research method of the study was simulation-based optimization (SBO) analysis, which was used to determine the cost-optimal renovation solutions. The results of the study indicate that the minimum national energy performance requirement of new educational buildings (E_p_r_i_m_a_r_y ⩽ 170 kWh/(m"2,a)) can be cost-effectively achieved in deep renovations of educational buildings. In addition, the proposed national nZEB-targets are also well achievable, while improving the indoor climate (thermal comfort and indoor air quality) conditions significantly at the same time. Cost-effective solutions included renovation of the original ventilation system, a ground source heat pump system with relatively small dimensioning power output, new energy efficient windows and a relatively large area of PV-panels for solar-based electricity production. The results and

  16. SIR (Safe Integral Reactor) - reducing size can reduce cost

    International Nuclear Information System (INIS)

    Hayns, M.R.

    1991-01-01

    Traditional engineering economics have favoured the advantages of larger size as a means of reducing specific capital costs and hence unit generating costs. For large and small plants utilising the same concept, e.g. a small four-loop PWR vs a large four-loop PWR with the same number of components, economies of scale are well established. If, however, a smaller plant is sized to take advantage of features which are only feasible at smaller outputs, is of simpler design, with the advantage taken of the simplified design to produce the most cost-effective layout, and incorporates fewer, more easily replaceable components with minimal assembly on site, it is possible to produce a plant which is competitive with larger plant of more traditional design. When 'system' effects, such as better matching of installed capacity to the growth in demand and the fact that a smaller total capacity will be needed to meet a given demand with a specified level of confidence, are taken into account, it can be shown that a utility's overall cash-flow position can be improved with lower associated absolute financial risks. The UK/US Safe Integral Reactor (SIR) is an integral pressurized water reactor in the 300-400 MW(e) range which utilises conventional water reactor technology in a way not feasible at the very large, sizes of recent years. The SIR concept is briefly explained and its technical and economic advantages in terms of simplicity, construction, maintenance, availability, decommissioning, safety and siting described. The results of system analyses which demonstrate the overall financial advantages to a utility are presented. (author)

  17. Energy Efficiency Improvement and Cost Saving Opportunities for Cement Making. An ENERGY STAR Guide for Energy and Plant Managers

    Energy Technology Data Exchange (ETDEWEB)

    Galitsky, Christina; Worrell, Ernst; Galitsky, Christina

    2008-01-01

    The cost of energy as part of the total production costs in the cement industry is significant, warranting attention for energy efficiency to improve the bottom line. Historically, energy intensity has declined, although more recently energy intensity seems to have stabilized with the gains. Coal and coke are currently the primary fuels for the sector, supplanting the dominance of natural gas in the 1970s. Most recently, there is a slight increase in the use of waste fuels, including tires. Between 1970 and 1999, primary physical energy intensity for cement production dropped 1 percent/year from 7.3 MBtu/short ton to 5.3 MBtu/short ton. Carbon dioxide intensity due to fuel consumption and raw material calcination dropped 16 percent, from 609 lb. C/ton of cement (0.31 tC/tonne) to 510 lb. C/ton cement (0.26 tC/tonne). Despite the historic progress, there is ample room for energy efficiency improvement. The relatively high share of wet-process plants (25 percent of clinker production in 1999 in the U.S.) suggests the existence of a considerable potential, when compared to other industrialized countries. We examined over 40 energy efficient technologies and measures and estimated energy savings, carbon dioxide savings, investment costs, and operation and maintenance costs for each of the measures. The report describes the measures and experiences of cement plants around the wold with these practices and technologies. Substantial potential for energy efficiency improvement exists in the cement industry and in individual plants. A portion of this potential will be achieved as part of (natural) modernization and expansion of existing facilities, as well as construction of new plants in particular regions. Still, a relatively large potential for improved energy management practices exists.

  18. Transaction costs of Tradable White Certificate schemes: The Energy Efficiency Commitment as case study

    International Nuclear Information System (INIS)

    Mundaca, Luis

    2007-01-01

    This paper analyses the nature and scale of transaction costs (TCs) borne by obliged parties under a 'Tradable White Certificate' (TWC) scheme. Taking the first phase of the Energy Efficiency Commitment (EEC1) in Great Britain as a case study, several sources of TCs were considered, such as search for information, persuasion of customers, negotiation with business partners, and measurement and verification activities. Information was obtained through interviews and a questionnaire distributed to obliged parties. Results show that the most significant sources of TCs were related to search for information, persuading customers and negotiating with managing agents/contractors to implement energy efficiency measures. Perceived high TCs related to contract negotiation and liability risks slightly reduced the low trading level. The scale of TCs was estimated to be around 10% and 30% of total investments costs for the lighting and insulation segments, respectively. The results indicate that, despite the presence and scale of TCs, the EEC1 scheme generated energy savings that yielded net societal benefits. Estimated financial benefits range from 0.6 to 6 p/kWh for insulation and lighting savings, respectively. When avoided external costs due to electricity savings are included, estimated economic benefits range from 3 to 8 p/kWh. Several lessons from the EEC1 can be drawn for TWC schemes. Among others, it is found that informative policy instruments to raise awareness among end-users are critical if a TWC scheme is to deliver cost-effective energy savings. In all, the nature and scale of TCs under TWC schemes will differ because of a number of endogenous and exogenous determinants

  19. Transaction costs of Tradable White Certificate schemes: The Energy Efficiency Commitment as case study

    Energy Technology Data Exchange (ETDEWEB)

    Mundaca, Luis [International Institute for Industrial Environmental Economics at Lund University, Lund (Sweden)

    2007-08-15

    This paper analyses the nature and scale of transaction costs (TCs) borne by obliged parties under a ''Tradable White Certificate'' (TWC) scheme. Taking the first phase of the Energy Efficiency Commitment (EEC1) in Great Britain as a case study, several sources of TCs were considered, such as search for information, persuasion of customers, negotiation with business partners, and measurement and verification activities. Information was obtained through interviews and a questionnaire distributed to obliged parties. Results show that the most significant sources of TCs were related to search for information, persuading customers and negotiating with managing agents/contractors to implement energy efficiency measures. Perceived high TCs related to contract negotiation and liability risks slightly reduced the low trading level. The scale of TCs was estimated to be around 10% and 30% of total investments costs for the lighting and insulation segments, respectively. The results indicate that, despite the presence and scale of TCs, the EEC1 scheme generated energy savings that yielded net societal benefits. Estimated financial benefits range from 0.6 to 6 p/kWh for insulation and lighting savings, respectively. When avoided external costs due to electricity savings are included, estimated economic benefits range from 3 to 8 p/kWh. Several lessons from the EEC1 can be drawn for TWC schemes. Among others, it is found that informative policy instruments to raise awareness among end-users are critical if a TWC scheme is to deliver cost-effective energy savings. In all, the nature and scale of TCs under TWC schemes will differ because of a number of endogenous and exogenous determinants. (author)

  20. Subsea industry implements NORSOK: Happy marriages reduce costs

    International Nuclear Information System (INIS)

    Heggelund, N.

    1995-01-01

    Cost reduction by implementing NORSOK standards and cooperation between subsea suppliers to the Norwegian continental shelf, are discussed in this article. The aim of NORSOK, which is based on US standards, is to achieve standardization of technical requirements for drilling and production facilities, to identify and develop common requirements for equipment and installations, based on functional specifications, interfaces and limited variety for equipment and design, and to take into consideration existing industry standards and use these where possible. The offspring of cooperation is notable cost reductions. Subsea costs at Saga's Vigdis field have been reduced by 50% in two years. More subsea projects could come up soon. Norsk Hydro has short-listed a semi PDQ (Processing, Drilling and living Quarters), a ship or Gullfaks tie-in as runner-up concepts for the Viksund project. 1 fig

  1. RECAP, Replacement Energy Cost for Short-Term Reactor Plant Shut-Down

    International Nuclear Information System (INIS)

    VanKuiken, J.C.; Daun, C.J.; Jusko, M.J.

    1995-01-01

    1 - Description of program or function: RECAP (Replacement Energy Cost Analysis Package) determines the replacement energy costs associated with short-term shutdowns or de-ratings of one or more nuclear reactors. Replacement energy cost refers to the change in generating-system production cost that results from shutting down a reactor. The cost calculations are based on the seasonal, unit-specific cost estimates for 1988-1991 for all 117 nuclear electricity-generating units in the U.S. RECAP is menu-driven, allowing the user to define specific case studies in terms of parameters such as the units to be included, the length and timing of the shutdown or de-rating period, the unit capacity factors, and the reference year for reporting cost results. In addition to simultaneous shutdown cases, more complicated situations, such as overlapping shutdown periods or shutdowns that occur in different years, can be examined through use of a present-worth calculation option. 2 - Method of solution: The user selects a set of units for analysis, defines a shutdown (or de-rating) period, and specifies any planned maintenance outages, delays in unit start-ups, or changes in default capacity factors. The program then determines which seasonal cost numbers to apply, estimates total and daily costs, and makes the appropriate adjustments for multiple outages if they are encountered. The change in production cost is determined from the difference between the total variable costs (variable fuel cost, variable operation and maintenance cost, and purchased energy cost) when the reactor is available for generation and when it is not. Changes in reference-year dollars are based on gross national product (GNP) price deflators or on optional use inputs. Once RECAP has completed the initial cost estimates for a case study (or series of case studies), present-worth analysis can be conducted using different reference-year dollars and discount rates, as specified by the user. The program uses

  2. Assessing the Costs and Benefits of the Superior Energy Performance Program

    Energy Technology Data Exchange (ETDEWEB)

    Therkelsen, Peter; McKane, Aimee; Sabouini, Ridah; Evans, Tracy

    2013-07-01

    Industrial companies are seeking to manage energy consumption and costs, mitigate risks associated with energy, and introduce transparency into reports of their energy performance achievements. Forty industrial facilities are participating in the U.S. DOE supported Superior Energy Performance (SEP) program in which facilities implement an energy management system based on the ISO 50001 standard, and pursue third-party verification of their energy performance improvements. SEP certification provides industrial facilities recognition for implementing a consistent, rigorous, internationally recognized business process for continually improving energy performance and achievement of established energy performance improvement targets. This paper focuses on the business value of SEP and ISO 50001, providing an assessment of the costs and benefits associated with SEP implementation at nine SEP-certified facilities across a variety of industrial sectors. These cost-benefit analyses are part of the U.S. DOE?s contribution to the Global Superior Energy Performance (GSEP) partnership, a multi-country effort to demonstrate, using facility data, that energy management system implementation enables companies to improve their energy performance with a greater return on investment than business-as-usual (BAU) activity. To examine the business value of SEP certification, interviews were conducted with SEP-certified facilities. The costs of implementing the SEP program, including internal facility staff time, are described and a marginal payback of SEP certification has been determined. Additionally, more qualitative factors with regard to the business value and challenges related to SEP and ISO 50001 implementation are summarized.

