WorldWideScience

Sample records for reduced collagen maturation

  1. Modification of mature non-reducible collagen cross-link concentrations in bovine m. gluteus medius and semitendinosus with steer age at slaughter, breed cross and growth promotants.

    Science.gov (United States)

    Roy, B C; Sedgewick, G; Aalhus, J L; Basarab, J A; Bruce, H L

    2015-12-01

    Increased meat toughness with animal age has been attributed to mature trivalent collagen cross-link formation. Intramuscular trivalent collagen cross-link content may be decreased by reducing animal age at slaughter and/or inducing muscle re-modeling with growth promotants. This hypothesis was tested in m. gluteus medius (GM) and m. semitendinosus (ST) from 112 beef steers finished at either 12 to 13 (rapid growth) or 18 to 20 (slow growth) months of age. Hereford-Aberdeen Angus (HAA) or Charolais-Red Angus (CRA) steers were randomly assigned to receive implants (IMP), ractopamine (RAC), both IMP and RAC, or none (control). RAC decreased pyridinoline (mol/mol collagen) and IMP increased Ehrlich chromogen (EC) (mol/mol collagen) in the GM. In the ST, RAC increased EC (mol/mol collagen) but decreased EC (nmol/g raw muscle) in slow growing CRA steers. Also, IMP increased ST pyridinoline (nmol/g raw muscle) of slow-growing HAA steers. Results indicated alteration of perimysium collagen cross-links content in muscle in response to growth promotants. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Type IV collagen is a novel DEJ biomarker that is reduced by radiotherapy.

    Science.gov (United States)

    McGuire, J D; Gorski, J P; Dusevich, V; Wang, Y; Walker, M P

    2014-10-01

    The dental basement membrane (BM) is composed of collagen types IV, VI, VII, and XVII, fibronectin, and laminin and plays an inductive role in epithelial-mesenchymal interactions during tooth development. The BM is degraded and removed during later-stage tooth morphogenesis; however, its original position defines the location of the dentin-enamel junction (DEJ) in mature teeth. We recently demonstrated that type VII collagen is a novel component of the inner enamel organic matrix layer contiguous with the DEJ. Since it is frequently co-expressed with and forms functional complexes with type VII collagen, we hypothesized that type IV collagen should also be localized to the DEJ in mature human teeth. To identify collagen IV, we first evaluated defect-free erupted teeth from various donors. To investigate a possible stabilizing role, we also evaluated extracted teeth exposed to high-dose radiotherapy--teeth that manifest post-radiotherapy DEJ instability. We now show that type IV collagen is a component within the morphological DEJ of posterior and anterior teeth from individuals aged 18 to 80 yr. Confocal microscopy revealed that immunostained type IV collagen was restricted to the 5- to 10-µm-wide optical DEJ, while collagenase treatment or previous in vivo tooth-level exposure to > 60 Gray irradiation severely reduced immunoreactivity. This assignment was confirmed by Western blotting with whole-tooth crown and enamel extracts. Without reduction, type IV collagen contained macromolecular α-chains of 225 and 250 kDa. Compositionally, our results identify type IV collagen as the first macromolecular biomarker of the morphological DEJ of mature teeth. Given its network structure and propensity to stabilize the dermal-epidermal junction, we propose that a collagen-IV-enriched DEJ may, in part, explain its well-known fracture toughness, crack propagation resistance, and stability. In contrast, loss of type IV collagen may represent a biochemical rationale for the DEJ

  3. Collagenous and other organizations in mature annelid cuticle and epidermis.

    Science.gov (United States)

    Humphreys, S; Porter, K R

    1976-05-01

    The mature annelid cuticle contains orthogonally oriented collagen in a matrix capped superficially by a dense epicuticle with external corpuscles. The underlying epidermis is a simple columnar epithelium with two major cell types, mucous-secreting cells which secrete through channels in the cuticle to the exterior of the worm, and "supportive" cells which presumably produce and increase the cuticle by secreting into it. The structures of supportive cells, previously interpreted as specialized for establishing interfibrillar collagen order, are revealed by glutaraldehyde fixation as common cellular components without the qualities deemed useful to align collagen. Cell processes which penetrate and sometimes pass completely through the cuticle are not stable, not in geometric order, and lack cilia-like structure. Cilia, unlike the ubiquitous cellular processes, are highly restricted to regions of the epidermis with specialized functions. Cellular control, or other control, of collagen fibrillogenesis remains unestablished.

  4. Collagen and mineral deposition in rabbit cortical bone during maturation and growth: effects on tissue properties.

    Science.gov (United States)

    Isaksson, Hanna; Harjula, Terhi; Koistinen, Arto; Iivarinen, Jarkko; Seppänen, Kari; Arokoski, Jari P A; Brama, Pieter A; Jurvelin, Jukka S; Helminen, Heikki J

    2010-12-01

    We characterized the composition and mechanical properties of cortical bone during maturation and growth and in adult life in the rabbit. We hypothesized that the collagen network develops earlier than the mineralized matrix. Growth was monitored, and the rabbits were euthanized at birth (newborn), and at 1, 3, 6, 9, and 18 months of age. The collagen network was assessed biochemically (collagen content, enzymatic and non-enzymatic cross-links) in specimens from the mid-diaphysis of the tibia and femur and biomechanically (tensile testing) from decalcified whole tibia specimens. The mineralized matrix was analyzed using pQCT and 3-point bend tests from intact femur specimens. The collagen content and the Young's modulus of the collagen matrix increased significantly until the rabbits were 3 months old, and thereafter remained stable. The amount of HP and LP collagen cross-links increased continuously from newborn to 18 months of age, whereas PEN cross-links increased after 6 months of age. Bone mineral density and the Young's modulus of the mineralized bone increased until the rabbits were at least 6 months old. We concluded that substantial changes take place during the normal process of development in both the biochemical and biomechanical properties of rabbit cortical bone. In cortical bone, the collagen network reaches its mature composition and mechanical strength prior to the mineralized matrix. © 2010 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  5. Collagen-binding peptidoglycans inhibit MMP mediated collagen degradation and reduce dermal scarring.

    Directory of Open Access Journals (Sweden)

    Kate Stuart

    Full Text Available Scarring of the skin is a large unmet clinical problem that is of high patient concern and impact. Wound healing is complex and involves numerous pathways that are highly orchestrated, leaving the skin sealed, but with abnormal organization and composition of tissue components, namely collagen and proteoglycans, that are then remodeled over time. To improve healing and reduce or eliminate scarring, more rapid restoration of healthy tissue composition and organization offers a unique approach for development of new therapeutics. A synthetic collagen-binding peptidoglycan has been developed that inhibits matrix metalloproteinase-1 and 13 (MMP-1 and MMP-13 mediated collagen degradation. We investigated the synthetic peptidoglycan in a rat incisional model in which a single dose was delivered in a hyaluronic acid (HA vehicle at the time of surgery prior to wound closure. The peptidoglycan treatment resulted in a significant reduction in scar tissue at 21 days as measured by histology and visual analysis. Improved collagen architecture of the treated wounds was demonstrated by increased tensile strength and transmission electron microscopy (TEM analysis of collagen fibril diameters compared to untreated and HA controls. The peptidoglycan's mechanism of action includes masking existing collagen and inhibiting MMP-mediated collagen degradation while modulating collagen organization. The peptidoglycan can be synthesized at low cost with unique design control, and together with demonstrated preclinical efficacy in reducing scarring, warrants further investigation for dermal wound healing.

  6. Biaxial Stretch Improves Elastic Fiber Maturation, Collagen Arrangement, and Mechanical Properties in Engineered Arteries.

    Science.gov (United States)

    Huang, Angela H; Balestrini, Jenna L; Udelsman, Brooks V; Zhou, Kevin C; Zhao, Liping; Ferruzzi, Jacopo; Starcher, Barry C; Levene, Michael J; Humphrey, Jay D; Niklason, Laura E

    2016-06-01

    Tissue-engineered blood vessels (TEVs) are typically produced using the pulsatile, uniaxial circumferential stretch to mechanically condition and strengthen the arterial grafts. Despite improvements in the mechanical integrity of TEVs after uniaxial conditioning, these tissues fail to achieve critical properties of native arteries such as matrix content, collagen fiber orientation, and mechanical strength. As a result, uniaxially loaded TEVs can result in mechanical failure, thrombus, or stenosis on implantation. In planar tissue equivalents such as artificial skin, biaxial loading has been shown to improve matrix production and mechanical properties. To date however, multiaxial loading has not been examined as a means to improve mechanical and biochemical properties of TEVs during culture. Therefore, we developed a novel bioreactor that utilizes both circumferential and axial stretch that more closely simulates loading conditions in native arteries, and we examined the suture strength, matrix production, fiber orientation, and cell proliferation. After 3 months of biaxial loading, TEVs developed a formation of mature elastic fibers that consisted of elastin cores and microfibril sheaths. Furthermore, the distinctive features of collagen undulation and crimp in the biaxial TEVs were absent in both uniaxial and static TEVs. Relative to the uniaxially loaded TEVs, tissues that underwent biaxial loading remodeled and realigned collagen fibers toward a more physiologic, native-like organization. The biaxial TEVs also showed increased mechanical strength (suture retention load of 303 ± 14.53 g, with a wall thickness of 0.76 ± 0.028 mm) and increased compliance. The increase in compliance was due to combinatorial effects of mature elastic fibers, undulated collagen fibers, and collagen matrix orientation. In conclusion, biaxial stretching is a potential means to regenerate TEVs with improved matrix production, collagen organization, and mechanical

  7. Type VII collagen is enriched in the enamel organic matrix associated with the dentin-enamel junction of mature human teeth.

    Science.gov (United States)

    McGuire, Jacob D; Walker, Mary P; Mousa, Ahmad; Wang, Yong; Gorski, Jeff P

    2014-06-01

    The inner enamel region of erupted teeth is known to exhibit higher fracture toughness and crack growth resistance than bulk phase enamel. However, an explanation for this behavior has been hampered by the lack of compositional information for the residual enamel organic matrix. Since enamel-forming ameloblasts are known to express type VII collagen and type VII collagen null mice display abnormal amelogenesis, the aim of this study was to determine whether type VII collagen is a component of the enamel organic matrix at the dentin-enamel junction (DEJ) of mature human teeth. Immunofluorescent confocal microscopy of demineralized tooth sections localized type VII collagen to the organic matrix surrounding individual enamel rods near the DEJ. Morphologically, immunoreactive type VII collagen helical-bundles resembled the gnarled-pattern of enamel rods detected by Coomassie Blue staining. Western blotting of whole crown or enamel matrix extracts also identified characteristic Mr=280 and 230 kDa type VII dimeric forms, which resolved into 75 and 25 kDa bands upon reduction. As expected, the collagenous domain of type VII collagen was resistant to pepsin digestion, but was susceptible to purified bacterial collagenase. These results demonstrate the inner enamel organic matrix in mature teeth contains macromolecular type VII collagen. Based on its physical association with the DEJ and its well-appreciated capacity to complex with other collagens, we hypothesize that enamel embedded type VII collagen fibrils may contribute not only to the structural resilience of enamel, but may also play a role in bonding enamel to dentin. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Increased collagen maturity with sildenafil citrate: experimental high risk colonic anastomosis model.

    Science.gov (United States)

    Cakir, Tebessum; Ozer, Ilter; Bostanci, Erdal Birol; Keklik, Tulay Timucin; Ercin, Ugur; Bilgihan, Ayse; Akoglu, Musa

    2015-01-01

    Inadequate healing and high anastomosis leak rates at rectal anastomosis may be due to lack of supportive serosal layer and technical difficulty of low anterior resections. Positive effects of sildenafil on wound healing were observed. The aim of this study was to simulate rectal anastomosis as a technical insufficient anastomosis and investigate the effects of sildenafil on anastomosis healing. Colonic anastomoses were carried out in 64 rats and randomized into four groups, CA-S, complete anastomoses without sildenafil (10 mg/kg for 5 days); CA+S, complete anastomoses with sildenafil; IA-S, incomplete anastomoses without sildenafil; IA+S, incomplete anastomoses with sildenafil. Half of the rats in every group were sacrificed on post-operative day (POD) 3, half of them sacrificed on POD 7. Tissues from the anastomoses were used for functional, histochemical, biochemical investigations. Sildenafil treatment resulted in increased bursting pressures in IA+S on POD 7 (p=0.010). Collagen maturity was higher in IA+S on POD 3 and POD 7, CA+S on POD 7 (p=0.010; p=0.010; p<0.007). Collagen content was higher in IA+S on POD 7 (p<0.001). Glutathione, hydroxyproline levels were similar. Malondialdehyde levels were lower in IA+S on POD 3 (p<0.001). Epithelization score was higher in IA+S on POD 7 (p=0.007). Inflammation score was higher in CA-S group on POD 3 and POD 7 (p<0.001; p<0.001). Neutrophil score was lower in CA+S on POD 3 (p=0.005). An increase in collagen content, maturity, and epithelization, a decrease in neutrophil infiltration, oxidative stress and better mechanical strength were observed with the administration of sildenafil. Copyright © 2014 Surgical Associates Ltd. Published by Elsevier Ltd. All rights reserved.

  9. Expression characterization and functional implication of the collagen-modifying Leprecan proteins in mouse gonadal tissue and mature sperm

    Directory of Open Access Journals (Sweden)

    Sarah M. Zimmerman

    2018-02-01

    Full Text Available The Leprecan protein family which includes the prolyl 3-hydroxylase enzymes (P3H1, P3H2, and P3H3, the closely related cartilage-associated protein (CRTAP, and SC65 (Synaptonemal complex 65, aka P3H4, LEPREL4, is involved in the post-translational modification of fibrillar collagens. Mutations in CRTAP, P3H1 and P3H2 cause human genetic diseases. We recently showed that SC65 forms a stable complex in the endoplasmic reticulum with P3H3 and lysyl hydroxylase 1 and that loss of this complex leads to defective collagen lysyl hydroxylation and causes low bone mass and skin fragility. Interestingly, SC65 was initially described as a synaptonemal complex-associated protein, suggesting a potential additional role in germline cells. In the present study, we describe the expression of SC65, CRTAP and other Leprecan proteins in postnatal mouse reproductive organs. We detect SC65 expression in peritubular cells of testis up to 4 weeks of age but not in cells within seminiferous tubules, while its expression is maintained in ovarian follicles until adulthood. Similar to bone and skin, SC65 and P3H3 are also tightly co-expressed in testis and ovary. Moreover, we show that CRTAP, a protein normally involved in collagen prolyl 3-hydroxylation, is highly expressed in follicles and stroma of the ovary and in testes interstitial cells at 4 weeks of age, germline cells and mature sperm. Importantly, CrtapKO mice have a mild but significant increase in morphologically abnormal mature sperm (17% increase compared to WT. These data suggest a role for the Leprecans in the post-translational modification of collagens expressed in the stroma of the reproductive organs. While we could not confirm that SC65 is part of the synaptonemal complex, the expression of CRTAP in the seminiferous tubules and in mature sperm suggest a role in the testis germ cell lineage and sperm morphogenesis.

  10. Characterization of Genipin-Modified Dentin Collagen

    Directory of Open Access Journals (Sweden)

    Hiroko Nagaoka

    2014-01-01

    Full Text Available Application of biomodification techniques to dentin can improve its biochemical and biomechanical properties. Several collagen cross-linking agents have been reported to strengthen the mechanical properties of dentin. However, the characteristics of collagen that has undergone agent-induced biomodification are not well understood. The objective of this study was to analyze the effects of a natural cross-linking agent, genipin (GE, on dentin discoloration, collagen stability, and changes in amino acid composition and lysyl oxidase mediated natural collagen cross-links. Dentin collagen obtained from extracted bovine teeth was treated with three different concentrations of GE (0.01%, 0.1%, and 0.5% for several treatment times (0–24 h. Changes in biochemical properties of NaB3H4-reduced collagen were characterized by amino acid and cross-link analyses. The treatment of dentin collagen with GE resulted in a concentration- and time-dependent pigmentation and stability against bacterial collagenase. The lysyl oxidase-mediated trivalent mature cross-link, pyridinoline, showed no difference among all groups while the major divalent immature cross-link, dehydro-dihydroxylysinonorleucine/its ketoamine in collagen treated with 0.5% GE for 24 h, significantly decreased compared to control (P< 0.05. The newly formed GE-induced cross-links most likely involve lysine and hydroxylysine residues of collagen in a concentration-dependent manner. Some of these cross-links appear to be reducible and stabilized with NaB3H4.

  11. Distinct characteristics of mandibular bone collagen relative to long bone collagen: relevance to clinical dentistry.

    Science.gov (United States)

    Matsuura, Takashi; Tokutomi, Kentaro; Sasaki, Michiko; Katafuchi, Michitsuna; Mizumachi, Emiri; Sato, Hironobu

    2014-01-01

    Bone undergoes constant remodeling throughout life. The cellular and biochemical mechanisms of bone remodeling vary in a region-specific manner. There are a number of notable differences between the mandible and long bones, including developmental origin, osteogenic potential of mesenchymal stem cells, and the rate of bone turnover. Collagen, the most abundant matrix protein in bone, is responsible for determining the relative strength of particular bones. Posttranslational modifications of collagen, such as intermolecular crosslinking and lysine hydroxylation, are the most essential determinants of bone strength, although the amount of collagen is also important. In comparison to long bones, the mandible has greater collagen content, a lower amount of mature crosslinks, and a lower extent of lysine hydroxylation. The great abundance of immature crosslinks in mandibular collagen suggests that there is a lower rate of cross-link maturation. This means that mandibular collagen is relatively immature and thus more readily undergoes degradation and turnover. The greater rate of remodeling in mandibular collagen likely renders more flexibility to the bone and leaves it more suited to constant exercise. As reviewed here, it is important in clinical dentistry to understand the distinctive features of the bones of the jaw.

  12. Distinct Characteristics of Mandibular Bone Collagen Relative to Long Bone Collagen: Relevance to Clinical Dentistry

    Directory of Open Access Journals (Sweden)

    Takashi Matsuura

    2014-01-01

    Full Text Available Bone undergoes constant remodeling throughout life. The cellular and biochemical mechanisms of bone remodeling vary in a region-specific manner. There are a number of notable differences between the mandible and long bones, including developmental origin, osteogenic potential of mesenchymal stem cells, and the rate of bone turnover. Collagen, the most abundant matrix protein in bone, is responsible for determining the relative strength of particular bones. Posttranslational modifications of collagen, such as intermolecular crosslinking and lysine hydroxylation, are the most essential determinants of bone strength, although the amount of collagen is also important. In comparison to long bones, the mandible has greater collagen content, a lower amount of mature crosslinks, and a lower extent of lysine hydroxylation. The great abundance of immature crosslinks in mandibular collagen suggests that there is a lower rate of cross-link maturation. This means that mandibular collagen is relatively immature and thus more readily undergoes degradation and turnover. The greater rate of remodeling in mandibular collagen likely renders more flexibility to the bone and leaves it more suited to constant exercise. As reviewed here, it is important in clinical dentistry to understand the distinctive features of the bones of the jaw.

  13. Bone Tissue Collagen Maturity and Mineral Content Increase With Sustained Hyperglycemia in the KK-Ay Murine Model of Type 2 Diabetes.

    Science.gov (United States)

    Hunt, Heather B; Pearl, Jared C; Diaz, David R; King, Karen B; Donnelly, Eve

    2018-05-01

    Type 2 diabetes mellitus (T2DM) increases fracture risk for a given bone mineral density (BMD), which suggests that T2DM changes bone tissue properties independently of bone mass. In this study, we assessed the effects of hyperglycemia on bone tissue compositional properties, enzymatic collagen crosslinks, and advanced glycation end-products (AGEs) in the KK-Ay murine model of T2DM using Fourier transform infrared (FTIR) imaging and high-performance liquid chromatography (HPLC). Compared to KK-aa littermate controls (n = 8), proximal femoral bone tissue of KK-Ay mice (n = 14) exhibited increased collagen maturity, increased mineral content, and less heterogeneous mineral properties. AGE accumulation assessed by the concentration of pentosidine, as well as the concentrations of the nonenzymatic crosslinks hydroxylysylpyridinoline (HP) and lysyl pyridinoline (LP), did not differ in the proximal femurs of KK-Ay mice compared to controls. The observed differences in tissue-level compositional properties in the KK-Ay mice are consistent with bone that is older and echo observations of reduced remodeling in T2DM. © 2017 American Society for Bone and Mineral Research. © 2017 American Society for Bone and Mineral Research.

  14. Laser welding and collagen crosslinks

    Energy Technology Data Exchange (ETDEWEB)

    Reiser, K.M.; Last, J.A. [California Univ., Davis, CA (United States). Dept. of Medicine; Small, W. IV; Maitland, D.J.; Heredia, N.J.; Da Silva, L.B.; Matthews, D.L. [Lawrence Livermore National Lab., CA (United States)

    1997-02-20

    Strength and stability of laser-welded tissue may be influenced, in part, by effects of laser exposure on collagen crosslinking. We therefore studied effects of diode laser exposure (805 nm, 1-8 watts, 30 seconds) + indocyanine green dye (ICG) on calf tail tendon collagen crosslinks. Effect of ICG dye alone on crosslink content prior to laser exposure was investigated; unexpectedly, we found that ICG-treated tissue had significantly increased DHLNL and OHP, but not HLNL. Laser exposure after ICG application reduced elevated DHLNL and OHP crosslink content down to their native levels. The monohydroxylated crosslink HLNL was inversely correlated with laser output (p<0.01 by linear regression analysis). DHLNL content was highly correlated with content of its maturational product, OHP, suggesting that precursor-product relations are maintained. We conclude that: (1)ICG alone induces DHLNL and OHP crosslink formation; (2)subsequent laser exposure reduces the ICG-induced crosslinks down to native levels; (3)excessive diode laser exposure destroys normally occurring HLNL crosslinks.

  15. Postnatal development of collagen structure in ovine articular cartilage

    Directory of Open Access Journals (Sweden)

    Kranenbarg Sander

    2010-06-01

    Full Text Available Abstract Background Articular cartilage (AC is the layer of tissue that covers the articulating ends of the bones in diarthrodial joints. Across species, adult AC shows an arcade-like structure with collagen predominantly perpendicular to the subchondral bone near the bone, and collagen predominantly parallel to the articular surface near the articular surface. Recent studies into collagen fibre orientation in stillborn and juvenile animals showed that this structure is absent at birth. Since the collagen structure is an important factor for AC mechanics, the absence of the adult Benninghoff structure has implications for perinatal AC mechanobiology. The current objective is to quantify the dynamics of collagen network development in a model animal from birth to maturity. We further aim to show the presence or absence of zonal differentiation at birth, and to assess differences in collagen network development between different anatomical sites of a single joint surface. We use quantitative polarised light microscopy to investigate properties of the collagen network and we use the sheep (Ovis aries as our model animal. Results Predominant collagen orientation is parallel to the articular surface throughout the tissue depth for perinatal cartilage. This remodels to the Benninghoff structure before the sheep reach sexual maturity. Remodelling of predominant collagen orientation starts at a depth just below the future transitional zone. Tissue retardance shows a minimum near the articular surface at all ages, which indicates the presence of zonal differentiation at all ages. The absolute position of this minimum does change between birth and maturity. Between different anatomical sites, we find differences in the dynamics of collagen remodelling, but no differences in adult collagen structure. Conclusions The collagen network in articular cartilage remodels between birth and sexual maturity from a network with predominant orientation parallel to the

  16. Heat Shock Protein 47: A Novel Biomarker of Phenotypically Altered Collagen-Producing Cells

    International Nuclear Information System (INIS)

    Taguchi, Takashi; Nazneen, Arifa; Al-Shihri, Abdulmonem A.; Turkistani, Khadijah A.; Razzaque, Mohammed S.

    2011-01-01

    Heat shock protein 47 (HSP47) is a collagen-specific molecular chaperone that helps the molecular maturation of various types of collagens. A close association between increased expression of HSP47 and the excessive accumulation of collagens is found in various human and experimental fibrotic diseases. Increased levels of HSP47 in fibrotic diseases are thought to assist in the increased assembly of procollagen, and thereby contribute to the excessive deposition of collagens in fibrotic areas. Currently, there is not a good universal histological marker to identify collagen-producing cells. Identifying phenotypically altered collagen-producing cells is essential for the development of cell-based therapies to reduce the progression of fibrotic diseases. Since HSP47 has a single substrate, which is collagen, the HSP47 cellular expression provides a novel universal biomarker to identify phenotypically altered collagen-producing cells during wound healing and fibrosis. In this brief article, we explained why HSP47 could be used as a universal marker for identifying phenotypically altered collagen-producing cells

  17. Changes in collagen synthesis and degradation during skeletal muscle growth

    International Nuclear Information System (INIS)

    Laurent, G.J.; McAnulty, R.J.; Gibson, J.

    1985-01-01

    The changes in collagen metabolism during skeletal muscle growth were investigated by measuring rates of synthesis and degradation during stretch-induced hypertrophy of the anterior latissimus dorsi muscle of the adult chicken (Gallus domesticus). Synthesis rates were obtained from the uptake of tritiated proline injected intravenously with a flooding dose of unlabeled proline. Degradation of newly synthesized and ''mature'' collagen was estimated from the amount of hydroxyproline in the free pool as small molecular weight moieties. In normal muscle, the synthesis rate was 1.1 +/- 0.3%/day, with 49 +/- 7% of the newly produced collagen degraded rapidly after synthesis. During hypertrophy there was an increase of about fivefold in the rate of synthesis (P less than 0.01), a 60% decrease in the rate of degradation of newly synthesized collagen (P less than 0.02), and an increase of about fourfold in the amount of degradation of mature collagen (P less than 0.01). These results suggest an important role for degradative as well as synthetic processes in the regulation of collagen mass. They indicate that enhanced degradation of mature collagen is required for muscle growth and suggest a physiological role for the pathway whereby in normal muscle, a large proportion of newly produced collagen is rapidly degraded

  18. Neurotensin-loaded collagen dressings reduce inflammation and improve wound healing in diabetic mice.

    Science.gov (United States)

    Moura, Liane I F; Dias, Ana M A; Suesca, Edward; Casadiegos, Sergio; Leal, Ermelindo C; Fontanilla, Marta R; Carvalho, Lina; de Sousa, Hermínio C; Carvalho, Eugénia

    2014-01-01

    Impaired wound healing is an important clinical problem in diabetes mellitus and results in failure to completely heal diabetic foot ulcers (DFUs), which may lead to lower extremity amputations. In the present study, collagen based dressings were prepared to be applied as support for the delivery of neurotensin (NT), a neuropeptide that acts as an inflammatory modulator in wound healing. The performance of NT alone and NT-loaded collagen matrices to treat wounds in streptozotocin (STZ) diabetic induced mice was evaluated. Results showed that the prepared dressings were not-cytotoxic up to 72h after contact with macrophages (Raw 264.7) and human keratinocyte (HaCaT) cell lines. Moreover, those cells were shown to adhere to the collagen matrices without noticeable change in their morphology. NT-loaded collagen dressings induced faster healing (17% wound area reduction) in the early phases of wound healing in diabetic wounded mice. In addition, they also significantly reduced inflammatory cytokine expression namely, TNF-α (phealing, metalloproteinase 9 (MMP-9) is reduced in diabetic skin (pdiabetic wound enhancing the healing process. Nevertheless, a more prominent scar is observed in diabetic wounds treated with collagen when compared to the treatment with NT alone. © 2013.

  19. The biochemical changes of bone collagen after high-dose irradiation

    International Nuclear Information System (INIS)

    Tajiri, Ken

    1980-01-01

    In our clinic, patients with malignant bone tumors have been treated by high-dose irradiation therapy, 10,000-20,000 rads, for primary lesions. In order to study the biochemical changes of normal bone around tumor tissue, especially bone collagen, after high-dose irradiation, the author performed the following experiments. The right knee joint of rabbits was irradiated with either 6,000, 10,000, or 15,000 rads by 60 Co-γ ray. The cortical bone of the right tibial metaphysis was used for analyses and compared with the left tibia of the same rabbit. These studies were followed for one year after the final irradiation. The calcium, phosphorous and collagen contents of irradiated bone were remarkably changed. These data indicate that collagen biosynthesis of irradiated bone was decreased and the calcification was disturbed. An increase in the amount of total soluble collagen and a decrease in the amount of hydroxylysine bound sugar were observed. The ratio of β to α chains of the collagen molecule was also changed by the irradiation. The amount of reducible cross-links per hydroxyproline residue was strikingly increased three months after the final irradiation. These changes were remarkable especially in the 10,000 and 15,000 rads irradiated group and found to be recovered approximately six months to one year after the final irradiation. These findings indicate that high-dose irradiation reduces the stability of bone collagen both with the destruction of sugar bonds of hydroxylysine residues and the replacement of matured collagen matrix to immatured one which contain mostly labile reducible cross-links. (author)

  20. Experimental resin cements containing bioactive fillers reduce matrix metalloproteinase-mediated dentin collagen degradation.

    Science.gov (United States)

    Osorio, Raquel; Yamauti, Monica; Sauro, Salvatore; Watson, Thimoty F; Toledano, Manuel

    2012-09-01

    Collagen dentin matrix may represent a suitable scaffold to be remineralized in the presence of bioactive materials. The purpose of this study was to determine if experimental resin cements containing bioactive fillers may modulate matrix metalloproteinase-mediated collagen degradation of etched dentin. Human dentin beams demineralized using 10% phosphoric acid or 0.5 mol/L EDTA were infiltrated with the following experimental resins: (1) unfilled resin, (2) resin with Bioglass 45S5 particles (Sylc; OSspray Ltd, London, UK), and (3) resin with β-tricalcium phosphate-modified calcium silicate cement (HCAT-β) particles. The filler/resin ratio was 40/60 wt%. The specimens were stored in artificial saliva, and the determination of C-terminal telopeptide (ICTP) was performed by radioimmunoassay after 24 hours, 1 week, and 4 weeks. Scanning electron microscopic analysis of dentin surfaces after 4 weeks of storage was also executed. Collagen degradation was prominent both in phosphoric acid and EDTA-treated dentin. Resin infiltration strongly reduced the MMP activity in demineralized dentin. Resin-containing Bioglass 45S5 particles exerted higher and more stable protection of collagen at all tested dentin states and time points. HCAT-β induced collagen protection from MMPs only in EDTA-treated specimens. Dentin remineralization was achieved when dentin was infiltrated with the resin cements containing bioactive fillers. MMP degradation of dentin collagen is strongly reduced in resin-infiltrated dentin. The inclusion of Bioglass 45S5 particles exerted an additional protection of collagen during dentin remineralization. Copyright © 2012 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  1. Growth and maturational changes in dense fibrous connective tissue following 14 days of rhGH supplementation in the dwarf rat

    Science.gov (United States)

    Kyparos, Antonios; Orth, Michael W.; Vailas, Arthur C.; Martinez, Daniel A.

    2002-01-01

    The purpose of this study was to investigate the impact of recombinant human growth hormone (rhGH) on patella tendon (PT), medial collateral ligament (MCL), and lateral collateral ligament (LCL) on collagen growth and maturational changes in dwarf GH-deficient rats. Twenty male Lewis mutant dwarf rats, 37 days of age, were randomly assigned to Dwarf + rhGH (n = 10) and Dwarf + vehicle (n = 10) groups. The GH group received 1.25 mg rhGH/kg body wt twice daily for 14 days. rhGH administration stimulated dense fibrous connective tissue growth, as demonstrated by significant increases in hydroxyproline specific activity and significant decreases in the non-reducible hydroxylysylpyridinoline (HP) collagen cross-link contents. The increase in the accumulation of newly accreted collagen was 114, 67, and 117% for PT, MCL, and LCL, respectively, in 72 h. These findings suggest that a short course rhGH treatment can affect the rate of new collagen production. However, the maturation of the tendon and ligament tissues decreased 18-25% during the rapid accumulation of de novo collagen. We conclude that acute rhGH administration in a dwarf rat can up-regulate new collagen accretion in dense fibrous connective tissues, while causing a reduction in collagen maturation. Copyright 2002 Elsevier Science Ltd.

  2. Maturation of human embryonic stem cell-derived cardiomyocytes (hESC-CMs) in 3D collagen matrix: Effects of niche cell supplementation and mechanical stimulation.

    Science.gov (United States)

    Zhang, W; Kong, C W; Tong, M H; Chooi, W H; Huang, N; Li, R A; Chan, B P

    2017-02-01

    Cardiomyocytes derived from human embryonic stem cells (hESC-CMs) are regarded as a promising source for regenerative medicine, drug testing and disease modeling. Nevertheless, cardiomyocytes are immature in terms of their contractile structure, metabolism and electrophysiological properties. Here, we fabricate cardiac muscle strips by encapsulating hESC-CMs in collagen-based biomaterials. Supplementation of niche cells at 3% to the number of hESC-CMs enhance the maturation of the hESC-CMs in 3D tissue matrix. The benefits of adding mesenchymal stem cells (MSCs) are comparable to that of adding fibroblasts. These two cell types demonstrate similar effects in promoting the compaction and cell spreading, as well as expression of maturation markers at both gene and protein levels. Mechanical loading, particularly cyclic stretch, produces engineered cardiac tissues with higher maturity in terms of twitch force, elastic modulus, sarcomere length and molecular signature, when comparing to static stretch or non-stretched controls. The current study demonstrates that the application of niche cells and mechanical stretch both stimulate the maturation of hESC-CMs in 3D architecture. Our results therefore suggest that this 3D model can be used for in vitro cardiac maturation study. Cardiomyocytes derived from human embryonic stem cells (hESC-CMs) are regarded as being a promising source of cells for regenerative medicine, drug testing and disease modeling. Nevertheless, cardiomyocytes are immature in terms of their contractile structure, metabolism and electrophysiological properties. In the current study, we have fabricated cardiac muscle strips by encapsulating hESC-CMs in collagen-based biomaterials and demonstrated that supplementation of mesenchymal niche cells as well as provision of mechanical loading particularly stretching have significantly promoted the maturation of the cardiomyocytes and hence improved the mechanical functional characteristics of the tissue strips

  3. The minor collagens in articular cartilage

    DEFF Research Database (Denmark)

    Luo, Yunyun; Sinkeviciute, Dovile; He, Yi

    2017-01-01

    Articular cartilage is a connective tissue consisting of a specialized extracellular matrix (ECM) that dominates the bulk of its wet and dry weight. Type II collagen and aggrecan are the main ECM proteins in cartilage. However, little attention has been paid to less abundant molecular components......, especially minor collagens, including type IV, VI, IX, X, XI, XII, XIII, and XIV, etc. Although accounting for only a small fraction of the mature matrix, these minor collagens not only play essential structural roles in the mechanical properties, organization, and shape of articular cartilage, but also...... fulfil specific biological functions. Genetic studies of these minor collagens have revealed that they are associated with multiple connective tissue diseases, especially degenerative joint disease. The progressive destruction of cartilage involves the degradation of matrix constituents including...

  4. Changes in subchondral bone mineral density and collagen matrix organization in growing horses.

    Science.gov (United States)

    Holopainen, Jaakko T; Brama, Pieter A J; Halmesmäki, Esa; Harjula, Terhi; Tuukkanen, Juha; van Weeren, P René; Helminen, Heikki J; Hyttinen, Mika M

    2008-12-01

    The effects of growth and maturation on the mineral deposition and the collagen framework of equine subchondral bone (SCB) were studied. Osteochondral specimens (diameter 6 mm) from the left metacarpophalangeal joint of 5-(n=8), 11-(n=8) and 18-month-old (n=6) horses were investigated at two differently loaded sites (Site 1 (S1): intermittent peak loading; Site 2 (S2): habitual loading). The SCB mineral density (BMD) was measured with peripheral quantitative computer tomography (pQCT), and the data were adjusted against the volume fraction (Vv) of the bone extracellular matrix (ECM). Polarised light microscopy (PLM) was used to analyze the Vv, the collagen fibril parallelism index and the orientation angle distribution in two fractions (1 mm/fraction) beneath the osteochondral junction of the SCB. PLM analysis was made along two randomly selected perpendicularly oriented vertical sections to measure the tissue anisotropy in the x-, y-, and z-directions. The BMD of SCB at S1 and S2 increased significantly during maturation. At the same time, the Vv of the ECM increased even more. This meant that the Vv-adjusted BMD decreased. There were no significant differences between sites. The basic collagen fibril framework of SCB seems to be established already at the age of 5 months. During maturation, the extracellular matrix underwent a decrease in collagen fibril parallelism but no changes in collagen orientation. The variation was negligible in the collagen network estimates in the two section planes. Growth and maturation induce significant changes in the equine SCB. The BMD increase in SCB is primarily due to the growth of bone volume and not to any increase in mineral deposition. An increase in weight-bearing appears to greatly affect the BMD and the volume of the extracellular matrix. Growth and maturation induce a striking change in collagen fibril parallelism but not in fibril orientation. The structural anisotropy of the subchondral bone is significant along the

  5. Effect of Mechanical Stretching of the Skin on Collagen Fibril ...

    African Journals Online (AJOL)

    Stabilization of collagen fibres during development and through growth to maturation has now become fairly documented. In vitro effect of mechanical stretching of ratsf skin on oxidative deamination of ε-NH2-groups of lysine and hydroxylysine, and functional properties of its type . collagen were studied. Experiments were ...

  6. Postnatal development of depth-dependent collagen density in ovine articular cartilage

    Directory of Open Access Journals (Sweden)

    Kranenbarg Sander

    2010-10-01

    Full Text Available Abstract Background Articular cartilage (AC is the layer of tissue that covers the articulating ends of the bones in diarthrodial joints. Adult AC is characterised by a depth-dependent composition and structure of the extracellular matrix that results in depth-dependent mechanical properties, important for the functions of adult AC. Collagen is the most abundant solid component and it affects the mechanical behaviour of AC. The current objective is to quantify the postnatal development of depth-dependent collagen density in sheep (Ovis aries AC between birth and maturity. We use Fourier transform infra-red micro-spectroscopy to investigate collagen density in 48 sheep divided over ten sample points between birth (stillborn and maturity (72 weeks. In each animal, we investigate six anatomical sites (caudal, distal and rostral locations at the medial and lateral side of the joint in the distal metacarpus of a fore leg and a hind leg. Results Collagen density increases from birth to maturity up to our last sample point (72 weeks. Collagen density increases at the articular surface from 0.23 g/ml ± 0.06 g/ml (mean ± s.d., n = 48 at 0 weeks to 0.51 g/ml ± 0.10 g/ml (n = 46 at 72 weeks. Maximum collagen density in the deeper cartilage increases from 0.39 g/ml ± 0.08 g/ml (n = 48 at 0 weeks to 0.91 g/ml ± 0.13 g/ml (n = 46 at 72 weeks. Most collagen density profiles at 0 weeks (85% show a valley, indicating a minimum, in collagen density near the articular surface. At 72 weeks, only 17% of the collagen density profiles show a valley in collagen density near the articular surface. The fraction of profiles with this valley stabilises at 36 weeks. Conclusions Collagen density in articular cartilage increases in postnatal life with depth-dependent variation, and does not stabilize up to 72 weeks, the last sample point in our study. We find strong evidence for a valley in collagen densities near the articular surface that is present in the youngest

  7. Calcium hydroxylapatite treatment of human skin: evidence of collagen turnover through picrosirius red staining and circularly polarized microscopy

    Directory of Open Access Journals (Sweden)

    Zerbinati N

    2018-01-01

    Full Text Available Nicola Zerbinati,1 Alberto Calligaro2 1Department of Surgical and Morphological Sciences, University of Insubria (Varese and Polyspecialist Medical Center, Pavia, 2Department of Public Health, Experimental and Forensic Medicine, Unit of Histology and Embryology, University of Pavia, Pavia, Italy Background: Calcium hydroxylapatite (CaHA, Radiesse® is a biocompatible, injectable filler for facial soft-tissue augmentation that provides volume to tissues, followed by a process of neocollagenesis for improved skin quality. Objective: To examine the effects of CaHA treatment on the molecular organization of collagen using a combination of picrosirius red staining and circularly polarized light microscopy.Methods: Five subjects received subdermal injection of 0.3 mL of CaHA in tissues scheduled for removal during abdominoplasty 2 months later. Tissue specimens from the CaHA injection site and a control untreated area were obtained from excised skin at the time of surgery. Processed tissue sections were stained with picrosirius red solution 0.1% and visualized under circularly polarized light microscopy for identification of thick mature (type I and thin newly formed (type III collagen fibers. Pixel signals from both the control and CaHA-treated areas were extracted from the images, and morphometric computerized hue analysis was performed to provide a quantitative evaluation of mature and newly formed collagen fibers.Results: Under picrosirius red staining and circularly polarized light microscopy, green/yellow areas (thin newly formed collagen type III were visible among the collagen fibers in tissue sections from the area of CaHA injection. In contrast, the majority of the collagen fibers appeared red (thick mature collagen type I in control tissues. Morphometric analysis confirmed that, following CaHA treatment, the proportion of fibers represented by thin newly formed collagen type III increased significantly (p<0.01 in comparison with the

  8. Infrared spectroscopy reveals both qualitative and quantitative differences in equine subchondral bone during maturation

    Science.gov (United States)

    Kobrina, Yevgeniya; Isaksson, Hanna; Sinisaari, Miikka; Rieppo, Lassi; Brama, Pieter A.; van Weeren, René; Helminen, Heikki J.; Jurvelin, Jukka S.; Saarakkala, Simo

    2010-11-01

    The collagen phase in bone is known to undergo major changes during growth and maturation. The objective of this study is to clarify whether Fourier transform infrared (FTIR) microspectroscopy, coupled with cluster analysis, can detect quantitative and qualitative changes in the collagen matrix of subchondral bone in horses during maturation and growth. Equine subchondral bone samples (n = 29) from the proximal joint surface of the first phalanx are prepared from two sites subjected to different loading conditions. Three age groups are studied: newborn (0 days old), immature (5 to 11 months old), and adult (6 to 10 years old) horses. Spatial collagen content and collagen cross-link ratio are quantified from the spectra. Additionally, normalized second derivative spectra of samples are clustered using the k-means clustering algorithm. In quantitative analysis, collagen content in the subchondral bone increases rapidly between the newborn and immature horses. The collagen cross-link ratio increases significantly with age. In qualitative analysis, clustering is able to separate newborn and adult samples into two different groups. The immature samples display some nonhomogeneity. In conclusion, this is the first study showing that FTIR spectral imaging combined with clustering techniques can detect quantitative and qualitative changes in the collagen matrix of subchondral bone during growth and maturation.

  9. Increased cartilage type II collagen degradation in patients with osteogenesis imperfecta used as a human model of bone type I collagen alterations.

    Science.gov (United States)

    Rousseau, Jean-Charles; Chevrel, Guillaume; Schott, Anne-Marie; Garnero, Patrick

    2010-04-01

    We investigated whether cartilage degradation is altered in adult patients with mild osteogenesis imperfecta (OI) used as a human model of bone type I collagen-related osteoarthritis (OA). Sixty-four adult patients with OI (39% women, mean age+/-SD: 37+/-12 years) and 64 healthy age-matched controls (54% women, 39+/-7 years) were included. We also compared data in 87 patients with knee OA (73% women, 63+/-8 years, mean disease duration: 6 years) and 291 age-matched controls (80% women, 62+/-10 years). Urinary C-terminal cross-linked telopeptide of type II collagen (CTX-II), a marker of cartilage degradation, urinary helical peptide of type I collagen (Helix-I), a marker of bone resorption, and the urinary ratio between non-isomerised/isomerised (alpha/beta CTX-I) type I collagen C-telopeptide, a marker of type I collagen maturation, were measured. Patients with OI had CTX-II levels similar to those of subjects with knee OA (p=0.89; mean+/-SEM; 460+/-57 ng/mmol Cr for OI group and 547+/-32 ng/mmol Cr for OA group) and significantly higher than both young (144+/-7.8 ng/mmol Cr, p<0.0001) and old controls (247+/-7 ng/mmol Cr, p<0.0001). In patients with OI, increased Helix-I (p<0.0001) and alpha/beta CTX-I (p=0.0067) were independently associated with increased CTX-II and together explained 26% of its variance (p< 0.0001). In patients with knee OA, increased levels of alpha/beta CTX-I ratio were also associated with higher CTX-II levels. Adult patients with OI or knee OA are characterized by increased cartilage type II collagen degradation, which is associated with increased type I collagen degradation for OI and lower type I collagen maturation for both OI and OA. These data suggest that both quantitative and qualitative alterations of bone type I collagen metabolism are involved in increased cartilage degradation in patients with OI or knee OA. Copyright 2009 Elsevier Inc. All rights reserved.

  10. Collagen Type I as a Ligand for Receptor-Mediated Signaling

    Directory of Open Access Journals (Sweden)

    Iris Boraschi-Diaz

    2017-05-01

    Full Text Available Collagens form the fibrous component of the extracellular matrix in all multi-cellular animals. Collagen type I is the most abundant collagen present in skin, tendons, vasculature, as well as the organic portion of the calcified tissue of bone and teeth. This review focuses on numerous receptors for which collagen acts as a ligand, including integrins, discoidin domain receptors DDR1 and 2, OSCAR, GPVI, G6b-B, and LAIR-1 of the leukocyte receptor complex (LRC and mannose family receptor uPARAP/Endo180. We explore the process of collagen production and self-assembly, as well as its degradation by collagenases and gelatinases in order to predict potential temporal and spatial sites of action of different collagen receptors. While the interactions of the mature collagen matrix with integrins and DDR are well-appreciated, potential signals from immature matrix as well as collagen degradation products are possible but not yet described. The role of multiple collagen receptors in physiological processes and their contribution to pathophysiology of diseases affecting collagen homeostasis require further studies.

  11. Low transformation growth factor-β1 production and collagen synthesis correlate with the lack of hepatic periportal fibrosis development in undernourished mice infected with Schistosoma mansoni

    Directory of Open Access Journals (Sweden)

    Andreia Ferreira Barros

    2014-04-01

    Full Text Available Undernourished mice infected (UI submitted to low and long-lasting infections by Schistosoma mansoni are unable to develop the hepatic periportal fibrosis that is equivalent to Symmers’ fibrosis in humans. In this report, the effects of the host’s nutritional status on parasite (worm load, egg viability and maturation and host (growth curves, biology, collagen synthesis and characteristics of the immunological response were studied and these are considered as interdependent factors influencing the amount and distribution of fibrous tissue in hepatic periovular granulomas and portal spaces. The nutritional status of the host influenced the low body weight and low parasite burden detected in UI mice as well as the number, viability and maturation of released eggs. The reduced oviposition and increased number of degenerated or dead eggs were associated with low protein synthesis detected in deficient hosts, which likely induced the observed decrease in transformation growth factor (TGF-β1 and liver collagen. Despite the reduced number of mature eggs in UI mice, the activation of TGF-β1 and hepatic stellate cells occurred regardless of the unviability of most miracidia, due to stimulation by fibrogenic proteins and eggshell glycoproteins. However, changes in the repair mechanisms influenced by the nutritional status in deficient animals may account for the decreased liver collagen detected in the present study.

  12. Reduced collagen accumulation after major surgery

    DEFF Research Database (Denmark)

    Jorgensen, L N; Kallehave, F; Karlsmark, T

    1996-01-01

    .01)). This decline was significantly higher in the six patients who had a postoperative infection (median 3.02 (range -0.06 to 6.14) versus 0.36 (range -1.56 to 12.60) micrograms/cm, P = 0.02). This study shows that major surgery is associated with impairment of subcutaneous collagen accumulation in a test wound...

  13. Collagen cross-linking in sun-exposed and unexposed sites of aged human skin

    Science.gov (United States)

    Yamauchi, M.; Prisayanh, P.; Haque, Z.; Woodley, D. T.

    1991-01-01

    A recently described nonreducible, acid-heat stable compound, histidinohydroxylysinonorleucine (HHL), is a collagen cross-link isolated from mature skin tissue. Its abundance is related to chronologic aging of skin. The present communication describes the quantity of HHL from aged human skin of the same individuals in sun-exposed (wrist) and unexposed (buttock) sites. Punch biopsies were obtained from these sites from nine people of age 60 or older. HHL contents (moles/mole of collagen) at these sites were for wrist 0.13 +/- 0.07 and for buttock 0.69 +/- 0.17 (mean +/- SD, p less than 0.001). In addition, it was found that acute irradiation of the cross-linked peptides with UVA (up to 250 J/cm2) and UVB (up to 1 J/cm2) had no effect on HHL structure. The same treatment significantly degraded another nonreducible, stable collagen cross-link, pyridinoline. The results suggest that chronic sunlight exposure may be associated with an impediment to normal maturation of human dermal collagen resulting in tenuous amount of HHL. Thus, the process of photoaging in dermal collagen is different from that of chronologic aging in human skin.

  14. A comparative study of collagen dressing versus petrolatum gauze dressing in reducing pain at the donor area

    Directory of Open Access Journals (Sweden)

    B A Ramesh

    2017-01-01

    Full Text Available Background: Skin graft is one of the commonly done procedures by plastic surgeons, dermato surgeons and general surgeons. Pain at the donor area is a common complaint by the patient. The skin graft donor site area is usually covered with petrolatum dressing dermatosurgeons. Aim: This study was done to compare collagen dressing with petroleum gauze dressing in control of post-operative pain on skin graft donor area. Materials and Methods: The study was done on forty patients, twenty as study group who received collagen dressing and twenty as control group who received petroleum gauze dressing. The procedure was randomly selected by permutated block size of four. The post-operative pain was assessed with numerical pain rating scale 0 to 10. Nursing staff did the recording of pain scale. The nursing staff was not aware whether patient had collagen or petroleum gauze dressing. Statistics: Statistical analysis used was independent 't'-test (two-sample test and Levene's test. Results: Statistics proved that study group (collagen dressing had lesser pain than control group (petroleum gauze dressing. Conclusion: The collagen sheet dressing on skin graft donor area reduces pain in post-operative period.

  15. An age-related study of morphology and cross-link composition of collagen fibrils in the digital flexor tendons of young thoroughbred horses.

    Science.gov (United States)

    Patterson-Kane, J C; Parry, D A; Birch, H L; Goodship, A E; Firth, E C

    1997-01-01

    The superficial digital flexor tendon is the most commonly injured tendon in the racing Thoroughbred. Despite the clinical significance of this structure, only limited data exist regarding normal age-related morphology of the tensile units, the collagen fibrils. The age at which these collagen fibrils become mature in composition and structure may be of importance. Consequently, the association of age and collagen fibril crosslink composition, diameter distribution and crimp morphology in the superficial and deep digital flexor tendons of Thoroughbreds up to and including three years of age has been studied. Replacement of immature crosslinks, peaking of the collagen fibril mass-average diameter and collagen fibril index, and stabilization of collagen crimp morphology changes supported the hypothesis that both digital flexor tendons become mature in structure by two years of age.

  16. MiR-29b inhibits collagen maturation in hepatic stellate cells through down-regulating the expression of HSP47 and lysyl oxidase

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yifei; Ghazwani, Mohammed; Li, Jiang [Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Sun, Ming; Stolz, Donna B. [Department of Cell Biology and Physiology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261 (United States); He, Fengtian [Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038 (China); Fan, Jie [Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Xie, Wen [Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Li, Song, E-mail: sol4@pitt.edu [Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261 (United States)

    2014-04-18

    Highlights: • Enhanced HSP47 and LOX expression is associated with decreased miR-29b level in liver fibrosis. • miR-29b down-regulates HSP47 and LOX expression. • The suppression of HSP47 and LOX by miR-29b is mediated by putative sites at their 3′-UTRs. • miR-29b inhibits extracellular LOX activity and collagen maturation. - Abstract: Altered expression of miR-29b is implicated in the pathogenesis and progression of liver fibrosis. We and others previously demonstrated that miR-29b down-regulates the expression of several extracellular-matrix (ECM) genes including Col 1A1, Col 3A1 and Elastin via directly targeting their 3′-UTRs. However, whether or not miR-29b plays a role in the post-translational regulation of ECM biosynthesis has not been reported. Heat shock protein 47 (HSP47) and lysyl oxidase (LOX) are known to be essential for ECM maturation. In this study we have demonstrated that expression of HSP47 and LOX was significantly up-regulated in culture-activated primary rat hepatic stellate cells (HSCs), TGF-β stimulated LX-2 cells and liver tissue of CCl{sub 4}-treated mice, which was accompanied by a decrease of miR-29b level. In addition, over-expression of miR-29b in LX-2 cells resulted in significant inhibition on HSP47 and LOX expression. Mechanistically, miR-29b inhibited the expression of a reporter gene that contains the respective full-length 3′-UTR from HSP47 and LOX gene, and this inhibitory effect was abolished by the deletion of a putative miR-29b targeting sequence from the 3′-UTRs. Transfection of LX-2 cells with miR-29b led to abnormal collagen structure as shown by electron-microscopy, presumably through down-regulation of the expression of molecules involved in ECM maturation including HSP47 and LOX. These results demonstrated that miR-29b is involved in regulating the post-translational processing of ECM and fibril formation.

  17. MiR-29b inhibits collagen maturation in hepatic stellate cells through down-regulating the expression of HSP47 and lysyl oxidase

    International Nuclear Information System (INIS)

    Zhang, Yifei; Ghazwani, Mohammed; Li, Jiang; Sun, Ming; Stolz, Donna B.; He, Fengtian; Fan, Jie; Xie, Wen; Li, Song

    2014-01-01

    Highlights: • Enhanced HSP47 and LOX expression is associated with decreased miR-29b level in liver fibrosis. • miR-29b down-regulates HSP47 and LOX expression. • The suppression of HSP47 and LOX by miR-29b is mediated by putative sites at their 3′-UTRs. • miR-29b inhibits extracellular LOX activity and collagen maturation. - Abstract: Altered expression of miR-29b is implicated in the pathogenesis and progression of liver fibrosis. We and others previously demonstrated that miR-29b down-regulates the expression of several extracellular-matrix (ECM) genes including Col 1A1, Col 3A1 and Elastin via directly targeting their 3′-UTRs. However, whether or not miR-29b plays a role in the post-translational regulation of ECM biosynthesis has not been reported. Heat shock protein 47 (HSP47) and lysyl oxidase (LOX) are known to be essential for ECM maturation. In this study we have demonstrated that expression of HSP47 and LOX was significantly up-regulated in culture-activated primary rat hepatic stellate cells (HSCs), TGF-β stimulated LX-2 cells and liver tissue of CCl 4 -treated mice, which was accompanied by a decrease of miR-29b level. In addition, over-expression of miR-29b in LX-2 cells resulted in significant inhibition on HSP47 and LOX expression. Mechanistically, miR-29b inhibited the expression of a reporter gene that contains the respective full-length 3′-UTR from HSP47 and LOX gene, and this inhibitory effect was abolished by the deletion of a putative miR-29b targeting sequence from the 3′-UTRs. Transfection of LX-2 cells with miR-29b led to abnormal collagen structure as shown by electron-microscopy, presumably through down-regulation of the expression of molecules involved in ECM maturation including HSP47 and LOX. These results demonstrated that miR-29b is involved in regulating the post-translational processing of ECM and fibril formation

  18. Postnatal changes to the mechanical properties of articular cartilage are driven by the evolution of its collagen network

    Directory of Open Access Journals (Sweden)

    AR Gannon

    2015-01-01

    Full Text Available While it is well established that the composition and organisation of articular cartilage dramatically change during skeletal maturation, relatively little is known about how this impacts the mechanical properties of the tissue. In this study, digital image correlation was first used to quantify spatial deformation within mechanically compressed skeletally immature (4 and 8 week old and mature (1 and 3 year old porcine articular cartilage. The compressive modulus of the immature tissue was relatively homogeneous, while the stiffness of mature articular cartilage dramatically increased with depth from the articular surface. Other, well documented, biomechanical characteristics of the tissue also emerged with skeletal maturity, such as strain-softening and a depth-dependent Poisson’s ratio. The most significant changes that occurred with age were in the deep zone of the tissue, where an order of magnitude increase in compressive modulus (from 0.97 MPa to 9.4 MPa for low applied strains was observed from 4 weeks postnatal to skeletal maturity. These temporal increases in compressive stiffness occurred despite a decrease in tissue sulphated glycosaminoglycan content, but were accompanied by increases in tissue collagen content. Furthermore, helium ion microscopy revealed dramatic changes in collagen fibril alignment through the depth of the tissue with skeletal maturity, as well as a fivefold increase in fibril diameter with age. Finally, computational modelling was used to demonstrate how both collagen network reorganisation and collagen stiffening play a key role in determining the final compressive mechanical properties of the tissue. Together these findings provide a unique insight into evolving structure-function relations in articular cartilage.

  19. The initiation of embryonic-like collagen fibrillogenesis by adult human tendon fibroblasts when cultured under tension

    DEFF Research Database (Denmark)

    Bayer, Monika L; Yeung, Chin-Yan C; Kadler, Karl E

    2010-01-01

    Tendon fibroblasts synthesize collagen and form fibrils during embryonic development, but to what extent mature fibroblasts are able to recapitulate embryonic development and develop normal tendon structure is unknown. The present study examined the capability of mature human tendon fibroblasts t...

  20. Effects of 3-dimensional culture conditions (collagen-chitosan nano-scaffolds) on maturation of dendritic cells and their capacity to interact with T-lymphocytes.

    Science.gov (United States)

    Daneshmandi, Saeed; Dibazar, Shaghayegh Pishkhan; Fateh, Shirin

    2016-01-01

    In the body, there is a natural three-dimensional (3D) microenvironment in which immune cells, including dendritic cells (DC), play their functions. This study evaluated the impact of using collagen-chitosan 3D nano-scaffolds in comparisons to routine 2D culture plates on DC phenotype and functions. Bone marrow-derived DC were cultured on scaffolds and plates and then stimulated with lipopolysaccharide (LPS) or chitosan-based nanoparticles (NP) for 24 h. Thereafter, DC viability, expression of maturation markers and levels of cytokines secretion were evaluated. In another set of studies, the DC were co-cultured with allogenic T-lymphocytes in both the 2D and 3D systems and effects on DC-induction of T-lymphocyte proliferation and cytokine release were analyzed. The results indicated that CD40, CD86 and MHC II marker expression and interleukin (IL)-12, IL-6 and tumor necrosis factor (TNF)-α secretion by DC were enhanced in 3D cultures in comparison to by cells maintained in the 2D states. The data also showed that DNA/chitosan NP activated DC more than LPS in the 3D system. T-Lymphocyte proliferation was induced to a greater extent by DNA/NP-treated DC when both cell types were maintained on the scaffolds. Interestingly, while DC induction of T-lymphocyte interferon (IFN)-γ and IL-4 release was enhanced in the 3D system (relative to controls), there was a suppression of transforming growth factor (TGF)-β production; effects on IL-10 secretion were variable. The results here suggested that collagen-chitosan scaffolds could provide a pro-inflammatory and activator environment to perform studies to analyze effects of exogenous agents on the induction of DC maturation, NP uptake and/or cytokines release, as well as for the ability of these cells to potentially interact with other immune system cells in vitro.

  1. Absence of FKBP10 in recessive type XI osteogenesis imperfecta leads to diminished collagen cross-linking and reduced collagen deposition in extracellular matrix.

    Science.gov (United States)

    Barnes, Aileen M; Cabral, Wayne A; Weis, MaryAnn; Makareeva, Elena; Mertz, Edward L; Leikin, Sergey; Eyre, David; Trujillo, Carlos; Marini, Joan C

    2012-11-01

    Recessive osteogenesis imperfecta (OI) is caused by defects in genes whose products interact with type I collagen for modification and/or folding. We identified a Palestinian pedigree with moderate and lethal forms of recessive OI caused by mutations in FKBP10 or PPIB, which encode endoplasmic reticulum resident chaperone/isomerases FKBP65 and CyPB, respectively. In one pedigree branch, both parents carry a deletion in PPIB (c.563_566delACAG), causing lethal type IX OI in their two children. In another branch, a child with moderate type XI OI has a homozygous FKBP10 mutation (c.1271_1272delCCinsA). Proband FKBP10 transcripts are 4% of control and FKBP65 protein is absent from proband cells. Proband collagen electrophoresis reveals slight band broadening, compatible with ≈10% over-modification. Normal chain incorporation, helix folding, and collagen T(m) support a minimal general collagen chaperone role for FKBP65. However, there is a dramatic decrease in collagen deposited in culture despite normal collagen secretion. Mass spectrometry reveals absence of hydroxylation of the collagen telopeptide lysine involved in cross-linking, suggesting that FKBP65 is required for lysyl hydroxylase activity or access to type I collagen telopeptide lysines, perhaps through its function as a peptidylprolyl isomerase. Proband collagen to organics ratio in matrix is approximately 30% of normal in Raman spectra. Immunofluorescence shows sparse, disorganized collagen fibrils in proband matrix. Published 2012 Wiley Periodicals, Inc.*This article is a US Government work and, as such, is in the public domain of the United States of America.

  2. The pricing of firm bonds with extendable maturity by the reduced form approach

    Directory of Open Access Journals (Sweden)

    REN Xuemin

    2012-10-01

    Full Text Available We associate credit events with market rates to price firm bonds with extendable maturity.We deal with the credit risk by the reduced form approach and obtain the pricing formula for firm bonds with extendable maturity by the PDE approach under the assumption of stochastic interest rate and compare its return rate with that of ordinary firm bonds.

  3. Osteocalcin Mediates Biomineralization during Osteogenic Maturation in Human Mesenchymal Stromal Cells

    Directory of Open Access Journals (Sweden)

    Yu-Tzu Tsao

    2017-01-01

    Full Text Available There is a growing interest in cell therapies using mesenchymal stromal cells (MSCs for repairing bone defects. MSCs have the ability to differentiate into osteoprogenitors and osteoblasts as well as to form calcified bone matrix. However, the molecular mechanisms governing mineralization during osteogenic differentiation remain unclear. Non-collagenous proteins in the extracellular matrix are believed to control different aspects of the mineralization. Since osteocalcin is the most abundant non-collagenous bone matrix protein, the purpose of this study is to investigate the roles of osteocalcin in mineral species production during osteogenesis of MSCs. Using Raman spectroscopy, we found that the maturation of mineral species was affected by osteocalcin expression level. After osteocalcin was knocked down, the mineral species maturation was delayed and total hydroxyapatite was lower than the control group. In addition, the expression of osteogenic marker genes, including RUNX2, alkaline phosphatase, type I collagen, and osteonectin, was downregulated during osteogenic differentiation compared to the control group; whereas gene expression of osterix was upregulated after the knockdown. Together, osteocalcin plays an essential role for the maturation of mineral species and modulates osteogenic differentiation of MSCs. The results offer new insights into the enhancement of new bone formation, such as for the treatments of osteoporosis and fracture healing.

  4. Osteocalcin Mediates Biomineralization during Osteogenic Maturation in Human Mesenchymal Stromal Cells

    Science.gov (United States)

    Tsao, Yu-Tzu; Huang, Yi-Jeng; Wu, Hao-Hsiang; Liu, Yu-An; Liu, Yi-Shiuan; Lee, Oscar K.

    2017-01-01

    There is a growing interest in cell therapies using mesenchymal stromal cells (MSCs) for repairing bone defects. MSCs have the ability to differentiate into osteoprogenitors and osteoblasts as well as to form calcified bone matrix. However, the molecular mechanisms governing mineralization during osteogenic differentiation remain unclear. Non-collagenous proteins in the extracellular matrix are believed to control different aspects of the mineralization. Since osteocalcin is the most abundant non-collagenous bone matrix protein, the purpose of this study is to investigate the roles of osteocalcin in mineral species production during osteogenesis of MSCs. Using Raman spectroscopy, we found that the maturation of mineral species was affected by osteocalcin expression level. After osteocalcin was knocked down, the mineral species maturation was delayed and total hydroxyapatite was lower than the control group. In addition, the expression of osteogenic marker genes, including RUNX2, alkaline phosphatase, type I collagen, and osteonectin, was downregulated during osteogenic differentiation compared to the control group; whereas gene expression of osterix was upregulated after the knockdown. Together, osteocalcin plays an essential role for the maturation of mineral species and modulates osteogenic differentiation of MSCs. The results offer new insights into the enhancement of new bone formation, such as for the treatments of osteoporosis and fracture healing. PMID:28106724

  5. Altered distributions of bone tissue mineral and collagen properties in women with fragility fractures.

    Science.gov (United States)

    Wang, Zhen Xiang; Lloyd, Ashley A; Burket, Jayme C; Gourion-Arsiquaud, Samuel; Donnelly, Eve

    2016-03-01

    Heterogeneity of bone tissue properties is emerging as a potential indicator of altered bone quality in pathologic tissue. The objective of this study was to compare the distributions of tissue properties in women with and without histories of fragility fractures using Fourier transform infrared (FTIR) imaging. We extended a prior study that examined the relationship of the mean FTIR properties to fracture risk by analyzing in detail the widths and the tails of the distributions of FTIR properties in biopsies from fracture and non-fracture cohorts. The mineral and matrix properties of cortical and trabecular iliac crest tissue were compared in biopsies from women with a history of fragility fracture (+Fx; n=21, age: mean 54±SD 15y) and with no history of fragility fracture (-Fx; n=12, age: 57±5y). A subset of the patients included in the -Fx group were taking estrogen-plus-progestin hormone replacement therapy (HRT) (-Fx+HRT n=8, age: 58±5y) and were analyzed separately from patients with no history of HRT (-Fx-HRT n=4, age: 56±7y). When the FTIR parameter mean values were examined by treatment group, the trabecular tissue of -Fx-HRT patients had a lower mineral:matrix ratio (M:M) and collagen maturity (XLR) than that of -Fx+HRT patients (-22% M:M, -18% XLR) and +Fx patients (-17% M:M, -18% XLR). Across multiple FTIR parameters, tissue from the -Fx-HRT group had smaller low-tail (5th percentile) values than that from the -Fx+HRT or +Fx groups. In trabecular collagen maturity and crystallinity (XST), the -Fx-HRT group had smaller low-tail values than those in the -Fx+HRT group (-16% XLR, -5% XST) and the +Fx group (-17% XLR, -7% XST). The relatively low values of trabecular mineral:matrix ratio and collagen maturity and smaller low-tail values of collagen maturity and crystallinity observed in the -Fx-HRT group are characteristic of younger tissue. Taken together, our data suggest that the presence of newly formed tissue that includes small/imperfect crystals

  6. Longitudinal Stretching for Maturation of Vascular Tissues Using Magnetic Forces

    Directory of Open Access Journals (Sweden)

    Timothy R. Olsen

    2016-11-01

    Full Text Available Cellular spheroids were studied to determine their use as “bioinks” in the biofabrication of tissue engineered constructs. Specifically, magnetic forces were used to mediate the cyclic longitudinal stretching of tissues composed of Janus magnetic cellular spheroids (JMCSs, as part of a post-processing method for enhancing the deposition and mechanical properties of an extracellular matrix (ECM. The purpose was to accelerate the conventional tissue maturation process via novel post-processing techniques that accelerate the functional, structural, and mechanical mimicking of native tissues. The results of a forty-day study of JMCSs indicated an expression of collagen I, collagen IV, elastin, and fibronectin, which are important vascular ECM proteins. Most notably, the subsequent exposure of fused tissue sheets composed of JMCSs to magnetic forces did not hinder the production of these key proteins. Quantitative results demonstrate that cyclic longitudinal stretching of the tissue sheets mediated by these magnetic forces increased the Young’s modulus and induced collagen fiber alignment over a seven day period, when compared to statically conditioned controls. Specifically, the elastin and collagen content of these dynamically-conditioned sheets were 35- and three-fold greater, respectively, at seven days compared to the statically-conditioned controls at three days. These findings indicate the potential of using magnetic forces in tissue maturation, specifically through the cyclic longitudinal stretching of tissues.

  7. Cortical bone growth and maturational changes in dwarf rats induced by recombinant human growth hormone

    Science.gov (United States)

    Martinez, D. A.; Orth, M. W.; Carr, K. E.; Vanderby, R. Jr; Vailas, A. C.

    1996-01-01

    The growth hormone (GH)-deficient dwarf rat was used to investigate recombinant human (rh) GH-induced bone formation and to determine whether rhGH facilitates simultaneous increases in bone formation and bone maturation during rapid growth. Twenty dwarf rats, 37 days of age, were randomly assigned to dwarf plus rhGH (GH; n = 10) and dwarf plus vehicle (n = 10) groups. The GH group received 1.25 mg rhGH/kg body wt two times daily for 14 days. Biochemical, morphological, and X-ray diffraction measurements were performed on the femur middiaphysis. rhGH stimulated new bone growth in the GH group, as demonstrated by significant increases (P < 0.05) in longitudinal bone length (6%), middiaphyseal cross-sectional area (20%), and the amount of newly accreted bone collagen (28%) in the total pool of middiaphyseal bone collagen. Cortical bone density, mean hydroxyapatite crystal size, and the calcium and collagen contents (microgram/mm3) were significantly smaller in the GH group (P < 0.05). Our findings suggest that the processes regulating new collagen accretion, bone collagen maturation, and mean hydroxyapatite crystal size may be independently regulated during rapid growth.

  8. Collagen and elastin cross-linking is altered during aberrant late lung development associated with hyperoxia.

    Science.gov (United States)

    Mižíková, Ivana; Ruiz-Camp, Jordi; Steenbock, Heiko; Madurga, Alicia; Vadász, István; Herold, Susanne; Mayer, Konstantin; Seeger, Werner; Brinckmann, Jürgen; Morty, Rory E

    2015-06-01

    Maturation of the lung extracellular matrix (ECM) plays an important role in the formation of alveolar gas exchange units. A key step in ECM maturation is cross-linking of collagen and elastin, which imparts stability and functionality to the ECM. During aberrant late lung development in bronchopulmonary dysplasia (BPD) patients and animal models of BPD, alveolarization is blocked, and the function of ECM cross-linking enzymes is deregulated, suggesting that perturbed ECM cross-linking may impact alveolarization. In a hyperoxia (85% O2)-based mouse model of BPD, blunted alveolarization was accompanied by alterations to lung collagen and elastin levels and cross-linking. Total collagen levels were increased (by 63%). The abundance of dihydroxylysinonorleucine collagen cross-links and the dihydroxylysinonorleucine-to-hydroxylysinonorleucine ratio were increased by 11 and 18%, respectively, suggestive of a profibrotic state. In contrast, insoluble elastin levels and the abundance of the elastin cross-links desmosine and isodesmosine in insoluble elastin were decreased by 35, 30, and 21%, respectively. The lung collagen-to-elastin ratio was threefold increased. Treatment of hyperoxia-exposed newborn mice with the lysyl oxidase inhibitor β-aminopropionitrile partially restored normal collagen levels, normalized the dihydroxylysinonorleucine-to-hydroxylysinonorleucine ratio, partially normalized desmosine and isodesmosine cross-links in insoluble elastin, and partially restored elastin foci structure in the developing septa. However, β-aminopropionitrile administration concomitant with hyperoxia exposure did not improve alveolarization, evident from unchanged alveolar surface area and alveoli number, and worsened septal thickening (increased by 12%). These data demonstrate that collagen and elastin cross-linking are perturbed during the arrested alveolarization of developing mouse lungs exposed to hyperoxia. Copyright © 2015 the American Physiological Society.

  9. Complete Histological Resolution of Collagenous Sprue

    Directory of Open Access Journals (Sweden)

    Hugh J Freeman

    2004-01-01

    Full Text Available A 65-year-old woman developed a watery diarrhea syndrome with collagenous colitis. Later, weight loss and hypoalbuminemia were documented. This prompted small bowel biopsies that showed pathological changes of collagenous sprue. An apparent treatment response to a gluten-free diet and prednisone resulted in reduced diarrhea, weight gain and normalization of serum albumin. Later repeated biopsies from multiple small and large bowel sites over a period of over three years, however, showed reversion to normal small intestinal mucosa but persistent collagenous colitis. These results indicate that collagenous inflammatory disease may be a far more extensive process in the gastrointestinal tract than is currently appreciated. Moreover, collagenous colitis may be a clinical signal that occult small intestinal disease is present. Finally, collagenous sprue may, in some instances, be a completely reversible small intestinal disorder.

  10. Cortical bone growth and maturational changes in dwarf rats induced by recombinant human growth hormone

    Science.gov (United States)

    Martinez, D. A.; Orth, M. W.; Carr, K. E.; Vanderby, R. Jr; Vailas, A. C.

    1996-01-01

    The growth hormone (GH)-deficient dwarf rat was used to investigate recombinant human (rh) GH-induced bone formation and to determine whether rhGH facilitates simultaneous increases in bone formation and bone maturation during rapid growth. Twenty dwarf rats, 37 days of age, were randomly assigned to dwarf plus rhGH (GH; n = 10) and dwarf plus vehicle (n = 10) groups. The GH group received 1.25 mg rhGH/kg body wt two times daily for 14 days. Biochemical, morphological, and X-ray diffraction measurements were performed on the femur middiaphysis. rhGH stimulated new bone growth in the GH group, as demonstrated by significant increases (P bone length (6%), middiaphyseal cross-sectional area (20%), and the amount of newly accreted bone collagen (28%) in the total pool of middiaphyseal bone collagen. Cortical bone density, mean hydroxyapatite crystal size, and the calcium and collagen contents (microgram/mm3) were significantly smaller in the GH group (P bone collagen maturation, and mean hydroxyapatite crystal size may be independently regulated during rapid growth.

  11. Deficiency of CRTAP in non-lethal recessive osteogenesis imperfecta reduces collagen deposition into matrix.

    Science.gov (United States)

    Valli, M; Barnes, A M; Gallanti, A; Cabral, W A; Viglio, S; Weis, M A; Makareeva, E; Eyre, D; Leikin, S; Antoniazzi, F; Marini, J C; Mottes, M

    2012-11-01

    Deficiency of any component of the ER-resident collagen prolyl 3-hydroxylation complex causes recessive osteogenesis imperfecta (OI). The complex modifies the α1(I)Pro986 residue and contains cartilage-associated protein (CRTAP), prolyl 3-hydroxylase 1 (P3H1) and cyclophilin B (CyPB). Fibroblasts normally secrete about 10% of CRTAP. Most CRTAP mutations cause a null allele and lethal type VII OI. We identified a 7-year-old Egyptian boy with non-lethal type VII OI and investigated the effects of his null CRTAP mutation on collagen biochemistry, the prolyl 3-hydroxylation complex, and collagen in extracellular matrix. The proband is homozygous for an insertion/deletion in CRTAP (c.118_133del16insTACCC). His dermal fibroblasts synthesize fully overmodified type I collagen, and 3-hydroxylate only 5% of α1(I)Pro986. CRTAP transcripts are 10% of control. CRTAP protein is absent from proband cells, with residual P3H1 and normal CyPB levels. Dermal collagen fibril diameters are significantly increased. By immunofluorescence of long-term cultures, we identified a severe deficiency (10-15% of control) of collagen deposited in extracellular matrix, with disorganization of the minimal fibrillar network. Quantitative pulse-chase experiments corroborate deficiency of matrix deposition, rather than increased matrix turnover. We conclude that defects of extracellular matrix, as well as intracellular defects in collagen modification, contribute to the pathology of type VII OI. © 2011 John Wiley & Sons A/S.

  12. GH receptor blocker administration and muscle-tendon collagen synthesis in humans

    DEFF Research Database (Denmark)

    Nielsen, Rie Harboe; Doessing, Simon; Goto, Kazushige

    2011-01-01

    The growth hormone (GH)/insulin-like growth factor-I (IGF-I) axis stimulates collagen synthesis in tendon and skeletal muscle, but no studies have investigated the effect of reducing IGF-I on collagen synthesis in healthy humans.......The growth hormone (GH)/insulin-like growth factor-I (IGF-I) axis stimulates collagen synthesis in tendon and skeletal muscle, but no studies have investigated the effect of reducing IGF-I on collagen synthesis in healthy humans....

  13. Comparative proteomic analysis of normal and collagen IX null mouse cartilage reveals altered extracellular matrix composition and novel components of the collagen IX interactome.

    Science.gov (United States)

    Brachvogel, Bent; Zaucke, Frank; Dave, Keyur; Norris, Emma L; Stermann, Jacek; Dayakli, Münire; Koch, Manuel; Gorman, Jeffrey J; Bateman, John F; Wilson, Richard

    2013-05-10

    Collagen IX is an integral cartilage extracellular matrix component important in skeletal development and joint function. Proteomic analysis and validation studies revealed novel alterations in collagen IX null cartilage. Matrilin-4, collagen XII, thrombospondin-4, fibronectin, βig-h3, and epiphycan are components of the in vivo collagen IX interactome. We applied a proteomics approach to advance our understanding of collagen IX ablation in cartilage. The cartilage extracellular matrix is essential for endochondral bone development and joint function. In addition to the major aggrecan/collagen II framework, the interacting complex of collagen IX, matrilin-3, and cartilage oligomeric matrix protein (COMP) is essential for cartilage matrix stability, as mutations in Col9a1, Col9a2, Col9a3, Comp, and Matn3 genes cause multiple epiphyseal dysplasia, in which patients develop early onset osteoarthritis. In mice, collagen IX ablation results in severely disturbed growth plate organization, hypocellular regions, and abnormal chondrocyte shape. This abnormal differentiation is likely to involve altered cell-matrix interactions but the mechanism is not known. To investigate the molecular basis of the collagen IX null phenotype we analyzed global differences in protein abundance between wild-type and knock-out femoral head cartilage by capillary HPLC tandem mass spectrometry. We identified 297 proteins in 3-day cartilage and 397 proteins in 21-day cartilage. Components that were differentially abundant between wild-type and collagen IX-deficient cartilage included 15 extracellular matrix proteins. Collagen IX ablation was associated with dramatically reduced COMP and matrilin-3, consistent with known interactions. Matrilin-1, matrilin-4, epiphycan, and thrombospondin-4 levels were reduced in collagen IX null cartilage, providing the first in vivo evidence for these proteins belonging to the collagen IX interactome. Thrombospondin-4 expression was reduced at the mRNA level

  14. Bone Collagen: New Clues to its Mineralization Mechanism From Recessive Osteogenesis Imperfecta

    Science.gov (United States)

    Eyre, David R.; Ann Weis, Mary

    2013-01-01

    Until 2006 the only mutations known to cause osteogenesis imperfecta (OI) were in the two genes coding for type I collagen chains. These dominant mutations affecting the expression or primary sequence of collagen α1(I) and α2(I) chains account for over 90% of OI cases. Since then a growing list of mutant genes causing the 5–10% of recessive cases has rapidly emerged. They include CRTAP, LEPRE1 and PPIB, which encode three proteins forming the prolyl 3-hydroxylase complex; PLOD2 and FKBP10, which encode respectively lysyl hydroxylase 2 and a foldase required for its activity in forming mature cross-links in bone collagen; SERPIN H1, which encodes the collagen chaperone HSP47; SERPIN F1, which encodes pigment epithelium-derived factor required for osteoid mineralization; and BMP1, which encodes the type I procollagen C-propeptidase. All cause fragile bone in infancy, which can include over-mineralization or under-mineralization defects as well as abnormal collagen post-translational modifications. Consistently both dominant and recessive variants lead to abnormal cross-linking chemistry in bone collagen. These recent discoveries strengthen the potential for a common pathogenic mechanism of misassembled collagen fibrils. Of the new genes identified, eight encode proteins required for collagen post-translational modification, chaperoning of newly synthesized collagen chains into native molecules or transport through the endoplasmic reticulum and Golgi for polymerization, cross-linking and mineralization. In reviewing these findings, we conclude that a common theme is emerging in the pathogenesis of brittle bone disease of mishandled collagen assembly with important insights on post-translational features of bone collagen that have evolved to optimize it as a biomineral template. PMID:23508630

  15. Morphometric changes in the aortic arch with advancing age in fetal to mature thoroughbred horses.

    Science.gov (United States)

    Endoh, Chihiro; Matsuda, Kazuya; Okamoto, Minoru; Tsunoda, Nobuo; Taniyama, Hiroyuki

    2017-03-28

    Aortic rupture is a well recognized cause of sudden death in thoroughbred horses. Some microscopic lesions, such as those caused by cystic medial necrosis and medionecrosis, can lead to aortic rupture. However, these microscopic lesions are also observed in normal horses. On the other hand, a previous study of aortic rupture suggested that underlying elastin and collagen deposition disorders might be associated with aortic rupture. Therefore, the purpose of this study was to compare the structural components of the tunica media of the aortic arch, which is composed of elastin, collagen, smooth muscle cells and mucopolysaccharides (MPS), in fetal to mature thoroughbred horses. The percentage area of elastin was greatest in the young horses and subsequently decreased with aging. The percentage area of collagen increased with aging, and the elderly horses (aged ≥20) exhibited significantly higher percentage areas of collagen than the young horses. The percentage area of smooth muscle cells did not change with age. The percentage area of MPS was inversely proportional to the percentage area of elastin. The fetuses exhibited a markedly larger percentage area of MPS than the mature horses. We concluded that the medial changes seen in the aortic arch, which included a reduction in the amount of elastin and increases in the amounts of collagen and MPS, were age-related variations.

  16. The effects of bone marrow aspirate, bone graft, and collagen composites on fixation of titanium implants

    DEFF Research Database (Denmark)

    Babiker, Hassan; Ding, Ming; Sandri, Monica

    2012-01-01

    Replacement of extensive local bone loss especially in revision joint arthroplasty and spine fusion is a significant clinical challenge. Allograft and autograft have been considered as gold standards for bone replacement. However, there are several disadvantages such as donor site pain, bacterial...... contamination, and non union as well as the potential risk of disease transmission. Hydroxyapatite and collagen composites (HA/Collagen) have the potential in mimicking and replacing skeletal bones. This study attempted to determine the effects of newly developed HA/Collagen-composites with and without bone...... marrow aspirate (BMA) on enhancement of bone implant fixation. Method: Titanium alloy implants were inserted into bilateral femoral condyles of eight skeletally mature sheep, four implants per sheep. The implant had a circumferential gap of 2 mm. The gap was filled with: HA/Collagen; HA...

  17. Formation and maturation of the murine meniscus.

    Science.gov (United States)

    Gamer, Laura W; Xiang, Lin; Rosen, Vicki

    2017-08-01

    Meniscal injuries are commonplace, but current surgical repair procedures do not prevent degenerative joint changes that occur after meniscal injury and often lead to osteoarthritis. Successful tissue regeneration in adults often recapitulates events that occur during embryogenesis, suggesting that understanding the regulatory pathways controlling these early processes may provide clues for developing strategies for tissue repair. While the mouse is now widely used to study joint diseases, detailed knowledge of the basic biology of murine meniscus is not readily available. Here, we examine meniscal morphogenesis in mice from embryonic day 13.5 (E13.5) to 6 months of age using histology, in situ hybridization, and immunohistochemistry. We find that the meniscus is a morphologically distinct structure at E16 when it begins to regionalize. At birth, the meniscus has a distinguishable inner, avascular, round chondrocyte cell region, an outer, vascularized, fibroblast cell region, and a surface superficial zone. Maturation begins at 2 weeks of age when the meniscus expresses type I collagen, type II collagen, type X collagen, and MMP-13 in specific patterns. By 4 weeks of age, small areas of ossification are detected in the anterior meniscal horn, a common feature seen in rodents. Maturation appears complete at 8 weeks of age, when the meniscus resembles the adult structure complete with ossifying tissue that contains bone marrow like areas. Our results provide, the first systematic study of mouse meniscal development and will be a valuable tool for analyzing murine models of knee joint formation and disease. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1683-1689, 2017. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  18. Discoidin Domain Receptor 1 Mediates Myosin-Dependent Collagen Contraction

    Directory of Open Access Journals (Sweden)

    Nuno M. Coelho

    2017-02-01

    Full Text Available Discoidin domain receptor 1 (DDR1 is a tyrosine kinase collagen adhesion receptor that mediates cell migration through association with non-muscle myosin IIA (NMIIA. Because DDR1 is implicated in cancer fibrosis, we hypothesized that DDR1 interacts with NMIIA to enable collagen compaction by traction forces. Mechanical splinting of rat dermal wounds increased DDR1 expression and collagen alignment. In periodontal ligament of DDR1 knockout mice, collagen mechanical reorganization was reduced >30%. Similarly, cultured cells with DDR1 knockdown or expressing kinase-deficient DDR1d showed 50% reduction of aligned collagen. Tractional remodeling of collagen was dependent on DDR1 clustering, activation, and interaction of the DDR1 C-terminal kinase domain with NMIIA filaments. Collagen remodeling by traction forces, DDR1 tyrosine phosphorylation, and myosin light chain phosphorylation were increased on stiff versus soft substrates. Thus, DDR1 clustering, activation, and interaction with NMIIA filaments enhance the collagen tractional remodeling that is important for collagen compaction in fibrosis.

