Automated spherical aberration correction in scanning confocal microscopy
Yoo, H.W.; Royen, M.E.; van Cappellen, W.A.; Houtsmuller, A.B.; Verhaegen, M.H.G.; Schitter, G.
2014-01-01
Mismatch between the refractive indexes of immersion media and glass coverslips introduces spherical aberrations in microscopes especially for high numerical aperture objectives. This contribution demonstrates an automated adjustment of the coverslip correction collar in scanning confocal microscopy
Investigation of spherical aberration effects on coherent lidar performance
Hu, Qi; Rodrigo, Peter John; Iversen, Theis Faber Quist
2013-01-01
In this paper we demonstrate experimentally the performance of a monostatic coherent lidar system under the influence of phase aberrations, especially the typically predominant spherical aberration (SA). The performance is evaluated by probing the spatial weighting function of the lidar system...
Focus correction in an apodized system with spherical aberration.
Bernal-Molina, Paula; Castejón-Mochón, José Francisco; Bradley, Arthur; López-Gil, Norberto
2015-08-01
We performed a theoretical and computational analysis of the through-focus axial irradiance in a system with a Gaussian amplitude pupil function and fourth- and sixth-order spherical aberration (SA). Two cases are analyzed: low aberrated systems, and the human eye containing significant levels of SA and a natural apodization produced by the Stiles-Crawford effect. Results show that apodization only produces a refraction change of the plane that maximized the Strehl ratio for eyes containing significant levels of negative SA.
Effect of spherical aberration on scintillations of Gaussian beams in atmospheric turbulence
Ji, Xiaoling, E-mail: jiXL100@163.com; Deng, Jinping
2014-07-18
The effect of spherical aberration on scintillations of Gaussian beams in weak, moderate and strong turbulence is studied using numerical simulation method. It is found that the effect of the negative spherical aberration on the on-axis scintillation index is quite different from that of the positive spherical aberration. In weak turbulence, the positive spherical aberration results in a decrease of the on-axis scintillation index on propagation, but the negative spherical aberration results in an increase of the on-axis scintillation index when the propagation distance is not large. In particular, in weak turbulence the negative spherical aberration may cause peaks of the on-axis scintillation index, and the peaks disappear in moderate and strong turbulence, which is explained in physics. The strong turbulence leads to less discrepancy among scintillations of Gaussian beams with and without spherical aberration. - Highlights: • In weak turbulence scintillations can be suppressed using positive spherical aberration. • In weak turbulence scintillations may be very large due to negative spherical aberration. • The effect of spherical aberration on scintillations is less with increasing of turbulence.
Spherical aberration from trajectories in real and hard-edge solenoid fields
BISWAS B
2016-06-01
For analytical, real and hard-edge solenoidal axial magnetic fields, the low-energy electron trajectories are obtained using the third-order paraxial ray equation. Using the particle trajectories, it is shown that the spherical aberration in the hard-edge model is high and it increases monotonously with hard edginess, although the focal length converges, in agreement with a recentfield and spherical aberration model. The model paved the way for a hard-edge approximation that gives correct focal length and spherical aberration, which is verified here by the trajectory method. In essence, we show that exact hard-edge fields give infinite spherical aberrations.
Effect of chromatic aberration on atomic-resolved spherical aberration corrected STEM images.
Kuramochi, Koji; Yamazaki, Takashi; Kotaka, Yasutoshi; Ohtsuka, Masahiro; Hashimoto, Iwao; Watanabe, Kazuto
2009-12-01
The effect of the chromatic aberration (C(c)) coefficient in a spherical aberration (C(s))- corrected electromagnetic lens on high-resolution high-angle annular dark field (HAADF) scanning transmission electron microscope (STEM) images is explored in detail. A new method for precise determination of the C(c) coefficient is demonstrated, requiring measurement of an atomic-resolution one-frame through-focal HAADF STEM image. This method is robust with respect to instrumental drift, sample thickness, all lens parameters except C(c), and experimental noise. It is also demonstrated that semi-quantitative structural analysis on the nanometer scale can be achieved by comparing experimental C(s)- corrected HAADF STEM images with their corresponding simulated images when the effects of the C(c) coefficient and spatial incoherence are included.
Nayak, B., E-mail: biswaranjan.nayak1@gmail.com [Accelerator and Pulsed Power Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Dash, R.; Mittal, K.C. [Accelerator and Pulsed Power Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094 (India)
2014-05-11
This paper presents the effect of spherical aberration on the transverse emittance growth and frequency of oscillation of a beam envelope inside an RF cavity. This paper is organized into two sections. In the first section, the coefficient of spherical aberration which arises due to third order terms of on-axis electric field component is discussed. An expression is derived for the growth of transverse emittance in an RF gap which includes the coupling between the phase spread of the beam and spherical aberration. In the second part, using reduced envelope equation for a laminar beam, effect of aberration on the invariant envelope solution is discussed. An expression is found using the Lindstedt–Poincare theory for solution of the envelope equation. The shift in frequency of oscillation of the beam envelope in the RF field is calculated.
Simple Demonstration of the Impact of Spherical Aberration on Optical Imaging
Escobar, Isabel; Saavedra, Genaro; Pons, Amparo; Martinez-Corral, Manuel
2008-01-01
We present an experiment, well adapted for students of introductory optics courses, for the visualization of the impact of spherical aberration in the point spread function of imaging systems. The demonstrations are based on the analogy between the point-spread function of spherically aberrated systems, and the defocused patterns of 1D slit-like…
Effective spherical aberration of the cornea as a quantitative descriptor in corneal topography.
Seiler, T; Reckmann, W; Maloney, R K
1993-01-01
Following excimer laser photorefractive keratectomy and other refractive surgical procedures, complaints of halos, glare, and monocular diplopia are common. These procedures increase the asphericity of the cornea, which may cause the optical distortions. We used ray tracing techniques to estimate the longitudinal monochromatic aberration of the cornea from the measured corneal topography (effective spherical aberration) in 15 normal eyes with varying degrees of astigmatism and in ten eyes after photorefractive keratectomy. Best spherical corrected visual acuity in the astigmatic eyes was highly correlated with effective spherical aberration (r = -0.9527, P < .001). In the eyes that had photorefractive keratectomy, the effective spherical aberration was highly correlated with measured glare visual acuity (r = 0.875, P < .002). These results suggest that effective spherical aberration is a valuable topographic measure that provides information about the optical performance of aspheric corneas.
Bukharin, M. A.; Skryabin, N. N.; Khudyakov, D. V.; Vartapetov, S. K.
2016-09-01
A novel technique was proposed for 3D femtosecond writing of waveguides and optical integrated circuits in the presence of strong spherical aberration, caused by inscription at significantly different depth under the surface of optical glasses and crystals. Strong negative effect of spherical aberration and related asymmetry of created structures was reduced due to transition to the cumulative thermal regime of femtosecond interaction with the material. The differences in the influence of spherical aberration effect in a broad depth range (larger than 200 µm) was compensated by dynamic adjustment of laser pulse energy during the process of waveguides recording. The presented approach has been experimentally implemented in fused silica. Obtained results can be used in production of a broad class of femtosecond written three-dimensional integrated optical systems, inscripted at non-optimal (for focusing lens) optical depth or in significantly extended range of depths.
Influence of spherical aberrations on fundamental mode beam quality under different laser resonators
Xiang Zhen; Hu Miao; Ge Jian-Hong; Zhao Zhi-Gang; Wang Sha; Liu Chong; Chen Jun
2009-01-01
Spherical aberrations of the thermal lens of the active media are severe when solid state lasers are strongly pumped.The fundamental mode profile deteriorates due to the aberrations. Self-consistent modes of a resonator with aberrations are calculated by using the Fox-Li diffraction iterative algorithm. Calculation results show that the aberration induced fundamental mode beam quality deterioration depends greatly on the resonator design. The tolerance of a flat-flat resonator to the aberration coefficient is about 30λ in the middle of stability, where λ is the wavelength of laser beam. But for a dynamically stable resonator, 2λ of spherical aberration will create diffraction loss of more than 40%, if inappropriate design criteria are used. A birefringence compensated laser resonator with two Nd:YAG rods is experimentally studied. The experimental data are in quite good agreement with simulation results.
Kingston AC
2013-05-01
Full Text Available Amanda C Kingston,1,2 Ian G Cox11Bausch + Lomb, Rochester, NY, USA; 2Department of Biomedical Engineering, University of Rochester, Rochester, NY, USAPurpose: The aim of this analysis was to determine the total ocular wavefront aberration values of a large phakic population of physiologically normal, ametropic eyes, gathered under the same clinical protocol using the same diagnostic wavefront sensor.Materials and methods: Studies were conducted at multiple sites in Asia, North America, Europe, and Australia. A Bausch + Lomb Zywave II Wavefront Aberrometer (Rochester, NY, USA was used to measure the lower and higher order aberrations of each eye. Data analysis was conducted using linear regression analysis to determine the relationship between total spherical aberration, ametropia, age, corneal curvature, and image quality.Results: Linear regression analysis showed no correlation (r = 0.0207, P = 0.4874 between degree of ametropia and the amount of spherical aberration. There was also no correlation when the population was stratified into myopic and hyperopic refractive groups (rm = 0.0529, Pm = 0.0804 and rh = 0.1572, Ph = 0.2754. There was a statistically significant and weak positive correlation (r = 0.1962, P < 0.001 between age and the amount of spherical aberration measured in the eye; spherical aberration became more positive with increasing age. Also, there was a statistically significant and moderately positive correlation (r = 0.3611, P < 0.001 with steepness of corneal curvature; spherical aberration became more positive with increasing power of the anterior corneal surface. Assessment of image quality using optical design software (Zemax™, Bellevue, WA, USA showed that there was an overall benefit in correcting the average spherical aberration of this population.Conclusion: Analysis of this dataset provides insights into the inherent spherical aberration of a typical phakic, pre-presbyopic, population and provides the ability to
Theoretical estimates of spherical and chromatic aberration in photoemission electron microscopy.
Fitzgerald, J P S; Word, R C; Könenkamp, R
2016-01-01
We present theoretical estimates of the mean coefficients of spherical and chromatic aberration for low energy photoemission electron microscopy (PEEM). Using simple analytic models, we find that the aberration coefficients depend primarily on the difference between the photon energy and the photoemission threshold, as expected. However, the shape of the photoelectron spectral distribution impacts the coefficients by up to 30%. These estimates should allow more precise correction of aberration in PEEM in experimental situations where the aberration coefficients and precise electron energy distribution cannot be readily measured.
Breaking the spherical and chromatic aberration barrier in transmission electron microscopy.
Freitag, B; Kujawa, S; Mul, P M; Ringnalda, J; Tiemeijer, P C
2005-02-01
Since the invention of transmission electron microscopy (TEM) in 1932 (Z. Physik 78 (1932) 318) engineering improvements have advanced system resolutions to levels that are now limited only by the two fundamental aberrations of electron lenses; spherical and chromatic aberration (Z. Phys. 101 (1936) 593). Since both aberrations scale with the dimensions of the lens, research resolution requirements are pushing the designs to lenses with only a few mm space in the pole-piece gap for the specimen. This is in conflict with the demand for more and more space at the specimen, necessary in order to enable novel techniques in TEM, such as He-cooled cryo electron microscopy, 3D-reconstruction through tomography (Science 302 (2003) 1396) TEM in gaseous environments, or in situ experiments (Nature 427 (2004) 426). All these techniques will only be able to achieve Angstrom resolution when the aberration barriers have been overcome. The spherical aberration barrier has recently been broken by introducing spherical aberration correctors (Nature 392 (1998) 392, 418 (2002) 617), but the correction of the remaining chromatic aberrations have proved to be too difficult for the present state of technology (Optik 57 (1980) 73). Here we present an alternative and successful method to eliminate the chromatic blur, which consists of monochromating the TEM beam (Inst. Phys. Conf. Ser. 161 (1999) 191). We show directly interpretable resolutions well below 1A for the first time, which is significantly better than any TEM operating at 200 KV has reached before.
Jansonius, Nomdo M.
2010-01-01
Wave-front analysis data from the human eye are commonly presented using the aberration coefficient c(4)(0) (primary spherical aberration) together with an overall measure of all higher-order aberrations. If groups of subjects are compared, however, the relevance of an observed difference cannot eas
Sergio Vázquez-Montiel
2010-01-01
Full Text Available We propose an alternative method to design diffractive lenses free of spherical aberration for monochromatic light. Our method allows us to design diffractive lenses with the diffraction structure recorded on the last surface; this surface can be flat or curved with rotation symmetry. The equations that we propose calculate the diffraction profiles for any substratum, for any f-number, and for any position of the object. We use the lens phase coefficients to compensate the spherical aberration. To calculate these coefficients, we use an analytic-numerical method. The calculations are exact, and the optimization process is not required.
Fitzgerald, J P S; Word, R C; Könenkamp, R
2012-04-01
We present a theoretical analysis of an electrostatic triode mirror combined with an einzel lens for the correction of spherical and chromatic aberration. We show that this device adaptively corrects spherical and chromatic aberration simultaneously and independently. Chromatic aberration can be compensated over a relative range of -38% to +100%, and spherical aberration over ±100% range. We compare the analytic calculation with a numerical simulation and show that the two descriptions agree to within 5% in the relevant operating regime of the device.
Birkenfeld, Judith; de Castro, Alberto; Ortiz, Sergio; Pascual, Daniel; Marcos, Susana
2013-06-28
The optical properties of the crystalline lens are determined by its shape and refractive index distribution. However, to date, those properties have not been measured together in the same lens, and therefore their relative contributions to optical aberrations are not fully understood. The shape, the optical path difference, and the focal length of ten porcine lenses (age around 6 months) were measured in vitro using Optical Coherence Tomography and laser ray tracing. The 3D Gradient Refractive Index distribution (GRIN) was reconstructed by means of an optimization method based on genetic algorithms. The optimization method searched for the parameters of a 4-variable GRIN model that best fits the distorted posterior surface of the lens in 18 different meridians. Spherical aberration and astigmatism of the lenses were estimated using computational ray tracing, with the reconstructed GRIN lens and an equivalent homogeneous refractive index. For all lenses the posterior radius of curvature was systematically steeper than the anterior one, and the conic constant of both the anterior and posterior positive surfaces was positive. In average, the measured focal length increased with increasing pupil diameter, consistent with a crystalline lens negative spherical aberration. The refractive index of nucleus and surface was reconstructed to an average value of 1.427 and 1.364, respectively, for 633 nm. The results of the GRIN reconstruction showed a wide distribution of the index in all lens samples. The GRIN shifted spherical aberration towards negative values when compared to a homogeneous index. A negative spherical aberration with GRIN was found in 8 of the 10 lenses. The presence of GRIN also produced a decrease in the total amount of lens astigmatism in most lenses, while the axis of astigmatism was only little influenced by the presence of GRIN. To our knowledge, this study is the first systematic experimental study of the relative contribution of geometry and GRIN to
Information transfer in a TEM corrected for spherical and chromatic aberration.
Haider, M; Hartel, P; Müller, H; Uhlemann, S; Zach, J
2010-08-01
For the transmission electron aberration-corrected microscope (TEAM) initiative of five U.S. Department of Energy laboratories in the United States, a correction system for the simultaneous compensation of the primary axial aberrations, the spherical aberration Cs, and the chromatic aberration Cc has been developed and successfully installed. The performance of the resulting Cc /Cs-corrected TEAM instrument has been investigated thoroughly. A significant improvement of the linear contrast transfer can be demonstrated. The information about the instrument one obtains using Young's fringe method is compared for uncorrected, Cs-corrected, and Cc /Cs-corrected instruments. The experimental results agree well with simulations. The conclusions might be useful to others in understanding the process of image formation in a Cc /Cs-corrected transmission electron microscope.
Shaw, Michael; Hall, Simon; Knox, Steven; Stevens, Richard; Paterson, Carl
2010-03-29
In this paper we describe the wavefront aberrations that arise when imaging biological specimens using an optical sectioning microscope and generate simulated wavefronts for a planar refractive index mismatch. We then investigate the capability of two deformable mirrors for correcting spherical aberration at different focusing depths for three different microscope objective lenses. Along with measurement and analysis of the mirror influence functions we determine the optimum mirror pupil size and number of spatial modes included in the wavefront expansion and we present measurements of actuator linearity and hysteresis. We find that both mirrors are capable of correcting the wavefront aberration to improve imaging and greatly extend the depth at which diffraction limited imaging is possible.
Benard, Yohann; Lopez-Gil, Norberto; Legras, Richard
2011-12-08
We optimize the subjective depth of focus (DoF) with combinations of spherical aberration (SA4) and secondary spherical aberration (SA6) in various levels. Subjective DoF was defined as the visual interval for which three 20/50 high-contrast letters was perceived acceptable (objectionable blur limits). We used an adaptive optics system to dynamically correct the observer's aberrations and control their accommodation. DoF was measured with a 0.18-D step on three non-presbyopic subjects. The target seen by the subjects was modified to include 25 combinations of SA4 and SA6 (i.e. 0, ± 0.15 and ± 0.30 μm) for 3, 4.5 and 6mm of pupil diameter. We found a mean DoF of 1.97D with a 3mm pupil size, which decreased by 28% with a 4.5mm pupil and by 34% with a 6mm pupil. For 6mm pupil we found an increase of subjective DoF of 45% and 64% with the addition of 0.3 and 0.6 μm of SA4, and of 52% and 117% with the addition of 0.15 and 0.3 μm of SA6. The largest DoF measured (4.78D) increased 3.6 times that of the naked eye and was found for a combination of opposite signs of SA4 and SA6 of 0.6 and 0.3 μm respectively. Reducing the pupil size minimized the effect of aberrations on subjective DoF. Combination of SA4 and SA6 of opposite sign could increase DoF more than three times for pupils larger than 4.5mm. Subjective DoF is well predicted by measuring the induced variation of vergence arising in the pupil size.
Dash, Radhakanta, E-mail: radhakanta.physics@gmail.com [Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094 (India); Accelerator and Pulse Power Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Nayak, Biswaranjan [Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094 (India); Sharma, Archana; Mittal, Kailash C. [Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094 (India); Accelerator and Pulse Power Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India)
2016-01-21
In a medium energy beam transport line transverse rms emittance growth associated with spherical aberration is analysed. An analytical expression is derived for beam optics in a solenoid field considering terms up to the third order in the radial displacement. Two important phenomena: effect of spherical aberrations in axial-symmetric focusing lens and influence of nonlinear space charge forces on beam emittance growth are discussed for different beam distributions. In the second part nonlinear effect associated with chromatic aberration that describes the growth of emittance and distortion of phase space area is discussed.
Dash, Radhakanta; Nayak, Biswaranjan; Sharma, Archana; Mittal, Kailash C.
2016-01-01
In a medium energy beam transport line transverse rms emittance growth associated with spherical aberration is analysed. An analytical expression is derived for beam optics in a solenoid field considering terms up to the third order in the radial displacement. Two important phenomena: effect of spherical aberrations in axial-symmetric focusing lens and influence of nonlinear space charge forces on beam emittance growth are discussed for different beam distributions. In the second part nonlinear effect associated with chromatic aberration that describes the growth of emittance and distortion of phase space area is discussed.
Zhukov, V A; Nesterov, M M
2001-01-01
The possibility of decreasing by 6 times the coefficients of both spherical and chromatic aberrations in plane combined axisymmetric lenses in comparison with the purely magnetic lenses is demonstrated. This is provided for by a proper selection of the ratio of the geometric parameters of the electrodes dimensions and pole tags of the combined lens, the electric potentials on its electrodes and the ampere-turns in the excitation coil. Application of the combined lenses may prove to be perspective in the ion and electron projection and microprobe systems
Guo, Huanqing; DeLestrange, Elie
2015-03-01
We first investigated the similarity in optical quality of a batch of diffractive intraocular lenses (DIOLs), providing experimental evidence for one DIOL as representative of a batch. Using adaptive optics, we then evaluated one DIOL under different levels of Zernike spherical aberration (SA) by applying both a point spread function test and a psychophysical visual acuity test. We found that for small aperture size SA has the effect of shifting the through-focus curve of DIOL. Also, for a relatively large aperture size, it has different effects on the distant and near foci.
Effects of Spherical Aberration on Optical Trapping Forces for Rayleigh Particles
YAO Xin-Cheng; LI Zhao-Lin; GUO Hong-Lian; CHENG Bing-Ying; ZHANG Dao-Zhong
2001-01-01
The trapping force on Rayleigh particles in an optical tweezers system with an oil immersion objective is calculated by an electromagnetic model. The results indicate that the stability of particles trapped will be affected by spherical aberration, which is caused by refractive difference between objective oil and water solution, when the specimen manipulated is suspended in a water solution. The trapping force and depth of potential well will decrease and the minimum of laser power for ensuring the stability of particles trapped will increase with the enhanced trapping depth.
Casprini, Fabrizio; Balestrazzi, Angelo; Tosi, Gian Marco; Miracco, Flavia; Martone, Gianluca; Cevenini, Gabriele; Caporossi, Aldo
2005-02-01
To compare differences in subjective glare and spherical aberration between five foldable intraocular lenses (IOLs) made of different materials and to different designs. This prospective study comprised 175 cataract patients who underwent phacoemulsification and were randomized to receive one of five types of foldable IOL (AcrySof MA30BA, Alcon; Sensar AR40, AMO; AcrySof SA30AL, Alcon; Sensar AR40e, AMO, and Tecnis Z9000, Pharmacia & Upjohn). All patients received a questionnaire investigating the incidence of subjective photic phenomena. Two months postoperatively, we collected data regarding subjective glare and evaluated pupil size, visual acuity and wavefront aberration of the cornea and eye. With regard to difficulty in performing ordinary activities under different light conditions and light and dark adaptation, the difference between the groups was not significant (p > 0.05, chi-squared test). With respect to difficulty in driving at night, the MA30BA group had a significant higher incidence of photic phenomena than the SA30AL, AR40e and Z9000 groups (p < 0.05, chi-squared test). Wavefront measurements revealed a significant difference between the Z9000, AR40e and SA30AL groups, which showed the lowest values, and the MA30BA group, which showed the highest value (p < 0.05, anova with Tamhane posthoc test). New generation IOLs such as the Pharmacia Z9000, AMO AR40e and AcrySof SA30AL have a lower incidence of glare and spherical aberrations; however, their impact on future IOL design should be conditioned by further data, especially regarding posterior capsule opacification.
Realization of Zero-Refractive-Index Lens with Ultralow Spherical Aberration
He, Xin-Tao; Chang, Ming-Li; Xu, Shao-Zeng; Zhao, Fu-Li; Deng, Shao-Zhi; She, Jun-Cong; Dong, Jian-Wen
2016-01-01
Optical complex materials offer unprecedented opportunity to engineer fundamental band dispersion which enables novel optoelectronic functionality and devices. Exploration of photonic Dirac cone at the center of momentum space has inspired an exceptional characteristic of zero-index, which is similar to zero effective mass in fermionic Dirac systems. Such all-dielectric zero-index photonic crystals provide an in-plane mechanism such that the energy of the propagating waves can be well confined along the chip direction. A straightforward example is to achieve the anomalous focusing effect without longitudinal spherical aberration, when the size of zero-index lens is large enough. Here, we designed and fabricated a prototype of zero-refractive-index lens by comprising large-area silicon nanopillar array with plane-concave profile. Near-zero refractive index was quantitatively measured near 1.55 um through anomalous focusing effect, predictable by effective medium theory. The zero-index lens was also demonstrate...
Analysis of the Aberration in Directly-writing Atom Lithography
LI Chuanwen; CAI Weiquan; WANG Yuzhu
2000-01-01
After deriving the approximation solution which describes the motion of neutral atoms in an optical standing wave field with large detuning, the spherical aberration and the chromatic aberration are analyzed and possible methods to reduce these aberrations are discussed.
Light distortion and spherical aberration for the accommodating and nonaccommodating eye
Macedo-de-Araújo, Rute; Ferreira-Neves, Helena; Rico-del-Viejo, Laura; Peixoto-de-Matos, Sofia C.; González-Méijome, José Manuel
2016-07-01
To evaluate how different amounts of induced spherical aberration (SA) affect the light distortion (LD) phenomena, tests were performed using an experimental device to measure the distortion (haloes, glare, and so on) of a point source. To simulate the effect of SA, eight different phase plates between +0.300 and -0.300 μm of SA for a 5-mm aperture were used in a random and double-masked experimental design. Measurements were performed at a distance of 2 m in a darkened room in 10 eyes of five subjects with a mean age of 26.4±6.1 years and a mean refractive error of -0.50±0.70 D. Data were obtained with natural pupil and after pupil dilatation. The measurements with this experimental system showed a significant increase in all distortion parameters with cycloplegia for the phase plates with the higher positive SA (+0.300 and +0.150 μm). The disturbance index increased from 14.86±6.12% to 57.98±36.20% (pnegative SA did not change the LD compared to the control condition without induction of SA or even decreased the effect of distortion. Pupillary dilation and cyclopegia led to a significant increase in the size of the LD when increasing values of SA were induced. Accommodation and pupillary constriction are capable of compensating the degradation of the optical quality induced.
Optical signature of multicellular tumor spheroid using index-mismatch-induced spherical aberrations
Le Corre, G.; Weiss, P.; Ducommun, B.; Lorenzo, C.
2014-02-01
The development of new cancer treatments and the early prediction of their therapeutic potential are often made difficult by the lack of predictive pharmacological models. The 3D multicellular tumor spheroid (MCTS) model offers a level of complexity that recapitulates the three-dimensional organization of a tumor and appears to be fairly predictive of therapeutic efficiency. The use of spheroids in large-scale automated screening was recently reported to link the power of a high throughput analysis to the predictability of a 3D cell model. The spheroid has a radial symmetry; this simple geometry allows establishing a direct correlation between structure and function. The outmost layers of MCTS are composed of proliferating cells and form structurally uniform domain with an approximate thickness of 100 microns. The innermost layers are composed of quiescent cells. Finally, cells in the center of the spheroid can form a necrotic core. This latest region is structurally heterogeneous and is poorly characterized. These features make the spheroid a model of choice and a paradigm to study the optical properties of various epithelial tissues. In this study, we used an in-vitro optical technique for label-free characterization of multicellular systems based on the index- mismatch induced spherical aberrations. We achieve to monitor and characterize the optical properties of MCTS. This new and original approach might be of major interest for the development of innovative screening strategies dedicated to the identification of anticancer drugs.
Stichel, T.; Hecht, B.; Houbertz, R.; Sextl, G.
2015-10-01
Two-photon polymerization using femtosecond laser pulses at a wavelength of 515 nm is used for three-dimensional patterning of photosensitive, biocompatible inorganic-organic hybrid polymers (ORMOCER®s). In order to fabricate millimeter-sized biomedical scaffold structures with interconnected pores, medium numerical aperture air objectives with long working distances are applied which allow voxel lengths of several micrometers and thus the solidification of large scaffolds in an adequate time. It is demonstrated that during processing the refraction of the focused laser beam at the air/material interface leads to strong spherical aberration which decreases the peak intensity of the focal point spread function along with shifting and severely extending the focal region in the direction of the beam propagation. These effects clearly decrease the structure integrity, homogeneity and the structure details and therefore are minimized by applying a positioning and laser power adaptation throughout the fabrication process. The results will be discussed with respect to the resulting structural homogeneity and its application as biomedical scaffold.
Nobuo Tanaka
2008-01-01
Full Text Available The present status of Cs-corrected TEM/STEM is described from the viewpoint of the observation of nanomaterials. Characteristic features in TEM and STEM are explained using the experimental data obtained by our group and other research groups. Cs correction up to the 3rd-order aberration of an objective lens has already been established and research interest is focused on correcting the 5th-order spherical aberration and the chromatic aberration in combination with the development of a monochromator below an electron gun for smaller point-to-point resolution in optics. Another fundamental area of interest is the limitation of TEM and STEM resolution from the viewpoint of the scattering of electrons in crystals. The minimum size of the exit-wave function below samples undergoing TEM imaging is determined from the calculation of scattering around related atomic columns in the crystals. STEM does not have this limitation because the resolution is, in principle, determined by the probe size. One of the future prospects of Cs-corrected TEM/STEM is the possibility of extending the space around the sample holder by correcting the chromatic and spherical aberrations. This wider space will contribute to the ease of performing in situ experiments and various combinations of TEM and other analysis methods. High-resolution, in situ dynamic and 3D observations/analysis are the most important keywords in the next decade of high-resolution electron microscopy.
Takeda, Seiji, E-mail: takeda@sanken.osaka-u.ac.jp; Kuwauchi, Yasufumi; Yoshida, Hideto
2015-04-15
Atomic resolution has been obtained using environmental transmission electron microscopy (ETEM) by installing a spherical aberration corrector (Cs-corrector) on the objective lens. Simultaneously, the technology for controlling the environment around a specimen in ETEM has advanced significantly in the past decade. Quantification methodology has recently been established for deriving relevant experimental data in catalyst materials from substantial and systematic ETEM observation at the atomic scale. With this background, this paper summarizes aspects of the evolutional microscopy technique: necessary conditions for atomic resolution in ETEM; reduction of the scattering of electrons by the medium surrounding a specimen; and an environmental cell for structural imaging of a crystalline specimen. The high spatial resolution of a Cs-corrected ETEM is demonstrated for different observation conditions. After statistical analysis combined with numerical image analysis of ETEM data is briefly described, the recent applications of the Cs-corrected ETEM to catalyst materials are reviewed. For gold nanoparticulate catalysts, the structural information on the reaction sites and adsorption sites are deduced. For Pt nanoparticulate catalysts, ETEM studies elucidate the correlation between the catalytic activity and the morphology of the nanoparticles. These studies also reveal oxidation and reduction on the topmost Pt surface layer at the atomic scale. Finally, current issues and the future perspectives of Cs-corrected ETEM are summarized, including the reproducibility of ETEM observation data, the control of environments, the critical evaluation of electron irradiation effects, the full implementation of transmission electron microscopy technology in ETEM, and the safety issues for an ETEM laboratory. - Highlights: • Advancement of Cs corrected environmental transmission electron microscopy. • Structural determination of catalyst materials in reaction environments.
Optical Aberrations and Wavefront
Nihat Polat
2014-08-01
Full Text Available The deviation of light to create normal retinal image in the optical system is called aberration. Aberrations are divided two subgroup: low-order aberrations (defocus: spherical and cylindrical refractive errors and high-order aberrations (coma, spherical, trefoil, tetrafoil, quadrifoil, pentafoil, secondary astigmatism. Aberrations increase with aging. Spherical aberrations are compensated by positive corneal and negative lenticular spherical aberrations in youth. Total aberrations are elevated by positive corneal and positive lenticular spherical aberrations in elderly. In this study, we aimed to analyze the basic terms regarding optic aberrations which have gained significance recently. (Turk J Ophthalmol 2014; 44: 306-11
Jansonius, NM; Kooijman, AC
1998-01-01
Relative modulation transfer is defined as contrast sensitivity under blur normalised to contrast sensitivity at optimum focus. Measured relative modulation transfer exceeds relative modulation transfer as calculated for aberration free optics at higher spatial frequencies (>2 cpd). The contribution
Changes in spherical aberration after lens refilling with a silicone oil
Wong, Kwok-Hoi; Koopmans, Steven A.; Terwee, Thom; Kooijman, Aart C.
2007-01-01
PURPOSE. It may be possible to restore accommodation to presbyopic human eyes by refilling the lens capsular bag with a soft polymer. In the present study, optical changes were measured that occurred in a pig eye model after the refilling of the capsular bag. METHODS. The optical power and spherical
Matsumoto, Naoya; Inoue, Takashi; Matsumoto, Akiyuki; Okazaki, Shigetoshi
2015-07-01
We demonstrate fluorescence imaging with high fluorescence intensity and depth resolution in which depth-induced spherical aberration (SA) caused by refractive-index mismatch between the medium and biological sample is corrected. To reduce the impact of SA, we incorporate a spatial light modulator into a two-photon excitation fluorescence microscope. Consequently, when fluorescent beads in epoxy resin were observed with this method of SA correction, the fluorescence signal of the observed images was ∼27 times higher and extension in the direction of the optical axes was ∼6.5 times shorter at a depth of ∼890 μm. Thus, the proposed method increases the depth observable at high resolution. Further, our results show that the method improved the fluorescence intensity of images of the fluorescent beads and the structure of a biological sample.
Jin, Lei; Barthel, Juri; Jia, Chun-Lin; Urban, Knut W
2017-01-31
The application of combined chromatic and spherical aberration correction in high-resolution transmission electron microscopy enables a significant improvement of the spatial resolution down to 50 pm. We demonstrate that such a resolution can be achieved in practice at 200kV. Diffractograms of images of gold nanoparticles on amorphous carbon demonstrate corresponding information transfer. The Y atom pairs in [010] oriented yttrium orthoaluminate are successfully imaged together with the Al and the O atoms. Although the 57 pm pair separation is well demonstrated separations between 55 pm and 80 pm are measured. This observation is tentatively attributed to structural relaxations and surface reconstruction in the very thin samples used. Quantification of the resolution limiting effective image spread is achieved based on an absolute match between experimental and simulated image intensity distributions.
Kumari, S. Sindhu [Physiology and Biophysics, Stony Brook University, Stony Brook, NY (United States); Varadaraj, Kulandaiappan, E-mail: kulandaiappan.varadaraj@stonybrook.edu [Physiology and Biophysics, Stony Brook University, Stony Brook, NY (United States); SUNY Eye Institute, New York, NY (United States)
2014-10-03
Highlights: • Intact AQP0 functions as fiber cell-to-fiber cell adhesion protein. • AQP0 facilitates reduction in extracellular space and lens water content. • AQP0 adhesion function aids in lens refractive index gradient (RING) formation. • AQP0 prevents lens spherical aberration by establishing RING. • AQP0 is critical for lens transparency and homeostasis. - Abstract: Aquaporin 0 (AQP0) is a transmembrane channel that constitutes ∼45% of the total membrane protein of the fiber cells in mammalian lens. It is critical for lens transparency and homeostasis as mutations and knockout cause autosomal dominant lens cataract. AQP0 functions as a water channel and as a cell-to-cell adhesion (CTCA) molecule in the lens. Our recent in vitro studies showed that the CTCA function of AQP0 could be crucial to establish lens refractive index gradient (RING). However, there is a lack of in vivo data to corroborate the role of AQP0 as a fiber CTCA molecule which is critical for creating lens RING. The present investigation is undertaken to gather in vivo evidence for the involvement of AQP0 in developing lens RING. Lenses of wild type (WT) mouse, AQP0 knockout (heterozygous, AQP0{sup +/−}) and AQP0 knockout lens transgenically expressing AQP1 (heterozygous AQP0{sup +/−}/AQP1{sup +/−}) mouse models were used for the study. Data on AQP0 protein profile of intact and N- and/or C-terminal cleaved AQP0 in the lens by MALDI-TOF mass spectrometry and SDS–PAGE revealed that outer cortex fiber cells have only intact AQP0 of ∼28 kDa, inner cortical and outer nuclear fiber cells have both intact and cleaved forms, and inner nuclear fiber cells have only cleaved forms (∼26–24 kDa). Knocking out of 50% of AQP0 protein caused light scattering, spherical aberration (SA) and cataract. Restoring the lost fiber cell membrane water permeability (P{sub f}) by transgene AQP1 did not reinstate complete lens transparency and the mouse lenses showed light scattering and SA
Refractive and diffractive neutron optics with reduced chromatic aberration
Poulsen, Stefan Othmar; Poulsen, Henning Friis; Bentley, P.M.
2014-01-01
by the use of optics for focusing and imaging. Refractive and diffractive optical elements, e.g. compound refractive lenses and Fresnel zone plates, are attractive due to their low cost, and simple alignment. These optical elements, however, suffer from chromatic aberration, which limit their effectiveness...... path to focus and image a time-of-flight beam, and (2) a passive optical element consisting of a compound refractive lens, and a Fresnel zone plate, which may focus and image both continuous and pulsed neutron beams....... to highly monochromatic beams. This paper presents two novel concepts for focusing and imaging non-monochromatic thermal neutron beams with well-known optical elements: (1) a fast mechanical transfocator based on a compound refractive lens, which actively varies the number of individual lenses in the beam...
Refractive and diffractive neutron optics with reduced chromatic aberration
Poulsen, S.O., E-mail: stefan.poulsen@northwestern.edu [NEXMAP, Department of Physics, Technical University of Denmark, Anker Engelunds Vej 1, 2800 Kgs. Lyngby (Denmark); Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208 (United States); Poulsen, H.F. [NEXMAP, Department of Physics, Technical University of Denmark, Anker Engelunds Vej 1, 2800 Kgs. Lyngby (Denmark); Bentley, P.M. [European Spallation Source ESS AB, Box 176, 221 00 Lund (Sweden)
2014-12-11
Thermal neutron beams are an indispensable tool in physics research. The spatial and the temporal resolution attainable in experiments are dependent on the flux and collimation of the neutron beam which remain relatively poor, even for modern neutron sources. These difficulties may be mitigated by the use of optics for focusing and imaging. Refractive and diffractive optical elements, e.g. compound refractive lenses and Fresnel zone plates, are attractive due to their low cost, and simple alignment. These optical elements, however, suffer from chromatic aberration, which limit their effectiveness to highly monochromatic beams. This paper presents two novel concepts for focusing and imaging non-monochromatic thermal neutron beams with well-known optical elements: (1) a fast mechanical transfocator based on a compound refractive lens, which actively varies the number of individual lenses in the beam path to focus and image a time-of-flight beam, and (2) a passive optical element consisting of a compound refractive lens, and a Fresnel zone plate, which may focus and image both continuous and pulsed neutron beams.
Kumari, S Sindhu; Varadaraj, Kulandaiappan
2014-10-03
Aquaporin 0 (AQP0) is a transmembrane channel that constitutes ∼45% of the total membrane protein of the fiber cells in mammalian lens. It is critical for lens transparency and homeostasis as mutations and knockout cause autosomal dominant lens cataract. AQP0 functions as a water channel and as a cell-to-cell adhesion (CTCA) molecule in the lens. Our recent in vitro studies showed that the CTCA function of AQP0 could be crucial to establish lens refractive index gradient (RING). However, there is a lack of in vivo data to corroborate the role of AQP0 as a fiber CTCA molecule which is critical for creating lens RING. The present investigation is undertaken to gather in vivo evidence for the involvement of AQP0 in developing lens RING. Lenses of wild type (WT) mouse, AQP0 knockout (heterozygous, AQP0(+/-)) and AQP0 knockout lens transgenically expressing AQP1 (heterozygous AQP0(+/)(-)/AQP1(+/)(-)) mouse models were used for the study. Data on AQP0 protein profile of intact and N- and/or C-terminal cleaved AQP0 in the lens by MALDI-TOF mass spectrometry and SDS-PAGE revealed that outer cortex fiber cells have only intact AQP0 of ∼28kDa, inner cortical and outer nuclear fiber cells have both intact and cleaved forms, and inner nuclear fiber cells have only cleaved forms (∼26-24kDa). Knocking out of 50% of AQP0 protein caused light scattering, spherical aberration (SA) and cataract. Restoring the lost fiber cell membrane water permeability (Pf) by transgene AQP1 did not reinstate complete lens transparency and the mouse lenses showed light scattering and SA. Transmission and scanning electron micrographs of lenses of both mouse models showed increased extracellular space between fiber cells. Water content determination study showed increase in water in the lenses of these mouse models. In summary, lens transparency, CTCA and compact packing of fiber cells were affected due to the loss of 50% AQP0 leading to larger extracellular space, more water content and SA
Chih-Ta Yen
2015-09-01
Full Text Available A complex intraocular lens (IOL design involving numerous uncertain variables is proposed. We integrated a genetic algorithm (GA with the commercial optical design software of (CODE V to design a multifocal IOL for the human eye. We mainly used an aspherical lens in the initial state to the crystalline type; therefore, we used the internal human eye model in the software. The proposed optimized algorithm employs a GA method for optimally simulating the focusing function of the human eye; in this method, the thickness and curvature of the anterior lens and the posterior part of the IOL were varied. A comparison of the proposed GA-designed IOLs and those designed using a CODE V built-in optimal algorithm for 550 degrees myopia and 175 degrees astigmatism conditions of the human eye for pupil size 6 mm showed that the proposed IOL design improved the spot size of root mean square (RMS, tangential coma (TCO and modulation transfer function (MTF at a spatial frequency of 30 with a pupil size of 6 mm by approximately 17%, 43% and 35%, respectively. However, the worst performance of spherical aberration (SA was lower than 46%, because the optical design involves a tradeoff between all aberrations. Compared with the traditional CODE V built-in optimal scheme, the proposed IOL design can efficiently improve the critical parameters, namely TCO, RMS, and MTF.
Drinking beer reduces radiation-induced chromosome aberrations in human lymphocytes
Monobe, Manami [Chiba Univ. (Japan). Graduate School of Science and Technology; Ando, Koichi [National Inst. of Radiological Sciences, Chiba (Japan)
2002-09-01
We here investigated and reported the effects of beer drinking on radiation-induced chromosome aberrations in blood lymphocytes. Human blood that was collected either before or after drinking a 700 ml beer was in vitro irradiated with 200 kVp X rays or 50 keV/{mu}m carbon ions. The relation between the radiation dose and the aberration frequencies (fragments and dicentrics) was significantly (P<0.05) lower for lymphocytes collected 3 h after beer drinking than those before drinking. Fitting the dose response to a linear quadratic model showed that the alpha term of carbon ions was significantly (P<0.05) decreased by beer drinking. A decrease of dicentric formation was detected as early as 0.5 h after beer drinking, and lasted not shorter than 4.5 h. The mitotic index of lymphocytes was higher after beer drinking than before, indicating that a division delay would not be responsible for the low aberrations induced by beer drinking. An in vitro treatment of normal lymphocytes with 0.1 M ethanol, which corresponded to a concentration of 6-times higher than the maximum ethanol concentration in the blood after beer drinking, reduced the dicentric formation caused by X-ray irradiation, but not by carbon-ion irradiation. The beer-induced reduction of dicentric formation was not affected by serum. It is concluded that beer could contain non-ethanol elements that reduce the chromosome damage of lymphocytes induced by high-LET radiation. (author)
Kim, Hwang Su; Zhang, Zaoli; Kaiser, Ute
2012-06-01
This report is an extension of the study for structural imaging of 5-6 nm thick β-Si(3)N(4) [0001] crystal with a spherical aberration corrected transmission electron microscope by Zhang and Kaiser [2009. Structure imaging of β-Si(3)N(4) by spherical aberration-corrected high-resolution transmission electron microscopy. Ultramicroscopy 109, 1114-1120]. In this work, a local symmetry breaking with an uneven resolution of dumbbells in the six-membered rings revealed in the reported images in the study of Zhang and Kaiser has been analyzed in detail. It is found that this local asymmetry in the image basically is not relevant to a slight mistilt of the specimen and/or a beam tilt (coma). Rather the certain variation of the tetrahedral bond length of Si-N(4) in the crystal structure is found to be responsible for the uneven resolution with a local structural variation from region to region. This characteristic of the variation is also supposed to give a distorted lattice of apparently 2°-2.5° deviations from the perfect hexagonal unit cell as observed in the reported image in the work of Zhang and Kaiser. It is discussed that this variation may prevail only in a thin specimen with a thickness ranging ~≤ 5-6 nm. At the same time, it is noted that the average of the bond length variation is close to the fixed length known in a bulk crystal of β-Si(3)N(4).
Chicago aberration correction work.
Beck, V D
2012-12-01
The author describes from his personal involvement the many improvements to electron microscopy Albert Crewe and his group brought by minimizing the effects of aberrations. The Butler gun was developed to minimize aperture aberrations in a field emission electron gun. In the 1960s, Crewe anticipated using a spherical aberration corrector based on Scherzer's design. Since the tolerances could not be met mechanically, a method of moving the center of the octopoles electrically was developed by adding lower order multipole fields. Because the corrector was located about 15 cm ahead of the objective lens, combination aberrations would arise with the objective lens. This fifth order aberration would then limit the aperture of the microscope. The transformation of the off axis aberration coefficients of a round lens was developed and a means to cancel anisotropic coma was developed. A new method of generating negative spherical aberration was invented using the combination aberrations of hexapoles. Extensions of this technique to higher order aberrations were developed. An electrostatic electron mirror was invented, which allows the cancellation of primary spherical aberration and first order chromatic aberration. A reduction of chromatic aberration by two orders of magnitude was demonstrated using such a system.
Chicago aberration correction work
Beck, V.D., E-mail: vnlbeck@earthlink.net [1 Hobby Drive, Ridgefield, CT 06877-01922 (United States)
2012-12-15
The author describes from his personal involvement the many improvements to electron microscopy Albert Crewe and his group brought by minimizing the effects of aberrations. The Butler gun was developed to minimize aperture aberrations in a field emission electron gun. In the 1960s, Crewe anticipated using a spherical aberration corrector based on Scherzer's design. Since the tolerances could not be met mechanically, a method of moving the center of the octopoles electrically was developed by adding lower order multipole fields. Because the corrector was located about 15 cm ahead of the objective lens, combination aberrations would arise with the objective lens. This fifth order aberration would then limit the aperture of the microscope. The transformation of the off axis aberration coefficients of a round lens was developed and a means to cancel anisotropic coma was developed. A new method of generating negative spherical aberration was invented using the combination aberrations of hexapoles. Extensions of this technique to higher order aberrations were developed. An electrostatic electron mirror was invented, which allows the cancellation of primary spherical aberration and first order chromatic aberration. A reduction of chromatic aberration by two orders of magnitude was demonstrated using such a system. -- Highlights: Black-Right-Pointing-Pointer Crewe and his group made significant advances in aberration correction and reduction. Black-Right-Pointing-Pointer A deeper understanding of the quadrupole octopole corrector was developed. Black-Right-Pointing-Pointer A scheme to correct spherical aberration using hexapoles was developed. Black-Right-Pointing-Pointer Chromatic aberration was corrected using a uniform field mirror.
Ibrahim Kocak; Faruk Kaya; Hakan Baybora
2012-01-01
AIM: To compare the effect of spherical and aspheric hydrophilic intraocular lenses (IOL) on postoperative higher order aberrations (HOA). METHODS: Uneventful phacoemulsification was performed in 78 eyes of 66 patients with implanting either spherical Softec or aspheric Ocuva lenses. Preoperative and postoperative 3rd month aberrometry was performed with Visx Wavescan aberrometer to be compared. RESULTS: There was no statistically significant difference between two groups. Postoperative root-mean-square (RMS) value of HOA: 0.27±0.11 in Softec and 0.28±0.13 in Ocuva group, spherical aberration (SA): 0.11±0.07 in Softec and 0.11±0.08 in Ocuva group. CONCLUSION: Aspheric Ocuva IOL seems not to have an advantage of decreasing postoperative HOA compared to spherical Softec IOL.%目的:比较亲水性球面和非球面人工晶状体(intraocular lenses,IOL)对术后高阶像差(higher order aberrations,HOA)的影响.方法:66例78眼行白内障超声乳化术并顺利植入球面Softec或者非球面Ocuva人工晶状体.术前和术后第3mo使用VISX Wavescan像差计进行像差测量与比较.结果:两组间统计学无显著性差异.术后的高阶像差均方根值(root-mean-square,RMS):Softec组0.27±0.11,Ocuva组0.28±0.13,球面像差(spherical aberration,SA):Softec组0.11±0.07,Ocuva组0.11±0.08.结论:与球面Softec人工晶状体比较,Ocuva非球面人工晶状体似乎没有减少术后高阶像差的优势.
曾祥梅; 陈忠勇; 周花
2011-01-01
基于空间频率域交叉谱密度函数的传输公式,推导了有球差多色部分空间相干光被光阑衍射后轴上点光谱的解析表达式,而完全空间相干光的结果可作为本公式的特例.着重分析了球差对一阶光谱开关的影响,结果表明,球差会引起光谱移动的不同和光谱开关临界位置的变化.%An analytical expression for the on-axis spectrum of spherically aberrated polychromatic partially coherent light diffracted at an aperture was derived based on the propagation law of the cross-spectral density function. Spatially fully coherent result was obtained as a special case. The influence of spherical aberration on the behaviors of spectral switches was stressed. It was shown that spherical aberration may induce differences of spectral shift and changes of the critical position.
Aida Rodríguez, Sara; Alcalá, Jorge; Martins Souza, Roberto
2011-03-01
Although the Hertz theory is not applicable in the analysis of the indentation of elastic-plastic materials, it is common practice to incorporate the concept of indenter/specimen combined modulus to consider indenter deformation. The appropriateness was assessed of the use of reduced modulus to incorporate the effect of indenter deformation in the analysis of the indentation with spherical indenters. The analysis based on finite element simulations considered four values of the ratio of the indented material elastic modulus to that of the diamond indenter, E/Ei (0, 0.04, 0.19, 0.39), four values of the ratio of the elastic reduced modulus to the initial yield strength, Er/Y (0, 10, 20, 100), and two values of the ratio of the indenter radius to maximum total displacement, R/δmax (3, 10). Indenter deformation effects are better accounted for by the reduced modulus if the indented material behaves entirely elastically. In this case, identical load-displacement (P - δ) curves are obtained with rigid and elastic spherical indenters for the same elastic reduced modulus. Changes in the ratio E/Ei , from 0 to 0.39, resulted in variations lower than 5% for the load dimensionless functions, lower than 3% in the contact area, Ac , and lower than 5% in the ratio H/Er . However, deformations of the elastic indenter made the actual radius of contact change, even in the indentation of elastic materials. Even though the load dimensionless functions showed only a little increase with the ratio E/Ei , the hardening coefficient and the yield strength could be slightly overestimated when algorithms based on rigid indenters are used. For the unloading curves, the ratio δe/δmax , where δe is the point corresponding to zero load of a straight line with slope S from the point (Pmax, δmax ), varied less than 5% with the ratio E/Ei . Similarly, the relationship between reduced modulus and the unloading indentation curve, expressed by Sneddon's equation, did not reveal the necessity
全眼球差对人工晶状体眼视觉质量的作用%Effect of ocular spherical aberration on vision quality in pseudophakic eyes
甄小妹; 马忠旭; 刘汝瑜; 张娜; 张伟; 薛庆
2012-01-01
Objective To compare the difference of spherical aberration, modulation transfer function! MTF) and depth of focus( DOF) in eyes implanted with aspher-ical and spherical intraocular lens( IOL) ,and then analyze the relationship between ocular spherical aberration, MTF and DOF to subjectively evaluate the ocular spherical aberration on vision quality. Methods A total of 72 patients (77 eyes) with age-related cataract were divided into 3 groups randomly. Group I (25 cases, 26 eyes) implanted with Tecnis ZA9O03 IOL,Group II (23 cases,26 eyes) implanted with Acrysof IQ IOL, Group ID (24 cases,25 eyes) implanted with Acrysof SN60AT IOL. The iTrace was used to measure the ocular spherical aberration, MTF under each spatial frequency (5c-d-1,10c ? D-1,15 c- d-1,20c ? D-1 ,25 c ? D-1,30 c ? D-1) and defocus MTF curve at 6 mm pupil diameter. One-way AVONA and Spearson correlation analysis were used to assess the date. Results At 6 mm pupil diameter, there was statistical difference in the ocular spherical aberration among three groups (P < 0. 05), which in group I was less than group H , and group II was less than group IH , there were statistical differences ( both P < 0. 05). There were statistical differences in MTF( tHOA) value among three groups under each spatial frequency (both P < 0.05), which in group I and H were all higher than group IE , there were statistical differences ( both P < 0. 05). There was statistical difference in DOF value among three groups (P < 0.05), which in group I and H were all less than group IE , there were statistical differences (both P < 0. 05 ). The MTF (tHOA) value under each spatial frequency was negative correlated with ocular spherical aberration( all P < 0. 05 ), positive correlated with DOF value ( r = 0. 388, P =0.003). Conclusion The eyes implanted with aspherical IOL with negative spherical aberration have a high value of MTF (tHOA), while eyes implanted with spherical IOL have a high value of DOF. The ocular spherical
(Non) singular Kantowski-Sachs Universe from quantum spherically reduced matter
Nojiri, S; Odintsov, S D; Osetrin, K E
1999-01-01
Using s-wave and large $N$ approximation the one-loop effective action for 2d dilaton coupled scalars and spinors which are obtained by spherical reduction of 4d minimal matter is found. Quantum effective equations for reduced Einstein gravity are written. Their analytical solutions corresponding to 4d Kantowski-Sachs (KS) Universe are presented. For quantum-corrected Einstein gravity we get non-singular KS cosmology which represents 1) quantum-corrected KS cosmology which existed on classical level or 2)purely quantum solution which had no classical limit. The analogy with Nariai BH is briefly mentioned. For purely induced gravity (no Einstein term) we found general analytical solution but all KS cosmologies under discussion are singular. The corresponding equations of motion are reformulated as classical mechanics problem of motion of unit mass particle in some potential $V$.
Monir Noroozi
2012-06-01
Full Text Available The rapid and green formation of spherical and dendritic silver nanostructures based on microwave irradiation time was investigated. Silver nanoparticles were successfully fabricated by reduction of Ag^{+} in a water medium and using polyvinylpyrrolidone (PVP as the stabilizing agent and without the use of any other reducing agent, and were compared with those synthesized by conventional heating method. UV–vis absorption spectrometry, transmission electron microscopy (TEM, atomic absorption spectroscopy (AAS and photon correlation spectroscopy (PCS measurements, indicated that increasing the irradiation time enhanced the concentration of silver nanoparticles and slightly increased the particle size. There was a lack of large silver nanoparticles at a high concentration, but interestingly, the formation and growth of silver dendrite nanostructures appeared. Compared to conventional heating methods, the silver nanoparticle suspension produced by irradiated microwaves was more stable over a six-month period in aqueous solution without any signs of precipitation.
Reducing the Spikes of Avalanche Photodiode Measurements at the National Spherical Torus Experiment
Brubaker, Z. E.; Foley, E. L.
2011-10-01
Avalanche Photodiodes (APD) used at the National Spherical Torus Experiment (NSTX) make important measurements for the Motional Stark Effect (MSE) diagnostic. However, they are very sensitive, and if radiation consistently reaches these detectors they are damaged over time. Furthermore, they also display spikes in their readings, which greatly complicates the data analysis for MSE. Due to our Collisionally-Induced Fluorescence Motional Stark Effect diagnostic observing significant radiation despite being shielded by a 3 foot concrete wall, we must devise a plan for shielding our new Laser-Induced Fluorescence Motional Stark Effect diagnostic, as well as determining the best possible location for them. In order to reduce the amount of spikes seen in our readings and to preserve our detectors, I investigated the type of radiation responsible, the locations most affected, and tested various materials for shielding. Results will be presented.
Grekova, E. F.
2012-09-01
We consider a linear reduced Cosserat medium: a linear elastic continuum, whose point bodies possess kinematically independent translational and rotational degrees of freedom, but the strain energy does not depend on the gradient of rotation of particles. In such a medium the force stress tensor is asymmetric, but the couple stress tensor is zero. This model can be applied for description of soils and granular media. Since for the time being the experimental technique for measurement of rotational deformations is not well developed, we investigate how the presence of rotational degrees of freedom affects the dynamics of translational displacements. We consider the case of the spherical tensor of inertia and isotropy with respect to the rotational degrees of freedom. Integration of the equation of balance of torques lets us in several cases to put in correspondence a linear reduced Cosserat continuum with the spherical tensor of inertia with a classical (non-polar elastic linear) medium with memory with the same equation for the balance of forces, written in terms of translational displacements. This is possible for the isotropic case and also if the anisotropy is present only in the tensor of elastic constants corresponding to the classical strain tensor. If the material is isotropic with respect to rotational deformations but the (anisotropic) coupling between rotational and classical translational strains is present, then the corresponding classical medium does not exist. If we ignore the rotational degrees of freedom when this coupling is present, this will lead us to the conclusion that the principle of material objectivity is violated.
Zhang, Fang; Zhu, Jing; Song, Qiang; Yue, Weirui; Liu, Jingdan; Wang, Jian; Situ, Guohai; Huang, Huijie
2015-10-20
In general, Fourier transform lenses are considered as ideal in the design algorithms of diffractive optical elements (DOEs). However, the inherent aberrations of a real Fourier transform lens disturb the far field pattern. The difference between the generated pattern and the expected design will impact the system performance. Therefore, a method for modifying the Fourier spectrum of DOEs without introducing other optical elements to reduce the aberration effect of the Fourier transform lens is proposed. By applying this method, beam shaping performance is improved markedly for the optical system with a real Fourier transform lens. The experiments carried out with a commercial Fourier transform lens give evidence for this method. The method is capable of reducing the system complexity as well as improving its performance.
宫贤惠; 赵云娥; 王娜
2011-01-01
较,差异均无统计学意义(P＜0.05).结论 零球差非球面IOL植入眼视觉质量明显优于球面IOL植入眼.%Background Zero spherical aberration intraocular lenses(IOL)is designed to prevent the addition of positive spherical aberration after surgery.Research indicated that some positive spherical aberration can provide better depth distance of focus and pseudoaccommodation.Objective The present study was to compare the visual function and wavefront aberrations in pseudophakic eyes with zero spherical aberration IOL and spherical IOL.Methods A prespective case-controlled study was designed.Eighty eyes of 52 patients with age-related cataract were enrolled and divided into two matched groups based on random number table method.The regular phacoemulsification was performed on the eyes,and a zero spherical aberration IOL(Akreos AO)was implanted in the test group and a spherical IOL was used in the control group(Akreos Adapt IOL).The corrected distance visual acuity(CDVA),contrast sensitivity,depth of focus and wavefront aberrations were recorded and compared at 3 months after cataract surgery between these two groups.The trail was approved by the Ethic Committee of Eye Hospital of Wenzhou Medical College,and written informed consent was obtained from each patient prior to the program.Results The clinical demography from the two groups was matched(P ＞ 0.05).There were no significant difference in the CDVA (LogM AR)(-0.03 ±0.08 versus-0.02+0.10)(t =-0.50,P =0.61)and in depth of focus(3.48± 1.07 DS versus 3.20±0.77 DS)(t =1.15,P=0.25)between the zero spherical aberration IOL group and the spherical IOL group.The contrast sensitivities under the mesopic condition at 12.0 c/d and mesopic with glare at 3.0,6.0,18.0 c/d were 12.42 ± 13.16,42.58 ±24.96,30.19± 25.64 and 3.03 ± 5.49 in the zero spherical aberration IOL group,and those in the spherical IOL group were 5.59 ± 8.11,28.74 ± 18.69,17.07 ± 19.35 and 0.22 ± 1.15 without significant
FY 2005 Miniature Spherical Retroreflectors Final Report
Anheier, Norman C.; Bernacki, Bruce E.; Johnson, Bradley R.; Riley, Brian J.; Sliger, William A.
2005-12-01
Research done by the Infrared Photonics team at Pacific Northwest National Laboratory (PNNL) is focused on developing miniature spherical retroreflectors using the unique optical and material properties of chalcogenide glass to reduce both performance limiting spherical and chromatic aberrations. The optimized optical performance will provide efficient signal retroreflection that enables a broad range of remote detection scenarios for mid-wave infrared (MWIR) and long-wave infrared (LWIR) sensing applications. Miniature spherical retroreflectors can be developed to aid in the detection of signatures of nuclear proliferation or other chemical vapor or radiation signatures. Miniature spherical retroreflectors are not only well suited to traditional bistatic LIDAR methods for chemical plume detection and identification, but could enable remote detection of difficult semi-volatile chemical materials or low level radiation sources.
FY 2006 Miniature Spherical Retroreflectors Final Report
Anheier, Norman C.; Bernacki, Bruce E.; Krishnaswami, Kannan
2006-12-28
Research done by the Infrared Photonics team at Pacific Northwest National Laboratory (PNNL) is focused on developing miniature spherical retroreflectors using the unique optical and material properties of chalcogenide glass to reduce both performance limiting spherical aberrations. The optimized optical performance will provide efficient signal retroreflection that enables a broad range of remote detection scenarios for mid-wave infrared (MWIR) and long-wave infrared (LWIR) sensing applications. Miniature spherical retroreflectors can be developed to aid in the detection of signatures of nuclear proliferation or other chemical vapor or radiation signatures. Miniature spherical retroreflectors are not only well suited to traditional LIDAR methods for chemical plume detection and identification, but could enable remote detection of difficult semi-volatile chemical materials or low level radiation sources.
Aberration Correction in Electron Microscopy
Rose, Harald H
2005-01-01
The resolution of conventional electron microscopes is limited by spherical and chromatic aberrations. Both defects are unavoidable in the case of static rotationally symmetric electromagnetic fields (Scherzer theorem). Multipole correctors and electron mirrros have been designed and built, which compensate for these aberrations. The principles of correction will be demonstrated for the tetrode mirror, the quadrupole-octopole corrector and the hexapole corrector. Electron mirrors require a magnetic beam separator free of second-order aberrations. The multipole correctors are highly symmetric telescopic systems compensating for the defects of the objective lens. The hexapole corrector has the most simple structure yet eliminates only the spherical aberration, whereas the mirror and the quadrupole-octopole corrector are able to correct for both aberrations. Chromatic correction is achieved in the latter corrector by cossed electric and magnetic quadrupoles acting as first-order Wien filters. Micrographs obtaine...