  3. Cost implications of reduced work hours and workloads for resident physicians.

    Science.gov (United States)

    Nuckols, Teryl K; Bhattacharya, Jay; Wolman, Dianne Miller; Ulmer, Cheryl; Escarce, José J

    2009-05-21

    Although the Accreditation Council for Graduate Medical Education (ACGME) limits the work hours of residents, concerns about fatigue persist. A new Institute of Medicine (IOM) report recommends, among other changes, improved adherence to the 2003 ACGME limits, naps during extended shifts, a 16-hour limit for shifts without naps, and reduced workloads. We used published data to estimate labor costs associated with transferring excess work from residents to substitute providers, and we examined the effects of our assumptions in sensitivity analyses. Next, using a probability model to represent labor costs as well as mortality and costs associated with preventable adverse events, we determined the net costs to major teaching hospitals and cost-effectiveness across a range of hypothetical changes in the rate of preventable adverse events. Annual labor costs from implementing the IOM recommendations were estimated to be $1.6 billion (in 2006 U.S. dollars) across all ACGME-accredited programs ($1.1 billion to $2.5 billion in sensitivity analyses). From a 10% decrease to a 10% increase in preventable adverse events, net costs per admission ranged from $99 to $183 for major teaching hospitals and from $17 to $266 for society. With 2.5% to 11.3% decreases in preventable adverse events, costs to society per averted death ranged from $3.4 million to $0. Implementing the four IOM recommendations would be costly, and their effectiveness is unknown. If highly effective, they could prevent patient harm at reduced or no cost from the societal perspective. However, net costs to teaching hospitals would remain high. 2009 Massachusetts Medical Society

  4. Transportation Energy Futures Series. Non-Cost Barriers to Consumer Adoption of New Light-Duty Vehicle Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, Thomas [Argonne National Lab. (ANL), Argonne, IL (United States)

    2013-03-01

    Consumer preferences are key to the adoption of new vehicle technologies. Barriers to consumer adoption include price and other obstacles, such as limited driving range and charging infrastructure; unfamiliarity with the technology and uncertainty about direct benefits; limited makes and models with the technology; reputation or perception of the technology; standardization issues; and regulations. For each of these non-cost barriers, this report estimates an effective cost and summarizes underlying influences on consumer preferences, approximate magnitude and relative severity, and assesses potential actions, based on a comprehensive literature review. While the report concludes that non-cost barriers are significant, effective cost and potential market share are very uncertain. Policies and programs including opportunities for drivers to test drive advanced vehicles, general public outreach and information programs, incentives for providing charging and fueling infrastructure, and development of technology standards were examined for their ability to address barriers, but little quantitative data exists on the effectiveness of these measures. This is one in a series of reports produced as a result of the Transportation Energy Futures project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for reducing GHGs and petroleum dependence related to transportation. View all reports on the TEF Web page, http://www.eere.energy.gov/analysis/transportationenergyfutures/index.html.

  5. Cost-effectiveness of solar energy in energy-efficient buildings

    International Nuclear Information System (INIS)

    Kessler, S.; Iten, R.; Vettori, A.; Haller, A.; Ochs, M.; Keller, L.

    2005-01-01

    This report for the Swiss Federal Office of Energy (SFOE) presents the results of a study that examined the potentials and restraints with respect to the use of solar energy in the new construction and refurbishment of residential buildings in Switzerland. The method used is based on a 'learning-curve' technique. The first part of the report deals with the development of prices for solar-collector installations from 1990 until now. The second part deals with today's costs and future developments up to the year 2030. A reference building is used as the basis for the comparison of eight system variants. A further eight variants combine solar technology with traditional heating installations such as oil, gas and wood boilers and heat-pumps. Scenarios for the market situation for solar energy in 2030 are discussed

  6. Energy Recovery Hydropower: Prospects for Off-Setting Electricity Costs for Agricultural, Municipal, and Industrial Water Providers and Users; July 2017 - September 2017

    Energy Technology Data Exchange (ETDEWEB)

    Levine, Aaron L. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Curtis, Taylor L. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Johnson, Kurt [Telluride Energy; Telluride, CO (United States)

    2018-01-11

    Energy recovery hydropower is one of the most cost-effective types of new hydropower development because it is constructed utilizing existing infrastructure, and it is typically able to complete Federal Energy Regulatory Commission (FERC) review in 60 days. Recent changes in federal and state policy have supported energy recovery hydropower. In addition, some states have developed programs and policies to support energy recovery hydropower, including resource assessments, regulatory streamlining initiatives, and grant and loan programs to reduce project development costs. This report examines current federal and state policy drivers for energy recovery hydropower, reviews market trends, and looks ahead at future federal resource assessments and hydropower reform legislation.

  7. Ripple Effects: Budgets Grow Modestly, but Energy Costs Cloud the Horizon

    Science.gov (United States)

    Oder, Norman

    2006-01-01

    In this article, the author reports the ripple effects of the energy squeeze due to Hurricane Katrina and other factors that sent energy costs skyrocketing. Energy costs are a good part of why budget growth, which has been steady over the past five years, has been slowing down. The projected change from FY2005 to FY2006 is only 3.3%, compared to…

  8. Cost effectiveness of reducing radon exposure in Spanish dwellings

    International Nuclear Information System (INIS)

    Colgan, P.A.; Gutierrez, J.

    1996-01-01

    Published information on the distribution of radon levels in Spanish single family dwellings is used to evaluate the cost-effectiveness of three different intervention scenarios: remediation of existing dwellings, radon proofing of all future dwellings and the targetting of areas with higher than average indoor radon concentrations. Analysis is carried out on the basis of a Reference Level of 400 Bq m -3 for the existing housing stock and 200 Bq m -3 for new dwellings. Certain assumptions are made about the effectiveness and durability of the measures applied and annualised costs are used to calculate the costs per lung cancer death averted. The results reveal that targetting future housing is a more cost-effective option than remediation of existing dwellings with radon concentrations above the Reference Level -the costs per lung cancer death averted are typically $145000. In high-risk areas, these costs can be considerably less, depending on the percentage of dwellings expected to exceed the Reference Level and the average savings in exposure as a result of the intervention. The costs of intervention to reduce lung cancer deaths following exposure to radon compare favourably with those of other health programmes in other countries. (Author)

  9. Energy information. Status, cost, and need for energy, consumption and fuel switching data

    International Nuclear Information System (INIS)

    Fultz, Keith O.; Milans, Flora H.; Hale, Richard A.; Weaver, Joanne E.; D'Amico, Nicholas C.

    1989-04-01

    In 1986, EIA's Manufacturing Energy Consumption Survey collected calendar year 1985 fuel switching and energy consumption information from a sample of manufacturers. Although the construction, agriculture, mining, fishing, and forestry segments of the industrial sector were not surveyed, in 1985 the manufacturing segment accounted for about 75 to 80 percent of the total energy consumed in the industrial sector. The results of the energy consumption segment of the survey were published in November 1988, and the results of the fuel switching segment were published in December 1988. In 1989, EIA will conduct the second triennial survey, collecting energy consumption and fuel switching data for 1988. EIA estimated that the cost of the survey to the U.S. government, consisting of EIA and Census Bureau costs to design and conduct the survey, was about $1.8 million (in 1988 dollars) and that the cost to the manufacturers participating in the survey was more than $4 million (in 1988 dollars). According to EIA's justification to the Office of Management and Budget (OMB) for the survey, most of the potential users of the survey data were federal offices. Officials of seven of the eight federal offices we contacted indicated various uses for the energy consumption data, such as updating the national input-output tables and energy accounts, analyzing the competitiveness of U.S. industries, and doing energy emergency contingency planning. Officials of five of the eight federal offices indicated uses for the fuel switching data and most frequently cited its use for contingency planning for emergencies or supply disruptions. EIA's justification to OMB also identified 17 states as potential users, but officials of the 3 state offices that we contacted told us that the EIA data would not be useful because it cannot be summarized for individual states

  10. Flexible and semi-transparent thermoelectric energy harvesters from low cost bulk silicon (100)

    KAUST Repository

    Sevilla, Galo T.

    2013-07-09

    Flexible and semi-transparent high performance thermoelectric energy harvesters are fabricated on low cost bulk mono-crystalline silicon (100) wafers. The released silicon is only 3.6% as thick as bulk silicon reducing the thermal loss significantly and generating nearly 30% more output power than unpeeled harvesters. This generic batch processing is a pragmatic way of transforming traditional silicon circuitry for extremely deformable high-performance integrated electronics. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Flexible and semi-transparent thermoelectric energy harvesters from low cost bulk silicon (100)

    KAUST Repository

    Sevilla, Galo T.; Inayat, Salman Bin; Rojas, Jhonathan Prieto; Hussain, Aftab M.; Hussain, Muhammad Mustafa

    2013-01-01

    Flexible and semi-transparent high performance thermoelectric energy harvesters are fabricated on low cost bulk mono-crystalline silicon (100) wafers. The released silicon is only 3.6% as thick as bulk silicon reducing the thermal loss significantly and generating nearly 30% more output power than unpeeled harvesters. This generic batch processing is a pragmatic way of transforming traditional silicon circuitry for extremely deformable high-performance integrated electronics. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Reducing the energy consumption and CO2 emissions of energy intensive industries through decision support systems – An example of application to the steel industry

    International Nuclear Information System (INIS)

    Porzio, Giacomo Filippo; Fornai, Barbara; Amato, Alessandro; Matarese, Nicola; Vannucci, Marco; Chiappelli, Lisa; Colla, Valentina

    2013-01-01

    Highlights: • We describe an application of decision-support system to iron and steel industries. • The realised tool is useful in monitoring energy and CO 2 performances of the plant. • Key processes are modelled through flowsheeting approach and included in the tool. • A mathematical optimisation model for the process gas management has been realised. • Implementation of the tool can help reducing plant costs and environmental impact. - Abstract: The management of process industries is becoming in the recent years more and more challenging, given the stringent environmental policies as well as raising energy costs and the always-present drive for profit. A way to help plant decision makers in their daily choices is to refer to decision-support tools, which can give advice on the best practices on how to operate a plant in order to reduce the energy consumption and the CO 2 emissions keeping at the same time the costs under control. Such an approach can be useful in a variety of industries, particularly the most energy-intensive ones such as iron and steel industries. In this paper, an approach to the realisation of a software system, which allows to generate internal reports on the plant performances, as well as to simulate the plant behaviour in different scenarios, is described. The main production processes (coke plant, blast furnace, steel shop, hot rolling mill) are described and simulated focusing on the prediction of products flow rates and composition, energy consumption and GHGs (Greenhouse Gases) emissions in different operating conditions. The importance of a correct management of the CO 2 within the plant is underlined, particularly with regard to the new EU Emission Trading System, which will be based on European benchmarks. The software tool is illustrated and a case study is included, which focuses on the simultaneous minimisation of the CO 2 emissions and maximisation of the profit through an optimised management of the by-product gases

  13. Low-cost, highly transparent flexible low-e coating film to enable electrochromic windows with increased energy savings

    Energy Technology Data Exchange (ETDEWEB)

    Berland, Brian [ITN Energy Systems, Inc., Littleton, CO (United States); Hollingsworth, Russell [ITN Energy Systems, Inc., Littleton, CO (United States)

    2015-03-31

    Five Quads of energy are lost through windows annually in the U.S. Low-e coatings are increasingly employed to reduce the wasted energy. Most commonly, the low-e coating is an oxide material applied directly to the glass at high temperature. With over 100,000,000 existing homes, a retrofit product is crucial to achieve widespread energy savings. Low-e films, i.e. coatings on polymeric substrates, are now also available to meet this need. However, the traditional oxide materials and process is incompatible with low temperature plastics. Alternate high performing low-e films typically incorporate materials that limit visible transmission to 35% or less. Further, the cost is high. The objective of this award was to develop a retrofit, integrated low-e/electrochromic window film to dramatically reduce energy lost through windows. While field testing of state-of-the-art electrochromic (EC) windows show the energy savings are maximized if a low-e coating is used in conjunction with the EC, available low-e films have a low visible transmission (~70% or less) that limits the achievable clear state and therefore, appearance and energy savings potential. Comprehensive energy savings models were completed at Lawrence Berkeley National Lab (LBNL). A parametric approach was used to project energy usage for windows with a large range of low-e properties across all U.S. climate zones, without limiting the study to materials that had already been produced commercially or made in a lab. The model enables projection of energy savings for low-e films as well as integrated low-e/EC products. This project developed a novel low-e film, optimized for compatibility with EC windows, using low temperature, high deposition rate processes for the growth of low-e coatings on plastic films by microwave plasma enhanced chemical vapor deposition. Silica films with good density and optical properties were demonstrated at deposition rates as high as 130Å/sec. A simple bi-layer low-e stack of

  14. Energy, cost, and emission end-use profiles of homes: An Ontario (Canada) case study

    International Nuclear Information System (INIS)

    Aydinalp Koksal, Merih; Rowlands, Ian H.; Parker, Paul

    2015-01-01

    Highlights: • Hourly electricity consumption data of seven end-uses from 25 homes are analyzed. • Hourly load, cost, and emission profiles of end-uses are developed and categorized. • Side-by-side analysis of energy, cost, and environmental effects is conducted. • Behaviour and outdoor temperature based end-uses are determined. • Share of each end-use in the total daily load, cost, and emission is determined. - Abstract: Providing information on the temporal distributions of residential electricity end-uses plays a major role in determining the potential savings in residential electricity demand, cost, and associated emissions. While the majority of the studies on disaggregated residential electricity end-use data provided hourly usage profiles of major appliances, only a few of them presented analysis on the effect of hourly electricity consumption of some specific end-uses on household costs and emissions. This study presents side-by-side analysis of energy, cost, and environment effects of hourly electricity consumption of the main electricity end-uses in a sample of homes in the Canadian province of Ontario. The data used in this study are drawn from a larger multi-stakeholder project in which electricity consumption of major end-uses at 25 homes in Milton, Ontario, was monitored in five-minute intervals for six-month to two-year periods. In addition to determining the hourly price of electricity during the monitoring period, the hourly carbon intensity is determined using fuel type hourly generation and the life cycle greenhouse gas intensities specifically determined for Ontario’s electricity fuel mix. The hourly load, cost, and emissions profiles are developed for the central air conditioner, furnace, clothes dryer, clothes washer, dishwasher, refrigerator, and stove and then grouped into eight day type categories. The side-by-side analysis of categorized load, cost, and emission profiles of the seven electricity end-uses provided information on

  15. Can E-Filing Reduce Tax Compliance Costs in Developing Countries?

    OpenAIRE

    Yilmaz, Fatih; Coolidge, Jacqueline

    2013-01-01

    The purpose of this study is to investigate the association between electronic filing (e-filing) and the total tax compliance costs incurred by small and medium size businesses in developing countries, based on survey data from South Africa, Ukraine, and Nepal. A priori, most observers expect that use of e-filing should reduce tax compliance costs, but this analysis suggests that the assum...