  19. Insoluble elastin reduces collagen scaffold stiffness, improves viscoelastic properties, and induces a contractile phenotype in smooth muscle cells.

    Science.gov (United States)

    Ryan, Alan J; O'Brien, Fergal J

    2015-12-01

    Biomaterials with the capacity to innately guide cell behaviour while also displaying suitable mechanical properties remain a challenge in tissue engineering. Our approach to this has been to utilise insoluble elastin in combination with collagen as the basis of a biomimetic scaffold for cardiovascular tissue engineering. Elastin was found to markedly alter the mechanical and biological response of these collagen-based scaffolds. Specifically, during extensive mechanical assessment elastin was found to reduce the specific tensile and compressive moduli of the scaffolds in a concentration dependant manner while having minimal effect on scaffold microarchitecture with both scaffold porosity and pore size still within the ideal ranges for tissue engineering applications. However, the viscoelastic properties were significantly improved with elastin addition with a 3.5-fold decrease in induced creep strain, a 6-fold increase in cyclical strain recovery, and with a four-parameter viscoelastic model confirming the ability of elastin to confer resistance to long term deformation/creep. Furthermore, elastin was found to result in the modulation of SMC phenotype towards a contractile state which was determined via reduced proliferation and significantly enhanced expression of early (α-SMA), mid (calponin), and late stage (SM-MHC) contractile proteins. This allows the ability to utilise extracellular matrix proteins alone to modulate SMC phenotype without any exogenous factors added. Taken together, the ability of elastin to alter the mechanical and biological response of collagen scaffolds has led to the development of a biomimetic biomaterial highly suitable for cardiovascular tissue engineering. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Properties of Chitosan-Laminated Collagen Film

    Directory of Open Access Journals (Sweden)

    Vera Lazić

    2012-01-01

    Full Text Available The objective of this study is to determine physical, mechanical and barrier properties of chitosan-laminated collagen film. Commercial collagen film, which is used for making collagen casings for dry fermented sausage production, was laminated with chitosan film layer in order to improve the collagen film barrier properties. Different volumes of oregano essential oil per 100 mL of filmogenic solution were added to chitosan film layer: 0, 0.2, 0.4, 0.6 and 0.8 mL to optimize water vapour barrier properties. Chitosan layer with 0.6 or 0.8 % of oregano essential oil lowered the water vapour transmission rate to (1.85±0.10·10–6 and (1.78±0.03·10–6 g/(m2·s·Pa respectively, compared to collagen film ((2.51±0.05·10–6 g/(m2·s·Pa. However, chitosan-laminated collagen film did not show improved mechanical properties compared to the collagen one. Tensile strength decreased from (54.0±3.8 MPa of the uncoated collagen film to (36.3±4.0 MPa when the film was laminated with 0.8 % oregano essential oil chitosan layer. Elongation at break values of laminated films did not differ from those of collagen film ((18.4±2.7 %. Oxygen barrier properties were considerably improved by lamination. Oxygen permeability of collagen film was (1806.8±628.0·10–14 cm3/(m·s·Pa and values of laminated films were below 35·10–14 cm3/(m·s·Pa. Regarding film appearance and colour, lamination with chitosan reduced lightness (L and yellowness (+b of collagen film, while film redness (+a increased. These changes were not visible to the naked eye.

  1. The effect of mechanical stimulation on the maturation of TDSCs-poly(L-lactide-co-e-caprolactone)/collagen scaffold constructs for tendon tissue engineering.

    Science.gov (United States)

    Xu, Yuan; Dong, Shiwu; Zhou, Qiang; Mo, Xiumei; Song, Lei; Hou, Tianyong; Wu, Jinglei; Li, Songtao; Li, Yudong; Li, Pei; Gan, Yibo; Xu, Jianzhong

    2014-03-01

    Mechanical stimulation plays an important role in the development and remodeling of tendons. Tendon-derived stem cells (TDSCs) are an attractive cell source for tendon injury and tendon tissue engineering. However, these cells have not yet been fully explored for tendon tissue engineering application, and there is also lack of understanding to the effect of mechanical stimulation on the maturation of TDSCs-scaffold construct for tendon tissue engineering. In this study, we assessed the efficacy of TDSCs in a poly(L-lactide-co-ε-caprolactone)/collagen (P(LLA-CL)/Col) scaffold under mechanical stimulation for tendon tissue engineering both in vitro and in vivo, and evaluated the utility of the transplanted TDSCs-scaffold construct to promote rabbit patellar tendon defect regeneration. TDSCs displayed good proliferation and positive expressed tendon-related extracellular matrix (ECM) genes and proteins under mechanical stimulation in vitro. After implanting into the nude mice, the fluorescence imaging indicated that TDSCs had long-term survival, and the macroscopic evaluation, histology and immunohistochemistry examinations showed high-quality neo-tendon formation under mechanical stimulation in vivo. Furthermore, the histology, immunohistochemistry, collagen content assay and biomechanical testing data indicated that dynamically cultured TDSCs-scaffold construct could significantly contributed to tendon regeneration in a rabbit patellar tendon window defect model. TDSCs have significant potential to be used as seeded cells in the development of tissue-engineered tendons, which can be successfully fabricated through seeding of TDSCs in a P(LLA-CL)/Col scaffold followed by mechanical stimulation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Type VII Collagen is Enriched in the Enamel Organic Matrix Associated with the Dentin-Enamel Junction of Mature Human Teeth

    OpenAIRE

    McGuire, Jacob D.; Walker, Mary P.; Mousa, Ahmad; Wang, Yong; Gorski, Jeff P.

    2014-01-01

    The inner enamel region of erupted teeth is known to exhibit higher fracture toughness and crack growth resistance than bulk phase enamel. However, an explanation for this behavior has been hampered by the lack of compositional information for the residual enamel organic matrix. Since enamel-forming ameloblasts are known to express type VII collagen and type VII collagen null mice display abnormal amelogenesis, the aim of this study was to determine whether type VII collagen is a component of...

  3. Collagen fibrillogenesis: fibronectin, integrins, and minor collagens as organizers and nucleators.

    Science.gov (United States)

    Kadler, Karl E; Hill, Adele; Canty-Laird, Elizabeth G

    2008-10-01

    Collagens are triple helical proteins that occur in the extracellular matrix (ECM) and at the cell-ECM interface. There are more than 30 collagens and collagen-related proteins but the most abundant are collagens I and II that exist as D-periodic (where D = 67 nm) fibrils. The fibrils are of broad biomedical importance and have central roles in embryogenesis, arthritis, tissue repair, fibrosis, tumor invasion, and cardiovascular disease. Collagens I and II spontaneously form fibrils in vitro, which shows that collagen fibrillogenesis is a selfassembly process. However, the situation in vivo is not that simple; collagen I-containing fibrils do not form in the absence of fibronectin, fibronectin-binding and collagen-binding integrins, and collagen V. Likewise, the thin collagen II-containing fibrils in cartilage do not form in the absence of collagen XI. Thus, in vivo, cellular mechanisms are in place to control what is otherwise a protein self-assembly process. This review puts forward a working hypothesis for how fibronectin and integrins (the organizers) determine the site of fibril assembly, and collagens V and XI (the nucleators) initiate collagen fibrillogenesis.

  4. Age-related effect on the concentration of collagen crosslinks in human osteonal and interstitial bone tissue.

    Science.gov (United States)

    Nyman, Jeffry S; Roy, Anuradha; Acuna, Rae L; Gayle, Heather J; Reyes, Michael J; Tyler, Jerrod H; Dean, David D; Wang, Xiaodu

    2006-12-01

    Collagen crosslinks are important to the quality of bone and may be contributors to the age-related increase in bone fracture. This study was performed to investigate whether age and gender effects on collagen crosslinks are similar in osteonal and interstitial bone tissues. Forty human cadaveric femurs were collected and divided into two age groups: middle-aged (42-63 years of age) and elderly (69-90 years of age) with ten males and ten females in each group (n = 10). Micro-cores of bone tissue from both secondary osteons and interstitial regions in the medial quadrant of the diaphysis were extracted using a custom-modified, computer-controlled milling machine. The bone specimens were then analyzed using high performance liquid chromatography to determine the effects of age and gender on the concentration of mature, enzymatic crosslinks (hydroxylysyl-pyridinoline-HP and lysyl-pyridinoline-LP) and a non-enzymatic crosslink (pentosidine-PE) at these two microstructural sites. The results indicate that age has a significant effect on the concentration of LP and PE, while gender has a significant effect on HP and LP. In addition, the concentration of the crosslinks in the secondary osteons is significantly different from that in the interstitial bone regions. These results suggest that the amount of non-enzymatic crosslinking may increase while that of mature enzymatic crosslinking may decrease with age. Such changes could potentially reduce the inherent quality of the bone tissue in the elderly skeleton.

  5. Ingestion of BioCell Collagen®, a novel hydrolyzed chicken sternal cartilage extract; enhanced blood microcirculation and reduced facial aging signs

    Directory of Open Access Journals (Sweden)

    Schwartz SR

    2012-07-01

    Full Text Available Stephen R Schwartz,1 Joosang Park21International Research Services Inc, Port Chester, NY, USA; 2BioCell Technology, LLC, Newport Beach, CA, USAAbstract: Skin aging and its clinical manifestation is associated with altered molecular metabolism in the extracellular matrix of the dermis. In a pilot open-label study, we investigated the effect of a dietary supplement, BioCell Collagen® (BCC, which contains a naturally occurring matrix of hydrolyzed collagen type II and low-molecular-weight hyaluronic acid and chondroitin sulfate, in 26 healthy females who displayed visible signs of natural and photoaging in the face. Daily supplementation with 1 g of BCC for 12 weeks led to a significant reduction of skin dryness/scaling (76%, P = 0.002 and global lines/wrinkles (13.2%, P = 0.028 as measured by visual/tactile score. Additionally, a significant increase in the content of hemoglobin (17.7%, P = 0.018 and collagen (6.3%, P = 0.002 in the skin dermis was observed after 6 weeks of supplementation. At the end of the study, the increase in hemoglobin remained significant (15%, P = 0.008, while the increase in collagen content was maintained, but the difference from baseline was not significant (3.5%, P = 0.134. This study provides preliminary data suggesting that dietary supplementation with BCC elicits several physiological events which can be harnessed to counteract natural photoaging processes to reduce visible aging signs in the human face. A controlled study is necessary to verify these observations.Keywords: BioCell Collagen, chicken sternal cartilage extract, hydrolyzed collagen type II, low-molecular-weight hyaluronic acid, skin aging

  6. Collagen V-induced nasal tolerance downregulates pulmonary collagen mRNA gene and TGF-beta expression in experimental systemic sclerosis

    Directory of Open Access Journals (Sweden)

    Parra Edwin R

    2010-01-01

    Full Text Available Abstract Background The purpose of this study was to evaluate collagen deposition, mRNA collagen synthesis and TGF-beta expression in the lung tissue in an experimental model of scleroderma after collagen V-induced nasal tolerance. Methods Female New Zealand rabbits (N = 12 were immunized with 1 mg/ml of collagen V in Freund's adjuvant (IM. After 150 days, six immunized animals were tolerated by nasal administration of collagen V (25 μg/day (IM-TOL daily for 60 days. The collagen content was determined by morphometry, and mRNA expressions of types I, III and V collagen were determined by Real-time PCR. The TGF-beta expression was evaluated by immunostaining and quantified by point counting methods. To statistic analysis ANOVA with Bonferroni test were employed for multiple comparison when appropriate and the level of significance was determined to be p Results IM-TOL, when compared to IM, showed significant reduction in total collagen content around the vessels (0.371 ± 0.118 vs. 0.874 ± 0.282, p p p = 0.026. The lung tissue of IM-TOL, when compared to IM, showed decreased immunostaining of types I, III and V collagen, reduced mRNA expression of types I (0.10 ± 0.07 vs. 1.0 ± 0.528, p = 0.002 and V (1.12 ± 0.42 vs. 4.74 ± 2.25, p = 0.009 collagen, in addition to decreased TGF-beta expression (p Conclusions Collagen V-induced nasal tolerance in the experimental model of SSc regulated the pulmonary remodeling process, inhibiting collagen deposition and collagen I and V mRNA synthesis. Additionally, it decreased TGF-beta expression, suggesting a promising therapeutic option for scleroderma treatment.

  7. Evaluating adhesion reduction efficacy of type I/III collagen membrane and collagen-GAG resorbable matrix in primary flexor tendon repair in a chicken model.

    Science.gov (United States)

    Turner, John B; Corazzini, Rubina L; Butler, Timothy J; Garlick, David S; Rinker, Brian D

    2015-09-01

    Reduction of peritendinous adhesions after injury and repair has been the subject of extensive prior investigation. The application of a circumferential barrier at the repair site may limit the quantity of peritendinous adhesions while preserving the tendon's innate ability to heal. The authors compare the effectiveness of a type I/III collagen membrane and a collagen-glycosaminoglycan (GAG) resorbable matrix in reducing tendon adhesions in an experimental chicken model of a "zone II" tendon laceration and repair. In Leghorn chickens, flexor tendons were sharply divided using a scalpel and underwent repair in a standard fashion (54 total repairs). The sites were treated with a type I/III collagen membrane, collagen-GAG resorbable matrix, or saline in a randomized fashion. After 3 weeks, qualitative and semiquantitative histological analysis was performed to evaluate the "extent of peritendinous adhesions" and "nature of tendon healing." The data was evaluated with chi-square analysis and unpaired Student's t test. For both collagen materials, there was a statistically significant improvement in the degree of both extent of peritendinous adhesions and nature of tendon healing relative to the control group. There was no significant difference seen between the two materials. There was one tendon rupture observed in each treatment group. Surgical handling characteristics were subjectively favored for type I/III collagen membrane over the collagen-GAG resorbable matrix. The ideal method of reducing clinically significant tendon adhesions after injury remains elusive. Both materials in this study demonstrate promise in reducing tendon adhesions after flexor tendon repair without impeding tendon healing in this model.

  8. Collagenous sprue

    DEFF Research Database (Denmark)

    Soendergaard, Christoffer; Riis, Lene Buhl; Nielsen, Ole Haagen

    2014-01-01

    Collagenous sprue is a rare clinicopathological condition of the small bowel. It is characterised by abnormal subepithelial collagen deposition and is typically associated with malabsorption, diarrhoea and weight loss. The clinical features of collagenous sprue often resemble those of coeliac...... disease and together with frequent histological findings like mucosal thinning and intraepithelial lymphocytosis the diagnosis may be hard to reach without awareness of this condition. While coeliac disease is treated using gluten restriction, collagenous sprue is, however, not improved...... by this intervention. In cases of diet-refractory 'coeliac disease' it is therefore essential to consider collagenous sprue to initiate treatment at an early stage to prevent the fibrotic progression. Here, we report a case of a 78-year-old man with collagenous sprue and present the clinical and histological...

  9. RESEARCH ON REDUCING THE LENGTH OF MATURATION IN USING ELECTROSTIMULATION OF BEEF

    Directory of Open Access Journals (Sweden)

    FELICIA DIMA

    2014-01-01

    Full Text Available From technological point of view in the food industry has been obtained meat maturation using different methods: storage under controlled conditions, the use of enzymes or mechanical equipment tenderization musculature. Was also reported that electrical stimulation of carcasses immediately after slaughter procedure can increase the degree of maturation of the meat. Meat and meat products are subjected to reduce during chilling and freezing temperatures principal for reasons of conservation or meat packing. Particular attention must be paid to temperature control, especially before rigor mortis, knowing that too rapid cooling could lead to a cold shortening or thaw rigor during the thaw. During application of the electrostimulation process, occur physical and biochemical changes, meaning that this one has some effect on the technological properties of meat. It has obtained a reduction of maturation of beef with the electrostimulation of half-carcasses of cattle, verified by the increase of non-protein nitrogen in meat. The same time it has been considerably improved the texture and firmness of the muscles, which allows the use of beef in fast food products (ready to cook. Researches have revealed the conclusion that the use of the portable device for electrostimulation, in the described conditions, has induced positive transformations improving meat quality of adult beef.

  10. Testes and brain gene expression in precocious male and adult maturing Atlantic salmon (Salmo salar

    Directory of Open Access Journals (Sweden)

    Houeix Benoit

    2010-03-01

    Full Text Available Abstract Background The male Atlantic salmon generally matures in fresh water upon returning after one or several years at sea. Some fast-growing male parr develop an alternative life strategy where they sexually mature before migrating to the oceans. These so called 'precocious' parr or 'sneakers' can successfully fertilise adult female eggs and so perpetuate their line. We have used a custom-built cDNA microarray to investigate gene expression changes occurring in the salmon gonad and brain associated with precocious maturation. The microarray has been populated with genes selected specifically for involvement in sexual maturation (precocious and adult and in the parr-smolt transformation. Results Immature and mature parr collected from a hatchery-reared stock in January were significantly different in weight, length and condition factor. Changes in brain expression were small - never more than 2-fold on the microarray, and down-regulation of genes was much more pronounced than up-regulation. Significantly changing genes included isotocin, vasotocin, cathepsin D, anamorsin and apolipoprotein E. Much greater changes in expression were seen in the testes. Among those genes in the testis with the most significant changes in expression were anti-Mullerian hormone, collagen 1A, and zinc finger protein (Zic1, which were down-regulated in precocity and apolipoproteins E and C-1, lipoprotein lipase and anti-leukoproteinase precursor which were up-regulated in precocity. Expression changes of several genes were confirmed in individual fish by quantitative PCR and several genes (anti-Mullerian hormone, collagen 1A, beta-globin and guanine nucleotide binding protein (G protein beta polypeptide 2-like 1 (GNB2L1 were also examined in adult maturing testes. Down-regulation of anti-Mullerian hormone was judged to be greater than 160-fold for precocious males and greater than 230-fold for November adult testes in comparison to July testes by this method. For

  11. Fracture mechanics of collagen fibrils

    DEFF Research Database (Denmark)

    Svensson, Rene B; Mulder, Hindrik; Kovanen, Vuokko

    2013-01-01

    Tendons are important load-bearing structures, which are frequently injured in both sports and work. Type I collagen fibrils are the primary components of tendons and carry most of the mechanical loads experienced by the tissue, however, knowledge of how load is transmitted between and within...... fibrils is limited. The presence of covalent enzymatic cross-links between collagen molecules is an important factor that has been shown to influence mechanical behavior of the tendons. To improve our understanding of how molecular bonds translate into tendon mechanics, we used an atomic force microscopy...... technique to measure the mechanical behavior of individual collagen fibrils loaded to failure. Fibrils from human patellar tendons, rat-tail tendons (RTTs), NaBH₄ reduced RTTs, and tail tendons of Zucker diabetic fat rats were tested. We found a characteristic three-phase stress-strain behavior in the human...

  12. Periostin in Mature Stage Localized Scleroderma.

    Science.gov (United States)

    Kim, Min-Woo; Park, Jung Tae; Kim, Jung Ho; Koh, Seong-Joon; Yoon, Hyun-Sun; Cho, Soyun; Park, Hyun-Sun

    2017-06-01

    Periostin is a novel matricellular protein expressed in many tissues, including bone, periodontal ligament, and skin. Although its expression is prominent in various fibrotic conditions, studies of periostin in localized scleroderma are rare. To investigate the expression of periostin and other molecules in localized scleroderma. A retrospective study of 14 patients with confirmed mature stage localized scleroderma was undertaken. Fourteen age-matched and biopsy site-matched subjects with normal skin were included as controls. Collagen fiber deposition, periostin, procollagen, transforming growth factor-β, and matrix metalloproteinase (MMP)-1 expression were assessed and compared between the two groups. Co-localization of α-smooth muscle actin and periostin was evaluated using confocal microscopy. Periostin was predominantly expressed along the dermo-epidermal junction in the controls. Conversely, patients with localized scleroderma demonstrated increased collagen fiber deposition and periostin expression that was more widely distributed along the entire dermis. MMP-1 staining showed increased expression in the epidermis and dermis of patients compared to scanty expression in the controls. A semi-quantitative evaluation showed a higher proportion of excessive collagen bundle deposition (57.1% vs. 7.1%, p =0.013), diffuse periostin positivity (42.9% vs. 0%, p =0.016), and moderate MMP-1 positivity (71.4% vs. 7.1%, p =0.001) in patients than in the controls. Compared to the controls, patients with localized scleroderma had enhanced periostin expression corresponding to increased collagen fiber deposition and unexpected overexpression of MMP-1. The results of this human in vivo study may implicate the pathogenesis of localized scleroderma.

  13. Chondrogenic properties of collagen type XI, a component of cartilage extracellular matrix.

    Science.gov (United States)

    Li, Ang; Wei, Yiyong; Hung, Clark; Vunjak-Novakovic, Gordana

    2018-08-01

    Cartilage extracellular matrix (ECM) has been used for promoting tissue engineering. However, the exact effects of ECM on chondrogenesis and the acting mechanisms are not well understood. In this study, we investigated the chondrogenic effects of cartilage ECM on human mesenchymal stem cells (MSCs) and identified the contributing molecular components. To this end, a preparation of articular cartilage ECM was supplemented to pellets of chondrogenically differentiating MSCs, pellets of human chondrocytes, and bovine articular cartilage explants to evaluate the effects on cell proliferation and the production of cartilaginous matrix. Selective enzymatic digestion and screening of ECM components were conducted to identify matrix molecules with chondrogenic properties. Cartilage ECM promoted MSC proliferation, production of cartilaginous matrix, and maturity of chondrogenic differentiation, and inhibited the hypertrophic differentiation of MSC-derived chondrocytes. Selective digestion of ECM components revealed a contributory role of collagens in promoting chondrogenesis. The screening of various collagen subtypes revealed strong chondrogenic effect of collagen type XI. Finally, collagen XI was found to promote production and inhibit degradation of cartilage matrix in human articular chondrocyte pellets and bovine articular cartilage explants. Our results indicate that cartilage ECM promotes chondrogenesis and inhibits hypertrophic differentiation in MSCs. Collagen type XI is the ECM component that has the strongest effects on enhancing the production and inhibiting the degradation of cartilage matrix. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Valve interstitial cell culture: Production of mature type I collagen and precise detection

    Czech Academy of Sciences Publication Activity Database

    Lišková, Jana; Hadraba, Daniel; Filová, Elena; Koňařík, M.; Pirk, J.; Jelen, K.; Bačáková, Lucie

    2017-01-01

    Roč. 80, č. 8 (2017), s. 936-942 ISSN 1059-910X R&D Projects: GA MŠk(CZ) LM2015062; GA MZd(CZ) NV15-29153A; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:67985823 Keywords : ascorbic acid * cell culture * collagen * fluorescent microscopy * porcine VIC * second harmonic generation Subject RIV: EI - Biotechnology ; Bionics OBOR OECD: Technologies involving the manipulation of cells, tissues, organs or the whole organism (assisted reproduction) Impact factor: 1.147, year: 2016

  15. The Chemical Chaperone, PBA, Reduces ER Stress and Autophagy and Increases Collagen IV α5 Expression in Cultured Fibroblasts From Men With X-Linked Alport Syndrome and Missense Mutations

    Directory of Open Access Journals (Sweden)

    Dongmao Wang

    2017-07-01

    Discussion: Sodium 4-phenylbutyrate increases collagen IV α5 mRNA levels, reduces ER stress and autophagy, and possibly facilitates collagen IV α5 extracellular transport. Whether these actions delay end-stage renal failure in men with X-linked Alport syndrome and missense mutations will only be determined with clinical trials.

  16. Stability and cellular responses to fluorapatite-collagen composites.

    Science.gov (United States)

    Yoon, Byung-Ho; Kim, Hae-Won; Lee, Su-Hee; Bae, Chang-Jun; Koh, Young-Hag; Kong, Young-Min; Kim, Hyoun-Ee

    2005-06-01

    Fluorapatite (FA)-collagen composites were synthesized via a biomimetic coprecipitation method in order to improve the structural stability and cellular responses. Different amounts of ammonium fluoride (NH4F), acting as a fluorine source for FA, were added to the precipitation of the composites. The precipitated composites were freeze-dried and isostatically pressed in a dense body. The added fluorine was incorporated nearly fully into the apatite structure (fluoridation), and a near stoichiometric FA-collagen composite was obtained with complete fluoridation. The freeze-dried composites had a typical biomimetic network, consisting of collagen fibers and precipitates of nano-sized apatite crystals. The human osteoblast-like cells on the FA-collagen composites exhibited significantly higher proliferation and differentiation (according to alkaline phosphatase activity) than those on the hydroxyapatite-collagen composite. These enhanced osteoblastic cell responses were attributed to the fluorine release and the reduced dissolution rate.

  17. Anabolic action of parathyroid hormone (PTH) does not compromise bone matrix mineral composition or maturation.

    Science.gov (United States)

    Vrahnas, Christina; Pearson, Thomas A; Brunt, Athena R; Forwood, Mark R; Bambery, Keith R; Tobin, Mark J; Martin, T John; Sims, Natalie A

    2016-12-01

    Intermittent administration of parathyroid hormone (PTH) is used to stimulate bone formation in patients with osteoporosis. A reduction in the degree of matrix mineralisation has been reported during treatment, which may reflect either production of undermineralised matrix or a greater proportion of new matrix within the bone samples assessed. To explore these alternatives, high resolution synchrotron-based Fourier Transform Infrared Microspectroscopy (sFTIRM) coupled with calcein labelling was used in a region of non-remodelling cortical bone to determine bone composition during anabolic PTH treatment compared with region-matched samples from controls. 8week old male C57BL/6 mice were treated with vehicle or 50μg/kg PTH, 5 times/week for 4weeks (n=7-9/group). Histomorphometry confirmed greater trabecular and periosteal bone formation and 3-point bending tests confirmed greater femoral strength in PTH-treated mice. Dual calcein labels were used to match bone regions by time-since-mineralisation (bone age) and composition was measured by sFTIRM in six 15μm 2 regions at increasing depth perpendicular to the most immature bone on the medial periosteal edge; this allowed in situ measurement of progressive changes in bone matrix during its maturation. The sFTIRM method was validated in vehicle-treated bones where the expected progressive increases in mineral:matrix ratio and collagen crosslink type ratio were detected with increasing bone maturity. We also observed a gradual increase in carbonate content that strongly correlated with an increase in longitudinal stretch of the collagen triple helix (amide I:amide II ratio). PTH treatment did not alter the progressive changes in any of these parameters from the periosteal edge through to the more mature bone. These data provide new information about how the bone matrix matures in situ and confirm that bone deposited during PTH treatment undergoes normal collagen maturation and normal mineral accrual. Copyright © 2016

  18. Tendon collagen synthesis declines with immobilization in elderly humans

    DEFF Research Database (Denmark)

    Dideriksen, Kasper; Boesen, Anders P; Reitelseder, Søren

    2017-01-01

    -80 yr) were randomly assigned to NSAIDs (ibuprofen 1,200 mg/day; Ibu) or placebo (Plc). One lower limb was immobilized in a cast for 2 wk and retrained for 6 wk. Tendon collagen protein synthesis, mechanical properties, size, expression of genes related to collagen turnover and remodeling, and signal...... intensity (from magnetic resonance imaging) were investigated. Tendon collagen synthesis decreased (P ... immobilization in both groups, whereas scleraxis mRNA decreased with inactivity in the Plc group only (P collagen protein synthesis decreased after 2 wk of immobilization, whereas tendon stiffness and modulus were only marginally reduced, and NSAIDs had no influence upon this...

  19. Pulmonary collagen metabolism in irradiated hamsters and those treated with corticosteroids

    International Nuclear Information System (INIS)

    Pickrell, J.A.; Straus, F.C.; Halliwell, W.H.; Jones, R.K.

    1976-01-01

    Syrian hamsters were exposed to 90 Y in fused aluminosilicate particles to produce pulmonary fibrosis. Irradiated hamsters and contols were treated with Depomedrol, arresting the developing fibrosis. All hamsters receiving steroid showed a reduced incorporation of 14 C-proline into noncollagen protein during the 3-19 wk period after exposure. Collagen synthesis relative to noncollagen protein synthesis was decreased five-fold in these animals at early times after exposure and during high steroid dosage, but had returned to control levels after considerable time at lower steroid dosage. Collagen synthesis in irradiated animals not receiving steroids was elevated during the same time period and collagen synthesis in irradiated hamsters treated with steroid was intermediate between that in radiation animals and in control or steroid animals. Collagen breakdown was elevated to the same level as in irradiated animals, and collagen content was normal and well below that of irradiated animals. These and previous data indicate that steroid treatment delays development of pulmonary fibrosis in animals irradiated with fibrogenic doses of 90 Y in fused aluminosilicate particles. Experiments incubating BAPN or Depomedrol with L-929 or WI-38 fibroblasts in vitro were performed to note any effect of these agents upon fibroblast proliferation, cellular collagen processing or collagen synthesis. Steroids frequently reduced fibroblast proliferation and altered cellular collagen processings to reflect an increased proportion of collagen breakdown products. These changes reflect the importance of fibroblast proliferation in developing pulmonary fibrosis

  20. Ingestion of BioCell Collagen(®), a novel hydrolyzed chicken sternal cartilage extract; enhanced blood microcirculation and reduced facial aging signs.

    Science.gov (United States)

    Schwartz, Stephen R; Park, Joosang

    2012-01-01

    Skin aging and its clinical manifestation is associated with altered molecular metabolism in the extracellular matrix of the dermis. In a pilot open-label study, we investigated the effect of a dietary supplement, BioCell Collagen(®) (BCC), which contains a naturally occurring matrix of hydrolyzed collagen type II and low-molecular-weight hyaluronic acid and chondroitin sulfate, in 26 healthy females who displayed visible signs of natural and photoaging in the face. Daily supplementation with 1 g of BCC for 12 weeks led to a significant reduction of skin dryness/scaling (76%, P = 0.002) and global lines/wrinkles (13.2%, P = 0.028) as measured by visual/tactile score. Additionally, a significant increase in the content of hemoglobin (17.7%, P = 0.018) and collagen (6.3%, P = 0.002) in the skin dermis was observed after 6 weeks of supplementation. At the end of the study, the increase in hemoglobin remained significant (15%, P = 0.008), while the increase in collagen content was maintained, but the difference from baseline was not significant (3.5%, P = 0.134). This study provides preliminary data suggesting that dietary supplementation with BCC elicits several physiological events which can be harnessed to counteract natural photoaging processes to reduce visible aging signs in the human face. A controlled study is necessary to verify these observations.

  1. Ingestion of BioCell Collagen®, a novel hydrolyzed chicken sternal cartilage extract; enhanced blood microcirculation and reduced facial aging signs

    Science.gov (United States)

    Schwartz, Stephen R; Park, Joosang

    2012-01-01

    Skin aging and its clinical manifestation is associated with altered molecular metabolism in the extracellular matrix of the dermis. In a pilot open-label study, we investigated the effect of a dietary supplement, BioCell Collagen® (BCC), which contains a naturally occurring matrix of hydrolyzed collagen type II and low-molecular-weight hyaluronic acid and chondroitin sulfate, in 26 healthy females who displayed visible signs of natural and photoaging in the face. Daily supplementation with 1 g of BCC for 12 weeks led to a significant reduction of skin dryness/scaling (76%, P = 0.002) and global lines/wrinkles (13.2%, P = 0.028) as measured by visual/tactile score. Additionally, a significant increase in the content of hemoglobin (17.7%, P = 0.018) and collagen (6.3%, P = 0.002) in the skin dermis was observed after 6 weeks of supplementation. At the end of the study, the increase in hemoglobin remained significant (15%, P = 0.008), while the increase in collagen content was maintained, but the difference from baseline was not significant (3.5%, P = 0.134). This study provides preliminary data suggesting that dietary supplementation with BCC elicits several physiological events which can be harnessed to counteract natural photoaging processes to reduce visible aging signs in the human face. A controlled study is necessary to verify these observations. PMID:22956862

  2. A collagen-based scaffold delivering exogenous microrna-29B to modulate extracellular matrix remodeling.

    Science.gov (United States)

    Monaghan, Michael; Browne, Shane; Schenke-Layland, Katja; Pandit, Abhay

    2014-04-01

    Directing appropriate extracellular matrix remodeling is a key aim of regenerative medicine strategies. Thus, antifibrotic interfering RNA (RNAi) therapy with exogenous microRNA (miR)-29B was proposed as a method to modulate extracellular matrix remodeling following cutaneous injury. It was hypothesized that delivery of miR-29B from a collagen scaffold will efficiently modulate the extracellular matrix remodeling response and reduce maladaptive remodeling such as aggressive deposition of collagen type I after injury. The release of RNA from the scaffold was assessed and its ability to silence collagen type I and collagen type III expression was evaluated in vitro. When primary fibroblasts were cultured with scaffolds doped with miR-29B, reduced levels of collagen type I and collagen type III mRNA expression were observed for up to 2 weeks of culture. When the scaffolds were applied to full thickness wounds in vivo, reduced wound contraction, improved collagen type III/I ratios and a significantly higher matrix metalloproteinase (MMP)-8: tissue inhibitor of metalloproteinase (TIMP)-1 ratio were detected when the scaffolds were functionalized with miR-29B. Furthermore, these effects were significantly influenced by the dose of miR-29B in the collagen scaffold (0.5 versus 5 μg). This study shows a potential of combining exogenous miRs with collagen scaffolds to improve extracellular matrix remodeling following injury.

  3. Myofibroblast Expression in Skin Wounds Is Enhanced by Collagen III Suppression

    Directory of Open Access Journals (Sweden)

    Mohammed M. Al-Qattan

    2015-01-01

    Full Text Available Generally speaking, the excessive expression of myofibroblasts is associated with excessive collagen production. One exception is seen in patients and animal models of Ehlers-Danlos syndrome type IV in which the COL3A1 gene mutation results in reduced collagen III but with concurrent increased myofibroblast expression. This paradox has not been examined with the use of external drugs/modalities to prevent hypertrophic scars. In this paper, we injected the rabbit ear wound model of hypertrophic scarring with two doses of a protein called nAG, which is known to reduce collagen expression and to suppress hypertrophic scarring in that animal model. The higher nAG dose was associated with significantly less collagen III expression and concurrent higher degree of myofibroblast expression. We concluded that collagen III content of the extracellular matrix may have a direct or an indirect effect on myofibroblast differentiation. However, further research is required to investigate the pathogenesis of this paradoxical phenomenon.

  4. The composition of engineered cartilage at the time of implantation determines the likelihood of regenerating tissue with a normal collagen architecture.

    Science.gov (United States)

    Nagel, Thomas; Kelly, Daniel J

    2013-04-01

    The biomechanical functionality of articular cartilage is derived from both its biochemical composition and the architecture of the collagen network. Failure to replicate this normal Benninghoff architecture in regenerating articular cartilage may in turn predispose the tissue to failure. In this article, the influence of the maturity (or functionality) of a tissue-engineered construct at the time of implantation into a tibial chondral defect on the likelihood of recapitulating a normal Benninghoff architecture was investigated using a computational model featuring a collagen remodeling algorithm. Such a normal tissue architecture was predicted to form in the intact tibial plateau due to the interplay between the depth-dependent extracellular matrix properties, foremost swelling pressures, and external mechanical loading. In the presence of even small empty defects in the articular surface, the collagen architecture in the surrounding cartilage was predicted to deviate significantly from the native state, indicating a possible predisposition for osteoarthritic changes. These negative alterations were alleviated by the implantation of tissue-engineered cartilage, where a mature implant was predicted to result in the formation of a more native-like collagen architecture than immature implants. The results of this study highlight the importance of cartilage graft functionality to maintain and/or re-establish joint function and suggest that engineering a tissue with a native depth-dependent composition may facilitate the establishment of a normal Benninghoff collagen architecture after implantation into load-bearing defects.

  5. The Sox2 high mobility group transcription factor inhibits mature osteoblast function in transgenic mice

    Science.gov (United States)

    Holmes, Greg; Bromage, Timothy G.; Basilico, Claudio

    2011-01-01

    We have previously shown that in osteoblasts Sox2 expression can be induced by Fgfs, and can inhibit Wnt signaling and differentiation. Furthermore, in mice in which Sox2 is conditionally deleted in the osteoblastic lineage, bones are osteopenic, and Sox2 inactivation in cultured osteoblasts leads to a loss of proliferative ability with a senescent phenotype. To help understand the role of Sox2 in osteoblast development we have specifically expressed Sox2 in bone from a Col1α1 promoter, which extended Sox2 expression into more mature osteoblasts. In long bones, trabecular cartilage remodeling was delayed and the transition from endochondral to cortical bone was disrupted, resulting in porous and undermineralized cortical bone. Collagen deposition was disorganized, and patterns of osteoclast activity were altered. Calvarial bones were thinner and parietal bones failed to develop the diploic space. Microarray analysis showed significant up- or downregulation of a variety of genes coding for non-collagenous extracellular matrix proteins, with a number of genes typical of mature osteoblasts being downregulated. Our results position Sox2 as a negative regulator of osteoblast maturation in vivo. PMID:21703370

  6. Comparison between infrared and Raman spectroscopic analysis of maturing rabbit cortical bone.

    Science.gov (United States)

    Turunen, Mikael J; Saarakkala, Simo; Rieppo, Lassi; Helminen, Heikki J; Jurvelin, Jukka S; Isaksson, Hanna

    2011-06-01

    The molecular composition of the organic and inorganic matrices of bone undergoes alterations during maturation. The aim of this study was to compare Fourier transform infrared (FT-IR) and near-infrared (NIR) Raman microspectroscopy techniques for characterization of the composition of growing and developing bone from young to skeletally mature rabbits. Moreover, the specificity and differences of the techniques for determining bone composition were clarified. The humeri of female New Zealand White rabbits, with age range from young to skeletally mature animals (four age groups, n = 7 per group), were studied. Spectral peak areas, intensities, and ratios related to organic and inorganic matrices of bone were analyzed and compared between the age groups and between FT-IR and Raman microspectroscopic techniques. Specifically, the degree of mineralization, type-B carbonate substitution, crystallinity of hydroxyapatite (HA), mineral content, and collagen maturity were examined. Significant changes during maturation were observed in various compositional parameters with one or both techniques. Overall, the compositional parameters calculated from the Raman spectra correlated with analogous parameters calculated from the IR spectra. Collagen cross-linking (XLR), as determined through peak fitting and directly from the IR spectra, were highly correlated. The mineral/matrix ratio in the Raman spectra was evaluated with multiple different peaks representing the organic matrix. The results showed high correlation with each other. After comparison with the bone mineral density (BMD) values from micro-computed tomography (micro-CT) imaging measurements and crystal size from XRD measurements, it is suggested that Raman microspectroscopy is more sensitive than FT-IR microspectroscopy for the inorganic matrix of the bone. In the literature, similar spectroscopic parameters obtained with FT-IR and NIR Raman microspectroscopic techniques are often compared. According to the present

  7. Stromal cells and osteoclasts are responsible for exacerbated collagen-induced arthritis in interferon-beta-deficient mice

    DEFF Research Database (Denmark)

    Treschow, Alexandra P; Teige, Ingrid; Nandakumar, Kutty S

    2005-01-01

    OBJECTIVE: Clinical trials using interferon-beta (IFNbeta) in the treatment of rheumatoid arthritis have shown conflicting results. We undertook this study to understand the mechanisms of IFNbeta in arthritis at a physiologic level. METHODS: Collagen-induced arthritis (CIA) was induced in IFNbeta....... Differences in osteoclast maturation were determined in situ by histology of arthritic and naive paws and by in vitro maturation studies of naive bone marrow cells. The importance of IFNbeta-producing fibroblasts was determined by transferring fibroblasts into mice at the time of CIA immunization. RESULTS...

  8. Anastomotic stability and wound healing of colorectal anastomoses sealed and sutured with a collagen fleece in a rat peritonitis model

    Directory of Open Access Journals (Sweden)

    Christoph Holmer

    2014-01-01

    Conclusion: The use of a thrombin/fibrinogen-coated collagen fleece showed similar efficacy to conventional sutures in colorectal anastomoses in the presence of peritonitis inflammation, and may provide additional benefits due to an increase in mature granulation tissue.

  9. Collagen synthesis in CBA mouse heart after total thoracic irradiation

    International Nuclear Information System (INIS)

    Murray, J.C.; Parkins, C.S.; Institute of Cancer Research, Sutton

    1988-01-01

    CBA mice were irradiated to the whole thorax with single doses of 240 kVp X-rays in the dose range 8-16 Gy. Collagen and total protein synthesis rates in the heart were measured at 2-monthly intervals using a radio-isotope incorporation techniques. Doses of 10 Gy or greater caused a slight increase in collagen synthesis, followed by significantly reduced collagen synthesis by 16 weeks or longer after treatment. The depression in synthesis appeared correspondingly earlier with increasing dose. Total protein synthesis in heart followed similar patterns although changes were not statistically significant, indicating that the changes reflected alterations to collagen synthesis specifally, and not protein synthesis in geneal. Total hydroxyproline measurements showed no significant changes in heart collagen at any time as a result of X-irradiation. 18 refs.; 7 figs

  10. Long-term Culture of Human iPS Cell-derived Telencephalic Neuron Aggregates on Collagen Gel.

    Science.gov (United States)

    Oyama, Hiroshi; Takahashi, Koji; Tanaka, Yoshikazu; Takemoto, Hiroshi; Haga, Hisashi

    2018-01-01

    It takes several months to form the 3-dimensional morphology of the human embryonic brain. Therefore, establishing a long-term culture method for neuronal tissues derived from human induced pluripotent stem (iPS) cells is very important for studying human brain development. However, it is difficult to keep primary neurons alive for more than 3 weeks in culture. Moreover, long-term adherent culture to maintain the morphology of telencephalic neuron aggregates induced from human iPS cells is also difficult. Although collagen gel has been widely used to support long-term culture of cells, it is not clear whether human iPS cell-derived neuron aggregates can be cultured for long periods on this substrate. In the present study, we differentiated human iPS cells to telencephalic neuron aggregates and examined long-term culture of these aggregates on collagen gel. The results indicated that these aggregates could be cultured for over 3 months by adhering tightly onto collagen gel. Furthermore, telencephalic neuronal precursors within these aggregates matured over time and formed layered structures. Thus, long-term culture of telencephalic neuron aggregates derived from human iPS cells on collagen gel would be useful for studying human cerebral cortex development.Key words: Induced pluripotent stem cell, forebrain neuron, collagen gel, long-term culture.

  11. A BMP responsive transcriptional region in the chicken type X collagen gene.

    Science.gov (United States)

    Volk, S W; Luvalle, P; Leask, T; Leboy, P S

    1998-10-01

    Bone morphogenetic proteins (BMPs) were originally identified by their ability to induce ectopic bone formation and have been shown to promote both chondrogenesis and chondrocyte hypertrophy. BMPs have recently been found to activate a membrane serine/threonine kinase signaling mechanism in a variety of cell types, but the downstream effectors of BMP signaling in chondrocyte differentiation remain unidentified. We have previously reported that BMP-2 markedly stimulates type X collagen expression in prehypertrophic chick sternal chondrocytes, and that type X collagen mRNA levels in chondrocytes cultured under serum-free (SF) conditions are elevated 3- to 5-fold within 24 h. To better define the molecular mechanisms of induction of chondrocyte hypertrophy by BMPs, we examined the effect of BMPs on type X collagen production by 15-day chick embryo sternal chondrocytes cultured under SF conditions in the presence or absence of 30 ng/ml BMP-2, BMP-4, or BMP-7. Two populations of chondrocytes were used: one representing resting cartilage isolated from the caudal third of the sterna and the second representing prehypertrophic cartilage from the cephalic third of the sterna. BMP-2, BMP-4, and BMP-7 all effectively promoted chondrocyte maturation of cephalic sternal chondrocytes as measured by high levels of alkaline phosphatase, diminished levels of type II collagen, and induction of the hypertrophic chondrocyte-specific marker, type X collagen. To test whether BMP control of type X collagen expression occurs at the transcriptional level, we utilized plasmid constructs containing the chicken collagen X promoter and 5' flanking regions fused to a reporter gene. Constructs were transiently transfected into sternal chondrocytes cultured under SF conditions in the presence or absence of 30 ng/ml BMP-2, BMP-4, or BMP-7. A 533 bp region located 2.4-2.9 kb upstream from the type X collagen transcriptional start site was both necessary and sufficient for strong BMP responsiveness

  12. A collagen-binding EGFR antibody fragment targeting tumors with a collagen-rich extracellular matrix

    OpenAIRE

    Hui Liang; Xiaoran Li; Bin Wang; Bing Chen; Yannan Zhao; Jie Sun; Yan Zhuang; Jiajia Shi; He Shen; Zhijun Zhang; Jianwu Dai

    2016-01-01

    Many tumors over-express collagen, which constitutes the physical scaffold of tumor microenvironment. Collagen has been considered to be a target for cancer therapy. The collagen-binding domain (CBD) is a short peptide, which could bind to collagen and achieve the sustained release of CBD-fused proteins in collagen scaffold. Here, a collagen-binding EGFR antibody fragment was designed and expressed for targeting the collagen-rich extracellular matrix in tumors. The antibody fragment (Fab) of ...

  13. Osteogenesis Imperfecta due to Mutations in Non-Collagenous Genes-Lessons in the Biology of Bone Formation

    Science.gov (United States)

    Marini, Joan C.; Reich, Adi; Smith, Simone M.

    2014-01-01

    Purpose of Review Osteogenesis imperfecta (OI), or “brittle bone disease”, has mainly been considered a bone disorder caused by collagen mutations. Within the last decade, however, a surge of genetic discoveries has created a new paradigm for OI as a collagen-related disorder, where autosomal dominant type I collagen defects cause most cases, while rare, mostly recessive forms are due to defects in genes whose protein products interact with collagen protein. This review is both timely and relevant in outlining the genesis, development and future of this paradigm shift in the understanding of OI. Recent Findings BRIL and PEDF defects cause types V and VI OI via defective bone mineralization, while defects in CRTAP, P3H1 and CyPB cause types VII-IX via defective collagen post-translational modification. Hsp47 and FKBP65 defects cause types X and XI OI via aberrant collagen crosslinking, folding and chaperoning, while defects in SP7, WNT1, TRIC-B and OASIS disrupt osteoblast development. Finally, absence of the type I collagen C-propeptidase BMP1 causes type XII OI due to altered collagen maturation/processing. Summary Identification of these multiple causative defects has provided crucial information for accurate genetic counseling, inspired a recently proposed functional grouping of OI types by shared mechanism to simplify current nosology, and should prod investigations into common pathways in OI. Such investigations could yield critical information on cellular and bone tissue mechanisms and translate to new mechanistic insight into clinical therapies for patients. PMID:25007323

  14. Fabrication of homobifunctional crosslinker stabilized collagen for biomedical application

    International Nuclear Information System (INIS)

    Lakra, Rachita; Kiran, Manikantan Syamala; Sai, Korrapati Purna

    2015-01-01

    Collagen biopolymer has found widespread application in the field of tissue engineering owing to its excellent tissue compatibility and negligible immunogenicity. Mechanical strength and enzymatic degradation of the collagen necessitates the physical and chemical strength enhancement. One such attempt deals with the understanding of crosslinking behaviour of EGS (ethylene glycol-bis (succinic acid N-hydroxysuccinimide ester)) with collagen to improve the physico-chemical properties. The incorporation of a crosslinker during fibril formation enhanced the thermal and mechanical stability of collagen. EGS crosslinked collagen films exhibited higher denaturation temperature (T d ) and the residue left after thermogravimetric analysis was about 16  ±  5.2%. Mechanical properties determined by uniaxial tensile tests showed a threefold increase in tensile strength and Young’s modulus at higher concentration (100 μM). Water uptake capacity reduced up to a moderate extent upon crosslinking which is essential for the transport of nutrients to the cells. Cell viability was found to be 100% upon treatment with 100 μM EGS whereas only 30% viability could be observed with glutaraldehyde. Rheological studies of crosslinked collagen showed an increase in shear stress and shear viscosity at 37 °C. Crosslinking with EGS resulted in the formation of a uniform fibrillar network. Trinitrobenzene sulfonate (TNBS) assay confirmed that EGS crosslinked collagen by forming a covalent interaction with ε-amino acids of collagen. The homobifunctional crosslinker used in this study enhanced the effectiveness of collagen as a biomaterial for biomedical application. (paper)

  15. Proximal collagenous gastroenteritides:

    DEFF Research Database (Denmark)

    Nielsen, Ole Haagen; Riis, Lene Buhl; Danese, Silvio

    2014-01-01

    AIM: While collagenous colitis represents the most common form of the collagenous gastroenteritides, the collagenous entities affecting the proximal part of the gastrointestinal tract are much less recognized and possibly overlooked. The aim was to summarize the latest information through a syste...

  16. Extracellular histones reduce survival and angiogenic responses of late outgrowth progenitor and mature endothelial cells.

    Science.gov (United States)

    Mena, H A; Carestia, A; Scotti, L; Parborell, F; Schattner, M; Negrotto, S

    2016-02-01

    ESSENTIALS: Extracellular histones are highly augmented in sites of neovessel formation, such as regeneration tissues. We studied histone effect on survival and angiogenic activity of mature and progenitor endothelial cells. Extracellular histones trigger apoptosis and pyroptosis and reduce angiogenesis in vivo and in vitro. Histone blockade can be useful as a therapeutic strategy to improve angiogenesis and tissue regeneration. Extracellular histones are highly augmented in sites of neovessel formation, like regeneration tissues. Their cytotoxic effect has been studied in endothelial cells, although the mechanism involved and their action on endothelial colony-forming cells (ECFCs) remain unknown. To study the effect of histones on ECFC survival and angiogenic functions and compare it with mature endothelial cells. Nuclear morphology analysis showed that each human recombinant histone triggered both apoptotic-like and necrotic-like cell deaths in both mature and progenitor endothelial cells. While H1 and H2A exerted a weak toxicity, H2B, H3 and H4 were the most powerful. The percentage of apoptosis correlated with the percentage of ECFCs exhibiting caspase-3 activation and was zeroed by the pan-caspase inhibitor Z-VAD-FMK. Necrotic-like cell death was also suppressed by this compound and the caspase-1 inhibitor Ac-YVAD-CMK, indicating that histones triggered ECFC pyroptosis. All histones, at non-cytotoxic concentrations, reduced migration and H2B, H3 and H4 induced cell cycle arrest and impaired tubulogenesis via p38 activation. Neutrophil-derived histones exerted similar effects. In vivo blood vessel formation in the quail chorioallantoic membrane was also reduced by H2B, H3 and H4. Their cytotoxic and antiangiogenic effects were suppressed by unfractioned and low-molecular-weight heparins and the combination of TLR2 and TLR4 blocking antibodies. Histones trigger both apoptosis and pyroptosis of ECFCs and inhibit their angiogenic functions. Their cytotoxic and

  17. Electro-Acupuncture at Acupoint ST36 Reduces Inflammation and Regulates Immune Activity in Collagen-Induced Arthritic Mice

    Directory of Open Access Journals (Sweden)

    Yun-Kyoung Yim

    2007-01-01

    Full Text Available This study aimed to investigate the anti-inflammatory, anti-arthritic and immuno-regulatory effects of electro-acupuncture (EA at ST36 on Collagen-induced arthritis (CIA in mice. Male DBA/1J mice were divided into five groups: Normal, Control, NR (needle retention, EAI and EAII. All mice except those in the normal group were immunized with Collagen II for arthritis induction. Acupuncture needles were inserted into mice ST36 and electrical currents at a frequency of 2 Hz in a continuous rectangular wave form were conducted through the needles for 15 min, 3 times a week. EA treatments were administered for 5 weeks in the EAI group and for 9 weeks in the EAII group. The mice in the NR group were acupunctured in the same manner as the EA groups and the needles were retained for 15 min without electrical stimulation. CIA incidence analysis, ELISA, histological analysis and FACS analysis were performed to evaluate the effect of EA on CIA. EA at ST36 significantly reduced CIA incidence, IL-6, TNF-a, INF-γ, collagen II antibody, IgG and IgM levels in CIA mice serum and prevented knee joint destruction. EA at ST36 also reduced CD69+/CD3e+ cells and CD11a+/CD19+ cells in CIA mice lymph nodes, and CD11b+/Gr1+ cells in CIA mice knee joints. The ratios of CD3e+ cells to CD19+ cells, and CD8+ cells to CD4+ cells were maintained closer to the normal range in the EA groups as compared with the control group or the NR group. EAII was more effective than EAI throughout all the measurements. The NR was effective as well, though less effective than EA. EA at ST36 may have an anti-inflammatory, anti-arthritic and immuno-regulatory effects on CIA in mice. The effectiveness is stronger when EA starts earlier and is applied longer. Needle retention without electrical stimulation may be effective on CIA as well, however less effective than EA. Electrical stimulation and acupoint ST36 may have synergistic effects on CIA.

  18. Endocytic collagen degradation

    DEFF Research Database (Denmark)

    Madsen, Daniel H.; Jürgensen, Henrik J.; Ingvarsen, Signe Ziir

    2012-01-01

    it crucially important to understand both the collagen synthesis and turnover mechanisms in this condition. Here we show that the endocytic collagen receptor, uPARAP/Endo180, is a major determinant in governing the balance between collagen deposition and degradation. Cirrhotic human livers displayed a marked...... up-regulation of uPARAP/Endo180 in activated fibroblasts and hepatic stellate cells located close to the collagen deposits. In a hepatic stellate cell line, uPARAP/Endo180 was shown to be active in, and required for, the uptake and intracellular degradation of collagen. To evaluate the functional...... groups of mice clearly revealed a fibrosis protective role of uPARAP/Endo180. This effect appeared to directly reflect the activity of the collagen receptor, since no compensatory events were noted when comparing the mRNA expression profiles of the two groups of mice in an array system focused on matrix-degrading...

  19. Captopril reduces collagen and mast cell accumulation in irradiated rat lung

    International Nuclear Information System (INIS)

    Ward, W.F.; Molteni, A.; Ts'ao, C.H.; Hinz, J.M.

    1990-01-01

    The angiotensin converting enzyme inhibitor captopril ameliorates radiation-induced pulmonary endothelial dysfunction in rats. The present study determined whether captopril also reduces collagen (hydroxyproline) accumulation in the lungs of rats sacrificed 2 months after a range of single doses (0-30 Gy) of 60Co gamma rays to the right hemithorax. Captopril was administered in the feed at a regimen of 0, 25, or 50 mg/kg/day continuously after irradiation. Mast cell counts also were obtained from lungs of all animals exposed to 30 Gy. In rats receiving no captopril, there was a radiation dose-dependent increase in right lung hydroxyproline (HP) content and in HP concentration per g wet weight. Captopril produced a drug dose-dependent suppression in this radiation-induced HP accumulation. At a dose of 50 mg/kg/d, captopril reduced the slope of the radiation dose response curve for lung HP content by a factor of 1.7, and completely prevented the increase in HP concentration. At an isoeffect level of 550 micrograms HP per right superior lobe, this dose of captopril exhibited a DRF of 1.7 +/- 0.2. In rats exposed to 30 Gy, moreover, the number of mast cells per mm2 of alveolar cross-sectional surface area decreased from 105 +/- 8 to 100 +/- 7 and 59 +/- 5 in the groups given 0, 25 or 50 mg/kg/d of captopril, respectively, (vs none in sham-irradiated rats). These data are the first to demonstrate that the ACE inhibitor captopril might provide a novel intervention in the pathogenesis of radiation fibrosis

  20. Collagen Quantification in Tissue Specimens.

    Science.gov (United States)

    Coentro, João Quintas; Capella-Monsonís, Héctor; Graceffa, Valeria; Wu, Zhuning; Mullen, Anne Maria; Raghunath, Michael; Zeugolis, Dimitrios I

    2017-01-01

    Collagen is the major extracellular protein in mammals. Accurate quantification of collagen is essential in the biomaterials (e.g., reproducible collagen scaffold fabrication), drug discovery (e.g., assessment of collagen in pathophysiologies, such as fibrosis), and tissue engineering (e.g., quantification of cell-synthesized collagen) fields. Although measuring hydroxyproline content is the most widely used method to quantify collagen in biological specimens, the process is very laborious. To this end, the Sircol™ Collagen Assay is widely used due to its inherent simplicity and convenience. However, this method leads to overestimation of collagen content due to the interaction of Sirius red with basic amino acids of non-collagenous proteins. Herein, we describe the addition of an ultrafiltration purification step in the process to accurately determine collagen content in tissues.

  1. Dermatan Sulfate Epimerase 1-Deficient Mice Have Reduced Content and Changed Distribution of Iduronic Acids in Dermatan Sulfate and an Altered Collagen Structure in Skin

    DEFF Research Database (Denmark)

    Maccarana, M.; Kalamajski, S.; Kongsgaard, M.

    2009-01-01

    Dermatan sulfate epimerase 1 (DS-epi1) and DS-epi2 convert glucuronic acid to iduronic acid in chondroitin/dermatan sulfate biosynthesis. Here we report on the generation of DS-epi1-null mice and the resulting alterations in the chondroitin/dermatan polysaccharide chains. The numbers of long blocks......-derived chains. DS-epi1-deficient mice are smaller than their wild-type littermates but otherwise have no gross macroscopic alterations. The lack of DS-epi1 affects the chondroitin/dermatan sulfate in many proteoglycans, and the consequences for skin collagen structure were initially analyzed. We found...... that the skin collagen architecture was altered, and electron microscopy showed that the DS-epi1-null fibrils have a larger diameter than the wild-type fibrils. The altered chondroitin/dermatan sulfate chains carried by decorin in skin are likely to affect collagen fibril formation and reduce the tensile...

  2. Collagen Accumulation in Osteosarcoma Cells lacking GLT25D1 Collagen Galactosyltransferase.

    Science.gov (United States)

    Baumann, Stephan; Hennet, Thierry

    2016-08-26

    Collagen is post-translationally modified by prolyl and lysyl hydroxylation and subsequently by glycosylation of hydroxylysine. Despite the widespread occurrence of the glycan structure Glc(α1-2)Gal linked to hydroxylysine in animals, the functional significance of collagen glycosylation remains elusive. To address the role of glycosylation in collagen expression, folding, and secretion, we used the CRISPR/Cas9 system to inactivate the collagen galactosyltransferase GLT25D1 and GLT25D2 genes in osteosarcoma cells. Loss of GLT25D1 led to increased expression and intracellular accumulation of collagen type I, whereas loss of GLT25D2 had no effect on collagen secretion. Inactivation of the GLT25D1 gene resulted in a compensatory induction of GLT25D2 expression. Loss of GLT25D1 decreased collagen glycosylation by up to 60% but did not alter collagen folding and thermal stability. Whereas cells harboring individually inactivated GLT25D1 and GLT25D2 genes could be recovered and maintained in culture, cell clones with simultaneously inactive GLT25D1 and GLT25D2 genes could be not grown and studied, suggesting that a complete loss of collagen glycosylation impairs osteosarcoma cell proliferation and viability. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Isolation and culture of primary osteocytes from the long bones of skeletally mature and aged mice

    Science.gov (United States)

    Stern, Amber Rath; Stern, Matthew M.; Van Dyke, Mark E.; Jähn, Katharina; Prideaux, Matthew; Bonewald, Lynda F.

    2013-01-01

    The purpose of this work was to establish a methodology to enable the isolation and study of osteocytes from skeletally mature young (4-month-old) and old (22-month-old) mice. The location of osteocytes deep within bone is ideal for their function as mechanosensors. However, this location makes the observation and study of osteocytes in vivo technically difficult. Osteocytes were isolated from murine long bones through a process of extended collagenase digestions combined with EDTA-based decalcification. A tissue homogenizer was used to reduce the remaining bone fragments to a suspension of bone particles, which were placed in culture to yield an outgrowth of osteocyte-like cells. All of the cells obtained from this outgrowth that displayed an osteocyte-like morphology stained positive for the osteocyte marker E11/GP38.[Q1] The osteocyte phenotype was further confirmed by a lack of staining for alkaline phosphatase and the absence of collagen1a1 expression. The outgrowth of osteocytes also expressed additional osteocyte-specific genes such as Sost and Mepe. This technique facilitates the isolation of osteocytes from skeletally mature bone. This novel enabling methodology should prove useful in advancing our understanding of the roles mature osteocytes play in bone health and disease. PMID:22668415

  4. Chicken collagen type II reduces articular cartilage destruction in a model of osteoarthritis in rats.

    Science.gov (United States)

    Xu, D; Shen, W

    2007-06-01

    To evaluate the therapeutic effects of domestic chicken collagen type II (CCII) on rat osteoarthritis (OA) and analyze concomitant changes in the level of Matrix metalloproteinase (MMP)-13, MMP-9, Cathepsin K and their mRNA as well as the tissue inhibitor of matrix metalloproteinase (TIMP)-1 mRNA in articular cartilage of osteoarthritic rats. Osteoarthritis models were surgically induced. Morphology of articular cartilage was done by haematoxylin and eosin staining and Mankin score was calculated, immunohistochemistry of MMP-13, MMP-9 and Cathepsin K was done by ABC method while the mRNA level for MMP-13, MMP-9, cathepsin K as well as TIMP-1 was evaluated by RT-PCR method. Oral administration of CCII reduced the morphological changes of osteoarthritic cartilage (shown by Mankin score), decreased levels of MMP-13, MMP-9, cathepsin K as well as their mRNA in articular cartilage from osteoarthritic rats while it exhibited no effect on TIMP-1 mRNA. Oral CCII reduced articular cartilage degradation of osteoarthritic rats and may probably be a potent drug candidate for OA treatment.

  5. Allergy to fish collagen: Thermostability of collagen and IgE reactivity of patients' sera with extracts of 11 species of bony and cartilaginous fish

    Directory of Open Access Journals (Sweden)

    Yukihiro Kobayashi

    2016-10-01

    Conclusions: The IgE reactivity of patients' sera to fish collagen in extracts was retained even when fish meat was treated by a high heating load. As for the fish collagen, the IgE reactivities to cartilaginous fish were lower than that to bony fish. Reducing IgE reactivity to fish meat using heat is difficult, and other modalities will be required to produce hypoallergenic fish meat.

  6. Effectiveness of hybridized nano- and microstructure biodegradable, biocompatible, collagen-based, three-dimensional bioimplants in repair of a large tendon-defect model in rabbits.

    Science.gov (United States)

    Moshiri, Ali; Oryan, Ahmad; Meimandi-Parizi, Abdulhamid; Silver, Ian A; Tanideh, Nader; Golestani, Navid

    2016-06-01

    This study was designed to investigate the effectiveness of hybridized, three-dimensional (3D) collagen implants in repair of experimentally-induced tendon defects in rabbits. Seventy-five mature New Zealand albino rabbits were divided into treated (n = 50) and control (n = 20) groups. The left Achilles tendon was completely transected and 2 cm excised. In treated animals defects were filled with hybridized collagen implants and repaired with sutures. In control rabbits tendon defects were sutured similarly but the gap was left untreated. Changes in injured and normal contralateral tendons were assessed weekly by ultrasonography. Among the treated animals, small pilot groups were euthanized at 5, 10, 15, 20, 30, 40 (n = 5 at each time interval) and the remainder (n = 20) at 60 days post-injury. All control animals were euthanized at 60 days. Tendon lesions of all animals were examined morphologically and histologically immediately after death. Those of the experimental groups (n = 20 for each) were examined for gross pathological, histopathological and ultrastructural changes together with dry matter content at 60 days post-injury, as were the normal, contralateral tendons of both groups. In comparison with healing lesions of control animals, the treated tendons showed greater numbers of mature tenoblasts and tenocytes, minimal peritendinous adhesions and oedema, together with greater echogenicity, homogeneity and fibril alignment. Fewer chronic inflammatory cells were present in treated than control tendons. Hybridized collagen implants acted as scaffolds for tenoblasts and longitudinally-orientated newly-formed collagen fibrils, which encouraged tendon repair with homogeneous, well-organized highly aligned scar tissue that was histologically and ultrastructurally more mature than in untreated controls. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  7. Phosphate regulates chondrogenesis in a biphasic and maturation-dependent manner.

    Science.gov (United States)

    Wu, Biming; Durisin, Emily K; Decker, Joseph T; Ural, Evran E; Shea, Lonnie D; Coleman, Rhima M

    Inorganic phosphate (Pi) has been recognized as an important signaling molecule that modulates chondrocyte maturation and cartilage mineralization. However, conclusive experimental evidence for its involvement in early chondrogenesis is still lacking. Here, using high-density monolayer (2D) and pellet (3D) culture models of chondrogenic ATDC5 cells, we demonstrate that the cell response to Pi does not correlate with the Pi concentration in the culture medium but is better predicted by the availability of Pi on a per cell basis (Pi abundance). Both culture models were treated with ITS+, 10mM β-glycerophosphate (βGP), or ITS+/10mM βGP, which resulted in three levels of Pi abundance in cultures: basal (Pi/DNA 60ng/µg). In chondrogenic medium alone, the abundance levels were at the basal level in 2D culture and moderate in 3D cultures. The addition of 10mM βGP resulted in moderate abundance in 2D and high abundance in 3D cultures. Moderate Pi abundance enhanced early chondrogenesis and production of aggrecan and type II collagen whereas high Pi abundance inhibited chondrogenic differentiation and induced rapid mineralization. Inhibition of sodium phosphate transporters reduced phosphate-induced expression of chondrogenic markers. When 3D ITS+/βGP cultures were treated with levamisole to reduce ALP activity, Pi abundance was decreased to moderate levels, which resulted in significant upregulation of chondrogenic markers, similar to the response in 2D cultures. Delay of phosphate delivery until after early chondrogenesis occurs (7 days) no longer enhanced chondrogenesis, but instead accelerated hypertrophy and mineralization. Together, our data highlights the dependence of chondroprogenitor cell response to Pi on its availability to individual cells and the chondrogenic maturation stage of these cells and suggest that appropriate temporal delivery of phosphate to ATDC5 cells in 3D cultures represents a rapid model for mechanistic studies into the effects of

  8. Osteogenesis imperfecta due to mutations in non-collagenous genes: lessons in the biology of bone formation.

    Science.gov (United States)

    Marini, Joan C; Reich, Adi; Smith, Simone M

    2014-08-01

    Osteogenesis imperfecta or 'brittle bone disease' has mainly been considered a bone disorder caused by collagen mutations. Within the last decade, however, a surge of genetic discoveries has created a new paradigm for osteogenesis imperfecta as a collagen-related disorder, where most cases are due to autosomal dominant type I collagen defects, while rare, mostly recessive, forms are due to defects in genes whose protein products interact with collagen protein. This review is both timely and relevant in outlining the genesis, development, and future of this paradigm shift in the understanding of osteogenesis imperfecta. Bone-restricted interferon-induced transmembrane (IFITM)-like protein (BRIL) and pigment epithelium-derived factor (PEDF) defects cause types V and VI osteogenesis imperfecta via defective bone mineralization, while defects in cartilage-associated protein (CRTAP), prolyl 3-hydroxylase 1 (P3H1), and cyclophilin B (CYPB) cause types VII-IX osteogenesis imperfecta via defective collagen post-translational modification. Heat shock protein 47 (HSP47) and FK506-binding protein-65 (FKBP65) defects cause types X and XI osteogenesis imperfecta via aberrant collagen crosslinking, folding, and chaperoning, while defects in SP7 transcription factor, wingless-type MMTV integration site family member 1 (WNT1), trimeric intracellular cation channel type b (TRIC-B), and old astrocyte specifically induced substance (OASIS) disrupt osteoblast development. Finally, absence of the type I collagen C-propeptidase bone morphogenetic protein 1 (BMP1) causes type XII osteogenesis imperfecta due to altered collagen maturation/processing. Identification of these multiple causative defects has provided crucial information for accurate genetic counseling, inspired a recently proposed functional grouping of osteogenesis imperfecta types by shared mechanism to simplify current nosology, and has prodded investigations into common pathways in osteogenesis imperfecta. Such

  9. [Collagen nephritis].

    Science.gov (United States)

    Lago, N R; Bulos, M J; Monserrat, A J

    1997-01-01

    Fibrillar collagen in the glomeruli is considered specific of the nail-patella syndrome. A new nephropathy with diffuse intraglomerular deposition of type III collagen without nail and skeletal abnormalities has been described. We report the case of a 26-year-old woman who presented persistent proteinuria, hematuria, deafness without nail and skeletal abnormalities. The renal biopsy showed focal and segmental glomerulosclerosis by light microscopy. The electron microscopy revealed the presence of massive fibrillar collagen within the mesangial matriz and the basement membrane. This is the first patient reported in our country. We emphasize the usefulness of electron microscopy in the study of glomerular diseases.

  10. A collagen-binding EGFR antibody fragment targeting tumors with a collagen-rich extracellular matrix.

    Science.gov (United States)

    Liang, Hui; Li, Xiaoran; Wang, Bin; Chen, Bing; Zhao, Yannan; Sun, Jie; Zhuang, Yan; Shi, Jiajia; Shen, He; Zhang, Zhijun; Dai, Jianwu

    2016-02-17

    Many tumors over-express collagen, which constitutes the physical scaffold of tumor microenvironment. Collagen has been considered to be a target for cancer therapy. The collagen-binding domain (CBD) is a short peptide, which could bind to collagen and achieve the sustained release of CBD-fused proteins in collagen scaffold. Here, a collagen-binding EGFR antibody fragment was designed and expressed for targeting the collagen-rich extracellular matrix in tumors. The antibody fragment (Fab) of cetuximab was fused with CBD (CBD-Fab) and expressed in Pichia pastoris. CBD-Fab maintained antigen binding and anti-tumor activity of cetuximab and obtained a collagen-binding ability in vitro. The results also showed CBD-Fab was mainly enriched in tumors and had longer retention time in tumors in A431 s.c. xenografts. Furthermore, CBD-Fab showed a similar therapeutic efficacy as cetuximab in A431 xenografts. Although CBD-Fab hasn't showed better therapeutic effects than cetuximab, its smaller molecular and special target may be applicable as antibody-drug conjugates (ADC) or immunotoxins.

  11. Collagen Orientation and Crystallite Size in Human Dentin: A Small Angle X-ray Scattering Study

    Energy Technology Data Exchange (ETDEWEB)

    Pople, John A

    2001-03-29

    The mechanical properties of dentin are largely determined by the intertubular dentin matrix, which is a complex composite of type I collagen fibers and a carbonate-rich apatite mineral phase. The authors perform a small angle x-ray scattering (SAXS) study on fully mineralized human dentin to quantify this fiber/mineral composite architecture from the nanoscopic through continuum length scales. The SAXS results were consistent with nucleation and growth of the apatite phase within periodic gaps in the collagen fibers. These mineralized fibers were perpendicular to the dentinal tubules and parallel with the mineralization growth front. Within the plane of the mineralization front, the mineralized collagen fibers were isotropic near the pulp, but became mildly anisotropic in the mid-dentin. Analysis of the data also indicated that near the pulp the mineral crystallites were approximately needle-like, and progressed to a more plate-like shape near the dentino-enamel junction. The thickness of these crystallites, {approx} 5 nm, did not vary significantly with position in the tooth. These results were considered within the context of dentinogenesis and maturation.

  12. Local administration of growth hormone stimulates tendon collagen synthesis in elderly men

    DEFF Research Database (Denmark)

    Vestergaard, P; Jørgensen, J.O.L.; Olesen, J.L.

    2012-01-01

    Tendon collagen content and circulating growth hormone (GH) are reduced in elderly. In a placebo-controlled, double-blinded study, we examined if local injections of rhGH enhance collagen synthesis in healthy elderly men (61 ± 1 yr). Two injections of rhGH or saline (control) were injected into e...

  13. Histone Deacetylase Inhibition Downregulates Collagen 3A1 in Fibrotic Lung Fibroblasts

    Directory of Open Access Journals (Sweden)

    Victor J. Thannickal

    2013-09-01

    Full Text Available Idiopathic pulmonary fibrosis (IPF is a deadly disease characterized by chronic inflammation and excessive collagen accumulation in the lung. Myofibroblasts are the primary collagen-producing cells in pulmonary fibrosis. Histone deacetylase inhibitor (HDACi can affect gene expression, and some, such as suberoylanilide hydroxamic acid (SAHA, are US FDA approved for cancer treatment. In this study, we investigated SAHA’s effects on the expression of collagen III alpha 1 (COL3A1 in primary human IPF fibroblasts and in a murine model of pulmonary fibrosis. We observed that increased COL3A1 expression in IPF fibroblasts can be substantially reduced by SAHA treatment at the level of transcription as detected by RT-PCR; collagen III protein level was also reduced, as detected by Western blots and immunofluorescence. The deacetylation inhibitor effect of SAHA was verified by observing higher acetylation levels of both histone H3 and H4 in treated IPF cells. Chromatin immunoprecipitation (ChIP experiments demonstrated that the reduced expression of COL3A1 by SAHA is with increased association of the repressive chromatin marker, H3K27Me3, and decreased association of the active chromatin marker, H3K9Ac. In our murine model of bleomycin-induced pulmonary fibrosis, the SAHA treated group demonstrated significantly less collagen III, as detected by immunohistochemistry. Our data indicate that the HDACi SAHA alters the chromatin associated with COL3A1, resulting in its decreased expression.

  14. Cervical collagen is reduced in non-pregnant women with a history of cervical insufficiency and a short cervix.

    Science.gov (United States)

    Sundtoft, Iben; Langhoff-Roos, Jens; Sandager, Puk; Sommer, Steffen; Uldbjerg, Niels

    2017-08-01

    Preterm cervical shortening and cervical insufficiency may be caused by a constitutional weakness of the cervix. The aim of this study was to assess the cervical collagen concentration in non-pregnant women with a history of cervical insufficiency or of a short cervix in the second trimester of pregnancy. In this case-control study we included non-pregnant women one year or more after pregnancy: 55 controls with a history of normal delivery; 27 women with a history of cervical insufficiency; and 10 women with a history of a short cervix (cervix (>95th percentile) at gestational weeks 18-20. We obtained biopsies (3 × 3-4 mm) from the ectocervix and determined the collagen concentration by measuring the hydroxyproline concentration. Women with cervical insufficiency had lower collagen concentrations (63.5 ± 5.1%; mean ± SD) compared with controls (68.2 ± 5.4%; p = 0.0004); area under the ROC curve 0.73 (95% CI 0.62-0.84). A cut-off value at 67.6% collagen resulted in a positive likelihood ratio of 3.2, a sensitivity of 60%, and a specificity of 81%. Also, women with a short cervix in the second trimester had lower collagen concentrations in a non-pregnant state (62.1% ± 4.9%) compared with women with a long cervix (67.8% ± 5.0%; p = 0.02). Both cervical insufficiency and a short cervix in the second trimester of pregnancy are associated with low cervical collagen concentrations in a non-pregnant state more than one year after pregnancy. © 2017 Nordic Federation of Societies of Obstetrics and Gynecology.

  15. Fibrocyte measurement in peripheral blood correlates with number of cultured mature fibrocytes in vitro and is a potential biomarker for interstitial lung disease in Rheumatoid Arthritis.

    Science.gov (United States)

    Just, Søren Andreas; Lindegaard, Hanne; Hejbøl, Eva Kildall; Davidsen, Jesper Rømhild; Bjerring, Niels; Hansen, Søren Werner Karlskov; Schrøder, Henrik Daa; Hansen, Inger Marie Jensen; Barington, Torben; Nielsen, Christian

    2017-07-18

    Interstitial lung disease (ILD) can be a severe extra-articular disease manifestation in Rheumatoid Arthritis (RA). A potential role of fibrocytes in RA associated ILD (RA-ILD) has not previously been described. We present a modified faster method for measuring circulating fibrocytes, without intracellular staining. The results are compared to the traditional culture method, where the number of monocytes that differentiate into mature fibrocytes in vitro are counted. The results are following compared to disease activity in patients with severe asthma, ILD, RA (without diagnosed ILD) and RA with verified ILD (RA-ILD). CD45 + CD34 + CD11b + (7-AAD - CD3 - CD19 - CD294 - ) cells were isolated by cell sorting and stained for pro-collagen type 1. Thirty-nine patients (10 RA, 9 ILD and 10 with severe asthma, 10 with RA-ILD) and 10 healthy controls (HC) were included. Current medication, disease activity, pulmonary function test and radiographic data were collected. Circulating fibrocytes were quantified by flow cytometry. Peripheral blood mononuclear cells were isolated and cultured for 5 days and the numbers of mature fibrocytes were counted. 90.2% (mean, SD = 1.5%) of the sorted cells were pro-collagen type 1 positive and thereby fulfilled the criteria for being circulating fibrocytes. The ILD and RA-ILD groups had increased levels of circulating fibrocytes compared to HC (p time, that the level of circulating fibrocytes correlated with the number of peripheral blood mononuclear cells, that differentiated into mature fibrocytes in vitro. Reduced DLCO c was correlated with high levels of circulating and mature fibrocytes in RA, which have not been reported previously. In such, this study suggests that fibrocytes may exhibit an important role in the pathogenesis of RA-ILD, which requires further clarification in future studies. ClinicalTrials.gov : NCT02711657 , registered 13/3-2016, retrospectively registered.

  16. Evaluation of anti-IL-6 monoclonal antibody therapy using murine type II collagen-induced arthritis

    Directory of Open Access Journals (Sweden)

    Shealy David

    2009-04-01

    Full Text Available Abstract Interleukin-6 is a multifunctional cytokine that is critical for T/B-cell differentiation and maturation, immunoglobulin secretion, acute-phase protein production, and macrophage/monocyte functions. Extensive research into the biology of IL-6 has implicated IL-6 in the pathophysiology and pathogenesis of RA. An anti-murine IL-6 mAb that neutralizes mouse IL-6 activities was tested in animal model of collagen-induced arthritis. Prophylactic treatment with anti-IL-6 mAb significantly reduced the incidence and severity of arthritis compared to control mAb treated mice. The mitogenic response of B and T cells isolated from the lymph nodes of anti-IL-6 treated mice was significantly reduced compared to cells isolated from control mAb treated mice. The overall histopathology score for paws from the anti-IL-6 treated mice was significantly reduced when compared to paws from mice treated with control mAb, including both inflammatory (synovitis and pannus and erosive (erosions and architecture parameters. Reduced loss of cartilage matrix components was also observed in the anti-IL-6 treated mice. Collectively, these data suggest that IL-6 plays a major role in the pathophysiology of rheumatoid arthritis, and thus support the potential benefit of anti-IL-6 mAb treatment in rheumatoid arthritis patients.

  17. Characterizing the collagen stabilizing effect of crosslinked chitosan nanoparticles against collagenase degradation.

    Science.gov (United States)

    Kishen, Anil; Shrestha, Suja; Shrestha, Annie; Cheng, Calvin; Goh, Cynthia

    2016-08-01

    Antibacterial and chelating properties of chitosan has been widely studied for various dental applications. To characterize the interaction between chitosan-nanoparticles (CSnp) and collagen, and understand their stabilizing effect against collagenase degradation for dentin matrix stabilization. Phase-1: a single Type I collagen-fibril model was used to study the interaction with CSnp along with carbodiimides crosslinking treatment. Degradation of the crosslinked fibrils was studied with bacterial collagenase enzyme and monitored using Fourier Transform Infrared (FTIR) spectroscopy, turbidity measurement (400nm), ninhydrin assay and Atomic Force Microscopy (AFM). Interaction of CSnp with collagenase and Type I collagen, were evaluated using SDS-PAGE, and proteolytic cleavage potential of a synthetic peptide. Phase-2: degradation of dentin collagen crosslinked with/without CSnp was evaluated using FTIR, ninhydrin assay and Scanning Electron Microscopy (SEM). Glutaraldehyde crosslinking was used as a positive control. Both native collagen-fibrils and dentin collagen after crosslinking showed higher resistance to collagenase degradation, as observed in turbidity measurements and FTIR spectra. AFM images showed the interaction of CSnp with single collagen-fibril and crosslinked collagen resisted collagenase degradation up to 54h. The collagen and collagenase both formed complexes with CSnp resulting in thickening of bands and reduction in collagen degradation. CSnp treated collagenase showed significantly reduced cleavage of the fluorescent peptides. Dentin collagen was coated with CSnp following crosslinking with significant increase in resistance to collagenase degradation. Crosslinked CSnp on collagen stabilized and enhanced the resistance of dentin matrix against bacterial collagenase degradation due to non-specific interaction with both collagen and collagenase. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  18. Riboflavin-induced photo-crosslinking of collagen hydrogel and its application in meniscus tissue engineering.

    Science.gov (United States)

    Heo, Jiseung; Koh, Rachel H; Shim, Whuisu; Kim, Hwan D; Yim, Hyun-Gu; Hwang, Nathaniel S

    2016-04-01

    A meniscus tear is a common knee injury, but its regeneration remains a clinical challenge. Recently, collagen-based scaffolds have been applied in meniscus tissue engineering. Despite its prevalence, application of natural collagen scaffold in clinical setting is limited due to its extremely low stiffness and rapid degradation. The purpose of the present study was to increase the mechanical properties and delay degradation rate of a collagen-based scaffold by photo-crosslinking using riboflavin (RF) and UV exposure. RF is a biocompatible vitamin B2 that showed minimal cytotoxicity compared to conventionally utilized photo-initiator. Furthermore, collagen photo-crosslinking with RF improved mechanical properties and delayed enzyme-triggered degradation of collagen scaffolds. RF-induced photo-crosslinked collagen scaffolds encapsulated with fibrochondrocytes resulted in reduced scaffold contraction and enhanced gene expression levels for the collagen II and aggrecan. Additionally, hyaluronic acid (HA) incorporation into photo-crosslinked collagen scaffold showed an increase in its retention. Based on these results, we demonstrate that photo-crosslinked collagen-HA hydrogels can be potentially applied in the scaffold-based meniscus tissue engineering.

  19. Investigation of the collagen-mineral-relation in bone with special respect to bone diseases with collagen defects by small-angle X-ray scattering

    International Nuclear Information System (INIS)

    Schreiber, S. A.