Reiner Friedrich
2012-10-01
Full Text Available The outcomes of a prospective consecutive study aimed at evaluating the visual and refractive benefit after cataract surgery with the implantation of the aspheric diffractive multifocal intraocular lens (IOL Tecnis ZMB00 (Abbott Medical Optics are reported. A total of 31 eyes of 19 patients (age range, 40 to 81 years underwent phacoemulsification surgery with implantation of this aspheric multifocal IOL. At 6 months after surgery, postoperative spherical equivalent was within ±1.00 D in 96.8% of eyes, with 94.7% of patients presenting a postoperative binocular far LogMAR uncorrected visual acuity (UCVA of 0.1 or better. Far best-corrected distance VA improved significantly (p < 0.01, with postoperative values of 0.1 or better in 96.8% of eyes. Postoperative near UCVA was 0.10 (equivalent to J1 or better in 93.55% of eyes. Furthermore, the IOL power was found to be very poorly correlated with the postoperative far LogMAR (r = 0.13 and near UCVA (r = 0.13. In conclusion, the aspheric diffractive multifocal IOL Tecnis ZMB00 provides a restoration of the far and near visual function after phacoemulsification surgery for cataract removal or presbyopia correction, which is predictable and independent from the optical power of the implanted IOL.
Impact of primary aberrations on coherent lidar performance
Hu, Qi; Rodrigo, Peter John; Iversen, Theis Faber Quist;
2014-01-01
In this work we investigate the performance of a monostatic coherent lidar system in which the transmit beam is under the influence of primary phase aberrations: spherical aberration (SA) and astigmatism. The experimental investigation is realized by probing the spatial weighting function...... of the lidar system using different optical transceiver configurations. A rotating belt is used as a hard target. Our study shows that the lidar weighting function suffers from both spatial broadening and shift in peak position in the presence of aberration. It is to our knowledge the first experimental...... effciency, the optimum truncation of the transmit beam and the spatial sensitivity of a CW coherent lidar system. Under strong degree of aberration, the spatial confinement is significantly degraded. However for SA, the degradation of the spatial confinement can be reduced by tuning the truncation...
Rouhollahi, Elham; Moghadamtousi, Soheil Zorofchian; Al-Henhena, Nawal; Kunasegaran, Thubasni; Hasanpourghadi, Mohadeseh; Looi, Chung Yeng; Abd Malek, Sri Nurestri; Awang, Khalijah; Abdulla, Mahmood Ameen; Mohamed, Zahurin
2015-01-01
Curcuma purpurascens BI. rhizome, a member of the Zingiberaceae family, is a popular spice in Indonesia that is traditionally used in assorted remedies. Dichloromethane extract of C. purpurascens BI. rhizome (DECPR) has previously been shown to have an apoptosis-inducing effect on colon cancer cells. In the present study, we examined the potential of DECPR to prevent colon cancer development in rats treated with azoxymethane (AOM) (15 mg/kg) by determining the percentage inhibition in incidence of aberrant crypt foci (ACF). Starting from the day immediately after AOM treatment, three groups of rats were orally administered once a day for 2 months either 10% Tween 20 (5 mL/kg, cancer control), DECPR (250 mg/kg, low dose), or DECPR (500 mg/kg, high dose). Meanwhile, the control group was intraperitoneally injected with 5-fluorouracil (35 mg/kg) for 5 consecutive days. After euthanizing the rats, the number of ACF was enumerated in colon tissues. Bax, Bcl-2, and proliferating cell nuclear antigen (PCNA) protein expressions were examined using immunohistochemical and Western blot analyses. Antioxidant enzymatic activity was measured in colon tissue homogenates and associated with malondialdehyde level. The percentage inhibition of ACF was 56.04% and 68.68% in the low- and high-dose DECPR-treated groups, respectively. The ACF inhibition in the treatment control group was 74.17%. Results revealed that DECPR exposure at both doses significantly decreased AOM-induced ACF formation, which was accompanied by reduced expression of PCNA. Upregulation of Bax and downregulation of Bcl-2 suggested the involvement of apoptosis in the chemopreventive effect of DECPR. In addition, the oxidative stress resulting from AOM treatment was significantly attenuated after administration of DECPR, which was shown by the elevated antioxidant enzymatic activity and reduced malondialdehyde level. Taken together, the present data clearly indicate that DECPR significantly inhibits ACF formation
N' Diaye, Mamadou; Pueyo, Laurent; Soummer, Rémi, E-mail: mamadou@stsci.edu [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)
2015-02-01
The Apodized Pupil Lyot Coronagraph (APLC) is a diffraction suppression system installed in the recently deployed instruments Palomar/P1640, Gemini/GPI, and VLT/SPHERE to allow direct imaging and spectroscopy of circumstellar environments. Using a prolate apodization, the current implementations offer raw contrasts down to 10{sup –7} at 0.2 arcsec from a star over a wide bandpass (20%), in the presence of central obstruction and struts, enabling the study of young or massive gaseous planets. Observations of older or lighter companions at smaller separations would require improvements in terms of the inner working angle (IWA) and contrast, but the methods originally used for these designs were not able to fully explore the parameter space. We propose a novel approach to improve the APLC performance. Our method relies on the linear properties of the coronagraphic electric field with the apodization at any wavelength to develop numerical solutions producing coronagraphic star images with high-contrast region in broadband light. We explore the parameter space by considering different aperture geometries, contrast levels, dark-zone sizes, bandpasses, and focal plane mask sizes. We present an application of these solutions to the case of Gemini/GPI with a design delivering a 10{sup –8} raw contrast at 0.19 arcsec and offering a significantly reduced sensitivity to low-order aberrations compared to the current implementation. Optimal solutions have also been found to reach 10{sup –10} contrast in broadband light regardless of the aperture shape, with effective IWA in the 2-3.5 λ/D range, therefore making the APLC a suitable option for the future exoplanet direct imagers on the ground or in space.
Device with foil corrector for electron optical aberrations at low energy
Kruit, P.; Van Aken, R.H.
2004-01-01
An electron optical device for, in use, creating negative spherical and chromatic aberration and reducing the energy spread in an electron beam travelling on an optical axis, including: at least one conducting plate substantially perpendicular to the optical axis with a first aperture having a first
Device with foil corrector for electron optical aberrations at low energy
Kruit, P.; Van Aken, R.H.
2004-01-01
An electron optical device for, in use, creating negative spherical and chromatic aberration and reducing the energy spread in an electron beam travelling on an optical axis, including: at least one conducting plate substantially perpendicular to the optical axis with a first aperture having a first
Aberration of a negative ion beam caused by space charge effect
Miyamoto, K. [Naruto University of Education, 748 Nakashima, Takashima, Naruto-cho, Naruto-shi, Tokushima 772-8502 (Japan); Wada, S.; Hatayama, A. [Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan)
2010-02-15
Aberrations are inevitable when the charged particle beams are extracted, accelerated, transmitted, and focused with electrostatic and magnetic fields. In this study, we investigate the aberration of a negative ion accelerator for a neutral beam injector theoretically, especially the spherical aberration caused by the negative ion beam expansion due to the space charge effect. The negative ion current density profiles with the spherical aberration are compared with those without the spherical aberration. It is found that the negative ion current density profiles in a log scale are tailed due to the spherical aberration.
Higher-Order Aberrations in Myopic Eyes
Farid Karimian
2010-01-01
Full Text Available Purpose: To evaluate the correlation between refractive error and higher-order aberrations (HOAs in patients with myopic astigmatism. Methods: HOAs were measured using the Zywave II aberrometer over a 6 mm pupil. Correlations between HOAs and myopia, astigmatism, and age were analyzed. Results: One hundred and twenty-six eyes of 63 subjects with mean age of 26.4±5.9 years were studied. Mean spherical equivalent refractive error and refractive astigmatism were -4.94±1.63 D and 0.96±1.06 D, respectively. The most common higher-order aberration was primary horizontal trefoil with mean value of 0.069±0.152 μm followed by spherical aberration (-0.064±0.130 μm and primary vertical coma (-0.038±0.148 μm. As the order of aberration increased from third to fifth, its contribution to total HOA decreased: 53.9% for third order, 31.9% for fourth order, and 14.2% for fifth order aberrations. Significant correlations were observed between spherical equivalent refractive error and primary horizontal coma (R=0.231, P=0.022, and root mean square (RMS of spherical aberration (R=0.213, P=0.031; between astigmatism and RMS of total HOA (R=0.251, P=0.032, RMS of fourth order aberration (R=0.35, P<0.001, and primary horizontal coma (R=0.314, P=0.004. Spherical aberration (R=0.214, P=0.034 and secondary vertical coma (R=0.203, P=0.031 significantly increased with age. Conclusion: Primary horizontal trefoil, spherical aberration and primary vertical coma are the predominant higher-order aberrations in eyes with myopic astigmatism.
Aberration coefficients of curved holographic optical elements
Verboven, P. E.; Lagasse, P. E.
1986-11-01
A general formula is derived that gives all aberration terms of holographic optical elements on substrates of any shape. The spherical substrate shape and the planar substrate shape are treated as important special cases. A numerical example illustrates the need of including higher-order aberrations.
Optical aberrations of intraocular lenses measured in vivo and in vitro
Barbero, Sergio; Marcos, Susana; Jiménez-Alfaro, Ignacio
2003-10-01
Corneal and ocular aberrations were measured in a group of eyes before and after cataract surgery with spherical intraocular lens (IOL) implantation by use of well-tested techniques developed in our laboratory. By subtraction of corneal from total aberration maps, we also estimated the optical quality of the intraocular lens in vivo. We found that aberrations in pseudophakic eyes are not significantly different from aberrations in eyes before cataract surgery or from previously reported aberrations in healthy eyes of the same age. However, aberrations in pseudophakic eyes are significantly higher than in young eyes. We found a slight increase of corneal aberrations after surgery. The aberrations of the IOL and the lack of balance of the corneal spherical aberrations by the spherical aberrations of the intraocular lens also degraded the optical quality in pseudophakic eyes. We also measured the aberrations of the IOL in vitro, using an eye cell model, and simulated the aberrations of the IOL on the basis of the IOL's physical parameters. We found a good agreement among in vivo, in vitro, and simulated measures of spherical aberration: Unlike the spherical aberration of the young crystalline lens, which tends to be negative, the spherical aberration of the IOL is positive and increases with lens power. Computer simulations and in vitro measurements show that tilts and decentrations might be contributors to the increased third-order aberrations in vivo in comparison with in vitro measurements.
Beckta, Jason M; Dever, Seth M; Gnawali, Nisha; Khalil, Ashraf; Sule, Amrita; Golding, Sarah E; Rosenberg, Elizabeth; Narayanan, Aarthi; Kehn-Hall, Kylene; Xu, Bo; Povirk, Lawrence F; Valerie, Kristoffer
2015-09-29
Mutations in the breast cancer susceptibility 1 (BRCA1) gene are catalysts for breast and ovarian cancers. Most mutations are associated with the BRCA1 N- and C-terminal domains linked to DNA double-strand break (DSB) repair. However, little is known about the role of the intervening serine-glutamine (SQ) - cluster in the DNA damage response beyond its importance in regulating cell cycle checkpoints. We show that serine-to-alanine alterations at critical residues within the SQ-cluster known to be phosphorylated by ATM and ATR result in reduced homologous recombination repair (HRR) and aberrant mitosis. While a S1387A BRCA1 mutant - previously shown to abrogate S-phase arrest in response to radiation - resulted in only a modest decrease in HRR, S1387A together with an additional alteration, S1423A (BRCA12P), reduced HRR to vector control levels and similar to a quadruple mutant also including S1457A and S1524A (BRCA14P). These effects appeared to be independent of PALB2. Furthermore, we found that BRCA14P promoted a prolonged and struggling HRR late in the cell cycle and shifted DSB repair from HRR to non-homologous end joining which, in the face of irreparable chromosomal damage, resulted in mitotic catastrophe. Altogether, SQ-cluster phosphorylation is critical for allowing adequate time for completing normal HRR prior to mitosis and preventing cells from entering G1 prematurely resulting in gross chromosomal aberrations.
V. P. Gourineni
2011-01-01
Full Text Available Synergy1, a prebiotic composed of Inulin and Oligofructose (1 : 1. Soybean meal is a natural source of isoflavones. The objective was to investigate the effects of feeding Synergy1 and SM on the incidence of azoxymethane- (AOM- induced aberrant crypt foci (ACF in Fisher 344 male rats. Rats (54 were randomly assigned to 9 groups (n=6. Control group (C was fed AIN-93G and treatment groups Syn1 and SM at 5% and 10% singly and in combinations. Rats were injected with two s/c injections of AOM at 7 and 8 weeks of age at 16 mg/kg body weight and killed at 17 weeks by CO2 asphyxiation. Colonic ACF enumeration and hepatic enzyme activities were measured. Reductions (% in total ACF among treatment groups fed combinations were higher (67–77 compared to groups fed singly (52–64. Synergistic mechanisms among phytochemicals may be responsible suggesting protective role in colon carcinogenesis with implications in food product development.
Thompson, Kevin P
2010-06-01
Building on an earlier work on the nodal aberration theory of the 3rd-order aberrations [J. Opt. Soc. Am. A22, 1389 (2005)] and the first paper in this series on the nodal aberration theory of higher-order aberrations [J. Opt. Soc. Am. A26, 1090 (2009)], this paper continues the derivation and presentation of the intrinsic, characteristic, often multinodal geometry for each type/family of the 3rd- and 5th-order optical aberrations as categorized by parallel developments for rotationally symmetric optics. The first paper in this series on the higher-order terms developed the nodal properties of the spherical aberration family, including W(060), W(240M), and W(242), and for completeness 7th-order spherical aberration W(080). This second paper in the series develops and presents the intrinsic, characteristic, often multinodal properties of the family of comatic aberrations through 5th order, specifically W(151), W(331M), and W(333) [field-linear, 5th-order aperture coma; field-cubed, 3rd-order aperture coma; and field-cubed, elliptical coma (a 3rd-order in aperture 5th-order vector aberration)]. This paper will present the first derivations of trinodal aberrations by the author.
Hong, Xin; Choi, Myoung
2010-12-06
Polychromatic defocus could affect the optimal residual spherical aberration that could yield the best image quality for patients with intraocular lenses (IOLs). Modulation transfer functions (MTFs) were generated using a model that included polychromatic defocus. The maximum MTF volume occurred at + 0.05 μm of overall ocular spherical aberration. For 3 case studies, the optimal overall ocular spherical aberration was ~0.05 μm more positive with the contribution of polychromatic defocus than without it. Overall, the model indicated that image quality was usually best when IOLs allowed overall ocular spherical aberration that was slightly positive, rather than strongly positive, zero, or negative.
Camera processing with chromatic aberration.
Korneliussen, Jan Tore; Hirakawa, Keigo
2014-10-01
Since the refractive index of materials commonly used for lens depends on the wavelengths of light, practical camera optics fail to converge light to a single point on an image plane. Known as chromatic aberration, this phenomenon distorts image details by introducing magnification error, defocus blur, and color fringes. Though achromatic and apochromatic lens designs reduce chromatic aberration to a degree, they are complex and expensive and they do not offer a perfect correction. In this paper, we propose a new postcapture processing scheme designed to overcome these problems computationally. Specifically, the proposed solution is comprised of chromatic aberration-tolerant demosaicking algorithm and post-demosaicking chromatic aberration correction. Experiments with simulated and real sensor data verify that the chromatic aberration is effectively corrected.
Tanabe, Ayano; Hibi, Terumasa; Ipponjima, Sari; Matsumoto, Kenji; Yokoyama, Masafumi; Kurihara, Makoto; Hashimoto, Nobuyuki; Nemoto, Tomomi
2016-03-01
Laser scanning microscopy allows 3D cross-sectional imaging inside biospecimens. However, certain aberrations produced can degrade the quality of the resulting images. We previously reported a transmissive liquid-crystal device that could compensate for the predominant spherical aberrations during the observations, particularly in deep regions of the samples. The device, inserted between the objective lens and the microscope revolver, improved the image quality of fixed-mouse-brain slices that were observed using two-photon excitation laser scanning microscopy, which was originally degraded by spherical aberration. In this study, we developed a transmissive device that corrects primary coma aberration and astigmatism, motivated by the fact that these asymmetric aberrations can also often considerably deteriorate image quality, even near the sample surface. The device's performance was evaluated by observing fluorescent beads using single-photon excitation laser scanning microscopy. The fluorescence intensity in the image of the bead under a cover slip tilted in the y-direction was increased by 1.5 times after correction by the device. Furthermore, the y- and z-widths of the imaged bead were reduced to 66% and 65%, respectively. On the other hand, for the imaged bead sucked into a glass capillary in the longitudinal x-direction, correction with the device increased the fluorescence intensity by 2.2 times compared to that of the aberrated image. In addition, the x-, y-, and z-widths of the bead image were reduced to 75%, 53%, and 40%, respectively. Our device successfully corrected several asymmetric aberrations to improve the fluorescent signal and spatial resolution, and might be useful for observing various biospecimens.
Siwaponanan, Panjaree; Siegers, Jurre Ynze; Ghazali, Razi; Ng, Thian; McColl, Bradley; Ng, Garrett Zhen-Wei; Sutton, Philip; Wang, Nancy; Ooi, Isabelle; Thiengtavor, Chayada; Fucharoen, Suthat; Chaichompoo, Pornthip; Svasti, Saovaros; Wijburg, Odilia; Vadolas, Jim
2017-06-08
β-Thalassemia is associated with several abnormalities of the innate immune system. Neutrophils in particular are defective, predisposing patients to life-threatening bacterial infections. The molecular and cellular mechanisms involved in impaired neutrophil function remain incompletely defined. We used the Hbb(th3/+) β-thalassemia mouse and hemoglobin E (HbE)/β-thalassemia patients to investigate dysregulated neutrophil activity. Mature neutrophils from Hbb(th3/+) mice displayed a significant reduction in chemotaxis, opsonophagocytosis, and production of reactive oxygen species, closely mimicking the defective immune functions observed in β-thalassemia patients. In Hbb(th3/+) mice, the expression of neutrophil CXCR2, CD11b, and reduced NAD phosphate oxidase components (p22phox, p67phox, and gp91phox) were significantly reduced. Morphological analysis of Hbb(th3/+) neutrophils showed that a large percentage of mature phenotype neutrophils (Ly6G(hi)Ly6C(low)) appeared as band form cells, and a striking expansion of immature (Ly6G(low)Ly6C(low)) hyposegmented neutrophils, consisting mainly of myelocytes and metamyelocytes, was noted. Intriguingly, expression of an essential mediator of neutrophil terminal differentiation, the ets transcription factor PU.1, was significantly decreased in Hbb(th3/+) neutrophils. In addition, in vivo infection with Streptococcus pneumoniae failed to induce PU.1 expression or upregulate neutrophil effector functions in Hbb(th3/+) mice. Similar changes to neutrophil morphology and PU.1 expression were observed in splenectomized and nonsplenectomized HbE/β-thalassemia patients. This study provides a mechanistic insight into defective neutrophil maturation in β-thalassemia patients, which contributes to deficiencies in neutrophil effector functions. © 2017 by The American Society of Hematology.
Hu, Jiang-Jian; Yang, Xing-Liang; Luo, Wen-Di; Han, Song; Yin, Jun; Liu, Wan-Hong; He, Xiao-Hua; Peng, Bi-Wen
2017-02-02
Hypoxia-ischemia brain damage (HIBD) is one of prevalent causes of neonatal mortality and morbidity. Our data demonstrated that hypoxia-ischemia (HI) induced Na(+)-K(+)-Cl(-)-co-transporter 1 (NKCC1) increasing in hippocampus. Previous studies demonstrated that NKCC1 regulates various stages of neurogenesis. In this study, we studied the role of increased NKCC1 in regulating of HI-induced neurogenesis. HIBD model was established in 7days old Sprague-Dawley rat pup, and the expression of NKCC1 was detected by western blot and qPCR. Brain electrical activity in freely rats was monitored by electroencephalography (EEG) recordings. HI-induced neurogenesis was detected by immunofluorescence staining. Neurobehavioral test was to investigate the neuro-protective role of bumetanide, an inhibitor of NKCC1, on neonatal rats after HI. The results showed that bumetanide treatment significantly reduced brain electrical activity and the seizure stage of epilepsy induced by pentylenetetrazol (PTZ) in vivo after HI. In addition, bumetanide restored aberrant hippocampal neurogenesis and associated cognitive function. Our data demonstrated that bumetanide reduces the susceptibility of epilepsy induced by PTZ in rats suffering from HI injury during neonatal period via restoring the ectopic newborn neurons in dentate gyrus (DG) and cognitive function.
Wenninger, Magnus J
2012-01-01
Well-illustrated, practical approach to creating star-faced spherical forms that can serve as basic structures for geodesic domes. Complete instructions for making models from circular bands of paper with just a ruler and compass. Discusses tessellation, or tiling, and how to make spherical models of the semiregular solids and concludes with a discussion of the relationship of polyhedra to geodesic domes and directions for building models of domes. "". . . very pleasant reading."" - Science. 1979 edition.
Study of ocular aberrations with age.
Athaide, Helaine Vinche Zampar; Campos, Mauro; Costa, Charles
2009-01-01
Aging has various effects on visual system. Vision deteriorate, contrast sensitivity decreases and ocular aberrations apparently make the optical quality worse across the years. To prospective evaluate ocular aberrations along the ages. Three hundred and fifteen patients were examined, 155 were male (39.36%) and 160 were female (60.63%). Ages ranged from 5 to 64 year-old, the study was performed from February to November, 2004. Patients were divided into 4 age-groups according to IBGE (Instituto Brasileiro de Geografia e Estatística) classification: 68 patients from 5 to 14 year-old, 55 patients from 15 to 24 year-old, 116 from 25 to 44 year-old and 76 from 45 to 67 year-old. All patients had the following characteristics: best corrected visual acuity > 20/25, emmetropia or spherical equivalent < 3.50 SD, refractive astigmatism < 1.75 CD on cycloplegic refraction, normal ophthalmologic exam and no previous ocular surgeries. This protocol was approved by Federal University of São Paulo Institutional Review Board. Total optical aberrations were measured by H-S sensor LadarWave Custom Cornea Wavefront System (Alcon Laboratories Inc, Orlando, FLA, USA) and were statistically analysed. Corneal aberrations were calculated using CT-View software Version 6.89 (Sarver and Associates, Celebration, FL, USA). Lens aberrations were calculated by subtraction. High-order (0.32 e 0.48 microm) and ocular spherical aberrations (0.02 e 0.26 microm) increased respectively in child and middle age groups. High order (0.27 microm) and corneal spherical aberrations (0.05 microm) did not show changes with age. Lens showed a statistically significant spherical aberration increase (from -0.02 to 0.22 microm). Vertical (from 0.10 to -0.07 microm) and horizontal coma (from 0.01 to -0.12 microm) presented progressively negative values with aging. High-order and spherical aberrations increased with age due to lens contribution. The cornea did not affect significantly changes observed on ocular
Design of an aberration corrected low-voltage SEM
Aken, R.H. van; Maas, D.J.; Hagen, C.W.; Barth, J.E.; Kruit, P.
2010-01-01
The low-voltage foil corrector is a novel type of foil aberration corrector that can correct for both the spherical and chromatic aberration simultaneously. In order to give a realistic example of the capabilities of this corrector, a design for a low-voltage scanning electron microscope with the lo
Adaptive aberration correction using a triode hyperbolic electron mirror.
Fitzgerald, J P S; Word, R C; Könenkamp, R
2011-01-01
A converging electron mirror can be used to compensate spherical and chromatic aberrations in an electron microscope. This paper presents an analytical solution to a novel triode (three electrode) hyperbolic mirror as an improvement to the well-known diode (two electrode) hyperbolic mirror for aberration correction. A weakness of the diode mirror is a lack of flexibility in changing the chromatic and spherical aberration coefficients independently without changes in the mirror geometry. In order to remove this limitation, a third electrode can be added. We calculate the optical properties of the resulting triode mirror analytically on the basis of a simple model field distribution. We present the optical properties-the object/image distance, z(0), and the coefficients of spherical and chromatic aberration, C(s) and C(c), of both mirror types from an analysis of electron trajectories in the mirror field. From this analysis, we demonstrate that while the properties of both designs are similar, the additional parameters in the triode mirror improve the range of aberration that can be corrected. The triode mirror is also able to provide a dynamic adjustment range of chromatic aberration for fixed spherical aberration and focal length, or any permutation of these three parameters. While the dynamic range depends on the values of aberration correction needed, a nominal 10% tuning range is possible for most configurations accompanied by less than 1% change in the other two properties.
Expressions for third-order aberration theory for holographic images
S K Tripathy; S Ananda Rao
2003-01-01
Expressions for third-order aberration in the reconstructed wave front of point objects are established by Meier. But Smith, Neil Mohon, Sweatt independently reported that their results differ from that of Meier. We found that coefﬁcients for spherical aberration, astigmatism, tally with Meier’s while coefﬁcients for distortion and coma differ.
W. Lunz
2008-11-01
Full Text Available We determined the effect of long-term aerobic swimming training regimens of different intensities on colonic carcinogenesis in rats. Male Wistar rats (11 weeks old were given 4 subcutaneous injections (40 mg/kg body weight each of 1,2-dimethyl-hydrazine (DMH, dissolved in 0.9% NaCl containing 1.5% EDTA, pH 6.5, at 3-day intervals and divided into three exercise groups that swam with 0% body weight (EG1, N = 11, 2% body weight (EG2, N = 11, and 4% body weight of load (EG3, N = 10, 20 min/day, 5 days/week for 35 weeks, and one sedentary control group (CG, N = 10. At sacrifice, the colon was removed and counted for tumors and aberrant crypt foci. Tumor size was measured and intra-abdominal fat was weighed. The mean number of aberrant crypt foci was reduced only for EG2 compared to CG (26.21 ± 2.99 vs 36.40 ± 1.53 crypts; P < 0.05. Tumor incidence was not significantly different among groups (CG: 90%; EG1: 72.7%; EG2: 90%; EG3: 80%. Swimming training did not affect either tumor multiplicity (CG: 2.30 ± 0.58; EG1: 2.09 ± 0.44; EG2: 1.27 ± 0.19; EG3: 1.50 ± 0.48 tumors or size (CG: 1.78 ± 0.24; EG1: 1.81 ± 0.14; EG2: 1.55 ± 0.21; EG3: 2.17 ± 0.22 cm³. Intra-abdominal fat was not significantly different among groups (CG: 10.54 ± 2.73; EG1: 6.12 ± 1.15; EG2: 7.85 ± 1.24; EG3: 5.11 ± 0.74 g. Aerobic swimming training with 2% body weight of load protected against the DMH-induced preneoplastic colon lesions, but not against tumor development in the rat.
Correcting Aberrations in Complex Magnet Systems for Muon Cooling Channels
J.A. Maloney, B. Erdelyi, A. Afanaciev, R.P. Johnson, Y.S. Derbenev, V.S. Morozov
2011-03-01
Designing and simulating complex magnet systems needed for cooling channels in both neutrino factories and muon colliders requires innovative techniques to correct for both chromatic and spherical aberrations. Optimizing complex systems, such as helical magnets for example, is also difficult but essential. By using COSY INFINITY, a differential algebra based code, the transfer and aberration maps can be examined to discover what critical terms have the greatest influence on these aberrations.
Exploring the depth range for three-dimensional laser machining with aberration correction.
Salter, P S; Baum, M; Alexeev, I; Schmidt, M; Booth, M J
2014-07-28
The spherical aberration generated when focusing from air into another medium limits the depth at which ultrafast laser machining can be accurately maintained. We investigate how the depth range may be extended using aberration correction via a liquid crystal spatial light modulator (SLM), in both single point and parallel multi-point fabrication in fused silica. At a moderate numerical aperture (NA = 0.5), high fidelity fabrication with a significant level of parallelisation is demonstrated at the working distance of the objective lens, corresponding to a depth in the glass of 2.4 mm. With a higher numerical aperture (NA = 0.75) objective lens, single point fabrication is demonstrated to a depth of 1 mm utilising the full NA, and deeper with reduced NA, while maintaining high repeatability. We present a complementary theoretical model that enables prediction of the effectiveness of SLM based correction for different aberration magnitudes.
Aberrations of Gradient-Index Lenses.
Matthews, A. L.
Available from UMI in association with The British Library. In this thesis, the primary aberrations of lenses with a radial focussing gradient-of-index are analysed. Such a lens has a refractive index profile which decreases continuously and radially outward from the optical axis, so that the surfaces of constant refractive index are circular cylinders which are coaxial with the optical axis. Current applications of these lenses include photocopiers, medical endoscopes, telecommunications systems and compact disc systems. Closed formulae for the primary wavefront aberrations for a gradient-index lens with curved or plane entry and exit faces are obtained from the differential equations of such a lens to assess the primary transverse ray aberrations that it introduces. Identical expressions are then obtained by using the difference in optical path length produced between two rays by the lens. This duplication of the derivations of the primary wavefront aberrations acts as a confirmation of the validity of the expressions. One advantage of these equations is that the contributions due to the primary spherical aberration, coma, astigmatism, field curvature and distortion can be assessed individually. A Fortran 77 program has been written to calculate each of these individual contributions, the total primary wavefront aberrations and the primary transverse ray aberrations. Further confirmation of the validity of the expressions is obtained by using this program to show that the coma and distortion were both zero for fully symmetric systems working at unit magnification. The program is then used to assess the primary wavefront aberrations for a gradient-index lens which is currently of interest to the telecommunications industry. These results are compared with values obtained using a finite ray-tracing program for the total wavefront aberrations. This shows that the primary wavefront aberrations are the completely dominant contribution to the total wavefront
Phase aberration effects in elastography.
Varghese, T; Bilgen, M; Ophir, J
2001-06-01
In sonography, phase aberration plays a role in the corruption of sonograms. Phase aberration does not have a significant impact on elastography, if statistically similar phase errors are present in both the pre- and postcompression signals. However, if the phase errors are present in only one of the pre- or postcompression signal pairs, the precision of the strain estimation process will be reduced. In some cases, increased phase errors may occur only in the postcompression signal due to changes in the tissue structure with the applied compression. Phase-aberration effects increase with applied strain and may be viewed as an image quality derating factor, much like frequency-dependent attenuation or undesired lateral tissue motion. In this paper, we present a theoretical and simulation study of the effects of phase aberration on the elastographic strain-estimation process, using the strain filter approach.
Catadioptric aberration correction in cathode lens microscopy
Tromp, R.M. [IBM T.J. Watson Research Center, PO Box 218, Yorktown Heights, NY 10598 (United States); Kamerlingh Onnes Laboratory, Leiden Institute of Physics, Niels Bohrweg 2, 2333 CA Leiden (Netherlands)
2015-04-15
In this paper I briefly review the use of electrostatic electron mirrors to correct the aberrations of the cathode lens objective lens in low energy electron microscope (LEEM) and photo electron emission microscope (PEEM) instruments. These catadioptric systems, combining electrostatic lens elements with a reflecting mirror, offer a compact solution, allowing simultaneous and independent correction of both spherical and chromatic aberrations. A comparison with catadioptric systems in light optics informs our understanding of the working principles behind aberration correction with electron mirrors, and may point the way to further improvements in the latter. With additional developments in detector technology, 1 nm spatial resolution in LEEM appears to be within reach. - Highlights: • The use of electron mirrors for aberration correction in LEEM/PEEM is reviewed. • A comparison is made with similar systems in light optics. • Conditions for 1 nm spatial resolution are discussed.
Prospects for electron beam aberration correction using sculpted phase masks
Shiloh, Roy, E-mail: royshilo@post.tau.ac.il; Remez, Roei; Arie, Ady
2016-04-15
Technological advances in fabrication methods allowed the microscopy community to take incremental steps towards perfecting the electron microscope, and magnetic lens design in particular. Still, state of the art aberration-corrected microscopes are yet 20–30 times shy of the theoretical electron diffraction limit. Moreover, these microscopes consume significant physical space and are very expensive. Here, we show how a thin, sculpted membrane is used as a phase-mask to induce specific aberrations into an electron beam probe in a standard high resolution TEM. In particular, we experimentally demonstrate beam splitting, two-fold astigmatism, three-fold astigmatism, and spherical aberration. - Highlights: • Thin membranes can be used as aberration correctors in electron columns. • We demonstrate tilt, twofold-, threefold-astigmatism, and spherical aberrations. • Experimental and physical-optics simulation results are in good agreement. • Advantages in cost, size, nonmagnetism, and nearly-arbitrary correction.
Correlations between corneal and total wavefront aberrations
Mrochen, Michael; Jankov, Mirko; Bueeler, Michael; Seiler, Theo
2002-06-01
Purpose: Corneal topography data expressed as corneal aberrations are frequently used to report corneal laser surgery results. However, the optical image quality at the retina depends on all optical elements of the eye such as the human lens. Thus, the aim of this study was to investigate the correlations between the corneal and total wavefront aberrations and to discuss the importance of corneal aberrations for representing corneal laser surgery results. Methods: Thirty three eyes of 22 myopic subjects were measured with a corneal topography system and a Tschernig-type wavefront analyzer after the pupils were dilated to at least 6 mm in diameter. All measurements were centered with respect to the line of sight. Corneal and total wavefront aberrations were calculated up to the 6th Zernike order in the same reference plane. Results: Statistically significant correlations (p corneal and total wavefront aberrations were found for the astigmatism (C3,C5) and all 3rd Zernike order coefficients such as coma (C7,C8). No statistically significant correlations were found for all 4th to 6th order Zernike coefficients except for the 5th order horizontal coma C18 (p equals 0.003). On average, all Zernike coefficients for the corneal aberrations were found to be larger compared to Zernike coefficients for the total wavefront aberrations. Conclusions: Corneal aberrations are only of limited use for representing the optical quality of the human eye after corneal laser surgery. This is due to the lack of correlation between corneal and total wavefront aberrations in most of the higher order aberrations. Besides this, the data present in this study yield towards an aberration balancing between corneal aberrations and the optical elements within the eye that reduces the aberration from the cornea by a certain degree. Consequently, ideal customized ablations have to take both, corneal and total wavefront aberrations, into consideration.
Abdu M
2014-08-01
Full Text Available Mustafa Abdu, Norhani Mohidin, Bariah Mohd-Ali Optometry and Vision Science Program, School of Healthcare Sciences, Faculty of Health Science, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, Malaysia Background: Rigid gas permeable (RGP and silicone hydrogel (SH contact lenses with specific designs are currently being used to improve visual function in patients with keratoconus. However, there are minimal data available comparing the effects of these lenses on visual function in patients with keratoconus. The objectives of this study were to compare visual acuity and contrast sensitivity using spectacles, RGP lenses, and SH lenses, and to evaluate the effects of RGP and SH lenses on higher-order aberrations and visual quality in eyes with keratoconus. The relationship between visual outcomes, aberration, and visual quality were also examined. Methods: This was a pilot study involving 13 eyes from nine subjects with keratoconus. Subjects were fitted with RGP and SH contact lenses. Visual acuity and contrast sensitivity were measured using Snellen and Pelli-Robson charts, respectively. Ocular aberrations and visual quality were measured using an OPD-Scan II device. All measurements were conducted before and after contact lens wear. Results: Significantly better visual acuity was obtained with RGP lenses than with spectacles or SH lenses (P<0.001. No significant difference in contrast sensitivity values was detected between RGP and SH lenses (P=0.06. Both SH and RGP lenses significantly reduced total ocular and higher-order aberrations (P<0.001 when compared with spectacles, but RGP lenses reduced trefoil, coma, and spherical aberrations more than SH lenses. No significant difference in astigmatic aberrations was found between RGP and SH lenses (P=0.12. Negative correlations were found between visual acuity and coma aberration and contrast sensitivity with higher-order aberrations and coma, trefoil, and astigmatic
Spherical coverage verification
Petkovic, Marko D; Latecki, Longin Jan
2011-01-01
We consider the problem of covering hypersphere by a set of spherical hypercaps. This sort of problem has numerous practical applications such as error correcting codes and reverse k-nearest neighbor problem. Using the reduction of non degenerated concave quadratic programming (QP) problem, we demonstrate that spherical coverage verification is NP hard. We propose a recursive algorithm based on reducing the problem to several lower dimension subproblems. We test the performance of the proposed algorithm on a number of generated constellations. We demonstrate that the proposed algorithm, in spite of its exponential worst-case complexity, is applicable in practice. In contrast, our results indicate that spherical coverage verification using QP solvers that utilize heuristics, due to numerical instability, may produce false positives.
Pulse compressor with aberration correction
Mankos, Marian [Electron Optica, Inc., Palo Alto, CA (United States)
2015-11-30
In this SBIR project, Electron Optica, Inc. (EOI) is developing an electron mirror-based pulse compressor attachment to new and retrofitted dynamic transmission electron microscopes (DTEMs) and ultrafast electron diffraction (UED) cameras for improving the temporal resolution of these instruments from the characteristic range of a few picoseconds to a few nanoseconds and beyond, into the sub-100 femtosecond range. The improvement will enable electron microscopes and diffraction cameras to better resolve the dynamics of reactions in the areas of solid state physics, chemistry, and biology. EOI’s pulse compressor technology utilizes the combination of electron mirror optics and a magnetic beam separator to compress the electron pulse. The design exploits the symmetry inherent in reversing the electron trajectory in the mirror in order to compress the temporally broadened beam. This system also simultaneously corrects the chromatic and spherical aberration of the objective lens for improved spatial resolution. This correction will be found valuable as the source size is reduced with laser-triggered point source emitters. With such emitters, it might be possible to significantly reduce the illuminated area and carry out ultrafast diffraction experiments from small regions of the sample, e.g. from individual grains or nanoparticles. During phase I, EOI drafted a set of candidate pulse compressor architectures and evaluated the trade-offs between temporal resolution and electron bunch size to achieve the optimum design for two particular applications with market potential: increasing the temporal and spatial resolution of UEDs, and increasing the temporal and spatial resolution of DTEMs. Specialized software packages that have been developed by MEBS, Ltd. were used to calculate the electron optical properties of the key pulse compressor components: namely, the magnetic prism, the electron mirror, and the electron lenses. In the final step, these results were folded
Hong, Mee Young; Hoh, Eunha; Kang, Brian; DeHamer, Rebecca; Kim, Jin Young; Lumibao, Jan
2017-08-01
Background: Epidemiologic, clinical, and experimental studies have suggested that fish oil (FO), a rich source of n-3 (ω-3) polyunsaturated fatty acids, protects against colon cancer. However, this message is confounded by the FDA's warning that the consumption of certain types of fish should be restricted because of contamination with persistent organic pollutants (POPs), such as polychlorinated biphenyls (PCBs) and organochlorine pesticides.Objective: We examined FO contaminated with POPs (PCBs, dichlorodiphenyltrichloroethane, and chlordane) compared with unmodified FO on the risk factors of colon cancer development.Methods: Male Sprague-Dawley rats aged 28 d (n = 30) were allocated into 3 groups and fed 15% corn oil (CO), FO, or POP-contaminated FO for 9 wk with a subcutaneous injection of colon carcinogen azoxymethane at weeks 3 and 4. Colonic aberrant crypt foci (ACF) and cell proliferation were enumerated, and the gene expression of inflammation, antioxidant enzymes, and repair enzymes were determined with the use of real-time quantitative polymerase chain reaction analysis.Results: FO-fed rats had a lower number of ACF (mean ± SE: 29 ± 4.0 for FO compared with 53 ± 8.4 for CO and 44 ± 4.6 for POP FO) and higher-multiplicity ACF than the CO and POP FO groups (4.7 ± 0.9 for FO compared with 11 ± 1.5 for CO and 9.6 ± 1.8 for POP FO) (P < 0.05). FO feeding lowered the proliferation index compared with the CO and POP FO feeding groups (18% ± 1.1% for FO compared with 25% ± 1.6% for CO and 23% ± 0.7% for POP FO) (P = 0.009). Superoxide dismutase [2.4 ± 0.6 relative quantification (RQ) for FO compared with 1.2 ± 0.2 RQ for CO and 1.3 ± 0.3 RQ for POP FO] and catalase gene expression (10 ± 2.0 RQ for FO compared with 5.4 ± 1.1 RQ for CO and 6.6 ± 1.5 RQ for POP FO) were higher in the FO group than in the CO and POP FO groups (P < 0.05). There were no differences between CO and POP FO on the variables.Conclusion: These results indicate that POPs in
Chromatic Aberration Correction for Atomic Resolution TEM Imaging from 20 to 80 kV
Linck, Martin; Hartel, Peter; Uhlemann, Stephan; Kahl, Frank; Müller, Heiko; Zach, Joachim; Haider, Max.; Niestadt, Marcel; Bischoff, Maarten; Biskupek, Johannes; Lee, Zhongbo; Lehnert, Tibor; Börrnert, Felix; Rose, Harald; Kaiser, Ute
2016-08-01
Atomic resolution in transmission electron microscopy of thin and light-atom materials requires a rigorous reduction of the beam energy to reduce knockon damage. However, at the same time, the chromatic aberration deteriorates the resolution of the TEM image dramatically. Within the framework of the SALVE project, we introduce a newly developed Cc/Cs corrector that is capable of correcting both the chromatic and the spherical aberration in the range of accelerating voltages from 20 to 80 kV. The corrector allows correcting axial aberrations up to fifth order as well as the dominating off-axial aberrations. Over the entire voltage range, optimum phase-contrast imaging conditions for weak signals from light atoms can be adjusted for an optical aperture of at least 55 mrad. The information transfer within this aperture is no longer limited by chromatic aberrations. We demonstrate the performance of the microscope using the examples of 30 kV phase-contrast TEM images of graphene and molybdenum disulfide, showing unprecedented contrast and resolution that matches image calculations.
Chromatic Aberration Correction for Atomic Resolution TEM Imaging from 20 to 80 kV.
Linck, Martin; Hartel, Peter; Uhlemann, Stephan; Kahl, Frank; Müller, Heiko; Zach, Joachim; Haider, Max; Niestadt, Marcel; Bischoff, Maarten; Biskupek, Johannes; Lee, Zhongbo; Lehnert, Tibor; Börrnert, Felix; Rose, Harald; Kaiser, Ute
2016-08-12
Atomic resolution in transmission electron microscopy of thin and light-atom materials requires a rigorous reduction of the beam energy to reduce knockon damage. However, at the same time, the chromatic aberration deteriorates the resolution of the TEM image dramatically. Within the framework of the SALVE project, we introduce a newly developed C_{c}/C_{s} corrector that is capable of correcting both the chromatic and the spherical aberration in the range of accelerating voltages from 20 to 80 kV. The corrector allows correcting axial aberrations up to fifth order as well as the dominating off-axial aberrations. Over the entire voltage range, optimum phase-contrast imaging conditions for weak signals from light atoms can be adjusted for an optical aperture of at least 55 mrad. The information transfer within this aperture is no longer limited by chromatic aberrations. We demonstrate the performance of the microscope using the examples of 30 kV phase-contrast TEM images of graphene and molybdenum disulfide, showing unprecedented contrast and resolution that matches image calculations.
Aberration measurement from specific photolithographic images: a different approach.
Nomura, H; Tawarayama, K; Kohno, T
2000-03-01
Techniques for measurement of higher-order aberrations of a projection optical system in photolithographic exposure tools have been established. Even-type and odd-type aberrations are independently obtained from printed grating patterns on a wafer by three-beam interference under highly coherent illumination. Even-type aberrations, i.e., spherical aberration and astigmatism, are derived from the best focus positions of vertical, horizontal, and oblique grating patterns by an optical microscope. Odd-type aberrations, i.e., coma and three-foil, are obtained by detection of relative shifts of a fine grating pattern to a large pattern by an overlay inspection tool. Quantitative diagnosis of lens aberrations with a krypton fluoride (KrF) excimer laser scanner is demonstrated.
Limits of spherical blur determined with an adaptive optics mirror.
Atchison, David A; Guo, Huanqing; Fisher, Scott W
2009-05-01
We extended an earlier study (Vision Research, 45, 1967-1974, 2005) in which we investigated limits at which induced blur of letter targets becomes noticeable, troublesome and objectionable. Here we used a deformable adaptive optics mirror to vary spherical defocus for conditions of a white background with correction of astigmatism; a white background with reduction of all aberrations other than defocus; and a monochromatic background with reduction of all aberrations other than defocus. We used seven cyclopleged subjects, lines of three high-contrast letters as targets, 3-6 mm artificial pupils, and 0.1-0.6 logMAR letter sizes. Subjects used a method of adjustment to control the defocus component of the mirror to set the 'just noticeable', 'just troublesome' and 'just objectionable' defocus levels. For the white-no adaptive optics condition combined with 0.1 logMAR letter size, mean 'noticeable' blur limits were +/-0.30, +/-0.24 and +/-0.23 D at 3, 4 and 6 mm pupils, respectively. White-adaptive optics and monochromatic-adaptive optics conditions reduced blur limits by 8% and 20%, respectively. Increasing pupil size from 3-6 mm decreased blur limits by 29%, and increasing letter size increased blur limits by 79%. Ratios of troublesome to noticeable, and of objectionable to noticeable, blur limits were 1.9 and 2.7 times, respectively. The study shows that the deformable mirror can be used to vary defocus in vision experiments. Overall, the results of noticeable, troublesome and objectionable blur agreed well with those of the previous study. Attempting to reduce higher-order aberrations or chromatic aberrations, reduced blur limits to only a small extent.
Age-related changes in ocular aberrations with accommodation.
Radhakrishnan, Hema; Charman, W Neil
2007-05-30
This study investigates the changes in aberrations with monocular accommodation as a function of age. Second-order and higher order wavefront aberrations and pupil size were measured as a function of accommodation demand over the range of 0-4 D in the right eyes of 47 normal subjects with ages between 17 and 56 years. Higher order ocular Zernike aberrations were analyzed for the natural pupil size in terms of their equivalent defocus and were also determined for fixed pupil diameters of 4.5 mm in the unaccommodated eyes and 2.5 mm in the accommodating eyes. With relaxed accommodation (0 D accommodation stimulus), the major change with age was in the value of C4(0), which increased in positive value over the age range studied, although the total higher order RMS wavefront aberration did not increase. When the data were analyzed for natural pupils, spherical aberration was again found to change systematically in the positive direction with age. The equivalent defocus of total higher order RMS error for natural pupils showed no significant correlation with age (p > .05). With active accommodation, spherical aberration was found to decrease and become negative as the accommodative response increased in the younger subjects (40 years), the spherical aberration showed only small changes, some of which were positive, within the limited amplitude of accommodation available. Other higher order aberrations and the RMS of higher order aberrations did not appear to change systematically with accommodation, except in the oldest subjects. The change with age in the relationship between aberration and accommodation is interpreted in terms of the changing gradients of refractive index and surface curvatures of the crystalline lens.
Sensing Phase Aberrations behind Lyot Coronagraphs
Sivaramakrishnan, Anand; Soummer, Rémi; Pueyo, Laurent; Wallace, J. Kent; Shao, Michael
2008-11-01
Direct detection of young extrasolar planets orbiting nearby stars can be accomplished from the ground with extreme adaptive optics and coronagraphy in the near-infrared, as long as this combination can provide an image with a dynamic range of 107 after the data are processed. Slowly varying speckles due to residual phase aberrations that are not measured by the primary wave-front sensor are the primary obstacle to achieving such a dynamic range. In particular, non-common optical path aberrations occurring between the wave-front sensor and the coronagraphic occulting spot degrade performance the most. We analyze the passage of both low and high spatial frequency phase ripples, as well as low-order Zernike aberrations, through an apodized pupil Lyot coronagraph in order to demonstrate the way coronagraphic filtering affects various aberrations. We derive the coronagraphically induced cutoff frequency of the filtering and estimate coronagraphic contrast losses due to low-order Zernike aberrations: tilt, astigmatism, defocus, coma, and spherical aberration. Such slowly varying path errors can be measured behind a coronagraph and corrected by a slowly updated optical path delay precompensation or offset asserted on the wave front by the adaptive optics (AO) system. We suggest ways of measuring and correcting all but the lowest spatial frequency aberrations using Lyot plane wave-front data, in spite of the complex interaction between the coronagraph and those mid-spatial frequency aberrations that cause image plane speckles near the coronagraphic focal plane mask occulter's edge. This investigation provides guidance for next-generation coronagraphic instruments currently under construction.
Barrett, Todd K.; Sandler, David G.
1993-01-01
An artificial-neural-network method, first developed for the measurement and control of atmospheric phase distortion, using stellar images, was used to estimate the optical aberration of the Hubble Space Telescope. A total of 26 estimates of distortion was obtained from 23 stellar images acquired at several secondary-mirror axial positions. The results were expressed as coefficients of eight orthogonal Zernike polynomials: focus through third-order spherical. For all modes other than spherical the measured aberration was small. The average spherical aberration of the estimates was -0.299 micron rms, which is in good agreement with predictions obtained when iterative phase-retrieval algorithms were used.
Conformal optical design with combination of static and dynamic aberration corrections
Li Yan; Li Lin; Huang Yi-Fan; Liu Jia-Guo
2009-01-01
Conformal domes that are shaped to meet aerodynamic requirements can increase range and speed for the host platform. Because these domes typically deviate greatly from spherical surface descriptions, a variety of aberrations are induced which vary with the field-of-regard (FOR) angle. A system for correcting optical aberrations created by a conformal dome has an outer surface and an inner surface. Optimizing the inner surface is regard as static aberration correction. A deformable mirror is placed at the position of the secondary mirror in the two-mirror all reflective imaging system, which is the dynamic aberration correction. An ellipsoidal MgF2 conformal dome with a fineness ratio of 1.0 is designed as an example. The FOR angle is 00°-30°, and the design wavelength is 4 μm. After the optimization at 7zoom positions by using the design tools Code V, the root-mean-square (RMS) spot size is reduced to approximately 0.99 to 1.48 times the diffraction limit. The design results show that the performances of the conformal optical systems can be greatly improved by the combination of the static correction and the dynamic correction.
Aberration Corrected Emittance Exchange
Nanni, Emilio A
2015-01-01
Full exploitation of emittance exchange (EEX) requires aberration-free performance of a complex imaging system including active radio-frequency (RF) elements which can add temporal distortions. We investigate the performance of an EEX line where the exchange occurs between two dimensions with normalized emittances which differ by orders of magnitude. The transverse emittance is exchanged into the longitudinal dimension using a double dog-leg emittance exchange setup with a 5 cell RF deflector cavity. Aberration correction is performed on the four most dominant aberrations. These include temporal aberrations that are corrected with higher order magnetic optical elements located where longitudinal and transverse emittance are coupled. We demonstrate aberration-free performance of emittances differing by 4 orders of magnitude, i.e. an initial transverse emittance of $\\epsilon_x=1$ pm-rad is exchanged with a longitudinal emittance of $\\epsilon_z=10$ nm-rad.
del Rey, M; O'Hagan, K; Dellett, M; Aibar, S; Colyer, H A A; Alonso, M E; Díez-Campelo, M; Armstrong, R N; Sharpe, D J; Gutiérrez, N C; García, J L; De Las Rivas, J; Mills, K I; Hernández-Rivas, J M
2013-03-01
Gene expression profiling signatures may be used to classify the subtypes of Myelodysplastic syndrome (MDS) patients. However, there are few reports on the global methylation status in MDS. The integration of genome-wide epigenetic regulatory marks with gene expression levels would provide additional information regarding the biological differences between MDS and healthy controls. Gene expression and methylation status were measured using high-density microarrays. A total of 552 differentially methylated CpG loci were identified as being present in low-risk MDS; hypermethylated genes were more frequent than hypomethylated genes. In addition, mRNA expression profiling identified 1005 genes that significantly differed between low-risk MDS and the control group. Integrative analysis of the epigenetic and expression profiles revealed that 66.7% of the hypermethylated genes were underexpressed in low-risk MDS cases. Gene network analysis revealed molecular mechanisms associated with the low-risk MDS group, including altered apoptosis pathways. The two key apoptotic genes BCL2 and ETS1 were identified as silenced genes. In addition, the immune response and micro RNA biogenesis were affected by the hypermethylation and underexpression of IL27RA and DICER1. Our integrative analysis revealed that aberrant epigenetic regulation is a hallmark of low-risk MDS patients and could have a central role in these diseases.
Repeatability of peripheral aberrations in young emmetropes.
Baskaran, Karthikeyan; Theagarayan, Baskar; Carius, Staffan; Gustafsson, Jörgen
2010-10-01
The purpose of this study is to assess the intrasession repeatability of ocular aberration measurements in the peripheral visual field with a commercially available Shack-Hartmann aberrometer (complete ophthalmic analysis system-high definition-vision research). The higher-order off-axis aberrations data in young healthy emmetropic eyes are also reported. The aberrations of the right eye of 18 emmetropes were measured using an aberrometer with an open field of view that allows peripheral measurements. Five repeated measures of ocular aberrations were obtained and assessed in steps of 10° out to ±40° in the horizontal visual field (nasal + and temporal -) and -20° in the inferior visual field. The coefficient of repeatability, coefficient of variation, and the intraclass correlation coefficient were calculated as a measure of intrasession repeatability. In all eccentric angles, the repeatability of the third- and fourth-order aberrations was better than the fifth and sixth order aberrations. The coefficient of variation was coefficient was >0.90 for the third and fourth order but reduced gradually for higher orders. There was no statistical significant difference in variance of total higher-order root mean square between on- and off-axis measurements (p > 0.05). The aberration data in this group of young emmetropes showed that the horizontal coma (C(3)(1)) was most positive at 40° in the temporal field, decreasing linearly toward negative values with increasing off-axis angle into the nasal field, whereas all other higher-order aberrations showed little or no change. The complete ophthalmic analysis system-high definition-vision research provides fast, repeatable, and valid peripheral aberration measurements and can be used efficiently to measure off-axis aberrations in the peripheral visual field.
Efficient Fluorescence Collection from Trapped Ion Qubits with an Integrated Spherical Mirror
Shu, G; Dietrich, M R; Blinov, B B
2009-01-01
Efficient collection of fluorescence from trapped ion qubits is crucial for qubit state detection and in generating ion-photon and remote ion entanglement. In a typical setup, only a few per cent of ion fluorescence is intercepted by the aperture of the imaging optics. We employ a simple metallic spherical mirror integrated with a linear Paul ion trap to achieve photon collection efficiency of at least 10% from a single Ba$^+$ ion qubit. An aspheric corrector is used to largely reduce the aberrations caused by the mirror and achieve high image quality.
Image-based EUVL aberration metrology
Fenger, Germain Louis
A significant factor in the degradation of nanolithographic image fidelity is optical wavefront aberration. As resolution of nanolithography systems increases, effects of wavefront aberrations on aerial image become more influential. The tolerance of such aberrations is governed by the requirements of features that are being imaged, often requiring lenses that can be corrected with a high degree of accuracy and precision. Resolution of lithographic systems is driven by scaling wavelength down and numerical aperture (NA) up. However, aberrations are also affected from the changes in wavelength and NA. Reduction in wavelength or increase in NA result in greater impact of aberrations, where the latter shows a quadratic dependence. Current demands in semiconductor manufacturing are constantly pushing lithographic systems to operate at the diffraction limit; hence, prompting a need to reduce all degrading effects on image properties to achieve maximum performance. Therefore, the need for highly accurate in-situ aberration measurement and correction is paramount. In this work, an approach has been developed in which several targets including phase wheel, phase disk, phase edges, and binary structures are used to generate optical images to detect and monitor aberrations in extreme ultraviolet (EUV) lithographic systems. The benefit of using printed patterns as opposed to other techniques is that the lithography system is tested under standard operating conditions. Mathematical models in conjunction with iterative lithographic simulations are used to determine pupil phase wavefront errors and describe them as combinations of Zernike polynomials.
Relativistic spherical plasma waves
Bulanov, S. S.; Maksimchuk, A.; Schroeder, C. B.; Zhidkov, A. G.; Esarey, E.; Leemans, W. P.
2012-02-01
Tightly focused laser pulses that diverge or converge in underdense plasma can generate wake waves, having local structures that are spherical waves. Here we study theoretically and numerically relativistic spherical wake waves and their properties, including wave breaking.
Atom lens without chromatic aberrations
Efremov, Maxim A; Schleich, Wolfgang P
2012-01-01
We propose a lens for atoms with reduced chromatic aberrations and calculate its focal length and spot size. In our scheme a two-level atom interacts with a near-resonant standing light wave formed by two running waves of slightly different wave vectors, and a far-detuned running wave propagating perpendicular to the standing wave. We show that within the Raman-Nath approximation and for an adiabatically slow atom-light interaction, the phase acquired by the atom is independent of the incident atomic velocity.
Aberration correction past and present.
Hawkes, P W
2009-09-28
Electron lenses are extremely poor: if glass lenses were as bad, we should see as well with the naked eye as with a microscope! The demonstration by Otto Scherzer in 1936 that skillful lens design could never eliminate the spherical and chromatic aberrations of rotationally symmetric electron lenses was therefore most unwelcome and the other great electron optician of those years, Walter Glaser, never ceased striving to find a loophole in Scherzer's proof. In the wartime and early post-war years, the first proposals for correcting C(s) were made and in 1947, in a second milestone paper, Scherzer listed these and other ways of correcting lenses; soon after, Dennis Gabor invented holography for the same purpose. These approaches will be briefly summarized and the work that led to the successful implementation of quadupole-octopole and sextupole correctors in the 1990 s will be analysed. In conclusion, the elegant role of image algebra in describing image formation and processing and, above all, in developing new methods will be mentioned.
Contribution of the cornea and internal surfaces to the change of ocular aberrations with age
Artal, Pablo; Berrio, Esther; Guirao, Antonio; Piers, Patricia
2002-01-01
We studied the age dependence of the relative contributions of the aberrations of the cornea and the internal ocular surfaces to the total aberrations of the eye. We measured the wave-front aberration of the eye with a Hartmann-Shack sensor and the aberrations of the anterior corneal surface from the elevation data provided by a corneal topography system. The aberrations of the internal surfaces were obtained by direct subtraction of the ocular and corneal wave-front data. Measurements were obtained for normal healthy subjects with ages ranging from 20 to 70 years. The magnitude of the RMS wave-front aberration (excluding defocus and astigmatism) of the eye increases more than threefold within the age range considered. However, the aberrations of the anterior corneal surface increase only slightly with age. In most of the younger subjects, total ocular aberrations are lower than corneal aberrations, while in the older subjects the reverse condition occurs. Astigmatism, coma, and spherical aberration of the cornea are larger than in the complete eye in younger subjects, whereas the contrary is true for the older subjects. The internal ocular surfaces compensate, at least in part, for the aberrations associated with the cornea in most younger subjects, but this compensation is not present in the older subjects. These results suggest that the degradation of the ocular optics with age can be explained largely by the loss of the balance between the aberrations of the corneal and the internal surfaces.
Yasemin Kaya
2014-01-01
Full Text Available The facial nerve is the most frequently damaged nerve in head and neck trauma. Patients undergoing facial nerve reconstruction often complain about disturbing abnormal synkinetic movements of the facial muscles (mass movements, synkinesis which are thought to result from misguided collateral branching of regenerating motor axons and reinnervation of inappropriate muscles. Here, we examined whether use of an aorta Y-tube conduit during reconstructive surgery after facial nerve injury reduces synkinesis of orbicularis oris (blink reflex and vibrissal (whisking musculature. The abdominal aorta plus its bifurcation was harvested (N = 12 for Y-tube conduits. Animal groups comprised intact animals (Group 1, those receiving hypoglossal-facial nerve end-to-end coaptation alone (HFA; Group 2, and those receiving hypoglossal-facial nerve reconstruction using a Y-tube (HFA-Y-tube, Group 3. Videotape motion analysis at 4 months showed that HFA-Y-tube group showed a reduced synkinesis of eyelid and whisker movements compared to HFA alone.
Zheng, C L; Etheridge, J
2013-02-01
A simple method is described for the accurate and precise measurement of chromatic aberration under electron-optical conditions pertinent to scanning transmission electron microscopy (STEM) and scanning confocal electron microscopy (SCEM). The method requires only the measurement of distances in a coherent CBED pattern and knowledge of the electron wavelength and the lattice spacing of a calibration specimen. The chromatic aberration of a spherical-aberration corrected 300 kV thermal field emission TEM is measured in STEM and SCEM operating modes and under different condenser lens settings. The effect of the measured chromatic aberrations on the 3 dimensional intensity distribution of the electron probe is also considered.
Florian; T; A; Kretz; Tamer; Tandogan; Ramin; Khoramnia; Gerd; U; Auffarth
2015-01-01
·AIM: To evaluate the quality of vision in respect to high order aberrations and straylight perception after implantation of an aspheric, aberration correcting,monofocal intraocular lens(IOL).·METHODS: Twenty-one patients(34 eyes) aged 50 to83 y underwent cataract surgery with implantation of an aspheric, aberration correcting IOL(Tecnis ZCB00,Abbott Medical Optics). Three months after surgery they were examined for uncorrected(UDVA) and corrected distance visual acuity(CDVA), contrast sensitivity(CS)under photopic and mesopic conditions with and without glare source, ocular high order aberrations(HOA, Zywave II) and retinal straylight(C-Quant).· RESULTS: Postoperatively, patients achieved a postoperative CDVA of 0.0 log MAR or better in 97.1% of eyes. Mean values of high order abberations were +0.02±0.27(primary coma components) and-0.04 ±0.16(spherical aberration term). Straylight values of the C-Quant were 1.35±0.44 log which is within normal range of age matched phakic patients. The CS measurements under mesopic and photopic conditions in combination with and without glare did not show any statistical significance in the patient group observed(P ≥0.28).· CONCLUSION: The implantation of an aspherical aberration correcting monofocal IOL after cataractsurgery resulted in very low residual higher order aberration(HOA) and normal straylight.