  16. Comparison of cost effectiveness of risk reduction among different energy systems: French case studies. Final report for the period 1 May 1982 - 20 February 1988

    International Nuclear Information System (INIS)

    Lochard, J.

    1989-08-01

    The report presents the three French case studies performed in the framework of the co-ordinated research programme on ''Comparison of Cost-Effectiveness of Risk Reduction Among Different Energy Systems'': cost-effectiveness of robotics and remote tooling for occupational risk reduction at a nuclear fuel fabrication facility; cost-effectiveness of protection actions to reduce occupational exposure in underground uranium mines; cost effectiveness of safety measures to reduce public risk associated with the transportation of UF 6 by truck and trains. Figs and tabs

  17. New Department of Energy policy and guidance for cost-effectiveness in nuclear materials control and accountability programs

    International Nuclear Information System (INIS)

    Van Ryn, G.L.; Zack, N.R.

    1994-01-01

    Recent Department of Energy (DOE) initiatives have given Departmental nuclear facilities the opportunity to take more credit for certain existing safeguards and security systems in determining operational program protection requirements. New policies and guidance are coupled with these initiatives to enhance systems performance in a cost effective and efficient manner as well as to reduce operational costs. The application of these methods and technologies support safety, the reduction of personnel radiation exposure, emergency planning, and inspections by international teams. This discussion will review guidance and policies that support advanced systems and programs to decrease lifetime operational costs without increasing risk

  18. Ocean Thermal Energy Conversion Life Cycle Cost Assessment, Final Technical Report, 30 May 2012

    Energy Technology Data Exchange (ETDEWEB)

    Martel, Laura [Lockheed Martin, Manassas, VA (United States); Smith, Paul [John Halkyard and Associates: Glosten Associates, Houston, TX (United States); Rizea, Steven [Makai Ocean Engineering, Waimanalo, HI (United States); Van Ryzin, Joe [Makai Ocean Engineering, Waimanalo, HI (United States); Morgan, Charles [Planning Solutions, Inc., Vancouver, WA (United States); Noland, Gary [G. Noland and Associates, Inc., Pleasanton, CA (United States); Pavlosky, Rick [Lockheed Martin, Manassas, VA (United States); Thomas, Michael [Lockheed Martin, Manassas, VA (United States); Halkyard, John [John Halkyard and Associates: Glosten Associates, Houston, TX (United States)

    2012-05-30

    The Ocean Thermal Energy Conversion (OTEC) Life Cycle Cost Assessment (OLCCA) is a study performed by members of the Lockheed Martin (LM) OTEC Team under funding from the Department of Energy (DOE), Award No. DE-EE0002663, dated 01/01/2010. OLCCA objectives are to estimate procurement, operations and maintenance, and overhaul costs for two types of OTEC plants: -Plants moored to the sea floor where the electricity produced by the OTEC plant is directly connected to the grid ashore via a marine power cable (Grid Connected OTEC plants) -Open-ocean grazing OTEC plant-ships producing an energy carrier that is transported to designated ports (Energy Carrier OTEC plants) Costs are developed using the concept of levelized cost of energy established by DOE for use in comparing electricity costs from various generating systems. One area of system costs that had not been developed in detail prior to this analysis was the operations and sustainment (O&S) cost for both types of OTEC plants. Procurement costs, generally referred to as capital expense and O&S costs (operations and maintenance (O&M) costs plus overhaul and replacement costs), are assessed over the 30 year operational life of the plants and an annual annuity calculated to achieve a levelized cost (constant across entire plant life). Dividing this levelized cost by the average annual energy production results in a levelized cost of electricity, or LCOE, for the OTEC plants. Technical and production efficiency enhancements that could result in a lower value of the OTEC LCOE were also explored. The thermal OTEC resource for Oahu, Hawaii and projected build out plan were developed. The estimate of the OTEC resource and LCOE values for the planned OTEC systems enable this information to be displayed as energy supplied versus levelized cost of the supplied energy; this curve is referred to as an Energy Supply Curve. The Oahu Energy Supply Curve represents initial OTEC deployment starting in 2018 and demonstrates the

  19. Performance and cost of energy transport and storage systems for dish applications using reversible chemical reactions

    Science.gov (United States)

    Schredder, J. M.; Fujita, T.

    1984-01-01

    The use of reversible chemical reactions for energy transport and storage for parabolic dish networks is considered. Performance and cost characteristics are estimated for systems using three reactions (sulfur-trioxide decomposition, steam reforming of methane, and carbon-dioxide reforming of methane). Systems are considered with and without storage, and in several energy-delivery configurations that give different profiles of energy delivered versus temperature. Cost estimates are derived assuming the use of metal components and of advanced ceramics. (The latter reduces the costs by three- to five-fold). The process that led to the selection of the three reactions is described, and the effects of varying temperatures, pressures, and heat exchanger sizes are addressed. A state-of-the-art survey was performed as part of this study. As a result of this survey, it appears that formidable technical risks exist for any attempt to implement the systems analyzed in this study, especially in the area of reactor design and performance. The behavior of all components and complete systems under thermal energy transients is very poorly understood. This study indicates that thermochemical storage systems that store reactants as liquids have efficiencies below 60%, which is in agreement with the findings of earlier investigators.

  20. Reducing the Cost and Time to Perform a Human Factors Engineering Evaluation

    International Nuclear Information System (INIS)

    Geary, L.C. Dr.

    2003-01-01

    The Westinghouse Savannah River Company, a contractor to the Department of Energy, has developed a new software tool for automating the Human Factors Engineering design review, analysis, and evaluation processes. The set of design guidelines, used in the tool, was obtained from the United States Nuclear Regulatory Commission Nuclear Regulatory Guide, NUREG- 0700 - Human System Interface Design Review Guideline. This tool has been described at a previous IEEE Conference on Human Factors and Power Plants. The original software tool in NUREG- 0700 was used to evaluate a facility and a separate independent evaluation was performed using the new tool for the same facility. A comparison was made between the two different tools; both in results obtained and cost and time to complete the evaluation. The results demonstrate a five to ten fold reduction in time and cost to complete the evaluation using the newly developed tool while maintaining consistent evaluation results. The time to per form the review was measured in weeks using the new software tool rather than months using the existing NUREG-0700 tool. The new tool has been so successful that it was applied to two additional facilities with the same reduced time and cost savings. Plans have been made to use the new tool at other facilities in order to provide the same savings

  1. Energy conservation by reducing process variability

    Energy Technology Data Exchange (ETDEWEB)

    Wising, Ulrika; Lafourcade, Sebastien [Pepite S.A., Liege (Belgium); Mack, Philippe [Pepite Technologies Inc., Montreal (Canada)

    2011-12-21

    Energy conservation is becoming an increasingly important instrument to stay competitive in today is increasingly global market. Important investments have been made in infrastructure and personnel in order to improve the management of energy such as increased metering, energy dashboards, energy managers, etc. Despite these investments, the results have not materialized and there is still a significant potential to further reduce energy consumption. In this paper a new methodology will be presented that helps industry better operate existing assets in order to reduce energy consumption, without having to make capital investments. The methodology uses a combination of advanced data analysis tools and a specific implementation scheme that has lead to significant savings in industry. The advanced data analysis tools are used to analyze the variability of the process in order to assess when the plant has been operated well or not so well in the past. By finding the root causes of these variations and the key variables that can explain them, improved operating guidelines and models can be developed and implemented. The specific implementation scheme is an important part of the methodology as it involves the people operating the plant. Several user cases will be presented showing an energy conservation of between 10%-20% without capital investments necessary. (author)

  2. Cheap-GSHPs, an European project aiming cost-reducing innovations for shallow geothermal installations. - Geological data reinterpretation

    Science.gov (United States)

    Bertermann, David; Müller, Johannes; Galgaro, Antonio; Cultrera, Matteo; Bernardi, Adriana; Di Sipio, Eloisa

    2016-04-01

    The success and widespread diffusion of new sustainable technologies are always strictly related to their affordability. Nowadays the energy price fluctuations and the economic crisis are jeopardizing the development and diffusion of renewable technologies and sources. With the aim of both reduce the overall costs of shallow geothermal systems and improve their installation safety, an European project has took place recently, under the Horizon 2020 EU Framework Programme for Research and Innovation. The acronym of this project is Cheap-GSHPs, meaning "cheap and efficient application of reliable ground source heat exchangers and pumps"; the CHEAP-GSHPs project involves 17 partners among 9 European countries such Belgium, France, Germany, Greece, Ireland, Italy, Romania, Spain, Switzerland. In order to achieve the planned targets, an holistic approach is adopted, where all involved elements that take part of shallow geothermal activities are here integrated. In order to reduce the drilling specific costs and for a solid planning basis the INSPIRE-conformal ESDAC data set PAR-MAT-DOM ("parent material dominant") was analysed and reinterpreted regarding the opportunities for cost reductions. Different ESDAC classification codes were analysed lithologically and sedimentologically in order to receive the most suitable drilling technique within different formations. Together with drilling companies this geological data set was translated into a geotechnical map which allows drilling companies the usage of the most efficient drilling within a certain type of underground. The scale of the created map is 1: 100,000 for all over Europe. This leads to cost reductions for the final consumers. Further there will be the definition of different heat conductivity classes based on the reinterpreted PAR-MAT-DOM data set which will provide underground information. These values will be reached by sampling data all over Europe and literature data. The samples will be measured by several

  3. Reducing Wildlife Damage with Cost-Effective Management Programmes.

    Directory of Open Access Journals (Sweden)

    Cheryl R Krull

    Full Text Available Limiting the impact of wildlife damage in a cost effective manner requires an understanding of how control inputs change the occurrence of damage through their effect on animal density. Despite this, there are few studies linking wildlife management (control, with changes in animal abundance and prevailing levels of wildlife damage. We use the impact and management of wild pigs as a case study to demonstrate this linkage. Ground disturbance by wild pigs has become a conservation issue of global concern because of its potential effects on successional changes in vegetation structure and composition, habitat for other species, and functional soil properties. In this study, we used a 3-year pig control programme (ground hunting undertaken in a temperate rainforest area of northern New Zealand to evaluate effects on pig abundance, and patterns and rates of ground disturbance and ground disturbance recovery and the cost effectiveness of differing control strategies. Control reduced pig densities by over a third of the estimated carrying capacity, but more than halved average prevailing ground disturbance. Rates of new ground disturbance accelerated with increasing pig density, while rates of ground disturbance recovery were not related to prevailing pig density. Stochastic simulation models based on the measured relationships between control, pig density and rate of ground disturbance and recovery indicated that control could reduce ground disturbance substantially. However, the rate at which prevailing ground disturbance was reduced diminished rapidly as more intense, and hence expensive, pig control regimes were simulated. The model produced in this study provides a framework that links conservation of indigenous ecological communities to control inputs through the reduction of wildlife damage and suggests that managers should consider carefully the marginal cost of higher investment in wildlife damage control, relative to its marginal conservation

  4. Role of energy cost in the yield of cold ternary fission of Cf

    Indian Academy of Sciences (India)

    Abstract. The energy costs in the cold ternary fission of 252Cf for various light charged particle emission are calculated by including Wong's correction for Coulomb potential. Energy cost is found to be higher in cold fission than in normal fission. It is found that energy cost always increases with decrease in experimental yield ...

