WorldWideScience

Sample records for reduce radioactivity corrosion

  1. Capturing device for radioactive corrosion products

    International Nuclear Information System (INIS)

    Ono, Kiyoshi.

    1987-01-01

    Purpose: To render the flow channel area uniform for each of coolants over the entire capturing device and reduce the corrosion of capturing materials due to coolants. Constitution: Most of radioactivity caused by radioactive corrosion products are due to Mn-54 radioactive nuclides and it has been known that the nuclides are readily deposited to the surface of nickel material in sodium at high temperature. It is difficult in a conventional capturing device constituted by winding a nickel plate fabricated with protrusions in a multiple-coaxial configuration, that the flow channel area is reduced in a portion of the flow channel and it is difficult to make the flow of the coolants uniform. In view of the above, by winding a nickel plate having a plurality of protrusions at the surface formed integrally by way of an electrolytic process into a multiple-coaxial or spiral shape, those having high resistance to the coolant corrosion can be obtained. (Takahashi, M.)

  2. Device of capturing for radioactive corrosion products

    International Nuclear Information System (INIS)

    Ohara, Atsushi; Fukushima, Kimichika.

    1984-01-01

    Purpose: To increase the area of contact between the capturing materials for the radioactive corrosion products contained in the coolants and the coolants by producing stirred turbulent flows in the coolant flow channel of LMFBR type reactors. Constitution: Constituent materials for the nuclear fuel elements or the reactor core structures are activated under the neutron irradiation, corroded and transferred into the coolants. While capturing devices made of pure metal nickel are used for the elimination of the corrosion products, since the coolants form laminar flows due to the viscosity thereof near the surface of the capturing materials, the probability that the corrosion products in the coolants flowing through the middle portion of the channel contact the capturing materials is reduced. In this invention, rotating rolls and flow channels in which the balls are rotated are disposed at the upstream of the capturing device to forcively disturb the flow of the liquid sodium, whereby the radioactive corrosion products can effectively be captured. (Kamimura, M.)

  3. Steel corrosion in radioactive waste storage tanks

    International Nuclear Information System (INIS)

    Carranza, Ricardo M.; Giordano, Celia M.; Saenz, E.; Weier, Dennis R.

    2004-01-01

    A collaborative study is being conducted by CNEA and USDOE (Department of Energy of the United States of America) to investigate the effects of tank waste chemistry on radioactive waste storage tank corrosion. Radioactive waste is stored in underground storage tanks that contain a combination of salts, consisting primarily of sodium nitrate, sodium nitrite and sodium hydroxide. The USDOE, Office of River Protection at the Hanford Site, has identified a need to conduct a laboratory study to better understand the effects of radioactive waste chemistry on the corrosion of waste storage tanks at the Hanford Site. The USDOE science need (RL-WT079-S Double-Shell Tanks Corrosion Chemistry) called for a multi year effort to identify waste chemistries and temperatures within the double-shell tank (DST) operating limits for corrosion control and operating temperature range that may not provide the expected corrosion protection and to evaluate future operations for the conditions outside the existing corrosion database. Assessment of corrosion damage using simulated (non-radioactive) waste is being made of the double-shell tank wall carbon steel alloy. Evaluation of the influence of exposure time, and electrolyte composition and/or concentration is being also conducted. (author) [es

  4. Nuclear reactor structural material forming less radioactive corrosion product

    International Nuclear Information System (INIS)

    Nakazawa, Hiroshi.

    1988-01-01

    Purpose: To provide nuclear reactor structural materials forming less radioactive corrosion products. Constitution: Ni-based alloys such as inconel alloy 718, 600 or inconel alloy 750 and 690 having excellent corrosion resistance and mechanical property even in coolants at high temperature and high pressure have generally been used as nuclear reactor structural materials. However, even such materials yield corrosion products being attacked by coolants circulating in the nuclear reactor, which produce by neutron irradiation radioactive corrosion products, that are deposited in primary circuit pipeways to constitute exposure sources. The present invention dissolves dissolves this problems by providing less activating nuclear reactor structural materials. That is, taking notice on the fact that Ni-58 contained generally by 68 % in Ni changes into Co-58 under irradiation of neutron thereby causing activation, the surface of nuclear reactor structural materials is applied with Ni plating by using Ni with a reduced content of Ni-58 isotopes. Accordingly, increase in the radiation level of the nuclear reactor structural materials can be inhibited. (K.M.)

  5. Released radioactivity reducing facility

    International Nuclear Information System (INIS)

    Tanaka, Takeaki.

    1992-01-01

    Upon occurrence of a reactor accident, penetration portions of a reactor container, as a main leakage source from a reactor container, are surrounded by a plurality of gas-tight chambers, the outside of which is surrounded by highly gas-tightly buildings. Branched pipelines of an emergency gas processing system are introduced to each of the gas-tight chambers and they are joined and in communication with an emergency gas processing device. With such a constitution, radioactive materials are prevented from leaking directly from the buildings. Further, pipeline openings of the emergency gas processing facility are disposed in the plurality highly gas-tight penetration chambers. If the radioactive materials are leaked from the reactor to elevate the pressure in the penetration chambers, the radioactive materials are introduced to a filter device in the emergency gas processing facility by way of the branched pipelines, filtered and then released to the atmosphere. Accordingly, the reliability and safety of the system can be improved. (T.M.)

  6. Released radioactivity reducing device

    International Nuclear Information System (INIS)

    Miyamoto, Yumi.

    1995-01-01

    A water scrubber is disposed in a scrubber tank and a stainless steel fiber filter is disposed above the water scrubber. The upper end of the scrubber tank is connected by way of a second bent tube to a capturing vessel incorporating a moisture removing layer and an activated carbon filter. The exit of the capturing vessel is connected to a stack. Upon occurrence of an accident of a BWR-type power plant, gases containing radioactive materials released from a reactor container are discharged into the water scrubber from a first bent tube through a venturi tube nozzle, and water soluble and aerosol-like radioactive materials are captured in the water. Aerosol and splashes of water droplets which can not be captured thoroughly by the water scrubber are captured by the stainless steel fiber filter. Gases passing through the scrubber tank are introduced to a capturing vessel through a second bent tube, and organic iodine is captured by the activated carbon filter. (I.N.)

  7. Corrosion aspects of steel radioactive waste containers in cementitious materials

    International Nuclear Information System (INIS)

    Smart, Nick

    2012-01-01

    Nick Smart from Serco, UK, gave an overview of the effects of cementitious materials on the corrosion of steel during storage and disposal of various low- and intermediate-level radioactive wastes. Steel containers are often used as an overpack for the containment of radioactive wastes and are routinely stored in an open atmosphere. Since this is an aerobic and typically humid environment, the steel containers can start to corrode whilst in storage. Steel containers often come into contact with cementitious materials (e.g. grout encapsulants, backfill). An extensive account of different steel container designs and of steel corrosion mechanisms was provided. Steel corrosion rates under conditions buffered by cementitious materials have been evaluated experimentally. The main conclusion was that the cementitious environment generally facilitates the passivation of steel materials. Several general and localised corrosion mechanisms need to be considered when evaluating the performance of steel containers in cementitious environments, and environmental thresholds can be defined and used with this aim. In addition, the consequences of the generation of gaseous hydrogen by the corrosion of carbon steel under anoxic conditions must be taken into account. Discussion of the paper included: Is crevice corrosion really significant in cementitious systems? Crevice corrosion is unlikely in the cementitious backfill considered because it will tend to neutralise any acidic conditions in the crevice. What is the role of microbially-induced corrosion (MIC) in cementitious systems? Microbes are likely to be present in a disposal facility but their effect on corrosion is uncertain

  8. Corrosion of radioactive waste containers, case of a container made of low allow steel

    International Nuclear Information System (INIS)

    Bataillon, C.; Musy, C.; Roy, M.

    2001-01-01

    The following topics were dealt with: radioactive waste concept ANDRA, low alloy steel (XC38) container corrosion under representative storage conditions, corrosion rate and passivation effects, micrographic investigations

  9. Corrosion monitoring of storage bins for radioactive calcines

    International Nuclear Information System (INIS)

    Hoffman, T.L.

    1975-01-01

    Highly radioactive liquid waste produced at the Idaho Chemical Processing Plant is calcined to a granular solid for long term storage in stainless steel bins. Corrosion evaluation of coupons withdrawn from these bins indicates excellent performance for the materials of construction of the bins. At exposure periods of up to six years the average penetration rates are 0.01 and 0.05 mils per year for Types 304 and 405 stainless steels, respectively. (auth)

  10. Application of electromagnetic fields to improve the removal rate of radioactive corrosion products

    International Nuclear Information System (INIS)

    Kong, Tae Young; Lee, Kun Jai; Song, Min Chul

    2004-01-01

    To comply with increasingly strict regulations for protection against radiation exposure, many nuclear power plants have been working ceaselessly to reduce and control both the radiation sources within power plants and the radiation exposure experienced by operational and maintenance personnel. Many research studies have shown that deposits of irradiated corrosion products on the surfaces of coolant systems are the main cause of occupational radiation exposure in nuclear power plants. These corrosion product deposits on the fuel-clad surface are also known to be main factors in the onset of Axial Offset Anomaly (AOA). Hence, there is a great deal of ongoing research on water chemistry and corrosion processes. In this study, a magnetic filter with permanent magnets was devised to remove the corrosion products in the coolant stream by taking advantage of the magnetic properties of the corrosion particles. Experiments using permanent magnets to filter the corrosion products demonstrated a removal efficiency of over 90% for particles above 5 μm. This finding led to the construction of an electromagnetic device that causes the metallic particulates to flocculate into larger aggregates of about 5 μm in diameter by using a novel application of electromagnetic flocculation on radioactive corrosion products

  11. Corrosion of metal containers containing cemented radioactive wastes

    International Nuclear Information System (INIS)

    Duffo, G.S.; Farina, S.B.; Schulz, F.M.; Marotta, F

    2010-01-01

    Nuclear activities generate different kinds of radioactive wastes. In the case of Argentina, wastes classified as low and medium level are conditioned in metal drums for final disposal in a repository whose design is based on the use of multiple and independent barriers. Nuclear energy plants generate a large volume of mid-level radioactive wastes, consisting mainly of ion-exchange resins contaminated by fission products. Other contaminated products such as gloves, papers, clothing, rubber and plastic tubing, can be incinerated and the ashes from the combustion also constitute wastes that must be disposed of. These wastes (resins and ashes) must be immobilized in order to avoid the release of radionuclides into the environment. The wastes usually undergo a process of cementing to immobilize them. This work aims to systematically study the process of degradation by corrosion of the steel drums in contact with the cemented resins and with the ashes cemented with the addition of different types and concentrations of aggressive compounds (chloride and sulfate). The specimens are configured so that the parameters of interest for the steel in contact with the cemented materials can be measured. The variables of corrosion potential, electric resistivity of the matrix and polarization resistance (PR) were monitored and show that the presence of chloride increases the susceptibility to corrosion of the drum steel that is in contact with the cement resin matrix

  12. Corrosion study for a radioactive waste vitrification facility

    International Nuclear Information System (INIS)

    Imrich, K.J.; Jenkins, C.F.

    1993-01-01

    A corrosion monitoring program was setup in a scale demonstration melter system to evaluate the performance of materials selected for use in the Defense Waste Processing Facility (DWPF) at the DOE's Savannah River Site. The system is a 1/10 scale prototypic version of the DWPF. In DWPF, high activity radioactive waste will be vitrified and encapsulated for long term storage. During this study twenty-six different alloys, including DWPF reference materials of construction and alternate higher alloy materials, were subjected to process conditions and environments characteristic of the DWPF except for radioactivity. The materials were exposed to low pH, elevated temperature (to 1200 degree C) environments containing abrasive slurries, molten glass, mercury, halides and sulfides. General corrosion rates, pitting susceptibility and stress corrosion cracking of the materials were investigated. Extensive data were obtained for many of the reference materials. Performance in the Feed Preparation System was very good, whereas coupons from the Quencher Inlet region of the Melter Off-Gas System experienced localized attack

  13. Bio-corrosion for underground disposal of radioactive waste

    International Nuclear Information System (INIS)

    Libert, M.; Esnault, L.; Esnault, L.; Feron, D.

    2011-01-01

    The safety disposal of high level nuclear waste (HLNW) is the major breakthrough allowing socially acceptable development of nuclear energy over the coming decades. The French concept for geological disposal of HLNW is based on a multi-barrier system made by metallic containers confined in natural clay. The main alteration parameter is water arriving on waste after the corrosion of metallic components. The anoxic aqueous corrosion phenomena are studied in order to evaluate the confinement capacity of metallic barriers. The discover of active micro-organisms in deep clayey environments raises the question of the impact of micro-organisms on corrosion parameters due to processes such as 'biologically induced corrosion'. Despite of extreme conditions in deep nuclear geological disposal (redox conditions, high pressure and temperature, irradiation), bacterial activity will adapt and survive in these environments. Anoxic corrosion of nuclear waste containers and radiolysis will produce H 2 , which represents a new energetic source for bacterial development, especially in this environment that contains a low amount of biodegradable organic matter. Besides, the formation of Fe(III)-bearing minerals such as magnetite (Fe 3 O 4 ) as corrosion products will provide electron acceptors favouring the development of bacteria. Bio-corrosion studies of nuclear waste disposal need to investigate the activity of hydrogenotrophic bacteria able to reduce iron oxides (passivation layer) or sulfates (iron reducing bacteria and sulfate reducing bacteria) in order to evaluate their impact on the long-term stability of metallic compounds involved in multi-barrier system for high-level nuclear waste containment. (authors)

  14. Mechanisms of leaching and corrosions of vitrified radioactive waste forms

    International Nuclear Information System (INIS)

    Lanza, F.; Conradt, R.; Hall, A.R.; Malow, G.; Trocellier, P.; Van Iseghem, P.

    1985-01-01

    The estimation of the risk connected with the storage of radioactive waste in geological formations asks for reliable extrapolation of the data for leaching and corrosion of glasses to very long times. As a consequence the knowledge of the physico-chemical mechanisms which dominate the leaching phenomena can be very useful. In the corrosion due to aqueous solution three main mechanisms can be identified: ion exchange, matrix dissolution and formation of a surface layer. The work performed in the different laboratories has allowed to evaluate the relative importance of the various mechanism. The alkali ion exchange does not seems to be predominant in defining the release of the various elements, the matrix dissolution being the most important. The surface composition is important as the compounds present could dominate the matrix dissolution kinetic. Besides the surface layer could form an impervious layer, which, if stable in time, could protect effectively the glass

  15. 5l/h pump for dosing corrosion radioactive liquids

    International Nuclear Information System (INIS)

    Przybylovich, S.; Shraer, V.; Chermak, R.

    1977-01-01

    The technical requirements, design and main technical characteristics of the pump for dosing corrosion and radioactive liquids with capacity up to 5 l/h are described. The design is based on the popular sixvertical split casing pump. The pump has four separate pump membrane type blocks with nonstraight hydraulic membrane control. The membranes are made of the cold worked CrNi(18/10)type stainless steel with thickness up to 0.1 mm and have the lifetime up to 3000 hours. The remote pump heads are used for pumping radioactive fluids when the pumping goes behind the safe wall, separating the pump from a hot lab. The tests showed that the pump secures the satisfactory accuracy of dozing and uniformity of pumping and that it is really possible to achieve the required life time of 10000 hours by this pump

  16. Inhibition of Bio corrosion of steel coupon by sulphate reducing ...

    African Journals Online (AJOL)

    ADOWIE PERE

    Inhibition of Bio corrosion of steel coupon by sulphate reducing bacteria and Iron oxidizing bacteria using .... Ethanol for 24 h. The extract was ... with distilled water to get a zero reading from the meter before .... Ethanol extract of musa species peels as a green corrosion ... Eco friendly extract of banana peel as corrosion ...

  17. Reinforcement corrosion in alkaline chloride media with reduced oxygen concentrations

    International Nuclear Information System (INIS)

    Andrade, C.; Fullea, J.; Toro, L.; Martinez, I.; Rebolledo, N.

    2013-01-01

    It is commonly considered that the corrosion of steel in concrete is controlled by the oxygen content of the pore solution and there are service life models that relate the corrosion rate to the amount of oxygen. It is also commonly believed that in water saturated conditions the oxygen content in the pores is negligible and that underwater there is no risk of depassivation and the corrosion rate is very low. However, the available data on corrosion rates in immersed conditions do not indicate such performance; on the contrary corrosion develops when sufficient chloride reaches the reinforcement. In the present paper, results are presented for tests performed in alkaline chloride solutions that were purged with nitrogen to reduce the oxygen content. The results indicate that at very low oxygen concentrations, corrosion may develop in the presence of chlorides. The presence or absence of corrosion is influenced by the amount of chloride, the corrosion potential and the steel surface condition. (authors)

  18. Stress-corrosion cracks behavior under underground disposal environment of radioactive wastes

    International Nuclear Information System (INIS)

    Isei, Takehiro; Seto, Masahiro; Ogata, Yuji; Wada, Yuji; Utagawa, Manabu; Kosugi, Masayuki

    2000-01-01

    This study is composed by two sub-theme of study on stress-corrosion cracking under an environment of disposal on radioactive wastes and control technique on microscopic crack around the disposal cavity, and aims at experimental elucidation on forming mechanism of stress-corrosion cracking phenomenon on rocks and establishment of its control technique. In 1998 fiscal year, together with an investigation on effect of temperature on fracture toughness and on stress-corrosion cracks performance of sedimentary rocks (sandy rocks), an investigation on limit of the stress-corrosion cracking by addition of chemicals and on crack growth in a rock by in-situ observation using SEM were carried out. As a result, it was formed that fracture toughness of rocks reduced at more than 100 centigrade of temperature, that a region showing an equilibrium between water supply to crack end and crack speed appeared definitely, that a limit of stress-corrosion cracking appeared by addition of chemicals, and that as a result of observing crack advancement of saturated rock by in-situ observation of crack growth using SEM, a process zone was formed at the front of main crack due to grain boundary fracture. (G.K.)

  19. Coupling between corrosion and biphasic transport in porous media: Application to the evolution of a radioactive wastes disposal

    International Nuclear Information System (INIS)

    Dridi, W.

    2005-04-01

    In the actual concepts of geological disposal, high level radioactive wastes are packed in metallic containers surrounded by a partially or totally saturated clay media. In contact with the interstitial water, anoxic corrosion of this container will start producing hydrogen. In the scope of safety assessment, the present study deals with two main topics: prediction of the long-term corrosion of carbon steel with respect to clay water content and evaluation of the risk of damage of the clay barrier related to gas production. Elementary processes controlling the kinetics of corrosion are limited to oxide growth and mass transfer through the porosity of this film. Thanks to a macroscopic description of theses processes, followed by an interfacial kinetic law, a mechanistic modeling of the anoxic corrosion in partially saturated porous media is proposed. This approach is validated when confronted to the long-term corrosion tests performed in saturated clay. Both modeling and laboratory experiments have confirmed that kinetics of anoxic corrosion in partially saturated clay is mainly controlled by the surrounding relative humidity as in the case of aerated or atmospheric corrosion. In the gas generation topic, some numerical simulations are performed concerning the oedometric and triaxial test dealing with gas migration in saturated clay. Finally, long-term calculations are conducted concerning hydro-mechanical impact of corrosion in deep geological repositories. Due to a more realistic prediction of the long-term corrosion, the risks of gas overpressures, local desaturation and mechanical damage are reduced. (author)

  20. Reducing the risk from radioactive sources

    International Nuclear Information System (INIS)

    MacKenzie, C.

    2006-01-01

    Each year the IAEA receives reports of serious injuries or deaths due to misuse or accidents involving sealed radioactive sources. Sealed radioactive sources are used widely in medicine, industry, and agriculture - by doctors to treat cancer, by radiographers to check welds in pipelines, or by specialists to irradiate food to prevent it from spoiling, for example. If these sources are lost or improperly discarded, a serious accident may result. In addition, the security of sealed sources has become a growing concern, particularly the potential that such a source could be used as a radioactive dispersal device or 'dirty bomb'. Preventing the loss or theft of sealed radioactive sources reduces both the risk of accidents and the risk that such sources could become an instrument of misuse. In most countries, radioactive materials and activities that produce radiation are regulated. Those working with sealed radioactive sources are required not just to have proper credentials, but also the needed training and support to deal with unexpected circumstances that may arise when a source is used. Despite these measures, accidents involving sealed sources continue to be reported to the IAEA. Among its many activities to improve the safety and security of sealed sources, the IAEA has been investigating the root causes of major accidents since the 1980s and publishing the findings so that others can learn from them. This information needs to be in the hands of those whose actions and decisions can reduce accidents by preventing a lost source from making it's way into scrap metal. The IAEA has also developed an international catalogue of sealed radioactive sources, and provides assistance to countries to safely contain sources no longer in use. To raise awareness, a Sealed Radioactive Sources Toolkit was issued that focuses on the long-term issues in safely and securely managing radioactive sealed sources. The target audiences are government agencies, radioactive sealed source

  1. Process for reducing radioactive contamination in phosphogypsum

    International Nuclear Information System (INIS)

    Palmer, J.W.; Gaynor, J.C.

    1983-01-01

    In a process for reducing radioactive contamination of phosphogypsum, anhydrite crystals are obtained through dehydration of the phosphogypsum in strong sulfuric acid: a portion of the anhydrite crystals is converted to subtantially radiation free gypsum by crystallizing out on radiation free gypsum seed crystals. These coarse radiation free gypsum crystals are then separated from the small anhydrite crystal relics containing substantially all of the radioactive contamination

  2. Control of stress corrosion cracking in storage tanks containing radioactive waste

    International Nuclear Information System (INIS)

    Ondrejcin, R.S.; Rideout, S.P.; Donovan, J.A.

    1978-01-01

    Stress corrosion of carbon steel storage tanks containing alkaline nitrate radioactive waste, at the Savannah River Plant is controlled by specification of limits on waste composition and temperature. Cases of cracking have been observed in the primary steel shell of tanks designed and built before 1960 that were attributed to a combination of high residual stresses from fabrication welding and aggressiveness of fresh wastes from the reactor fuel reprocessing plants. The fresh wastes have the highest concentration of nitrate, which has been shown to be the cracking agent. Also as the waste solutions age and are reduced in volume by evaporation of water, nitrite and hydroxide ions become more concentrated and inhibit stress corrosion. Thus, by providing a heel of aged evaporated waste in tanks that receive fresh waste, concentrations of the inhibitor ions are maintained within specified ranges to protect against nitrate cracking. Tanks designed and built since 1960 have been made of steels with greater resistance to stress corrosion; these tanks have also been heat treated after fabrication to relieve residual stresses from construction operations. Temperature limits are also specified to protect against stress corrosion at elevated temperatures

  3. Bioaccumulation and food chain transfer of corrosion products from radioactive stainless steel

    International Nuclear Information System (INIS)

    Young, J.S.