Pupil-phase optimization for extended-focus, aberration-corrected imaging systems
Prasad, Sudhakar; Pauca, V. Paul; Plemmons, Robert J.; Torgersen, Todd C.; van der Gracht, Joseph
2004-10-01
The insertion of a suitably designed phase plate in the pupil of an imaging system makes it possible to encode the depth dimension of an extended three-dimensional scene by means of an approximately shift-invariant PSF. The so-encoded image can then be deblurred digitally by standard image recovery algorithms to recoup the depth dependent detail of the original scene. A similar strategy can be adopted to compensate for certain monochromatic aberrations of the system. Here we consider two approaches to optimizing the design of the phase plate that are somewhat complementary - one based on Fisher information that attempts to reduce the sensitivity of the phase encoded image to misfocus and the other based on a minimax formulation of the sum of singular values of the system blurring matrix that attempts to maximize the resolution in the final image. Comparisons of these two optimization approaches are discussed. Our preliminary demonstration of the use of such pupil-phase engineering to successfully control system aberrations, particularly spherical aberration, is also presented.
Polarization Aberrations of Optical Coatings
Jota, Thiago
This work does not limit itself to its title and touches on a number of related topics beyond it. Starting with the title, Polarization Aberrations of Optical Coatings, the immediate question that comes to mind is: what coatings? All coatings? Not all coatings, but just enough that a third person could take this information and apply it anywhere: to all coatings. The computational work-flow required to break-down the aberrations caused by polarizing events (3D vector forms of reflection and refraction) in dielectric and absorbing materials and for thick and thin films is presented. Therefore, it is completely general and of interest to the wide optics community. The example system is a Ritchey-Chretien telescope. It looks very similar to a Cassegrain, but it is not. It has hyperbolic surfaces, which allows for more optical aberration corrections. A few modern systems that use this configuration are the Hubble Space Telescope and the Keck telescopes. This particular system is a follow-up on this publication, where an example Cassegrain with aluminum coatings is characterized, and I was asked to simply evaluate it at another wavelength. To my surprise, I found a number of issues which lead me to write a completely new, one-of-its-kind 3D polarization ray-tracing code. It can do purely geometrical ray-tracing with add-on the polarization analysis capability, and more importantly: it keeps your data at your fingertips while offering all the outstanding facilities of Mathematica. The ray-tracing code and its extensive library, which can do several advanced computations, is documented in the appendix. The coatings of the Ritchey-Chretien induce a number of aberrations, primarily, but not limited to: tilt, defocus, astigmatism, and coma. I found those forms to exist in both aluminum and with a reflectance-enhancing dielectric quarter-wave multilayer coating over aluminum. The thickness of the film stack varies as function of position to present a quarter-wave of optical
Double aberration correction in a low-energy electron microscope
Schmidt, Th., E-mail: schmidtt@fhi-berlin.mpg.de [Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 6-8, D-14195 Berlin (Germany); Universitaet Wuerzburg, Experimentelle Physik II, Am Hubland, D-97074 Wuerzburg (Germany); Marchetto, H.; Levesque, P.L. [Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 6-8, D-14195 Berlin (Germany); Groh, U.; Maier, F. [Universitaet Wuerzburg, Experimentelle Physik II, Am Hubland, D-97074 Wuerzburg (Germany); Preikszas, D. [Technische Universitaet Darmstadt, Angewandte Physik, Hochschulstrasse 6, D-64289 Darmstadt (Germany); Carl Zeiss NTS GmbH, Carl-Zeiss-Strasse 56, D-73447 Oberkochen (Germany); Hartel, P.; Spehr, R. [Technische Universitaet Darmstadt, Angewandte Physik, Hochschulstrasse 6, D-64289 Darmstadt (Germany); Lilienkamp, G. [Technische Universitaet Clausthal, Physikalisches Institut, Leibnizstrasse 4, D-38678 (Germany); Engel, W. [Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 6-8, D-14195 Berlin (Germany); Fink, R. [Universitaet Erlangen-Nuernberg, Physikalische Chemie II, Egerlandstrasse 3, D-91058 Erlangen (Germany); Bauer, E. [Technische Universitaet Clausthal, Physikalisches Institut, Leibnizstrasse 4, D-38678 (Germany); Arizona State University, Department of Physics, Tempe, AZ 85287 (United States); Rose, H. [Technische Universitaet Darmstadt, Angewandte Physik, Hochschulstrasse 6, D-64289 Darmstadt (Germany); Umbach, E. [Universitaet Wuerzburg, Experimentelle Physik II, Am Hubland, D-97074 Wuerzburg (Germany); Freund, H.-J. [Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 6-8, D-14195 Berlin (Germany)
2010-10-15
The lateral resolution of a surface sensitive low-energy electron microscope (LEEM) has been improved below 4 nm for the first time. This breakthrough has only been possible by simultaneously correcting the unavoidable spherical and chromatic aberrations of the lens system. We present an experimental criterion to quantify the aberration correction and to optimize the electron optical system. The obtained lateral resolution of 2.6 nm in LEEM enables the first surface sensitive, electron microscopic observation of the herringbone reconstruction on the Au(1 1 1) surface.
Mohammad; Taher; Rajabi; Sara; Korouji; Mahgol; Farjadnia; Mohammad; Naderan; Mohammad; Bagher; Rajabi; Bahram; Khosravi; Seyed; Mehdi; Tabatabaie
2015-01-01
AIM: To compare higher order aberrations in two aspherical intraocular lenses(IOLs): Akreos advanced optics(AO) and Dr. Schmidt Microcrystalline 6125 aspheric anterior surface(MC6125AS) with each other. METHODS: Forty eyes of 39 patients underwent phacoemulsification and Akreos AO and MC6125 AS were implanted in their eyes in a random manner. Three months post-operatively, higher order aberrations including spherical aberration, coma aberration, and total aberrations were measured and compared.RESULTS: The total aberration was 0.24±0.17 in eyes with Dr. Schmidt and 0.20 ±0.01 in eyes with Akreos AO(P =0.361). The mean of coma aberration was 0.17 ±0.21 and 0.09 ±0.86 in Dr. Schmidt and Akreos lenses,respectively(P =0.825). Total spherical aberration was almost the same in both groups(mean: 0.05, P =0.933).Best corrected visual acuity in Akreos AO(0.10±0.68) and Dr. Schmidt(0.09±0.67) did not differ significantly(P =0.700). CONCLUSION: There is no statistically significant difference in the higher order aberrations between these two aspherical lenses.
Hansen, Anja; Géneaux, Romain; Günther, Axel; Krüger, Alexander; Ripken, Tammo
2013-06-01
In femtosecond laser ophthalmic surgery tissue dissection is achieved by photodisruption based on laser induced optical breakdown. In order to minimize collateral damage to the eye laser surgery systems should be optimized towards the lowest possible energy threshold for photodisruption. However, optical aberrations of the eye and the laser system distort the irradiance distribution from an ideal profile which causes a rise in breakdown threshold energy even if great care is taken to minimize the aberrations of the system during design and alignment. In this study we used a water chamber with an achromatic focusing lens and a scattering sample as eye model and determined breakdown threshold in single pulse plasma transmission loss measurements. Due to aberrations, the precise lower limit for breakdown threshold irradiance in water is still unknown. Here we show that the threshold energy can be substantially reduced when using adaptive optics to improve the irradiance distribution by spatial beam shaping. We found that for initial aberrations with a root-mean-square wave front error of only one third of the wavelength the threshold energy can still be reduced by a factor of three if the aberrations are corrected to the diffraction limit by adaptive optics. The transmitted pulse energy is reduced by 17% at twice the threshold. Furthermore, the gas bubble motions after breakdown for pulse trains at 5 kilohertz repetition rate show a more transverse direction in the corrected case compared to the more spherical distribution without correction. Our results demonstrate how both applied and transmitted pulse energy could be reduced during ophthalmic surgery when correcting for aberrations. As a consequence, the risk of retinal damage by transmitted energy and the extent of collateral damage to the focal volume could be minimized accordingly when using adaptive optics in fs-laser surgery.
Xiao, Rijin; Carter, Julie A; Linz, Amanda L; Ferguson, Matthew; Badger, Thomas M; Simmen, Frank A
2006-09-01
We evaluated partially hydrolyzed whey protein (WPH) for inhibitory effects on the development of colon aberrant crypt foci (ACF) and intestinal tumors in azoxymethane (AOM)-treated rats. Pregnant Sprague-Dawley rats and their progeny were fed AIN-93G diets containing casein (CAS, control diet) or WPH as the sole protein source. Colons and small intestines from the male progeny were obtained at 6, 12, 20 and 23 weeks after AOM treatment. At 6 and 23 weeks, post-AOM, WPH-fed rats had fewer ACF than did CAS-fed rats. Intestinal tumors were most frequent at 23 weeks, post-AOM. At this time point, differences in colon tumor incidence with diet were not observed; however, WPH-fed rats had fewer tumors in the small intestine (7.6% vs. 26% incidence, P=.004). Partially hydrolized whey protein suppressed circulating C-peptide concentration (a stable indicator of steady-state insulin secretion) at all four time points relative to the corresponding CAS-fed animals. The relative mRNA abundance for the insulin-responsive, transcription factor gene, SREBP-1c, was reduced by WPH in the duodenum but not colon. Results indicate potential physiological linkages of dietary protein type with circulating C-peptide (and by inference insulin), local expression of SREBP-1c gene and propensity for small intestine tumorigenesis.
Latifah, Saiful Yazan; Armania, Nurdin; Tze, Tan Hern; Azhar, Yaacob; Nordiana, Abdul Hadi; Norazalina, Saad; Hairuszah, Ithnin; Saidi, Moin; Maznah, Ismail
2010-03-26
Chemoprevention has become an important area in cancer research due to the failure of current therapeutic modalities. Epidemiological and preclinical studies have demonstrated that nutrition plays a vital role in the etiology of cancer. This study was conducted to determine the chemopreventive effects of germinated brown rice (GBR) in rats induced with colon cancer. GBR is brown rice that has been claimed to be richer in nutrients compared to the common white rice. The male Sprague Dawley rats (6 weeks of age) were randomly divided into 5 groups: (G1) positive control (with colon cancer, unfed with GBR), (G2) fed with 2.5 g/kg of GBR (GBR (g)/weight of rat (kg)), (G3) fed with 5 g/kg of GBR, (G4) fed with 10 g/kg of GBR and (G5) negative control (without colon cancer, unfed with GBR). GBR was administered orally once daily via gavage after injection of 15 mg/kg of body weight of azoxymethane (AOM) once a week for two weeks, intraperitonially. After 8 weeks of treatment, animals were sacrificed and colons were removed. Colonic aberrant crypt foci (ACF) were evaluated histopathologically. Total number of ACF and AC, and multicrypt of ACF, and the expression of beta-catenin and COX-2 reduced significantly (p cancer.
Tunable liquid crystal cylindrical micro-optical array for aberration compensation.
Algorri, J F; Urruchi, V; Bennis, N; Sánchez-Pena, J M; Otón, J M
2015-06-01
A tunable aberration compensation device for rectangular micro-optical systems is proposed and demonstrated. This device, which is based in nematic liquid crystal and a micro-electrode structure, forms gradients in the index of refraction as a function of voltage. We have developed a fringe skeletonizing application in order to extract the 3D wavefront from an interference pattern. This software tool obtains the optical aberrations using Chebyshev polynomials. By using phase shifted electrical signals the aberrations can be controlled independently. A complete independent control over the spherical and coma aberration has been demonstrated. Also, an independent control over the astigmatism aberration has been demonstrated in a broad range. This device has promising applications where aberration compensation is required. The independent compensation achieved for some coefficients, such as astigmatism for example, is more than 2.4 waves.
Ray and Wave Aberrations Revisited: A Huygens Construction yields Exact Relations
Restrepo, John; Ihrke, Ivo
2015-01-01
The optical aberrations of a system can be described in terms of the wave aberrations, defined as the departure from the ideal spherical wavefront; or the ray aberrations, which are in turn the deviations from the paraxial ray intersection measured in the image plane. The classical connection between the two descriptions is an approximation, the error of which has, so far, not been quantified analytically. We derive exact analytical equations for computing the wavefront surface, the aberrated ray directions, and the transverse ray aberrations in terms of the wave aberrations (OPD) and the reference sphere. We introduce precise conditions for a function to be an OPD function, show that every such function has an associated wavefront, and study the error arising from the classical approximation. We establish strict conditions for the error to be small. We illustrate our results with numerical simulations. Our results show that large numerical apertures and high-frequency OPD functions yield larger approximation...
Ray and wave aberrations revisited: a Huygens-like construction yields exact relations.
Restrepo, John; Stoerck, Pawel J; Ihrke, Ivo
2016-02-01
The aberrations of an optical system can be described in terms of the wave aberrations, defined as the departure from the ideal spherical wavefront; or the ray aberrations, which are in turn the deviations from the paraxial ray intersections measured in the image plane. The classical connection between the two descriptions is an approximation, the error of which has, to our knowledge, so far not been quantified analytically. We derive exact analytical equations for computing the wavefront surface, the aberrated ray directions, and the transverse ray aberrations in terms of the wave aberrations (OPD) and the reference sphere. We introduce precise conditions for a function to be an OPD function, show that every such function has an associated wavefront, and study the error arising from the classical approximation. We establish strict conditions for the error to be small. We illustrate our results with numerical simulations. Our results show that large numerical apertures and OPD functions with strong gradients yield larger approximation errors.
Statistical mechanics of thin spherical shells
Kosmrlj, Andrej
2016-01-01
We explore how thermal fluctuations affect the mechanics of thin amorphous spherical shells. In flat membranes with a shear modulus, thermal fluctuations increase the bending rigidity and reduce the in-plane elastic moduli in a scale-dependent fashion. This is still true for spherical shells. However, the additional coupling between the shell curvature, the local in-plane stretching modes and the local out-of-plane undulations, leads to novel phenomena. In spherical shells thermal fluctuations produce a radius-dependent negative effective surface tension, equivalent to applying an inward external pressure. By adapting renormalization group calculations to allow for a spherical background curvature, we show that while small spherical shells are stable, sufficiently large shells are crushed by this thermally generated "pressure". Such shells can be stabilized by an outward osmotic pressure, but the effective shell size grows non-linearly with increasing outward pressure, with the same universal power law expone...
An approach to remove defocused aberration on array confocal microscope
Huang, Xiangdong; Zhou, Tong; Jia, Jingguo
2013-01-01
In order to obtain a high resolution image required for ultra-precision measurement of microstructural object, a new approach is proposed for 3D microstructures. It uses the modulation transfer function with defocus aberration based on the ambiguity function and stable phase principle to achieve an optical phase filter, and utilizes generalized a spheric phase optical element to encode defocus images, and uses deconvolution technology to recover the images. In comparison with conventional optical system, the phase filter used in the optical system can make focal spot smaller when measure object defocusing, eliminates the effect of the defocus aberration, and improves the defocused property. Numerical results indicate the designed phase filter can improve lateral resolution of optical system, and the axial resolution of the optical system is not affect by the filter and defocus aberration. For different defocus plate, the phase filter can make character of modulation transfer function of lateral direction uniform approximation.
Prospects for electron beam aberration correction using sculpted phase masks.
Shiloh, Roy; Remez, Roei; Arie, Ady
2016-04-01
Technological advances in fabrication methods allowed the microscopy community to take incremental steps towards perfecting the electron microscope, and magnetic lens design in particular. Still, state of the art aberration-corrected microscopes are yet 20-30 times shy of the theoretical electron diffraction limit. Moreover, these microscopes consume significant physical space and are very expensive. Here, we show how a thin, sculpted membrane is used as a phase-mask to induce specific aberrations into an electron beam probe in a standard high resolution TEM. In particular, we experimentally demonstrate beam splitting, two-fold astigmatism, three-fold astigmatism, and spherical aberration. Copyright © 2016 Elsevier B.V. All rights reserved.
Brief history of the Cambridge STEM aberration correction project and its progeny
Brown, L. Michael [Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Batson, Philip E. [Institute for Advanced Materials, Devices and Nanotechnology, Rutgers University, Piscataway, NJ 08854 (United States); Department of Physics, Rutgers University, Piscataway, NJ 08854 (United States); Department of Materials Science, Rutgers University, Piscataway, NJ 08854 (United States); Dellby, Niklas [Nion Company, 11515 NE 118th Street, Kirkland, WA 98034 (United States); Krivanek, Ondrej L. [Nion Company, 11515 NE 118th Street, Kirkland, WA 98034 (United States); Department of Physics, Arizona State University, Tempe, AZ 85287 (United States)
2015-10-15
We provide a brief history of the project to correct the spherical aberration of the scanning transmission electron microscope (STEM) that started in Cambridge (UK) and continued in Kirkland (WA, USA), Yorktown Heights (NY, USA), and other places. We describe the project in the full context of other aberration correction research and related work, partly in response to the incomplete context presented in the paper “In quest of perfection in electron optics: A biographical sketch of Harald Rose on the occasion of his 80th birthday”, recently published in Ultramicroscopy. - Highlights: • We provide a brief history of the Cambridge project to correct the spherical aberration of the scanning transmission electron microscope (STEM). • We describe the project in the full context of other aberration correction work and related research. • We summarize our corrector development work that followed the Cambridge project, and which was the first to reach higher spatial resolution than any non-corrected electron microscope.
Trapped ion imaging with a high numerical aperture spherical mirror
Shu, G; Dietrich, M R; Kurz, N; Blinov, B B, E-mail: shugang@u.washington.ed [Department of Physics, University of Washington, Seattle, WA 98105-1560 (United States)
2009-08-14
Efficient collection and analysis of trapped ion qubit fluorescence is essential for robust qubit state detection in trapped ion quantum computing schemes. We discuss simple techniques of improving photon collection efficiency using high numerical aperture (N.A.) reflective optics. To test these techniques we placed a spherical mirror with an effective N.A. of about 0.9 inside a vacuum chamber in the vicinity of a linear Paul trap. We demonstrate stable and reliable trapping of single barium ions, in excellent agreement with our simulations of the electric field in this setup. While a large N.A. spherical mirror introduces significant spherical aberration, the ion image quality can be greatly improved by a specially designed aspheric corrector lens located outside the vacuum system. Our simulations show that the spherical mirror/corrector design is an easy and cost-effective way to achieve high photon collection rates when compared to a more sophisticated parabolic mirror setup.
A Case Study of the Reduction of Aberrant, Repetitive Responses of an Adolescent with Autism.
Gunter, Philip L.; And Others
1993-01-01
In this case study, music was applied noncontingently and contingently across four settings with an adolescent male with autism, to reduce aberrant, repetitive vocalizations. The intervention was associated with dramatic reductions in the primary aberrant behavior and reductions in two other aberrant behaviors. Task performance was differentially…
Saxton, W. Owen, E-mail: wos1@cam.ac.uk
2015-04-15
This paper lists simple closed-form expressions estimating aberration coefficients (defocus, astigmatism, three-fold astigmatism, coma / misalignment, spherical aberration) on the basis of image shift or diffractogram shape measurements as a function of injected beam tilt. Simple estimators are given for a large number of injected tilt configurations, optimal in the sense of least-squares fitting of all the measurements, and so better than most reported previously. Standard errors are given for most, allowing different approaches to be compared. Special attention is given to the measurement of the spherical aberration, for which several simple procedures are given, and the effect of foreknowledge of this on other aberration estimates is noted. Details and optimal expressions are also given for a new and simple method of analysis, requiring measurements of the diffractogram mirror axis direction only, which are simpler to make than the focus and astigmatism measurements otherwise required. - Highlights: • Optimal estimators for CTEM lens aberrations are more accurate and/or use fewer observations. • Estimators have been found for defocus, astigmatism, three-fold astigmatism, coma and spherical aberration. • Estimators have been found relying on diffractogram shape, image shift and diffractogram orientation only, for a variety of beam tilts. • The standard error for each estimator has been found.
Relativistic spherical plasma waves
Bulanov, S S; Schroeder, C B; Zhidkov, A G; Esarey, E; Leemans, W P
2011-01-01
Tightly focused laser pulses as they diverge or converge in underdense plasma can generate wake waves, having local structures that are spherical waves. Here we report on theoretical study of relativistic spherical wake waves and their properties, including wave breaking. These waves may be suitable as particle injectors or as flying mirrors that both reflect and focus radiation, enabling unique X-ray sources and nonlinear QED phenomena.
Modeling mantle convection in the spherical annulus
Hernlund, John W.; Tackley, Paul J.
2008-12-01
Most methods for modeling mantle convection in a two-dimensional (2D) circular annular domain suffer from innate shortcomings in their ability to capture several characteristics of the spherical shell geometry of planetary mantles. While methods such as rescaling the inner and outer radius to reduce anomalous effects in a 2D polar cylindrical coordinate system have been introduced and widely implemented, such fixes may have other drawbacks that adversely affect the outcome of some kinds of mantle convection studies. Here we propose a new approach that we term the "spherical annulus," which is a 2D slice that bisects the spherical shell and is quantitatively formulated at the equator of a spherical polar coordinate system after neglecting terms in the governing equations related to variations in latitude. Spherical scaling is retained in this approximation since the Jacobian function remains proportional to the square of the radius. We present example calculations to show that the behavior of convection in the spherical annulus compares favorably against calculations performed in other 2D annular domains when measured relative to those in a fully three-dimensional (3D) spherical shell.
Jones, L; Nellist, P D
2014-05-01
In the scanning transmission electron microscope, hardware aberration correctors can now correct for the positive spherical aberration of round electron lenses. These correctors make use of nonround optics such as hexapoles or octupoles, leading to the limiting aberrations often being of a nonround type. Here we explore the effect of a number of potential limiting aberrations on the imaging performance of the scanning transmission electron microscope through their resulting optical transfer functions. In particular, the response of the optical transfer function to changes in defocus are examined, given that this is the final aberration to be tuned just before image acquisition. The resulting three-dimensional optical transfer functions also allow an assessment of the performance of a system for focal-series experiments or optical sectioning applications. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.
Correlation between Post-LASIK Starburst Symptom and Ocular Wavefront Aberrations
LIU Yong-Ji; MU Guo-Guang; WANG Zhao-Qi; WANG Yan
2006-01-01
Monochromatic aberrations in post laser in-situ keratomileusis (LASIK) eyes are measured. The data are categorized into reference group and starburst group according to the visual symptoms. Statistic analysis has been made to find the correJation between the ocular wavefront aberrations and the starburst symptom. The rms aberrations of the 3rd and 4th orders for the starburst group are significantly larger than those for the reference group. The starburst symptom shows a strong correlation with vertical coma, total coma, spherical aberrations. For 3-mm pupil size and 5.8-mm pupil size, the modulation transfer function (MTF) of the starburst group are lower than those of the reference group, but their visual acuities are close. MTF and PSF analyses are made for two groups, and the results are consistent with the statistical analysis, which means the difference between the two groups is mainly due to the third- and fourth-order Zernike aberrations.
Study on intra-ocular lens aberration measurement in-air
Wang, Yuanyuan; Chen, Jiaojie; Fen, Haihua; Hu, Chuan; Li, Yiyi
2010-10-01
In clinical ophthalmology, the wavefront aberration of human eyes is expressed by Zernike polynomial after cataract surgery and intraocular lens implantation, the human eyes aberration will change. The problem of objective evaluation of wavefront aberration introduced by the Intra-ocular (IOL) in-vivo remains unsolved. This paper introduced the measurement principal of IOL wavefront aberration with expression by Zernike polynominal in air. A Hartmann-Shack wavefront sensor system was constructed to measure the wavefront of IOL and to get the corresponding grid patterns. After a series of computer image processing steps, 7th order with 35 items Zernike coefficients was obtained. The IOL of 20.0D power was measured 5 times by this system to get the spherical aberration about 6.73+/-0.02μm, demonstrating the good repeatability of the system. Ten IOLs with the same 20.0D power but difference in surface curvature were chosen for measurement. The spherical aberration observed were in the range of 2.74μm-11.26μm. These results are valuable for the optical design of IOLs and the aberration analysis of human eyes post-operation.
Lee, Soo Han; Chang, Ji Woong
2014-02-01
To investigate the relationship between higher-order aberrations (HOAs) and amblyopia treatment in children with hyperopic anisometropic amblyopia. The medical records of hyperopic amblyopia patients with both spherical anisometropia of 1.00 diopter (D) or more and astigmatic anisometropia of less than 1.00 D were reviewed retrospectively. Based on the results of the amblyopia treatment, patients were divided into two groups: treatment successes and failures. Using the degree of spherical anisometropia, subjects were categorized into mild, moderate, or severe groups. Ocular, corneal, and internal HOAs were measured using a KR-1W aberrometer at the initial visit, and at 3-month, 6-month, and 12-month follow-ups. The results of the 45 (21 males and 24 females) hyperopic anisometropic amblyopia patients who completed the 12-month follow-up examinations were analyzed. The mean patient age at the initial visit was 70.3 months. In total, 28 patients (62.2%) had successful amblyopia treatments and 17 patients (37.8%) failed treatment after 12 months. Among the patient population, 24 (53.3%) had mild hyperopic anisometropia and 21 (46.7%) had moderate hyperopic anisometropia. When comparing the two groups (i.e., the success and failure groups), ocular spherical aberrations and internal spherical aberrations in the amblyopic eyes were significantly higher in the failure group at every follow-up point. There were no significant differences in any of the HOAs between mild and moderate cases of hyperopic anisometropia at any follow-up. When the amblyopic and fellow eyes were compared between the groups there were no significant differences in any of the HOAs. HOAs, particularly ocular spherical aberrations and internal spherical aberrations, should be considered as reasons for failed amblyopia treatment.
Spherical geodesic mesh generation
Fung, Jimmy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kenamond, Mark Andrew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Burton, Donald E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Shashkov, Mikhail Jurievich [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2015-02-27
In ALE simulations with moving meshes, mesh topology has a direct influence on feature representation and code robustness. In three-dimensional simulations, modeling spherical volumes and features is particularly challenging for a hydrodynamics code. Calculations on traditional spherical meshes (such as spin meshes) often lead to errors and symmetry breaking. Although the underlying differencing scheme may be modified to rectify this, the differencing scheme may not be accessible. This work documents the use of spherical geodesic meshes to mitigate solution-mesh coupling. These meshes are generated notionally by connecting geodesic surface meshes to produce triangular-prismatic volume meshes. This mesh topology is fundamentally different from traditional mesh topologies and displays superior qualities such as topological symmetry. This work describes the geodesic mesh topology as well as motivating demonstrations with the FLAG hydrocode.
The Spherical Deformation Model
Hobolth, Asgar
2003-01-01
Miller et al. (1994) describe a model for representing spatial objects with no obvious landmarks. Each object is represented by a global translation and a normal deformation of a sphere. The normal deformation is defined via the orthonormal spherical-harmonic basis. In this paper we analyse...... the spherical deformation model in detail and describe how it may be used to summarize the shape of star-shaped three-dimensional objects with few parameters. It is of interest to make statistical inference about the three-dimensional shape parameters from continuous observations of the surface and from...
Aberration-corrected imaging of active sites on industrial catalyst nanoparticles
Gontard, Lionel Cervera; Chang, L-Y; Hetherington, CJD
2007-01-01
Picture perfect: Information about the local topologies of active sites on commercial nanoparticles can be gained with atomic resolution through spherical-aberration-corrected transmission electron microscopy (TEM). A powder of Pt nanoparticles on carbon black was examined with two advanced TEM t...
Aberration-corrected imaging of active sites on industrial catalyst nanoparticles
Gontard, Lionel Cervera; Chang, L-Y; Hetherington, CJD;
2007-01-01
Picture perfect: Information about the local topologies of active sites on commercial nanoparticles can be gained with atomic resolution through spherical-aberration-corrected transmission electron microscopy (TEM). A powder of Pt nanoparticles on carbon black was examined with two advanced TEM t...
Spherical distributions : Schoenberg revisited
Steerneman, AGM; van Perlo-ten Kleij, F
2005-01-01
An in-dimensional random vector X is said to have a spherical distribution if and only if its characteristic function is of the form phi(parallel to t parallel to), where t is an element of R-m, parallel to.parallel to denotes the usual Euclidean norm, and phi is a characteristic function on R. A mo
Linck, Martin, E-mail: linck@ceos-gmbh.de [CEOS GmbH, Englerstr. 28, D-69126 Heidelberg (Germany)
2013-01-15
Amongst the impressive improvements in high-resolution electron microscopy, the Cs-corrector also has significantly enhanced the capabilities of off-axis electron holography. Recently, it has been shown that the signal above noise in the reconstructable phase can be significantly improved by combining holography and hardware aberration correction. Additionally, with a spherical aberration close to zero, the traditional optimum focus for recording high-resolution holograms ('Lichte's defocus') has become less stringent and both, defocus and spherical aberration, can be selected freely within a certain range. This new degree of freedom can be used to improve the signal resolution in the holographically reconstructed object wave locally, e.g. at the atomic positions. A brute force simulation study for an aberration corrected 200 kV TEM is performed to determine optimum values for defocus and spherical aberration for best possible signal to noise in the reconstructed atomic phase signals. Compared to the optimum aberrations for conventional phase contrast imaging (NCSI), which produce 'bright atoms' in the image intensity, the resulting optimum values of defocus and spherical aberration for off-axis holography enable 'black atom contrast' in the hologram. However, they can significantly enhance the local signal resolution at the atomic positions. At the same time, the benefits of hardware aberration correction for high-resolution off-axis holography are preserved. It turns out that the optimum is depending on the object and its thickness and therefore not universal. -- Highlights: Black-Right-Pointing-Pointer Optimized aberration parameters for high-resolution off-axis holography. Black-Right-Pointing-Pointer Simulation and analysis of noise in high-resolution off-axis holograms. Black-Right-Pointing-Pointer Improving signal resolution in the holographically reconstructed phase shift. Black-Right-Pointing-Pointer Comparison of &apos
Spherical colloidal photonic crystals.
Zhao, Yuanjin; Shang, Luoran; Cheng, Yao; Gu, Zhongze
2014-12-16
CONSPECTUS: Colloidal photonic crystals (PhCs), periodically arranged monodisperse nanoparticles, have emerged as one of the most promising materials for light manipulation because of their photonic band gaps (PBGs), which affect photons in a manner similar to the effect of semiconductor energy band gaps on electrons. The PBGs arise due to the periodic modulation of the refractive index between the building nanoparticles and the surrounding medium in space with subwavelength period. This leads to light with certain wavelengths or frequencies located in the PBG being prohibited from propagating. Because of this special property, the fabrication and application of colloidal PhCs have attracted increasing interest from researchers. The most simple and economical method for fabrication of colloidal PhCs is the bottom-up approach of nanoparticle self-assembly. Common colloidal PhCs from this approach in nature are gem opals, which are made from the ordered assembly and deposition of spherical silica nanoparticles after years of siliceous sedimentation and compression. Besides naturally occurring opals, a variety of manmade colloidal PhCs with thin film or bulk morphology have also been developed. In principle, because of the effect of Bragg diffraction, these PhC materials show different structural colors when observed from different angles, resulting in brilliant colors and important applications. However, this angle dependence is disadvantageous for the construction of some optical materials and devices in which wide viewing angles are desired. Recently, a series of colloidal PhC materials with spherical macroscopic morphology have been created. Because of their spherical symmetry, the PBGs of spherical colloidal PhCs are independent of rotation under illumination of the surface at a fixed incident angle of the light, broadening the perspective of their applications. Based on droplet templates containing colloidal nanoparticles, these spherical colloidal PhCs can be
The BHVI-EyeMapper: peripheral refraction and aberration profiles.
Fedtke, Cathleen; Ehrmann, Klaus; Falk, Darrin; Bakaraju, Ravi C; Holden, Brien A
2014-10-01
The aim of this article was to present the optical design of a new instrument (BHVI-EyeMapper, EM), which is dedicated to rapid peripheral wavefront measurements across the visual field for distance and near, and to compare the peripheral refraction and higher-order aberration profiles obtained in myopic eyes with and without accommodation. Central and peripheral refractive errors (M, J180, and J45) and higher-order aberrations (C[3, 1], C[3, 3], and C[4, 0]) were measured in 26 myopic participants (mean [±SD] age, 20.9 [±2.0] years; mean [±SD] spherical equivalent, -3.00 [±0.90] diopters [D]) corrected for distance. Measurements were performed along the horizontal visual field with (-2.00 to -5.00 D) and without (+1.00 D fogging) accommodation. Changes as a function of accommodation were compared using tilt and curvature coefficients of peripheral refraction and aberration profiles. As accommodation increased, the relative peripheral refraction profiles of M and J180 became significantly (p 0.05). The peripheral aberration profiles of C[3, 1], C[3, 3], and C[4, 0] became significantly (p refraction and higher-order aberration profiles occurred during accommodation in myopic eyes. With its extended measurement capabilities, that is, permitting rapid peripheral refraction and higher-order aberration measurements up to visual field angles of ±50 degrees for distance and near (up to -5.00 D), the EM is a new advanced instrument that may provide additional insights in the ongoing quest to understand and monitor myopia development.
Historical aspects of aberration correction.
Rose, Harald H
2009-06-01
A brief history of the development of direct aberration correction in electron microscopy is outlined starting from the famous Scherzer theorem established in 1936. Aberration correction is the long story of many seemingly fruitless efforts to improve the resolution of electron microscopes by compensating for the unavoidable resolution-limiting aberrations of round electron lenses over a period of 50 years. The successful breakthrough, in 1997, can be considered as a quantum step in electron microscopy because it provides genuine atomic resolution approaching the size of the radius of the hydrogen atom. The additional realization of monochromators, aberration-free imaging energy filters and spectrometers has been leading to a new generation of analytical electron microscopes providing elemental and electronic information about the object on an atomic scale.
Relationship between corneal and ocular higher order wavefront aberrations and age in children
Saito, Aya; Ito, Misae; Kawamorita, Takushi; Shimizu, Kimiya
2017-05-01
Abstract Purpose To evaluate the relationship between corneal and ocular higher order wavefront aberrations (HOAs) and age in young subjects aged 20 years or less. Methods Corneal and ocular HOAs of the right eyes of 87 normal subjects were measured using videokeratography and the Hartmann-Shack wavefront aberrometer (KR-9000PW; Topcon Corp., Tokyo, Japan). The HOAs were calculated using Zernike polynomials up to the sixth order. From the Zernike coefficients, the root mean squares (RMS) of coma and spherical aberration were calculated. Results Corneal spherical-like aberrations significantly correlated with age (r = 0.420, p Conclusion In children, the corneal and ocular total HOAs did not vary with age. Compared to the previous reports in adults, we found fewer corneal and ocular HOAs in children.
Aberration analysis based on pinhole-z-scan method near the focal point of refractive systems
Castro-Marín, Pablo; Garduño-Mejía, Jesús; Rosete-Aguilar, Martha; Bruce, Neil C.; Reid, Derryck T.; Farrell, C.; Sandoval-Romero, Gabriel E.
2016-09-01
In this work we present a method used to study the spherical and chromatic aberrations contribution near the focal point of a refractive optical system. The actual focal position is measured by scanning a pinhole attached on the front of a power detector, which are scanned along the optical axis using a motorized stage with 1 μm resolution. Spherical aberration contribution was analyzed by changing the pupil aperture, by modifying the size of the input iris diaphragm and for each case, measuring the actual laser power vs the detector position. Chromatic aberration was analyzed by performing the same procedure but in this case we used an ultra-broad-band femtosecond laser. The results between ML and CW operation were compare. Experimental results are presented.
Wu, H.; Furusawa, Y.; George, K.; Kawata, T.; Cucinotta, F.
Biophysical models addressing the formation of radiation-induced chromosome aberrations are usually based on the assumption that chromosome aberrations are formed by DNA double strand break (DSB) misrejoining, via either the homologous or the non-homologous repair pathway. However, comparing chromosome aberration data with model predictions is not always straightforward. In this paper we discuss some of the aspects that must be considered to make these comparisons meaningful. Firstly, biophysical models are usually applied to DSB rejoining and misrejoining in the G0/G1 phase of the cell cycle, while most chromosome aberration data reported in the literature are analyzed in metaphase. Since cells must progress through the cell cycle check points in order to reach mitosis, model predictions that differ from the metaphase chromosome analysis may actually agree with the aberration data in chromosomes collected in interphase. Secondly, high- LET radiation generally produces more complex aberrations involving exchanges between three or more DSB. While some models have successfully provided quantitative predictions of high-LET radiation induced complex aberrations in human lymphocytes, applying such models to other cell types requires special considerations due to the lack of geometric symmetry of the nucleus. Chromosome aberration data for non-spherical human fibroblast cells bombarded from various directions by high-LET charged particles will be presented, and their implication on physical modeling will be discussed.
Colak, Hatice Nur; Kantarci, Feride Aylin; Yildirim, Aydin; Tatar, Mehmet Gurkan; Goker, Hasan; Uslu, Hasim; Gurler, Bulent
2016-10-01
The aim of this report was to compare corneal topographic measurements and anterior high order corneal aberrations in eyes with keratoconus and normal eyes by using Scheimpflug-Placido topography. Eighty cases diagnosed with mild (group 1), moderate (group 2), and advanced (group 3) stage keratoconus (KC) according to Amsler-Krumeich Classification and 81 healthy (control group) cases were retrospectively examined. The mean keratometric measurements (as both diopters (Kavg) and mm values (mmavg)), central corneal thickness values (CCT), high order aberration (HOA), total wavefront aberration (TWA), coma, trefoil, and spherical aberration measurements were performed using Sirius topography equipment. The topographic values were compared between the groups. There were 25 cases in group 1 KC (15.5%), 34 cases in group 2 KC (21.1%), 21 cases in group 3 KC (13.1%), and 81 cases (50.3%) in the control group. In terms of mean age and gender distributions, there was no statistically significant difference between the groups (p>0.05). However, there was significant difference between the groups in terms of Kavg, CCT, HOA, TWA, coma, trefoil, and spherical aberration values (pkeratoconus. Anterior high order corneal aberration measurements are a useful tool to guide the physician in diagnosis and classification of keratoconus. Copyright © 2016 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.
Spherical coordinate descriptions of cylindrical and spherical Bessel beams.
Poletti, M A
2017-03-01
This paper derives a generalized spherical harmonic description of Bessel beams. The spherical harmonic description of the well-known cylindrical Bessel beams is reviewed and a family of spherical Bessel beams are introduced which can provide a number of azimuthal phase variations for a single beam radial amplitude. The results are verified by numerical simulations.
马代金; 朱睿玲; 蔡望
2014-01-01
compensation factor. RESULTS: The corneal spherical aberration were positive in all eyes, but ocular spherical aberration were negative in 33 eyes (21.7%); The RMS values of corneal TC and Zernike terms of corneal Z3-1 , Z3 1 were smaller than the ocular aberration.and their CFs were negative;The RMS values of corneal HOAs, TT, TS and Zernike terms of corneal Z3-3 , Z3 3 , Z4 0 were higher than the ocular aberration and their CFs were positive. CONCLUSION: Theintraocular HOAs mainly manifest compensation effect on the HOAs of the cornea; The intraocular spherical aberration compensates for the spherical aberration of cornea, which can reduce the ocular spherical aberration; The effects of intraocular coma and trefoil on corneal higher order aberrations vary widely and show partial compensation, overcompensation and superposition among subjects. The main role of coma is superposition, while that of trefoil mainly manifest as compensation action.
Recent Progress on Spherical Torus Research
Ono, Masayuki [PPPL; Kaita, Robert [PPPL
2014-01-01
The spherical torus or spherical tokamak (ST) is a member of the tokamak family with its aspect ratio (A = R0/a) reduced to A ~ 1.5, well below the normal tokamak operating range of A ≥ 2.5. As the aspect ratio is reduced, the ideal tokamak beta β (radio of plasma to magnetic pressure) stability limit increases rapidly, approximately as β ~ 1/A. The plasma current it can sustain for a given edge safety factor q-95 also increases rapidly. Because of the above, as well as the natural elongation κ, which makes its plasma shape appear spherical, the ST configuration can yield exceptionally high tokamak performance in a compact geometry. Due to its compactness and high performance, the ST configuration has various near term applications, including a compact fusion neutron source with low tritium consumption, in addition to its longer term goal of attractive fusion energy power source. Since the start of the two megaampere class ST facilities in 2000, National Spherical Torus Experiment (NSTX) in the US and Mega Ampere Spherical Tokamak (MAST) in UK, active ST research has been conducted worldwide. More than sixteen ST research facilities operating during this period have achieved remarkable advances in all of fusion science areas, involving fundamental fusion energy science as well as innovation. These results suggest exciting future prospects for ST research both near term and longer term. The present paper reviews the scientific progress made by the worldwide ST research community during this new mega-ampere-ST era.
Coletta, Nancy J; Marcos, Susana; Troilo, David
2010-11-23
The common marmoset, Callithrix jacchus, is a primate model for emmetropization studies. The refractive development of the marmoset eye depends on visual experience, so knowledge of the optical quality of the eye is valuable. We report on the wavefront aberrations of the marmoset eye, measured with a clinical Hartmann-Shack aberrometer (COAS, AMO Wavefront Sciences). Aberrations were measured on both eyes of 23 marmosets whose ages ranged from 18 to 452 days. Twenty-one of the subjects were members of studies of emmetropization and accommodation, and two were untreated normal subjects. Eleven of the 21 experimental subjects had worn monocular diffusers and 10 had worn binocular spectacle lenses of equal power. Monocular deprivation or lens rearing began at about 45 days of age and ended at about 108 days of age. All refractions and aberration measures were performed while the eyes were cyclopleged; most aberration measures were made while subjects were awake, but some control measurements were performed under anesthesia. Wavefront error was expressed as a seventh-order Zernike polynomial expansion, using the Optical Society of America's naming convention. Aberrations in young marmosets decreased up to about 100 days of age, after which the higher-order RMS aberration leveled off to about 0.10 μm over a 3 mm diameter pupil. Higher-order aberrations were 1.8 times greater when the subjects were under general anesthesia than when they were awake. Young marmoset eyes were characterized by negative spherical aberration. Form-deprived eyes of the monocular deprivation animals had greater wavefront aberrations than their fellow untreated eyes, particularly for asymmetric aberrations in the odd-numbered Zernike orders. Both lens-treated and form-deprived eyes showed similar significant increases in Z3(-3) trefoil aberration, suggesting the increase in trefoil may be related to factors that do not involve visual feedback.
Simulation on the aggregation process of spherical particle confined in a spherical shell
Wang, J.; Xu, J. J.; Zhang, L.
2016-04-01
The aggregation process of spherical particles confined in a spherical shell was studied by using a diffusion-limited cluster-cluster aggregation (DLCA) model. The influence of geometrical confinement and wetting-like properties of the spherical shell walls on the particle concentration profile, aggregate structure and aggregation kinetics had been explored. The results show that there will be either depletion or absorption particles near the shell walls depending on the wall properties. It is observed that there are four different types of density distribution which can be realized by modifying the property of the inner or outer spherical shell wall. In addition, the aggregate structure will become more compact in the confined spherical shell comparing to bulk system with the same particle volume fraction. The analysis on the aggregation kinetics indicates that geometrical confinement will promote the aggregation process by reducing the invalid movement of the small aggregates and by constraining the movement of those large aggregates. Due to the concave geometrical characteristic of the outer wall of the spherical shell, its effects on the aggregating kinetics and the structure of the formed aggregates are more evident than those of the inner wall. This study will provide some instructive information of controlling the density distribution of low-density porous polymer hollow spherical shells and helps to predict gel structures developed in confined geometries.
Lee, M. C.; Kendall, J. M., Jr.; Bahrami, P. A.; Wang, T. G.
1986-01-01
Fluid-dynamic and capillary forces can be used to form nearly perfect, very small spherical shells when a liquid that can solidify is passed through an annular die to form an annular jet. Gravity and certain properties of even the most ideal materials, however, can cause slight asymmetries. The primary objective of the present work is the control of this shell formation process in earth laboratories rather than space microgravity, through the development of facilities and methods that minimize the deleterious effects of gravity, aerodynamic drag, and uncontrolled cooling. The spherical shells thus produced can be used in insulation, recyclable filter materials, fire retardants, explosives, heat transport slurries, shock-absorbing armor, and solid rocket motors.
Aberrant internal carotid artery in the middle ear
Roh, Keun Tak; Kang, Hyun Koo [Dept. of Radiology, Seoul Veterans Hospital, Seoul (Korea, Republic of)
2014-10-15
The knowledge about the aberrant internal carotid artery (ICA) in the middle ear is essential for clinicians, because a misdiagnosis of the aberrant ICA could have serious consequences such as excessive aural bleeding during a middle ear surgery. A 38-year-old woman presented with tinnitus and hearing difficulties of the left ear that had started 5 years ago. During otoscopy, an anteroinferior bluish mass was seen in the tympanic space. Computed tomography and magnetic resonance imaging demonstrated a left-side aberrant ICA with bony dehiscence of the carotid canal in the middle ear and a reduced diameter of the tympanic ICA. Herein we report a case of an aberrant ICA in the middle ear. We also review the literature regarding this important vascular anomaly of the temporal bone which may lead to disastrous surgical complications.
Miniaturized modules for light sheet microscopy with low chromatic aberration.
Bruns, T; Bauer, M; Bruns, S; Meyer, H; Kubin, D; Schneckenburger, H
2016-12-01
Two miniaturized fibre-coupled modules for light sheet-based microscopy are described and compared with respect to image quality, chromatic aberration and beam alignment. Whereas in one module the light sheet is created by an achromatic cylindrical lens, reflection by a spherical mirror and concomitant astigmatic distortion are used to create the light sheet in the second module. Test experiments with fluorescent dyes in solution and multicellular tumour spheroids are reported, and some details on construction are given for both systems. Both modules are optimized for imaging individual cell layers of 3D biological samples and can be adapted to fit commercial microscopes.
Aieta, Francesco; Kats, Mikhail A; Yu, Nanfang; Blanchard, Romain; Gaburro, Zeno; Capasso, Federico
2012-01-01
The concept of optical phase discontinuities is applied to the design and demonstration of aberration-free planar lenses and axicons, comprising a phased array of ultrathin subwavelength spaced optical antennas. The lenses and axicons consist of radial distributions of V-shaped nanoantennas that generate respectively spherical wavefronts and non-diffracting Bessel beams at telecom wavelengths. Simulations are also presented to show that our aberration-free designs are applicable to high numerical aperture lenses such as flat microscope objectives.
Design of macro-filter-lens with simultaneous chromatic and geometric aberration correction.
Prasad, Dilip K; Brown, Michael S
2014-01-01
A macro-filter-lens design that can correct for chromatic and geometric aberrations simultaneously while providing for a long focal length is presented. The filter is easy to fabricate since it involves two spherical surfaces and a planar surface. Chromatic aberration correction is achieved by making all the rays travel the same optical distance inside the filter element (negative meniscus). Geometric aberration is corrected for by the lens element (plano-convex), which makes the output rays parallel to the optic axis. This macro-filter-lens design does not need additional macro lenses and it provides an inexpensive and optically good (aberration compensated) solution for macro imaging of objects not placed close to the camera.
Aberrations in square pore micro-channel optics used for x-ray lobster eye telescopes
Willingale, R.; Pearson, J. F.; Martindale, A.; Feldman, C. H.; Fairbend, R.; Schyns, E.; Petit, S.; Osborne, J. P.; O'Brien, P. T.
2016-07-01
We identify all the significant aberrations that limit the performance of square pore micro-channel plate optics (MPOs) used as an X-ray lobster eye. These include aberrations intrinsic to the geometry, intrinsic errors associated with the slumping process used to introduce a spherical form to the plates and imperfections associated with the plate manufacturing process. The aberrations are incorporated into a comprehensive software model of the X-ray response of the optics and the predicted imaging response is compared with the measured X-ray performance obtained from a breadboard lobster eye. The results reveal the manufacturing tolerances which limit the current performance of MPOs and enable us to identify particular intrinsic aberrations which will limit the ultimate performance we can expect from MPO-lobster eye telescopes.
Toroidal membrane vesicles in spherical confinement
Bouzar, Lila; Müller, Martin Michael
2015-01-01
We investigate the morphology of a toroidal fluid membrane vesicle confined inside a spherical container. The equilibrium shapes are assembled in a geometrical phase diagram as a function of scaled area and reduced volume of the membrane. For small area the vesicle can adopt its free form. When increasing the area, the membrane cannot avoid contact and touches the confining sphere along a circular contact line, which extends to a zone of contact for higher area. The elastic energies of the equilibrium shapes are compared to those of their confined counterparts of spherical topology to predict under which conditions a topology change is favored energetically.
Toroidal membrane vesicles in spherical confinement
Bouzar, Lila; Menas, Ferhat; Müller, Martin Michael
2015-09-01
We investigate the morphology of a toroidal fluid membrane vesicle confined inside a spherical container. The equilibrium shapes are assembled in a geometrical phase diagram as a function of scaled area and reduced volume of the membrane. For small area the vesicle can adopt its free form. When increasing the area, the membrane cannot avoid contact and touches the confining sphere along a circular contact line, which extends to a zone of contact for higher area. The elastic energies of the equilibrium shapes are compared to those of their confined counterparts of spherical topology to predict under which conditions a topology change is favored energetically.
Background reduction of a spherical gaseous detector
Fard, Ali Dastgheibi; Loaiza, Pia; Piquemal, Fabrice; Giomataris, Ioannis; Gray, David; Gros, Michel; Magnier, Patrick; Navick, Xavier-François; Savvidis, Ilias
2015-08-01
The Spherical gaseous detector (or Spherical Proportional Counter, SPC) is a novel type of detector. It consists of a large spherical volume filled with gas, using a single detection readout channel. The detector allows 100 % detection efficiency. SEDINE is a low background version of SPC installed at the Laboratoire Souterrain de Modane (LSM) underground laboratory (4800 m.w.e) looking for rare events at very low energy threshold, below 100 eV. This work presents the details on the chemical cleaning to reduce internal 210Pb surface contamination on the copper vessel and the external radon reduction achieved via circulation of pure air inside anti-radon tent. It will be also show the radon measurement of pure gases (Ar, N, Ne, etc) which are used in the underground laboratory for the low background experiments.
Background reduction of a spherical gaseous detector
Fard, Ali Dastgheibi [Laboratoire Souterrain de Modane, France ali.dastgheibi-fard@lsm.in2p3.fr (France); Loaiza, Pia; Piquemal, Fabrice [Laboratoire Souterrain de Modane (France); Giomataris, Ioannis; Gray, David; Gros, Michel; Magnier, Patrick; Navick, Xavier-François [CEA Saclay - IRFU/SEDI - 91191 Gif sur Yvette (France); Savvidis, Ilias [Aristotle University of Thessaloniki (Greece)
2015-08-17
The Spherical gaseous detector (or Spherical Proportional Counter, SPC) is a novel type of detector. It consists of a large spherical volume filled with gas, using a single detection readout channel. The detector allows 100 % detection efficiency. SEDINE is a low background version of SPC installed at the Laboratoire Souterrain de Modane (LSM) underground laboratory (4800 m.w.e) looking for rare events at very low energy threshold, below 100 eV. This work presents the details on the chemical cleaning to reduce internal {sup 210}Pb surface contamination on the copper vessel and the external radon reduction achieved via circulation of pure air inside anti-radon tent. It will be also show the radon measurement of pure gases (Ar, N, Ne, etc) which are used in the underground laboratory for the low background experiments.
Statistical Mechanics of Thin Spherical Shells
Košmrlj, Andrej; Nelson, David R.
2017-01-01
We explore how thermal fluctuations affect the mechanics of thin amorphous spherical shells. In flat membranes with a shear modulus, thermal fluctuations increase the bending rigidity and reduce the in-plane elastic moduli in a scale-dependent fashion. This is still true for spherical shells. However, the additional coupling between the shell curvature, the local in-plane stretching modes, and the local out-of-plane undulations leads to novel phenomena. In spherical shells, thermal fluctuations produce a radius-dependent negative effective surface tension, equivalent to applying an inward external pressure. By adapting renormalization group calculations to allow for a spherical background curvature, we show that while small spherical shells are stable, sufficiently large shells are crushed by this thermally generated "pressure." Such shells can be stabilized by an outward osmotic pressure, but the effective shell size grows nonlinearly with increasing outward pressure, with the same universal power-law exponent that characterizes the response of fluctuating flat membranes to a uniform tension.
Numerical optimization of spherical variable-line-spacing grating X-ray spectrometers
Strocov, V. N., E-mail: vladimir.strocov@psi.ch; Schmitt, T.; Flechsig, U.; Patthey, L. [Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen-PSI (Switzerland); Chiuzbăian, G. S. [UPMC University Paris 06, CNRS UMR 7614, Laboratoire de Chimie Physique - Matière et Rayonnement, 75321 Paris Cedex 05 (France)
2011-03-01
Operation of an X-ray spectrometer based on a spherical variable-line-spacing grating is analyzed using dedicated ray-tracing software allowing fast optimization of the grating parameters and spectrometer geometry. Operation of an X-ray spectrometer based on a spherical variable-line-spacing (VLS) grating is analyzed using dedicated ray-tracing software allowing fast optimization of the grating parameters and spectrometer geometry. The analysis is illustrated with optical design of a model spectrometer to deliver a resolving power above 20400 at a photon energy of 930 eV (Cu L-edge). With this energy taken as reference, the VLS coefficients are optimized to cancel the lineshape asymmetry (mostly from the coma aberrations) as well as minimize the symmetric aberration broadening at large grating illuminations, dramatically increasing the aberration-limited vertical acceptance of the spectrometer. For any energy away from the reference, corrections to the entrance arm and light incidence angle on the grating are evaluated to maintain the exactly symmetric lineshape. Furthermore, operational modes when these corrections are coordinated are evaluated to maintain either energy-independent focal curve inclination or maximal aberration-limited spectrometer acceptance. The results are supported by analytical evaluation of the coma term of the optical path function. This analysis thus gives a recipe for designing a high-resolution spherical VLS grating spectrometer operating with negligible aberrations at large acceptance and over an extended energy range.
Georgiev, G. H.; Dinkova, C. L.
2013-10-01
Long spirals in the Euclidean plane have been introduced by A. Kurnosenko five years ago. Using a natural map of the shape sphere into the extended Gaussian plane we study spherical curves that are pre-images of plane long spirals. Loxodromes and spherical spiral antennas are typical examples of such spherical long spirals. The set of all planar spirals leaves invariant under an arbitrary similarity transformation. This set is divided in two disjoint classes by A. Kirnosenko. The first class is consist of the so-called short spirals which are widely used in geometric modeling. The second class of planar long spirals contains well-known logarithmic spiral and Archimedean spirals which have many applications in mathematics, astrophysics and industry. The notion of simplicial shape space is due to D. Kendall. The most popular simplicial shape space of order (2,3) is the set of equivalence classes of similar triangles in the plane. The sphere of radius 1/2 centered at the origin can be considered as a model of this quotient space, so-called the shape sphere. F. Bookstein and J. Lester showed that the one-point extension of the Euclidean plane, so-called the extended Gaussian plane, is another model of the same simplicial shape space. The present paper gives a description of long spirals on the shape sphere by the use a natural conformal mapping between two models. First, we examine long spirals in the extended Gaussian plane. After that, we describe some differential geometric properties of the shape sphere. Finally, we discuss parameterizations of long spirals on the shape sphere.
M. A. Navascués
2013-01-01
Full Text Available This paper tackles the construction of fractal maps on the unit sphere. The functions defined are a generalization of the classical spherical harmonics. The methodology used involves an iterated function system and a linear and bounded operator of functions on the sphere. For a suitable choice of the coefficients of the system, one obtains classical maps on the sphere. The different values of the system parameters provide Bessel sequences, frames, and Riesz fractal bases for the Lebesgue space of the square integrable functions on the sphere. The Laplace series expansion is generalized to a sum in terms of the new fractal mappings.
于文儒; 王明东; 蔡露; 金玉珂
1995-01-01
The phenomenon of cytogenetic adaptive and cross-adaptive response induced by low dose irradiation and chemical mutagen in mice is described. We found, firstly, that adapration can be induced by acute low dose X-irracliation (0—100 mGy). Secondly, a cross-adaptation can occur between X-irradiatlon and rrdto-mycin C (MMC). And finally, mice pre-exposed to chronic low dose rate 60Co-Gamma irradiation (0-226. 0 mGy/day) are less susceptible to chromosome aberration induced by subsequent acute higher X-irradiation. Therefore, our data suggest that radioadaptlve respotrse depends on dose, dose rate and time interval. Possible mechanisms are also discussed.
Related research on corneal higher-order aberrations after different ways refractive surgery
Shu-Xi He
2015-08-01
Full Text Available AIM:To evaluate the changes of corneal high-order aberration(including Coma, Spab, RMShafter laser in situ keratomileusis(LASIKwith femtosecond laser, sub-Bowman keratomileusis(SBKand laser epithelial keratomileusis(LASEK.METHODS: Of 82 myopic patients(164 eyes, 31 patients(62 eyeswere treated by FS-LASIK, 31 patients(62 eyeswere treated by SBK, 20 patients(40 eyeswere treated by LASEK. Sirius system was used for measuring the coma aberration, spherical aberration, and high order aberration at 1, 15d,1, 3mo after surgery.RESULTS: 1Vision: The uncorrected visual acuity of the three groups had no differences(P>0.05. 2Corneal aberrations: Three kinds of surgical procedure for patients with corneal aberration had significant impact. The C7, C8, C12 and RMSh of three groups were increased significantly(P0.05. The C7, C8, C12 and RMSh were not recovered to preoperative levels after 3mo. But the increase of patients after FS-LASIK was smaller than the other two groups, with statistical significance(P0.05.CONCLUSION: Compared with SBK and LASEK,FS-LASIK has better visual acuity in the early postoperative and corneal higher-order aberrations increase is relatively small.
Hiraoka, Takahiro; Ishii, Yuko; Okamoto, Fumiki; Oshika, Tetsuro
2009-02-01
To investigate the influence of cosmetically tinted soft contact lenses on ocular higher-order aberrations and visual performance, and to analyze the relationship between these parameters after the lens wear. In 44 eyes of 22 subjects, visual acuity, contrast sensitivity under photopic and mesopic conditions, and ocular higher-order aberrations were evaluated before and after wearing the tinted soft contact lenses (1-day Acuvue Colours; Vistakon, Jacksonville, FL). Contrast sensitivity under a photopic condition was determined at 3, 6, 12, and 18 cycles per degree, and the area under the log contrast sensitivity function (AULCSF) was calculated. Mesopic contrast sensitivity with and without glare was assessed. Ocular higher-order aberrations for a 4-mm pupil were measured, and coma-like, spherical-like, and total higher-order aberrations were determined. The tinted contact lens wearing resulted in significant decreases in log contrast sensitivity at all spatial frequencies (P 0.05), the changes in total higher-order aberrations showed a significant correlation with those in AULCSF (P 0.05). Cosmetically tinted contact lenses increase ocular higher-order aberrations and worsen contrast sensitivity under both photopic and mesopic conditions. Increases in higher-order aberrations are responsible for decreased contrast sensitivity under the photopic condition. Tinted contact lens wearers should be sufficiently informed about the possible reduction in optical quality of the eye and quality of vision.
Holographic Spherically Symmetric Metrics
Petri, Michael
The holographic principle (HP) conjectures, that the maximum number of degrees of freedom of any realistic physical system is proportional to the system's boundary area. The HP has its roots in the study of black holes. It has recently been applied to cosmological solutions. In this article we apply the HP to spherically symmetric static space-times. We find that any regular spherically symmetric object saturating the HP is subject to tight constraints on the (interior) metric, energy-density, temperature and entropy-density. Whenever gravity can be described by a metric theory, gravity is macroscopically scale invariant and the laws of thermodynamics hold locally and globally, the (interior) metric of a regular holographic object is uniquely determined up to a constant factor and the interior matter-state must follow well defined scaling relations. When the metric theory of gravity is general relativity, the interior matter has an overall string equation of state (EOS) and a unique total energy-density. Thus the holographic metric derived in this article can serve as simple interior 4D realization of Mathur's string fuzzball proposal. Some properties of the holographic metric and its possible experimental verification are discussed. The geodesics of the holographic metric describe an isotropically expanding (or contracting) universe with a nearly homogeneous matter-distribution within the local Hubble volume. Due to the overall string EOS the active gravitational mass-density is zero, resulting in a coasting expansion with Ht = 1, which is compatible with the recent GRB-data.
A method of dynamic chromatic aberration correction in low-voltage scanning electron microscopes.
Khursheed, Anjam
2005-07-01
A time-of-flight concept that dynamically corrects for chromatic aberration effects in scanning electron microscopes (SEMs) is presented. The method is predicted to reduce the microscope's chromatic aberration by an order of magnitude. The scheme should significantly improve the spatial resolution of low-voltage scanning electron microscopes (LVSEMs). The dynamic means of correcting for chromatic aberration also allows for the possibility of obtaining high image resolution from electron guns that have relatively large energy spreads.