  5. Predictive models reduce talent development costs in female gymnastics.

    Science.gov (United States)

    Pion, Johan; Hohmann, Andreas; Liu, Tianbiao; Lenoir, Matthieu; Segers, Veerle

    2017-04-01

    This retrospective study focuses on the comparison of different predictive models based on the results of a talent identification test battery for female gymnasts. We studied to what extent these models have the potential to optimise selection procedures, and at the same time reduce talent development costs in female artistic gymnastics. The dropout rate of 243 female elite gymnasts was investigated, 5 years past talent selection, using linear (discriminant analysis) and non-linear predictive models (Kohonen feature maps and multilayer perceptron). The coaches classified 51.9% of the participants correct. Discriminant analysis improved the correct classification to 71.6% while the non-linear technique of Kohonen feature maps reached 73.7% correctness. Application of the multilayer perceptron even classified 79.8% of the gymnasts correctly. The combination of different predictive models for talent selection can avoid deselection of high-potential female gymnasts. The selection procedure based upon the different statistical analyses results in decrease of 33.3% of cost because the pool of selected athletes can be reduced to 92 instead of 138 gymnasts (as selected by the coaches). Reduction of the costs allows the limited resources to be fully invested in the high-potential athletes.

  6. Cost Benefit Analysis of Using Clean Energy Supplies to Reduce Greenhouse Gas Emissions of Global Automotive Manufacturing

    Directory of Open Access Journals (Sweden)

    Xiang Zhao

    2011-09-01

    Full Text Available Automotive manufacturing is energy-intensive. The consumed energy contributes to the generation of significant amounts of greenhouse gas (GHG emissions by the automotive manufacturing industry. In this paper, a study is conducted on assessing the application potential of such clean energy power systems as solar PV, wind and fuel cells in reducing the GHG emissions of the global auto manufacturing industry. The study is conducted on the representative solar PV, wind and fuel cell clean energy systems available on the commercial market in six representative locations of GM’s global facilities, including the United States, Mexico, Brazil, China, Egypt and Germany. The results demonstrate that wind power is superior to other two clean energy technologies in the economic performance of the GHG mitigation effect. Among these six selected countries, the highest GHG emission mitigation potential is in China, through wind power supply. The maximum GHG reduction could be up to 60 tons per $1,000 economic investment on wind energy supply in China. The application of wind power systems in the United States and Germany could also obtain relatively high GHG reductions of between 40–50 tons per $1,000 economic input. When compared with wind energy, the use of solar and fuel cell power systems have much less potential for GHG mitigation in the six countries selected. The range of median GHG mitigation values resulting from solar and wind power supply are almost at the same level.

  7. The Contribution of Environmental Siting and Permitting Requirements to the Cost of Energy for Wave Energy Devices

    Energy Technology Data Exchange (ETDEWEB)

    Copping, Andrea E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Geerlofs, Simon H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hanna, Luke A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-06-01

    Responsible deployment of marine and hydrokinetic (MHK) devices in estuaries, coastal areas, and major rivers requires that biological resources and ecosystems be protected through siting and permitting (consenting) processes. Scoping appropriate deployment locations, collecting pre-installation (baseline) and post-installation data all add to the cost of developing MHK projects, and hence to the cost of energy. Under the direction of the U.S. Department of Energy, Pacific Northwest National Laboratory scientists have developed logic models that describe studies and processes for environmental siting and permitting. Each study and environmental permitting process has been assigned a cost derived from existing and proposed tidal, wave, and riverine MHK projects. Costs have been developed at the pilot scale and for commercial arrays for a surge wave energy converter

  8. An energy and cost analysis of residential heat pumps in northern climates

    Science.gov (United States)

    Martin, J. K.; Oneal, D. L.

    1980-04-01

    Lack of natural gas and high oil prices, combined with the large energy costs of electric resistance heat have forced renewed attention to the heat pump in colder climates. The diversity in heating energy use and cost effectiveness of forty-one currently retailed heat pumps in three northern cities, Boston, Denver, and Minneapolis, were examined. Heat pump heating energy use and annualized life cycle costs were compared with other forms of space heating equipment in those same cities.

  9. An integrated model for estimating energy cost of a tidal current turbine farm

    International Nuclear Information System (INIS)

    Li, Ye; Lence, Barbara J.; Calisal, Sander M.

    2011-01-01

    A tidal current turbine is a device for harnessing energy from tidal currents and functions in a manner similar to a wind turbine. A tidal current turbine farm consists of a group of tidal current turbines distributed in a site where high-speed current is available. The accurate prediction of energy cost of a tidal current turbine farm is important to the justification of planning and constructing such a farm. However, the existing approaches used to predict energy cost of tidal current turbine farms oversimplify the hydrodynamic interactions between turbines in energy prediction and oversimplify the operation and maintenance strategies involved in cost estimation as well as related fees. In this paper, we develop a model, which integrates a marine hydrodynamic model with high accuracy for predicting energy output and a comprehensive cost-effective operation and maintenance model for estimating the cost that may be incurred in producing the energy, to predict energy cost from a tidal current turbine farm. This model is expected to be able to simulate more complicated cases and generate more accurate results than existing models. As there is no real tidal current turbine farm, we validate this model with offshore wind studies. Finally, case studies about Vancouver are conducted with a scenario-based analysis. We minimize the energy cost by minimizing the total cost and maximizing the total power output under constraints related to the local conditions (e.g., geological and labor information) and the turbine specifications. The results suggest that tidal current energy is about ready to penetrate the electricity market in some major cities in North America if learning curve for the operational and maintenance is minimum. (author)

  10. Mind your step: metabolic energy cost while walking an enforced gait pattern.

    Science.gov (United States)

    Wezenberg, D; de Haan, A; van Bennekom, C A M; Houdijk, H

    2011-04-01

    The energy cost of walking could be attributed to energy related to the walking movement and energy related to balance control. In order to differentiate between both components we investigated the energy cost of walking an enforced step pattern, thereby perturbing balance while the walking movement is preserved. Nine healthy subjects walked three times at comfortable walking speed on an instrumented treadmill. The first trial consisted of unconstrained walking. In the next two trials, subject walked while following a step pattern projected on the treadmill. The steps projected were either composed of the averaged step characteristics (periodic trial), or were an exact copy including the variability of the steps taken while walking unconstrained (variable trial). Metabolic energy cost was assessed and center of pressure profiles were analyzed to determine task performance, and to gain insight into the balance control strategies applied. Results showed that the metabolic energy cost was significantly higher in both the periodic and variable trial (8% and 13%, respectively) compared to unconstrained walking. The variation in center of pressure trajectories during single limb support was higher when a gait pattern was enforced, indicating a more active ankle strategy. The increased metabolic energy cost could originate from increased preparatory muscle activation to ensure proper foot placement and a more active ankle strategy to control for lateral balance. These results entail that metabolic energy cost of walking can be influenced significantly by control strategies that do not necessary alter global gait characteristics. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. The costs and profitability of heat-energy entrepreneurship

    International Nuclear Information System (INIS)

    Solmio, H.

    1998-01-01

    Heat-energy entrepreneurs are responsible for the supply of fuel to and the labour input required by heating of buildings in their locality. An individual heat-energy entrepreneur or a consortium of them, a company or a co-operative is paid for the work according to the amount of heat-energy produced. In Finland there are about 50 operational heating targets and about 100 in planning stage. TTS-Institute has studied the activities of heat-energy entrepreneurs since 1993 in connection with research projects included in the national Bioenergy research programme. This study covered 10 heating plants with capacities 60 - 1000 kW, two of which are district heating plants. Five of the targets (60 - 370 kW) were included in the previous heat-energy entrepreneurs follow-up study conducted in 1993 - 1995 and five (80 - 1000 kW) were new. The main fuel used in all the targets was wood chips with light fuel oil reserve or auxiliary fuel. All but one of the entrepreneurs, supplying these heating targets located in Central and Southern Finland, are farmers, who procure the fuelwood and take care of heating and its supervision. Transportation of wood chips, topping up of the silo and heating work and working path consumed 0.12-0.78 h of time/MWh. When compared to the five study targets' follow-up results of the years 1993 - 1995, the results of the present study show reduction in labour consumption on part of the heat-energy entrepreneurs in all these targets. Profit margins of the entrepreneurs supplying heating energy were 73 - 132 FIM/h (excluding the interest on the equipment acquisition (agricultural tractor and associated equipment), and insurance and storage costs). When these costs were also taken into account, the resulting profit margin was 71 - 127 FIM/h. The margin included the entrepreneurs' earnings incl. monitoring of the heating plant, social security costs connected to earnings and entrepreneur's risk. When compared to the previous follow-up study, also the

  12. Supply-cost curves for geographically distributed renewable-energy resources

    International Nuclear Information System (INIS)

    Izquierdo, Salvador; Dopazo, Cesar; Fueyo, Norberto

    2010-01-01

    The supply-cost curves of renewable-energy sources are an essential tool to synthesize and analyze large-scale energy-policy scenarios, both in the short and long terms. Here, we suggest and test a parametrization of such curves that allows their representation for modeling purposes with a minimal set of information. In essence, an economic potential is defined based on the mode of the marginal supply-cost curves; and, using this definition, a normalized log-normal distribution function is used to model these curves. The feasibility of this proposal is assessed with data from a GIS-based analysis of solar, wind and biomass technologies in Spain. The best agreement is achieved for solar energy.

  13. Comparison of three methods to reduce energy density: effects on daily energy intake

    OpenAIRE

    Williams, Rachel A.; Roe, Liane S.; Rolls, Barbara J.

    2013-01-01

    Reductions in food energy density can decrease energy intake, but it is not known if the effects depend on the way that energy density is reduced. We investigated whether three methods of reducing energy density (decreasing fat, increasing fruit and vegetables, and adding water) differed in their effects on energy intake across the day. In a crossover design, 59 adults ate breakfast, lunch, and dinner in the laboratory once a week for four weeks. Across conditions, the entrées were either sta...

  14. Comparison of cost effectiveness of risk reduction among different energy systems: French case studies. Final report for the period 1 May 1982 - 20 February 1988

    Energy Technology Data Exchange (ETDEWEB)

    Lochard, J [CEPN Centre d` Etude sur l` Evaluation de la Protection dans le Domaine Nucleaire, Fontenay-Aux-Roses (France)

    1989-08-01

    The report presents the three French case studies performed in the framework of the co-ordinated research programme on ``Comparison of Cost-Effectiveness of Risk Reduction Among Different Energy Systems``: cost-effectiveness of robotics and remote tooling for occupational risk reduction at a nuclear fuel fabrication facility; cost-effectiveness of protection actions to reduce occupational exposure in underground uranium mines; cost effectiveness of safety measures to reduce public risk associated with the transportation of UF{sub 6} by truck and trains. Figs and tabs.