    1986-07-01

    Two sets of experiments were conducted to determine if corrosion products from radioactive Type 347 stainless steel could be biologically transferred from sediment through a marine food chain, and whether corrosion products dissolved in seawater could be bioaccumulated and then eliminated. Corrosion products containing 60 Co and 63 Ni from the radioactive stainless steel were introduced into marine sediments. Infaunal polychaete worms exposed to these sediments bioaccumulated the radionuclides. The feeding of these worms to shrimp and fish resulted in a trophic transfer of the radioactive products across a one-step food chain. The magnitude of the transfers are described in terms of transfer factors. Dissolved corrosion products as measured by the radionuclides were also bioaccumulated by shrimp and fish concentrating more than fish. Concentration factors were calculated

  4. Seawater corrosion tests for low-level radioactive waste drum containers

    International Nuclear Information System (INIS)

    Maeda, Sho; Wadachi, Yoshiki

    1985-11-01

    This report is a part of corrosion tests of drums under various environmental conditions (seawater, river water, coastal sand, inland soil and indoor and outdoor atmosphere) done at Japan Atomic Energy Research Institute sponsored by the Science and Technology Agency. The corrosion tests were started in November, 1977 and complated at March, 1984. This report describes the results of the seawater corrosion tests which are part of the final report, ''Corrosion Safety Demonstration Test'' (Japanese), and it is expected to contribute the safety assessment of sea dumping of low-level radioactive waste packages. (author)

  5. Contribution of the characterization of radioactive surfaces after sodium corrosion

    International Nuclear Information System (INIS)

    Menken, G.; Holl, M.

    1978-01-01

    Since 1972 INTERATOM is performing sodium mass and activity transfer investigations in an SNR-corrosion mockup loop which allows to study the transport of activated corrosion products in the primary heat transfer system of a sodium cooled reactor. The loop simulates the temperature and flow conditions and the materials combination of the SNR 300. The mass transfer examinations were aimed at the determination of the following: the linear corrosion and deposition rates; the selective corrosion of the alloying elements; the transfer of activated corrosion products. The results of a number of corrosion runs will be used in the following contribution to characterize the contaminated and corroded surface layers of reactor components. The loop reached a total operation time of 12300 h while the cold trap temperature was changed between 105 deg. C and 165 deg. C in successive runs

  6. Container material for the disposal of highly radioactive wastes: corrosion chemistry aspects

    International Nuclear Information System (INIS)

    Grauer, R.

    1984-08-01

    Prior to disposal in crystalline formations it is planned to enclose vitrified highly radioactive waste from nuclear power plants in metallic containers ensuring their isolation from the groundwater for at least 1,000 years. Appropriate metals can be either thermodynamically stable in the repository environment (such as copper), passive materials with very low corrosion rates (titanium, nickel alloys), or metals such as cast iron or unalloyed cast steels which, although they corrode, can be used in sections thick enough to allow for this corrosion. The first part of the report presents the essentials of corrosion science in order to enable even a non-specialist to follow the considerations and arguments necessary to choose the material and design the container against corrosion. Following this, the principles of the long-term extrapolation of corrosion behaviour are discussed. The second part summarizes and comments upon the literature search carried out to identify published results relevant to corrosion in a repository environment. Results of archeaological studies are included wherever possible. Not only the general corrosion behaviour but also localized corrosion and stress corrosion cracking are considered, and the influence of hydrogen on the material behaviour is discussed. Taking the corrosion behaviour as criterion, the author suggests the use either of copper or of cast iron or steel as an appropriate container material. The report concludes with proposals for further studies. (Auth.)

  7. Corrosion control of carbon steel radioactive-liquid storage tanks

    International Nuclear Information System (INIS)

    Chang, Ji Young.

    1997-05-01

    As the West Valley Demonstration Project (WVDP) continues vitrification operation and begins decontamination activities, it is vital to continue to maintain the integrity of the high-level waste tanks and prevent further corrosion that may disrupt the operation. This report describes the current operational status and some corrosion concerns with corresponding control measure recommendations. 14 refs., 5 figs., 6 tabs

  8. Synthesis of recent investigations on corrosion behaviour of radioactive waste glasses

    International Nuclear Information System (INIS)

    Grauer, R.

    1985-03-01

    Work which has appeared since the earlier report (EIR--477) on the corrosion behaviour of borosilicate glasses as a solidification matrix for high-level radioactive waste has been evaluated. Many works have confirmed that for a particular glass, besides temperature and pH-value, the silicate concentration of the solution exerts the strongest influence on corrosion rate. The effect of silicate can be described in terms of simple reaction kinetics models which provides a more sound basis for prediction of long-term behaviour of glasses than previously existed. Meanwhile, the effects of backfill- and canister-materials and their corrosion products have been given the attention they merit. These materials affect glass corrosion primarily through regulation of silicic acid concentration. A particular finding which is of interest is the strong inhibition of glass corrosion by lead ions. Stationary corrosion rates in the order of magnitude of 10 -5 g/cm 2 .d can be derived from long-term corrosion experiments in stagnant water at 90 0 C. At the envisaged repository temperature of 55 0 C they will be one to two orders of magnitude less. The effects of radioactive decay on corrosion rate are either very small or not detectable at all. (Auth.)

  9. Method of reducing the radioactivity in nuclear power plants

    International Nuclear Information System (INIS)

    Ohashi, Kenya; Honda, Takashi; Furutani, Yasumasa; Kashimura, Eiji; Minato, Akira; Osumi, Katsumi.

    1986-01-01

    Purpose: To reduce the radioactivity in nuclear power plants in contact with pure water at high temperature and high pressure. Method: For suppressing the deposition of radioactive materials in nuclear reactor coolants to the structural materials, oxide layers which are relatively porous but have a sufficient layer thickness are formed as the primary treatment and then thin but dense layers are formed as the secondary treatment. Oxidization is applied by means of heated water or steams with less oxidizing property in the first treatment, while oxidizing treatment is applied with heated water and steams at high oxidizing property in the second treatment, because the effect of suppressing corrosion is insufficient only by means of the membranes in the primary treatment, while the layers formed by the secondary treatment alone are liable to be injured and degraded. Since coolants for use in BWR type reactors usually contain about 200 ppb of dissolved oxygen, it is desirably from 40 to 100 ppb for the primary treatment and from 400 ppb to 8 ppb for the secondary treatment, and non-oxidating heated gases at high purity such as Ar, N 2 , He may be used in addition to heated water and steams. (Kawakami, Y.)

  10. Effect of radioactive chromate on the corrosion and polarisation of mild steel in sodium chloride solution

    International Nuclear Information System (INIS)

    Subramanyan, N.; Ramakrishnaiah, K.; Iyer, S.V.; Kapali, V.

    1980-01-01

    Corrosion tests of mild steel in 0.01% sodium chloride containing radioactive chromate and non-radioactive chromate have been carried out. It has been observed that the labelled sodium chromate has a deleterious effect on the inhibitive action of non-radioactive chromate. The effect of radioactive chromate on the potentiostatic polarization of m.s. in sodium chloride solution containing non-radioactive sodium chromate has also been studied. It is observed that both the cathodic and the anodic polarisation of the metal is diminished in the presence of radioactive chromate. The behaviour of the system in the presence of radioactive chromate is attributed both to the action of depolarisers produced by radiolysis of water and to the effect of gamma radiation on the metal. (author)

  11. Corrosion of steel drums containing simulated radioactive waste of low and intermediate level

    International Nuclear Information System (INIS)

    Farina, S.B.; Schulz Rodríguez, F.; Duffó, G.S.

    2013-01-01

    Ion-exchange resins are frequently used during the operation of nuclear power plants and constitute radioactive waste of low and intermediate level. For the final disposal inside the repository the resins are immobilized by cementation and placed inside steel drums. The eventful contamination of the resins with aggressive species may cause corrosion problems to the drums. In order to assess the incidence of this phenomenon and to estimate the lifespan of the steel drums, in the present work, the corrosion susceptibility of steel drums in contact with cemented ion-exchange resins contaminated with different aggressive species was studied. The aggressive species studied were chloride ions (main ionic species of concern) and sulphate ions (produced during radiolysis of the cationic exchange-resins after cementation). The corrosion rate of the steel was monitored over a time period of 900 days and a chemical and morphological analysis of the corrosion products formed on the steel in each condition was performed. When applying the results obtained in the present work to estimate the corrosion depth of the drums containing the cemented radioactive waste after a period of 300 years (foreseen durability of the Low and Intermediate Level Radioactive Waste facility in Argentina), it was found that in the most unfavourable case (high chloride contamination), the corrosion penetration will be considerably lower than the thickness of the wall of the steel drums. (author)

  12. Corrosion models for predictions of performance of high-level radioactive-waste containers

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J.C.; McCright, R.D. [Lawrence Livermore National Lab., CA (United States); Gdowski, G.E. [KMI Energy Services, Livermore, CA (United States)

    1991-11-01

    The present plan for disposal of high-level radioactive waste in the US is to seal it in containers before emplacement in a geologic repository. A proposed site at Yucca Mountain, Nevada, is being evaluated for its suitability as a geologic repository. The containers will probably be made of either an austenitic or a copper-based alloy. Models of alloy degradation are being used to predict the long-term performance of the containers under repository conditions. The models are of uniform oxidation and corrosion, localized corrosion, and stress corrosion cracking, and are applicable to worst-case scenarios of container degradation. This paper reviews several of the models.

  13. Real time nanogravimetric monitoring of corrosion in radioactive environments

    OpenAIRE

    Tzagkaroulakis, Ioannis; Boxall, Colin

    2017-01-01

    Monitoring and understanding the mechanism of metal corrosion throughout the nuclear fuel cycle play a key role in the safe asset management of facilities. They also provide information essential for making an informed choice regarding the selection of decontamination methods for steel plant and equipment scheduled for decommissioning. Recent advances in Quartz Crystal Nanobalance (QCN) technology offer the means of monitoring corrosion in-situ, in radiologically harsh environments, in real t...

  14. Chemically reducing decontamination method for radioactive metal

    International Nuclear Information System (INIS)

    Tanaka, Akio; Onuma, Tsutomu; Sato, Hitoshi.

    1994-01-01

    The present invention concerns a decontamination method of electrolytically reducing radioactive metal wastes, then chemically dissolving the surface thereof with a strong acid decontaminating solution. This method utilizes dissolving characteristics of stainless steels in the strong acid solution. That is, in the electrolytic reduction operation, a portion of the metal wastes is brought into contact with a strong acid decontaminating solution, and voltage and current are applied to the portion and keep it for a long period of time so as to make the potential of the immersed portion of the metal wastes to an active soluble region. Then, the electrolytic reduction operation is stopped, and the metal wastes are entirely immersed in the decontaminating solution to decontaminate by chemical dissolution. As the decontaminating solution, strong acid such as sulfuric acid, nitric acid is used. Since DC current power source capacity required for causing reaction in the active soluble region can be decreased, the decontamination facility can be minimized and simplified, and necessary electric power can be saved even upon decontamination of radioactive metal wastes made of stainless steels and having a great area. Further, chemical dissolution can be conducted without adding an expensive oxidizing agent. (N.H.)

  15. Alternatives to reduce corrosion of carbon steel storage drums

    International Nuclear Information System (INIS)

    Zirker, L.R.; Beitel, G.A.

    1995-11-01

    The major tasks of this research were (a) pollution prevention opportunity assessments on the overpacking operations for failed or corroded drums, (b) research on existing container corrosion data, (c) investigation of the storage environment of the new Resource Conservation and Recovery Act Type II storage modules, (d) identification of waste streams that demonstrate deleterious corrosion affects on drum storage life, and (e) corrosion test cell program development. Twenty-one waste streams from five US Department of Energy (DOE) sites within the DOE Complex were identified to demonstrate a deleterious effect to steel storage drums. The major components of these waste streams include acids, salts, and solvent liquids, sludges, and still bottoms. The solvent-based waste streams typically had the shortest time to failure: 0.5 to 2 years. The results of this research support the position that pollution prevention evaluations at the front end of a project or process will reduce pollution on the back end

  16. Bacterial corrosion in low-temperature geothermal. Mechanisms of corrosion by sulphate-reducing bacteria

    International Nuclear Information System (INIS)

    Daumas, Sylvie

    1987-01-01

    Within the frame of researches aimed at determining the causes of damages noticed on geothermal equipment, this research thesis aims at assessing the respective importance of physical-chemical processes and bacterial intervention in corrosion phenomena. It proposes an ecological approach of the fluid sampled in the Creil geothermal power station. The aim is to define the adaptation and activity degree of isolated sulphate-reducing bacteria with respect to their environment conditions. The author studied the effect of the development of these bacteria on the corrosion of carbon steel used in geothermal. Thus, he proposes a contribution to the understanding of mechanisms related to iron attack by these bacteria. Electrochemical techniques have been adapted to biological processes and used to measure corrosion [fr

  17. Corrosion of container materials for disposal of high-level radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    Chun, K.S.; Park, H.S.; Yeon, J.W.; Ha, Y.K. [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-01-01

    In the corrosion aspect of container for the deep geological disposal of high-level radioactive waste, disposal concepts and the related container materials, which have been developed by advanced countries, have been reviewed. The disposal circumstances could be divided into the saturated and the unsaturated zones. The candidate materials in the countries, which consider the disposal in the unsaturated zone, are the corrosion resistant materials such as supper alloys and stainless steels, but those in the saturated zone is cupper, one of the corrosion allowable materials. By the results of the pitting corrosion test of sensitized stainless steels (such as 304, 304L, 316 and 316L), pitting potential is decreased with the degree of sensitization and the pitting corrosion resistance of 316L is higher than others. And so, the long-term corrosion experiment with 316L stainless steel specimens, sebsitized and non-sensitized, under the compacted bentonite and synthetic granitic groundwater has been being carried out. The results from the experiment for 12 months indicate that no evidence of pitting corrosion of the specimens has been observed but the crevice corrosion has occurred on the sensitized specimens even for 3 months. (author). 33 refs., 19 figs., 10 tabs.

  18. Synthesis of recent investigations on corrosion behaviour of radioactive waste glasses

    International Nuclear Information System (INIS)

    Grauer, R.

    1985-03-01

    By way of a supplement to an earlier report (NTB 83-01, EIR-Report Nr. 477), work which has appeared in the meantime on the corrosion behaviour of borosilicate glasses as a solidification matrix for high-level radioactive waste has been evaluated. Many works have confirmed that for a particular glass, besides temperature and pH-value, the silicate concentration of the solution exerts the strongest influence on corrosion rate. The effect of silicate can be described in terms of simple reaction kinetic models which provides a more sound basis for prediction of longterm behaviour of glasses than previously existed. Meanwhile, the effects of backfill- and canister-materials and their corrosion products have been given the attention they merit. These materials affect glass corrosion primarily through regulation of silicic acid concentration. A particular finding which is of interest is the strong inhibition of glass corrosion by lead ions. Stationary corrosion rates in the order of magnitude of 10 -5 g/cm 2 ·d can be derived from long-term corrosion experiments in stagnant water at 90 C. At the envisaged repository temperature of 55 C they will be one to two orders of magnitude less. The effects of radioactive decay on corrosion rate are either very small or not detectable at all. No further new viewpoints have been put forward with regard to a possible thermal re-structuring of glasses under repository conditions: re-crystallisation (devitrification) is not to be feared. With regard to future experiments, further work on quantification of the effects of canister- and backfill-materials and experiments with corrosion inhibitors would be of primary interest. (author)

  19. Sulphur recirculation for reduced boiler corrosion; Minskad pannkorrosion med svavelrecirkulation

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Sven; Karlsson, Martin (Goetaverken Miljoe AB, Goeteborg (Sweden)); Blomqvist, Evalena; Baefver, Linda; Claesson, Frida; Davidsson, Kent (SP Sveriges Tekniska Forskningsinstitut, Boraas (Sweden)); Froitzheim, Jan; Pettersson, Jesper; Steenari, Britt-Marie (Chalmers Tekniska Hoegskola, Oorganisk miljoekemi, Goeteborg (Sweden))

    2010-03-15

    Sulphur recirculation is a new technology for reducing boiler corrosion and dioxin formation, which was demonstrated in full-scale tests performed at the Renova Waste to Energy plant at Saevenaes in Goeteborg (Sweden). Sulphur is recirculated from the flue gas cleaning back to the boiler, which reduces the chloride content of the deposits, which in turn reduces boiler corrosion and dioxin formation. Sulphur dioxide was separated from the flue gas in a wet scrubber by adding hydrogen peroxide, producing sulphuric acid. The sulphuric acid was injected into the furnace using nozzles with atomization air, surrounded by recirculated flue gas for improved mixing. By recirculating the sulphur, the sulphur dioxide concentration was increased in the boiler. Each sulphur atom passed the boiler several times and no external sulphur had to be added. Dioxin, ash, deposits and particle samplings together with 1000 h corrosion probe measurements were performed for normal operation (reference) and with sulphur recirculation respectively. During spring 2009, reference measurements were made and the recirculation system was installed and tested. During autumn 2009, a long term test with sulphur recirculation was made. An SO{sub 2} concentration of approximately 800 mg/m3 (n, d.g.) was maintained in the boiler by the system except during a period of extremely low sulphur content in the waste. The sulphur dioxide stack concentrations have been far below the emission limit. Sulphuric acid dew point measurements have shown that the sulphuric acid dosage did not lead to elevated SO{sub 3} concentrations, which may otherwise lead to low temperature corrosion. The chlorine content of both fly ash and boiler ash decreased and the sulphur content increased during the sulphur recirculation tests. The molar chlorine/sulphur ratio (Cl/S) decreased by two thirds in the fly ash as well as in the boiler ash, except for one sample. With sulphur recirculation in operation, the deposit growth was

  20. Corrosion of canister materials for radioactive waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Kienzler, Bernhard [KIT Karlsruhe (Germany). Institut fuer Nukleare Entsorgung (INE)

    2017-08-15

    In the period between 1980 and 2004, corrosion studies on various metallic materials have been performed at the Research Center Karlsruhe. The objectives of these experimental studies addressed mainly the performance of canister materials for heat producing, high-level wastes and spent nuclear fuels for a repository in a German salt dome. Additional studies covered the performance of steels for packaging wastes with negligible heat production under conditions to be expected in rocksalt and in the Konrad iron ore mine. The results of the investigations have been published in journals and conference proceedings but also in ''grey literature''. This paper presents a summary of the results of corrosion experiments with fine-grained steels and nodular cast steel.

  1. Corrosion of canister materials for radioactive waste disposal

    International Nuclear Information System (INIS)

    Kienzler, Bernhard

    2017-01-01

    In the period between 1980 and 2004, corrosion studies on various metallic materials have been performed at the Research Center Karlsruhe. The objectives of these experimental studies addressed mainly the performance of canister materials for heat producing, high-level wastes and spent nuclear fuels for a repository in a German salt dome. Additional studies covered the performance of steels for packaging wastes with negligible heat production under conditions to be expected in rocksalt and in the Konrad iron ore mine. The results of the investigations have been published in journals and conference proceedings but also in ''grey literature''. This paper presents a summary of the results of corrosion experiments with fine-grained steels and nodular cast steel.

  2. Corrosion considerations of high-nickel alloys and titanium alloys for high-level radioactive waste disposal containers

    International Nuclear Information System (INIS)

    Gdowski, G.E.; McCright, R.D.

    1991-07-01

    Corrosion resistant materials are being considered for the metallic barrier of the Yucca Mountain Project's high-level radioactive waste disposal containers. High nickel alloys and titanium alloys have good corrosion resistance properties and are considered good candidates for the metallic barrier. The localized corrosion phenomena, pitting and crevice corrosion, are considered as potentially limiting for the barrier lifetime. An understanding of the mechanisms of localized corrosion of how various parameters affect it will be necessary for adequate performance assessments of candidate container materials. Examples of some of the concerns involving candidate container materials. Examples of some of the concerns of involving localized corrosion are discussed. The effects of various parameters, such as temperature and concentration of halide species, on localized corrosion are given. In addition concerns about aging of the protective oxide layer in the expected service temperature range (50 to 250 degrees C) are presented. Also some mechanistic considerations of localized corrosion are given. 31 refs., 1 tab

  3. Corrosion behaviour of container materials for geological disposal of high level radioactive waste

    International Nuclear Information System (INIS)

    Accary, A.

    1985-01-01

    The disposal of high level radioactive waste in geological formations, based on the multibarrier concept, may include the use of a container as one of the engineered barriers. In this report the requirements imposed on this container and the possible degradation processes are reviewed. Further on an overview is given of the research being carried out by various research centres in the European Community on the assessment of the corrosion behaviour of candidate container materials. The results obtained on a number of materials under various testing conditions are summarized and evaluated. As a result, three promising materials have been selected for a detailed joint testing programme. It concerns two highly corrosion resistant alloys, resp. Ti-Pd (0.2 Pd%) and Hastelloy C4 and one consumable material namely a low carbon steel. Finally the possibilities of modelling the corrosion phenomena are discussed

  4. Radioactive corrosion products in circuit of fast reactor loop with dissociating coolant

    International Nuclear Information System (INIS)

    Dolgov, V.M.; Katanaev, A.O.

    1982-01-01

    The results of experimental investigation into depositions of radionuclides of corrosion origin on the surfaces of a reactor-in-pile loop facility with a dissociating coolant are presented. It is stated that the ratio of radionuclides in fixed depositions linearly decreases with decrease of the coolant temperature at the core-condenser section. The element composition of non-fixed compositions quantitatively and qualitatively differs from the composition of structural material, and it is more vividly displayed for the core-condenser section. The main mechanism of circuit contamination with radioactive corrosion products is substantiated: material corrosion in the zones of coolant phase transfer, their remove by the coolant in the core, deposition, activation and wash-out by the coolant from the core surfaces

  5. Finite element evaluation of erosion/corrosion affected reducing elbow

    International Nuclear Information System (INIS)

    Basavaraju, C.

    1996-01-01

    Erosion/corrosion is a primary source for wall thinning or degradation of carbon steel piping systems in service. A number of piping failures in the power industry have been attributed to erosion/corrosion. Piping elbow is one of such susceptible components for erosion/corrosion because of increased flow turbulence due to its geometry. In this paper, the acceptability of a 12 in. x 8 in. reducing elbow in RHR service water pump discharge piping, which experienced significant degradation due to wall thinning in localized areas, was evaluated using finite element analysis methodology. Since the simplified methods showed very small margin and recommended replacement of the elbow, a detailed 3-D finite element model was built using shell elements and analyzed for internal pressure and moment loadings. The finite element analysis incorporated the U.T. measured wall thickness data at various spots that experienced wall thinning. The results showed that the elbow is acceptable as-is until the next fuel cycle. FEA, though cumbersome, and time consuming is a valuable analytical tool in making critical decisions with regard to component replacement of border line situation cases, eliminating some conservatism while not compromising the safety

  6. Open site tests on corrosion of carbon steel containers for radioactive waste forms

    International Nuclear Information System (INIS)

    Barinov, A.S.; Ojovan, M.I.; Ojovan, N.V.; Startceva, I.V.; Chujkova, G.N.