Volumetric optical coherence microscopy enabled by aberrated optics (Conference Presentation)
Mulligan, Jeffrey A.; Liu, Siyang; Adie, Steven G.
2017-02-01
Optical coherence microscopy (OCM) is an interferometric imaging technique that enables high resolution, non-invasive imaging of 3D cell cultures and biological tissues. Volumetric imaging with OCM suffers a trade-off between high transverse resolution and poor depth-of-field resulting from defocus, optical aberrations, and reduced signal collection away from the focal plane. While defocus and aberrations can be compensated with computational methods such as interferometric synthetic aperture microscopy (ISAM) or computational adaptive optics (CAO), reduced signal collection must be physically addressed through optical hardware. Axial scanning of the focus is one approach, but comes at the cost of longer acquisition times, larger datasets, and greater image reconstruction times. Given the capabilities of CAO to compensate for general phase aberrations, we present an alternative method to address the signal collection problem without axial scanning by using intentionally aberrated optical hardware. We demonstrate the use of an astigmatic spectral domain (SD-)OCM imaging system to enable single-acquisition volumetric OCM in 3D cell culture over an extended depth range, compared to a non-aberrated SD-OCM system. The transverse resolution of the non-aberrated and astigmatic imaging systems after application of CAO were 2 um and 2.2 um, respectively. The depth-range of effective signal collection about the nominal focal plane was increased from 100 um in the non-aberrated system to over 300 um in the astigmatic system, extending the range over which useful data may be acquired in a single OCM dataset. We anticipate that this method will enable high-throughput cellular-resolution imaging of dynamic biological systems over extended volumes.
Low chromatic aberration hexapole for molecular state selection
Ke, Yi; Deng, Xiao-Bing; Hu, Zhong-Kun
2016-01-01
In molecular beam state-selection experiments, the electrostatic hexapole acts as an optical lens, imaging molecules from the source to the focus. The molecular longitudinal velocity spread induces the phenomenon of chromatic aberration, which will reduce the state-selection purity. We propose a scheme which can effectively reduce the chromatic aberration by changing the hexapole voltage operating manner. The hexapole is already charged before molecules arrive at the entrance of the hexapole. When molecules are completely inside the hexapole, the voltage is switched off rapidly at an appropriate time. In this manner, faster molecules travel a longer hexapole focusing region than slower molecules. Therefore the focusing positions of molecules with different velocities become close. Numerical trajectory simulations of molecular state selection are carried out, and the results show that this low chromatic aberration hexapole can significantly improve the state purity from 46.2% to 87.0%.
[Wave front aberrations -- practical conclusions in eye with Restor 3+ difractive multifocal lens].
Staicu, Corina; Moraru, Ozana; Moraru, Cristian
2014-01-01
Implantation of multifocal intraocular lenses has become a rutine nowadays, but achieving good visual results requires a perfect intraoperative technique and also an adequate preoperative selection of the patients. We analysed the wave front aberrations (spherical aberations, coma and astigmatism) in the eyes implanted with ReStor + 3 IOL, and we realized some clinical correlations of these aberations with the pupil diameter in scotopic and fotopic conditions, kappa angle, IOL centration, residual refraction errors postoperatively. Taking into account the causes of postoperative high order aberration will allow the surgeon to make a good selection of the patiens and to a higher degree of satisfaction of both sides.
Brief history of the Cambridge STEM aberration correction project and its progeny.
Brown, L Michael; Batson, Philip E; Dellby, Niklas; Krivanek, Ondrej L
2015-10-01
We provide a brief history of the project to correct the spherical aberration of the scanning transmission electron microscope (STEM) that started in Cambridge (UK) and continued in Kirkland (WA, USA), Yorktown Heights (NY, USA), and other places. We describe the project in the full context of other aberration correction research and related work, partly in response to the incomplete context presented in the paper "In quest of perfection in electron optics: A biographical sketch of Harald Rose on the occasion of his 80th birthday", recently published in Ultramicroscopy.
The ETE spherical Tokamak project
Ludwig, Gerson Otto; Andrade, Maria Celia Ramos de; Barbosa, Luis Filipe Wiltgen [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil). Lab. Associado de Plasma] [and others]. E-mail: ludwig@plasma.inpe.br
1999-07-01
This paper describes the general characteristics of spherical tokamaks, with a brief overview of work in the area of spherical torus already performed or in progress at several institutions. The paper presents also the historical development of the ETE (Spherical Tokamak Experiment) project, its research program, technical characteristics and status of construction in September, 1998 at the Associated plasma Laboratory (LAP) of the National Institute for Space Research (INPE) in Brazil. (author)
Spherical tokamak development in Brazil
Ludwig, Gerson Otto; Bosco, Edson Del; Ferreira, Julio Guimaraes [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil). Lab. Associado de Plasma] (and others)
2003-07-01
The general characteristics of spherical tokamaks, or spherical tori, with a brief view of work in this area already performed or in progress at several institutions worldwide are described. The paper presents also the steps in the development of the ETE (Experiment Tokamak spheric) project, its research program, technical characteristics and operating conditions as of December, 2002 a the Associated Plasma Laboratory (LAP) of the National Space Research Institute (INPE) in Brazil. (author)
Membrane based Deformable Mirror: Intrinsic aberrations and alignment issues
Bayanna, A Raja; Chatterjee, S; Mathew, Shibu K; Venkatakrishnan, P
2015-01-01
A Deformable Mirror (DM) is an important component of an Adaptive Optics system. It is known that an on-axis spherical/parabolic optical component, placed at an angle to the incident beam introduces defocus as well as astigmatism in the image plane. Although the former can be compensated by changing the focal plane position, the latter cannot be removed by mere optical re-alignment. Since the DM is to be used to compensate a turbulence-induced curvature term in addition to other aberrations, it is necessary to determine the aberrations induced by such (curved DM surface) an optical element when placed at an angle (other than 0 degree) of incidence in the optical path. To this effect, we estimate to a first order, the aberrations introduced by a DM as a function of the incidence angle and deformation of the DM surface. We record images using a simple setup in which the incident beam is reflected by a 37 channel Micro-machined Membrane Deformable Mirror for various angles of incidence. It is observed that astig...
Spherical artifacts on ferrograms
Jones, W. R., Jr.
1976-01-01
In the past, hollow spheres detected on ferrograms have been interpreted as being due to fretting, abrasion, cavitation erosion, and fatigue-related processes. Here it is reported that such spheres were found to result from the fact that a routine grinding operation on a steel plate was carried out about 20 feet away from the ferrograph. A similar grinding operation was performed on a piece of low carbon steel a few feet from the ferrograph, and after a few minutes of grinding, the resulting ferrogram contained thousands of particles of which more than 90% were spherical. Because of the widespread occurrence of ordinary grinding operations, it seems prudent that those utilizing the ferrograph be cognizant of this type of artifact.
Antimutagenic potential of curcumin on chromosomal aberrations in Allium cepa
RAGUNATHAN Irulappan; PANNEERSELVAM Natarajan
2007-01-01
Turmeric has long been used as a spice and food colouring agent in Asia. In the present investigation, the antimutagenic potential of curcumin was evaluated in Allium cepa root meristem cells. So far there is no report on the biological properties of curcumin in plant test systems. The root tip cells were treated with sodium azide at 200 and 300 μg/ml for 3 h and curcumin was given at 5, 10 and 20 μg/ml for 16 h, prior to sodium azide treatment. The tips were squashed after colchicine treatment and the cells were analyzed for chromosome aberration and mitotic index. Curcumin induces chromosomal aberration in Allium cepa root tip cells in an insignificant manner, when compared with untreated control. Sodium azide alone induces chromosomal aberrations significantly with increasing concentrations. The total number of aberrations was significantly reduced in root tip cells pretreated with curcumin. The study reveals that curcumin has antimutagenic potential against sodium azide induced chromosomal aberrations in Allium cepa root meristem cells. In addition, it showed mild cytotoxicity by reducing the percentage of mitotic index in all curcumin treated groups, but the mechanism of action remains unknown. The antimutagenic potential of curcumin is effective at 5 μg/ml in Allium cepa root meristem cells.
Spherical grating spectrometers
O'Donoghue, Darragh; Clemens, J. Christopher
2014-07-01
We describe designs for spectrometers employing convex dispersers. The Offner spectrometer was the first such instrument; it has almost exclusively been employed on satellite platforms, and has had little impact on ground-based instruments. We have learned how to fabricate curved Volume Phase Holographic (VPH) gratings and, in contrast to the planar gratings of traditional spectrometers, describe how such devices can be used in optical/infrared spectrometers designed specifically for curved diffraction gratings. Volume Phase Holographic gratings are highly efficient compared to conventional surface relief gratings; they have become the disperser of choice in optical / NIR spectrometers. The advantage of spectrometers with curved VPH dispersers is the very small number of optical elements used (the simplest comprising a grating and a spherical mirror), as well as illumination of mirrors off axis, resulting in greater efficiency and reduction in size. We describe a "Half Offner" spectrometer, an even simpler version of the Offner spectrometer. We present an entirely novel design, the Spherical Transmission Grating Spectrometer (STGS), and discuss exemplary applications, including a design for a double-beam spectrometer without any requirement for a dichroic. This paradigm change in spectrometer design offers an alternative to all-refractive astronomical spectrometer designs, using expensive, fragile lens elements fabricated from CaF2 or even more exotic materials. The unobscured mirror layout avoids a major drawback of the previous generation of catadioptric spectrometer designs. We describe laboratory measurements of the efficiency and image quality of a curved VPH grating in a STGS design, demonstrating, simultaneously, efficiency comparable to planar VPH gratings along with good image quality. The stage is now set for construction of a prototype instrument with impressive performance.
Spherical wave rotation in spherical near-field antenna measurements
Wu, Jian; Larsen, Flemming Holm; Lemanczyk, J.
1991-01-01
The rotation of spherical waves in spherical near-field antenna measurement is discussed. Considering the many difficult but interesting features of the rotation coefficients, an efficient rotation scheme is derived. The main feature of the proposed scheme is to ignore the calculation of the very...
Using geometric algebra to study optical aberrations
Hanlon, J.; Ziock, H.
1997-05-01
This paper uses Geometric Algebra (GA) to study vector aberrations in optical systems with square and round pupils. GA is a new way to produce the classical optical aberration spot diagrams on the Gaussian image plane and surfaces near the Gaussian image plane. Spot diagrams of the third, fifth and seventh order aberrations for square and round pupils are developed to illustrate the theory.
Phase Aberrations in Diffraction Microscopy
Marchesini, S; Chapman, H N; Barty, A; Howells, M R; Spence, J H; Cui, C; Weierstall, U; Minor, A M
2005-09-29
In coherent X-ray diffraction microscopy the diffraction pattern generated by a sample illuminated with coherent x-rays is recorded, and a computer algorithm recovers the unmeasured phases to synthesize an image. By avoiding the use of a lens the resolution is limited, in principle, only by the largest scattering angles recorded. However, the imaging task is shifted from the experiment to the computer, and the algorithm's ability to recover meaningful images in the presence of noise and limited prior knowledge may produce aberrations in the reconstructed image. We analyze the low order aberrations produced by our phase retrieval algorithms. We present two methods to improve the accuracy and stability of reconstructions.
Vibrations of moderately thick shallow spherical shells at large amplitudes
Sathyamoorthy, M.
1994-04-01
A shallow shell theory is presented for the geometrically nonlinear analysis of moderately thick isotropic spherical shells. Effects of transverse shear deformation and rotatory inertia are included in the governing equations of motion by means of tracing constants. When these effects are ignored, the governing equations readily reduce to those applicable for thin shallow spherical shells. Solutions to the system of thick shell equations are obtained by means of Galerkin's method and the numerical Runge-Kutta procedure. Numerical results are presented for certain cases of shallow spherical shells considering different geometric shell parameters. Transverse shear and rotatory inertia effects are found to be important in linear as well as nonlinear responses of shallow spherical shells. The nonlinear frequency-amplitude behavior is of the softening type for shallow spherical shells and of the hardening type for circular plates. Frequency ratios are lower at any given amplitude when the effects of transverse shear and rotatory inertia are included in the analysis.
Vause, Tricia; Martin, Garry L.; Yu, Dickie
1999-01-01
A study used the Assessment of Basic Learning Abilities to assess the abilities of three adults with mental retardation in order to reduce aberrant behavior. There was a higher frequency of aberrant responses during training sessions with training tasks above or below a participant's assessment level on the test. (Contains references.) (CR)
Aberration compensation and resolution improvement of focus modulation microscopy
Zheng, Juanjuan; Gao, Peng; Shao, Xiaopeng
2017-01-01
Confocal laser scanning microscopy (CLSM) has wide applications in biological research and medical diagnosis. However, the spatial resolution and signal to noise ratio (SNR) of CLSM is reduced in the presence of an aberration. Here we improve the pupil-segmentation method to measure and compensate for aberrations in focus modulation CLSM (FM-CLSM), which uses Gaussian-type and doughnut-like foci to scan a sample in sequence. As a result, FM-CLSM can provide images with a high resolution and a high SNR for biomedical or industrial applications.
Modeling of thermal processes in spherical area
Demyanchenko, O.; Lyashenko, V.
2016-10-01
In this paper a mathematical model of the temperature field in spherical area with complex conditions of heat exchange with the environment is considered. The solution of the nonlinear initial boundary value problem is reduced to the solution of the nonlinear integral equation of Fredholm type respect to spatial coordinates and Volterra with the kernel in the form of the Green's function on the time coordinate.
Interpolating Spherical Harmonics for Computing Antenna Patterns
2011-07-01
the specific radon-transform algorithms of ISAR. 28 References [1] Arfken , George [1970] Mathematical Methods for Physicists, second edi- tion...approximation methods . Section 2 sets out two antenna patterns to be tested in the spline algorithm. Section 3 reviews the spherical harmonic functions Y mn...number of samples on the sphere [12]. This compressed sensing result will not reduce the method of moment computations. All the current must be
Systematic Calibration for a Backpacked Spherical Photogrammetry Imaging System
Rau, J. Y.; Su, B. W.; Hsiao, K. W.; Jhan, J. P.
2016-06-01
A spherical camera can observe the environment for almost 720 degrees' field of view in one shoot, which is useful for augmented reality, environment documentation, or mobile mapping applications. This paper aims to develop a spherical photogrammetry imaging system for the purpose of 3D measurement through a backpacked mobile mapping system (MMS). The used equipment contains a Ladybug-5 spherical camera, a tactical grade positioning and orientation system (POS), i.e. SPAN-CPT, and an odometer, etc. This research aims to directly apply photogrammetric space intersection technique for 3D mapping from a spherical image stereo-pair. For this purpose, several systematic calibration procedures are required, including lens distortion calibration, relative orientation calibration, boresight calibration for direct georeferencing, and spherical image calibration. The lens distortion is serious on the ladybug-5 camera's original 6 images. Meanwhile, for spherical image mosaicking from these original 6 images, we propose the use of their relative orientation and correct their lens distortion at the same time. However, the constructed spherical image still contains systematic error, which will reduce the 3D measurement accuracy. Later for direct georeferencing purpose, we need to establish a ground control field for boresight/lever-arm calibration. Then, we can apply the calibrated parameters to obtain the exterior orientation parameters (EOPs) of all spherical images. In the end, the 3D positioning accuracy after space intersection will be evaluated, including EOPs obtained by structure from motion method.
SYSTEMATIC CALIBRATION FOR A BACKPACKED SPHERICAL PHOTOGRAMMETRY IMAGING SYSTEM
J. Y. Rau
2016-06-01
Full Text Available A spherical camera can observe the environment for almost 720 degrees’ field of view in one shoot, which is useful for augmented reality, environment documentation, or mobile mapping applications. This paper aims to develop a spherical photogrammetry imaging system for the purpose of 3D measurement through a backpacked mobile mapping system (MMS. The used equipment contains a Ladybug-5 spherical camera, a tactical grade positioning and orientation system (POS, i.e. SPAN-CPT, and an odometer, etc. This research aims to directly apply photogrammetric space intersection technique for 3D mapping from a spherical image stereo-pair. For this purpose, several systematic calibration procedures are required, including lens distortion calibration, relative orientation calibration, boresight calibration for direct georeferencing, and spherical image calibration. The lens distortion is serious on the ladybug-5 camera’s original 6 images. Meanwhile, for spherical image mosaicking from these original 6 images, we propose the use of their relative orientation and correct their lens distortion at the same time. However, the constructed spherical image still contains systematic error, which will reduce the 3D measurement accuracy. Later for direct georeferencing purpose, we need to establish a ground control field for boresight/lever-arm calibration. Then, we can apply the calibrated parameters to obtain the exterior orientation parameters (EOPs of all spherical images. In the end, the 3D positioning accuracy after space intersection will be evaluated, including EOPs obtained by structure from motion method.
Dynamic compensation of chromatic aberration in a programmable diffractive lens.
Millán, María S; Otón, Joaquín; Pérez-Cabré, Elisabet
2006-10-02
A proposal to dynamically compensate chromatic aberration of a programmable phase Fresnel lens displayed on a liquid crystal device and working under broadband illumination is presented. It is based on time multiplexing a set of lenses, designed with a common focal length for different wavelengths, and a tunable spectral filter that makes each sublens work almost monochromatically. Both the tunable filter and the sublens displayed by the spatial light modulator are synchronized. The whole set of sublenses are displayed within the integration time of the sensor. As a result the central order focalization has a unique location at the focal plane and it is common for all selected wavelengths. Transversal chromatic aberration of the polychromatic point spread function is reduced by properly adjusting the pupil size of each sublens. Longitudinal chromatic aberration is compensated by making depth of focus curves coincident for the selected wavelengths. Experimental results are in very good agreement with theory.
Effects of higher order aberrations on beam shape in an optical recording system
Wang, Mark S.; Milster, Tom D.
1992-01-01
An unexpected irradiance pattern in the detector plane of an optical data storage system was observed. Through wavefront measurement and scalar diffraction modeling, it was discovered that the energy redistribution is due to residual third-order and fifth-order spherical aberration of the objective lens and cover-plate assembly. The amount of residual aberration is small, and the beam focused on the disk would be considered diffraction limited by several criteria. Since the detector is not in the focal plane, even this small amount of aberration has a significant effect on the energy distribution. We show that the energy redistribution can adversely affect focus error signals, which are responsible for maintaining sub-micron spot diameters on the spinning disk.
Wang, Jinyu; Léger, Jean-François; Binding, Jonas; Boccara, A Claude; Gigan, Sylvain; Bourdieu, Laurent
2012-10-01
Aberrations limit the resolution, signal intensity and achievable imaging depth in microscopy. Coherence-gated wavefront sensing (CGWS) allows the fast measurement of aberrations in scattering samples and therefore the implementation of adaptive corrections. However, CGWS has been demonstrated so far only in weakly scattering samples. We designed a new CGWS scheme based on a Linnik interferometer and a SLED light source, which is able to compensate dispersion automatically and can be implemented on any microscope. In the highly scattering rat brain tissue, where multiply scattered photons falling within the temporal gate of the CGWS can no longer be neglected, we have measured known defocus and spherical aberrations up to a depth of 400 µm.
Spherical 3D isotropic wavelets
Lanusse, F.; Rassat, A.; Starck, J.-L.
2012-04-01
Context. Future cosmological surveys will provide 3D large scale structure maps with large sky coverage, for which a 3D spherical Fourier-Bessel (SFB) analysis in spherical coordinates is natural. Wavelets are particularly well-suited to the analysis and denoising of cosmological data, but a spherical 3D isotropic wavelet transform does not currently exist to analyse spherical 3D data. Aims: The aim of this paper is to present a new formalism for a spherical 3D isotropic wavelet, i.e. one based on the SFB decomposition of a 3D field and accompany the formalism with a public code to perform wavelet transforms. Methods: We describe a new 3D isotropic spherical wavelet decomposition based on the undecimated wavelet transform (UWT) described in Starck et al. (2006). We also present a new fast discrete spherical Fourier-Bessel transform (DSFBT) based on both a discrete Bessel transform and the HEALPIX angular pixelisation scheme. We test the 3D wavelet transform and as a toy-application, apply a denoising algorithm in wavelet space to the Virgo large box cosmological simulations and find we can successfully remove noise without much loss to the large scale structure. Results: We have described a new spherical 3D isotropic wavelet transform, ideally suited to analyse and denoise future 3D spherical cosmological surveys, which uses a novel DSFBT. We illustrate its potential use for denoising using a toy model. All the algorithms presented in this paper are available for download as a public code called MRS3D at http://jstarck.free.fr/mrs3d.html
Topological Lensing in Spherical Spaces
Gausmann, E; Luminet, Jean Pierre; Uzan, J P; Weeks, J; Gausmann, Evelise; Lehoucq, Roland; Luminet, Jean-Pierre; Uzan, Jean-Philippe; Weeks, Jeffrey
2001-01-01
This article gives the construction and complete classification of all three-dimensional spherical manifolds, and orders them by decreasing volume, in the context of multiconnected universe models with positive spatial curvature. It discusses which spherical topologies are likely to be detectable by crystallographic methods using three-dimensional catalogs of cosmic objects. The expected form of the pair separation histogram is predicted (including the location and height of the spikes) and is compared to computer simulations, showing that this method is stable with respect to observational uncertainties and is well suited for detecting spherical topologies.
A new aberration-corrected, energy-filtered LEEM/PEEM instrument II. Operation and results
Tromp, R.M., E-mail: rtromp@us.ibm.com [IBM T.J. Watson Research Center, 1101 Kitchawan Road, P.O. Box 218, Yorktown Heights, NY 10598 (United States); Hannon, J.B. [IBM T.J. Watson Research Center, 1101 Kitchawan Road, P.O. Box 218, Yorktown Heights, NY 10598 (United States); Wan, W. [Ernest Orlando Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Mailstop 80R0114, Berkeley, CA 94720 (United States); Berghaus, A.; Schaff, O. [SPECS GmbH, Voltastrasse 5, D-13355 Berlin (Germany)
2013-04-15
In Part I we described a new design for an aberration-corrected Low Energy Electron Microscope (LEEM) and Photo Electron Emission Microscope (PEEM) equipped with an in-line electron energy filter. The chromatic and spherical aberrations of the objective lens are corrected with an electrostatic electron mirror that provides independent control of the chromatic and spherical aberration coefficients C{sub c} and C{sub 3}, as well as the mirror focal length. In this Part II we discuss details of microscope operation, how the microscope is set up in a systematic fashion, and we present typical results. - Highlights: ► The C{sub c} and C{sub 3} aberrations of a LEEM/PEEM instrument are corrected with an electrostatic electron mirror. ► The mirror provides independent control over C{sub c}, C{sub 3} and focal length in close agreement with theory. ► A detailed alignment procedure for the corrected microscope is given. ► Novel methods to measure C{sub c} and C{sub 3} of the objective lens and the mirror are presented. ► We demonstrate a record spatial resolution of 2 nm.
Chromosome aberrations induced by zebularine in triticale.
Ma, Xuhui; Wang, Qing; Wang, Yanzhi; Ma, Jieyun; Wu, Nan; Ni, Shuang; Luo, Tengxiao; Zhuang, Lifang; Chu, Chenggen; Cho, Seong-Woo; Tsujimoto, Hisashi; Qi, Zengjun
2016-07-01
Chromosome engineering is an important approach for generating wheat germplasm. Efficient development of chromosome aberrations will facilitate the introgression and application of alien genes in wheat. In this study, zebularine, a DNA methylation transferase inhibitor, was successfully used to induce chromosome aberrations in the octoploid triticale cultivar Jinghui#1. Dry seeds were soaked in zebularine solutions (250, 500, and 750 μmol/L) for 24 h, and the 500 μmol/L treatment was tested in three additional treatment times, i.e., 12, 36, and 48 h. All treatments induced aberrations involving wheat and rye chromosomes. Of the 920 cells observed in 67 M1 plants, 340 (37.0%) carried 817 aberrations with an average of 0.89 aberrations per cell (range: 0-12). The aberrations included probable deletions, telosomes and acentric fragments (49.0%), large segmental translocations (28.9%), small segmental translocations (17.1%), intercalary translocations (2.6%), long chromosomes that could carry more than one centromere (2.0%), and ring chromosomes (0.5%). Of 510 M2 plants analyzed, 110 (21.6%) were found to carry stable aberrations. Such aberrations included 79 with varied rye chromosome numbers, 7 with wheat and rye chromosome translocations, 15 with possible rye telosomes/deletions, and 9 with complex aberrations involving variation in rye chromosome number and wheat-rye translocations. These indicated that aberrations induced by zebularine can be steadily transmitted, suggesting that zebularine is a new efficient agent for chromosome manipulation.
Spherical Helices for Resonant Wireless Power Transfer
Maja Škiljo
2013-01-01
Full Text Available The capabilities of electrically small spherical helical antennas for wireless power transmission at small and moderate distances are analyzed. Influence of design on antenna radiation resistance, efficiency, and mode ratio is examined. These are the factors that, according to the theoretical considerations depicted herein, govern the maximum transfer performances. Various designs and configurations are considered for the purpose, with accent on small-size receivers suitable for implementation in powering common-sized gadgets. It is shown that spherical helix design is easily manipulated to achieve a reduced antenna size. Good radiation characteristics and impedance match are maintained by multiple-arm folded antenna design and by adjusting the separation between the arms.
Spherical tokamak development in Brazil
Ludwig, G.O.; Del Bosco, E.; Ferreira, J.G.; Berni, L.A.; Oliveira, R.M.; Andrade, M.C.R.; Shibata, C.S.; Ueda, M.; Barroso, J.J.; Castro, P.J. [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil). Lab. Associado de Plasma; Barbosa, L.F.W. [Universidade do Vale do Paraiba (UNIVAP), Sao Jose dos Campos, SP (Brazil). Faculdade de Engenharia, Arquitetura e Urbanismo; Patire Junior, H. [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil). Div. de Mecanica Espacial e Controle; The high-power microwave sources group
2003-12-01
This paper describes the general characteristics of spherical tokamaks, or spherical tori, with a brief overview of work in this area already performed or in progress at several institutions worldwide. The paper presents also the steps in the development of the ETE (Experimento Tokamak Esferico) project, its research program, technical characteristics and operating conditions as of December, 2002 at the Associated Plasma Laboratory (LAP) of the National Space Research Institute (INPE) in Brazil. (author)
SPHERICAL SHOCK WAVES IN SOLIDS
Differential Equation of Self-Similar Motion; Application of the Theory of Self-Similar Motion to the Problem of Expansion of a Spherical...Self-Similar Solutions of the Problem of Cratering Due to Hypervelocity Impact, and Numerical Integration of the Differential Equation of Spherical...Aluminum, Blast Waves in Other Metals; and Consideration of the Non-Similar Aspects of the Blast Wave Problem ; Experimental Procedure and Results; Singular Point of Ordinary Differential Equations; Numerical Program-Fortran
Adaptive and aberrant reward prediction signals in the human brain
Roiser, Jonathan P.; Stephan, Klaas E.; den Ouden, Hanneke E.M.; Friston, Karl J.; Joyce, Eileen M.
2010-01-01
Theories of the positive symptoms of schizophrenia hypothesize a role for aberrant reinforcement signaling driven by dysregulated dopamine transmission. Recently, we provided evidence of aberrant reward learning in symptomatic, but not asymptomatic patients with schizophrenia, using a novel paradigm, the Salience Attribution Test (SAT). The SAT is a probabilistic reward learning game that employs cues that vary across task-relevant and task-irrelevant dimensions; it provides behavioral indices of adaptive and aberrant reward learning. As an initial step prior to future clinical studies, here we used functional magnetic resonance imaging to examine the neural basis of adaptive and aberrant reward learning during the SAT in healthy volunteers. As expected, cues associated with high relative to low reward probabilities elicited robust hemodynamic responses in a network of structures previously implicated in motivational salience; the midbrain, in the vicinity of the ventral tegmental area, and regions targeted by its dopaminergic projections, i.e. medial dorsal thalamus, ventral striatum and prefrontal cortex (PFC). Responses in the medial dorsal thalamus and polar PFC were strongly correlated with the degree of adaptive reward learning across participants. Finally, and most importantly, differential dorsolateral PFC and middle temporal gyrus (MTG) responses to cues with identical reward probabilities were very strongly correlated with the degree of aberrant reward learning. Participants who showed greater aberrant learning exhibited greater dorsolateral PFC responses, and reduced MTG responses, to cues erroneously inferred to be less strongly associated with reward. The results are discussed in terms of their implications for different theories of associative learning. PMID:19969090
Spherical 3D Isotropic Wavelets
Lanusse, F; Starck, J -L
2011-01-01
Future cosmological surveys will provide 3D large scale structure maps with large sky coverage, for which a 3D Spherical Fourier-Bessel (SFB) analysis in is natural. Wavelets are particularly well-suited to the analysis and denoising of cosmological data, but a spherical 3D isotropic wavelet transform does not currently exist to analyse spherical 3D data. The aim of this paper is to present a new formalism for a spherical 3D isotropic wavelet, i.e. one based on the Fourier-Bessel decomposition of a 3D field and accompany the formalism with a public code to perform wavelet transforms. We describe a new 3D isotropic spherical wavelet decomposition based on the undecimated wavelet transform (UWT) described in Starck et al. 2006. We also present a new fast Discrete Spherical Fourier-Bessel Transform (DSFBT) based on both a discrete Bessel Transform and the HEALPIX angular pixelisation scheme. We test the 3D wavelet transform and as a toy-application, apply a denoising algorithm in wavelet space to the Virgo large...
The misalignment induced aberrations of TMA telescopes.
Thompson, Kevin P; Schmid, Tobias; Rolland, Jannick P
2008-12-08
The next major space-borne observatory, the James Webb Space Telescope, will be a 6.6M field-biased, obscured, three-mirror anastigmat (TMA). Over the used field of view, the performance of TMA telescopes is dominated by 3(rd) order misalignment aberrations. Here it is shown that two dominant 3(rd) order misalignment aberrations arise for any TMA telescope. One aberration, field constant 3(rd) order coma is a well known misalignment aberration commonly seen in two-mirror Ritchey Chretien telescopes. The second aberration, field-asymmetric, field-linear, 3(rd) order astigmatism is a new and unique image orientation dependence with field derived here for the first time using nodal aberration theory.
Holographic Refraction and the Measurement of Spherical Ametropia.
Nguyen, Nicholas Hoai Nam
2016-10-01
To evaluate the performance of a holographic logMAR chart for the subjective spherical refraction of the human eye. Bland-Altman analysis was used to assess the level of agreement between subjective spherical refraction using the holographic logMAR chart and conventional autorefraction and subjective spherical refraction. The 95% limits of agreement (LoA) were calculated between holographic refraction and the two standard methods (subjective and autorefraction). Holographic refraction has a lower mean spherical refraction when compared to conventional refraction (LoA 0.11 ± 0.65 D) and when compared to autorefraction (LoA 0.36 ± 0.77 D). After correcting for systemic bias, this is comparable between autorefraction and conventional subjective refraction (LoA 0.45 ± 0.79 D). After correcting for differences in vergence distance and chromatic aberration between holographic and conventional refraction, approximately 65% (group 1) of measurements between holography and conventional subjective refraction were similar (MD = 0.13 D, SD = 0.00 D). The remaining 35% (group 2) had a mean difference of 0.45 D (SD = 0.12 D) between the two subjective methods. Descriptive statistics showed group 2's mean age (21 years, SD = 13 years) was considerably lower than group 1's mean age (41 years, SD = 17), suggesting accommodation may have a role in the greater mean difference of group 2. Overall, holographic refraction has good agreement with conventional refraction and is a viable alternative for spherical subjective refraction. A larger bias between holographic and conventional refraction was found in younger subjects than older subjects, suggesting an association between accommodation and myopic over-correction during holographic refraction.
Chromatic aberration measurement for transmission interferometric testing.
Seong, Kibyung; Greivenkamp, John E
2008-12-10
A method of chromatic aberration measurement is described based on the transmitted wavefront of an optical element obtained from a Mach-Zehnder interferometer. The chromatic aberration is derived from transmitted wavefronts measured at five different wavelengths. Reverse ray tracing is used to remove induced aberrations associated with the interferometer from the measurement. In the interferometer, the wavefront transmitted through the sample is tested against a plano reference, allowing for the absolute determination of the wavefront radius of curvature. The chromatic aberrations of a singlet and a doublet have been measured.
Earth Sphericity Effects on Subduction Morphology
Morra, G.; Chatelain, P.; Tackley, P.; Koumoutsakos, P.
2007-12-01
We present here the first application in Geodynamics of a Multipole accelerated Boundary Element Method (FMM- BEM) for Stokes Flow. The approach offers the advantage of a reduced number of computational elements and linear scaling with the problem size. We show that this numerical mehod can be fruitfully applied to the simulation of several geodynamic systems at the planetary scale in spheical coordinates and we suggest a general appraoch for modeling combined mantle convection and plate tectonics. The potentialities of the approach are shown investigating the effect played by Earth sphericity on the subduction of a very wide oceanic lithosphere , comparing the morphology of the subducted lithosphere in a spherical and in flat setting. The results show a striking difference between the two models: while the slab on a "flat Earth" shows slight undulation, the same subducting plate on a spherical Earth-like setting presents a distinct folding below the trench far from the edges, with wavelength of (1000km-2000km) as Pacific trenches.
Zheng, C.L. [Monash Centre for Electron Microscopy, Monash University, Victoria 3800 (Australia); Etheridge, J., E-mail: joanne.etheridge@monash.edu [Monash Centre for Electron Microscopy, Monash University, Victoria 3800 (Australia); Department of Materials Engineering, Monash University, Victoria 3800 (Australia)
2013-02-15
A simple method is described for the accurate and precise measurement of chromatic aberration under electron-optical conditions pertinent to scanning transmission electron microscopy (STEM) and scanning confocal electron microscopy (SCEM). The method requires only the measurement of distances in a coherent CBED pattern and knowledge of the electron wavelength and the lattice spacing of a calibration specimen. The chromatic aberration of a spherical-aberration corrected 300 kV thermal field emission TEM is measured in STEM and SCEM operating modes and under different condenser lens settings. The effect of the measured chromatic aberrations on the 3 dimensional intensity distribution of the electron probe is also considered. - Highlights: ► A method is presented to measure chromatic aberration (C{sub c}) using coherent CBED. ► The C{sub c} of the probe and imaging lens systems in STEM and SCEM modes is measured in a C{sub 3}-corrected S/TEM. ► The effect of the measured C{sub c} on the depth resolution in STEM is simulated for different energy spreads.
Marcus, B A; Vollmer, T R
1996-01-01
Research has shown that noncontingent reinforcement (NCR) can be an effective behavior-reduction procedure when based on a functional analysis. The effects of NCR may be a result of elimination of the contingency between aberrant behavior and reinforcing consequences (extinction) or frequent and free access to reinforcers that may reduce the participant's motivation to engage in aberrant behaviors or mands. If motivation is momentarily reduced, behavior such as mands may not be sensitive to p...
Milking the spherical cow: on aspherical dynamics in spherical coordinates
Pontzen, Andrew; Teyssier, Romain; Governato, Fabio; Gualandris, Alessia; Roth, Nina; Devriendt, Julien
2015-01-01
Galaxies and the dark matter halos that host them are not spherically symmetric, yet spherical symmetry is a helpful simplifying approximation for idealised calculations and analysis of observational data. The assumption leads to an exact conservation of angular momentum for every particle, making the dynamics unrealistic. But how much does that inaccuracy matter in practice for analyses of stellar distribution functions, collisionless relaxation, or dark matter core-creation? We provide a general answer to this question for a wide class of aspherical systems; specifically, we consider distribution functions that are "maximally stable", i.e. that do not evolve at first order when external potentials (which arise from baryons, large scale tidal fields or infalling substructure) are applied. We show that a spherically-symmetric analysis of such systems gives rise to the false conclusion that the density of particles in phase space is ergodic (a function of energy alone). Using this idea we are able to demonstra...
Spherical harmonics in texture analysis
Schaeben, Helmut; van den Boogaart, K. Gerald
2003-07-01
The objective of this contribution is to emphasize the fundamental role of spherical harmonics in constructive approximation on the sphere in general and in texture analysis in particular. The specific purpose is to present some methods of texture analysis and pole-to-orientation probability density inversion in a unifying approach, i.e. to show that the classic harmonic method, the pole density component fit method initially introduced as a distinct alternative, and the spherical wavelet method for high-resolution texture analysis share a common mathematical basis provided by spherical harmonics. Since pole probability density functions and orientation probability density functions are probability density functions defined on the sphere Ω3⊂ R3 or hypersphere Ω4⊂ R4, respectively, they belong at least to the space of measurable and integrable functions L1( Ωd), d=3, 4, respectively. Therefore, first a basic and simplified method to derive real symmetrized spherical harmonics with the mathematical property of providing a representation of rotations or orientations, respectively, is presented. Then, standard orientation or pole probability density functions, respectively, are introduced by summation processes of harmonic series expansions of L1( Ωd) functions, thus avoiding resorting to intuition and heuristics. Eventually, it is shown how a rearrangement of the harmonics leads quite canonically to spherical wavelets, which provide a method for high-resolution texture analysis. This unified point of view clarifies how these methods, e.g. standard functions, apply to texture analysis of EBSD orientation measurements.
Spherical robot of combined type: Dynamics and control
Kilin, Alexander A.; Pivovarova, Elena N.; Ivanova, Tatyana B.
2015-11-01
This paper is concerned with free and controlled motions of a spherical robot of combined type moving by displacing the center of mass and by changing the internal gyrostatic momentum. Equations of motion for the nonholonomic model are obtained and their first integrals are found. Fixed points of the reduced system are found in the absence of control actions. It is shown that they correspond to the motion of the spherical robot in a straight line and in a circle. A control algorithm for the motion of the spherical robot along an arbitrary trajectory is presented. A set of elementary maneuvers (gaits) is obtained which allow one to transfer the spherical robot from any initial point to any end point.
张娄红; 陈琴珠; 邹慧君; 王建甫
2012-01-01
Based on ANSYS, a finite element analysis model of spherical roller bearing was established, for a contact problem simulation. By comparison, the results stress and deformation inloaded bearing showed good agreements with the analysis results by Hertz's contact theory. It provides the theoretical support for the finite element failure analysis of roller bearing. According to the failure analysis, the bearing structure can be improved.%基于ANSYS建立球面滚子轴承的有限元分析模型,对接触问题进行模拟,并将轴承承载过程中应力和变形结果与赫兹接触理论的分析结果进行对比,两者结果较为吻合,这对滚子轴承的有限元失效分析提供了理论支持,并根据应力分析结果对轴承进行改进.
Ya-Li; Zhang; Lei; Liu; Chang-Xia; Cui; Ming; Hu; Zhao-Na; Li; Li-Jun; Cao; Xiu-Hua; Jing; Guo-Ying; Mu
2014-01-01
AIM:To study the effects of different flap sizes on visual acuity, refractive outcomes, and aberrations after femtosecond laser for laser keratomileusis (LASIK). ·METHODS: In each of the forty patients enrolled, 1 eye was randomly assigned to receive treatment with a 8.1mm diameter corneal flap, defined as the small flap, while the other eye was treated with a 8.6mm diameter corneal flap, defined as the big flap. Refractive errors, visual acuity, and higher -order aberrations were compared between the two groups at week 1, month 1 and 3 postoperatively. · RESULTS: The postoperative refractive errors and visual acuity all conformed to the intended goal. Postoperative higher -order aberrations were increased, especially in spherical aberration (Z12) and vertical coma (Z7). There were no statistically significant differences between the two groups in terms of postoperative refractive errors, visual acuity, root mean square of total HOAs (HO -RMS), trefoil 30° (Z6), vertical coma (Z7), horizontal coma (Z8), trefoil 0° (Z9), and spherical aberration (Z12) at any point during the postoperative follow-up. ·CONCLUSION: Both the small and big flaps are safe and effective procedures to correct myopia, provided the exposure stroma meets the excimer laser ablations. The personalized size corneal flap is feasible, as we can design the size of corneal flap based on the principle that the corneal flap diameter should be equal to or greater than the sum of the maximum ablation diameter and apparatus error.
Psychometric Characteristics of the Aberrant Behavior Checklist.
Aman, Michael G.; And Others
1985-01-01
Information is presented on the psychometric characteristics of the Aberrant Behavior Checklist, a measure of psychotropic drug effects. Internal consistency and test-retest reliability of the checklist appeared very good. Interrater reliability was generally in the moderate range. In general, validity was established for most Aberrant Behavior…
Spherical membranes in Matrix theory
Kabat, D; Kabat, Daniel; Taylor, Washington
1998-01-01
We consider membranes of spherical topology in uncompactified Matrix theory. In general for large membranes Matrix theory reproduces the classical membrane dynamics up to 1/N corrections; for certain simple membrane configurations, the equations of motion agree exactly at finite N. We derive a general formula for the one-loop Matrix potential between two finite-sized objects at large separations. Applied to a graviton interacting with a round spherical membrane, we show that the Matrix potential agrees with the naive supergravity potential for large N, but differs at subleading orders in N. The result is quite general: we prove a pair of theorems showing that for large N, after removing the effects of gravitational radiation, the one-loop potential between classical Matrix configurations agrees with the long-distance potential expected from supergravity. As a spherical membrane shrinks, it eventually becomes a black hole. This provides a natural framework to study Schwarzschild black holes in Matrix theory.
Spherical Demons: Fast Surface Registration
Yeo, B.T. Thomas; Sabuncu, Mert; Vercauteren, Tom; Ayache, Nicholas; Fischl, Bruce; Golland, Polina
2009-01-01
We present the fast Spherical Demons algorithm for registering two spherical images. By exploiting spherical vector spline interpolation theory, we show that a large class of regularizers for the modified demons objective function can be efficiently implemented on the sphere using convolution. Based on the one parameter subgroups of diffeomorphisms, the resulting registration is diffeomorphic and fast – registration of two cortical mesh models with more than 100k nodes takes less than 5 minutes, comparable to the fastest surface registration algorithms. Moreover, the accuracy of our method compares favorably to the popular FreeSurfer registration algorithm. We validate the technique in two different settings: (1) parcellation in a set of in-vivo cortical surfaces and (2) Brodmann area localization in ex-vivo cortical surfaces. PMID:18979813
Kurt Hornik
2012-09-01
Full Text Available Clustering text documents is a fundamental task in modern data analysis, requiring approaches which perform well both in terms of solution quality and computational efficiency. Spherical k-means clustering is one approach to address both issues, employing cosine dissimilarities to perform prototype-based partitioning of term weight representations of the documents.This paper presents the theory underlying the standard spherical k-means problem and suitable extensions, and introduces the R extension package skmeans which provides a computational environment for spherical k-means clustering featuring several solvers: a fixed-point and genetic algorithm, and interfaces to two external solvers (CLUTO and Gmeans. Performance of these solvers is investigated by means of a large scale benchmark experiment.
Quantum Radiation of Uniformly Accelerated Spherical Mirrors
Frolov, V
2001-01-01
We study quantum radiation generated by a uniformly accelerated motion of small spherical mirrors. To obtain Green's function for a scalar massless field we use Wick's rotation. In the Euclidean domain the problem is reduced to finding an electric potential in 4D flat space in the presence of a metallic toroidal boundary. The latter problem is solved by a separation of variables. After performing an inverse Wick's rotation we obtain the Hadamard function in the wave-zone regime and use it to calculate the vacuum fluctuations and the vacuum expectation for the energy density flux in the wave zone.
[Spherical crystallization in pharmaceutical technology].
Szabóné, R P; Pintyéné, H K; Kása, P; Erös, I; Hasznosné, N M; Farkas, B
1998-03-01
Physical properties of crystals, such as size, crystal size distribution and morphology, may predetermine the usefulness of crystalline materials in many pharmaceutical application. The above properties can be regulated with the crystallization process. The spherical crystals are suitable for direct tablet-making because of their better flowability and compressibility properties. These crystals can be used in the filling of the capsule. In this work, the spherical crystals such as "single crystal", "poly-crystals" and agglomerates with other excipients are collected from the literature and the experimental results of the authors. A close cooperation between chemists and the pharmaceutical technologists can help for doing steps in this field.
Spherical agglomeration of acetylsalicylic acid
Polowczyk Izabela
2016-01-01
Full Text Available In this paper spherical agglomeration of acetylsalicylic acid was described. In the first step, the system of good and poor solvents as well as bridging liquid was selected. As a result of a preliminary study, ethyl alcohol, water and carbon tetrachloride were used as the good solvent, poor one, and bridging liquid, respectively. Then, the amount of acetylsalicylic acid and the ratio of the solvents as well as the volume of the bridging liquid were examined. In the last step, the agglomeration conditions, such as mixing intensity and time, were investigated. The spherical agglomerates obtained under optimum conditions could be subjected to a tableting process afterwards.
Basketballs as spherical acoustic cavities
Russell, Daniel A.
2010-06-01
The sound field resulting from striking a basketball is found to be rich in frequency content, with over 50 partials in the frequency range of 0-12 kHz. The frequencies are found to closely match theoretical expectations for standing wave patterns inside a spherical cavity. Because of the degenerate nature of the mode shapes, explicit identification of the modes is not possible without internal investigation with a microphone probe. A basketball proves to be an interesting application of a boundary value problem involving spherical coordinates.
Shearfree Spherically Symmetric Fluid Models
Sharif, M
2013-01-01
We try to find some exact analytical models of spherically symmetric spacetime of collapsing fluid under shearfree condition. We consider two types of solutions: one is to impose a condition on the mass function while the other is to restrict the pressure. We obtain totally of five exact models, and some of them satisfy the Darmois conditions.
Spherical Pendulum, Actions, and Spin
Richter, Peter H.; Dullin, Holger R.; Waalkens, Holger; Wiersig, Jan
1996-01-01
The classical and quantum mechanics of a spherical pendulum are worked out, including the dynamics of a suspending frame with moment of inertia θ. The presence of two separatrices in the bifurcation diagram of the energy-momentum mapping has its mathematical expression in the hyperelliptic nature of
ALGORITHM FOR SPHERICITY ERROR AND THE NUMBER OF MEASURED POINTS
HE Gaiyun; WANG Taiyong; ZHAO Jian; YU Baoqin; LI Guoqin
2006-01-01
The data processing technique and the method determining the optimal number of measured points are studied aiming at the sphericity error measured on a coordinate measurement machine (CMM). The consummate criterion for the minimum zone of spherical surface is analyzed first, and then an approximation technique searching for the minimum sphericity error from the form data is studied. In order to obtain the minimum zone of spherical surface, the radial separation is reduced gradually by moving the center of the concentric spheres along certain directions with certain steps. Therefore the algorithm is precise and efficient. After the appropriate mathematical model for the approximation technique is created, a data processing program is developed accordingly. By processing the metrical data with the developed program, the spherical errors are evaluated when different numbers of measured points are taken from the same sample, and then the corresponding scatter diagram and fit curve for the sample are graphically represented. The optimal number of measured points is determined through regression analysis. Experiment shows that both the data processing technique and the method for determining the optimal number of measured points are effective. On average, the obtained sphericity error is 5.78 μm smaller than the least square solution,whose accuracy is increased by 8.63%; The obtained optimal number of measured points is half of the number usually measured.
Chromosome aberration assays in Allium
Grant, W.F.
1982-01-01
The common onion (Allium cepa) is an excellent plant for the assay of chromosome aberrations after chemical treatment. Other species of Allium (A. cepa var. proliferum, A. carinatum, A. fistulosum and A. sativum) have also been used but to a much lesser extent. Protocols have been given for using root tips from either bulbs or seeds of Allium cepa to study the cytological end-points, such as chromosome breaks and exchanges, which follow the testing of chemicals in somatic cells. It is considered that both mitotic and meiotic end-points should be used to a greater extent in assaying the cytogenetic effects of a chemical. From a literature survey, 148 chemicals are tabulated that have been assayed in 164 Allium tests for their clastogenic effect. Of the 164 assays which have been carried out, 75 are reported as giving a positive reaction, 49 positive and with a dose response, 1 positive and temperature-related, 9 borderline positive, and 30 negative; 76% of the chemicals gave a definite positive response. It is proposed that the Allium test be included among those tests routinely used for assessing chromosomal damage induced by chemicals.
On aberration in gravitational lensing
Sereno, M
2008-01-01
It is known that a relative translational motion between the deflector and the observer affects gravitational lensing. In this paper, a lens equation is obtained to describe such effects on actual lensing observables. Results can be easily interpreted in terms of aberration of light-rays. Both radial and transverse motions with relativistic velocities are considered. The lens equation is derived by first considering geodesic motion of photons in the rest-frame Schwarzschild spacetime of the lens, and, then, light-ray detection in the moving observer's frame. Due to the transverse motion images are displaced and distorted in the observer's celestial sphere, whereas the radial velocity along the line of sight causes an effective re-scaling of the lens mass. The Einstein ring is distorted to an ellipse whereas the caustics in the source plane are still point-like. Either for null transverse motion or up to linear order in velocities, the critical curve is still a circle with its radius corrected by a factor (1+z...
Natarajan, Adayapalam T., E-mail: natarajan@live.nl [University of Tuscia, Viterbo (Italy); Palitti, Fabrizio [University of Tuscia, Viterbo (Italy); Hill, Mark A. [CRUK/MRC Gray Institute for Radiation Oncology and Biology, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ (United Kingdom); MRC Radiation and Genome Stability Unit, Harwell, Oxfordshire OX11 0RD (United Kingdom); Stevens, David L. [MRC Radiation and Genome Stability Unit, Harwell, Oxfordshire OX11 0RD (United Kingdom); Ahnstroem, Gunnar [Department of Microbiology and Genetic Toxicology, Stockholm University, Stockholm (Sweden)
2010-09-10
Ultrasoft X-rays have been shown to be very efficient in inducing chromosomal aberrations in mammalian cells. The present study was aimed to evaluate the modifying effects of DMSO (a potent scavenger of free radicals) on the frequencies of chromosome aberrations induced by soft X-rays. Confluent held G1 Chinese hamster cells (V79) were irradiated with Carbon K ultrasoft X-rays in the presence and absence of 1 M DMSO and frequencies of chromosome aberrations in the first division cells were determined. DMSO reduced the frequencies of exchange types of aberrations (dicentrics and centric rings) by a factor of 2.1-3.5. The results indicate that free radicals induced by ultrasoft X-rays contribute to a great extent to the induction of chromosome aberrations. The possible implications of these results in interpreting the mechanisms involved in the high efficiency of ultrasoft X-rays in the induction of chromosome aberrations are discussed.
Lehtinen, Ossi, E-mail: ossi.lehtinen@gmail.com [Central Facility for Electron Microscopy, Group of Electron Microscopy of Materials Science, University of Ulm, 89081 Ulm (Germany); Geiger, Dorin; Lee, Zhongbo [Central Facility for Electron Microscopy, Group of Electron Microscopy of Materials Science, University of Ulm, 89081 Ulm (Germany); Whitwick, Michael Brian; Chen, Ming-Wei; Kis, Andras [Electrical Engineering Institute, Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland); Kaiser, Ute [Central Facility for Electron Microscopy, Group of Electron Microscopy of Materials Science, University of Ulm, 89081 Ulm (Germany)
2015-04-15
Here, we present a numerical post-processing method for removing the effect of anti-symmetric residual aberrations in high-resolution transmission electron microscopy (HRTEM) images of weakly scattering 2D-objects. The method is based on applying the same aberrations with the opposite phase to the Fourier transform of the recorded image intensity and subsequently inverting the Fourier transform. We present the theoretical justification of the method, and its verification based on simulated images in the case of low-order anti-symmetric aberrations. Ultimately the method is applied to experimental hardware aberration-corrected HRTEM images of single-layer graphene and MoSe{sub 2} resulting in images with strongly reduced residual low-order aberrations, and consequently improved interpretability. Alternatively, this method can be used to estimate by trial and error the residual anti-symmetric aberrations in HRTEM images of weakly scattering objects.
Demonstrating optical aberrations in the laboratory
Naidoo, Darryl
2009-07-01
Full Text Available in the laboratory D. Naidoo1,2 , C. Mafusire1,2 and A. Forbes1,2 1 CSIR National Laser Centre 2 School of Physics, University of KwaZulu-Natal AN OPTICAL ABERRATION IS A DISTORTION OF AN IMAGE AS COMPARED TO THE OBJECT DUE TO DEFECTS IN AN OPTICAL SYSTEM TILT... COEFFICIENT ODDWEIGHTING EVEN ODD ABERRATION PHASE EVENWEIGHTING COEFFICIENT COEFFICIENT ZERNIKE POLYNOMIALS ARE FITTED TO 3-DIMENSIONAL DATA TO DESCRIBE THE ABERRATIONS OF WAVEFRONT MEASUREMENTS IMPORTANT ELEMENTS OF DESIGN INCLUDE A LENSLET ARRAY...
Chromosomal Aberrations in Humans Induced by Urban Air Pollution
Knudsen, Lisbeth E.; Norppa, Hannu; Gamborg, Michael O.
1999-01-01
We have studied the influence of individual susceptibility factors on the genotoxic effects of urban air pollution in 106 nonsmoking bus drivers and 101 postal workers in the Copenhagen metropolitan area. We used the frequency of chromosomal aberrations in peripheral blood lymphocytes...... that long-term exposure to urban air pollution (with traffic as the main contributor) induces chromosome damage in human somatic cells. Low DNA repair capacity and GSTM1 and NAT2 variants associated with reduced detoxification ability increase susceptibility to such damage. The effect of the GSTM1 genotype......, which was observed only in the bus drivers, appears to be associated with air pollution, whereas the NAT2 genotype effect, which affected all subjects, may influence the individual response to some other common exposure or the baseline level of chromosomal aberrations....
Aberrant hippocampal neurogenesis contributes to epilepsy and associated cognitive decline.
Cho, Kyung-Ok; Lybrand, Zane R; Ito, Naoki; Brulet, Rebecca; Tafacory, Farrah; Zhang, Ling; Good, Levi; Ure, Kerstin; Kernie, Steven G; Birnbaum, Shari G; Scharfman, Helen E; Eisch, Amelia J; Hsieh, Jenny
2015-03-26
Acute seizures after a severe brain insult can often lead to epilepsy and cognitive impairment. Aberrant hippocampal neurogenesis follows the insult but the role of adult-generated neurons in the development of chronic seizures or associated cognitive deficits remains to be determined. Here we show that the ablation of adult neurogenesis before pilocarpine-induced acute seizures in mice leads to a reduction in chronic seizure frequency. We also show that ablation of neurogenesis normalizes epilepsy-associated cognitive deficits. Remarkably, the effect of ablating adult neurogenesis before acute seizures is long lasting as it suppresses chronic seizure frequency for nearly 1 year. These findings establish a key role of neurogenesis in chronic seizure development and associated memory impairment and suggest that targeting aberrant hippocampal neurogenesis may reduce recurrent seizures and restore cognitive function following a pro-epileptic brain insult.
Caporossi, Aldo; Casprini, Fabrizio; Martone, Gianluca; Balestrazzi, Angelo; Tosi, Gian Marco; Ciompi, Leonardo
2009-07-01
To compare the quality of vision with aspheric and spherical intraocular lenses (IOLs) in pseudophakic patients after long-term follow-up. Two hundred eyes of 100 patients with bilateral cataracts were randomly assigned to receive spherical (Acrysof SN60AT [Alcon Laboratories Inc] or Sensar AR40e [Advanced Medical Optics Inc]) or aspheric IOLs (Acrysof SN60WF [Alcon] or Tecnis Z9000 [Advanced Medical Optics]). Ophthalmologic examination, including best spectacle-corrected visual acuity (BSCVA), pupil size, ocular dominance, contrast sensitivity under mesopic and photopic conditions, and wavefront analysis, was performed 2 months and 1 and 2 years after surgery. No statistically significant differences among the four groups in terms of age, pupil diameter, postoperative BSCVA, comeal spherical aberration, and posterior capsular opacification were noted. At all followup examinations, contrast sensitivity results showed no significant differences between the two aspheric IOLs at all spatial frequencies. Under photopic conditions, significant differences (P<.05) between spherical and aspheric IOLs were detected for spatial frequencies of 12 and 18 cycles per degree (cpd) at 2 months and 2 years and 12 cpd at 1 year. Under mesopic conditions, significant differences (P<.05) were detected between spherical and aspheric IOLs for all spatial frequencies at 2 months; all spatial frequencies except 18 cpd at 1 year; and spatial frequencies of 3, 12, and 18 cpd at 2 years. In addition, aspheric IOLs had statistical reductions in total spherical aberration at all follow-up examinations (P<.01). This study confirms that implantation of a modified aspheric IOL improves functional visual performance at 2 years postoperative.
Measuring higher order optical aberrations of the human eye: techniques and applications
L. Alberto V. Carvalho
2002-11-01
Full Text Available In the present paper we discuss the development of "wave-front", an instrument for determining the lower and higher optical aberrations of the human eye. We also discuss the advantages that such instrumentation and techniques might bring to the ophthalmology professional of the 21st century. By shining a small light spot on the retina of subjects and observing the light that is reflected back from within the eye, we are able to quantitatively determine the amount of lower order aberrations (astigmatism, myopia, hyperopia and higher order aberrations (coma, spherical aberration, etc.. We have measured artificial eyes with calibrated ametropia ranging from +5 to -5 D, with and without 2 D astigmatism with axis at 45º and 90º. We used a device known as the Hartmann-Shack (HS sensor, originally developed for measuring the optical aberrations of optical instruments and general refracting surfaces in astronomical telescopes. The HS sensor sends information to a computer software for decomposition of wave-front aberrations into a set of Zernike polynomials. These polynomials have special mathematical properties and are more suitable in this case than the traditional Seidel polynomials. We have demonstrated that this technique is more precise than conventional autorefraction, with a root mean square error (RMSE of less than 0.1 µm for a 4-mm diameter pupil. In terms of dioptric power this represents an RMSE error of less than 0.04 D and 5º for the axis. This precision is sufficient for customized corneal ablations, among other applications.
Automatic low-order aberration correction based on geometry optics: simulations
Yu, Xin; Dong, Lizhi; Liu, Yong; Yang, Ping; Tang, Guomao; Xu, Bing
2016-10-01
The slab laser is a promising architecture to achieve high beam quality and high power. By propagating the laser beams in zigzag geometries, the temperature gradient in the gain medium can be well averaged, and the beam quality in this direction can be excellent. However, the temperature gradient in the non-zigzag direction is not compensated, resulting in aberrations in this direction which lead to poorer beam quality. Among the overall aberrations, the main contributors are two low-order aberrations: astigmatism and defocus. These aberrations will magnify beam divergence angle and degrade beam quality. If the beam divergence angles in both directions are almost zero, the astigmatism and defocus are well corrected. Besides, the output beams of slab lasers are generally in a rectangular aperture with high aspect ratio (normally 1:10), which need to be reshaped into square in many applications. In this paper, a new method is proposed to correct low-order aberrations and reshape the beams of slab lasers. Three lenses are adapted, one is a spherical lens and the others are cylindrical lenses. These lenses work as a beam shaping system, which converts the beam from rectangular into square and the low-order aberrations are compensated simultaneously. Two wavefront sensors are used to detect input and output beam parameters. The initial size of the beam is 4mm×20mm, and peak to valley (PV) value of the wavefront is several tens of microns. Simulation results show that after correction, the dimension becomes 40mm×40mm, and peak to valley (PV) value of the wavefront is less than 1microns.
Flow cytometric detection of aberrant chromosomes
Gray, J.W.; Lucas, J.; Yu, L.C.; Langlois, R.
1983-05-11
This report describes the quantification of chromosomal aberrations by flow cytometry. Both homogeneously and heterogeneously occurring chromosome aberrations were studied. Homogeneously occurring aberrations were noted in chromosomes isolated from human colon carcinoma (LoVo) cells, stained with Hoechst 33258 and chromomycin A3 and analyzed using dual beam flow cytometry. The resulting bivariate flow karyotype showed a homogeneously occurring marker chromosome of intermediate size. Heterogeneously occurring aberrations were quantified by slit-scan flow cytometry in chromosomes isolated from control and irradiated Chinese hamster cells and stained with propidium iodide. Heterogeneously occurring dicentric chromosomes were detected by their shapes (two centrometers). The frequencies of such chromosomes estimated by slit-scan flow cytometry correlated well with the frequencies determined by visual microscopy.
Generalized pupil aberrations of optical imaging systems
Elazhary, Tamer T.
In this dissertation fully general conditions are presented to correct linear and quadratic field dependent aberrations that do not use any symmetry. They accurately predict the change in imaging aberrations in the presence of lower order field dependent aberrations. The definitions of the image, object, and coordinate system are completely arbitrary. These conditions are derived using a differential operator on the scalar wavefront function. The relationships are verified using ray trace simulations of a number of systems with varying degrees of complexity. The math is shown to be extendable to provide full expansion of the scalar aberration function about field. These conditions are used to guide the design of imaging systems starting with only paraxial surface patches, then growing freeform surfaces that maintain the analytic conditions satisfied for each point in the pupil. Two methods are proposed for the design of axisymmetric and plane symmetric optical imaging systems. Design examples are presented as a proof of the concept.