    1996-06-01

    Small-angle X-ray scattering (SAXS) was used to study the structure of the collagen/mineral composite of bone in the nanometer range. The most important results were: - In horse radius, the angular distribution of mineral crystals as measured by SAXS agreed well with previous measurements of collagen orientation using circularly polarized light microscopy. This shows that the crystals are parallel to the collagen fibrils. - The effect of sodium fluoride, which stimulates bone formation, and bisphosphonates, which reduce bone resorption, were analyzed. A slight increase in the average thickness of the mineral crystals as well as changes in the structure of the mineral/collagen composite were found in the case of fluoride treated animals. No differences were found between alendronate treated animals and controls. The changes with NaF correlate with bone weakening found in an earlier study with the same animals. - In cortical bone from 9 patients with Osteogenesis Imperfecta (brittle bone disease) the mean thickness of the mineral crystals was found approximately constant around 2.4 nm, while in control bones it constantly increased with age up to about 3.5 nm. In addition, the parallel alignment of the mineral crystals was less in OI-bone than in normal controls. Hence, despite the great variability of this genetic collagen defect, smaller and less well aligned mineral crystals seem to characterize the collagen/mineral composite in OI-bone. (author)

  20. A Quantitative Study of the Relationship between the Distribution of Different Types of Collagen and the Mechanical Behavior of Rabbit Medial Collateral Ligaments

    Science.gov (United States)

    Wan, Chao; Hao, Zhixiu; Wen, Shizhu; Leng, Huijie

    2014-01-01

    The mechanical properties of ligaments are key contributors to the stability and function of musculoskeletal joints. Ligaments are generally composed of ground substance, collagen (mainly type I and III collagen), and minimal elastin fibers. However, no consensus has been reached about whether the distribution of different types of collagen correlates with the mechanical behaviors of ligaments. The main objective of this study was to determine whether the collagen type distribution is correlated with the mechanical properties of ligaments. Using axial tensile tests and picrosirius red staining-polarization observations, the mechanical behaviors and the ratios of the various types of collagen were investigated for twenty-four rabbit medial collateral ligaments from twenty-four rabbits of different ages, respectively. One-way analysis of variance was used in the comparison of the Young's modulus in the linear region of the stress-strain curves and the ratios of type I and III collagen for the specimens (the mid-substance specimens of the ligaments) with different ages. A multiple linear regression was performed using the collagen contents (the ratios of type I and III collagen) and the Young's modulus of the specimens. During the maturation of the ligaments, the type I collagen content increased, and the type III collagen content decreased. A significant and strong correlation () was identified by multiple linear regression between the collagen contents (i.e., the ratios of type I and type III collagen) and the mechanical properties of the specimens. The collagen content of ligaments might provide a new perspective for evaluating the linear modulus of global stress-strain curves for ligaments and open a new door for studying the mechanical behaviors and functions of connective tissues. PMID:25062068

  1. Lower strength of the human posterior patellar tendon seems unrelated to mature collagen cross-linking and fibril morphology

    DEFF Research Database (Denmark)

    Hansen, Philip; Haraldsson, Bjarki Thor; Aagaard, Per

    2010-01-01

    The human patellar tendon is frequently affected by tendinopathy, but the etiology of the condition is not established, although differential loading of the anterior and posterior tendon may be associated with the condition. We hypothesized that changes in fibril morphology and collagen cross-lin...

  2. A molecular ensemble in the rER for procollagen maturation.

    Science.gov (United States)

    Ishikawa, Yoshihiro; Bächinger, Hans Peter

    2013-11-01

    Extracellular matrix (ECM) proteins create structural frameworks in tissues such as bone, skin, tendon and cartilage etc. These connective tissues play important roles in the development and homeostasis of organs. Collagen is the most abundant ECM protein and represents one third of all proteins in humans. The biosynthesis of ECM proteins occurs in the rough endoplasmic reticulum (rER). This review describes the current understanding of the biosynthesis and folding of procollagens, which are the precursor molecules of collagens, in the rER. Multiple folding enzymes and molecular chaperones are required for procollagen to establish specific posttranslational modifications, and facilitate folding and transport to the cell surface. Thus, this molecular ensemble in the rER contributes to ECM maturation and to the development and homeostasis of tissues. Mutations in this ensemble are likely candidates for connective tissue disorders. This article is part of a Special Issue entitled: Functional and structural diversity of endoplasmic reticulum. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Collagen organization in the chicken cornea and structural alterations in the retinopathy, globe enlarged (rge) phenotype--an X-ray diffraction study.

    Science.gov (United States)

    Boote, Craig; Hayes, Sally; Jones, Simon; Quantock, Andrew J; Hocking, Paul M; Inglehearn, Chris F; Ali, Manir; Meek, Keith M

    2008-01-01

    An investigation into the collagenous structure of the mature avian cornea is presented. Wide-angle X-ray diffraction is employed to assess collagen organization in 9-month-old chicken corneas. The central 2-4mm corneal region features a preponderance of fibrils directed along the superior-inferior and nasal-temporal orthogonal meridians. More peripherally the orientation of fibrils alters in favor of a predominantly tangential arrangement. The chicken cornea appears to be circumscribed by an annulus of fibrils that extends into the limbus. The natural arrangement of collagen in the chicken cornea is discussed in relation to corneal shape and the mechanical requirements of avian corneal accommodation. Equivalent data are also presented from age-matched blind chickens affected with the retinopathy, globe enlarged (rge) mutation, characterized by an abnormally thick and flat cornea. The data indicate considerable realignment and redistribution of collagen lamellae in the peripheral rge cornea. In contrast to normal chickens, no obvious tangential collagen alignment was evident in the periphery of rge corneas. In mammals, the presence of a limbal fibril annulus is believed to be important in corneal shape preservation. We postulate that corneal flattening in rge chickens may be related to biomechanical changes brought about by an alteration in collagen arrangement at the corneal periphery.

  4. Neuroprotective effects of collagen matrix in rats after traumatic brain injury.

    Science.gov (United States)

    Shin, Samuel S; Grandhi, Ramesh; Henchir, Jeremy; Yan, Hong Q; Badylak, Stephen F; Dixon, C Edward

    2015-01-01

    In previous studies, collagen based matrices have been implanted into the site of lesion in different models of brain injury. We hypothesized that semisynthetic collagen matrix can have neuroprotective function in the setting of traumatic brain injury. Rats were subjected to sham injury or controlled cortical impact. They either received extracellular matrix graft (DuraGen) over the injury site or did not receive any graft and underwent beam balance/beam walking test at post injury days 1-5 and Morris water maze at post injury days 14-18. Animals were sacrificed at day 18 for tissue analysis. Collagen matrix implantation in injured rats did not affect motor function (beam balance test: p = 0.627, beam walking test: p = 0.921). However, injured group with collagen matrix had significantly better spatial memory acquisition (p < 0.05). There was a significant reduction in lesion volume, as well as neuronal loss in CA1 (p < 0.001) and CA3 (p < 0.05) regions of the hippocampus in injured group with collagen matrix (p < 0.05). Collagen matrix reduces contusional lesion volume, neuronal loss, and cognitive deficit after traumatic brain injury. Further studies are needed to demonstrate the mechanisms of neuroprotection by collagen matrix.

  5. Effect of supramolecular organization of a cartilaginous tissue on thermal stability of collagen II

    Science.gov (United States)

    Ignat'eva, N. Yu.; Averkiev, S. V.; Lunin, V. V.; Grokhovskaya, T. E.; Obrezkova, M. V.

    2006-08-01

    The thermal stability of collagen II in various cartilaginous tissues was studied. It was found that heating a tissue of nucleus pulposus results in collagen II melting within a temperature range of 60-70°C; an intact tissue of hyaline cartilage (of nasal septum and cartilage endplates) is a thermally stable system, where collagen II is not denatured completely up to 100°C. It was found that partial destruction of glycosaminoglycans in hyaline cartilage leads to an increase in the degree of denaturation of collagen II upon heating, although a significant fraction remains unchanged. It was shown that electrostatic interactions of proteoglycans and collagen only slightly affect the thermal stability of collagen II in the tissues. Evidently, proteoglycan aggregates play a key role: they create topological hindrances for moving polypeptide chains, thereby reducing the configurational entropy of collagen macromolecules in the state of a random coil.

  6. Bottom-up fabrication of artery-mimicking tubular co-cultures in collagen-based microchannel scaffolds.

    Science.gov (United States)

    Tan, A; Fujisawa, K; Yukawa, Y; Matsunaga, Y T

    2016-10-20

    We developed a robust bottom-up approach to construct open-ended, tubular co-culture constructs that simulate the human vascular morphology and microenvironment. By design, these three-dimensional artificial vessels mimic the basic architecture of an artery: a collagen-rich extracellular matrix (as the tunica externa), smooth muscle cells (SMCs) (as the tunica media), and an endothelial cell (EC) lining (as the tunica interna). A versatile needle-based fabrication technique was employed to achieve controllable arterial layouts within a PDMS-hosted collagen microchannel scaffold (330 ± 10 μm in diameter): (direct co-culture) a SMC/EC bilayer to follow the structure of an arteriole-like segment; and (encapsulated co-culture) a lateral SMC multilayer covered by an EC monolayer lining to simulate the architecture of a larger artery. Optical and fluorescence microscopy images clearly evidenced the progressive cell elongation and sprouting behavior of SMCs and ECs along the collagen gel contour and within the gel matrix under static co-culture conditions. The progressive cell growth patterns effectively led to the formation of a tubular co-culture with an internal endothelial lining expressing prominent CD31 (cluster of differentiation 31) intercellular junction markers. During a 4-day static maturation period, the artery constructs showed modest alteration in the luminal diameters (i.e. less than 10% changes from the initial measurements). This argues in favor of stable and predictable arterial architecture achieved via the proposed fabrication protocols. Both co-culture models showed a high glucose metabolic rate during the initial proliferation phase, followed by a temporary quiescent (and thus, mature) stage. These proof-of-concept models with a controllable architecture create an important foundation for advanced vessel manipulations such as the integration of relevant physiological functionality or remodeling into a vascular disease-mimicking tissue.

  7. Collagen turnover after tibial fractures

    DEFF Research Database (Denmark)

    Joerring, S; Krogsgaard, M; Wilbek, H

    1994-01-01

    Collagen turnover after tibial fractures was examined in 16 patients with fracture of the tibial diaphysis and in 8 patients with fracture in the tibial condyle area by measuring sequential changes in serological markers of turnover of types I and III collagen for up to 26 weeks after fracture....... The markers were the carboxy-terminal extension peptide of type I procollagen (PICP), the amino-terminal extension peptide of type III procollagen (PIIINP), and the pyridinoline cross-linked carboxy-terminal telopeptide of type I collagen (ICTP). The latter is a new serum marker of degradation of type I...... collagen. A group comparison showed characteristic sequential changes in the turnover of types I and III collagen in fractures of the tibial diaphysis and tibial condyles. The turnover of type III collagen reached a maximum after 2 weeks in both groups. The synthesis of type I collagen reached a maximum...

  8. Collagens--structure, function, and biosynthesis.

    Science.gov (United States)

    Gelse, K; Pöschl, E; Aigner, T

    2003-11-28

    The extracellular matrix represents a complex alloy of variable members of diverse protein families defining structural integrity and various physiological functions. The most abundant family is the collagens with more than 20 different collagen types identified so far. Collagens are centrally involved in the formation of fibrillar and microfibrillar networks of the extracellular matrix, basement membranes as well as other structures of the extracellular matrix. This review focuses on the distribution and function of various collagen types in different tissues. It introduces their basic structural subunits and points out major steps in the biosynthesis and supramolecular processing of fibrillar collagens as prototypical members of this protein family. A final outlook indicates the importance of different collagen types not only for the understanding of collagen-related diseases, but also as a basis for the therapeutical use of members of this protein family discussed in other chapters of this issue.

  9. Enhanced stabilization of collagen by furfural.

    Science.gov (United States)

    Lakra, Rachita; Kiran, Manikantan Syamala; Usha, Ramamoorthy; Mohan, Ranganathan; Sundaresan, Raja; Korrapati, Purna Sai

    2014-04-01

    Furfural (2-furancarboxaldehyde), a product derived from plant pentosans, has been investigated for its interaction with collagen. Introduction of furfural during fibril formation enhanced the thermal and mechanical stability of collagen. Collagen films treated with furfural exhibited higher denaturation temperature (Td) (pFurfural and furfural treated collagen films did not have any cytotoxic effect. Rheological characterization showed an increase in shear stress and shear viscosity with increasing shear rate for treated collagen. Circular dichroism (CD) studies indicated that the furfural did not have any impact on triple helical structure of collagen. Scanning electron microscopy (SEM) of furfural treated collagen exhibited small sized porous structure in comparison with untreated collagen. Thus this study provides an alternate ecologically safe crosslinking agent for improving the stability of collagen for biomedical and industrial applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. High resolution imaging of collagen organisation and synthesis using a versatile collagen specific probe

    NARCIS (Netherlands)

    Boerboom, R.A.; Krahn - Nash, K.; Megens, R.T.A.; Zandvoort, van M.; Merkx, M.; Bouten, C.V.C.

    2007-01-01

    Collagen is the protein primarily responsible for the load-bearing properties of tissues and collagen architecture is one of the main determinants of the mechanical properties of tissues. Visualisation of changes in collagen three-dimensional structure is essential in order to improve our

  11. Fibromodulin deficiency reduces collagen structural network but not glycosaminoglycan content in a syngeneic model of colon carcinoma.

    Science.gov (United States)

    Olsson, P Olof; Kalamajski, Sebastian; Maccarana, Marco; Oldberg, Åke; Rubin, Kristofer

    2017-01-01

    Tumor barrier function in carcinoma represents a major challenge to treatment and is therefore an attractive target for increasing drug delivery. Variables related to tumor barrier include aberrant blood vessels, high interstitial fluid pressure, and the composition and structure of the extracellular matrix. One of the proteins associated with dense extracellular matrices is fibromodulin, a collagen fibrillogenesis modulator expressed in tumor stroma but scarce in normal loose connective tissues. Here, we investigated the effects of fibromodulin on stroma ECM in a syngeneic murine colon carcinoma model. We show that fibromodulin deficiency decreased collagen fibril thickness but glycosaminoglycan content and composition were unchanged. Furthermore, vascular density, pericyte coverage and macrophage amount were unaffected. Fibromodulin can therefore be a unique effector of dense collagen matrix assembly in tumor stroma and, without affecting other major matrix components or the cellular composition, can function as a main agent in tumor barrier function.

  12. Collagen macromolecular drug delivery systems

    International Nuclear Information System (INIS)

    Gilbert, D.L.

    1988-01-01

    The objective of this study was to examine collagen for use as a macromolecular drug delivery system by determining the mechanism of release through a matrix. Collagen membranes varying in porosity, crosslinking density, structure and crosslinker were fabricated. Collagen characterized by infrared spectroscopy and solution viscosity was determined to be pure and native. The collagen membranes were determined to possess native vs. non-native quaternary structure and porous vs. dense aggregate membranes by electron microscopy. Collagen monolithic devices containing a model macromolecule (inulin) were fabricated. In vitro release rates were found to be linear with respect to t 1/2 and were affected by crosslinking density, crosslinker and structure. The biodegradation of the collagen matrix was also examined. In vivo biocompatibility, degradation and 14 C-inulin release rates were evaluated subcutaneously in rats

  13. Isolation and Characterization of Collagen and Antioxidant Collagen Peptides from Scales of Croceine Croaker (Pseudosciaena crocea

    Directory of Open Access Journals (Sweden)

    Bin Wang

    2013-11-01

    Full Text Available Acid soluble collagen (ASC from scales of croceine croaker (ASC-C was successfully isolated with the yield of 0.37% ± 0.08% (dry weight basis, and characterized as type I collagen on the basis of amino acid analysis and electrophoretic pattern. The antioxidant hydrolysate of ASC-C (ACH was prepared through a two-stage in vitro digestion (4-h trypsin followed by 4-h pepsin, and three antioxidant peptides (ACH-P1, ACH-P2, and ACH-P3 were further isolated from ACH using ultrafiltration, gel chromatography, and RP-HPLC, and their amino acid sequences were identified as GFRGTIGLVG (ACH-P1, GPAGPAG (ACH-P2, and GFPSG (ACH-P3. ACH-P1, ACH-P2, and ACH-P3 showed good scavenging activities on hydroxyl radical (IC50 0.293, 0.240, and 0.107 mg/mL, respectively, DPPH radical (IC50 1.271, 0.675, and 0.283 mg/mL, respectively, superoxide radical (IC50 0.463, 0.099, and 0.151 mg/mL, respectively, and ABTS radical (IC50 0.421, 0.309, and 0.210 mg/mL, respectively. ACH-P3 was also effectively against lipid peroxidation in the model system. The antioxidant activities of three collagen peptides were due to the presence of hydrophobic amino acid residues within the peptide sequences. The collagen peptides might be used as antioxidant for the therapy of diseases associated with oxidative stress, or reducing oxidative changes during storage.

  14. A quantitative study of the relationship between the distribution of different types of collagen and the mechanical behavior of rabbit medial collateral ligaments.

    Science.gov (United States)

    Wan, Chao; Hao, Zhixiu; Wen, Shizhu; Leng, Huijie

    2014-01-01

    The mechanical properties of ligaments are key contributors to the stability and function of musculoskeletal joints. Ligaments are generally composed of ground substance, collagen (mainly type I and III collagen), and minimal elastin fibers. However, no consensus has been reached about whether the distribution of different types of collagen correlates with the mechanical behaviors of ligaments. The main objective of this study was to determine whether the collagen type distribution is correlated with the mechanical properties of ligaments. Using axial tensile tests and picrosirius red staining-polarization observations, the mechanical behaviors and the ratios of the various types of collagen were investigated for twenty-four rabbit medial collateral ligaments from twenty-four rabbits of different ages, respectively. One-way analysis of variance was used in the comparison of the Young's modulus in the linear region of the stress-strain curves and the ratios of type I and III collagen for the specimens (the mid-substance specimens of the ligaments) with different ages. A multiple linear regression was performed using the collagen contents (the ratios of type I and III collagen) and the Young's modulus of the specimens. During the maturation of the ligaments, the type I collagen content increased, and the type III collagen content decreased. A significant and strong correlation (R2 = 0.839, P < 0.05) was identified by multiple linear regression between the collagen contents (i.e., the ratios of type I and type III collagen) and the mechanical properties of the specimens. The collagen content of ligaments might provide a new perspective for evaluating the linear modulus of global stress-strain curves for ligaments and open a new door for studying the mechanical behaviors and functions of connective tissues.

  15. A quantitative study of the relationship between the distribution of different types of collagen and the mechanical behavior of rabbit medial collateral ligaments.

    Directory of Open Access Journals (Sweden)

    Chao Wan

    Full Text Available The mechanical properties of ligaments are key contributors to the stability and function of musculoskeletal joints. Ligaments are generally composed of ground substance, collagen (mainly type I and III collagen, and minimal elastin fibers. However, no consensus has been reached about whether the distribution of different types of collagen correlates with the mechanical behaviors of ligaments. The main objective of this study was to determine whether the collagen type distribution is correlated with the mechanical properties of ligaments. Using axial tensile tests and picrosirius red staining-polarization observations, the mechanical behaviors and the ratios of the various types of collagen were investigated for twenty-four rabbit medial collateral ligaments from twenty-four rabbits of different ages, respectively. One-way analysis of variance was used in the comparison of the Young's modulus in the linear region of the stress-strain curves and the ratios of type I and III collagen for the specimens (the mid-substance specimens of the ligaments with different ages. A multiple linear regression was performed using the collagen contents (the ratios of type I and III collagen and the Young's modulus of the specimens. During the maturation of the ligaments, the type I collagen content increased, and the type III collagen content decreased. A significant and strong correlation (R2 = 0.839, P < 0.05 was identified by multiple linear regression between the collagen contents (i.e., the ratios of type I and type III collagen and the mechanical properties of the specimens. The collagen content of ligaments might provide a new perspective for evaluating the linear modulus of global stress-strain curves for ligaments and open a new door for studying the mechanical behaviors and functions of connective tissues.

  16. Collagen-derived markers of bone metabolism in osteogenesis imperfecta

    DEFF Research Database (Denmark)

    Lund, A M; Hansen, M; Kollerup, Gina Birgitte

    1998-01-01

    )] were measured in 78 osteogenesis imperfecta (OI) patients to investigate bone metabolism in vivo and relate marker concentrations to phenotype and in vitro collagen I defects, as shown by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). PICP and PINP were generally low....... The in vivo findings correlated with in vitro results of collagen I SDS-PAGE. Bone turnover is reduced in OI children and mildly affected OI adults, whereas bone resorption is elevated in severely affected adults. These findings may prove helpful for diagnosis and decision-making regarding therapy in OI....

  17. Collagen content in the bladder of men with LUTS undergoing open prostatectomy: A pilot study.

    Science.gov (United States)

    Averbeck, Marcio A; De Lima, Nelson G; Motta, Gabriela A; Beltrao, Lauro F; Abboud Filho, Nury J; Rigotti, Clarice P; Dos Santos, William N; Dos Santos, Steven K J; Da Silva, Luis F B; Rhoden, Ernani L

    2018-03-01

    To evaluate the collagen content in the bladder wall of men undergoing open prostate surgery. From July 2014 to August 2016, men aged ≥ 50 years, presenting LUTS and undergoing open prostate surgery due to benign prostatic enlargement (BPE) or prostate cancer were prospectively enrolled. Preoperative assessment included validated questionnaires (IPSS and OAB-V8), lower urinary tract ultrasound, and urodynamics. Bladder biopsies were obtained during open prostatectomy for determination of collagen content (sirius red-picric acid stain; polarized light analysis). Collagen to smooth muscle ratio (C/M) in the detrusor was measured and its relationship with preoperative parameters was investigated. The level of significance was P non-diabetic patients (17.71 ± 6.82% vs 12.46 ± 5.2%, respectively; P = 0.024). Reduced bladder compliance was also marker for higher collagen content (P = 0.042). Bladder outlet obstruction (BOO) was not a predictor of increased collagen deposition in the bladder wall (P = 0.75). Patients with PVR ≥ 200 mL showed a higher collagen to smooth muscle ratio in the bladder wall (P = 0.036). DM2 and urodynamic parameters, such as increased PVR and reduced bladder compliance, were associated with higher collagen content in the bladder wall of men with LUTS. © 2017 Wiley Periodicals, Inc.

  18. Nonlinear optical response of the collagen triple helix and second harmonic microscopy of collagen liquid crystals

    Science.gov (United States)

    Deniset-Besseau, A.; De Sa Peixoto, P.; Duboisset, J.; Loison, C.; Hache, F.; Benichou, E.; Brevet, P.-F.; Mosser, G.; Schanne-Klein, M.-C.

    2010-02-01

    Collagen is characterized by triple helical domains and plays a central role in the formation of fibrillar and microfibrillar networks, basement membranes, as well as other structures of the connective tissue. Remarkably, fibrillar collagen exhibits efficient Second Harmonic Generation (SHG) and SHG microscopy proved to be a sensitive tool to score fibrotic pathologies. However, the nonlinear optical response of fibrillar collagen is not fully characterized yet and quantitative data are required to further process SHG images. We therefore performed Hyper-Rayleigh Scattering (HRS) experiments and measured a second order hyperpolarisability of 1.25 10-27 esu for rat-tail type I collagen. This value is surprisingly large considering that collagen presents no strong harmonophore in its amino-acid sequence. In order to get insight into the physical origin of this nonlinear process, we performed HRS measurements after denaturation of the collagen triple helix and for a collagen-like short model peptide [(Pro-Pro-Gly)10]3. It showed that the collagen large nonlinear response originates in the tight alignment of a large number of weakly efficient harmonophores, presumably the peptide bonds, resulting in a coherent amplification of the nonlinear signal along the triple helix. To illustrate this mechanism, we successfully recorded SHG images in collagen liquid solutions by achieving liquid crystalline ordering of the collagen triple helices.

  19. Moisture absorption and retention properties, and activity in alleviating skin photodamage of collagen polypeptide from marine fish skin.

    Science.gov (United States)

    Hou, Hu; Li, Bafang; Zhang, Zhaohui; Xue, Changhu; Yu, Guangli; Wang, Jingfeng; Bao, Yuming; Bu, Lin; Sun, Jiang; Peng, Zhe; Su, Shiwei

    2012-12-01

    Collagen polypeptides were prepared from cod skin. Moisture absorption and retention properties of collagen polypeptides were determined at different relative humidities. In addition, the protective effects of collagen polypeptide against UV-induced damage to mouse skin were evaluated. Collagen polypeptides had good moisture absorption and retention properties and could alleviate the damage induced by UV radiation. The action mechanisms of collagen polypeptide mainly involved enhancing immunity, reducing the loss of moisture and lipid, promoting anti-oxidative properties, inhibiting the increase of glycosaminoglycans, repairing the endogenous collagen and elastin protein fibres, and maintaining the ratio of type III to type I collagen. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Routes towards Novel Collagen-Like Biomaterials

    Directory of Open Access Journals (Sweden)

    Adrian V. Golser

    2018-04-01

    Full Text Available Collagen plays a major role in providing mechanical support within the extracellular matrix and thus has long been used for various biomedical purposes. Exemplary, it is able to replace damaged tissues without causing adverse reactions in the receiving patient. Today’s collagen grafts mostly are made of decellularized and otherwise processed animal tissue and therefore carry the risk of unwanted side effects and limited mechanical strength, which makes them unsuitable for some applications e.g., within tissue engineering. In order to improve collagen-based biomaterials, recent advances have been made to process soluble collagen through nature-inspired silk-like spinning processes and to overcome the difficulties in providing adequate amounts of source material by manufacturing collagen-like proteins through biotechnological methods and peptide synthesis. Since these methods also open up possibilities to incorporate additional functional domains into the collagen, we discuss one of the best-performing collagen-like type of proteins, which already have additional functional domains in the natural blueprint, the marine mussel byssus collagens, providing inspiration for novel biomaterials based on collagen-silk hybrid proteins.

  1. PHAGOCYTOSIS AND REMODELING OF COLLAGEN MATRICES

    OpenAIRE

    Abraham, Leah C.; Dice, J Fred.; Lee, Kyongbum; Kaplan, David L.

    2007-01-01

    The biodegradation of collagen and the deposition of new collagen-based extracellular matrices are of central importance in tissue remodeling and function. Similarly, for collagen-based biomaterials used in tissue engineering, the degradation of collagen scaffolds with accompanying cellular infiltration and generation of new extracellular matrix is critical for integration of in vitro grown tissues in vivo. In earlier studies we observed significant impact of collagen structure on primary lun...

  2. Collagen XII myopathy with rectus femoris atrophy and collagen XII retention in fibroblasts

    DEFF Research Database (Denmark)

    Witting, Nanna; Krag, Thomas; Werlauff, Ulla

    2018-01-01

    INTRODUCTION: Mutation in the collagen XII gene (COL12A1) was recently reported to induce Bethlem myopathy. We describe a family affected by collagen XII-related myopathy in 3 generations. METHODS: Systematic interview, clinical examination, skin biopsies, and MRI of muscle were used. RESULTS...... affection and abnormal collagen XII retention in fibroblasts. MRI disclosed a selective wasting of the rectus femoris muscle. DISCUSSION: COL12A1 mutations should be considered in patients with a mild Bethlem phenotype who present with selective wasting of the rectus femoris, absence of the outside......-in phenomenon on MRI, and abnormal collagen XII retention in fibroblasts. Muscle Nerve, 2018....

  3. A 48 kDa collagen-binding phosphoprotein isolated from bovine aortic endothelial cells interacts with the collagenous domain, but not the globular domain, of collagen type IV.

    Science.gov (United States)

    Yannariello-Brown, J; Madri, J A

    1990-01-15

    We have identified collagen-binding proteins in detergent extracts of metabolically labelled bovine aortic endothelial cells (BAEC) by collagen type IV-Sepharose affinity chromatography. The major collagen type IV-binding protein identified by SDS/PAGE had a molecular mass of 48 kDa, which we term the 'collagen-binding 48 kDa protein' (CB48). The pI of CB48 was 8.0-8.3 in a two-dimensional gel system, running non-equilibrium pH gel electrophoresis in the first dimension and SDS/PAGE in the second dimension. Under these conditions CB48 separated into two major (a and b) and one minor isoform (c); a was the most basic of the three isoforms. Two-dimensional chymotryptic peptide maps derived from each individual isoform were virtually identical. The charge differences between the isoforms were due in part to differential H3(32)PO4 incorporation by the protein. CB48 bound to intact collagen type IV and the collagenous region of collagen type IV, but not to the globular NC1 domain. Cell-surface labelling and indirect immunofluorescence experiments localized the bulk of CB48 intracellularly in the endoplasmic reticulum Golgi region, with a minor population of molecules on the cell surface. A specific rabbit polyclonal anti-CB48 serum did not inhibit the attachment or spreading of BAEC to collagen type IV in an 'in vitro' adhesion assay, suggesting that the cell-surface population of CB48 is not involved in BAEC adhesion. We conclude that CB48 is a collagen-binding phosphoprotein that interacts with the collagenous domain of collagen type IV and may be involved in intracellular transport of collagen molecules.

  4. Molecular crowding of collagen: a pathway to produce highly-organized collagenous structures.

    Science.gov (United States)

    Saeidi, Nima; Karmelek, Kathryn P; Paten, Jeffrey A; Zareian, Ramin; DiMasi, Elaine; Ruberti, Jeffrey W

    2012-10-01

    Collagen in vertebrate animals is often arranged in alternating lamellae or in bundles of aligned fibrils which are designed to withstand in vivo mechanical loads. The formation of these organized structures is thought to result from a complex, large-area integration of individual cell motion and locally-controlled synthesis of fibrillar arrays via cell-surface fibripositors (direct matrix printing). The difficulty of reproducing such a process in vitro has prevented tissue engineers from constructing clinically useful load-bearing connective tissue directly from collagen. However, we and others have taken the view that long-range organizational information is potentially encoded into the structure of the collagen molecule itself, allowing the control of fibril organization to extend far from cell (or bounding) surfaces. We here demonstrate a simple, fast, cell-free method capable of producing highly-organized, anistropic collagen fibrillar lamellae de novo which persist over relatively long-distances (tens to hundreds of microns). Our approach to nanoscale organizational control takes advantage of the intrinsic physiochemical properties of collagen molecules by inducing collagen association through molecular crowding and geometric confinement. To mimic biological tissues which comprise planar, aligned collagen lamellae (e.g. cornea, lamellar bone or annulus fibrosus), type I collagen was confined to a thin, planar geometry, concentrated through molecular crowding and polymerized. The resulting fibrillar lamellae show a striking resemblance to native load-bearing lamellae in that the fibrils are small, generally aligned in the plane of the confining space and change direction en masse throughout the thickness of the construct. The process of organizational control is consistent with embryonic development where the bounded planar cell sheets produced by fibroblasts suggest a similar confinement/concentration strategy. Such a simple approach to nanoscale

  5. Oral antibiotics increase blood neutrophil maturation and reduce bacteremia and necrotizing enterocolitis in the immediate postnatal period of preterm pigs

    DEFF Research Database (Denmark)

    Nguyen, Duc Ninh; Fuglsang, Eva; Jiang, Pingping

    2016-01-01

    in blood parameters and bacterial composition in the intestine, blood and immune organs were analyzed. Newborn preterm pigs had few blood neutrophils and a high frequency of progenitor cells. Neutrophils gradually matured after preterm birth with increasing CD14 and decreasing CD172a expressions. Preterm...... neutrophil and monocyte TLR2 expression and TLR2-mediated blood cytokine responses were low relative to adults. ORA pigs showed enhanced blood neutrophil maturation with reduced cell size and CD172a expression. Only ORA pigs, but not SYS pigs, were protected from a high density of gut Gram-positive bacteria......, high gut permeability, Gram-positive bacteremia and NEC. Neonatal oral antibiotics may benefit mucosal and systemic immunity via delayed gut colonization and enhanced blood neutrophil maturation just after preterm birth....

  6. LARP6 Meets Collagen mRNA: Specific Regulation of Type I Collagen Expression

    Directory of Open Access Journals (Sweden)

    Yujie Zhang

    2016-03-01

    Full Text Available Type I collagen is the most abundant structural protein in all vertebrates, but its constitutive rate of synthesis is low due to long half-life of the protein (60–70 days. However, several hundred fold increased production of type I collagen is often seen in reparative or reactive fibrosis. The mechanism which is responsible for this dramatic upregulation is complex, including multiple levels of regulation. However, posttranscriptional regulation evidently plays a predominant role. Posttranscriptional regulation comprises processing, transport, stabilization and translation of mRNAs and is executed by RNA binding proteins. There are about 800 RNA binding proteins, but only one, La ribonucleoprotein domain family member 6 (LARP6, is specifically involved in type I collagen regulation. In the 5′untranslated region (5’UTR of mRNAs encoding for type I and type III collagens there is an evolutionally conserved stem-loop (SL structure; this structure is not found in any other mRNA, including any other collagen mRNA. LARP6 binds to the 5′SL in sequence specific manner to regulate stability of collagen mRNAs and their translatability. Here, we will review current understanding of how is LARP6 involved in posttranscriptional regulation of collagen mRNAs. We will also discuss how other proteins recruited by LARP6, including nonmuscle myosin, vimentin, serine threonine kinase receptor associated protein (STRAP, 25 kD FK506 binding protein (FKBP25 and RNA helicase A (RHA, contribute to this process.

  7. Osteoblasts extracellular matrix induces vessel like structures through glycosylated collagen I

    Energy Technology Data Exchange (ETDEWEB)

    Palmieri, D. [Genetics, DIBIO, University of Genova, Corso Europa 26, 16132 Genova (Italy); Valli, M.; Viglio, S. [Department of Biochemistry, University of Pavia (Italy); Ferrari, N. [Istituto Nazionale per la ricerca sul Cancro, Genova (Italy); Ledda, B.; Volta, C. [Genetics, DIBIO, University of Genova, Corso Europa 26, 16132 Genova (Italy); Manduca, P., E-mail: man-via@unige.it [Genetics, DIBIO, University of Genova, Corso Europa 26, 16132 Genova (Italy)

    2010-03-10

    Extracellular matrix (ECM) plays a fundamental role in angiogenesis affecting endothelial cells proliferation, migration and differentiation. Vessels-like network formation in vitro is a reliable test to study the inductive effects of ECM on angiogenesis. Here we utilized matrix deposed by osteoblasts as substrate where the molecular and structural complexity of the endogenous ECM is preserved, to test if it induces vessel-like network formation by endothelial cells in vitro. ECM is more similar to the physiological substrate in vivo than other substrates previously utilized for these studies in vitro. Osteogenic ECM, prepared in vitro from mature osteoblasts at the phase of maximal deposition and glycosylation of collagen I, induces EAhy926, HUVEC, and HDMEC endothelial cells to form vessels-like structures and promotes the activation of metalloproteinase-2 (MMP-2); the functionality of the p-38/MAPK signaling pathway is required. Osteogenic ECM also induces a transient increase of CXCL12 and a decrease of the receptor CXCR4. The induction of vessel-like networks is dependent from proper glycosylation of collagens and does not occur on osteogenic ECMs if deglycosylated by -galactosidase or on less glycosylated ECMs derived from preosteoblasts and normal fibroblasts, while is sustained on ECM from osteogenesis imperfecta fibroblasts only when their mutation is associated with over-glycosylation of collagen type I. These data support that post-translational glycosylation has a role in the induction in endothelial cells in vitro of molecules conductive to self-organization in vessels-like structures.

  8. Osteoblasts extracellular matrix induces vessel like structures through glycosylated collagen I

    International Nuclear Information System (INIS)

    Palmieri, D.; Valli, M.; Viglio, S.; Ferrari, N.; Ledda, B.; Volta, C.; Manduca, P.

    2010-01-01

    Extracellular matrix (ECM) plays a fundamental role in angiogenesis affecting endothelial cells proliferation, migration and differentiation. Vessels-like network formation in vitro is a reliable test to study the inductive effects of ECM on angiogenesis. Here we utilized matrix deposed by osteoblasts as substrate where the molecular and structural complexity of the endogenous ECM is preserved, to test if it induces vessel-like network formation by endothelial cells in vitro. ECM is more similar to the physiological substrate in vivo than other substrates previously utilized for these studies in vitro. Osteogenic ECM, prepared in vitro from mature osteoblasts at the phase of maximal deposition and glycosylation of collagen I, induces EAhy926, HUVEC, and HDMEC endothelial cells to form vessels-like structures and promotes the activation of metalloproteinase-2 (MMP-2); the functionality of the p-38/MAPK signaling pathway is required. Osteogenic ECM also induces a transient increase of CXCL12 and a decrease of the receptor CXCR4. The induction of vessel-like networks is dependent from proper glycosylation of collagens and does not occur on osteogenic ECMs if deglycosylated by -galactosidase or on less glycosylated ECMs derived from preosteoblasts and normal fibroblasts, while is sustained on ECM from osteogenesis imperfecta fibroblasts only when their mutation is associated with over-glycosylation of collagen type I. These data support that post-translational glycosylation has a role in the induction in endothelial cells in vitro of molecules conductive to self-organization in vessels-like structures.

  9. Cone and Seed Maturation of Southern Pines

    Science.gov (United States)

    James P. Barnett

    1976-01-01

    If slightly reduced yields and viability are acceptable, loblolly and slash cone collections can begin 2 to 3 weeks before maturity if the cones are stored before processing. Longleaf(P. palestris Mill.) pine cones should be collected only when mature, as storage decreased germination of seeds from immature cones. Biochemical analyses to determine reducing sugar...

  10. Rheology of Heterotypic Collagen Networks

    NARCIS (Netherlands)

    Piechocka, I.K.; van Oosten, A.S.G.; Breuls, R.G.M.; Koenderink, G.H.

    2011-01-01

    Collagen fibrils are the main structural element of connective tissues. In many tissues, these fibrils contain two fibrillar collagens (types I and V) in a ratio that changes during tissue development, regeneration, and various diseases. Here we investigate the influence of collagen composition on

  11. Podosomes, But Not the Maturation Status, Determine the Protease-Dependent 3D Migration in Human Dendritic Cells.

    Science.gov (United States)

    Cougoule, Céline; Lastrucci, Claire; Guiet, Romain; Mascarau, Rémi; Meunier, Etienne; Lugo-Villarino, Geanncarlo; Neyrolles, Olivier; Poincloux, Renaud; Maridonneau-Parini, Isabelle

    2018-01-01

    Dendritic cells (DC) are professional Antigen-Presenting Cells scattered throughout antigen-exposed tissues and draining lymph nodes, and survey the body for pathogens. Their ability to migrate through tissues, a 3D environment, is essential for an effective immune response. Upon infection, recognition of Pathogen-Associated Molecular Patterns (PAMP) by Toll-like receptors (TLR) triggers DC maturation. Mature DC (mDC) essentially use the protease-independent, ROCK-dependent amoeboid mode in vivo , or in collagen matrices in vitro . However, the mechanisms of 3D migration used by human immature DC (iDC) are still poorly characterized. Here, we reveal that human monocyte-derived DC are able to use two migration modes in 3D. In porous matrices of fibrillar collagen I, iDC adopted the amoeboid migration mode. In dense matrices of gelled collagen I or Matrigel, iDC used the protease-dependent, ROCK-independent mesenchymal migration mode. Upon TLR4 activation by LPS, mDC-LPS lose the capacity to form podosomes and degrade the matrix along with impaired mesenchymal migration. TLR2 activation by Pam 3 CSK 4 resulted in DC maturation, podosome maintenance, and efficient mesenchymal migration. Under all these conditions, when DC used the mesenchymal mode in dense matrices, they formed 3D podosomes at the tip of cell protrusions. Using PGE 2 , known to disrupt podosomes in DC, we observed that the cells remained in an immature status and the mesenchymal migration mode was abolished. We also observed that, while CCL5 (attractant of iDC) enhanced both amoeboid and mesenchymal migration of iDC, CCL19 and CCL21 (attractants of mDC) only enhanced mDC-LPS amoeboid migration without triggering mesenchymal migration. Finally, we examined the migration of iDC in tumor cell spheroids, a tissue-like 3D environment. We observed that iDC infiltrated spheroids of tumor cells using both migration modes. Altogether, these results demonstrate that human DC adopt the mesenchymal mode to

  12. Fibrin Gels Exhibit Improved Biological, Structural, and Mechanical Properties Compared with Collagen Gels in Cell-Based Tendon Tissue-Engineered Constructs

    Science.gov (United States)

    Dyment, Nathaniel A.; Lu, Yinhui; Rao, Marepalli; Shearn, Jason T.; Rowe, David W.; Kadler, Karl E.; Butler, David L.

    2015-01-01

    The prevalence of tendon and ligament injuries and inadequacies of current treatments is driving the need for alternative strategies such as tissue engineering. Fibrin and collagen biopolymers have been popular materials for creating tissue-engineered constructs (TECs), as they exhibit advantages of biocompatibility and flexibility in construct design. Unfortunately, a few studies have directly compared these materials for tendon and ligament applications. Therefore, this study aims at determining how collagen versus fibrin hydrogels affect the biological, structural, and mechanical properties of TECs during formation in vitro. Our findings show that tendon and ligament progenitor cells seeded in fibrin constructs exhibit improved tenogenic gene expression patterns compared with their collagen-based counterparts for approximately 14 days in culture. Fibrin-based constructs also exhibit improved cell-derived collagen alignment, increased linear modulus (2.2-fold greater) compared with collagen-based constructs. Cyclic tensile loading, which promotes the maturation of tendon constructs in a previous work, exhibits a material-dependent effect in this study. Fibrin constructs show trending reductions in mechanical, biological, and structural properties, whereas collagen constructs only show improved tenogenic expression in the presence of mechanical stimulation. These findings highlight that components of the mechanical stimulus (e.g., strain amplitude or time of initiation) need to be tailored to the material and cell type. Given the improvements in tenogenic expression, extracellular matrix organization, and material properties during static culture, in vitro findings presented here suggest that fibrin-based constructs may be a more suitable alternative to collagen-based constructs for tissue-engineered tendon/ligament repair. PMID:25266738

  13. Ossification score is a better indicator of maturity related changes in eating quality than animal age.

    Science.gov (United States)

    Bonny, S P F; Pethick, D W; Legrand, I; Wierzbicki, J; Allen, P; Farmer, L J; Polkinghorne, R J; Hocquette, J-F; Gardner, G E

    2016-04-01

    Ossification score and animal age are both used as proxies for maturity-related collagen crosslinking and consequently decreases in beef tenderness. Ossification score is strongly influenced by the hormonal status of the animal and may therefore better reflect physiological maturity and consequently eating quality. As part of a broader cross-European study, local consumers scored 18 different muscle types cooked in three ways from 482 carcasses with ages ranging from 590 to 6135 days and ossification scores ranging from 110 to 590. The data were studied across three different maturity ranges; the complete range of maturities, a lesser range and a more mature range. The lesser maturity group consisted of carcasses having either an ossification score of 200 or less or an age of 987 days or less with the remainder in the greater maturity group. The three different maturity ranges were analysed separately with a linear mixed effects model. Across all the data, and for the greater maturity group, animal age had a greater magnitude of effect on eating quality than ossification score. This is likely due to a loss of sensitivity in mature carcasses where ossification approached and even reached the maximum value. In contrast, age had no relationship with eating quality for the lesser maturity group, leaving ossification score as the more appropriate measure. Therefore ossification score is more appropriate for most commercial beef carcasses, however it is inadequate for carcasses with greater maturity such as cull cows. Both measures may therefore be required in models to predict eating quality over populations with a wide range in maturity.

  14. Cervical collagen is reduced in non-pregnant women with a history of cervical insufficiency and a short cervix

    DEFF Research Database (Denmark)

    Sundtoft, Iben; Langhoff-Roos, Jens; Sandager, Puk

    2017-01-01

    INTRODUCTION: Preterm cervical shortening and cervical insufficiency may be caused by a constitutional weakness of the cervix. The aim of this study was to assess the cervical collagen concentration in non-pregnant women with a history of cervical insufficiency or of a short cervix in the second...... trimester of pregnancy. MATERIAL AND METHODS: In this case-control study we included non-pregnant women one year or more after pregnancy: 55 controls with a history of normal delivery; 27 women with a history of cervical insufficiency; and 10 women with a history of a short cervix (... women with a history of a long cervix (>95th percentile) at gestational weeks 18-20. We obtained biopsies (3 × 3-4 mm) from the ectocervix and determined the collagen concentration by measuring the hydroxyproline concentration. RESULTS: Women with cervical insufficiency had lower collagen concentrations...

  15. Can green solvents be alternatives for thermal stabilization of collagen?

    Science.gov (United States)

    Mehta, Ami; Rao, J Raghava; Fathima, Nishter Nishad

    2014-08-01

    "Go Green" campaign is gaining light for various industrial applications where water consumption needs to be reduced. To resolve this, industries have adopted usage of green, organic solvents, as an alternative to water. For leather making, tanning industry consumes gallons of water. Therefore, for adopting green solvents in leather making, it is necessary to evaluate its influence on type I collagen, the major protein present in the skin matrix. The thermal stability of collagen from rat tail tendon fiber (RTT) treated with seven green solvents namely, ethanol, ethyl lactate, ethyl acetate, propylene carbonate, propylene glycol, polyethylene glycol-200 and heptane was determined using differential scanning calorimetry (DSC). Crosslinking efficiency of basic chromium sulfate and wattle on RTT in green solvents was determined. DSC thermograms show increase in thermal stability of RTT collagen against heat with green solvents (>78°C) compared to water (63°C). In the presence of crosslinkers, RTT demonstrated thermal stability >100°C in some green solvents, resulting in increased intermolecular forces between collagen, solvent and crosslinkers. The significant improvement in thermal stability of collagen potentiates the capability of green solvents as an alternative for water. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. [Bio-Oss collagen bone grafting in the treatment of endodontic-periodontic lesion].

    Science.gov (United States)

    Sun, Jiang; Liu, Qiong

    2009-09-01

    To study the effect of Bio-Oss collagen for bone grafting in the treatment of endodontic-periodontic lesion. Thirty patients (37 teeth) with endodontic-periodontic lesions received root canal therapy and periodontal treatment. Four weeks after the treatment, Bio-Oss collagen was grafted in these teeth. Clinical examinations were performed 1, 3, 6, 9, and 12 months after the surgery. The mobility of these teeth improved 1 month after the surgery. At 3, 6, 9, and 12 months after the surgery, the pocket depth reduced obviously good attachment and further improvement of the tooth mobility. Bio-Oss collagen for bone grafting can achieve good therapeutic effect for endodontic-periodontic lesions.

  17. Association of collagen architecture with glioblastoma patient survival.

    Science.gov (United States)

    Pointer, Kelli B; Clark, Paul A; Schroeder, Alexandra B; Salamat, M Shahriar; Eliceiri, Kevin W; Kuo, John S

    2017-06-01

    OBJECTIVE Glioblastoma (GBM) is the most malignant primary brain tumor. Collagen is present in low amounts in normal brain, but in GBMs, collagen gene expression is reportedly upregulated. However, to the authors' knowledge, direct visualization of collagen architecture has not been reported. The authors sought to perform the first direct visualization of GBM collagen architecture, identify clinically relevant collagen signatures, and link them to differential patient survival. METHODS Second-harmonic generation microscopy was used to detect collagen in a GBM patient tissue microarray. Focal and invasive GBM mouse xenografts were stained with Picrosirius red. Quantitation of collagen fibers was performed using custom software. Multivariate survival analysis was done to determine if collagen is a survival marker for patients. RESULTS In focal xenografts, collagen was observed at tumor brain boundaries. For invasive xenografts, collagen was intercalated with tumor cells. Quantitative analysis showed significant differences in collagen fibers for focal and invasive xenografts. The authors also found that GBM patients with more organized collagen had a longer median survival than those with less organized collagen. CONCLUSIONS Collagen architecture can be directly visualized and is different in focal versus invasive GBMs. The authors also demonstrate that collagen signature is associated with patient survival. These findings suggest that there are collagen differences in focal versus invasive GBMs and that collagen is a survival marker for GBM.

  18. Comparison of thermal properties of fish collagen and bovine collagen in the temperature range 298-670K.

    Science.gov (United States)

    Gauza-Włodarczyk, Marlena; Kubisz, Leszek; Mielcarek, Sławomir; Włodarczyk, Dariusz

    2017-11-01

    The increased interest in fish collagen is a consequence of the risk of exposure to Creutzfeld-Jacob disease (CJD) and the bovine spongiform encephalopathy (BSE), whose occurrence is associated with prions carried by bovine collagen. Collagen is the main biopolymer in living organisms and the main component of the skin and bones. Until the discovery of the BSE, bovine collagen had been widely used. The BSE epidemic increased the interest in new sources of collagen such as fish skin collagen (FSC) and its properties. Although the thermal properties of collagen originating from mammals have been well described, less attention has been paid to the thermal properties of FSC. Denaturation temperature is a particularly important parameter, depending on the collagen origin and hydration level. In the reported experiment, the free water and bound water release processes along with thermal denaturation process were studied by means of the differential scanning calorimetry (DSC). Measurements were carried out using a DSC 7 instrument (Elmer-Perkin), in the temperature range 298-670K. The study material was FSC derived by acidic hydration method. The bovine Achilles tendon (BAT) collagen type I was used as the control material. The thermograms recorded revealed both, exothermic and endothermic peaks. For both materials, the peaks in the temperature range of 330-360K were assigned to the release of free water and bound water. The denaturation temperatures of FSC and BAT collagen were determined as 420K and 493K, respectively. Thermal decomposition process was observed at about 500K for FSC and at about 510K for BAT collagen. These results show that FSC is less resistant to high temperature than BAT collagen. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. The effect of point mutations on structure and mechanical properties of collagen-like fibril: A molecular dynamics study

    International Nuclear Information System (INIS)

    Marlowe, Ashley E.; Singh, Abhishek; Yingling, Yaroslava G.

    2012-01-01

    Understanding sequence dependent mechanical and structural properties of collagen fibrils is important for the development of artificial biomaterials for medical and nanotechnological applications. Moreover, point mutations are behind many collagen associated diseases, including Osteogenesis Imperfecta (OI). We conducted a combination of classical and steered atomistic molecular dynamics simulations to examine the effect of point mutations on structure and mechanical properties of short collagen fibrils which include mutations of glycine to alanine, aspartic acid, cysteine, and serine or mutations of hydroxyproline to arginine, asparagine, glutamine, and lysine. We found that all mutations disrupt structure and reduce strength of the collagen fibrils, which may affect the hierarchical packing of the fibrils. The glycine mutations were more detrimental to mechanical strength of the fibrils (WT > Ala > Ser > Cys > Asp) than that of hydroxyproline (WT > Arg > Gln > Asn > Lys). The clinical outcome for glycine mutations agrees well with the trend in reduction of fibril's tensile strength predicted by our simulations. Overall, our results suggest that the reduction in mechanical properties of collagen fibrils may be used to predict the clinical outcome of mutations. Highlights: ► All mutations disrupt structure and bonding pattern and reduce strength of the collagen fibrils. ► Gly based mutations are worst to mechanical integrity of fibrils than that of Hyp. ► Lys and Arg mutations most dramatically destabilize collagen fibril properties. ► Clinical outcome of mutations may be related to the reduced mechanical properties of fibrils.

  20. Abnormal type I collagen post-translational modification and crosslinking in a cyclophilin B KO mouse model of recessive osteogenesis imperfecta.

    Science.gov (United States)

    Cabral, Wayne A; Perdivara, Irina; Weis, MaryAnn; Terajima, Masahiko; Blissett, Angela R; Chang, Weizhong; Perosky, Joseph E; Makareeva, Elena N; Mertz, Edward L; Leikin, Sergey; Tomer, Kenneth B; Kozloff, Kenneth M; Eyre, David R; Yamauchi, Mitsuo; Marini, Joan C

    2014-06-01

    Cyclophilin B (CyPB), encoded by PPIB, is an ER-resident peptidyl-prolyl cis-trans isomerase (PPIase) that functions independently and as a component of the collagen prolyl 3-hydroxylation complex. CyPB is proposed to be the major PPIase catalyzing the rate-limiting step in collagen folding. Mutations in PPIB cause recessively inherited osteogenesis imperfecta type IX, a moderately severe to lethal bone dysplasia. To investigate the role of CyPB in collagen folding and post-translational modifications, we generated Ppib-/- mice that recapitulate the OI phenotype. Knock-out (KO) mice are small, with reduced femoral areal bone mineral density (aBMD), bone volume per total volume (BV/TV) and mechanical properties, as well as increased femoral brittleness. Ppib transcripts are absent in skin, fibroblasts, femora and calvarial osteoblasts, and CyPB is absent from KO osteoblasts and fibroblasts on western blots. Only residual (2-11%) collagen prolyl 3-hydroxylation is detectable in KO cells and tissues. Collagen folds more slowly in the absence of CyPB, supporting its rate-limiting role in folding. However, treatment of KO cells with cyclosporine A causes further delay in folding, indicating the potential existence of another collagen PPIase. We confirmed and extended the reported role of CyPB in supporting collagen lysyl hydroxylase (LH1) activity. Ppib-/- fibroblast and osteoblast collagen has normal total lysyl hydroxylation, while increased collagen diglycosylation is observed. Liquid chromatography/mass spectrometry (LC/MS) analysis of bone and osteoblast type I collagen revealed site-specific alterations of helical lysine hydroxylation, in particular, significantly reduced hydroxylation of helical crosslinking residue K87. Consequently, underhydroxylated forms of di- and trivalent crosslinks are strikingly increased in KO bone, leading to increased total crosslinks and decreased helical hydroxylysine- to lysine-derived crosslink ratios. The altered crosslink

  1. The chemical reactivity and structure of collagen studied by neutron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Wess, T.J.; Wess, L.; Miller, A. [Univ. of Stirling (United Kingdom)

    1994-12-31

    The chemical reactivity of collagen can be studied using neutron diffraction (a non-destructive technique), for certain reaction types. Collagen contains a number of lysine and hydroxylysine side chains that can react with aldehydes and ketones, or these side chains can themselves be converted to aldehydes by lysyl oxidase. The reactivity of these groups not only has an important role in the maintenance of mechanical strength in collagen fibrils, but can also manifest pathologically in the cases of aging, diabetes (reactivity with a variety of sugars) and alcoholism (reactivity with acetaldehyde). The reactivity of reducing groups with collagen can be studied by neutron diffraction, since the crosslink formed in the adduction process is initially of a Schiff base or keto-imine nature. The nature of this crosslink allows it to be deuterated, and the position of this relatively heavy scattering atom can be used in a process of phase determination by multiple isomorphous replacement. This process was used to study the following: the position of natural crosslinks in collagen; the position of adducts in tendon from diabetic rats in vivo and the in vitro position of acetaidehyde adducts in tendon.

  2. The chemical reactivity and structure of collagen studied by neutron diffraction

    International Nuclear Information System (INIS)

    Wess, T.J.; Wess, L.; Miller, A.

    1994-01-01

    The chemical reactivity of collagen can be studied using neutron diffraction (a non-destructive technique), for certain reaction types. Collagen contains a number of lysine and hydroxylysine side chains that can react with aldehydes and ketones, or these side chains can themselves be converted to aldehydes by lysyl oxidase. The reactivity of these groups not only has an important role in the maintenance of mechanical strength in collagen fibrils, but can also manifest pathologically in the cases of aging, diabetes (reactivity with a variety of sugars) and alcoholism (reactivity with acetaldehyde). The reactivity of reducing groups with collagen can be studied by neutron diffraction, since the crosslink formed in the adduction process is initially of a Schiff base or keto-imine nature. The nature of this crosslink allows it to be deuterated, and the position of this relatively heavy scattering atom can be used in a process of phase determination by multiple isomorphous replacement. This process was used to study the following: the position of natural crosslinks in collagen; the position of adducts in tendon from diabetic rats in vivo and the in vitro position of acetaidehyde adducts in tendon

  3. Mechanical stretching stimulates collagen synthesis via down-regulating SO2/AAT1 pathway

    Science.gov (United States)

    Liu, Jia; Yu, Wen; Liu, Yan; Chen, Selena; Huang, Yaqian; Li, Xiaohui; Liu, Cuiping; Zhang, Yanqiu; Li, Zhenzhen; Du, Jie; Tang, Chaoshu; Du, Junbao; Jin, Hongfang

    2016-01-01

    The aim of the study was to investigate the role of endogenous sulfur dioxide (SO2)/ aspartate aminotransferase 1 (AAT1) pathway in stretch-induced excessive collagen expression and its mechanism. The mechanical stretch downregulated SO2/AAT1 pathway and increased collagen I and III protein expression. Importantly, AAT1 overexpression blocked the increase in collagen I and III expression, transforming growth factor-β1 (TGF- β1) expression and phosphorylation of Smad2/3 induced by stretch, but AAT1 knockdown mimicked the increase in collagen I and III expression, TGF- β1 expression and phosphorylation of Smad2/3 induced by stretch. Mechanistically, SB431542, a TGF-β1/Smad2/3 inhibitor, eliminated excessive collagen I and III accumulation induced by AAT1 knockdown, stretch or stretch plus AAT1 knockdown. In a rat model of high pulmonary blood flow-induced pulmonary vascular collagen accumulation, AAT1 expression and SO2 content in lung tissues of rat were reduced in shunt rats with high pulmonary blood flow. Supplement of SO2 derivatives inhibited activation of TGF- β1/Smad2/3 pathway and alleviated the excessive collagen accumulation in lung tissues of shunt rats. The results suggested that deficiency of endogenous SO2/AAT1 pathway mediated mechanical stretch-stimulated abnormal collagen accumulation via TGF-β1/Smad2/3 pathway. PMID:26880260

  4. On the role of type IX collagen in the extracellular matrix of cartilage: type IX collagen is localized to intersections of collagen fibrils

    OpenAIRE

    1986-01-01

    The tissue distribution of type II and type IX collagen in 17-d-old chicken embryo was studied by immunofluorescence using polyclonal antibodies against type II collagen and a peptic fragment of type IX collagen (HMW), respectively. Both proteins were found only in cartilage where they were co-distributed. They occurred uniformly throughout the extracellular matrix, i.e., without distinction between pericellular, territorial, and interterritorial matrices. Tissues that undergo endochondral bo...

  5. ISOCT study of collagen crosslinking of collagen in cancer models (Conference Presentation)

    Science.gov (United States)

    Spicer, Graham; Young, Scott T.; Yi, Ji; Shea, Lonnie D.; Backman, Vadim

    2016-03-01

    The role of extracellular matrix modification and signaling in cancer progression is an increasingly recognized avenue for the progression of the disease. Previous study of field effect carcinogenesis with Inverse Spectroscopic Optical Coherence Tomography (ISOCT) has revealed pronounced changes in the nanoscale-sensitive mass fractal dimension D measured from field effect tissue when compared to healthy tissue. However, the origin of this difference in tissue ultrastructure in field effect carcinogenesis has remained poorly understood. Here, we present findings supporting the idea that enzymatic crosslinking of the extracellular matrix is an effect that presents at the earliest stages of carcinogenesis. We use a model of collagen gel with crosslinking induced by lysyl oxidase (LOXL4) to recapitulate the difference in D previously reported from healthy and cancerous tissue biopsies. Furthermore, STORM imaging of this collagen gel model verifies the morphologic effects of enzymatic crosslinking at length scales as small as 40 nm, close to the previously reported lower length scale sensitivity threshold of 35 nm for ISOCT. Analysis of the autocorrelation function from STORM images of collagen gels and subsequent fitting to the Whittle-Matérn correlation function shows a similar effect of LOXL4 on D from collagen measured with ISOCT and STORM. We extend this to mass spectrometric study of tissue to directly measure concentrations of collagen crosslink residues. The validation of ISOCT as a viable tool for non-invasive rapid quantification of collagen ultrastructure lends it to study other physiological phenomena involving ECM restructuring such as atherosclerotic plaque screening or cervical ripening during pregnancy.

  6. Comparison of collagen profile and tenderness of muscles from ...

    African Journals Online (AJOL)

    2014-11-28

    Nov 28, 2014 ... Eight heifers (540 days old) and eight single-calf cows (836 days old), which were ... collagen is soluble and has a high proportion of reducible heat- ...... Have we under-estimated the impact of pre-slaughter stress on meat.

  7. Observations on morphologic changes in the aging and degenerating human disc: Secondary collagen alterations

    Directory of Open Access Journals (Sweden)

    Hanley Edward N

    2002-03-01

    Full Text Available Abstract Background In the annulus, collagen fibers that make up the lamellae have a wavy, planar crimped pattern. This crimping plays a role in disc biomechanical function by allowing collagen fibers to stretch during compression. The relationship between morphologic changes in the aging/degenerating disc and collagen crimping have not been explored. Methods Ultrastructural studies were performed on annulus tissue from 29 control (normal donors (aged newborn to 79 years and surgical specimens from 49 patients (aged 16 to 77 years. Light microscopy and specialized image analysis to visualize crimping was performed on additional control and surgical specimens. Human intervertebral disc tissue from the annulus was obtained in a prospective morphologic study of the annulus. Studies were approved by the authors' Human Subjects Institutional Review Board. Results Three types of morphologic changes were found to alter the crimping morphology of collagen: 1 encircling layers of unusual matrix disrupted the lamellar collagen architecture; 2 collagen fibers were reduced in amount, and 3 collagen was absent in regions with focal matrix loss. Conclusions Although proteoglycan loss is well recognized as playing a role in the decreased shock absorber function of the aging/degenerating disc, collagen changes have received little attention. This study suggests that important stretch responses of collagen made possible by collagen crimping may be markedly altered by morphologic changes during aging/degeneration and may contribute to the early tissue changes involved in annular tears.

  8. uPARAP/Endo180 is essential for cellular uptake of collagen and promotes fibroblast collagen adhesion

    DEFF Research Database (Denmark)

    Engelholm, Lars H; List, Karin; Netzel-Arnett, Sarah

    2003-01-01

    The uptake and lysosomal degradation of collagen by fibroblasts constitute a major pathway in the turnover of connective tissue. However, the molecular mechanisms governing this pathway are poorly understood. Here, we show that the urokinase plasminogen activator receptor-associated protein (u......, these cells had diminished initial adhesion to a range of different collagens, as well as impaired migration on fibrillar collagen. These studies identify a central function of uPARAP/Endo180 in cellular collagen interactions....

  9. Prophylactic Injection of Recombinant Alpha-Enolase Reduces Arthritis Severity in the Collagen-Induced Arthritis Mice Model.

    Directory of Open Access Journals (Sweden)

    Clément Guillou

    Full Text Available To evaluate the ability of the glycolytic enzyme alpha-enolase (ENO1 or its immunodominant peptide (pEP1 to reduce the severity of CIA in DBA/1 mice when injected in a prophylactic way.Mice were treated with mouse ENO1 or pEP1 one day prior to collagen II immunization. Clinical assessment was evaluated using 4 parameters (global and articular scores, ankle thickness and weight. Titers of serum anti-ENO1, anti-cyclic citrullinated peptides (anti-CCP and anti-CII (total IgG and IgG1/IgG2a isotypes antibodies were measured by ELISA at different time-points. Disease activity was assessed by histological analysis of both anterior and hind paws at the end of experimentation.Prophylactic injection of 100 μg of ENO1 reduced severity of CIA. Serum levels of anti-CII antibodies were reduced in ENO1-treated mice. Concordantly, ENO1-treated mice joints presented less severe histological signs of arthritis. ENO1 did not induce a shift toward a Th2 response since IgG1/IgG2a ratio of anti-CII antibodies remained unchanged and IL-4 serum levels were similar to those measured in the control group.Pre-immunization with ENO1 or its immunodominant peptide pEP1 reduces CIA severity at the clinical, immunological and histological levels. Effects of pEP1 were less pronounced. This immunomodulatory effect is associated with a reduction in anti-CII antibodies production but is not due to a Th1/Th2 shift.

  10. Prophylactic Injection of Recombinant Alpha-Enolase Reduces Arthritis Severity in the Collagen-Induced Arthritis Mice Model

    Science.gov (United States)

    Guillou, Clément; Derambure, Céline; Fréret, Manuel; Verdet, Mathieu; Avenel, Gilles; Golinski, Marie-Laure; Sabourin, Jean-Christophe; Loarer, François Le; Adriouch, Sahil; Boyer, Olivier; Lequerré, Thierry; Vittecoq, Olivier

    2015-01-01

    Objective To evaluate the ability of the glycolytic enzyme alpha-enolase (ENO1) or its immunodominant peptide (pEP1) to reduce the severity of CIA in DBA/1 mice when injected in a prophylactic way. Methods Mice were treated with mouse ENO1 or pEP1 one day prior to collagen II immunization. Clinical assessment was evaluated using 4 parameters (global and articular scores, ankle thickness and weight). Titers of serum anti-ENO1, anti-cyclic citrullinated peptides (anti-CCP) and anti-CII (total IgG and IgG1/IgG2a isotypes) antibodies were measured by ELISA at different time-points. Disease activity was assessed by histological analysis of both anterior and hind paws at the end of experimentation. Results Prophylactic injection of 100 μg of ENO1 reduced severity of CIA. Serum levels of anti-CII antibodies were reduced in ENO1-treated mice. Concordantly, ENO1-treated mice joints presented less severe histological signs of arthritis. ENO1 did not induce a shift toward a Th2 response since IgG1/IgG2a ratio of anti-CII antibodies remained unchanged and IL-4 serum levels were similar to those measured in the control group. Conclusions Pre-immunization with ENO1 or its immunodominant peptide pEP1 reduces CIA severity at the clinical, immunological and histological levels. Effects of pEP1 were less pronounced. This immunomodulatory effect is associated with a reduction in anti-CII antibodies production but is not due to a Th1/Th2 shift. PMID:26302382

  11. Corneal collagen crosslinking for keratoconus. A review

    Directory of Open Access Journals (Sweden)

    M. M. Bikbov

    2014-10-01

    C, and collagen fiber diameter increase by 12.2 % (anterior stroma and 4.6 % (posterior stroma. In mild bullous keratopathy, corneal crosslinking provides antimicrobial effect. In moderate and severe keratopathy, crosslinking reduces pain and corneal edema and improves visual acuity immediately after the procedure. A case of HSV keratitis exacerbation was described. Amongst the complications, infection, halos, and posterior segment damage should be mentioned. Poor refractive results can be improved by the implantation of intrastromal corneal ring segments.

  12. Type I collagen gel protects murine fibrosarcoma L929 cells from TNFα-induced cell death

    International Nuclear Information System (INIS)

    Wang, Hong-Ju; He, Wen-Qi; Chen, Ling; Liu, Wei-Wei; Xu, Qian; Xia, Ming-Yu; Hayashi, Toshihiko; Fujisaki, Hitomi; Hattori, Shunji; Tashiro, Shin-ichi; Onodera, Satoshi; Ikejima, Takashi

    2015-01-01

    Murine fibrosarcoma L929 cells have been used to test efficacy of proinflammatory cytokine TNFα. In the present study, we reported on protective effect of type I collagen gel used as L929 cell culture. L929 cell grew and proliferated well on collagen gel. However, the L929 cells exhibited cobblestone-like morphology which was much different from the spread fusiform shape when cultured on conventional cell dishes as well as the cells tended to aggregate. On conventional cell culture dishes, the cells treated with TNFα became round in shape and eventually died in a necroptotic manner. The cells cultured on collagen gel, however, were completely unaffected. TNFα treatment was reported to induce autophagy in L929 cells on the plastic dish, and therefore we investigated the effect of collagen gel on induction of autophagy. The results indicated that autophagy induced by TNFα treatment was much reduced when the cells were cultured on collagen gel. In conclusion, type I collagen gel protected L929 cell from TNFα-induced cell death. - Highlights: • Collagen gel culture changed the morphology of L929 cells. • L929 cell cultured on collagen gel were resistant to TNFα-induced cell death. • Collagen gel culture inhibited TNFα-induced autophagy in L929 cells

  13. Type I collagen gel protects murine fibrosarcoma L929 cells from TNFα-induced cell death

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hong-Ju; He, Wen-Qi; Chen, Ling; Liu, Wei-Wei; Xu, Qian; Xia, Ming-Yu; Hayashi, Toshihiko [China-Japan Research Institute of Medical and Pharmaceutical Sciences, Shenyang Pharmaceutical University, Shenyang 110016 (China); Fujisaki, Hitomi; Hattori, Shunji [Nippi Research Institute of Biomatrix, Toride, Ibaraki 302-0017 (Japan); Tashiro, Shin-ichi [Institute for Clinical and Biomedical Sciences, Kyoto 603-8072 (Japan); Onodera, Satoshi [Department of Clinical and Pharmaceutical Sciences, Showa Pharmaceutical University, Tokyo 194-8543 (Japan); Ikejima, Takashi, E-mail: ikejimat@vip.sina.com [China-Japan Research Institute of Medical and Pharmaceutical Sciences, Shenyang Pharmaceutical University, Shenyang 110016 (China)

    2015-02-20

    Murine fibrosarcoma L929 cells have been used to test efficacy of proinflammatory cytokine TNFα. In the present study, we reported on protective effect of type I collagen gel used as L929 cell culture. L929 cell grew and proliferated well on collagen gel. However, the L929 cells exhibited cobblestone-like morphology which was much different from the spread fusiform shape when cultured on conventional cell dishes as well as the cells tended to aggregate. On conventional cell culture dishes, the cells treated with TNFα became round in shape and eventually died in a necroptotic manner. The cells cultured on collagen gel, however, were completely unaffected. TNFα treatment was reported to induce autophagy in L929 cells on the plastic dish, and therefore we investigated the effect of collagen gel on induction of autophagy. The results indicated that autophagy induced by TNFα treatment was much reduced when the cells were cultured on collagen gel. In conclusion, type I collagen gel protected L929 cell from TNFα-induced cell death. - Highlights: • Collagen gel culture changed the morphology of L929 cells. • L929 cell cultured on collagen gel were resistant to TNFα-induced cell death. • Collagen gel culture inhibited TNFα-induced autophagy in L929 cells.

  14. cAMP level modulates scleral collagen remodeling, a critical step in the development of myopia.

    Directory of Open Access Journals (Sweden)

    Yijin Tao

    Full Text Available The development of myopia is associated with decreased ocular scleral collagen synthesis in humans and animal models. Collagen synthesis is, in part, under the influence of cyclic adenosine monophosphate (cAMP. We investigated the associations between cAMP, myopia development in guinea pigs, and collagen synthesis by human scleral fibroblasts (HSFs. Form-deprived myopia (FDM was induced by unilateral masking of guinea pig eyes. Scleral cAMP levels increased selectively in the FDM eyes and returned to normal levels after unmasking and recovery. Unilateral subconjunctival treatment with the adenylyl cyclase (AC activator forskolin resulted in a myopic shift accompanied by reduced collagen mRNA levels, but it did not affect retinal electroretinograms. The AC inhibitor SQ22536 attenuated the progression of FDM. Moreover, forskolin inhibited collagen mRNA levels and collagen secretion by HSFs. The inhibition was reversed by SQ22536. These results demonstrate a critical role of cAMP in control of myopia development. Selective regulation of cAMP to control scleral collagen synthesis may be a novel therapeutic strategy for preventing and treating myopia.

  15. Glycosylation of type II collagen is of major importance for T cell tolerance and pathology in collagen-induced arthritis

    DEFF Research Database (Denmark)

    Bäcklund, Johan; Treschow, Alexandra; Bockermann, Robert

    2002-01-01

    Type II collagen (CII) is a candidate cartilage-specific autoantigen, which can become post-translationally modified by hydroxylation and glycosylation. T cell recognition of CII is essential for the development of murine collagen-induced arthritis (CIA) and also occurs in rheumatoid arthritis (RA......). The common denominator of murine CIA and human RA is the presentation of an immunodominant CII-derived glycosylated peptide on murine Aq and human DR4 molecules, respectively. To investigate the importance of T cell recognition of glycosylated CII in CIA development after immunization with heterologous CII......, we treated neonatal mice with different heterologous CII-peptides (non-modified, hydroxylated and galactosylated). Treatment with the galactosylated peptide (galactose at position 264) was superior in protecting mice from CIA. Protection was accompanied by a reduced antibody response to CII...

  16. The degree of collagen crosslinks in medical collagen membranes determined by water absorption

    International Nuclear Information System (INIS)

    Braczko, M.; Tederko, A.; Grzybowski, J.

    1994-01-01

    Collagen membranes were crosslinked by using three agents: glutaraldehyde, hexametylenediisocyanate, and UV irradiation. The increasing concentrations of above chemical agents or longer time of UV exposition resulted in the higher cross-links degree and in the decrease of collagen membranes swelling (measured as water absorption), their elasticity and mechanical resistance. According to American standards, the degree of collagen biomaterial cross-links is determined by measuring of the digestion time by pepsin. However, that method is very time-consuming. In our study, we have that a simple, linear regression between logarithm of digestion time by pepsin exists and it was identical for all three cross-linking agents used. We have concluded that determination of water absorption can be an alternative, simple and fast method for examination of collagen membrane cross-links degree. (author). 16 refs, 7 figs, 1 tab

  17. Tenomodulin is Required for Tendon Endurance Running and Collagen I Fibril Adaptation to Mechanical Load

    Directory of Open Access Journals (Sweden)

    Sarah Dex

    2017-06-01

    Full Text Available Tendons are dense connective tissues that attach muscles to bone with an indispensable role in locomotion because of their intrinsic properties of storing and releasing muscle- generated elastic energy. Tenomodulin (Tnmd is a well-accepted gene marker for the mature tendon/ligament lineage and its loss-of -function in mice leads to a phenotype with distinct signs of premature aging on tissue and stem/progenitor cell levels. Based on these findings, we hypothesized that Tnmd might be an important factor in the functional performance of tendons. Firstly, we revealed that Tnmd is a mechanosensitive gene and that the C-terminus of the protein co-localize with collagen I-type fibers in the extracellular matrix. Secondly, using an endurance training protocol, we compared Tnmd knockout mice with wild types and showed that Tnmd deficiency leads to significantly inferior running performance that further worsens with training. In these mice, endurance running was hindered due to abnormal response of collagen I cross-linking and proteoglycan genes leading to an inadequate collagen I fiber thickness and elasticity. In sum, our study demonstrates that Tnmd is required for proper tendon tissue adaptation to endurance running and aids in better understanding of the structural-functional relationships of tendon tissues.

  18. Influence of Crosslink Density and Stiffness on Mechanical Properties of Type I Collagen Gel

    Directory of Open Access Journals (Sweden)

    Shengmao Lin

    2015-02-01

    Full Text Available The mechanical properties of type I collagen gel vary due to different polymerization parameters. In this work, the role of crosslinks in terms of density and stiffness on the macroscopic behavior of collagen gel were investigated through computational modeling. The collagen fiber network was developed in a representative volume element, which used the inter-fiber spacing to regulate the crosslink density. The obtained tensile behavior of collagen gel was validated against published experimental data. Results suggest that the cross-linked fiber alignment dominated the strain stiffening effect of the collagen gel. In addition, the gel stiffness was enhanced approximately 40 times as the crosslink density doubled. The non-affine deformation was reduced with the increased crosslink density. A positive bilinear correlation between the crosslink density and gel stiffness was obtained. On the other hand, the crosslink stiffness had much less impact on the gel stiffness. This work could enhance our understanding of collagen gel mechanics and shed lights on designing future clinical relevant biomaterials with better control of polymerization parameters.

  19. Distribution of type VI collagen in association with osteoblast lineages in the groove of Ranvier during rat postnatal development.

    Science.gov (United States)

    Kohara, Yukihiro; Soeta, Satoshi; Izu, Yayoi; Arai, Kiyotaka; Amasaki, Hajime

    2016-11-01

    In the groove of Ranvier (GOR), osteoblast lineages form bone bark, which develops into endosteal cortical bone. This ossification process is thought to be regulated by the microenvironment in the GOR. Type VI collagen (Col VI), an extracellular matrix (ECM) protein found in the periosteum/perichondrium, mediates osteoblast differentiation via the cell-surface receptor neural/glial antigen 2 (NG2) chondroitin sulfate proteoglycan. In order to clarify the function of Col VI during osteoblast differentiation in the GOR, in the present study, we examined the distribution of Col VI and osteoblast lineages expressing NG2 in the rat tibia proximal end during postnatal growing periods by immunohistochemistry. Our data revealed that Col VI accumulated in the ECM of the GOR middle layer and that Col VI accumulation was reduced and disappeared in the inner and middle lower regions. Runt-related transcription factor 2-immunoreactive pre-osteoblasts expressed NG2 in Col VI-immunopositive areas. However, Osterix-immunoreactive mature osteoblasts were only found in the Col VI-immunonegative area. These findings indicate that Col VI provided a characteristic microenvironment in the GOR and that NG2-Col VI interactions may regulate the differentiation of osteoblast lineages prior to terminal maturation. Copyright © 2016 Elsevier GmbH. All rights reserved.

  20. The effect of point mutations on structure and mechanical properties of collagen-like fibril: A molecular dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Marlowe, Ashley E.; Singh, Abhishek; Yingling, Yaroslava G., E-mail: yara_yingling@ncsu.edu

    2012-12-01

    Understanding sequence dependent mechanical and structural properties of collagen fibrils is important for the development of artificial biomaterials for medical and nanotechnological applications. Moreover, point mutations are behind many collagen associated diseases, including Osteogenesis Imperfecta (OI). We conducted a combination of classical and steered atomistic molecular dynamics simulations to examine the effect of point mutations on structure and mechanical properties of short collagen fibrils which include mutations of glycine to alanine, aspartic acid, cysteine, and serine or mutations of hydroxyproline to arginine, asparagine, glutamine, and lysine. We found that all mutations disrupt structure and reduce strength of the collagen fibrils, which may affect the hierarchical packing of the fibrils. The glycine mutations were more detrimental to mechanical strength of the fibrils (WT > Ala > Ser > Cys > Asp) than that of hydroxyproline (WT > Arg > Gln > Asn > Lys). The clinical outcome for glycine mutations agrees well with the trend in reduction of fibril's tensile strength predicted by our simulations. Overall, our results suggest that the reduction in mechanical properties of collagen fibrils may be used to predict the clinical outcome of mutations. Highlights: Black-Right-Pointing-Pointer All mutations disrupt structure and bonding pattern and reduce strength of the collagen fibrils. Black-Right-Pointing-Pointer Gly based mutations are worst to mechanical integrity of fibrils than that of Hyp. Black-Right-Pointing-Pointer Lys and Arg mutations most dramatically destabilize collagen fibril properties. Black-Right-Pointing-Pointer Clinical outcome of mutations may be related to the reduced mechanical properties of fibrils.

  1. Fibulin-4 E57K Knock-in Mice Recapitulate Cutaneous, Vascular and Skeletal Defects of Recessive Cutis Laxa 1B with both Elastic Fiber and Collagen Fibril Abnormalities.

    Science.gov (United States)

    Igoucheva, Olga; Alexeev, Vitali; Halabi, Carmen M; Adams, Sheila M; Stoilov, Ivan; Sasaki, Takako; Arita, Machiko; Donahue, Adele; Mecham, Robert P; Birk, David E; Chu, Mon-Li

    2015-08-28

    Fibulin-4 is an extracellular matrix protein essential for elastic fiber formation. Frameshift and missense mutations in the fibulin-4 gene (EFEMP2/FBLN4) cause autosomal recessive cutis laxa (ARCL) 1B, characterized by loose skin, aortic aneurysm, arterial tortuosity, lung emphysema, and skeletal abnormalities. Homozygous missense mutations in FBLN4 are a prevalent cause of ARCL 1B. Here we generated a knock-in mouse strain bearing a recurrent fibulin-4 E57K homozygous missense mutation. The mutant mice survived into adulthood and displayed abnormalities in multiple organ systems, including loose skin, bent forelimb, aortic aneurysm, tortuous artery, and pulmonary emphysema. Biochemical studies of dermal fibroblasts showed that fibulin-4 E57K mutant protein was produced but was prone to dimer formation and inefficiently secreted, thereby triggering an endoplasmic reticulum stress response. Immunohistochemistry detected a low level of fibulin-4 E57K protein in the knock-in skin along with altered expression of selected elastic fiber components. Processing of a precursor to mature lysyl oxidase, an enzyme involved in cross-linking of elastin and collagen, was compromised. The knock-in skin had a reduced level of desmosine, an elastin-specific cross-link compound, and ultrastructurally abnormal elastic fibers. Surprisingly, structurally aberrant collagen fibrils and altered organization into fibers were characteristics of the knock-in dermis and forelimb tendons. Type I collagen extracted from the knock-in skin had decreased amounts of covalent intermolecular cross-links, which could contribute to the collagen fibril abnormalities. Our studies provide the first evidence that fibulin-4 plays a role in regulating collagen fibril assembly and offer a preclinical platform for developing treatments for ARCL 1B. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Time domain diffuse optical spectroscopy: In vivo quantification of collagen in breast tissue

    Science.gov (United States)

    Taroni, Paola; Pifferi, Antonio; Quarto, Giovanna; Farina, Andrea; Ieva, Francesca; Paganoni, Anna Maria; Abbate, Francesca; Cassano, Enrico; Cubeddu, Rinaldo

    2015-05-01

    Time-resolved diffuse optical spectroscopy provides non-invasively the optical characterization of highly diffusive media, such as biological tissues. Light pulses are injected into the tissue and the effects of light propagation on re-emitted pulses are interpreted with the diffusion theory to assess simultaneously tissue absorption and reduced scattering coefficients. Performing spectral measurements, information on tissue composition and structure is derived applying the Beer law to the measured absorption and an empiric approximation to Mie theory to the reduced scattering. The absorption properties of collagen powder were preliminarily measured in the range of 600-1100 nm using a laboratory set-up for broadband time-resolved diffuse optical spectroscopy. Optical projection images were subsequently acquired in compressed breast geometry on 218 subjects, either healthy or bearing breast lesions, using a portable instrument for optical mammography that operates at 7 wavelengths selected in the range 635-1060 nm. For all subjects, tissue composition was estimated in terms of oxy- and deoxy-hemoglobin, water, lipids, and collagen. Information on tissue microscopic structure was also derived. Good correlation was obtained between mammographic breast density (a strong risk factor for breast cancer) and an optical index based on collagen content and scattering power (that accounts mostly for tissue collagen). Logistic regression applied to all optically derived parameters showed that subjects at high risk for developing breast cancer for their high breast density can effectively be identified based on collagen content and scattering parameters. Tissue composition assessed in breast lesions with a perturbative approach indicated that collagen and hemoglobin content are significantly higher in malignant lesions than in benign ones.

  3. Collagen metabolism and basement membrane formation in cultures of mouse mammary epithelial cells: Induction of assembly on fibrillar type I collagen substrata

    International Nuclear Information System (INIS)

    David, G.; van der Schueren, B.; van den Berghe, H.; Nusgens, B.; Van Cauwenberge, D.; Lapiere, C.