    1999-01-01

    Testing of waste containers under open field conditions is a component part of the research program that is being carried out at SIA Radon for more than 20 years to understand the long-term behavior of radioactive waste forms and waste packages. This paper presents the preliminary results of these ongoing studies. The authors used a typical NPP operational waste, containing 137 Cs, 134 Cs, and 60 Co as the dominant radioactive constituents. Bituminized and vitrified waste samples with 30--50 wt.% waste loading were prepared. Combined effects of climatic factors on corrosion behavior of carbon steel containers were estimated using gravimetric and chemical analyses. The observations suggest that uniform corrosion of containers prevails under open field conditions. The upper limits for the lifetime of containers were derived from calculations based on the model of atmospheric steel corrosion. Estimated lifetime values range from 300 to 600 years for carbon steel containers with the wall thickness of 2 mm containing vitrified waste, and from 450 to 500 years for containers with the wall thickness of 2.5 mm that were used for bituminized waste. However, following the most conservative method, pitting corrosion may cause container integrity failure after 60 to 90 years of exposure

  7. A computer analysis code of radioactive corrosion product behaviour in primary circuits of LMFBRs (PSYCHE)

    International Nuclear Information System (INIS)

    Iizawa, Katsuyuki; Seki, Seiichi; Kawasaki, Yuji; Kano, Shigeki; Nihei, Isao

    1986-01-01

    Recently it has become an important subject to reduce exposure to radiation from radioactive corrosion products (CPs) during maintenance and repair works in reactor plants. Metallic sodium is used as cooling material in fast reactor plants, leading to different CP behaviours compared to light water reactors. In the present study, a computer code for analyzing behaviours of CPs in fast reactor plants is developed. The analysis code, called PSYCHE, makes it possible to perform consistent analysis of production, migration and deposition of CPs in primary circuits together with dose rate around piping of apparatus in cooling systems. An analysis model is developed based on test results on CP behaviour in out-pile sodium. The model, called the ''dissolution-deposition model'', can reproduce atom-selective behaviour, transient phenomenon and downstream effect of CPs, which represent mass transfer phenomena in sodium. Verification of this code is carried out on the basis of CP measurements made in ''Joyo''. The calculation vs. measurement ratio is found to be 0.5 - 2 for CP deposition density in piping for cooling systems and 0.7 - 1.3 for dose rate, demonstrating that this code can give reasonable results. Analysis is also made to predict future changes in total amount of deposited CP in ''Joyo''. (Nogami, K.)

  8. Corrosion of high-level radioactive waste iron-canisters in contact with bentonite

    Energy Technology Data Exchange (ETDEWEB)

    Kaufhold, Stephan, E-mail: s.kaufhold@bgr.de [BGR, Bundesanstalt für Geowissenschaften und Rohstoffe, Stilleweg 2, D-30655 Hannover (Germany); Hassel, Achim Walter [Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Straße 1, D-40237 Düsseldorf (Germany); Institute for Chemical Technology of Inorganic Materials, Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz (Austria); Sanders, Daniel [Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Straße 1, D-40237 Düsseldorf (Germany); Dohrmann, Reiner [BGR, Bundesanstalt für Geowissenschaften und Rohstoffe, Stilleweg 2, D-30655 Hannover (Germany); LBEG, Landesamt für Bergbau, Energie und Geologie, Stilleweg 2, D-30655 Hannover (Germany)

    2015-03-21

    Graphical abstract: Corrosion at the bentonite iron interface proceeds unaerobically with formation of an 1:1 Fe silicate mineral. A series of exposure tests with different types of bentonites showed that Na–bentonites are slightly less corrosive than Ca–bentonites and highly charges smectites are less corrosive compared to low charged ones. The formation of a patina was observed in some cases and has to be investigated further. - Highlights: • At the iron bentonite interface a 1:1 Fe layer silicate forms upon corrosion. • A series of iron–bentonite corrosion products showed slightly less corrosion for Na-rich and high-charged bentonites. • In some tests the formation of a patina was observed consisting of Fe–silicate, which has to be investigated further. - Abstract: Several countries favor the encapsulation of high-level radioactive waste (HLRW) in iron or steel canisters surrounded by highly compacted bentonite. In the present study the corrosion of iron in contact with different bentonites was investigated. The corrosion product was a 1:1 Fe layer silicate already described in literature (sometimes referred to as berthierine). Seven exposition test series (60 °C, 5 months) showed slightly less corrosion for the Na–bentonites compared to the Ca–bentonites. Two independent exposition tests with iron pellets and 38 different bentonites clearly proved the role of the layer charge density of the swelling clay minerals (smectites). Bentonites with high charged smectites are less corrosive than bentonites dominated by low charged ones. The type of counterion is additionally important because it determines the density of the gel and hence the solid/liquid ratio at the contact to the canister. The present study proves that the integrity of the multibarrier-system is seriously affected by the choice of the bentonite buffer encasing the metal canisters in most of the concepts. In some tests the formation of a patina was observed consisting of Fe

  9. Corrosion of high-level radioactive waste iron-canisters in contact with bentonite.

    Science.gov (United States)

    Kaufhold, Stephan; Hassel, Achim Walter; Sanders, Daniel; Dohrmann, Reiner

    2015-03-21

    Several countries favor the encapsulation of high-level radioactive waste (HLRW) in iron or steel canisters surrounded by highly compacted bentonite. In the present study the corrosion of iron in contact with different bentonites was investigated. The corrosion product was a 1:1 Fe layer silicate already described in literature (sometimes referred to as berthierine). Seven exposition test series (60 °C, 5 months) showed slightly less corrosion for the Na-bentonites compared to the Ca-bentonites. Two independent exposition tests with iron pellets and 38 different bentonites clearly proved the role of the layer charge density of the swelling clay minerals (smectites). Bentonites with high charged smectites are less corrosive than bentonites dominated by low charged ones. The type of counterion is additionally important because it determines the density of the gel and hence the solid/liquid ratio at the contact to the canister. The present study proves that the integrity of the multibarrier-system is seriously affected by the choice of the bentonite buffer encasing the metal canisters in most of the concepts. In some tests the formation of a patina was observed consisting of Fe-silicate. Up to now it is not clear why and how the patina formed. It, however, may be relevant as a corrosion inhibitor. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Corrosion on reinforced concrete structures. An application for the intermediate level radioactive waste container

    International Nuclear Information System (INIS)

    Arva, Alejandro; Alvarez, Marta G.; Duffo, Gustavo S.

    2003-01-01

    The behavior of steel reinforcement bars (rebars) for a high performance reinforced concrete made of sulfate resistant portland cement was evaluated from the rebars corrosion point of view. The results from the present work will be used to evaluate the materials properties to be used in the construction of the intermediate level radioactive waste disposal containers. The study is carried out evaluating the incidence of chloride and sulfate ions, as well as, concrete carbonation in the rebar corrosion process. The electrochemical parameters that characterize the corrosion process (corrosion potential [E corr ], polarisation resistance [Rp] and concrete electrical resistivity [ρ]) were monitored on specially designed reinforced concrete specimens. The results up to date (about 1000 days of exposure) reveal that the concrete under study provides to the steel reinforcement bars of a passive state against corrosion under the test conditions. An increasing tendency as a function of time of ρ is observed that corroborates the continuous curing process of concrete. The chloride and carbonation diffusion coefficients were also determined, and their values are comparable with those of high quality concrete. (author)

  11. The study on the magnetic filter using the rotation of permanent magnets for separation of radioactive corrosion products

    International Nuclear Information System (INIS)

    Song, M.C.; Lee, K.J.

    2004-01-01

    Most of the insoluble radioactive corrosion products have the characteristic of showing strong ferrimagnetism. Along with the new development and production of permanent magnets which generate much stronger magnetic field than conventional permanent magnets, new type of magnetic filter that can separate radioactive corrosion products efficiently and eventually reduce the radiation exposure of the personnel at a nuclear power plant is suggested. This new type of separator with novel geometry consists of an inner and an outer magnet assembly, a coolant channel and a container surrounding the outer magnet assembly. The particulates are separated from the coolant by the alternating magnetic fields that are generated by shift arrangement of permanent magnets. This study describes of experimental results performed with the different flow rates, rotation velocities of magnet assemblies, particle size and various materials. The efficiency of magnetic filter tends to increase as the flow rate is lower, and particle size is bigger. The rotating velocity of magnet assembly has also some influences on the separation efficiency. This new magnetic filter shows good performance results in filtering magnetite, cobalt ferrite and nickel ferrite except hematite, which is a kind of anti-ferromagnetic material, from aqueous coolant simulation. At the above 5 μm of particle size, the separation efficiencies are over than 90%. (author)

  12. Process for reducing radioactive contamination in waste product gypsum

    International Nuclear Information System (INIS)

    Lange, P.H. Jr.

    1979-01-01

    A process is described for reducing the radioactive contamination in waste product gypsum in which waste product gypsum is reacted with a dilute sulfuric acid containing barium sulfate to form an acid slurry at an elevated temperature, the slurry is preferably cooled, the acid component is separated from the solid, and the resulting solid is separated into a fine fraction and a coarse fraction. The fine fraction predominates in barium sulfate and radioactive contamination. The coarse fraction predominates in a purified gypsum product of reduced radioactive contamination

  13. Corrosion

    Science.gov (United States)

    Slabaugh, W. H.

    1974-01-01

    Presents some materials for use in demonstration and experimentation of corrosion processes, including corrosion stimulation and inhibition. Indicates that basic concepts of electrochemistry, crystal structure, and kinetics can be extended to practical chemistry through corrosion explanation. (CC)

  14. Corrosion in the off-gas system of a radioactive-waste incinerator

    International Nuclear Information System (INIS)

    Jenkins, C.F.; Peters, J.J.

    1987-01-01

    Corrosion in a low-level radioactive-waste incinerator off-gas system at the Department of Energy's Savannah River Plant is discussed. Severe corrosive attack and failure of an alloy 600 part exposed to high-temperature (>1000 0 C) gases was observed. Rapid attack of carbon steel components, and cracking of austenitic stainless steel parts also occurred at locations where lower gas temperatures and periodic condensate exposure occurred. Investigation showed HCl, SO 2 , SO 3 and phosphorus-oxides were present and contributed to the failures. Mechanisms of high-temperature failure include alloy separation and reactions with phosphorus. Coupons placed in the exhaust stream have provided information for selection of future materials of construction for system components. Several nickel- and iron-base alloys, and a stainless steel with an aluminum-diffusion coating were investigated

  15. Integrated Corrosion Facility for long-term testing of candidate materials for high-level radioactive waste containment

    International Nuclear Information System (INIS)

    Estill, J.C.; Dalder, E.N.C.; Gdowski, G.E.; McCright, R.D.

    1994-10-01

    A long-term-testing facility, the Integrated Corrosion Facility (I.C.F.), is being developed to investigate the corrosion behavior of candidate construction materials for high-level-radioactive waste packages for the potential repository at Yucca Mountain, Nevada. Corrosion phenomena will be characterized in environments considered possible under various scenarios of water contact with the waste packages. The testing of the materials will be conducted both in the liquid and high humidity vapor phases at 60 and 90 degrees C. Three classes of materials with different degrees of corrosion resistance will be investigated in order to encompass the various design configurations of waste packages. The facility is expected to be in operation for a minimum of five years, and operation could be extended to longer times if warranted. A sufficient number of specimens will be emplaced in the test environments so that some can be removed and characterized periodically. The corrosion phenomena to be characterized are general, localized, galvanic, and stress corrosion cracking. The long-term data obtained from this study will be used in corrosion mechanism modeling, performance assessment, and waste package design. Three classes of materials are under consideration. The corrosion resistant materials are high-nickel alloys and titanium alloys; the corrosion allowance materials are low-alloy and carbon steels; and the intermediate corrosion resistant materials are copper-nickel alloys

  16. Inhibiting pitting corrosion in carbon steel exposed to dilute radioactive waste slurries

    International Nuclear Information System (INIS)

    Zapp, P.E.; Hobbs, D.T.

    1991-01-01

    Dilute caustic high-level radioactive waste slurries can induce pitting corrosion in carbon steel. Cyclic potentiodynamic polarization tests were conducted in simulated and actual waste solutions to determine minimum concentrations of sodium nitrate which inhibit pitting in ASTM A537 class 1 steel exposed to these solutions. Susceptibility to pitting was assessed through microscopic inspection of specimens and inspection of polarization scans. Long-term coupon immersion tests were conducted to verify the nitrite concentrations established by the cyclic potentiodynamic polarization tests. The minimum effective nitrite concentration is expressed as a function of the waste nitrate concentration and temperature

  17. Method of reducing radioactivity in nuclear reactors

    International Nuclear Information System (INIS)

    Koshino, Yasuo

    1987-01-01

    Purpose: To prevent increase of radiation dose ratio in primary coolant circuit pipeways of nuclear reactor and reduce operators' exposure dose upon periodical inspection, etc. Method: β-diketone such as acetylacetone is added in a predetermined amount to reactor cooling water. β-diketone dissolves to catch metal ions and iron oxides as the main ingredient of cruds. The resultant β-diketone complex of metals is slightly water soluble neutron molecule, and the total metal amount in the reactor coolant is at a concentration of less than 10 ppb and completely dissolved in water. Accordingly, deposition of clads in the coolant to pipeways can be prevented thereby enabling to prevent the increase in the radiation dose ratio in the pipeways and thus reduce the operators' exposure dose. (Takahashi, M.)

  18. Method of inhibiting concentration of radioactive corrosion products in cooling water or nuclear power plants

    International Nuclear Information System (INIS)

    Takabayashi, Jun-ichi; Hishida, Mamoru; Ishikura, Takeshi.

    1979-01-01

    Purpose: To suppress the increase in the concentration of the radioactive corrosion products in cooling water, which increase is accompanied by the transference of the corrosion products activated and accumulated in the core due to dissolution and exfoliation into the core water, and inhibit the flowing of said products out of the core and the diffusion thereof into the cooling system, thereby to prevent the accumulation of said products in the cooling system and prevent radioactive contaminations. Method: In a nuclear power plant of a BWR type light water reactor, when the temperature of the pile water is t 0 C, hydrogen is injected in cooling water in a period of time from immediately before starting of the drive stopping operation of the nuclear power plant to immediately after the termination of restarting operation, whereby the concentration of hydrogen in the reactor water through said period is maintained at a value more than 2exp (0.013 t) cm 3 N.T.P./kg H 2 O. (Aizawa, K.)

  19. Development of moving alternating magnetic filter using permanent magnet for removal of radioactive corrosion product from nuclear power plant

    International Nuclear Information System (INIS)

    Song, M. C.; Kim, S. I.; Lee, K. J.

    2002-01-01

    Radioactive Corrosion Products (CRUD) which are generated by the neutron activation of general corrosion products at the nuclear power plant are the major source of occupational radiation exposure. Most of the CRUD has a characteristic of showing strong ferrimagnetisms. Along with the new development and production of permanent magnet (rare earth magnet) which generates much stronger magnetic field than the conventional magnet, new type of magnetic filter that can separate CRUD efficiently and eventually reduce radiation exposure of personnel at nuclear power plant is suggested. This separator consists of inner and outer magnet assemblies, coolant channel and container surrounding the outer magnet assembly. The rotational motion of the inner and outer permanent magnet assemblies surrounding the coolant channel by driving motor system produces moving alternating magnetic fields in the coolant channel. The CRUD can be separated from the coolant by the moving alternating magnetic field. This study describes the results of preliminary experiment performed with the different flow rates of coolant and rotation velocities of magnet assemblies. This new magnetic filter shows better performance results of filtering the magnetite at coolant (water). Flow rates, rotating velocities of magnet assemblies and particle sizes turn out to be very important design parameters

  20. Electrodeposited Reduced Graphene Oxide Films on Stainless Steel, Copper, and Aluminum for Corrosion Protection Enhancement

    OpenAIRE

    Abdulkareem Mohammed Ali Al-Sammarraie; Mazin Hasan Raheema

    2017-01-01

    The enhancement of corrosion protection of metals and alloys by coating with simple, low cost, and highly adhered layer is still a main goal of many workers. In this research graphite flakes converted into graphene oxide using modified Hammers method and then reduced graphene oxide was electrodeposited on stainless steel 316, copper, and aluminum for corrosion protection application in seawater at four temperatures, namely, 20, 30, 40, and 50°C. All corrosion measurements, kinetics, and therm...

  1. Localized corrosion and stress corrosion cracking of candidate materials for high-level radioactive waste disposal containers in U.S

    International Nuclear Information System (INIS)

    Farmer, J.C.; McCright, R.D.

    1989-01-01

    Three ion-based to nickel-based austenitic alloys and three copper-based alloys are being considered in the United States as candidate materials for the fabrication of high-level radioactive waste containers. The austenitic alloys are Types 304L and 316L stainless steels as well as the high-nickel material Alloy 825. The copper-based alloys are CDA 102 (oxygen-free copper) CDA 613 (Cu7Al), and CDA 715 (Cu-30Ni). Waste in the forms of spent fuel assemblies from reactors and borosilicate glass will be sent to a proposed repository at Yucca Mountain, Nevada. The decay of radionuclides will result in the generation of substantial heat and in gamma radiation. Container materials may undergo any of several modes of degradation in this environment, including: undesirable phase transformations due to a lack of phase stability; atmospheric oxidation; general aqueous corrosion; pitting; crevice corrosion; intergranular stress corrosion cracking (IGSCC); and transgranular stress corrosion cracking (TGSCC). This paper is an analysis of data from the literature relevant to the pitting, crevice corrosion, and stress corrosion cracking (SCC) of these alloys

  2. Method of reducing the volume of radioactive waste

    International Nuclear Information System (INIS)

    Buckley, L.P.; Burrill, K.A.; Desjardins, C.D.; Salter, R.S.

    1984-01-01

    There is provided a method of reducing the volume of radioactive waste, comprising: pyrolyzing the radioactive waste in the interior of a vessel, while passing superheated steam through the vessel at a temperature in the range 500 to 700 degrees C, a pressure in the range 1.0 to 3.5 MPa, and at a flow rate in the range 4 to 50 mL/s/m 3 of the volume of the vessel interior, to cause pyrohydrolysis of the waste and to remove carbon-containing components of the pyrolyzed waste from the vessel as gaseous oxides, leaving an ash residue in the vessel. Entrained particles present with the gaseous oxides are filtered and acidic vapours present with the gaseous oxides are removed by solid sorbent. Steam and any organic substances present with the gaseous oxides are condensed and the ash is removed from the vessel. The radioactive waste may be deposited upon an upper screen in the vessel, so that a substantial portion of the pyrolysis of the radioactive waste takes place while the radioactive waste is on the upper screen, and pyrolyzed waste falls through the upper screen onto a lower screen, where another substantial portion of the pyrohydrolysis takes place. The ash residue falls through the lower screen

  3. Underground Corrosion by Microorganisms Part II : Role of Anaerobic Sulphate Reducing Bacteria-Desulfotomaculum SP

    OpenAIRE

    H. M. Dayal; K. C. Tiwari; Kamlesh Mehta; Mr. Chandrashekhar

    1988-01-01

    During the course of studies on the corrosion causing soil microflora from different geoclimatic regions of India, several strains of anaerobic sulphate reducing bacteria belonging to genus Desulfotomaculum were isolated and characterised. Their corrosive action on mild steel, galvanised iron and structural aluminium, the three main metals of construction of underground structures, have been studied under laboratory conditions.

  4. Sulfate-reducing bacteria inhabiting natural corrosion depostis from marine steel structures

    NARCIS (Netherlands)

    Païssé, S.; Ghiglione, J.-F.; Marty, F.; Abbas, B.; Gueuné, H.; Sanchez Amaya, J.; Muyzer, G.; Quillet, L.

    2013-01-01

    In the present study, investigations were conducted on natural corrosion deposits to better understand the role of sulfate-reducing bacteria (SRB) in the accelerated corrosion process of carbon steel sheet piles in port environments. We describe the abundance and diversity of total and metabolically

  5. Corrosion of Iron by Sulfate-Reducing Bacteria: New Views of an Old Problem

    Science.gov (United States)

    Garrelfs, Julia

    2014-01-01

    About a century ago, researchers first recognized a connection between the activity of environmental microorganisms and cases of anaerobic iron corrosion. Since then, such microbially influenced corrosion (MIC) has gained prominence and its technical and economic implications are now widely recognized. Under anoxic conditions (e.g., in oil and gas pipelines), sulfate-reducing bacteria (SRB) are commonly considered the main culprits of MIC. This perception largely stems from three recurrent observations. First, anoxic sulfate-rich environments (e.g., anoxic seawater) are particularly corrosive. Second, SRB and their characteristic corrosion product iron sulfide are ubiquitously associated with anaerobic corrosion damage, and third, no other physiological group produces comparably severe corrosion damage in laboratory-grown pure cultures. However, there remain many open questions as to the underlying mechanisms and their relative contributions to corrosion. On the one hand, SRB damage iron constructions indirectly through a corrosive chemical agent, hydrogen sulfide, formed by the organisms as a dissimilatory product from sulfate reduction with organic compounds or hydrogen (“chemical microbially influenced corrosion”; CMIC). On the other hand, certain SRB can also attack iron via withdrawal of electrons (“electrical microbially influenced corrosion”; EMIC), viz., directly by metabolic coupling. Corrosion of iron by SRB is typically associated with the formation of iron sulfides (FeS) which, paradoxically, may reduce corrosion in some cases while they increase it in others. This brief review traces the historical twists in the perception of SRB-induced corrosion, considering the presently most plausible explanations as well as possible early misconceptions in the understanding of severe corrosion in anoxic, sulfate-rich environments. PMID:24317078

  6. Annual Report, Fall 2016: Alternative Chemical Cleaning of Radioactive High Level Waste Tanks - Corrosion Test Results

    International Nuclear Information System (INIS)

    Wyrwas, R. B.

    2016-01-01

    The testing presented in this report is in support of the investigation of the Alternative Chemical Cleaning program to aid in developing strategies and technologies to chemically clean radioactive High Level Waste tanks prior to tank closure. The data and conclusions presented here were the examination of the corrosion rates of A285 carbon steel and 304L stainless steel exposed to two proposed chemical cleaning solutions: acidic permanganate (0.18 M nitric acid and 0.05M sodium permanganate) and caustic permanganate. (10 M sodium hydroxide and 0.05M sodium permanganate). These solutions have been proposed as a chemical cleaning solution for the retrieval of actinides in the sludge in the waste tanks, and were tested with both HM and PUREX sludge simulants at a 20:1 ratio.

  7. Measurement and evaluation of radioactive corrosion product behaviour in primary sodium circuits of JOYO

    International Nuclear Information System (INIS)

    Ito, K.; Iizawa, K.; Takahashi, K.; Zulquarnain, M.A.; Suzuki, S.; Kinjo, K.

    1992-01-01

    In the experimental fast reactor JOYO, the radioactive corrosion product (CP) measurement has been conducted in the primary sodium circuits during each annual inspection. The measured data has been analyzed by the computer code 'PSYCHE', which has been developed by PNC. Main results obtained from the measurements and/or calculations are as follows; (1) The dominant CP nuclide is 54 Mn followed by 60 Co and 58 Co. (2) Average surface gamma dose rate around the primary piping system at the 8th annual inspection is 0.96 mSv/h. The increasing rate of this value is 0.25 (mSv/h)/EFPY. (3) The calculated deposition densities of 54 Mn and 60 Co agree with measured ones within factor of 0.7 ∼ 1.7. (author)

  8. Transport of radioactive corrosion products in primary system of sodium-cooled fast breeder reactor 'MONJU'

    International Nuclear Information System (INIS)

    Matuo, Youichirou; Hasegawa, Masanori; Maegawa, Yoshiharu; Miyahara, Shinya

    2011-01-01

    Radioactive corrosion products (CP) are primary cause of personal radiation exposure during maintenance work at FBR plants with no breached fuel. The PSYCHE code has been developed based on the Solution-Precipitation model for analysis of CP transfer behavior. We predicted and analyzed the CP solution and precipitation behavior of MONJU to evaluate the applicability of the PSYCHE code to MONJU, using the parameters verified in the calculations for JOYO. From the calculation result pertaining to the MONJU system, distribution of 54 Mn deposited in the primary cooling system over 20 years of operation is predicted to be approximately 7 times larger than that of 60 Co. In particular, predictions show a notable tendency for 54 Mn precipitation to be distributed in the primary pump and cold-leg. The calculated distribution of 54 Mn and 60 Co in the primary cooling system of MONJU agreed with tendencies of measured distribution of JOYO. (author)

  9. Annual Report, Fall 2016: Alternative Chemical Cleaning of Radioactive High Level Waste Tanks - Corrosion Test Results

    Energy Technology Data Exchange (ETDEWEB)

    Wyrwas, R. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-09-01

    The testing presented in this report is in support of the investigation of the Alternative Chemical Cleaning program to aid in developing strategies and technologies to chemically clean radioactive High Level Waste tanks prior to tank closure. The data and conclusions presented here were the examination of the corrosion rates of A285 carbon steel and 304L stainless steel exposed to two proposed chemical cleaning solutions: acidic permanganate (0.18 M nitric acid and 0.05M sodium permanganate) and caustic permanganate. (10 M sodium hydroxide and 0.05M sodium permanganate). These solutions have been proposed as a chemical cleaning solution for the retrieval of actinides in the sludge in the waste tanks, and were tested with both HM and PUREX sludge simulants at a 20:1 ratio.