Developement of Spherical Polyurethane Beads
K. Maeda; H. Ohmori; H. Gyotoku
2005-01-01
@@ 1Results and Discussion We established a new method to produce the spherical polyurethane beads which have narrower distribution of particle size. This narrower distribution was achieved by the polyurethane prepolymer which contains ketimine as a blocked chain-extending agent. Firstly, the prepolymer is dispersed into the aqueous solution containing surfactant. Secondaly, water comes into the inside of prepolymer as oil phase. Thirdly, ketimine is hydrolyzed to amine, and amine reacts with prepolymer immediately to be polyurethane.Our spherical polyurethane beads are very suitable for automotive interior parts especially for instrument panel cover sheet producing under the slush molding method, because of good process ability, excellent durability to the sunlight and mechanical properties at low temperature. See Fig. 1 ,Fig. 2 and Fig. 3 (Page 820).
Miniaturization of Spherical Magnetodielectric Antennas
Hansen, Troels Vejle
The fundamental limitations in performance of electrically small antennas (ESAs) - and how far these may be approached - have been of great interest for over a century. Particularly over the past few decades, it has become increasingly relevant and important, to approach these limits in view...... to the important antenna parameters of radiation efficiency e and impedance bandwidth. For single-mode antennas the fundamental minimum Q is the Chu lower bound. In this Ph.D. dissertation, the topic is miniaturization of spherical antennas loaded by an internal magnetodielectric core. The goal is to determine......, quantify, and assess the effects of an internal material loading upon antenna performance, including its potentials towards miniaturization. Emphasis have been upon performing an exhaustive and exact analysis of rigorous validity covering a large class of spherical antennas. In the context of this study...
Geodesics of Spherical Dilaton Spacetimes
ZENG Yi; L(U) Jun-Li; WANG Yong-Jiu
2006-01-01
The properties of spherical dilaton black hole spacetimes are investigated through a study of their geodesies. The closed and non-closed orbits of test particles are analysed using the effective potential and phase-plane method. The stability and types of orbits are determined in terms of the energy and angular momentum of the test particles. The conditions of the existence of circular orbits for a spherical dilaton spacetime with an arbitrary dilaton coupling constant a are obtained. The properties of the orbits and in particular the position of the innermost stable circular orbit are compared to those of the Reissner-Nordstrom spacetime. The circumferential radius of innermost stable circular orbit and the corresponding angular momentum of the test particles increase for a≠0.
Binocular adaptive optics visual simulator: understanding the impact of aberrations on actual vision
Fernández, Enrique J.; Prieto, Pedro M.; Artal, Pablo
2010-02-01
A novel adaptive optics system is presented for the study of vision. The apparatus is capable for binocular operation. The binocular adaptive optics visual simulator permits measuring and manipulating ocular aberrations of the two eyes simultaneously. Aberrations can be corrected, or modified, while the subject performs visual testing under binocular vision. One of the most remarkable features of the apparatus consists on the use of a single correcting device, and a single wavefront sensor (Hartmann-Shack). Both the operation and the total cost of the instrument largely benefit from this attribute. The correcting device is a liquid-crystal-on-silicon (LCOS) spatial light modulator. The basic performance of the visual simulator consists in the simultaneous projection of the two eyes' pupils onto both the corrector and sensor. Examples of the potential of the apparatus for the study of the impact of the aberrations under binocular vision are presented. Measurements of contrast sensitivity with modified combinations of spherical aberration through focus are shown. Special attention was paid on the simulation of monovision, where one eye is corrected for far vision while the other is focused at near distance. The results suggest complex binocular interactions. The apparatus can be dedicated to the better understanding of the vision mechanism, which might have an important impact in developing new protocols and treatments for presbyopia. The technique and the instrument might contribute to search optimized ophthalmic corrections.
Feng, J.; Forest, E.; MacDowell, A. A.; Marcus, M.; Padmore, H.; Raoux, S.; Robin, D.; Scholl, A.; Schlueter, R.; Schmid, P.; Stöhr, J.; Wan, W.; Wei, D. H.; Wu, Y.
2005-04-01
A new ultrahigh-resolution photoemission electron microscope called PEEM3 is being developed at the advanced light source (ALS). An electron mirror combined with a sophisticated magnetic beam separator is used to provide simultaneous correction of spherical and chromatic aberrations. Installed on an elliptically polarized undulator beamline, PEEM3 will be operated with very high spatial resolution and high flux to study the composition, structure, electric and magnetic properties of complex materials.
On noncommutative spherically symmetric spaces
Buric, Maja [University of Belgrade, Faculty of Physics, P.O. Box 44, Belgrade (Serbia); Madore, John [Laboratoire de Physique Theorique, Orsay (France)
2014-03-15
Two families of noncommutative extensions are given of a general space-time metric with spherical symmetry, both based on the matrix truncation of the functions on the sphere of symmetry. The first family uses the truncation to foliate space as an infinite set of spheres, and it is of dimension four and necessarily time-dependent; the second can be time-dependent or static, is of dimension five, and uses the truncation to foliate the internal space. (orig.)
On noncommutative spherically symmetric spaces
Buric, Maja
2014-01-01
Two families of noncommutative extensions are given of a general space-time metric with spherical symmetry, both based on the matrix truncation of the functions on the sphere of symmetry. The first family uses the truncation to foliate space as an infinite set of spheres, is of dimension four and necessarily time-dependent; the second can be time-dependent or static, is of dimension five and uses the truncation to foliate the internal space.
Individual eye model based on wavefront aberration
Guo, Huanqing; Wang, Zhaoqi; Zhao, Qiuling; Quan, Wei; Wang, Yan
2005-03-01
Based on the widely used Gullstrand-Le Grand eye model, the individual human eye model has been established here, which has individual corneal data, anterior chamber depth and the eyeball depth. Furthermore, the foremost thing is that the wavefront aberration calculated from the individual eye model is equal to the eye's wavefront aberration measured with the Hartmann-shack wavefront sensor. There are four main steps to build the model. Firstly, the corneal topography instrument was used to measure the corneal surfaces and depth. And in order to input cornea into the optical model, high-order aspheric surface-Zernike Fringe Sag surface was chosen to fit the corneal surfaces. Secondly, the Hartmann-shack wavefront sensor, which can offer the Zernike polynomials to describe the wavefront aberration, was built to measure the wavefront aberration of the eye. Thirdly, the eye's axial lengths among every part were measured with A-ultrasonic technology. Then the data were input into the optical design software-ZEMAX and the crystalline lens's shapes were optimized with the aberration as the merit function. The individual eye model, which has the same wavefront aberrations with the real eye, is established.
Sevda Aydın Kurna
2012-03-01
Full Text Available Pur po se: Evaluation of the corneal high-order aberrations and visual quality changes after application of silicone hydrogel contact lenses in patients with corneal opacities due to various etiologies. Ma te ri al and Met hod: Fifteen eyes of 13 patients with corneal opacities were included in the study. During the ophthalmologic examination before and after contact lens application, visual acuity was measured with Snellen acuity chart and contrast sensitivity - with Bailey-Lowie Charts in letters. Aberrations were measured with corneal aberrometer (NIDEK Magellan Mapper under a naturally dilated pupil. Spherical aberration, coma, trefoil, irregular astigmatism and total high-order root mean square (RMS values were recorded. Measurements were repeated with balafilcon A lenses (PureVision 2 HD, B&L on all patients. Re sults: Patient age varied between 23 and 50 years. Two eyes had subepithelial infiltrates due to adenoviral keratitis, 1 had nebulae due to previous infections or trauma, and 2 had Salzmann’s nodular degeneration. We observed a mean increase of 1 line in visual acuity and 5 letters in contrast sensitivity with contact lenses versus glasses in the patients. Mean RMS values of spherical aberration, irregular astigmatism and total high-order aberrations decreased significantly with contact lenses. Dis cus si on: Silicone hydrogel soft contact lenses may improve visual quality by decreasing the corneal aberrations in patients with corneal opacities. (Turk J Ophthalmol 2012; 42: 97-102
Hossein-Babaei, Faraz; Koh, Ai Leen; Srinivasan, Kumar; Bertero, Gerardo A; Sinclair, Robert
2012-05-09
In perpendicular hard disk memory media, nanometric magnetic Co-rich grains are separated by a ∼1 nm thick nonmagnetic and preferably amorphous intergranular phase (IP). Attempts at observing the IP structure at high resolution using TEM have been obstructed by the superposition of lattice fringes from the crystalline grains extending into the IP region in images. Here we present the first images of a magnetic recording medium produced using a spherical aberration-corrected TEM showing the true amorphous IP structure in contrast to the crystalline grains, allowing the accurate determination of the grain-IP interface and the grain and IP dimensions. It is shown that these aberration-corrected TEM images are functionally superior for analyzing certain features of the ultrahigh capacity data recording media.
Aberration-free two-thin-lens systems based on negative-index materials
Lin Zhi-Li; Ding Jie-Chen; Zhang Pu
2008-01-01
Since the complete correction of all five monochromatic Seidel aberrations for a singlet lens with random shape or a two-thin-lens system is unprocurable merely by using the conventional positive-index materials both in theory and practice, this paper proposes that when one or both of the two lenses is/are made from negative-index materials, an imaging system composed of a pair of spherical thin lenses is possible to form a real image, in air, free from all five monochromatic Seidel aberrations. The calculated numerical solutions to the structural parameters of such lens systems possessing superior performance are provided and examples of them are illustrated for the given combinations of the two lenses' refractive indices, including an ultimately-remote imaging system.
Molecular Simulations using Spherical Harmonics
CAI, Wen-Sheng; XU, Jia-Wei; SHAO, Xue-Guang; MAIGRET, Bernard
2003-01-01
Computer-aided drug design is to develop a chemical that binds to a target macromolecule known to play a key role in a disease state. In recognition of ligands by their protein receptors,molecular surfaces are often used because they represent the interacting part of molecules and they should reflex the complementarity between ligand and receptor. However, assessing the surface complementarity by searching all relative position of two surfaces is often computationally expensive. The complementarity of lobe-hole is very important in protein-ligand interactions. Spherical harmonic models based on expansions of spherical harmonic functions were used as a fingerprint to approximate the binding cavity and the ligand, respectively. This defines a new way to identify the complementarity between lobes and holes. The advantage of this method is that two spherical harmonic surfaces to be compared can be defined separately. This method can be used as a filter to eliminate candidates among a large number of conformations, and it will speed up the docking procedure. Therefore, it is possible to select complementary ligands or complementary conformations of a ligand and the macromoleeules, by comparing their fingerprints previously stored in a database.
Wang, Peng; Qi, Jia; Liu, Zhengming; Liao, Yang; Chu, Wei; Cheng, Ya
2017-01-01
Writing optical waveguides with femtosecond laser pulses provides the capability of forming three-dimensional photonic circuits for manipulating light fields in both linear and nonlinear manners. To fully explore this potential, large depths of the buried waveguides in transparent substrates are often desirable to facilitate achieving vertical integration of waveguides in a multi-layer configuration, which, however, is hampered by rapidly degraded axial resolution caused by optical aberration. Here, we show that with the correction of the spherical aberration, polarization-independent waveguides can be inscribed in a nonlinear optical crystal lithium niobate (LN) at depths up to 1400 μm, which is more than one order of magnitude deeper than the waveguides written with aberration uncorrected femtosecond laser pulses. Our technique is beneficial for applications ranging from miniaturized nonlinear light sources to quantum information processing. PMID:28112246
Wang, Peng; Liu, Zhengming; Liao, Yang; Chu, Wei; Cheng, Ya
2016-01-01
Writing optical waveguides with femtosecond laser pulses provides the capability of forming three-dimensional photonic circuits for manipulating light fields in both linear and nonlinear manners. To fully explore this potential, large depths of the buried waveguides in transparent substrates are often desirable to facilitate achieving vertical integration of waveguides in a multi-layer configuration, which, however, is hampered by rapidly degraded axial resolution caused by optical aberration. Here, we show that with the correction of the spherical aberration, polarization-independent waveguides can be inscribed in a nonlinear optical crystal lithium niobate (LN) at depths up to 1.4 mm, which is more than one order of magnitude deeper than the waveguides written with aberration uncorrected femtosecond laser pulses. Our technique is beneficial for applications ranging from miniaturized nonlinear light sources to quantum information processing.
Yang, Bin; Wei, Yin; Chen, Xinhua; Tang, Minxue
2014-11-01
Membrane mirror with flexible polymer film substrate is a new-concept ultra lightweight mirror for space applications. Compared with traditional mirrors, membrane mirror has the advantages of lightweight, folding and deployable, low cost and etc. Due to the surface shape of flexible membrane mirror is easy to deviate from the design surface shape, it will bring wavefront aberration to the optical system. In order to solve this problem, a method of membrane mirror wavefront aberration correction based on the liquid crystal spatial light modulator (LCSLM) will be studied in this paper. The wavefront aberration correction principle of LCSLM is described and the phase modulation property of a LCSLM is measured and analyzed firstly. Then the membrane mirror wavefront aberration correction system is designed and established according to the optical properties of a membrane mirror. The LCSLM and a Hartmann-Shack sensor are used as a wavefront corrector and a wavefront detector, respectively. The detected wavefront aberration is calculated and converted into voltage value on LCSLM for the mirror wavefront aberration correction by programming in Matlab. When in experiment, the wavefront aberration of a glass plane mirror with a diameter of 70 mm is measured and corrected for verifying the feasibility of the experiment system and the correctness of the program. The PV value and RMS value of distorted wavefront are reduced and near diffraction limited optical performance is achieved. On this basis, the wavefront aberration of the aperture center Φ25 mm in a membrane mirror with a diameter of 200 mm is corrected and the errors are analyzed. It provides a means of correcting the wavefront aberration of membrane mirror.
Relativistic radiative transfer in relativistic spherical flows
Fukue, Jun
2017-02-01
Relativistic radiative transfer in relativistic spherical flows is numerically examined under the fully special relativistic treatment. We first derive relativistic formal solutions for the relativistic radiative transfer equation in relativistic spherical flows. We then iteratively solve the relativistic radiative transfer equation, using an impact parameter method/tangent ray method, and obtain specific intensities in the inertial and comoving frames, as well as moment quantities, and the Eddington factor. We consider several cases; a scattering wind with a luminous central core, an isothermal wind without a core, a scattering accretion on to a luminous core, and an adiabatic accretion on to a dark core. In the typical wind case with a luminous core, the emergent intensity is enhanced at the center due to the Doppler boost, while it reduces at the outskirts due to the transverse Doppler effect. In contrast to the plane-parallel case, the behavior of the Eddington factor is rather complicated in each case, since the Eddington factor depends on the optical depth, the flow velocity, and other parameters.
Rayleigh scattering of a spherical sound wave.
Godin, Oleg A
2013-02-01
Acoustic Green's functions for a homogeneous medium with an embedded spherical obstacle arise in analyses of scattering by objects on or near an interface, radiation by finite sources, sound attenuation in and scattering from clouds of suspended particles, etc. An exact solution of the problem of diffraction of a monochromatic spherical sound wave on a sphere is given by an infinite series involving products of Bessel functions and Legendre polynomials. In this paper, a simple, closed-form solution is obtained for scattering by a sphere with a radius that is small compared to the wavelength. Soft, hard, impedance, and fluid obstacles are considered. The solution is valid for arbitrary positions of the source and receiver relative to the scatterer. Low-frequency scattering is shown to be rather sensitive to boundary conditions on the surface of the obstacle. Low-frequency asymptotics of the scattered acoustic field are extended to transient incident waves. The asymptotic expansions admit an intuitive interpretation in terms of image sources and reduce to classical results in appropriate limiting cases.
Vogel, A; Nahen, K; Theisen, D; Birngruber, R; Thomas, R J; Rockwell, B A
1999-06-01
The influence of spherical aberrations on laser-induced plasma formation in water by 6-ns Nd:YAG laser pulses was investigated for focusing angles that are used in intraocular microsurgery. Waveform distortions of 5.5lambda and 18.5lambda between the optical axis and the 1/e(2) irradiance values of the laser beam were introduced by replacement of laser achromats in the delivery system by planoconvex lenses. Aberrations of 18.5lambda increased the energy threshold for plasma formation by a factor of 8.5 compared with the optimized system. The actual irradiance threshold for optical breakdown was determined from the threshold energy in the optimized system and the spot size measured with a knife-edge technique. For aberrations of 18.5lambda the irradiance threshold was 48 times larger than the actual threshold when it was calculated by use of the diffraction-limited spot size but was 35 times smaller when it was calculated by use of the measured spot size. The latter discrepancy is probably due to hot spots in the focal region of the aberrated laser beam. Hence the determination of the optical-breakdown threshold in the presence of aberrations leads to highly erroneous results. In the presence of aberrations the plasmas are as much as 3 times longer and the transmitted energy is 17-20 times higher than without aberrations. Aberrations can thus strongly compromise the precision and the safety of intraocular microsurgery. They can further account for a major part of the differences in the breakdown-threshold and the plasma-transmission values reported in previous investigations.
Optofluidic encapsulation of crystalline colloidal arrays into spherical membrane.
Kim, Shin-Hyun; Jeon, Seog-Jin; Yang, Seung-Man
2008-05-07
Double emulsion droplets encapsulating crystalline colloidal arrays (CCAs) with a narrow size distribution were produced using an optofluidic device. The shell phase of the double emulsion was a photocurable resin that was photopolymerized downstream of the fluidic channel within 1 s after drop generation. The present optofluidic synthesis scheme was very effective for fabricating highly monodisperse spherical CCAs that were made structurally stable by in situ photopolymerization of the encapsulating shells. The shell thickness and the number of core emulsion drops could be controlled by varying the flow rates of the three coflowing streams in the dripping regime. The spherical CCAs confined in the shell exhibited distinct diffraction patterns in the visible range, in contrast to conventional film-type CCAs. As a result of their structure, the spherical CCAs exhibited photonic band gaps for normal incident light independent of the position on the spherical surface. This property was induced by heterogeneous nucleation at the smooth wall of the spherical emulsion drop during crystallization into a face-centered cubic (fcc) structure. On the other hand, the solidified shells did not permit the penetration of ionic species, enabling the CCAs to maintain their structure in a continuous aqueous phase of high ionic strength for at least 1 month. In addition, the evaporation of water molecules inside the shell was slowed considerably when the core-shell microparticles were exposed to air: It took approximately 6 h for a suspension encapsulated in a thick shell to evaporate completely, which is approximately 1000 times longer than the evaporation time for water droplets with the same volume. Finally, the spherical CCAs additionally exhibited enhanced stability against external electric fields. The spherical geometry and high dielectric constant of the suspension contributed to reducing the electric field inside the shell, thereby inhibiting the electrophoretic movement of
High-order aberration control during exposure for leading-edge lithography projection optics
Ohmura, Yasuhiro; Tsuge, Yosuke; Hirayama, Toru; Ikezawa, Hironori; Inoue, Daisuke; Kitamura, Yasuhiro; Koizumi, Yukio; Hasegawa, Keisuke; Ishiyama, Satoshi; Nakashima, Toshiharu; Kikuchi, Takahisa; Onda, Minoru; Takase, Yohei; Nagahiro, Akimasa; Isago, Susumu; Kawahara, Hidetaka
2016-03-01
High throughput with high resolution imaging has been key to the development of leading-edge microlithography. However, management of thermal aberrations due to lens heating during exposure has become critical for simultaneous achievement of high throughput and high resolution. Thermal aberrations cause CD drift and overlay error, and these errors lead directly to edge placement errors (EPE). Management and control of high order thermal aberrations is a critical requirement. In this paper, we will show practical performance of the lens heating with dipole and other typical illumination conditions for finer patterning. We confirm that our new control system can reduce the high-order aberrations and enable critical-dimension uniformity CDU during the exposure.
Telecentric confocal optics for aberration correction of acousto-optic tunable filters.
Suhre, Dennis R; Denes, Louis J; Gupta, Neelam
2004-02-20
A telecentric confocal optical arrangement is presented that greatly reduces the diffraction aberrations of the acousto-optic tunable filter (AOTF). Analytical expressions for the aberrations were identified based on the fundamental properties of Bragg diffraction, and additional aberrations due to focusing through the AOTF were also included. The analysis was verified by use of a geometrical ray trace optical code, and an experimental AOTF system was analyzed. Considerable improvement in the potential spatial resolution is predicted with confocal optics, which could accommodate large pixel-limited image fields of greater than 10(6) pixels. When the image quality of the experimental system was assessed, the resolution was found to be improved by the confocal optics and was diffraction limited. Higher resolution could have been obtained with the use of larger optics to increase the throughput before being limited by the aberrations.
LI Li; CHEN Ying-Tian; HU Sen
2009-01-01
By using the derivative method, we obtained the same result with that of the previous work of Chen et al.in 2006.Different from the integral form, the derivative form of the surface expression published in this paper is derived from differential equation and based on the theory of non-imaging focusing heliostat proposed by Chen et al.in 2001.The comparison of the derivative form of fixed aberration correction surface has been made with that of integral form surface as well as that of spherical surface in concentrating the solar ray.
Effect of therapeutic hypothermia on chromosomal aberration in perinatal asphyxia
Bahubali D Gane
2016-01-01
Full Text Available Introduction: Perinatal asphyxia is a major cause for neonatal mortality and morbidity around the world. The reduction of O2results in the generation of reactive oxygen species which interact with nucleic acid and make alteration in the structure and functioning of the genome. We studied the effect of therapeutic hypothermia on chromosomes with karyotyping. Subjects and Methods: Babies in the hypothermia group were cooled for the first 72 h, using gel packs. Rectal temperature of 33–34°C was maintained. Blood sample was collected after completion of therapeutic hypothermia for Chromosomal analysis. It was done with IKAROS Karyotyping system, Metasystems, based on recommendations of International system of human cytogenetic nomenclature. Results: The median chromosomal aberration was lower in hypothermia [2(0-5] than control group [4(1-7] and chromatid breakage was commonest aberration seen. Chromosomal aberration was significantly higher in severe encephalopathy group than moderate encephalopathy group. Conclusion: We conclude that the TH significantly reduces DNA damage in perinatal asphyxia.
Genomic aberrations of BRCA1-mutated fallopian tube carcinomas.
Hunter, Sally M; Ryland, Georgina L; Moss, Phillip; Gorringe, Kylie L; Campbell, Ian G
2014-06-01
Intraepithelial carcinomas of the fallopian tube are putative precursors to high-grade serous carcinomas of the ovary and peritoneum. Molecular characterization of these early precursors is limited but could be the key to identifying tumor biomarkers for early detection. This study presents a genome-wide copy number analysis of occult fallopian tube carcinomas identified through risk-reducing prophylactic oophorectomy from three women with germline BRCA1 mutations, demonstrating that extensive genomic aberrations are already established at this early stage. We found no indication of a difference in the level of genomic aberration observed in fallopian tube carcinomas compared with high-grade serous ovarian carcinomas. These findings suggest that spread to the peritoneal cavity may require no or very little further tumor evolution, which raises the question of what is the real window of opportunity to detect high-grade serous peritoneal carcinoma arising from the fallopian tube before it spreads. Nonetheless, the similarity of the genomic aberrations to those observed in high-grade serous ovarian carcinomas suggests that genetic biomarkers identified in late-stage disease may be relevant for early detection.
Five hundred meter aperture spherical radio telescope (FAST)
NAN; Rendong
2006-01-01
Five hundred meter aperture spherical radio telescope (FAST) will be the largest radio telescope in the world. The innovative engineering concept and design pave a new road to realizing a huge single dish in the most effective way. Three outstanding features of the telescope are the unique karst depressions as the sites, the active main reflector which corrects spherical aberration on the ground to achieve full polarization and a wide band without involving a complex feed system, and the light focus cabin driven by cables and servomechanism plus a parallel robot as secondary adjustable system to carry the most precise parts of the receivers. Being the most sensitive radio telescope, FAST will enable astronomers to jumpstart many of the science goals, for example, the neutral hydrogen line surveying in distant galaxies out to very large redshifts, looking for the first shining star, detecting thousands of new pulsars, etc. Extremely interesting and exotic objects may yet await discovery by FAST. As a multi-science platform, the telescope will provide treasures to astronomers, as well as bring prosperity to other research, e.g. space weather study, deep space exploration and national security. The construction of FAST itself is expected to promote the development in high technology of relevant fields.
MODELING RESULTS FROM CESIUM ION EXCHANGE PROCESSING WITH SPHERICAL RESINS
Nash, C.; Hang, T.; Aleman, S.
2011-01-03
Ion exchange modeling was conducted at the Savannah River National Laboratory to compare the performance of two organic resins in support of Small Column Ion Exchange (SCIX). In-tank ion exchange (IX) columns are being considered for cesium removal at Hanford and the Savannah River Site (SRS). The spherical forms of resorcinol formaldehyde ion exchange resin (sRF) as well as a hypothetical spherical SuperLig{reg_sign} 644 (SL644) are evaluated for decontamination of dissolved saltcake wastes (supernates). Both SuperLig{reg_sign} and resorcinol formaldehyde resin beds can exhibit hydraulic problems in their granular (nonspherical) forms. SRS waste is generally lower in potassium and organic components than Hanford waste. Using VERSE-LC Version 7.8 along with the cesium Freundlich/Langmuir isotherms to simulate the waste decontamination in ion exchange columns, spherical SL644 was found to reduce column cycling by 50% for high-potassium supernates, but sRF performed equally well for the lowest-potassium feeds. Reduced cycling results in reduction of nitric acid (resin elution) and sodium addition (resin regeneration), therefore, significantly reducing life-cycle operational costs. These findings motivate the development of a spherical form of SL644. This work demonstrates the versatility of the ion exchange modeling to study the effects of resin characteristics on processing cycles, rates, and cold chemical consumption. The value of a resin with increased selectivity for cesium over potassium can be assessed for further development.
Sücattin İlker Kocamış
2014-05-01
Full Text Available Objectives: To study the effect of corneal collagen cross-linking on conus curvature and corneal aberrations in keratoconus. Materials and Methods: The medical records of thirty-seven eyes of 32 progressive keratoconus patients (17 male, 15 female, mean age: 22.13±4.64 years who had undergone corneal cross-linking were evaluated retrospectively. The change in refractive errors, visual acuity on Snellen charts, average keratometry, conus curvature, and corneal aberrations calculated at 6.00 mm pupil size throughout the follow-up time were compared with paired t-test. The correlation of the change in best-corrected visual acuity and in uncorrected visual acuity with the change of the parameters which had statistically significant difference at 18 months was studied with Pearson’s correlation analysis. Results: The best-corrected visual acuity, uncorrected visual acuity, spherical and cylindrical error, average keratometry, conus curvature, vertical coma, total corneal aberrations, total higher order aberrations had statistically significant difference at 18 postoperative months (p=0.001. Spherical aberration (p=0.95 and horizontal coma (p=0.78 did not show statistically significant difference at the end of follow-up. The change in uncorrected visual acuity correlated with change in conus curvature (r=-0.420, p=0.01 and change in cylindrical refraction (r=0.453, p=0.005 at 18 months. The change in best-corrected visual acuity correlated with change in total corneal aberrations (r=-0.490, p=0.002, vertical coma (r=0.408, p=0.01, average keratometry (r=-0.386, p=0.02, conus curvature (r=-0.381, p=0.02, and total higher order aberrations (r=-0.326, p=0.05 at 18 months. Conclusion: Corneal collagen cross-linking treatment applied to progressive keratoconus cases induces significant decrease in conus curvature, in total corneal aberrations, and in higher order aberrations, especially in vertical coma, and leads to a prominent visual acuity increase
Modeling and design of a multichannel chromatic aberration compensated imaging system
Belay, Gebirie Y.; Ottevaere, Heidi; Vervaeke, Michael; Van Erps, Jürgen; Thienpont, Hugo
2015-09-01
Conventional multichannel imaging systems comprise of many optical channels having similar imaging properties, namely field-of-view (FOV) and angular resolution/magnification. We demonstrated that the different optical channels can be designed such that each optical channel captures a different FOV and angular resolution compared to its neighboring channels. We designed and experimentally demonstrated a three-channel multiresolution imaging system where the first optical channel has the narrowest FOV (7°) and highest angular resolution (0.0096°) and the third optical channel has the widest FOV (80°) and lowest angular resolution (0.078°)1. The second optical channel has intermediate properties. The performance of the demonstrated three-channel imaging system however was affected by chromatic aberrations as it was designed for a single wavelength of 587.6 nm. The first optical channel was largely influenced by longitudinal chromatic aberration while the third channel by lateral chromatic aberration. Therefore, we have replaced the aspherical refractive lenses by hybrid lenses, which contain diffractive structures on top of their refractive surfaces, in the three-channel multiresolution imaging system to reduce its chromatic aberrations. The performance of the three channels with hybrid lenses is compared with those of the corresponding channels without hybrid lenses. The longitudinal color aberration of the first optical channel has been reduced from 1.7 mm to 0.2 mm; whereas the lateral color aberration of the third optical channel has been reduced from 250 μm to 14 μm. In conclusion, the hybrid lenses have reduced the chromatic aberrations of the three channels and extended the operating spectral range of the imaging system in the visible wavelength range.
A charged spherically symmetric solution
K Moodley; S D Maharaj; K S Govinder
2003-09-01
We ﬁnd a solution of the Einstein–Maxwell system of ﬁeld equations for a class of accelerating, expanding and shearing spherically symmetric metrics. This solution depends on a particular ansatz for the line element. The radial behaviour of the solution is fully speciﬁed while the temporal behaviour is given in terms of a quadrature. By setting the charge contribution to zero we regain an (uncharged) perfect ﬂuid solution found previously with the equation of state =+ constant, which is a generalisation of a stiff equation of state. Our class of charged shearing solutions is characterised geometrically by a conformal Killing vector.
Spherically symmetric scalar field collapse
Koyel Ganguly; Narayan Banerjee
2013-03-01
It is shown that a scalar field, minimally coupled to gravity, may have collapsing modes even when the energy condition is violated, that is, for ( + 3) < 0. This result may be useful in the investigation of the possible clustering of dark energy. All the examples dealt with have apparent horizons formed before the formation of singularity. The singularities formed are shell focussing in nature. The density of the scalar field distribution is seen to diverge at singularity. The Ricci scalar also diverges at the singularity. The interior spherically symmetric metric is matched with exterior Vaidya metric at the hypersurface and the appropriate junction conditions are obtained.
Cooperative effects in spherical spasers
Bordo, Vladimir
2017-01-01
a shell/core contains an arbitrarily large number of active molecules in the vicinity of a metallic core/shell. An essential aspect of the theory is an ab initio account of the feedback from the core/shell boundaries which significantly modifies the molecular dynamics. The theory provides rigorous, albeit......A fully analytical semiclassical theory of cooperative optical processes which occur in an ensemble of molecules embedded in a spherical core-shell nanoparticle is developed from first principles. Both the plasmonic Dicke effect and spaser generation are investigated for the designs in which...
Intermittency in spherical Couette dynamos
Raynaud, Raphaël; 10.1103/PhysRevE.87.033011
2013-01-01
We investigate dynamo action in three-dimensional numerical simulations of turbulent spherical Couette flows. Close to the onset of dynamo action, the magnetic field exhibits an intermittent behavior, characterized by a series of short bursts of the magnetic energy separated by low-energy phases. We show that this behavior corresponds to the so-called on-off intermittency. This behavior is here reported for dynamo action with realistic boundary conditions. We investigate the role of magnetic boundary conditions in this phenomenon.
Spherical Orbifolds for Cosmic Topology
Kramer, Peter
2012-01-01
Harmonic analysis is a tool to infer cosmic topology from the measured astrophysical cosmic microwave background CMB radiation. For overall positive curvature, Platonic spherical manifolds are candidates for this analysis. We combine the specific point symmetry of the Platonic manifolds with their deck transformations. This analysis in topology leads from manifolds to orbifolds. We discuss the deck transformations of the orbifolds and give basis functions for the harmonic analysis as linear combinations of Wigner polynomials on the 3-sphere. They provide new tools for detecting cosmic topology from the CMB radiation.
Mustafa Demir
2013-10-01
Full Text Available Purpose: To evaluate the effects of different lens designs on visual quality among soft spherical contact lens users. Material and Method: Forty eyes of twenty patients from our contact lens unit were included in this study. Refractive errors of the patients were between -0.50 and -6.0 diopters with 0.05. Total higher order aberration mean rms value was 0.29±0.10 µm without glasses, while it was 0.33±0.10 µm with Balafilcon A lenses and 0.31±0.10 µm with Senofilcon A lenses. Higher order aberration values measured after contact lens application did not show a significant difference for two contact lens designs (p>0.05. Discussion: High and low contrast sensitivity values were better with spectacles compared to contact lenses. We did not observe significant difference in higher order aberration values and visual quality between aspheric and spheric designed lenses. (Turk J Ophthalmol 2013; 43: 321-5
Scanning spherical tri-reflector antenna with a moving flat mirror
Shen, Bing; Stutzman, Warren L.
1995-03-01
Spherical reflector systems can achieve pattern scanning without rotation of the main reflector through the use of multiple subreflectors that can move. Also, two subreflectors can be shaped to correct for spherical aberration and to control the aperture distribution on the spherical main reflector. In a previous paper we introduced a method that offers both aperture phase and intensity control and scans the main beam without an accompanying movement of the illuminated area over main reflector. The method can overcome the poor aperture utilization problem common in spherical reflector antenna systems; however, it requires motion of the entire subreflector system, including the feed, during scan. In this paper we discuss a method that does not require motion of the subreflector system during scan. This method employs a flat mirror that creates a virtual image of the subreflector system. The motion of the subreflector system in the previous design is replaced by the motion of the virtual image that is controlled by the motion of the flat mirror. The new design offers simplified mechanical motion, while maintaining beam efficiency performance comparable to that of traditional spherical tri-reflector scanning antennas, but with some sacrifice in aperture efficiency and cross-polarization performance.
Ocular higher-order aberrations features analysis after corneal refractive surgery
WANG Yan; ZHAO Kan-xing; HE Ji-chang; JIN Ying; ZUO Tong
2007-01-01
Background The recent studies have shown that visual performance might be affected by the ocular aberration after the corneal refractive surgery, and try to minimize it. This study was to investigate the effects of photorefractive keratectomy (PRK) and laser in situ keratomileusis (LASIK) on the higher order of wavefront aberration and analysis of their characteristics.Method This prospective study involved 32 eyes with similar refractive powers (-5.0 D to -6.0 D preoperatively). LASIK and PRK were performed with the same parameters of 6 mm diameter optical zone and 7 mm diameter transition zone ablation. Wavefront aberrations were tested using a ray tracing technique preoperatively and 3 months postoperatively.Three measurements were obtained for each condition; the root mean squared wavefront error (RMS), values for overall wavefront aberrations and each order of the Zernike aberrations were analyzed using the Matlab software. The 2-tailed t test was used for statistical analysis.Results Overall higher order aberrations were increased from (0.55±0.26) μm preoperatively to (0.93±0.37) μm for PRK and (0.79±0.38) μm for LASIK postoperatively. This was a 1.69 fold increase in the PRK group (t=3.95, P＜0.001)and a 1.43 fold increase in the LASIK group (t=2.60, P＜0.05). At 3 months, the mean RMS value for higher-order (3rd to 6th) were significantly increased compared with the corresponding preoperative values (P＜0.05). The fourth order aberrations, spherical like aberration, were dominant by a 2.64 fold in PRK and a 2.31 fold in LASIK. Different influences of the PRK group and LASIK group were shown in the various zernike components. The statistically significant differences were seen in C40, C4+4, C5+1, C5+3, C5+5 and C6+2 of the PRK group and C3-3, C40, C5-5, C5+5, C6-2 of the LASIK group, which represents a 7.42, 3.58, 9.21, 2.72 and 5.3 fold increases in PRK group, and 6.40, 10.80, 11.06, 3.47 and 6.09 fold increases in LASIK group, respectively. C3
Dynamical systems and spherically symmetric cosmological models
He, Yanjing
2006-06-01
In this thesis we present a study of the timelike self-similar spherically symmetric cosmological models with two scalar fields with exponential potentials. We first define precisely the timelike self-similar spherically symmetric (TSS) spacetimes. We write the TSS metric in a conformally isometric form in a coordinate system adapted to the geometry of the spacetime manifold. In this coordinate system, both the metric functions of the TSS spacetimes and the potential functions of the scalar fields can be simplified to four undetermined functions of a single coordinate. As a result, the Einstein field equations reduce to an autonomous system of first-order ODEs and polynomial constraints in terms of these undetermined functions. By introducing new bounded variables as well as a new independent variable and solving the constraints, we are able to apply the theory of dynamical systems to study the properties of the TSS solutions. By finding invariant sets and associated monotonic functions, by applying the LaSalle Invariance Principle and the Monotonicity Principle, by applying the [straight phi] t -connected property of a limit set, and using other theorems, we prove that all of the TSS trajectories are heteroclinic trajectories. In addition, we conduct numerical simulations to confirm and support the qualitative analysis. We obtain all possible types of TSS solutions, by analyzing the qualitative behavior of the original system of ODES from those of the reduced one. We obtain asymptotic expressions for the TSS solutions (e.g., the asymptotic expressions for the metric functions, the source functions and the Ricci scalar). In particular, self-similar flat Friedmann-Robertson-Walker spacetimes are examined in order to obtain insights into the issues related to the null surface in general TSS spacetimes in these coordinates. A discussion of the divergence of the spacetime Ricci scalar and the possible extension of the TSS solutions across the null boundary is presented
Properties of Fermion Spherical Harmonics
Hunter, G; Hunter, Geoffrey; Emami-Razavi, Mohsen
2005-01-01
The Fermion Spherical harmonics [$Y_\\ell^{m}(\\theta,\\phi)$ for half-odd-integer $\\ell$ and $m$ - presented in a previous paper] are shown to have the same eigenfunction properties as the well-known Boson Spherical Harmonics [$Y_\\ell^{m}(\\theta,\\phi)$ for integer $\\ell$ and $m$]. The Fermion functions are shown to differ from the Boson functions in so far as the ladder operators $M_+$ ($M_-$) that ascend (descend) the sequence of harmonics over the values of $m$ for a given value of $\\ell$, do not produce the expected result {\\em in just one case}: when the value of $m$ changes from $\\pm{1/2}$ to $\\mp{1/2}$; i.e. when $m$ changes sign; in all other cases the ladder operators produce the usually expected result including anihilation when a ladder operator attempts to take $m$ outside the range: $-\\ell\\le m\\le +\\ell$. The unexpected result in the one case does not invalidate this scalar coordinate representation of spin angular momentum, because the eigenfunction property is essential for a valid quantum mechani...
Progress in octahedral spherical hohlraum study
Ke Lan
2016-01-01
Full Text Available In this paper, we give a review of our theoretical and experimental progress in octahedral spherical hohlraum study. From our theoretical study, the octahedral spherical hohlraums with 6 Laser Entrance Holes (LEHs of octahedral symmetry have robust high symmetry during the capsule implosion at hohlraum-to-capsule radius ratio larger than 3.7. In addition, the octahedral spherical hohlraums also have potential superiority on low backscattering without supplementary technology. We studied the laser arrangement and constraints of the octahedral spherical hohlraums, and gave a design on the laser arrangement for ignition octahedral hohlraums. As a result, the injection angle of laser beams of 50°–60° was proposed as the optimum candidate range for the octahedral spherical hohlraums. We proposed a novel octahedral spherical hohlraum with cylindrical LEHs and LEH shields, in order to increase the laser coupling efficiency and improve the capsule symmetry and to mitigate the influence of the wall blowoff on laser transport. We studied on the sensitivity of the octahedral spherical hohlraums to random errors and compared the sensitivity among the octahedral spherical hohlraums, the rugby hohlraums and the cylindrical hohlraums, and the results show that the octahedral spherical hohlraums are robust to these random errors while the cylindrical hohlraums are the most sensitive. Up till to now, we have carried out three experiments on the spherical hohlraum with 2 LEHs on Shenguang(SG laser facilities, including demonstration of improving laser transport by using the cylindrical LEHs in the spherical hohlraums, spherical hohlraum energetics on the SGIII prototype laser facility, and comparisons of laser plasma instabilities between the spherical hohlraums and the cylindrical hohlraums on the SGIII laser facility.
Minimum Q circularly polarized electrically small spherical antennas
Kim, Oleksiy S.
2011-01-01
The radiation problem for the TM10- and TE10-mode electric current densities on the surface of a spherical magnetic-coated PEC core is solved analytically. The combination of the electric and magnetic dipole modes reduces the radiation Q of the antenna. Moreover, with an appropriately designed ma...... spherical helix antenna with a magnetic-coated PEC core radiating both TM10 and TE10 spherical modes exhibits a perfect circular polarization in almost all directions. The antenna is self-resonant with the radiation Q being 0.67QChu, or 1.27Qdual.......The radiation problem for the TM10- and TE10-mode electric current densities on the surface of a spherical magnetic-coated PEC core is solved analytically. The combination of the electric and magnetic dipole modes reduces the radiation Q of the antenna. Moreover, with an appropriately designed...... magnetic-coated PEC core the stored energies of these modes balance each other making the antenna self-resonant and at the same time ensuring a perfect circularly polarized radiation. Numerical results for a practical dual-mode electrically small antenna confirm the theoretical predictions. A 4-arm...
Asymptotic analysis of outwardly propagating spherical flames
Yun-Chao Wu; Zheng Chen
2012-01-01
Asymptotic analysis is conducted for outwardly propagating spherical flames with large activation energy.The spherical flame structure consists of the preheat zone,reaction zone,and equilibrium zone.Analytical solutions are separately obtained in these three zones and then asymptotically matched.In the asymptotic analysis,we derive a correlation describing the spherical flame temperature and propagation speed changing with the flame radius.This correlation is compared with previous results derived in the limit of infinite value of activation energy.Based on this correlation,the properties of spherical flame propagation are investigated and the effects of Lewis number on spherical flame propagation speed and extinction stretch rate are assessed.Moreover,the accuracy and performance of different models used in the spherical flame method are examined.It is found that in order to get accurate laminar flame speed and Markstein length,non-linear models should be used.
Energetic particles in spherical tokamak plasmas
McClements, K. G.; Fredrickson, E. D.
2017-05-01
Spherical tokamaks (STs) typically have lower magnetic fields than conventional tokamaks, but similar mass densities. Suprathermal ions with relatively modest energies, in particular beam-injected ions, consequently have speeds close to or exceeding the Alfvén velocity, and can therefore excite a range of Alfvénic instabilities which could be driven by (and affect the behaviour of) fusion α-particles in a burning plasma. STs heated with neutral beams, including the small tight aspect ratio tokamak (START), the mega amp spherical tokamak (MAST), the national spherical torus experiment (NSTX) and Globus-M, have thus provided an opportunity to study toroidal Alfvén eigenmodes (TAEs), together with higher frequency global Alfvén eigenmodes (GAEs) and compressional Alfvén eigenmodes (CAEs), which could affect beam current drive and channel fast ion energy into bulk ions in future devices. In NSTX GAEs were correlated with a degradation of core electron energy confinement. In MAST pulses with reduced magnetic field, CAEs were excited across a wide range of frequencies, extending to the ion cyclotron range, but were suppressed when hydrogen was introduced to the deuterium plasma, apparently due to mode conversion at ion-ion hybrid resonances. At lower frequencies fishbone instabilities caused fast particle redistribution in some MAST and NSTX pulses, but this could be avoided by moving the neutral beam line away from the magnetic axis or by operating the plasma at either high density or elevated safety factor. Fast ion redistribution has been observed during GAE avalanches on NSTX, while in both NSTX and MAST fast ions were transported by saturated kink modes, sawtooth crashes, resonant magnetic perturbations and TAEs. The energy dependence of fast ion redistribution due to both sawteeth and TAEs has been studied in Globus-M. High energy charged fusion products are unconfined in present-day STs, but have been shown in MAST to provide a useful diagnostic of beam ion
The ETE spherical Tokamak project. IAEA report
Ludwig, Gerson Otto; Del Bosco, E.; Berni, L.A.; Ferreira, J.G.; Oliveira, R.M.; Andrade, M.C.R.; Shibata, C.S.; Barroso, J.J.; Castro, P.J.; Patire Junior, H. [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil). Lab. Associado de Plasma]. E-mail: ludwig@plasma.inpe.br
2002-07-01
This paper describes the general characteristics of spherical tokamaks, or spherical tori, with a brief overview of work in this area already performed or in progress at several institutions worldwide. The paper presents also the historical development of the ETE (Spherical Tokamak Experiment) project, its research program, technical characteristics and operating conditions as of October, 2002 at the Associated Plasma Laboratory (LAP) of the National Space Research Institute (INPE) in Brazil. (author)
Bootstrap Current in Spherical Tokamaks
王中天; 王龙
2003-01-01
Variational principle for the neoclassical theory has been developed by including amomentum restoring term in the electron-electron collisional operator, which gives an additionalfree parameter maximizing the heat production rate. All transport coefficients are obtained in-cluding the bootstrap current. The essential feature of the study is that the aspect ratio affects thefunction of the electron-electron collision operator through a geometrical factor. When the aspectratio approaches to unity, the fraction of circulating particles goes to zero and the contribution toparticle flux from the electron-electron collision vanishes. The resulting diffusion coefficient is inrough agreement with Hazeltine. When the aspect ratio approaches to infinity, the results are inagreement with Rosenbluth. The formalism gives the two extreme cases a connection. The theoryis particularly important for the calculation of bootstrap current in spherical tokamaks and thepresent tokamaks, in which the square root of the inverse aspect ratio, in general, is not small.
Coning, symmetry and spherical frameworks
Schulze, Bernd
2011-01-01
In this paper, we combine separate works on (a) the transfer of infinitesimal rigidity results from an Euclidean space to the next higher dimension by coning, (b) the further transfer of these results to spherical space via associated rigidity matrices, and (c) the prediction of finite motions from symmetric infinitesimal motions at regular points of the symmetry-derived orbit rigidity matrix. Each of these techniques is reworked and simplified to apply across several metrics, including the Minkowskian metric $\\M^{d}$ and the hyperbolic metric $\\H^{d}$. This leads to a set of new results transferring infinitesimal and finite motions associated with corresponding symmetric frameworks among $\\E^{d}$, cones in $E^{d+1}$, $\\SS^{d}$, $\\M^{d}$, and $\\H^{d}$. We also consider the further extensions associated with the other Cayley-Klein geometries overlaid on the shared underlying projective geometry.
Libsharp - spherical harmonic transforms revisited
Reinecke, Martin
2013-01-01
We present libsharp, a code library for spherical harmonic transforms (SHTs), which evolved from the libpsht library, addressing several of its shortcomings, such as adding MPI support for distributed memory systems and SHTs of fields with arbitrary spin, but also supporting new developments in CPU instruction sets like the Advanced Vector Extensions (AVX) or fused multiply-accumulate (FMA) instructions. The library is implemented in portable C99 and provides an interface that can be easily accessed from other programming languages such as C++, Fortran, Python etc. Generally, libsharp's performance is at least on par with that of its predecessor; however, significant improvements were made to the algorithms for scalar SHTs, which are roughly twice as fast when using the same CPU capabilities. The library is available at http://sourceforge.net/projects/libsharp/ under the terms of the GNU General Public License.
Dielectric Response of Graded Spherical Composites
LI Zhi; WEI En-Bo; ZHANG Han-De; TIAN Ji-Wei
2005-01-01
@@ We investigate the effective dielectric responses of graded spherical composites under an external uniform electric field by taking the dielectric function of spherical inclusion, εi = crkeβr, where r is the inner distance of a point inside the particle from the centre of the spherical particle in the coordination. In the dilute limit, our exact result is used to test the validity of differential effective dipole approximation (DEDA) for estimating the effective response of graded spherical composites and it is shown that the DEDA is in excellent agreement with the exact result.
The geometry of spherical space form groups
Gilkey, Peter B
1989-01-01
In this volume, the geometry of spherical space form groups is studied using the eta invariant. The author reviews the analytical properties of the eta invariant of Atiyah-Patodi-Singer and describes how the eta invariant gives rise to torsion invariants in both K-theory and equivariant bordism. The eta invariant is used to compute the K-theory of spherical space forms, and to study the equivariant unitary bordism of spherical space forms and the Pin c and Spin c equivariant bordism groups for spherical space form groups. This leads to a complete structure theorem for these bordism and K-theor
Spherical Parameterization Balancing Angle and Area Distortions.
Nadeem, Saad; Su, Zhengyu; Zeng, Wei; Kaufman, Arie; Gu, Xianfeng
2017-06-01
This work presents a novel framework for spherical mesh parameterization. An efficient angle-preserving spherical parameterization algorithm is introduced, which is based on dynamic Yamabe flow and the conformal welding method with solid theoretic foundation. An area-preserving spherical parameterization is also discussed, which is based on discrete optimal mass transport theory. Furthermore, a spherical parameterization algorithm, which is based on the polar decomposition method, balancing angle distortion and area distortion is presented. The algorithms are tested on 3D geometric data and the experiments demonstrate the efficiency and efficacy of the proposed methods.
Explosive fragmentation of liquids in spherical geometry
Milne, A.; Longbottom, A.; Frost, D. L.; Loiseau, J.; Goroshin, S.; Petel, O.
2016-07-01
Rapid acceleration of a spherical shell of liquid following central detonation of a high explosive causes the liquid to form fine jets that are similar in appearance to the particle jets that are formed during explosive dispersal of a packed layer of solid particles. Of particular interest is determining the dependence of the scale of the jet-like structures on the physical parameters of the system, including the fluid properties (e.g., density, viscosity, and surface tension) and the ratio of the mass of the liquid to that of the explosive. The present paper presents computational results from a multi-material hydrocode describing the dynamics of the explosive dispersal process. The computations are used to track the overall features of the early stages of dispersal of the liquid layer, including the wave dynamics, and motion of the spall and accretion layers. The results are compared with new experimental results of spherical charges surrounded by a variety of different fluids, including water, glycerol, ethanol, and vegetable oil, which together encompass a significant range of fluid properties. The results show that the number of jet structures is not sensitive to the fluid properties, but primarily dependent on the mass ratio. Above a certain mass ratio of liquid fill-to-explosive burster (F / B), the number of jets is approximately constant and consistent with an empirical model based on the maximum thickness of the accretion layer. For small values of F / B, the number of liquid jets is reduced, in contrast with explosive powder dispersal, where small F / B yields a larger number of particle jets. A hypothetical explanation of these features based on the nucleation of cavitation is explored numerically.
Prenatal hydronephrosis caused by aberrant renal vessels
Lenz, K; Thorup, Jørgen Mogens; Rabol, A;
1996-01-01
With routine use of obstetric ultrasonography, fetal low-grade hydronephrosis is commonly detected, but may resolve spontaneously after birth. Two cases are presented to illustrate that in some cases such findings can express intermittent hydronephrosis caused by aberrant renal vessels. Renal...
The correction of electron lens aberrations
Hawkes, P.W., E-mail: peter.hawkes@cemes.fr
2015-09-15
The progress of electron lens aberration correction from about 1990 onwards is chronicled. Reasonably complete lists of publications on this and related topics are appended. A present for Max Haider and Ondrej Krivanek in the year of their 65th birthdays. By a happy coincidence, this review was completed in the year that both Max Haider and Ondrej Krivanek reached the age of 65. It is a pleasure to dedicate it to the two leading actors in the saga of aberration corrector design and construction. They would both wish to associate their colleagues with such a tribute but it is the names of Haider and Krivanek (not forgetting Joachim Zach) that will remain in the annals of electron optics, next to that of Harald Rose. I am proud to know that both regard me as a friend as well as a colleague. - Highlights: • Geometrical aberration correction. • Chromatic aberration correction. • 50 pm resolution. • High-resolution electron energy-loss spectroscopy. • Extensive bibliographies.
Functional Analysis and Treatment of Aberrant Behavior.
Mace, F. Charles; And Others
1991-01-01
This article reviews general classes of variables which help to maintain aberrant behavior including attention seeking, sensory and perceptual consequences, and access to materials or activities. Suggestions for a methodology providing a comprehensive functional analysis are offered which include descriptive analysis, hypothesis forming,…
Assessing the construct validity of aberrant salience.
Schmidt, Kristin; Roiser, Jonathan P
2009-01-01
We sought to validate the psychometric properties of a recently developed paradigm that aims to measure salience attribution processes proposed to contribute to positive psychotic symptoms, the Salience Attribution Test (SAT). The "aberrant salience" measure from the SAT showed good face validity in previous results, with elevated scores both in high-schizotypy individuals, and in patients with schizophrenia suffering from delusions. Exploring the construct validity of salience attribution variables derived from the SAT is important, since other factors, including latent inhibition/learned irrelevance (LIrr), attention, probabilistic reward learning, sensitivity to probability, general cognitive ability and working memory could influence these measures. Fifty healthy participants completed schizotypy scales, the SAT, a LIrr task, and a number of other cognitive tasks tapping into potentially confounding processes. Behavioural measures of interest from each task were entered into a principal components analysis, which yielded a five-factor structure accounting for approximately 75% of the variance in behaviour. Implicit aberrant salience was found to load onto its own factor, which was associated with elevated "Introvertive Anhedonia" schizotypy, replicating our previous finding. LIrr loaded onto a separate factor, which also included implicit adaptive salience, but was not associated with schizotypy. Explicit adaptive and aberrant salience, along with a measure of probabilistic learning, loaded onto a further factor, though this also did not correlate with schizotypy. These results suggest that the measures of LIrr and implicit adaptive salience might be based on similar underlying processes, which are dissociable both from implicit aberrant salience and explicit measures of salience.
[Aberrant pancreas with a double intestinal location].
Yenon, K; Lethurgie, C; Bokobza, B
2005-01-01
The authors report one exceptional case of aberrant pancreas with a double intestinal location (jejunum and Meckel's diverticulum) in a thirty-year-old patient. Digestive haemorrhage and the abdominal colic were the revealing clinical signs. The enteroscopy guided by the enteroscanner, was the indicated complementary investigation for the preoperative diagnosis. The research of other locations during the operation should be systematic.
Optical advantages of astigmatic aberration corrected heliostats
van Rooyen, De Wet; Schöttl, Peter; Bern, Gregor; Heimsath, Anna; Nitz, Peter
2016-05-01
Astigmatic aberration corrected heliostats adapt their shape in dependence of the incidence angle of the sun on the heliostat. Simulations show that this optical correction leads to a higher concentration ratio at the target and thus in a decrease in required receiver aperture in particular for smaller heliostat fields.
Quality factor of aberrated gaussian laser beams
Mafusire, C
2010-09-01
Full Text Available A model is used to calculate the beam quality factor of a laser beam from Zernike coefficients. It is tested by programming aberration coefficients on a laser beam and measuring the beam quality using a Shack-Hartmann wavefront sensor. The two show...
Anti-forensics of chromatic aberration
Mayer, Owen; Stamm, Matthew C.
2015-03-01
Over the past decade, a number of information forensic techniques have been developed to identify digital image manipulation and falsification. Recent research has shown, however, that an intelligent forger can use anti-forensic countermeasures to disguise their forgeries. In this paper, an anti-forensic technique is proposed to falsify the lateral chromatic aberration present in a digital image. Lateral chromatic aberration corresponds to the relative contraction or expansion between an image's color channels that occurs due to a lens's inability to focus all wavelengths of light on the same point. Previous work has used localized inconsistencies in an image's chromatic aberration to expose cut-and-paste image forgeries. The anti-forensic technique presented in this paper operates by estimating the expected lateral chromatic aberration at an image location, then removing deviations from this estimate caused by tampering or falsification. Experimental results are presented that demonstrate that our anti-forensic technique can be used to effectively disguise evidence of an image forgery.
Temporal and lateral electron pulse compression by a compact spherical electrostatic capacitor
Grzelakowski, Krzysztof P., E-mail: kgrzelakowski@op.pl [OPTICON Nanotechnology, Muchoborska 18, PL54-424 Wrocław (Poland); Tromp, Rudolf M. [IBM Research Division, T.J. Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, NY 10598 (United States)
2013-07-15
A novel solution for high intensity electron pulse compression in both space and time is proposed in this paper. Based on the unique properties of the central-force electrostatic field of a spherical electrostatic capacitor, the newly developed α-Spherical Deflector Analyzer (α-SDA) with 2π total deflection is utilized for the practical realization of femtosecond electron pulse compression. The mirror symmetry of the system at π deflection causes not only the cancellation of the geometrical and chromatic aberrations at 2π, but also leads to aberration-free time reversal of the electron pulse in the exit plane. As a consequence, the time-divergent electrons at the input are transformed to a time-convergent pulse at the output. In the symmetric case with the first time compression exactly at π, the shortest electron pulse behind the α-SDA analyzer is a mirror symmetric to the original electron pulse at the photocathode. It results in extremely short final electron pulses that are limited only by the duration of the laser pulse, the emittance of the electron bunch, and by imperfections of the real system. - Highlights: • We propose a new method for spatial and temporal compression of ultrafast electron pulses. • Compact in-line construction is based on the idea of the spherical electrostatic capacitor (α-SDA). • It is free of chromatic, geometrical and temporal aberrations after 2π deflection. • Contrary to other methods it enables time reversal of the pulse with static electric fields only. • Spatial and temporal focus can be independently fine-adjusted at the target position.
A spherical parameterization approach based on symmetry analysis of triangular meshes
Jian-ping HU; Xiu-ping LIU; Zhi-xun SU; Xi-quan SHI; Feng-shan LIU
2009-01-01
We present an efficient spherical parameterization approach aimed at simultaneously reducing area and angle distortions. We generate the final spherical mapping by independently establishing two hemisphere parameterizations. The essence of the approach is to reduce spherical parameterization to a planar problem using symmetry analysis of 3D meshes. Experiments and comparisons were undertaken with various non-trivial 3D models, which revealed that our approach is efficient and robust. In particular, our method produces almost isometric parameterizations for the objects close to the sphere.
The Aberrant Coronary Artery - The Management Approach.
King, Nina-Marie; Tian, David D; Munkholm-Larsen, Stine; Buttar, Sana N; Chow, Vincent; Yan, Tristan
2017-07-03
An aberrant coronary artery is a rare clinical occurrence with an incidence of 0.05-1.2%. Often it is an incidental finding detected on coronary angiography or at autopsy. However, symptomatic patients can experience angina, arrhythmia, sudden death or non-specific symptoms such as dyspnoea and syncope. At present, there are no guidelines or dedicated studies assessing the treatment of an aberrant coronary artery leaving management options for these patients controversial. Selected international cardiothoracic surgeons were surveyed electronically in November 2016 to determine whether consensus exists on different management aspects for patients with an aberrant coronary artery arising from the contralateral sinus with an interarterial course. For asymptomatic patients with either an aberrant left main coronary artery (ALMCA) arising from the contralateral sinus or an aberrant right main coronary artery (ARMCA) arising from the contralateral sinus, there was no consensus on surgical correction of the anomaly. If myocardial ischaemia was demonstrated on either coronary angiography with fractional flow reserve measurements and/or stress myocardial perfusion scan, surgical correction was the consensus between the surveyed surgeons. If surgery was deemed appropriate, coronary artery bypass surgery utilising the internal mammary artery was marginally preferred by the respondents in patients with an ALMCA whilst unroofing of the coronary ostium was preferred in patients with an ARMCA. Although no consensus was reached, a large proportion of respondents would not treat a patient over the age of 30 years differently compared to those under 30 years old. For symptomatic patients or if myocardial ischaemia is demonstrated on either coronary angiography with fractional flow reserve measurements and/or stress myocardial perfusion scan, surgical correction is indicated. Copyright © 2017 Australian and New Zealand Society of Cardiac and Thoracic Surgeons (ANZSCTS) and the
Fifth-order field aberration coefficients for an optical surface of rotational symmetry.
Gaj, M
1971-07-01
The approximate formulas for the principal ray parameters, such as directional cosines and heights of incidence, as well as for the paraxial sagittal quantities h(s) and H (s) have been expressed by paraxial quantities and Seidel aberrations to fifth-order accuracy. On the basis of these relations an expression for the sagittal radius of curvature r(s), (for a given y ) has been obtained. These quantities are used to derive fifth-order field aberration coefficients for arbitrary surfaces of rotational symmetry by using the wave aberration formula for sagittal focus {M. Gaj, Opt. Spectrosk. 21, 373 (1966) [Opt. Spectrosc. 21, 209 (1966)]}. The resulting expression has four terms. The first one depends only on asphericity and tends to equal zero when the surface becomes spherical. The second is a disturbance term and disappears in the Seidel region. The third and fourth terms may be treated as a generalization of the Petzval curvature and of the Seidel astigmatism, respectively. The limits of the terms, when h tends to zero, has been examined.
A compact, large-aperture tunable lens with adaptive spherical correction
Wapler, Matthias C; Wallrabe, Ulrike
2014-01-01
In this paper, we present the proof of concept of a very fast adaptive glass membrane lens with a large aperture/diameter ratio, spherical aberration correction and integrated actuation. The membrane is directly deformed using two piezo actuators that can tune the focal length and the conical parameter. This operating principle allows for a usable aperture of the whole membrane diameter. Together with the efficient actuation mechanism, the aperture is around 2/3 of the total system diameter - at a thickness of less than 2mm. The response time is a few milliseconds at 12mm aperture, which is fast compared to similar systems.
The Lissajous lens: a three-dimensional absolute optical instrument without spherical symmetry.