    1987-01-01

    Collagen metabolism was compared in cultures of mouse mammary epithelial cells maintained on plastic or fibrillar type I collagen gel substrata. The accumulation of dialysable and non-dialysable [ 3 H]hydroxyproline and the identification of the collagens produced suggest no difference between substrata in the allover rates of collagen synthesis and degradation. The proportion of the [ 3 H]collagen which accumulates in the monolayers of cultures on collagen, however, markedly exceeds that of cultures on plastic. Cultures on collagen deposit a sheet-like layer of extracellular matrix materials on the surface of the collagen fibers. Transformed cells on collagen produce and accumulate more [ 3 H]collage, yet are less effective in basement membrane formation than normal cells, indicting that the accumulation of collagen alone and the effect of interstitial collagen thereupon do not suffice. Thus, exogenous fibrillar collagen appears to enhance, but is not sufficient for proper assembly of collagenous basement membrane components near the basal epithelial cell surface

  4. Collagen crosslinks in chondromalacia of the patella.

    Science.gov (United States)

    Väätäinen, U; Kiviranta, I; Jaroma, H; Arokosi, J; Tammi, M; Kovanen, V

    1998-02-01

    The aim of the study was to determine collagen concentration and collagen crosslinks in cartilage samples from chondromalacia of the patella. To study the extracellular matrix alterations associated to chondromalacia, we determined the concentration of collagen (hydroxyproline) and its hydroxylysylpyridinoline and lysylpyridinoline crosslinks from chondromalacia foci of the patellae in 12 patients and 7 controls from apparently normal cadavers. The structure of the collagen network in 8 samples of grades II-IV chondromalacia was examined under polarized light microscopy. The full-thickness cartilage samples taken with a surgical knife from chondromalacia lesions did not show changes in collagen, hydroxylysylpyridinoline and lysylpyridinoline concentration as compared with the controls. Polarized light microscopy showed decreased birefringence in the superficial cartilage of chondromalacia lesions, indicating disorganization or disappearance of collagen fibers in this zone. It is concluded that the collagen network shows gradual disorganization with the severity of chondromalacia lesion of the patella without changes in the concentration or crosslinks of collagen.

  5. Collagens - structure, function and biosynthesis.

    OpenAIRE

    Gelse, K; Poschl, E; Aigner, T

    2003-01-01

    The extracellular matrix represents a complex alloy of variable members of diverse protein families defining structural integrity and various physiological functions. The most abundant family is the collagens with more than 20 different collagen types identified so far. Collagens are centrally involved in the formation of fibrillar and microfibrillar networks of the extracellular matrix, basement membranes as well as other structures of the extracellular matrix. This review focuses on the dis...

  6. Abnormal type I collagen post-translational modification and crosslinking in a cyclophilin B KO mouse model of recessive osteogenesis imperfecta.

    Directory of Open Access Journals (Sweden)

    Wayne A Cabral

    2014-06-01

    Full Text Available Cyclophilin B (CyPB, encoded by PPIB, is an ER-resident peptidyl-prolyl cis-trans isomerase (PPIase that functions independently and as a component of the collagen prolyl 3-hydroxylation complex. CyPB is proposed to be the major PPIase catalyzing the rate-limiting step in collagen folding. Mutations in PPIB cause recessively inherited osteogenesis imperfecta type IX, a moderately severe to lethal bone dysplasia. To investigate the role of CyPB in collagen folding and post-translational modifications, we generated Ppib-/- mice that recapitulate the OI phenotype. Knock-out (KO mice are small, with reduced femoral areal bone mineral density (aBMD, bone volume per total volume (BV/TV and mechanical properties, as well as increased femoral brittleness. Ppib transcripts are absent in skin, fibroblasts, femora and calvarial osteoblasts, and CyPB is absent from KO osteoblasts and fibroblasts on western blots. Only residual (2-11% collagen prolyl 3-hydroxylation is detectable in KO cells and tissues. Collagen folds more slowly in the absence of CyPB, supporting its rate-limiting role in folding. However, treatment of KO cells with cyclosporine A causes further delay in folding, indicating the potential existence of another collagen PPIase. We confirmed and extended the reported role of CyPB in supporting collagen lysyl hydroxylase (LH1 activity. Ppib-/- fibroblast and osteoblast collagen has normal total lysyl hydroxylation, while increased collagen diglycosylation is observed. Liquid chromatography/mass spectrometry (LC/MS analysis of bone and osteoblast type I collagen revealed site-specific alterations of helical lysine hydroxylation, in particular, significantly reduced hydroxylation of helical crosslinking residue K87. Consequently, underhydroxylated forms of di- and trivalent crosslinks are strikingly increased in KO bone, leading to increased total crosslinks and decreased helical hydroxylysine- to lysine-derived crosslink ratios. The altered

  7. Abnormal Type I Collagen Post-translational Modification and Crosslinking in a Cyclophilin B KO Mouse Model of Recessive Osteogenesis Imperfecta

    Science.gov (United States)

    Cabral, Wayne A.; Perdivara, Irina; Weis, MaryAnn; Terajima, Masahiko; Blissett, Angela R.; Chang, Weizhong; Perosky, Joseph E.; Makareeva, Elena N.; Mertz, Edward L.; Leikin, Sergey; Tomer, Kenneth B.; Kozloff, Kenneth M.; Eyre, David R.; Yamauchi, Mitsuo; Marini, Joan C.

    2014-01-01

    Cyclophilin B (CyPB), encoded by PPIB, is an ER-resident peptidyl-prolyl cis-trans isomerase (PPIase) that functions independently and as a component of the collagen prolyl 3-hydroxylation complex. CyPB is proposed to be the major PPIase catalyzing the rate-limiting step in collagen folding. Mutations in PPIB cause recessively inherited osteogenesis imperfecta type IX, a moderately severe to lethal bone dysplasia. To investigate the role of CyPB in collagen folding and post-translational modifications, we generated Ppib−/− mice that recapitulate the OI phenotype. Knock-out (KO) mice are small, with reduced femoral areal bone mineral density (aBMD), bone volume per total volume (BV/TV) and mechanical properties, as well as increased femoral brittleness. Ppib transcripts are absent in skin, fibroblasts, femora and calvarial osteoblasts, and CyPB is absent from KO osteoblasts and fibroblasts on western blots. Only residual (2–11%) collagen prolyl 3-hydroxylation is detectable in KO cells and tissues. Collagen folds more slowly in the absence of CyPB, supporting its rate-limiting role in folding. However, treatment of KO cells with cyclosporine A causes further delay in folding, indicating the potential existence of another collagen PPIase. We confirmed and extended the reported role of CyPB in supporting collagen lysyl hydroxylase (LH1) activity. Ppib−/− fibroblast and osteoblast collagen has normal total lysyl hydroxylation, while increased collagen diglycosylation is observed. Liquid chromatography/mass spectrometry (LC/MS) analysis of bone and osteoblast type I collagen revealed site-specific alterations of helical lysine hydroxylation, in particular, significantly reduced hydroxylation of helical crosslinking residue K87. Consequently, underhydroxylated forms of di- and trivalent crosslinks are strikingly increased in KO bone, leading to increased total crosslinks and decreased helical hydroxylysine- to lysine-derived crosslink ratios. The altered

  8. Biomimetic soluble collagen purified from bones.

    Science.gov (United States)

    Ferreira, Ana Marina; Gentile, Piergiorgio; Sartori, Susanna; Pagliano, Cristina; Cabrele, Chiara; Chiono, Valeria; Ciardelli, Gianluca

    2012-11-01

    Type I collagen has been extensively exploited as a biomaterial for biomedical applications and drug delivery; however, small molecular alterations occurring during the isolation procedure and its interaction with residual bone extracellular matrix molecules or proteins might affect the overall material biocompatibility and performance. The aim of the current work is to study the potential alterations in collagen properties and organization associated with the absence of proteoglycans, which mimic pathological conditions associated with age-related diseases. A new approach for evaluating the effect of proteoglycans on the properties of isolated type I collagen from the bone matrix is described. Additional treatment with guanidine hydrochloride was introduced to remove residual proteoglycans from the collagen matrix. The properties of the isolated collagen with/without guanidine hydrochloride treatment were investigated and compared with a commercial rabbit collagen as control. We demonstrate that the absence of proteoglycans in the isolated type I collagen affects its thermal properties, the extraction into its native structure, and its ability to hydrate and self-assemble into fibers. The fine control and tuning of all these features, linked to the absence of non-collagenous proteins as proteoglycans, offer the possibility of designing new strategies and biomaterials with advanced biomimetic properties aimed at regenerating bone tissue in the case of fragility and/or defects. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Association of altered collagen content and lysyl oxidase expression in degenerative mitral valve disease.

    Science.gov (United States)

    Purushothaman, K-Raman; Purushothaman, Meerarani; Turnbull, Irene C; Adams, David H; Anyanwu, Anelechi; Krishnan, Prakash; Kini, Annapoorna; Sharma, Samin K; O'Connor, William N; Moreno, Pedro R

    Collagen cross-linking is mediated by lysyl oxidase (LOX) enzyme in the extracellular matrix (ECM) of mitral valve leaflets. Alterations in collagen content and LOX protein expression in the ECM of degenerative mitral valve may enhance leaflet expansion and disease severity. Twenty posterior degenerative mitral valve leaflets from patients with severe mitral regurgitation were obtained at surgery. Five normal posterior mitral valve leaflets procured during autopsy served as controls. Valvular interstitial cells (VICs) density was quantified by immunohistochemistry, collagen Types I and III by picro-sirius red staining and immunohistochemistry, and proteoglycans by alcian blue staining. Protein expression of LOX and its mediator TGFβ1 were quantified by immunofluorescence and gene expression by PCR. VIC density was increased, structural Type I collagen density was reduced, while reparative Type III collagen and proteoglycan densities were increased (PDegenerative Mitral Valve Disease may be secondary to alterations in LOX protein expression, contributing to disorganization of ECM and disease severity. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Collagen crosslink location: a molecular marker for fibrosis in lungs of rats with experimental silicosis

    International Nuclear Information System (INIS)

    Gerriets, J.E.; Reiser, K.M.; Last, J.A.

    1986-01-01

    Collagen content is increased in lungs of animals with experimental silicosis. They hypothesize that the collagen deposited in such fibrotic lungs differs structurally from normal lung collagen. Silicotic lung collagen shows an increase in lysine hydroxylation. In addition, the ratio of the difunctional crosslinks DHLNL (dihydroxylysinonorleucine) to HLNL (hydroxylysinonorleucine) is sharply elevated compared to that in control lungs. The peptide α1(I)CB7 x α2(I)CB1 crosslinked by HLNL was demonstrated in NaB 3 H 4 -reduced, CNBr-digested collagen from rat tail tendon by peptide purification, followed by periodate oxidation and amino acid analysis. Further structural analysis of this peptide was obtained by digestion of the crosslinked peptide with trypsin and purification of the tryptic peptide containing this crosslink followed by amino acid analysis. They then examined the analogous collagenous peptide in normal and silicotic lungs and analyzed the crosslink it contained. They observed that DHLNL was present at specific sites previously containing HLNL; that is, the collagen in fibrotic lungs is altered at specific sites by post-translational modification of a lysine residue by hydroxylation in a predictable way. They conclude that such unusual hydroxylation of a specific lysine residue in the α2 chain provides a molecular marker for fibrotic lung collagen

  11. Alginate-Collagen Fibril Composite Hydrogel

    Directory of Open Access Journals (Sweden)

    Mahmoud Baniasadi

    2015-02-01

    Full Text Available We report on the synthesis and the mechanical characterization of an alginate-collagen fibril composite hydrogel. Native type I collagen fibrils were used to synthesize the fibrous composite hydrogel. We characterized the mechanical properties of the fabricated fibrous hydrogel using tensile testing; rheometry and atomic force microscope (AFM-based nanoindentation experiments. The results show that addition of type I collagen fibrils improves the rheological and indentation properties of the hydrogel.

  12. Preparation and characterization of collagen/PLA, chitosan/PLA, and collagen/chitosan/PLA hybrid scaffolds for cartilage tissue engineering.

    Science.gov (United States)

    Haaparanta, Anne-Marie; Järvinen, Elina; Cengiz, Ibrahim Fatih; Ellä, Ville; Kokkonen, Harri T; Kiviranta, Ilkka; Kellomäki, Minna

    2014-04-01

    In this study, three-dimensional (3D) porous scaffolds were developed for the repair of articular cartilage defects. Novel collagen/polylactide (PLA), chitosan/PLA, and collagen/chitosan/PLA hybrid scaffolds were fabricated by combining freeze-dried natural components and synthetic PLA mesh, where the 3D PLA mesh gives mechanical strength, and the natural polymers, collagen and/or chitosan, mimic the natural cartilage tissue environment of chondrocytes. In total, eight scaffold types were studied: four hybrid structures containing collagen and/or chitosan with PLA, and four parallel plain scaffolds with only collagen and/or chitosan. The potential of these types of scaffolds for cartilage tissue engineering applications were determined by the analysis of the microstructure, water uptake, mechanical strength, and the viability and attachment of adult bovine chondrocytes to the scaffolds. The manufacturing method used was found to be applicable for the manufacturing of hybrid scaffolds with highly porous 3D structures. All the hybrid scaffolds showed a highly porous structure with open pores throughout the scaffold. Collagen was found to bind water inside the structure in all collagen-containing scaffolds better than the chitosan-containing scaffolds, and the plain collagen scaffolds had the highest water absorption. The stiffness of the scaffold was improved by the hybrid structure compared to plain scaffolds. The cell viability and attachment was good in all scaffolds, however, the collagen hybrid scaffolds showed the best penetration of cells into the scaffold. Our results show that from the studied scaffolds the collagen/PLA hybrids are the most promising scaffolds from this group for cartilage tissue engineering.

  13. Co-culture of chondrons and mesenchymal stromal cells reduces the loss of collagen VI and improves extracellular matrix production.

    Science.gov (United States)

    Owida, H A; De Las Heras Ruiz, T; Dhillon, A; Yang, Y; Kuiper, N J

    2017-12-01

    Adult articular chondrocytes are surrounded by a pericellular matrix (PCM) to form a chondron. The PCM is rich in hyaluronan, proteoglycans, and collagen II, and it is the exclusive location of collagen VI in articular cartilage. Collagen VI anchors the chondrocyte to the PCM. It has been suggested that co-culture of chondrons with mesenchymal stromal cells (MSCs) might enhance extracellular matrix (ECM) production. This co-culture study investigates whether MSCs help to preserve the PCM and increase ECM production. Primary bovine chondrons or chondrocytes or rat MSCs were cultured alone to establish a baseline level for ECM production. A xenogeneic co-culture monolayer model using rat MSCs (20, 50, and 80%) was established. PCM maintenance and ECM production were assessed by biochemical assays, immunofluorescence, and histological staining. Co-culture of MSCs with chondrons enhanced ECM matrix production, as compared to chondrocyte or chondron only cultures. The ratio 50:50 co-culture of MSCs and chondrons resulted in the highest increase in GAG production (18.5 ± 0.54 pg/cell at day 1 and 11 ± 0.38 pg/cell at day 7 in 50:50 co-culture versus 16.8 ± 0.61 pg/cell at day 1 and 10 ± 0.45 pg/cell at day 7 in chondron monoculture). The co-culture of MSCs with chondrons appeared to decelerate the loss of the PCM as determined by collagen VI expression, whilst the expression of high-temperature requirement serine protease A1 (HtrA1) demonstrated an inverse relationship to that of the collagen VI. Together, this implies that MSCs directly or indirectly inhibited HtrA1 activity and the co-culture of MSCs with chondrons enhanced ECM synthesis and the preservation of the PCM.

  14. Effect of radiation on rat skin collagen

    International Nuclear Information System (INIS)

    Nogami, Akira

    1980-01-01

    I. Albino male rats were exposed for 16 weeks to ultraviolet light (UVL) which has principle emission at 305 nm. There were no significant changes between control and UVL-exposed skins in the total hydroxyproline content. However, a little increase of citrate-soluble collagen, a little decrease of insoluble collagen and a decrease of aldehyde content in soluble collagen were observed with UVL exposure. Total acid glycosaminoglycan in skin increased 30% or more from control. These results show that the effect of UVL on rat skin in vivo was merely inflammation phenomenon and that the 'aging' process of skin was not caused in our experimental conditions. II. The effects of radiation on the solubility of rat skin collagen were examined under various conditions. 1) When intact rats were exposed to a single dose of radiation from 43 kVp X-ray source, the solubility in skin collagen did not change at 4,000 R dosage, while in irradiation of 40,000 R a decreased solubility in collagen was observed. When rats were given 400 R a week for 12 weeks, there was no changes in the solubility of collagen during experimental period. 2) In vitro exposure to skins, an irradiation of 40,000 R from 43 kVp X-ray source caused a decrease in the solubility of collagen. While an irradiation of 40,000 R of dosage from 200 kVp X-ray source resulted in the increase in soluble collagen and the decrease in insoluble collagen. 3) When intact rats were given a single dose of 40,000 R from 60 Co- gamma -ray, insoluble collagen decreased in both young and adult rats. Similar changes in collagen solubility were observed in vitro gamma -irradiation. (author)

  15. A 48 kDa collagen-binding phosphoprotein isolated from bovine aortic endothelial cells interacts with the collagenous domain, but not the globular domain, of collagen type IV.

    OpenAIRE

    Yannariello-Brown, J; Madri, J A

    1990-01-01

    We have identified collagen-binding proteins in detergent extracts of metabolically labelled bovine aortic endothelial cells (BAEC) by collagen type IV-Sepharose affinity chromatography. The major collagen type IV-binding protein identified by SDS/PAGE had a molecular mass of 48 kDa, which we term the 'collagen-binding 48 kDa protein' (CB48). The pI of CB48 was 8.0-8.3 in a two-dimensional gel system, running non-equilibrium pH gel electrophoresis in the first dimension and SDS/PAGE in the se...

  16. Collagen Cross-Linking: Current Status and Future Directions

    Directory of Open Access Journals (Sweden)

    Marine Hovakimyan

    2012-01-01

    Full Text Available Collagen cross-linking (CXL using UVA light and riboflavin (vitamin B2 was introduced as a clinical application to stabilize the cornea by inducing cross-links within and between collagen fibers. CXL has been investigated extensively and has been shown clinically to arrest the progression of keratoconic or post-LASIK ectasia. With its minimal cost, simplicity, and proven positive clinical outcome, CXL can be regarded as a useful approach to reduce the number of penetrating keratoplasties performed. Small case series have also indicated that CXL is beneficial in corneal edema by reducing stromal swelling behavior and in keratitis by inhibiting pathogen growth. Despite these encouraging results, CXL remains a relatively new method that is potentially associated with complications. Aspects such as side effects and recurrence rates have still to be elucidated. In light of the growing interest in CXL, our paper summarizes present knowledge about this promising approach. We have intentionally endeavored to include the more relevant studies from the recent literature to provide an overview of the current status of CXL.

  17. Development of a specific affinity-matured exosite inhibitor to MT1-MMP that efficiently inhibits tumor cell invasion in vitro and metastasis in vivo

    DEFF Research Database (Denmark)

    Botkjaer, Kenneth A; Kwok, Hang Fai; Terp, Mikkel G

    2016-01-01

    therapeutic target. Here, we report the identification of antibody fragments to MT1-MMP that potently and specifically inhibit its cell surface functions. Lead antibody clones displayed inhibitory activity towards pro-MMP-2 activation, collagen-film degradation and gelatin-film degradation, and were shown......The membrane-associated matrix metalloproteinase-14, MT1-MMP, has been implicated in pericellular proteolysis with an important role in cellular invasion of collagenous tissues. It is substantially upregulated in various cancers and rheumatoid arthritis, and has been considered as a potential...... to bind to the MT1-MMP catalytic domain outside the active site cleft, inhibiting binding to triple helical collagen. Affinity maturation using CDR3 randomization created a second generation of antibody fragments with dissociation constants down to 0.11 nM, corresponding to an improved affinity of 332...

  18. Modern collagen wound dressings: function and purpose.

    Science.gov (United States)

    Fleck, Cynthia Ann; Simman, Richard

    2010-09-01

    Collagen, which is produced by fibroblasts, is the most abundant protein in the human body. A natural structural protein, collagen is involved in all 3 phases of the wound-healing cascade. It stimulates cellular migration and contributes to new tissue development. Because of their chemotactic properties on wound fibroblasts, collagen dressings encourage the deposition and organization of newly formed collagen, creating an environment that fosters healing. Collagen-based biomaterials stimulate and recruit specific cells, such as macrophages and fibroblasts, along the healing cascade to enhance and influence wound healing. These biomaterials can provide moisture or absorption, depending on the delivery system. Collagen dressings are easy to apply and remove and are conformable. Collagen dressings are usually formulated with bovine, avian, or porcine collagen. Oxidized regenerated cellulose, a plant-based material, has been combined with collagen to produce a dressing capable of binding to and protecting growth factors by binding and inactivating matrix metalloproteinases in the wound environment. The increased understanding of the biochemical processes involved in chronic wound healing allows the design of wound care products aimed at correcting imbalances in the wound microenvironment. Traditional advanced wound care products tend to address the wound's macroenvironment, including moist wound environment control, fluid management, and controlled transpiration of wound fluids. The newer class of biomaterials and wound-healing agents, such as collagen and growth factors, targets specific defects in the chronic wound environment. In vitro laboratory data point to the possibility that these agents benefit the wound healing process at a biochemical level. Considerable evidence has indicated that collagen-based dressings may be capable of stimulating healing by manipulating wound biochemistry.

  19. Type XII and XIV collagens mediate interactions between banded collagen fibers in vitro and may modulate extracellular matrix deformability.

    Science.gov (United States)

    Nishiyama, T; McDonough, A M; Bruns, R R; Burgeson, R E

    1994-11-11

    Type XII and XIV collagens are very large molecules containing three extended globular domains derived from the amino terminus of each alpha chain and an interrupted triple helix. Both collagens are genetically and immunologically unique and have distinct distributions in many tissues. These collagens localize near the surface of banded collagen fibrils. The function of the molecules is unknown. We have prepared a mixture of native type XII and XIV collagens that is free of contaminating proteins by electrophoretic criteria. In addition, we have purified the collagenase-resistant globular domains of type XII or XIV collagens (XII-NC-3 or XIV-NC-3). In this study, we have investigated the effect of intact type XII and XIV and XII-NC-3 or XIV-NC-3 on the interactions between fibroblasts and type I collagen fibrils. We find that both type XII and XIV collagens promote collagen gel contraction mediated by fibroblasts, even in the absence of serum. The activity is present in the NC-3 domains. The effect is dose-dependent and is inhibited by denaturation. The effect of type XII NC-3 is inhibited by the addition of anti-XII antiserum. To elucidate the mechanism underlying this phenomenon, we examined the effect of XII-NC-3 or XIV-NC-3 on deformability of collagen gels by centrifugal force. XII-NC-3 or XIV-NC-3 markedly promotes gel compression after centrifugation. The effect is also inhibited by denaturation, and the activity of type XII-NC3 is inhibited by the addition of anti-XII antiserum. The results indicate that the effect of XII-NC-3 or XIV-NC-3 on collagen gel contraction by fibroblasts is not due to activation of cellular events but rather results from the increase in mobility of hydrated collagen fibrils within the gel. These studies suggest that collagen types XII and XIV may modulate the biomechanical properties of tissues.

  20. The Mineral–Collagen Interface in Bone

    Science.gov (United States)

    2015-01-01

    The interface between collagen and the mineral reinforcement phase, carbonated hydroxyapatite (cAp), is essential for bone’s remarkable functionality as a biological composite material. The very small dimensions of the cAp phase and the disparate natures of the reinforcement and matrix are essential to the material’s performance but also complicate study of this interface. This article summarizes what is known about the cAp-collagen interface in bone and begins with descriptions of the matrix and reinforcement roles in composites, of the phases bounding the interface, of growth of cAp growing within the collagen matrix, and of the effect of intra- and extrafibrilar mineral on determinations of interfacial properties. Different observed interfacial interactions with cAp (collagen, water, non-collagenous proteins) are reviewed; experimental results on interface interactions during loading are reported as are their influence on macroscopic mechanical properties; conclusions of numerical modeling of interfacial interactions are also presented. The data suggest interfacial interlocking (bending of collagen molecules around cAp nanoplatelets) and water-mediated bonding between collagen and cAp are essential to load transfer. The review concludes with descriptions of areas where new research is needed to improve understanding of how the interface functions. PMID:25824581

  1. Age Increases Monocyte Adhesion on Collagen

    Science.gov (United States)

    Khalaji, Samira; Zondler, Lisa; Kleinjan, Fenneke; Nolte, Ulla; Mulaw, Medhanie A.; Danzer, Karin M.; Weishaupt, Jochen H.; Gottschalk, Kay-E.

    2017-05-01

    Adhesion of monocytes to micro-injuries on arterial walls is an important early step in the occurrence and development of degenerative atherosclerotic lesions. At these injuries, collagen is exposed to the blood stream. We are interested whether age influences monocyte adhesion to collagen under flow, and hence influences the susceptibility to arteriosclerotic lesions. Therefore, we studied adhesion and rolling of human peripheral blood monocytes from old and young individuals on collagen type I coated surface under shear flow. We find that firm adhesion of monocytes to collagen type I is elevated in old individuals. Pre-stimulation by lipopolysaccharide increases the firm adhesion of monocytes homogeneously in older individuals, but heterogeneously in young individuals. Blocking integrin αx showed that adhesion of monocytes to collagen type I is specific to the main collagen binding integrin αxβ2. Surprisingly, we find no significant age-dependent difference in gene expression of integrin αx or integrin β2. However, if all integrins are activated from the outside, no differences exist between the age groups. Altered integrin activation therefore causes the increased adhesion. Our results show that the basal increase in integrin activation in monocytes from old individuals increases monocyte adhesion to collagen and therefore the risk for arteriosclerotic plaques.

  2. The non-phagocytic route of collagen uptake

    DEFF Research Database (Denmark)

    Madsen, Daniel H; Ingvarsen, Signe; Jürgensen, Henrik J

    2011-01-01

    The degradation of collagens, the most abundant proteins of the extracellular matrix, is involved in numerous physiological and pathological conditions including cancer invasion. An important turnover pathway involves cellular internalization and degradation of large, soluble collagen fragments......, generated by initial cleavage of the insoluble collagen fibers. We have previously observed that in primary mouse fibroblasts, this endocytosis of collagen fragments is dependent on the receptor urokinase plasminogen activator receptor-associated protein (uPARAP)/Endo180. Others have identified additional...... mechanisms of collagen uptake, with different associated receptors, in other cell types. These receptors include β1-integrins, being responsible for collagen phagocytosis, and the mannose receptor. We have now utilized a newly developed monoclonal antibody against uPARAP/Endo180, which down...

  3. Allergy to fish collagen: Thermostability of collagen and IgE reactivity of patients' sera with extracts of 11 species of bony and cartilaginous fish.

    Science.gov (United States)

    Kobayashi, Yukihiro; Kuriyama, Takuma; Nakagawara, Ryoko; Aihara, Michiko; Hamada-Sato, Naoko

    2016-10-01

    Parvalbumin was identified as a major fish allergen, and has been well investigated. Collagen was identified as a second allergen; however, its allergenic properties remain uncharacterized. Although fish is an important staple in coastal countries, its thermostability is unknown. Therefore, we aimed to determine the thermostability of fish collagen as an allergen. Meat of seven bony and four cartilaginous fishes was heated at various temperatures and times, and extracts were analyzed using SDS-PAGE, IgE-ELISA, and SPTs. Collagen was dissolved from heated meat of Pacific mackerel into a crude extract. Collagen in the extracts was degraded at a high heating load-140 °C (10 min) or 100 °C (320 min). However, ELISA revealed the IgE reactivities of patients' sera with the extracts were unchanged even after heating the samples. Patients strongly reacted to extract proteins of other bony fish, which were detected by patients' IgE even after heating at 100 °C (320 min). In contrast, reactivities of the extracts of cartilaginous fish were lower than those of bony fish. SPTs in one patient revealed that all bony and cartilaginous fish extracts prepared from heated meat elicited allergic reactions. The IgE reactivity of patients' sera to fish collagen in extracts was retained even when fish meat was treated by a high heating load. As for the fish collagen, the IgE reactivities to cartilaginous fish were lower than that to bony fish. Reducing IgE reactivity to fish meat using heat is difficult, and other modalities will be required to produce hypoallergenic fish meat. Copyright © 2016 Japanese Society of Allergology. Production and hosting by Elsevier B.V. All rights reserved.

  4. Diaphragm Repair with a Novel Cross-Linked Collagen Biomaterial in a Growing Rabbit Model.

    Directory of Open Access Journals (Sweden)

    Steffi Mayer

    Full Text Available Neonates with congenital diaphragmatic hernia and large defects often require patch closure. Acellular collagen matrices (ACM have been suggested as an alternative to synthetic durable patches as they are remodeled by the host or could also be used for tissue engineering purposes.2.0x1.0 cm diaphragmatic defects were created in 6-weeks old New-Zealand white rabbits. We compared reconstruction with a purpose-designed cross-linked ACM (Matricel to 4-layer non-cross-linked small intestinal submucosa (SIS and a 1-layer synthetic Dual Mesh (Gore-Tex. Unoperated animals or animals undergoing primary closure (4/0 polyglecaprone served as age-matched controls. 60 (n = 25 resp. 90 (n = 17 days later, animals underwent chest x-ray and obduction for gross examination of explants, scoring of adhesion and inflammatory response. Also, uniaxial tensiometry was done, comparing explants to contralateral native diaphragmatic tissue.Overall weight nearly doubled from 1,554±242 g at surgery to 2,837±265 g at obduction (+84%. X-rays did show rare elevation of the left diaphragm (SIS = 1, Gore-Tex = 1, unoperated control = 1, but no herniation of abdominal organs. 56% of SIS and 10% of Matricel patches degraded with visceral bulging in four (SIS = 3, Matricel = 1. Adhesion scores were limited: 0.5 (Matricel to 1 (SIS, Gore-Tex to the left lung (p = 0.008 and 2.5 (Gore-Tex, 3 (SIS and 4 (Matricel to the liver (p<0.0001. Tensiometry revealed a reduced bursting strength but normal compliance for SIS. Compliance was reduced in Matricel and Gore-Tex (p<0.01. Inflammatory response was characterized by a more polymorphonuclear cell (SIS resp. macrophage (Matricel type of infiltrate (p<0.05. Fibrosis was similar for all groups, except there was less mature collagen deposited to Gore-Tex implants (p<0.05.Matricel induced a macrophage-dominated inflammatory response, more adhesions, had appropriate strength but a lesser compliance compared to native tissue. The herein

  5. Full-Length Fibronectin Drives Fibroblast Accumulation at the Surface of Collagen Microtissues during Cell-Induced Tissue Morphogenesis.

    Directory of Open Access Journals (Sweden)

    Jasper Foolen

    Full Text Available Generating and maintaining gradients of cell density and extracellular matrix (ECM components is a prerequisite for the development of functionality of healthy tissue. Therefore, gaining insights into the drivers of spatial organization of cells and the role of ECM during tissue morphogenesis is vital. In a 3D model system of tissue morphogenesis, a fibronectin-FRET sensor recently revealed the existence of two separate fibronectin populations with different conformations in microtissues, i.e. 'compact and adsorbed to collagen' versus 'extended and fibrillar' fibronectin that does not colocalize with the collagen scaffold. Here we asked how the presence of fibronectin might drive this cell-induced tissue morphogenesis, more specifically the formation of gradients in cell density and ECM composition. Microtissues were engineered in a high-throughput model system containing rectangular microarrays of 12 posts, which constrained fibroblast-populated collagen gels, remodeled by the contractile cells into trampoline-shaped microtissues. Fibronectin's contribution during the tissue maturation process was assessed using fibronectin-knockout mouse embryonic fibroblasts (Fn-/- MEFs and floxed equivalents (Fnf/f MEFs, in fibronectin-depleted growth medium with and without exogenously added plasma fibronectin (full-length, or various fragments. In the absence of full-length fibronectin, Fn-/- MEFs remained homogenously distributed throughout the cell-contracted collagen gels. In contrast, in the presence of full-length fibronectin, both cell types produced shell-like tissues with a predominantly cell-free compacted collagen core and a peripheral surface layer rich in cells. Single cell assays then revealed that Fn-/- MEFs applied lower total strain energy on nanopillar arrays coated with either fibronectin or vitronectin when compared to Fnf/f MEFs, but that the presence of exogenously added plasma fibronectin rescued their contractility. While collagen

  6. Collagen metabolism in obesity

    DEFF Research Database (Denmark)

    Rasmussen, M H; Jensen, L T; Andersen, T

    1995-01-01

    OBJECTIVE: To investigate the impact of obesity, fat distribution and weight loss on collagen turnover using serum concentrations of the carboxyterminal propeptide of type I procollagen (S-PICP) and the aminoterminal propeptide of type III pro-collagen (S-PIIINP) as markers for collagen turnover...... (r = 0.37; P = 0.004), height (r = 0.27; P = 0.04), waist circumference (r = 0.35; P = 0.007), as well as with WHR (r = 0.33; P = 0.01) and was inversely correlated to age (r = -0.40; P = 0.002). Compared with randomly selected controls from a large pool of healthy volunteers, the obese patients had...... restriction (P obesity and associated with body fat distribution, suggesting...

  7. MSX2 stimulates chondrocyte maturation by controlling Ihh expression.

    Science.gov (United States)

    Amano, Katsuhiko; Ichida, Fumitaka; Sugita, Atsushi; Hata, Kenji; Wada, Masahiro; Takigawa, Yoko; Nakanishi, Masako; Kogo, Mikihiko; Nishimura, Riko; Yoneda, Toshiyuki

    2008-10-24

    Several studies indicated that a homeobox gene, Msx2, is implicated in regulation of skeletal development by controlling enchondral ossification as well as membranous ossification. However, the molecular basis by which Msx2 conducts chondrogenesis is currently unclear. In this study, we examined the role of Msx2 in chondrocyte differentiation using mouse primary chondrocytes and embryonic metatarsal explants. Treatment with BMP2 up-regulated the expression of Msx2 mRNA along with chondrocyte differentiation in murine primary chondrocytes. Overexpression of wild-type Msx2 stimulated calcification of primary chondrocytes in the presence of BMP2. We also found that constitutively active Msx2 (caMsx2) enhanced BMP2-dependent calcification more efficiently than wild-type Msx2. Consistently, caMsx2 overexpression up-regulated the expression of alkaline phosphatase and collagen type X induced by BMP2. Furthermore, organ culture experiments using mouse embryonic metatarsals indicated that caMsx2 clearly stimulated the maturation of chondrocytes into the prehypertrophic and hypertrophic stages in the presence of BMP2. In contrast, knockdown of Msx2 inhibited maturation of primary chondrocytes. The stimulatory effect of Msx2 on chondrocyte maturation was enhanced by overexpression of Smad1 and Smad4 but inhibited by Smad6, an inhibitory Smad for BMP2 signaling. These data suggest that Msx2 requires BMP2/Smad signaling for its chondrogenic action. In addition, caMsx2 overexpression induced Ihh (Indian hedgehog) expression in mouse primary chondrocytes. Importantly, treatment with cyclopamine, a specific inhibitor for hedgehogs, blocked Msx2-induced chondrogenesis. Collectively, our results indicated that Msx2 promotes the maturation of chondrocytes, at least in part, through up-regulating Ihh expression.

  8. Endocytosis of collagen by hepatic stellate cells regulates extracellular matrix dynamics.

    Science.gov (United States)

    Bi, Yan; Mukhopadhyay, Dhriti; Drinane, Mary; Ji, Baoan; Li, Xing; Cao, Sheng; Shah, Vijay H

    2014-10-01

    Hepatic stellate cells (HSCs) generate matrix, which in turn may also regulate HSCs function during liver fibrosis. We hypothesized that HSCs may endocytose matrix proteins to sense and respond to changes in microenvironment. Primary human HSCs, LX2, or mouse embryonic fibroblasts (MEFs) [wild-type; c-abl(-/-); or Yes, Src, and Fyn knockout mice (YSF(-/-))] were incubated with fluorescent-labeled collagen or gelatin. Fluorescence-activated cell sorting analysis and confocal microscopy were used for measuring cellular internalization of matrix proteins. Targeted PCR array and quantitative real-time PCR were used to evaluate gene expression changes. HSCs and LX2 cells endocytose collagens in a concentration- and time-dependent manner. Endocytosed collagen colocalized with Dextran 10K, a marker of macropinocytosis, and 5-ethylisopropyl amiloride, an inhibitor of macropinocytosis, reduced collagen internalization by 46%. Cytochalasin D and ML7 blocked collagen internalization by 47% and 45%, respectively, indicating that actin and myosin are critical for collagen endocytosis. Wortmannin and AKT inhibitor blocked collagen internalization by 70% and 89%, respectively, indicating that matrix macropinocytosis requires phosphoinositide-3-kinase (PI3K)/AKT signaling. Overexpression of dominant-negative dynamin-2 K44A blocked matrix internalization by 77%, indicating a role for dynamin-2 in matrix macropinocytosis. Whereas c-abl(-/-) MEF showed impaired matrix endocytosis, YSF(-/-) MEF surprisingly showed increased matrix endocytosis. It was also associated with complex gene regulations that related with matrix dynamics, including increased matrix metalloproteinase 9 (MMP-9) mRNA levels and zymographic activity. HSCs endocytose matrix proteins through macropinocytosis that requires a signaling network composed of PI3K/AKT, dynamin-2, and c-abl. Interaction with extracellular matrix regulates matrix dynamics through modulating multiple gene expressions including MMP-9

  9. Collagen as potential cell scaffolds for tissue engineering.

    Science.gov (United States)

    Annuar, N; Spier, R E

    2004-05-01

    Selections of collagen available commercially were tested for their biocompatibility as scaffold to promote cell growth in vitro via simple collagen fast test and cultivation of mammalian cells on the selected type of collagen. It was found that collagen type C9791 promotes the highest degree of aggregation as well as cells growth. This preliminary study also indicated potential use of collagen as scaffold in engineered tissue.

  10. A novel functional role of collagen glycosylation

    DEFF Research Database (Denmark)

    Jürgensen, Henrik J; Madsen, Daniel H; Ingvarsen, Signe

    2011-01-01

    Collagens make up the most abundant component of interstitial extracellular matrices and basement membranes. Collagen remodeling is a crucial process in many normal physiological events and in several pathological conditions. Some collagen subtypes contain specific carbohydrate side chains......, the function of which is poorly known. The endocytic collagen receptor urokinase plasminogen activator receptor-associated protein (uPARAP)/Endo180 plays an important role in matrix remodeling through its ability to internalize collagen for lysosomal degradation. uPARAP/Endo180 is a member of the mannose...... receptor protein family. These proteins all include a fibronectin type II domain and a series of C-type lectin-like domains, of which only a minor part possess carbohydrate recognition activity. At least two of the family members, uPARAP/Endo180 and the mannose receptor, interact with collagens...

  11. [The genetics of collagen diseases].

    Science.gov (United States)

    Kaplan, J; Maroteaux, P; Frezal, J

    1986-01-01

    Heritable disorders of collagen include Ehler-Danlos syndromes (11 types are actually known), Larsen syndrome and osteogenesis imperfecta. Their clinical, genetic and biochemical features are reviewed. Marfan syndrome is closely related to heritable disorders of collagen.

  12. Marine-derived collagen biomaterials from echinoderm connective tissues

    KAUST Repository

    Ferrario, Cinzia; Leggio, Livio; Leone, Roberta; Di Benedetto, Cristiano; Guidetti, Luca; Coccè , Valentina; Ascagni, Miriam; Bonasoro, Francesco; La Porta, Caterina A.M.; Candia Carnevali, M. Daniela; Sugni, Michela

    2016-01-01

    The use of marine collagens is a hot topic in the field of tissue engineering. Echinoderms possess unique connective tissues (Mutable Collagenous Tissues, MCTs) which can represent an innovative source of collagen to develop collagen barrier-membranes for Guided Tissue Regeneration (GTR). In the present work we used MCTs from different echinoderm models (sea urchin, starfish and sea cucumber) to produce echinoderm-derived collagen membranes (EDCMs). Commercial membranes for GTR or soluble/reassembled (fibrillar) bovine collagen substrates were used as controls. The three EDCMs were similar among each other in terms of structure and mechanical performances and were much thinner and mechanically more resistant than the commercial membranes. Number of fibroblasts seeded on sea-urchin membranes were comparable to the bovine collagen substrates. Cell morphology on all EDCMs was similar to that of structurally comparable (reassembled) bovine collagen substrates. Overall, echinoderms, and sea urchins particularly, are alternative collagen sources to produce efficient GTR membranes. Sea urchins display a further advantage in terms of eco-sustainability by recycling tissues from food wastes.

  13. Marine-derived collagen biomaterials from echinoderm connective tissues

    KAUST Repository

    Ferrario, Cinzia

    2016-03-31

    The use of marine collagens is a hot topic in the field of tissue engineering. Echinoderms possess unique connective tissues (Mutable Collagenous Tissues, MCTs) which can represent an innovative source of collagen to develop collagen barrier-membranes for Guided Tissue Regeneration (GTR). In the present work we used MCTs from different echinoderm models (sea urchin, starfish and sea cucumber) to produce echinoderm-derived collagen membranes (EDCMs). Commercial membranes for GTR or soluble/reassembled (fibrillar) bovine collagen substrates were used as controls. The three EDCMs were similar among each other in terms of structure and mechanical performances and were much thinner and mechanically more resistant than the commercial membranes. Number of fibroblasts seeded on sea-urchin membranes were comparable to the bovine collagen substrates. Cell morphology on all EDCMs was similar to that of structurally comparable (reassembled) bovine collagen substrates. Overall, echinoderms, and sea urchins particularly, are alternative collagen sources to produce efficient GTR membranes. Sea urchins display a further advantage in terms of eco-sustainability by recycling tissues from food wastes.

  14. The role of confined collagen geometry in decreasing nucleation energy barriers to intrafibrillar mineralization.

    Science.gov (United States)

    Kim, Doyoon; Lee, Byeongdu; Thomopoulos, Stavros; Jun, Young-Shin

    2018-03-06

    Mineralization of collagen is critical for the mechanical functions of bones and teeth. Calcium phosphate nucleation in collagenous structures follows distinctly different patterns in highly confined gap regions (nanoscale confinement) than in less confined extrafibrillar spaces (microscale confinement). Although the mechanism(s) driving these differences are still largely unknown, differences in the free energy for nucleation may explain these two mineralization behaviors. Here, we report on experimentally obtained nucleation energy barriers to intra- and extrafibrillar mineralization, using in situ X-ray scattering observations and classical nucleation theory. Polyaspartic acid, an extrafibrillar nucleation inhibitor, increases interfacial energies between nuclei and mineralization fluids. In contrast, the confined gap spaces inside collagen fibrils lower the energy barrier by reducing the reactive surface area of nuclei, decreasing the surface energy penalty. The confined gap geometry, therefore, guides the two-dimensional morphology and structure of bioapatite and changes the nucleation pathway by reducing the total energy barrier.

  15. Meniscus maturation in the swine model: changes occurring along with anterior to posterior and medial to lateral aspect during growth

    Science.gov (United States)

    Di Giancamillo, Alessia; Deponti, Daniela; Addis, Alessandro; Domeneghini, Cinzia; Peretti, Giuseppe M

    2014-01-01

    The meniscus plays important roles in knee function and mechanics and is characterized by a heterogeneous matrix composition. The changes in meniscus vascularization observed during growth suggest that the tissue-specific composition may be the result of a maturation process. This study has the aim to characterize the structural and biochemical variations that occur in the swine meniscus with age. To this purpose, menisci were collected from young and adult pigs and divided into different zones. In study 1, both lateral and medial menisci were divided into the anterior horn, the body and the posterior horn for the evaluation of glycosaminoglycans (GAGs), collagen 1 and 2 content. In study 2, the menisci were sectioned into the inner, the intermediate and the outer zones to determine the variations in the cell phenotype along with the inner–outer direction, through gene expression analysis. According to the results, the swine meniscus is characterized by an increasing enrichment in the cartilaginous component with age, with an increasing deposition in the anterior horn (GAGs and collagen 2; P meniscus maturation, suggesting a specific response of meniscal cells to the regional mechanical stimuli in the knee joint. PMID:25216283

  16. Radiation cross-linked collagen/dextran dermal scaffolds: effects of dextran on cross-linking and degradation.

    Science.gov (United States)

    Zhang, Yaqing; Zhang, Xiangmei; Xu, Ling; Wei, Shicheng; Zhai, Maolin

    2015-01-01

    Ionizing radiation effectively cross-links collagen into network with enhanced anti-degradability and biocompatibility, while radiation-cross-linked collagen scaffold lacks flexibility, satisfactory surface appearance, and performs poor in cell penetration and ingrowth. To make the radiation-cross-linked collagen scaffold to serve as an ideal artificial dermis, dextran was incorporated into collagen. Scaffolds with the collagen/dextran (Col/Dex) ratios of 10/0, 7/3, and 5/5 were fabricated via (60)Co γ-irradiation cross-linking, followed by lyophilization. The morphology, microstructure, physicochemical, and biological properties were investigated. Compared with pure collagen, scaffolds with dextran demonstrated more porous appearance, enhanced hydrophilicity while the cross-linking density was lower with the consequence of larger pore size, higher water uptake, as well as reduced stiffness. Accelerated degradation was observed when dextran was incorporated in both the in vitro and in vivo assays, which led to earlier integration with cell and host tissue. The effect of dextran on degradation was ascribed to the decreased cross-linking density, looser microstructure, more porous and hydrophilic surface. Considering the better appearance, softness, moderate degradation rate due to controllable cross-linking degree and good biocompatibility as well, radiation-cross-linked collagen/dextran scaffolds are expected to serve as promising artificial dermal substitutes.

  17. Sciatic nerve regeneration in rats by a promising electrospun collagen/poly(ε-caprolactone nerve conduit with tailored degradation rate

    Directory of Open Access Journals (Sweden)

    Jiang Xinquan

    2011-07-01

    Full Text Available Abstract Background To cope with the limitations faced by autograft acquisitions particularly for multiple nerve injuries, artificial nerve conduit has been introduced by researchers as a substitute for autologous nerve graft for the easy specification and availability for mass production. In order to best mimic the structures and components of autologous nerve, great efforts have been made to improve the designation of nerve conduits either from materials or fabrication techniques. Electrospinning is an easy and versatile technique that has recently been used to fabricate fibrous tissue-engineered scaffolds which have great similarity to the extracellular matrix on fiber structure. Results In this study we fabricated a collagen/poly(ε-caprolactone (collagen/PCL fibrous scaffold by electrospinning and explored its application as nerve guide substrate or conduit in vitro and in vivo. Material characterizations showed this electrospun composite material which was made of submicron fibers possessed good hydrophilicity and flexibility. In vitro study indicated electrospun collagen/PCL fibrous meshes promoted Schwann cell adhesion, elongation and proliferation. In vivo test showed electrospun collagen/PCL porous nerve conduits successfully supported nerve regeneration through an 8 mm sciatic nerve gap in adult rats, achieving similar electrophysiological and muscle reinnervation results as autografts. Although regenerated nerve fibers were still in a pre-mature stage 4 months postoperatively, the implanted collagen/PCL nerve conduits facilitated more axons regenerating through the conduit lumen and gradually degraded which well matched the nerve regeneration rate. Conclusions All the results demonstrated this collagen/PCL nerve conduit with tailored degradation rate fabricated by electrospinning could be an efficient alternative to autograft for peripheral nerve regeneration research. Due to its advantage of high surface area for cell attachment, it

  18. Evaluation of human collagen biomaterials in the healing of colonic anastomoses in dogs.

    Science.gov (United States)

    Mutter, D; Aprahamian, M; Tiollier, J; Sonzini, P; Marescaux, J

    1997-04-01

    To investigate the ability of human collagen biomaterials to secure colonic anastomoses in dogs and to evaluate the biocompatibility of anastomotic protection patches (APP). Experimental open study. Experimental research centre, France. 21 mongrel dogs randomised into three groups of 7 each. Standard transverse colonic end-to-end anastomoses were secured with two-layer oxidised collagen I + III sponge covered with thin crosslinked collagen IV film (APP 1) glued around the suture (n = 7); two-layer oxidised collagen I + III sponge covered with thin non-crosslinked collagen I + III film patch (APP 2) (n = 7); or sealed by fibrin sealant (n = 7), which acted as a controls. Gross examination, radiological control (barium enemas), and microscopic examination on day 35 postoperatively. Gross clinical and radiological examinations on day 35 showed normal wound healing in all but one dog in which the anastomoses had occluded by day 16. There was significantly less stricturing with the APP 2 patch (p < 0.05 compared with the controls). Microscopic examination showed complete absorption of the APP 2 patches as well as quicker mucosal and extracellular matrix repair than controls. The APP 1 patch gave the best healing of the muscular layer but did not reduce anastomosis stricturing, and was not totally absorbed. Collagen supporting devices do not alter healing of the large bowel. Encircling patches do not increase the number of adhesions or the rate of anastomotic stricturing and a thin fibrillar collagen I + III dense layer may even improve it. The speed of absorption of the patch depends on the type of dense collagen film. These results argue for a prospective clinical evaluation in humans.

  19. Increasing harvest maturity of whole-plant corn silage reduces methane

    NARCIS (Netherlands)

    Hatew, B.; Bannink, A.; Laar, van H.; Jonge, de L.H.; Dijkstra, J.

    2016-01-01

    The objective of this study was to investigate the effects of increasing maturity of whole-plant corn at harvest on CH4 emissions by dairy cows consuming corn silage (CS) based diets. Whole-plant corn was harvested at a very early [25% dry matter (DM); CS25], early (28% DM; CS28), medium (32% DM;

  20. Effect of maturity stages, variety and storage environment on sugar ...

    African Journals Online (AJOL)

    This study clearly demonstrated the importance of integrated agro-technology of combining cultivar, maturity stage and storage environment in shelf life improvement of tomato by reducing the rate of ripening and utilization of sugar, reducing water loss and maintaining marketability. Key words: Tomato, maturity stage, ...

  1. Protease-activatable collagen targeting based on protein cyclization

    NARCIS (Netherlands)

    Breurken, M.; Lempens, E.H.M.; Merkx, M.

    2010-01-01

    Threading collagen through a protein needle: The collagen-binding protein CNA35 operates by wrapping itself around the collagen triple helix. By connecting the N and C termini through an MMP recognition sequence, a dual-specific MMP-sensitive collagen-targeting ligand is obtained that can be used

  2. Study of collagen metabolism after β radiation injury

    International Nuclear Information System (INIS)

    Zhou Yinghui; Xulan; Wu Shiliang; Zhang Xueguang; Chen Liesong

    2000-01-01

    Objective: To investigate the change of collagen metabolism and it's regulation after β radiation. Method: The animal model of β radiation injury was established by the β radiation produced by the linear accelerator; and irradiated NIH 3T3 cells were studied. In the experiment the contents of total collagen, collagen type I and type III were measured. The activity of MMPs-1 was tested. The contents of TGF-β 1 , IL-6 were also detected. Results: After exposure to β radiation, little change was found in the content of total collagen, but the content of collagen I decreased and the content of collagen III, MMPs-1 activity increased; the expression of TGF-β 1 , IL-6 increased. Conclusion: The changes in the metabolism of collagen play an important role in the irradiated injury of the skin; TGF-β 1 and IL-6 may be essential in the regulation of the collagen metabolism

  3. Collagen Conduit Versus Microsurgical Neurorrhaphy

    DEFF Research Database (Denmark)

    Boeckstyns, Michel; Sørensen, Allan Ibsen; Viñeta, Joaquin Fores

    2013-01-01

    To compare repair of acute lacerations of mixed sensory-motor nerves in humans using a collagen tube versus conventional repair.......To compare repair of acute lacerations of mixed sensory-motor nerves in humans using a collagen tube versus conventional repair....

  4. Sphingosine 1-phosphate (S1P) suppresses the collagen-induced activation of human platelets via S1P4 receptor.

    Science.gov (United States)

    Onuma, Takashi; Tanabe, Kumiko; Kito, Yuko; Tsujimoto, Masanori; Uematsu, Kodai; Enomoto, Yukiko; Matsushima-Nishiwaki, Rie; Doi, Tomoaki; Nagase, Kiyoshi; Akamatsu, Shigeru; Tokuda, Haruhiko; Ogura, Shinji; Iwama, Toru; Kozawa, Osamu; Iida, Hiroki

    2017-08-01

    Sphingosine 1-phosphate (S1P) is as an extracellular factor that acts as a potent lipid mediator by binding to specific receptors, S1P receptors (S1PRs). However, the precise role of S1P in human platelets that express S1PRs has not yet been fully clarified. We previously reported that heat shock protein 27 (HSP27) is released from human platelets accompanied by its phosphorylation stimulated by collagen. In the present study, we investigated the effect of S1P on the collagen-induced platelet activation. S1P pretreatment markedly attenuated the collagen-induced aggregation. Co-stimulation with S1P and collagen suppressed collagen-induced platelet activation, but the effect was weaker than that of S1P-pretreatment. The collagen-stimulated secretion of platelet-derived growth factor (PDGF)-AB and the soluble CD40 ligand (sCD40L) release were significantly reduced by S1P. In addition, S1P suppressed the collagen-induced release of HSP27 as well as the phosphorylation of HSP27. S1P significantly suppressed the collagen-induced phosphorylation of p38 mitogen-activated protein kinase. S1P increased the levels of GTP-bound Gαi and GTP-bound Gα13 coupled to S1PPR1 and/or S1PR4. CYM50260, a selective S1PR4 agonist, but not SEW2871, a selective S1PR1 agonist, suppressed the collagen-stimulated platelet aggregation, PDGF-AB secretion and sCD40L release. In addition, CYM50260 reduced the release of phosphorylated-HSP27 by collagen as well as the phosphorylation of HSP27. The selective S1PR4 antagonist CYM50358, which failed to affect collagen-induced HSP27 phosphorylation, reversed the S1P-induced attenuation of HSP27 phosphorylation by collagen. These results strongly suggest that S1P inhibits the collagen-induced human platelet activation through S1PR4 but not S1PR1. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Collagen targeting using multivalent protein-functionalized dendrimers

    NARCIS (Netherlands)

    Breurken, M.; Lempens, E.H.M.; Temming, R.P.; Helms, B.A.; Meijer, E.W.; Merkx, M.

    2011-01-01

    Collagen is an attractive marker for tissue remodeling in a variety of common disease processes. Here we report the preparation of protein dendrimers as multivalent collagen targeting ligands by native chemical ligation of the collagen binding protein CNA35 to cysteine-functionalized dendritic

  6. Building blocks of Collagen based biomaterial devices

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Building blocks of Collagen based biomaterial devices. Collagen as a protein. Collagen in tissues and organs. Stabilizing and cross linking agents. Immunogenicity. Hosts (drugs). Controlled release mechanisms of hosts. Biodegradability, workability into devices ...

  7. Polarized Raman anisotropic response of collagen in tendon: towards 3D orientation mapping of collagen in tissues.

    Directory of Open Access Journals (Sweden)

    Leonardo Galvis

    Full Text Available In this study, polarized Raman spectroscopy (PRS was used to characterize the anisotropic response of the amide I band of collagen as a basis for evaluating three-dimensional collagen fibril orientation in tissues. Firstly, the response was investigated theoretically by applying classical Raman theory to collagen-like peptide crystal structures. The theoretical methodology was then tested experimentally, by measuring amide I intensity anisotropy in rat tail as a function of the orientation of the incident laser polarization. For the theoretical study, several collagen-like triple-helical peptide crystal structures obtained from the Protein Data Bank were rotated "in plane" and "out of plane" to evaluate the role of molecular orientation on the intensity of the amide I band. Collagen-like peptides exhibit a sinusoidal anisotropic response when rotated "in plane" with respect to the polarized incident laser. Maximal intensity was obtained when the polarization of the incident light is perpendicular to the molecule and minimal when parallel. In the case of "out of plane" rotation of the molecular structure a decreased anisotropic response was observed, becoming completely isotropic when the structure was perpendicular to the plane of observation. The theoretical Raman response of collagen was compared to that of alpha helical protein fragments. In contrast to collagen, alpha helices have a maximal signal when incident light is parallel to the molecule and minimal when perpendicular. For out-of-plane molecular orientations alpha-helix structures display a decreased average intensity. Results obtained from experiments on rat tail tendon are in excellent agreement with the theoretical predictions, thus demonstrating the high potential of PRS for experimental evaluation of the three-dimensional orientation of collagen fibers in biological tissues.

  8. Changes in guinea-pig dermal collagen during development

    International Nuclear Information System (INIS)

    Shuttleworth, C.A.; Forrest, L.

    1975-01-01

    Guinea-pig dermis was digested with pepsin and the solubilized collagen molecules separated by differential salt precipitation at pH 7.5. Differences in subunit composition and amino acid analysis were noted between type I and type III collagen. Incorporation of radioactive proline into the developing foetus enabled isolation of labelled type I and type III collagens. Comparison of the specific activity of the isolated collagen molecules showed that type III collagen had a high specific activity in the early stages of foetal development, which decreased dramatically during foetal development. The specific activity of pepsin-solubilized type I collagen remained fairly constant during foetal development. (orig.) [de

  9. Immune responses to implanted human collagen graft in rats

    International Nuclear Information System (INIS)

    Quteish, D.; Dolby, A.E.

    1991-01-01

    Immunity to collagen implants may be mediated by cellular and humoral immune responses. To examine the possibility of such immunological reactivity and crossreactivity to collagen, 39 Sprague-Dawley rats (female, 10 weeks old, approximately 250 g wt) were implanted subcutaneously at thigh sites with crosslinked, freeze-dried human placental type I collagen grafts (4x4x2 mm) which had been irradiated (520 Gray) or left untreated. Blood was obtained by intracardiac sampling prior to implantation or from normal rats, and at various times afterwards when the animals were sacrificed. The sera from these animals were examined for circulating antibodies to human, bovine and rat tail (type I) collagens by enzyme-linked immunosorbent assay (ELISA). Also, the lymphoblastogenic responses of spleen lymphocytes from the irradiated collagen-implanted animals were assessed in culture by measuring thymidine uptake with autologous and normal rat sera in the presence of human bovine type I collagens. Implantation of the irradiated and non-irradiated collagen graft in rats led to a significant increase in the level of circulating antibodies to human collagen. Also antibody to bovine and rat tail collagens was detectable in the animals implanted with irradiated collagen grafts but at a lower level than the human collagen. There was a raised lymphoblastogenic response to both human and bovine collagens. The antibody level and lymphoblastogenesis to the tested collagens gradually decreased towards the end of the post-implantation period. (author)

  10. Effects of the Nd:YAG laser on DNA synthesis and collagen production in human skin fibroblast cultures

    Energy Technology Data Exchange (ETDEWEB)

    Castro, D.J.; Abergel, R.P.; Meeker, C.; Dwyer, R.M.; Lesavoy, M.A.; Uitto, J.

    1983-09-01

    Human skin fibroblasts were subjected to treatment with a Neodymium:YAG laser at 1060 nm with varying levels of energy determined by a reproducible method of dosimetry. DNA synthesis in the cells was measured by the incorporation of (3H)thymidine, and collagen production was monitored by the synthesis of nondialyzable (3H)hydroxyproline after incubation of cells with (3H)proline. Using energy levels equal to 1.7 X 10(3) J/cm2, a significant reduction in DNA synthesis was noted, while the cells remained viable as tested by the trypan blue exclusion test. With energy levels higher or equal to 2.3 X 10(3) J/cm2, the suppression of DNA synthesis was accompanied by cell nonviability. The collagen production, when measured immediately following the treatment with 1.7 X 10(3) J/cm2, was markedly reduced, and similar effects were observed with higher energy levels. However, when the cells were tested for collagen production at 20 hours following laser treatment, there was a significant decrease in collagen production at energy levels as low as 1.1 X 10(3) J/cm2, a dose that did not affect DNA synthesis or cell viability. Thus, the results indicate that the Nd:YAG laser can selectively suppress collagen production without affecting cell proliferation. These observations suggest that laser treatment could potentially be used to reduce collagen deposition in conditions such as keloids and hypertrophic scars.

  11. Alternative donor hematopoietic stem cell transplantation for mature lymphoid malignancies after reduced-intensity conditioning regimen

    DEFF Research Database (Denmark)

    Rodrigues, Celso Arrais; Rocha, Vanderson; Dreger, Peter

    2014-01-01

    We have reported encouraging results of unrelated cord blood transplantation for patients with lymphoid malignancies. Whether those outcomes are comparable to matched unrelated donor transplants remains to be defined. We studied 645 adult patients with mature lymphoid malignancies who received...... an allogeneic unrelated donor transplant using umbilical cord blood (n=104) or mobilized peripheral blood stem cells (n=541) after a reduced-intensity conditioning regimen. Unrelated cord blood recipients had more refractory disease. Median follow-up time was 30 months. Neutrophil engraftment (81% vs. 97......%, respectively; Pblood than after matched unrelated donor, whereas no differences were observed in grade II-IV acute graft-versus-host disease (29% vs. 32%), non-relapse mortality (29% vs. 28...

  12. ADAM12-S stimulates bone growth in transgenic mice by modulating chondrocyte proliferation and maturation

    DEFF Research Database (Denmark)

    Kveiborg, Marie; Albrechtsen, Reidar; Rudkjaer, Lise

    2006-01-01

    ADAM12-S transgenic mice exhibit a pronounced increase in the length of bones, such as femur, tibia, and vertebrae. The effect of ADAM12-S on longitudinal bone growth involves the modulation of chondrocyte proliferation and maturation, likely through proteolytic activities and altered cell......: Transgenic mice expressing the secreted form of human ADAM12, ADAM12-S, or a truncated metalloprotease-deficient form of ADAM12-S in the circulation were used to study the effects of ADAM12 on the skeleton. In addition, murine chondrocyte cultures were used to study the effect of ADAM12-S on cell...... studies showed that ADAM12-S inhibits chondrocyte adhesion to fibronectin and collagen type II. CONCLUSIONS: ADAM12-S stimulates bone growth in mice by modulating chondrocyte proliferation and maturation through mechanisms probably involving both metalloprotease and adhesion activities....

  13. Uniform spatial distribution of collagen fibril radii within tendon implies local activation of pC-collagen at individual fibrils

    Science.gov (United States)

    Rutenberg, Andrew D.; Brown, Aidan I.; Kreplak, Laurent

    2016-08-01

    Collagen fibril cross-sectional radii show no systematic variation between the interior and the periphery of fibril bundles, indicating an effectively constant rate of collagen incorporation into fibrils throughout the bundle. Such spatially homogeneous incorporation constrains the extracellular diffusion of collagen precursors from sources at the bundle boundary to sinks at the growing fibrils. With a coarse-grained diffusion equation we determine stringent bounds, using parameters extracted from published experimental measurements of tendon development. From the lack of new fibril formation after birth, we further require that the concentration of diffusing precursors stays below the critical concentration for fibril nucleation. We find that the combination of the diffusive bound, which requires larger concentrations to ensure homogeneous fibril radii, and lack of nucleation, which requires lower concentrations, is only marginally consistent with fully processed collagen using conservative bounds. More realistic bounds may leave no consistent concentrations. Therefore, we propose that unprocessed pC-collagen diffuses from the bundle periphery followed by local C-proteinase activity and subsequent collagen incorporation at each fibril. We suggest that C-proteinase is localized within bundles, at fibril surfaces, during radial fibrillar growth. The much greater critical concentration of pC-collagen, as compared to fully processed collagen, then provides broad consistency between homogeneous fibril radii and the lack of fibril nucleation during fibril growth.

  14. [Three-dimensional parallel collagen scaffold promotes tendon extracellular matrix formation].

    Science.gov (United States)

    Zheng, Zefeng; Shen, Weiliang; Le, Huihui; Dai, Xuesong; Ouyang, Hongwei; Chen, Weishan

    2016-03-01

    To investigate the effects of three-dimensional parallel collagen scaffold on the cell shape, arrangement and extracellular matrix formation of tendon stem cells. Parallel collagen scaffold was fabricated by unidirectional freezing technique, while random collagen scaffold was fabricated by freeze-drying technique. The effects of two scaffolds on cell shape and extracellular matrix formation were investigated in vitro by seeding tendon stem/progenitor cells and in vivo by ectopic implantation. Parallel and random collagen scaffolds were produced successfully. Parallel collagen scaffold was more akin to tendon than random collagen scaffold. Tendon stem/progenitor cells were spindle-shaped and unified orientated in parallel collagen scaffold, while cells on random collagen scaffold had disorder orientation. Two weeks after ectopic implantation, cells had nearly the same orientation with the collagen substance. In parallel collagen scaffold, cells had parallel arrangement, and more spindly cells were observed. By contrast, cells in random collagen scaffold were disorder. Parallel collagen scaffold can induce cells to be in spindly and parallel arrangement, and promote parallel extracellular matrix formation; while random collagen scaffold can induce cells in random arrangement. The results indicate that parallel collagen scaffold is an ideal structure to promote tendon repairing.

  15. [Biophysical principles of collagen cross-linking].

    Science.gov (United States)

    Spörl, E; Raiskup-Wolf, F; Pillunat, L E

    2008-02-01

    The reduced mechanical stability of the cornea in keratoconus or in keratectasia after Lasik may be increased by photooxidative cross-linking of corneal collagen. The biophysical principles are compiled for the safe and effective application of this new treatment method. The setting of the therapy parameters should be elucidated from the absorption behaviour of the cornea. The safety of the method for the endothelium cells and the lens will be discussed. The induced cross-links are shown to be the result of changes in the physico-chemical properties of the cornea. To reach a high absorption of the irradiation energy in the cornea, riboflavin of a concentration of 0.1% and UV light of a wavelength of 370 nm, corresponding to the relative maximum of absorption of riboflavin, were used. An irradiance of 3 mW/cm(2) and an irradiation time of 30 min lead to an increase of the mechanical stiffness. The endothelium cells will be protected due to the high absorption within the cornea, that means the damaging threshold of the endothelium cells will not be reached in a 400 microm thick stroma. As evidence for cross-links we can consider the increase of the biomechanical stiffness, the increased resistance against enzymatic degradation, a higher shrinkage temperature, a lower swelling rate and an increased diameter of collagen fibres. The therapy parameters were tested experimentally and have been proven clinically in the corneal collagen cross-linking. These parameters should be respected to reach a safe cross-linking effect without damage of the adjacent tissues.

  16. The effect of Hydroxyapatite/collagen I composites, bone marrow aspirate and bone graft on fixation of bone implants in sheep

    DEFF Research Database (Denmark)

    Babiker, Hassan

      The effect of Hydroxyapatite/collagen I composites, bone marrow aspirate and bone graft on fixation of bone implants IN SHEEP   Ph.D. Student, Hassan Babiker; Associate Professor, Ph.D. Ming Ding; Professor, dr.med., Soren Overgaard. Department of Orthopaedic Surgery, Odense University Hospital......, Odense, Denmark   Background: Hydroxyapatite and collagen composites (HA/coll) have the potential in mimicking and replacing skeletal bones. This study attempted to determine the effect of newly developed HA/coll-composites with and without bone marrow aspirate (BMA) in order to enhance the fixation...... of bone implants.   Materials and Methods: Titanium alloy implants were inserted into bilateral femoral condyles of 8 skeletally mature sheep, four in each sheep. The implant has a circumferential gap of 2 mm. The gap was filled with: HA/coll; HA/coll-BMA; autograft or allograft. Allograft was served...

  17. Imaging collagen type I fibrillogenesis with high spatiotemporal resolution

    International Nuclear Information System (INIS)

    Stamov, Dimitar R; Stock, Erik; Franz, Clemens M; Jähnke, Torsten; Haschke, Heiko

    2015-01-01

    Fibrillar collagens, such as collagen type I, belong to the most abundant extracellular matrix proteins and they have received much attention over the last five decades due to their large interactome, complex hierarchical structure and high mechanical stability. Nevertheless, the collagen self-assembly process is still incompletely understood. Determining the real-time kinetics of collagen type I formation is therefore pivotal for better understanding of collagen type I structure and function, but visualising the dynamic self-assembly process of collagen I on the molecular scale requires imaging techniques offering high spatiotemporal resolution. Fast and high-speed scanning atomic force microscopes (AFM) provide the means to study such processes on the timescale of seconds under near-physiological conditions. In this study we have applied fast AFM tip scanning to study the assembly kinetics of fibrillar collagen type I nanomatrices with a temporal resolution reaching eight seconds for a frame size of 500 nm. By modifying the buffer composition and pH value, the kinetics of collagen fibrillogenesis can be adjusted for optimal analysis by fast AFM scanning. We furthermore show that amplitude-modulation imaging can be successfully applied to extract additional structural information from collagen samples even at high scan rates. Fast AFM scanning with controlled amplitude modulation therefore provides a versatile platform for studying dynamic collagen self-assembly processes at high resolution. - Highlights: • Continuous non-invasive time-lapse investigation of collagen I fibrillogenesis in situ. • Imaging of collagen I self-assembly with high spatiotemporal resolution. • Application of setpoint modulation to study the hierarchical structure of collagen I. • Observing real-time formation of the D-banding pattern in collagen I

  18. Imaging collagen type I fibrillogenesis with high spatiotemporal resolution

    Energy Technology Data Exchange (ETDEWEB)

    Stamov, Dimitar R, E-mail: stamov@jpk.com [JPK Instruments AG, Bouchéstrasse 12, 12435 Berlin (Germany); Stock, Erik [JPK Instruments AG, Bouchéstrasse 12, 12435 Berlin (Germany); Franz, Clemens M [DFG-Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology (KIT), Wolfgang-Gaede-Strasse 1a, 76131 Karlsruhe (Germany); Jähnke, Torsten; Haschke, Heiko [JPK Instruments AG, Bouchéstrasse 12, 12435 Berlin (Germany)

    2015-02-15

    Fibrillar collagens, such as collagen type I, belong to the most abundant extracellular matrix proteins and they have received much attention over the last five decades due to their large interactome, complex hierarchical structure and high mechanical stability. Nevertheless, the collagen self-assembly process is still incompletely understood. Determining the real-time kinetics of collagen type I formation is therefore pivotal for better understanding of collagen type I structure and function, but visualising the dynamic self-assembly process of collagen I on the molecular scale requires imaging techniques offering high spatiotemporal resolution. Fast and high-speed scanning atomic force microscopes (AFM) provide the means to study such processes on the timescale of seconds under near-physiological conditions. In this study we have applied fast AFM tip scanning to study the assembly kinetics of fibrillar collagen type I nanomatrices with a temporal resolution reaching eight seconds for a frame size of 500 nm. By modifying the buffer composition and pH value, the kinetics of collagen fibrillogenesis can be adjusted for optimal analysis by fast AFM scanning. We furthermore show that amplitude-modulation imaging can be successfully applied to extract additional structural information from collagen samples even at high scan rates. Fast AFM scanning with controlled amplitude modulation therefore provides a versatile platform for studying dynamic collagen self-assembly processes at high resolution. - Highlights: • Continuous non-invasive time-lapse investigation of collagen I fibrillogenesis in situ. • Imaging of collagen I self-assembly with high spatiotemporal resolution. • Application of setpoint modulation to study the hierarchical structure of collagen I. • Observing real-time formation of the D-banding pattern in collagen I.

  19. Chondroitin Sulfate Perlecan Enhances Collagen Fibril Formation

    DEFF Research Database (Denmark)

    Kvist, A. J.; Johnson, A. E.; Mörgelin, M.

    2006-01-01

    in collagen type II fibril assembly by perlecan-null chondrocytes. Cartilage perlecan is a heparin sulfate or a mixed heparan sulfate/chondroitin sulfate proteoglycan. The latter form binds collagen and accelerates fibril formation in vitro, with more defined fibril morphology and increased fibril diameters...... produced in the presence of perlecan. Interestingly, the enhancement of collagen fibril formation is independent on the core protein and is mimicked by chondroitin sulfate E but neither by chondroitin sulfate D nor dextran sulfate. Furthermore, perlecan chondroitin sulfate contains the 4,6-disulfated...... disaccharides typical for chondroitin sulfate E. Indeed, purified glycosaminoglycans from perlecan-enriched fractions of cartilage extracts contain elevated levels of 4,6-disulfated chondroitin sulfate disaccharides and enhance collagen fibril formation. The effect on collagen assembly is proportional...

  20. Disentangling mechanisms involved in collagen pyridinoline cross-linking : The immunophilin FKBP65 is critical for dimerization of lysyl hydroxylase 2

    NARCIS (Netherlands)

    Gjaltema, Rutger A. F.; van der Stoel, Miesje M.; Boersema, Miriam; Bank, Ruud A.

    2016-01-01

    Collagens are subjected to extensive posttranslational modifications, such as lysine hydroxylation. Bruck syndrome (BS) is a connective tissue disorder characterized at the molecular level by a loss of telopeptide lysine hydroxylation, resulting in reduced collagen pyridinoline cross-linking. BS

  1. Adherence, proliferation and collagen turnover by human fibroblasts seeded into different types of collagen sponges

    NARCIS (Netherlands)

    Middelkoop, E.; de Vries, H. J.; Ruuls, L.; Everts, V.; Wildevuur, C. H.; Westerhof, W.

    1995-01-01

    We describe an in vitro model that we have used to evaluate dermal substitutes and to obtain data on cell proliferation, the rate of degradation of the dermal equivalent, contractibility and de novo synthesis of collagen. We tested three classes of collagenous materials: (1) reconstituted

  2. ADHERENCE, PROLIFERATION AND COLLAGEN TURNOVER BY HUMAN FIBROBLASTS SEEDED INTO DIFFERENT TYPES OF COLLAGEN SPONGES

    NARCIS (Netherlands)

    MIDDELKOOP, E; DEVRIES, HJC; RUULS, L; EVERTS, [No Value; WILDEVUUR, CHR; WESTERHOF, W

    We describe an in vitro model that we have used to evaluate dermal substitutes and to obtain data on cell proliferation, the rate of degradation of the dermal equivalent, contractibility and de novo synthesis of collagen. We tested three classes of collagenous materials: (1) reconstituted

  3. A New Kind of Biomaterials-Bullfrog Skin Collagen

    Institute of Scientific and Technical Information of China (English)

    He LI; Bai Ling LIU; Hua Lin CHEN; Li Zhen GAO

    2003-01-01

    Pepsin-soluble collagen was prepared from bullfrog skin and partially characterized. This study revealed interesting differences, such as molecular weight, amino acid composition, denaturation temperature (Td), in the frog skin collagen when compared to the known vertebrate collagens. This study gives hints that bullfrog skin can be a potential, safe alternative source of collagen from cattle for use in various fields.

  4. The decorin sequence SYIRIADTNIT binds collagen type I

    DEFF Research Database (Denmark)

    Kalamajski, Sebastian; Aspberg, Anders; Oldberg, Ake

    2007-01-01

    Decorin belongs to the small leucine-rich repeat proteoglycan family, interacts with fibrillar collagens, and regulates the assembly, structure, and biomechanical properties of connective tissues. The decorin-collagen type I-binding region is located in leucine-rich repeats 5-6. Site......-directed mutagenesis of this 54-residue-long collagen-binding sequence identifies Arg-207 and Asp-210 in leucine-rich repeat 6 as crucial for the binding to collagen. The synthetic peptide SYIRIADTNIT, which includes Arg-207 and Asp-210, inhibits the binding of full-length recombinant decorin to collagen in vitro....... These collagen-binding amino acids are exposed on the exterior of the beta-sheet-loop structure of the leucine-rich repeat. This resembles the location of interacting residues in other leucine-rich repeat proteins....

  5. ORGANIZATIONAL PROJECT MANAGEMENT MATURITY

    Directory of Open Access Journals (Sweden)

    Yana Derenskaya

    2017-11-01

    organizational maturity is the development of an integrated management system that would help to achieve synergy from combining different methodologies. Value/originality. Assessment of the project management maturity and identification of problems made it possible to develop a set of recommendations for achieving a higher level of organizational project management maturity by the enterprise in question, which in its turn is expected to reduce the costs and the time that are necessary for project implementation.

  6. Measurement of skeletal muscle collagen breakdown by microdialysis

    DEFF Research Database (Denmark)

    Miller, B F; Ellis, D; Robinson, M M

    2011-01-01

    Exercise increases the synthesis of collagen in the extracellular matrix of skeletal muscle. Breakdown of skeletal muscle collagen has not yet been determined because of technical limitations. The purpose of the present study was to use local sampling to determine skeletal muscle collagen breakdown...... collagen breakdown 17–21 h post-exercise, and our measurement of OHP using GC–MS was in agreement with traditional assays....

  7. One-month spaceflight compromises the bone microstructure, tissue-level mechanical properties, osteocyte survival and lacunae volume in mature mice skeletons.

    Science.gov (United States)

    Gerbaix, Maude; Gnyubkin, Vasily; Farlay, Delphine; Olivier, Cécile; Ammann, Patrick; Courbon, Guillaume; Laroche, Norbert; Genthial, Rachel; Follet, Hélène; Peyrin, Françoise; Shenkman, Boris; Gauquelin-Koch, Guillemette; Vico, Laurence

    2017-06-01

    The weightless environment during spaceflight induces site-specific bone loss. The 30-day Bion-M1 mission offered a unique opportunity to characterize the skeletal changes after spaceflight and an 8-day recovery period in mature male C57/BL6 mice. In the femur metaphysis, spaceflight decreased the trabecular bone volume (-64% vs. Habitat Control), dramatically increased the bone resorption (+140% vs. Habitat Control) and induced marrow adiposity invasion. At the diaphysis, cortical thinning associated with periosteal resorption was observed. In the Flight animal group, the osteocyte lacunae displayed a reduced volume and a more spherical shape (synchrotron radiation analyses), and empty lacunae were highly increased (+344% vs. Habitat Control). Tissue-level mechanical cortical properties (i.e., hardness and modulus) were locally decreased by spaceflight, whereas the mineral characteristics and collagen maturity were unaffected. In the vertebrae, spaceflight decreased the overall bone volume and altered the modulus in the periphery of the trabecular struts. Despite normalized osteoclastic activity and an increased osteoblast number, bone recovery was not observed 8 days after landing. In conclusion, spaceflight induces osteocyte death, which may trigger bone resorption and result in bone mass and microstructural deterioration. Moreover, osteocyte cell death, lacunae mineralization and fatty marrow, which are hallmarks of ageing, may impede tissue maintenance and repair.

  8. Gentamicin-collagen sponge reduces sternal wound complications after heart surgery : A controlled, prospectively randomized, double-blind study

    NARCIS (Netherlands)

    Schimmer, Christoph; Oezkur, Mehmet; Sinha, Bhanu; Hain, Johannes; Gorski, Armin; Hager, Benjamin; Leyh, Rainer

    Objective: Prophylactic retrosternal placement of a gentamicin-collagen sponge has been the subject of several recent clinical studies and is a matter of controversy. The present study is the first controlled, prospective, randomized, double-blind, single-center study to investigate the efficacy of

  9. A long-term in vivo investigation on the effects of xenogenous based, electrospun, collagen implants on the healing of experimentally-induced large tendon defects.

    Science.gov (United States)

    Oryan, A; Moshiri, A; Parizi Meimandi, A; Silver, I A

    2013-09-01

    This study was designed to investigate the effect of novel 3-dimensional (3-D) collagen implants on the healing of large, experimentally-induced, tendon-defects in rabbits. Forty mature male white New Zealand rabbits were divided randomly into treated and control groups. Two cm of the left Achilles tendon was excised and the gap was spanned by Kessler suture. In the treated group, a novel 3-D collagen implant was inserted between the cut ends of the tendon. No implant was used in the control group. During the course of the experiment the bioelectrical characteristics of the healing and normal tendons of both groups were investigated weekly. At 120 days post injury (DPI), the tendons were dissected and inspected for gross pathology, examined by transmission and scanning electron microscopy, and their biomechanical properties, percentage dry matter and hydroxyproline concentration assessed. The collagen implant significantly improved the bioelectrical characteristics, gross appearance and tissue alignment of the healed, treated tendons, compared to the healed, control scars. It also significantly increased fibrillogenesis, diameter and density of the collagen fibrils, dry matter content, hydroxyproline concentration, maximum load, stiffness, stress and modulus of elasticity of the treated tendons, as compared to the control tendons. Treatment also significantly decreased peri-tendinous adhesions, and improved the hierarchical organization of the tendon from the collagen fibril to fibre-bundle level. 3-D xenogeneic-based collagen implants induced newly regenerated tissue that was ultrastructurally and biomechanically superior to tissue that was regenerated by natural unassisted healing. This type of bioimplant was biocompatible, biodegradable and appeared suitable for clinical use.

  10. Fluorescently labaled collagen binding proteins allow specific visualization of collagen in tissues and live cell culture

    NARCIS (Netherlands)

    Krahn, K.B.N.; Bouten, C.V.C.; Tuijl, van S.; Zandvoort, van M.; Merkx, M.

    2006-01-01

    Visualization of the formation and orientation of collagen fibers in tissue engineering experiments is crucial for understanding the factors that determine the mechanical properties of tissues. In this study, collagen-specific fluorescent probes were developed using a new approach that takes

  11. Neural Stem Cells (NSCs in 3D Collagen Scaffolds: developing pharmacologically monitored neuroimplants for Spinal Cord Injury (SCI

    Directory of Open Access Journals (Sweden)

    Alexandra Kourgiantaki

    2014-06-01

    Full Text Available Spinal cord injury, a traumatic disease characterised by a massive degeneration of neural tissue, was recently targeted for neuroregenerative interventions. Our approach is the development of pharmacologically pulsed neuroimplants using 3D collagen scaffolds hosting NSCs. We aim to monitor the properties of NSCs ex vivo and in vivo, using synthetic small molecules with neuroprotective and neurogenic properties. Synthetic, highly lipophilic CNS bioavailable small molecules, synthesized by our group (microneurotrophins, bind to neurotrophins receptors (Gravanis et al, Science Signaling, 2012, Calogeropoulou et al., J Med Chem., 2009. BNN27 can specifically interact with TrkA and p75NTR receptors activating specific signalling pathways controlling neuronal cell survival and neurogenesis (Charalampopoulos et al, PNAS, 2004, Lazaridis et al., PLoS Biol., 2011. We are seeding embryonic and adult mouse NSC on collagen 3D scaffolds of different composition (collagen, chondroitin-6-sulphate and gelatin and construction (size of pores and stiffness, testing cell behaviour (survival, proliferation or differentiation in basal conditions or pulsed with neurotrophins and/or microneurotrophins. Using the knock in sox2-egfp mice strain and fluorescence activated cell sorting (FACS analysis, we obtain NSCs cultures with a sox2-positive population more than 90% pure. We evaluate specific markers of proliferation (ki67 and/or differentiation (GFAP for glial cells, Tuj1 for mature neurons and O4 for oligodendrocytes: we are currently testing the possible effect of BNN27 on proliferation of cortical NSCs in 2D cultures (increased numbers of ki67 positive cells up to 12%. The composition and the structure of 3D scaffolds seem to play a significant functional role: scaffolds with a combined composition such as 50% collagen/50% gelatin and 92% collagen/8% chondroitin-6-sulphate support NSC survival since they sustain sox2 expression and propagate neurosphere formation

  12. Targeting Heparin to Collagen within Extracellular Matrix Significantly Reduces Thrombogenicity and Improves Endothelialization of Decellularized Tissues.

    Science.gov (United States)

    Jiang, Bin; Suen, Rachel; Wertheim, Jason A; Ameer, Guillermo A

    2016-12-12

    Thrombosis within small-diameter vascular grafts limits the development of bioartificial, engineered vascular conduits, especially those derived from extracellular matrix (ECM). Here we describe an easy-to-implement strategy to chemically modify vascular ECM by covalently linking a collagen binding peptide (CBP) to heparin to form a heparin derivative (CBP-heparin) that selectively binds a subset of collagens. Modification of ECM with CBP-heparin leads to increased deposition of functional heparin (by ∼7.2-fold measured by glycosaminoglycan composition) and a corresponding reduction in platelet binding (>70%) and whole blood clotting (>80%) onto the ECM. Furthermore, addition of CBP-heparin to the ECM stabilizes long-term endothelial cell attachment to the lumen of ECM-derived vascular conduits, potentially through recruitment of heparin-binding growth factors that ultimately improve the durability of endothelialization in vitro. Overall, our findings provide a simple yet effective method to increase deposition of functional heparin on the surface of ECM-based vascular grafts and thereby minimize thrombogenicity of decellularized tissue, overcoming a significant challenge in tissue engineering of bioartificial vessels and vascularized organs.