  15. The impacts on U.S. energy markets and the economy of reducing oil imports. Service report

    International Nuclear Information System (INIS)

    1996-09-01

    The General Accounting Office (GAO) has responded to a request from Representative John Kasich by requesting that the Energy Information Administration (EIA) use the National Energy Modeling System (NEMS) to estimate the cost to the U.S. economy of reducing oil imports. The analysis summarized by this paper focuses on two approaches toward a target reduction in oil imports: (1) a set of cases with alternative world crude oil price trajectories, and (2) two cases which investigates the use of an oil import fee

  16. Cost-effectiveness of reducing emissions from tropical deforestation, 2016-2050

    Science.gov (United States)

    Busch, Jonah; Engelmann, Jens

    2017-12-01

    Reducing tropical deforestation is potentially a large-scale and low-cost strategy for mitigating climate change. Yet previous efforts to project the cost-effectiveness of policies to reduce greenhouse gas emissions from future deforestation across the tropics were hampered by crude available data on historical forest loss. Here we use recently available satellite-based maps of annual forest loss between 2001-2012, along with information on topography, accessibility, protected status, potential agricultural revenue, and an observed inverted-U-shaped relationship between forest cover loss and forest cover, to project tropical deforestation from 2016-2050 under alternative policy scenarios and to construct new marginal abatement cost curves for reducing emissions from tropical deforestation. We project that without new forest conservation policies 289 million hectares of tropical forest will be cleared from 2016-2050, releasing 169 GtCO2. A carbon price of US20/tCO2 (50/tCO2) across tropical countries would avoid 41 GtCO2 (77 GtCO2) from 2016-2050. By comparison, we estimate that Brazil’s restrictive policies in the Amazon between 2004-2012 successfully decoupled potential agricultural revenue from deforestation and reduced deforestation by 47% below what would have otherwise occurred, preventing the emission of 5.2 GtCO2. All tropical countries enacting restrictive anti-deforestation policies as effective as those in the Brazilian Amazon between 2004-2012 would avoid 58 GtCO2 from 2016-2050.

  17. The German energy audit program for firms. A cost-effective way to improve energy efficiency?

    Energy Technology Data Exchange (ETDEWEB)

    Fleiter, T.; Eichhammer, W. [Fraunhofer Institute for Systems and Innovation Research ISI, Breslauer Str. 48, 76139, Karlsruhe (Germany); Gruber, E. [Institute for Resource Efficiency and Energy Strategies IREES GmbH, Schoenfeldstr. 8, 76131, Karlsruhe (Germany); Worrell, E. [Copernicus Institute of Sustainable Development, Utrecht University, Heidelberglaan 2, 3584, Utrecht (Netherlands)

    2012-11-15

    In 2008, a program was established in Germany to provide grants for energy audits in small- and medium-sized enterprises. It aims to overcome barriers to energy efficiency, like the lack of information or a lack of capacity, and is intended to increase the adoption of energy efficiency measures. We evaluate the program's impact in terms of energy savings, CO2 mitigation, and cost-effectiveness. We find that firms adopt 1.7-2.9 energy efficiency measures, which they would not have adopted without the program. Taking a firm's perspective, the program shows a net present value ranging from -0.4 to 6 euro/MWh saved, which very likely implies a net benefit. For the government, each ton of CO2 mitigated costs between 1.8 and 4.1 euro. Each euro of public expenditure on audit grants led to 17-33 euro of private investment. The cost-effectiveness of the program for firms and the low share of public expenditure underline its value for the German energy efficiency policy mix and suggest that it should be expanded in Germany. Further, the good experiences with the program in Germany should encourage countries which have not yet established an audit program to do so.

  18. Energy and life-cycle cost analysis of a six-story office building

    Science.gov (United States)

    Turiel, I.

    1981-10-01

    An energy analysis computer program, DOE-2, was used to compute annual energy use for a typical office building as originally designed and with several energy conserving design modifications. The largest energy use reductions were obtained with the incorporation of daylighting techniques, the use of double pane windows, night temperature setback, and the reduction of artificial lighting levels. A life-cycle cost model was developed to assess the cost-effectiveness of the design modifications discussed. The model incorporates such features as inclusion of taxes, depreciation, and financing of conservation investments. The energy conserving strategies are ranked according to economic criteria such as net present benefit, discounted payback period, and benefit to cost ratio.

  19. Small Habitat Commonality Reduces Cost for Human Mars Missions

    Science.gov (United States)

    Griffin, Brand N.; Lepsch, Roger; Martin, John; Howard, Robert; Rucker, Michelle; Zapata, Edgar; McCleskey, Carey; Howe, Scott; Mary, Natalie; Nerren, Philip (Inventor)

    2015-01-01

    Most view the Apollo Program as expensive. It was. But, a human mission to Mars will be orders of magnitude more difficult and costly. Recently, NASA's Evolvable Mars Campaign (EMC) mapped out a step-wise approach for exploring Mars and the Mars-moon system. It is early in the planning process but because approximately 80% of the total life cycle cost is committed during preliminary design, there is an effort to emphasize cost reduction methods up front. Amongst the options, commonality across small habitat elements shows promise for consolidating the high bow-wave costs of Design, Development, Test and Evaluation (DDT&E) while still accommodating each end-item's functionality. In addition to DDT&E, there are other cost and operations benefits to commonality such as reduced logistics, simplified infrastructure integration and with inter-operability, improved safety and simplified training. These benefits are not without a cost. Some habitats are sub-optimized giving up unique attributes for the benefit of the overall architecture and because the first item sets the course for those to follow, rapidly developing technology may be excluded. The small habitats within the EMC include the pressurized crew cabins for the ascent vehicle,

  20. Ablation - breakthrough technology to reduce uranium mining cost and increase resources

    International Nuclear Information System (INIS)

    Scriven, D.

    2014-01-01

    Ablation Technologies, LLC has developed and patented a revolutionary mining technology termed “ablation”. Ablation is a process using only mechanical forces to upgrade sandstone uranium ores. Uranium bearing sandstone orebodies are formed from a uranium enriched solution flowing through an aquifer until it reached some type of a “red/ox” zone forcing the uranium and other heavy metals to come out of solution. The precipitate forms a thin coating on the sand grains and fills the interstitial space between the sand grains but does no penetrate the sand grains. The ablation process knocks the precipitate off the sand grains using the forces of abrasion, elastic compression and rebounding, much like a mud coated tennis ball will sheds the mud when bounced off the ground, and to some extent, sonic waves. This produces a product which collectively is exactly the same as the ore going in but with all the individual components separated. This allows for disgressionary separation, the most important of which is screening. The uranium and heavy metals report to the finer fractions of the material, typically less than 250 mesh. The larger fractions contain less than five percent of the uranium but 90 to 95 percent of the mass. The advantages of making an enriched ore are numerous: • Reduce haulage costs from 90 to 95 percent. • Reduce milling costs by reducing material handling costs, acid consumption and tailings disposal costs. • In addition to reducing overall mining and milling costs, the overall recovery of the recourse is increased because the ablation process is so inexpensive, if the material has to be mined it will be ablated and screened. This basically means ore control is significantly reduced, cutoff grade goes to practically zero and overall resource recovery is significantly increased. • Environmentally, the two major advantages are reduced tailings requirements at the mill site and cleaner waste dumps at the mine site. This paper will show

  1. Effects of a prior high-intensity knee-extension exercise on muscle recruitment and energy cost: a combined local and global investigation in humans.

    Science.gov (United States)

    Layec, Gwenael; Bringard, Aurélien; Le Fur, Yann; Vilmen, Christophe; Micallef, Jean-Paul; Perrey, Stéphane; Cozzone, Patrick J; Bendahan, David

    2009-06-01

    The effects of a priming exercise bout on both muscle energy production and the pattern of muscle fibre recruitment during a subsequent exercise bout are poorly understood. The purpose of the present study was to determine whether a prior exercise bout which is known to increase O(2) supply and to induce a residual acidosis could alter energy cost and muscle fibre recruitment during a subsequent heavy-intensity knee-extension exercise. Fifteen healthy subjects performed two 6 min bouts of heavy exercise separated by a 6 min resting period. Rates of oxidative and anaerobic ATP production, determined with (31)P-magnetic resonance spectroscopy, and breath-by-breath measurements of pulmonary oxygen uptake were obtained simultaneously. Changes in muscle oxygenation and muscle fibre recruitment occurring within the quadriceps were measured using near-infrared spectroscopy and surface electromyography. The priming heavy-intensity exercise increased motor unit recruitment (P exercise bout but did not alter muscle energy cost. We also observed a reduced deoxygenation time delay, whereas the deoxygenation amplitude was increased (P exercise led to an increased recruitment of motor units in the early part of the second bout of heavy exercise. Considering the increased oxidative cost and the unaltered energy cost, one could suggest that our results illustrate a reduced metabolic strain per fibre.

  2. Reduced cost design of liquid lithium target for international fusion material irradiation facility (IFMIF)

    International Nuclear Information System (INIS)

    Nakamura, Hiroo; Ida, Mizuho; Sugimoto, Masayoshi; Takeuchi, Hiroshi; Yutani, Toshiaki

    2001-01-01

    The International Fusion Materials Irradiation Facility (IFMIF) is being jointly planned to provide an accelerator-based D-Li neutron source to produce intense high energy neutrons (2 MW/m 2 ) up to 200 dpa and a sufficient irradiation volume (500 cm 3 ) for testing the candidate materials and components up to about a full lifetime of their anticipated use in ITER and DEMO. To realize such a condition, 40 MeV deuteron beam with a current of 250 mA is injected into high speed liquid lithium flow with a speed of 20 m/s. Following Conceptual Design Activity (1995-1998), a design study with focus on cost reduction without changing its original mission has been done in 1999. The following major changes to the CAD target design have been considered in the study and included in the new design: i) number of the Li target has been changed from 2 to 1, ii) spare of impurity traps of the Li loop was removed although the spare will be stored in a laboratory for quick exchange, iii) building volume was reduced via design changes in lithium loop length. This paper describes the reduced cost design of the lithium target system and recent status of Key Element Technology activities. (author)

  3. IFMIF (International Fusion Materials Irradiation Facility) conceptual design activity reduced cost report

    International Nuclear Information System (INIS)

    2000-02-01

    This report describes the results of a preliminary reevaluation of the design and cost of the International Fusion Materials Irradiation Facility (IFMIF) Project in response to the request from the 28th FPCC meeting in January 1999. Two major ideas have been considered: 1) reduction of the total construction cost through elimination of the previously planned facility upgrade and 2) a facility deployment in 3 stages with capabilities for limited experiments in the first stage. As a result, the size and complexity of the facility could be significantly reduced, leading to substantial cost savings. In addition to these two ideas, this study also included a critical review of the original CDA specification with the objective of elimination of nonessential items. For example, the number of lithium targets was reduced from two to one. As a result of these changes in addition to the elimination of the upgrade, the total cost estimate was very substantially reduced from 797.2 MICF to 487.8 MICF, where 1 MICF = 1 Million of the IFMIF Conversion Units (approximately $1M US January, 1996). (author)

  4. DOES ECO-EFFICENCY REDUCE THE COST OF EQUITY CAPITAL? EMPIRICAL EVIDENCE FROM INDONESIA

    OpenAIRE

    Lisa Alviani; Mahfud Sholihin

    2015-01-01

    The objective of this study is to examine the effect of eco-efficiency on the cost of equity capital. The study hypothesizes that the implementation of eco-efficiency reduces the cost of equity capital. Using manufacturing companies listed on the Indonesian Stock Exchange for the period 2010-2012 as data, and controlling for beta, company size, Book to Market ratio, and leverage; the study finds that the implementation of eco-efficiency may reduce the cost of equity capital. The findings sugg...

  5. Strategy on energy saving reconstruction of distribution networks based on life cycle cost

    Science.gov (United States)

    Chen, Xiaofei; Qiu, Zejing; Xu, Zhaoyang; Xiao, Chupeng

    2017-08-01

    Because the actual distribution network reconstruction project funds are often limited, the cost-benefit model and the decision-making method are crucial for distribution network energy saving reconstruction project. From the perspective of life cycle cost (LCC), firstly the research life cycle is determined for the energy saving reconstruction of distribution networks with multi-devices. Then, a new life cycle cost-benefit model for energy-saving reconstruction of distribution network is developed, in which the modification schemes include distribution transformers replacement, lines replacement and reactive power compensation. In the operation loss cost and maintenance cost area, the operation cost model considering the influence of load season characteristics and the maintenance cost segmental model of transformers are proposed. Finally, aiming at the highest energy saving profit per LCC, a decision-making method is developed while considering financial and technical constraints as well. The model and method are applied to a real distribution network reconstruction, and the results prove that the model and method are effective.