  10. Coupling between corrosion and biphasic transport in porous media: Application to the evolution of a radioactive wastes disposal; Couplage entre corrosion et comportement diphasique dans un milieu poreux: Application a l'evolution d'un stockage des dechets radioactifs

    Energy Technology Data Exchange (ETDEWEB)

    Dridi, W

    2005-04-15

    In the actual concepts of geological disposal, high level radioactive wastes are packed in metallic containers surrounded by a partially or totally saturated clay media. In contact with the interstitial water, anoxic corrosion of this container will start producing hydrogen. In the scope of safety assessment, the present study deals with two main topics: prediction of the long-term corrosion of carbon steel with respect to clay water content and evaluation of the risk of damage of the clay barrier related to gas production. Elementary processes controlling the kinetics of corrosion are limited to oxide growth and mass transfer through the porosity of this film. Thanks to a macroscopic description of theses processes, followed by an interfacial kinetic law, a mechanistic modeling of the anoxic corrosion in partially saturated porous media is proposed. This approach is validated when confronted to the long-term corrosion tests performed in saturated clay. Both modeling and laboratory experiments have confirmed that kinetics of anoxic corrosion in partially saturated clay is mainly controlled by the surrounding relative humidity as in the case of aerated or atmospheric corrosion. In the gas generation topic, some numerical simulations are performed concerning the oedometric and triaxial test dealing with gas migration in saturated clay. Finally, long-term calculations are conducted concerning hydro-mechanical impact of corrosion in deep geological repositories. Due to a more realistic prediction of the long-term corrosion, the risks of gas overpressures, local desaturation and mechanical damage are reduced. (author)

  11. Study on Increasing High Temperature pH(t) to Reduce Iron Corrosion Products

    International Nuclear Information System (INIS)

    Shin, Dong Man; Hur, Nam Yong; Kim, Waang Bae

    2011-01-01

    The transportation and deposition of iron corrosion products are important elements that affect both the steam generator (SG) integrity and secondary system in pressurized water reactor (PWR) nuclear power plants. Most of iron corrosion products are generated on carbon steel materials due to flow accelerated corrosion (FAC). The several parameters like water chemistry, temperature, hydrodynamic, and steel composition affect FAC. It is well established that the at-temperature pH of the deaerated water system has a first order effect on the FAC rate of carbon steels through nuclear industry researches. In order to reduce transportation and deposition of iron corrosion products, increasing pH(t) tests were applied on secondary system of A, B units. Increasing pH(t) successfully reduced flow accelerated corrosion. The effect of increasing pH(t) to inhibit FAC was identified through the experiment and pH(t) evaluation in this paper

  12. Reducing Stress-Corrosion Cracking in Bearing Alloys

    Science.gov (United States)

    Paton, N. E.; Dennies, D. P.; Lumsden, I., J.b.

    1986-01-01

    Resistance to stress-corrosion cracking in some stainless-steel alloys increased by addition of small amounts of noble metals. 0.75 to 1.00 percent by weight of palladium or platinum added to alloy melt sufficient to improve properties of certain stainless steels so they could be used in manufacture of high-speed bearings.

  13. Development for low-activation concrete design reducing radioactive waste

    International Nuclear Information System (INIS)

    Kimura, Ken-ichi; Kinno, Masaharu; Hasegawa, Akira

    2008-01-01

    Full text: Concrete is very valuable and inexpensive material, however it can be changed to be expensive and hard to deal with in use of a nuclear plant after long operation. One of the counter plans for the above is to use low-activation concrete instead of the ordinary concrete, that will reduce radioactive waste and could be even below clearance level in decommissioning and that is very useful in term of life cycle cost. Radioactive analysis showed that Co and Eu were the major target elements which decide the radioactivity level of reinforced concrete in decommissioning stage, and a several material were selected as a low-activation raw material from wide survey of raw materials for concrete (typically aggregates and cements). With the canditate of raw materials, several low-activation concrete were proposed for various portion of light water reactor plant, which reduction ratio were 1/10 to 1/30 which were mainly consist of limestone and low heat cement or white cement, and 1/100 to 1/300 which were mainly consist of alumina aggregate or quartz and high almina cement, comparing to the ordinary concrete in ΣDi/Ci unit, where 'Di' indicates concentration of each residual radioisotope, Ci defined by IAEA as a clearance level, and suffition of 'i' indicates each radioisotope. National funded project for development of low-activation design method for reduction of radioactive waste below clearance level were started from 2005 with aiming (1) development of a database on the content of target elements, which transform radioactive nuclides, in raw materials of reinforced concrete, (2) development of calculation tools for estimation of residual radioactivity of plant components, and (3) development of low-activation materials for concrete such as cements and reinforcing steel bars for structural components. For the optimized design for applying low-activation concrete to the reactor portion, effective evaluation of neutron spectrum in the certain portion including

  14. Process for dissolving the radioactive corrosion products from internal surfaces in nuclear reactors

    International Nuclear Information System (INIS)

    Brown, W.W.

    1976-01-01

    This invention concerns a process for dissolving in the coolant flowing in a reactor the radioactive substances from the corrosion of the internal surfaces of the reactor to which they cling. When a reactor is operating, the fission occurring in the fuel generates gases and fission substances, such as iodine 131 and 133, cesium 134 and 137, molybdenum 99, xenon 133 and activates the structural materials of the reactor such as nickel by giving off cobalt 58 and similar substances. Under this invention an oxygen rich solution is injected in the reactor coolant after the temperature and pressure reduction stage, during the preparation prior to refuelling and repairs. The oxygen in the solution speeds up the release of cobalt 58 and other radioactive substances from the internal surfaces of the reactor and their dissolving in the oxygenated cold coolant at the start of the cooling procedures of the installation. This allows them to be removed by an ion exchanger before the reactor is emptied. By utilising this process, about half a day may be gained in refuelling time when this has to be done once a week [fr

  15. Study of the Effect of Sulfide Ions on the Corrosion Resistance of Copper for Use in Containers for High Level radioactive waste

    International Nuclear Information System (INIS)

    Urbal Espinoza, Andrea Elizabeth

    2000-01-01

    The work 'Study of sulfide ion on Resisting Copper Corrosion' is part of the project 'Study of Copper Corrosion in Underground Water Solution in Reducer Conditions', which the Department of Nuclear Materials, Chilean Nuclear Energy Commission is carrying out. These activities are important because of this metal's potential applications for handling and controlling contaminating wastes that are a product of using nuclear energy in electric generation. Copper has important mechanical properties and is also resistant to disintegration in corrosive environments, which is an important condition for its use in manufacturing of high level radioactive waste containers. This work is based on a study of cyclic volta metric curves, anodic and cathodic polarization and potentiostatic measurements, with which the potential range, sweep speed system, electrochemical reactions involved and corrosion speed could be defined. The microstructural characterization of the films was done by Scanning Electron Microscopy (SEM), and the chemical composition and surface contamination of the film were studied by photoelectron spectroscopy induced by X- rays (XPS), and the crystalline structure by X- ray Diffraction (XRD). Some noticeable results, such as low potentials (less than .7 V, in cathode direction) and high concentrations of sulfur make the formation of copper sulfides (I) and (II) possible; unlike the potential over .6 V, in anodic direction, where copper oxides (I) and (II) are formed, but they are inhibited by high sulfur concentrations. The morphological study of the copper surface has shown that the film that forms is more abundant and granular at higher cathodic potentials, forming small pits on the surface. The effect of the presence of sulfur ions is minimal, and the metal's deterioration is inhibited by other ions in the groundwater. The corrosion rate is greater as the sulfur concentration rises, and a time period of 20,000 years can be predicted for the total corrosion of

  16. Bio-corrosion of water pipeline by sulphate-reducing bacteria in a ...

    African Journals Online (AJOL)

    esiri

    2013-11-13

    Nov 13, 2013 ... Key words: Sulphate-reducing bacteria, corrosion, water pipeline, biocide. INTRODUCTION ... small amount of organic material required to produce biomass):. )1(. 3. 2 .... Oil, gas and shipping industries are seriously affected.

  17. Evaluation of nitrogen containing reducing agents for the corrosion control of materials relevant to nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Padma S. [Water and Steam Chemistry Division, BARC Facilities, Kalpakkam, Tamilnadu (India); Mohan, D. [Department of Chemistry, Anna University, Chennai, Tamilnadu (India); Chandran, Sinu; Rajesh, Puspalata; Rangarajan, S. [Water and Steam Chemistry Division, BARC Facilities, Kalpakkam, Tamilnadu (India); Velmurugan, S., E-mail: svelu@igcar.gov.in [Water and Steam Chemistry Division, BARC Facilities, Kalpakkam, Tamilnadu (India)

    2017-02-01

    Materials undergo enhanced corrosion in the presence of oxidants in aqueous media. Usually, hydrogen gas or water soluble reducing agents are used for inhibiting corrosion. In the present study, the feasibility of using alternate reducing agents such as hydrazine, aqueous ammonia, and hydroxylamine that can stay in the liquid phase was investigated. A comparative study of corrosion behavior of the structural materials of the nuclear reactor viz. carbon steel (CS), stainless steel (SS-304 LN), monel-400 and incoloy-800 in the oxidizing and reducing conditions was also made. In nuclear industry, the presence of radiation field adds to the corrosion problems. The radiolysis products of water such as oxygen and hydrogen peroxide create an oxidizing environment that enhances the corrosion. Electrochemical studies at 90 °C showed that the reducing agents investigated were efficient in controlling corrosion processes in the presence of oxygen and hydrogen peroxide. Evaluation of thermal stability of hydrazine and its effect on corrosion potential of SS-304 LN were also investigated in the temperature range of 200–280 °C. The results showed that the thermal decomposition of hydrazine followed a first order kinetics. Besides, a change in electrochemical corrosion potential (ECP) was observed from −0.4 V (Vs SHE) to −0.67 V (Vs SHE) on addition of 5 ppm of hydrazine at 240 °C. Investigations were also made to understand the distribution behavior of hydrogen peroxide and hydrazine in water-steam phases and it was found that both the phases showed identical behavior. - Highlights: • Hydrazine was found to be a promising reducing agent for oxidant control. • In presence of hydrazine corrosion potential of SS304 LN was well below −230 mV. • SS304LN could be protected from IGSCC by hydrazine addition. • Thermal and radiation stability of hydrazine at 285 °C was found satisfactory.

  18. Microbiologically influenced corrosion of carbon steel in the presence of sulphate reducing bacteria

    International Nuclear Information System (INIS)

    Tunaru, M.; Velciu, L.; Mihalache, M.; Laurentiu, P.

    2016-01-01

    Sulphate-reducing bacteria (SRB) are the most important organisms in microbiologically induced corrosion. In this context, the paper presents an assessment (by experimental tests) of the behaviour of carbon steel samples (SA106gr.B) in SRB media. Some of samples were immersed in microbial environment in order microbiological analysis of their surface and another part was used to perform accelerated electrochemical tests to determine electrochemical parameters for the system carbon steel / microbial medium (corrosion rate, the polarization resistance of the surface, susceptibility to pitting corrosion). The surfaces of the tested samples were analyzed using the optical and electronic microscope, and emphasized the role of bacteria in the development of biofilms under which appeared characteristics of corrosion attack. The correlation of all results confirmed that SRB accelerated the localized corrosion of the surfaces of SA 106gr.B carbon steel. (authors)

  19. Corrosion of carbon steel in clay environments relevant to radioactive waste geological disposals, Mont Terri rock laboratory (Switzerland)

    Energy Technology Data Exchange (ETDEWEB)

    Necib, S. [Agence Nationale pour la Gestion des Déchets Radioactifs ANDRA, Meuse Haute-Marne, Center RD 960, Bure (France); Diomidis, N. [National Cooperative for the Disposal of Radioactive Waste (NAGRA), Wettingen (Switzerland); Keech, P. [Nuclear Waste Management Organisation NWMO, Toronto (Canada); Nakayama, M. [Japan Atomic Energy Agency JAEA, Horonobe-Cho (Japan)

    2017-04-15

    Carbon steel is widely considered as a candidate material for the construction of spent fuel and high-level waste disposal canisters. In order to investigate corrosion processes representative of the long term evolution of deep geological repositories, two in situ experiments are being conducted in the Mont Terri rock laboratory. The iron corrosion (IC) experiment, aims to measure the evolution of the instantaneous corrosion rate of carbon steel in contact with Opalinus Clay as a function of time, by using electrochemical impedance spectroscopy measurements. The Iron Corrosion in Bentonite (IC-A) experiment intends to determine the evolution of the average corrosion rate of carbon steel in contact with bentonite of different densities, by using gravimetric and surface analysis measurements, post exposure. Both experiments investigate the effect of microbial activity on corrosion. In the IC experiment, carbon steel showed a gradual decrease of the corrosion rate over a period of 7 years, which is consistent with the ongoing formation of protective corrosion products. Corrosion product layers composed of magnetite, mackinawite, hydroxychloride and siderite with some traces of oxidising species such as goethite were identified on the steel surface. Microbial investigations revealed thermophilic bacteria (sulphate and thiosulphate reducing bacteria) at the metal surface in low concentrations. In the IC-A experiment, carbon steel samples in direct contact with bentonite exhibited corrosion rates in the range of 2 µm/year after 20 months of exposure, in agreement with measurements in absence of microbes. Microstructural and chemical characterisation of the samples identified a complex corrosion product consisting mainly of magnetite. Microbial investigations confirmed the limited viability of microbes in highly compacted bentonite. (authors)

  20. Carbon steel corrosion induced by sulphate-reducing bacteria in artificial seawater: electrochemical and morphological characterizations

    Energy Technology Data Exchange (ETDEWEB)

    Paula, Mariana Silva de; Goncalves, Marcia Monteiro Machado; Rola, Monick Alves da Cruz; Maciel, Diana Jose; Senna, Lilian Ferreira de; Lago, Dalva Cristina Baptista do, E-mail: sdp.mari@gmail.com, E-mail: marciamg@uerj.br, E-mail: monickcruz@yahoo.com.br, E-mail: dijmaciel@gmail.com, E-mail: lsenna@uerj.br, E-mail: dalva@uerj.br [Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ (Brazil). Instituto de Quimica

    2016-10-15

    In this work, the corrosion behavior of carbon steel AISI 1020 was evaluated in artificial seawater in the presence of mixed sulfate-reducing bacteria (SRB) culture isolated from the rust of a pipeline. The corrosion evaluation was performed by electrochemical techniques (open circuit potential (E{sub ocp}), polarization curves and electrochemical impedance spectroscopy (EIS)), while the formation of a biofilm and corrosion products were observed by scanning electron microscopy (SEM) and X-ray energy dispersive spectroscopy (EDS). The presence of SRB in the medium shifted the open circuit potential to more positive values and increased the corrosion rate of the steel. Electrochemical and morphological techniques confirmed the presence of a biofilm on the steel surface. EDS spectra data showed the presence of sulfur in the corrosion products. After removing the biofilm, localized corrosion was observed on the surface, confirming that localized corrosion had occurred. The biogenic sulfide may lead to the formation of galvanic cells and contributes to cathodic depolarization. (author)

  1. Carbon steel corrosion induced by sulphate-reducing bacteria in artificial seawater: electrochemical and morphological characterizations

    International Nuclear Information System (INIS)

    Paula, Mariana Silva de; Goncalves, Marcia Monteiro Machado; Rola, Monick Alves da Cruz; Maciel, Diana Jose; Senna, Lilian Ferreira de; Lago, Dalva Cristina Baptista do

    2016-01-01

    In this work, the corrosion behavior of carbon steel AISI 1020 was evaluated in artificial seawater in the presence of mixed sulfate-reducing bacteria (SRB) culture isolated from the rust of a pipeline. The corrosion evaluation was performed by electrochemical techniques (open circuit potential (E_o_c_p), polarization curves and electrochemical impedance spectroscopy (EIS)), while the formation of a biofilm and corrosion products were observed by scanning electron microscopy (SEM) and X-ray energy dispersive spectroscopy (EDS). The presence of SRB in the medium shifted the open circuit potential to more positive values and increased the corrosion rate of the steel. Electrochemical and morphological techniques confirmed the presence of a biofilm on the steel surface. EDS spectra data showed the presence of sulfur in the corrosion products. After removing the biofilm, localized corrosion was observed on the surface, confirming that localized corrosion had occurred. The biogenic sulfide may lead to the formation of galvanic cells and contributes to cathodic depolarization. (author)

  2. Corrosion of Alloy 690 process pot by sulfate containing high level radioactive waste at feed stage

    International Nuclear Information System (INIS)

    Sengupta, P.; Soudamini, N.; Kaushik, C.P.; Jagannath; Mishra, R.K.; Kale, G.B.; Raj, K.; Das, D.; Sharma, B.P.

    2008-01-01

    Prolonged exposure of Alloy 690 process pot to sulfate containing high level radioactive waste leads to (a) depletion of Cr from the alloy, (b) intergranular attack and (c) building up of Cr 2 O 3 -Ni 2 O 3 -Fe 2 O 3 mixed oxide surface layer containing Na and Cs sulfate precipitates. Time dependence of material loss from Alloy 690 is found to follow a linear relationship of the type Δw (material loss) = -7.05 + 0.05t. Corrosion rate calculated for 2400 h exposure is 3.66 mpy. Cr and Ni leach rates obtained for the same sample are 1.61 g m -2 d -1 and 2.52 g m -2 d -1 , respectively. Ni leach rates followed a linear time dependence relationship of the type dNL Ni /dt (leach rate) = -0.09 + 0.027t, whereas Cr leach rates obeyed a non-linear relationship of the type dNL Cr /dt (leach rate) = 0.241 + 0.027t - 1.33 x 10 -4 t 1/2

  3. Microbial impact on metallic corrosion processes: case of iron reducing bacteria

    International Nuclear Information System (INIS)

    Esnault, Loic; Jullien, Michel; Libert, Marie; Mustin, Christian

    2010-01-01

    corrosion product alteration, magnetite and hematite mainly (c). For that, an optimised method of H2 measure at weak pressure has been realised by gaseous phase chromatography coupled with a sensitive pressure captor. - H 2 + Fe 3+ magnetite → Fe 2+ solution + 2H + (c) The interest of this study is to determine and to understand the reactivity of one model microbe species, the ferric-reducing bacterium 'Schewanella oneidensis strain MR-1', on a Fe(0) corrosion and these corrosion products (magnetite, hematite mainly) in presence or not of clay minerals (bentonite MX80). The introduction of short-term experiments in the scattered environment (batch) over reactivity Iron-bacteria with or without clay mineral is here studied through a kinetic study of H 2 bio-consumed or product, chemical analysis in solution, and by use a crystallo-chemistry tool (XRD and SEM). The main results are bio-alteration of corrosion products with development of ferri-reducing bacterial community. This microbial alteration entails an increase of aqueous corrosion by consumption of corrosion products (passivation layer). In such condition, corrosion process could be reactivated. (authors)

  4. Method of volume-reducing processing for radioactive wastes

    International Nuclear Information System (INIS)

    Sato, Koei; Yamauchi, Noriyuki; Hirayama, Toshihiko.

    1985-01-01

    Purpose: To process the processing products of radioactive liquid wastes and burnable solid wastes produced from nuclear facilities into stable solidification products by heat melting. Method: At first, glass fiber wastes of contaminated air filters are charged in a melting furnace. Then, waste products obtained through drying, sintering, incineration, etc. are mixed with a proper amount of glass fibers and charged into the melting furnace. Both of the charged components are heated to a temperature at which the glass fibers are melted. The burnable materials are burnt out to provide a highly volume-reduced products. When the products are further heated to a temperature at which metals or metal oxides of a higher melting point than the glass fiber, the glass fibers and the metals or metal oxides are fused to each other to be combined in a molecular structure into more stabilized products. The products are excellent in strength, stability, durability and leaching resistance at ambient temperature. (Kamimura, M.)

  5. Corrosivity of solutions from evaporation of radioactive liquid wastes. Final report

    International Nuclear Information System (INIS)

    Payer, H.; Kolic, E.S.; Boyd, W.K.