  13. The collagen receptor uPARAP/Endo180

    DEFF Research Database (Denmark)

    Engelholm, Lars H; Ingvarsen, Signe; Jürgensen, Henrik J

    2009-01-01

    The uPAR-associated protein (uPARAP/Endo180), a type-1 membrane protein belonging to the mannose receptor family, is an endocytic receptor for collagen. Through this endocytic function, the protein takes part in a previously unrecognized mechanism of collagen turnover. uPARAP/Endo180 can bind...... and internalize both intact and partially degraded collagens. In some turnover pathways, the function of the receptor probably involves an interplay with certain matrix-degrading proteases whereas, in other physiological processes, redundant mechanisms involving both endocytic and pericellular collagenolysis seem...... in collagen breakdown seems to be involved in invasive tumor growth Udgivelsesdato: 2009...

  14. The synthesis and coupling of photoreactive collagen-based peptides to restore integrin reactivity to an inert substrate, chemically-crosslinked collagen

    Science.gov (United States)

    Malcor, Jean-Daniel; Bax, Daniel; Hamaia, Samir W.; Davidenko, Natalia; Best, Serena M.; Cameron, Ruth E.; Farndale, Richard W.; Bihan, Dominique

    2016-01-01

    Collagen is frequently advocated as a scaffold for use in regenerative medicine. Increasing the mechanical stability of a collagen scaffold is widely achieved by cross-linking using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) and N-hydroxysuccinimide (NHS). However, this treatment consumes the carboxylate-containing amino acid sidechains that are crucial for recognition by the cell-surface integrins, abolishing cell adhesion. Here, we restore cell reactivity to a cross-linked type I collagen film by covalently linking synthetic triple-helical peptides (THPs), mimicking the structure of collagen. These THPs are ligands containing an active cell-recognition motif, GFOGER, a high-affinity binding site for the collagen-binding integrins. We end-stapled peptide strands containing GFOGER by coupling a short diglutamate-containing peptide to their N-terminus, improving the thermal stability of the resulting THP. A photoreactive Diazirine group was grafted onto the end-stapled THP to allow covalent linkage to the collagen film upon UV activation. Such GFOGER-derivatized collagen films showed restored affinity for the ligand-binding I domain of integrin α2β1, and increased integrin-dependent cell attachment and spreading of HT1080 and Rugli cell lines, expressing integrins α2β1 and α1β1, respectively. The method we describe has wide application, beyond collagen films or scaffolds, since the photoreactive diazirine will react with many organic carbon skeletons. PMID:26854392

  15. Ingestion of BioCell Collagen®, a novel hydrolyzed chicken sternal cartilage extract; enhanced blood microcirculation and reduced facial aging signs

    OpenAIRE

    Park, Joosang; Schwartz,

    2012-01-01

    Stephen R Schwartz,1 Joosang Park21International Research Services Inc, Port Chester, NY, USA; 2BioCell Technology, LLC, Newport Beach, CA, USAAbstract: Skin aging and its clinical manifestation is associated with altered molecular metabolism in the extracellular matrix of the dermis. In a pilot open-label study, we investigated the effect of a dietary supplement, BioCell Collagen® (BCC), which contains a naturally occurring matrix of hydrolyzed collagen type II and low-molecular-weig...

  16. Ingestion of BioCell Collagen®, a novel hydrolyzed chicken sternal cartilage extract; enhanced blood microcirculation and reduced facial aging signs

    OpenAIRE

    Schwartz SR; Park J

    2012-01-01

    Stephen R Schwartz,1 Joosang Park21International Research Services Inc, Port Chester, NY, USA; 2BioCell Technology, LLC, Newport Beach, CA, USAAbstract: Skin aging and its clinical manifestation is associated with altered molecular metabolism in the extracellular matrix of the dermis. In a pilot open-label study, we investigated the effect of a dietary supplement, BioCell Collagen® (BCC), which contains a naturally occurring matrix of hydrolyzed collagen type II and low-molecular-weight h...

  17. Mechanisms of lamellar collagen formation in connective tissues.

    Science.gov (United States)

    Ghazanfari, Samaneh; Khademhosseini, Ali; Smit, Theodoor H

    2016-08-01

    The objective of tissue engineering is to regenerate functional tissues. Engineering functional tissues requires an understanding of the mechanisms that guide the formation and evolution of structure in the extracellular matrix (ECM). In particular, the three-dimensional (3D) collagen fiber arrangement is important as it is the key structural determinant that provides mechanical integrity and biological function. In this review, we survey the current knowledge on collagen organization mechanisms that can be applied to create well-structured functional lamellar tissues and in particular intervertebral disc and cornea. Thus far, the mechanisms behind the formation of cross-aligned collagen fibers in the lamellar structures is not fully understood. We start with cell-induced collagen alignment and strain-stabilization behavior mechanisms which can explain a single anisotropically aligned collagen fiber layer. These mechanisms may explain why there is anisotropy in a single layer in the first place. However, they cannot explain why a consecutive collagen layer is laid down with an alternating alignment. Therefore, we explored another mechanism, called liquid crystal phasing. While dense concentrations of collagen show such behavior, there is little evidence that the conditions for liquid crystal phasing are actually met in vivo. Instead, lysyl aldehyde-derived collagen cross-links have been found essential for correct lamellar matrix deposition. Furthermore, we suggest that supra-cellular (tissue-level) shear stress may be instrumental in the alignment of collagen fibers. Understanding the potential mechanisms behind the lamellar collagen structure in connective tissues will lead to further improvement of the regeneration strategies of functional complex lamellar tissues. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Cosmetic Potential of Marine Fish Skin Collagen

    Directory of Open Access Journals (Sweden)

    Ana L. Alves

    2017-10-01

    Full Text Available Many cosmetic formulations have collagen as a major component because of its significant benefits as a natural humectant and moisturizer. This industry is constantly looking for innovative, sustainable, and truly efficacious products, so marine collagen based formulations are arising as promising alternatives. A solid description and characterization of this protein is fundamental to guarantee the highest quality of each batch. In the present study, we present an extensive characterization of marine-derived collagen extracted from salmon and codfish skins, targeting its inclusion as component in cosmetic formulations. Chemical and physical characterizations were performed using several techniques such as sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE, Fourier Transformation Infrared (FTIR spectroscopy rheology, circular dichroism, X-ray diffraction, humidity uptake, and a biological assessment of the extracts regarding their irritant potential. The results showed an isolation of type I collagen with high purity but with some structural and chemical differences between sources. Collagen demonstrated a good capacity to retain water, thus being suitable for dermal applications as a moisturizer. A topical exposure of collagen in a human reconstructed dermis, as well as the analysis of molecular markers for irritation and inflammation, exhibited no irritant potential. Thus, the isolation of collagen from fish skins for inclusion in dermocosmetic applications may constitute a sustainable and low-cost platform for the biotechnological valorization of fish by-products.

  19. Collagen-Gold Nanoparticle Conjugates for Versatile Biosensing

    Directory of Open Access Journals (Sweden)

    Sarah Unser

    2017-02-01

    Full Text Available Integration of noble metal nanoparticles with proteins offers promising potential to create a wide variety of biosensors that possess both improved selectivity and versatility. The multitude of functionalities that proteins offer coupled with the unique optical properties of noble metal nanoparticles can allow for the realization of simple, colorimetric sensors for a significantly larger range of targets. Herein, we integrate the structural protein collagen with 10 nm gold nanoparticles to develop a protein-nanoparticle conjugate which possess the functionality of the protein with the desired colorimetric properties of the nanoparticles. Applying the many interactions that collagen undergoes in the extracellular matrix, we are able to selectively detect both glucose and heparin with the same collagen-nanoparticle conjugate. Glucose is directly detected through the cross-linking of the collagen fibrils, which brings the attached nanoparticles into closer proximity, leading to a red-shift in the LSPR frequency. Conversely, heparin is detected through a competition assay in which heparin-gold nanoparticles are added to solution and compete with heparin in the solution for the binding sites on the collagen fibrils. The collagen-nanoparticle conjugates are shown to detect both glucose and heparin in the physiological range. Lastly, glucose is selectively detected in 50% mouse serum with the collagen-nanoparticle devices possessing a linear range of 3–25 mM, which is also within the physiologically relevant range.

  20. Collagen synthesis in human musculoskeletal tissues and skin

    DEFF Research Database (Denmark)

    Babraj, J A; Cuthbertson, D J R; Smith, K

    2005-01-01

    We have developed a direct method for the measurement of human musculoskeletal collagen synthesis on the basis of the incorporation of stable isotope-labeled proline or leucine into protein and have used it to measure the rate of synthesis of collagen in tendon, ligament, muscle, and skin....... In postabsorptive, healthy young men (28 +/- 6 yr) synthetic rates for tendon, ligament, muscle, and skin collagen were 0.046 +/- 0.005, 0.040 +/- 0.006, 0.016 +/- 0.002, and 0.037 +/- 0.003%/h, respectively (means +/- SD). In postabsorptive, healthy elderly men (70 +/- 6 yr) the rate of skeletal muscle collagen...... synthesis is greater than in the young (0.023 +/- 0.002%/h, P collagen are similar to those of mixed skeletal muscle protein in the postabsorptive state, whereas the rate for muscle collagen synthesis is much lower in both young and elderly men...

  1. Correlation between dental maturity and cervical vertebral maturity.

    Science.gov (United States)

    Chen, Jianwei; Hu, Haikun; Guo, Jing; Liu, Zeping; Liu, Renkai; Li, Fan; Zou, Shujuan

    2010-12-01

    The aim of this study was to investigate the association between dental and skeletal maturity. Digital panoramic radiographs and lateral skull cephalograms of 302 patients (134 boys and 168 girls, ranging from 8 to 16 years of age) were examined. Dental maturity was assessed by calcification stages of the mandibular canines, first and second premolars, and second molars, whereas skeletal maturity was estimated by the cervical vertebral maturation (CVM) stages. The Spearman rank-order correlation coefficient was used to measure the association between CVM stage and dental calcification stage of individual teeth. The mean chronologic age of girls was significantly lower than that of boys in each CVM stage. The Spearman rank-order correlation coefficients between dental maturity and cervical vertebral maturity ranged from 0.391 to 0.582 for girls and from 0.464 to 0.496 for boys (P cervical vertebral maturation stage. The development of the mandibular second molar in females and that of the mandibular canine in males had the strongest correlations with cervical vertebral maturity. Therefore, it is practical to consider the relationship between dental and skeletal maturity when planning orthodontic treatment. Copyright © 2010 Mosby, Inc. All rights reserved.

  2. A Cost-Effective Culture System for the In Vitro Assembly, Maturation, and Stimulation of Advanced Multilayered Multiculture Tubular Tissue Models.

    Science.gov (United States)

    Loy, Caroline; Pezzoli, Daniele; Candiani, Gabriele; Mantovani, Diego

    2018-01-01

    The development of tubular engineered tissues is a challenging research area aiming to provide tissue substitutes but also in vitro models to test drugs, medical devices, and even to study physiological and pathological processes. In this work, the design, fabrication, and validation of an original cost-effective tubular multilayered-tissue culture system (TMCS) are reported. By exploiting cellularized collagen gel as scaffold, a simple moulding technique and an endothelialization step on a rotating system, TMCS allowed to easily prepare in 48 h, trilayered arterial wall models with finely organized cellular composition and to mature them for 2 weeks without any need of manipulation. Multilayered constructs incorporating different combinations of vascular cells are compared in terms of cell organization and viscoelastic mechanical properties demonstrating that cells always progressively aligned parallel to the longitudinal direction. Also, fibroblast compacted less the collagen matrix and appeared crucial in term of maturation/deposition of elastic extracellular matrix. Preliminary studies under shear stress stimulation upon connection with a flow bioreactor are successfully conducted without damaging the endothelial monolayer. Altogether, the TMCS herein developed, thanks to its versatility and multiple functionalities, holds great promise for vascular tissue engineering applications, but also for other tubular tissues such as trachea or oesophagus. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Eccentric rehabilitation exercise increases peritendinous type I collagen synthesis in humans with Achilles tendinosis.

    Science.gov (United States)

    Langberg, H; Ellingsgaard, H; Madsen, T; Jansson, J; Magnusson, S P; Aagaard, P; Kjaer, M

    2007-02-01

    It has been shown that 12 weeks of eccentric heavy resistance training can reduce pain in runners suffering from chronic Achilles tendinosis, but the mechanism behind the effectiveness of this treatment is unknown. The present study investigates the local effect of an eccentric training regime on elite soccer players suffering from chronic Achilles tendinosis on the turnover of the peritendinous connective tissue. Twelve elite male soccer players, of whom six suffered from unilateral tendinosis and six were healthy controls, participated in this study. All participants performed 12 weeks of heavy-resistance eccentric training apart from their regular training and soccer activity. Before and after the training period the tissue concentration of indicators of collagen turnover was measured by the use of the microdialysis technique. After training, collagen synthesis was increased in the initially injured tendon (n=6; carboxyterminal propeptide of type I collagen (PICP): pre 3.9+/-2.5 microg/L to post 19.7+/-5.4 microg/L, Ptendons in response to training (n=6; PICP: pre 8.3+/-5.2 microg/L to post 11.5+/-5.0 microg/L, P>0.05). Collagen degradation, measured as carboxyterminal telopeptide region of type I collagen (ICTP), was not affected by training neither in the injured nor in the healthy tendons. The clinical effect of the 12 weeks of eccentric training was determined by using a standardized loading procedure of the Achilles tendons showing a decrease in pain in all the chronic injured tendons (VAS before 44+/-9, after 13+/-9; Peccentric training regime. The present study demonstrates that chronically injured Achilles tendons respond to 12 weeks of eccentric training by increasing collagen synthesis rate. In contrast, the collagen metabolism in healthy control tendons seems not to be affected by eccentric training. These findings could indicate a relation between collagen metabolism and recovery from injury in human tendons.

  4. Chitosan: collagen sponges. In vitro mineralization

    International Nuclear Information System (INIS)

    Martins, Virginia da C.A.; Silva, Gustavo M.; Plepis, Ana Maria G.

    2011-01-01

    The regeneration of bone tissue is a problem that affects many people and scaffolds for bone tissue growth has been widely studied. The aim of this study was the in vitro mineralization of chitosan, chitosan:native collagen and chitosan:anionic collagen sponges. The sponges were obtained by lyophilization and mineralization was made by soaking the sponges in alternating solutions containing Ca 2+ and PO 4 3- . The mineralization was confirmed by infrared spectroscopy, energy dispersive X-ray and X-ray diffraction observing the formation of phosphate salts, possibly a carbonated hydroxyapatite since Ca/P=1.80. The degree of mineralization was obtained by thermogravimetry calculating the amount of residue at 750 deg C. The chitosan:anionic collagen sponge showed the highest degree of mineralization probably due to the fact that anionic collagen provides additional sites for interaction with the inorganic phase. (author)

  5. Mineralized Collagen: Rationale, Current Status, and Clinical Applications

    Directory of Open Access Journals (Sweden)

    Zhi-Ye Qiu

    2015-07-01

    Full Text Available This paper presents a review of the rationale for the in vitro mineralization process, preparation methods, and clinical applications of mineralized collagen. The rationale for natural mineralized collagen and the related mineralization process has been investigated for decades. Based on the understanding of natural mineralized collagen and its formation process, many attempts have been made to prepare biomimetic materials that resemble natural mineralized collagen in both composition and structure. To date, a number of bone substitute materials have been developed based on the principles of mineralized collagen, and some of them have been commercialized and approved by regulatory agencies. The clinical outcomes of mineralized collagen are of significance to advance the evaluation and improvement of related medical device products. Some representative clinical cases have been reported, and there are more clinical applications and long-term follow-ups that currently being performed by many research groups.

  6. Mechanical response of collagen molecule under hydrostatic compression

    International Nuclear Information System (INIS)

    Saini, Karanvir; Kumar, Navin

    2015-01-01

    Proteins like collagen are the basic building blocks of various body tissues (soft and hard). Collagen molecules find their presence in the skeletal system of the body where they bear mechanical loads from different directions, either individually or along with hydroxy-apatite crystals. Therefore, it is very important to understand the mechanical behavior of the collagen molecule which is subjected to multi-axial state of loading. The estimation of strains of collagen molecule along different directions resulting from the changes in hydrostatic pressure magnitude, can provide us new insights into its mechanical behavior. In the present work, full atomistic simulations have been used to study global (volumetric) as well as local (along different directions) mechanical properties of the hydrated collagen molecule which is subjected to different hydrostatic pressure magnitudes. To estimate the local mechanical properties, the strains of collagen molecule along its longitudinal and transverse directions have been acquired at different hydrostatic pressure magnitudes. In spite of non-homogeneous distribution of atoms within the collagen molecule, the calculated values of local mechanical properties have been found to carry the same order of magnitude along the longitudinal and transverse directions. It has been demonstrated that the values of global mechanical properties like compressibility, bulk modulus, etc. as well as local mechanical properties like linear compressibility, linear elastic modulus, etc. are functions of magnitudes of applied hydrostatic pressures. The mechanical characteristics of collagen molecule based on the atomistic model have also been compared with that of the continuum model in the present work. The comparison showed up orthotropic material behavior for the collagen molecule. The information on collagen molecule provided in the present study can be very helpful in designing the future bio-materials.

  7. Mechanical response of collagen molecule under hydrostatic compression.

    Science.gov (United States)

    Saini, Karanvir; Kumar, Navin

    2015-04-01

    Proteins like collagen are the basic building blocks of various body tissues (soft and hard). Collagen molecules find their presence in the skeletal system of the body where they bear mechanical loads from different directions, either individually or along with hydroxy-apatite crystals. Therefore, it is very important to understand the mechanical behavior of the collagen molecule which is subjected to multi-axial state of loading. The estimation of strains of collagen molecule along different directions resulting from the changes in hydrostatic pressure magnitude, can provide us new insights into its mechanical behavior. In the present work, full atomistic simulations have been used to study global (volumetric) as well as local (along different directions) mechanical properties of the hydrated collagen molecule which is subjected to different hydrostatic pressure magnitudes. To estimate the local mechanical properties, the strains of collagen molecule along its longitudinal and transverse directions have been acquired at different hydrostatic pressure magnitudes. In spite of non-homogeneous distribution of atoms within the collagen molecule, the calculated values of local mechanical properties have been found to carry the same order of magnitude along the longitudinal and transverse directions. It has been demonstrated that the values of global mechanical properties like compressibility, bulk modulus, etc. as well as local mechanical properties like linear compressibility, linear elastic modulus, etc. are functions of magnitudes of applied hydrostatic pressures. The mechanical characteristics of collagen molecule based on the atomistic model have also been compared with that of the continuum model in the present work. The comparison showed up orthotropic material behavior for the collagen molecule. The information on collagen molecule provided in the present study can be very helpful in designing the future bio-materials. Copyright © 2015 Elsevier B.V. All rights

  8. Mechanical response of collagen molecule under hydrostatic compression

    Energy Technology Data Exchange (ETDEWEB)

    Saini, Karanvir, E-mail: karans@iitrpr.ac.in; Kumar, Navin

    2015-04-01

    Proteins like collagen are the basic building blocks of various body tissues (soft and hard). Collagen molecules find their presence in the skeletal system of the body where they bear mechanical loads from different directions, either individually or along with hydroxy-apatite crystals. Therefore, it is very important to understand the mechanical behavior of the collagen molecule which is subjected to multi-axial state of loading. The estimation of strains of collagen molecule along different directions resulting from the changes in hydrostatic pressure magnitude, can provide us new insights into its mechanical behavior. In the present work, full atomistic simulations have been used to study global (volumetric) as well as local (along different directions) mechanical properties of the hydrated collagen molecule which is subjected to different hydrostatic pressure magnitudes. To estimate the local mechanical properties, the strains of collagen molecule along its longitudinal and transverse directions have been acquired at different hydrostatic pressure magnitudes. In spite of non-homogeneous distribution of atoms within the collagen molecule, the calculated values of local mechanical properties have been found to carry the same order of magnitude along the longitudinal and transverse directions. It has been demonstrated that the values of global mechanical properties like compressibility, bulk modulus, etc. as well as local mechanical properties like linear compressibility, linear elastic modulus, etc. are functions of magnitudes of applied hydrostatic pressures. The mechanical characteristics of collagen molecule based on the atomistic model have also been compared with that of the continuum model in the present work. The comparison showed up orthotropic material behavior for the collagen molecule. The information on collagen molecule provided in the present study can be very helpful in designing the future bio-materials.

  9. [Effects of exogenous prostaglandin E2 on collagen content of Achilles tendon of rabbits in vivo].

    Science.gov (United States)

    Li, Hui; Tang, Kanglai; Deng, Yinshuan; Xie, Meiming; Chang, Dehai; Tao, Xu; Xu, Jianzhong

    2012-03-01

    Prostaglandin E2 (PGE2) production increases in human tendon fibroblasts after the tendon injuries and repetitive mechanical loading in vitro. To analyze the relations between PGE2 and tendinopathy by observing the changes of collagen content and proportion after the Achilles tendon of rabbits is repeatedly exposed to PGE2. Twenty-four Japanese rabbits (aged 3-4 months, weighing 2.0-2.5 kg, and male or female) were equally randomized into 2 groups according to injection dose of PGE2: low dose group (50 ng) and high dose group (500 ng). Corresponding PGE2 (0.2 mL) was injected into the middle segment of the Achilles tendon of hindlimb, the same dose saline into the same site of the other side as controls once a week for 4 weeks or 8 weeks. The Achilles tendons were harvested at 4 and 8 weeks after injection. HE staining was used to observe the cell structure and matrix, and picric acid-sirius red staining to observe the distribution and types of collagen fibers, and transmission electron microscopy was used to measure the density of the unit area and diameter of collagen fibers. HE staining showed that collagen structural damage was observed in low dose and high dose groups. Picric acid-sirius red staining showed that the content of type I collagen significantly decreased while the content of type III collagen significantly increased in experimental side of 2 groups at 4 and 8 weeks after injection when compared with control sides (P Achilles tendon of rabbit to PGE2 can cause the decrease of type I collagen, the increase of type III collagen, the reverse ratio of type I to type III, reduced unit density of collagen fibers, and thinner collagen fibers diameter, which is related with tendinopathy.

  10. In Vitro and In Vivo Study of a Novel Porcine Collagen Membrane for Guided Bone Regeneration

    Directory of Open Access Journals (Sweden)

    Eisner Salamanca

    2016-11-01

    Full Text Available For years, in order to improve bone regeneration and prevent the need of a second stage surgery to remove non-resorbable membranes, biological absorbable membranes have gradually been developed and applied in guided tissue regeneration (GTR. The present study’s main objective was to achieve space maintenance and bone regeneration using a new freeze-dried developed porcine collagen membrane, and compare it with an already commercial collagen membrane, when both were used with a bovine xenograft in prepared alveolar ridge bone defects. Prior to surgery, the membrane’s vitality analysis showed statistically significant higher cell proliferation in the test membrane over the commercial one. In six beagle dogs, commercial bone xenograft was packed in lateral ridge bone defects prepared in the left and right side and then covered with test porcine collagen membrane or commercial collagen membrane. Alveolar height changes were measured. Histomorphometric results, in vitro and in vivo properties indicated that the new porcine collagen membrane is biocompatible, enhances bone xenograft osteoconduction, and reduces the alveolar ridge height reabsorption rate.

  11. Collagen based Biomaterials from CLRI: An Inspiration from the ...

    Indian Academy of Sciences (India)

    Collagen-based Smart Biomaterials · Smart materials: As smart people see them · Some Biomaterials based on Collagen in Human Health care · Questions of Value to this presentation ... Collagen based biomaterials · COLLAGEN IN VISION CARE · Slide 57 · Bandage lens: A smart device · Work at CLRI: In summary.

  12. Electrophoretic mobility patterns of collagen following laser welding

    Science.gov (United States)

    Bass, Lawrence S.; Moazami, Nader; Pocsidio, Joanne O.; Oz, Mehmet C.; LoGerfo, Paul; Treat, Michael R.

    1991-06-01

    Clinical application of laser vascular anastomosis in inhibited by a lack of understanding of its mechanism. Whether tissue fusion results from covalent or non-covalent bonding of collagen and other structural proteins is unknown. We compared electrophoretic mobility of collagen in laser treated and untreated specimens of rat tail tendon (>90% type I collagen) and rabbit aorta. Welding was performed, using tissue shrinkage as the clinical endpoint, using the 808 nm diode laser (power density 14 watts/cm2) and topical indocyanine green dye (max absorption 805 nm). Collagen was extracted with 8 M urea (denaturing), 0.5 M acetic acid (non-denaturing) and acetic acid/pepsin (cleaves non- helical protein). Mobility patterns on gel electrophoresis (SDS-PAGE) after urea or acetic acid extraction were identical in the lasered and control tendon and vessel (confirmed by optical densitometry), revealing no evidence of formation of novel covalent bonds. Alpha and beta band intensity was diminished in pepsin incubated lasered specimens compared with controls (optical density ratio 0.00 +/- 9 tendon, 0.65 +/- 0.12 aorta), indicating the presence of denatured collagen. With the laser parameters used, collagen is denatured without formation of covalent bonds, suggesting that non-covalent interaction between denatured collagen molecules may be responsible for the weld. Based on this mechanism, welding parameters can be chosen which produce collagen denaturation without cell death.

  13. Effects of increased collagen-matrix density on the mechanical properties and in vivo absorbability of hydroxyapatite-collagen composites as artificial bone materials

    Energy Technology Data Exchange (ETDEWEB)

    Yunoki, Shunji [Life Science Group, Tokyo Metropolitan Industrial Technology Research Institute, 2-11-1 Fukasawa, Setagaya-ku, Tokyo 158-0081 (Japan); Sugiura, Hiroaki; Kondo, Eiji; Yasuda, Kazunori [Department of Sports Medicine and Joint Surgery, Graduate School of Medicine, Hokkaido University, Kita-15 Nishi-7, Sapporo, Hokkaido 060-8638 Japan (Japan); Ikoma, Toshiyuki; Tanaka, Junzo, E-mail: yunoki.shunji@iri-tokyo.jp [Department of Metallurgy and Ceramics Science, 2-12-1-S7-1, Ookayama, Meguro-ku, Tokyo 152-8550 (Japan)

    2011-02-15

    The aim of this study was to evaluate the effects of increased collagen-matrix density on the mechanical properties and in vivo absorbability of porous hydroxyapatite (HAp)-collagen composites as artificial bone materials. Seven types of porous HAp-collagen composites were prepared from HAp nanocrystals and dense collagen fibrils. Their densities and HAp/collagen weight ratios ranged from 122 to 331 mg cm{sup -3} and from 20/80 to 80/20, respectively. The flexural modulus and strength increased with an increase in density, reaching 2.46 {+-} 0.48 and 0.651 {+-} 0.103 MPa, respectively. The porous composites with a higher collagen-matrix density exhibited much higher mechanical properties at the same densities, suggesting that increasing the collagen-matrix density is an effective way of improving the mechanical properties. It was also suggested that other structural factors in addition to collagen-matrix density are required to achieve bone-like mechanical properties. The in vivo absorbability of the composites was investigated in bone defects of rabbit femurs, demonstrating that the absorption rate decreased with increases in the composite density. An exhaustive increase in density is probably limited by decreases in absorbability as artificial bones.

  14. Effects of increased collagen-matrix density on the mechanical properties and in vivo absorbability of hydroxyapatite-collagen composites as artificial bone materials

    International Nuclear Information System (INIS)

    Yunoki, Shunji; Sugiura, Hiroaki; Kondo, Eiji; Yasuda, Kazunori; Ikoma, Toshiyuki; Tanaka, Junzo

    2011-01-01

    The aim of this study was to evaluate the effects of increased collagen-matrix density on the mechanical properties and in vivo absorbability of porous hydroxyapatite (HAp)-collagen composites as artificial bone materials. Seven types of porous HAp-collagen composites were prepared from HAp nanocrystals and dense collagen fibrils. Their densities and HAp/collagen weight ratios ranged from 122 to 331 mg cm -3 and from 20/80 to 80/20, respectively. The flexural modulus and strength increased with an increase in density, reaching 2.46 ± 0.48 and 0.651 ± 0.103 MPa, respectively. The porous composites with a higher collagen-matrix density exhibited much higher mechanical properties at the same densities, suggesting that increasing the collagen-matrix density is an effective way of improving the mechanical properties. It was also suggested that other structural factors in addition to collagen-matrix density are required to achieve bone-like mechanical properties. The in vivo absorbability of the composites was investigated in bone defects of rabbit femurs, demonstrating that the absorption rate decreased with increases in the composite density. An exhaustive increase in density is probably limited by decreases in absorbability as artificial bones.

  15. Collagenous microstructure of the glenoid labrum and biceps anchor.

    Science.gov (United States)

    Hill, A M; Hoerning, E J; Brook, K; Smith, C D; Moss, J; Ryder, T; Wallace, A L; Bull, A M J

    2008-06-01

    The glenoid labrum is a significant passive stabilizer of the shoulder joint. However, its microstructural form remains largely unappreciated, particularly in the context of its variety of functions. The focus of labral microscopy has often been histology and, as such, there is very little appreciation of collagen composition and arrangement of the labrum, and hence the micromechanics of the structure. On transmission electron microscopy, significant differences in diameter, area and perimeter were noted in the two gross histological groups of collagen fibril visualized; this suggests a heterogeneous collagenous composition with potentially distinct mechanical function. Scanning electron microscopy demonstrated three distinct zones of interest: a superficial mesh, a dense circumferential braided core potentially able to accommodate hoop stresses, and a loosely packed peri-core zone. Confocal microscopy revealed an articular surface fine fibrillar mesh potentially able to reduce surface friction, bundles of circumferential encapsulated fibres in the bulk of the tissue, and bone anchoring fibres at the osseous interface. Varying microstructure throughout the depth of the labrum suggests a role in accommodating different types of loading. An understanding of the labral microstructure can lead to development of hypotheses based upon an appreciation of this component of material property. This may aid an educated approach to surgical timing and repair.

  16. Measurement of the quadratic hyperpolarizability of the collagen triple helix and application to second harmonic imaging of natural and biomimetic collagenous tissues

    Science.gov (United States)

    Deniset-Besseau, A.; Strupler, M.; Duboisset, J.; De Sa Peixoto, P.; Benichou, E.; Fligny, C.; Tharaux, P.-L.; Mosser, G.; Brevet, P.-F.; Schanne-Klein, M.-C.

    2009-09-01

    Collagen is a major protein of the extracellular matrix that is characterized by triple helical domains. It plays a central role in the formation of fibrillar and microfibrillar networks, basement membranes, as well as other structures of the connective tissue. Remarkably, fibrillar collagen exhibits efficient Second Harmonic Generation (SHG) so that SHG microscopy proved to be a sensitive tool to probe the three-dimensional architecture of fibrillar collagen and to assess the progression of fibrotic pathologies. We obtained sensitive and reproducible measurements of the fibrosis extent, but we needed quantitative data at the molecular level to further process SHG images. We therefore performed Hyper- Rayleigh Scattering (HRS) experiments and measured a second order hyperpolarisability of 1.25 10-27 esu for rat-tail type I collagen. This value is surprisingly large considering that collagen presents no strong harmonophore in its aminoacid sequence. In order to get insight into the physical origin of this nonlinear process, we performed HRS measurements after denaturation of the collagen triple helix and for a collagen-like short model peptide [(Pro-Pro- Gly)10]3. It showed that the collagen large nonlinear response originates in the tight alignment of a large number of weakly efficient harmonophores, presumably the peptide bonds, resulting in a coherent amplification of the nonlinear signal along the triple helix. To illustrate this mechanism, we successfully recorded SHG images in collagenous biomimetic matrices.

  17. Relative orientation of collagen molecules within a fibril: a homology model for homo sapiens type I collagen.

    Science.gov (United States)

    Collier, Thomas A; Nash, Anthony; Birch, Helen L; de Leeuw, Nora H

    2018-02-15

    Type I collagen is an essential extracellular protein that plays an important structural role in tissues that require high tensile strength. However, owing to the molecule's size, to date no experimental structural data are available for the Homo sapiens species. Therefore, there is a real need to develop a reliable homology model and a method to study the packing of the collagen molecules within the fibril. Through the use of the homology model and implementation of a novel simulation technique, we have ascertained the orientations of the collagen molecules within a fibril, which is currently below the resolution limit of experimental techniques. The longitudinal orientation of collagen molecules within a fibril has a significant effect on the mechanical and biological properties of the fibril, owing to the different amino acid side chains available at the interface between the molecules.

  18. Lack of collagen XVIII/endostatin exacerbates immune-mediated glomerulonephritis.

    Science.gov (United States)

    Hamano, Yuki; Okude, Takashi; Shirai, Ryota; Sato, Ikumi; Kimura, Ryota; Ogawa, Makoto; Ueda, Yoshihiko; Yokosuka, Osamu; Kalluri, Raghu; Ueda, Shiro

    2010-09-01

    Collagen XVIII is a component of the highly specialized extracellular matrix associated with basement membranes of epithelia and endothelia. In the normal kidney, collagen XVIII is distributed throughout glomerular and tubular basement membranes, mesangial matrix, and Bowman's capsule. Proteolytic cleavage within its C-terminal domain releases the fragment endostatin, which has antiangiogenic properties. Because damage to the glomerular basement membrane (GBM) accompanies immune-mediated renal injury, we investigated the role of collagen XVIII/endostatin in this disorder. We induced anti-GBM glomerulonephritis in collagen XVIII alpha1-null and wild-type mice and compared the resulting matrix accumulation, inflammation, and capillary rarefaction. Anti-GBM disease upregulated collagen XVIII/endostatin expression within the GBM and Bowman's capsule of wild-type mice. Collagen XVIII/endostatin-deficient mice developed more severe glomerular and tubulointerstitial injury than wild-type mice. Collagen XVIII/endostatin deficiency altered matrix remodeling, enhanced the inflammatory response, and promoted capillary rarefaction and vascular endothelial cell damage, but did not affect endothelial proliferation. Supplementing collagen XVIII-deficient mice with exogenous endostatin did not affect the progression of anti-GBM disease. Taken together, these results suggest that collagen XVIII/endostatin preserves the integrity of the extracellular matrix and capillaries in the kidney, protecting against progressive glomerulonephritis.

  19. Changes in type I collagen following laser welding.

    Science.gov (United States)

    Bass, L S; Moazami, N; Pocsidio, J; Oz, M C; LoGerfo, P; Treat, M R

    1992-01-01

    Selection of ideal laser parameters for tissue welding is inhibited by poor understanding of the mechanism. We investigated structural changes in collagen molecules extracted from rat tail tendon (> 90% type I collagen) after tissue welding using an 808 nm diode laser and indocyanine green dye applied to the weld site. Mobility patterns on SDS-PAGE were identical in the lasered and untreated tendon extracts with urea or acetic acid. Pepsin incubation after acetic acid extraction revealed a reduction of collagen alpha and beta bands in lasered compared with untreated specimens. Circular dichroism studies of rat tail tendon showed absence of helical structure in collagen from lasered tendon. No evidence for covalent bonding was present in laser-treated tissues. Collagen molecules are denatured by the laser wavelength and parameters used in this study. No significant amount of helical structure is regenerated on cooling. We conclude that non-covalent interactions between denatured collagen molecules may be responsible for the creation of tissue welding.

  20. Evaluation of Anterior Vertebral Interbody Fusion Using Osteogenic Mesenchymal Stem Cells Transplanted in Collagen Sponge.

    Science.gov (United States)

    Yang, Wencheng; Dong, Youhai; Hong, Yang; Guang, Qian; Chen, Xujun

    2016-05-01

    The study used a rabbit model to achieve anterior vertebral interbody fusion using osteogenic mesenchymal stem cells (OMSCs) transplanted in collagen sponge. We investigated the effectiveness of graft material for anterior vertebral interbody fusion using a rabbit model by examining the OMSCs transplanted in collagen sponge. Anterior vertebral interbody fusion is commonly performed. Although autogenous bone graft remains the gold-standard fusion material, it requires a separate surgical procedure and is associated with significant short-term and long-term morbidity. Recently, mesenchymal stem cells from bone marrow have been studied in various fields, including posterolateral spinal fusion. Thus, we hypothesized that cultured OMSCs transplanted in porous collagen sponge could be used successfully even in anterior vertebral interbody fusion. Forty mature male White Zealand rabbits (weight, 3.5-4.5 kg) were randomly allocated to receive one of the following graft materials: porous collagen sponge plus cultured OMSCs (group I); porous collagen sponge alone (group II); autogenous bone graft (group III); and nothing (group IV). All animals underwent anterior vertebral interbody fusion at the L4/L5 level. The lumbar spine was harvested en bloc, and the new bone formation and spinal fusion was evaluated using radiographic analysis, microcomputed tomography, manual palpation test, and histologic examination at 8 and 12 weeks after surgery. New bone formation and bony fusion was evident as early as 8 weeks in groups I and III. And there was no statistically significant difference between 8 and 12 weeks. At both time points, by microcomputed tomography and histologic analysis, new bone formation was observed in both groups I and III, fibrous tissue was observed and there was no new bone in both groups II and IV; by manual palpation test, bony fusion was observed in 40% (4/10) of rabbits in group I, 70% (7/10) of rabbits in group III, and 0% (0/10) of rabbits in both groups

  1. Clinical usefulness of {sup 123}I-BMIPP myocardial SPECT in collagen disease

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Kazuki; Zen, Kan [Asahi Univ., Gifu (Japan). Murakami Memorial Hospital; Sugihara, Hiroki (and others)

    2000-07-01

    This study was designed to evaluate the clinical usefulness of {sup 123}I-BMIPP myocardial SPECT for detecting cardiac involvement in patients with collagen disease. We studied 12 patients with systemic lupus erythematosus (SLE), 8 with progressive systemic sclerosis (PSS), 6 with polymyositis/dermatomyositis (PM/DM) and 3 with allergic granulomatosis and angiitis (AGA). A 111 MBq of {sup 123}I-BMIPP was intravenously injected at rest, and SPECT images were obtained at 15 min after the injection. Seven of 12 SLE, 6 of 8 PSS, 3 of 6 PM/DM and all 3 AGA patients showed an abnormal tracer uptake. The left ventricular ejection fraction was inversely correlated with a BMIPP abnormality. The regional wall motion abnormality was reduced in regions with reduced tracer uptake. These findings suggest that {sup 123}I-BMIPP imaging could be useful for assessment of cardiac involvement in patients with collagen disease. (author)

  2. Evaluation of a collagen-chitosan hydrogel for potential use as a pro-angiogenic site for islet transplantation.

    Directory of Open Access Journals (Sweden)

    Joanne E McBane

    Full Text Available Islet transplantation to treat type 1 diabetes (T1D has shown varied long-term success, due in part to insufficient blood supply to maintain the islets. In the current study, collagen and collagen:chitosan (10:1 hydrogels, +/- circulating angiogenic cells (CACs, were compared for their ability to produce a pro-angiogenic environment in a streptozotocin-induced mouse model of T1D. Initial characterization showed that collagen-chitosan gels were mechanically stronger than the collagen gels (0.7 kPa vs. 0.4 kPa elastic modulus, respectively, had more cross-links (9.2 vs. 7.4/µm(2, and were degraded more slowly by collagenase. After gelation with CACs, live/dead staining showed greater CAC viability in the collagen-chitosan gels after 18 h compared to collagen (79% vs. 69%. In vivo, collagen-chitosan gels, subcutaneously implanted for up to 6 weeks in a T1D mouse, showed increased levels of pro-angiogenic cytokines over time. By 6 weeks, anti-islet cytokine levels were decreased in all matrix formulations ± CACs. The 6-week implants demonstrated increased expression of VCAM-1 in collagen-chitosan implants. Despite this, infiltrating vWF(+ and CXCR4(+ angiogenic cell numbers were not different between the implant types, which may be due to a delayed and reduced cytokine response in a T1D versus non-diabetic setting. The mechanical, degradation and cytokine data all suggest that the collagen-chitosan gel may be a suitable candidate for use as a pro-angiogenic ectopic islet transplant site.

  3. Effect of unloading followed by reloading on expression of collagen and related growth factors in rat tendon and muscle

    DEFF Research Database (Denmark)

    Heinemeier, K M; Olesen, J L; Haddad, F

    2009-01-01

    Tendon tissue and the extracellular matrix of skeletal muscle respond to mechanical loading by increased collagen expression and synthesis. This response is likely a secondary effect of a mechanically induced expression of growth factors, including transforming growth factor-beta1 (TGF-beta1......) and insulin-like growth factor-I (IGF-I). It is not known whether unloading of tendon tissue can reduce the expression of collagen and collagen-inducing growth factors. Furthermore, the coordinated response of tendon and muscle tissue to disuse, followed by reloading, is unclear. Female Sprague-Dawley rats...... tissue growth factor (CTGF), myostatin, and IGF-I isoforms were measured by real-time RT-PCR in Achilles tendon and soleus muscle. The tendon mass was unchanged, while the muscle mass was reduced by 50% after HS (P

  4. Maturity and maturity models in lean construction

    Directory of Open Access Journals (Sweden)

    Claus Nesensohn

    2014-03-01

    Full Text Available In recent years there has been an increasing interest in maturity models in management-related disciplines; which reflects a growing recognition that becoming more mature and having a model to guide the route to maturity can help organisations in managing major transformational change. Lean Construction (LC is an increasingly important improvement approach that organisations seek to embed. This study explores how to apply the maturity models to LC. Hence the attitudes, opinions and experiences of key industry informants with high levels of knowledge of LC were investigated. To achieve this, a review of maturity models was conducted, and data for the analysis was collected through a sequential process involving three methods. First a group interview with seven key informants. Second a follow up discussion with the same individuals to investigate some of the issues raised in more depth. Third an online discussion held via LinkedIn in which members shared their views on some of the results. Overall, we found that there is a lack of common understanding as to what maturity means in LC, though there is general agreement that the concept of maturity is a suitable one to reflect the path of evolution for LC within organisations.

  5. ELECTRICAL AND THERMODYNAMIC PROPERTIES OF A COLLAGEN SOLUTION

    Directory of Open Access Journals (Sweden)

    Jaromír Štancl

    2017-06-01

    Full Text Available This paper focuses on measurements of the electrical properties, the specific heat capacity and the thermal conductivity of a collagen solution (7.19% mass fraction of native bovine collagen in water. The results of our experiments show that specific electrical conductivity of collagen solution is strongly dependent on temperature. The transition region of collagen to gelatin has been observed from the measured temperature dependence of specific electrical conductivity, and has been confirmed by specific heat capacity measurements by a differential scanning calorimetry.

  6. Collagen Fibrils: Nature's Highly Tunable Nonlinear Springs.

    Science.gov (United States)

    Andriotis, Orestis G; Desissaire, Sylvia; Thurner, Philipp J

    2018-03-21

    Tissue hydration is well known to influence tissue mechanics and can be tuned via osmotic pressure. Collagen fibrils are nature's nanoscale building blocks to achieve biomechanical function in a broad range of biological tissues and across many species. Intrafibrillar covalent cross-links have long been thought to play a pivotal role in collagen fibril elasticity, but predominantly at large, far from physiological, strains. Performing nanotensile experiments of collagen fibrils at varying hydration levels by adjusting osmotic pressure in situ during atomic force microscopy experiments, we show the power the intrafibrillar noncovalent interactions have for defining collagen fibril tensile elasticity at low fibril strains. Nanomechanical tensile tests reveal that osmotic pressure increases collagen fibril stiffness up to 24-fold in transverse (nanoindentation) and up to 6-fold in the longitudinal direction (tension), compared to physiological saline in a reversible fashion. We attribute the stiffening to the density and strength of weak intermolecular forces tuned by hydration and hence collagen packing density. This reversible mechanism may be employed by cells to alter their mechanical microenvironment in a reversible manner. The mechanism could also be translated to tissue engineering approaches for customizing scaffold mechanics in spatially resolved fashion, and it may help explain local mechanical changes during development of diseases and inflammation.

  7. Collagen like peptide bioconjugates for targeted drug delivery applications

    Science.gov (United States)

    Luo, Tianzhi

    Collagen is the most abundant protein in mammals, and there has been long-standing interest in understanding and controlling collagen assembly in the design of new materials. Collagen-like peptides (CLP), also known as collagen-mimetic peptides (CMP), are short synthetic peptides which mimic the triple helical conformation of native collagens. In the past few decades, collagen like peptides and their conjugated hybrids have become a new class of biomaterials that possesses unique structures and properties. In addition to traditional applications of using CLPs to decipher the role of different amino acid residues and tripeptide motifs in stabilizing the collagen triple helix and mimicking collagen fibril formation, with the introduction of specific interactions including electrostatic interactions, pi-pi stacking interaction and metal-ligand coordination, a variety of artificial collagen-like peptides with well-defined sequences have been designed to create higher order assemblies with specific biological functions. The CLPs have also been widely used as bioactive domains or physical cross-linkers to fabricate hydrogels, which have shown potential to improve cell adhesion, proliferation and ECM macromolecule production. Despite this widespread use, the utilization of CLPs as domains in stimuli responsive bioconjugates represents a relatively new area for the development of functional polymeric materials. In this work, a new class of thermoresponsive diblock conjugates, containing collagen-like peptides and a thermoresponsive polymer, namely poly(diethylene glycol methyl ether methacrylate) (PDEGMEMA), is introduced. The CLP domain maintains its triple helix conformation after conjugation with the polymer. The engineered LCST of these conjugates has enabled temperature-induced assembly under aqueous conditions, at physiologically relevant temperatures, into well-defined vesicles with diameters of approximately 50-200 nm. The formation of nanostructures was driven by

  8. Atorvastatin Improves Ventricular Remodeling after Myocardial Infarction by Interfering with Collagen Metabolism

    Science.gov (United States)

    Reichert, Karla; Pereira do Carmo, Helison Rafael; Galluce Torina, Anali; Diógenes de Carvalho, Daniela; Carvalho Sposito, Andrei; de Souza Vilarinho, Karlos Alexandre; da Mota Silveira-Filho, Lindemberg; Martins de Oliveira, Pedro Paulo

    2016-01-01

    Purpose Therapeutic strategies that modulate ventricular remodeling can be useful after acute myocardial infarction (MI). In particular, statins may exert effects on molecular pathways involved in collagen metabolism. The aim of this study was to determine whether treatment with atorvastatin for 4 weeks would lead to changes in collagen metabolism and ventricular remodeling in a rat model of MI. Methods Male Wistar rats were used in this study. MI was induced in rats by ligation of the left anterior descending coronary artery (LAD). Animals were randomized into three groups, according to treatment: sham surgery without LAD ligation (sham group, n = 14), LAD ligation followed by 10mg atorvastatin/kg/day for 4 weeks (atorvastatin group, n = 24), or LAD ligation followed by saline solution for 4 weeks (control group, n = 27). After 4 weeks, hemodynamic characteristics were obtained by a pressure-volume catheter. Hearts were removed, and the left ventricles were subjected to histologic analysis of the extents of fibrosis and collagen deposition, as well as the myocyte cross-sectional area. Expression levels of mediators involved in collagen metabolism and inflammation were also assessed. Results End-diastolic volume, fibrotic content, and myocyte cross-sectional area were significantly reduced in the atorvastatin compared to the control group. Atorvastatin modulated expression levels of proteins related to collagen metabolism, including MMP1, TIMP1, COL I, PCPE, and SPARC, in remote infarct regions. Atorvastatin had anti-inflammatory effects, as indicated by lower expression levels of TLR4, IL-1, and NF-kB p50. Conclusion Treatment with atorvastatin for 4 weeks was able to attenuate ventricular dysfunction, fibrosis, and left ventricular hypertrophy after MI in rats, perhaps in part through effects on collagen metabolism and inflammation. Atorvastatin may be useful for limiting ventricular remodeling after myocardial ischemic events. PMID:27880844

  9. Extraction and Characterization of Collagen from Sea Cucumber Flesh

    Directory of Open Access Journals (Sweden)

    Alhana

    2015-11-01

    Full Text Available Sea cucumber (Stichopus variegatus is one of the Echinodermata phylum that grows along Indonesian coastal. Sea cucumber is potential source of collagen. The purposes of this research were to determine the optimal concentration of NaOH and CH3COOH solution in collagen production and analyze the physicochemical characteristics of collagen from S. variegatus. Yield of the collagen was 1.5% (based on wet weight basis, produced by pretreatment with NaOH 0,30%, hydrolysis with CH3COOH 0.10% and extracted using distilled water. Protein, moisture, and ash content of the collagen was 67.68%, 13.64%, and 4.15%, respectively. Collagen was extracted using distilled water at 45°C during 2h and still had triple helix structure ; pH 7.37 ; melting temperature 163.67°C and whiteness 69.25%. The major amino acid content of collagen were glycine, alanine, proline and glutamic acid.

  10. Cetuximab modified collagen scaffold directs neurogenesis of injury-activated endogenous neural stem cells for acute spinal cord injury repair.

    Science.gov (United States)

    Li, Xing; Zhao, Yannan; Cheng, Shixiang; Han, Sufang; Shu, Muya; Chen, Bing; Chen, Xuyi; Tang, Fengwu; Wang, Nuo; Tu, Yue; Wang, Bin; Xiao, Zhifeng; Zhang, Sai; Dai, Jianwu

    2017-08-01

    Studies have shown that endogenous neural stem cells (NSCs) activated by spinal cord injury (SCI) primarily generate astrocytes to form glial scar. The NSCs do not differentiate into neurons because of the adverse microenvironment. In this study, we defined the activation timeline of endogenous NSCs in rats with severe SCI. These injury-activated NSCs then migrated into the lesion site. Cetuximab, an EGFR signaling antagonist, significantly increased neurogenesis in the lesion site. Meanwhile, implanting cetuximab modified linear ordered collagen scaffolds (LOCS) into SCI lesion sites in dogs resulted in neuronal regeneration, including neuronal differentiation, maturation, myelination, and synapse formation. The neuronal regeneration eventually led to a significant locomotion recovery. Furthermore, LOCS implantation could also greatly decrease chondroitin sulfate proteoglycan (CSPG) deposition at the lesion site. These findings suggest that endogenous neurogenesis following acute complete SCI is achievable in species ranging from rodents to large animals via functional scaffold implantation. LOCS-based Cetuximab delivery system has a promising therapeutic effect on activating endogenous neurogenesis, reducing CSPGs deposition and improving motor function recovery. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Collagen Structural Hierarchy and Susceptibility to Degradation by Ultraviolet Radiation.

    Science.gov (United States)

    Rabotyagova, Olena S; Cebe, Peggy; Kaplan, David L

    2008-12-01

    Collagen type I is the most abundant extracellular matrix protein in the human body, providing the basis for tissue structure and directing cellular functions. Collagen has complex structural hierarchy, organized at different length scales, including the characteristic triple helical feature. In the present study, the relationship between collagen structure (native vs. denatured) and sensitivity to UV radiation was assessed, with a focus on changes in primary structure, changes in conformation, microstructure and material properties. A brief review of free radical reactions involved in collagen degradation is also provided as a mechanistic basis for the changes observed in the study. Structural and functional changes in the collagens were related to the initial conformation (native vs. denatured) and the energy of irradiation. These changes were tracked using SDS-PAGE to assess molecular weight, Fourier transform infrared (FTIR) spectroscopy to study changes in the secondary structure, and atomic force microscopy (AFM) to characterize changes in mechanical properties. The results correlate differences in sensitivity to irradiation with initial collagen structural state: collagen in native conformation vs. heat-treated (denatured) collagen. Changes in collagen were found at all levels of the hierarchical structural organization. In general, the native collagen triple helix is most sensitive to UV-254nm radiation. The triple helix delays single chain degradation. The loss of the triple helix in collagen is accompanied by hydrogen abstraction through free radical mechanisms. The results received suggest that the effects of electromagnetic radiation on biologically relevant extracellular matrices (collagen in the present study) are important to assess in the context of the state of collagen structure. The results have implications in tissue remodeling, wound repair and disease progression.

  12. Binding of collagens to an enterotoxigenic strain of Escherichia coli

    International Nuclear Information System (INIS)

    Visai, L.; Speziale, P.; Bozzini, S.

    1990-01-01

    An enterotoxigenic strain of Escherichia coli, B34289c, has been shown to bind the N-terminal region of fibronectin with high affinity. We now report that this strain also binds collagen. The binding of 125I-labeled type II collagen to bacteria was time dependent and reversible. Bacteria expressed a limited number of collagen receptors (2.2 x 10(4) per cell) and bound collagen with a Kd of 20 nM. All collagen types tested (I to V) as well as all tested cyanogen bromide-generated peptides [alpha 1(I)CB2, alpha 1(I)CB3, alpha 1(I)CB7, alpha 1(I)CB8, and alpha 2(I)CB4] were recognized by bacterial receptors, as demonstrated by the ability of these proteins to inhibit the binding of 125I-labeled collagen to bacteria. Of several unlabeled proteins tested in competition experiments, fibronectin and its N-terminal region strongly inhibited binding of the radiolabeled collagen to E. coli cells. Conversely, collagen competed with an 125I-labeled 28-kilodalton fibronectin fragment for bacterial binding. Collagen bound to bacteria could be displaced by excess amounts of either unlabeled fibronectin or its N-terminal fragment. Similarly, collagen could displace 125I-labeled N-terminal peptide of fibronectin bound to the bacterial cell surface. Bacteria grown at 41 degrees C or in the presence of glucose did not express collagen or fibronectin receptors. These results indicate the presence of specific binding sites for collagen on the surface of E. coli cells and furthermore that the collagen and fibronectin binding sites are located in close proximity, possibly on the same structure

  13. Collagen Homeostasis and Metabolism

    DEFF Research Database (Denmark)

    Magnusson, S Peter; Heinemeier, Katja M; Kjaer, Michael

    2016-01-01

    The musculoskeletal system and its collagen rich tissue is important for ensuring architecture of skeletal muscle, energy storage in tendon and ligaments, joint surface protection, and for ensuring the transfer of muscular forces into resulting limb movement. Structure of tendon is stable...... inactivity or immobilization of the human body will conversely result in a dramatic loss in tendon stiffness and collagen synthesis. This illustrates the importance of regular mechanical load in order to preserve the stabilizing role of the connective tissue for the overall function of the musculoskeletal...

  14. Mechanisms of Zn(II) binded to collagen and its effect on the capacity of eco-friendly Zn-Cr combination tanning system.

    Science.gov (United States)

    Cao, Shan; Liu, Bing; Cheng, Baozhen; Lu, Fuping; Wang, Yanping; Li, Yu

    2017-01-05

    The eco-friendly combination tanning process has been developed to reduce chromium in existing researches, which is based on zinc tanning agents. This can be considered as a less-chrome substitute for current tanning process. To gain deeper understanding of the binding mechanisms of zinc-collagen interaction, which are affected by tanning pH, experiments have been carried out. Analysis in this paper reveals how chemical bonds from the collagen's main function groups combine with zinc. XPS and NIR data was analyzed for further understanding of where the zinc binding sites lie on collagen fibers at different pH. The results indicate that high pH is helpful to amino-binding sites while low pH promotes carboxyl-binding sites on collagen fibers. Furthermore, from the effect of Zinc-chrome combination tanning, we can see that the new method reduces the chromium dosage in tanning process compared to the conventional chrome tanning method. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Decorin-transforming growth factor- interaction regulates matrix organization and mechanical characteristics of three-dimensional collagen matrices.

    Science.gov (United States)

    Ferdous, Zannatul; Wei, Victoria Mariko; Iozzo, Renato; Höök, Magnus; Grande-Allen, Kathryn Jane

    2007-12-07

    The small leucine-rich proteoglycan decorin has been demonstrated to be a key regulator of collagen fibrillogenesis; decorin deficiencies lead to irregularly shaped collagen fibrils and weakened material behavior in postnatal murine connective tissues. In an in vitro investigation of the contributions of decorin to tissue organization and material behavior, model tissues were engineered by seeding embryonic fibroblasts, harvested from 12.5-13.5 days gestational aged decorin null (Dcn(-/-)) or wild-type mice, within type I collagen gels. The resulting three-dimensional collagen matrices were cultured for 4 weeks under static tension. The collagen matrices seeded with Dcn(-/-) cells exhibited greater contraction, cell density, ultimate tensile strength, and elastic modulus than those seeded with wild-type cells. Ultrastructurally, the matrices seeded with Dcn(-/-) cells contained a greater density of collagen. The decorin-null tissues contained more biglycan than control tissues, suggesting that this related proteoglycan compensated for the absence of decorin. The effect of transforming growth factor-beta (TGF-beta), which is normally sequestered by decorin, was also investigated in this study. The addition of TGF-beta1 to the matrices seeded with wild-type cells improved their contraction and mechanical strength, whereas blocking TGF-beta1 in the Dcn(-/-) cell-seeded matrices significantly reduced the collagen gel contraction. These results indicate that the inhibitory interaction between decorin and TGF-beta1 significantly influenced the matrix organization and material behavior of these in vitro model tissues.

  16. Cervical Collagen Concentration within Fifteen Months after Delivery

    DEFF Research Database (Denmark)

    Sundtoft, Iben; Uldbjerg, Niels; Sommer, Steffe

    2011-01-01

    OBJECTIVE: Cervical collagen concentration decreases during pregnancy. The increased risk of preterm birth following a short interpregnancy interval may be explained by an incomplete remodeling of the cervix. The objective of this study was to describe the changes in cervical collagen concentration...... over 15 months following delivery. METHODS: The collagen concentrations were determined in cervical biopsies obtained from 15 women at 3, 6, 9, 12, and 15 months after delivery. RESULTS: The mean cervical collagen concentrations were 50, 59, 63, 65, and 65 % of dry weight (SD 4.2 – 6.5). This increase...... was statistically significant until month 9, but not between months 9 and 12. CONCLUSIONS: Low collagen concentrations in the uterine cervix may contribute to the association between a short interpregnancy interval and preterm birth....

  17. A small-molecule compound inhibits a collagen-specific molecular chaperone and could represent a potential remedy for fibrosis.

    Science.gov (United States)

    Ito, Shinya; Ogawa, Koji; Takeuchi, Koh; Takagi, Motoki; Yoshida, Masahito; Hirokawa, Takatsugu; Hirayama, Shoshiro; Shin-Ya, Kazuo; Shimada, Ichio; Doi, Takayuki; Goshima, Naoki; Natsume, Tohru; Nagata, Kazuhiro

    2017-12-08

    Fibrosis can disrupt tissue structure and integrity and impair organ function. Fibrosis is characterized by abnormal collagen accumulation in the extracellular matrix. Pharmacological inhibition of collagen secretion therefore represents a promising strategy for the management of fibrotic disorders, such as liver and lung fibrosis. Hsp47 is an endoplasmic reticulum (ER)-resident collagen-specific molecular chaperone essential for correct folding of procollagen in the ER. Genetic deletion of Hsp47 or inhibition of its interaction with procollagen interferes with procollagen triple helix production, which vastly reduces procollagen secretion from fibroblasts. Thus, Hsp47 could be a potential and promising target for the management of fibrosis. In this study, we screened small-molecule compounds that inhibit the interaction of Hsp47 with collagen from chemical libraries using surface plasmon resonance (BIAcore), and we found a molecule AK778 and its cleavage product Col003 competitively inhibited the interaction and caused the inhibition of collagen secretion by destabilizing the collagen triple helix. Structural information obtained with NMR analysis revealed that Col003 competitively binds to the collagen-binding site on Hsp47. We propose that these structural insights could provide a basis for designing more effective therapeutic drugs for managing fibrosis. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Collagen-like proteins in pathogenic E. coli strains.

    Directory of Open Access Journals (Sweden)

    Neelanjana Ghosh

    Full Text Available The genome sequences of enterohaemorrhagic E. coli O157:H7 strains show multiple open-reading frames with collagen-like sequences that are absent from the common laboratory strain K-12. These putative collagens are included in prophages embedded in O157:H7 genomes. These prophages carry numerous genes related to strain virulence and have been shown to be inducible and capable of disseminating virulence factors by horizontal gene transfer. We have cloned two collagen-like proteins from E. coli O157:H7 into a laboratory strain and analysed the structure and conformation of the recombinant proteins and several of their constituting domains by a variety of spectroscopic, biophysical, and electron microscopy techniques. We show that these molecules exhibit many of the characteristics of vertebrate collagens, including trimer formation and the presence of a collagen triple helical domain. They also contain a C-terminal trimerization domain, and a trimeric α-helical coiled-coil domain with an unusual amino acid sequence almost completely lacking leucine, valine or isoleucine residues. Intriguingly, these molecules show high thermal stability, with the collagen domain being more stable than those of vertebrate fibrillar collagens, which are much longer and post-translationally modified. Under the electron microscope, collagen-like proteins from E. coli O157:H7 show a dumbbell shape, with two globular domains joined by a hinged stalk. This morphology is consistent with their likely role as trimeric phage side-tail proteins that participate in the attachment of phage particles to E. coli target cells, either directly or through assembly with other phage tail proteins. Thus, collagen-like proteins in enterohaemorrhagic E. coli genomes may have a direct role in the dissemination of virulence-related genes through infection of harmless strains by induced bacteriophages.

  19. Hyaluronan in aged collagen matrix increases prostate epithelial cell proliferation

    Science.gov (United States)

    Damodarasamy, Mamatha; Vernon, Robert B.; Chan, Christina K.; Plymate, Stephen R.; Wight, Thomas N.

    2015-01-01

    The extracellular matrix (ECM) of the prostate, which is comprised primarily of collagen, becomes increasingly disorganized with age, a property that may influence the development of hyperplasia and cancer. Collageous ECM extracted from the tails of aged mice exhibits many characteristics of collagen in aged tissues, including the prostate. When polymerized into a 3-dimensional (3D) gel, these collagen extracts can serve as models for the study of specific cell-ECM interactions. In the present study, we examined the behaviors of human prostatic epithelial cell lines representing normal prostate epithelial cells (PEC), benign prostatic hyperplasia (BPH-1), and adenocarcinoma (LNCaP) cultured in contact with 3D gels made from collagen extracts of young and aged mice. We found that proliferation of PEC, BPH-1, and LNCaP cells were all increased by culture on aged collagen gels relative to young collagen gels. In examining age-associated differences in the composition of the collagen extracts, we found that aged and young collagen had a similar amount of several collagen-associated ECM components, but aged collagen had a much greater content of the glycosaminoglycan hyaluronan (HA) than young collagen. The addition of HA (of similar size and concentration to that found in aged collagen extracts) to cells placed in young collagen elicited significantly increased proliferation in BPH-1 cells, but not in PEC or LNCaP cells, relative to controls not exposed to HA. Of note, histochemical analyses of human prostatic tissues showed significantly higher expression of HA in BPH and prostate cancer stroma relative to stroma of normal prostate. Collectively, these results suggest that changes in ECM involving increased levels of HA contribute to the growth of prostatic epithelium with aging. PMID:25124870

  20. The effect of complexing phosphoproteins to decalcified collagen on in vitro calcification.

    Science.gov (United States)

    Endo, A; Glimcher, M J

    1989-01-01

    Decalcified samples of chicken bone containing phosphoproteins of varying concentrations were used to assess the effect of phosphoproteins and of protein-bound Ser(P) and Thr(P) in the in vitro nucleation of a Ca-P solid phase from metastable solutions of Ca and P. Phosphoproteins of bone as well as the phosphoproteins from egg yolk (phosvitin) were used. Increasing concentrations of phosphoprotein [as measured by the amount of protein bound Ser(P) and Thr(P)] in the decalcified bone particles significantly reduced the time required for nucleation to occur after exposure to metastable solutions of Ca and P (decreased operational lag times). Treatment with wheat germ acid phosphatase markedly reduced the concentration of Ser(P) and Thr(P) in the decalcified bone samples and in the decalcified bone collagen samples complexed with phosphoproteins (almost to zero). The loss of the organic phosphate groups significantly increased the operational lag time, but did not abolish nucleation of apatite crystals by the bone collagen fibrils essentially devoid of Ser(P) and Thr(P). Bone phosphoproteins were not specific; substitution of phosvitin for bone phosphoproteins as complexes with bone collagen also proved to be effective facilitators of nucleation, which was interesting since both types of phosphoproteins have certain common chemical and structural characteristics. Noncollagenous components other than phosphoproteins were present in the decalcified bone samples. However, the marked dependence of the lag time on the Ser(P) and Thr(P) concentrations and the very marked diminution in the efficacy of the nucleation phenomenon as a result of treatment with wheat germ acid phosphatase, clearly suggests that the organic phosphate residues of the phosphoproteins play a direct and significant role in the process of in vitro nucleation of a solid phase of Ca and P (apatite) by bone collagen, and by implication, possibly in in vivo mineralization as well.

  1. Fibrous mini-collagens in hydra nematocysts.

    Science.gov (United States)

    Holstein, T W; Benoit, M; Herder, G V; David, C N; Wanner, G; Gaub, H E

    1994-07-15

    Nematocysts (cnidocysts) are exocytotic organelles found in all cnidarians. Here, atomic force microscopy and field emission scanning electron microscopy reveal the structure of the nematocyst capsule wall. The outer wall consists of globular proteins of unknown function. The inner wall consists of bundles of collagen-like fibrils having a spacing of 50 to 100 nanometers and cross-striations at intervals of 32 nanometers. The fibrils consist of polymers of "mini-collagens," which are abundant in the nematocysts of Hydra. The distinct pattern of mini-collagen fibers in the inner wall can provide the tensile strength necessary to withstand the high osmotic pressure (15 megapascals) in the capsules.

  2. Fish collagen is an important panallergen in the Japanese population.

    Science.gov (United States)

    Kobayashi, Y; Akiyama, H; Huge, J; Kubota, H; Chikazawa, S; Satoh, T; Miyake, T; Uhara, H; Okuyama, R; Nakagawara, R; Aihara, M; Hamada-Sato, N

    2016-05-01

    Collagen was identified as a fish allergen in early 2000s. Although its allergenic potential has been suggested to be low, risks associated with collagen as a fish allergen have not been evaluated to a greater extent. In this study, we aimed to clarify the importance of collagen as a fish allergen. Our results showed that 50% of Japanese patients with fish allergy had immunoglobulin E (IgE) against mackerel collagen, whereas 44% had IgE against mackerel parvalbumin. IgE inhibition assay revealed high cross-reactivity of mackerel collagen to 22 fish species (inhibition rates: 87-98%). Furthermore, a recently developed allergy test demonstrated that collagen triggered IgE cross-linking on mast cells. These data indicate that fish collagen is an important and very common panallergen in fish consumed in Japan. The high rate of individuals' collagen allergy may be attributable to the traditional Japanese custom of raw fish consumption. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Stabilization and anomalous hydration of collagen fibril under heating.

    Directory of Open Access Journals (Sweden)

    Sasun G Gevorkian

    Full Text Available BACKGROUND: Type I collagen is the most common protein among higher vertebrates. It forms the basis of fibrous connective tissues (tendon, chord, skin, bones and ensures mechanical stability and strength of these tissues. It is known, however, that separate triple-helical collagen macromolecules are unstable at physiological temperatures. We want to understand the mechanism of collagen stability at the intermolecular level. To this end, we study the collagen fibril, an intermediate level in the collagen hierarchy between triple-helical macromolecule and tendon. METHODOLOGY/PRINCIPAL FINDING: When heating a native fibril sample, its Young's modulus decreases in temperature range 20-58°C due to partial denaturation of triple-helices, but it is approximately constant at 58-75°C, because of stabilization by inter-molecular interactions. The stabilization temperature range 58-75°C has two further important features: here the fibril absorbs water under heating and the internal friction displays a peak. We relate these experimental findings to restructuring of collagen triple-helices in fibril. A theoretical description of the experimental results is provided via a generalization of the standard Zimm-Bragg model for the helix-coil transition. It takes into account intermolecular interactions of collagen triple-helices in fibril and describes water adsorption via the Langmuir mechanism. CONCLUSION/SIGNIFICANCE: We uncovered an inter-molecular mechanism that stabilizes the fibril made of unstable collagen macromolecules. This mechanism can be relevant for explaining stability of collagen.

  4. Collagen-Induced Arthritis: A model for Murine Autoimmune Arthritis.

    Science.gov (United States)

    Pietrosimone, K M; Jin, M; Poston, B; Liu, P

    2015-10-20

    Collagen-induced arthritis (CIA) is a common autoimmune animal model used to study rheumatoid arthritis (RA). The development of CIA involves infiltration of macrophages and neutrophils into the joint, as well as T and B cell responses to type II collagen. In murine CIA, genetically susceptible mice (DBA/1J) are immunized with a type II bovine collagen emulsion in complete Freund's adjuvant (CFA), and receive a boost of type II bovine collagen in incomplete Freund's adjuvant (IFA) 21 days after the first injection. These mice typically develop disease 26 to 35 days after the initial injection. C57BL/6J mice are resistant to arthritis induced by type II bovine collagen, but can develop arthritis when immunized with type II chicken collagen in CFA, and receive a boost of type II chicken collagen in IFA 21 days after the first injection. The concentration of heat-killed Mycobacterium tuberculosis H37RA (MT) in CFA also differs for each strain. DBA/1J mice develop arthritis with 1 mg/ml MT, while C57BL/6J mice require and 3-4 mg/ml MT in order to develop arthritis. CIA develops slowly in C57BL/6J mice and cases of arthritis are mild when compared to DBA/1J mice. This protocol describes immunization of DBA/1J mice with type II bovine collagen and the immunization of C57BL/6J mice with type II chicken collagen.

  5. Differential regulation of collagen secretion by kinin receptors in cardiac fibroblast and myofibroblast

    Energy Technology Data Exchange (ETDEWEB)

    Catalán, Mabel; Smolic, Christian [Centro de estudios moleculares de la célula, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile (Chile); Contreras, Ariel [Instituto Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile (Chile); Ayala, Pedro; Olmedo, Ivonne; Copaja, Miguel; Boza, Pía; Vivar, Raúl; Avalos, Yennifer [Centro de estudios moleculares de la célula, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile (Chile); Lavandero, Sergio [Centro de estudios moleculares de la célula, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile (Chile); Instituto Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile (Chile); Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, TX (United States); Velarde, Victoria [Departamento de Ciencias Fisiológicas, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago (Chile); Díaz-Araya, Guillermo, E-mail: gadiaz@ciq.uchile.cl [Centro de estudios moleculares de la célula, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile (Chile)

    2012-06-15

    Kinins mediate their cellular effects through B1 (B1R) and B2 (B2R) receptors, and the activation of B2R reduces collagen synthesis in cardiac fibroblasts (CF). However, the question of whether B1R and/or B2R have a role in cardiac myofibroblasts remains unanswered. Methods: CF were isolated from neonate rats and myofibroblasts were generated by an 84 h treatment with TGF-β1 (CMF). B1R was evaluated by western blot, immunocytochemistry and radioligand assay; B2R, inducible nitric oxide synthase (iNOS), endothelial nitric oxide synthase (eNOS), and cyclooxygenases 1and 2 (COX-1, and COX-2) were evaluated by western blot; intracellular Ca{sup +2} levels were evaluated with Fluo-4AM; collagen secretion was measured in the culture media using the picrosirius red assay kit. Results: B2R, iNOS, COX-1 and low levels of B1R but not eNOS, were detected by western blot in CF. Also, B1R, B2R, and COX-2 but not iNOS, eNOS or COX-1, were detected by western blot in CMF. By immunocytochemistry, our results showed lower intracellular B1R levels in CF and higher B1R levels in CMF, mainly localized on the cell membrane. Additionally, we found B1R only in CMF cellular membrane through radioligand displacement assay. Bradykinin (BK) B2R agonist increased intracellular Ca{sup 2+} levels and reduced collagen secretion both in CF and CMF. These effects were blocked by HOE-140, and inhibited by L-NAME, 1400W and indomethacin. Des-Arg-kallidin (DAKD) B1R agonist did not increase intracellular Ca{sup 2+} levels in CF; however, after preincubation for 1 h with DAKD and re-stimulation with the same agonist, we found a low increase in intracellular Ca{sup 2+} levels. Finally, DAKD increased intracellular Ca{sup 2+} levels and decreased collagen secretion in CMF, being this effect blocked by the B1R antagonist des-Arg9-Leu8-kallidin and indomethacin, but not by L-NAME or 1400 W. Conclusion: B1R, B2R, iNOS and COX-1 were expressed differently between CF and CMF, and collagen secretion was

  6. Differential regulation of collagen secretion by kinin receptors in cardiac fibroblast and myofibroblast

    International Nuclear Information System (INIS)

    Catalán, Mabel; Smolic, Christian; Contreras, Ariel; Ayala, Pedro; Olmedo, Ivonne; Copaja, Miguel; Boza, Pía; Vivar, Raúl; Avalos, Yennifer; Lavandero, Sergio; Velarde, Victoria; Díaz-Araya, Guillermo

    2012-01-01

    Kinins mediate their cellular effects through B1 (B1R) and B2 (B2R) receptors, and the activation of B2R reduces collagen synthesis in cardiac fibroblasts (CF). However, the question of whether B1R and/or B2R have a role in cardiac myofibroblasts remains unanswered. Methods: CF were isolated from neonate rats and myofibroblasts were generated by an 84 h treatment with TGF-β1 (CMF). B1R was evaluated by western blot, immunocytochemistry and radioligand assay; B2R, inducible nitric oxide synthase (iNOS), endothelial nitric oxide synthase (eNOS), and cyclooxygenases 1and 2 (COX-1, and COX-2) were evaluated by western blot; intracellular Ca +2 levels were evaluated with Fluo-4AM; collagen secretion was measured in the culture media using the picrosirius red assay kit. Results: B2R, iNOS, COX-1 and low levels of B1R but not eNOS, were detected by western blot in CF. Also, B1R, B2R, and COX-2 but not iNOS, eNOS or COX-1, were detected by western blot in CMF. By immunocytochemistry, our results showed lower intracellular B1R levels in CF and higher B1R levels in CMF, mainly localized on the cell membrane. Additionally, we found B1R only in CMF cellular membrane through radioligand displacement assay. Bradykinin (BK) B2R agonist increased intracellular Ca 2+ levels and reduced collagen secretion both in CF and CMF. These effects were blocked by HOE-140, and inhibited by L-NAME, 1400W and indomethacin. Des-Arg-kallidin (DAKD) B1R agonist did not increase intracellular Ca 2+ levels in CF; however, after preincubation for 1 h with DAKD and re-stimulation with the same agonist, we found a low increase in intracellular Ca 2+ levels. Finally, DAKD increased intracellular Ca 2+ levels and decreased collagen secretion in CMF, being this effect blocked by the B1R antagonist des-Arg9-Leu8-kallidin and indomethacin, but not by L-NAME or 1400 W. Conclusion: B1R, B2R, iNOS and COX-1 were expressed differently between CF and CMF, and collagen secretion was regulated differentially by

  7. Preparation, Cell Compatibility and Degradability of Collagen-Modified Poly(lactic acid

    Directory of Open Access Journals (Sweden)

    Miaomiao Cui

    2015-01-01

    Full Text Available Poly(lactic acid (PLA was modified using collagen through a grafting method to improve its biocompatibility and degradability. The carboxylic group at the open end of PLA was transferred into the reactive acylchlorided group by a reaction with phosphorus pentachloride. Then, collagen-modified PLA (collagen-PLA was prepared by the reaction between the reactive acylchlorided group and amino/hydroxyl groups on collagen. Subsequently, the structure of collagen-PLA was confirmed by Fourier transform infrared spectroscopy, fluorescein isothiocyanate-labeled fluorescence spectroscopy, X-ray photoelectron spectroscopy, and DSC analyses. Finally, some properties of collagen-PLA, such as hydrophilicity, cell compatibility and degradability were characterized. Results showed that collagen had been grafted onto the PLA with 5% graft ratio. Water contact angle and water absorption behavior tests indicated that the hydrophilicity of collagen-PLA was significantly higher than that of PLA. The cell compatibility of collagen-PLA with mouse embryonic fibroblasts (3T3 was also significantly better than PLA in terms of cell morphology and cell proliferation, and the degradability of PLA was also improved after introducing collagen. Results suggested that collagen-PLA was a promising candidate for biomedical applications.

  8. The response to estrogen deprivation on cartilage collagen degradation markers; CTX-II is unique compared to other markers of collagen turnover

    DEFF Research Database (Denmark)

    Bay-Jensen, Anne-Christine; Tabassi, Nadine; Sondergaard, Lene

    2009-01-01

    ABSTRACT: INTRODUCTION: The urinary level of type II collagen degradation marker CTX-II is increased in postmenopausal women and in ovariectomized rats, suggesting that estrogen deprivation induces cartilage breakdown. Here we investigate whether this response to estrogen holds true for other type...... II collagen turnover markers known to be affected in osteoarthritis, and whether it relates to its presence in specific areas of cartilage tissue. METHODS: The type II collagen degradation markers CTX-II and Helix-II were measured in body fluids of pre- and postmenopausal women and of ovariectomized...... rats receiving estrogen or not. Levels of PIIANP, a marker of type II collagen synthesis, were also measured in rats. Rat knee cartilage was analyzed for immunoreactivity of CTX-II and PIIANP and for type II collagen expression. RESULTS: As expected, urinary levels of CTX-II are significantly increased...

  9. Effect of nordihydroguaiaretic acid cross-linking on fibrillar collagen: in vitro evaluation of fibroblast adhesion strength and migration

    Directory of Open Access Journals (Sweden)

    Ana Y. Rioja

    2017-04-01

    Full Text Available Fixation is required to reinforce reconstituted collagen for orthopedic bioprostheses such as tendon or ligament replacements. Previous studies have demonstrated that collagen fibers cross-linked by the biocompatible dicatechol nordihydroguaiaretic acid (NDGA have mechanical strength comparable to native tendons. This work focuses on investigating fibroblast behavior on fibrillar and NDGA cross-linked type I collagen to determine if NDGA modulates cell adhesion, morphology, and migration. A spinning disk device that applies a range of hydrodynamic forces under uniform chemical conditions was employed to sensitively quantify cell adhesion strength, and a radial barrier removal assay was used to measure cell migration on films suitable for these quantitative in vitro assays. The compaction of collagen films, mediated by the drying and cross-linking fabrication process, suggests a less open organization compared to native fibrillar collagen that likely allowed the collagen to form more inter-chain bonds and chemical links with NDGA polymers. Fibroblasts strongly adhered to and migrated on native and NDGA cross-linked fibrillar collagen; however, NDGA modestly reduced cell spreading, adhesion strength and migration rate. Thus, it is hypothesized that NDGA cross-linking masked some adhesion receptor binding sites either physically, chemically, or both, thereby modulating adhesion and migration. This alteration in the cell-material interface is considered a minimal trade-off for the superior mechanical and compatibility properties of NDGA cross-linked collagen compared to other fixation approaches.

  10. Snail1 induced in breast cancer cells in 3D collagen I gel environment suppresses cortactin and impairs effective invadopodia formation.

    Science.gov (United States)

    Lee, Mi-Sook; Kim, Sudong; Kim, Baek Gil; Won, Cheolhee; Nam, Seo Hee; Kang, Suki; Kim, Hye-Jin; Kang, Minkyung; Ryu, Jihye; Song, Haeng Eun; Lee, Doohyung; Ye, Sang-Kyu; Jeon, Noo Li; Kim, Tai Young; Cho, Nam Hoon; Lee, Jung Weon

    2014-09-01

    Although an in vitro 3D environment cannot completely mimic the in vivo tumor site, embedding tumor cells in a 3D extracellular matrix (ECM) allows for the study of cancer cell behaviors and the screening of anti-metastatic reagents with a more in vivo-like context. Here we explored the behaviors of MDA-MB-231 breast cancer cells embedded in 3D collagen I. Diverse tumor environmental conditions (including cell density, extracellular acidity, or hypoxia as mimics for a continuous tumor growth) reduced JNKs, enhanced TGFβ1/Smad signaling activity, induced Snail1, and reduced cortactin expression. The reduced JNKs activity blocked efficient formation of invadopodia labeled with actin, cortactin, or MT1-MMP. JNKs inactivation activated Smad2 and Smad4, which were required for Snail1 expression. Snail1 then repressed cortactin expression, causing reduced invadopodia formation and prominent localization of MT1-MMP at perinuclear regions. MDA-MB-231 cells thus exhibited less efficient collagen I degradation and invasion in 3D collagen I upon JNKs inhibition. These observations support a signaling network among JNKs, Smads, Snail1, and cortactin to regulate the invasion of MDA-MB-231 cells embedded in 3D collagen I, which may be targeted during screening of anti-invasion reagents. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Study of collagen metabolism and regulation after β radiation injury

    International Nuclear Information System (INIS)

    Zhou Yinghui; Xu Lan; Wu Shiliang; Qiu Hao; Jiang Zhi; Tu Youbin; Zhang Xueguang

    2001-01-01

    The animal model of β radiation injury was established by the β radiation produced by the linear accelerator; and irradiated NIH 3T3 cells were studied. In the experiment the contents of total collagen, collagen type I and type III were measured. The activity of MMPs-1 were tested. The contents of TGF-β 1 , IL-6 were also detected. The results showed that after exposure to β radiation, little change was found in the content of total collagen, but the content of collagen I decreased and the content of collagen III, MMPs-1 activity increased; the expression of TGF-β 1 , IL-6 increased. The results suggest that changes in the metabolism of collagen play an important role in the irradiated injury of the skin; TGF-β 1 , IL-6 may be essential in the regulation of the collagen metabolism

  12. Collagen derived serum markers in carcinoma of the prostate

    DEFF Research Database (Denmark)

    Rudnicki, M; Jensen, L T; Iversen, P

    1995-01-01

    Three new collagen markers deriving from the collagenous matrix, e.g. carboxyterminal propeptide of type I procollagen (PICP), carboxy-terminal pyridinoline cross-linked telopeptide of type I collagen (ICTP), and aminoterminal propeptide of type III procollagen (PIIINP) were used for the diagnose...

  13. An experimental study: quantitatively evaluating the change of the content of collagen fibres in penis with two-dimensional ShearWave™ Elastography.

    Science.gov (United States)

    Qiao, X-H; Zhang, J-J; Gao, F; Li, F; Bai, M; Du, L-F; Xing, J-F

    2017-06-01

    The purpose of this study was to explore the value of two-dimensional ShearWave ™ Elastography (2D-SWE) on quantitatively evaluating the change of the content of collagen fibres in penis. Twenty male Sprague Dawley rats were divided into the pre-sexual maturity group (Group 1) and the sexual decline group (Group 2) according to age. The ultrafast ultrasound device Aixplorer ® (SuperSonic Imagine, Aix-en-Provence, France) was used for 2D-SWE imaging of penis, and the measurement index was shear wave stiffness (SWS). The immunohistochemistry was used to analyse the content of collagen fibres in penis, and the measurement index was positive area percentage (PAP). The differences of SWS between the two groups and PAP between the two groups were analysed. SWS of Group 1 and Group 2 was 10.18 ± 1.09 and 8.02 ± 1.34 kPa, and SWS of Group 2 was significantly lower than Group 1 (p penis measured with 2D-SWE would change significantly as well. Two-dimensional SWE can be used to quantitatively evaluate the change of the content of collagen fibres in penis. © 2016 Blackwell Verlag GmbH.