Danner, Aaron J; Dao, H L; Tyc, Tomáš
2015-03-09
We propose a three dimensional optical instrument with an isotropic gradient index in which all ray trajectories form Lissajous curves. The lens represents the first absolute optical instrument discovered to exist without spherical symmetry (other than trivial cases such as the plane mirror or conformal maps of spherically-symmetric lenses). An important property of this lens is that a three-dimensional region of space can be imaged stigmatically with no aberrations, with a point and its image not necessarily lying on a straight line with the lens center as in all other absolute optical instruments. In addition, rays in the Lissajous lens are not confined to planes. The lens can optionally be designed such that no rays except those along coordinate axes form closed trajectories, and conformal maps of the Lissajous lens form a rich new class of optical instruments.
Multiphase, non-spherical gas accretion onto a black hole
Barai, Paramita; Nagamine, Kentaro
2011-01-01
(Abridged) We investigate non-spherical behavior of gas accreting onto a central supermassive black hole performing simulations using the SPH code GADGET-3 including radiative cooling and heating by the central X-ray source. As found in earlier 1D studies, our 3D simulations show that the accretion mode depends on the X-ray luminosity (L_X) for a fixed density at infinity and accretion efficiency. In the low L_X limit, gas accretes in a stable, spherically symmetric fashion. In the high L_X limit, the inner gas is significantly heated up and expands, reducing the central mass inflow rate. The expanding gas can turn into a strong enough outflow capable of expelling most of the gas at larger radii. For some intermediate L_X, the accretion flow becomes unstable developing prominent non-spherical features, the key reason for which is thermal instability (TI) as shown by our analyses. Small perturbations of the initially spherically symmetric accretion flow that is heated by the intermediate L_X quickly grow to fo...
Kinematic modeling, analysis and test on a quiet spherical pump
Guan, Dong; Wu, Jiu Hui; Jing, Li; Hilton, Harry H.; Lu, Kuan
2016-11-01
In this paper, design and modeling of a novel spherical pump are undertaken. Both sound and vibration properties of the pump are studied experimentally. The working mechanism of the pump is analyzed firstly, and then structural design and kinematic theory are modeled by using two different coordinate systems. Nonlinear kinematic constraint equations are developed using a generalized computational method for spatial kinematic analysis. These equations are solved to yield the displacement, angular velocity and acceleration properties of motion parts with different structural parameters. Sound and vibration characteristics of the spherical pump and traditional solenoid pumps are studied experimentally at different rotating speeds of 1000, 1500, 2000, 2500 and 3000 rev/min. Results indicate that sound pressure levels of the proposed spherical are reduced to 40.7 dB(A), which are 11.1 dB(A) lower than the traditional solenoid pump's 51.8 dB(A) at the rated operating conditions. The sound spectra are analyzed in detail in order to investigate the causes, which are structural pattern and working mechanisms. The proposed spherical pump has many advantages and can be utilized as a substitute for other pumps in some special fields, such as hospital facilities and household appliances.
Isovector multiphonon excitations in near spherical nuclei
Smirnova, N A; Pietralla, N; Van Isacker, P; Isacker, Piet Van; Mizusaki, Takahiro; Pietralla, Norbert; Smirnova, Nadya A.
2000-01-01
The lowest isoscalar and isovector quadrupole and octupole excitations in near spherical nuclei are studied within the the proton-neutron version of the interacting boson model including quadrupole and octupole bosons (sdf-IBM-2). The main decay modes of these states in near spherical nuclei are discussed.
The center conjecture for thick spherical buildings
Ramos-Cuevas, Carlos
2009-01-01
We prove that a convex subcomplex of a spherical building of type E7 or E8 is a subbuilding or the group of building automorphisms preserving the subcomplex has a fixed point in it. Together with previous results of Muehlherr-Tits, and Leeb and the author, this completes the proof of Tits' Center Conjecture for thick spherical buildings.
Onthe static and spherically symmetric gravitational field
Gottlieb, Ioan; Maftei, Gheorghe; Mociutchi, Cleopatra
Starting from a generalization of Einstein 's theory of gravitation, proposed by one of the authors (Cleopatra Mociutchi), the authors study a particular spherical symmetric case. Among other one obtain the compatibility conditions for the existence of the static and spherically symmetruic gravitational filed in the case of extended Einstein equation.
Guo, Xiaoxia; Zhao, Kongshuang
2017-07-01
We report here a dielectric study on cationic and anionic spherical polyelectrolyte brush (SPB) (consisting of a polystyrene (PS) core and poly (2-aminoethylmethacrylate hydrochloride (PAEMH) chains or poly (acrylic acid) (PAA) chains grafted onto the core) suspensions over a frequency range of 40 Hz-110 MHz. The relaxation behavior of the suspensions shows significant changes in the brush layer properties when changing the particle mass fraction or pH of the system. After eliminating the electrode polarization effect at a low frequency, two definite relaxations related to interfacial polarization, around 100 kHz and 10 MHz respectively, are observed. Based on a single layer spherical-shell model, we developed a curve-fitting procedure to analyze such dielectric spectra for soft particles, and then calculated the dielectric properties of the components of the SPBs (such as the permittivities and conductivities of the layer and solution phase), especially the layer thickness d s of the polyelectrolyte chain (PE) layer. We also found a larger confinement degree of counterions in the PAEMH brush due to the protonation of the amino group. Moreover, the repulsive force between the SPB particles is evaluated by using the d s combined with the relative theoretical formulas. We conclude that by raising (reducing) the acidity of the system, the stability of the PAEMH-SPB (PAA-SPB) suspension was improved. An increase in particle concentration can also improve the stability of these two dispersions.
Multi-vector Spherical Monogenics, Spherical Means and Distributions in Clifford Analysis
Fred BRACKX; Bram De KNOCK Hennie; De SCHEPPER
2005-01-01
New higher-dimensional distributions have been introduced in the framework of Clifford analysis in previous papers by Brackx, Delanghe and Sommen. Those distributions were defined using spherical co-ordinates, the "finite part" distribution Fp xμ+ on the real line and the generalized spherical means involving vector-valued spherical monogenics. In this paper, we make a second generalization,leading to new families of distributions, based on the generalized spherical means involving a multivector-valued spherical monogenic. At the same time, as a result of our attempt at keeping the paper self-contained, it offers an overview of the results found so far.
Fast calculation of spherical computer generated hologram using spherical wave spectrum method.
Jackin, Boaz Jessie; Yatagai, Toyohiko
2013-01-14
A fast calculation method for computer generation of spherical holograms in proposed. This method is based on wave propagation defined in spectral domain and in spherical coordinates. The spherical wave spectrum and transfer function were derived from boundary value solutions to the scalar wave equation. It is a spectral propagation formula analogous to angular spectrum formula in cartesian coordinates. A numerical method to evaluate the derived formula is suggested, which uses only N(logN)2 operations for calculations on N sampling points. Simulation results are presented to verify the correctness of the proposed method. A spherical hologram for a spherical object was generated and reconstructed successfully using the proposed method.
Contrast sensitivity and higher-order aberrations in patients with astigmatism
ZHENG Guang-ying; ZHANG Wei-xia; DU Jun; ZHANG Jin-song; LIU Su-bing; NIE Xiao-li; ZHU Xiao-hong; TANG Xiu-xia; XIN Bao-li; MAI Zhi-bin
2007-01-01
Background Astigmatism is one of the most significant obstacles for achieving satisfactory visual function. This study was to evaluate the influence of astigmatism on contrast sensitivity (CS) and higher-order aberrations.Methods CS, accommodation response and wavefront aberration were measured in 113 patients with astigmatism,aged 18-36 years. Both single and binocular visual performance were examined under four lighting conditions: photopia,photopia with glare, scotopia and scotopia with glare respectively. Accommodation response was classified as normal,abnormal and low. The contribution of the power and axis of astigmatism to CS, accommodation response and wavefront aberration was analyzed.Results As the dioptric power of astigmatism increased, the loss of CS spatial frequency changed from high to intermediate, and then to low frequency. CS scores varied at different illuminance levels, descending in the following sequence: photopia, photopia with glare, scotopia, and scotopia with glare. However, the normal accommodation group showed better CS values under photopia with glare than without glare. The range of influenced direction of sine-wave gratings remained mostly at the meridian line of high dioptric power, which would be expanded when optical accommadation attenuated. The patients with symmetrical astigmatism got higher CS scores with binoculus vision than with dominant eye vision, while the patients with asymmetrical astigmatism did this only at scotopia with glare. Among higher-order aberrations, coma aberration, secondary coma aberration and the total higher order aberration were influenced by astigmatism, all of which rising with the power of astigmatism increased.Conclusions Reducing astigmatism might improve the performance of visual function. Not only the power of astigmatism should be cut down, but also the binocular axes should be made symmetrically.
Caporossi, Aldo; Martone, Gianluca; Casprini, Fabrizio; Rapisarda, Lorenzo
2007-09-01
To compare the quality of vision with aspheric and spherical intraocular lenses (IOLs) in pseudophakic patients. This prospective, comparative, randomized study included 250 eyes of 125 patients with bilateral cataracts. Patients were randomly assigned to receive either IOLs with a spherical biconvex optic (Acrysof SN6OAT [Alcon] or Sensar AR40e [Advanced Medical Optics, AMO]) or IOLs with an aspheric optic (Acrysof IQ SN6OWF [Alcon], Tecnis Z9000 [AMO], or Sofport L161AO [Bausch & Lomb]). Ophthalmologic examination including best spectacle-corrected visual acuity, pupil size, ocular dominance investigation, contrast sensitivity under mesopic and photopic conditions, and wavefront analysis was performed 2 months postoperatively. Aspheric IOLs showed better contrast sensitivity compared to spherical IOLs at spatial frequencies of 6, 12, and 18 cycles per degree (cpd) under photopic conditions and at all spatial frequencies under mesopic conditions. There was no significant difference among the three aspheric IOLs at all spatial frequencies under either photopic or mesopic conditions. Mean total spherical aberration was statistically lower in dominant eyes with aspheric IOLs (0.05 +/- 0.06, 0.11 +/- 0.1, and 0.19 +/- 0.08 pm for the Tecnis Z9000, Acrysof IQ SN6OWF, and Sofport L161AO, respectively) compared with eyes with spherical IOLs (0.62 +/- 0.24 and 0.46 +/- 0.19 microm for the Acrysof SN6OAT and Sensar AR40e, respectively) for a 5-mm pupil diameter. The aspheric IOLs had less wavefront aberrations and performed better under both photopic and mesopic contrast sensitivity compared to the spherical IOLs. These findings confirm it is possible to improve the optical performance of IOLs by modifying the surfaces.
Assessing the construct validity of aberrant salience
Kristin Schmidt
2009-12-01
Full Text Available We sought to validate the psychometric properties of a recently developed paradigm that aims to measure salience attribution processes proposed to contribute to positive psychotic symptoms, the Salience Attribution Test (SAT. The “aberrant salience” measure from the SAT showed good face validity in previous results, with elevated scores both in high-schizotypy individuals, and in patients with schizophrenia suffering from delusions. Exploring the construct validity of salience attribution variables derived from the SAT is important, since other factors, including latent inhibition/learned irrelevance, attention, probabilistic reward learning, sensitivity to probability, general cognitive ability and working memory could influence these measures. Fifty healthy participants completed schizotypy scales, the SAT, a learned irrelevance task, and a number of other cognitive tasks tapping into potentially confounding processes. Behavioural measures of interest from each task were entered into a principal components analysis, which yielded a five-factor structure accounting for ~75% percent of the variance in behaviour. Implicit aberrant salience was found to load onto its own factor, which was associated with elevated “Introvertive Anhedonia” schizotypy, replicating our previous finding. Learned irrelevance loaded onto a separate factor, which also included implicit adaptive salience, but was not associated with schizotypy. Explicit adaptive and aberrant salience, along with a measure of probabilistic learning, loaded onto a further factor, though this also did not correlate with schizotypy. These results suggest that the measures of learned irrelevance and implicit adaptive salience might be based on similar underlying processes, which are dissociable both from implicit aberrant salience and explicit measures of salience.
Cosmological parameter estimation: impact of CMB aberration
Catena, Riccardo
2012-01-01
The peculiar motion of an observer with respect to the CMB rest frame induces an apparent deflection of the observed CMB photons, i.e. aberration, and a shift in their frequency, i.e. Doppler effect. Both effects distort the temperature multipoles a_lm's via a mixing matrix at any l. The common lore when performing a CMB based cosmological parameter estimation is to consider that Doppler affects only the l=1 multipole, and neglect any other corrections. In this paper we reconsider the validity of this assumption, showing that it is actually not robust when sky cuts are included to model CMB foreground contaminations. Assuming a simple fiducial cosmological model with five parameters, we simulated CMB temperature maps of the sky in a WMAP-like and in a Planck-like experiment and added aberration and Doppler effects to the maps. We then analyzed with a MCMC in a Bayesian framework the maps with and without aberration and Doppler effects in order to assess the ability of reconstructing the parameters of the fidu...
[Familial, structural aberration of the Y chromosome with fertility disorders].
Gall, H; Schmid, M; Schmidtke, J; Schempp, W; Weber, L
1985-11-01
Cytogenetic studies on a patient with Klinefelter's syndrome revealed an inherited, structural aberration of the Y-chromosome which has not been described before. The aberrant Y-chromosome was characterized by eight different banding methods. The value of individual staining techniques in studies on Y-heterochromatin aberrations is emphasized. Analysis of the cytogenetic studies (banding methods, restriction endonuclease of DNA, and measurement of the length of the Y-chromosome) permits an interpretation to be made on how the aberrant Y-chromosome originated. The functions of the Y-chromosome are discussed. The decrease in fertility (cryptozoospermia) in the two brothers with the same aberrant Y-chromosome was striking.
Aberrant WNT/β-catenin signaling in parathyroid carcinoma
Åkerström Göran
2010-11-01
Full Text Available Abstract Background Parathyroid carcinoma (PC is a very rare malignancy with a high tendency to recur locally, and recurrent disease is difficult to eradicate. In most western European countries and United States, these malignant neoplasms cause less than 1% of the cases with primary hyperparathyroidism, whereas incidence as high as 5% have been reported from Italy, Japan, and India. The molecular etiology of PC is poorly understood. Results The APC (adenomatous polyposis coli tumor suppressor gene was inactivated by DNA methylation in five analyzed PCs, as determined by RT-PCR, Western blotting, and quantitative bisulfite pyrosequencing analyses. This was accompanied by accumulation of stabilized active nonphosphorylated β-catenin, strongly suggesting aberrant activation of the WNT/β-catenin signaling pathway in these tumors. Treatment of a primary PC cell culture with the DNA hypomethylating agent 5-aza-2'-deoxycytidine (decitabine, Dacogen(r induced APC expression, reduced active nonphosphorylated β-catenin, inhibited cell growth, and caused apoptosis. Conclusion Aberrant WNT/β-catenin signaling by lost expression and DNA methylation of APC, and accumulation of active nonphosphorylated β-catenin was observed in the analyzed PCs. We suggest that adjuvant epigenetic therapy should be considered as an additional option in the treatment of patients with recurrent or metastatic parathyroid carcinoma.
HFE and Spherical Cryostats MC Study
Brodsky, Jason P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2016-09-26
The copper vessel containing the nEXO TPC is surrounded by a buffer of HFE, a liquid refrigerant with very low levels of radioactive element contamination. The HFE is contained within the cryostat’s inner vessel, which is in turn inside the outer vessel. While some HFE may be necessary for stable cooling of nEXO, it is possible that using substantially more than necessary for thermal reasons will help reduce backgrounds originating in the cryostats. Using a larger amount of HFE is accomplished by making the cryostat vessels larger. By itself, increasing the cryostat size somewhat increases the background rate, as the thickness of the cryostat wall must increase at larger sizes. However, the additional space inside the cryostat will be filled with HFE which can absorb gamma rays headed for the TPC. As a result, increasing the HFE reduces the number of backgrounds reaching the TPC. The aim of this study was to determine the relationship between HFE thickness and background rate. Ultimately, this work should support choosing a cryostat and HFE size that satisfies nEXO’s background budget. I have attempted to account for every consequence of changing the cryostat size, although naturally this remains a work in progress until a final design is achieved. At the moment, the scope of the study includes only the spherical cryostat design. This study concludes that increasing cryostat size reduces backgrounds, reaching neglible backgrounds originating from the cryostat at the largest sizes. It also shows that backgrounds originating from the inherent radioactivity of the HFE plateau quickly, so may be considered essentially fixed at any quantity of HFE.
DNA Repair Defects and Chromosomal Aberrations
Hada, Megumi; George, K. A.; Huff, J. L.; Pluth, J. M.; Cucinotta, F. A.
2009-01-01
Yields of chromosome aberrations were assessed in cells deficient in DNA doublestrand break (DSB) repair, after exposure to acute or to low-dose-rate (0.018 Gy/hr) gamma rays or acute high LET iron nuclei. We studied several cell lines including fibroblasts deficient in ATM (ataxia telangiectasia mutated; product of the gene that is mutated in ataxia telangiectasia patients) or NBS (nibrin; product of the gene mutated in the Nijmegen breakage syndrome), and gliomablastoma cells that are proficient or lacking in DNA-dependent protein kinase (DNA-PK) activity. Chromosomes were analyzed using the fluorescence in situ hybridization (FISH) chromosome painting method in cells at the first division post irradiation, and chromosome aberrations were identified as either simple exchanges (translocations and dicentrics) or complex exchanges (involving >2 breaks in 2 or more chromosomes). Gamma irradiation induced greater yields of both simple and complex exchanges in the DSB repair-defective cells than in the normal cells. The quadratic dose-response terms for both simple and complex chromosome exchanges were significantly higher for the ATM- and NBS-deficient lines than for normal fibroblasts. However, in the NBS cells the linear dose-response term was significantly higher only for simple exchanges. The large increases in the quadratic dose-response terms in these repair-defective cell lines points the importance of the functions of ATM and NBS in chromatin modifications to facilitate correct DSB repair and minimize the formation of aberrations. The differences found between ATM- and NBS-deficient cells at low doses suggest that important questions should with regard to applying observations of radiation sensitivity at high dose to low-dose exposures. For aberrations induced by iron nuclei, regression models preferred purely linear dose responses for simple exchanges and quadratic dose responses for complex exchanges. Relative biological effectiveness (RBE) factors of all of
Radiotherapeutical chromosomal aberrations in laryngeal cancer patients
Stošić-Divjak Svetlana L.
2009-01-01
Full Text Available Introduction. The authors present the results of cytogenetic analysis of 21 patients with laryngeal carcinomas diagnosed and treated in the period 1995-2000 at the Institute of Otorhinolaryngology and Maxillofacial Surgery, Clinical Center of Serbia and Clinical Center of Novi Sad. Material and methods. The patients were specially monitored and the material was analyzed at the Institute of Human Genetics of the School of Medicine in Belgrade as well as in the Laboratory for Radiological Protection of the Institute of Occupational and Radiological Health 'Dr Dragomir Karajovic' in Belgrade. Results. The incidence of chromosomal aberrations and incidence of exchange of material between sister chromatids were observed in the preparation of the metaphasic lymphocyte chromosomes of the peripheral blood obtained in the culture. Structural aberrations were found on the chromosomes in the form of breakups, rings, translocations and dicentrics as early as after a single exposure of patients to tumor radiation dose of 2 Gy in the field sized 5x7. Out of the total number of 35 cultivated blood samples obtained from 13 patients, 21 were successfully cultivated and they were proved to contain chromosomal aberrations. Some of the peripheral blood samples failed to show cell growth in vitro due to the lethal cell damages in vivo. Discussion.. We have consluded that the number of structural aberrations cannot be used as a biological measure of the absorbed ionizing radiation dose. The presence of aberrations per se is indicative of the mutagenic effect of the ionizing radiation, which was also confirmed in our series on the original model by cultivation of the peripheral blood lymphocytes in the culture of the cells of the volunteer donors upon in vitro radiation. Using the method of bromdeoxyuridylreductase, the increased incidence of SCE as a mutagenic effect was registered. Conclusion. It has been concluded that the increase of absorbed radiation dose in
DNA Repair Defects and Chromosomal Aberrations
Hada, Megumi; George, K. A.; Huff, J. L.; Pluth, J. M.; Cucinotta, F. A.
2009-01-01
Yields of chromosome aberrations were assessed in cells deficient in DNA doublestrand break (DSB) repair, after exposure to acute or to low-dose-rate (0.018 Gy/hr) gamma rays or acute high LET iron nuclei. We studied several cell lines including fibroblasts deficient in ATM (ataxia telangiectasia mutated; product of the gene that is mutated in ataxia telangiectasia patients) or NBS (nibrin; product of the gene mutated in the Nijmegen breakage syndrome), and gliomablastoma cells that are proficient or lacking in DNA-dependent protein kinase (DNA-PK) activity. Chromosomes were analyzed using the fluorescence in situ hybridization (FISH) chromosome painting method in cells at the first division post irradiation, and chromosome aberrations were identified as either simple exchanges (translocations and dicentrics) or complex exchanges (involving >2 breaks in 2 or more chromosomes). Gamma irradiation induced greater yields of both simple and complex exchanges in the DSB repair-defective cells than in the normal cells. The quadratic dose-response terms for both simple and complex chromosome exchanges were significantly higher for the ATM- and NBS-deficient lines than for normal fibroblasts. However, in the NBS cells the linear dose-response term was significantly higher only for simple exchanges. The large increases in the quadratic dose-response terms in these repair-defective cell lines points the importance of the functions of ATM and NBS in chromatin modifications to facilitate correct DSB repair and minimize the formation of aberrations. The differences found between ATM- and NBS-deficient cells at low doses suggest that important questions should with regard to applying observations of radiation sensitivity at high dose to low-dose exposures. For aberrations induced by iron nuclei, regression models preferred purely linear dose responses for simple exchanges and quadratic dose responses for complex exchanges. Relative biological effectiveness (RBE) factors of all of
Chromatic variation of aberration: the role of induced aberrations and raytrace direction
Berner, A.; Nobis, T.; Shafer, D.; Gross, H.
2015-09-01
The design and optimization process of an optical system contains several first order steps. The definition of the appropriate lens type and the fixation of the raytrace direction are some of them. The latter can be understood as a hidden assumption rather than an aware design step. This is usually followed by the determination of the paraxial lens layout calculated for the primary wavelength. It is obvious, that for this primary wavelength the paraxial calculations are independent of raytrace direction. Today, most of the lens designs are specified not to work only for one wavelength, but in a certain wavelength range. Considering such rays of other wavelengths, one can observe that depending on the direction there will already occur differences in the first order chromatic aberrations and additionally in the chromatic variation of the third-order aberrations. The reason for this effect are induced aberrations emerging from one surface to the following surfaces by perturbed ray heights and ray angles. It can be shown, that the total amount of surface-resolved first order chromatic aberrations and the chromatic variation of the five primary aberrations can be split into an intrinsic part and an induced part. The intrinsic part is independent of the raytrace direction whereas the induced part is not.
Nodal aberration theory for wild-filed asymmetric optical systems
Chen, Yang; Cheng, Xuemin; Hao, Qun
2016-10-01
Nodal Aberration Theory (NAT) was used to calculate the zero field position in Full Field Display (FFD) for the given aberration term. Aiming at wide-filed non-rotational symmetric decentered optical systems, we have presented the nodal geography behavior of the family of third-order and fifth-order aberrations. Meanwhile, we have calculated the wavefront aberration expressions when one optical element in the system is tilted, which was not at the entrance pupil. By using a three-piece-cellphone lens example in optical design software CodeV, the nodal geography is testified under several situations; and the wavefront aberrations are calculated when the optical element is tilted. The properties of the nodal aberrations are analyzed by using Fringe Zernike coefficients, which are directly related with the wavefront aberration terms and usually obtained by real ray trace and wavefront surface fitting.
Bounce-free Spherical Hydrodynamic Implosion
Kagan, Grigory; Hsu, Scott C; Awe, Thomas J
2011-01-01
In a bounce-free spherical hydrodynamic implosion, the post-stagnation hot core plasma does not expand against the imploding flow. Such an implosion scheme has the advantage of improving the dwell time of the burning fuel, resulting in a higher fusion burn-up fraction. The existence of bounce-free spherical implosions is demonstrated by explicitly constructing a family of self-similar solutions to the spherically symmetric ideal hydrodynamic equations. When applied to a specific example of plasma liner driven magneto-inertial fusion, the bounce-free solution is found to produce at least a factor of four improvement in dwell time and fusion energy gain.
Handan Bardak
2016-01-01
Full Text Available No study has so far evaluated the impact of coffee drinking on ocular wavefront aberration (OWA measurements. This study presents novel findings regarding the OWA of the eye following coffee intake. We aimed to evaluate the acute changes in pupil size and OWA of the eye after single administration of coffee. A total of 30 otherwise healthy participants were included in this prospective study. All subjects drank a cup of coffee containing 57 mg caffeine. Measurements of pupil size, total coma (TC, total trefoil (TF, total spherical aberration (TSA, and total higher order aberration (HOA were performed before and at 5 minutes, at 30 minutes, and at 4 hours after coffee drinking using a wavefront aberrometer device (Irx3, Imagine Eyes, Orsay, France. The mean age of the study population was 20.30 ± 2.74 years. Pupil size did not show a significant change during the measurements (p>0.05. A significant increase was observed in TF and HOA measurements following coffee intake (p=0.029 and p=0.009, resp.. Single administration of coffee results in significant increase in TF and total HOAs in healthy subjects without any effect on pupil diameter. Ultrastructural changes in the cornea following coffee intake might be of relevance to the alterations in ocular aberrations in healthy subjects.
Akashi, Tetsuya; Takahashi, Yoshio; Tanigaki, Toshiaki, E-mail: toshiaki.tanigaki.mv@hitachi.com; Shimakura, Tomokazu; Kawasaki, Takeshi; Furutsu, Tadao; Shinada, Hiroyuki; Osakabe, Nobuyuki [Central Research Laboratory, Hitachi, Ltd., Hatoyama 350-0395 (Japan); Müller, Heiko; Haider, Maximilian [Corrected Electron Optical Systems GmbH, Englerstr. 28, D-69126 Heidelberg (Germany); Tonomura, Akira [Central Research Laboratory, Hitachi, Ltd., Hatoyama 350-0395 (Japan); RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198 (Japan)
2015-02-16
Atomic-resolution electromagnetic field observation is critical to the development of advanced materials and to the unveiling of their fundamental physics. For this purpose, a spherical-aberration corrected 1.2-MV cold field-emission transmission electron microscope has been developed. The microscope has the following superior properties: stabilized accelerating voltage, minimized electrical and mechanical fluctuation, and coherent electron emission. These properties have enabled to obtain 43-pm information transfer. On the bases of these performances, a 43-pm resolution has been obtained by correcting lens aberrations up to the third order. Observations of GaN [411] thin crystal showed a projected atomic locations with a separation of 44 pm.
Progress on PEEM3 — An Aberration Corrected X-Ray Photoemission Electron Microscope at the ALS
MacDowell, A. A.; Feng, J.; DeMello, A.; Doran, A.; Duarte, R.; Forest, E.; Kelez, N.; Marcus, M. A.; Miller, T.; Padmore, H. A.; Raoux, S.; Robin, D.; Scholl, A.; Schlueter, R.; Schmid, P.; Stöhr, J.; Wan, W.; Wei, D. H.; Wu, Y.
2007-01-01
A new ultrahigh-resolution photoemission electron microscope called PEEM3 is being developed and built at the Advanced Light Source (ALS). An electron mirror combined with a much-simplified magnetic dipole separator is to be used to provide simultaneous correction of spherical and chromatic aberrations. It is installed on an elliptically polarized undulator (EPU) beamline, and will be operated with very high spatial resolution and high flux to study the composition, structure, electric and magnetic properties of complex materials. The instrument has been designed and is described. The instrumental hardware is being deployed in 2 phases. The first phase is the deployment of a standard PEEM type microscope consisting of the standard linear array of electrostatic electron lenses. The second phase will be the installation of the aberration corrected upgrade to improve resolution and throughput. This paper describes progress as the instrument enters the commissioning part of the first phase.
Portable digital holographic microscope using spherical reference beam
Watanabe, Eriko; Hoshino, Kazuhiro; Takeuchi, Shuichi
2015-04-01
In this study, we developed and evaluated a portable digital holographic microscope (DHM) using a spherical reference beam. To reduce the size of this DHM, we replaced the objective lens with a small aspherical single lens, which produces the spherical reference beam. In addition, integrating the CCD camera and beam splitter yielded a simplified alignment along with further microscope compactness, resulting in a DHM with dimensions of 150 (W) × 470 (D) × 244.5 (H) mm3, which is a portable size. The spatial resolution of the developed DHM was evaluated and a value of 870 nm was experimentally obtained, similar to the theoretical resolution of 851 nm. In addition, we conducted measurements on leukemia cells to evaluate the applicability of our novel microscope to cystoscopy.
Gravitational and electric energies in collapse of spherically thin capacitor
Ruffini, Remo
2013-01-01
In our previous article (PHYSICAL REVIEW D 86, 084004 (2012)), we present a study of strong oscillating electric fields and electron-positron pair-production in gravitational collapse of a neutral stellar core at or over nuclear densities. In order to understand the back-reaction of such electric energy building and radiating on collapse, we adopt a simplified model describing the collapse of a spherically thin capacitor to give an analytical description how gravitational energy is converted to both kinetic and electric energies in collapse. It is shown that (i) averaged kinetic and electric energies are the same order, about an half of gravitational energy of spherically thin capacitor in collapse; (ii) caused by radiating and rebuilding electric energy, gravitational collapse undergoes a sequence of "on and off" hopping steps in the microscopic Compton scale. Although such a collapse process is still continuous in terms of macroscopic scales, it is slowed down as kinetic energy is reduced and collapsing tim...
A Reduction Factor for Buckling Load of Spherical Cap Shells
P.N. Khakina
2011-12-01
Full Text Available The classical buckling theory usually overestimates the buckling load of shells. In this study, a reduction factor is determined using geometrical parameters so as to reduce the classical buckling load to a more realistic value based on the post-buckling load. It is observed that the buckling load is directly proportional to the thickness and rise and inversely proportional to the span of the spherical cap. Finite element modeling and simulation using ABAQUS was conducted to determine the buckling behavior of a spherical cap shell subjected to different initial geometrical imperfections. The load-deflection curves drawn from the simulation formed a plateau at the post-buckling load. It is observed that as the initial geometrical imperfection is increased, the value of the initial buckling load is almost the same as the value of the post-buckling load on the plateau. The results obtained from different shells were used to derive a formula for the reduction factor.
Spherical foam growth in Al alloy melt
SHANG; Jintang; HE; Deping
2005-01-01
Due to the demand of high-tech Al alloy foam with spherical pores, high strength and high energy-absorption capacity has become one of the research foci. The aim of this study is to ascertain the growth regularity of spherical foam in Al alloy melt. Three-dimensional packing model such as face-centered cubic is established to study the spherical foam growth. Theoretical results are compared with experimental ones, and the face-centered cubic model corresponds well with the experiment. It is reasonable to assume that the pores have the same radius, the total pore number keeps unchanged and spherical foam grows with face-centered cubic packing mode. This study presents a useful help to control the average pore radius and film thickness.
Recurrence and differential relations for spherical spinors
Szmytkowski, Radosław
2010-01-01
We present a comprehensive table of recurrence and differential relations obeyed by spin one-half spherical spinors (spinor spherical harmonics) $\\Omega_{\\kappa\\mu}(\\mathbf{n})$ used in relativistic atomic, molecular, and solid state physics, as well as in relativistic quantum chemistry. First, we list finite expansions in the spherical spinor basis of the expressions $\\mathbf{A}\\cdot\\mathbf{B}\\,\\Omega_{\\kappa\\mu}(\\mathbf{n})$ and {$\\mathbf{A}\\cdot(\\mathbf{B}\\times\\mathbf{C})\\, \\Omega_{\\kappa\\mu}(\\mathbf{n})$}, where $\\mathbf{A}$, $\\mathbf{B}$, and $\\mathbf{C}$ are either of the following vectors or vector operators: $\\mathbf{n}=\\mathbf{r}/r$ (the radial unit vector), $\\mathbf{e}_{0}$, $\\mathbf{e}_{\\pm1}$ (the spherical, or cyclic, versors), $\\boldsymbol{\\sigma}$ (the $2\\times2$ Pauli matrix vector), $\\hat{\\mathbf{L}}=-i\\mathbf{r}\\times\\boldsymbol{\
Planar and spherical stick indices of knots
Adams, Colin; Hawkins, Katherine; Sia, Charmaine; Silversmith, Rob; Tshishiku, Bena; 10.1142/S0218216511008954
2011-01-01
The stick index of a knot is the least number of line segments required to build the knot in space. We define two analogous 2-dimensional invariants, the planar stick index, which is the least number of line segments in the plane to build a projection, and the spherical stick index, which is the least number of great circle arcs to build a projection on the sphere. We find bounds on these quantities in terms of other knot invariants, and give planar stick and spherical stick constructions for torus knots and for compositions of trefoils. In particular, unlike most knot invariants,we show that the spherical stick index distinguishes between the granny and square knots, and that composing a nontrivial knot with a second nontrivial knot need not increase its spherical stick index.
Novel Electrically Small Spherical Electric Dipole Antenna
Kim, Oleksiy S.
2010-01-01
of 72 ohms is numerically investigated and its performance is compared to that of the multiarm spherical helix antenna of the same size. Both antennas yield equal quality factors, which are about 1.5 times the Chu lower bound, but quite different cross-polarization characteristics.......This paper introduces a novel electrically small spherical meander antenna. Horizontal sections of the meander are composed of wire loops, radii of which are chosen so that the whole structure is conformal to a sphere of radius a. To form the meander the loops are connected by wires at a meridian...... plane. The antenna operates as an electric dipole, i.e. it radiates the TM10 spherical mode. The antenna is self-resonant and can be matched to a wide range of input feed lines without an external matching network. In this paper, a spherical meander antenna of the size ka = 0.27 and the input impedance...
Spherically symmetric brane spacetime with bulk gravity
Chakraborty, Sumanta; SenGupta, Soumitra
2015-01-01
Introducing term in the five-dimensional bulk action we derive effective Einstein's equation on the brane using Gauss-Codazzi equation. This effective equation is then solved for different conditions on dark radiation and dark pressure to obtain various spherically symmetric solutions. Some of these static spherically symmetric solutions correspond to black hole solutions, with parameters induced from the bulk. Specially, the dark pressure and dark radiation terms (electric part of Weyl curvature) affect the brane spherically symmetric solutions significantly. We have solved for one parameter group of conformal motions where the dark radiation and dark pressure terms are exactly obtained exploiting the corresponding Lie symmetry. Various thermodynamic features of these spherically symmetric space-times are studied, showing existence of second order phase transition. This phenomenon has its origin in the higher curvature term with gravity in the bulk.
A Novel Nitinol Spherical Occlusion Device for Liver Cancer
Hao-Ming Hsiao
2016-01-01
Full Text Available Liver cancer or hepatic cancer is a cancer that originates in the liver. It is formed from either the liver itself or from structures within the liver, including blood vessels or the bile duct. Liver cancer can be a life-threatening condition, but it may be cured if found early. Hepatic artery embolization is one of the treatment options involving the injection of substances to reduce the blood flow to cancer cells in the livers of patients with tumors that cannot be removed by surgery; however, this treatment has some limitations. In this paper, we propose a novel nitinol “spherical occlusion device” concept, the first of its kind in the world. Our proposed spherical occlusion device is able to reduce the blood flow to cancer cells by deploying it in the upstream hepatic artery supplying blood to the liver. Moreover, it could carry multiple chemotherapy or radioactive drugs for delivery directly to the target site. Nitinol alloy was chosen as the device material due to its excellent super-elastic property. Computational models were developed to predict the mechanical response of the device during manufacturing and deployment procedures, as well as its hemodynamic behavior. Simulation results showed that the presence of the spherical occlusion device with 14%–27% metal density deployed at the upstream location of the right hepatic artery had significant occlusion effects, with the average blood flow rate cut down by 30%–50%. A pulsed fiber laser and a series of expansions and heat treatments were developed to make the first prototype of the spherical occlusion device for the demonstration of our novel concept.
3D Printing Electrically Small Spherical Antennas
Kim, Oleksiy S.
2013-01-01
3D printing is applied for rapid prototyping of an electrically small spherical wire antenna. The model is first printed in plastic and subsequently covered with several layers of conductive paint. Measured results are in good agreement with simulations.......3D printing is applied for rapid prototyping of an electrically small spherical wire antenna. The model is first printed in plastic and subsequently covered with several layers of conductive paint. Measured results are in good agreement with simulations....
3D Printing Electrically Small Spherical Antennas
Kim, Oleksiy S.
2013-01-01
3D printing is applied for rapid prototyping of an electrically small spherical wire antenna. The model is first printed in plastic and subsequently covered with several layers of conductive paint. Measured results are in good agreement with simulations.......3D printing is applied for rapid prototyping of an electrically small spherical wire antenna. The model is first printed in plastic and subsequently covered with several layers of conductive paint. Measured results are in good agreement with simulations....
PREPARATION OF SPHERICAL URANIUM DIOXIDE PARTICLES
Levey, R.P. Jr.; Smith, A.E.
1963-04-30
This patent relates to the preparation of high-density, spherical UO/sub 2/ particles 80 to 150 microns in diameter. Sinterable UO/sub 2/ powder is wetted with 3 to 5 weight per cent water and tumbled for at least 48 hours. The resulting spherical particles are then sintered. The sintered particles are useful in dispersion-type fuel elements for nuclear reactors. (AEC)
Spherical cows in dark matter indirect detection
Bernal, Nicolás; Necib, Lina; Slatyer, Tracy R.
2016-12-01
Dark matter (DM) halos have long been known to be triaxial, but in studies of possible annihilation and decay signals they are often treated as approximately spherical. In this work, we examine the asymmetry of potential indirect detection signals of DM annihilation and decay, exploiting the large statistics of the hydrodynamic simulation Illustris. We carefully investigate the effects of the baryons on the sphericity of annihilation and decay signals for both the case where the observer is at 8.5 kpc from the center of the halo (exemplified in the case of Milky Way-like halos), and for an observer situated well outside the halo. In the case of Galactic signals, we find that both annihilation and decay signals are expected to be quite symmetric, with axis ratios very different from 1 occurring rarely. In the case of extragalactic signals, while decay signals are still preferentially spherical, the axis ratio for annihilation signals has a much flatter distribution, with elongated profiles appearing frequently. Many of these elongated profiles are due to large subhalos and/or recent mergers. Comparing to gamma-ray emission from the Milky Way and X-ray maps of clusters, we find that the gamma-ray background appears less spherical/more elongated than the expected DM signal from the large majority of halos, and the Galactic gamma ray excess appears very spherical, while the X-ray data would be difficult to distinguish from a DM signal by elongation/sphericity measurements alone.
Chromosomal aberrations in ISS crew members
Johannes, Christian; Goedecke, Wolfgang; Antonopoulos, Alexandra
2012-07-01
High energy radiation is a major risk factor in manned space missions. Astronauts and cosmonauts are exposed to ionising radiations of cosmic and solar origin, while on the Earth's surface people are well protected by the atmosphere and a deflecting magnetic field. There are now data available describing the dose and the quality of ionising radiation on-board of the International Space Station (ISS). Nonetheless, the effect of increased radiation dose on mutation rates of ISS crew members are hard to predict. Therefore, direct measurements of mutation rates are required in order to better estimate the radiation risk for longer duration missions. The analysis of chromosomal aberrations in peripheral blood lymphocytes is a well established method to measure radiation-induced mutations. We present data of chromosome aberration analyses from lymphocyte metaphase spreads of ISS crew members participating in short term (10-14 days) or long term (around 6 months) missions. From each subject we received two blood samples. The first sample was drawn about 10 days before launch and a second one within 3 days after return from flight. From lymphocyte cultures metaphase plates were prepared on glass slides. Giemsa stained and in situ hybridised metaphases were scored for chromosome changes in pre-flight and post-flight blood samples and the mutation rates were compared. Results obtained in chromosomal studies on long-term flight crew members showed pronounced inter-individual differences in the response to elevated radiation levels. Overall slight but significant elevations of typical radiation induced aberrations, i.e., dicentric chromosomes and reciprocal translocations have been observed. Our data indicate no elevation of mutation rates due to short term stays on-board the ISS.
Wavefront aberrations of x-ray dynamical diffraction beams.
Liao, Keliang; Hong, Youli; Sheng, Weifan
2014-10-01
The effects of dynamical diffraction in x-ray diffractive optics with large numerical aperture render the wavefront aberrations difficult to describe using the aberration polynomials, yet knowledge of them plays an important role in a vast variety of scientific problems ranging from optical testing to adaptive optics. Although the diffraction theory of optical aberrations was established decades ago, its application in the area of x-ray dynamical diffraction theory (DDT) is still lacking. Here, we conduct a theoretical study on the aberration properties of x-ray dynamical diffraction beams. By treating the modulus of the complex envelope as the amplitude weight function in the orthogonalization procedure, we generalize the nonrecursive matrix method for the determination of orthonormal aberration polynomials, wherein Zernike DDT and Legendre DDT polynomials are proposed. As an example, we investigate the aberration evolution inside a tilted multilayer Laue lens. The corresponding Legendre DDT polynomials are obtained numerically, which represent balanced aberrations yielding minimum variance of the classical aberrations of an anamorphic optical system. The balancing of classical aberrations and their standard deviations are discussed. We also present the Strehl ratio of the primary and secondary balanced aberrations.
Aberrations in Fresnel Lenses and Mirrors
Gregory, Don
1999-01-01
The NASA/MSFC Shooting Star program revealed a number of technical problems that must be solved before solar thermal propulsion can become a reality. The fundamental problem of interest here is the collection of solar energy. This is the first step in the propulsion process and indeed the most important. Everything else depends on the efficiency and focusing ability of the collection lens or mirror. An initial model of Fresnel lens behavior using a wave optics approach has been completed and the results were encouraging enough to warrant an experimental investigation. This experimental investigation confirmed some of the effects predicted and produced invaluable photographic evidence of coherence based diffraction and aberration.
Robustness of oscillatory α2 dynamos in spherical wedges
Cole, E.; Brandenburg, A.; Käpylä, P. J.; Käpylä, M. J.
2016-10-01
Context. Large-scale dynamo simulations are sometimes confined to spherical wedge geometries by imposing artificial boundary conditions at high latitudes. This may lead to spatio-temporal behaviours that are not representative of those in full spherical shells. Aims: We study the connection between spherical wedge and full spherical shell geometries using simple mean-field dynamos. Methods: We solve the equations for one-dimensional time-dependent α2 and α2Ω mean-field dynamos with only latitudinal extent to examine the effects of varying the polar angle θ0 between the latitudinal boundaries and the poles in spherical coordinates. Results: In the case of constant α and ηt profiles, we find oscillatory solutions only with the commonly used perfect conductor boundary condition in a wedge geometry, while for full spheres all boundary conditions produce stationary solutions, indicating that perfect conductor conditions lead to unphysical solutions in such a wedge setup. To search for configurations in which this problem can be alleviated we choose a profile of the turbulent magnetic diffusivity that decreases toward the poles, corresponding to high conductivity there. Oscillatory solutions are now achieved with models extending to the poles, but the magnetic field is strongly concentrated near the poles and the oscillation period is very long. By changing both the turbulent magnetic diffusivity and α profiles so that both effects are more concentrated toward the equator, we see oscillatory dynamos with equatorward drift, shorter cycles, and magnetic fields distributed over a wider range of latitudes. Those profiles thus remove the sensitive and unphysical dependence on θ0. When introducing radial shear, we again see oscillatory dynamos, and the direction of drift follows the Parker-Yoshimura rule. Conclusions: A reduced α effect near the poles with a turbulent diffusivity concentrated toward the equator yields oscillatory dynamos with equatorward migration and
Harmonic imaging with fresnel beamforming in the presence of phase aberration.
Nguyen, Man Minh; Shin, Junseob; Yen, Jesse
2014-10-01
Fresnel beamforming is a beamforming method with a delay profile similar in shape to a physical Fresnel lens. The advantage of Fresnel beamforming is the reduced channel count, which consists of four to eight transmit and two analog-to-digital receive channels. Fresnel beamforming was found to perform comparably to conventional delay-and-sum beamforming. However, the performance of Fresnel beamforming is highly dependent on focal errors. These focal errors result in high side-lobe levels and further reduce the performance of Fresnel beamforming in the presence of phase aberration. With the advantages of lower side-lobe levels and suppression of aberration effects, harmonic imaging offers an effective solution to the limitations of Fresnel beamforming. We describe the implementation of tissue harmonic imaging and pulse inversion harmonic imaging in Fresnel beamforming, followed by dual apodization with cross-correlation, to improve image quality. Compared with conventional delay-and-sum beamforming, experimental results indicated contrast-to-noise ratio improvements of 10%, 49% and 264% for Fresnel beamforming using tissue harmonic imaging in the cases of no aberrator, 5-mm pork aberrator and 12-mm pork aberrator, respectively. These improvements were 22%, 57% and 352% for Fresnel beamforming using pulse inversion harmonic imaging. Moreover, dual apodization with cross-correlation was found to further improve the contrast-to-noise ratios in all cases. Harmonic imaging was also found to narrow the lateral beamwidth and shorten the axial pulse length by at least 25% and 21%, respectively, for Fresnel beamforming at different aberration levels. These results suggest the effectiveness of harmonic imaging in improving image quality for Fresnel beamforming, especially in the presence of phase aberration. Even though this combination of Fresnel beamforming and harmonic imaging does not outperform delay-and-sum beamforming combined with harmonic imaging, it provides the
SMART:. An Aberration-Corrected XPEEM/LEEM with Energy Filter
Wichtendahl, R.; Fink, R.; Kuhlenbeck, H.; Preikszas, D.; Rose, H.; Spehr, R.; Hartel, P.; Engel, W.; Schlögl, R.; Freund, H.-J.; Bradshaw, A. M.; Lilienkamp, G.; Schmidt, Th.; Bauer, E.; Benner, G.; Umbach, E.
A new UHV spectroscopic X-ray photoelectron emission and low energy electron microscope is presently under construction for the installation at the PM-6 soft X-ray undulator beamline at BESSY II. Using a combination of a sophisticated magnetic beam splitter and an electrostatic tetrode mirror, the spherical and chromatic aberrations of the objective lens are corrected and thus the lateral resolution and sensitivity of the instrument improved. In addition a corrected imaging energy filter (a so-called omega filter) allows high spectral resolution (ΔE=0.1 eV) in the photoemission modes and back-ground suppression in LEEM and small-spot LEED modes. The theoretical prediction for the lateral resolution is 5 Å a realistic goal is about 2 nm. Thus, a variety of electron spectroscopies (XAS, XPS, UPS, XAES) and electron diffraction (LEED, LEEM) or reflection techniques (MEM) will be available with spatial resolution unreached so far.
Higher order aberrations of the eye: Part one
Marsha Oberholzer
2016-03-01
Full Text Available This article is the first in a series of two articles that provide a comprehensive literature review of higher order aberrations (HOAs of the eye. The present article mainly explains the general principles of such HOAs as well as HOAs of importance, and the measuring apparatus used to measure HOAs of the eye. The second article in the series discusses factors contributing to variable results in measurements of HOAs of the eye.Keywords: Higher order aberrations; wavefront aberrations; aberrometer
Calibration and removal of lateral chromatic aberration in images
Mallon, John; Whelan, Paul F.
2007-01-01
This paper addresses the problem of compensating for lateral chromatic aberration in digital images through colour plane realignment. Two main contributions are made: the derivation of a model for lateral chromatic aberration in images, and the subsequent calibration of this model from a single view of a chess pattern. These advances lead to a practical and accurate alternative for the compensation of lateral chromatic aberrations. Experimental results validate the proposed models and calibra...
Analysis of pupil and corneal wave aberration data supplied by the SN CT 1000 topography system
Comastri, S. A.; Martin, G.; Pfortner, T.
2006-11-01
Ocular aberrations depend on pupil size and centring and the retinal image quality under natural conditions differs from that corresponding to laboratory ones. In the present article, pupil and wave aberration data supplied by the Shin Nippon CT 1000 (SN CT 1000) topography system are analysed. Two groups of eyes under natural viewing conditions are considered ((260+/-20) lux at the eye under study). The first group consists of 10 normal eyes (-1.25 to 3 D sphere; 0 to -1.75 D cylinder) of five young subjects (age between 18 and 33 years). For this group, five determinations per eye are performed and the repeatability of results is analysed. Pupil centre is displaced from corneal vertex towards the temporal region, the largest displacement being (0.5+/-0.1) mm. The variation of pupil diameter in each eye is less than 21% while the inter-subject variability is large since diameters are between (3+/-0.3) and (5.3+/-0.6) mm. Aberrations are evaluated for two different pupil sizes, the natural one and a fictitious one of 6 mm. The corneal higher-order root-mean square wavefront error (RMSHO) for a 6 mm pupil centred in the corneal vertex, averaged across all eyes, is (0.37+/-0.06) [mu]m while, considering the natural pupil diameter, the average in each eye is significantly lower, up to eight times smaller. The fourth-order spherical aberration is an important aberration in the considered eyes, its maximum value for a 6 mm pupil being (0.38+/-0.02) [mu]m. The second group consists of 24 eyes of 12 subjects (age between 25 and 68 years) such that four eyes are of normal adults (1.25 to +6 D sphere; 0 to -0.5 D cylinder), eight have astigmatisms (-5.5 to +3.25 D sphere; -1.5 to -4.5 D cylinder), six have post-refractive surgery (+0.5 to +3.5 D sphere; -0.5 to -4 D cylinder) and six have keratoconus (-9.5 to +1 D sphere; -1 to -4.5 D cylinder). For this group only one determination per eye is performed. Pupil centre is displaced from corneal vertex towards the temporal
Moshirfar, Majid; Churgin, Daniel S; Betts, Brent S; Hsu, Maylon; Sikder, Shameema; Neuffer, Marcus; Church, Dane; Mifflin, Mark D
2011-01-01
The purpose of this study was to compare differences in visual outcomes, higher-order aberrations, contrast sensitivity, and dry eye in patients undergoing photorefractive keratectomy using wavefront-guided VISX CustomVue™ and wavefront-optimized WaveLight(®) Allegretto platforms. In this randomized, prospective, single-masked, fellow-eye study, photorefractive keratectomy was performed on 46 eyes from 23 patients, with one eye randomized to WaveLight Allegretto, and the fellow eye receiving VISX CustomVue. Three-month postoperative outcome measures included uncorrected distance visual acuity, corrected distance visual acuity, refractive error, root mean square of total and grouped higher-order aberrations, contrast sensitivity, and Schirmer's testing. Mean values for uncorrected distance visual acuity (logMAR) were -0.03 ± 0.07 and -0.06 ± 0.09 in the wavefront-optimized and wavefront-guided groups, respectively (P = 0.121). Uncorrected distance visual acuity of 20/20 or better was achieved in 91% of eyes receiving wavefront-guided photorefractive keratectomy, and 87% of eyes receiving wavefront-optimized photorefractive keratectomy, whereas uncorrected distance visual acuity of 20/15 was achieved in 35% of the wavefront-optimized group and 64% of the wavefront-guided group (P ≥ 0.296). While root mean square of total higher-order aberration, coma, and trefoil tended to increase in the wavefront-optimized group (P = 0.091, P = 0.115, P = 0.459, respectively), only spherical aberration increased significantly (P = 0.014). Similar increases were found in wavefront- guided root mean square of total higher-order aberration (P = 0.113), coma (P = 0.403), trefoil (P = 0.603), and spherical aberration (P = 0.014). There was no significant difference in spherical aberration change when comparing the two platforms. The wavefront-guided group showed an increase in contrast sensitivity at 12 cycles per degree (P = 0.013). Both VISX CustomVue and WaveLight Allegretto
Moshirfar, Majid; Churgin, Daniel S; Betts, Brent S; Hsu, Maylon; Sikder, Shameema; Neuffer, Marcus; Church, Dane; Mifflin, Mark D
2011-01-01
Background The purpose of this study was to compare differences in visual outcomes, higher-order aberrations, contrast sensitivity, and dry eye in patients undergoing photorefractive keratectomy using wavefront-guided VISX CustomVue™ and wavefront-optimized WaveLight® Allegretto platforms. Methods In this randomized, prospective, single-masked, fellow-eye study, photorefractive keratectomy was performed on 46 eyes from 23 patients, with one eye randomized to WaveLight Allegretto, and the fellow eye receiving VISX CustomVue. Three-month postoperative outcome measures included uncorrected distance visual acuity, corrected distance visual acuity, refractive error, root mean square of total and grouped higher-order aberrations, contrast sensitivity, and Schirmer’s testing. Results Mean values for uncorrected distance visual acuity (logMAR) were −0.03 ± 0.07 and −0.06 ± 0.09 in the wavefront-optimized and wavefront-guided groups, respectively (P = 0.121). Uncorrected distance visual acuity of 20/20 or better was achieved in 91% of eyes receiving wavefront-guided photorefractive keratectomy, and 87% of eyes receiving wavefront-optimized photorefractive keratectomy, whereas uncorrected distance visual acuity of 20/15 was achieved in 35% of the wavefront-optimized group and 64% of the wavefront-guided group (P ≥ 0.296). While root mean square of total higher-order aberration, coma, and trefoil tended to increase in the wavefront-optimized group (P = 0.091, P = 0.115, P = 0.459, respectively), only spherical aberration increased significantly (P = 0.014). Similar increases were found in wavefront- guided root mean square of total higher-order aberration (P = 0.113), coma (P = 0.403), trefoil (P = 0.603), and spherical aberration (P = 0.014). There was no significant difference in spherical aberration change when comparing the two platforms. The wavefront-guided group showed an increase in contrast sensitivity at 12 cycles per degree (P = 0.013). Conclusion Both
Scaling of a fast spherical discharge
Antsiferov, P. S., E-mail: Ants@isan.troitsk.ru; Dorokhin, L. A. [Russian Academy of Sciences, Institute of Spectroscopy (Russian Federation)
2017-02-15
The influence of the discharge cavity dimensions on the properties of the spherical plasma formed in a fast discharge was studied experimentally. The passage of a current pulse with an amplitude of 30–40 kA and a rise rate of ~10{sup 12} A/s (a fast discharge) through a spherical ceramic (Al{sub 2}O{sub 3}) cavity with an inner diameter of 11 mm filled with argon at a pressure of 80 Pa results in the formation of a 1- to 2-mm-diameter spherical plasma with an electron temperature of several tens of electronvolts and a density of 10{sup 18}–10{sup 19} cm{sup –3}. It is shown that an increase in the inner diameter of the discharge cavity from 11 to 21 mm leads to the fourfold increase in the formation time of the spherical plasma and a decrease in the average ion charge. A decrease in the cavity diameter to 7 mm makes the spherical plasma unstable.
Townson, Reid W
2013-01-01
Due to the increasing complexity of radiotherapy delivery, accurate dose verification has become an essential part of the clinical treatment process. The purpose of this work was to develop an electronic portal image (EPI) based pre-treatment verification technique capable of quickly reconstructing 3D dose distributions from both coplanar and non-coplanar treatments. The dose reconstruction is performed in a spherical water phantom by modulating, based on EPID measurements, pre-calculated Monte Carlo (MC) doselets defined on a spherical coordinate system. This is called the spherical doselet modulation (SDM) method. This technique essentially eliminates the statistical uncertainty of the MC dose calculations by exploiting both azimuthal symmetry in a patient-independent phase-space and symmetry of a virtual spherical water phantom. The symmetry also allows the number of doselets necessary for dose reconstruction to be reduced by a factor of about 250. In this work, 51 doselets were used. The SDM method mitiga...
EFFECT OF NON-SPHERICAL PARTICLES ON THE FLUID TURBULENCE IN A PARTICULATE PIPE FLOW
SUN Lei; LIN Jian-zhong; WU Fa-li; CHEN Yi-min
2004-01-01
In the non-spherical particulate turbulent flows, a set of new fluid fluctuating velocity equations with the non-spherical particle source term were derived, then a new method, which treats the slowly varying functions and rapidly varying functions separately, was proposed to solve the equations, and finally the turbulent intensity and the Reynolds stress of the fluid were obtained by calculating the fluctuating velocity statistically. The equations and method were used to a particulate turbulent pipe flow. The results show that the turbulent intensity and the Reynolds stress are decreased almost inverse proportionally to the fluctuating velocity ratio of particle to fluid. Non-spherical particles have a greater suppressing effect on the turbulence than the spherical particles. The particles with short relaxation time reduce the turbulence intensity of fluid, while the particles with long relaxation time increase the turbulence intensity of fluid. For fixed particle and fluid, the small particles suppress the turbulence and the large particles increase the turbulence.
Friction factor for water flow through packed beds of spherical and non-spherical particles
Kaluđerović-Radoičić Tatjana
2017-01-01
Full Text Available The aim of this work was the experimental evaluation of different friction factor correlations for water flow through packed beds of spherical and non-spherical particles at ambient temperature. The experiments were performed by measuring the pressure drop across the bed. Packed beds made of monosized glass spherical particles of seven different diameters were used, as well as beds made of 16 fractions of quartz filtration sand obtained by sieving (polydisperse non-spherical particles. The range of bed voidages was 0.359–0.486, while the range of bed particle Reynolds numbers was from 0.3 to 286 for spherical particles and from 0.1 to 50 for non-spherical particles. The obtained results were compared using a number of available literature correlations. In order to improve the correlation results for spherical particles, a new simple equation was proposed in the form of Ergun’s equation, with modified coefficients. The new correlation had a mean absolute deviation between experimental and calculated values of pressure drop of 9.04%. For non-spherical quartz filtration sand particles the best fit was obtained using Ergun’s equation, with a mean absolute deviation of 10.36%. Surface-volume diameter (dSV necessary for correlating the data for filtration sand particles was calculated based on correlations for dV = f(dm and Ψ = f(dm. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. ON172022
Musa, Marahaini; Thirumulu Ponnuraj, Kannan; Mohamad, Dasmawati; Rahman, Ismail Ab
2013-01-01
Nanocomposite is used as a dental filling to restore the affected tooth, especially in dental caries. The dental nanocomposite (KelFil) for tooth restoration used in this study was produced by the School of Dental Sciences, Universiti Sains Malaysia, Malaysia and is incorporated with monodispersed, spherical nanosilica fillers. The aim of the study was to determine the genotoxic effect of KelFil using in vitro genotoxicity tests. The cytotoxicity and genotoxicity of KelFil was evaluated using MTT assay, comet assay and chromosome aberration tests with or without the addition of a metabolic activation system (S9 mix), using the human lung fibroblast cell line (MRC-5). Concurrent negative and positive controls were included. In the comet assay, no comet formation was found in the KelFil groups. There was a significant difference in tail moment between KelFil groups and positive control (p < 0.05). Similarly, no significant aberrations in chromosomes were noticed in KelFil groups. The mitotic indices of treatment groups and negative control were significantly different from positive controls. Hence, it can be concluded that the locally produced dental restoration nanocomposite (KelFil) is non-genotoxic under the present test conditions.
Kröger, Ronald H H; Gislén, Anna
2004-01-01
The camera eyes of fishes and cephalopods have come forth by convergent evolution. In a variety of vertebrates capable of color vision, longitudinal chromatic aberration (LCA) of the optical system is corrected for by the exactly tuned longitudinal spherical aberration (LSA) of the crystalline lens. The LSA leads to multiple focal lengths, such that several wavelengths can be focused on the retina. We investigated whether that is also the case in the firefly squid (Watasenia scintillans), a cephalopod species that is likely to have color vision. It was found that the lens of W. scintillans is virtually free of LSA and uncorrected for LCA. However, the eye does not suffer from LCA because of a banked retina. Photoreceptors sensitive to short and long wavelengths are located at appropriate distances from the lens, such that they receive well-focused images. Such a design is an excellent solution for the firefly squid because a large area of the retina is monochromatically organized and it allows for double use of the surface area in the dichromatically organized part of the retina. However, it is not a universal solution since compensation for LCA by a banked retina requires that eye size and/or spectral separation between photopigments is small.
2008-01-01
Large amounts of aberrantly spliced mRNA from the β654 allele was present in erythroid cells, which might impair the erythropoiesis.A therapeutic strategy for β-thalassemia was explored by knocking down the aberrantly spliced mRNA of β-globin. Lentiviral vector with siRNA fragment targets on the specific portion of β654-globin aberrantly spliced pre-mRNA was constructed. In HeLa β654 cells, the siRNA vector could reduce approximately 60% of aberrantly spliced mRNA, which was assessed by RT-PCR and qRT-PCR. Furthermore, a disease model of β654 thalassemia mice with lentiviral-mediated siRNA was produced by subzonal injection (named Hβi-Hbbth-4/Hbb+transgenic mice). Our results showed that the hemotological parameters were improved in Hβi-Hbbth-4/Hbb+ transgenic mice. This study provides a potential way for β654-thalassemia therapy by knocking down the aberrantly spliced β-globin mRNA, whilst supporting that the aberrantly spliced β-globin mRNA may aggravate the disease.