    1977-01-01

    New double-shell storage tanks are constructed with ASTM A-516 Grade 65 steel. This study had two main objectives: To characterize the corrosivity of synthetic nonradioactive terminal waste solutions to ASTM A-516 Grade 65 steel and to determine the severity of stress-corrosion cracking of carbon steel in terminal waste solutions. The information developed provides guidance in the characterization of the aggressiveness of actual terminal liquors and in the design and operation of fail-safe tanks. Corrosion behavior was measured over a range of oxidizing conditions by the potentiodynamic polarization technique. Oxidizing conditions in a solution likely to promote general corrosion, pitting or stress-corrosion cracking (SCC) were identified. Absolute stress-corrosion cracking susceptibility was determined by constant strain rate procedure for ASTM A-516 Grade 65 steel for conditions identified by polarization experiments as likely to promote SCC. Based on the results of this study, terminal waste storage tanks are safe from stress-corrosion cracking under freely corroding conditions. Corrosion potential of steel in solutions within anticipated compositions is at the positive end of the critical range for stress-corrosion cracking, and no conditions were observed which would lower the potential to more negative values within the cracking range under freely corroding conditions. Measurement of corrosion potential and hydroxide concentration provides a means to extend these results to compositions outside of the composition range studied

  6. Study for reducing radioactive solid waste at ITER decommissioning period

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Shinichi; Araki, Masanori; Ohmori, Junji; Ohno, Isamu; Sato, Satoshi; Yamauchi, Michinori; Nishitani, Takeo [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    2002-11-01

    It is one of the foremost goals for ITER to demonstrate the attractiveness with regard to safety and environmental potential. This implies that the radioactive materials and waste at decommissioning phase should carefully be treated with prescribed regulations. As possible activities during the Coordinated Technical Activity (CTA), the authors have performed a feasibility study for searching the possibility of effective reduction in the activated level as reasonably achievable as possible by taking account of minimum material changes while keeping original design concept and structure. Major induced activation in ITER comes from activated nickel and cobalt so that it is effective for the major structural components to minimize their material contents. Employing less Ni and Co steel in place of high-Ni austenitic stainless steel for blanket shield block, vacuum vessel shield material and TF coil casing has been considered as one of the effective plans to reduce the activated materials at the decommissioning phase. In this study, two less-Ni austenitic stainless steels are evaluated; one is high-Mn austenitic stainless steel JK2 which is developing for jacket material of ITER CS coil and the other is SS204L/ASTM-XM-11 which is also high-Mn steel specified in the popular standards such as American Society of Testing and Material (ASTM). Based on the material changes, activation analyses have been performed to investigate the possibility of reducing radioactive wastes. As a most impressive result, at 40 years after the termination some of main components such as a TF coil casing will reach to the clearance level which is specified by IAEA, and most components will be categorized into extremely low level waste except for limited components. These results will give the appropriate short decommissioning period that is assumed to start at 100 years after the termination in the original design. (author)

  7. Analysis of radioactive corrosion test specimens by means of ICP-MS. Comparison with earlier methods

    International Nuclear Information System (INIS)

    Forsyth, Roy

    1997-07-01

    In June 1992, an ICP-MS instrument (Inductively Coupled Plasma-Mass Spectrometry) was commissioned for use with radioactive sample solutions at Studsvik Nuclear's Hot Cell Laboratory. For conventional environmental samples the instrument permits the simultaneous analysis of many trace elements, but the software used in evaluation of the mass spectra is based on a library of isotopic compositions relevant only for elements in the lithosphere. Fission products and actinides, however, have isotopic compositions which are significantly different from the natural elements, and which also vary with the burnup of the nuclear fuel specimen. Consequently, a spread-sheet had to be developed which could evaluate the mass spectra with these isotopic compositions. Following these preparations, a large number of samples (about 200) from SKB's experimental programme for the study of spent fuel corrosion have been analyzed by the ICP-MS technique. Many of these samples were archive solutions of samples which had been taken earlier in the programme. This report presents a comparison of the analytical results for uranium, plutonium, cesium, strontium and technetium by both the ICP-MS technique, and the previously used analytical methods. For three products, a satisfactory agreement between the results from the various methods was obtained, but for uranium and plutonium the ICP-MS method gave results which were 10-20% higher than the conventional methods. The comparison programme has also shown, not unexpectedly, that significant losses of plutonium from solution had occurred, by precipitation and/or absorption, in the archive solutions during storage. It can be expected that such losses also occur for the other actinides, and consequently, all the analytical results for actinides in older archive solutions must be treated with great caution. 9 refs

  8. Marine sulfate-reducing bacteria cause serious corrosion of iron under electroconductive biogenic mineral crust

    Science.gov (United States)

    Enning, Dennis; Venzlaff, Hendrik; Garrelfs, Julia; Dinh, Hang T; Meyer, Volker; Mayrhofer, Karl; Hassel, Achim W; Stratmann, Martin; Widdel, Friedrich

    2012-01-01

    Iron (Fe0) corrosion in anoxic environments (e.g. inside pipelines), a process entailing considerable economic costs, is largely influenced by microorganisms, in particular sulfate-reducing bacteria (SRB). The process is characterized by formation of black crusts and metal pitting. The mechanism is usually explained by the corrosiveness of formed H2S, and scavenge of ‘cathodic’ H2 from chemical reaction of Fe0 with H2O. Here we studied peculiar marine SRB that grew lithotrophically with metallic iron as the only electron donor. They degraded up to 72% of iron coupons (10 mm × 10 mm × 1 mm) within five months, which is a technologically highly relevant corrosion rate (0.7 mm Fe0 year−1), while conventional H2-scavenging control strains were not corrosive. The black, hard mineral crust (FeS, FeCO3, Mg/CaCO3) deposited on the corroding metal exhibited electrical conductivity (50 S m−1). This was sufficient to explain the corrosion rate by electron flow from the metal (4Fe0 → 4Fe2+ + 8e−) through semiconductive sulfides to the crust-colonizing cells reducing sulfate (8e− + SO42− + 9H+ → HS− + 4H2O). Hence, anaerobic microbial iron corrosion obviously bypasses H2 rather than depends on it. SRB with such corrosive potential were revealed at naturally high numbers at a coastal marine sediment site. Iron coupons buried there were corroded and covered by the characteristic mineral crust. It is speculated that anaerobic biocorrosion is due to the promiscuous use of an ecophysiologically relevant catabolic trait for uptake of external electrons from abiotic or biotic sources in sediments. PMID:22616633

  9. Evaluation of CRUDTRAN code to predict transport of corrosion products and radioactivity in the PWR primary coolant system

    International Nuclear Information System (INIS)

    Lee, C.B.

    2002-01-01

    CRUDTRAN code is to predict transport of the corrosion products and their radio-activated nuclides such as cobalt-58 and cobalt-60 in the PWR primary coolant system. In CRUDTRAN code the PWR primary circuit is divided into three principal sections such as the core, the coolant and the steam generator. The main driving force for corrosion product transport in the PWR primary coolant comes from coolant temperature change throughout the system and a subsequent change in corrosion product solubility. As the coolant temperature changes around the PWR primary circuit, saturation status of the corrosion products in the coolant also changes such that under-saturation in steam generator and super-saturation in the core. CRUDTRAN code was evaluated by comparison with the results of the in-reactor loop tests simulating the PWR primary coolant system and PWR plant data. It showed that CRUDTRAN could predict variations of cobalt-58 and cobalt-60 radioactivity with time, plant cycle and coolant chemistry in the PWR plant. (author)

  10. Bio-corrosion for underground disposal of radioactive waste; Biocorrosion en conditions de stockage geologique de dechets radioactifs

    Energy Technology Data Exchange (ETDEWEB)

    Libert, M.; Esnault, L. [CEA, DEN/DTN/SMTM/LMTE, 13108 St Paul lez Durance, (France); Esnault, L. [ECOGEOSAFE, Technopole environnement Arbois-Mediterranee, avenue Louis Philibert, 13545 Aix-en-Provence Cedex, (France); Feron, D. [CEA, DEN/DANS/DPC, 91191 Gif-sur-Yvette, (France)

    2011-07-01

    The safety disposal of high level nuclear waste (HLNW) is the major breakthrough allowing socially acceptable development of nuclear energy over the coming decades. The French concept for geological disposal of HLNW is based on a multi-barrier system made by metallic containers confined in natural clay. The main alteration parameter is water arriving on waste after the corrosion of metallic components. The anoxic aqueous corrosion phenomena are studied in order to evaluate the confinement capacity of metallic barriers. The discover of active micro-organisms in deep clayey environments raises the question of the impact of micro-organisms on corrosion parameters due to processes such as 'biologically induced corrosion'. Despite of extreme conditions in deep nuclear geological disposal (redox conditions, high pressure and temperature, irradiation), bacterial activity will adapt and survive in these environments. Anoxic corrosion of nuclear waste containers and radiolysis will produce H{sub 2}, which represents a new energetic source for bacterial development, especially in this environment that contains a low amount of biodegradable organic matter. Besides, the formation of Fe(III)-bearing minerals such as magnetite (Fe{sub 3}O{sub 4}) as corrosion products will provide electron acceptors favouring the development of bacteria. Bio-corrosion studies of nuclear waste disposal need to investigate the activity of hydrogenotrophic bacteria able to reduce iron oxides (passivation layer) or sulfates (iron reducing bacteria and sulfate reducing bacteria) in order to evaluate their impact on the long-term stability of metallic compounds involved in multi-barrier system for high-level nuclear waste containment. (authors)

  11. Role of sulphide species on the behaviour of carbon steel envisioned for high-level radioactive disposal: interaction between sulphide and corrosion products

    International Nuclear Information System (INIS)

    Bourdoiseau, Jacques-Andre

    2011-01-01

    This PhD work deals with the nuclear waste disposal. In France, it is envisaged by Andra (French national radioactive waste management agency) that high-level radioactive wastes will be confined in a glass matrix, stored in a stainless steel canister, it self placed in a carbon steel overpack. The wastes will then be stored at a depth of ∼500 m in a deep geological repository, drilled in a very stiff (indurated) clay (argillite) formation. The kinetics of corrosion expected for the overpack in this disposal concept are low and will stay low if the somehow protective rust layer that will develop initially on the steel surface remains undamaged. Local changes of the physico-chemical conditions may however degrade this layer and induce accelerated kinetics of corrosion. In particular, the growth of sulphate reducing bacteria (SRB) close to the steel overpack cannot be excluded and the sulphide species these micro-organisms produce may modify the corrosion process. The aim of this work was then to achieve a better understanding of the corrosion system constituted with steel, its rust layer mainly made of siderite FeCO 3 , and a sulphide-containing electrolyte. First, it proved necessary to characterise the iron sulphides involved in the corrosion processes by Raman micro-spectroscopy so as to study their formation and transformation mechanisms in various conditions of Fe(II) and S(-II) concentration, pH, temperature and aeration. It could be demonstrated that the Raman spectrum of mackinawite FeS, the compound that precipitated in any case from dissolved Fe(II) and S(-II) species with the experimental conditions considered here, depended on the crystallinity and oxidation state. Moreover, the mechanisms of the oxidation of mackinawite into greigite Fe 3 S 4 in acidic anoxic solutions at 80 C could be described. Finally, iron sulphides, often present on archaeological artefacts, could be identified using Raman micro-spectroscopy. The compounds present were mainly

  12. Slippery liquid-infused porous surfaces fabricated on aluminum as a barrier to corrosion induced by sulfate reducing bacteria

    International Nuclear Information System (INIS)

    Wang, Peng; Lu, Zhou; Zhang, Dun

    2015-01-01

    Highlights: • Slippery liquid-infused porous surfaces (SLIPS) were fabricated over aluminum. • SLIPS depress the adherence of sulfate reducing bacteria in static seawater. • SLIPS inhibit the microbiological corrosion of aluminum in static seawater. • The possible microbiological corrosion protection mechanism of SLIPS is proposed. - Abstract: Microbiological corrosion induced by sulfate reducing bacteria (SRB) is one of the main threatens to the safety of marine structure. To reduce microbiological corrosion, slippery liquid infused porous surfaces (SLIPS) were designed and fabricated on aluminum substrate by constructing rough aluminum oxide layer, followed by fluorination of the rough layer and infiltration with lubricant. The as-fabricated SLIPS were characterized with wettability measurement, SEM and XPS. Their resistances to microbiological corrosion induced by SRB were evaluated with fluorescence microscopy and electrochemical measurement. It was demonstrated that they present high resistance to bacteria adherence and the resultant microbiological corrosion in static seawater

  13. Calculated model of radioactive fission and corrosion product accumulation and distribution in a fast reactor sodium coolant circuit

    International Nuclear Information System (INIS)

    Kizin, V.D.; Konyashov, V.V.

    1987-01-01

    A simple calculation procedure of radioactive products accumulation and distribution in a primary circuit has been developed on the basis of experimental investigations at the BOR-60 reactor. Common knowledge on the impurity products transfer at the liquid-solid and liquid-gas phase boundary is taken. Use is made of the typical in reactor physics relationships for the description of the products transition to the equipment surfaces, of fission products release, metal corrosion and others. Satisfactory agreement of the calculation data with the experimental ones has been obtained. (orig.)

  14. Study of sulphate-reducing bacteria corrosion in the weld joint for API X-70 steel

    Energy Technology Data Exchange (ETDEWEB)

    Flores, J. E.; Patino-Carachure, C.; Alfonso, I.; Rodriguez, J. A.; Rosas, G.

    2012-11-01

    The corrosion behavior originated by sulfate-reducing bacteria (SRB) was studied in two regions of welded API X-70 steel pipeline. The studies were focused on base material (BM) and heat affected zone (HAZ), from the internal region of the pipe. SRB were extracted from oil and grown in a Postgate medium. Corrosion was evaluated at 60 degree centigrade for times between 5 and 64 days. Potentiodynamic polarization curves, obtained by electrochemical techniques, indicated surface activation at short times. Structural and morphological characterizations were carried out by scanning electron microscopy (SEM) and optical microscopy (OM). H{sub 2}S concentration and pH were also measured. Results showed an important increase in the corrosion damage up to 20 days, influenced by the SRB activity, which lead to a maximum of H{sub 2}S (pH minimum). It was found a localized corrosion attack in the HAZ in a higher quantity compared to BM; and the formation of a thin film on the steel surface, originated by corrosion products and bacterial activity. (Author) 15 refs.

  15. Electrodeposited Reduced Graphene Oxide Films on Stainless Steel, Copper, and Aluminum for Corrosion Protection Enhancement

    Directory of Open Access Journals (Sweden)

    Abdulkareem Mohammed Ali Al-Sammarraie

    2017-01-01

    Full Text Available The enhancement of corrosion protection of metals and alloys by coating with simple, low cost, and highly adhered layer is still a main goal of many workers. In this research graphite flakes converted into graphene oxide using modified Hammers method and then reduced graphene oxide was electrodeposited on stainless steel 316, copper, and aluminum for corrosion protection application in seawater at four temperatures, namely, 20, 30, 40, and 50°C. All corrosion measurements, kinetics, and thermodynamics parameters were established from Tafel plots using three-electrode potentiostat. The deposited films were examined by FTIR, Raman, XRD, SEM, and AFM techniques; they revealed high percentages of conversion to the few layers of graphene with confirmed defects.

  16. Inhibition of bio corrosion of steel coupon by sulphate reducing ...

    African Journals Online (AJOL)

    SRB) and Iron oxidizing bacteria (IOB) using Aloe vera (Aloe barbadensis) extract was tested. The water sample revealed a heterotrophic bacterial count of 1.7x103 cfu/ml for the sulphate reducing bacteria and 4.1x103 cfu/ml for the Iron oxidizing ...

  17. Reducing Risks from Sealed Radioactive Sources in Medicine

    International Nuclear Information System (INIS)

    2014-01-01

    Sealed radioactive sources are commonly used in a variety of medical applications for both diagnosis and therapy. The sources used in medical applications usually have high levels of radioactivity and, therefore, have the potential to cause serious and life threatening injuries if used improperly or maliciously, or risky if they become lost or are stolen

  18. Containers and overpacks for high-level radioactive waste in deep geological disposal. Conditions: French Corrosion Programme

    International Nuclear Information System (INIS)

    Crusset, D.; Plas, F.; Santarini, G.

    2003-01-01

    Within the framework of the act of French law dated 31 December, 1991, ANDRA (National Radioactive Waste Management Agency) is responsible for conducting the feasibility study on disposal of reversible and irreversible high-level or long-life radioactive waste in deep geological formations. Consequently, ANDRA is carrying out research on corrosion of the metallic materials envisaged for the possible construction of overpacks for vitrified waste packages or containers for spent nuclear fuel. Low-alloy or unalloyed steels and the passive alloys (Fe-Ni-Cr-Mo) constitute the two families of materials studied and ANDRA has set up a research programme in partnership with other research organisations. The 'broad outlines' of the programme, which includes experimental and modelling operations, are presented. (authors)

  19. Activation of aluminum as an effective reducing agent by pitting corrosion for wet-chemical synthesis.

    Science.gov (United States)

    Li, Wei; Cochell, Thomas; Manthiram, Arumugam

    2013-01-01

    Metallic aluminum (Al) is of interest as a reducing agent because of its low standard reduction potential. However, its surface is invariably covered with a dense aluminum oxide film, which prevents its effective use as a reducing agent in wet-chemical synthesis. Pitting corrosion, known as an undesired reaction destroying Al and is enhanced by anions such as F⁻, Cl⁻, and Br⁻ in aqueous solutions, is applied here for the first time to activate Al as a reducing agent for wet-chemical synthesis of a diverse array of metals and alloys. Specifically, we demonstrate the synthesis of highly dispersed palladium nanoparticles on carbon black with stabilizers and the intermetallic Cu₂Sb/C, which are promising candidates, respectively, for fuel cell catalysts and lithium-ion battery anodes. Atomic hydrogen, an intermediate during the pitting corrosion of Al in protonic solvents (e.g., water and ethylene glycol), is validated as the actual reducing agent.

  20. Long term corrosion protection sleeve for tightly closed barrels with highly radioactive contents

    International Nuclear Information System (INIS)

    Koester, R.; Smailos, E.; Schwarzkopf, W.; Kiesow, A.

    1986-01-01

    The application of the corrosion resistant layer on the container body is achieved by blasting plating and by a special design of weld seams on the lid or floor stopper. The corrosion protection layer completely surrounds the container, is additionally applied to the layers in the area of the lid and bottom surface of one floor or lid plate, which consists of another material as corrosion protection layer and which has a diameter a little greater than the hollow cylinder container body. (orig./PW) [de

  1. Microbial Corrosion of API 5L X-70 Carbon Steel by ATCC 7757 and Consortium of Sulfate-Reducing Bacteria

    OpenAIRE

    Abdullah, Arman; Yahaya, Nordin; Md Noor, Norhazilan; Mohd Rasol, Rosilawati

    2014-01-01

    Various cases of accidents involving microbiology influenced corrosion (MIC) were reported by the oil and gas industry. Sulfate reducing bacteria (SRB) have always been linked to MIC mechanisms as one of the major causes of localized corrosion problems. In this study, SRB colonies were isolated from the soil in suspected areas near the natural gas transmission pipeline in Malaysia. The effects of ATCC 7757 and consortium of isolated SRB upon corrosion on API 5L X-70 carbon steel coupon were i...

  2. Physical-chemical model for the mechanism of glass corrosion with particular consideration of simulated radioactive waste glasses

    International Nuclear Information System (INIS)

    Grambow, B.

    1985-01-01

    A physical-chemical model for the mechanism of glass corrosion is described. This model can be used for predicting, interpreting, and extrapolating experimental results. In static leaching tests the rate of corrosion generally decreases with time. Some authors assume that the surface layer, which grows during the course of the reaction, protects the underlying glass from further attack by the aqueous phase. Other authors assume that the saturation effects in solution are responsible for reducing the rate of the reaction. It is demonstrated within the scope of this work that examples can be found for both concepts; however, transport processes in the surface layer and/or in solution can be excluded as rate-determining processes within a majority of the examined cases. The location of the corrosion reaction is the boundary surface between the surface layer and the not yet attacked glass (transition zone)

  3. Simulation of radioactive corrosion product in primary cooling system of Japanese sodium-cooled fast breeder reactor

    International Nuclear Information System (INIS)

    Matuo, Youichirou; Miyahara, Shinya; Izumi, Yoshinobu

    2012-01-01

    Radioactive Corrosion Product (CP) is a main cause of personal radiation exposure during maintenance with no breached fuel in fast breeder reactor (FBR) plants. The most important CP is 54 Mn and 60 Co. In order to establish techniques of radiation dose estimation for radiation workers in radiation-controlled areas of the FBR, the PSYCHE (Program SYstem for Corrosion Hazard Evaluation) code was developed. We add the Particle Model to the conventional PSYCHE analytical model. In this paper, we performed calculation of CP transfer in JOYO using an improved calculation code in which the Particle Model was added to the PSYCHE. The C/E (calculated / experimentally observed) value for CP deposition was improved through use of this improved PSYCHE incorporating the Particle Model. Moreover, among the percentage of total radioactive deposition accounted for by CP in particle form, 54 Mn was estimated to constitute approximately 20% and 60 Co approximately 40% in the cold-leg region. These calculation results are consistent with the measured results for the actual cold-leg piping in the JOYO. (author)

  4. Effect of slightly acid pH with or without chloride in radioactive water on the corrosion of maraging steel

    Science.gov (United States)

    Bellanger, G.; Rameau, J. J.

    1996-02-01

    This study was carried out to ascertain the behavior of maraging steel used in the tanks of French plants for reprocessing radioactive water which may contain chloride ions at pH 3. The rest or corrosion potentials can be either in the transpassive or active regions due to the presence of radiolytic species. The corrosion current and potential depend on the pH and intermediates formed on the surface in the active region; therefore, maraging steel behavior was studied by cyclic voltammetry without and with electrode rotation and different acid pH which provide an indication of mechanisms, modification of local pH and transient formation. In the passive -transpassive region, breakdown and porosity in the oxide appear with or without chloride, according to electrochemical impedance spectroscopy. In presence of chloride, the corrosion kinetics were obtained by cyclic voltammetry and electrochemical impedance spectroscopy. The anodic and cathodic areas of maraging steel corroded by pitting were shown using the Scanning Reference Electrode Technique.

  5. Effect of slightly acid pH with or without chloride in radioactive water on the corrosion of maraging steel

    Energy Technology Data Exchange (ETDEWEB)

    Bellanger, G. [CEA Centre d`Etudes de Valduc, 21 - Is-sur-Tille (France); Rameau, J.J. [Ecole Nationale Superieure d`Electrochimie et d`Electrometallurgie, 38 - Saint-Martin-d`Heres (France)

    1996-02-01

    This study was carried out to ascertain the behavior of maraging steel used in the tanks of French plants for reprocessing radioactive water which may contain chloride ions at pH 3. The rest or corrosion potentials can be either in the transpassive or active regions due to the presence of radiolytic species. The corrosion current and potential depend on the pH and intermediates formed on the surface in the active region; therefore, maraging steel behavior was studied by cyclic voltammetry without and with electrode rotation and different acid pH which provide an indication of mechanisms, modification of local pH and transient formation. In the passive-transpassive region, breakdown and porosity in the oxide appear with or without chloride, according to electrochemical impedance spectroscopy. In presence of chloride, the corrosion kinetics were obtained by cyclic voltammetry and electrochemical impedance spectroscopy. The anodic and cathodic areas of maraging steel corroded by pitting were shown using the Scanning Reference Electrode Technique. (orig.).

  6. Effect of slightly acid pH with or without chloride in radioactive water on the corrosion of maraging steel

    International Nuclear Information System (INIS)

    Bellanger, G.; Rameau, J.J.

    1996-01-01

    This study was carried out to ascertain the behavior of maraging steel used in the tanks of French plants for reprocessing radioactive water which may contain chloride ions at pH 3. The rest or corrosion potentials can be either in the transpassive or active regions due to the presence of radiolytic species. The corrosion current and potential depend on the pH and intermediates formed on the surface in the active region; therefore, maraging steel behavior was studied by cyclic voltammetry without and with electrode rotation and different acid pH which provide an indication of mechanisms, modification of local pH and transient formation. In the passive-transpassive region, breakdown and porosity in the oxide appear with or without chloride, according to electrochemical impedance spectroscopy. In presence of chloride, the corrosion kinetics were obtained by cyclic voltammetry and electrochemical impedance spectroscopy. The anodic and cathodic areas of maraging steel corroded by pitting were shown using the Scanning Reference Electrode Technique. (orig.)

  7. Studies of corrosion in metallic container for storage of high level radioactive wastes

    International Nuclear Information System (INIS)

    Azkarate, I.; Madina, V.; Insausti, M.