  6. SEE Action Guide for States: Energy Efficiency as a Least-Cost Strategy to Reduce Greenhouse Gases and Air Pollution and Meet Energy Needs in the Power Sector

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, Lisa [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Leventis, Greg [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Schiller, Steven R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Fadrhonc, Emily Martin [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); shenot, John [US Department of Energy, Washington, DC (United States); Colburn, Ken [US Department of Energy, Washington, DC (United States); James, Chris [US Department of Energy, Washington, DC (United States); Zetterberg, Johanna [US Department of Energy, Washington, DC (United States); Roy, Molly [US Department of Energy, Washington, DC (United States)

    2016-02-01

    This guide is designed to provide information to state decision makers and staff on options to advance energy efficiency through strategies designed or implemented at the state and local levels of government and in the private sector.1 The information in this guide is intended to be useful to a wide variety of partners and stakeholders involved in energy-related discussions and decision-making at state and local levels. These energy efficiency options, or “pathways” as they are identified in this guide, can assist states in using energy efficiency to meet air pollution reduction and other policy objectives such as energy affordability and reliability. A pathway is a set of interdependent actions that results in measurable energy savings streams and associated avoided air emissions and other benefits over a period of time. These activities can include state, local, or private sector regulations, policies, programs and other activities. For each of five broad pathways that offer sizable cost-effective energy savings, the guide addresses likely questions policy makers and regulators face when screening for the best opportunities to advance energy efficiency in their state.

  7. Wellness Programs: Preventive Medicine to Reduce Health Care Costs.

    Science.gov (United States)

    Martini, Gilbert R., Jr.

    1991-01-01

    A wellness program is a formalized approach to preventive health care that can positively affect employee lifestyle and reduce future health-care costs. Describes programs for health education, smoking cessation, early detection, employee assistance, and fitness, citing industry success figures. (eight references) (MLF)

  8. Cost-effectiveness of diet and exercise interventions to reduce overweight and obesity.

    Science.gov (United States)

    Forster, M; Veerman, J L; Barendregt, J J; Vos, T

    2011-08-01

    To analyze whether two dietary weight loss interventions--the dietary approaches to stop hypertension (DASH) program and a low-fat diet program--would be cost-effective in Australia, and to assess their potential to reduce the disease burden related to excess body weight. We constructed a multi-state life-table-based Markov model in which the distribution of body weight influences the incidence of stroke, ischemic heart disease, hypertensive heart disease, diabetes mellitus, osteoarthritis, post-menopausal breast cancer, colon cancer, endometrial cancer and kidney cancer. The target population was the overweight and obese adult population in Australia in 2003. We used a lifetime horizon for health effects and costs, and a health sector perspective for costs. We populated the model with data identified from Medline and Cochrane searches, Australian Bureau of Statistics published catalogues, Australian Institute of Health and Welfare, and Department of Health and Ageing. Disability adjusted life years (DALYs) averted, incremental cost-effectiveness ratios (ICERs) and proportions of disease burden avoided. ICERs under AUS$50,000 per DALY are considered cost-effective. The DASH and low-fat diet programs have ICERs of AUS$12,000 per DALY (95% uncertainty range: Cost-saving- 68,000) and AUS$13,000 per DALY (Cost-saving--130,000), respectively. Neither intervention reduced the body weight-related disease burden at population level by more than 0.1%. The sensitivity analysis showed that when participants' costs for time and travel are included, the ICERs increase to AUS$75,000 per DALY for DASH and AUS$49,000 per DALY for the low-fat diet. Modest weight loss during the interventions, post-intervention weight regain and low participation limit the health benefits. Diet and exercise interventions to reduce obesity are potentially cost-effective but have a negligible impact on the total body weight-related disease burden.

  9. Energy wood resources availability and delivery cost in Northwest Russia

    Energy Technology Data Exchange (ETDEWEB)

    Gerasimov, Yuri; Karjalainen, Timo [Finnish Forest Research Inst., Joensuu (Finland)], E-mail: yuri.gerasimov@metla.fi

    2013-10-01

    Availability of solid by-products from wood harvesting and mechanical wood processing was estimated as sources for energy production based on recent actual harvesting, sawmill, and plywood production in Northwest Russia at 30 million m{sup 3}. Nearly 70% of the energy wood, 20 million m{sup 3}, was from harvesting, consisting of non-industrial round wood, unused branches and tops, defective wood resulting from logging, and spruce stumps removed after final felling. Over 30%, 10 million m{sup 3}, of the available volume was from sawmills and plywood mills, i.e. wood chips, sawdust, and bark. Due to current low utilization of energy wood for bioenergy in Northwest Russia, delivery cost of energy wood to the potential border-crossing points in Finland was analyzed for three means of transport: railways, roadways, and waterways. Nearly 28 million m{sup 3} of the energy wood could be transported by railways and 2 million m{sup 3} by roadways and waterways. The costs were lowest by roadways from the nearby border areas (10-15 Euro/m{sup 3} for wood processing by-products and 16-22 Euro/m{sup 3} for forest chips). The costs by railways varied from 12 to 27 Euro/m{sup 3} on shorter distances to 47-58 Euro/m{sup 3} on longer distances. Waterway transportation was the most expensive, about 28-48 Euro/m{sup 3}. It should be emphasized that we have estimated availability and delivery costs of energy wood, not prices which are defined by the market based on supply and demand.

  10. Synergies in the Asian energy system: Climate change, energy security, energy access and air pollution

    International Nuclear Information System (INIS)

    Vliet, Oscar van; Krey, Volker; McCollum, David; Pachauri, Shonali; Nagai, Yu; Rao, Shilpa; Riahi, Keywan

    2012-01-01

    We use the MESSAGE model to examine multiple dimensions of sustainable development for three Asian regions in a set of scenarios developed for the Asian Modelling Exercise. Using climate change mitigation as a starting point for the analysis, we focus on the interaction of climate and energy with technology choice, energy security, energy access, and air pollution, which often have higher policy priority than climate change. Stringent climate policies drive the future energy supply in Asia from being dominated by coal and oil to a more diversified system based mostly on natural gas, coal with CCS, nuclear and renewable energy. The increase in diversity helps to improve the energy security of individual countries and regions. Combining air pollution control policies and universal energy access policies with climate policy can further help to reduce both outdoor and indoor air pollution related health impacts. Investments into the energy system must double by 2030 to achieve stringent climate goals, but are largely offset by lower costs for O and M and air pollution abatement. Strong focus on end-use efficiency also helps lowering overall total costs and allows for limiting or excluding supply side technologies from the mitigation portfolio. Costs of additional energy access policies and measures are a small fraction of total energy system costs. - Highlights: ► Half of added investments in energy offset by lower costs for O and M and air pollution. ► Costs for achieving universal energy access much smaller than energy system costs. ► Combined emissions and access policies further reduce air pollution impacts on health. ► Strong focus on end-use efficiency allows for more flexibility on energy sources. ► Stringent climate policy can improve energy security of Asian regions.

  11. Does Eco-efficency Reduce the Cost of Equity Capital? Empirical Evidence From Indonesia

    OpenAIRE

    Alviani, Lisa; Sholihin, Mahfud

    2015-01-01

    The objective of this study is to examine the effect of eco-efficiency on the cost of equity capital. The study hypothesizes that the implementation of eco-efficiency reduces the cost of equity capital. Using manufacturing companies listed on the Indonesian Stock Exchange for the period 2010-2012 as data, and controlling for beta, company size, Book to Market ratio, and leverage; the study finds that the implementation of eco-efficiency may reduce the cost of equity capital. The findings sugg...

  12. Risk management of energy system for identifying optimal power mix with financial-cost minimization and environmental-impact mitigation under uncertainty

    International Nuclear Information System (INIS)

    Nie, S.; Li, Y.P.; Liu, J.; Huang, Charley Z.

    2017-01-01

    An interval-stochastic risk management (ISRM) method is launched to control the variability of the recourse cost as well as to capture the notion of risk in stochastic programming. The ISRM method can examine various policy scenarios that are associated with economic penalties under uncertainties presented as probability distributions and interval values. An ISRM model is then formulated to identify the optimal power mix for the Beijing's energy system. Tradeoffs between risk and cost are evaluated, indicating any change in targeted cost and risk level would yield different expected costs. Results reveal that the inherent uncertainty of system components and risk attitude of decision makers have significant effects on the city's energy-supply and electricity-generation schemes as well as system cost and probabilistic penalty. Results also disclose that import electricity as a recourse action to compensate the local shortage would be enforced. The import electricity would increase with a reduced risk level; under every risk level, more electricity would be imported with an increased demand. The findings can facilitate the local authority in identifying desired strategies for the city's energy planning and management in association with financial-cost minimization and environmental-impact mitigation. - Highlights: • Interval-stochastic risk management method is launched to identify optimal power mix. • It is advantageous in capturing the notion of risk in stochastic programming. • Results reveal that risk attitudes can affect optimal power mix and financial cost. • Developing renewable energies would enhance the sustainability of energy management. • Import electricity as an action to compensate the local shortage would be enforced.

  13. The cost of geothermal energy in the western US region:a portfolio-based approach a mean-variance portfolio optimization of the regions' generating mix to 2013.

    Energy Technology Data Exchange (ETDEWEB)

    Beurskens, Luuk (ECN-Energy Research Centre of the Netherland); Jansen, Jaap C. (ECN-Energy Research Centre of the Netherlands); Awerbuch, Shimon Ph.D. (.University of Sussex, Brighton, UK); Drennen, Thomas E.

    2005-09-01

    Energy planning represents an investment-decision problem. Investors commonly evaluate such problems using portfolio theory to manage risk and maximize portfolio performance under a variety of unpredictable economic outcomes. Energy planners need to similarly abandon their reliance on traditional, ''least-cost'' stand-alone technology cost estimates and instead evaluate conventional and renewable energy sources on the basis of their portfolio cost--their cost contribution relative to their risk contribution to a mix of generating assets. This report describes essential portfolio-theory ideas and discusses their application in the Western US region. The memo illustrates how electricity-generating mixes can benefit from additional shares of geothermal and other renewables. Compared to fossil-dominated mixes, efficient portfolios reduce generating cost while including greater renewables shares in the mix. This enhances energy security. Though counter-intuitive, the idea that adding more costly geothermal can actually reduce portfolio-generating cost is consistent with basic finance theory. An important implication is that in dynamic and uncertain environments, the relative value of generating technologies must be determined not by evaluating alternative resources, but by evaluating alternative resource portfolios. The optimal results for the Western US Region indicate that compared to the EIA target mixes, there exist generating mixes with larger geothermal shares at equal-or-lower expected cost and risk.

  14. Transportation Energy Futures Series: Non-Cost Barriers to Consumer Adoption of New Light-Duty Vehicle Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, T.

    2013-03-01

    Consumer preferences are key to the adoption of new vehicle technologies. Barriers to consumer adoption include price and other obstacles, such as limited driving range and charging infrastructure; unfamiliarity with the technology and uncertainty about direct benefits; limited makes and models with the technology; reputation or perception of the technology; standardization issues; and regulations. For each of these non-cost barriers, this report estimates an effective cost and summarizes underlying influences on consumer preferences, approximate magnitude and relative severity, and assesses potential actions, based on a comprehensive literature review. While the report concludes that non-cost barriers are significant, effective cost and potential market share are very uncertain. Policies and programs including opportunities for drivers to test drive advanced vehicles, general public outreach and information programs, incentives for providing charging and fueling infrastructure, and development of technology standards were examined for their ability to address barriers, but little quantitative data exists on the effectiveness of these measures. This is one in a series of reports produced as a result of the Transportation Energy Futures project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for reducing GHGs and petroleum dependence related to transportation.