Anti-topoisomerase drugs as potent inducers of chromosomal aberrations
Loredana Bassi
2000-12-01
Full Text Available DNA topoisomerases catalyze topological changes in DNA that are essential for normal cell cycle progression and therefore they are a preferential target for the development of anticancer drugs. Anti-topoisomerase drugs can be divided into two main classes: "cleavable complex" poisons and catalytic inhibitors. The "cleavable complex" poisons are very effective as anticancer drugs but are also potent inducers of chromosome aberrations so they can cause secondary malignancies. Catalytic inhibitors are cytotoxic but they do not induce chromosome aberrations. Knowledge about the mechanism of action of topoisomerase inhibitors is important to determine the best anti-topoisomerase combinations, with a reduced risk of induction of secondary malignancies.As topoisomerases de DNA catalisam alterações topológicas no DNA que são essenciais para a progressão do ciclo celular normal e, portanto, são um alvo preferencial para o desenvolvimento de drogas anticâncer. Drogas anti-topoisomerases podem ser divididas em duas classes principais: drogas anti-"complexos cliváveis" e inibidores catalíticos. As drogas anti-"complexos cliváveis" são muito eficazes como drogas anticancerígenas, mas são também potentes indutores de aberrações cromossômicas, podendo causar neoplasias malignas secundárias. Inibidores catalíticos são citotóxicos mas não induzem aberrações cromossômicas. Conhecimento a respeito do mecanismo de ação de inibidores de topoisomerases é importante para determinar as melhores combinações anti-topoisomerases, com um reduzido risco de indução de neoplasias malignas secundárias.
Homogeneous spacelike singularities inside spherical black holes
Burko, L M
1997-01-01
Recent numerical simulations have found that the Cauchy horizon inside spherical charged black holes, when perturbed nonlinearly by a self-gravitating, minimally-coupled, massless, spherically-symmetric scalar field, turns into a null weak singularity which focuses monotonically to $r=0$ at late times, where the singularity becomes spacelike. Our main objective is to study this spacelike singularity. We study analytically the spherically-symmetric Einstein-Maxwell-scalar equations asymptotically near the singularity. We obtain a series-expansion solution for the metric functions and for the scalar field near $r=0$ under the simplifying assumption of homogeneity. Namely, we neglect spatial derivatives and keep only temporal derivatives. We find that there indeed exists a generic spacelike singularity solution for these equations (in the sense that the solution depends on enough free parameters), with similar properties to those found in the numerical simulations. This singularity is strong in the Tipler sense,...
Stability of spherical converging shock wave
Murakami, M., E-mail: murakami-m@ile.osaka-u.ac.jp [Institute of Laser Engineering, Osaka University, Osaka 565-0871 (Japan); Sanz, J. [ETSI Aeronauticos, Universidad Politecnica de Madrid, Madrid 28040 (Spain); Iwamoto, Y. [Graduate School of Science and Engineering, Ehime University, Ehime 790-8577 (Japan)
2015-07-15
Based on Guderley's self-similar solution, stability of spherical converging shock wave is studied. A rigorous linear perturbation theory is developed, in which the growth rate of perturbation is given as a function of the spherical harmonic number ℓ and the specific heats ratio γ. Numerical calculation reveals the existence of a γ-dependent cut-off mode number ℓ{sub c}, such that all the eigenmode perturbations for ℓ > ℓ{sub c} are smeared out as the shock wave converges at the center. The analysis is applied to partially spherical geometries to give significant implication for different ignition schemes of inertial confinement fusion. Two-dimensional hydrodynamic simulations are performed to verify the theory.
A quadrilateralized spherical cube Earth data base
Chan, F. K.
1980-01-01
A quadrilateralized spherical cube was constructed to form the basis for the rapid storage and retrieval of high resolution data obtained of the Earth's surface. The structure of this data base was derived from a spherical cube, which was obtained by radially projecting a cube onto its circumscribing sphere. An appropriate set of curvilinear coordinates were chosen such that the resolution cells on the spherical cube were of equal area and were also of essentially the same shape. The main properties of the Earth data base were that the indexing scheme was binary and telescopic in nature, the resolution cells were strung together in a two dimensional manner, the cell addresses were easily computed, and the conversion from geographic to data base coordinates was comparatively simple. It was concluded that this data base structure was perhaps the most viable one for handling remotely sensed data obtained by satellites.
Stability of Self-Similar Spherical Accretion
Gaite, J
2006-01-01
Spherical accretion flows are simple enough for analytical study, by solution of the corresponding fluid dynamic equations. The solutions of stationary spherical flow are due to Bondi. The questions of the choice of a physical solution and of stability have been widely discussed. The answer to these questions is very dependent on the problem of boundary conditions, which vary according to whether the accretor is a compact object or a black hole. We introduce a particular, simple form of stationary spherical flow, namely, self-similar Bondi flow, as a case with physical interest in which analytic solutions for perturbations can be found. With suitable no matter-flux-perturbation boundary conditions, we will show that acoustic modes are stable in time and have no spatial instability at r=0. Furthermore, their evolution eventually becomes ergodic-like and shows no trace of instability or of acquiring any remarkable pattern.
Static spherically symmetric wormholes with isotropic pressure
Cataldo, Mauricio; Rodríguez, Pablo
2016-01-01
In this paper we study static spherically symmetric wormhole solutions sustained by matter sources with isotropic pressure. We show that such spherical wormholes do not exist in the framework of zero-tidal-force wormholes. On the other hand, it is shown that for the often used power-law shape function there is no spherically symmetric traversable wormholes sustained by sources with a linear equation of state $p=\\omega \\rho$ for the isotropic pressure, independently of the form of the redshift function $\\phi(r)$. We consider a solution obtained by Tolman at 1939 for describing static spheres of isotropic fluids, and show that it also may describe wormhole spacetimes with a power-law redshift function, which leads to a polynomial shape function, generalizing a power-law shape function, and inducing a solid angle deficit.
Trapped flux reduction in a spherical niobium shell at 1 mG
Brumley, Robert W.; Buchman, Saps; Xiao, Yueming
1994-02-01
We have developed a method to reduce flux trapped in a superconducting spherical shell. A normal spot on the shell sweeps flux lines until they close in on themselves. Using this technique the dipole moment corresponding to a trapped field of 1 mG has been reduced to about 6% of its original level.
Correlation between Corneal Topographic Indices and Higher-Order Aberrations in Keratoconus
Sepehr Feizi
2013-01-01
Full Text Available Purpose: To compare corneal higher-order aberrations (HOAs between normal and keratoconic eyes, and to investigate the association between elevation-based corneal topographic indices and corneal wavefront data in the latter group. Methods: In this cross-sectional comparative study, 77 normal right eyes of 77 control subjects and 66 eyes of 36 keratoconic patients were included. In each eye, elevationbased corneal topographic indices including mean keratometry readings, best-fit sphere, maximum elevation, and 3-mm and 5-mm zone irregularity indices were measured using Orbscan II. The Galilei Scheimpflug analyzer was used to measure HOAs of the corneal surface. The independent student t-test was used to compare HOAs between the study groups. Spearman correlation was used to investigate possible associations between Orbscan and Galilei data in the keratoconus group. Results: All Zernike coefficients up to the 4th order except for horizontal trefoil, and vertical and horizontal tetrafoil were significantly greater in the keratoconus group than normal eyes (P<0.05. Root mean square (RMS of HOAs up to the 6th order and total HOAs were significantly higher in the keratoconus group (P<0.05. In the keratoconus group, the strongest association was observed between vertical coma (r=-0.71, P<0.01 and total RMS of HOAs (r=0.94, P<0.01 with irregularity in the 3-mm zone. Spherical and vertical coma aberrations were significantly correlated with mean keratometry (P<0.05 for both comparisons. Conclusion: Centrally located corneal HOAs are significantly greater in keratoconic eyes than normal controls. Anterior and inferior displacement of the cornea causes the majority of higher-order aberrations observed in keratoconus.
Hansen, Troels V.; Kim, Oleksiy S.; Breinbjerg, Olav
2012-01-01
We present closed-form expressions for central properties of spherical wave functions of arbitrary order in relation to arbitrarily sized spherical antennas with lossless solid material cores. These properties are the electric or magnetic spherical surface current distribution radiating a spherical...
Aberrant Gene Expression in Acute Myeloid Leukaemia
Bagger, Frederik Otzen
model to investigate the role of telomerase in AML, we were able to translate the observed effect into human AML patients and identify specific genes involved, which also predict survival patterns in AML patients. During these studies we have applied methods for investigating differentially expressed......Summary Acute Myeloid Leukaemia (AML) is an aggressive cancer of the bone marrow, affecting formation of blood cells during haematopoiesis. This thesis presents investigation of AML using mRNA gene expression profiles (GEP) of samples extracted from the bone marrow of healthy and diseased subjects....... Here GEPs from purified healthy haematopoietic populations, with different levels of differentiation, form the basis for comparison with diseased samples. We present a mathematical transformation of mRNA microarray data to make it possible to compare AML samples, carrying expanded aberrant...
Aberrant angiogenesis: The gateway to diabetic complications
Sunil K Kota
2012-01-01
Full Text Available Diabetes Mellitus is a metabolic cum vascular syndrome with resultant abnormalities in both micro- and macrovasculature. The adverse long-term effects of diabetes mellitus have been described to involve many organ systems. Apart from hyperglycemia, abnormalities of angiogenesis may cause or contribute toward many of the clinical manifestations of diabetes. These are implicated in the pathogenesis of vascular abnormalities of the retina, kidneys, and fetus, impaired wound healing, increased risk of rejection of transplanted organs, and impaired formation of coronary collaterals. A perplexing feature of the aberrant angiogenesis is that excessive and insufficient angiogenesis can occur in different organs in the same individual. The current article hereby reviews the molecular mechanisms including abnormalities in growth factors, cytokines, and metabolic derangements, clinical implications, and therapeutic options of dealing with abnormal angiogenesis in diabetes.
Remark on: the neutron spherical optical-model absorption.
Smith, A. B.; Nuclear Engineering Division
2007-06-30
The energy-dependent behavior of the absorption term of the spherical neutron optical potential for doubly magic {sup 208}Pb and the neighboring {sup 209}Bi is examined. These considerations suggest a phenomenological model that results in an intuitively attractive energy dependence of the imaginary potential that provides a good description of the observed neutron cross sections and that is qualitatively consistent with theoretical concepts. At the same time it provides an alternative to some of the arbitrary assumptions involved in many conventional optical-model interpretations reported in the literature and reduces the number of the parameters of the model.
Minimum Q circularly polarized electrically small spherical antennas
Kim, Oleksiy S.
2011-01-01
The radiation problem for the TM10- and TE10-mode electric current densities on the surface of a spherical magnetic-coated PEC core is solved analytically. The combination of the electric and magnetic dipole modes reduces the radiation Q of the antenna. Moreover, with an appropriately designed...... magnetic-coated PEC core the stored energies of these modes balance each other making the antenna self-resonant and at the same time ensuring a perfect circularly polarized radiation. Numerical results for a practical dual-mode electrically small antenna confirm the theoretical predictions. A 4-arm...
Boundary Terms and Noether Current of Spherical Black Holes
Ashworth, M C; Ashworth, Michael C.; Hayward, Sean A.
1999-01-01
We consider two proposals for defining black hole entropy in spherical symmetry, where the horizon is defined locally as a trapping horizon. The first case, boundary terms in a dual-null form of the reduced action in two dimensions, gives a result that is proportional to the area. The second case, Wald's Noether current method, is generalized to dynamic black holes, giving an entropy that is just the area of the trapping horizon. These results are compared with a generalized first law of thermodynamics.
Quantum Statistical Entropy of Spherical Black Holes in Higher Dimensions
XU Dian-Yan
2000-01-01
The free energy and entropy of a general spherically symmetry black hole are calculated by quantum statistic method with brick wall model Two different kinds of approximation are used to calculate the number of states in transverse spatial space. The final results are approximately equal except a rational numerical constant. The formulas of free energy and entropy, evaluated by each one of the two different kinds of approximation, are the same except some numerical constants. The free energy and entropy are dependent on the spacetime dimensionsD. When D = 4, they reduce to the usual well known results.
Spherically symmetric solution in a space-time with torsion
Farfan, Filemon; Loaiza-Brito, Oscar; Moreno, Claudia; Yakhno, Alexander
2011-01-01
By using the analysis group method, we obtain a new exact evolving and spherically symmetric solution of the Einstein-Cartan equations of motion, corresponding to a space-time threaded with a three-form Kalb-Ramond field strength. The solution describes in its more generic form, a space-time which scalar curvature vanishes for large distances and for large time. In static conditions, it reduces to a classical wormhole solution already reported in literature. In the process we have found evidence towards the construction of more new solutions.
Preparation of Spherical Microfinc Silicon Powder
SHENG Yong; Zou Jun; LI Bing; TU Mingjing
2008-01-01
Under certain conditions of proper temperature and pH value,sodium silicate was hydrolyzed in liquid ammonia chloride,and spherical microfine SiO2 powder in micrometer-size was prepared.In this experiment,the relationship between needed time and proper pH value,temperature,density ofthe solution.and its current capacity were found.The optimum conditions are pH 8.5,70℃,and the concentration of sodium silicate is O.6 mol/L for the density ofthe solution.The structure of spherical microfine silicon was charactetized by SEM andXRD.
Sphericizing metal powders by mechanical means
WANG Fu-xiang; GAI Guo-sheng; YANG Yu-fen
2006-01-01
A dry mechanical surface treatment was described,in which irregularly shaped metal powders were impacted and sphericized by using high speed airflow impact method particles composite system(PCS). The optimum technological parameters for the metal powders processed were determined according to the treatment effect under different conditions. The results show that the irregularly shaped metal powders are impacted into dense spherical particles,the bulk density and tap density of the metal powders increase noticeably. The combination property of metal powders is improved greatly.
Overview of spherical tokamak research in Japan
Takase, Y.; Ejiri, A.; Fujita, T.; Fukumoto, N.; Fukuyama, A.; Hanada, K.; Idei, H.; Nagata, M.; Ono, Y.; Tanaka, H.; Uchida, M.; Horiuchi, R.; Kamada, Y.; Kasahara, H.; Masuzaki, S.; Nagayama, Y.; Oishi, T.; Saito, K.; Takeiri, Y.; Tsuji-Iio, S.
2017-10-01
Nationally coordinated research on spherical tokamak is being conducted in Japan. Recent achievements include: (i) plasma current start-up and ramp-up without the use of the central solenoid by RF waves (in electron cyclotron and lower hybrid frequency ranges), (ii) plasma current start-up by AC Ohmic operation and by coaxial helicity injection, (iii) development of an advanced fuelling technique by compact toroid injection, (iv) ultra-long-pulse operation and particle control using a high temperature metal wall, (v) access to the ultra-high-β regime by high-power reconnection heating, and (vi) improvement of spherical tokamak plasma stability by externally applied helical field.
POLARON IN CYLINDRICAL AND SPHERICAL QUANTUM DOTS
L.C.Fai
2004-01-01
Full Text Available Polaron states in cylindrical and spherical quantum dots with parabolic confinement potentials are investigated applying the Feynman variational principle. It is observed that for both kinds of quantum dots the polaron energy and mass increase with the increase of Frohlich electron-phonon coupling constant and confinement frequency. In the case of a spherical quantum dot, the polaron energy for the strong coupling is found to be greater than that of a cylindrical quantum dot. The energy and mass are found to be monotonically increasing functions of the coupling constant and the confinement frequency.
Hole Size in a Spherical Resonator
Jared Kearns
2012-06-01
Full Text Available When air is blown strongly through a straw and across a hole in a hollow sphere, a high-pitched whistling sound is heard. This paper tests two models, Helmholtz Resonance and Spherical Harmonics, to determine which most accurately models this phenomenon. This was done by measuring the frequencies produced when air was blown across identical spheres with different hole sizes, as well as across spheres of different volumes with identical holes. The frequencies were found to closely match frequencies predicted by spherical harmonics.
Hole Size in a Spherical Resonator
Jared Kearns
2012-06-01
Full Text Available When air is blown strongly through a straw and across a hole in a hollow sphere, a high-pitched whistling sound is heard. This paper tests two models, Helmholtz Resonance and Spherical Harmonics, to determine which most accurately models this phenomenon. This was done by measuring the frequencies produced when air was blown across identical spheres with different hole sizes, as well as across spheres of different volumes with identical holes. The frequencies were found to closely match frequencies predicted by spherical harmonics
Spherical Black Holes cannot Support Scalar Hair
Sudarsky, D
1998-01-01
The static spherically symmetric ``black hole solution" of the Einstein - conformally invariant massless scalar field equations known as the BBMB ( Bocharova, , Bronikov, Melinkov, Bekenstein) black hole is critically examined. It is shown that the stress energy tensor is ill-defined at the horizon, and that its evaluation through suitable regularization yields ambiguous results. Consequently, the configuration fails to represent a genuine black hole solution. With the removal of this solution as a counterexample to the no hair conjecture, we argue that the following appears to be true: Spherical black holes cannot carry any kind of classical scalar hair.
Fast algorithms for spherical harmonic expansions, III
Tygert, Mark
2009-01-01
We accelerate the computation of spherical harmonic transforms, using what is known as the butterfly scheme. This provides a convenient alternative to the approach taken in the second paper from this series on "Fast algorithms for spherical harmonic expansions." The requisite precomputations become manageable when organized as a "depth-first traversal" of the program's control-flow graph, rather than as the perhaps more natural "breadth-first traversal" that processes one-by-one each level of the multilevel procedure. We illustrate the results via several numerical examples.
Analysis on two novel spherical helical antennas
Hou ZHANG; Yingzeng YIN; Dongyu XIA
2009-01-01
Two novel spherical helical antennas are designed by projecting the planar equiangular spiral antenna onto hemisphere and partial sphere surfaces.Their radiation properties are analyzed by the moment method with curved basis and test function,and the curves of the voltage standing wave ratio (VSWR),gain,polarization and pattern that change with frequency are also given,respectively.It can be seen that the circular polarization band of the novel hemispherical helical antenna is broader.The gain curve of the partial spherical helical antenna is flatter and the structure is simpler.
Inflation in spherically symmetric inhomogeneous models
Stein-Schabes, J.A.
1986-11-01
Exact analytical solutions of Einstein's equations are found for a spherically symmetric inhomogeneous metric in the presence of a massless scalar field with a flat potential. The process of isotropization and homogenization is studied in detail. It is found that the time dependence of the metric becomes de Sitter for large times. Two cases are studied. The first deals with a homogeneous scalar field, while the second with a spherically symmetric inhomogeneous scalar field. In the former case the metric is of the Robertson-Walker form, while the latter is intrinsically inhomogeneous. 16 refs.
Numerical correction of aberrations via phase retrieval with speckle illumination
Almoro, Percival; Gundu, Phanindra Narayan; Hanson, Steen Grüner
2009-01-01
What we believe to be a novel technique for wavefront aberration measurement using speckle patterns is presented. The aberration correction is done numerically. A tilted lens is illuminated with a partially developed speckle field, and the transmitted light intensity is sampled at axially displaced...
MAPCLASS a code to optimize high order aberrations
Tomás, R
2006-01-01
MAPCLASS is a code written in PYTHON conceived to optimize the non-linear aberrations of the Final Focus System of CLIC. MAPCLASS calls MADX-PTC to obtain the map coefficients and uses optimization algorithms like the Simplex to compensate the high order aberrations.
Pattern of chromosomal aberrations in patients from north East iran.
Ghazaey, Saeedeh; Mirzaei, Farzaneh; Ahadian, Mitra; Keifi, Fatemeh; Semiramis, Tootian; Abbaszadegan, Mohammad Reza
2013-01-01
Chromosomal aberrations are common causes of multiple anomaly syndromes. Recurrent chromosomal aberrations have been identified by conventional cytogenetic methods used widely as one of the most important clinical diagnostic techniques. In this retrospective study, the incidences of chromosomal aberrations were evaluated in a six year period from 2005 to 2011 in Pardis Clinical and Genetics Laboratory on patients referred to from Mashhad and other cities in Khorasan province. Karyotyping was performed on 3728 patients suspected of having chromosomal abnormalities. The frequencies of the different types of chromosomal abnormalities were determined, and the relative frequencies were calculated in each group. Among these patients, 83.3% had normal karyotypes with no aberrations. The overall incidences of chromosomal abnormalities were 16.7% including sex and autosomal chromosomal anomalies. Of those, 75.1 % showed autosomal chromosomal aberrations. Down syndrome (DS) was the most prevalent autosomal aberration in the patients (77.1%). Pericentric inversion of chromosome 9 was seen in 5% of patients. This inversion was prevalent in patients with recurrent spontaneous abortion (RSA). Sex chromosomal aberrations were observed in 24.9% of abnormal patients of which 61% had Turner's syndrome and 33.5% had Klinefelter's syndrome. According to the current study, the pattern of chromosomal aberrations in North East of Iran demonstrates the importance of cytogenetic evaluation in patients who show clinical abnormalities. These findings provide a reason for preparing a local cytogenetic data bank to enhance genetic counseling of families who require this service.
保金华; 贺极苍; 毛欣杰; 吕帆
2013-01-01
RMS) was (0.34±0.12) μm,(0.28 ±0.12) μm,(0.40±0.14) μm in the uncorrected condition,RGP-CL corrected condition and Soft-CL corrected condition,with a significant difference among them (F =10.681,P＜0.001).An insignificant decrease of hRMS was seen in the RGP-CL corrected condition compared with uncorrected condition (t =1.987,P=0.053),but hRMS value was significant higher in the Soft-CL corrected condition than that in the uncorrected condition (t=2.101,P=0.041) and RGP-CL corrected condition (t=4.266,P＜0.001).Compared with uncorrected condition,the axis astigmatism (C5) and spherical aberration (C12) in the RGP-CL corrected condition and spherical aberration (C12) in the Soft-CL corrected condition were significantly reduced (P＜0.05),and the absolute values of trefoil (C6),vertical coma (C7) and tetrafoil (C10) in the RGP-CL corrected condition were lower than those of the uncorrected condition,but vertical coma (C7) absolute value in the Soft-CL corrected condition was increased (P＜0.05).A significantly positive correlation was seen in the spherical aberration (C12) between the RGP-CL corrected condition and uncorrected condition (r =0.763,P＜0.001),and less significant correlation was in the secondary astigmatism (C11) between the Soft-CL corrected condition and uncorrected condition(r=0.469,P＜0.001).Conclusions Different contact lens corrected conditions exert their effects on ocular wavefront structure due to its unique interaction with the eye.RGP-CL wearing has strong modification on wavefront aberrations probably due to its molding effect on corneal surface,which reduces the bilateral symmetry.High order wavefront aberration can be modified by Soft-CL wearing.%背景 以往研究分析了角膜接触镜配戴产生的像差变化,但这些变化发生的机制仍不明确.完整理解镜-眼系统引起的波前像差变化原因是进一步改良角膜接触镜的设计、提高视觉矫正质量的基础.目的 通过分析近视患者配戴角
Third-order aberrations of a plane symmetric optical system∗%面对称光学系统的初级波像差理论研究*
孙金霞; 潘国庆; 刘英
2013-01-01
The wave aberration theory of non-symmetrical optical systems is useful for understanding the misalignment in symmetrical systems and designing of off-axis mirror systems. A theory about the third-order aberrations for sub-aperture plane symmetric optical system is developed by using the aberration theory for full-aperture axially symmetric spherical systems. This paper proves the nodal aberration theory, namely, the points in the field with zero third-order aberration will deviate from the field center except for spherical aberration. It also reveals that the nodal aberrations arise from the transformation of the aberrations in full-aperture systems. This theory can be efficiently used in non-symmetric optical system designing process.% 非旋转轴对称光学系统波像差理论的建立有利于理解旋转轴对称光学系统的装调误差和离轴三反射光学系统等非旋转轴对称光学系统的选型设计。本文利用旋转轴对称球面光学系统的全口径初级波像差理论推导了子孔径面对称光学系统的初级波像差分布公式，证明了面对称光学系统中的节点像差理论，即除球差外的所有初级像差的零值节点偏离视场中心，而不再是视场的旋转对称函数；并首次阐述了多零值节点初级非对称像差产生的根源和变化特性。该理论可以有效指导非对称光学系统初始结构的选择和优化设计过程。
Otávio Siqueira Bisneto
2007-03-01
quantidade de todas as aberrações estudadas. CONCLUSÕES: a Houve relação positiva, estatisticamente significativa, entre hipermetropia, com e sem astigmatismo, e aberração esférica e RMS de alta ordem; b Houve relação positiva, estatisticamente significativa, entre idade e aberrações ópticas de alta ordem.PURPOSE: To evaluate the relationship between high-order aberrations and refractive errors, and between high-order aberrations and age. METHODS: An analytic retrospective study of patients that underwent aberrometry examination was conducted. All subjects examined with LadarWave® aberrometer at the Hospital de Olhos do Paraná from April 2004 to April 2005 were included in this study. The major inclusion criterion was 20/20 or better - corrected or not - visual acuity; and the major exclusion criterion, the presence of previous eye surgery or disease. The following variables were analyzed: age, refraction, spherical equivalent, and high-order aberrations wich were: coma, spherical aberration, others, and high-order root mean square (RMS. All data were obtained by LadarWave® aberrometry examination, under cycloplegia, utilizing only 6.5 mm pupil results. High-order aberrations up to eight order Zernike's coefficients were evaluated. Patients were divided into 6 groups according to refraction error and into 3 groups according to age. RESULTS: Two hundred and one of 312 eyes were studied. The mean age was 33.9 ± 10.1, varying from 7 to 62 years of age. Among the refraction error groups hyperopic patients with less than -0.75 D astigmatism (Group 5 showed a higher amount of spherical aberration, and hyperopic patients with more than -0.75 D astigmatism (Group 6 showed a higher amount of other and high-order RMS aberrations. In the general comparison between the age groups, the 45 or older group (Group C showed a higher amount of all the analyzed aberrations. CONCLUSION: a There was a statistically significant positive relationship between hyperopia - with or
Effects of aberrations in spatiotemporal focusing of ultrashort laser pulses.
Sun, Bangshan; Salter, Patrick S; Booth, Martin J
2014-04-01
Spatiotemporal focusing, or simultaneous spatial and temporal focusing (SSTF), has already been adopted for various applications in microscopy, photoactivation for biological studies, and laser fabrication. We investigate the effects of aberrations on focus formation in SSTF, in particular, the effects of phase aberrations related to low-order Zernike modes and a refractive index mismatch between the immersion medium and sample. By considering a line focus, we are able to draw direct comparison between the performance of SSTF and conventional spatial focusing (SF). Wide-field SSTF is also investigated and is found to be much more robust to aberrations than either line SSTF or SF. These results show the sensitivity of certain focusing methods to specific aberrations, and can inform on the necessity and benefit of aberration correction.
Chromosome aberrations in pesticide-exposed greenhouse workers
Lander, B F; Knudsen, Lisbeth E.; Gamborg, M O
2000-01-01
OBJECTIVES: The aim of this study was to investigate the possibility of subtoxic exposure to pesticides causing chromosome aberrations in greenhouse workers. METHODS: In a cross-sectional and prospective study design chromosome aberration frequencies in cultured lymphocytes were examined for 116 ...... pesticide exposure. In general, the findings indicate the importance of personal protection, during high-exposure re-entry activities, in preventing pesticide uptake and genetic damage.......OBJECTIVES: The aim of this study was to investigate the possibility of subtoxic exposure to pesticides causing chromosome aberrations in greenhouse workers. METHODS: In a cross-sectional and prospective study design chromosome aberration frequencies in cultured lymphocytes were examined for 116...... workers when they were compared with the referents. After a summer season of pesticide spraying in the greenhouses, the total frequencies of cells with chromosome aberrations were significantly higher than in the preseason samples (P=0.02) and also higher than for the referents (P=0.05). This finding...
Magnetic moments of odd spherical nuclei
Levon, A.I.; Fedotkin, S.N.; Vdovin, A.I.
1986-06-01
Using the quasiparticle-phonon model, the magnetic moments of the ground state and several of the excited states are calculated for spherical nuclei. The polarization of the core is taken into account, by means of 1+ phonons, as well as 2/sup +/ and 3/sup -/ excitations, which give a collective contribution to the magnetic moment.
Noncommutative spherically symmetric spacetimes at semiclassical order
Fritz, Christopher
2016-01-01
Working within the recent formalism of Poisson-Riemannian geometry, we completely solve the case of generic spherically symmetric metric and spherically symmetric Poisson-bracket to find a unique answer for the quantum differential calculus, quantum metric and quantum Levi-Civita connection at semiclassical order $O(\\lambda)$. Here $\\lambda$ is the deformation parameter, plausibly the Planck scale. We find that $r,t,dr,dt$ are all forced to be central, i.e. undeformed at order $\\lambda$, while for each value of $r,t$ we are forced to have a fuzzy sphere of radius $r$ with a unique differential calculus which is necessarily nonassociative at order $\\lambda^2$. We give the spherically symmetric quantisation of the FLRW cosmology in detail and also recover a previous analysis for the Schwarzschild black hole, now showing that the quantum Ricci tensor for the latter vanishes at order $\\lambda$. The quantum Laplace-Beltrami operator for spherically symmetric models turns out to be undeformed at order $\\lambda$ whi...
Optical properties of spherical gold mesoparticles
Evlyukhin, A. B.; Kuznetsov, A. I.; Novikov, S. M.;
2012-01-01
Optical properties of spherical gold particles with diameters of 150-650 nm (mesoparticles) are studied by reflectance spectroscopy. Particles are fabricated by laser-induced transfer of metallic droplets onto metal and dielectric substrates. Contributions of higher multipoles (beyond the quadrup...
An iterative method for spherical bounces
Buniy, Roman V
2016-01-01
We develop a new iterative method for finding approximate solutions for spherical bounces associated with the decay of the false vacuum in scalar field theories. The method works for any generic potential in any number of dimensions, contains Coleman's thin-wall approximation as its first iteration, and greatly improves its accuracy by including higher order terms.
Spherical Horn Array for Wideband Propagation Measurements
Franek, Ondrej; Pedersen, Gert Frølund
2011-01-01
A spherical array of horn antennas designed to obtain directional channel information and characteristics is introduced. A dual-polarized quad-ridged horn antenna with open flared boundaries and coaxial feeding for the frequency band 600 MHz–6 GHz is used as the element of the array. Matching...
Spherical polymer brushes under good solvent conditions
Lo Verso, Federica; Egorov, Sergei A.; Milchev, Andrey
2010-01-01
A coarse grained model for flexible polymers end-grafted to repulsive spherical nanoparticles is studied for various chain lengths and grafting densities under good solvent conditions by molecular dynamics methods and density functional theory. With increasing chain length, the monomer density...
Realizability of stationary spherically symmetric transonic accretion
Ray, A K; Ray, Arnab K.
2002-01-01
The spherically symmetric stationary transonic (Bondi) flow is considered a classic example of an accretion flow. This flow, however, is along a separatrix, which is usually not physically realizable. We demonstrate, using a pedagogical example, that it is the dynamics which selects the transonic flow.
Sparse acoustic imaging with a spherical array
Fernandez Grande, Efren; Xenaki, Angeliki
2015-01-01
proposes a plane wave expansion method based on measurements with a spherical microphone array, and solved in the framework provided by Compressed Sensing. The proposed methodology results in a sparse solution, i.e. few non-zero coefficients, and it is suitable for both source localization and sound field...
Compressive sensing with a spherical microphone array
Fernandez Grande, Efren; Xenaki, Angeliki
2016-01-01
A wave expansion method is proposed in this work, based on measurements with a spherical microphone array, and formulated in the framework provided by Compressive Sensing. The method promotes sparse solutions via ‘1-norm minimization, so that the measured data are represented by few basis functions...
Programmable shape transformation of elastic spherical domes.
Abdullah, Arif M; Braun, Paul V; Hsia, K Jimmy
2016-07-20
We investigate mismatch strain driven programmable shape transformation of spherical domes and report the effects of different geometric and structural characteristics on dome behavior in response to applied mismatch strain. We envision a bilayer dome design where the differential swelling of the inner layer with respect to the passive outer layer in response to changes in dome surroundings (such as the introduction of an organic solvent) introduces mismatch strain within the bilayer system and causes dome shape transformation. Finite element analysis reveals that, in addition to snap-through, spherical domes undergo bifurcation buckling and eventually gradual bending to morph into cylinders with increasing mismatch strain. Besides demonstrating how the snap-through energy barrier depends on the spherical dome shape, our analysis identifies three distinct groups of dome geometries based on their mismatch strain-transformed configuration relationships. Our experiments with polymer-based elastic bilayer domes that exhibit differential swelling in organic solvents qualitatively confirm the finite element predictions. We establish that, in addition to externally applied stimuli (mismatch strain), bilayer spherical dome morphing can be tuned and hence programmed through its geometry and structural characteristics. Incorporation of an elastic instability mechanism such as snap-through within the framework of stimuli-responsive functional devices can improve their response time which is otherwise controlled by diffusion. Hence, our proposed design guidelines can be used to realize deployable, multi-functional, reconfigurable, and therefore, adaptive structures responsive to a diverse set of stimuli across multiple length scales.
Brain injuries caused by spherical bolts.
Roth, Jonathan; Mayo, Ami; Elran, Hanoch; Razon, Nissim; Kluger, Yoram
2005-05-01
Metallic particles contained in antihuman bombs increase the number of fatalities. The ballistics of these particles depends on the explosive that is used, the distance from the explosion, the shape of the particle projected, and the biomechanics of the injured tissue. The authors present their experience with penetrating spherical bolt injuries to the brain. The authors retrospectively reviewed clinical and radiological data obtained in eight patients with penetrating spherical bolt injuries to the cranium: four had Glasgow Coma Scale (GCS) scores less than 8 (three died, one from an unrelated injury) and four had a GCS score of 15 (all survived). Two of the latter patients suffered unique anatomical injuries attributed to the distinctive ballistics of spherical bolts: in one patient the bolt penetrated the cavernous sinus causing minimal cranial nerve injury, and in the other patient the bolt lodged in the fourth ventricle causing acute hydrocephalus without other neurological deficits. Penetrating spherical bolts to the brain may be lethal. Nevertheless, they have unique ballistics that cause highly delineated anatomical damage and minor neurological deficits.
Collapsing spherical null shells in general relativity
S Khakshournia
2011-03-01
Full Text Available In this work, the gravitational collapse of a spherically symmetric null shell with the flat interior and a charged Vaidya exterior spacetimes is studied. There is no gravitational impulsive wave present on the null hypersurface which is shear-free and contracting. It follows that there is a critical radius at which the shell bounces and starts expanding.
The glass transition of hard spherical colloids
Pusey, P.N. (Royal Signals and Radar Establishment, Malvern (UK)); Van Megen, W. (Royal Melbourne Inst. of Tech. (Australia). Dept. of Applied Physics)
1990-03-01
When suspended in a liquid, hard spherical colloidal particles can show fluid, crystalline and glassy phases. A light scattering study of the dynamics of the metastable fluid and glassy phases is reported. Comparison is made with the predictions of mode-coupling theories applied to the glass transition of simple atomic systems. (orig.).
Yao, Jianing; Thompson, Kevin P; Ma, Bin; Ponting, Michael; Rolland, Jannick P
2016-08-22
In this paper, we develop the methodology, including the refraction correction, geometrical thickness correction, coordinate transformation, and layer segmentation algorithms, for 3D rendering and metrology of a layered spherical gradient refractive index (S-GRIN) lens based on the imaging data collected by an angular scan optical coherence tomography (OCT) system. The 3D mapping and rendering enables direct 3D visualization and internal defect inspection of the lens. The metrology provides assessment of the surface geometry, the lens thickness, the radii of curvature of the internal layer interfaces, and the misalignment of the internal S-GRIN distribution with respect to the lens surface. The OCT metrology results identify the manufacturing defects, and enable targeted process development for optimizing the manufacturing parameters. The newly fabricated S-GRIN lenses show up to a 7x spherical aberration reduction that allows a significantly increased utilizable effective aperture.
Mendes, Mariana E.; Mendonca, Julyanne C.G.; Souza, Priscilla L.G.; Santos, Neide; Lima, Fabiana F., E-mail: mendes_sb@hotmail.com [Centro Regional de Ciencias Nucleares do Nordeste (CRCN-NE/CNEN-PE), Recife, PE (Brazil)
2013-07-01
Analysis of chromosome aberrations is the most developed method for biological monitoring. From the frequency of these aberrations it is possible to evaluate the absorbed dose. This technique can ve used to support physical dosimetry or when it is impossible to achieve it. The aim of this research is to compare frequencies of unstable chromosome alterations induce by a gamma beam with two different sources: {sup 137}Cs and {sup 60}Co. The first sample was exposed to {sup 137}Cs resulting in absorbed dose 0.45 Gy, 0.726 Gy and 1.375 Gy and the second one was exposed to {sup 60}Co (Gammacel 220) resulting in absorbed doses 0.51 Gy, 0.77 Gy and 1.5 Gy. Mitotic metaphase cells were obtained by Iymphocyte culture for chromosomal analysis and slides were stained with Giemsa 5%. Among the unstable chromosome aberrations were analyzed dicentrics, ring centric and acentric. These results showed a statistical similarity in the frequencies of dicentrics and acentric per cell, except the frequencies of acentric when irradiated with the lowest dose. However, the dose rate of {sup 137}Cs source is lower than the dose rate of {sup 60}Co source (30.78 mGy/h and 3.277 Gy/h, respectively). This would be a factor to be considered in the analysis of unstable chromosome aberrations once prolonged irradiation time reduces the number of produced aberrations by low LET radiation doses, however further studies with other absorbed doses are necessary in the search for more reliable results for that statement. (author)
Hybrid spherical particle field measurement based on interference technology
Sun, Jinlu; Zhang, Hongxia; Li, Jiao; Zhou, Ye; Jia, Dagong; Liu, Tiegen
2017-03-01
Interferometric particle imaging is widely used in particle size measurement. Conventional algorithms, which focus on single size particle fields, have difficulties in extracting each interference fringe in a hybrid spherical particle field due to the noise. To solve this problem, an iterative mean filter (IMF) algorithm is proposed. Instead of the specific mean filter template coefficient, the noise is reduced by iterating the calculation results under different template coefficients. The average value of the calculation results excluding the gross error is output as the final result. The effect of different template coefficients are simulated, furthermore, the value range of template coefficients has been analyzed. The interferogram of the hybrid spherical particle field from 21.3 µm to 57.9 µm is processed by the conventional algorithms with specific template coefficients of 2, 8, 12 and the IMF algorithm. The corresponding measurement errors are 17.22%, 10.69%, 9.04% and 5.11%. The experimental results show that the IMF algorithm would reduce measurement error, and could be potentially applied in particle field measurement.
Resonance scattering characteristics of double-layer spherical particles
Xuejin Dong; Mingxu Su; Xiaoshu Cai
2012-01-01
Based on the principle of ultrasonic resonance scattering,sound-scattering characteristics of double-layer spherical particles in water were numerically studied in this paper.By solving the equations of the scattering matrix,the scattering coefficient determined by the boundary conditions can be obtained,thus the expression for the sound-scattering function of a single double-layer spherical particle can be derived.To describe the resonance scattering characteristics of a single particle,the reduced scattering cross section and reduced extinction cross section curves were found through numerical calculation.Similarly,the numerically calculated sound attenuation coefficient curves were used to depict the resonance scattering characteristics of monodisperse and polydisperse particles.The results of numerical calculation showed that,for monodisperse particles,the strength of the resonance was mainly related to the particle size and the total number of particles; while for polydisperse particles,it was primarily affected by the particle size,the coverage of the particle size distribution and the particle concentration.
Fluidization of non-spherical particles: Sphericity, Zingg factor and other fluidization parameters
Baiqian Liu; Xiaohui Zhang; Ligang Wang; Hui Hong
2008-01-01
A comparison of sphericity and Zingg factor for particle morphology and description of fluidized-bed dynamics are presented. It is found that Zingg factor Fz =LHIB2 (where L, H and B are, respectively, the length, breadth and height of a particle) well describes the effect of particle morphology. Experimental results show that non-spherical particles give poor fluidizing quality as compared to spherical particles in terms of pressure drop, Umf, etc. With the same volume-equivalent diameter, non-spherical particles have lower Umf and fluidizing coefficient δ. Some smooth curves have been obtained between the parameters δ Umf and Fz. The quality of fluidization could be evaluated by fluidizing coefficient, which has been correlated to the Zingg factor and minimum fluidizing velocity in this paper.
Asgharinejad, A.; Askari, H. R.
2016-09-01
In this paper, electromagnetically induced transparency (EIT) is investigated in a GaAs spherical quantum dot (SQD) with central potential in presence of spherical metallic nanoparticle (SMNP). Solving the Schrödinger equation in effective mass, eigenfunctions and eigenvalues of SQD are obtained. By using the obtained eigenfunctions and eigenvalues, the susceptibility of SQD is found. In addition, dependence of EIT on radius of SQD and SMNP, distance between SMNP and SQD and Rabi and probe frequencies are investigated.
Formation of spherical stomatocyte of high-genus vesicle under pore-size constraint
Noguchi, Hiroshi
2016-01-01
Nuclear pores have an approximately uniform distribution in the nuclear envelope of most living cells. Hence, the morphology of the nuclear envelope is a spherical stomatocyte with a high genus. We have investigated the morphology of high-genus vesicles under pore-size constraint using dynamically triangulated membrane simulations. Bending-energy minimization without volume or other constraints produces a circular-cage stomatocyte, where the pores are aligned in a circular line on an oblate inner bud. As the pore radius is reduced, the circular-pore alignment is more stabilized than a random pore distribution on a spherical bud. However, we have clarified the conditions for the formation of a spherical stomatocyte: a small reduced volume, osmotic pressure within the inner bud, and repulsion between the pores. When area-difference elasticity is taken into account, the formation of cylindrical or budded tubules from the stomatocyte and discoidal stomatocyte is found.
Investigation of Gas Solid Fluidized Bed Dynamics with Non-Spherical Particles
Choudhuri, Ahsan
2013-06-30
One of the largest challenges for 21st century is to fulfill global energy demand while also reducing detrimental impacts of energy generation and use on the environment. Gasification is a promising technology to meet the requirement of reduced emissions without compromising performance. Coal gasification is not an incinerating process; rather than burning coal completely a partial combustion takes place in the presence of steam and limited amounts of oxygen. In this controlled environment, a chemical reaction takes place to produce a mixture of clean synthetic gas. Gas-solid fluidized bed is one such type of gasification technology. During gasification, the mixing behavior of solid (coal) and gas and their flow patterns can be very complicated to understand. Many attempts have taken place in laboratory scale to understand bed hydrodynamics with spherical particles though in actual applications with coal, the particles are non-spherical. This issue drove the documented attempt presented here to investigate fluidized bed behavior using different ranges of non-spherical particles, as well as spherical. For this investigation, various parameters are controlled that included particle size, bed height, bed diameter and particle shape. Particles ranged from 355 µm to 1180 µm, bed diameter varied from 2 cm to 7 cm, two fluidized beds with diameters of 3.4 cm and 12.4 cm, for the spherical and non-spherical shaped particles that were taken into consideration. Pressure drop was measured with increasing superficial gas velocity. The velocity required in order to start to fluidize the particle is called the minimum fluidization velocity, which is one of the most important parameters to design and optimize within a gas-solid fluidized bed. This minimum fluidization velocity was monitored during investigation while observing variables factors and their effect on this velocity. From our investigation, it has been found that minimum fluidization velocity is independent of bed
Sandhu, Rupninder; Rivenbark, Ashley G; Mackler, Randi M; Livasy, Chad A; Coleman, William B
2014-02-01
Basal-like breast cancers frequently express aberrant DNA hypermethylation associated with concurrent silencing of specific genes secondary to DNMT3b overexpression and DNMT hyperactivity. DNMT3b is known to be post-transcriptionally regulated by microRNAs. The objective of the current study was to determine the role of microRNA dysregulation in the molecular mechanism governing DNMT3b overexpression in primary breast cancers that express aberrant DNA hypermethylation. The expression of microRNAs (miRs) that regulate (miR-29a, miR-29b, miR-29c, miR-148a and miR-148b) or are predicted to regulate DNMT3b (miR‑26a, miR-26b, miR-203 and miR-222) were evaluated among 70 primary breast cancers (36 luminal A-like, 13 luminal B-like, 5 HER2‑enriched, 16 basal-like) and 18 normal mammoplasty tissues. Significantly reduced expression of miR-29c distinguished basal-like breast cancers from other breast cancer molecular subtypes. The expression of aberrant DNA hypermethylation was determined in a subset of 33 breast cancers (6 luminal A-like, 6 luminal B-like, 5 HER2-enriched and 16 basal-like) through examination of methylation‑sensitive biomarker gene expression (CEACAM6, CDH1, CST6, ESR1, GNA11, MUC1, MYB, TFF3 and SCNN1A), 11/33 (33%) cancers exhibited aberrant DNA hypermethylation including 9/16 (56%) basal-like cancers, but only 2/17 (12%) non-basal-like cancers (luminal A-like, n=1; HER2-enriched, n=1). Breast cancers with aberrant DNA hypermethylation express diminished levels of miR-29a, miR-29b, miR-26a, miR-26b, miR-148a and miR-148b compared to cancers lacking aberrant DNA hypermethylation. A total of 7/9 (78%) basal-like breast cancers with aberrant DNA hypermethylation exhibit diminished levels of ≥6 regulatory miRs. The results show that i) reduced expression of miR-29c is characteristic of basal-like breast cancers, ii) miR and methylation-sensitive gene expression patterns identify two subsets of basal-like breast cancers, and iii) the subset of basal
Epigenetic aberrations and therapeutic implications in gliomas.
Natsume, Atsushi; Kondo, Yutaka; Ito, Motokazu; Motomura, Kazuya; Wakabayashi, Toshihiko; Yoshida, Jun
2010-06-01
Almost all cancer cells have multiple epigenetic abnormalities, which combine with genetic changes to affect many cellular processes, including cell proliferation and invasion, by silencing tumor-suppressor genes. In this review, we focus on the epigenetic mechanisms of DNA hypomethylation and CpG island hypermethylation in gliomas. Aberrant hypermethylation in promoter CpG islands has been recognized as a key mechanism involved in the silencing of cancer-associated genes and occurs at genes with diverse functions related to tumorigenesis and tumor progression. Such promoter hypermethylation can modulate the sensitivity of glioblastomas to drugs and radiotherapy. As an example, the methylation of the O6-methylguanine DNA methyltransferase (MGMT) promoter is a specific predictive biomarker of tumor responsiveness to chemotherapy with alkylating agents. Further, we reviewed reports on pyrosequencing - a simple technique for the accurate and quantitative analysis of DNA methylation. We believe that the quantification of MGMT methylation by pyrosequencing might enable the selection of patients who are most likely to benefit from chemotherapy. Finally, we also evaluated the potential of de novo NY-ESO-1, the most immunogenic cancer/testis antigen (CTA) discovered thus far, as an immunotherapy target. The use of potent epigenetics-based therapy for cancer cells might restore the abnormally regulated epigenomes to a more normal state through epigenetic reprogramming. Thus, epigenetic therapy may be a promising and potent treatment for human neoplasia.
Aberrant DNA methylation in cloned ovine embryos
LIU Lei; HOU Jian; LEI TingHua; BAI JiaHua; GUAN Hong; AN XiaoRong
2008-01-01
By using the approach of immunofluorescence staining with an antibody against 5-methylcytosine (5MeC), the present study detected the DNA methylation patterns of cloned ovine embryos. The em-bryos derived from in vitro fertilization were also examined for reference purpose. The results showed that: (1) during the pre-implantation development, cloned embryos displayed a similar demethylation profile to the fertilized embryos; that is, the methylation level decreased to the lowest at 8-cell stage, and then increased again at morulae stage. However, methylation level was obviously higher in cloned embryos than in stage-matched fertilized embryos, especially at 8-cell stage and afterwards; (2) at blastocyst stage, the methylation pattern in cloned embryos was different from that in fertilized em-bryos. In cloned blastocyst, inner cell mass (ICM) exhibited a comparable level to trophectoderm cells (TE), while in in-vitro fertilized blastocyst the methylation level of ICM was lower than that of TE, which is not consistent with that reported by other authors. These results indicate that DNA methylation is abnormally reprogrammed in cloned embryos, implying that aberrant DNA methylation reprogramming may be one of the factors causing cloned embryos developmental failure.
Chromosome aberrations in solid tumors have a stochastic nature
Castro, Mauro A.A. [Departamento de Bioquimica, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600-anexo, Porto Alegre 90035-003 (Brazil) and Departamento de Medicina Interna, Hospital de Clinicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2350, Porto Alegre 90035-903 (Brazil) and Instituto de Fisica, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves 9500, Porto Alegre 91501-970 (Brazil) and Universidade Luterana do Brasil, Rua Miguel Tostes 101, Canoas 92420-280 (Brazil)]. E-mail: mauro@ufrgs.br; Onsten, Tor G.H. [Departamento de Medicina Interna, Hospital de Clinicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2350, Porto Alegre 90035-903 (Brazil); Universidade Luterana do Brasil, Rua Miguel Tostes 101, Canoas 92420-280 (Brazil); Moreira, Jose C.F. [Departamento de Bioquimica, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600-anexo, Porto Alegre 90035-003 (Brazil); Almeida, Rita M.C. de [Instituto de Fisica, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves 9500, Porto Alegre 91501-970 (Brazil)
2006-08-30
An important question nowadays is whether chromosome aberrations are random events or arise from an internal deterministic mechanism, which leads to the delicate task of quantifying the degree of randomness. For this purpose, we have defined several Shannon information functions to evaluate disorder inside a tumor and between tumors of the same kind. We have considered 79 different kinds of solid tumors with 30 or more karyotypes retrieved from the Mitelman Database of Chromosome Aberrations in Cancer. The Kaplan-Meier cumulative survival was also obtained for each solid tumor type in order to correlate data with tumor malignance. The results here show that aberration spread is specific for each tumor type, with high degree of diversity for those tumor types with worst survival indices. Those tumor types with preferential variants (e.g. high proportion of a given karyotype) have shown better survival statistics, indicating that aberration recurrence is a good prognosis. Indeed, global spread of both numerical and structural abnormalities demonstrates the stochastic nature of chromosome aberrations by setting a signature of randomness associated to the production of disorder. These results also indicate that tumor malignancy correlates not only with karyotypic diversity taken from different tumor types but also taken from single tumors. Therefore, by quantifying aberration spread, we could confront diverse models and verify which of them points to the most likely outcome. Our results suggest that the generating process of chromosome aberrations is neither deterministic nor totally random, but produces variations that are distributed between these two boundaries.
姜丽丽; 马忠旭; 王新; 高原; 孙龙格
2014-01-01
Objective To compare higher order aberrations (HOAs) and modulation transfer function (MTF) with postoperative cataract phacoemulsification and intraocular lens implantation with different IOLs to normal younger phakic eyes.Methods Base on spherical aberration of IOLs,the 80 cases (98 eyes) were divided into three groups:group Ⅰ spherical IOLs HQ201HEP,group Ⅱ aspheric IOL with zero aberration Akreos AO and group Ⅲ aspheric IOLs with negative aberration Tecnis ZA9003.Normal young phakic eyes were group ⅣV.Compute higher order aberrations and modulation transfer function of the patients of 3-month follow-up after cataract surgery and normal younger phakic eyes.Results Spherical aberration of four groups had statistically significant differences (P ＜0.05),except group Ⅲ and group ⅣV.The difference of coma between intraocular lens and normal young phakic eyes was statistically significant (P ＜0.05) while the differences between the different intraocular lens were no statistically significant (P ＞0.05).Total HOAs of four groups had statistically significant differences (P ＜0.05),except group Ⅰ and group Ⅱ.MTF(HOA) of eyes with intraocular lens was lower than normal young phakic eyes and the difference was statistically significant (P＜ 0.0083).MTF(HOA) of the three groups with different intraocular lens also had statistically significant differences (P ＜0.0083).Conclusions Aspheric IOLs can significantly reduce the spherical aberration and improve postoperative visual quality of the patients,especially the aspheric IOLs with negative sPherical aberration.However,there are differences between aspheric IOLs and normal young phakic eyes.%目的 比较白内障超声乳化吸除术后植入不同人工晶状体(IOL)眼与正常年轻人晶状体眼的高阶像差(HOAs)和调制传递函数(MTF).方法 回顾性病例系列研究.对于2012年4月至2013年1月在天津市眼科医院白内障中心行白内障超声乳化联合IOL植入术的80
Modeling Ion-Exchange Processing With Spherical Resins For Cesium Removal
Hang, T.; Nash, C. A.; Aleman, S. E.
2012-09-19
The spherical Resorcinol-Formaldehyde and hypothetical spherical SuperLig(r) 644 ion-exchange resins are evaluated for cesium removal from radioactive waste solutions. Modeling results show that spherical SuperLig(r) 644 reduces column cycling by 50% for high-potassium solutions. Spherical Resorcinol Formaldehyde performs equally well for the lowest-potassium wastes. Less cycling reduces nitric acid usage during resin elution and sodium addition during resin regeneration, therefore, significantly decreasing life-cycle operational costs. A model assessment of the mechanism behind ''cesium bleed'' is also conducted. When a resin bed is eluted, a relatively small amount of cesium remains within resin particles. Cesium can bleed into otherwise decontaminated product in the next loading cycle. The bleed mechanism is shown to be fully isotherm-controlled vs. mass transfer controlled. Knowledge of residual post-elution cesium level and resin isotherm can be utilized to predict rate of cesium bleed in a mostly non-loaded column. Overall, this work demonstrates the versatility of the ion-exchange modeling to study the effects of resin characteristics on processing cycles, rates, and cold chemical consumption. This evaluation justifies further development of a spherical form of the SL644 resin.
Study of residual aberration for non-imaging focusing heliostat
Chen, Y.T.; Chong, K.K.; Lim, B.H.; Lim, C.S. [Institute of Energy and Environment, Malaysia University of Science and Technology, No. 17, Jalan SS7/26, Kelana Jaya, 47301 Petaling Jaya, Selangor (Malaysia)
2003-08-01
Instead of using a specific focusing geometry, a non-imaging focusing heliostat has no fixed geometry but is composed of many small movable element mirrors that can be manoeuvred to eliminate the first-order aberration. Following our previous publication on the principle of non-imaging focusing heliostat, this paper further explores higher order residual aberration that limits the size of the focusing spot. The residual aberration can be partially corrected by offsetting the pivot point of mirrors and pre-setting the tilting angles of mirrors.
Equatorially trapped convection in a rapidly rotating spherical shell
Miquel, Benjamin; Julien, Keith; Knobloch, Edgar
2016-11-01
Convection plays a preponderant role in driving geophysical flows. Unfortunately, these flows are often characterized by rapid rotation (i.e. small Ekman number E) which renders the equations stiff and introduces a scale separation in the system: for example the wavelength of the marginal mode at the onset of convection in a rapidly rotating sphere scales like E 1 / 3 and is modulated by a E 1 / 6 envelope. These scalings keep the fully nonlinear dynamics of the internal convection in Earth's core (E 1015) out of reach from direct numerical simulations, analytical work and experiments on one hand, but advocate for the development of reduced models on the other hand. We present a reduced model derived in a shallow gap spherical shell geometry. As the Rayleigh number is increased, the flow is first destabilized in the equatorial region where the dynamics remains trapped. The linear stability is analyzed and the fully nonlinear dynamics is presented.
What is the spacetime of {\\em physically realizable} spherical collapse?
Wagh, S M; Govinder, K S; Wagh, Sanjay M.; Saraykar, Ravindra V.; Govinder, Keshlan S.
2002-01-01
We argue that a particular spacetime, a spherically symmetric spacetime with hyper-surface orthogonal, radial, homothetic Killing vector, is a physically meaningful spacetime that describes the problem of spherical gravitational collapse in its full "physical" generality.
Theoretical study on spherical proton emission
无
2009-01-01
The proton radioactivity half-lives of spherical proton emitters are investigated within a generalized liquid drop model(GLDM),including the proximity effects between nuclei in a neck and the mass and charge asymmetry.The penetrability is calculated in the WKB approximation and the assault frequency is estimated by the quantum mechanism method considering the structure of the parent nucleus.The spectroscopic factor is taken into account in half-life calculation,which is obtained by employing the relativistic mean field(RMF) theory.The half-lives within the GLDM are compared with the experimental data and other theoretical values.The results show that the GLDM works quite well for spherical proton emitters when the assault frequency is estimated by the quantum mechanical method and the spectroscopic factor is considered.
Colloidal cholesteric liquid crystal in spherical confinement
Li, Yunfeng; Jun-Yan Suen, Jeffrey; Prince, Elisabeth; Larin, Egor M.; Klinkova, Anna; Thérien-Aubin, Héloïse; Zhu, Shoujun; Yang, Bai; Helmy, Amr S.; Lavrentovich, Oleg D.; Kumacheva, Eugenia
2016-08-01
The organization of nanoparticles in constrained geometries is an area of fundamental and practical importance. Spherical confinement of nanocolloids leads to new modes of packing, self-assembly, phase separation and relaxation of colloidal liquids; however, it remains an unexplored area of research for colloidal liquid crystals. Here we report the organization of cholesteric liquid crystal formed by nanorods in spherical droplets. For cholesteric suspensions of cellulose nanocrystals, with progressive confinement, we observe phase separation into a micrometer-size isotropic droplet core and a cholesteric shell formed by concentric nanocrystal layers. Further confinement results in a transition to a bipolar planar cholesteric morphology. The distribution of polymer, metal, carbon or metal oxide nanoparticles in the droplets is governed by the nanoparticle size and yields cholesteric droplets exhibiting fluorescence, plasmonic properties and magnetic actuation. This work advances our understanding of how the interplay of order, confinement and topological defects affects the morphology of soft matter.
Theoretical study on spherical proton emission
ZHANG HongFei; WANG YongJia; DONG JianMin; LI JunQing
2009-01-01
The proton radioactivity half-lives of spherical proton emitters are investigated within a generalized liquid drop model (GLDM),including the proximity effects between nuclei in a neck and the mass and charge asymmetry.The penetrability is calculated in the WKB approximation and the assault frequency is estimated by the quantum mechanism method considering the structure of the parent nucleus.The spectroscopic factor is taken into account in half-life calculation,which is obtained by employing the relativistic mean field (RMF) theory.The half-lives within the GLDM are compared with the experimental data and other theoretical values.The results show that the GLDM works quite well for spherical proton emitters when the assault frequency is estimated by the quantum mechanical method and the spectroscopic factor is considered.
Spontaneous spherical symmetry breaking in atomic confinement
Sveshnikov, Konstantin; Tolokonnikov, Andrey
2017-07-01
The effect of spontaneous breaking of initial SO(3) symmetry is shown to be possible for an H-like atom in the ground state, when it is confined in a spherical box under general boundary conditions of "not going out" through the box surface (i.e. third kind or Robin's ones), for a wide range of physically reasonable values of system parameters. The most novel and nontrivial result, which has not been reported previously, is that such an effect takes place not only for attractive, but also for repulsive interactions of atomic electrons with the cavity environment. Moreover, in the limit of a large box size R ≫ aB the regime of an atom, soaring over a plane with boundary condition of "not going out", is reproduced, rather than a spherically symmetric configuration, which would be expected on the basis of the initial SO(3) symmetry of the problem.
Spherical projections and liftings in geometric tomography
Goodey, Paul; Kiderlen, Markus; Weil, Wolfgang
2011-01-01
We consider a variety of integral transforms arising in Geometric Tomography. It will be shown that these can be put into a common framework using spherical projection and lifting operators. These operators will be applied to support functions and surface area measures of convex bodies and to rad......We consider a variety of integral transforms arising in Geometric Tomography. It will be shown that these can be put into a common framework using spherical projection and lifting operators. These operators will be applied to support functions and surface area measures of convex bodies...... and to radial functions of star bodies. We then investigate averages of lifted projections and show that they correspond to self-adjoint intertwining operators. We obtain formulas for the eigenvalues of these operators and use them to ascertain circumstances under which tomographic measurements determine...... the original bodies. This approach via mean lifted projections leads us to some unexpected relationships between seemingly disparate geometric constructions....
Spherical silicon micromirrors bent by anodic bonding.
Wu, Tong; Yamasaki, Takahiro; Hokari, Ryohei; Hane, Kazuhiro
2011-06-06
We propose here a novel and stable method for fabricating spherical micromirror by bonding a flat freestanding single-crystal-silicon (SCS) membrane with a fulcrum on a glass substrate. Smooth convex spherical surface is achieved inside the fulcrum by the bending moment generated in the circumference of the SCS membrane. The surface profiles fit well with parabolic curves within 36nm RMS error indicating a good optical performance. By modifying the diameter of the fulcrum, we also demonstrate that it is possible to fabricate micromirrors with a wide range of focal length (0.4mm-1.6mm). The fabricated micromirrors are also used as the mold for replication of micro polymeric lenses. The surface profiles of the micromirrors are transferred to the polymeric replica with a high accuracy.