  14. Immunosuppression by fractionated total lymphoid irradiation in collagen arthritis

    International Nuclear Information System (INIS)

    McCune, W.J.; Buckley, J.A.; Belli, J.A.; Trentham, D.E.

    1982-01-01

    Treatments with fractionated total lymphoid irradiation (TLI) and cyclophosphamide were evaluated for rats injected with type II collagen. Preadministration of TLI and repeated injections of cyclophosphamide suppressed the severity of arthritis and lowered antibody titers to collagen significantly. TLI initiated at the onset of collagen arthritis decreased humoral and cellular responses to collagen but did not affect the severity of arthritis. These data demonstrate that both TLi and cyclophosphamide are immunosuppressive in an experimentally inducible autoimmune disease

  15. Controlled self assembly of collagen nanoparticle

    Science.gov (United States)

    Papi, Massimiliano; Palmieri, Valentina; Maulucci, Giuseppe; Arcovito, Giuseppe; Greco, Emanuela; Quintiliani, Gianluca; Fraziano, Maurizio; De Spirito, Marco

    2011-11-01

    In recent years carrier-mediated drug delivery has emerged as a powerful methodology for the treatment of various pathologies. The therapeutic index of traditional and novel drugs is enhanced via the increase of specificity due to targeting of drugs to a particular tissue, cell or intracellular compartment, the control over release kinetics, the protection of the active agent, or a combination of the above. Collagen is an important biomaterial in medical applications and ideal as protein-based drug delivery platform due to its special characteristics, such as biocompatibility, low toxicity, biodegradability, and weak antigenicity. While some many attempts have been made, further work is needed to produce fully biocompatible collagen hydrogels of desired size and able to release drugs on a specific target. In this article we propose a novel method to obtain spherical particles made of polymerized collagen surrounded by DMPC liposomes. The liposomes allow to control both the particles dimension and the gelling environment during the collagen polymerization. Furthermore, an optical based method to visualize and quantify each step of the proposed protocol is detailed and discussed.

  16. Collagenous gastritis: a morphologic and immunohistochemical study of 40 patients.

    Science.gov (United States)

    Arnason, Thomas; Brown, Ian S; Goldsmith, Jeffrey D; Anderson, William; O'Brien, Blake H; Wilson, Claire; Winter, Harland; Lauwers, Gregory Y

    2015-04-01

    Collagenous gastritis is a rare condition defined histologically by a superficial subepithelial collagen layer. This study further characterizes the morphologic spectrum of collagenous gastritis by evaluating a multi-institutional series of 40 patients (26 female and 14 male). The median age at onset was 16 years (range 3-89 years), including 24 patients (60%) under age 18. Twelve patients (30%) had associated celiac disease, collagenous sprue, or collagenous colitis. Hematoxylin and eosin slides were reviewed in biopsies from all patients and tenascin, gastrin, eotaxin, and IgG4/IgG immunohistochemical stains were applied to a subset. The distribution of subepithelial collagen favored the body/fundus in pediatric patients and the antrum in adults. There were increased surface intraepithelial lymphocytes (>25 lymphocytes/100 epithelial cells) in five patients. Three of these patients had associated celiac and/or collagenous sprue/colitis, while the remaining two had increased duodenal lymphocytosis without specific etiology. An eosinophil-rich pattern (>30 eosinophils/high power field) was seen in 21/40 (52%) patients. Seven patients' biopsies demonstrated atrophy of the gastric corpus mucosa. Tenascin immunohistochemistry highlighted the subepithelial collagen in all 21 specimens evaluated and was a more sensitive method of collagen detection in biopsies from two patients with subtle subepithelial collagen. No increased eotaxin expression was identified in 16 specimens evaluated. One of the twenty-three biopsies tested had increased IgG4-positive cells (100/high power field) with an IgG4/IgG ratio of 55%. In summary, collagenous gastritis presents three distinct histologic patterns including a lymphocytic gastritis-like pattern, an eosinophil-rich pattern, and an atrophic pattern. Eotaxin and IgG4 were not elevated enough to implicate these pathways in the pathogenesis. Tenascin immunohistochemistry can be used as a sensitive method of collagen detection.

  17. Development of a novel collagen-GAG nanofibrous scaffold via electrospinning

    Energy Technology Data Exchange (ETDEWEB)

    Zhong Shaoping [Department of Chemical and Biomolecular Engineering, National University of Singapore, 10 Kent Ridge Crescent 119260 (Singapore); Teo, Wee Eong [Division of Bioengineering, National University of Singapore, 10 Kent Ridge Crescent 119260 (Singapore); Zhu Xiao [Singapore Eye Research Institute, Singapore National Eye Center, 11 Third Hospital Avenue, Singapore 168751 (Singapore); Beuerman, Roger [Singapore Eye Research Institute, Singapore National Eye Center, 11 Third Hospital Avenue, Singapore 168751 (Singapore); Ramakrishna, Seeram [Division of Bioengineering, National University of Singapore, 10 Kent Ridge Crescent 119260 (Singapore); Yung, Lin Yue Lanry [Department of Chemical and Biomolecular Engineering, National University of Singapore, 10 Kent Ridge Crescent 119260 (Singapore)]. E-mail: cheyly@nus.edu.sg

    2007-03-15

    Collagen and glycosaminoglycan (GAG) are native constituents of human tissues and are widely utilized to fabricate scaffolds serving as an analog of native extracellular matrix (ECM).The development of blended collagen and GAG scaffolds may potentially be used in many soft tissue engineering applications since the scaffolds mimic the structure and biological function of native ECM. In this study, we were able to obtain a novel nanofibrous collagen-GAG scaffold by electrospinning with collagen and chondroitin sulfate (CS), a widely used GAG. The electrospun collagen-GAG scaffold exhibited a uniform fiber structure in nano-scale diameter. By crosslinking with glutaraldehyde vapor, the collagen-GAG scaffolds could resist from collagenase degradation and enhance the biostability of the scaffolds. This led to the increased proliferation of rabbit conjunctiva fibroblast on the scaffolds. Incorporation of CS into collagen nanofibers without crosslinking did not increase the biostability but still promoted cell growth. In conclusion, the electrospun collagen-GAG scaffolds, with high surface-to-volume ratio, may potentially provide a better environment for tissue formation/biosynthesis compared with the traditional scaffolds.

  18. Development of a novel collagen-GAG nanofibrous scaffold via electrospinning

    International Nuclear Information System (INIS)

    Zhong Shaoping; Teo, Wee Eong; Zhu Xiao; Beuerman, Roger; Ramakrishna, Seeram; Yung, Lin Yue Lanry

    2007-01-01

    Collagen and glycosaminoglycan (GAG) are native constituents of human tissues and are widely utilized to fabricate scaffolds serving as an analog of native extracellular matrix (ECM).The development of blended collagen and GAG scaffolds may potentially be used in many soft tissue engineering applications since the scaffolds mimic the structure and biological function of native ECM. In this study, we were able to obtain a novel nanofibrous collagen-GAG scaffold by electrospinning with collagen and chondroitin sulfate (CS), a widely used GAG. The electrospun collagen-GAG scaffold exhibited a uniform fiber structure in nano-scale diameter. By crosslinking with glutaraldehyde vapor, the collagen-GAG scaffolds could resist from collagenase degradation and enhance the biostability of the scaffolds. This led to the increased proliferation of rabbit conjunctiva fibroblast on the scaffolds. Incorporation of CS into collagen nanofibers without crosslinking did not increase the biostability but still promoted cell growth. In conclusion, the electrospun collagen-GAG scaffolds, with high surface-to-volume ratio, may potentially provide a better environment for tissue formation/biosynthesis compared with the traditional scaffolds

  19. Asporin competes with decorin for collagen binding, binds calcium and promotes osteoblast collagen mineralization

    DEFF Research Database (Denmark)

    Kalamajski, Sebastian; Aspberg, Anders; Lindblom, Karin

    2009-01-01

    , but not by biglycan. We demonstrate that the polyaspartate domain binds calcium and regulates hydroxyapatite formation in vitro. In the presence of asporin, the number of collagen nodules, and mRNA of osteoblastic markers Osterix and Runx2, were increased. Moreover, decorin or the collagen-binding asporin fragment...... biomineralization activity. We also show that asporin can be expressed in Escherichia coli (Rosetta-gami) with correctly positioned cysteine bridges, and a similar system can possibly be used for the expression of other SLRPs (small LRR proteoglycans/proteins)....

  20. A microscopic evaluation of collagen-bilirubin interactions: in vitro surface phenomenon.

    Science.gov (United States)

    Usharani, N; Jayakumar, G C; Rao, J R; Chandrasekaran, B; Nair, B U

    2014-02-01

    This study is carried out to understand the morphology variations of collagen I matrices influenced by bilirubin. The characteristics of bilirubin interaction with collagen ascertained using various techniques like XRD, CLSM, fluorescence, SEM and AFM. These techniques are used to understand the distribution, expression and colocalization patterns of collagen-bilirubin complexes. The present investigation mimic the in vivo mechanisms created during the disorder condition like jaundice. Fluorescence technique elucidates the crucial role played by bilirubin deposition and interaction during collagen organization. Influence of bilirubin during collagen fibrillogenesis and banding patterns are clearly visualize using SEM. As a result, collagen-bilirubin complex provides different reconstructed patterns because of the influence of bilirubin concentration. Selectivity, specificity and spatial organization of collagen-bilirubin are determined through AFM imaging. Consequently, it is observed that the morphology and quantity of the bilirubin binding to collagen varied by the concentrations and the adsorption rate in protein solutions. Microscopic studies of collagen-bilirubin interaction confirms that bilirubin influence the fibrillogenesis and alter the rate of collagen organization depending on the bilirubin concentration. This knowledge helps to develop a novel drug to inhibit the interface point of interaction between collagen and bilirubin. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.

  1. Degradation of type IV collagen by neoplastic human skin fibroblasts

    International Nuclear Information System (INIS)

    Sheela, S.; Barrett, J.C.

    1985-01-01

    An assay for the degradation of type IV (basement membrane) collagen was developed as a biochemical marker for neoplastic cells from chemically transformed human skin fibroblasts. Type IV collagen was isolated from basement membrane of Syrian hamster lung and type I collagen was isolated from rat tails; the collagens were radioactively labelled by reductive alkylation. The abilities of normal (KD) and chemically transformed (Hut-11A) human skin fibroblasts to degrade the collagens were studied. A cell-associated assay was performed by growing either normal or transformed cells in the presence of radioactively labelled type IV collagen and measuring the released soluble peptides in the medium. This assay also demonstrated that KD cells failed to synthesize an activity capable of degrading type IV collagen whereas Hut-11A cells degraded type IV collagen in a linear manner for up to 4 h. Human serum at very low concentrations, EDTA and L-cysteine inhibited the enzyme activity, whereas protease inhibitors like phenylmethyl sulfonyl fluoride, N-ethyl maleimide or soybean trypsin inhibitor did not inhibit the enzyme from Hut-11A cells. These results suggest that the ability to degrade specifically type IV collagen may be an important marker for neoplastic human fibroblasts and supports a role for this collagenase in tumor cell invasion

  2. Mycobacterial laminin-binding histone-like protein mediates collagen-dependent cytoadherence

    Directory of Open Access Journals (Sweden)

    André Alves Dias

    2012-12-01

    Full Text Available When grown in the presence of exogenous collagen I, Mycobacterium bovis BCG was shown to form clumps. Scanning electron microscopy examination of these clumps revealed the presence of collagen fibres cross-linking the bacilli. Since collagen is a major constituent of the eukaryotic extracellular matrices, we assayed BCG cytoadherence in the presence of exogenous collagen I. Collagen increased the interaction of the bacilli with A549 type II pneumocytes or U937 macrophages, suggesting that BCG is able to recruit collagen to facilitate its attachment to host cells. Using an affinity chromatography approach, we have isolated a BCG collagen-binding protein corresponding to the previously described mycobacterial laminin-binding histone-like protein (LBP/Hlp, a highly conserved protein associated with the mycobacterial cell wall. Moreover, Mycobacterium leprae LBP/Hlp, a well-characterized adhesin, was also able to bind collagen I. Finally, using recombinant fragments of M. leprae LBP/Hlp, we mapped the collagen-binding activity within the C-terminal domain of the adhesin. Since this protein was already shown to be involved in the recognition of laminin and heparan sulphate-containing proteoglycans, the present observations reinforce the adhesive activities of LBP/Hlp, which can be therefore considered as a multifaceted mycobacterial adhesin, playing an important role in both leprosy and tuberculosis pathogenesis.

  3. Collagen-Induced Arthritis: A model for Murine Autoimmune Arthritis

    OpenAIRE

    Pietrosimone, K. M.; Jin, M.; Poston, B.; Liu, P.

    2015-01-01

    Collagen-induced arthritis (CIA) is a common autoimmune animal model used to study rheumatoid arthritis (RA). The development of CIA involves infiltration of macrophages and neutrophils into the joint, as well as T and B cell responses to type II collagen. In murine CIA, genetically susceptible mice (DBA/1J) are immunized with a type II bovine collagen emulsion in complete Freund’s adjuvant (CFA), and receive a boost of type II bovine collagen in incomplete Freund’s adjuvant (IFA) 21 days aft...

  4. Study of collagen metabolism and regulation after {beta} radiation injury

    Energy Technology Data Exchange (ETDEWEB)

    Yinghui, Zhou; Lan, Xu; Shiliang, Wu; Hao, Qiu; Zhi, Jiang; Youbin, Tu; Xueguang, Zhang [Suzhou Medical College (China)

    2001-04-01

    The animal model of {beta} radiation injury was established by the {beta} radiation produced by the linear accelerator; and irradiated NIH 3T3 cells were studied. In the experiment the contents of total collagen, collagen type I and type III were measured. The activity of MMPs-1 were tested. The contents of TGF-{beta}{sub 1}, IL-6 were also detected. The results showed that after exposure to {beta} radiation, little change was found in the content of total collagen, but the content of collagen I decreased and the content of collagen III, MMPs-1 activity increased; the expression of TGF-{beta}{sub 1}, IL-6 increased. The results suggest that changes in the metabolism of collagen play an important role in the irradiated injury of the skin; TGF-{beta}{sub 1}, IL-6 may be essential in the regulation of the collagen metabolism.

  5. Type V Collagen is Persistently Altered after Inguinal Hernia Repair

    DEFF Research Database (Denmark)

    Lorentzen, L; Henriksen, N A; Juhl, P

    2018-01-01

    BACKGROUND AND AIMS: Hernia formation is associated with alterations of collagen metabolism. Collagen synthesis and degradation cause a systemic release of products, which are measurable in serum. Recently, we reported changes in type V and IV collagen metabolisms in patients with inguinal...... elective cholecystectomy served as controls (n = 10). Whole venous blood was collected 35-55 months after operation. Biomarkers for type V collagen synthesis (Pro-C5) and degradation (C5M) and those for type IV collagen synthesis (P4NP) and degradation (C4M2) were measured by a solid-phase competitive...... assay. RESULTS: The turnover of type V collagen (Pro-C5/C5M) was slightly higher postoperatively when compared to preoperatively in the inguinal hernia group (P = 0.034). In addition, the results revealed a postoperatively lower type V collagen turnover level in the inguinal hernia group compared...

  6. In vivo determination of arterial collagen synthesis in atherosclerotic rabbits

    International Nuclear Information System (INIS)

    Opsahl, W.P.; DeLuca, D.J.; Ehrhart, L.A.

    1986-01-01

    Collagen and non-collagen protein synthesis rates were determined in vivo in tissues from rabbits fed a control or atherogenic diet supplemented with 2% peanut oil and 0.25% cholesterol for 4 months. Rabbits received a bolus intravenous injection of L-[ 3 H]-proline (1.0 mCi/kg) and unlabeled L-proline (7 mmoles/kg) in 0.9% NaCl. Plasma proline specific activity decreased only 20% over 5 hr and was similar to the specific activity of free proline in tissues. Thoracic aortas from atherosclerotic rabbits exhibited raised plaques covering at least 75% of the surface. Thoracic intima plus a portion of the media (TIM) was separated from the remaining media plus adventitia (TMA). Dry delipidated weight, total collagen content, and collagen as a percent of dry weight were increased significantly in the TIM of atherosclerotic rabbits. Collagen synthesis rates and collagen synthesis as a percent of total protein synthesis were likewise increased both in the TIM and in the abdominal aortas. No differences from controls either in collagen content or collagen synthesis rates were observed in the TMA, lung or skin. These results demonstrate for the first time in vivo that formation of atherosclerotic plaques is associated with increased rates of collagen synthesis. Furthermore, as previously observed with incubations in vitro, collagen synthesis was elevated to a greater extent than noncollagen protein synthesis in atherosclerotic aortas from rabbits fed cholesterol plus peanut oil

  7. Small leucine-rich repeat proteoglycans associated with mature insoluble elastin serve as binding sites for galectins.

    Science.gov (United States)

    Itoh, Aiko; Nonaka, Yasuhiro; Ogawa, Takashi; Nakamura, Takanori; Nishi, Nozomu

    2017-11-01

    We previously reported that galectin-9 (Gal-9), an immunomodulatory animal lectin, could bind to insoluble collagen preparations and exerted direct cytocidal effects on immune cells. In the present study, we found that mature insoluble elastin is capable of binding Gal-9 and other members of the human galectin family. Lectin blot analysis of a series of commercial water-soluble elastin preparations, PES-(A) ~ PES-(E), revealed that only PES-(E) contained substances recognized by Gal-9. Gal-9-interacting substances in PES-(E) were affinity-purified, digested with trypsin and then analyzed by reversed-phase HPLC. Peptide fragments derived from five members of the small leucine-rich repeat proteoglycan family, versican, lumican, osteoglycin/mimecan, prolargin, and fibromodulin, were identified by N-terminal amino acid sequence analysis. The results indicate that Gal-9 and possibly other galectins recognize glycans attached to small leucine-rich repeat proteoglycans associated with insoluble elastin and also indicate the possibility that mature insoluble elastin serves as an extracellular reservoir for galectins.

  8. Influence of tetrahydrocurcumin on tail tendon collagen contents and its properties in rats with streptozotocin-nicotinamide-induced type 2 diabetes.

    Science.gov (United States)

    Pari, Leelavinothan; Murugan, Pidaran

    2007-12-01

    Changes in the structural and functional properties of collagen caused by advanced glycation might be of importance for the etiology of late-stage complications in diabetics. Curcumin is the most active component of turmeric. It is believed that curcumin is a potent antioxidant and anti-inflammatory agent. Tetrahydrocurcumin (THC) is one of the major metabolites of curcumin, exhibiting many of the same physiological and pharmacological activities of curcumin and in some systems may exert greater antioxidant activity than curcumin. In diabetic rats, hydroxyproline and collagen content as well as its degree of cross-linking were increased, as shown by increased extent of glycation, collagen-linked fluorescence, neutral salt collagen, and decreased acid and pepsin solubility. Administration of THC for 45 days to diabetic rats significantly reduced the accumulation and cross-linking of collagen. The effects of THC were comparable with those of curcumin. In conclusion, administration of THC had a positive influence on the content of collagen and its properties in streptozotocin- and nicotinamide-induced diabetic rats. THC was found to be more effective than curcumin.

  9. Increased intracellular proteolysis reduces disease severity in an ER stress-associated dwarfism.

    Science.gov (United States)

    Mullan, Lorna A; Mularczyk, Ewa J; Kung, Louise H; Forouhan, Mitra; Wragg, Jordan Ma; Goodacre, Royston; Bateman, John F; Swanton, Eileithyia; Briggs, Michael D; Boot-Handford, Raymond P

    2017-10-02

    The short-limbed dwarfism metaphyseal chondrodysplasia type Schmid (MCDS) is linked to mutations in type X collagen, which increase ER stress by inducing misfolding of the mutant protein and subsequently disrupting hypertrophic chondrocyte differentiation. Here, we show that carbamazepine (CBZ), an autophagy-stimulating drug that is clinically approved for the treatment of seizures and bipolar disease, reduced the ER stress induced by 4 different MCDS-causing mutant forms of collagen X in human cell culture. Depending on the nature of the mutation, CBZ application stimulated proteolysis of misfolded collagen X by either autophagy or proteasomal degradation, thereby reducing intracellular accumulation of mutant collagen. In MCDS mice expressing the Col10a1.pN617K mutation, CBZ reduced the MCDS-associated expansion of the growth plate hypertrophic zone, attenuated enhanced expression of ER stress markers such as Bip and Atf4, increased bone growth, and reduced skeletal dysplasia. CBZ produced these beneficial effects by reducing the MCDS-associated abnormalities in hypertrophic chondrocyte differentiation. Stimulation of intracellular proteolysis using CBZ treatment may therefore be a clinically viable way of treating the ER stress-associated dwarfism MCDS.

  10. A urokinase receptor-associated protein with specific collagen binding properties

    DEFF Research Database (Denmark)

    Behrendt, N; Jensen, O N; Engelholm, L H

    2000-01-01

    membrane-bound lectin with hitherto unknown function. The human cDNA was cloned and sequenced. The protein, designated uPARAP, is a member of the macrophage mannose receptor protein family and contains a putative collagen-binding (fibronectin type II) domain in addition to 8 C-type carbohydrate recognition...... domains. It proved capable of binding strongly to a single type of collagen, collagen V. This collagen binding reaction at the exact site of plasminogen activation on the cell may lead to adhesive functions as well as a contribution to cellular degradation of collagen matrices....

  11. Mechanical properties and collagen cross-linking of the patellar tendon in old and young men

    DEFF Research Database (Denmark)

    Couppé, C; Hansen, P; Kongsgaard, M

    2009-01-01

    were higher in OM than in YM (73 +/- 13 vs. 11 +/- 2 mmol/mol; P appreciably influence the dimensions or mechanical properties of the human patellar tendon in vivo. Collagen concentration was reduced, whereas both enzymatic......Age-related loss in muscle mass and strength impairs daily life function in the elderly. However, it remains unknown whether tendon properties also deteriorate with age. Cross-linking of collagen molecules provides structural integrity to the tendon fibrils and has been shown to change with age...... in animals but has never been examined in humans in vivo. In this study, we examined the mechanical properties and pyridinoline and pentosidine cross-link and collagen concentrations of the patellar tendon in vivo in old (OM) and young men (YM). Seven OM (67 +/- 3 years, 86 +/- 10 kg) and 10 YM (27 +/- 2...

  12. Collagen metabolism in obesity: the effect of weight loss

    DEFF Research Database (Denmark)

    Rasmussen, M H; Jensen, L T; Andersen, T

    1995-01-01

    OBJECTIVE: To investigate the impact of obesity, fat distribution and weight loss on collagen turnover using serum concentrations of the carboxyterminal propeptide of type I procollagen (S-PICP) and the aminoterminal propeptide of type III pro-collagen (S-PIIINP) as markers for collagen turnover...... an increased turnover of type III collagen related to obesity in general and to abdominal obesity in particular. S-PIIINP levels decreases during weight loss in obese subjects, whereas S-PICP levels seems un-related to obesity and weight loss....

  13. Effects of mixing and covering with mature compost on gaseous emissions during composting.

    Science.gov (United States)

    Luo, Wen Hai; Yuan, Jing; Luo, Yi Ming; Li, Guo Xue; Nghiem, Long D; Price, William E

    2014-12-01

    This study investigated effects of mature compost on gaseous emissions during composting using pig manure amended with corn stalks. Apart from a control treatment, three treatments were conducted with the addition of 5% (wet weight of raw materials) of mature compost: (a) mixing raw materials with mature compost at the beginning of composting; (b) covering raw materials with mature compost throughout the experimental period; and (c) covering raw materials with mature compost at the start of composting, but incorporating it into composting pile on day 6 of composting. Mature compost used for the last treatment was inoculated with 2% (wet weight) of raw materials of strain M5 (a methanotrophic bacterium) solution. During 30-d of composting, three treatments with the addition of mature compost could reduce CH4 emission by 53-64% and N2O emission by 43-71%. However, covering with mature compost throughout the experimental period increased cumulative NH3 emission by 61%, although it could reduce 34% NH3 emission in the first 3d. Inoculating strain M5 in mature compost covered on the top of composting pile within first 6d enhanced CH4 oxidation, but simultaneously increased N2O emission. In addition, mixing with mature compost could improve compost maturity. Given the operational convenience in practice, covering with mature compost and then incorporating it into composting pile is a suitable approach to mitigate gaseous emissions during composting. Copyright © 2014. Published by Elsevier Ltd.

  14. Biosynthesis of collagen by fibroblasts kept in culture

    International Nuclear Information System (INIS)

    Machado-Santelli, G.M.

    1978-01-01

    The sinthesis of collagen is studied in fibroblasts of different origins with the purpose of obtaining an appropriate system for the study of its biosynthesis and processing. The percentage of collagen synthesis vary according to the fibroblast origin. Experiences are performed with fibroblasts kept in culture from: chicken - and guinea pig embryos, carragheenin - induced granulomas in adult guinea pig and from human skin. The collagen pattern synthesized after acetic acid - or saline extractions in the presence of inhibitors is also determined. This pattern is then assayed by poliacrilamide - 5% - SDS gel electrophoresis accompanied by fluorography. The importance of the cell culture system in the elucidation of collagen biosynthesis is pointed out. (M.A.) [pt

  15. Demineralized dentin matrix composite collagen material for bone tissue regeneration.

    Science.gov (United States)

    Li, Jianan; Yang, Juan; Zhong, Xiaozhong; He, Fengrong; Wu, Xiongwen; Shen, Guanxin

    2013-01-01

    Demineralized dentin matrix (DDM) had been successfully used in clinics as bone repair biomaterial for many years. However, particle morphology of DDM limited it further applications. In this study, DDM and collagen were prepared to DDM composite collagen material. The surface morphology of the material was studied by scanning electron microscope (SEM). MC3T3-E1 cells responses in vitro and tissue responses in vivo by implantation of DDM composite collagen material in bone defect of rabbits were also investigated. SEM analysis showed that DDM composite collagen material evenly distributed and formed a porous scaffold. Cell culture and animal models results indicated that DDM composite collagen material was biocompatible and could support cell proliferation and differentiation. Histological evaluation showed that DDM composite collagen material exhibited good biocompatibility, biodegradability and osteoconductivity with host bone in vivo. The results suggested that DDM composite collagen material might have a significant clinical advantage and potential to be applied in bone and orthopedic surgery.

  16. The insulin-like growth factor axis and collagen turnover in asthmatic children treated with inhaled budesonide

    DEFF Research Database (Denmark)

    Wolthers, O D; Juul, A; Hansen, M

    1995-01-01

    Serum concentrations of growth hormone-dependent insulin-like growth factor I (IGF-I) and insulin-like growth factor binding protein-3 (IGFBP-3), the carboxy terminal propeptide of type I procollagen (PICP), the carboxy terminal pyridinoline cross-linked telopeptide of type I collagen (ICTP) and ...... the calculations (p reduced synthesis of type III collagen. A similar trend was observed in ICTP levels when the 400 micrograms period was excluded from the calculations (p = 0.05; z = -1.9). No other statistically significant variations were seen....

  17. Chromatin maturation depends on continued DNA-replication

    International Nuclear Information System (INIS)

    Schlaeger, E.J.; Puelm, W.; Knippers, R.

    1983-01-01

    The structure of [ 3 H]thymidine pulse-labeled chromatin in lymphocytes differs from that of non-replicating chromatin by several operational criteria which are related to the higher nuclease sensitivity of replicating chromatin. These structural features of replicating chromatin rapidly disappear when the [ 3 H]thymidine pulse is followed by a chase in the presence of an excess of non-radioactive thymidine. However, when the rate of DNA replication is reduced, as in cycloheximide-treated lymphocytes, chromatin maturation is retarded. No chromatin maturation is observed when nuclei from pulse-labeled lymphocytes are incubated in vitro in the absence of DNA precursors. In contrast, when these nuclei are incubated under conditions known to be optimal for DNA replication, the structure of replicating chromatin is efficiently converted to that of 'mature', non-replicating chromatin. The authors conclude that the properties of nascent DNA and/or the distance from the replication fork are important factors in chromatin maturation. (Auth.)

  18. Effect of Stages of Maturity and Ripening Conditions on the Biochemical Characteristics of Tomato

    OpenAIRE

    K. M. Moneruzzaman; A. B.M.S. Hossain; W. Sani; M. Saifuddin

    2008-01-01

    An experiment was carried out to evaluate the biochemical characteristics of tomato in different maturity stages and ripening conditions. Tomato (Lycopersicon esculentum Mill) fruits (cv. Ruma VF) were harvested at the three maturity stages viz., mature green, half ripen and full ripen and stored at three condition control (without covering), straw covering and CaC2 + straw covering. At that time ascorbic acid, pH, titrable acidity, sugar (reducing, non-reducing sugar and total) percent...

  19. Severe Extracellular Matrix Abnormalities and Chondrodysplasia in Mice Lacking Collagen Prolyl 4-Hydroxylase Isoenzyme II in Combination with a Reduced Amount of Isoenzyme I.

    Science.gov (United States)

    Aro, Ellinoora; Salo, Antti M; Khatri, Richa; Finnilä, Mikko; Miinalainen, Ilkka; Sormunen, Raija; Pakkanen, Outi; Holster, Tiina; Soininen, Raija; Prein, Carina; Clausen-Schaumann, Hauke; Aszódi, Attila; Tuukkanen, Juha; Kivirikko, Kari I; Schipani, Ernestina; Myllyharju, Johanna

    2015-07-03

    Collagen prolyl 4-hydroxylases (C-P4H-I, C-P4H-II, and C-P4H-III) catalyze formation of 4-hydroxyproline residues required to form triple-helical collagen molecules. Vertebrate C-P4Hs are α2β2 tetramers differing in their catalytic α subunits. C-P4H-I is the major isoenzyme in most cells, and inactivation of its catalytic subunit (P4ha1(-/-)) leads to embryonic lethality in mouse, whereas P4ha1(+/-) mice have no abnormalities. To study the role of C-P4H-II, which predominates in chondrocytes, we generated P4ha2(-/-) mice. Surprisingly, they had no apparent phenotypic abnormalities. To assess possible functional complementarity, we established P4ha1(+/-);P4ha2(-/-) mice. They were smaller than their littermates, had moderate chondrodysplasia, and developed kyphosis. A transient inner cell death phenotype was detected in their developing growth plates. The columnar arrangement of proliferative chondrocytes was impaired, the amount of 4-hydroxyproline and the Tm of collagen II were reduced, and the extracellular matrix was softer in the growth plates of newborn P4ha1(+/-);P4ha2(-/-) mice. No signs of uncompensated ER stress were detected in the mutant growth plate chondrocytes. Some of these defects were also found in P4ha2(-/-) mice, although in a much milder form. Our data show that C-P4H-I can to a large extent compensate for the lack of C-P4H-II in proper endochondral bone development, but their combined partial and complete inactivation, respectively, leads to biomechanically impaired extracellular matrix, moderate chondrodysplasia, and kyphosis. Our mouse data suggest that inactivating mutations in human P4HA2 are not likely to lead to skeletal disorders, and a simultaneous decrease in P4HA1 function would most probably be required to generate such a disease phenotype. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Variation in the Helical Structure of Native Collagen

    Science.gov (United States)

    2014-02-24

    notochord were obtained in previous studies [4,10,20–22]. The scaled amplitudes of the central, meridional section of each data set were used to...including helical, structure) from rat tail tendon (collagen type I) and lamprey notochord (collagen type II) show several common features (Figure 5). Of...also a possible consequence of the type II collagen notochord samples being stretched, perhaps to a greater extant then the type I tendon samples to aid

  1. Collagen type IV at the fetal-maternal interface

    OpenAIRE

    Oefner, C M; Sharkey, A; Gardner, L; Critchley, H; Oyen, M; Moffett, A

    2015-01-01

    Introduction Extracellular matrix proteins play a crucial role in influencing the invasion of trophoblast cells. However the role of collagens and collagen type IV (col-IV) in particular at the implantation site is not clear. Methods Immunohistochemistry was used to determine the distribution of collagen types I, III, IV and VI in endometrium and decidua during the menstrual cycle and the first trimester of pregnancy. Expression of col-IV alpha chains during the reproductive cycle ...

  2. Collagen reorganization at the tumor-stromal interface facilitates local invasion

    Directory of Open Access Journals (Sweden)

    Inman David R

    2006-12-01

    Full Text Available Abstract Background Stromal-epithelial interactions are of particular significance in breast tissue as misregulation of these interactions can promote tumorigenesis and invasion. Moreover, collagen-dense breast tissue increases the risk of breast carcinoma, although the relationship between collagen density and tumorigenesis is not well understood. As little is known about epithelial-stromal interactions in vivo, it is necessary to visualize the stroma surrounding normal epithelium and mammary tumors in intact tissues to better understand how matrix organization, density, and composition affect tumor formation and progression. Methods Epithelial-stromal interactions in normal mammary glands, mammary tumors, and tumor explants in three-dimensional culture were studied with histology, electron microscopy, and nonlinear optical imaging methodologies. Imaging of the tumor-stromal interface in live tumor tissue ex vivo was performed with multiphoton laser-scanning microscopy (MPLSM to generate multiphoton excitation (MPE of endogenous fluorophores and second harmonic generation (SHG to image stromal collagen. Results We used both laser-scanning multiphoton and second harmonic generation microscopy to determine the organization of specific collagen structures around ducts and tumors in intact, unfixed and unsectioned mammary glands. Local alterations in collagen density were clearly seen, allowing us to obtain three-dimensional information regarding the organization of the mammary stroma, such as radiating collagen fibers that could not have been obtained using classical histological techniques. Moreover, we observed and defined three tumor-associated collagen signatures (TACS that provide novel markers to locate and characterize tumors. In particular, local cell invasion was found predominantly to be oriented along certain aligned collagen fibers, suggesting that radial alignment of collagen fibers relative to tumors facilitates invasion. Consistent

  3. Characterization of electron beam irradiated collagen-polyvinylpyrrolidone (PVP) and collagen-dextran (DEX) blends

    International Nuclear Information System (INIS)

    Dumitrascu, M.; Sima, E.; Minea, R.; Vancea, C.; Meltze, V.; Albu, M.G.

    2011-01-01

    Complete text of publication follows. The aim of the present study was to investigate the influence of electron beam irradiation on some blends of collagen-polyvinylpyrrolidone (PVP) and collagen-dextran (DEX). The blends were prepared by mixing different quantities of collagen, PVP and DEX in distilled water. After irradiation the obtained hydrogels were processed by controlled drying and freeze-drying. Both types of materials were characterized by FT-IR, FT-Raman, TG, DSC, water uptake and SEM. The intensity of the characteristic bands, in the range 2800-3600 cm -1 from FT-IR spectra, varied considerably as function of absorbed radiation dose. Raman spectra revealed the absence of the characteristic peak at 2700 cm -1 for irradiated blends at 30 kGy. Kinetic parameters were calculated from the TG, DTG and DSC data by means of isoconversion methods at different heating rates. Thereby a relation between absorbed radiation dose and activation energy was established. Water uptake studies were carried out in PBS solution (phosphate buffer saline) at 37 deg C and pH = 7.4 and the results revealed a decrease of the water uptake with increasing of absorbed radiation dose.

  4. Collagenous sprue: a clinicopathologic study of 12 cases.

    LENUS (Irish Health Repository)

    Maguire, Aoife A

    2012-02-01

    Collagenous sprue is a rare form of small bowel enteropathy characterized by chronic diarrhea and progressive malabsorption with little data available on its natural history. The pathologic lesion consists of subepithelial collagen deposition associated with variable alterations in villous architecture. The small bowel biopsies of 12 cases were reviewed. Clinical details, celiac serology, and T-cell receptor gene rearrangement study results, when available, were collated. There were 8 females and 4 males (age ranged from 41 to 84 y) who presented with chronic diarrhea and weight loss. Small intestinal biopsies showed subepithelial collagen deposition with varying degrees of villous atrophy and varying numbers of intraepithelial lymphocytes. Four patients had previous biopsies showing enteropathic changes without collagen deposition. Seven cases were associated with collagenous colitis and 1 also had features of lymphocytic colitis. Three patients also had collagen deposition in gastric biopsies. One case was associated with lymphocytic gastritis. Celiac disease (CD, gluten-sensitive enteropathy) was documented in 4 patients. Five patients made a clinical improvement with combinations of a gluten-free diet and immunosuppressive therapy. Two patients died of complications of malnutrition and 1 of another illness. Clonal T-cell populations were identified in 5 of 6 cases tested. Four of these patients improved clinically after treatment but 1 has died. Collagenous sprue evolved on a background of CD in 4 cases. There was no history of CD in others and these cases may be the result of a biologic insult other than gluten sensitivity. None has developed clinical evidence of lymphoma to date.

  5. Variation in the helical structure of native collagen.

    Directory of Open Access Journals (Sweden)

    Joseph P R O Orgel

    Full Text Available The structure of collagen has been a matter of curiosity, investigation, and debate for the better part of a century. There has been a particularly productive period recently, during which much progress has been made in better describing all aspects of collagen structure. However, there remain some questions regarding its helical symmetry and its persistence within the triple-helix. Previous considerations of this symmetry have sometimes confused the picture by not fully recognizing that collagen structure is a highly complex and large hierarchical entity, and this affects and is effected by the super-coiled molecules that make it. Nevertheless, the symmetry question is not trite, but of some significance as it relates to extracellular matrix organization and cellular integration. The correlation between helical structure in the context of the molecular packing arrangement determines which parts of the amino acid sequence of the collagen fibril are buried or accessible to the extracellular matrix or the cell. In this study, we concentrate primarily on the triple-helical structure of fibrillar collagens I and II, the two most predominant types. By comparing X-ray diffraction data collected from type I and type II containing tissues, we point to evidence for a range of triple-helical symmetries being extant in the molecules native environment. The possible significance of helical instability, local helix dissociation and molecular packing of the triple-helices is discussed in the context of collagen's supramolecular organization, all of which must affect the symmetry of the collagen triple-helix.

  6. FK506-binding protein 10 (FKBP10) regulates lung fibroblast migration via collagen VI synthesis.

    Science.gov (United States)

    Knüppel, Larissa; Heinzelmann, Katharina; Lindner, Michael; Hatz, Rudolf; Behr, Jürgen; Eickelberg, Oliver; Staab-Weijnitz, Claudia A

    2018-04-19

    In idiopathic pulmonary fibrosis (IPF), fibroblasts gain a more migratory phenotype and excessively secrete extracellular matrix (ECM), ultimately leading to alveolar scarring and progressive dyspnea. Here, we analyzed the effects of deficiency of FK506-binding protein 10 (FKBP10), a potential IPF drug target, on primary human lung fibroblast (phLF) adhesion and migration. Using siRNA, FKBP10 expression was inhibited in phLF in absence or presence of 2ng/ml transforming growth factor-β1 (TGF-β1) and 0.1mM 2-phosphoascorbate. Effects on cell adhesion and migration were monitored by an immunofluorescence (IF)-based attachment assay, a conventional scratch assay, and single cell tracking by time-lapse microscopy. Effects on expression of key players in adhesion dynamics and migration were analyzed by qPCR and Western Blot. Colocalization was evaluated by IF microscopy and by proximity ligation assays. FKBP10 knockdown significantly attenuated adhesion and migration of phLF. Expression of collagen VI was decreased, while expression of key components of the focal adhesion complex was mostly upregulated. The effects on migration were 2-phosphoascorbate-dependent, suggesting collagen synthesis as the underlying mechanism. FKBP10 colocalized with collagen VI and coating culture dishes with collagen VI, and to a lesser extent with collagen I, abolished the effect of FKBP10 deficiency on migration. These findings show, to our knowledge for the first time, that FKBP10 interacts with collagen VI and that deficiency of FKBP10 reduces phLF migration mainly by downregulation of collagen VI synthesis. The results strengthen FKBP10 as an important intracellular regulator of ECM remodeling and support the concept of FKBP10 as drug target in IPF.

  7. Chitosan Cross-linked Reconstituted Amniotic Collagen Membrane ...

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Chitosan Cross-linked Reconstituted Amniotic Collagen Membrane – An Excellent Cell Substratum. The KERATINOCYTE proliferation and Differentiation into multiple layers is due to the presence of type - IV collagen in the amnion. Cultured FIBROBLASTS had good ...

  8. Recombinant gelatin and collagen from methylotrophic yeasts

    NARCIS (Netherlands)

    Bruin, de E.C.

    2002-01-01

    Based on its structural role and compatibility within the human body, collagen is a commonly used biomaterial in medical applications, such as cosmetic surgery, wound treatment and tissue engineering. Gelatin is in essence denatured and partly degraded collagen and is,

  9. Three-dimensional co-culture facilitates the differentiation of embryonic stem cells into mature cardiomyocytes.

    Science.gov (United States)

    Ou, Dong-Bo; He, Yong; Chen, Rui; Teng, Ji-Wei; Wang, Hong-Tao; Zeng, Di; Liu, Xiong-Tao; Ding, Lu; Huang, Jin-Yan; Zheng, Qiang-Sun

    2011-12-01

    The cardiomyocyte (CM) differentiation of embryonic stem cells (ESCs) is routinely cultured as two-dimensional (2D) monolayer, which doesn't mimic in vivo physiological environment and may lead to low differentiated level of ESCs. Here, we develop a novel strategy that enhances CM differentiation of ESCs in collagen matrix three-dimensional (3D) culture combined with indirect cardiac fibroblasts co-culture. ESCs were cultured in hanging drops to form embryoid bodies (EBs) and then applied on collagen matrix. The EBs were indirectly co-cultured with cardiac fibroblasts by the hanging cell culture inserts (PET 1 µm). The molecular expressions and ultrastructural characteristics of ESC-derived CMs (ESCMs) were analyzed by real time RT-PCR, immunocytochemistry, and Transmission Electron Microscopy (TEM). We found that the percentage of beating EBs with cardiac fibroblasts co-culture was significantly higher than that without co-culture after differentiation period of 8 days. Type I collagen used as 3D substrates enhanced the late-stage CM differentiation of ESCs and had effect on ultrastructural mature of ESCMs in late-stage development. The combined effects of 3D and co-culture that mimic in vivo physiological environment further improved the efficiency of CM differentiation from ESCs, resulting in fiber-like structures of cardiac cells with organized sarcomeric structure in ESCMs. This novel 3D co-culture system emphasizes the fact that the ESC differentiation is actively responding to cues from their environment and those cues can drive phenotypic control, which provides a useful in vitro model to investigate CM differentiation of stem cells. Copyright © 2011 Wiley Periodicals, Inc.

  10. Physicochemical properties of marine collagen-alginate biomaterial

    Science.gov (United States)

    Soon, K. S.; Hii, S. L.; Wong, C. L.; Leong, L. K.; Woo, K. K.

    2017-12-01

    Collagen base biomaterials are widely applied in the field of tissue engineering. However, these fibrous proteins in animal connective tissues are insufficient to fulfill the mechanical properties for such applications. Therefore, alginate as a natural polysaccharide was incorporated. In this study, Smooth wolf herring skins was collected from the local fish ball processing industry for collagen extraction using acid solubilisation method. On the other hand, alginate from brown seaweed (Sargassum polycystum) was extracted with calcium carbonate at 50 °C. The composite films of different collagen and alginate ratio were prepared by lyophilisation with pure collagen film as control. The effects of alginate on swelling behaviour, porosity, collagenase degradation and tensile strength of the composite films were investigated. Swelling behaviour increased with alginate content, 50 % alginate film achieved 1254.75 % swelling after 24 h. All composite films achieved more than 80 % porosity except the film with 80 % collagen (65.41 %). Porosity was highest in 100 % alginate (94.30 %). Highest tensile strength (1585.87 kPa) and young modulus (27.05 MPa) was found in 50 % alginate film. In addition, resistance to collagenase degradation was improved with alginate content, lowest degradation rate was determined in 80 % alginate film. Results indicated alginate is efficient in improving some mechanical properties of the composite film.

  11. Electrochemical deposition of mineralized BSA/collagen coating

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, Junjun [School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027 (China); Lin, Jun; Li, Juan; Wang, Huiming [The First Affiliated Hospital of Medical College, Zhejiang University, Hangzhou 310003 (China); Cheng, Kui [School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027 (China); Weng, Wenjian, E-mail: wengwj@zju.edu.cn [School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027 (China); The Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China)

    2016-09-01

    In this work, mineralized collagen coatings with different loading quantity of bovine serum albumin (BSA) were prepared via in situ electrochemical deposition on titanium substrate. The microstructure and BSA loading quantity of the coatings could be controlled by the electrochemical deposition parameters, such as deposition potential, BSA concentration and its adding sequence in the electrolyte. The BSA loading quantity in the coatings was obtained in the range of 0.0170–0.173 mg/cm{sup 2}, enhancing the cell adhesion and proliferation of the coatings with the simultaneous release. The distinct release behaviors of BSA were attributed to their gradient distribution with different mineralization degrees, which could be adjusted by the deposition process. These results suggest that in situ electrochemical deposition is a promising way to incorporate functional molecules into the mineralized collagen coatings and the mineralized BSA/collagen coatings are highly promising for improving the rhBMP-2 loading capability (1.8-fold). - Highlights: • BSA is incorporated into mineralized collagen coating by electrochemical deposition. • The loading amount of BSA in coatings can be adjusted in the range of 0-173 ng. • The BSA/collagen coating shows good cytocompatibility with free-albumin culture. • The incorporation process is put forward for some other molecules deposition.

  12. The ratio 1660/1690 cm(-1) measured by infrared microspectroscopy is not specific of enzymatic collagen cross-links in bone tissue.

    Science.gov (United States)

    Farlay, Delphine; Duclos, Marie-Eve; Gineyts, Evelyne; Bertholon, Cindy; Viguet-Carrin, Stéphanie; Nallala, Jayakrupakar; Sockalingum, Ganesh D; Bertrand, Dominique; Roger, Thierry; Hartmann, Daniel J; Chapurlat, Roland; Boivin, Georges

    2011-01-01

    In postmenopausal osteoporosis, an impairment in enzymatic cross-links (ECL) occurs, leading in part to a decline in bone biomechanical properties. Biochemical methods by high performance liquid chromatography (HPLC) are currently used to measure ECL. Another method has been proposed, by Fourier Transform InfraRed Imaging (FTIRI), to measure a mature PYD/immature DHLNL cross-links ratio, using the 1660/1690 cm(-1) area ratio in the amide I band. However, in bone, the amide I band composition is complex (collagens, non-collagenous proteins, water vibrations) and the 1660/1690 cm(-1) by FTIRI has never been directly correlated with the PYD/DHLNL by HPLC. A study design using lathyritic rats, characterized by a decrease in the formation of ECL due to the inhibition of lysyl oxidase, was used in order to determine the evolution of 1660/1690 cm(-1) by FTIR Microspectroscopy in bone tissue and compare to the ECL quantified by HPLC. The actual amount of ECL was quantified by HPLC on cortical bone from control and lathyritic rats. The lathyritic group exhibited a decrease of 78% of pyridinoline content compared to the control group. The 1660/1690 cm(-1) area ratio was increased within center bone compared to inner bone, and this was also correlated with an increase in both mineral maturity and mineralization index. However, no difference in the 1660/1690 cm(-1) ratio was found between control and lathyritic rats. Those results were confirmed by principal component analysis performed on multispectral infrared images. In bovine bone, in which PYD was physically destructed by UV-photolysis, the PYD/DHLNL (measured by HPLC) was strongly decreased, whereas the 1660/1690 cm(-1) was unmodified. In conclusion, the 1660/1690 cm(-1) is not related to the PYD/DHLNL ratio, but increased with age of bone mineral, suggesting that a modification of this ratio could be mainly due to a modification of the collagen secondary structure related to the mineralization process.

  13. The Ratio 1660/1690 cm−1 Measured by Infrared Microspectroscopy Is Not Specific of Enzymatic Collagen Cross-Links in Bone Tissue

    Science.gov (United States)

    Farlay, Delphine; Duclos, Marie-Eve; Gineyts, Evelyne; Bertholon, Cindy; Viguet-Carrin, Stéphanie; Nallala, Jayakrupakar; Sockalingum, Ganesh D.; Bertrand, Dominique; Roger, Thierry; Hartmann, Daniel J.; Chapurlat, Roland; Boivin, Georges

    2011-01-01

    In postmenopausal osteoporosis, an impairment in enzymatic cross-links (ECL) occurs, leading in part to a decline in bone biomechanical properties. Biochemical methods by high performance liquid chromatography (HPLC) are currently used to measure ECL. Another method has been proposed, by Fourier Transform InfraRed Imaging (FTIRI), to measure a mature PYD/immature DHLNL cross-links ratio, using the 1660/1690 cm−1 area ratio in the amide I band. However, in bone, the amide I band composition is complex (collagens, non-collagenous proteins, water vibrations) and the 1660/1690 cm−1 by FTIRI has never been directly correlated with the PYD/DHLNL by HPLC. A study design using lathyritic rats, characterized by a decrease in the formation of ECL due to the inhibition of lysyl oxidase, was used in order to determine the evolution of 1660/1690 cm−1 by FTIR Microspectroscopy in bone tissue and compare to the ECL quantified by HPLC. The actual amount of ECL was quantified by HPLC on cortical bone from control and lathyritic rats. The lathyritic group exhibited a decrease of 78% of pyridinoline content compared to the control group. The 1660/1690 cm−1 area ratio was increased within center bone compared to inner bone, and this was also correlated with an increase in both mineral maturity and mineralization index. However, no difference in the 1660/1690 cm−1 ratio was found between control and lathyritic rats. Those results were confirmed by principal component analysis performed on multispectral infrared images. In bovine bone, in which PYD was physically destructed by UV-photolysis, the PYD/DHLNL (measured by HPLC) was strongly decreased, whereas the 1660/1690 cm−1 was unmodified. In conclusion, the 1660/1690 cm−1 is not related to the PYD/DHLNL ratio, but increased with age of bone mineral, suggesting that a modification of this ratio could be mainly due to a modification of the collagen secondary structure related to the mineralization process. PMID:22194900

  14. Application of ab initio calculations and molecular dynamics to collagen and brome mosaic virus

    Science.gov (United States)

    Eifler, Jay Quinson

    In bio-related research, large proteins are of important interest. We study two such proteins. Collagen is one such protein which forms part of the structural matrix for animals, such as in their bones and teeth. 1JS9 is another protein that is a component of the protein shell of the brome mosaic virus (BMV). And BMV is important for drug delivery and imaging. To better understand the properties of these proteins, quantum mechanically (QM) based results are needed, however computationally feasible methods are also necessary. The Orthogonalized Linear Combination of Atomic Orbitals (OLCAO) method is well-suited for application to such large proteins. However, a new approach to reduce the computational cost is required and this extension to the method we call the Amino-Acid Based Method (AAPM) of OLCAO. The AAPM roughly calculates electronic, self-consistent field (scf) potentials for individual amino-acids with their neighboring amino-acids included as a boundary condition. This allows the costly scf part of the calculation to be skipped out. Additionally, the number of potentials used to describe the how protein i s also minimized. Results for effective charge and bond order are obtained and analyzed for Collagen and preliminary effective charge results are obtained for 1JS9. The effective charge results reproduce those already obtained with other QM based methods but without reduced cost and preserved accuracy that are characteristically different than the formal charges mostly still in use to describe the charge properties of proteins. The bond order results for Collagen nicely reproduce the observed experimentally-derived hydrogen bonding between the individual chains of the collagen triple-helix as well as the observed hydrogen bonding network.

  15. Cartilage collagen damage in hip osteoarthritis similar to that seen in knee osteoarthritis; a case-control study of relationship between collagen, glycosaminoglycan and cartilage swelling.

    Science.gov (United States)

    Hosseininia, Shahrzad; Lindberg, Lisbeth R; Dahlberg, Leif E

    2013-01-09

    It remains to be shown whether OA shares molecular similarities between different joints in humans. This study provides evidence for similarities in cartilage molecular damage in osteoarthritic (OA) joints. Articular cartilage from osteoarthritic hip joints were analysed and compared to non-OA controls regarding collagen, glycosaminoglycan and water content. Femoral heads from 16 osteoarthritic (OA) and 20 reference patients were obtained from hip replacement surgery due to OA and femoral neck fracture, respectively. Cartilage histological changes were assessed by Mankin grading and denatured collagen type II immunostaining and cartilage was extracted by α-chymotrypsin. Hydroxyproline and Alcian blue binding assays were used to measure collagen and glycosaminoglycan (GAG) content, respectively. Mankin and immunohistology scores were significantly higher in hip OA samples than in reference samples. Cartilage water content was 6% higher in OA samples than in references. 2.5 times more collagen was extracted from OA than from reference samples. There was a positive association between water content and percentage of extractable collagen pool (ECP) in both groups. The amounts of collagen per wet and dry weights did not differ statistically between OA and reference cartilage. % Extractable collagen was not related to collagen per dry weight in either group. However when collagen was expressed by wet weight there was a negative correlation between % extractable and collagen in OA cartilage. The amount of GAG per wet weight was similar in both groups but the amount of GAG per dry weight was higher in OA samples compared to reference samples, which suggests a capacity for GAG biosynthesis in hip OA cartilage. Neither of the studied parameters was related to age in either group. Increased collagen extractability and water content in human hip cartilage is associated with OA pathology and can be observed at early stages of the degenerative hip OA process. Our results

  16. Immune response gene control of collagen reactivity in man: collagen unresponsiveness in HLA-DR4 negative nonresponders is due to the presence of T-dependent suppressive influences

    International Nuclear Information System (INIS)

    Solinger, A.M.; Stobo, J.D.

    1982-01-01

    To determine whether the failure to detect collagen reactivity in nonresponders represents an absence of collagen-reactive T cells or a preponderance of suppressive influences, the peripheral blood mononuclear cells from HLA-DR4 - individuals were subjected to three procedures capable of separating suppressive influences from LIF-secreting cells; irradiation (1000 rad), discontinuous gradient fractionation, and cytolysis with the monoclonal antibody OKT 8. Each procedure resulted in the specific appearance of reactivity to collagen, which was identical to that seen in HLA-DR4 + individuals with regard to its cellular requirements and antigenic specificity. Addition of unresponsive (i.e., nonirradiated or low-density T cells) to responsive (i.e., irradiated or high-density T cells) autologous populations resulted in specific suppression of collagen reactivity. Radiation-sensitive suppressive influences could not be detected in HLA-DR4 + collagen responders.These studies indicate that the expression of T-dependent reactivity to collagen in man reflects the net influence of collage-reactive vs collagen-suppressive T cells. Moreover, it is the influence of HLA-D-linked genes on the development of suppressive influences rather than on the development of collagen-reactive, LIF-secreting T cells that serves to distinguish HLA-DR4 + collagen responders from HLA-DR4 - collagen nonresponders

  17. Acceleration of bone union after structural bone grafts with a collagen-binding basic fibroblast growth factor anchored-collagen sheet for critical-size bone defects

    International Nuclear Information System (INIS)

    Ueno, Masaki; Uchida, Kentaro; Saito, Wataru; Inoue, Gen; Takahira, Naonobu; Takaso, Masashi; Matsushita, Osamu; Yogoro, Mizuki; Nishi, Nozomu; Ogura, Takayuki; Hattori, Shunji; Tanaka, Keisuke

    2014-01-01

    Bone allografts are commonly used for the repair of critical-size bone defects. However, the loss of cellular activity in processed grafts markedly reduces their healing potential compared with autografts. To overcome this obstacle, we developed a healing system for critical-size bone defects that consists of overlaying an implanted bone graft with a collagen sheet (CS) loaded with basic fibroblast growth factor (bFGF) fused to the collagen-binding domain derived from a Clostridium histolyticum collagenase (CB-bFGF). In a murine femoral defect model, defect sites treated with CS/CB-bFGF had a significantly larger callus volume than those treated with CS/native bFGF. In addition, treatment with CS/CB-bFGF resulted in the rapid formation of a hard callus bridge and a larger total callus volume at the host–graft junction than treatment with CS/bFGF. Our results suggest that the combined use of CS and CB-bFGF helps accelerate the union of allogenic bone grafts. (paper)

  18. Always cleave up your mess: targeting collagen degradation to treat tissue fibrosis

    Science.gov (United States)

    McKleroy, William; Lee, Ting-Hein

    2013-01-01

    Pulmonary fibrosis is a vexing clinical problem with no proven therapeutic options. In the normal lung there is continuous collagen synthesis and collagen degradation, and these two processes are precisely balanced to maintain normal tissue architecture. With lung injury there is an increase in the rate of both collagen production and collagen degradation. The increase in collagen degradation is critical in preventing the formation of permanent scar tissue each time the lung is exposed to injury. In pulmonary fibrosis, collagen degradation does not keep pace with collagen production, resulting in extracellular accumulation of fibrillar collagen. Collagen degradation occurs through both extracellular and intracellular pathways. The extracellular pathway involves cleavage of collagen fibrils by proteolytic enzyme including the metalloproteinases. The less-well-described intracellular pathway involves binding and uptake of collagen fragments by fibroblasts and macrophages for lysosomal degradation. The relationship between these two pathways and their relevance to the development of fibrosis is complex. Fibrosis in the lung, liver, and skin has been associated with an impaired degradative environment. Much of the current scientific effort in fibrosis is focused on understanding the pathways that regulate increased collagen production. However, recent reports suggest an important role for collagen turnover and degradation in regulating the severity of tissue fibrosis. The objective of this review is to evaluate the roles of the extracellular and intracellular collagen degradation pathways in the development of fibrosis and to examine whether pulmonary fibrosis can be viewed as a disease of impaired matrix degradation rather than a disease of increased matrix production. PMID:23564511

  19. Maturity group classification and maturity locus genotyping of early-maturing soybean varieties from high-latitude cold regions.

    Science.gov (United States)

    Jia, Hongchang; Jiang, Bingjun; Wu, Cunxiang; Lu, Wencheng; Hou, Wensheng; Sun, Shi; Yan, Hongrui; Han, Tianfu

    2014-01-01

    With the migration of human beings, advances of agricultural sciences, evolution of planting patterns and global warming, soybeans have expanded to both tropical and high-latitude cold regions (HCRs). Unlike other regions, HCRs have much more significant and diverse photoperiods and temperature conditions over seasons or across latitudes, and HCR soybeans released there show rich diversity in maturity traits. However, HCR soybeans have not been as well classified into maturity groups (MGs) as other places. Therefore, it is necessary to identify MGs in HCRs and to genotype the maturity loci. Local varieties were collected from the northern part of Northeast China and the far-eastern region of Russia. Maturity group reference (MGR) soybeans of MGs MG000, MG00, and MG0 were used as references during field experiments. Both local varieties and MGR soybeans were planted for two years (2010-2011) in Heihe (N 50°15', E 127°27', H 168.5 m), China. The days to VE (emergence), R1 (beginning bloom) and R7 (beginning maturity) were recorded and statistically analyzed. Furthermore, some varieties were further genotyped at four molecularly-identified maturity loci E1, E2, E3 and E4. The HCR varieties were classified into MG0 or even more early-maturing. In Heihe, some varieties matured much earlier than MG000, which is the most early-maturing known MG, and clustered into a separate group. We designated the group as MG0000, following the convention of MGs. HCR soybeans had relatively stable days to beginning bloom from emergence. The HCR varieties diversified into genotypes of E1, E2, E3 and E4. These loci had different effects on maturity. HCRs diversify early-maturing MGs of soybean. MG0000, a new MG that matures much earlier than known MGs, was developed. HCR soybean breeding should focus more on shortening post-flowering reproductive growth. E1, E2, E3, and E4 function differentially.

  20. Structure of collagen-glycosaminoglycan matrix and the influence to its integrity and stability.

    Science.gov (United States)

    Bi, Yuying; Patra, Prabir; Faezipour, Miad

    2014-01-01

    Glycosaminoglycan (GAG) is a chain-like disaccharide that is linked to polypeptide core to connect two collagen fibrils/fibers and provide the intermolecular force in Collagen-GAG matrix (C-G matrix). Thus, the distribution of GAG in C-G matrix contributes to the integrity and mechanical properties of the matrix and related tissue. This paper analyzes the transverse isotropic distribution of GAG in C-G matrix. The angle of GAGs related to collagen fibrils is used as parameters to qualify the GAGs isotropic characteristic in both 3D and 2D rendering. Statistical results included that over one third of GAGs were perpendicular directed to collagen fibril with symmetrical distribution for both 3D matrix and 2D plane cross through collagen fibrils. The three factors tested in this paper: collagen radius, collagen distribution, and GAGs density, were not statistically significant for the strength of Collagen-GAG matrix in 3D rendering. However in 2D rendering, a significant factor found was the radius of collagen in matrix for the GAGs directed to orthogonal plane of Collagen-GAG matrix. Between two cross-section selected from Collagen-GAG matrix model, the plane cross through collagen fibrils was symmetrically distributed but the total percentage of perpendicular directed GAG was deducted by decreasing collagen radius. There were some symmetry features of GAGs angle distribution in selected 2D plane that passed through space between collagen fibrils, but most models showed multiple peaks in GAGs angle distribution. With less GAGs directed to perpendicular of collagen fibril, strength in collagen cross-section weakened. Collagen distribution was also a factor that influences GAGs angle distribution in 2D rendering. True hexagonal collagen packaging is reported in this paper to have less strength at collagen cross-section compared to quasi-hexagonal collagen arrangement. In this work focus is on GAGs matrix within the collagen and its relevance to anisotropy.

  1. Epicutaneous Immunization with Type II Collagen Inhibits both Onset and Progression of Chronic Collagen-Induced Arthritis

    OpenAIRE

    Strid, Jessica; Tan, Lee Aun; Strobel, Stephan; Londei, Marco; Callard, Robin

    2007-01-01

    Epicutaneous immunization is a potential non-invasive technique for antigen-specific immune-modulation. Topical application of protein antigens to barrier-disrupted skin induces potent antigen-specific immunity with a strong Th2-bias. In this study, we investigate whether the autoimmune inflammatory response of chronic collagen-induced arthritis (CCIA) in DBA/1-TCR-beta Tg mice can be modified by epicutaneous immunization. We show that epicutaneous immunization with type II collagen (CII) inh...

  2. Dense tissue-like collagen matrices formed in cell-free conditions.

    Science.gov (United States)

    Mosser, Gervaise; Anglo, Anny; Helary, Christophe; Bouligand, Yves; Giraud-Guille, Marie-Madeleine

    2006-01-01

    A new protocol was developed to produce dense organized collagen matrices hierarchically ordered on a large scale. It consists of a two stage process: (1) the organization of a collagen solution and (2) the stabilization of the organizations by a sol-gel transition that leads to the formation of collagen fibrils. This new protocol relies on the continuous injection of an acid-soluble collagen solution into glass microchambers. It leads to extended concentration gradients of collagen, ranging from 5 to 1000 mg/ml. The self-organization of collagen solutions into a wide array of spatial organizations was investigated. The final matrices obtained by this procedure varied in concentration, structure and density. Changes in the liquid state of the samples were followed by polarized light microscopy, and the final stabilized gel states obtained after fibrillogenesis were analyzed by both light and electron microscopy. Typical organizations extended homogeneously by up to three centimetres in one direction and several hundreds of micrometers in other directions. Fibrillogenesis of collagen solutions of high and low concentrations led to fibrils spatially arranged as has been described in bone and derm, respectively. Moreover, a relationship was revealed between the collagen concentration and the aggregation of and rotational angles between lateral fibrils. These results constitute a strong base from which to further develop highly enriched collagen matrices that could lead to substitutes that mimic connective tissues. The matrices thus obtained may also be good candidates for the study of the three-dimensional migration of cells.

  3. Inhibition of Enterococcus faecium adherence to collagen by antibodies against high-affinity binding subdomains of Acm.

    Science.gov (United States)

    Nallapareddy, Sreedhar R; Sillanpää, Jouko; Ganesh, Vannakambadi K; Höök, Magnus; Murray, Barbara E

    2007-06-01

    Strains of Enterococcus faecium express a cell wall-anchored protein, Acm, which mediates adherence to collagen. Here, we (i) identify the minimal and high-affinity binding subsegments of Acm and (ii) show that anti-Acm immunoglobulin Gs (IgGs) purified against these subsegments reduced E. faecium TX2535 strain collagen adherence up to 73 and 50%, respectively, significantly more than the total IgGs against the full-length Acm A domain (28%) (P Acm adherence with functional subsegment-specific antibodies raises the possibility of their use as therapeutic or prophylactic agents.

  4. Stimulation of type I collagen activity in healing of pulp perforation

    OpenAIRE

    Kunarti, Sri

    2008-01-01

    Background: TGF-β1 is a connective tissue stimulant, potential regulator for tissue repair, and promoter in wound healing. The healing of pulp perforation is decided by quantity and quality of new collagen deposition. TGF-β1 upregulates collagen transcription. However, after several weeks production of type I collagen synthesis is stopped and enzymatic degradation of collagen matrix will occur. Purpose: Observe synthesis type I collagen during the process of pulp perforation healing in 7, 14,...

  5. High-contrast multimodel nonlinear optical imaging of collagen and elastin

    Energy Technology Data Exchange (ETDEWEB)

    Zhuo, S M [Key Laboratory of Optoelectronic Science and Technology for Medicine (Fujian Normal University), Ministry of Education, Fuzhou 350007 (China); Chen, J X [Key Laboratory of Optoelectronic Science and Technology for Medicine (Fujian Normal University), Ministry of Education, Fuzhou 350007 (China); Luo, T S [Key Laboratory of Optoelectronic Science and Technology for Medicine (Fujian Normal University), Ministry of Education, Fuzhou 350007 (China); Chen, H L [Key Laboratory of Optoelectronic Science and Technology for Medicine (Fujian Normal University), Ministry of Education, Fuzhou 350007 (China); Zhao, J J [Department of Skin, Affiliated Xiehe Hospital, Fujian Medical University, Fuzhou 350001 (China)

    2007-07-15

    Collagen and elastin, as the major components in the extracellular matrix (ECM), are intrinsic indicators of physiological and pathological states. Here, we have developed a high-contrast multimodel nonlinear optical imaging technique to imaging collagen and elastin by detecting simultaneously two photon-excited fluorescence (TPEF) from elastin and second-harmonic generation (SHG) from collagen. Our results show that this technique can obtain a high-contrast TPEF/SHG image in human dermis and permit direct visualization of collagen and elastin. It was shown that the technique can provide collagen and elastin structural information to determine collagen and elastin fibril orientation and distribution and acquire some morphometric properties. It was found that the in-depth TPEF/SHG imaging and 3-D reconstruction of TPEF/SHG images can extract more collagen and elastin structural and biochemical information. The study results suggest that the high-contrast multimodel nonlinear imaging provides a powerful tool to study ECM intrinsic components and has the potential to provide more important information for the diagnosis of tissue.

  6. High-contrast multimodel nonlinear optical imaging of collagen and elastin

    International Nuclear Information System (INIS)

    Zhuo, S M; Chen, J X; Luo, T S; Chen, H L; Zhao, J J

    2007-01-01

    Collagen and elastin, as the major components in the extracellular matrix (ECM), are intrinsic indicators of physiological and pathological states. Here, we have developed a high-contrast multimodel nonlinear optical imaging technique to imaging collagen and elastin by detecting simultaneously two photon-excited fluorescence (TPEF) from elastin and second-harmonic generation (SHG) from collagen. Our results show that this technique can obtain a high-contrast TPEF/SHG image in human dermis and permit direct visualization of collagen and elastin. It was shown that the technique can provide collagen and elastin structural information to determine collagen and elastin fibril orientation and distribution and acquire some morphometric properties. It was found that the in-depth TPEF/SHG imaging and 3-D reconstruction of TPEF/SHG images can extract more collagen and elastin structural and biochemical information. The study results suggest that the high-contrast multimodel nonlinear imaging provides a powerful tool to study ECM intrinsic components and has the potential to provide more important information for the diagnosis of tissue

  7. Tranexamic acid, an inhibitor of plasminogen activation, reduces urinary collagen cross-link excretion in both experimental and rheumatoid arthritis

    NARCIS (Netherlands)

    Ronday, H.K.; TeKoppele, J.M.; Greenwald, R.A.; Moak, S.A.; Roos, J.A.D.M. de; Dijkmans, B.A.C.; Breedveld, F.C.; Verheijen, J.H.

    1998-01-01

    The plasminogen activation system is one of the enzyme systems held responsible for bone and cartilage degradation in rheumatoid arthritis (RA). In this study, we evaluated the effect of tranexamic acid (TEA), an inhibitor of plasminogen activation, on urinary collagen cross-link excretion and

  8. Potential of Electrospun Poly(3-hydroxybutyrate/Collagen Blends for Tissue Engineering Applications

    Directory of Open Access Journals (Sweden)

    Luca Salvatore

    2018-01-01

    Full Text Available In this work, tunable nonwoven mats based on poly(3-hydroxybutyrate (PHB and type I collagen (Coll were successfully produced by electrospinning. The PHB/Coll weight ratio (fixed at 100/0, 70/30, and 50/50, resp. was found to control the morphological, thermal, mechanical, and degradation properties of the mats. Increasing collagen amounts led to larger diameters of the fibers (in the approximate range 600–900 nm, while delaying their thermal decomposition (from 245°C to 262°C. Collagen also accelerated the hydrolytic degradation of the mats upon incubation in aqueous medium at 37°C for 23 days (with final weight losses of 1%, 15%, and 23% for 100/0, 70/30, and 50/50 samples, resp., as a result of increased mat wettability and reduced PHB crystallinity. Interestingly, 70/30 meshes were the ones displaying the lowest stiffness (~116 MPa; p<0.05 versus 100/0 and 50/50 meshes, while 50/50 samples had an elastic modulus comparable to that of 100/0 ones (~250 MPa, likely due to enhanced physical crosslinking of the collagen chains, at least at high protein amounts. All substrates were also found to allow for good viability and proliferation of murine fibroblasts, up to 6 days of culture. Collectively, the results evidenced the potential of as-spun PHB/Coll meshes for tissue engineering applications.

  9. Collagenous gastritis in the pediatric age

    Directory of Open Access Journals (Sweden)

    Antonio Rosell-Camps

    2015-05-01

    Full Text Available Collagenous gastritis (CG is an uncommon condition known in the pediatric age. It is characterized by the presence of subepithelial collagen bands (> 10 μm associated with lymphoplasmacytic infiltration of the stomach's lamina propria. Symptoms manifested by patients with CG may be common with many other disorders. It typically manifests with epigastralgia, vomiting, and iron deficiency during pre-adolescence. This condition's pathophysiology remains unclear. In contrast to adults, where association with collagenous colitis and other autoimmune conditions is more common, pediatric involvement is usually confined to the stomach. Drugs of choice include proton pump inhibitors and corticoids. A case is reported of a 12-year-old girl with abdominal pain and ferritin deficiency who was diagnosed with CG based on gastric biopsy and experienced a favorable outcome.

  10. Thrombolytic therapy of acute myocardial infarction alters collagen metabolism

    DEFF Research Database (Denmark)

    Høst, N B; Hansen, S S; Jensen, L T

    1994-01-01

    The objective of the study was to monitor collagen metabolism after thrombolytic therapy. Sequential measurements of serum aminoterminal type-III procollagen propeptide (S-PIIINP) and carboxyterminal type-I procollagen propeptide (S-PICP) were made in 62 patients suspected of acute myocardial.......05). A less pronounced S-PIIINP increase was noted with tissue-plasminogen activator than with streptokinase. Thrombolytic therapy induces collagen breakdown regardless of whether acute myocardial infarction is confirmed or not. With confirmed acute myocardial infarction collagen metabolism is altered...... for at least 6 months. Furthermore, fibrin-specific and nonspecific thrombolytic agents appear to affect collagen metabolism differently....

  11. FTIR spectro-imaging of collagen scaffold formation during glioma tumor development.

    Science.gov (United States)

    Noreen, Razia; Chien, Chia-Chi; Chen, Hsiang-Hsin; Bobroff, Vladimir; Moenner, Michel; Javerzat, Sophie; Hwu, Yeukuang; Petibois, Cyril

    2013-11-01

    Evidence has recently emerged that solid and diffuse tumors produce a specific extracellular matrix (ECM) for division and diffusion, also developing a specific interface with microvasculature. This ECM is mainly composed of collagens and their scaffolding appears to drive tumor growth. Although collagens are not easily analyzable by UV-fluorescence means, FTIR imaging has appeared as a valuable tool to characterize collagen contents in tissues, specially the brain, where ECM is normally devoid of collagen proteins. Here, we used FTIR imaging to characterize collagen content changes in growing glioma tumors. We could determine that C6-derived solid tumors presented high content of triple helix after 8-11 days of growth (typical of collagen fibrils formation; 8/8 tumor samples; 91 % of total variance), and further turned to larger α-helix (days 12-15; 9/10 of tumors; 94 % of variance) and β-turns (day 18-21; 7/8 tumors; 97 % of variance) contents, which suggest the incorporation of non-fibrillar collagen types in ECM, a sign of more and more organized collagen scaffold along tumor progression. The growth of tumors was also associated to the level of collagen produced (P < 0.05). This study thus confirms that collagen scaffolding is a major event accompanying the angiogenic shift and faster tumor growth in solid glioma phenotypes.

  12. RELATIONS BETWEEN INVITRO CYTOTOXICITY AND CROSS-LINKED DERMAL SHEEP COLLAGENS

    NARCIS (Netherlands)

    VANLUYN, MJA; VANWACHEM, PB; DAMINK, LO; DIJKSTRA, PJ; FEIJEN, J; NIEUWENHUIS, P

    Collagen-based biomaterials have found various applications in the biomedical field. However, collagen-based biomaterials may induce cytotoxic effects. This study evaluated possible cytotoxic effects of (crosslinked) dermal sheep collagen (DSC) using a 7-d-methylcellulose cell culture with human

  13. Isolation and Characterization of Collagen from Chicken Feet

    OpenAIRE

    P. Hashim; M. S. Mohd Ridzwan; J. Bakar

    2014-01-01

    Collagen was isolated from chicken feet by using papain and pepsin enzymes in acetic acid solution at 4°C for 24h with a yield of 18.16% and 22.94% by dry weight, respectively. Chemical composition and characteristics of chicken feet collagen such as amino acid composition, SDS-PAGE patterns, FTIR spectra and thermal properties were evaluated. The chicken feet collagen is rich in the amino acids glycine, glutamic acid, proline and hydroxyproline. Electrophoresis pattern demonstrated two disti...

  14. Insights into early extracellular matrix evolution: spongin short chain collagen-related proteins are homologous to basement membrane type IV collagens and form a novel family widely distributed in invertebrates.

    Science.gov (United States)

    Aouacheria, Abdel; Geourjon, Christophe; Aghajari, Nushin; Navratil, Vincent; Deléage, Gilbert; Lethias, Claire; Exposito, Jean-Yves

    2006-12-01

    Collagens are thought to represent one of the most important molecular innovations in the metazoan line. Basement membrane type IV collagen is present in all Eumetazoa and was found in Homoscleromorpha, a sponge group with a well-organized epithelium, which may represent the first stage of tissue differentiation during animal evolution. In contrast, spongin seems to be a demosponge-specific collagenous protein, which can totally substitute an inorganic skeleton, such as in the well-known bath sponge. In the freshwater sponge Ephydatia mülleri, we previously characterized a family of short-chain collagens that are likely to be main components of spongins. Using a combination of sequence- and structure-based methods, we present evidence of remote homology between the carboxyl-terminal noncollagenous NC1 domain of spongin short-chain collagens and type IV collagen. Unexpectedly, spongin short-chain collagen-related proteins were retrieved in nonsponge animals, suggesting that a family related to spongin constitutes an evolutionary sister to the type IV collagen family. Formation of the ancestral NC1 domain and divergence of the spongin short-chain collagen-related and type IV collagen families may have occurred before the parazoan-eumetazoan split, the earliest divergence among extant animal phyla. Molecular phylogenetics based on NC1 domain sequences suggest distinct evolutionary histories for spongin short-chain collagen-related and type IV collagen families that include spongin short-chain collagen-related gene loss in the ancestors of Ecdyzosoa and of vertebrates. The fact that a majority of invertebrates encodes spongin short-chain collagen-related proteins raises the important question to the possible function of its members. Considering the importance of collagens for animal structure and substratum attachment, both families may have played crucial roles in animal diversification.

  15. Cartilage collagen damage in hip osteoarthritis similar to that seen in knee osteoarthritis; a case–control study of relationship between collagen, glycosaminoglycan and cartilage swelling

    Directory of Open Access Journals (Sweden)

    Hosseininia Shahrzad

    2013-01-01

    Full Text Available Abstract Background It remains to be shown whether OA shares molecular similarities between different joints in humans. This study provides evidence for similarities in cartilage molecular damage in osteoarthritic (OA joints. Methods Articular cartilage from osteoarthritic hip joints were analysed and compared to non-OA controls regarding collagen, glycosaminoglycan and water content. Femoral heads from 16 osteoarthritic (OA and 20 reference patients were obtained from hip replacement surgery due to OA and femoral neck fracture, respectively. Cartilage histological changes were assessed by Mankin grading and denatured collagen type II immunostaining and cartilage was extracted by α-chymotrypsin. Hydroxyproline and Alcian blue binding assays were used to measure collagen and glycosaminoglycan (GAG content, respectively. Results Mankin and immunohistology scores were significantly higher in hip OA samples than in reference samples. Cartilage water content was 6% higher in OA samples than in references. 2.5 times more collagen was extracted from OA than from reference samples. There was a positive association between water content and percentage of extractable collagen pool (ECP in both groups. The amounts of collagen per wet and dry weights did not differ statistically between OA and reference cartilage. % Extractable collagen was not related to collagen per dry weight in either group. However when collagen was expressed by wet weight there was a negative correlation between % extractable and collagen in OA cartilage. The amount of GAG per wet weight was similar in both groups but the amount of GAG per dry weight was higher in OA samples compared to reference samples, which suggests a capacity for GAG biosynthesis in hip OA cartilage. Neither of the studied parameters was related to age in either group. Conclusions Increased collagen extractability and water content in human hip cartilage is associated with OA pathology and can be observed at

  16. Collagen-binding proteins of Streptococcus mutans and related streptococci.

    Science.gov (United States)

    Avilés-Reyes, A; Miller, J H; Lemos, J A; Abranches, J

    2017-04-01

    The ability of Streptococcus mutans to interact with collagen through the expression of collagen-binding proteins (CBPs) bestows this oral pathogen with an alternative to the sucrose-dependent mechanism of colonization classically attributed to caries development. Based on the abundance and distribution of collagen throughout the human body, stringent adherence to this molecule grants S. mutans with the opportunity to establish infection at different host sites. Surface proteins, such as SpaP, WapA, Cnm and Cbm, have been shown to bind collagen in vitro, and it has been suggested that these molecules play a role in colonization of oral and extra-oral tissues. However, robust collagen binding is not achieved by all strains of S. mutans, particularly those that lack Cnm or Cbm. These observations merit careful dissection of the contribution from these different CBPs towards tissue colonization and virulence. In this review, we will discuss the current understanding of mechanisms used by S. mutans and related streptococci to colonize collagenous tissues, and the possible contribution of CBPs to infections in different sites of the host. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Absence of the ER Cation Channel TMEM38B/TRIC-B Disrupts Intracellular Calcium Homeostasis and Dysregulates Collagen Synthesis in Recessive Osteogenesis Imperfecta

    Science.gov (United States)

    Cabral, Wayne A.; Ishikawa, Masaki; Garten, Matthias; Makareeva, Elena N.; Sargent, Brandi M.; Weis, MaryAnn; Barnes, Aileen M.; Webb, Emma A.; Shaw, Nicholas J.; Ala-Kokko, Leena; Lacbawan, Felicitas L.; Högler, Wolfgang; Leikin, Sergey; Blank, Paul S.; Zimmerberg, Joshua; Eyre, David R.; Yamada, Yoshihiko; Marini, Joan C.

    2016-01-01

    Recessive osteogenesis imperfecta (OI) is caused by defects in proteins involved in post-translational interactions with type I collagen. Recently, a novel form of moderately severe OI caused by null mutations in TMEM38B was identified. TMEM38B encodes the ER membrane monovalent cation channel, TRIC-B, proposed to counterbalance IP3R-mediated Ca2+ release from intracellular stores. The molecular mechanisms by which TMEM38B mutations cause OI are unknown. We identified 3 probands with recessive defects in TMEM38B. TRIC-B protein is undetectable in proband fibroblasts and osteoblasts, although reduced TMEM38B transcripts are present. TRIC-B deficiency causes impaired release of ER luminal Ca2+, associated with deficient store-operated calcium entry, although SERCA and IP3R have normal stability. Notably, steady state ER Ca2+ is unchanged in TRIC-B deficiency, supporting a role for TRIC-B in the kinetics of ER calcium depletion and recovery. The disturbed Ca2+ flux causes ER stress and increased BiP, and dysregulates synthesis of proband type I collagen at multiple steps. Collagen helical lysine hydroxylation is reduced, while telopeptide hydroxylation is increased, despite increased LH1 and decreased Ca2+-dependent FKBP65, respectively. Although PDI levels are maintained, procollagen chain assembly is delayed in proband cells. The resulting misfolded collagen is substantially retained in TRIC-B null cells, consistent with a 50–70% reduction in secreted collagen. Lower-stability forms of collagen that elude proteasomal degradation are not incorporated into extracellular matrix, which contains only normal stability collagen, resulting in matrix insufficiency. These data support a role for TRIC-B in intracellular Ca2+ homeostasis, and demonstrate that absence of TMEM38B causes OI by dysregulation of calcium flux kinetics in the ER, impacting multiple collagen-specific chaperones and modifying enzymes. PMID:27441836

  18. Absence of the ER Cation Channel TMEM38B/TRIC-B Disrupts Intracellular Calcium Homeostasis and Dysregulates Collagen Synthesis in Recessive Osteogenesis Imperfecta.

    Directory of Open Access Journals (Sweden)

    Wayne A Cabral

    2016-07-01

    Full Text Available Recessive osteogenesis imperfecta (OI is caused by defects in proteins involved in post-translational interactions with type I collagen. Recently, a novel form of moderately severe OI caused by null mutations in TMEM38B was identified. TMEM38B encodes the ER membrane monovalent cation channel, TRIC-B, proposed to counterbalance IP3R-mediated Ca2+ release from intracellular stores. The molecular mechanisms by which TMEM38B mutations cause OI are unknown. We identified 3 probands with recessive defects in TMEM38B. TRIC-B protein is undetectable in proband fibroblasts and osteoblasts, although reduced TMEM38B transcripts are present. TRIC-B deficiency causes impaired release of ER luminal Ca2+, associated with deficient store-operated calcium entry, although SERCA and IP3R have normal stability. Notably, steady state ER Ca2+ is unchanged in TRIC-B deficiency, supporting a role for TRIC-B in the kinetics of ER calcium depletion and recovery. The disturbed Ca2+ flux causes ER stress and increased BiP, and dysregulates synthesis of proband type I collagen at multiple steps. Collagen helical lysine hydroxylation is reduced, while telopeptide hydroxylation is increased, despite increased LH1 and decreased Ca2+-dependent FKBP65, respectively. Although PDI levels are maintained, procollagen chain assembly is delayed in proband cells. The resulting misfolded collagen is substantially retained in TRIC-B null cells, consistent with a 50-70% reduction in secreted collagen. Lower-stability forms of collagen that elude proteasomal degradation are not incorporated into extracellular matrix, which contains only normal stability collagen, resulting in matrix insufficiency. These data support a role for TRIC-B in intracellular Ca2+ homeostasis, and demonstrate that absence of TMEM38B causes OI by dysregulation of calcium flux kinetics in the ER, impacting multiple collagen-specific chaperones and modifying enzymes.