    1999-01-01

    The metallic container is one of the most important barriers that, along with engineered and natural barriers, will isolate high level nuclear waste in saline and granite geological formations from the geosphere. However, general and localized corrosion modes such as stress corrosion cracking (SCC), pitting, crevice corrosion and hydrogen damage can be active under disposal conditions, so the corrosion behaviour of the metal container material must be carefully studied. Several metals and their alloys have been proposed for the fabrication of nuclear waste containers including carbon steels, stainless steels, titanium and titanium alloys and copper and copper-base alloys. Carbon steels and copper alloys are considered for the two rock formations, titanium is considered for salt environments and the stainless steel only in the case of a granite formation. (Author)

  8. Evaluation of the corrosion of reinforced concrete designed for low and medium activity level radioactive waste containers

    International Nuclear Information System (INIS)

    Duffo, G.S.; Arva, E.A; Schulz, F.M; Vasquez, D.R

    2010-01-01

    The National Atomic Energy Commission of Argentina (CNEA) is responsible for the design and construction of a monolithic repository for the final disposal of low and medium level radioactive wastes. In order to ensure the protection of people and the environment, the useful life of the repository should be 300 years and the conceptual design selected is based on the use of multiple, independent and redundant barriers. These barriers consist mainly of reinforced concrete. This work aims to establish a methodology to determine the concrete's useful life, evaluating parameters of interest using chemical and electrochemical techniques. For this purpose, reinforced concrete test pieces were made with two formulations - blast furnace cement (BFC) and with BFC plus silica fume admixture (BFC+SF)- and in each of the test pieces segments of reinforcement were included. The development over time of the corrosion potential and speed were evaluated, together with the resistivity of the concrete in the test pieces exposed to the laboratory environment, with an average relative humidity of 50%, a condition that favors the carbonation process. The diffusion coefficients of aggressive species, such as chloride and carbon dioxide, were also determined in test pieces made with the two formulations. In the test pieces exposed to the laboratory environment the reinforcements embedded in the BFC+SF concrete showed a lower corrosion speed compared to the BFC concrete. These results agree with the lower values for the speeds of carbonation and of chloride diffusion that show that the concrete with BFC+SF is more resistant to incoming aggressive species compared with the BFC. A container prototype for mid-level radioactive wastes was built and outfitted with instruments in order to monitor the development over time of the corrosion speed of the reinforcement rods by using corrosion sensors developed by the group. The prototype, exposed to atmospheric conditions, was manufactured with BFC

  9. Pre-oxidation and its effect on reducing high-temperature corrosion of superheater tubes during biomass firing

    DEFF Research Database (Denmark)

    Okoro, Sunday Chukwudi; Kvisgaard, M.; Montgomery, Melanie

    2017-01-01

    Superheater tubes in biomass-fired power plants experience high corrosion rates due to condensation of corrosive alkali chloride-rich deposits. To explore the possibility of reducing the corrosion attack by the formation of an initial protective oxide layer, the corrosion resistance of pre......-oxidised Al and Ti-containing alloys (Kanthal APM and Nimonic 80A, respectively) was investigated under laboratory conditions mimicking biomass firing. The alloys were pre-oxidised at 900°C for 1 week. Afterwards, pre-oxidised samples, and virgin non-pre-oxidised samples as reference, were coated...... with a synthetic deposit of KCl and exposed at 560°C for 1 week to a gas mixture typical of biomass firing. Results show that pre-oxidation could hinder the corrosion attack; however, the relative success was different for the two alloys. While corrosion attack was observed on the pre-oxidised Kanthal APM, the pre...

  10. Influence of Sulfate-Reducing Bacteria on the Corrosion Residual Strength of an AZ91D Magnesium Alloy

    Science.gov (United States)

    Zhu, Xianyong; Liu, Yaohui; Wang, Qiang; Liu, Jiaan

    2014-01-01

    In this paper, the corrosion residual strength of the AZ91D magnesium alloy in the presence of sulfate-reducing bacteria is studied. In the experiments, the chemical composition of corrosion film was analyzed by a scanning electron microscope with energy dispersive X-ray spectroscopy. In addition, a series of instruments, such as scanning electronic microscope, pH-meter and an AG-10TA materials test machine, were applied to test and record the morphology of the corrosion product, fracture texture and mechanical properties of the AZ91D magnesium alloy. The experiments show that the sulfate-reducing bacteria (SRB) play an important role in the corrosion process of the AZ91D magnesium alloy. Pitting corrosion was enhanced by sulfate-reducing bacteria. Corrosion pits are important defects that could lead to a significant stress concentration in the tensile process. As a result, sulfate-reducing bacteria influence the corrosion residual strength of the AZ91D magnesium alloy by accelerating pitting corrosion. PMID:28788236

  11. Priorities for technology development and policy to reduce the risk from radioactive materials

    International Nuclear Information System (INIS)

    Duggan, Ruth Ann

    2010-01-01

    The Standing Committee on International Security of Radioactive and Nuclear Materials in the Nonproliferation and Arms Control Division conducted its fourth annual workshop in February 2010 on Reducing the Risk from Radioactive and Nuclear Materials. This workshop examined new technologies in real-time tracking of radioactive materials, new risks and policy issues in transportation security, the best practices and challenges found in addressing illicit radioactive materials trafficking, industry leadership in reducing proliferation risk, and verification of the Nuclear Nonproliferation Treaty, Article VI. Technology gaps, policy gaps, and prioritization for addressing the identified gaps were discussed. Participants included academia, policy makers, radioactive materials users, physical security and safeguards specialists, and vendors of radioactive sources and transportation services. This paper summarizes the results of this workshop with the recommendations and calls to action for the Institute of Nuclear Materials Management (INMM) membership community.

  12. Electrochemical impedance spectroscopy and Surface Studies of Steel Corrosion by Sulphate-Reducing Bacteria

    International Nuclear Information System (INIS)

    Fathul Karim Sahrani; Zaharah Ibrahim; Madzlan Aziz; Adibah Yahya

    2009-01-01

    Sulphate-reducing bacteria (SRB), implicated in microbiologically influenced corrosion were isolated from the deep subsurface at the vicinity of Pasir Gudang, Johor, Malaysia. Electrochemical impedance spectroscopic (EIS) study was carried out to determine the polarization resistance in various types of culturing solutions, with SRB1, SRB2, combination of SRB1 and SRB2 and without SRBs inoculated (control). EIS results showed that in the presence of SRB1, SRB2 and mixed culture SRB1 and SRB2, polarisation resistance values were 7170, 6370 and 7190 ohms respectively compared to that of control, 92400 ohm. X-ray analysis (EDS) of the specimens indicated high sulphur content in the medium containing SRBs. Localized corrosion was observed on the metal surface which was associated with the SRB activity. (author)

  13. Corrosion study of the graphene oxide and reduced graphene oxide-based epoxy coatings

    Science.gov (United States)

    Ghauri, Faizan Ali; Raza, Mohsin Ali; Saad Baig, Muhammad; Ibrahim, Shoaib

    2017-12-01

    This work aims to determine the effect of graphene oxide (GO) and reduced graphene oxide (rGO) incorporation as filler on the corrosion protection ability of epoxy coatings in saline media. GO was derived from graphite powder following modified Hummers’ method, whereas rGO was obtained after reduction of GO with hydrazine solution. About 1 wt.% of GO or rGO were incorporated in epoxy resin by solution mixing process followed by ball milling. GO and rGO-based epoxy composite coatings were coated on mild steel substrates using film coater. The coated samples were characterized by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization tests after 1 and 24 h immersion in 3.5% NaCl. The results suggested that GO-based epoxy composite coatings showed high impedance and low corrosion rate.

  14. Corrosion resistance of titanium alloy on the overpack for high-level radioactive waste disposal

    International Nuclear Information System (INIS)

    Nishimura, Toshiyasu

    2008-01-01

    Crevice corrosion of titanium and its alloys were investigated in 10% sodium chloride at 100 degC simulating the environment of the overpack near the seaside. The pH and Chloride ion concentration inside the crevice were monitored by using W/WO 3 and Ag/AgCl microelectrode, respectively. The pH and Cl - concentration within the crevice were calculated from the standard potential-pH and potential-log [Cl - ] calibration curves. The effect of Mo on the crevice corrosion of titanium was mainly studied. The passivation behavior of the titanium and Ti-15% Mo alloy were also studied using electrochemical impedance studies. A marginal decrease in pH and increase in Cl - ion concentration were observed for pure titanium at 100 degC, where there was large increase of the crevice current. On other hand, there was no apparent change in pH and Cl - ion activity inside the crevice for Ti-15% Mo alloy, where there was no increase of the crevice current. Based on the results, it has been documented that the Ti-15% Mo alloy was not susceptible to crevice corrosion in 10% NaCl solutions at 100 degC. The corrosion reaction resistance (R t ) was found to increase with addition of Mo as an alloying element and also increase with applied anodic potential. Hence, Mo is able to be an effective alloying element, which enhanced the crevice corrosion resistance of titanium under the environment simulating the overpack near the seaside. (author)

  15. Study on radioactive corrosion products behaviour in primary circuits of JOYO

    International Nuclear Information System (INIS)

    Iizawa, Katsuyuki; Suzuki, Soju; Tamura, Masaaki; Seki, Seiichi; Hikichi, Takayoshi

    1987-01-01

    Radioactive CP deposition and distribution, and the resulting radiation fields along the JOYO primary circuit piping have been measured. The measurement results have been compared with calculations for estimating radioactive CP behaviour and the resulting radiation fields in an LMFBR primary circuit using a computer code which is named PSYCHE. The deposited radioactivity of CPs calculated by using PSYCHE agreed well with the measured results within a factor of 0.5-2. The gamma dose rate distribution calculated from the PSYCHE results reproduced measured values within a factor of 0.6-2 over the piping system, using the JOANDARC modification of the QAD-CG code. Using these verified codes, a prediction of radiation levels for future plant operation, and an evaluation of methods for the reduction of radioactive CPs have been conducted. (orig./DG)

  16. Modeling pitting corrosion damage of high-level radioactive-waste containers, with emphasis on the stochastic approach

    Energy Technology Data Exchange (ETDEWEB)

    Henshall, G.A.; Halsey, W.G.; Clarke, W.L.; McCright, R.D.

    1993-01-01

    Recent efforts to identify methods of modeling pitting corrosion damage of high-level radioactive-waste containers are described. The need to develop models that can provide information useful to higher level system performance assessment models is emphasized, and examples of how this could be accomplished are described. Work to date has focused upon physically-based phenomenological stochastic models of pit initiation and growth. These models may provide a way to distill information from mechanistic theories in a way that provides the necessary information to the less detailed performance assessment models. Monte Carlo implementations of the stochastic theory have resulted in simulations that are, at least qualitatively, consistent with a wide variety of experimental data. The effects of environment on pitting corrosion have been included in the model using a set of simple phenomenological equations relating the parameters of the stochastic model to key environmental variables. The results suggest that stochastic models might be useful for extrapolating accelerated test data and for predicting the effects of changes in the environment on pit initiation and growth. Preliminary ideas for integrating pitting models with performance assessment models are discussed. These ideas include improving the concept of container ``failure``, and the use of ``rules-of-thumb`` to take information from the detailed process models and provide it to the higher level system and subsystem models. Finally, directions for future work are described, with emphasis on additional experimental work since it is an integral part of the modeling process.

  17. Modeling pitting corrosion damage of high-level radioactive-waste containers, with emphasis on the stochastic approach

    International Nuclear Information System (INIS)

    Henshall, G.A.; Halsey, W.G.; Clarke, W.L.; McCright, R.D.

    1993-01-01

    Recent efforts to identify methods of modeling pitting corrosion damage of high-level radioactive-waste containers are described. The need to develop models that can provide information useful to higher level system performance assessment models is emphasized, and examples of how this could be accomplished are described. Work to date has focused upon physically-based phenomenological stochastic models of pit initiation and growth. These models may provide a way to distill information from mechanistic theories in a way that provides the necessary information to the less detailed performance assessment models. Monte Carlo implementations of the stochastic theory have resulted in simulations that are, at least qualitatively, consistent with a wide variety of experimental data. The effects of environment on pitting corrosion have been included in the model using a set of simple phenomenological equations relating the parameters of the stochastic model to key environmental variables. The results suggest that stochastic models might be useful for extrapolating accelerated test data and for predicting the effects of changes in the environment on pit initiation and growth. Preliminary ideas for integrating pitting models with performance assessment models are discussed. These ideas include improving the concept of container ''failure'', and the use of ''rules-of-thumb'' to take information from the detailed process models and provide it to the higher level system and subsystem models. Finally, directions for future work are described, with emphasis on additional experimental work since it is an integral part of the modeling process

  18. Aspects of a Co-free hardfacing Materials Development to Reduce the Radioactivity in NPPs

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Joung Soo; Kim, Hong Pyo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Suh, Jeong Hun [Inss Tek Co., Daejeon (Korea, Republic of)

    2007-07-01

    For the last one or two decades, active researches to develop Co-free hardfacing materials in order to replace Co-base stellite alloys have been done to reduce the radioactivity in the primary systems in nuclear power plants(NPPs). However, Co-free materials having superior mechanical properties to stellite alloys have not been developed up to now. There are two ways to increase the performance characteristics of the key parts needed to be coated with hardfacing materials, thus resulting in replacing the Co-base stellite alloys with superior mechanical properties; one of them is to develop new Co-free materials with a better quality in performance than that of satellite alloys. The other is to use new coating techniques developed to increase the coated surface properties of already developed Co-free materials. In this study, the aspect of newly developed Co-free materials is reviewed and the necessity of the development of new Co-free materials is emphasized for the replacement of Co-base satellite alloys. In addition, a new coating technique, which is called a laser hardfacing(cladding) technique(LHT), is introduced and its advantage and applicability to the key parts in NPPs are discussed using our experimental results to improve the properties of a surface coated with existing Co-free hardfacing materials. The coating technique using a laser beam having a high energy density has unique advantages to obtain various microstructures such as crystalline, amorphous, porous, and nano structures and also to get coating layers having high a hardness to result in an excellent resistance to erosion corrosion and wear.

  19. Application of a passive electrochemical noise technique to localized corrosion of candidate radioactive waste container materials

    International Nuclear Information System (INIS)

    Korzan, M.A.

    1994-05-01

    One of the key engineered barriers in the design of the proposed Yucca Mountain repository is the waste canister that encapsulates the spent fuel elements. Current candidate metals for the canisters to be emplaced at Yucca Mountain include cast iron, carbon steel, Incoloy 825 and titanium code-12. This project was designed to evaluate passive electrochemical noise techniques for measuring pitting and corrosion characteristics of candidate materials under prototypical repository conditions. Experimental techniques were also developed and optimized for measurements in a radiation environment. These techniques provide a new method for understanding material response to environmental effects (i.e., gamma radiation, temperature, solution chemistry) through the measurement of electrochemical noise generated during the corrosion of the metal surface. In addition, because of the passive nature of the measurement the technique could offer a means of in-situ monitoring of barrier performance

  20. Microbial Corrosion of API 5L X-70 Carbon Steel by ATCC 7757 and Consortium of Sulfate-Reducing Bacteria

    Directory of Open Access Journals (Sweden)

    Arman Abdullah

    2014-01-01

    Full Text Available Various cases of accidents involving microbiology influenced corrosion (MIC were reported by the oil and gas industry. Sulfate reducing bacteria (SRB have always been linked to MIC mechanisms as one of the major causes of localized corrosion problems. In this study, SRB colonies were isolated from the soil in suspected areas near the natural gas transmission pipeline in Malaysia. The effects of ATCC 7757 and consortium of isolated SRB upon corrosion on API 5L X-70 carbon steel coupon were investigated using a weight loss method, an open circuit potential method (OCP, and a potentiodynamic polarization curves method in anaerobic conditions. Scanning electron microscopy (SEM and energy dispersive X-ray spectroscopy (EDS were then used to determine the corrosion morphology in verifying the SRB activity and corrosion products formation. Results from the study show that the corrosion rate (CR of weight loss method for the isolated SRB is recorded as 0.2017 mm/yr compared to 0.2530 mm/yr for ATCC 7757. The Tafel plot recorded the corrosion rate of 0.3290 mm/yr for Sg. Ular SRB and 0.2500 mm/yr for Desulfovibrio vulgaris. The results showed that the consortia of isolated SRB were of comparable effects and features with the single ATCC 7757 strain.

  1. Corrosion by sulfate-reducing bacteria in a HP gas line under a detached weld cladding; Korrosion durch sulfatreduzierende Bakterien an einer Hochdruckgasleitung unter abgeloester Schweissnahtnachumhuellung

    Energy Technology Data Exchange (ETDEWEB)

    Bette, Ulrich [Technische Akademie Wuppertal (Germany)

    2011-07-01

    Intelligent pig measurements detected several points of corrosion in a HP gas pipeline in northern Germany. Corrosion occurred in a pipe section buried in clay soil, under detached weld claddings. It was not detected in regular measurements and additional intensive measurements. When the pipes were dug up, sulfate-reducing bacteria were found as the cause of corrosion. Due to the location of the corrosion processes, cathodic protection was impossible, and IFO measurements were ineffective in the low-ohmic soil.

  2. Ultra thin layer activation by recoil implantation of radioactive heavy ions. Applicability in wear and corrosion studies

    International Nuclear Information System (INIS)

    Lacroix, O.; Sauvage, T.; Blondiaux, G.; Guinard, L.

    1997-07-01

    A new calibration procedure is proposed for the application of recoil implantation of radioactive heavy ions (energies between a few hundred keV and a few MeV) into the near surface of materials as part of a research programme on sub-micrometric wear or corrosion phenomena. The depth profile of implanted radioelements is performed by using ultra thin deposited films obtained by cathode sputtering under argon plasma. Two curves for 56 Co ion in nickel have been determined for implantation depths of 110 and 200 nm, respectively, and stress the feasibility and reproducibility of this method for such activated depths. The achieved surface loss detection sensitivities are about 1 and 2 nm respectively. The on line detection mode is performed directly on the sample of interest. A general description of the method is presented. A study of the reaction kinematics followed by a general treatment on the irradiation parameters to be adopted are also developed with the intention of using the ultra thin layer activation method (UTLA) to further applications in research and industry. (author)

  3. A phenomenological approach to simulating the evolution of radioactive-waste container damage due to pitting corrosion

    International Nuclear Information System (INIS)

    Henshall, G.A.

    1995-01-01

    The damage to high-level radioactive-waste containers by pitting corrosion is an important design and performance assessment consideration. It is desirable to calculate the evolution of the pit depth distribution, not just the time required for initial penetration of the containers, so that the area available for advective of diffusive release of radionuclides through the container can be estimated. A phenomenological approach for computing the time evolution of these distributions is presented which combines elements of the deterministic and stochastic aspects of pit growth. The consistency of this approach with the mechanisms believed to control the evolution of the pit depth distribution is discussed. Qualitative comparisons of preliminary model predictions with a variety of experimental data from the literature are shown to be generally favorable. The sensitivity of the simulated distributions to changes in the input parameters is discussed. Finally, the results of the current model are compared to those of existing approaches based on extreme-value statistics, particularly regarding the extrapolation of laboratory data to large exposed surface areas

  4. Inventory of radioactive corrosion products on the primary surfaces and release during shutdown in Ringhals 2

    International Nuclear Information System (INIS)

    Aronsson, O.

    1994-01-01

    In Ringhals 2 a retrospective study using gamma scans of system surfaces, fuel crud sampling and reactor coolant analyses during operation and shutdown has been done. The data have been used to prepare a balance of activity inventory. The inventory has been fairly stable from 1986 to 1993, expressed as a gamma source term. The steam generator replacement in 1989 removed some 40-50% of the Co-60 inventory in the reactor system. After the steam generator replacement, the gamma source term has got an increasing contribution from Co-58, absolutely as well as relatively. The reason for this is probably the switch from high pH operation to modified pH operation. Corrosion from fresh alloy 690 surfaces in the new steam generators is probably another contributing factor. The inventory and production rate of Co-60 is decreasing over the years. It has also been found that clean-up of the reactor coolant during start-up, operation, and shutdown as well as the fuel pool during refuelling removes about the same amounts of Co-60. (author). 11 figs., 15 refs

  5. Improved management of SG BD demineralizer for reduced generation of low-level radioactive spent resin in Korean nuclear power plants

    International Nuclear Information System (INIS)

    Rhee, I.; Cho, D.; Yeon, J.

    2003-01-01

    Most nuclear power plants in Korea have adopted Ethanolamine(ETA) as a secondary pH control agent to increase the pH at the liquid phase, which may reduce the corrosion in steam generator tubes and moisture separator/reheat system. Along with its beneficial effect of SG protection from corrosion and degradation, the replacement of ammonia with ETA causes the increased generation of spent resin and the reduced run time of demineralizer in steam generator blowdown(SG BD) system. The composition ratio of cation- to anion- exchange resin in SG BD mixed bed should be increased in the ETA chemistry environment to meet the ratio of cation to anion in the aqueous solution, which results in the simultaneous exhaustion of cation and anion exchange resins. The utilization rate of mixed bed is greatest at the cation-to-anion ratio of 95:1 on the theoretical equivalent basis in the solution, but practically highest at that of 22:1 due to the possible inhomogeneous distribution of cation and anion exchange resins in SG BD bed. The run time of the bed could be extended by 30% such that, at that much, the purchase cost of new resin is saved and the production rate of spent resin is reduced. The guideline on the replacement of resin in SG BD bed is not necessary to secure the removal of radioactive particles without the leakage of the primary coolant into the secondary side since all the radioactive ions can be eliminated by SG BD bed with the sufficient time. They are retained during more than one month after their ingress into the SG BD bed without leakage. With the reduced replacement, thus, the SG BD spent resin that comprises 65% of low-level radioactive solid waste can be much cut down

  6. Physicochemical changes of cements by ground water corrosion in radioactive waste storage

    International Nuclear Information System (INIS)

    Contreras R, A.; Badillo A, V. E.; Robles P, E. F.; Nava E, N.

    2009-10-01

    Knowing that the behavior of cementations materials based on known hydraulic cement binder is determined essentially by the physical and chemical transformation of cement paste (water + cement) that is, the present study is essentially about the cement paste evolution in contact with aqueous solutions since one of principal risks in systems security are the ground and surface waters, which contribute to alteration of various barriers and represent the main route of radionuclides transport. In this research, cements were hydrated with different relations cement-aqueous solution to different times. The pastes were analyzed by different solid observation techniques XRD and Moessbauer with the purpose of identify phases that form when are in contact with aqueous solutions of similar composition to ground water. The results show a definitive influence of chemical nature of aqueous solution as it encourages the formation of new phases like hydrated calcium silicates, which are the main phases responsible of radionuclides retention in a radioactive waste storage. (Author)

  7. Influence of calcareous deposit on corrosion behavior of Q235 carbon steel with sulfate-reducing bacteria

    Science.gov (United States)

    Zhang, Jie; Li, Xiaolong; Wang, Jiangwei; Xu, Weichen; Duan, Jizhou; Chen, Shougang; Hou, Baorong

    2017-12-01

    Cathodic protection is a very effective method to protect metals, which can form calcareous deposits on metal surface. Research on the interrelationship between fouling organism and calcareous deposits is very important but very limited, especially sulfate-reducing bacteria (SRB). SRB is a kind of very important fouling organism that causes microbial corrosion of metals. A study of the influence of calcareous deposit on corrosion behavior of Q235 carbon steel in SRB-containing culture medium was carried out using electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM) and surface spectroscopy (EDS). The calcareous deposit was formed with good crystallinity and smooth surface under the gradient current density of -30 μA cm-2 in natural seawater for 72 h. Our results can help elucidate the formation of calcareous deposits and reveal the interrelationship between SRB and calcareous deposits under cathodic protection. The results indicate that the corrosion tendency of carbon steel was obviously affected by Sulfate-reducing Bacteria (SRB) metabolic activity and the calcareous deposit formed on the surface of carbon steel under cathodic protection was favourable to reduce the corrosion rate. Calcareous deposits can promote bacterial adhesion before biofilm formation. The results revealed the interaction between biofouling and calcareous deposits, and the anti-corrosion ability was enhanced by a kind of inorganic and organic composite membranes formed by biofilm and calcareous deposits.

  8. Corrosion of 2205 Duplex Stainless Steel Weldment in Chloride Medium Containing Sulfate-Reducing Bacteria

    Science.gov (United States)

    Antony, P. J.; Singh Raman, R. K.; Kumar, Pradeep; Raman, R.

    2008-11-01

    Influence of changes in microstructure caused due to welding on microbiologically influenced corrosion of a duplex stainless steel was studied by exposing the weldment and parent metal to chloride medium containing sulfate-reducing bacteria (SRB). Identically prepared coupons (same area and surface finish) exposed to sterile medium were used as the control. Etching-type attack was observed in the presence of SRB, which was predominant in the heat-affected zone (HAZ) of the weldment. The anodic polarization studies indicated an increase in current density for coupon exposed to SRB-containing medium as compared to that obtained for coupon exposed to sterile medium. The scanning electron microscopy (SEM) observations after anodic polarization revealed that the attack was preferentially in the ferrite phase of HAZ of the weldment, whereas it was restricted to the austenite phase of the parent metal.