  15. Reducing Energy Use in Existing Homes by 30%: Learning From Home Performance with ENERGY STAR

    Energy Technology Data Exchange (ETDEWEB)

    Liaukus, C. [Building America Research Alliance (BARA), Kent, WA (United States)

    2014-12-01

    The improvement of existing homes in the United States can have a much greater impact on overall residential energy use than the construction of highly efficient new homes. There are over 130 million existing housing units in the U.S., while annually new construction represents less than two percent of the total supply (U.S. Census Bureau, 2013). Therefore, the existing housing stock presents a clear opportunity and responsibility for Building America (BA) to guide the remodeling and retrofit market toward higher performance existing homes. There are active programs designed to improve the energy performance of existing homes. Home Performance with ENERGY STAR (HPwES) is a market-rate program among them. BARA's research in this project verified that the New Jersey HPwES program is achieving savings in existing homes that meet or exceed BA's goal of 30%. Among the 17 HPwES projects with utility data included in this report, 15 have actual energy savings ranging from 24% to 46%. Further, two of the homes achieved that level of energy savings without the costly replacement of heating and cooling equipment, which indicates that less costly envelope packages could be offered to consumers unable to invest in more costly mechanical packages, potentially creating broader market impact.

  16. The German energy transition. Design, implementeation, cost and lessons

    Energy Technology Data Exchange (ETDEWEB)

    Unnerstall, Thomas

    2017-07-01

    The book presents a comprehensive and systematic account of the concept, the current status and the costs of the German energy transition: the Energiewende. Written by an insider who has been working in the German energy industry for over 20 years, it follows a strictly non-political, neutral approach and clearly outlines the most relevant facts and figures. In particular, it describes the main impacts of the Energiewende on the German power system and Germany's national economy. Furthermore, it addresses questions that are of global interest with respect to energy transitions, such as the cost to the national economy, the financial burden on private households and companies and the actual effects on CO{sub 2} emissions. The book also discusses what could have been done better in terms of planning and implementing the Energiewende, and identifies important lessons for other countries that are considering a similar energy transition.

  17. The German energy transition. Design, implementeation, cost and lessons

    International Nuclear Information System (INIS)

    Unnerstall, Thomas

    2017-01-01

    The book presents a comprehensive and systematic account of the concept, the current status and the costs of the German energy transition: the Energiewende. Written by an insider who has been working in the German energy industry for over 20 years, it follows a strictly non-political, neutral approach and clearly outlines the most relevant facts and figures. In particular, it describes the main impacts of the Energiewende on the German power system and Germany's national economy. Furthermore, it addresses questions that are of global interest with respect to energy transitions, such as the cost to the national economy, the financial burden on private households and companies and the actual effects on CO 2 emissions. The book also discusses what could have been done better in terms of planning and implementing the Energiewende, and identifies important lessons for other countries that are considering a similar energy transition.

  18. Comparison of costs of electricity generation based on nuclear energy and pit coal

    International Nuclear Information System (INIS)

    1981-01-01

    Despite of a meanwhile considerable increase in costs of installation, especially of nuclear power stations, the differences in costs have increased in favour of nuclear electricity generation. The cost advantages are estimated 4 German Pfennig per kilowatt-hour in the base-load field for plants coming into operation at the end of this decade compared with the most profitable variant of pit coal utilization on which this investigation is based; compared to the use of German hard coal, assuming a relatively optimistic development of prices for domestic hard coal in the future, the cost advantage is estimated 8 German Pfennig per kilowatt-hour. The main reason is that in the past years the price for German hard coal as well as for imported coal considerably rose and for the future further increases have to be expected whereas the largest share of the costs of nuclear electricity generation doesn't increase, after the plant is completed. Considering the importance of the fuel costs within the total costs of electricity generation in coal power stations this must have its effects on the total result. These results also prove to be valid for a variation of important cost parameters. Only if the unlikely assumption that considerable variations of influences on costs - each unfavourable effecting nuclear electricity generation - would come together would prove to be true the economic efficiency of nuclear energy would be reduced or questioned. (UA) [de

  19. Reduced metabolic cost of locomotion in Svalbard rock ptarmigan (Lagopus muta hyperborea during winter.

    Directory of Open Access Journals (Sweden)

    John Lees

    2010-11-01

    Full Text Available The Svalbard rock ptarmigan, Lagopus muta hyperborea experiences extreme photoperiodic and climatic conditions on the Arctic archipelago of Svalbard. This species, however, is highly adapted to live in this harsh environment. One of the most striking adaptations found in these birds is the deposition, prior to onset of winter, of fat stores which may comprise up to 32% of body mass and are located primarily around the sternum and abdominal region. This fat, while crucial to the birds' survival, also presents a challenge in that the bird must maintain normal physiological function with this additional mass. In particular these stores are likely to constrain the respiratory system, as the sternum and pelvic region must be moved during ventilation and carrying this extra load may also impact upon the energetic cost of locomotion. Here we demonstrate that winter birds have a reduced cost of locomotion when compared to summer birds. A remarkable finding given that during winter these birds have almost twice the body mass of those in summer. These results suggest that Svalbard ptarmigan are able to carry the additional winter fat without incurring any energetic cost. As energy conservation is paramount to these birds, minimising the costs of moving around when resources are limited would appear to be a key adaptation crucial for their survival in the barren Arctic environment.

  20. DOES ECO-EFFICENCY REDUCE THE COST OF EQUITY CAPITAL? EMPIRICAL EVIDENCE FROM INDONESIA

    Directory of Open Access Journals (Sweden)

    Lisa Alviani

    2015-05-01

    Full Text Available The objective of this study is to examine the effect of eco-efficiency on the cost of equity capital. The study hypothesizes that the implementation of eco-efficiency reduces the cost of equity capital. Using manufacturing companies listed on the Indonesian Stock Exchange for the period 2010-2012 as data, and controlling for beta, company size, Book to Market ratio, and leverage; the study finds that the implementation of eco-efficiency may reduce the cost of equity capital. The findings suggest that companies should implement eco-efficency.

  1. Does a renewable fuel standard for biofuels reduce climate costs?

    Energy Technology Data Exchange (ETDEWEB)

    Greaker, Mads; Hoel, Michael; Rosendahl, Knut Einar

    2012-07-01

    Recent contributions have questioned whether biofuels policies actually lead to emissions reductions, and thus lower climate costs. In this paper we make two contributions to the literature. First, we study the market effects of a renewable fuel standard. Opposed to most previous studies we model the supply of fossil fuels taking into account that fossil fuels is a non-renewable resource. Second, we model emissions from land use change explicitly when we evaluate the climate effects of the renewable fuel standard. We find that extraction of fossil fuels most likely will decline initially as a consequence of the standard. Thus, if emissions from biofuels are sufficiently low, the standard will have beneficial climate effects. Furthermore, we find that the standard tends to reduce total fuel (i.e., oil plus biofuels) consumption initially. Hence, even if emissions from biofuels are substantial, climate costs may be reduced. Finally, if only a subset of countries introduce a renewable fuel standard, there will be carbon leakage to the rest of the world. However, climate costs may decline as global extraction of fossil fuels is postponed.(Author)

  2. Valuing patents on cost-reducing technology: A case study

    NARCIS (Netherlands)

    van Triest, S.P.; van de Vis, Wim

    2007-01-01

    We present an approach for valuing patents on production process improvements. Specifically, we focus on valuing a patent on cost-reducing process improvements from the viewpoint of the patent holding firm. We do this by considering the relevant cash flows that result from owning the patent. The

  3. The High Cost of Saving Energy Dollars.

    Science.gov (United States)

    Rose, Patricia

    1985-01-01

    In alternative financing a private company provides the capital and expertise for improving school energy efficiency. Savings are split between the school system and the company. Options for municipal leasing, cost sharing, and shared savings are explained along with financial, procedural, and legal considerations. (MLF)

  4. Energy market and reserve market modeling in simultaneous and serial implementation methods with the aim of reducing electricity costs

    Directory of Open Access Journals (Sweden)

    Ramin Ghoraba

    2012-01-01

    Full Text Available In competitive electricity markets, power needed for the network’s reserve is purchased from the ancillary service market. In this market, producing units and buyers alike announce their offers. As will be seen, energy market and reserve market implementation is possible with simultaneous method and serial method by choosing each of the methods based on the type of market and other conditions. In this paper, the energy market and the active power reserve market are simulated in two formations as serial and simultaneous for a uniform pricing system. In each method, limitations of transferring power over the lines, based on available transfer capacity (ATC, is considered alongside the other constraints in the energy market and the active power reserve market. Then, during network overload, economic dispatch is accomplished between winner units in the reserve market by using a linear optimization problem, and needed power is provided from these units at a minimal cost. Finally, our proposed methods are implemented on an IEEE 39-bus test system and results are analyzed.

  5. Multi-faceted case management: reducing compensation costs of musculoskeletal work injuries in Australia.

    Science.gov (United States)

    Iles, Ross Anthony; Wyatt, M; Pransky, G

    2012-12-01

    This study aimed to determine whether a multi-faceted model of management of work related musculoskeletal disorders reduced compensation claim costs and days of compensation for injured workers. An intervention including early reporting, employee centred case management and removal of barriers to return to work was instituted in 16 selected companies with a combined remuneration over $337 million. Outcomes were evaluated by an administrative dataset from the Victorian WorkCover Authority database. A 'quasi experimental' pre-post design was employed with 492 matched companies without the intervention used as a control group and an average of 21 months of post-intervention follow-up. Primary outcomes were average number of days of compensation and average cost of claims. Secondary outcomes were total medical costs and weekly benefits paid. Information on 3,312 claims was analysed. In companies where the intervention was introduced the average cost of claims was reduced from $6,019 to $3,913 (estimated difference $2,329, 95 % CI $1,318-$3,340) and the number of days of compensation decreased from 33.5 to 14.1 (HR 0.77, 95 % CI 0.67-0.88). Medical costs and weekly benefits costs were also lower after the intervention (p costs were noted across industry types, injury location and most employer sizes. The model of claims management investigated was effective in reducing the number of days of compensation, total claim costs, total medical costs and the amount paid in weekly benefits. Further research should investigate whether the intervention improves non-financial outcomes in the return to work process.

  6. Cogeneration, renewables and reducing greenhouse gas emissions

    International Nuclear Information System (INIS)

    Naughten, B.; Dlugosz, J.

    1996-01-01

    The MENSA model is used to assess the potential role of cogeneration and selected new renewable energy technologies in cost-effectively reducing Greenhouse gas emissions. The model framework for analyzing these issues is introduced, together with an account of relevant aspects of its application. In the discussion of selected new renewable energy technologies, it is shown how microeconomic reform may encourage these technologies and fuels, and thereby reduce sector wide carbon dioxide emissions. Policy scenarios modelled are described and the simulation results are presented. Certain interventions in microeconomic reform may result in economic benefits while also reducing emissions: no regrets' opportunities. Some renewable energy technologies are also shown to be cost-effective in the event that targets and timetables for reducing Greenhouse gas emissions are imposed. However, ad hoc interventions in support of particular renewables options are unlikely to be consistent with a least cost approach to achieving environmental objectives. (author). 5 tabs., 5 figs., 21 refs

  7. A novel cost based model for energy consumption in cloud computing.

    Science.gov (United States)

    Horri, A; Dastghaibyfard, Gh

    2015-01-01

    Cloud data centers consume enormous amounts of electrical energy. To support green cloud computing, providers also need to minimize cloud infrastructure energy consumption while conducting the QoS. In this study, for cloud environments an energy consumption model is proposed for time-shared policy in virtualization layer. The cost and energy usage of time-shared policy were modeled in the CloudSim simulator based upon the results obtained from the real system and then proposed model was evaluated by different scenarios. In the proposed model, the cache interference costs were considered. These costs were based upon the size of data. The proposed model was implemented in the CloudSim simulator and the related simulation results indicate that the energy consumption may be considerable and that it can vary with different parameters such as the quantum parameter, data size, and the number of VMs on a host. Measured results validate the model and demonstrate that there is a tradeoff between energy consumption and QoS in the cloud environment. Also, measured results validate the model and demonstrate that there is a tradeoff between energy consumption and QoS in the cloud environment.