Neutron spectroscopy with the Spherical Proportional Counter
Bougamont, E; Derre, J; Galan, J; Gerbier, G; Giomataris, I; Gros, M; Katsioulas, I; Jourde, D; Magnier, P; Navick, X F; Papaevangelou, T; Savvidis, I; Tsiledakis, G
2015-01-01
A novel large volume spherical proportional counter, recently developed, is used for neutron measurements. Gas mixtures of $N_{2}$ with $C_{2}H_{6}$ and pure $N_{2}$ are studied for thermal and fast neutron detection, providing a new way for the neutron spectroscopy. The neutrons are detected via the ${}^{14}N(n, p)C^{14}$ and ${}^{14}N(n, \\alpha)B^{11}$ reactions. Here we provide studies of the optimum gas mixture, the gas pressure and the most appropriate high voltage supply on the sensor of the detector in order to achieve the maximum amplification and better resolution. The detector is tested for thermal and fast neutrons detection with a ${}^{252}Cf$ and a ${}^{241}Am-{}^{9}Be$ neutron source. The atmospheric neutrons are successfully measured from thermal up to several MeV, well separated from the cosmic ray background. A comparison of the spherical proportional counter with the current available neutron counters is also given.
Constructive spherical codes near the Shannon bound
Solé, Patrick
2011-01-01
Shannon gave a lower bound in 1959 on the binary rate of spherical codes of given minimum Euclidean distance $\\rho$. Using nonconstructive codes over a finite alphabet, we give a lower bound that is weaker but very close for small values of $\\rho$: The construction is based on the Yaglom map combined with some finite sphere packings obtained from nonconstructive codes for the Euclidean metric. Concatenating geometric codes meeting the TVZ bound with a Lee metric BCH code over GF(p); we obtain spherical codes that are polynomial time constructible. Their parameters outperform those obtained by Lachaud and Stern in 1994. At very high rate they are above 98 per cent of the Shannon bound.
Quality metric for spherical panoramic video
Zakharchenko, Vladyslav; Choi, Kwang Pyo; Park, Jeong Hoon
2016-09-01
Virtual reality (VR)/ augmented reality (AR) applications allow users to view artificial content of a surrounding space simulating presence effect with a help of special applications or devices. Synthetic contents production is well known process form computer graphics domain and pipeline has been already fixed in the industry. However emerging multimedia formats for immersive entertainment applications such as free-viewpoint television (FTV) or spherical panoramic video require different approaches in content management and quality assessment. The international standardization on FTV has been promoted by MPEG. This paper is dedicated to discussion of immersive media distribution format and quality estimation process. Accuracy and reliability of the proposed objective quality estimation method had been verified with spherical panoramic images demonstrating good correlation results with subjective quality estimation held by a group of experts.
Flow past a porous approximate spherical shell
Srinivasacharya, D.
2007-07-01
In this paper, the creeping flow of an incompressible viscous liquid past a porous approximate spherical shell is considered. The flow in the free fluid region outside the shell and in the cavity region of the shell is governed by the Navier Stokes equation. The flow within the porous annulus region of the shell is governed by Darcy’s Law. The boundary conditions used at the interface are continuity of the normal velocity, continuity of the pressure and Beavers and Joseph slip condition. An exact solution for the problem is obtained. An expression for the drag on the porous approximate spherical shell is obtained. The drag experienced by the shell is evaluated numerically for several values of the parameters governing the flow.
Spherical Needlets for CMB Data Analysis
Marinucci, D; Balbi, A; Baldi, P; Cabella, P; Kerkyacharian, G; Natoli, P; Picard, D; Vittorio, N
2007-01-01
We discuss Spherical Needlets and their properties. Needlets are a form of spherical wavelets which do not rely on any kind of tangent plane approximation and enjoy good localization properties in both pixel and harmonic space; moreover needlets coefficients are asymptotically uncorrelated at any fixed angular distance, which makes their use in statistical procedures very promising. In view of these properties, we believe needlets may turn out to be especially useful in the analysis of Cosmic Microwave Background (CMB) data on the incomplete sky, as well as of other cosmological observations. As a final advantage, we stress that the implementation of needlets is computationally very convenient and may rely completely on standard data analysis packages such as HEALPix.
Jian-Huai Chen
2016-01-01
Conclusions: All these resulted in a less optimal topological organization of networks underlying MDD patients, including an impaired capability of local information processing, reduced centrality of some brain regions and limited capacity to integrate information across different regions. Thus, these global network and regional node-level aberrations might contribute to understanding the pathogenesis of MDD from the view of the brain network.
Spherically Symmetric, Self-Similar Spacetimes
Wagh, S M; Wagh, Sanjay M.; Govinder, Keshlan S.
2001-01-01
Self-similar spacetimes are of importance to cosmology and to gravitational collapse problems. We show that self-similarity or the existence of a homothetic Killing vector field for spherically symmetric spacetimes implies the separability of the spacetime metric in terms of the co-moving coordinates and that the metric is, uniquely, the one recently reported in [cqg1]. The spacetime, in general, has non-vanishing energy-flux and shear. The spacetime admits matter with any equation of state.
Survival probability for open spherical billiards
Dettmann, Carl P.; Rahman, Mohammed R.
2014-12-01
We study the survival probability for long times in an open spherical billiard, extending previous work on the circular billiard. We provide details of calculations regarding two billiard configurations, specifically a sphere with a circular hole and a sphere with a square hole. The constant terms of the long-time survival probability expansions have been derived analytically. Terms that vanish in the long time limit are investigated analytically and numerically, leading to connections with the Riemann hypothesis.
Precursory singularities in spherical gravitational collapse
Lake, Kayll
1992-05-01
General conditions are developed for the formation of naked precursory ('shell-focusing') singularities in spherical gravitational collapse. These singularities owe their nakedness to the fact that the gravitational potential fails to be single valued prior to the onset of a true gravitational singularity. It is argued that they do not violate the spirit of cosmic censorship. Rather, they may well be an essentially generic feature of relativistic gravitational collapse.
The electromagnetic Casimir effect of spherical cavity
无
2003-01-01
The Casimir effect results from the zero-point energy of vacuum. A spherical cavity can be divided into three regions, and we make an analysis of every region and then give a formal solution of Casimir energy. The zeta-function regularization is also used to dispel the divergence of the summation. At the end, we can see the Casimir effect of a single sphere is included in our results.
Bayesian variable selection with spherically symmetric priors
De Kock, M. B.; Eggers, H. C.
2014-01-01
We propose that Bayesian variable selection for linear parametrisations with Gaussian iid likelihoods be based on the spherical symmetry of the diagonalised parameter space. Our r-prior results in closed forms for the evidence for four examples, including the hyper-g prior and the Zellner-Siow prior, which are shown to be special cases. Scenarios of a single variable dispersion parameter and of fixed dispersion are studied, and asymptotic forms comparable to the traditional information criter...
Capillary condensation for fluids in spherical cavities
Urrutia, Ignacio; Szybisz, Leszek
2005-01-01
The capillary condensation for fluids into spherical nano-cavities is analyzed within the frame of two theoretical approaches. One description is based on a widely used simplified version of the droplet model formulated for studying atomic nuclei. The other, is a more elaborated calculation performed by applying a density functional theory. The agreement between both models is examined and it is shown that a small correction to the simple fluid model improves the predictions. A connection to ...
Thermal deformations of a glass spherical satellite
Vasiliev, V. P.; Nenadovich, V. D.; Murashkin, V. V.; Sokolov, A. L.
2016-09-01
The effect of the kind of the reflecting coating of a glass spherical satellite on thermal deformations caused by the solar irradiation is considered. Two types of coating deposited on one of the hemispheres are considered: aluminum with a protective layer of bakelite varnish and interference dielectric coating for two orientations of the satellite orbit. Structures of a multilayer dielectric coating and technologies of its deposition are described.
Spherical Cancer Models in Tumor Biology
Louis-Bastien Weiswald
2015-01-01
Full Text Available Three-dimensional (3D in vitro models have been used in cancer research as an intermediate model between in vitro cancer cell line cultures and in vivo tumor. Spherical cancer models represent major 3D in vitro models that have been described over the past 4 decades. These models have gained popularity in cancer stem cell research using tumorospheres. Thus, it is crucial to define and clarify the different spherical cancer models thus far described. Here, we focus on in vitro multicellular spheres used in cancer research. All these spherelike structures are characterized by their well-rounded shape, the presence of cancer cells, and their capacity to be maintained as free-floating cultures. We propose a rational classification of the four most commonly used spherical cancer models in cancer research based on culture methods for obtaining them and on subsequent differences in sphere biology: the multicellular tumor spheroid model, first described in the early 70s and obtained by culture of cancer cell lines under nonadherent conditions; tumorospheres, a model of cancer stem cell expansion established in a serum-free medium supplemented with growth factors; tissue-derived tumor spheres and organotypic multicellular spheroids, obtained by tumor tissue mechanical dissociation and cutting. In addition, we describe their applications to and interest in cancer research; in particular, we describe their contribution to chemoresistance, radioresistance, tumorigenicity, and invasion and migration studies. Although these models share a common 3D conformation, each displays its own intrinsic properties. Therefore, the most relevant spherical cancer model must be carefully selected, as a function of the study aim and cancer type.
Gravitational collapse of barotropic spherical fluids
Giambo, R; Magli, G; Piccione, P; Giambo', Roberto; Giannoni, Fabio; Magli, Giulio; Piccione, Paolo
2003-01-01
The gravitational collapse of spherical, barotropic perfect fluids is analyzed here. For the first time, the final state of these systems is characterized without resorting to simplifying assumptions - such as self-similarity - using a new approach based on non-linear o.d.e. techniques. Formation of naked singularities is shown to occur for solutions such that the mass function is sufficiently regular in a neighborhood of the spacetime singularity.
New mathematical framework for spherical gravitational collapse
Giambo, R; Magli, G; Piccione, P; Giambo', Roberto; Giannoni, Fabio; Magli, Giulio; Piccione, Paolo
2003-01-01
A theorem, giving necessary and sufficient condition for naked singularity formation in spherically symmetric non static spacetimes under hypotheses of physical acceptability, is formulated and proved. The theorem relates existence of singular null geodesics to existence of regular curves which are super-solutions of the radial null geodesic equation, and allows us to treat all the known examples of naked singularities from a unified viewpoint. New examples are also found using this approach, and perspectives are discussed.
New mathematical framework for spherical gravitational collapse
Giambo, Roberto [Dipartimento di Matematica e Informatica, Universita di Camerino (Italy); Giannoni, Fabio [Dipartimento di Matematica e Informatica, Universita di Camerino (Italy); Magli, Giulio [Dipartimento di Matematica, Politecnico di Milano (Italy); Piccione, Paolo [Dipartimento di Matematica e Informatica, Universita di Camerino (Italy)
2003-03-21
A theorem, giving necessary and sufficient condition for naked singularity formation in spherically symmetric non-static spacetimes under hypotheses of physical acceptability, is formulated and proved. The theorem relates the existence of singular null geodesics to the existence of regular curves which are supersolutions of the radial null geodesic equation, and allows us to treat all the known examples of naked singularities from a unified viewpoint. New examples are also found using this approach, and perspectives are discussed. (letter to the editor)
Analysis of liquid bridge between spherical particles
无
2007-01-01
A pair of central moving spherical particles connected by a pendular liquid bridge with interstitial Newtonian fluid is often encountered in pariculate coalescence process. In this paper, by assuming perfect-wet condition, the effects of liquid volume and separation distance on static liquid bridge are analyzed, and the relation between rupture energy and liquid bridge volume is also studied. These points would be of significance in industrial processes related to adhesive particles.
Ultrasonic analysis of spherical composite test specimens
Brosey, W.D.
1984-08-22
Filament wound spherical test specimens have been examined ultrasonically as part of a program to determine the effectiveness of various nondestructive evaluation techniques for analysis of mechanical characteristics of a composite with enclosed geometry. The Kevlar-epoxy composite specimens contained simulated defect conditions which were located, and the extent of damage determined, using ultrasonic analysis. Effects of transducer frequency and signal parameters have been examined to determine optimum conditions for flaw detection. The data were displayed in rectangular and axonometric projection.
Effects of coating spherical iron oxide nanoparticles
2016-01-01
International audience; We investigate the effect of several coatings applied in biomedical applications to iron oxide nanoparticles on the size, structure and composition of the particles. The four structural techniques employed – TEM, DLS, VSM, SAXS and EXAFS – show no significant effects of the coatings on the spherical shape of the bare nanoparticles, the average sizes or the local order around the Fe atoms. The NPs coated with hydroxylmethylene bisphosphonate or catechol have a lower pro...
张立华; 王兵; 贾丁; 冯恬风; 董慧
2012-01-01
Objective To investigate the changes of wavefront aberrations in keratoconus corrected with rigid gas permeable contact lens (RGPCL).Methods It was a prospective case-control study.Twenty-five patients (43 eyes) confirmed by corneal topography as keratoconus were corrected with RGPCL.Their corrected visual acuity (VA) and wavefront aberrations were detected by iTrace dynamic laserefraction before and after wearing RGPCL for 2 weeks.Lower-order abberations LOAs,higher-order abberation HOAs,coma,spherical and trefoil were measured.The results measured were compared using paired samples t test.Results There were statistic differences in total ocular wavefront aberrations,LOAs,HOAs,coma and trefoil.Total ocular wavefront aberrations were reduced from 9.12±4.20 μm to 1.67±0.92 μm after wearing RGPCL (t=9.062,P＜0.01); LOAs were reduced from 8.88-±3.90 μm to 1.37±0.75 μm after wearing RGPCL (t=9.507,P＜0.01); HOAs were reduced from 1.90±0.14 μm to 0.79±0.21 μm after wearing RGPCL (t=2.473,P＜0.05); coma were reduced from 0.99±0.15 μm to 0.30±0.18 μm after wearing RGPCL (t=2.364,P＜0.05); trefoil were reduced from 0.92±0.19 μm to 0.22±0.14 μm after wearing RGPCL (t=2.757,P＜0.05).There were no statistics differences in spherical abberation.Spherical abberation were reduced from 0.54±0.25 μm to 0.32±0.27 μm after wearing RGPCL (t=1.239,P＞0.05).Conclusion Keratoconus patients with RGPCL can reach satisfying corrected visual acuity and visual quantity.Total ocular wavefront aberrations were significant reduced after wearing RGPCL.%目的 研究圆锥角膜患者配戴硬性透氧性角膜接触镜(RGPCL)后波前像差及视觉质量的改变.方法 前瞻性病例对照研究.收集在山西省眼科医院就诊的圆锥角膜患者25例(43眼),选配合适的RGPCL配戴2周后,分别于配戴前及配戴后测定其矫正视力,采用iTrace波前像差仪进行戴镜前后的全眼波前像差测量,并测量戴镜前后高阶、低阶像差
Aberration analyses for improving the frontal projection three-dimensional display.
Gao, Xin; Sang, Xinzhu; Yu, Xunbo; Wang, Peng; Cao, Xuemei; Sun, Lei; Yan, Binbin; Yuan, Jinhui; Wang, Kuiru; Yu, Chongxiu; Dou, Wenhua
2014-09-22
The crosstalk severely affects the viewing experience for the auto-stereoscopic 3D displays based on frontal projection lenticular sheet. To suppress unclear stereo vision and ghosts are observed in marginal viewing zones(MVZs), aberration of the lenticular sheet combining with the frontal projector is analyzed and designed. Theoretical and experimental results show that increasing radius of curvature (ROC) or decreasing aperture of the lenticular sheet can suppress the aberration and reduce the crosstalk. A projector array with 20 micro-projectors is used to frontally project 20 parallax images one lenticular sheet with the ROC of 10 mm and the size of 1.9 m × 1.2 m. The 3D image with the high quality is experimentally demonstrated in both the mid-viewing zone and MVZs in the optimal viewing plane. The 3D clear depth of 1.2m can be perceived. To provide an excellent 3D image and enlarge the field of view at the same time, a novel structure of lenticular sheet is presented to reduce aberration, and the crosstalk is well suppressed.
Kurtz, S.R. [National Renewable Energy Lab., Golden, CO (United States); O`Neill, M.J. [ENTECH, Inc., Keller, TX (United States)
1996-05-01
Although previous studies have measured and calculated chromatic aberration losses and proposed methods for reducing these by modifying the optics, significant work remains to be done toward understanding how to quantity the losses and how various parameters affect this loss. This paper presents an analytical definition and calculation method for chromatic aberration losses. The effects of sheet resistance of the midlayers of the cell, total irradiance, incident spectrum, cell width, and diode quality factor are studied. A method for measuring the midlayer resistance in finished sells is described.
Resonating properties of passive spherical optical microcavities
Wen Li(李文); Ruopeng Wang(王若鹏)
2004-01-01
As an optically pumped device, the lasing characteristics of a spherical microcavity laser depend on the optical pumping processes. These characteristics can be described in term of the Q factor and the optical field distribution in a microsphere. We derived analytical expressions and carried out numerical calculation for Q factor and optical field. The Q factor is found to be oscillatory functions of the radius of a microsphere and the pumping wavelength, and the pumping efficiency for a resonating microsphere is much higher than that for an anti-resonating microsphere. Using tunable lasers as pumping sources is suggested in order to achieve a higher pumping efficiency. Numerical calculation on optical field distribution in spherical microcavities shows that a well focused Gaussian beam is a suitable incident wave for cavity quantum electrodynamics experiments in which strong confinement of optical field in the center of a microsphere is requested, but higher order spherical wave should be used instead for exciting whispering-gallery-mode (WGM) microsphere lasers, for the purpose of favoring optical energy transferring to WGM in optical microspheres.
Fusion potential for spherical and compact tokamaks
Sandzelius, Mikael
2003-02-01
The tokamak is the most successful fusion experiment today. Despite this, the conventional tokamak has a long way to go before being realized into an economically viable power plant. In this master thesis work, two alternative tokamak configurations to the conventional tokamak has been studied, both of which could be realized to a lower cost. The fusion potential of the spherical and the compact tokamak have been examined with a comparison of the conventional tokamak in mind. The difficulties arising in the two configurations have been treated from a physical point of view concerning the fusion plasma and from a technological standpoint evolving around design, materials and engineering. Both advantages and drawbacks of either configuration have been treated relative to the conventional tokamak. The spherical tokamak shows promising plasma characteristics, notably a high {beta}-value but have troubles with high heat loads and marginal tritium breeding. The compact tokamak operates at a high plasma density and a high magnetic field enabling it to be built considerably smaller than any other tokamak. The most notable down-side being high heat loads and neutron transport problems. With the help of theoretical reactor studies, extrapolating from where we stand today, it is conceivable that the spherical tokamak is closer of being realized of the two. But, as this study shows, the compact tokamak power plant concept offers the most appealing prospect.
Spherical Layout Implementation using Centroidal Voronoi Tessellations
Larrea, Martin; Martig, Sergio; Castro, Silvia
2009-01-01
The 3D tree visualization faces multiple challenges: the election of an appropriate layout, the use of the interactions that make the data exploration easier and a metaphor that helps in the process of information understanding. A good combination of these elements will result in a visualization that effectively conveys the key features of a complex structure or system to a wide range of users and permits the analytical reasoning process. In previous works we presented the Spherical Layout, a technique for 3D tree visualization that provides an excellent base to achieve those key features. The layout was implemented using the TriSphere algorithm, a method that discretized the spheres's surfaces with triangles to achieve a uniform distribution of the nodes. The goal of this work was centered in a new algorithm for the implementation of the Spherical layout; we called it the Weighted Spherical Centroidal Voronoi Tessellations (WSCVT). In this paper we present a detailed description of this new implementation an...
Scaling Relationships for Spherical Polymer Brushes Revisited.
Chen, Guang; Li, Hao; Das, Siddhartha
2016-06-16
In this short paper, we revisit the scaling relationships for spherical polymer brushes (SPBs), i.e., polymer brushes grafted to rigid, spherical particles. Considering that the brushes can be described to be encased in a series of hypothetical spherical blobs, we identify significant physical discrepancies in the model of Daoud and Cotton (Journal of Physics, 1982), which is considered to be the state of the art in scaling modeling of SPBs. We establish that the "brush" configuration of the polymer molecules forming the SPBs is possible only if the swelling ratio (which is the ratio of the end-to-end length of the blob-encased polymer segment to the corresponding coil-like polymer segment) is always less than unity-a notion that has been erroneously overlooked in the model of Daoud and Cotton. We also provide new scaling arguments that (a) establish this swelling (or more appropriately shrinking) ratio as a constant (less than unity) for the case of "good" solvent, (b) recover the scaling predictions for blob dimension and monomer number and monomer concentration distributions within the blob, and
Compressible instability of rapidly expanding spherical material interfaces
Mankbadi, Mina Reda
The focus herein is on the instability of a material interface formed during an abrupt release of concentrated energy as in detonative combustion, explosive dispersals, and inertial-confinement fusion. These applications are modeled as a spherical shock-tube in which high-pressure gas initially contained in a small spherical shell is suddenly released. A forward-moving shock and an inward-moving secondary shock are formed, and between them a material interface develops that separates high-density fluid from the low-density one. The wrinkling of this interface controls mixing and energy release. The interface's stability is studied with and without the inclusion of metalized particulates. A numerical scheme is developed to discretize the full nonlinear equations of the base flow, and the 3D linearized perturbed flow equations. Linearization is followed by spherical harmonic decomposition of the disturbances, thereby reducing the 3D computational domain to one-dimensional radial domain. The 3D physical nature of the disturbances is maintained throughout the procedure. An extended Roe-Pike scheme coupled with a WENO scheme is developed to capture the discontinuities and accurately predict the disturbances. In Chapter 2, the contact interface's stability is analyzed in the inviscid single-phase. The disturbances grow exponentially and the growth rate is insensitive to the radial initial-disturbance profile. For wave numbers less than 100, the results are in accordance with previous theories but clarify that compressibility reduces the growth rate. Unlike the classical RTI, the growth rate reaches saturation at high wavenumbers. The parametric studies show that for specific ratios of initial pressure and temperature, the instability can be eliminated altogether. Chapter 3 discusses the full effects of viscosity and thermal diffusivity. Although Prandtl number effects are minimal, viscous effects dampen the high-wave numbers. For a given Reynolds number there is a peak
Non-common path aberration correction in an adaptive optics scanning ophthalmoscope.
Sulai, Yusufu N; Dubra, Alfredo
2014-09-01
The correction of non-common path aberrations (NCPAs) between the imaging and wavefront sensing channel in a confocal scanning adaptive optics ophthalmoscope is demonstrated. NCPA correction is achieved by maximizing an image sharpness metric while the confocal detection aperture is temporarily removed, effectively minimizing the monochromatic aberrations in the illumination path of the imaging channel. Comparison of NCPA estimated using zonal and modal orthogonal wavefront corrector bases provided wavefronts that differ by ~λ/20 in root-mean-squared (~λ/30 standard deviation). Sequential insertion of a cylindrical lens in the illumination and light collection paths of the imaging channel was used to compare image resolution after changing the wavefront correction to maximize image sharpness and intensity metrics. Finally, the NCPA correction was incorporated into the closed-loop adaptive optics control by biasing the wavefront sensor signals without reducing its bandwidth.
Andréia Peltier Urbano
2009-10-01
Full Text Available OBJETIVO: Comparar a correção das aberrações oculares nos retratamentos de LASIK personalizado e convencional. MÉTODOS: Foi realizado um estudo prospectivo, randomizado, de 74 olhos de 37 pacientes submetidos ao retratamento de LASIK para correção de miopia e astigmatismo. Cada paciente foi submetido ao retratamento de LASIK personalizado Zyoptix (Bausch & Lomb em um olho e convencional Planoscan (Bausch & Lomb no olho contralateral. Foi comparada a correção das aberrações oculares nos retratamentos personalizado e convencional. RESULTADOS: No sexto mês pós-operatório, os olhos submetidos ao retratamento Zyoptix apresentaram diminuição estatisticamente significativa do defocus, astigmatismo, coma, aberração esférica, segunda ordem, terceira ordem, alta ordem e aberrações totais. Os olhos submetidos ao retratamento Planoscan apresentaram diminuição estatisticamente significativa do defocus, segunda ordem e aberrações totais. CONCLUSÕES: O retratamento personalizado foi superior ao retratamento convencional para a correção das aberrações oculares de baixa e alta ordens.PURPOSE: To compare the correction of ocular aberrations between custom and standard LASIK retreatment. METHODS: Prospective, randomized trial with paired eye control of 74 eyes from 37 patients who underwent LASIK retreatment. Each patient underwent retreatment using Zyoptix LASIK (Bausch & Lomb in 1 eye and Planoscan LASIK (Bausch & Lomb in the fellow eye. Correction of ocular aberrations was compared between custom and standard LASIK retreatments. RESULTS: At 6 months, there was a statistically significant reduction in defocus, astigmatism, coma, spherical aberration, second, third, higher-order and total aberration in Zyoptix eyes. There was a statistically significant reduction in defocus, second-order and total aberration in Planoscan eyes. CONCLUSIONS: Custom retreatment was statistically superior than standard retreatment for correction of lower
Encounters between spherical galaxies - II. Systems with a dark halo
Gonzalez-Garcia, AC; van Albada, TS
2005-01-01
We perform N-body simulations of encounters between spherical systems surrounded by a spherical halo. Following a preceding paper with a similar aim, the initial systems include a spherical Jaffe model for the luminous matter and a Hernquist model for the halo. The merger remnants from this sample a
PENETRATION OF A SOUND FIELD THROUGH A MULTILAYERED SPHERICAL SHELL
G. Ch. Shushkevich
2013-01-01
Full Text Available An analytical solution of the boundary problem describing the process of penetration of thesound field of a spherical emitter located inside a thin unclosed spherical shell through a permeable multilayered spherical shell is considered. The influence of some parameters of the problem on the value of the sound field weakening (screening coefficient is studied via a numerical simulation.
Higher Order Aberration and Astigmatism in Children with Hyperopic Amblyopia.
Choi, Seung Kwon; Chang, Ji Woong
2016-02-01
To investigate the changes in corneal higher-order aberration (HOA) during amblyopia treatment and the correlation between HOA and astigmatism in hyperopic amblyopia children. In this retrospective study, a total of 72 eyes from 72 patients ranging in age from 38 to 161 months were included. Patients were divided into two groups based on the degree of astigmatism. Corneal HOA was measured using a KR-1W aberrometer at the initial visit and at 3-, 6-, and 12-month follow-ups. Correlation analysis was performed to assess the association between HOA and astigmatism. A total of 72 patients were enrolled in this study, 37 of which were classified as belonging to the higher astigmatism group, while 35 were assigned to the lower astigmatism group. There was a statistically significant difference in success rate between the higher and lower astigmatism groups. In both groups, all corneal HOAs were significantly reduced during amblyopia treatment. When comparing the two groups, a significant difference in coma HOA at the 12-month follow-up was detected (p = 0.043). In the Pearson correlation test, coma HOA at the 12-month follow-up demonstrated a statistically significant correlation with astigmatism and a stronger correlation with astigmatism in the higher astigmatism group than in the lower astigmatism group (coefficient values, 0.383 and 0.284 as well as p = 0.021 and p = 0.038, respectively). HOA, particularly coma HOA, correlated with astigmatism and could exert effects in cases involving hyperopic amblyopia.
Factors associated with aberrant imprint methylation and oligozoospermia
Kobayashi, Norio; Miyauchi, Naoko; Tatsuta, Nozomi; Kitamura, Akane; Okae, Hiroaki; Hiura, Hitoshi; Sato, Akiko; Utsunomiya, Takafumi; Yaegashi, Nobuo; Nakai, Kunihiko; Arima, Takahiro
2017-01-01
Disturbingly, the number of patients with oligozoospermia (low sperm count) has been gradually increasing in industrialized countries. Epigenetic alterations are believed to be involved in this condition. Recent studies have clarified that intrinsic and extrinsic factors can induce epigenetic transgenerational phenotypes through apparent reprogramming of the male germ line. Here we examined DNA methylation levels of 22 human imprinted loci in a total of 221 purified sperm samples from infertile couples and found methylation alterations in 24.8% of the patients. Structural equation model suggested that the cause of imprint methylation errors in sperm might have been environmental factors. More specifically, aberrant methylation and a particular lifestyle (current smoking, excess consumption of carbonated drinks) were associated with severe oligozoospermia, while aging probably affected this pathology indirectly through the accumulation of PCB in the patients. Next we examined the pregnancy outcomes for patients when the sperm had abnormal imprint methylation. The live-birth rate decreased and the miscarriage rate increased with the methylation errors. Our research will be useful for the prevention of methylation errors in sperm from infertile men, and sperm with normal imprint methylation might increase the safety of assisted reproduction technology (ART) by reducing methylation-induced diseases of children conceived via ART. PMID:28186187
Tehrani, Kayvan; Kner, Peter; Mortensen, Luke J.
2017-02-01
Multiphoton imaging through the bone to image into the bone marrow or the brain is an emerging need in the scientific community. Due to the highly scattering nature of bone, bone thinning or removal is typically required to enhance the resolution and signal intensity at the imaging plane. The optical aberrations and scattering in the bone significantly affect the resolution and signal to noise ratio of deep tissue microscopy. Multiphoton microscopy uses long wavelength (nearinfrared and infrared) excitation light to reduce the effects of scattering. However, it is still susceptible to optical aberrations and scattering since the light propagates through several layers of media with inhomogeneous indices of refraction. Mechanical removal of bone is highly invasive, laborious, and cannot be applied in experiments where imaging inside of the bone is desired. Adaptive optics technology can compensate for these optical aberrations and potentially restore the diffraction limited point spread function of the system even in deep tissue. To design an adaptive optics system, a priori knowledge of the sample structure assists selection of the proper correction element and sensing methods. In this work we present the characterization of optical aberrations caused by mouse cranial bone, using second harmonic generation imaging of bone collagen. We simulate light propagation through the bone, calculate aberrations and determine the correction that can be achieved using a deformable mirror.
Dong, Bing; Li, Yan; Han, Xin-li; Hu, Bin
2016-01-01
For high-speed aircraft, a conformal window is used to optimize the aerodynamic performance. However, the local shape of the conformal window leads to large amounts of dynamic aberrations varying with look angle. In this paper, deformable mirror (DM) and model-based wavefront sensorless adaptive optics (WSLAO) are used for dynamic aberration correction of an infrared remote sensor equipped with a conformal window and scanning mirror. In model-based WSLAO, aberration is captured using Lukosz mode, and we use the low spatial frequency content of the image spectral density as the metric function. Simulations show that aberrations induced by the conformal window are dominated by some low-order Lukosz modes. To optimize the dynamic correction, we can only correct dominant Lukosz modes and the image size can be minimized to reduce the time required to compute the metric function. In our experiment, a 37-channel DM is used to mimic the dynamic aberration of conformal window with scanning rate of 10 degrees per second. A 52-channel DM is used for correction. For a 128 × 128 image, the mean value of image sharpness during dynamic correction is 1.436 × 10−5 in optimized correction and is 1.427 × 10−5 in un-optimized correction. We also demonstrated that model-based WSLAO can achieve convergence two times faster than traditional stochastic parallel gradient descent (SPGD) method. PMID:27598161
Dong, Bing; Li, Yan; Han, Xin-Li; Hu, Bin
2016-09-02
For high-speed aircraft, a conformal window is used to optimize the aerodynamic performance. However, the local shape of the conformal window leads to large amounts of dynamic aberrations varying with look angle. In this paper, deformable mirror (DM) and model-based wavefront sensorless adaptive optics (WSLAO) are used for dynamic aberration correction of an infrared remote sensor equipped with a conformal window and scanning mirror. In model-based WSLAO, aberration is captured using Lukosz mode, and we use the low spatial frequency content of the image spectral density as the metric function. Simulations show that aberrations induced by the conformal window are dominated by some low-order Lukosz modes. To optimize the dynamic correction, we can only correct dominant Lukosz modes and the image size can be minimized to reduce the time required to compute the metric function. In our experiment, a 37-channel DM is used to mimic the dynamic aberration of conformal window with scanning rate of 10 degrees per second. A 52-channel DM is used for correction. For a 128 × 128 image, the mean value of image sharpness during dynamic correction is 1.436 × 10(-5) in optimized correction and is 1.427 × 10(-5) in un-optimized correction. We also demonstrated that model-based WSLAO can achieve convergence two times faster than traditional stochastic parallel gradient descent (SPGD) method.
Aberrant Right Subclavian Artery: A Life‑threatening Anomaly that ...
Aberrant Right Subclavian Artery: A Life‑threatening Anomaly that should be ... of the retroesophageal space during esophagectomy, may prevent any injury to the .... Source of Support: Nil, Conflict of Interest: None declared. [Downloaded free ...
Are persistent delusions in schizophrenia associated with aberrant salience?
Rafeef Abboud
2016-06-01
Conclusion: These findings do not support the hypothesis that persistent delusions are related to aberrant motivational salience processing in TRS patients. However, they do support the view that patients with schizophrenia have impaired reward learning.
Pande, Paritosh; Liu, Yuan-Zhi; South, Fredrick A; Boppart, Stephen A
2016-07-15
Numerical correction of optical aberrations provides an inexpensive and simpler alternative to the traditionally used hardware-based adaptive optics techniques. In this Letter, we present an automated computational aberration correction method for broadband interferometric imaging techniques. In the proposed method, the process of aberration correction is modeled as a filtering operation on the aberrant image using a phase filter in the Fourier domain. The phase filter is expressed as a linear combination of Zernike polynomials with unknown coefficients, which are estimated through an iterative optimization scheme based on maximizing an image sharpness metric. The method is validated on both simulated data and experimental data obtained from a tissue phantom, an ex vivo tissue sample, and an in vivo photoreceptor layer of the human retina.
Anisoplanatism in adaptive optics systems due to pupil aberrations
Bauman, B
2005-08-01
Adaptive optics systems typically include an optical relay that simultaneously images the science field to be corrected and also a set of pupil planes conjugate to the deformable mirror of the system. Often, in the optical spaces where DM's are placed, the pupils are aberrated, leading to a displacement and/or distortion of the pupil that varies according to field position--producing a type of anisoplanatism, i.e., a degradation of the AO correction with field angle. The pupil aberration phenomenon is described and expressed in terms of Seidel aberrations. An expression for anisoplanatism as a function of pupil distortion is derived, an example of an off-axis parabola is given, and a convenient method for controlling pupil-aberration-generated anisoplanatism is proposed.
Intrinsic Third Order Aberrations in Electrostatic and Magnetic Quadrupoles
Baartman, R
2015-01-01
Intrinsic aberrations are those which occur due to the finite length of the desired field configuration. They are often loosely ascribed to the fringing field. This is misleading as it implies that the effects can be minimized by shaping the fields. In fact, there is an irreducible component related to the broken symmetry. It is present even in the hard-edge limit, and moreover, the other (soft-edge) effects can be simply ascribed to the intrinsic aberration spread over a finite length. We rederive the aberration formulas for quadrupoles using a Hamiltonian formalism. This allows for an easy comparison of electrostatic and magnetic quadrupoles. For different combinations of large and small emittances in the two transverse planes, it is found that in some situations electrostatic quadrupoles have lower aberrations, while in others, magnetic quadrupoles are better. As well, we discuss the ways in which existing transport codes handle quadrupole fringe fields. Pitfalls are pointed out and improvements proposed.
CYTOGENETIC STUDY OF CHROMOSOMAL ABERRATIONS ASSOCIATED WITH CHRONIC LEUKEMIA
Dharma Niranjan Mishra; Sitansu Kumar Panda; Saurjya Ranjan Das; Jami Sagar Prusti; Santosh Sahu; Priyambada Panda; Chinmayi Mohapatra
2016-01-01
... in the Hematology section of Pathology Department from the coastal District of Orissa. The chromosomal aberrations were taken into account in this present study and arranged in tables, Bar charts and Pie charts for comparison...
On the local existence of maximal slicings in spherically symmetric spacetimes
Cordero-Carrión, Isabel; Morales-Lladosa, Juan Antonio
2010-01-01
In this talk we show that any spherically symmetric spacetime admits locally a maximal spacelike slicing. The above condition is reduced to solve a decoupled system of first order quasi-linear partial differential equations. The solution may be accomplished analytical or numerically. We provide a general procedure to construct such maximal slicings.
On the local existence of maximal slicings in spherically symmetric spacetimes
Cordero-Carrion, Isabel; Ibanez, Jose MarIa; Morales-Lladosa, Juan Antonio, E-mail: isabel.cordero@uv.e, E-mail: jose.m.ibanez@uv.e, E-mail: antonio.morales@uv.e [Departamento de AstronomIa y Astrofisica, Universidad de Valencia, C/ Dr. Moliner 50, E-46100 Burjassot, Valencia (Spain)
2010-05-01
In this talk we show that any spherically symmetric spacetime admits locally a maximal spacelike slicing. The above condition is reduced to solve a decoupled system of first order quasi-linear partial differential equations. The solution may be accomplished analytical or numerically. We provide a general procedure to construct such maximal slicings.
Rigid spherical particles in highly turbulent Taylor-Couette flow
Bakhuis, Dennis; Verschoof, Ruben A.; Mathai, Varghese; Huisman, Sander G.; Lohse, Detlef; Sun, Chao
2016-11-01
Many industrial and maritime processes are subject to enormous frictional losses. Reducing these losses even slightly will already lead to large financial and environmental benefits. The understanding of the underlying physical mechanism of frictional drag reduction is still limited, for example, in bubbly drag reduction there is an ongoing debate whether deformability and bubble size are the key parameters. In this experimental study we report high precision torque measurements using rigid non-deformable spherical particles in highly turbulent Taylor-Couette flow with Reynolds numbers up to 2 ×106 . The particles are made of polystyrene with an average density of 1.036 g cm-3 and three different diameters: 8mm, 4mm, and 1.5mm. Particle volume fractions of up to 6% were used. By varying the particle diameter, density ratio of the particles and the working fluid, and volume fraction of the particles, the effect on the torque is compared to the single phase case. These systematic measurements show that adding rigid spherical particles only results in very minor drag reduction. This work is financially supported by Netherlands Organisation for Scientific Research (NWO) by VIDI Grant Number 13477.
Pattern of Chromosomal Aberrations in Patients from North East Iran
Saeedeh Ghazaey
2013-01-01
Full Text Available Objective: Chromosomal aberrations are common causes of multiple anomaly syndromes. Recurrent chromosomal aberrations have been identified by conventional cytogenetic methods used widely as one of the most important clinical diagnostic techniques.Materials and Methods: In this retrospective study, the incidences of chromosomal aberrations were evaluated in a six year period from 2005 to 2011 in Pardis Clinical and Genetics Laboratory on patients referred to from Mashhad and other cities in Khorasan province. Karyotyping was performed on 3728 patients suspected of having chromosomal abnormalities.Results: The frequencies of the different types of chromosomal abnormalities were determined, and the relative frequencies were calculated in each group. Among these patients, 83.3% had normal karyotypes with no aberrations. The overall incidences of chromosomal abnormalities were 16.7% including sex and autosomal chromosomal anomalies. Of those, 75.1 % showed autosomal chromosomal aberrations. Down syndrome (DS was the most prevalent autosomal aberration in the patients (77.1%. Pericentric inversion of chromosome 9 was seen in 5% of patients. This inversion was prevalent in patients with recurrent spontaneous abortion (RSA. Sex chromosomal aberrations were observed in 24.9% of abnormal patients of which 61% had Turner’s syndrome and 33.5% had Klinefelter’s syndrome.Conclusion: According to the current study, the pattern of chromosomal aberrations in North East of Iran demonstrates the importance of cytogenetic evaluation in patients who show clinical abnormalities. These findings provide a reason for preparing a local cytogenetic data bank to enhance genetic counseling of families who require this service.
Aberrant cervical thymus mimicking thyroid on ultrasonography: A case report
Lee, Jeong Sub; Park, Ju Hyun; Kim, Bong Soo; Park, Ji Kang; Choi, Jae Hyuck [Jeju National Univ. Hospital/Jeju National Univ. School of Medicine, Jeju (Korea, Republic of)
2012-10-15
Aberrant cervical thymus is rarely reported in adults. We report a case of solid aberrant cervical thymus in a 27 year old female, which was found incidentally on ultrasonography for the evaluation of the thyroid cancer. On ultrasonography, the lesion was found between the left thyroid and common carotid artery without any remarkable interface echo, and had similar echogenicity to the thyroid. The lesion extended to the upper pole of the left thyroid.
Wide-angle chromatic aberration corrector for the human eye.
Benny, Yael; Manzanera, Silvestre; Prieto, Pedro M; Ribak, Erez N; Artal, Pablo
2007-06-01
The human eye is affected by large chromatic aberration. This may limit vision and makes it difficult to see fine retinal details in ophthalmoscopy. We designed and built a two-triplet system for correcting the average longitudinal chromatic aberration of the eye while keeping a reasonably wide field of view. Measurements in real eyes were conducted to examine the level and optical quality of the correction. We also performed some tests to evaluate the effect of the corrector on visual performance.
Cellular origin of prognostic chromosomal aberrations in AML patients
Mora-Jensen, H.; Jendholm, J.; Rapin, N.
2015-01-01
aberrations that were present in the fully transformed committed HPCs together with the prognostic driver aberration. Adding to this vast heterogeneity and complexity of AML genomes and their clonal evolution, a recent study of a murine AML model demonstrated that t(9;11) AML originating from HSCs responded...... poorly to in vivo chemotherapy treatment as compared with t(9;11) AML originating from HPCs....
Study of the wavefront aberrations in children with amblyopia
ZHAO Peng-fei; ZHOU Yue-hua; WANG Ning-li; ZHANG Jing
2010-01-01
Background Amblyopia is a common ophthalmological condition and the wavefront aberrometer is a relatively new diagnostic tool used globally to measure optical characteristics of human eyes as well as to study refractive errors in amblyopic eyes. We studied the wavefront aberration of the amblyopic children's eyes and analyzed the mechanism of the wavefront aberration in the formation of the amblyopia, try to investigate the new evidence of the treatment of the amblyopia, especially in the refractory amblyopia.Methods The WaveScan Wavefront System (VISX, USA) aberrometer was used to investigate four groups of children under dark accommodation and cilliary muscle paralysis. There were 45 cases in the metropic group, 87 in the amblyopic group, 92 in the corrected-amblyopic group and 38 in the refractory amblyopic group. One-way analysis of variance (ANOVA), t-test and multivariate linear regression were used to analyze all the data.Results Third order to 6th order aberrations showed a decreasing trend whereas in the higher order aberrations the main ones were 3rd order coma (Z3-1-Z31), trefoil (Z3-3-Z33) and 4th order aberration (Z40); and 3rd order coma represented the highest percentage of all three main aberrations. Within 3rd order coma, vertical coma (Z3-1) accounted for a greater percentage than horizontal coma (Z31). Significant differences of vertical coma were found among all clinical groups of children: vertical coma in the amblyopic group (0.17±0.15) was significantly higher than in the metropic group (0.11±0.13, P0.05).Conclusions Although lower order aberrations such as defocus (myopia and hyperopia) and astigmatism are major factors determining the quality of the retinal image, higher order aberrations also need to be considered in amblyopic eyes as their effects are significant.
Multiplexed aberration measurement for deep tissue imaging in vivo
Wang, Chen; Liu, Rui; Milkie, Daniel E; Sun, Wenzhi; Tan, Zhongchao; Kerlin, Aaron; Chen, Tsai-Wen; Kim, Douglas S.; Ji, Na
2014-01-01
We describe a multiplexed aberration measurement method that modulates the intensity or phase of light rays at multiple pupil segments in parallel to determine their phase gradients. Applicable to fluorescent-protein-labeled structures of arbitrary complexity, it allows us to obtain diffraction-limited resolution in various samples in vivo. For the strongly scattering mouse brain, a single aberration correction improves structural and functional imaging of fine neuronal processes over a large...
Multiplexed aberration measurement for deep tissue imaging in vivo
Wang, Chen; Liu, Rui; Milkie, Daniel E.; Sun, Wenzhi; Tan, Zhongchao; Kerlin, Aaron; Chen, Tsai-Wen; Kim, Douglas S.; Ji, Na
2014-01-01
We describe a multiplexed aberration measurement method that modulates the intensity or phase of light rays at multiple pupil segments in parallel to determine their phase gradients. Applicable to fluorescent-protein-labeled structures of arbitrary complexity, it allows us to obtain diffraction-limited resolution in various samples in vivo. For the strongly scattering mouse brain, a single aberration correction improves structural and functional imaging of fine neuronal processes over a large imaging volume. PMID:25128976
Longitudinal Trajectories of Aberrant Behavior in Fragile X Syndrome
Hustyi, Kristin M; Hall, Scott S.; Jo, Booil; Lightbody, Amy A; Reiss, Allan L.
2014-01-01
The Aberrant Behavior Checklist—Community (ABC-C; Aman, Burrow, & Wolford, 1995) has been increasingly adopted as a primary tool for measuring behavioral change in clinical trials for individuals with fragile X syndrome (FXS). To our knowledge, however, no study has documented the longitudinal trajectory of aberrant behaviors in individuals with FXS using the ABC-C. As part of a larger longitudinal study, we examined scores obtained on the ABC-C subscales for 124 children and adolescents (64 ...
Zhang, Xiaobin; Takeguchi, Masaki; Hashimoto, Ayako; Mitsuishi, Kazutaka; Tezuka, Meguru; Shimojo, Masayuki
2012-06-01
Scanning confocal electron microscopy (SCEM) is a new imaging technique that is capable of depth sectioning with nanometer-scale depth resolution. However, the depth resolution in the optical axis direction (Z) is worse than might be expected on the basis of the vertical electron probe size calculated with the existence of spherical aberration. To investigate the origin of the degradation, the effects of electron energy loss and chromatic aberration on the depth resolution of annular dark-field SCEM were studied through both experiments and computational simulations. The simulation results obtained by taking these two factors into consideration coincided well with those obtained by experiments, which proved that electron energy loss and chromatic aberration cause blurs at the overfocus sides of the Z-direction intensity profiles rather than degrade the depth resolution much. In addition, a deconvolution method using a simulated point spread function, which combined two Gaussian functions, was adopted to process the XZ-slice images obtained both from experiments and simulations. As a result, the blurs induced by energy loss and chromatic aberration were successfully removed, and there was also about 30% improvement in the depth resolution in deconvoluting the experimental XZ-slice image.
Liu, Yuxi; Dai, Hongxing; Deng, Jiguang; Zhang, Lei; Zhao, Zhenxuan; Li, Xinwei; Wang, Yuan; Xie, Shaohua; Yang, Huanggen; Guo, Guangsheng
2013-08-01
Uniform hollow spherical rhombohedral LaMO3 and solid spherical cubic MOx (M = Mn and Co) NPs were fabricated using the PMMA-templating strategy. Hollow spherical LaMO3 and solid spherical MOx NPs possessed surface areas of 21-33 and 21-24 m(2)/g, respectively. There were larger amounts of surface-adsorbed oxygen species and better low-temperature reducibility on/of the hollow spherical LaMO3 samples than on/of the solid spherical MOx samples. Hollow spherical LaMO3 and solid spherical MOx samples outperformed their nanosized counterparts for oxidation of CO and toluene, with the best catalytic activity being achieved over the solid spherical Co3O4 sample for CO oxidation (T50% = 81 °C and T90% = 109 °C) at space velocity = 10,000 mL/(g h) and the hollow spherical LaCoO3 sample for toluene oxidation (T50% = 220 °C and T90% = 237 °C) at space velocity = 20,000 mL/(g h). It is concluded that the higher surface areas and oxygen adspecies concentrations and better low-temperature reducibility are responsible for the excellent catalytic performance of the hollow spherical LaCoO3 and solid spherical Co3O4 NPs. We believe that the PMMA-templating strategy provides an effective route to prepare uniform perovskite-type oxide and transition-metal oxide NPs.
Aberrant Glycosylation as Biomarker for Cancer: Focus on CD43
Franca Maria Tuccillo
2014-01-01
Full Text Available Glycosylation is a posttranslational modification of proteins playing a major role in cell signalling, immune recognition, and cell-cell interaction because of their glycan branches conferring structure variability and binding specificity to lectin ligands. Aberrant expression of glycan structures as well as occurrence of truncated structures, precursors, or novel structures of glycan may affect ligand-receptor interactions and thus interfere with regulation of cell adhesion, migration, and proliferation. Indeed, aberrant glycosylation represents a hallmark of cancer, reflecting cancer-specific changes in glycan biosynthesis pathways such as the altered expression of glycosyltransferases and glycosidases. Most studies have been carried out to identify changes in serum glycan structures. In most cancers, fucosylation and sialylation are significantly modified. Thus, aberrations in glycan structures can be used as targets to improve existing serum cancer biomarkers. The ability to distinguish differences in the glycosylation of proteins between cancer and control patients emphasizes glycobiology as a promising field for potential biomarker identification. In this review, we discuss the aberrant protein glycosylation associated with human cancer and the identification of protein glycoforms as cancer biomarkers. In particular, we will focus on the aberrant CD43 glycosylation as cancer biomarker and the potential to exploit the UN1 monoclonal antibody (UN1 mAb to identify aberrant CD43 glycoforms.
Dimensions of driving anger and their relationships with aberrant driving.
Zhang, Tingru; Chan, Alan H S; Zhang, Wei
2015-08-01
The purpose of this study was to investigate the relationship between driving anger and aberrant driving behaviours. An internet-based questionnaire survey was administered to a sample of Chinese drivers, with driving anger measured by a 14-item short Driving Anger Scale (DAS) and the aberrant driving behaviours measured by a 23-item Driver Behaviour Questionnaire (DBQ). The results of Confirmatory Factor Analysis demonstrated that the three-factor model (hostile gesture, arrival-blocking and safety-blocking) of the DAS fitted the driving anger data well. The Exploratory Factor Analysis on DBQ data differentiated four types of aberrant driving, viz. emotional violation, error, deliberate violation and maintaining progress violation. For the anger-aberration relation, it was found that only "arrival-blocking" anger was a significant positive predictor for all four types of aberrant driving behaviours. The "safety-blocking" anger revealed a negative impact on deliberate violations, a finding different from previously established positive anger-aberration relation. These results suggest that drivers with different patterns of driving anger would show different behavioural tendencies and as a result intervention strategies may be differentially effective for drivers of different profiles.
Addition theorems for spin spherical harmonics: II. Results
Bouzas, Antonio O, E-mail: abouzas@mda.cinvestav.mx [Departamento de Fisica Aplicada, CINVESTAV-IPN, Carretera Antigua a Progreso Km. 6, Apdo. Postal 73 ' Cordemex' , Merida 97310, Yucatan (Mexico)
2011-04-22
Based on the results of part I (2011 J. Phys. A: Math. Theor. 44 165301), we obtain the general form of the addition theorem for spin spherical harmonics and give explicit results in the cases involving one spin-s' and one spin-s spherical harmonics with s', s = 1/2, 1, 3/2, and |s' - s| = 0, 1. We also obtain a fully general addition theorem for one scalar and one tensor spherical harmonic of arbitrary rank. A variety of bilocal sums of ordinary and spin spherical harmonics are given in explicit form, including a general explicit expression for bilocal spherical harmonics.
Watermarking on 3D mesh based on spherical wavelet transform
金剑秋; 戴敏雅; 鲍虎军; 彭群生
2004-01-01
In this paper we propose a robust watermarking algorithm for 3D mesh. The algorithm is based on spherical wavelet transform. Our basic idea is to decompose the original mesh into a series of details at different scales by using spherical wavelet transform; the watermark is then embedded into the different levels of details. The embedding process includes: global sphere parameterization, spherical uniform sampling, spherical wavelet forward transform, embedding watermark, spherical wavelet inverse transform, and at last resampling the mesh watermarked to recover the topological connectivity of the original model. Experiments showed that our algorithm can improve the capacity of the watermark and the robustness of watermarking against attacks.
Meads Jr., Philip Francis
1963-05-15
In Part One they formulate in a general way the problem of analyzing and evaluating the aberrations of quadrupole magnet beam systems, and of characterizing the shapes and other properties of the beam envelopes in the neighborhood of foci. They consider all aberrations, including those due to misalignments and faulty construction, through third order in small parameters, for quadrupole beam systems. One result of this study is the development of analytic and numerical techniques for treating these aberrations, yielding useful expressions for the comparison of the aberrations of different beam systems. A second result of this study is a comprehensive digital computer program that determines the magnitude and nature of the aberrations of such beam systems. The code, using linear programming techniques, will adjust the parameters of a beam system to obtain specified optical properties and to reduce the magnitude of aberrations that limit the performance of that system. They examine numerically, in detail, the aberrations of two typical beam systems. In Part Two, they examine the problem of extracting the proton beam from a synchrotron of 'H' type magnet construction. They describe the optical studies that resulted in the design of an external beam from the Bevatron that is optimized with respect to linear, dispersive, and aberration properties and that uses beam elements of conservative design. The design of the beam is the result of the collaboration of many people representing several disciplines. They describe the digital computer programs developed to carry out detailed orbit studies which were required because of the existence of large second order aberrations in the beam.
High Purity Tungsten Spherical Particle Preparation From WC-Co Spent Hard Scrap
Han Chulwoong
2015-06-01
Full Text Available Tungsten carbide-cobalt hard metal scrap was recycled to obtain high purity spherical tungsten powder by a combined hydrometallurgy and physical metallurgy pathway. Selective leaching of tungsten element from hard metal scrap occurs at solid / liquid interface and therefore enlargement of effective surface area is advantageous. Linear oxidation behavior of Tungsten carbide-cobalt and the oxidized scrap is friable to be pulverized by milling process. In this regard, isothermally oxidized Tungsten carbide-cobalt hard metal scrap was mechanically broken into particles and then tungsten trioxide particle was recovered by hydrometallurgical method. Recovered tungsten trioxide was reduced to tungsten particle in a hydrogen environment. After that, tungsten particle was melted and solidified to make a spherical one by RF (Ratio Frequency thermal plasma process. Well spherical tungsten micro-particle was successfully obtained from spent scrap. In addition to the morphological change, thermal plasma process showed an advantage for the purification of feedstock particle.
Design New PID like Fuzzy CTC Controller: Applied to Spherical Motor
Mohammad shamsodini
2014-05-01
Full Text Available The minimum rule base Proportional Integral Derivative (PID Fuzzy Computed Torque Controller with application to spherical motor is presented in this research. The popularity of PID Fuzzy Computed Torque Controller can be attributed to their robust performance in a wide range of operating conditions and partly to their functional simplicity. PID methodology has three inputs and if any input is described with seven linguistic values, and any rule has three conditions we will need 343 rules. It is too much work to write 343 rules and have lots of problem to design embedded control system e.g., Field Programmable Gate Array (FPGA. In this research the PID-like fuzzy controller can be constructed as a parallel structure of a PD-like fuzzy controller and a conventional PI controller to have the minimum rule base and acceptable trajectory follow disturbance to control of spherical motor. However computed torque controller is work based on cancelling decoupling and nonlinear terms of dynamic parameters for each direction of three degree of freedom spherical motor, this controller is work based on motor dynamic model and this technique is highly sensitive to the knowledge of all parameters of nonlinear spherical motor’s dynamic equation. This research is used to reduce or eliminate the computed torque controller problem based on minimum rule base fuzzy logic theory to control of three degrees of freedom spherical motor system and testing of the quality of process control in the simulation environment of MATLAB/SIMULINK Simulator.
Li, Ping; Li, Xin-zhou; Xi, Ping
2016-06-01
We present a detailed study of the spherically symmetric solutions in Lorentz-breaking massive gravity. There is an undetermined function { F }(X,{w}1,{w}2,{w}3) in the action of Stückelberg fields {S}φ ={{{Λ }}}4\\int {{{d}}}4x\\sqrt{-g}{ F }, which should be resolved through physical means. In general relativity, the spherically symmetric solution to the Einstein equation is a benchmark and its massive deformation also plays a crucial role in Lorentz-breaking massive gravity. { F } will satisfy the constraint equation {T}01=0 from the spherically symmetric Einstein tensor {G}01=0, if we maintain that any reasonable physical theory should possess the spherically symmetric solutions. The Stückelberg field {φ }i is taken as a ‘hedgehog’ configuration {φ }i=φ (r){x}i/r, whose stability is guaranteed by the topological one. Under this ansätz, {T}01=0 is reduced to d{ F }=0. The functions { F } for d{ F }=0 form a commutative ring {R}{ F }. We obtain an expression of the solution to the functional differential equation with spherical symmetry if { F }\\in {R}{ F }. If { F }\\in {R}{ F } and \\partial { F }/\\partial X=0, the functions { F } form a subring {S}{ F }\\subset {R}{ F }. We show that the metric is Schwarzschild, Schwarzschild-AdS or Schwarzschild-dS if { F }\\in {S}{ F }. When { F }\\in {R}{ F } but { F }\
Spherical silicon solar cell with reflector cup fabricated by decompression dropping method
MINEMOTO Takashi; OKAMOTO Chikao; MUROZONO Mikio; TAKAKURA Hideyuki; HAMAKAWA Yoshihiro
2006-01-01
A spherical Si solar cell with a reflector cup was successfully fabricated by a dropping method at decompression state. In the dropping method, melted Si droplets were instilled at decompression state (0.5× 105Pa) to reduce crystal growth rate, dominating crystal quality such as dislocation density in crystal grains. Spherical Si solar cells were fabricated using the spherical Si crystals with a diameter of 1 mm and then mounted on a reflector cup. The current-voltage measurement of the solar cell shows an energy conversion efficiency of 11.1% (short-circuit current density ( Jsc ):24.7 mA·cm-2,open-circuit voltage: 601 mV, fill factor:74.6%). Minority carrier diffusion length determined by surface photovoltage method was 98 μm. This value can be enhanced by the improvement of crystal quality of spherical Si crystals. These results demonstrate that spherical Si crystals fabricated by the dropping method has a great potential for substrate material of high-efficiency and low-cost solar cells.
The Effect of Spherical Surface on Noise Suppression of a Supersonic Jet
Md. Tawhidul Islam Khan; Kunisato Seto; Zhixiang Xu; H. Ohta
2003-01-01
Experiments were carried out to eliminate the screech tone generated from a supersonic jet.Compressed air was passed through a circular convergent nozzle preceded by a straight tube of same diameter. In order to reduce the jet screech a spherical reflector was used and placed at the nozzle exit. The placement of the spherical reflector at the nozzle exit controlled the location of the image source as well as minimized the sound pressure at the nozzle exit.The weak sound pressure did not excite the unstable disturbance at the exit.Thus the loop of the feedback mechanism could not be accomplished and the jet screech was eliminated. The technique of screech reduction with a flat plate was also examined and compared with the present method. A good and effective performance in canceling the screech component by the new method was found by the investigation. Experimental results indicate that the new system suppresses not only the screech tones but also the broadband noise components and reduces the overall noise of the jet flow. The spherical reflector was found very effective in reducing overall sound pressure level in the upstream region of the nozzle compared to a flat plate. The proposed spherical reflector can, accordingly, protect the upstream noise propagation.
Persistence of Early Emerging Aberrant Behavior in Children with Developmental Disabilities
Green, Vanessa A.; O'Reilly, Mark; Itchon, Jonathan; Sigafoos, Jeff
2005-01-01
This study examined the persistence of early emerging aberrant behavior in 13 preschool children with developmental disabilities. The severity of aberrant behavior was assessed every 6 months over a 3-year period. Teachers completed the assessments using the Aberrant Behavior Checklist [Aman, M. G., & Singh, N. N. (1986). "Aberrant Behavior…
A model for interphase chromosomes and evaluation of radiation-induced aberrations
Holley, W. R.; Mian, I. S.; Park, S. J.; Rydberg, B.; Chatterjee, A.
2002-01-01
We have developed a theoretical model for evaluating radiation-induced chromosomal exchanges by explicitly taking into account interphase (G(0)/G(1)) chromosome structure, nuclear organization of chromosomes, the production of double-strand breaks (DSBs), and the subsequent rejoinings in a faithful or unfaithful manner. Each of the 46 chromosomes for human lymphocytes (40 chromosomes for mouse lymphocytes) is modeled as a random polymer inside a spherical volume. The chromosome spheres are packed randomly inside a spherical nucleus with an allowed overlap controlled by a parameter Omega. The rejoining of DSBs is determined by a Monte Carlo procedure using a Gaussian proximity function with an interaction range parameter sigma. Values of Omega and sigma have been found which yield calculated results of interchromosomal aberration frequencies that agree with a wide range of experimental data. Our preferred solution is one with an interaction range of 0.5 microm coupled with a relatively small overlap parameter of 0.675 microm, which more or less confirms previous estimates. We have used our model with these parameter values and with resolution or detectability limits to calculate yields of translocations and dicentrics for human lymphocytes exposed to low-LET radiation that agree with experiments in the dose range 0.09 to 4 Gy. Five different experimental data sets have been compared with the theoretical results. Essentially all of the experimental data fall between theoretical curves corresponding to resolution limits of 1 Mbp and 20 Mbp, which may reflect the fact that different investigators use different limits for sensitivity or detectability. Translocation yields for mouse lymphocytes have also been calculated and are in good agreement with experimental data from 1 cGy to 10 cGy. There is also good agreement with recent data on complex aberrations. Our model is expected to be applicable to both low- and high-LET radiation, and we include a sample prediction of
Morphogenesis of membrane invaginations in spherical confinement
Kahraman, Osman; Mueller, Martin Michael
2012-01-01
We study the morphology of a fluid membrane in spherical confinement. When the area of the membrane is slightly larger than the area of the outer container, a single axisymmetric invagination is observed. For higher area self-contact occurs; the invagination breaks symmetry and deforms into an ellipsoid-like shape connected to its outer part via a small slit. For even higher areas an invagination forms inside the original invagination. The folding patterns observed could constitute basic building blocks in the morphogenesis of biological tissues and organelles.