  9. The role of hydrogenotrophic iron-reducing bacteria on the corrosion process in the context of geological disposal

    International Nuclear Information System (INIS)

    Kerber-Schutz, Marta

    2013-01-01

    The nuclear industry must to demonstrate the feasibility and safety of high level nuclear waste (HLNW) disposal. The generally recognised strategy for HLNW disposal is based on a multi-barrier system made by metallic packages surrounded by geological formation. The nuclear waste repository will be water re-saturated with time, and then the metallic corrosion process will take place. The aqueous corrosion will produce dihydrogen (H 2 ) that represents a new energetic source (electron donor) for microbial development. Moreover, the formation of Fe(II,III) solid corrosion products, such as magnetite (Fe 3 O 4 ), will provide electron acceptors favoring the development of iron-reducing bacteria (IRB). The activity of hydrogenotrophic and IRB can potentially alter the protective properties of passivating oxide layers (i.e. magnetite) which could reactivate corrosion. The main objective of this study is to evaluate the role of hydrogenotrophic and IRB activities on anoxic corrosion process by using geochemical indicators. Shewanella oneidensis strain MR-1 was chosen as model organism, and both abiotic and biotic conditions were investigated. In a first setup of experiments, our results indicate that synthetic magnetite is destabilized in the presence of hydrogenotrophic IRB due to structural Fe(III) reduction coupled to H 2 oxidation. The extent of Fe(III) bioreduction is notably enhanced with the increase in the H 2 concentration in the system: 4% H 2 ≤ 10% H 2 ≤ 60% H 2 . In a second setup of experiments, our results indicate that corrosion extent changes according to the solution composition and the surface of metallic sample (iron powder and carbon steel coupon). Moreover, the solid corrosion products are different for each sample: vivianite, siderite and chukanovite are the main mineral phases identified in the experiments with iron powder, while vivianite and magnetite are identified with carbon steel coupons. Our results demonstrate that corrosion rate is

  10. Study of sulphate-reducing bacteria corrosion in the weld joint for API X-70 steel

    Directory of Open Access Journals (Sweden)

    Flores, J. E.

    2012-10-01

    Full Text Available The corrosion behavior originated by sulfate-reducing bacteria (SRB was studied in two regions of welded API X-70 steel pipeline. The studies were focused on base material (BM and heat affected zone (HAZ, from the internal region of the pipe. SRB were extracted from oil and grown in a Postgate medium. Corrosion was evaluated at 60 °C for times between 5 and 64 days. Potentiodynamic polarization curves, obtained by electrochemical techniques, indicated surface activation at short times. Structural and morphological characterizations were carried out by scanning electron microscopy (SEM and optical microscopy (OM. H2S concentration and pH were also measured. Results showed an important increase in the corrosion damage up to 20 days, influenced by the SRB activity, which lead to a maximum of H2S (pH minimum. It was found a localized corrosion attack in the HAZ in a higher quantity compared to BM; and the formation of a thin film on the steel surface, originated by corrosion products and bacterial activity.

    El comportamiento ante la corrosión, originada por bacterias sulfato-reductoras (SRB, fue estudiado en dos regiones de un tubo de acero soldado API X-70. Los estudios se enfocaron en el material base (BM y la zona afectada térmicamente (HAZ, en la parte interna del tubo. Las SRB fueron extraídas del petróleo y cultivadas en un medio Postgate. El comportamiento a la corrosión fue evaluado a una temperatura de 60 °C, por periodos comprendidos entre 5 y 64 días. El análisis de las curvas de polarización potenciodinámicas, obtenidas por técnicas electroquímicas, indicó la activación de la superficie para tiempos cortos. La superficie fue caracterizada estructural y morfológicamente mediante microscopia electrónica de barrido (SEM, así como mediante microscopía óptica (OM. La concentración de H2S y el pH también fueron medidos. Los resultados mostraron un aumento importante de la corrosi

  11. Investigation of cooling coil corrosion in storage tanks for radioactive waste

    International Nuclear Information System (INIS)

    Ondrejcin, R.S.

    1978-01-01

    The high frequency of cooling coil leaks observed in high-heat waste storage tanks soon after sludge removal operations is attributed to pitting, according to laboratory corrosion studies. Experiments show that the most likely series of events leading to coil leakage is (1) excessive dilution of basic nitrite in the supernate, (2) initiation of attack in crevices due to oxygen depletion cells, and (3) acceleration of the attack by sulfate dissolved from the sludge. When sludge was slurried with water, the interstitial liquid was diluted. Nitrite, the anodic inhibitor that prevented attack on coils and tanks in normal operation when its concentration was 0.5 to 3.0M, could accelerate attack when diluted to 10 -4 to 10 -3 M. Attack was presumably initiated at oxygen depletion cells. The presence of sulfate, leached from the sludge, produced a conductive solution that could produce high current densities at the corroding steel surface. The proposed series of events leading to coil leakage agrees with the observations previously made on one leaking coil removed from Tank 2F after sludge removal in 1967. Examination revealed pitting that had originated on the outside of the coils. This pitting was attributed to oxygen depletion cells in coil crevices. To prevent recurrence of pitting attack on cooling coils during future sludge removal operations, the sludge should be slurried (1) with waste diluted less than one hundredfold with water, or (2) with a 500-ppm nitrite-H 2 O solution at pH 12. Either method should preclude pitting damage to the coils

  12. Studies of corrosion in metallic container for storage of high level radioactive wastes; Estudios de corrosion de materiales metalicos para capsulas de almacenamiento de residuos de alta actividad

    Energy Technology Data Exchange (ETDEWEB)

    Azkarate, I; Madina, V; Insausti, M

    1999-11-01

    The metallic container is one of the most important barriers that, along with engineered and natural barriers, will isolate high level nuclear waste in saline and granite geological formations from the geosphere. However, general and localized corrosion modes such as stress corrosion cracking (SCC), pitting, crevice corrosion and hydrogen damage can be active under disposal conditions, so the corrosion behaviour of the metal container material must be carefully studied. Several metals and their alloys have been proposed for the fabrication of nuclear waste containers including carbon steels, stainless steels, titanium and titanium alloys and copper and copper-base alloys. Carbon steels and copper alloys are considered for the two rock formations, titanium is considered for salt environments and the stainless steel only in the case of a granite formation. (Author)

  13. Localized corrosion and stress corrosion cracking of candidate materials for high-level radioactive waste disposal containers in the US: A literature review

    International Nuclear Information System (INIS)

    Farmer, J.C.; McCright, R.D.

    1988-01-01

    Container materials may undergo any of several modes of degradation in this environment, including: undesirable phase transformations due to lack of phase stability; atmospheric oxidation; general aqueous corrosion; pitting; crevice corrosion; intergranular stress corrosion cracking (IGSCC); and transgranular stress corrosion cracking (TGSCC). This paper is an analysis of data from the literature relevant to the pitting, crevice corrosion, and stress corrosion cracking (SCC) of these alloys. Though all three austenitic candidates have demonstrated pitting and crevice corrosion in chloride-containing environments, Alloy 825 has the greatest resistance to these forms of localized attack. Both types 304L and 316L stainless steels are susceptible to SCC in acidic chloride media. In contrast, SCC has not been documented for Alloy 825 under comparable conditions. Gamma irradiation has been found to enhance SCC of Types 304 and 304L stainless steels, but it has no detectable effect on the resistance of Alloy 825 to SCC. Furthermore, while microbiologically induced corrosion effects have been observed for 300-series stainless steels, nickel-based alloys such as Alloy 825 seem to be immune to such problems. Of the copper-based alloys, CDA 715 has the best overall resistance to localized attack. Its resistance to pitting is comparable to that of CDA 613 and superior to that of CDA 102. Observed rates of dealloying in CDA 715 are less than those observed in CDA 613 by orders of magnitude. The resistance of CDA 715 to SCC in tarnishing ammonical environments is comparable to that of CDA 102 and superior to that of CDA 613. Its resistance to SCC in nontarnishing ammonical environments is comparable to that of CDA 613 and superior to that of CDA 102. 22 refs., 8 figs., 4 tabs

  14. Radioactivity

    International Nuclear Information System (INIS)

    Chelet, Y.

    2006-01-01

    The beginning of this book explains the why and how of the radioactivity, with a presentation of the different modes of disintegration. Are tackled the reports between radioactivity and time before explaining how the mass-energy equivalence appears during disintegrations. Two chapters treat natural radioisotopes and artificial ones. This book makes an important part to the use of radioisotopes in medicine (scintigraphy, radiotherapy), in archaeology and earth sciences (dating) before giving an inventory of radioactive products that form in the nuclear power plants. (N.C.)

  15. Radioactivity

    International Nuclear Information System (INIS)

    2002-01-01

    This pedagogical document presents the origin, effects and uses of radioactivity: where does radioactivity comes from, effects on the body, measurement, protection against radiations, uses in the medical field, in the electric power industry, in the food (ionization, radio-mutagenesis, irradiations) and other industries (radiography, gauges, detectors, irradiations, tracers), and in research activities (dating, preservation of cultural objects). The document ends with some examples of irradiation levels (examples of natural radioactivity, distribution of the various sources of exposure in France). (J.S.)

  16. Determination of Erosion/Corrosion Rates in Hanford Tank Farms Radioactive Waste Transfer System Pipelines

    International Nuclear Information System (INIS)

    Washenfelder, D. J.; Girardot, C. L.; Wilson, E. R.; Page, J. A.; Engeman, J. K.; Gunter, J. R.; Johnson, J. M.; Baide, D. G.; Cooke, G. A.; Larson, J. D.; Castleberry, J. L.; Boomer, K. D.

    2015-01-01

    The twenty-eight double-shell underground radioactive waste storage tanks at the U. S. Department of Energy's Hanford Site near Richland, WA are interconnected by the Waste Transfer System network of buried steel encased pipelines and pipe jumpers in below-grade pits. The pipeline material is stainless steel or carbon steel in 51 mm to 152 mm (2 in. to 6 in.) sizes. The pipelines carry slurries ranging up to 20 volume percent solids and supernatants with less than one volume percent solids at velocities necessary to prevent settling. The pipelines, installed between 1976 and 2011, were originally intended to last until the 2028 completion of the double-shell tank storage mission. The mission has been subsequently extended. In 2010 the Tank Operating Contractor began a systematic evaluation of the Waste Transfer System pipeline conditions applying guidelines from API 579-1/ASME FFS-1 (2007), Fitness-For-Service. Between 2010 and 2014 Fitness-for-Service examinations of the Waste Transfer System pipeline materials, sizes, and components were completed. In parallel, waste throughput histories were prepared allowing side-by-side pipeline wall thinning rate comparisons between carbon and stainless steel, slurries and supernatants and throughput volumes. The work showed that for transfer volumes up to 6.1E+05 m"3 (161 million gallons), the highest throughput of any pipeline segment examined, there has been no detectable wall thinning in either stainless or carbon steel pipeline material regardless of waste fluid characteristics or throughput. The paper describes the field and laboratory evaluation methods used for the Fitness-for-Service examinations, the results of the examinations, and the data reduction methodologies used to support Hanford Waste Transfer System pipeline wall thinning conclusions.

  17. Determination of Erosion/Corrosion Rates in Hanford Tank Farms Radioactive Waste Transfer System Pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Washenfelder, D. J.; Girardot, C. L.; Wilson, E. R.; Page, J. A.; Engeman, J. K.; Gunter, J. R.; Johnson, J. M.; Baide, D. G.; Cooke, G. A.; Larson, J. D.; Castleberry, J. L.; Boomer, K. D.

    2015-11-05

    The twenty-eight double-shell underground radioactive waste storage tanks at the U. S. Department of Energy’s Hanford Site near Richland, WA are interconnected by the Waste Transfer System network of buried steel encased pipelines and pipe jumpers in below-grade pits. The pipeline material is stainless steel or carbon steel in 51 mm to 152 mm (2 in. to 6 in.) sizes. The pipelines carry slurries ranging up to 20 volume percent solids and supernatants with less than one volume percent solids at velocities necessary to prevent settling. The pipelines, installed between 1976 and 2011, were originally intended to last until the 2028 completion of the double-shell tank storage mission. The mission has been subsequently extended. In 2010 the Tank Operating Contractor began a systematic evaluation of the Waste Transfer System pipeline conditions applying guidelines from API 579-1/ASME FFS-1 (2007), Fitness-For-Service. Between 2010 and 2014 Fitness-for-Service examinations of the Waste Transfer System pipeline materials, sizes, and components were completed. In parallel, waste throughput histories were prepared allowing side-by-side pipeline wall thinning rate comparisons between carbon and stainless steel, slurries and supernatants and throughput volumes. The work showed that for transfer volumes up to 6.1E+05 m3 (161 million gallons), the highest throughput of any pipeline segment examined, there has been no detectable wall thinning in either stainless or carbon steel pipeline material regardless of waste fluid characteristics or throughput. The paper describes the field and laboratory evaluation methods used for the Fitness-for-Service examinations, the results of the examinations, and the data reduction methodologies used to support Hanford Waste Transfer System pipeline wall thinning conclusions.

  18. Localized corrosion of carbon steels due to sulfate-reducing bacteria. Development of a specific sensor; Corrosion localisee des aciers au carbone induite par des bacteries sulfato-reductrices. Developpement d'un capteur specifique

    Energy Technology Data Exchange (ETDEWEB)

    Monfort Moros, N.

    2001-11-01

    This work concerns the microbiologically influenced corrosion of carbon steels in saline anaerobic media (3% of NaCl) containing sulfato-reducing bacteria (Desulfovibrio gabonensis, DSM 10636). In these media, extreme localised corrosion occurs by pitting under the bio-film covering the metallic substrate. A sensor with concentric electrodes was designed to initiate the phenomenon of bio-corrosion, recreating the favourable conditions for growth of a corrosion pit, and then measuring the corrosion current maintained by bacterial activity. The pit initiation was achieved through either of two methods. The electrochemical conditioning involved driving the potential difference between inner and outer electrodes to values corresponding to a galvanic corrosion that can be maintained by the bacterial metabolism. The mechanical process involved removal of a portion of the bio-film by scratching, yielding galvanic potential differences equivalent to that found by the conditioning technique. This protocol was found to be applicable to a bio-corrosion study on industrial site for the monitoring of the metallic structures deterioration (patent EN 00/06114, May 2000). Thereafter, a fundamental application uses the bio-corrosion sensor for Electrochemical Impedance Spectroscopy (EIS), Electrochemical Noise Analysis (ENA) and current density cartography by the means of micro-electrodes. Thus, the EIS technique reveals the importance of the FeS corrosion products for initiation of bio-corrosion start on carbon steel. In addition, depending on the method used to create a pit, the ENA gives rise to supplementary processes (gaseous release) disturbing the bio-corrosion detection. The beginning of a bio-corrosion process on a clean surface surrounded with bio-film was confirmed by the current density cartography. These different results establish the sensor with concentric electrodes as an indispensable tool for bio-corrosion studies, both in the laboratory and on industrial sites

  19. Research of reducing the shielding effect caused by vehicles passing the radioactivity monitor system

    International Nuclear Information System (INIS)

    Deng Xianqi; Li Jianmin; Wang Xiaobing

    2008-01-01

    A kind of Radioactivity Monitor System with Vehicle Contour Acquisition Module based on Optical Screen is developed. The system can reduce the shielding effect caused by the passing vehicles, so that the alarming sensitivity is improved. This paper introduces the work situation of the system and preliminary experimental results. (authors)

  20. Sedimentibacter sp. With corrosive capability, Ferric-reducing, isolated from an oil separation tank

    International Nuclear Information System (INIS)

    Lopez-Jimenez, G.; Loera, O.; Ramirez, F.; Monroy, O.; Fernandez-Linares, L. C.

    2009-01-01

    Bio corrosion is a common problem in oil and gas industry facilities. characterization of the microbial populations responsible for bio corrosion and the interactions between different microorganisms with metallic surfaces is required in order to implemented efficient monitoring and control strategies. (Author)

  1. Electrochemistry study of the influence of local hydrogen generation in carbon steel bio-corrosion mechanisms in presence of iron reducing bacteria (Shewanella oneidensis)

    International Nuclear Information System (INIS)

    Moreira, R.; Libert, M.; Tribollet, B.; Vivier, V.

    2012-01-01

    Document available in extended abstract form only. The safe disposal of nuclear waste is a major concern for the nuclear energy industry. The high-level long-lived waste (HLNW) should be maintained for millions of years in clay formations at 500 metres depth in order to prevent the migration of radionuclides. Thence, different kinds of materials such as, carbon steel, stainless steel, concrete, clay, etc., are chosen aiming to last as long as possible and to preserve the radioactivity properties. In contrast, the anoxic corrosion of the different metallic envelopes is an expected phenomenon due to the changes on the environmental conditions (such as re-saturation) within HLNW repositories. In this context, corrosion products like iron oxides (i.e. magnetite, Fe 3 O 4 ), and hydrogen will be also expected. On the one hand, hydrogen poses a significant threat to the nuclear waste repository when it is accumulated for a long time in the surrounding clay - such hydrogen production may damage the barrier properties of the geological formation, affecting the safety of the repository. On the other hand, hydrogen production represents a new energy source for bacterial growth, especially in such environments with low content of biodegradable organic matter. Moreover, some hydrogeno-trophic bacteria can also use Fe 3+ as an electron acceptor for their development. Therefore, the biological activity and biofilm formation could interfere in the metal corrosion behaviour. This phenomenon is widely known by MIC (Microbiologically Influenced Corrosion), which can represent a huge problem when promoting local corrosion. The objective of this study is to better understand the influence of local hydrogen formation in the carbon steel bio-corrosion process in the presence of Shewanella oneidensis MR-1, a model of Iron Reducing Bacteria (IRB), in order to evaluate the impact of the bacterial activity in terms of long term behaviour of geological disposal materials. In this study

  2. Chemical and electrochemical aspects of the corrosion of stainless steels in the presence of sulphate reducing bacteria

    International Nuclear Information System (INIS)

    Feron, D.

    1990-01-01

    The corrosion behaviour of austenitic and ferritic stainless steels (316 L and 430Ti) in the presence of sulfate reducing bacteria, was investigated by several electrochemical techniques which were coupled with corrosion measurements on coupons and chemical analyses. Experiments were performed with 'Desulfovibrio vulgaris' and 'Desulfovibrio gigas' in three growth media containing lactate and sulfate. The decreases in corrosion potentials were correlated to the increase in sulphide content. The polarization curves showed also the major influence of sulphides on the passivity of stainless steels. Electrochemical impedance measurements were used to provide information in understanding the interactions between growth media or bacteria and stainless steels surfaces. The behaviour of the tested stainless steels in these conditions was mainly dependent on sulphide concentrations. (Author). 7 refs., 8 figs., 4 tabs

  3. Actions to reduce radioactive emissions: prevention of containment failure by flooding Containment and Reactor Cavity

    International Nuclear Information System (INIS)

    Fornos Herrando, J.

    2013-01-01

    The reactor cavity of Asco and Vandellos II is dry type, thus a severe accident leading to vessel failure might potentially end up resulting in the loss of containment integrity, depending on the viability to cool the molten core. Therefore, significant radioactive emissions could be released to outside. In the framework of Fukushima Stress Tests, ANAV has analyzed the convenience of carrying out different actions to prevent failure of the containment integrity in order to reduce radioactive emissions. The aim of this paper is to present and describe the main phenomenological aspects associated with two of these actions: containment flooding and reactor cavity flooding.

  4. Effects of iron-reducing bacteria and nitrate-reducing bacteria on the transformations of iron corrosion products, magnetite and siderite, formed at the surface of non-alloy steel

    International Nuclear Information System (INIS)

    Etique, Marjorie

    2014-01-01

    Radioactive waste is one of the major problems facing the nuclear industry. To circumvent this issue France plans to store vitrified high-level nuclear waste in a stainless steel container, placed into a non-alloy steel overpack, at a depth of 500 m in an argillaceous formation. The main iron corrosion products formed at the surface of the non-alloy steel are siderite (Fe II CO 3 ) and magnetite (Fe II Fe III 2 O 4 ). These compounds are formed in the anoxic conditions present in the nuclear waste repository and play a protective role against corrosion as a passive layer. This work aims to investigate the activity of nitrate-reducing bacteria (NRB, Klebsiella mobilis) and iron-reducing bacteria (IRB, Shewanella putrefaciens) during the transformation of siderite and magnetite, especially those involved in anoxic iron biogeochemical cycle. Klebsiella mobilis and Shewanella putrefaciens were first incubated with siderite or magnetite suspensions (high surface specific area) in order to exacerbate the microbial iron transformation, subsequently incubated with a magnetite/siderite film synthesized by anodic polarization at applied current density. The transformation of siderite and magnetite by direct or indirect microbial processes led to the formation of carbonated green rust (Fe II 4 Fe III 2 (OH) 12 CO 3 ). As a transient phase shared by several bacterial reactions involving Fe II and Fe III , this compound is the cornerstone of the anoxic iron biogeochemical cycle. The novelty of this thesis is the consideration of bacterial metabolisms of NRB and IRB often overlooked in bio-corrosion processes. (author) [fr

  5. Water Chemistry Control in Reducing Corrosion and Radiation Exposure at PWR Reactor

    International Nuclear Information System (INIS)

    Febrianto

    2006-01-01

    Water chemistry control plays an important role in relation to plant availability, reliability and occupational radiation exposures. Radiation exposures of nuclear plant workers are determined by the radiation rate dose and by the amount maintenance and repair work time Water chemistry has always been, from beginning of operation of power Pressurized Water Reactor, an important factor in determining the integrity of reactor components, fuel cladding integrity and minimize out of core radiation exposures. For primary system, the parameters to control the quality of water chemistry have been subject to change in time. Reactor water coolant pH need to be optimally controlled and be operated in range pH 6.9 to 7.4. At pH lower than 6.9, cause increasing the radiation exposure level and increasing coolant water pH higher than 7.4 will decrease radiation exposure level but increasing risk to fuel cladding and steam generator tube. Since beginning 90 decade, PWR water coolant pH tend to be operated at pH 7.4. This paper will discuss concerning water chemistry development in reducing corrosion and radiation exposure dose in PWR reactor. (author)

  6. The corrosion rate and the hydrogen absorption behavior of titanium under reducing condition-III. Research document

    International Nuclear Information System (INIS)

    Suzuki, H.; Taniguchi, N.; Kawakami, S.