  19. Embroidered polymer-collagen hybrid scaffold variants for ligament tissue engineering.

    Science.gov (United States)

    Hoyer, M; Drechsel, N; Meyer, M; Meier, C; Hinüber, C; Breier, A; Hahner, J; Heinrich, G; Rentsch, C; Garbe, L-A; Ertel, W; Schulze-Tanzil, G; Lohan, A

    2014-10-01

    Embroidery techniques and patterns used for scaffold production allow the adaption of biomechanical scaffold properties. The integration of collagen into embroidered polylactide-co-caprolactone [P(LA-CL)] and polydioxanone (PDS) scaffolds could stimulate neo-tissue formation by anterior cruciate ligament (ACL) cells. Therefore, the aim of this study was to test embroidered P(LA-CL) and PDS scaffolds as hybrid scaffolds in combination with collagen hydrogel, sponge or foam for ligament tissue engineering. ACL cells were cultured on embroidered P(LA-CL) and PDS scaffolds without or with collagen supplementation. Cell adherence, vitality, morphology and ECM synthesis were analyzed. Irrespective of thread size, ACL cells seeded on P(LA-CL) scaffolds without collagen adhered and spread over the threads, whereas the cells formed clusters on PDS and larger areas remained cell-free. Using the collagen hydrogel, the scaffold colonization was limited by the gel instability. The collagen sponge layers integrated into the scaffolds were hardly penetrated by the cells. Collagen foams increased scaffold colonization in P(LA-CL) but did not facilitate direct cell-thread contacts in the PDS scaffolds. The results suggest embroidered P(LA-CL) scaffolds as a more promising basis for tissue engineering an ACL substitute than PDS due to superior cell attachment. Supplementation with a collagen foam presents a promising functionalization strategy. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Second-harmonic generation imaging of collagen in ancient bone.

    Science.gov (United States)

    Thomas, B; McIntosh, D; Fildes, T; Smith, L; Hargrave, F; Islam, M; Thompson, T; Layfield, R; Scott, D; Shaw, B; Burrell, C L; Gonzalez, S; Taylor, S

    2017-12-01

    Second-harmonic generation imaging (SHG) captures triple helical collagen molecules near tissue surfaces. Biomedical research routinely utilizes various imaging software packages to quantify SHG signals for collagen content and distribution estimates in modern tissue samples including bone. For the first time using SHG, samples of modern, medieval, and ice age bones were imaged to test the applicability of SHG to ancient bone from a variety of ages, settings, and taxa. Four independent techniques including Raman spectroscopy, FTIR spectroscopy, radiocarbon dating protocols, and mass spectrometry-based protein sequencing, confirm the presence of protein, consistent with the hypothesis that SHG imaging detects ancient bone collagen. These results suggest that future studies have the potential to use SHG imaging to provide new insights into the composition of ancient bone, to characterize ancient bone disorders, to investigate collagen preservation within and between various taxa, and to monitor collagen decay regimes in different depositional environments.

  1. Augmentation of the hard palate thin masticatory mucosa in the potential connective tissue donor sites using two collagen materials-Clinical and histological comparison.

    Science.gov (United States)

    Bednarz, Wojciech; Kobierzycki, Christopher; Dzięgiel, Piotr; Botzenhart, Ute; Gedrange, Tomasz; Ziętek, Marek

    2016-11-01

    Due to the similarity of keratinized gingival and palatal mucosa the latter can pose as a potential donor site for gingival recession coverage. However, its availability is restricted and a thin transplant bears the risk of being rejected. The aim of the present study was to compare the clinical and histological results of thin palatal mucosa augmentation, using lyophilized Biokol ® xenogenous collagen sponge and a suspension of xenogenous Gel 0 ® pure collagen with non-augmented tissue from the same patients. Ten patients simultaneously underwent bilateral augmentation procedures using Biokol ® and Gel 0 ® collagen material. The donor sites were augmented 8 weeks prior to the harvesting of the connective tissue graft (CTG) for the gingival recession coverage procedures. Prior to the implantation of the collagen material and during the course of harvesting the augmented CTG, tissue specimens were taken for histological examination. Prior to the commencement of the study and after it, the parameters of palatal gingival thickness at 4mm (PGT1), and at 8mm apical to the gingival margin (PGT2) around the teeth neighboring the operating fields were determined. In both groups the palatal mucosa had thickened significantly in both measuring sites. An intergroup comparison revealed greater thickening of the masticatory mucosa in the Biokol ® group at both measuring points. The histological image of the grafts, obtained from sites augmented using both test methods, revealed a typical pattern of mature fibrous connective tissue. No epithelial cells were found. Augmentation of thin masticatory mucosa using Biokol ® or Gel 0 ® collagen materials resulted in a significant thickening of the mucosa, which could be demonstrated to be greater in the first group. Copyright © 2016 Elsevier GmbH. All rights reserved.

  2. Reinforcement of a porous collagen scaffold with surface-activated PLA fibers.

    Science.gov (United States)

    Liu, Xi; Huang, Changbin; Feng, Yujie; Liang, Jie; Fan, Yujiang; Gu, Zhongwei; Zhang, Xingdong

    2010-01-01

    A hybrid porous collagen scaffold mechanically reinforced with surface-activated poly(lactic acid) (PLA) fiber was prepared. PLA fibers, 20 mum in diameter and 1 mm in length, were aminolyzed with hexanediamine to introduce free amino groups on the surfaces. After the amino groups were transferred to aldehyde groups by treatment with glutaraldehyde, different amounts (1.5, 3, 5 and 8 mg) of surface-activated PLA fibers were homogeneously mixed with 2 ml type-I collagen solution (pH 2.8, 0.6 wt%). This mixture solution was then freeze-dried and cross-linked to obtain collagen sponges with surface-activated PLA fiber. Scanning electron microscopy observation indicated that the collagen sponges had a highly interconnected porous structure with an average pore size of 170 mum, irrespective of PLA fiber incorporation. The dispersion of surface-activated PLA fibers was homogeneous in collagen sponge, in contrast to unactivated PLA fibers. The compression modulus test results showed that, compared with unactivated PLA fibers, the surface-activated PLA fibers enhanced the resistance of collagen sponge to compression more significantly. Cytotoxicity assay by MTT test showed no cytotoxicity of these collagen sponges. L929 mouse fibroblast cell-culture studies in vitro revealed that the number of L929 cells attached to the collagen sponge with surface-activated PLA fibers, both 6 h and 24 h after seeding, was higher than that in pure collagen sponge and sponge with unactivated PLA fibers. In addition, a better distribution of cells infiltrated in collagen sponge with surface-activated PLA fibers was observed by histological staining. These results indicated that the collagen sponge reinforced with surface-activated PLA fibers is a promising biocompatible scaffold for tissue engineering.

  3. Scleroderma fibroblasts: Some aspects of in vitro assessment of collagen synthesis

    International Nuclear Information System (INIS)

    Krieg, T.; Max-Planck-Institut fuer Biochemie, Muenchen; Luderschmidt, C.; Braun-Falco, O.; Weber, L.; Mueller, P.K.

    1981-01-01

    Fibroblasts were cultured from skin biopsies of patients with systemic sclerosis in different stages of the disease. In vitro synthesis of collagen was checked after a pulse with tritiated proline. The ratio between type I and type III collagen was normal in all patients. Six of seven cultures derived from patients in the active state showed an increased synthesis of collagen relative to other proteins. Addition of serum (normal and diseased) to the culture medium did not stimulate synthesis of collagen in any culture with normal collagen synthesis. (orig.) [de

  4. Scleroderma fibroblasts: some aspects of in vitro assessment of collagen synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Krieg, T.; Luderschmidt, C.; Braun-Falco, O.; Weber, L.; Mueller, P.K.

    1981-01-01

    Fibroblasts were cultured from skin biopsies of patients with systemic sclerosis in different stages of the disease. In vitro synthesis of collagen was checked after a pulse with tritiated proline. The ratio between type I and type III collagen was normal in all patients. Six of seven cultures derived from patients in the active state showed an increased synthesis of collagen relative to other proteins. Addition of serum (normal and diseased) to the culture medium did not stimulate synthesis of collagen in any culture with normal collagen synthesis.

  5. Resliced image space construction for coronary artery collagen fibers.

    Science.gov (United States)

    Luo, Tong; Chen, Huan; Kassab, Ghassan S

    2017-01-01

    Collagen fibers play an important role in the biomechanics of the blood vessel wall. The objective of this study was to determine the 3D microstructure of collagen fibers in the media and adventitia of coronary arteries. We present a novel optimal angle consistence algorithm to reform image slices in the visualization and analysis of 3D collagen images. 3D geometry was reconstructed from resliced image space where the 3D skeleton was extracted as the primary feature for accurate reconstruction of geometrical parameters. Collagen fibers (range 80-200) were reconstructed from the porcine coronary artery wall for the measurement of various morphological parameters. Collagen waviness and diameters were 1.37 ± 0.19 and 2.61 ± 0.89 μm, respectively. The biaxial distributions of orientation had two different peaks at 110.7 ± 25.2° and 18.4 ± 19.3°. Results for width, waviness, and orientation were found to be in good agreement with manual measurements. In addition to accurately measuring 2D features more efficiently than the manual approach, the present method produced 3D features that could not be measured in the 2D manual approach. These additional parameters included the tilt angle (5.10 ± 2.95°) and cross-sectional area (CSA; 5.98 ± 3.79 μm2) of collagen fibers. These 3D collagen reconstructions provide accurate and reliable microstructure for biomechanical modeling of vessel wall mechanics.

  6. Histologic and Radiographic Analysis of Nonhealing Extraction Sockets Treated with Bio-Oss Collagen After a 4-Month Healing Period: A Prospective Descriptive Study in Humans.

    Science.gov (United States)

    Tirone, Federico; Salzano, Stefano; Pagano, Marco

    2018-03-07

    Healing of extraction sockets may sometimes result in formation of fibrous tissue instead of bone, even after 4 months, an occurrence that may hinder implant placement. The aim of this preliminary observational study was to histologically evaluate quality and amount of bone regeneration after treating nonhealing sockets with a bovine-derived xenograft enriched with porcine collagen (Bio-Oss Collagen, Geistlich) without barrier membranes. Biopsy specimens were collected during implant placement, 4 months after grafting. A total of 10 cases were treated and evaluated. In all cases, correct implant placement was possible and no implant failure occurred up to 6 months after loading. The histologic analysis demonstrated new bone formation in all specimens. The percentage of newly formed bone was 29.1% (SD 20.71%; range 5% to 48%). Xenograft particles in direct contact with newly formed bone were visible, and mature lamellar bone was observed in 8 cases.

  7. A biomimetic strategy to form calcium phosphate crystals on type I collagen substrate

    Energy Technology Data Exchange (ETDEWEB)

    Xu Zhang [Department of Restorative Dentistry, Faculty of Dentistry, National University of Singapore, 5 Lower Kent Ridge Road 119074, Singapore (Singapore); Neoh, Koon Gee [Department of Chemical and Biomolecular Engineering, National University of Singapore, Kent Ridge 119260, Singapore (Singapore); Kishen, Anil, E-mail: anil.kishen@utoronto.ca [Discipline of Endodontics, Faculty of Dentistry, University of Toronto, 124 Edward Street, Toronto, ON (Canada)

    2010-07-20

    Objective: The aim of this study is to induce mineralization of collagen by introducing phosphate groups onto type I collagen from eggshell membrane (ESM) by treating with sodium trimetaphosphate (STMP). This strategy is based on the hypothesis that phosphate groups introduced on collagen can mimic the nucleating role of phosphorylated non-collagenous proteins bound to collagen for inducing mineralization in natural hard tissue. Method: The collagen membrane was phosphorylated by treating it with a solution of STMP and saturated calcium hydroxide. The phosphorylated collagen was subsequently exposed to a mineralization solution and the pattern of mineralization on the surface of phosphorylated collagen substrate was analyzed. Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), field emission electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD) and microhardness test were used to characterize the collagen substrate and the pattern of minerals formed on the collagen surface. Results: The FTIR and EDX results indicated that the phosphate groups were incorporated onto the collagen surface by treatment with STMP. During the mineralization process, the plate-like mineral, octacalcium phosphate (OCP), which was initially formed on the surface of ESM, was later transformed into needle-like hydroxyapatite (HAP) as indicated by the SEM, FESEM, EDX and XRD findings. The microhardness test displayed significant increase in the Knoop hardness number of the mineralized collagen. Conclusions: Phosphate groups can be introduced onto type I collagen surface by treating it with STMP and such phosphorylated collagen can induce the mineralization of type I collagen.

  8. Protease inhibitors enhance extracellular collagen fibril deposition in human mesenchymal stem cells.

    Science.gov (United States)

    Han, Sejin; Li, Yuk Yin; Chan, Barbara Pui

    2015-10-15

    Collagen is a widely used naturally occurring biomaterial for scaffolding, whereas mesenchymal stem cells (MSCs) represent a promising cell source in tissue engineering and regenerative medicine. It is generally known that cells are able to remodel their environment by simultaneous degradation of the scaffolds and deposition of newly synthesized extracellular matrix. Nevertheless, the interactions between MSCs and collagen biomaterials are poorly known, and the strategies enhancing the extracellular matrix deposition are yet to be defined. In this study, we aim to investigate the fate of collagen when it is in contact with MSCs and hypothesize that protease inhibition will enhance their extracellular deposition of collagen fibrils. Specifically, human MSCs (hMSCs) were exposed to fluorescence-labeled collagen with and without intracellular or extracellular protease inhibitors (or both) before tracing the collagen at both intracellular and extracellular spaces. Collagen were internalized by hMSCs and degraded intracellularly in lysosomes. In the presence of protease inhibitors, both intracellular collagen fibril growth and extracellular deposition of collagen fibrils were enhanced. Moreover, protease inhibitors work synergistically with ascorbic acid, a well-known matrix deposition-enhancing reagent, in further enhancing collagen fibril deposition at the extracellular space. These findings provide a better understanding of the interactions between hMSCs and collagen biomaterials and suggest a method to manipulate matrix remodeling and deposition of hMSCs, contributing to better scaffolding for tissue engineering and regenerative medicine.

  9. Abnormal bone collagen morphology and decreased bone strength in growth hormone-deficient rats

    DEFF Research Database (Denmark)

    Lange, Martin; Qvortrup, Klaus; Svendsen, Ole Lander

    2004-01-01

    collagen morphology and bone mineralisation in cortical bone as well as bone strength in GHD rats to try to clarify the explanation for the increased fracture rate. The Dw-4 rat was used as a model for GHD. This strain of rats has an autosomal recessive disorder, reducing GH synthesis to approximately 10...

  10. Collagen cross-linking: insights on the evolution of metazoan extracellular matrix.

    Science.gov (United States)

    Rodriguez-Pascual, Fernando; Slatter, David Anthony

    2016-11-23

    Collagens constitute a large family of extracellular matrix (ECM) proteins that play a fundamental role in supporting the structure of various tissues in multicellular animals. The mechanical strength of fibrillar collagens is highly dependent on the formation of covalent cross-links between individual fibrils, a process initiated by the enzymatic action of members of the lysyl oxidase (LOX) family. Fibrillar collagens are present in a wide variety of animals, therefore often being associated with metazoan evolution, where the emergence of an ancestral collagen chain has been proposed to lead to the formation of different clades. While LOX-generated collagen cross-linking metabolites have been detected in different metazoan families, there is limited information about when and how collagen acquired this particular modification. By analyzing telopeptide and helical sequences, we identified highly conserved, potential cross-linking sites throughout the metazoan tree of life. Based on this analysis, we propose that they have importantly contributed to the formation and further expansion of fibrillar collagens.

  11. Human cytomegalovirus alters localization of MHC class II and dendrite morphology in mature Langerhans cells.

    Science.gov (United States)

    Lee, Andrew W; Hertel, Laura; Louie, Ryan K; Burster, Timo; Lacaille, Vashti; Pashine, Achal; Abate, Davide A; Mocarski, Edward S; Mellins, Elizabeth D

    2006-09-15

    Hemopoietic stem cell-derived mature Langerhans-type dendritic cells (LC) are susceptible to productive infection by human CMV (HCMV). To investigate the impact of infection on this cell type, we examined HLA-DR biosynthesis and trafficking in mature LC cultures exposed to HCMV. We found decreased surface HLA-DR levels in viral Ag-positive as well as in Ag-negative mature LC. Inhibition of HLA-DR was independent of expression of unique short US2-US11 region gene products by HCMV. Indeed, exposure to UV-inactivated virus, but not to conditioned medium from infected cells, was sufficient to reduce HLA-DR on mature LC, implicating particle binding/penetration in this effect. Reduced surface levels reflected an altered distribution of HLA-DR because total cellular HLA-DR was not diminished. Accumulation of HLA-DR was not explained by altered cathepsin S activity. Mature, peptide-loaded HLA-DR molecules were retained within cells, as assessed by the proportion of SDS-stable HLA-DR dimers. A block in egress was implicated, as endocytosis of surface HLA-DR was not increased. Immunofluorescence microscopy corroborated the intracellular retention of HLA-DR and revealed markedly fewer HLA-DR-positive dendritic projections in infected mature LC. Unexpectedly, light microscopic analyses showed a dramatic loss of the dendrites themselves and immunofluorescence revealed that cytoskeletal elements crucial for the formation and maintenance of dendrites are disrupted in viral Ag-positive cells. Consistent with these dendrite effects, HCMV-infected mature LC exhibit markedly reduced chemotaxis in response to lymphoid chemokines. Thus, HCMV impedes MHC class II molecule trafficking, dendritic projections, and migration of mature LC. These changes likely contribute to the reduced activation of CD4+ T cells by HCMV-infected mature LC.

  12. Collagen matrix as a tool in studying fibroblastic cell behavior.

    Science.gov (United States)

    Kanta, Jiří

    2015-01-01

    Type I collagen is a fibrillar protein, a member of a large family of collagen proteins. It is present in most body tissues, usually in combination with other collagens and other components of extracellular matrix. Its synthesis is increased in various pathological situations, in healing wounds, in fibrotic tissues and in many tumors. After extraction from collagen-rich tissues it is widely used in studies of cell behavior, especially those of fibroblasts and myofibroblasts. Cells cultured in a classical way, on planar plastic dishes, lack the third dimension that is characteristic of body tissues. Collagen I forms gel at neutral pH and may become a basis of a 3D matrix that better mimics conditions in tissue than plastic dishes.

  13. Assembly of collagen into microribbons: effects of pH and electrolytes.

    Science.gov (United States)

    Jiang, Fengzhi; Hörber, Heinrich; Howard, Jonathon; Müller, Daniel J

    2004-12-01

    Collagen represents the major structural protein of the extracellular matrix. Elucidating the mechanism of its assembly is important for understanding many cell biological and medical processes as well as for tissue engineering and biotechnological approaches. In this work, conditions for the self-assembly of collagen type I molecules on a supporting surface were characterized. By applying hydrodynamic flow, collagen assembled into ultrathin ( approximately 3 nm) highly anisotropic ribbon-like structures coating the entire support. We call these novel collagen structures microribbons. High-resolution atomic force microscopy topographs show that subunits of these microribbons are built by fibrillar structures. The smallest units of these fibrillar structures have cross-sections of approximately 3 x 5nm, consistent with current models of collagen microfibril formation. By varying the pH and electrolyte of the buffer solution during the self-assembly process, the microfibril density and contacts formed within this network could be controlled. Under certain electrolyte compositions the microribbons and microfibers display the characteristic D-periodicity of approximately 65 nm observed for much thicker collagen fibrils. In addition to providing insight into the mechanism of collagen assembly, the ultraflat collagen matrices may also offer novel ways to bio-functionalize surfaces.

  14. Hydroxychloroquine induces inhibition of collagen type II and oligomeric matrix protein COMP expression in chondrocytes

    Directory of Open Access Journals (Sweden)

    Tao Li

    2016-06-01

    Full Text Available The aim of this study was to investigate the effect of hydroxychloroquine on the level of collagen type II and oligomeric matrix protein COMP expression in chondrocytes of knee osteoarthritis. The rate of growth in cartilage cells was analyzed using MTT assay whereas the Col-2 and COMP expression levels were detected by RT-PCR and Western blotting analyses. For the determination of MMP-13 expression, ELISA test was used. The results revealed no significant change in the rate of cartilage cell proliferation in hydroxychloroquine-treated compared to untreated cells. Hydroxychloro-quine treatment exhibited concentration- and time-dependent effect on the inhibition of collagen type II and COMP expression in chondrocytes. However, its treatment caused a significant enhancement in the expression levels of MMP-13 compared to the untreated cells. Therefore, hydroxychloro-quine promotes expression of MMP-13 and reduces collagen type II and COMP expression levels in chondrocytes without any significant change in the growth of cells.

  15. Second-harmonic generation imaging of collagen in ancient bone

    Directory of Open Access Journals (Sweden)

    B. Thomas

    2017-12-01

    Full Text Available Second-harmonic generation imaging (SHG captures triple helical collagen molecules near tissue surfaces. Biomedical research routinely utilizes various imaging software packages to quantify SHG signals for collagen content and distribution estimates in modern tissue samples including bone. For the first time using SHG, samples of modern, medieval, and ice age bones were imaged to test the applicability of SHG to ancient bone from a variety of ages, settings, and taxa. Four independent techniques including Raman spectroscopy, FTIR spectroscopy, radiocarbon dating protocols, and mass spectrometry-based protein sequencing, confirm the presence of protein, consistent with the hypothesis that SHG imaging detects ancient bone collagen. These results suggest that future studies have the potential to use SHG imaging to provide new insights into the composition of ancient bone, to characterize ancient bone disorders, to investigate collagen preservation within and between various taxa, and to monitor collagen decay regimes in different depositional environments.

  16. Enhancing amine terminals in an amine-deprived collagen matrix.

    LENUS (Irish Health Repository)

    Tiong, William H C

    2008-10-21

    Collagen, though widely used as a core biomaterial in many clinical applications, is often limited by its rapid degradability which prevents full exploitation of its potential in vivo. Polyamidoamine (PAMAM) dendrimer, a highly branched macromolecule, possesses versatile multiterminal amine surface groups that enable them to be tethered to collagen molecules and enhance their potential. In this study, we hypothesized that incorporation of PAMAM dendrimer in a collagen matrix through cross-linking will result in a durable, cross-linked collagen biomaterial with free -NH 2 groups available for further multi-biomolecular tethering. The aim of this study was to assess the physicochemical properties of a G1 PAMAM cross-linked collagen matrix and its cellular sustainability in vitro. Different amounts of G1 PAMAM dendrimer (5 or 10 mg) were integrated into bovine-derived collagen matrices through a cross-linking process, mediated by 5 or 25 mM 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) in 5 mM N-hydroxysuccinimide (NHS) and 50 mM 2-morpholinoethane sulfonic acid buffer at pH 5.5. The physicochemical properties of resultant matrices were investigated with scanning electron microscopy (SEM), collagenase degradation assay, differential scanning calorimetry (DSC), Fourier transform infrared (FTIR) spectra, and ninhydrin assay. Cellular sustainability of the matrices was assessed with Alamar Blue assay and SEM. There was no significant difference in cellular behavior between the treated and nontreated groups. However, the benefit of incorporating PAMAM in the cross-linking reaction was limited when higher concentrations of either agent were used. These results confirm the hypothesis that PAMAM dendrimer can be incorporated in the collagen cross-linking process in order to modulate the properties of the resulting cross-linked collagen biomaterial with free -NH 2 groups available for multi-biomolecular tethering.

  17. Activation of PPARs α, β/δ, and γ Impairs TGF-β1-Induced Collagens' Production and Modulates the TIMP-1/MMPs Balance in Three-Dimensional Cultured Chondrocytes

    Directory of Open Access Journals (Sweden)

    Paul-Emile Poleni

    2010-01-01

    Full Text Available Background and Purpose. We investigated the potency of Peroxisome Proliferators-Activated Receptors (PPARs α, β/δ, and γ agonists to modulate Transforming Growth Factor-β1 (TGF-β1- induced collagen production or changes in Tissue Inhibitor of Matrix Metalloproteinase- (TIMP- 1/Matrix Metalloproteinase (MMP balance in rat chondrocytes embedded in alginate beads. Experimental Approach. Collagen production was evaluated by quantitative Sirius red staining, while TIMP-1 protein levels and global MMP (-1, -2, -3, -7, and -9 or specific MMP-13 activities were measured by ELISA and fluorigenic assays in culture media, respectively. Levels of mRNA for type II collagen, TIMP-1, and MMP-3 & 13 were quantified by real-time PCR. Key Results. TGF-β1 increased collagen deposition and type II collagen mRNA levels, while inducing TIMP-1 mRNA and protein expression. In contrast, it decreased global MMP or specific MMP-13 activities, while decreasing MMP-3 or MMP-13 mRNA levels. PPAR agonists reduced most of the effects of TGF-β1 on changes in collagen metabolism and TIMP-1/MMP balance in rat in a PPAR-dependent manner, excepted for Wy14643 on MMP activities. Conclusions and Implications. PPAR agonists reduce TGF-β1-modulated ECM turnover and inhibit chondrocyte activities crucial for collagen biosynthesis, and display a different inhibitory profile depending on selectivity for PPAR isotypes.

  18. Peroxidasin-mediated crosslinking of collagen IV is independent of NADPH oxidases

    Directory of Open Access Journals (Sweden)

    Gábor Sirokmány

    2018-06-01

    Full Text Available Collagen IV is a major component of the basement membrane in epithelial tissues. The NC1 domains of collagen IV protomers are covalently linked together through sulfilimine bonds, the formation of which is catalyzed by peroxidasin. Although hydrogen peroxide is essential for this reaction, the exact source of the oxidant remains elusive. Members of the NOX/DUOX NADPH oxidase family are specifically devoted to the production of superoxide and hydrogen peroxide. Our aim in this study was to find out if NADPH oxidases contribute in vivo to the formation of collagen IV sulfilimine crosslinks. We used multiple genetically modified in vivo model systems to provide a detailed assessment of this question. Our data indicate that in various peroxidasin-expressing tissues sulfilimine crosslinks between the NC1 domains of collagen IV can be readily detected in the absence of functioning NADPH oxidases. We also analyzed how subatmospheric oxygen levels influence the collagen IV network in collagen-producing cultured cells with rapid matrix turnover. We showed that collagen IV crosslinks remain intact even under strongly hypoxic conditions. Our hypothesis is that during collagen IV network formation PXDN cooperates with a NOX/DUOX-independent H2O2 source that is functional also at very low ambient oxygen levels. Keywords: Peroxidasin, NADPH oxidase, Hydrogen peroxide, Collagen IV, Sulfilimine

  19. Regulation of collagen biosynthesis in cultured bovine aortic smooth muscle cells

    International Nuclear Information System (INIS)

    Stepp, M.A.

    1986-01-01

    Aortic smooth muscles cells have been implicated in the etiology of lesions which occur in atherosclerosis and hypertension. Both diseases involve proliferation of smooth muscle cells and accumulation of excessive amounts of extracellular matrix proteins, including collagen type I and type III produced by the smooth muscle cells. To better understand the sites of regulation of collagen biosynthesis and to correlate these with the growth rate of the cells, cultured bovine aortic smooth muscle cells were studied as a function of the number of days (3 to 14) in second passage. Cells grew rapidly up to day 6 when confluence was reached. The total incorporation of [ 3 H]-proline into proteins was highest at day 3 and decreased to a constant level after the cultures reached confluence. In contrast, collagen protein production was lowest before confluence and continued to increase over the entire time course of the experiments. cDNA clones for the α1 and α2 chains of type I and the α1 chain of type III collagen were used to quantitate the steady state level of collagen mRNAs. RNA was tested in a cell-free translation system. Changes in the translational activity of collagen mRNAs parallelled the observed increases in collagen protein production. Thus, at later time points, collagen mRNAs are more active in directing synthesis of preprocollagens, even though less collagen mRNA is present. The conclusion is that the site of regulation of the expression of collagen genes is a function of the growth rate of cultured smooth muscle cells

  20. Thermal helix-coil transition in UV irradiated collagen from rat tail tendon.

    Science.gov (United States)

    Sionkowska, A; Kamińska, A

    1999-05-01

    The thermal helix-coil transition in UV irradiated collagen solution, collagen film and pieces of rat tail tendon (RTT) were compared. Their thermal stability's were determined by differential scanning calorimeter (DSC) and by viscometric measurements. The denaturation temperatures of collagen solution, film and pieces of RTT were different. The helix-coil transition occur near 40 degrees C in collagen solution, near 112 degrees C in collagen film, and near 101 degrees C in pieces of RTT. After UV irradiation the thermal helix-coil transition of collagen samples were changed. These changes depend on the degree of hydratation.

  1. Collagen films with stabilized liquid crystalline phases and concerns on osteoblast behaviors

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Minjian; Ding, Shan; Min, Xiang; Jiao, Yanpeng, E-mail: tjiaoyp@jnu.edu.cn; Li, Lihua; Li, Hong; Zhou, Changren, E-mail: tcrz9@jnu.edu.cn

    2016-01-01

    To duplicate collagen's in vivo liquid crystalline (LC) phase and investigate the relationship between the morphology of LC collagen and osteoblast behavior, a self-assembly method was introduced for preparing collagen films with a stabilized LC phase. The LC texture and topological structure of the films before and after stabilization were observed with polarizing optical microscopy, scanning electron microscopy (SEM), and atomic force microscopy (AFM). The relationship between the collagen films and osteoblast behavior was studied with the 3-(4,5)-dimethylthiahiazo(-z-y1)-3,5-di-phenytetrazoliumromide method, proliferation index detection, alkaline phosphatase measurements, osteocalcin assay, inverted microscopy, SEM observation, AFM observation, and cytoskeleton fluorescence staining. The results showed that the LC collagen film had continuously twisting orientations in the cholesteric phase with a typical series of arced patterns. The collagen fibers assembled in a well-organized orientation in the LC film. Compared to the non-LC film, the LC collagen film can promote cell proliferation, and increase ALP and osteocalcin expression, revealing a contact guide effect on osteoblasts. - Highlights: • Collagen film with liquid crystalline (LC) phase was observed by POM, SEM and AFM. • The effect of LC collagen film on osteoblasts behaviors was studied in detail. • LC collagen film promoted osteoblast proliferation and osteogenesis activity.

  2. Studies on collagen-tannic acid-collagenase ternary system: Inhibition of collagenase against collagenolytic degradation of extracellular matrix component of collagen.

    Science.gov (United States)

    Krishnamoorthy, Ganesan; Sehgal, Praveen Kumar; Mandal, Asit Baran; Sadulla, Sayeed

    2012-06-01

    We report the detailed studies on the inhibitory effect of tannic acid (TA) on Clostridium histolyticum collagenase (ChC) activity against degradation of extracellular matrix component of collagen. The TA treated collagen exhibited 64% resistance against collagenolytic hydrolysis by ChC, whereas direct interaction of TA with ChC exhibited 99% inhibition against degradation of collagen and the inhibition was found to be concentration dependant. The kinetic inhibition of ChC has been deduced from the extent of hydrolysis of N-[3-(2-furyl) acryloyl]-Leu-Gly-Pro-Ala (FALGPA). This data provides a selective competitive mode of inhibition on ChC activity seems to be influenced strongly by the nature and structure of TA. TA showed inhibitor activity against the ChC by molecular docking method. This result demonstrated that TA containing digalloyl radical possess the ability to inhibit the ChC. The inhibition of ChC in gaining new insight into the mechanism of stabilization of collagen by TA is discussed.

  3. Effects of isopropanol on collagen fibrils in new parchment

    Directory of Open Access Journals (Sweden)

    Gonzalez Lee G

    2012-03-01

    Full Text Available Abstract Background Isopropanol is widely used by conservators to relax the creases and folds of parchment artefacts. At present, little is known of the possible side effects of the chemical on parchments main structural component- collagen. This study uses X-ray Diffraction to investigate the effects of a range of isopropanol concentrations on the dimensions of the nanostructure of the collagen component of new parchment. Results It is found in this study that the packing features of the collagen molecules within the collagen fibril are altered by exposure to isopropanol. The results suggest that this chemical treatment can induce a loss of structural water from the collagen within parchment and thus a rearrangement of intermolecular bonding. This study also finds that the effects of isopropanol treatment are permanent to parchment artefacts and cannot be reversed with rehydration using deionised water. Conclusions This study has shown that isopropanol induces permanent changes to the packing features of collagen within parchment artefacts and has provided scientific evidence that its use to remove creases and folds on parchment artefacts will cause structural change that may contribute to long-term deterioration of parchment artefacts. This work provides valuable information that informs conservation practitioners regarding the use of isopropanol on parchment artefacts.

  4. Higher iron bioavailability of a human-like collagen iron complex.

    Science.gov (United States)

    Zhu, Chenhui; Yang, Fan; Fan, Daidi; Wang, Ya; Yu, Yuanyuan

    2017-07-01

    Iron deficiency remains a public health problem around the world due to low iron intake and/or bioavailability. FeSO 4 , ferrous succinate, and ferrous glycinate chelate are rich in iron but have poor bioavailability. To solve the problem of iron deficiency, following previous research studies, a thiolated human-like collagen-ironcomplex supplement with a high iron content was prepared in an anaerobic workstation. In addition, cell viability tests were evaluated after conducting an MTT assay, and a quantitative analysis of the thiolated human-like collagen-iron digesta samples was performed using the SDS-PAGE method coupled with gel filtration chromatography. The iron bioavailability was assessed using Caco-2 cell monolayers and iron-deficiency anemia mice models. The results showed that (1) one mole of thiolated human-like collagen-iron possessed approximately 35.34 moles of iron; (2) thiolated human-like collagen-iron did not exhibit cytotoxity and (3) thiolated human-like collagen- iron digesta samples had higher bioavailability than other iron supplements, including FeSO 4 , ferrous succinate, ferrous glycine chelate and thiolated human-like collagen-Fe iron. Finally, the iron bioavailability was significantly enhanced by vitamin C. These results indicated that thiolated human-like collagen-iron is a promising iron supplement for use in the future.

  5. Surface characterization of collagen/elastin based biomaterials for tissue regeneration

    International Nuclear Information System (INIS)

    Skopinska-Wisniewska, J.; Sionkowska, A.; Kaminska, A.; Kaznica, A.; Jachimiak, R.; Drewa, T.

    2009-01-01

    Collagen and elastin are the main proteins of extracellular matrix. Collagen plays a crucial role in tensile strength of tissues, whereas elastin provides resilience to many organs. Both biopolymers are readily available and biocompatible. These properties point out that collagen and elastin are good components of materials for many potential medical applications. The surface properties of biomaterials play an important role in biomedicine as the majority of biological reactions occur on the surface of implanted materials. One of the methods of surface modification is UV-irradiation. The exposition of the biomaterial on ultraviolet light can alterate surface properties of the materials, their chemical stability, swelling properties and mechanical properties as well. The aim of our work was to study the surface properties and biocompatibility of new collagen/elastin based biomaterials and consideration of the influence of ultraviolet light on these properties. The surface properties of collagen/elastin based biomaterials modified by UV-irradiation were studied using the technique of atomic force microscopy (AFM) and contact angle measurements. On the basis of the results the surface free energy and its polar component was calculated using Owens-Wendt method. To assess the biological performance of films based on collagen, elastin and their blends, the response of 3T3 cell was investigated. It was found that the surface of collagen/elastin film is enriched in less polar component - collagen. Exposition on UV light increases polarity of collagen/elastin based films, due to photooxidation process. The AFM images have shown that topography and roughness of the materials had been also affected by UV-irradiation. The changes in surface properties influence on interaction between the material's surface and cells. The investigation of 3T3 cells grown on films based on collagen, elastin and their blends, leads to the conclusion that higher content of elastin in biomaterial

  6. Surface characterization of collagen/elastin based biomaterials for tissue regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Skopinska-Wisniewska, J., E-mail: joanna@chem.uni.torun.pl [Faculty of Chemistry, Nicolaus Copernicus University, Gagarin 7, 87-100 Torun (Poland); Sionkowska, A.; Kaminska, A. [Faculty of Chemistry, Nicolaus Copernicus University, Gagarin 7, 87-100 Torun (Poland); Kaznica, A.; Jachimiak, R.; Drewa, T. [Collegium Medicum, Nicolaus Copernicus University, Karlowicz 24, 85-092 Bydgoszcz (Poland)

    2009-07-15

    Collagen and elastin are the main proteins of extracellular matrix. Collagen plays a crucial role in tensile strength of tissues, whereas elastin provides resilience to many organs. Both biopolymers are readily available and biocompatible. These properties point out that collagen and elastin are good components of materials for many potential medical applications. The surface properties of biomaterials play an important role in biomedicine as the majority of biological reactions occur on the surface of implanted materials. One of the methods of surface modification is UV-irradiation. The exposition of the biomaterial on ultraviolet light can alterate surface properties of the materials, their chemical stability, swelling properties and mechanical properties as well. The aim of our work was to study the surface properties and biocompatibility of new collagen/elastin based biomaterials and consideration of the influence of ultraviolet light on these properties. The surface properties of collagen/elastin based biomaterials modified by UV-irradiation were studied using the technique of atomic force microscopy (AFM) and contact angle measurements. On the basis of the results the surface free energy and its polar component was calculated using Owens-Wendt method. To assess the biological performance of films based on collagen, elastin and their blends, the response of 3T3 cell was investigated. It was found that the surface of collagen/elastin film is enriched in less polar component - collagen. Exposition on UV light increases polarity of collagen/elastin based films, due to photooxidation process. The AFM images have shown that topography and roughness of the materials had been also affected by UV-irradiation. The changes in surface properties influence on interaction between the material's surface and cells. The investigation of 3T3 cells grown on films based on collagen, elastin and their blends, leads to the conclusion that higher content of elastin in

  7. Structure–mechanics relationships of collagen fibrils in the osteogenesis imperfecta mouse model

    Science.gov (United States)

    Andriotis, O. G.; Chang, S. W.; Vanleene, M.; Howarth, P. H.; Davies, D. E.; Shefelbine, S. J.; Buehler, M. J.; Thurner, P. J.

    2015-01-01

    The collagen molecule, which is the building block of collagen fibrils, is a triple helix of two α1(I) chains and one α2(I) chain. However, in the severe mouse model of osteogenesis imperfecta (OIM), deletion of the COL1A2 gene results in the substitution of the α2(I) chain by one α1(I) chain. As this substitution severely impairs the structure and mechanics of collagen-rich tissues at the tissue and organ level, the main aim of this study was to investigate how the structure and mechanics are altered in OIM collagen fibrils. Comparing results from atomic force microscopy imaging and cantilever-based nanoindentation on collagen fibrils from OIM and wild-type (WT) animals, we found a 33% lower indentation modulus in OIM when air-dried (bound water present) and an almost fivefold higher indentation modulus in OIM collagen fibrils when fully hydrated (bound and unbound water present) in phosphate-buffered saline solution (PBS) compared with WT collagen fibrils. These mechanical changes were accompanied by an impaired swelling upon hydration within PBS. Our experimental and atomistic simulation results show how the structure and mechanics are altered at the individual collagen fibril level as a result of collagen gene mutation in OIM. We envisage that the combination of experimental and modelling approaches could allow mechanical phenotyping at the collagen fibril level of virtually any alteration of collagen structure or chemistry. PMID:26468064

  8. Preparation and structure characterization of soluble bone collagen ...

    African Journals Online (AJOL)

    In this study, G-25 gel chromatography, X-diffraction, scanning electron microscopy (SEM), UV and Fourier transform infrared spectroscopy (FTIR) were used to analyze soluble collagen peptides chelating calcium. Collagen peptide hydrolysis can be divided into four components using G-25 gel chromatography.

  9. Osmotic pressure induced tensile forces in tendon collagen.

    Science.gov (United States)

    Masic, Admir; Bertinetti, Luca; Schuetz, Roman; Chang, Shu-Wei; Metzger, Till Hartmut; Buehler, Markus J; Fratzl, Peter

    2015-01-22

    Water is an important component of collagen in tendons, but its role for the function of this load-carrying protein structure is poorly understood. Here we use a combination of multi-scale experimentation and computation to show that water is an integral part of the collagen molecule, which changes conformation upon water removal. The consequence is a shortening of the molecule that translates into tensile stresses in the range of several to almost 100 MPa, largely surpassing those of about 0.3 MPa generated by contractile muscles. Although a complete drying of collagen would be relevant for technical applications, such as the fabrication of leather or parchment, stresses comparable to muscle contraction already occur at small osmotic pressures common in biological environments. We suggest, therefore, that water-generated tensile stresses may play a role in living collagen-based materials such as tendon or bone.

  10. Collagen derived serum markers in carcinoma of the prostate

    DEFF Research Database (Denmark)

    Rudnicki, M; Jensen, L T; Iversen, P

    1995-01-01

    Three new collagen markers deriving from the collagenous matrix, e.g. carboxyterminal propeptide of type I procollagen (PICP), carboxy-terminal pyridinoline cross-linked telopeptide of type I collagen (ICTP), and aminoterminal propeptide of type III procollagen (PIIINP) were used for the diagnose......, ICTP, and PICP did not differ between these two groups. In patients with metastatic prostatic cancer all five markers were increased compared to the level measured in patients with localized cancer (p

  11. Structural properties of pepsin-solubilized collagen acylated by lauroyl chloride along with succinic anhydride

    International Nuclear Information System (INIS)

    Li, Conghu; Tian, Zhenhua; Liu, Wentao; Li, Guoying

    2015-01-01

    The structural properties of pepsin-solubilized calf skin collagen acylated by lauroyl chloride along with succinic anhydride were investigated in this paper. Compared with native collagen, acylated collagen retained the unique triple helix conformation, as determined by amino acid analysis, circular dichroism and X-ray diffraction. Meanwhile, the thermostability of acylated collagen using thermogravimetric measurements was enhanced as the residual weight increased by 5%. With the temperature increased from 25 to 115 °C, the secondary structure of native and acylated collagens using Fourier transform infrared spectroscopy measurements was destroyed since the intensity of the major amide bands decreased and the positions of the major amide bands shifted to lower wavenumber, respectively. Meanwhile, two-dimensional correlation spectroscopy revealed that the most sensitive bands for acylated and native collagens were amide I and II bands, respectively. Additionally, the corresponding order of the groups between native and acylated collagens was different and the correlation degree for acylated collagen was weaker than that of native collagen, suggesting that temperature played a small influence on the conformation of acylated collagen, which might be concluded that the hydrophobic interaction improved the thermostability of collagen. - Highlights: • Acylated collagen retained the unique triple helix conformation. • Acylated collagen had stronger thermostability than native collagen. • Amide I was the most sensitive band to the temperature for acylated collagen. • Amide II was the most sensitive band to the temperature for native collagen. • Auto-peak at 1680 cm −1 for acylated collagen disappeared at higher temperature

  12. Impaired intestinal wound healing in Fhl2-deficient mice is due to disturbed collagen metabolism

    International Nuclear Information System (INIS)

    Kirfel, Jutta; Pantelis, Dimitrios; Kabba, Mustapha; Kahl, Philip; Roeper, Anke; Kalff, Joerg C.; Buettner, Reinhard

    2008-01-01

    Four and one half LIM domain protein FHL2 participates in many cellular processes involved in tissue repair such as regulation of gene expression, cytoarchitecture, cell adhesion, migration and signal transduction. The repair process after wounding is initiated by the release of peptides and bioactive lipids. These molecules induce synthesis and deposition of a provisional extracellular matrix. We showed previously that sphingosine-1-phosphate (S1P) triggers a signal transduction cascade mediating nuclear translocation of FHL2 in response to activation of the RhoA GTPase. Our present study shows that FHL2 is an important signal transducer influencing the outcome of intestinal anastomotic healing. Early wound healing is accompanied by reconstitution and remodelling of the extracellular matrix and collagen is primarily responsible for wound strength. Our results show that impaired intestinal wound healing in Fhl2-deficient mice is due to disturbed collagen III metabolism. Impaired collagen III synthesis reduced the mechanical stability of the anastomoses and led to lower bursting pressure in Fhl2-deficient mice after surgery. Our data confirm that FHL2 is an important factor regulating collagen expression in the early phase of wound healing, and thereby is critically involved in the physiologic process of anastomosis healing after bowel surgery and thus may represent a new therapeutic target

  13. Neurostimulation of the cholinergic anti-inflammatory pathway ameliorates disease in rat collagen-induced arthritis.

    Directory of Open Access Journals (Sweden)

    Yaakov A Levine

    Full Text Available The inflammatory reflex is a physiological mechanism through which the nervous system maintains immunologic homeostasis by modulating innate and adaptive immunity. We postulated that the reflex might be harnessed therapeutically to reduce pathological levels of inflammation in rheumatoid arthritis by activating its prototypical efferent arm, termed the cholinergic anti-inflammatory pathway. To explore this, we determined whether electrical neurostimulation of the cholinergic anti-inflammatory pathway reduced disease severity in the collagen-induced arthritis model.Rats implanted with vagus nerve cuff electrodes had collagen-induced arthritis induced and were followed for 15 days. Animals underwent active or sham electrical stimulation once daily from day 9 through the conclusion of the study. Joint swelling, histology, and levels of cytokines and bone metabolism mediators were assessed.Compared with sham treatment, active neurostimulation of the cholinergic anti-inflammatory pathway resulted in a 52% reduction in ankle diameter (p = 0.02, a 57% reduction in ankle diameter (area under curve; p = 0.02 and 46% reduction overall histological arthritis score (p = 0.01 with significant improvements in inflammation, pannus formation, cartilage destruction, and bone erosion (p = 0.02, accompanied by numerical reductions in systemic cytokine levels, not reaching statistical significance. Bone erosion improvement was associated with a decrease in serum levels of receptor activator of NF-κB ligand (RANKL from 132±13 to 6±2 pg/mL (mean±SEM, p = 0.01.The severity of collagen-induced arthritis is reduced by neurostimulation of the cholinergic anti-inflammatory pathway delivered using an implanted electrical vagus nerve stimulation cuff electrode, and supports the rationale for testing this approach in human inflammatory disorders.

  14. Double thermal transitions of type I collagen in acidic solution.

    Science.gov (United States)

    Liu, Yan; Liu, Lingrong; Chen, Mingmao; Zhang, Qiqing

    2013-01-01

    Contributed equally to this work. To further understand the origin of the double thermal transitions of collagen in acidic solution induced by heating, the denaturation of acidic soluble collagen was investigated by micro-differential scanning calorimeter (micro-DSC), circular dichroism (CD), dynamic laser light scattering (DLLS), transmission electron microscopy (TEM), and two-dimensional (2D) synchronous fluorescence spectrum. Micro-DSC experiments revealed that the collagen exhibited double thermal transitions, which were located within 31-37 °C (minor thermal transition, T(s) ∼ 33 °C) and 37-55 °C (major thermal transition, T(m) ∼ 40 °C), respectively. The CD spectra suggested that the thermal denaturation of collagen resulted in transition from polyproline II type structure to unordered structure. The DLLS results showed that there were mainly two kinds of collagen fibrillar aggregates with different sizes in acidic solution and the larger fibrillar aggregates (T(p2) = 40 °C) had better heat resistance than the smaller one (T(p1) = 33 °C). TEM revealed that the depolymerization of collagen fibrils occurred and the periodic cross-striations of collagen gradually disappeared with increasing temperature. The 2D fluorescence correlation spectra were also applied to investigate the thermal responses of tyrosine and phenylalanine residues at the molecular level. Finally, we could draw the conclusion that (1) the minor thermal transition was mainly due to the defibrillation of the smaller collagen fibrillar aggregates and the unfolding of a little part of triple helices; (2) the major thermal transition primarily arose from the defibrillation of the larger collagen fibrillar aggregates and the complete denaturation of the majority part of triple helices.

  15. Functional divergence of platelet protein kinase C (PKC) isoforms in thrombus formation on collagen.

    Science.gov (United States)

    Gilio, Karen; Harper, Matthew T; Cosemans, Judith M E M; Konopatskaya, Olga; Munnix, Imke C A; Prinzen, Lenneke; Leitges, Michael; Liu, Qinghang; Molkentin, Jeffery D; Heemskerk, Johan W M; Poole, Alastair W

    2010-07-23

    Arterial thrombosis, a major cause of myocardial infarction and stroke, is initiated by activation of blood platelets by subendothelial collagen. The protein kinase C (PKC) family centrally regulates platelet activation, and it is becoming clear that the individual PKC isoforms play distinct roles, some of which oppose each other. Here, for the first time, we address all four of the major platelet-expressed PKC isoforms, determining their comparative roles in regulating platelet adhesion to collagen and their subsequent activation under physiological flow conditions. Using mouse gene knock-out and pharmacological approaches in human platelets, we show that collagen-dependent alpha-granule secretion and thrombus formation are mediated by the conventional PKC isoforms, PKCalpha and PKCbeta, whereas the novel isoform, PKC, negatively regulates these events. PKCdelta also negatively regulates thrombus formation but not alpha-granule secretion. In addition, we demonstrate for the first time that individual PKC isoforms differentially regulate platelet calcium signaling and exposure of phosphatidylserine under flow. Although platelet deficient in PKCalpha or PKCbeta showed reduced calcium signaling and phosphatidylserine exposure, these responses were enhanced in the absence of PKC. In summary therefore, this direct comparison between individual subtypes of PKC, by standardized methodology under flow conditions, reveals that the four major PKCs expressed in platelets play distinct non-redundant roles, where conventional PKCs promote and novel PKCs inhibit thrombus formation on collagen.

  16. Functional Divergence of Platelet Protein Kinase C (PKC) Isoforms in Thrombus Formation on Collagen*

    Science.gov (United States)

    Gilio, Karen; Harper, Matthew T.; Cosemans, Judith M. E. M.; Konopatskaya, Olga; Munnix, Imke C. A.; Prinzen, Lenneke; Leitges, Michael; Liu, Qinghang; Molkentin, Jeffery D.; Heemskerk, Johan W. M.; Poole, Alastair W.

    2010-01-01

    Arterial thrombosis, a major cause of myocardial infarction and stroke, is initiated by activation of blood platelets by subendothelial collagen. The protein kinase C (PKC) family centrally regulates platelet activation, and it is becoming clear that the individual PKC isoforms play distinct roles, some of which oppose each other. Here, for the first time, we address all four of the major platelet-expressed PKC isoforms, determining their comparative roles in regulating platelet adhesion to collagen and their subsequent activation under physiological flow conditions. Using mouse gene knock-out and pharmacological approaches in human platelets, we show that collagen-dependent α-granule secretion and thrombus formation are mediated by the conventional PKC isoforms, PKCα and PKCβ, whereas the novel isoform, PKCθ, negatively regulates these events. PKCδ also negatively regulates thrombus formation but not α-granule secretion. In addition, we demonstrate for the first time that individual PKC isoforms differentially regulate platelet calcium signaling and exposure of phosphatidylserine under flow. Although platelet deficient in PKCα or PKCβ showed reduced calcium signaling and phosphatidylserine exposure, these responses were enhanced in the absence of PKCθ. In summary therefore, this direct comparison between individual subtypes of PKC, by standardized methodology under flow conditions, reveals that the four major PKCs expressed in platelets play distinct non-redundant roles, where conventional PKCs promote and novel PKCs inhibit thrombus formation on collagen. PMID:20479008

  17. The Collagen Binding Proteins of Streptococcus mutans and Related Streptococci

    Science.gov (United States)

    Avilés-Reyes, Alejandro; Miller, James H.; Lemos, José A.; Abranches, Jacqueline

    2016-01-01

    Summary The ability of Streptococcus mutans to interact with collagen through the expression of collagen-binding proteins (CBPs) bestows this oral pathogen with an alternative to the sucrose-dependent mechanism of colonization classically attributed to caries development. Based on the abundance and distribution of collagen throughout the human body, stringent adherence to this molecule grants S. mutans with the opportunity to establish infection at different host sites. Surface proteins, such as SpaP, WapA, Cnm and Cbm, have been shown to bind collagen in vitro, and it has been suggested that these molecules play a role in colonization of oral and extra-oral tissues. However, robust collagen binding is not achieved by all strains of S. mutans, particularly those that lack Cnm or Cbm. These observations merit careful dissection of the contribution from these different CBPs towards tissue colonization and virulence. In this review, we will discuss the current understanding of mechanisms utilized by S. mutans and related streptococci to colonize collagenous tissues, and the possible contribution of CBPs to infections in different sites of the host. PMID:26991416

  18. Colloidal Gold--Collagen Protein Core--Shell Nanoconjugate: One-Step Biomimetic Synthesis, Layer-by-Layer Assembled Film, and Controlled Cell Growth.

    Science.gov (United States)

    Xing, Ruirui; Jiao, Tifeng; Yan, Linyin; Ma, Guanghui; Liu, Lei; Dai, Luru; Li, Junbai; Möhwald, Helmuth; Yan, Xuehai

    2015-11-11

    The biogenic synthesis of biomolecule-gold nanoconjugates is of key importance for a broad range of biomedical applications. In this work, a one-step, green, and condition-gentle strategy is presented to synthesize stable colloidal gold-collagen core-shell nanoconjugates in an aqueous solution at room temperature, without use of any reducing agents and stabilizing agents. It is discovered that electrostatic binding between gold ions and collagen proteins and concomitant in situ reduction by hydroxyproline residues are critically responsible for the formation of the core-shell nanoconjugates. The film formed by layer-by-layer assembly of such colloidal gold-collagen nanoconjugates can notably improve the mechanical properties and promote cell adhesion, growth, and differentiation. Thus, the colloidal gold-collagen nanoconjugates synthesized by such a straightforward and clean manner, analogous to a biomineralization pathway, provide new alternatives for developing biologically based hybrid biomaterials toward a range of therapeutic and diagnostic applications.

  19. Inelastic behaviour of collagen networks in cell–matrix interactions and mechanosensation

    Science.gov (United States)

    Mohammadi, Hamid; Arora, Pamma D.; Simmons, Craig A.; Janmey, Paul A.; McCulloch, Christopher A.

    2015-01-01

    The mechanical properties of extracellular matrix proteins strongly influence cell-induced tension in the matrix, which in turn influences cell function. Despite progress on the impact of elastic behaviour of matrix proteins on cell–matrix interactions, little is known about the influence of inelastic behaviour, especially at the large and slow deformations that characterize cell-induced matrix remodelling. We found that collagen matrices exhibit deformation rate-dependent behaviour, which leads to a transition from pronounced elastic behaviour at fast deformations to substantially inelastic behaviour at slow deformations (1 μm min−1, similar to cell-mediated deformation). With slow deformations, the inelastic behaviour of floating gels was sensitive to collagen concentration, whereas attached gels exhibited similar inelastic behaviour independent of collagen concentration. The presence of an underlying rigid support had a similar effect on cell–matrix interactions: cell-induced deformation and remodelling were similar on 1 or 3 mg ml−1 attached collagen gels while deformations were two- to fourfold smaller in floating gels of high compared with low collagen concentration. In cross-linked collagen matrices, which did not exhibit inelastic behaviour, cells did not respond to the presence of the underlying rigid foundation. These data indicate that at the slow rates of collagen compaction generated by fibroblasts, the inelastic responses of collagen gels, which are influenced by collagen concentration and the presence of an underlying rigid foundation, are important determinants of cell–matrix interactions and mechanosensation. PMID:25392399

  20. Chondrogenic differentiation of mesenchymal stem cells in a leakproof collagen sponge

    International Nuclear Information System (INIS)

    Chen Guoping; Akahane, Daisuke; Kawazoe, Naoki; Yamamoto, Katsuyuki; Tateishi, Tetsuya

    2008-01-01

    A three-dimensional culture of mesenchymal stem cells (MSCs) in a porous scaffold has been developed as a promising strategy for cartilage tissue engineering. The chondrogenic differentiation of MSCs derived from human bone marrow was studied by culturing the cells in a novel scaffold constructed of leakproof collagen sponge. All the surfaces of the collagen sponge except the top were wrapped with a membrane that has pores smaller than the cells to protect against cell leakage during cell seeding. The cells adhered to the collagen, distributed evenly, and proliferated to fill the spaces in the sponge. Cell seeding efficiency was greater than 95%. The MSCs cultured in the collagen sponge in the presence of TGF-β3 and BMP6 expressed a high level of genes encoding type II and type X collagen, sox9, and aggrecan. Histological examination by HE staining indicated that the differentiated cells showed a round morphology. The extracellular matrices were positively stained by safranin O and toluidine blue. Immunostaining with anti-type II collagen and anti-cartilage proteoglycan showed that type II collagen and cartilage proteoglycan were detected around the cells. These results suggest the chondrogenic differentiation of MSCs when cultured in the collagen sponge in the presence of TGF-β3 and BMP6

  1. Collagenous mucosal inflammatory diseases of the gastrointestinal tract.

    Science.gov (United States)

    Freeman, Hugh J

    2005-07-01

    Collagenous mucosal inflammatory diseases involve the columnar-lined gastric and intestinal mucosa and have become recognized increasingly as a significant cause of symptomatic morbidity, particularly in middle-aged and elderly women, especially with watery diarrhea. Still, mechanisms involved in the pathogenesis of this diarrhea remain poorly understood and require further elucidation. The prognosis and long-term outcome of these disorders has been documented only to a limited extent. Recent clinical and pathologic studies have indicated that collagenous mucosal inflammatory disease is a more extensive pathologic process that concomitantly may involve several sites in the gastric and intestinal mucosa. The dominant pathologic lesion is a distinct subepithelial hyaline-like deposit that has histochemical and ultrastructural features of collagen overlying a microscopically defined inflammatory process. An intimate relationship with other autoimmune connective tissue disorders is evident, particularly celiac disease. This is intriguing because these collagenous disorders have not been shown to be gluten dependent. Collagenous mucosal inflammatory disorders may represent a relatively unique but generalized inflammatory response to a multitude of causes, including celiac disease, along with a diverse group of pharmacologic agents. Some recent reports have documented treatment success but histopathologic reversal has been more difficult to substantiate owing to the focal, sometimes extensive nature, of this pathologic process.

  2. Differences in cytocompatibility between collagen, gelatin and keratin

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yanfang; Zhang, Weiwei; Yuan, Jiang, E-mail: jyuan@njnu.edu.cn; Shen, Jian, E-mail: jshen@njnu.edu.cn

    2016-02-01

    Keratins are cysteine-rich intermediate filament proteins found in the cytoskeleton of the epithelial cells and in the matrix of hair, feathers, wool, nails and horns. The natural abundance of cell adhesion sequences, RGD (Arg-Gly-Asp) and LDV (Leu-Asp-Val), makes them suitable for tissue engineering applications. The purpose of our study is to evaluate their cytocompatibility as compared to well-known collagen and gelatin proteins. Herein, collagen, gelatin and keratin were blended with poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) and electrospun to afford nanofibrous mats, respectively. These PHBV/protein composite mats were characterized by field emission scanning electron microscopy (FE-SEM), attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), and dynamic mechanical analysis (DMA). The cytocompatibility was evaluated with cell adhesion, cell viability and cell proliferation. The data from MTT and BrDU revealed that collagen had significantly superior cytocompatibility as compared to gelatin and keratin. Gelatin showed a better cytocompatibility than keratin without statistical significance difference. Finally, we gave the reasons to account for the above conclusions. - Highlights: • Collagen, gelatin and keratin were coelectrospun with PHBV to afford nanofibrous mats. • Cytocompatibility was evaluated with cell adhesion, cell viability and cell proliferation. • Collagen had significantly superior cytocompatibility as compared to gelatin and keratin.

  3. Biological effect of hydrolyzed collagen on bone metabolism.

    Science.gov (United States)

    Daneault, Audrey; Prawitt, Janne; Fabien Soulé, Véronique; Coxam, Véronique; Wittrant, Yohann

    2017-06-13

    Osteoporosis is a chronic and asymptomatic disease characterized by low bone mass and skeletal microarchitectural deterioration, increased risk of fracture, and associated comorbidities most prevalent in the elderly. Due to an increasingly aging population, osteoporosis has become a major health issue requiring innovative disease management. Proteins are important for bone by providing building blocks and by exerting specific regulatory function. This is why adequate protein intake plays a considerable role in both bone development and bone maintenance. More specifically, since an increase in the overall metabolism of collagen can lead to severe dysfunctions and a more fragile bone matrix and because orally administered collagen can be digested in the gut, cross the intestinal barrier, enter the circulation, and become available for metabolic processes in the target tissues, one may speculate that a collagen-enriched diet provides benefits for the skeleton. Collagen-derived products such as gelatin or hydrolyzed collagen (HC) are well acknowledged for their safety from a nutritional point of view; however, what is their impact on bone biology? In this manuscript, we critically review the evidence from literature for an effect of HC on bone tissues in order to determine whether HC may represent a relevant alternative in the design of future nutritional approaches to manage osteoporosis prevention.

  4. Simultaneous topography-guided PRK followed by corneal collagen cross-linking for keratoconus.

    Science.gov (United States)

    Kymionis, George D; Kontadakis, Georgios A; Kounis, George A; Portaliou, Dimitra M; Karavitaki, Alexandra E; Magarakis, Michael; Yoo, Sonia; Pallikaris, Ioannis G

    2009-09-01

    To present the results after simultaneous photorefractive keratectomy (PRK) followed by corneal collagen cross-linking (CXL) for progressive keratoconus. Twelve patients (14 eyes) with progressive keratoconus were prospectively treated with customized topography-guided PRK with the Pulzar Z1 (wavelength 213 nm, CustomVis) immediately followed by corneal collagen CXL with the use of riboflavin and ultraviolet A irradiation. Mean follow-up was 10.69+/-5.95 months (range: 3 to 16 months). Mean preoperative spherical equivalent refraction (SE) was -3.03+/-3.23 diopters (D) and defocus was 4.67+/-3.29 D; at last follow-up SE and defocus were statistically significantly reduced to -1.29+/-2.05 D and 3.04+/-2.53 D, respectively (PPRK followed by CXL seems to be a promising treatment capable of offering functional vision in patients with keratoconus. Copyright 2009, SLACK Incorporated.

  5. Tumor-Associated Macrophages Derived from Circulating Inflammatory Monocytes Degrade Collagen through Cellular Uptake

    DEFF Research Database (Denmark)

    Madsen, Daniel Hargbøl; Jürgensen, Henrik Jessen; Siersbæk, Majken Storm

    2017-01-01

    -associated macrophage (TAM)-like cells that degrade collagen in a mannose receptor-dependent manner. Accordingly, mannose-receptor-deficient mice display increased intratumoral collagen. Whole-transcriptome profiling uncovers a distinct extracellular matrix-catabolic signature of these collagen-degrading TAMs. Lineage......-ablation studies reveal that collagen-degrading TAMs originate from circulating CCR2+ monocytes. This study identifies a function of TAMs in altering the tumor microenvironment through endocytic collagen turnover and establishes macrophages as centrally engaged in tumor-associated collagen degradation. Madsen et...

  6. Polymerized-Type I Collagen Induces Upregulation of Foxp3-Expressing CD4 Regulatory T Cells and Downregulation of IL-17-Producing CD4+ T Cells (Th17 Cells in Collagen-Induced Arthritis

    Directory of Open Access Journals (Sweden)

    Janette Furuzawa-Carballeda

    2012-01-01

    Full Text Available Previous studies showed that polymerized-type I collagen (polymerized collagen exhibits potent immunoregulatory properties. This work evaluated the effect of intramuscular administration of polymerized collagen in early and established collagen-induced arthritis (CIA in mice and analyzed changes in Th subsets following therapy. Incidence of CIA was of 100% in mice challenged with type II collagen. Clinimorphometric analysis showed a downregulation of inflammation after administration of all treatments (P<0.05. Histological analysis showed that the CIA-mice group had extensive bone erosion, pannus and severe focal inflammatory infiltrates. In contrast, there was a remarkable reduction in the severity of arthritis in mice under polymerized collagen, methotrexate or methotrexate/polymerized collagen treatment. Polymerized Collagen but not methotrexate induced tissue joint regeneration. Polymerized Collagen and methotrexate/polymerized collagen but not methotrexate alone induces downregulation of CD4+/IL17A+ T cells and upregulation of Tregs and CD4+/IFN-γ+ T cells. Thus, Polymerized Collagen could be an effective therapeutic agent in early and established rheumatoid arthritis by exerting downregulation of autoimmune inflammation.

  7. Diffusion of MMPs on the surface of collagen fibrils: the mobile cell surface-collagen substratum interface.

    Directory of Open Access Journals (Sweden)

    Ivan E Collier

    Full Text Available Remodeling of the extracellular matrix catalyzed by MMPs is central to morphogenetic phenomena during development and wound healing as well as in numerous pathologic conditions such as fibrosis and cancer. We have previously demonstrated that secreted MMP-2 is tethered to the cell surface and activated by MT1-MMP/TIMP-2-dependent mechanism. The resulting cell-surface collagenolytic complex (MT1-MMP(2/TIMP-2/MMP-2 can initiate (MT1-MMP and complete (MMP-2 degradation of an underlying collagen fibril. The following question remained: What is the mechanism of substrate recognition involving the two structures of relatively restricted mobility, the cell surface enzymatic complex and a collagen fibril embedded in the ECM? Here we demonstrate that all the components of the complex are capable of processive movement on a surface of the collagen fibril. The mechanism of MT1-MMP movement is a biased diffusion with the bias component dependent on the proteolysis of its substrate, not adenosine triphosphate (ATP hydrolysis. It is similar to that of the MMP-1 Brownian ratchet we described earlier. In addition, both MMP-2 and MMP-9 as well as their respective complexes with TIMP-1 and -2 are capable of Brownian diffusion on the surface of native collagen fibrils without noticeable dissociation while the dimerization of MMP-9 renders the enzyme immobile. Most instructive is the finding that the inactivation of the enzymatic activity of MT1-MMP has a detectable negative effect on the cell force developed in miniaturized 3D tissue constructs. We propose that the collagenolytic complex (MT1-MMP(2/TIMP-2/MMP-2 represents a Mobile Cell Surface-Collagen Substratum Interface. The biological implications of MT1-MMP acting as a molecular ratchet tethered to the cell surface in complex with MMP-2 suggest a new mechanism for the role of spatially regulated peri-cellular proteolysis in cell-matrix interactions.

  8. Edaravone suppresses degradation of type II collagen.

    Science.gov (United States)

    Huang, Chen; Liao, Guangjun; Han, Jian; Zhang, Guofeng; Zou, Benguo

    2016-05-13

    Osteoarthritis (OA) is a degenerative joint disease affecting millions of people. The degradation and loss of type II collagen induced by proinflammatory cytokines secreted by chondrocytes, such as factor-α (TNF-α) is an important pathological mechanism to the progression of OA. Edaravone is a potent free radical scavenger, which has been clinically used to treat the neuronal damage following acute ischemic stroke. However, whether Edaravone has a protective effect in articular cartilage hasn't been reported before. In this study, we investigated the chondrocyte protective effects of Edaravone on TNF-α induced degradation of type Ⅱ collagen. And our results indicated that TNF-α treatment resulted in degradation of type Ⅱ collagen, which can be ameliorated by treatment with Edaravone in a dose dependent manner. Notably, it was found that the inhibitory effects of Edaravone on TNF-α-induced reduction of type Ⅱ collagen were mediated by MMP-3 and MMP-13. Mechanistically, we found that Edaravone alleviated TNF-α induced activation of STAT1 and expression of IRF-1. These findings suggest a potential protective effect of Edaravone in OA. Copyright © 2016. Published by Elsevier Inc.

  9. Blockade of mast cell activation reduces cutaneous scar formation.

    Directory of Open Access Journals (Sweden)

    Lin Chen

    Full Text Available Damage to the skin initiates a cascade of well-orchestrated events that ultimately leads to repair of the wound. The inflammatory response is key to wound healing both through preventing infection and stimulating proliferation and remodeling of the skin. Mast cells within the tissue are one of the first immune cells to respond to trauma, and upon activation they release pro-inflammatory molecules to initiate recruitment of leukocytes and promote a vascular response in the tissue. Additionally, mast cells stimulate collagen synthesis by dermal fibroblasts, suggesting they may also influence scar formation. To examine the contribution of mast cells in tissue repair, we determined the effects the mast cell inhibitor, disodium cromoglycate (DSCG, on several parameters of dermal repair including, inflammation, re-epithelialization, collagen fiber organization, collagen ultrastructure, scar width and wound breaking strength. Mice treated with DSCG had significantly reduced levels of the inflammatory cytokines IL-1α, IL-1β, and CXCL1. Although DSCG treatment reduced the production of inflammatory mediators, the rate of re-epithelialization was not affected. Compared to control, inhibition of mast cell activity caused a significant decrease in scar width along with accelerated collagen re-organization. Despite the reduced scar width, DSCG treatment did not affect the breaking strength of the healed tissue. Tryptase β1 exclusively produced by mast cells was found to increase significantly in the course of wound healing. However, DSCG treatment did not change its level in the wounds. These results indicate that blockade of mast cell activation reduces scar formation and inflammation without further weakening the healed wound.

  10. Periurethral injection of collagen in the treatment of urinary stress incontinence: ultrasonographic appearance

    Energy Technology Data Exchange (ETDEWEB)

    Leonhardt, C.; Krysl, J.; Arenson, A.M.; Herschorn, S. [Toronto Univ., ON (Canada). Faculty of Medicine

    1995-06-01

    Transvesical and transvaginal ultrasonography (US) was performed 26 times in 23 patients, 3 to 36 months after periurethral injection of collagen to treat symptomatic urinary stress incontinence. The appearance, location and volume of the collagen were recorded. In all the patients the injected collagen had the appearance of a well-circumscribed mass of variable size, located at the bladder base. Transvesical US demonstrated the collagen in only 17 of the patients, and allowed only limited visualization of the collagen in five of these 17 patients. However, transvaginal US demonstrated the collagen in all of them. The collagen collections showed various levels of echogenicity with both techniques. However, in patients with more than one deposit of collagen, the collections had similar echogenicity. The study indicated that US provides a rapid, noninvasive method of assessing collagen after periurethral injection, and that transvaginal US was the best method of visualizing such collections. 10 refs., 5 figs.

  11. [The effect of locally injected betamethasone on collagen deposition in benign central airway stenosis].

    Science.gov (United States)

    Chen, Y F; Xu, D F; Zeng, Y M; Zhang, H P; Yang, D Y; Chen, X Y; Zhang, J

    2016-08-01

    To assess the effects of locally injected betamethasone on cicatricial tissue hyperplasia in patients with benign central airway stenosis. A prospective study was conducted with 2 treatment modalities: conventional interventional(CI)therapy, and CI combined with local betamethasone injection(LBI). The average optical density value of TGF-β1 and collagen density in the local airway tissues were compared before therapy and 7 d after the CI treatment and the LBI treatment, respectively. Six patients were recruited in this study from May 2013 to June 2015.The results showed significant statistical differences by paired t-test in TGF-β1: 92±38 vs 164±47(t=-7.984, P=0.000)before and after the CI treatment, respectively; 128±45 vs 78±40 (t=10.055, P=0.000)before and after the LBI treatment, respectively. The collagen density was 91 932±59 520 vs 150 252±76 673(t=-8.105, P=0.000) before and after the CI treatment, respectively; 107 024±54 880 vs 114 038±50 772(t=-0.621, P=0.54) before and after the LBI treatment, respectively.Trend comparisons made before and after the treatments showed significant statistical differences in TGF-β1(F=712.139, P=0.000) and in the collagen density (F=261.256, P=0.000)between the CI treatment and the LBI treatment groups. The CI treatment was shown to stimulate the production of TGF-β1 and the deposition of collagen, while the LBI treatment was shown to reduce the production of TGF-β1 and alleviate the deposition of collagen from the stimulation of the CI treatment.

  12. Noninvasive Quantitative Imaging of Collagen Microstructure in Three-Dimensional Hydrogels Using High-Frequency Ultrasound.

    Science.gov (United States)

    Mercado, Karla P; Helguera, María; Hocking, Denise C; Dalecki, Diane

    2015-07-01

    Collagen I is widely used as a natural component of biomaterials for both tissue engineering and regenerative medicine applications. The physical and biological properties of fibrillar collagens are strongly tied to variations in collagen fiber microstructure. The goal of this study was to develop the use of high-frequency quantitative ultrasound to assess collagen microstructure within three-dimensional (3D) hydrogels noninvasively and nondestructively. The integrated backscatter coefficient (IBC) was employed as a quantitative ultrasound parameter to detect, image, and quantify spatial variations in collagen fiber density and diameter. Collagen fiber microstructure was varied by fabricating hydrogels with different collagen concentrations or polymerization temperatures. IBC values were computed from measurements of the backscattered radio-frequency ultrasound signals collected using a single-element transducer (38-MHz center frequency, 13-47 MHz bandwidth). The IBC increased linearly with increasing collagen concentration and decreasing polymerization temperature. Parametric 3D images of the IBC were generated to visualize and quantify regional variations in collagen microstructure throughout the volume of hydrogels fabricated in standard tissue culture plates. IBC parametric images of corresponding cell-embedded collagen gels showed cell accumulation within regions having elevated collagen IBC values. The capability of this ultrasound technique to noninvasively detect and quantify spatial differences in collagen microstructure offers a valuable tool to monitor the structural properties of collagen scaffolds during fabrication, to detect functional differences in collagen microstructure, and to guide fundamental research on the interactions of cells and collagen matrices.

  13. Biological Differences between Hanwoo longissimus dorsi and semimembranosus Muscles in Collagen Synthesis of Fibroblasts.

    Science.gov (United States)

    Subramaniyan, Sivakumar Allur; Hwang, Inho

    2017-01-01

    Variations in physical toughness between muscles and animals are a function of growth rate and extend of collagen type I and III. The current study was designed to investigate the ability of growth rate, collagen concentration, collagen synthesizing and degrading genes on two different fibroblast cells derived from Hanwoo m. longissimus dorsi (LD) and semimembranosus (SM) muscles. Fibroblast cell survival time was determined for understanding about the characteristics of proliferation rate between the two fibroblasts. We examined the collagen concentration and protein expression of collagen type I and III between the two fibroblasts. The mRNA expression of collagen synthesis and collagen degrading genes to elucidate the molecular mechanisms on toughness and tenderness through collagen production between the two fibroblast cells. From our results the growth rate, collagen content and protein expression of collagen type I and III were significantly higher in SM than LD muscle fibroblast. The mRNA expressions of collagen synthesized genes were increased whereas the collagen degrading genes were decreased in SM than LD muscle. Results from confocal microscopical investigation showed increased fluorescence of collagen type I and III appearing stronger in SM than LD muscle fibroblast. These results implied that the locomotion muscle had higher fibroblast growth rate, leads to produce more collagen, and cause tougher than positional muscle. This in vitro study mirrored that background toughness of various muscles in live animal is likely associated with fibroblast growth pattern, collagen synthesis and its gene expression.

  14. Thrombin induces epithelial-mesenchymal transition and collagen production by retinal pigment epithelial cells via autocrine PDGF-receptor signaling.

    Science.gov (United States)

    Bastiaans, Jeroen; van Meurs, Jan C; van Holten-Neelen, Conny; Nagtzaam, Nicole M A; van Hagen, P Martin; Chambers, Rachel C; Hooijkaas, Herbert; Dik, Willem A

    2013-12-19

    De-differentiation of RPE cells into mesenchymal cells (epithelial-mesenchymal transition; EMT) and associated collagen production contributes to development of proliferative vitreoretinopathy (PVR). In patients with PVR, intraocular coagulation cascade activation occurs and may play an important initiating role. Therefore, we examined the effect of the coagulation proteins factor Xa and thrombin on EMT and collagen production by RPE cells. Retinal pigment epithelial cells were stimulated with factor Xa or thrombin and the effect on zonula occludens (ZO)-1, α-smooth muscle actin (α-SMA), collagen, and platelet-derived growth factor (PDGF)-B were determined by real-time quantitative-polymerase chain reaction (RQ-PCR), immunofluorescence microscopy, and HPLC and ELISA for collagen and PDGF-BB in culture supernatants, respectively. PDGF-receptor activation was determined by phosphorylation analysis and inhibition studies using the PDGF-receptor tyrosine kinase inhibitor AG1296. Thrombin reduced ZO-1 gene expression (P production of α-SMA and collagen increased. In contrast to thrombin, factor Xa hardly stimulated EMT by RPE. Thrombin clearly induced PDGF-BB production and PDGF-Rβ chain phosphorylation in RPE. Moreover, AG1296 significantly blocked the effect of thrombin on EMT and collagen production. Our findings demonstrate that thrombin is a potent inducer of EMT by RPE via autocrine activation of PDGF-receptor signaling. Coagulation cascade-induced EMT of RPE may thus contribute to the formation of fibrotic retinal membranes in PVR and should be considered as treatment target in PVR.

  15. COLLAGENOUS SPHERULES OF THE BREAST: A DIAGNOSTIC ENIGMA

    Directory of Open Access Journals (Sweden)

    Amrit Kaur

    2016-05-01

    Full Text Available INTRODUCTION Collagenous spherule (CS is an enigmatic finding in a breast lesion involving the lobular acini and ductules and is defined with the presence of eosinophilic intraluminal collagen rich spherules measuring 20-100 microns in diameter, surrounded by flattened myoepithelial cells. 1 It is an uncommon incidental finding in less than 1-2% of biopsies associated with various benign and malignant diseases occurring in isolation or multifocally. 2 A major growing concern surrounding collagenous spherules is that it might be misinterpreted as atypical ductal hyperplasia (ADH, cribriform ductal carcinoma in situ (DCIS, cribriform carcinoma or adenoid cystic carcinoma of breast. We present a case of mobile cystic mass of the breast reported as fibrocystic disease of the breast with focal areas showing adenosis and hyperplastic changes with multiple ducts displayed a peculiar change with the presence of extracellular concentric hyaline material present within the intraluminal space, diagnostic of collagenous spherules.

  16. Low‑dose halofuginone inhibits the synthesis of type I collagen without influencing type II collagen in the extracellular matrix of chondrocytes.

    Science.gov (United States)

    Li, Zeng; Fei, Hao; Wang, Zhen; Zhu, Tianyi

    2017-09-01

    Full‑thickness and large area defects of articular cartilage are unable to completely repair themselves and require surgical intervention, including microfracture, autologous or allogeneic osteochondral grafts, and autologous chondrocyte implantation. A large proportion of regenerative cartilage exists as fibrocartilage, which is unable to withstand impacts in the same way as native hyaline cartilage, owing to excess synthesis of type I collagen in the matrix. The present study demonstrated that low‑dose halofuginone (HF), a plant alkaloid isolated from Dichroa febrifuga, may inhibit the synthesis of type I collagen without influencing type II collagen in the extracellular matrix of chondrocytes. In addition, HF was revealed to inhibit the phosphorylation of mothers against decapentaplegic homolog (Smad)2/3 and promoted Smad7 expression, as well as decrease the synthesis of type I collagen synthesis. Results from the present study indicated that HF treatment suppressed the synthesis of type I collagen by inhibiting the transforming growth factor‑β signaling pathway in chondrocytes. These results may provide an alternative solution to the problems associated with fibrocartilage, and convert fibrocartilage into hyaline cartilage at the mid‑early stages of cartilage regeneration. HF may additionally be used to improve monolayer expansion or 3D cultures of seed cells for the tissue engineering of cartilage.

  17. Epicutaneous immunization with type II collagen inhibits both onset and progression of chronic collagen-induced arthritis.

    Directory of Open Access Journals (Sweden)

    Jessica Strid

    Full Text Available Epicutaneous immunization is a potential non-invasive technique for antigen-specific immune-modulation. Topical application of protein antigens to barrier-disrupted skin induces potent antigen-specific immunity with a strong Th2-bias. In this study, we investigate whether the autoimmune inflammatory response of chronic collagen-induced arthritis (CCIA in DBA/1-TCR-beta Tg mice can be modified by epicutaneous immunization. We show that epicutaneous immunization with type II collagen (CII inhibited development and progression of CCIA and, importantly, also ameliorated ongoing disease as indicated by clinical scores of disease severity, paw swelling and joints histology. Treated mice show reduced CII-driven T cell proliferation and IFN-gamma production, as well as significantly lower levels of CII-specific IgG2a serum antibodies. In contrast, CII-driven IL-4 production and IgE antibody levels were increased consistent with skewing of the CII response from Th1 to Th2 in treated mice. IL-4 production in treated mice was inversely correlated with disease severity. Moreover, T cells from treated mice inhibited proliferation and IFN-gamma production by T cells from CCIA mice, suggesting induction of regulatory T cells that actively inhibit effector responses in arthritic mice. The levels of CD4(+CD25(+ T cells were however not increased following epicutaneous CII treatment. Together, these results suggest that epicutaneous immunization may be used as an immune-modulating procedure to actively re-programme pathogenic Th1 responses, and could have potential as a novel specific and simple treatment for chronic autoimmune inflammatory diseases such as rheumatoid arthritis.

  18. Prediction of collagen orientation in articular cartilage by a collagen remodeling algorithm

    NARCIS (Netherlands)

    Wilson, W.; Driessen, N.J.B.; Donkelaar, van C.C.; Ito, K.

    2006-01-01

    Tissue engineering is a promising method to treat damaged cartilage. So far it has not been possible to create tissue-engineered cartilage with an appropriate structural organization. It is envisaged that cartilage tissue engineering will significantly benefit from knowledge of how the collagen

  19. Collagenous colitis: histopathology and clinical course.

    Science.gov (United States)

    Goff, J S; Barnett, J L; Pelke, T; Appelman, H D

    1997-01-01

    Collagenous colitis is a chronic diarrheal disease characterized by a normal or near-normal mucosa endoscopically and microscopic inflammation in the lamina propria, surface epithelial injury and a thick subepithelial collagen layer. The symptoms of collagenous colitis vary in duration and intensity, and long periods of remission have been described, but long-term follow-up data are limited. Our goal was to determine the natural clinical history of collagenous colitis and to determine whether there was a relationship between histopathologic changes and course of disease. Cases were identified at the University of Michigan Hospitals using surgical pathology records before 1992. All charts, including medical records from other hospitals, were reviewed, and a telephone interview was conducted with each locatable patient (pt). Biopsy specimens were reviewed by two pathologists for degree of collagen layer thickness, epithelial damage, and inflammation. There were 31 patients (26 F, 5 M) with a mean age of 66 yr (range 33-83) and a mean duration of symptoms of 5.4 yr at the time of diagnosis. Of the 31 patients, 18 (56%) had some form of arthritis, and 22 (71%) were using NSAIDS regularly at the time of diagnosis. Follow-up interviews were conducted at least 2 yr after diagnosis (mean 3.5 yr, range 2-5 yr) with 27 of 31 patients (3 could not be located, 1 died). Two definable groups of patients were identified: (1) those with either spontaneous or treatment-related symptom resolution (63%), and (2) those with ongoing or intermittent symptoms requiring at least intermittent therapy (37%). There was no significant difference between the two groups with regard to sex, age, associated diseases, and use of medications. Patients with symptom resolution (mean duration 3.1 yr) had been treated with antidiarrheals (6), sulfasalazine (3), discontinuation of NSAIDS (3), reversal of jejunoilial bypass (1), or nothing (4). Those with ongoing symptoms experienced a wide range of

  20. The collagen receptor uPARAP/Endo180 in tissue degradation and cancer (Review)

    DEFF Research Database (Denmark)

    Carlsen Melander, Eva Maria; Jürgensen, Henrik J; Madsen, Daniel H

    2015-01-01

    The collagen receptor uPARAP/Endo180, the product of the MRC2 gene, is a central component in the collagen turnover process governed by various mesenchymal cells. Through the endocytosis of collagen or large collagen fragments, this recycling receptor serves to direct basement membrane collagen...... as well as interstitial collagen to lysosomal degradation. This capacity, shared only with the mannose receptor from the same protein family, endows uPARAP/Endo180 with a critical role in development and homeostasis, as well as in pathological disruptions of the extracellular matrix structure. Important...