  8. The environmental costs of wind energy in Spain

    Energy Technology Data Exchange (ETDEWEB)

    Linares Llamas, P [CIEMAT-IEE, Madrid (Spain)

    1996-12-31

    This article summarizes the assessment of the environmental costs of the wind fuel cycle in Spain. It has been carried out within the ExternE project of the European Commission, and so it has been done following a site-, technology-specific methodology. The main impacts identified have been noise, and the loss of visual amenity. As a result some values for the external costs of wind energy have been obtained, which have shown to be much lower than those of conventional fuel cycles. It is also important to note that careful planning would avoid most of these costs. (author)

  9. The environmental costs of wind energy in Spain

    Energy Technology Data Exchange (ETDEWEB)

    Linares Llamas, P. [CIEMAT-IEE, Madrid (Spain)

    1995-12-31

    This article summarizes the assessment of the environmental costs of the wind fuel cycle in Spain. It has been carried out within the ExternE project of the European Commission, and so it has been done following a site-, technology-specific methodology. The main impacts identified have been noise, and the loss of visual amenity. As a result some values for the external costs of wind energy have been obtained, which have shown to be much lower than those of conventional fuel cycles. It is also important to note that careful planning would avoid most of these costs. (author)

  10. Socioeconomic status, energy cost, and nutrient content of supermarket food purchases.

    Science.gov (United States)

    Appelhans, Bradley M; Milliron, Brandy-Joe; Woolf, Kathleen; Johnson, Tricia J; Pagoto, Sherry L; Schneider, Kristin L; Whited, Matthew C; Ventrelle, Jennifer C

    2012-04-01

    The relative affordability of energy-dense versus nutrient-rich foods may promote socioeconomic disparities in dietary quality and obesity. Although supermarkets are the largest food source in the American diet, the associations between SES and the cost and nutrient content of freely chosen food purchases have not been described. To investigate relationships of SES with the energy cost ($/1000 kcal) and nutrient content of freely chosen supermarket purchases. Supermarket shoppers (n=69) were recruited at a Phoenix AZ supermarket in 2009. The energy cost and nutrient content of participants' purchases were calculated from photographs of food packaging and nutrition labels using dietary analysis software. Data were analyzed in 2010-2011. Two SES indicators, education and household income as a percentage of the federal poverty guideline (FPG), were associated with the energy cost of purchased foods. Adjusting for covariates, the amount spent on 1000 kcal of food was $0.26 greater for every multiple of the FPG, and those with a baccalaureate or postbaccalaureate degree spent an additional $1.05 for every 1000 kcal of food compared to those with no college education. Lower energy cost was associated with higher total fat and less protein, dietary fiber, and vegetables per 1000 kcal purchased. Low-SES supermarket shoppers purchase calories in inexpensive forms that are higher in fat and less nutrient-rich. Copyright © 2012 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.

  11. Energy conservation on Nova Scotia farms: Baseline energy data

    International Nuclear Information System (INIS)

    Bailey, J.A.; Gordon, R.; Burton, D.; Yiridoe, E.K.

    2008-01-01

    Direct energy use is a small but essential component of the farm greenhouse gas (GHG) budget. Improvements in energy efficiency and renewable energy can help reduce farm operating costs, improve air quality and reduce GHG emission levels. Energy conservation is especially important in Nova Scotia (NS), Canada, where fossil fuels, particularly coal, remain the primary source of electrical generation. Responses from mail surveys were used to establish baseline data on a cross-section of NS farms with respect to direct energy costs and usage to demonstrate differences in farm type and size. A 32% (N=224) response rate was achieved. Based on this survey, the average energy bill for a NS farm in 2004 was $11,228, with most (61.7%) of their energy cost attributable to the purchase of petroleum products. Almost all farmers (96.4%) indicated that their energy cost was a primary concern. Farmers identified the operation of vehicles and mobile equipment, as well as lighting and heating as having the greatest energy requirements in their operations. Energy usage varied with farm type and size. NS farms consumed 1.2 petajoules of energy equivalent to 127 kilotonnes of CO 2 with 52.7% of emissions from electricity use in 2004

  12. Main influence factors on the final energy generation cost of a nuclear power plant in comparison with other energy sources

    International Nuclear Information System (INIS)

    Souza, J.A.M. de; Glardon, C.; Schmidt, R.M.

    1981-01-01

    The main factors in the construction and in the operation of nuclear power plants that affect the final energy generation cost are presented. The structure of the energy generation cost, of the nuclear fuel cost and the total investment are studied. (E.G.) [pt

  13. The energy cost of playing active video games in children with obesity and children of a healthy weight.

    Science.gov (United States)

    O'Donovan, C; Roche, E F; Hussey, J

    2014-08-01

    Increasing physical activity and reducing sedentary behaviour form a large part of the treatment of paediatric obesity. However, many children today spend prolonged periods of time playing sedentary video games. Active video games (AVGs) represent a novel and child friendly form of physical activity. To measure the energy cost of playing two AVGs in children with obesity and healthy age- and gender-matched children. The energy cost of gaming and heart rates achieved during gaming conditions were compared between groups. AVG play can result in light-to-moderate intensity physical activity (2.7-5.4 metabolic equivalents). When corrected for fat-free mass those with obesity expended significantly less energy than healthy weight peers playing Nintendo Wii Fit Free Jogging (P = 0.017). No significant difference was seen between groups in the energy cost of playing Boxing. Certain AVGs, particularly those that require lower limb movement, could be used to increase total energy expenditure, replace more sedentary activities, or achieve moderate intensity physical activity among children with obesity. There seems to be some differences in how children with obesity and children of a healthy weight play AVGs. This could result in those with obesity expending less energy than their lean peers during AVG play. © 2013 The Authors. Pediatric Obesity © 2013 International Association for the Study of Obesity.

  14. Energy activity guide : simple steps to reduce your household energy use

    Energy Technology Data Exchange (ETDEWEB)

    Byckalo-Khan, F; Wallace, C L [ed.

    2003-07-01

    This guide presents 13 practical activities that can help households reduce energy consumption in order to create a more sustainable lifestyle and to help meet Canada's Kyoto commitment to reduce greenhouse gas emissions. Most energy sources create pollution that harms both human health and the Earth. The burning of fossil fuels creates greenhouse gas emissions that contribute to climate change, smog, pollution and adverse health effects. This guide offers suggestions on how households can reduce the impact on the environment while saving money. Some of the initiatives include lowering the thermostat, replacing incandescent light bulbs with compact fluorescent light bulbs, turning off appliances when not in use, weatherising building envelopes, using a clothes line to dry clothes instead of a dryer, laundering clothes with cold water, and proper maintenance of heating equipment. An energy use chart is included with this guide to help track activities and to estimate how much time and money is required by each activity. refs., figs.

  15. Energy activity guide : simple steps to reduce your household energy use

    Energy Technology Data Exchange (ETDEWEB)

    Byckalo-Khan, F.; Wallace, C.L. (ed.)

    2003-07-01

    This guide presents 13 practical activities that can help households reduce energy consumption in order to create a more sustainable lifestyle and to help meet Canada's Kyoto commitment to reduce greenhouse gas emissions. Most energy sources create pollution that harms both human health and the Earth. The burning of fossil fuels creates greenhouse gas emissions that contribute to climate change, smog, pollution and adverse health effects. This guide offers suggestions on how households can reduce the impact on the environment while saving money. Some of the initiatives include lowering the thermostat, replacing incandescent light bulbs with compact fluorescent light bulbs, turning off appliances when not in use, weatherising building envelopes, using a clothes line to dry clothes instead of a dryer, laundering clothes with cold water, and proper maintenance of heating equipment. An energy use chart is included with this guide to help track activities and to estimate how much time and money is required by each activity. refs., figs.

  16. School Operations and Maintenance: Best Practices For Controlling Energy Costs. A Guidebook for K-12 School System Business Officers and Facilities Managers

    Science.gov (United States)

    US Department of Energy, 2004

    2004-01-01

    Operations and maintenance (O&M) offers not only strategies for maintaining facilities, but also opportunities for reducing energy costs and increasing energy efficiency at existing schools, regardless of age. This Guidebook provides detailed and practical guidance on how K-12 school districts can plan and implement enhancements to their current…

  17. The cost-effectiveness and consumer acceptability of taxation strategies to reduce rates of overweight and obesity among children in Australia: study protocol.

    Science.gov (United States)

    Comans, Tracy A; Whitty, Jennifer A; Hills, Andrew P; Kendall, Elizabeth; Turkstra, Erika; Gordon, Louisa G; Byrnes, Josh M; Scuffham, Paul A

    2013-12-14

    Childhood obesity is a recognised public health problem and around 25% of Australian children are overweight or obese. A major contributor is the obesogenic environment which encourages over consumption of energy dense nutrient poor food. Taxation is commonly proposed as a mechanism to reduce consumption of poor food choices and hence reduce rates of obesity and overweight in the community. An economic model will be developed to assess the lifetime benefits and costs to a cohort of Australian children by reducing energy dense nutrient poor food consumption through taxation mechanisms. The model inputs will be derived from a series of smaller studies. Food options for taxation will be derived from literature and expert opinion, the acceptability and impact of price changes will be explored through a Citizen's Jury and a discrete choice experiment and price elasticities will be derived from the discrete choice experiment and consumption data. The health care costs of managing rising levels of obesity are a challenge for all governments. This study will provide a unique contribution to the international knowledge base by engaging a variety of robust research techniques, with a multidisciplinary focus and be responsive to consumers from diverse socio-economic backgrounds.

  18. THE COSTS OF THE ELECTRICAL ENERGY IN THE ALUMINIUM INDUSTRY

    Directory of Open Access Journals (Sweden)

    Cilianu Marian

    2012-07-01

    Full Text Available The economic crisis has given the opportunity to reconsider the use of resources, so the subject of competitive advantage has become actual. In the aluminium industry the cost of electrical energy is critical not only for competitive reasons but for the mere existence and performance of numerous production facilities . Several ways of resisting the pressure of high energy costs have been experimented the most promising being those based on different forms of public-private partnership/co-operation. In many countries the big industrial producers benefit from a special treatment concerning the energy acquisition and are supported by the government in order to remain competitive.

  19. Energy and Energy Cost Savings Analysis of the IECC for Commercial Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jian; Athalye, Rahul A.; Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Goel, Supriya; Mendon, Vrushali V.; Liu, Bing

    2013-08-30

    The purpose of this analysis is to assess the relative energy and energy cost performance of commercial buildings designed to meet the requirements found in the commercial energy efficiency provisions of the International Energy Conservation Code (IECC). Section 304(b) of the Energy Conservation and Production Act (ECPA), as amended, requires the Secretary of Energy to make a determination each time a revised version of ASHRAE Standard 90.1 is published with respect to whether the revised standard would improve energy efficiency in commercial buildings. As many states have historically adopted the IECC for both residential and commercial buildings, PNNL has evaluated the impacts of the commercial provisions of the 2006, 2009, and 2012 editions of the IECC. PNNL also compared energy performance with corresponding editions of ANSI/ASHRAE/IES Standard 90.1 to help states and local jurisdictions make informed decisions regarding model code adoption.

  20. One Improvement Method of Reducing Duration Directly to Solve Time-Cost Tradeoff Problem

    Science.gov (United States)

    Jian-xun, Qi; Dedong, Sun

    Time and cost are two of the most important factors for project plan and schedule management, and specially, time-cost tradeoff problem is one classical problem in project scheduling, which is also a difficult problem. Methods of solving the problem mainly contain method of network flow and method of mending the minimal cost. Thereinto, for the method of mending the minimal cost is intuitionistic, convenient and lesser computation, these advantages make the method being used widely in practice. But disadvantage of the method is that the result of each step is optimal but the terminal result maybe not optimal. In this paper, firstly, method of confirming the maximal effective quantity of reducing duration is designed; secondly, on the basis of above method and the method of mending the minimal cost, the main method of reducing duration directly is designed to solve time-cost tradeoff problem, and by analyzing validity of the method, the method could obtain more optimal result for the problem.