  1. A novel recombinant peptide containing only two T-cell tolerance epitopes of chicken type II collagen that suppresses collagen-induced arthritis.

    Science.gov (United States)

    Xi, Caixia; Tan, Liuxin; Sun, Yeping; Liang, Fei; Liu, Nan; Xue, Hong; Luo, Yuan; Yuan, Fang; Sun, Yuying; Xi, Yongzhi

    2009-02-01

    Immunotherapy of rheumatoid arthritis (RA) using oral-dosed native chicken or bovine type II collagen (nCII) to induce specific immune tolerance is an attractive strategy. However, the majority of clinical trials of oral tolerance in human diseases including RA in recent years have been disappointing. Here, we describe a novel recombinant peptide rcCTE1-2 which contains only two tolerogenic epitopes (CTE1 and CTE2) of chicken type II collagen (cCII). These are the critical T-cell determinants for suppression of RA that were first developed and used to compare its suppressive effects with ncCII on the collagen-induced arthritis (CIA) model. The rcCTE1-2 was produced using the prokaryotic pET expression system and purified by Ni-NTA His affinity chromatography. Strikingly, our results showed clearly that rcCTE1-2 was as efficacious as ncCII at the dose of 50 microg/kg/d. This dose significantly reduced footpad swelling, arthritic incidence and scores, and deferred the onset of disease. Furthermore, rcCTE1-2 of 50 microg/kg/d could lower the level of anti-nCII antibody in the serum of CIA animals, decrease Th1-cytokine INF-gamma level, and increase Th3-cytokine TGF-beta(1) produced level by spleen cells from CIA mice after in vivo stimulation with ncCII. Importantly, rcCTE1-2 was even more potent than native cCII, which was used in the clinic for RA. Equally importantly, the findings that the major T-cell determinants of cCII that are also recognized by H-2(b) MHC-restricted T cells have not previously been reported. Taken together, these results suggest that we have successfully developed a novel recombinant peptide rcCTE1-2 that can induce a potent tolerogenic response in CIA.

  2. Prominent Vascularization Capacity of Mesenchymal Stem Cells in Collagen-Gold Nanocomposites.

    Science.gov (United States)

    Hsieh, Shu-Chen; Chen, Hui-Jye; Hsu, Shan-Hui; Yang, Yi-Chin; Tang, Cheng-Ming; Chu, Mei-Yun; Lin, Pei-Ying; Fu, Ru-Huei; Kung, Mei-Lang; Chen, Yun-Wen; Yeh, Bi-Wen; Hung, Huey-Shan

    2016-10-26

    The ideal characteristics of surface modification on the vascular graft for clinical application would be with excellent hemocompatibility, endothelialization capacity, and antirestenosis ability. Here, Fourier transform infrared spectroscopy (FTIR), surface enhanced Raman spectroscopy (SERS), atomic force microscopy (AFM), contact angle (θ) measurement, and thermogravimetric analysis (TGA) were used to evaluate the chemical and mechanical properties of collagen-gold nanocomposites (collagen+Au) with 17.4, 43.5, and 174 ppm of Au and suggested that the collagen+Au with 43.5 ppm of Au had better biomechanical properties and thermal stability than pure collagen. Besides, stromal-derived factor-1α (SDF-1α) at 50 ng/mL promoted the migration of mesenchymal stem cells (MSCs) on collagen+Au material through the α5β3 integrin/endothelial oxide synthase (eNOS)/metalloproteinase (MMP) signaling pathway which can be abolished by the knockdown of vascular endothelial growth factor (VEGF). The potentiality of collagen+Au with MSCs for vascular regeneration was evaluated by our in vivo rat model system. Artery tissues isolated from an implanted collagen+Au-coated catheter with MSCs expressed substantial CD-31 and α-SMA, displayed higher antifibrotic ability, antithrombotic activity, as well as anti-inflammatory response than all other materials. Our results indicated that the implantation of collagen+Au-coated catheters with MSCs could be a promising strategy for vascular regeneration.

  3. Towards an energy management maturity model

    International Nuclear Information System (INIS)

    Antunes, Pedro; Carreira, Paulo; Mira da Silva, Miguel

    2014-01-01

    Energy management is becoming a priority as organizations strive to reduce energy costs, conform to regulatory requirements, and improve their corporate image. Despite the upsurge of interest in energy management standards, a gap persists between energy management literature and current implementation practices. This gap can be traced to the lack of an incremental improvement roadmap. In this paper we propose an Energy Management Maturity Model that can be used to guide organizations in their energy management implementation efforts to incrementally achieve compliance with energy management standards such as ISO 50001. The proposed maturity model is inspired on the Plan-Do-Check-Act cycle approach for continual improvement, and covers well-understood fundamental energy management activities common across energy management texts. The completeness of our proposal is then evaluated by establishing an ontology mapping against ISO 50001. - Highlights: • Real-world energy management activities are not aligned with the literature. • An Energy Management Maturity Model is proposed to overcome this alignment gap. • The completeness and relevance of proposed model are validated

  4. Uncoupled regulation of fibronectin and collagen synthesis in Rous sarcoma virus transformed avian tendon cells

    International Nuclear Information System (INIS)

    Parry, G.; Soo, W.J.; Bissell, M.J.

    1979-01-01

    The regulation of fibronectin and procollagen synthesis has been investigated in normal and Rous sarcoma virus transformed primary avian tendon cells. These two proteins interact at the cell periphery and both are reportedly lost upon transformation. Whether their synthesis was coordinately regulated in Rous sarcoma virus-infected cells was thus examined. It was found that while the synthesis of both pro α 1 and pro α 2 peptides was reduced upon transformation, the synthesis of fibronectin was not altered. Nevertheless, long term radiolabeling demonstrated that fibronectin levels were reduced in transformed cells. It is concluded that the reduction in levels of these components at the surface is brought about by different mechanisms; collagen levels being regulated by procollagen synthesis and fibronectin levels by degradation and/or release into the culture medium. The possibility is discussed that fibronectin is lost from the cell periphery of primary avian tendon cells as a consequence of decreased levels of anchoring collagen molecules

  5. G-CSF loaded nanofiber/nanoparticle composite coated with collagen promotes wound healing in vivo.

    Science.gov (United States)

    Tanha, Shima; Rafiee-Tehrani, Morteza; Abdollahi, Mohamad; Vakilian, Saeid; Esmaili, Zahra; Naraghi, Zahra Safaei; Seyedjafari, Ehsan; Javar, Hamid Akbari

    2017-10-01

    Sustained release of functional growth factors can be considered as a beneficial methodology for wound healing. In this study, recombinant human granulocyte colony-stimulating factor (G-CSF)-loaded chitosan nanoparticles were incorporated in Poly(ε-caprolactone) (PCL) nanofibers, followed by surface coating with collagen type I. Physical and mechanical properties of the PCL nanofibers containing G-CSF loaded chitosan nanoparticles PCL/NP(G-CSF) and in vivo performance for wound healing were investigated. G-CSF structural stability was evaluated through SDS_PAGE, reversed phase (RP) HPLC and size-exclusion chromatography, as well as circular dichroism. Nanofiber/nanoparticle composite scaffold was demonstrated to have appropriate mechanical properties as a wound dresser and a sustained release of functional G-CSF. The PCL/NP(G-CSF) scaffold showed a suitable proliferation and well-adherent morphology of stem cells. In vivo study and histopathological evaluation outcome revealed that skin regeneration was dramatically accelerated under PCL/NP(G-CSF) as compared with control groups. Superior fibroblast maturation, enhanced collagen deposition and minimum inflammatory cells were also the beneficial properties of PCL/NP(G-CSF) over the commercial dressing. The synergistic effect of extracellular matrix-mimicking nanofibrous membrane and G-CSF could develop a suitable supportive substrate in order to extensive utilization for the healing of skin wounds. © 2017 Wiley Periodicals Inc. J Biomed Mater Res Part A: 105A: 2830-2842, 2017. © 2017 Wiley Periodicals, Inc.

  6. Amino acid composition in determination of collagen origin and assessment of physical factors effects.

    Science.gov (United States)

    Gauza-Włodarczyk, Marlena; Kubisz, Leszek; Włodarczyk, Dariusz

    2017-11-01

    The amino acid composition of collagen is a characteristic feature of this protein. Collagen, irrespective of its origin, contains 19 amino acids, including hydroxyproline which does not occur in other proteins. Its atypical amino acid composition is characterized by high content of proline and glycine, as well as the absence of cysteine. This paper shows the comparison of qualitative composition of amino acids of fish skin (FS) collagen, bovine Achilles tendon (BAT) collagen, and bone collagen. Results demonstrate that FS collagen as well as BAT collagen contains no cysteine and significantly different amount of hydroxyproline. In BAT collagen hydroxyproline content is 30% higher than hydroxyproline content of FS collagen. In bone collagen the amount of hydroxyproline is two times more than in FS collagen. Furthermore, it is shown that sensitivity to radiation of individual amino acids varies and depends on the absorbed dose of ionizing radiation. The changes observed in the amino acid composition become very intense for the doses of 500kGy and 1000kGy. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Optimal conditions for obtaining collagen from chicken feet and its characterization

    Directory of Open Access Journals (Sweden)

    Íris Braz da Silva ARAÚJO

    2018-04-01

    Full Text Available Abstract The objective of this study was to extract collagen from chicken feet, determining optimal extraction conditions according to acetic acid concentration, pepsin content and time of enzymatic hydrolysis. A factorial design 23 was used, with three replications at the central point, totaling 11 experiments. The response variable studied was the collagen content of the isolate obtained. In addition to the optimization, the characterization of the isolates with higher and lower collagen content, in relation to the amino acid profile, electrophoretic profile, peptide hydrophobicity and functional properties, such as water solubility, water retention capacity and emulsifying activity, were carried out. The proposed model was statistically significant, with conditions of higher collagen content of 0.3 mol/L of acetic acid, 0.2% of pepsin and 12 hours of hydrolysis. The collagen isolate under these conditions showed higher iminoacids content, higher sum of peptide areas, higher solubility in water and water retention at 60 °C. The treatment with lower collagen content showed high emulsifying activity. The collagen isolate of the chicken feet presented characteristics makes it suitable for application in the food industry.

  8. Tunable Collagen I Hydrogels for Engineered Physiological Tissue Micro-Environments

    Science.gov (United States)

    Antoine, Elizabeth E.; Vlachos, Pavlos P.; Rylander, Marissa N.

    2015-01-01

    Collagen I hydrogels are commonly used to mimic the extracellular matrix (ECM) for tissue engineering applications. However, the ability to design collagen I hydrogels similar to the properties of physiological tissues has been elusive. This is primarily due to the lack of quantitative correlations between multiple fabrication parameters and resulting material properties. This study aims to enable informed design and fabrication of collagen hydrogels in order to reliably and reproducibly mimic a variety of soft tissues. We developed empirical predictive models relating fabrication parameters with material and transport properties. These models were obtained through extensive experimental characterization of these properties, which include compression modulus, pore and fiber diameter, and diffusivity. Fabrication parameters were varied within biologically relevant ranges and included collagen concentration, polymerization pH, and polymerization temperature. The data obtained from this study elucidates previously unknown fabrication-property relationships, while the resulting equations facilitate informed a priori design of collagen hydrogels with prescribed properties. By enabling hydrogel fabrication by design, this study has the potential to greatly enhance the utility and relevance of collagen hydrogels in order to develop physiological tissue microenvironments for a wide range of tissue engineering applications. PMID:25822731

  9. Ridge preservation of extraction sockets with chronic pathology using Bio-Oss® Collagen with or without collagen membrane: an experimental study in dogs.

    Science.gov (United States)

    Kim, Jung-Ju; Schwarz, Frank; Song, Hyun Young; Choi, YoonMi; Kang, Kyung-Rim; Koo, Ki-Tae

    2017-06-01

    This study aimed to evaluate the dynamics of newly bone formation and dimensional change in diseased extraction sockets using Bio-Oss ® Collagen with or without a collagen membrane. In six beagle dogs, right and left 3rd and 4th mandibular premolars were hemisected and the distal roots were removed. Combined endodontic-periodontic lesions were induced in all sites using black silk, collagen sponge, endodontic files, and application of Porphyromonas gingivalis. After 4 months, among 4 premolars, three teeth were randomly selected per dog and allocated to the following experimental groups: Control group (no treatment but debridement), Test 1 group (only Bio-Oss ® Collagen graft), and Test 2 group (Bio-Oss ® Collagen graft with a collagen membrane). After 7 months from the baseline, the beagle dogs were sacrificed for histomorphometric and Micro-CT analysis. The vertical distance between buccal and lingual crests in the Control group (2.22 ± 0.26 mm) and Test 2 group (1.80 ± 0.16 mm) was significantly different. The socket of the Test 2 group (27.04 ± 5.25%) was occupied by a greater quantity of bone graft compared to the Test 1 group (18.49 ± 2.11%). Ridge preservation in diseased extraction sockets could compensate for buccal bone resorption by contact osteogenesis surrounding the bone graft particles at the bucco-coronal area during socket healing, and the application of a collagen membrane at the entrance of the socket is useful for preserving graft material at the coronal part of the socket. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Tissue-engineered cartilaginous constructs for the treatment of caprine cartilage defects, including distribution of laminin and type IV collagen.

    Science.gov (United States)

    Jeng, Lily; Hsu, Hu-Ping; Spector, Myron

    2013-10-01

    The purpose of this study was the immunohistochemical evaluation of (1) cartilage tissue-engineered constructs; and (2) the tissue filling cartilage defects in a goat model into which the constructs were implanted, particularly for the presence of the basement membrane molecules, laminin and type IV collagen. Basement membrane molecules are localized to the pericellular matrix in normal adult articular cartilage, but have not been examined in tissue-engineered constructs cultured in vitro or in tissue filling cartilage defects into which the constructs were implanted. Cartilaginous constructs were engineered in vitro using caprine chondrocyte-seeded type II collagen scaffolds. Autologous constructs were implanted into 4-mm-diameter defects created to the tidemark in the trochlear groove in the knee joints of skeletally mature goats. Eight weeks after implantation, the animals were sacrificed. Constructs underwent immunohistochemical and histomorphometric evaluation. Widespread staining for the two basement membrane molecules was observed throughout the extracellular matrix of in vitro and in vivo samples in a distribution unlike that previously reported for cartilage. At sacrifice, 70% of the defect site was filled with reparative tissue, which consisted largely of fibrous tissue and some fibrocartilage, with over 70% of the reparative tissue bonded to the adjacent host tissue. A novel finding of this study was the observation of laminin and type IV collagen in in vitro engineered cartilaginous constructs and in vivo cartilage repair samples from defects into which the constructs were implanted, as well as in normal caprine articular cartilage. Future work is needed to elucidate the role of basement membrane molecules during cartilage repair and regeneration.

  11. A novel combined polyphenol-aldehyde crosslinking of collagen film-Applications in biomedical materials.

    Science.gov (United States)

    Liu, Ting; Shi, Lu; Gu, Zhipeng; Dan, Weihua; Dan, Nianhua

    2017-08-01

    Despite its crucial role in directing cell fate in healthy and diseased tissues, improvements in physical-chemical properties and biocompatibility of type-I collagen are still needed. In this report, we described combined and facile method to modify collagen. The collagen film was first modified by procyanidins solution, in which, then subjected to further crosslinked by dialdehyde alginate, resulting in collagen-procyanidins-dialdehyde alginate film. The properties of the crosslinked collagen films were investigated and the results were discussed. Results from differential scanning calorimetry and thermo gravimetric analysis suggested that the thermal stabilities of the collagen-procyanidins-dialdehyde alginate film were significantly improved. The mechanical properties of collagen-procyanidins-dialdehyde alginate film in terms of elongation at break and tensile strength increased approximately 2-fold and 3-fold, respectively compare to pure collagen film. In addition, the resistance to collagenase degradation of collagen-procyanidins-dialdehyde alginate film was remarkably promoted. The results from methyltetrazolium assay and confocal laser scanning microscopy showed that no cytotoxicity of collagen film was introduced by the combined crosslinking method. Thus, the novel combined by procyanidins-dialdehyde alginate crosslinking method shown in this study provided a non-toxic and efficient crosslinking method that improved various properties of collagen film, which has great potential applications in biomedical materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Lack of cyclophilin B in osteogenesis imperfecta with normal collagen folding.

    Science.gov (United States)

    Barnes, Aileen M; Carter, Erin M; Cabral, Wayne A; Weis, MaryAnn; Chang, Weizhong; Makareeva, Elena; Leikin, Sergey; Rotimi, Charles N; Eyre, David R; Raggio, Cathleen L; Marini, Joan C

    2010-02-11

    Osteogenesis imperfecta is a heritable disorder that causes bone fragility. Mutations in type I collagen result in autosomal dominant osteogenesis imperfecta, whereas mutations in either of two components of the collagen prolyl 3-hydroxylation complex (cartilage-associated protein [CRTAP] and prolyl 3-hydroxylase 1 [P3H1]) cause autosomal recessive osteogenesis imperfecta with rhizomelia (shortening of proximal segments of upper and lower limbs) and delayed collagen folding. We identified two siblings who had recessive osteogenesis imperfecta without rhizomelia. They had a homozygous start-codon mutation in the peptidyl-prolyl isomerase B gene (PPIB), which results in a lack of cyclophilin B (CyPB), the third component of the complex. The proband's collagen had normal collagen folding and normal prolyl 3-hydroxylation, suggesting that CyPB is not the exclusive peptidyl-prolyl cis-trans isomerase that catalyzes the rate-limiting step in collagen folding, as is currently thought. 2010 Massachusetts Medical Society

  13. Action of trypsin on structural changes of collagen fibres from sea cucumber (Stichopus japonicus).

    Science.gov (United States)

    Liu, Zi-Qiang; Tuo, Feng-Yan; Song, Liang; Liu, Yu-Xin; Dong, Xiu-Ping; Li, Dong-Mei; Zhou, Da-Yong; Shahidi, Fereidoon

    2018-08-01

    Trypsin, a representative serine proteinase, was used to hydrolyse the collagen fibres from sea cucumber (Stichopus japonicus) to highlight the role of serine proteinase in the autolysis of sea cucumber. Partial disaggregation of collagen fibres into collagen fibrils upon trypsin treatment occurred. The trypsin treatment also caused a time-dependent release of water-soluble glycosaminoglycans and proteins. Therefore, the degradation of the proteoglycan bridges between collagen fibrils might account for the disaggregation of collagen fibrils. For trypsin-treated collagen fibres (72 h), the collagen fibrils still kept their structural integrity and showed characteristic D-banding pattern, and the dissolution rate of hydroxyproline was just 0.21%. Meanwhile, Fourier transform infrared analysis showed the collagen within trypsin-treated collagen fibres (72 h) still retaining their triple-helical conformation. These results suggested that serine proteinase participated in the autolysis of S. japonicus body wall by damaging the proteoglycan bridges between collagen fibrils and disintegrating the latter. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Cyclophilin B Deficiency Causes Abnormal Dentin Collagen Matrix.

    Science.gov (United States)

    Terajima, Masahiko; Taga, Yuki; Cabral, Wayne A; Nagasawa, Masako; Sumida, Noriko; Hattori, Shunji; Marini, Joan C; Yamauchi, Mitsuo

    2017-08-04

    Cyclophilin B (CypB) is an endoplasmic reticulum-resident protein that regulates collagen folding, and also contributes to prolyl 3-hydroxylation (P3H) and lysine (Lys) hydroxylation of collagen. In this study, we characterized dentin type I collagen in CypB null (KO) mice, a model of recessive osteogenesis imperfecta type IX, and compared to those of wild-type (WT) and heterozygous (Het) mice. Mass spectrometric analysis demonstrated that the extent of P3H in KO collagen was significantly diminished compared to WT/Het. Lys hydroxylation in KO was significantly diminished at the helical cross-linking sites, α1/α2(I) Lys-87 and α1(I) Lys-930, leading to a significant increase in the under-hydroxylated cross-links and a decrease in fully hydroxylated cross-links. The extent of glycosylation of hydroxylysine residues was, except α1(I) Lys-87, generally higher in KO than WT/Het. Some of these molecular phenotypes were distinct from other KO tissues reported previously, indicating the dentin-specific control mechanism through CypB. Histological analysis revealed that the width of predentin was greater and irregular, and collagen fibrils were sparse and significantly smaller in KO than WT/Het. These results indicate a critical role of CypB in dentin matrix formation, suggesting a possible association between recessive osteogenesis imperfecta and dentin defects that have not been clinically detected.

  15. Ovine tendon collagen: Extraction, characterisation and fabrication of thin films for tissue engineering applications

    Energy Technology Data Exchange (ETDEWEB)

    Fauzi, M.B.; Lokanathan, Y. [Tissue Engineering Centre, UKM Medical Centre, Jalan Yaacob Latiff, Bandar Tun Razak, 56000 Cheras, Kuala Lumpur (Malaysia); Aminuddin, B.S. [Tissue Engineering Centre, UKM Medical Centre, Jalan Yaacob Latiff, Bandar Tun Razak, 56000 Cheras, Kuala Lumpur (Malaysia); Ear, Nose & Throat Consultant Clinic, Ampang Puteri Specialist Hospital, Taman Dato Ahmad Razali, 68000 Ampang, Selangor (Malaysia); Ruszymah, B.H.I. [Tissue Engineering Centre, UKM Medical Centre, Jalan Yaacob Latiff, Bandar Tun Razak, 56000 Cheras, Kuala Lumpur (Malaysia); Department of Physiology, UKM Medical Centre, Jalan Yaacob Latiff, Bandar Tun Razak, 56000 Cheras, Kuala Lumpur (Malaysia); Chowdhury, S.R., E-mail: shiplu@ppukm.ukm.edu.my [Tissue Engineering Centre, UKM Medical Centre, Jalan Yaacob Latiff, Bandar Tun Razak, 56000 Cheras, Kuala Lumpur (Malaysia)

    2016-11-01

    Collagen is the most abundant extracellular matrix (ECM) protein in the human body, thus widely used in tissue engineering and subsequent clinical applications. This study aimed to extract collagen from ovine (Ovis aries) Achilles tendon (OTC), and to evaluate its physicochemical properties and its potential to fabricate thin film with collagen fibrils in a random or aligned orientation. Acid-solubilized protein was extracted from ovine Achilles tendon using 0.35 M acetic acid, and 80% of extracted protein was measured as collagen. SDS-PAGE and mass spectrometry analysis revealed the presence of alpha 1 and alpha 2 chain of collagen type I (col I). Further analysis with Fourier transform infrared spectrometry (FTIR), X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDS) confirms the presence of triple helix structure of col I, similar to commercially available rat tail col I. Drying the OTC solution at 37°C resulted in formation of a thin film with randomly orientated collagen fibrils (random collagen film; RCF). Introduction of unidirectional mechanical intervention using a platform rocker prior to drying facilitated the fabrication of a film with aligned orientation of collagen fibril (aligned collagen film; ACF). It was shown that both RCF and ACF significantly enhanced human dermal fibroblast (HDF) attachment and proliferation than that on plastic surface. Moreover, cells were distributed randomly on RCF, but aligned with the direction of mechanical intervention on ACF. In conclusion, ovine tendon could be an alternative source of col I to fabricate scaffold for tissue engineering applications. - Highlights: • Isolated collagen from ovine tendon was characterized as collagen type I. • Collagen film was fabricated via air drying of ovine tendon collagen. • Collagen fibril alignment was realized via unidirectional platform rocker. • Orientation of cells was attained depending on collagen fibril direction in the film. • Collagen films

  16. Evaluation of nanohydroxyapaptite (nano-HA) coated epigallocatechin-3-gallate (EGCG) cross-linked collagen membranes.

    Science.gov (United States)

    Chu, Chenyu; Deng, Jia; Man, Yi; Qu, Yili

    2017-09-01

    Collagen is the main component of extracellular matrix (ECM) with desirable biological activities and low antigenicity. Collagen materials have been widely utilized in guided bone regeneration (GBR) surgery due to its abilities to maintain space for hard tissue growth. However, pure collagen lacks optimal mechanical properties. In our previous study, epigallocatechin-3-gallate (EGCG) cross-linked collagen membranes, with better biological activities and enhanced mechanical properties, may promote osteoblast proliferation, but their effect on osteoblast differentiation is not very significant. Nanohydroxyapatite (nano-HA) is the main component of mineral bone, which possesses exceptional bioactivity properties including good biocompatibility, high osteoconductivity and osteoinductivity, non-immunogenicity and non-inflammatory behavior. Herein, by analyzing the physical and chemical properties as well as the effects on promoting bone regeneration, we have attempted to present a novel EGCG-modified collagen membrane with nano-HA coating, and have found evidence that the novel collagen membrane may promote bone regeneration with a better surface morphology, without destroying collagen backbone. To evaluate the surface morphologies, chemical and mechanical properties of pure collagen membranes, epigallocatechin-3-gallate (EGCG) cross-linked collagen membranes, nano-HA coated collagen membranes, nano-HA coated EGCG-collagen membranes, (ii) to evaluate the bone regeneration promoted by theses membranes. In the present study, collagen membranes were divided into 4 groups: (1) untreated collagen membranes (2) EGCG cross-linked collagen membranes (3) nano-HA modified collagen membranes (4) nano-HA modified EGCG-collagen membranes. Scanning electron microscope (SEM) and Fourier transform infrared spectroscopy (FTIR) were used to evaluate surface morphologies and chemical properties, respectively. Mechanical properties were determined by differential scanning calorimeter (DSC

  17. Collagen derived serum markers in carcinoma of the prostate

    DEFF Research Database (Denmark)

    Rudnicki, M; Jensen, L T; Iversen, P

    1995-01-01

    Three new collagen markers deriving from the collagenous matrix, e.g. carboxyterminal propeptide of type I procollagen (PICP), carboxy-terminal pyridinoline cross-linked telopeptide of type I collagen (ICTP), and aminoterminal propeptide of type III procollagen (PIIINP) were used for the diagnose...... of prostatic bone metastases. Blood samples were obtained prior to biopsy or TURP. Serum PICP, PIIINP and ICTP were measured with commercial available RIAs and PSA by IRMA. Serum PSA was increased in patients with local prostatic cancer compared with patients with hyperplasia (p

  18. Imaging Prostate Cancer Microenvironment by Collagen Hybridization

    Science.gov (United States)

    2015-10-01

    diagnosis, staging, and treatment of numerous connective tissue disorders and diseases. Standard antibody staining methods that rely on epitopes of a...CMP can be used to detect mechanical damage to collagen in tendon which could be used for diagnostic and therapeutics of musculoskeletal injury which...13. SUPPLEMENTARY NOTES 14. ABSTRACT The major goal of the proposed work is to develop new PCa imaging methods based on the collagen mimetic peptide

  19. Extrafibrillar collagen demineralization-based chelate-and-rinse technique bridges the gap between wet and dry dentin bonding.

    Science.gov (United States)

    Mai, Sui; Wei, Chin-Chuan; Gu, Li-Sha; Tian, Fu-Cong; Arola, Dwayne D; Chen, Ji-Hua; Jiao, Yang; Pashley, David H; Niu, Li-Na; Tay, Franklin R

    2017-07-15

    Limitations associated with wet-bonding led to the recent development of a selective demineralization strategy in which dentin was etched with a reduced concentration of phosphoric acid to create exclusive extrafibrillar demineralization of the collagen matrix. However, the use of acidic conditioners removes calcium via diffusion of very small hydronium ions into the intrafibrillar collagen water compartments. This defeats the purpose of limiting the conditioner to the extrafibrillar space to create a collagen matrix containing only intrafibrillar minerals to prevent collapse of the collagen matrix. The present work examined the use of polymeric chelators (the sodium salt of polyacrylic acid) of different molecular weights to selectively demineralize extrafibrillar dentin. These polymeric chelators exhibit different affinities for calcium ions (isothermal titration calorimetry), penetrated intrafibrillar dentin collagen to different extents based on their molecular sizes (modified size-exclusion chromatography), and preserve the dynamic mechanical properties of mineralized dentin more favorably compared with completely demineralized phosphoric acid-etched dentin (nanoscopical dynamic mechanical analysis). Scanning and transmission electron microscopy provided evidence for retention of intrafibrillar minerals in dentin surfaces conditioned with polymeric chelators. Microtensile bond strengths to wet-bonded and dry-bonded dentin conditioned with these polymeric chelators showed that the use of sodium salts of polyacrylic acid for chelating dentin prior to bonding did not result in significant decline in resin-dentin bond strength. Taken together, the findings led to the conclusion that a chelate-and-rinse conditioning technique based on extrafibrillar collagen demineralization bridges the gap between wet and dry dentin bonding. The chelate-and-rinse dental adhesive bonding concept differentiates from previous research in that it is based on the size

  20. Collagen: A review on its sources and potential cosmetic applications.

    Science.gov (United States)

    Avila Rodríguez, María Isabela; Rodríguez Barroso, Laura G; Sánchez, Mirna Lorena

    2018-02-01

    Collagen is a fibrillar protein that conforms the conjunctive and connective tissues in the human body, essentially skin, joints, and bones. This molecule is one of the most abundant in many of the living organisms due to its connective role in biological structures. Due to its abundance, strength and its directly proportional relation with skin aging, collagen has gained great interest in the cosmetic industry. It has been established that the collagen fibers are damaged with the pass of time, losing thickness and strength which has been strongly related with skin aging phenomena [Colágeno para todo. 60 y más. 2016. http://www.revista60ymas.es/InterPresent1/groups/revistas/documents/binario/ses330informe.pdf.]. As a solution, the cosmetic industry incorporated collagen as an ingredient of different treatments to enhance the user youth and well-being, and some common presentations are creams, nutritional supplement for bone and cartilage regeneration, vascular and cardiac reconstruction, skin replacement, and augmentation of soft skin among others [J App Pharm Sci. 2015;5:123-127]. Nowadays, the biomolecule can be obtained by extraction from natural sources such as plants and animals or by recombinant protein production systems including yeast, bacteria, mammalian cells, insects or plants, or artificial fibrils that mimic collagen characteristics like the artificial polymer commercially named as KOD. Because of its increased use, its market size is valued over USD 6.63 billion by 2025 [Collagen Market By Source (Bovine, Porcine, Poultry, Marine), Product (Gelatin, Hydrolyzed Collagen), Application (Food & Beverages, Healthcare, Cosmetics), By Region, And Segment Forecasts, 2014 - 2025. Grand View Research. http://www.grandviewresearch.com/industry-analysis/collagen-market. Published 2017.]. Nevertheless, there has been little effort on identifying which collagen types are the most suitable for cosmetic purposes, for which the present review will try to enlighten

  1. Complex Determinants in Specific Members of the Mannose Receptor Family Govern Collagen Endocytosis

    DEFF Research Database (Denmark)

    Jürgensen, Henrik J; Johansson, Kristina; Madsen, Daniel H

    2014-01-01

    Members of the well-conserved mannose receptor (MR) protein family have been functionally implicated in diverse biological and pathological processes. Importantly, a proposed common function is the internalization of collagen for intracellular degradation occurring during bone development, cancer...... invasion, and fibrosis protection. This functional relationship is suggested by a common endocytic capability and a candidate collagen-binding domain. Here we conducted a comparative investigation of each member's ability to facilitate intracellular collagen degradation. As expected, the family members u......PARAP/Endo180 and MR bound collagens in a purified system and internalized collagens for degradation in cellular settings. In contrast, the remaining family members, PLA2R and DEC-205, showed no collagen binding activity and were unable to mediate collagen internalization. To pinpoint the structural elements...

  2. Characterization of Acid Soluble Collagen from Redbelly Yellowtail Fusilier Fish Skin (Caesio cuning

    Directory of Open Access Journals (Sweden)

    Ika Astiana

    2016-04-01

    Full Text Available Fish skin can be used as raw material for producing collagen. The collagen can be extracted by chemical or combination of chemical and enzymatic processes. Extraction of collagen chemically can do with the acid process that produces acid soluble collagen (ASC. This study aimed to determine the optimum concentration and time of pretreatment and extraction, also to determine the characteristics of the acid soluble collagen from the skin of yellow tail fish. Extraction of collagen done by pretreatment using NaOH at the concentration of 0.05; 0.1; and 0.15 M and extraction using acetic acid at the concentration of 0.3; 0.5; and 0.7 M. Pretreatment NaOH with concentration 0.05 M and soaking time of 8 hours is the best combination for eliminating non collagen protein. Combination treatment of acetic acid at the concentration of 0.3 M for 3 days obtained the best solubility. The yield of collagen ASC was 18.4±1.49% (db and 5.79±0.47% (wb. Amino acid composition that is dominant in the ASC collagen was glycine (25.09±0.003%, alanine (13.71±0.075%, and proline (12.15±0.132%. Collagen from yellow tail fish skin has α1, α2, β and γ protein structure with the molecular weight of 125, 113, 170-181, and 208 KDa. The transition and melting temperatures of collagen were 67.69oC and 144.4oC. The surface structure of collagen by analysis of SEM has fibers on the surface.

  3. Inhibition of cathepsin K reduces cartilage degeneration in the anterior cruciate ligament transection rabbit and murine models of osteoarthritis.

    Science.gov (United States)

    Hayami, Tadashi; Zhuo, Ya; Wesolowski, Gregg A; Pickarski, Maureen; Duong, Le T

    2012-06-01

    To investigate the disease modifying effects of cathepsin K (CatK) inhibitor L-006235 compared to alendronate (ALN) in two preclinical models of osteoarthritis (OA). Skeletally mature rabbits underwent sham or anterior cruciate ligament transection (ACLT)-surgery and were treated with L-006235 (L-235, 10 mg/kg or 50 mg/kg, p.o., daily) or ALN (0.6 mg/kg, s.c., weekly) for 8-weeks. ACLT joint instability was also induced in CatK(-/-) versus wild type (wt) mice and treated for 16-weeks. Changes in cartilage degeneration, subchondral bone volume and osteophyte area were determined by histology and μ-CT. Collagen type I helical peptide (HP-I), a bone resorption marker and collagen type II C-telopeptide (CTX-II), a cartilage degradation marker were measured. L-235 (50 mg/kg) and ALN treatment resulted in significant chondroprotective effects, reducing CTX-II by 60% and the histological Mankin score for cartilage damage by 46% in the ACLT-rabbits. Both doses of L-235 were more potent than ALN in protecting against focal subchondral bone loss, and reducing HP-I by 70% compared to vehicle. L-235 (50 mg/kg) and ALN significantly reduced osteophyte formation in histomorphometric analysis by 55%. The Mankin score in ACLT-CatK(-/-) mice was ~2.5-fold lower than the ACLT-wt mice and was not different from sham-CatK(-/-). Osteophyte development was not different among the groups. Inhibition of CatK provides significant benefits in ACLT-model of OA, including: 1) protection of subchondral bone integrity, 2) protection against cartilage degradation and 3) reduced osteophytosis. Preclinical evidence supports the role of CatK as a potential therapeutic target for the treatment of OA. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Effects of type I collagen degradation on the durability of three adhesive systems in the early phase of dentin bonding.

    Directory of Open Access Journals (Sweden)

    Lin Hu

    Full Text Available This study was designed to evaluate the effects of type I collagen degradation on the durability of three adhesive systems in the early phase of dentin bonding.Bonded dentin specimens were prepared using three different types of adhesive systems. Micro-tensile bond strength and degradation of collagen were tested before, and after 1 month or 4 months of aging in artificial saliva. The relationship between micro-tensile bond strength and collagen degradation was analyzed by calculating their Pearson's correlation coefficient.Aging induced time-dependent reduction in micro-tensile bond strengths for all the tested adhesive systems, although such reduction for the single-step self-etching adhesive G-Bond (GB was not statistically significant. The bond strength of the two-step self-etching primer adhesive system Clearfil SE Bond (SEB was similar to that of the two-step etch-and-rinse self-priming adhesive system Single Bond 2 (SB, and they were both significantly reduced after one or four months of aging. A negative correlation was found between the degree of collagen degradation and magnitude of micro-tensile bond strength (r = -0.65, p = 0.003. The Pearson's correlation coefficient was 0.426, indicating that 42.6% of the aging-induced reduction in bond strength can be explained by the degradation of collagen.In the early phase of dentin bonding, there was a negative correlation between the degree of collagen degradation and the magnitude of micro-tensile bond strength. The reduction of bond strength was accompanied by the degradation of collagen. These results provide evidence for the causative relationship between the degradation of collagen and the deterioration of dentin-adhesive interface.

  5. Application of Collagen Scaffold in Tissue Engineering: Recent Advances and New Perspectives

    Directory of Open Access Journals (Sweden)

    Chanjuan Dong

    2016-02-01

    Full Text Available Collagen is the main structural protein of most hard and soft tissues in animals and the human body, which plays an important role in maintaining the biological and structural integrity of the extracellular matrix (ECM and provides physical support to tissues. Collagen can be extracted and purified from a variety of sources and offers low immunogenicity, a porous structure, good permeability, biocompatibility and biodegradability. Collagen scaffolds have been widely used in tissue engineering due to these excellent properties. However, the poor mechanical property of collagen scaffolds limits their applications to some extent. To overcome this shortcoming, collagen scaffolds can be cross-linked by chemical or physical methods or modified with natural/synthetic polymers or inorganic materials. Biochemical factors can also be introduced to the scaffold to further improve its biological activity. This review will summarize the structure and biological characteristics of collagen and introduce the preparation methods and modification strategies of collagen scaffolds. The typical application of a collagen scaffold in tissue engineering (including nerve, bone, cartilage, tendon, ligament, blood vessel and skin will be further provided. The prospects and challenges about their future research and application will also be pointed out.

  6. Investigation of the influence of UV irradiation on collagen thin films by AFM imaging

    Energy Technology Data Exchange (ETDEWEB)

    Stylianou, Andreas, E-mail: styliand@mail.ntua.gr; Yova, Dido; Alexandratou, Eleni

    2014-12-01

    Collagen is the major fibrous extracellular matrix protein and due to its unique properties, it has been widely used as biomaterial, scaffold and cell-substrate. The aim of the paper was to use Atomic Force Microscopy (AFM) in order to investigate well-characterized collagen thin films after ultraviolet light (UV) irradiation. The films were also used as in vitro culturing substrates in order to investigate the UV-induced alterations to fibroblasts. A special attention was given in the alteration on collagen D-periodicity. For short irradiation times, spectroscopy (fluorescence/absorption) studies demonstrated that photodegradation took place and AFM imaging showed alterations in surface roughness. Also, it was highlighted that UV-irradiation had different effects when it was applied on collagen solution than on films. Concerning fibroblast culturing, it was shown that fibroblast behavior was affected after UV irradiation of both collagen solution and films. Furthermore, after a long irradiation time, collagen fibrils were deformed revealing that collagen fibrils are consisting of multiple shells and D-periodicity occurred on both outer and inner shells. The clarification of the effects of UV light on collagen and the induced modifications of cell behavior on UV-irradiated collagen-based surfaces will contribute to the better understanding of cell–matrix interactions in the nanoscale and will assist in the appropriate use of UV light for sterilizing and photo-cross-linking applications. - Highlights: • Collagen thin films were formed and exposed in UV irradiation. • Collagen thin films were formed from UV-irradiated collagen solution. • Nanocharacterization of collagen thin films by AFM • Fluorescence and absorption spectroscopy studies on collagen films • Investigation of fibroblast response on collagen films.

  7. Investigation of the influence of UV irradiation on collagen thin films by AFM imaging

    International Nuclear Information System (INIS)

    Stylianou, Andreas; Yova, Dido; Alexandratou, Eleni

    2014-01-01

    Collagen is the major fibrous extracellular matrix protein and due to its unique properties, it has been widely used as biomaterial, scaffold and cell-substrate. The aim of the paper was to use Atomic Force Microscopy (AFM) in order to investigate well-characterized collagen thin films after ultraviolet light (UV) irradiation. The films were also used as in vitro culturing substrates in order to investigate the UV-induced alterations to fibroblasts. A special attention was given in the alteration on collagen D-periodicity. For short irradiation times, spectroscopy (fluorescence/absorption) studies demonstrated that photodegradation took place and AFM imaging showed alterations in surface roughness. Also, it was highlighted that UV-irradiation had different effects when it was applied on collagen solution than on films. Concerning fibroblast culturing, it was shown that fibroblast behavior was affected after UV irradiation of both collagen solution and films. Furthermore, after a long irradiation time, collagen fibrils were deformed revealing that collagen fibrils are consisting of multiple shells and D-periodicity occurred on both outer and inner shells. The clarification of the effects of UV light on collagen and the induced modifications of cell behavior on UV-irradiated collagen-based surfaces will contribute to the better understanding of cell–matrix interactions in the nanoscale and will assist in the appropriate use of UV light for sterilizing and photo-cross-linking applications. - Highlights: • Collagen thin films were formed and exposed in UV irradiation. • Collagen thin films were formed from UV-irradiated collagen solution. • Nanocharacterization of collagen thin films by AFM • Fluorescence and absorption spectroscopy studies on collagen films • Investigation of fibroblast response on collagen films

  8. A three-dimensional computational model of collagen network mechanics.

    Directory of Open Access Journals (Sweden)

    Byoungkoo Lee

    Full Text Available Extracellular matrix (ECM strongly influences cellular behaviors, including cell proliferation, adhesion, and particularly migration. In cancer, the rigidity of the stromal collagen environment is thought to control tumor aggressiveness, and collagen alignment has been linked to tumor cell invasion. While the mechanical properties of collagen at both the single fiber scale and the bulk gel scale are quite well studied, how the fiber network responds to local stress or deformation, both structurally and mechanically, is poorly understood. This intermediate scale knowledge is important to understanding cell-ECM interactions and is the focus of this study. We have developed a three-dimensional elastic collagen fiber network model (bead-and-spring model and studied fiber network behaviors for various biophysical conditions: collagen density, crosslinker strength, crosslinker density, and fiber orientation (random vs. prealigned. We found the best-fit crosslinker parameter values using shear simulation tests in a small strain region. Using this calibrated collagen model, we simulated both shear and tensile tests in a large linear strain region for different network geometry conditions. The results suggest that network geometry is a key determinant of the mechanical properties of the fiber network. We further demonstrated how the fiber network structure and mechanics evolves with a local formation, mimicking the effect of pulling by a pseudopod during cell migration. Our computational fiber network model is a step toward a full biomechanical model of cellular behaviors in various ECM conditions.

  9. Long-Term Natural History and Complications of Collagenous Colitis

    Directory of Open Access Journals (Sweden)

    Hugh J Freeman

    2012-01-01

    Full Text Available Microscopic forms of colitis have been described, including collagenous colitis, a possibly heterogeneous disorder. Collagenous colitis most often appears to have an entirely benign clinical course that usually responds to limited treatment. Sometimes significant extracolonic disorders, especially arthritis, spondylitis, thyroiditis and skin disorders, such as pyoderma gangrenosum, dominate the clinical course and influence the treatment strategy. However, rare fatalities have been reported and several complications, some severe, have been attributed directly to the colitis. Toxic colitis and toxic megacolon may develop. Concomitant gastric and small intestinal inflammatory disorders have been described including celiac disease and more extensive collagenous inflammatory disease. Colonic ulceration has been associated with the use of nonsteroidal anti-inflammatory drugs, while other forms of inflammatory bowel disease, including ulcerative colitis and Crohn disease, may evolve directly from collagenous colitis. Submucosal ‘dissection’, colonic fractures, or mucosal tears and perforation, possibly from air insufflation during colonoscopy, have been reported. Similar changes may result from increased intraluminal pressures that may occur during radiological imaging of the colon. Neoplastic disorders of the colon may also occur during the course of collagenous colitis, including colon carcinoma and neuroendocrine tumours (ie, carcinoids. Finally, lymphoproliferative disease has been reported.

  10. Effects of estrogen replacement and lower androgen status on skeletal muscle collagen and myofibrillar protein synthesis in postmenopausal women

    DEFF Research Database (Denmark)

    Hansen, Mette; Skovgaard, Dorthe; Reitelseder, Søren

    2012-01-01

    Our aim was to determine synthesis rate of myofibrillar and collagen proteins in 20 postmenopausal women, who were either nonusers (Controls) or users of estrogen replacement therapy (ERT) after hysterectomy/oophorectomy. Myofibrillar and muscle collagen protein fractional synthesis rate (FSR) were...... determined in a nonexercised leg and 24 hours after exercise in the contralateral leg. A significant interaction between treatment and mechanical loading was observed in myofibrillar protein FSR. At rest, myofibrillar protein FSR was found to be lower in ERT users than in Controls. Exercise enhanced...... myofibrillar protein FSR only in ERT users. Similarly, muscle collagen FSR tended to be lower in ERT users compared with Controls. In ERT participants, the androgen profile was reduced, whereas estradiol and sex hormone–binding globulin were higher. In conclusion, at rest, myofibrillar protein FSR was lower...

  11. Peroxidase enzymes regulate collagen extracellular matrix biosynthesis.

    Science.gov (United States)

    DeNichilo, Mark O; Panagopoulos, Vasilios; Rayner, Timothy E; Borowicz, Romana A; Greenwood, John E; Evdokiou, Andreas

    2015-05-01

    Myeloperoxidase and eosinophil peroxidase are heme-containing enzymes often physically associated with fibrotic tissue and cancer in various organs, without any direct involvement in promoting fibroblast recruitment and extracellular matrix (ECM) biosynthesis at these sites. We report herein novel findings that show peroxidase enzymes possess a well-conserved profibrogenic capacity to stimulate the migration of fibroblastic cells and promote their ability to secrete collagenous proteins to generate a functional ECM both in vitro and in vivo. Mechanistic studies conducted using cultured fibroblasts show that these cells are capable of rapidly binding and internalizing both myeloperoxidase and eosinophil peroxidase. Peroxidase enzymes stimulate collagen biosynthesis at a post-translational level in a prolyl 4-hydroxylase-dependent manner that does not require ascorbic acid. This response was blocked by the irreversible myeloperoxidase inhibitor 4-amino-benzoic acid hydrazide, indicating peroxidase catalytic activity is essential for collagen biosynthesis. These results suggest that peroxidase enzymes, such as myeloperoxidase and eosinophil peroxidase, may play a fundamental role in regulating the recruitment of fibroblast and the biosynthesis of collagen ECM at sites of normal tissue repair and fibrosis, with enormous implications for many disease states where infiltrating inflammatory cells deposit peroxidases. Copyright © 2015 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  12. Preparation and characterization of collagen/hydroxypropyl methylcellulose (HPMC) blend film.

    Science.gov (United States)

    Ding, Cuicui; Zhang, Min; Li, Guoying

    2015-03-30

    This study aimed to prepare and characterize the collagen/HPMC blend film (1/1). Thermogravimetric analysis and differential scanning calorimetry were used to investigate the thermal properties of the film. Both thermal decomposition temperature and denaturation temperature of the blend film were higher than those of the collagen film due to the intermolecular hydrogen bonding interaction between collagen and HPMC, which was demonstrated by Fourier transform infrared spectroscopy. Additionally, the morphologies, mechanical properties and hydrophilicity of films were examined. The blend film exhibited a more homogeneous and compact structure compared with that of the collagen film, as observed from scanning electron microscopy and atomic force microscopy. The tensile strength, ultimate elongation and hydrophilicity of the blend film were superior to those of the pure collagen film. Furthermore, the introduction of polyethylene glycol 1500 had almost no influence on the thermal properties of the blend film but obviously improved its stretch-ability and smoothness. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. An engineering, multiscale constitutive model for fiber-forming collagen in tension.

    Science.gov (United States)

    Annovazzi, Lorella; Genna, Francesco

    2010-01-01

    This work proposes a nonlinear constitutive model for a single collagen fiber. Fiber-forming collagen can exhibit different hierarchies of basic units, called fascicles, bundles, fibrils, microfibrils, and so forth, down to the molecular (tropocollagen) level. Exploiting the fact that at each hierarchy level the microstructure can be seen, at least approximately, as that of a wavy, or crimped, extensible cable, the proposed stress-strain model considers a given number of levels, each of which contributes to the overall mechanical behavior according to its own geometrical features (crimp, or waviness), as well as to the basic mechanical properties of the tropocollagen. The crimp features at all levels are assumed to be random variables, whose statistical integration furnishes a stress-strain curve for a collagen fiber. The soundness of this model-the first, to the Authors' knowledge, to treat a single collagen fiber as a microstructured nonlinear structural element-is checked by its application to collagen fibers for which experimental results are available: rat tail tendon, periodontal ligament, and engineered ones. Here, no attempt is made to obtain a stress-strain law for generic collagenous tissues, which exhibit specific features, often much more complex than those of a single fiber. However, it is trivial to observe that the availability of a sound, microstructurally based constitutive law for a single collagen fiber (but applicable at any sub-level, or to any other material with a similar microstructure) is essential for assembling complex constitutive models for any collagenous fibrous tissue.

  14. Use of collagen film as a dural substitute: preliminary animal studies.

    Science.gov (United States)

    Collins, R L; Christiansen, D; Zazanis, G A; Silver, F H

    1991-02-01

    Cadaver grafts, laminated metallic materials, and synthetic fabrics have been evaluated as dural substitutes. Use of cadaver tissues is limited by fear of transmission of infectious disease while use of synthetic materials is associated with implant encapsulation and foreign body reactions. The purpose of this study is to evaluate the use of collagen film as a dural substitute. Collagen films prepared from bovine skin were used to replace the dura of rabbits and histological observations were made at 16, 28, 42, and 56 days postimplantation. Controls consisted of dura that was removed and then reattached. Control dura showed no signs of inflammation or adhesion to underlying tissue at 16 and 28 days postimplantation. By 56 days postimplantation, extensive connective tissue deposition was observed in close proximity to adjacent bone as well as pia arachnoid adhesions. Implanted collagen film behaved in a similar manner to control dura showing minimal inflammatory response at all time periods. At 56 days postimplantation collagen film appeared strongly infiltrated by connective tissue cells that deposited new collagen. The results of this study suggest that a reconstituted type I collagen film crosslinked with cyanamide acts as a temporary barrier preventing loss of fluid and adhesion formation. It is replaced after approximately 2 months with host collagen with limited inflammatory and fibrotic complications. Further studies are needed to completely characterize the new connective tissue formed as well as long-term biocompatibility and functioning of a reconstituted collagen dural substitute.

  15. Production and characterization of a monoclonal antibody to chicken type I collagen.

    Science.gov (United States)

    Linsenmayer, T F; Hendrix, M J; Little, C D

    1979-01-01

    We have shown that lymphocyte-myeloma cell hybridization can be used to produce large amounts of extremely high-titer specific antibodies against type I collagen, a macromolecule normally of low immunogenicity. In a passive hemagglutination assay the antibody had a high titer against chicken type I collagen but showed no activity against chicken type II or rat type I collagen. By using a two-step fluorescence histochemical procedure on sections of embryonic chicken tibia, strong fluorescence was observed in the perichondrium and surrounding connective tissue (known to contain type I collagen) but not over the cartilage (characterized by type II collagen). When used in conjunction with Staphylococcus aureus as a solid phase immunoadsorbant, the antibody was shown to bind to labeled collagen synthesized in vitro by embryonic chicken calvaria. Images PMID:291035

  16. The response to oestrogen deprivation of the cartilage collagen degradation marker, CTX-II, is unique compared with other markers of collagen turnover

    DEFF Research Database (Denmark)

    Bay-Jensen, Anne-Christine; Tabassi, Nadine C B; Sondergaard, Lene V

    2009-01-01

    The urinary level of the type II collagen degradation marker CTX-II is increased in postmenopausal women and in ovariectomised rats, suggesting that oestrogen deprivation induces cartilage breakdown. Here we investigate whether this response to oestrogen is also true for other type II collagen tu...

  17. Early-maturing soybean cropping system. III. Protein and oil contents and oil composition

    International Nuclear Information System (INIS)

    Kane, M.V.; Steele, C.C.; Grabau, L.J.; MacKown, C.T.; Hildebrand, D.F.

    1997-01-01

    Expanding production of early-maturing soybean [Glycine max (L.) Merrill] cultivars in the southeastern USA has exposed such cultivars to a wide range of environmental conditions during seed-fill. Temperatures during this growth stage influence levels of specific fatty acids, particularly of the unsaturated fatty acids. Our objective was to evaluate the grain quality responses of early-maturing cultivars to the wide range of planting dates in the southeastern USA. Protein and oil contents along with fatty acid profiles were assessed for cultivars from Maturity Group (MG) 00 through IV using late April mid-May early June, and late June planting dates on a well-drained Maury silt loam (fine, mixed, mesic Typic Paleudalf) in 1990 through 1993. Across years and cultivars. delayed planting increased protein content and linolenic acid levels and reduced oil content and oleic acid levels but had little or no influence on palmitic stearic or linoleic acid levels. The higher seed-fill temperatures associated with early planting were strongly correlated with increased oil content and oleic acid levels and reduced linolenic acid levels. Increasing seed-fill temperatures were closely associated with reduced linolenic acid levels for all six cultivars. However, the oleic acid response to seed-temperatures strongly depended on cultivar maturity. Oleic acid levels of early-maturing cultivars were much more sensitive to seed-fill temperatures than were those of later maturing cultivars. While other effects of environment on grain quality characteristics may be relatively small perhaps the quality of new low linolenic acid cultivars could be amplified through culture under the warmer conditions the southeastern USA

  18. Metal stabilization of collagen and de novo designed mimetic peptides

    OpenAIRE

    Parmar, Avanish S.; Xu, Fei; Pike, Douglas H.; Belure, Sandeep V.; Hasan, Nida F.; Drzewiecki, Kathryn E.; Shreiber, David I.; Nanda, Vikas

    2015-01-01

    We explore the design of metal binding sites to modulate triple-helix stability of collagen and collagen-mimetic peptides. Globular proteins commonly utilize metals to connect tertiary structural elements that are well separated in sequence, constraining structure and enhancing stability. It is more challenging to engineer structural metals into fibrous protein scaffolds, which lack the extensive tertiary contacts seen in globular proteins. In the collagen triple helix, the structural adjacen...

  19. Newly identified interfibrillar collagen crosslinking suppresses cell proliferation and remodelling.

    Science.gov (United States)

    Marelli, Benedetto; Le Nihouannen, Damien; Hacking, S Adam; Tran, Simon; Li, Jingjing; Murshed, Monzur; Doillon, Charles J; Ghezzi, Chiara E; Zhang, Yu Ling; Nazhat, Showan N; Barralet, Jake E

    2015-06-01

    Copper is becoming recognised as a key cation in a variety of biological processes. Copper chelation has been studied as a potential anti-angiogenic strategy for arresting tumour growth. Conversely the delivery of copper ions and complexes in vivo can elicit a pro-angiogenic effect. Previously we unexpectedly found that copper-stimulated intraperitoneal angiogenesis was accompanied by collagen deposition. Here, in hard tissue, not only was healing accelerated by copper, but again enhanced deposition of collagen was detected at 2 weeks. Experiments with reconstituted collagen showed that addition of copper ions post-fibrillogenesis rendered plastically-compressed gels resistant to collagenases, enhanced their mechanical properties and increased the denaturation temperature of the protein. Unexpectedly, this apparently interfibrillar crosslinking was not affected by addition of glucose or ascorbic acid, which are required for crosslinking by advanced glycation end products (AGEs). Fibroblasts cultured on copper-crosslinked gels did not proliferate, whereas those cultured with an equivalent quantity of copper on either tissue culture plastic or collagen showed no effect compared with controls. Although non-proliferative, fibroblasts grown on copper-cross-linked collagen could migrate, remained metabolically active for at least 14 days and displayed a 6-fold increase in Mmps 1 and 3 mRNA expression compared with copper-free controls. The ability of copper ions to crosslink collagen fibrils during densification and independently of AGEs or Fenton type reactions is previously unreported. The effect on MMP susceptibility of collagen and the dramatic change in cell behaviour on this crosslinked ECM may contribute to shedding some light on unexplained phenomena as the apparent benefit of copper complexation in fibrotic disorders or the enhanced collagen deposition in response to localised copper delivery. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Automated image analysis in the study of collagenous colitis

    DEFF Research Database (Denmark)

    Fiehn, Anne-Marie Kanstrup; Kristensson, Martin; Engel, Ulla

    2016-01-01

    PURPOSE: The aim of this study was to develop an automated image analysis software to measure the thickness of the subepithelial collagenous band in colon biopsies with collagenous colitis (CC) and incomplete CC (CCi). The software measures the thickness of the collagenous band on microscopic...... slides stained with Van Gieson (VG). PATIENTS AND METHODS: A training set consisting of ten biopsies diagnosed as CC, CCi, and normal colon mucosa was used to develop the automated image analysis (VG app) to match the assessment by a pathologist. The study set consisted of biopsies from 75 patients...

  1. The adsorption of 117Snm(IV)-EDTMP on collagen

    International Nuclear Information System (INIS)

    Yang Yuqing; Luo Shunzhong; Pu Manfei; Bing Wenzeng; He Jiaheng; Wang Guanquan

    2002-01-01

    The adsorption and desorption characteristics of 117 Sn m (IV)-EDTMP on collage are studied, and compared with that on HA. The results show that the effects of pH and temperature on adsorption of 117 Sn m (IV)-EDTMP on collagen are similar to those on HA, and that the adsorption equilibrium and adsorption model of 117 Sn m (IV)-EDTMP on collagen are completely different from those on HA; 117 Sm m -EDTMP absorbed on collagen are extremely stable and almost could not be desorbed with normal saline or EDTMP

  2. Interleukin-1 alpha modulates collagen gene expression in cultured synovial cells.

    Science.gov (United States)

    Mauviel, A; Teyton, L; Bhatnagar, R; Penfornis, H; Laurent, M; Hartmann, D; Bonaventure, J; Loyau, G; Saklatvala, J; Pujol, J P

    1988-01-01

    The effects of porcine interleukin-1 (IL-1) alpha on collagen production were studied in cultured human rheumatoid synovial cells. Addition of 0.05-5 ng of IL-1/ml into the cultures resulted in a dose-dependent decreased rate of collagen released into the medium over 24 h. To determine whether this inhibition was due to secondary action of prostaglandin E2 (PGE2) secreted in response to IL-1, cultures were incubated in presence of various inhibitors of arachidonate metabolism. Depending on the cell strains, these inhibitors were able to suppress or diminish the effect of IL-1, suggesting that PGE2 is involved in the mechanism. Depression of collagen production caused by IL-1 mainly affected type I collagen and therefore led to a change in the type I/type III collagen ratio in the extracellular medium. Steady-state levels of mRNA for types I and III procollagens were estimated by dot-blot hybridization and compared with the amounts of respective collagens produced in the same cultures. IL-1 generally increased procollagen type I mRNA, but to a variable extent, as did indomethacin (Indo). Depending on the cell strain, the combination of indo and IL-1 could elevate the mRNA level of type I procollagen compared with Indo alone. These results did not correlate with the production rate of collagen in the medium, which was diminished by exposure to IL-1. The level of mRNA for collagen type III was not greatly changed by incubation with IL-1, and a better correlation was generally observed with the amount of type III collagen found in the medium. These data suggest that an additional control mechanism at translational or post-translational level must exist, counterbalancing the stimulatory effect of IL-1 on collagen mRNA transcription. It is likely that IL-1 could modulate the production of collagen in synovial cells by an interplay of different mechanisms, some of them limiting the effect of primary elevation of the steady-state mRNA level. Images Fig. 3. Fig. 4. Fig. 5

  3. Eccentric rehabilitation exercise increases peritendinous type I collagen synthesis in humans with Achilles tendinosis

    DEFF Research Database (Denmark)

    Langberg, Henning; Ellingsgaard, Helga; Madsen, Thomas

    2007-01-01

    It has been shown that 12 weeks of eccentric heavy resistance training can reduce pain in runners suffering from chronic Achilles tendinosis, but the mechanism behind the effectiveness of this treatment is unknown. The present study investigates the local effect of an eccentric training regime on...... in the healthy tendons. The clinical effect of the 12 weeks of eccentric training was determined by using a standardized loading procedure of the Achilles tendons showing a decrease in pain in all the chronic injured tendons (VAS before 44+/-9, after 13+/-9; P......It has been shown that 12 weeks of eccentric heavy resistance training can reduce pain in runners suffering from chronic Achilles tendinosis, but the mechanism behind the effectiveness of this treatment is unknown. The present study investigates the local effect of an eccentric training regime...... of heavy-resistance eccentric training apart from their regular training and soccer activity. Before and after the training period the tissue concentration of indicators of collagen turnover was measured by the use of the microdialysis technique. After training, collagen synthesis was increased...

  4. Tomato seeds maturity detection system based on chlorophyll fluorescence

    Science.gov (United States)

    Li, Cuiling; Wang, Xiu; Meng, Zhijun

    2016-10-01

    Chlorophyll fluorescence intensity can be used as seed maturity and quality evaluation indicator. Chlorophyll fluorescence intensity of seed coats is tested to judge the level of chlorophyll content in seeds, and further to judge the maturity and quality of seeds. This research developed a detection system of tomato seeds maturity based on chlorophyll fluorescence spectrum technology, the system included an excitation light source unit, a fluorescent signal acquisition unit and a data processing unit. The excitation light source unit consisted of two high power LEDs, two radiators and two constant current power supplies, and it was designed to excite chlorophyll fluorescence of tomato seeds. The fluorescent signal acquisition unit was made up of a fluorescence spectrometer, an optical fiber, an optical fiber scaffolds and a narrowband filter. The data processing unit mainly included a computer. Tomato fruits of green ripe stage, discoloration stage, firm ripe stage and full ripe stage were harvested, and their seeds were collected directly. In this research, the developed tomato seeds maturity testing system was used to collect fluorescence spectrums of tomato seeds of different maturities. Principal component analysis (PCA) method was utilized to reduce the dimension of spectral data and extract principal components, and PCA was combined with linear discriminant analysis (LDA) to establish discriminant model of tomato seeds maturity, the discriminant accuracy was greater than 90%. Research results show that using chlorophyll fluorescence spectrum technology is feasible for seeds maturity detection, and the developed tomato seeds maturity testing system has high detection accuracy.

  5. Dynamics of Cancer Cell near Collagen Fiber Chain

    Science.gov (United States)

    Kim, Jihan; Sun, Bo

    Cell migration is an integrated process that is important in life. Migration is essential for embryonic development as well as homeostatic processes such as wound healing and immune responses. When cell migrates through connective extracellular matrix (ECM), it applies cellular traction force to ECM and senses the rigidity of their local environment. We used human breast cancer cell (MDA-MB-231) which is highly invasive and applies strong traction force to ECM. As cancer cell applies traction force to type I collage-based ECM, it deforms collagen fibers near the surface. Patterns of deforming collagen fibers are significantly different with pairs of cancer cells compared to a single cancer cell. While a pair of cancer cells within 60 um creates aligned collagen fiber chains between them permanently, a single cancer cell does not form any fiber chains. In this experiment we measured a cellular response and an interaction between a pair of cells through the chain. Finally, we analyzed correlation of directions between cancer cell migration and the collagen chain alignment.

  6. Characterization of fibrillar collagens and extracellular matrix of glandular benign prostatic hyperplasia nodules.

    Directory of Open Access Journals (Sweden)

    Tyler M Bauman

    Full Text Available Recent studies have associated lower urinary tract symptoms (LUTS in men with prostatic fibrosis, but a definitive link between collagen deposition and LUTS has yet to be demonstrated. The objective of this study was to evaluate ECM and collagen content within normal glandular prostate tissue and glandular BPH, and to evaluate the association of clinical parameters of LUTS with collagen content.Fibrillar collagen and ECM content was assessed in normal prostate (48 patients and glandular BPH nodules (24 patients using Masson's trichrome stain and Picrosirius red stain. Second harmonic generation (SHG imaging was used to evaluate collagen content. Additional BPH tissues (n = 47 were stained with Picrosirius red and the association between clinical parameters of BPH/LUTS and collagen content was assessed.ECM was similar in normal prostate and BPH (p = 0.44. Total collagen content between normal prostate and glandular BPH was similar (p = 0.27, but a significant increase in thicker collagen bundles was observed in BPH (p = 0.045. Using SHG imaging, collagen content in BPH (mean intensity = 62.52; SEM = 2.74 was significantly higher than in normal prostate (51.77±3.49; p = 0.02. Total collagen content was not associated with treatment with finasteride (p = 0.47 or α-blockers (p = 0.52, pre-TURP AUA symptom index (p = 0.90, prostate-specific antigen (p = 0.86, post-void residual (PVR; p = 0.32, prostate size (p = 0.21, or post-TURP PVR (p = 0.51. Collagen content was not associated with patient age in patients with BPH, however as men aged normal prostatic tissue had a decreased proportion of thick collagen bundles.The proportion of larger bundles of collagen, but not total collagen, is increased in BPH nodules, suggesting that these large fibers may play a role in BPH/LUTS. Total collagen content is independent of clinical parameters of BPH and LUTS. If fibrosis and overall ECM deposition are

  7. Characterization of Acid Soluble Collagen from Redbelly Yellowtail Fusilier Fish Skin (Caesio cuning

    Directory of Open Access Journals (Sweden)

    Ika Astiana

    2016-04-01

    Full Text Available Fish skin can be used as raw material for producing collagen. The collagen can be extracted by chemicalor combination of chemical and enzymatic processes. Extraction of collagen chemically can do with theacid process that produces acid soluble collagen (ASC. This study aimed to determine the optimumconcentration and time of pretreatment and extraction, also to determine the characteristics of the acidsoluble collagen from the skin of yellow tail fish. Extraction of collagen done by pretreatment using NaOH atthe concentration of 0.05; 0.1; and 0.15 M and extraction using acetic acid at the concentration of 0.3; 0.5; and0.7 M. Pretreatment NaOH with concentration 0.05 M and soaking time of 8 hours is the best combinationfor eliminating non collagen protein. Combination treatment of acetic acid at the concentration of 0.3 Mfor 3 days obtained the best solubility. The yield of collagen ASC was 18.4±1.49% (db and 5.79±0.47%(wb. Amino acid composition that is dominant in the ASC collagen was glycine (25.09±0.003%, alanine(13.71±0.075%, and proline (12.15±0.132%. Collagen from yellow tail fish skin has α1, α2, β and γprotein structure with the molecular weight of 125, 113, 170-181, and 208 KDa. The transition and meltingtemperatures of collagen were 67.69oC and 144.4oC. The surface structure of collagen by analysis of SEM hasfibers on the surface.Keywords: cholesterol, fatty acids, meat tissue, proximate, red snapper (L. argentimaculatus

  8. Oriented collagen fibers direct tumor cell intravasation

    KAUST Repository

    Han, Weijing

    2016-09-24

    In this work, we constructed a Collagen I-Matrigel composite extracellular matrix (ECM). The composite ECM was used to determine the influence of the local collagen fiber orientation on the collective intravasation ability of tumor cells. We found that the local fiber alignment enhanced cell-ECM interactions. Specifically, metastatic MDA-MB-231 breast cancer cells followed the local fiber alignment direction during the intravasation into rigid Matrigel (∼10 mg/mL protein concentration).

  9. Preparation and characterization of collagen-hydroxyapatite/pectin composite.

    Science.gov (United States)

    Wenpo, Feng; Gaofeng, Liang; Shuying, Feng; Yuanming, Qi; Keyong, Tang

    2015-03-01

    Pectin, a kind of plant polysaccharide, was introduced into collagen-hydroxyapatite composite system, and prepared collagen-hydroxyapatite/pectin (Col-HA/pectin) composite in situ. The structure of the composite was investigated by XRD, SEM, and FT-IR. The mechanical properties, water absorption, enzyme degradation, and cytotoxicity of the composite were investigated as well. The results show that the inorganic substance in the composite materials is hydroxyapatite in relatively low crystallinity. A new interface appeared by the interaction among hydroxyapatite and collagen-pectin, and formed smooth fine particles. The mechanical properties, water absorption, enzyme degradation, and cytotoxicity indicate a potential use in bone replacement for the new composite. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Assessment of cortical maturation with prenatal MRI. Part I: normal cortical maturation

    Energy Technology Data Exchange (ETDEWEB)

    Fogliarini, Celine [Faculte Timone, Centre de Resonance Magnetique Biologique et Medicale, Marseille (France); Chaumoitre, Katia [Hopital Nord, Department of Radiology, Marseille (France); Chapon, Frederique; Levrier, Olivier; Girard, Nadine [Hopital Timone, Department of Neuroradiology, Marseille Cedex 5 (France); Fernandez, Carla; Figarella-Branger, Dominique [Hopital Timone, Department of Pathology, Marseille (France)

    2005-08-01

    Cortical maturation, especially gyral formation, follows a temporospatial schedule and is a good marker of fetal maturation. Although ultrasonography is still the imaging method of choice to evaluate fetal anatomy, MRI has an increasingly important role in the detection of brain abnormalities, especially of cortical development. Knowledge of MRI techniques in utero with the advantages and disadvantages of some sequences is necessary, in order to try to optimize the different magnetic resonance sequences to be able to make an early diagnosis. The different steps of cortical maturation known from histology represent the background necessary for the understanding of maturation in order to be then able to evaluate brain maturation through neuroimaging. Illustrations of the normal cortical maturation are given for each step accessible to MRI for both the cerebral hemispheres and the posterior fossa. (orig.)

  11. Assessment of cortical maturation with prenatal MRI. Part I: normal cortical maturation

    International Nuclear Information System (INIS)

    Fogliarini, Celine; Chaumoitre, Katia; Chapon, Frederique; Levrier, Olivier; Girard, Nadine; Fernandez, Carla; Figarella-Branger, Dominique

    2005-01-01

    Cortical maturation, especially gyral formation, follows a temporospatial schedule and is a good marker of fetal maturation. Although ultrasonography is still the imaging method of choice to evaluate fetal anatomy, MRI has an increasingly important role in the detection of brain abnormalities, especially of cortical development. Knowledge of MRI techniques in utero with the advantages and disadvantages of some sequences is necessary, in order to try to optimize the different magnetic resonance sequences to be able to make an early diagnosis. The different steps of cortical maturation known from histology represent the background necessary for the understanding of maturation in order to be then able to evaluate brain maturation through neuroimaging. Illustrations of the normal cortical maturation are given for each step accessible to MRI for both the cerebral hemispheres and the posterior fossa. (orig.)

  12. Diffusion of MMPs on the Surface of Collagen Fibrils: The Mobile Cell Surface – Collagen Substratum Interface

    Science.gov (United States)

    Collier, Ivan E.; Legant, Wesley; Marmer, Barry; Lubman, Olga; Saffarian, Saveez; Wakatsuki, Tetsuro; Elson, Elliot; Goldberg, Gregory I.

    2011-01-01

    Remodeling of the extracellular matrix catalyzed by MMPs is central to morphogenetic phenomena during development and wound healing as well as in numerous pathologic conditions such as fibrosis and cancer. We have previously demonstrated that secreted MMP-2 is tethered to the cell surface and activated by MT1-MMP/TIMP-2-dependent mechanism. The resulting cell-surface collagenolytic complex (MT1-MMP)2/TIMP-2/MMP-2 can initiate (MT1-MMP) and complete (MMP-2) degradation of an underlying collagen fibril. The following question remained: What is the mechanism of substrate recognition involving the two structures of relatively restricted mobility, the cell surface enzymatic complex and a collagen fibril embedded in the ECM? Here we demonstrate that all the components of the complex are capable of processive movement on a surface of the collagen fibril. The mechanism of MT1-MMP movement is a biased diffusion with the bias component dependent on the proteolysis of its substrate, not adenosine triphosphate (ATP) hydrolysis. It is similar to that of the MMP-1 Brownian ratchet we described earlier. In addition, both MMP-2 and MMP-9 as well as their respective complexes with TIMP-1 and -2 are capable of Brownian diffusion on the surface of native collagen fibrils without noticeable dissociation while the dimerization of MMP-9 renders the enzyme immobile. Most instructive is the finding that the inactivation of the enzymatic activity of MT1-MMP has a detectable negative effect on the cell force developed in miniaturized 3D tissue constructs. We propose that the collagenolytic complex (MT1-MMP)2/TIMP-2/MMP-2 represents a Mobile Cell Surface – Collagen Substratum Interface. The biological implications of MT1-MMP acting as a molecular ratchet tethered to the cell surface in complex with MMP-2 suggest a new mechanism for the role of spatially regulated peri-cellular proteolysis in cell-matrix interactions. PMID:21912660

  13. Effects of tissue fixation and dehydration on tendon collagen nanostructure.

    Science.gov (United States)

    Turunen, Mikael J; Khayyeri, Hanifeh; Guizar-Sicairos, Manuel; Isaksson, Hanna

    2017-09-01

    Collagen is the most prominent protein in biological tissues. Tissue fixation is often required for preservation or sectioning of the tissue. This may affect collagen nanostructure and potentially provide incorrect information when analyzed after fixation. We aimed to unravel the effect of 1) ethanol and formalin fixation and 2) 24h air-dehydration on the organization and structure of collagen fibers at the nano-scale using small and wide angle X-ray scattering. Samples were divided into 4 groups: ethanol fixed, formalin fixed, and two untreated sample groups. Samples were allowed to air-dehydrate in handmade Kapton pockets during the measurements (24h) except for one untreated group. Ethanol fixation affected the collagen organization and nanostructure substantially and during 24h of dehydration dramatic changes were evident. Formalin fixation had minor effects on the collagen organization but after 12h of air-dehydration the spatial variation increased substantially, not evident in the untreated samples. Generally, collagen shrinkage and loss of alignment was evident in all samples during 24h of dehydration but the changes were subtle in all groups except the ethanol fixed samples. This study shows that tissue fixation needs to be chosen carefully in order to preserve the features of interest in the tissue. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Computational study of packing a collagen-like molecule: quasi-hexagonal vs "Smith" collagen microfibril model.

    Science.gov (United States)

    Lee, J; Scheraga, H A; Rackovsky, S

    1996-01-01

    The lateral packing of a collagen-like molecule, CH3CO-(Gly-L-Pro-L-Pro)4-NHCH3, has been examined by energy minimization with the ECEPP/3 force field. Two current packing models, the Smith collagen microfibril twisted equilateral pentagonal model and the quasi-hexagonal packing model, have been extensively investigated. In treating the Smith microfibril model, energy minimization was carried out on various conformations including those with the symmetry of equivalent packing, i.e., in which the triple helices were arranged equivalently with respect to each other. Both models are based on the experimental observation of the characteristic axial periodicity, D = 67 nm, of light and dark bands, indicating that, if any superstructure exists, it should consist of five triple helices. The quasi-hexagonal packing structure is found to be energetically more favorable than the Smith microfibril model by as much as 31.2 kcal/mol of five triple helices. This is because the quasi-hexagonal packing geometry provides more nonbonded interaction possibilities between triple helices than does the Smith microfibril geometry. Our results are consistent with recent x-ray studies with synthetic collagen-like molecules and rat tail tendon, in which the data were interpreted as being consistent with either a quasi-hexagonal or a square-triangular structure.

  15. Progress towards discovery of antifibrotic drugs targeting synthesis of type I collagen

    KAUST Repository

    Fritz, Dillon Jeffery; Cai, Le; Stefanovic, Lela; Stefanovic, Branko

    2011-01-01

    Type I collagen is the most abundant protein in human body. Fibrosis is characterized by excessive synthesis of type I collagen in parenchymal organs. It is a leading cause of morbidity and mortality worldwide, about 45% of all natural deaths are attributable to some fibroproliferative disease. There is no cure for fibrosis. To find specific antifibrotic therapy targeting type I collagen, critical molecular interactions regulating its synthesis must be elucidated. Type I and type III collagen mRNAs have a unique sequence element at the 5' end, the 5' stem-loop. This stem-loop is not found in any other mRNA. We cloned LARP6 as the protein which binds collagen 5' stem-loop with high affinity and specificity. Mutation of the 5' stem-loop or knock down of LARP6 greatly diminishes collagen expression. Mice with mutation of the 5' stem-loop are resistant to development of liver fibrosis. LARP6 associates collagen mRNAs with filaments composed of nonmuscle myosin; disruption of these filaments abolishes synthesis of type I collagen. Thus, LARP6 dependent collagen synthesis is the specific mechanism of high collagen expression seen in fibrosis. We developed fluorescence polarization (FP) method to screen for drugs that can inhibit binding of LARP6 to 5' stem-loop RNA. FP is high when LARP6 is bound, but decreases to low levels when the binding is competed out. Thus, by measuring decrease in FP it is possible to identify chemical compounds that can dissociate LARP6 from the 5' stem-loop. The method is simple, fast and suitable for high throughput screening. © 2011 Bentham Science Publishers Ltd.

  16. Progress towards discovery of antifibrotic drugs targeting synthesis of type I collagen

    KAUST Repository

    Fritz, Dillon Jeffery

    2011-08-01

    Type I collagen is the most abundant protein in human body. Fibrosis is characterized by excessive synthesis of type I collagen in parenchymal organs. It is a leading cause of morbidity and mortality worldwide, about 45% of all natural deaths are attributable to some fibroproliferative disease. There is no cure for fibrosis. To find specific antifibrotic therapy targeting type I collagen, critical molecular interactions regulating its synthesis must be elucidated. Type I and type III collagen mRNAs have a unique sequence element at the 5\\' end, the 5\\' stem-loop. This stem-loop is not found in any other mRNA. We cloned LARP6 as the protein which binds collagen 5\\' stem-loop with high affinity and specificity. Mutation of the 5\\' stem-loop or knock down of LARP6 greatly diminishes collagen expression. Mice with mutation of the 5\\' stem-loop are resistant to development of liver fibrosis. LARP6 associates collagen mRNAs with filaments composed of nonmuscle myosin; disruption of these filaments abolishes synthesis of type I collagen. Thus, LARP6 dependent collagen synthesis is the specific mechanism of high collagen expression seen in fibrosis. We developed fluorescence polarization (FP) method to screen for drugs that can inhibit binding of LARP6 to 5\\' stem-loop RNA. FP is high when LARP6 is bound, but decreases to low levels when the binding is competed out. Thus, by measuring decrease in FP it is possible to identify chemical compounds that can dissociate LARP6 from the 5\\' stem-loop. The method is simple, fast and suitable for high throughput screening. © 2011 Bentham Science Publishers Ltd.

  17. Collagen fibril architecture, domain organization, and triple-helical conformation govern its proteolysis.

    Science.gov (United States)

    Perumal, Shiamalee; Antipova, Olga; Orgel, Joseph P R O

    2008-02-26

    We describe the molecular structure of the collagen fibril and how it affects collagen proteolysis or "collagenolysis." The fibril-forming collagens are major components of all mammalian connective tissues, providing the structural and organizational framework for skin, blood vessels, bone, tendon, and other tissues. The triple helix of the collagen molecule is resistant to most proteinases, and the matrix metalloproteinases that do proteolyze collagen are affected by the architecture of collagen fibrils, which are notably more resistant to collagenolysis than lone collagen monomers. Until now, there has been no molecular explanation for this. Full or limited proteolysis of the collagen fibril is known to be a key process in normal growth, development, repair, and cell differentiation, and in cancerous tumor progression and heart disease. Peptide fragments generated by collagenolysis, and the conformation of exposed sites on the fibril as a result of limited proteolysis, regulate these processes and that of cellular attachment, but it is not known how or why. Using computational and molecular visualization methods, we found that the arrangement of collagen monomers in the fibril (its architecture) protects areas vulnerable to collagenolysis and strictly governs the process. This in turn affects the accessibility of a cell interaction site located near the cleavage region. Our observations suggest that the C-terminal telopeptide must be proteolyzed before collagenase can gain access to the cleavage site. Collagenase then binds to the substrate's "interaction domain," which facilitates the triple-helix unwinding/dissociation function of the enzyme before collagenolysis.

  18. Preparation and characterization of porous crosslinked collagenous matrices containing bioavailable chondroitin sulphate

    NARCIS (Netherlands)

    Pieper, J.S.; Oosterhof, A.; Dijkstra, Pieter J.; Veerkamp, J.H.; van Kuppevelt, T.H.

    1999-01-01

    Porous collagen matrices with defined physical, chemical and biological characteristics are interesting materials for tissue engineering. Attachment of glycosaminoglycans (GAGs) may add to these characteristics and valorize collagen. In this study, porous type I collagen matrices were crosslinked

  19. Susceptibility tensor imaging and tractography of collagen fibrils in the articular cartilage.

    Science.gov (United States)

    Wei, Hongjiang; Gibbs, Eric; Zhao, Peida; Wang, Nian; Cofer, Gary P; Zhang, Yuyao; Johnson, G Allan; Liu, Chunlei

    2017-11-01

    To investigate the B 0 orientation-dependent magnetic susceptibility of collagen fibrils within the articular cartilage and to determine whether susceptibility tensor imaging (STI) can detect the 3D collagen network within cartilage. Multiecho gradient echo datasets (100-μm isotropic resolution) were acquired from fixed porcine articular cartilage specimens at 9.4 T. The susceptibility tensor was calculated using phase images acquired at 12 or 15 different orientations relative to B 0 . The susceptibility anisotropy of the collagen fibril was quantified and diffusion tensor imaging (DTI) was compared against STI. 3D tractography was performed to visualize and track the collagen fibrils with DTI and STI. STI experiments showed the distinct and significant anisotropic magnetic susceptibility of collagen fibrils within the articular cartilage. STI can be used to measure and quantify susceptibility anisotropy maps. Furthermore, STI provides orientation information of the underlying collagen network via 3D tractography. The findings of this study demonstrate that STI can characterize the orientation variation of collagen fibrils where diffusion anisotropy fails. We believe that STI could serve as a sensitive and noninvasive marker to study the collagen fibrils microstructure. Magn Reson Med 78:1683-1690, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  20. Determination of fibrin glue with antibiotics on collagen production in colon anastomosis

    Directory of Open Access Journals (Sweden)

    Stanojković Zoran

    2008-01-01

    Full Text Available Background/Aim. Fibrin glue is used as a matrix for local application of antibiotics. The aim of this study was to determine whether application of fibrin glue in combination with antibiotics can strengthen collagen production, prevent dehiscence of colon anastomoses due to infection, and reduce frequency of mortality and morbidity comparing to the control group and the group with fibrin glue application. Methods. The adult male Wistar rats divided into three groups were used in the experiment. The group 1 was the control one (after partial colon resection, colonic anastomoses performed were not treated, while to the group 2 and the group 3 were applied fibrin glue and fibrin glue with antibiotics (clindamycin and ceftriaxon on the site of anastomoses, respectively. Quality of colonic anastomoses were estimated by means of determination of collagen (L-hydroxyproline amount in the collon wall with anastomoses and histological analysis of this colon segment using light and electronic microscope on the days 5, 7 and 13 postoperatively. Results. The highest morbidity rate was registered in the group 1 (30%, then in the group 2 (13.3% and the lowest one in the group 3 (3.33%; p < 0,05 vs group 1. Mortality rate was significantly higher in the group 1 than in the group 3 (20% and 0%, respectively; p < 0,05. In the postoperative course, the highest concentrations of collagen in the colon wall on the site of anastomoses, which was confirmed by both light and electronic microscopy, were found in the group 3. Conclusion. The application of fibrin glue with antibiotics on colon anastomoses reduces the number of dehiscence, provides good mechanical protection and shorten the time of anastomoses healing.