    2005-03-01

    Titanium is one of the candidate materials for overpacks as a high corrosion resistance metal. At the initial stage of repository, oxidizing condition will be given around the overpack because oxygen will be brought from the ground. The oxygen will be consumed by the reaction with impurities in buffer material or corrosion of overpack, and reducing condition will be achieved around the overpack. With the changing of redox condition, the water reduction becomes to dominate the cathodic reaction accompanying hydrogen generation. Crevice corrosion and hydrogen embrittlement are main causes of the damage of long term integrity of titanium overpack. However, it is not known about the corrosion resistance and hydrogen absorption behavior of titanium under reduction condition. In this study, the completely sealed ampoule test and the immersion test of titanium in aqueous solution and bentonite was carried out. In order to obtain reliable data about the hydrogen generation rate and the ratio of hydrogen absorption in titanium. From the result of 3 years immersion tests, corrosion rate of titanium were estimated to be in the order of 10 -2 ∼10 -1 μm/y in the aqueous solution, and 10 -3 ∼10 -2 μm/y in bentonite. This value is almost the same as the last report. Almost all the hydrogen generated by corrosion was absorbed in titanium in the immersion tests in completely sealed ampoule. In the examination that changed each parameter, it was suggested that the amount of the hydrogen absorption become 2∼3 times in 1M HCO 3- and pH13. (author)

  7. Treatment of Uranium-Contaminated Concrete for Reducing Secondary Radioactive Waste

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seung Soo; Han, G. S; Park, U. K; Kim, G. N.; Moon, J. K. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    A volume reduction of the concrete waste by appropriate treatment technologies will decrease the amount of waste to be disposed of and result in a reduction of the disposal cost and an enhancement of the efficiency of the disposal site. Our group has developed a decontamination process for uranium-contaminated (U-contaminated) concrete, and some experiments were performed to reduce the second radioactive waste. A decontamination process was developed to remove uranium from concrete waste. The yellow or brown colored surface of the wall brick with high concentration of uranium was removed by a chisel until the radioactivity of remaining block reached less than 1 Bq/g. The concrete waste coated with epoxy was directly burned by an oil flame, and the burned surface was then removed using the same method as the treatment of the brick. The selective mechanical removal of the concrete block reduced the amount of secondary radioactive waste. The concrete blocks without an epoxy were crushed to below 30 mm and sifted to 1 mm. When the concrete pieces larger than 1 mm were sequentially washed with a clear recycle solution and 1.0 M of nitric acid, their radioactivity reached below the limit value of uranium for self-disposal. For the concrete pieces smaller than 1 mm, a rotary washing machine and electrokinetic equipment were also used.

  8. Treatment of Uranium-Contaminated Concrete for Reducing Secondary Radioactive Waste

    International Nuclear Information System (INIS)

    Kim, Seung Soo; Han, G. S; Park, U. K; Kim, G. N.; Moon, J. K.

    2014-01-01

    A volume reduction of the concrete waste by appropriate treatment technologies will decrease the amount of waste to be disposed of and result in a reduction of the disposal cost and an enhancement of the efficiency of the disposal site. Our group has developed a decontamination process for uranium-contaminated (U-contaminated) concrete, and some experiments were performed to reduce the second radioactive waste. A decontamination process was developed to remove uranium from concrete waste. The yellow or brown colored surface of the wall brick with high concentration of uranium was removed by a chisel until the radioactivity of remaining block reached less than 1 Bq/g. The concrete waste coated with epoxy was directly burned by an oil flame, and the burned surface was then removed using the same method as the treatment of the brick. The selective mechanical removal of the concrete block reduced the amount of secondary radioactive waste. The concrete blocks without an epoxy were crushed to below 30 mm and sifted to 1 mm. When the concrete pieces larger than 1 mm were sequentially washed with a clear recycle solution and 1.0 M of nitric acid, their radioactivity reached below the limit value of uranium for self-disposal. For the concrete pieces smaller than 1 mm, a rotary washing machine and electrokinetic equipment were also used

  9. Stress Corrosion cracking susceptibility of reduced-activation martensitic steel F82H

    Energy Technology Data Exchange (ETDEWEB)

    Miwa, Y. [Nuclear Energy and Science Directorate, Japan Atomic Energy Agency, Tokai-mura, Ibaraki-ken (Japan); Jitsukawa, S.; Tsukada, T. [Japan Atomic Energy Agency, Tokai-mura, Naga-gun, Ibaraki-ken (Japan)

    2007-07-01

    Full text of publication follows: For fusion power source in near future, supercritical water-cooled type blanket system was planned in Japan Atomic Energy Agency. The blankest system was designed by the present knowledge base and a reasonable extrapolation in material and design technology. Reduced-activation martensitic steel, F82H, is one of the blanket system structural materials. Therefore durability of the F82H for corrosion and stress corrosion cracking (SCC) is one of the concerns for this water-cooling concept of the blanket system. In this paper, SCC susceptibility of F82H was studied after heat treatments simulating post weld heat treatment (PWHT) or neutron-irradiation at 493 K to a dose level of 2.2 dpa. In order to evaluate SCC susceptibility of F82H, slow strain rate testing (SSRT) in high-purity, circulating water was conducted at 513-603 K in an autoclave. The strain rate was 1.0- 2.0x10{sup -7} s{sup -1}. Concentration of dissolved oxygen and hydrogen of the circulating water was controlled by bubbling with these gases. Specimens were heat treated after normalization at 1313 K for 40 min and water quenching. Some of the specimens were tempered at 873-1073 K for 1 h. Since the temperature control during PWHT in vacuum vessel by remote handling will be difficult, it is expected the tempering temperature will be different at place to place. Some specimens after tempering at 1033 K for 1 h were irradiated at 493 K to 2.2 dpa in Japan Research Reactor No.3 at Japan Atomic Energy Agency. The SSRT results showed the as-normalized specimens failed by IGSCC in oxygenated temperature water at 573 K. SSRT results of specimens with other tempering temperature conditions will be presented at conference. In irradiated specimen, IGSCC did not occur in oxygenated water at 5113-603 K. IGSCC also did not occur in hydrogenated water at 573 K. However TGSCC occurred in the irradiated specimen with a round notch (radius= {approx}0.2 mm) in oxygenated water at 573 K

  10. Contribution to the study of the role of sulfate-reducing bacteria in bio-corrosion phenomenon

    International Nuclear Information System (INIS)

    Chatelus, C.

    1987-11-01

    By their metabolic activities of hydrogen consumption and of sulfides production, the sulfate-reducing bacteria are the main bacteria responsible of the metallic corrosion phenomena in the absence of oxygen. A physiological and enzymatic study of some Desulfovibrio has contributed to the understanding of the role of these bacteria in the anaerobic bio-corrosion phenomena. Desulfovibrio (D.) vulgaris in organic medium, after having oxidized the lactate, consumes the hydrogen formed by the electrochemical reaction of iron dissolution. The Desulfovibrio can be responsible either of a corrosion by a direct contact with the metal in using the H 2 layer formed at its surface, (bacteria are then adsorbed at the surface because of an iron sulfide crystalline lattice), or of a distant corrosion in consuming the dissolved or gaseous hydrogen. As their hydrogenases can be stable in time independently of the cellular structure (D. vulparis) and active at high temperatures (to 70 C - 75 C) (D. baculatus), these bacteria can act in conditions incompatible with the viability of cells but compatible with the enzymatic expression. A study in terms of temperature has shown that inside the mesophilic group of the Desulfovibrio, the behaviour towards this parameter is specific to each bacteria, that accounts for the permanent presence of the representatives of this population in sites where the temperature variations are important. A change of some degrees Celsius can induce modifications in the yields of bacteria growth and by a consequence in variations in the corrosion intensity. Moreover, sulfate D. multispirans can reduce with specific velocities of different growth, the nitrate, the nitrite and the fumarate. Some sulfato-reducing could then adapt themselves to the variations of concentrations in electron acceptors and metabolize the oxidized substances used as biocides too. The choice of an electron acceptor rather than another do not depend uniquely of the specificity of the

  11. A study on the generation of radioactive corrosion product at PWR for extended fuel cycle

    International Nuclear Information System (INIS)

    Min Chul Song; Kun Jai Lee

    2001-01-01

    Current nuclear power plant operating practice is to extend the time between refueling from a 12 month operating cycle to an 18-24 month period. This current to longer fuel cycles has complicated the dilemma of finding optimum pH range for the primary coolant chemistry. The International Commission on Radiological Protection (ICRP) in ICRP publication No. 60 recommends optimization of operator radiation exposure (ORE) in nuclear power plants. CRUD formed in the plants is the major source of ORE and its transport mechanism is not understood. To analyze the generation of CRUD at the extended fuel cycle, the COTRAN code, which was developed at the Korea Advanced Institute of Science and Technology (KAIST), was used. It predicts that the activity of CRUD decreases as the pH of the coolant increases. For the same period of different fuel cycles, as the operating fuel cycle duration is increased, the generation of the CRUD increases. In this paper, enriched boric acid (40% enriched 10 B concentration) for reactivity control is adopted as the required chemical shim rather than natural boric acid. The effect of the enriched boric acid (EBA) is that the neutron absorption capability of the chemical shim is maintained while decreasing the required boron and lithium concentration in the reactor coolant system. By employing enriched boric acid, the amounts of CRUD generated are reduced, because the high pH-operating period is extended. From the waste generation point of view, more filters or ion exchangers to remove CRUD are required and the amounts of waste are increased at the extended fuel cycle. (author)

  12. Corrosion behaviour of steel rebars embedded in a concrete designed for the construction of an intermediate-level radioactive waste disposal facility

    Directory of Open Access Journals (Sweden)

    Schulz F.M.

    2013-07-01

    Full Text Available The National Atomic Energy Commission of the Argentine Republic is developing a nuclear waste disposal management programme that contemplates the design and construction of a facility for the final disposal of intermediate-level radioactive wastes. The repository is based on the use of multiple, independent and redundant barriers. The major components are made in reinforced concrete so, the durability of these structures is an important aspect for the facility integrity. This work presents an investigation performed on an instrumented reinforced concrete prototype specifically designed for this purpose, to study the behaviour of an intermediate level radioactive waste disposal facility from the rebar corrosion point of view. The information obtained will be used for the final design of the facility in order to guarantee a service life more or equal than the foreseen durability for this type of facilities.

  13. Effect of self-glazing on reducing the radioactivity levels of red mud based ceramic materials

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Shuo [College of Material Science and Engineering, Guilin University of Technology, Guilin, Guangxi 541004 (China); Wu, Bolin, E-mail: wubolin3211@gmail.com [College of Material Science and Engineering, Guilin University of Technology, Guilin, Guangxi 541004 (China)

    2011-12-30

    Graphical abstract: Self-glazing red mud based ceramic materials (RMCM) were produced by normal pressure sintering process using the main raw materials of red mud. The properties of the RMCM samples were investigated by the measurements of mechanical properties, radiation measurement, X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results show that the self-glazing RMCM have good mechanical properties (water absorption and apparent porosity approached zero; bulk density, 2.94 g/cm{sup 3}; compressive strength, 78.12 MPa). The radiation level has clear change regularity that the radioactivity levels of red mud (6360 Bq) are obvious declined, and can be reduced to that of the natural radioactive background of Guilin Karst landform, China (3600 Bq). It will not only consume large quantities of red mud, but also decrease the production cost of self-glazing RMCM. And the statement of this paper will offer effective ways to reduce the radioactivity level of red mud. Highlights: Black-Right-Pointing-Pointer The self-glazing phenomenon in red mud system was first discovered in our research. Black-Right-Pointing-Pointer Radiation levels of red mud can be reduced efficiently by self-glazing layer. Black-Right-Pointing-Pointer Red mud based ceramic materials will not cause harm to environment and humans. Black-Right-Pointing-Pointer This research possesses important economic significances to aluminum companies. - Abstract: Self-glazing red mud based ceramic materials (RMCM) were produced by normal pressure sintering process using the main raw materials of red mud. The properties of the RMCM samples were investigated by the measurements of mechanical properties, radiation measurement, X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results show that the self-glazing RMCM have good mechanical properties (water absorption and apparent porosity approached zero; bulk density, 2.94 g/cm{sup 3}; compressive strength, 78.12 MPa). The radiation

  14. Influence of sulfate-reducing bacteria on the corrosion of steel in seawater: laboratory and in situ study

    International Nuclear Information System (INIS)

    Benbouzid-Rollet, N.

    1993-01-01

    A fouling reactor was designed to study, the influence of a mixed bio-film on AISI 316 L stainless steel. The bio-film was formed on the steel surface by the fermentative bacterium Vibrio natriegens. The sulfate-reducing bacterium Desulfovibrio vulgaris was then introduced in the reactor and colonized the surface, constituting approximately 5 % of the total population. The settlement of an anaerobic bacterium in the bio-film shows in it the existence of anaerobic micro-niches. Stainless steel electrochemical behavior was analyzed using open circuit potential and potentiodynamic polarization curves. Growth of the bio-film does not induce corrosion, but seems to change the cathodic oxygen reduction kinetics, diminishing the corrosion hazard. This effect increases when D. vulgaris grows in the bio-film. An ennobling of the open circuit potential was observed, similar to field cases already described. A case of drilling corrosion of carbon steel in a harbour area showed the characteristics of anaerobic corrosion related to sulfate-reducing bacteria. The total cultivatable SRB population was quantified and metabolic types were enumerated using specific electron donors. A maximum cell density of 1,1 x 10 8 cells/ cm 2 was estimated, revealing a very important growth of SRB on surfaces. Population structure was different in corroded and non-corroded areas. In corroded area, SRB utilizing benzoate and propionate were more abundant. A strain belonging to the sporulating genus Desulfotomaculum was isolated using these substrates, suggesting a partial aeration in the area of hole appearance. However, in vitro corrosion assays showed that the bacterial population sampled in this area induced a consequent weight loss of steel coupons, in the absence of oxygen. This was observed only with a diversified population, similar to that present in situ. It could not be reproduced with a mixed culture of two purified strains. (author)

  15. Predicting corrosion of 316L stainless steel capsule by low level radioactive wastes (Am-241 and Co-60) in underground repository

    International Nuclear Information System (INIS)

    Nunoo, R.

    2013-07-01

    Most of radioactive wastes in Ghana are of low level in activity, (i.e LLRW) and are currently kept under lock in a secured room. The proposed plan by the Ghana Atomic Energy Commission is to seal the LLRW In 316L stainless steel disposal capsule for borehole repository. The research presented in this thesis was aimed at predicting the rate of both uniform and pitting corrosion of the 316L stainless steel disposal capsule by LLRW that will be kept in the capsule as a function of temperature, PH and chloride concentration for a period of up to 1000 years of disposal. The prediction analysis was based on the point defect deterministic model which assumed Schottky defects as the defect of the oxide formed on the surfaces of the disposal capsule. Faradays law and Fick first law of diffusion were used to determine the current across the internal and external surfaces of the capsule used to predict the uniform corrosion rate and corrosion loss of the 316L stainless steel disposal capsule. By imposing chlorine on the external environment of the disposal capsule, pit growth rate and pit depth of capsule were also predicted over a period of 1000 years. The capsule containing disused Am-241 source at activity level of 1.67×10 3 Bq had an average uniform corrosion rate of 3.65×10 -7 m/year and average pit growth rate of 1.79×10 -6 m/year while the corrosion rate and pit growth rate of the capsule containing disused Co-60 with activity level of 2.78×10 8 Bq were 6.9×10 -7 m/year and 2.1×10 -6 m/year respectively at PH value of 8 and repository temperature of 75°C and chloride concentration of 0.5 M. The uniform corrosion rate indicated that at PH=8 and T=75°C, 80.04% of the disposal capsule containing disused Am-241 would remain whiles 62.34% of that containing Co-60 disused source would remain after 1000 years when undergoing uniform corrosion, and an arbitrary position on the disposal capsule will have a pit depth of 1.98×10 -3 m after 100 years. Hence the integrity

  16. The effects of sulphate reducing bacteria on the corrosion of mild steel embedded in a bentonite-granitic groundwater paste

    International Nuclear Information System (INIS)

    Philp, J.C.; Taylor, K.J.

    1987-08-01

    Preliminary experiments were set up to investigate how the corrosion of forged 0.2% carbon steel is affected by the presence of sulphate reducing bacteria (SRB). The tests used cultures of a thermophilic bacterium Desulphotomaculum nigrificans mixed with bentonite and synthetic groundwater, to simulate a bacteria contaminated backfill, and placed in contact with carbon steel disc specimens held in perspex cells at 50 0 C under anaerobic conditions. The rate of corrosion with exposure was monitored by electrochemical techniques, together with changes in near field redox potential, during the course of the tests. After 340 days exposure the test cells were dismantled to measure the nature and extent of any corrosion that had occurred and to assess the residual SRB content of the bentonite. Recovery of relatively large numbers of bacteria after almost a year's incubation at 50 0 C in this moderately alkaline (pH 9.5) medium has confirmed the pH tolerance of the strain. There was evidence of the initiation of enhanced corrosion occurring in at least two of the five cells that contained SRB, at about three times the rate of the control. This was probably associated with the presence of SRB despite the nutritionally poor environment which existed in the bentonite gel. (author)

  17. Experiments relating to hydrogen generated by corrosion processes associated with repositories for intermediate-level radioactive wastes

    International Nuclear Information System (INIS)

    Schenk, R.

    1983-12-01

    Organic components in an intermediate level waste repository decompose under both aerobic and anaerobic conditions to produce carbon dioxide, which may lead to acid corrosion of metallic containers and hence to hydrogen production. The possibility of hydrogen production within the repository must be considered in determining the long term safety. Thermodynamic calculations show that only pure water is required to produce hydrogen with iron in a repository. The hydrogen evolution rate is thus the important parameter. However, the available kinetic data is insufficient and needs to be supplemented experimentally. Carbon steel specimens were immersed in water over which several gas mixtures containing nitrogen, oxygen and carbon dioxide were passed; the amount of hydrogen picked up by the gas stream was measured. 1.4 - 28 ml hydrogen per square meter per hour was evolved when the gas mixture contained 1 and 20 volume per cent carbon dioxide respectively. Hydrogen was also detected in natural CO 2 -free water when oxygen concentration cells are present. No hydrogen could be detected at pH 8.5 and above. The experiments were all carried out at 25 degrees C and atmospheric pressure and restricted to the carbonate system. Natural waters contain a mixture of salts; this may increase or reduce the hydrogen evolution rate. Higher temperatures and pressures, in particular a higher partial pressure of carbon dioxide, will probably lead to an increase in the hydrogen evolution rate. (author)

  18. Redesign of negatively charged 111In-DTPA-octreotide derivative to reduce renal radioactivity.

    Science.gov (United States)

    Oshima, Nobuhiro; Akizawa, Hiromichi; Kawashima, Hidekazu; Zhao, Songji; Zhao, Yan; Nishijima, Ken-Ichi; Kitamura, Yoji; Arano, Yasushi; Kuge, Yuji; Ohkura, Kazue

    2017-05-01

    Radiolabeled octreotide derivatives have been studied as diagnostic and therapeutic agents for somatostatin receptor-positive tumors. To prevent unnecessary radiation exposure during their clinical application, the present study aimed to develop radiolabeled peptides which could reduce radioactivity levels in the kidney at both early and late post-injection time points by introducing a negative charge with an acidic amino acid such as L-aspartic acid (Asp) at a suitable position in 111 In-DTPA-conjugated octreotide derivatives. Biodistribution of the radioactivity was evaluated in normal mice after administration of a novel radiolabeled peptide by a counting method. The radiolabeled species remaining in the kidney were identified by comparing their HPLC data with those obtained by alternative synthesis. The designed and synthesized radiolabeled peptide 111 In-DTPA-d-Phe -1 -Asp 0 -d-Phe 1 -octreotide exhibited significantly lower renal radioactivity levels than those of the known 111 In-DTPA-d-Phe 1 -octreotide at 3 and 24h post-injection. The radiolabeled species in the kidney at 24h after the injection of new octreotide derivative represented 111 In-DTPA-d-Phe-OH and 111 In-DTPA-d-Phe-Asp-OH as the metabolites. Their radiometabolites and intact 111 In-DTPA-conjugated octreotide derivative were observed in urine within 24h post-injection. The present study provided a new example of an 111 In-DTPA-conjugated octreotide derivative having the characteristics of both reduced renal uptake and shortened residence time of radioactivity in the kidney. It is considered that this kinetic control was achieved by introducing a negative charge on the octreotide derivative thereby suppressing the reabsorption in the renal tubules and affording the radiometabolites with appropriate lipophilicity. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Redesign of negatively charged 111In-DTPA-octreotide derivative to reduce renal radioactivity

    International Nuclear Information System (INIS)

    Oshima, Nobuhiro; Akizawa, Hiromichi; Kawashima, Hidekazu; Zhao, Songji; Zhao, Yan; Nishijima, Ken-ichi; Kitamura, Yoji; Arano, Yasushi; Kuge, Yuji; Ohkura, Kazue

    2017-01-01

    Introduction: Radiolabeled octreotide derivatives have been studied as diagnostic and therapeutic agents for somatostatin receptor-positive tumors. To prevent unnecessary radiation exposure during their clinical application, the present study aimed to develop radiolabeled peptides which could reduce radioactivity levels in the kidney at both early and late post-injection time points by introducing a negative charge with an acidic amino acid such as L-aspartic acid (Asp) at a suitable position in 111 In-DTPA-conjugated octreotide derivatives. Methods: Biodistribution of the radioactivity was evaluated in normal mice after administration of a novel radiolabeled peptide by a counting method. The radiolabeled species remaining in the kidney were identified by comparing their HPLC data with those obtained by alternative synthesis. Results: The designed and synthesized radiolabeled peptide 111 In-DTPA-D-Phe −1 -Asp 0 -D-Phe 1 -octreotide exhibited significantly lower renal radioactivity levels than those of the known 111 In-DTPA-D-Phe 1 -octreotide at 3 and 24 h post-injection. The radiolabeled species in the kidney at 24 h after the injection of new octreotide derivative represented 111 In-DTPA-D-Phe-OH and 111 In-DTPA-D-Phe-Asp-OH as the metabolites. Their radiometabolites and intact 111 In-DTPA-conjugated octreotide derivative were observed in urine within 24 h post-injection. Conclusion: The present study provided a new example of an 111 In-DTPA-conjugated octreotide derivative having the characteristics of both reduced renal uptake and shortened residence time of radioactivity in the kidney. It is considered that this kinetic control was achieved by introducing a negative charge on the octreotide derivative thereby suppressing the reabsorption in the renal tubules and affording the radiometabolites with appropriate lipophilicity.

  20. Coating NiTi archwires with diamond-like carbon films: reducing fluoride-induced corrosion and improving frictional properties.

    Science.gov (United States)

    Huang, S Y; Huang, J J; Kang, T; Diao, D F; Duan, Y Z

    2013-10-01

    This study aims to coat diamond-like carbon (DLC) films onto nickel-titanium (NiTi) orthodontic archwires. The film protects against fluoride-induced corrosion and will improve orthodontic friction. 'Mirror-confinement-type electron cyclotron resonance plasma sputtering' was utilized to deposit DLC films onto NiTi archwires. The influence of a fluoride-containing environment on the surface topography and the friction force between the brackets and archwires were investigated. The results confirmed the superior nature of the DLC coating, with less surface roughness variation for DLC-coated archwires after immersion in a high fluoride ion environment. Friction tests also showed that applying a DLC coating significantly decreased the fretting wear and the coefficient of friction, both in ambient air and artificial saliva. Thus, DLC coatings are recommended to reduce fluoride-induced corrosion and improve orthodontic friction.

  1. Bio-corrosion of water pipeline by sulphate-reducing bacteria in a ...

    African Journals Online (AJOL)

    This study investigates the presence of SRB in water, in a water pipeline and in the soil near the pipeline at a mining operation, under conditions that would be expected to be stable toward corrosion. Samples of water in pipes showed a high frequency of SRB. Cast iron coupons placed in pipes gave positive results for SRB ...

  2. Laboratory investigation of microbiologically influenced corrosion of C1018 carbon steel by nitrate reducing bacterium Bacillus licheniformis

    International Nuclear Information System (INIS)

    Xu, Dake; Li, Yingchao; Song, Fengmei; Gu, Tingyue

    2013-01-01

    Nitrate injection is used to suppress reservoir souring in oil and gas fields caused by Sulfate Reducing Bacteria (SRB) through promotion of nitrate respiration by Nitrate Reducing Bacteria (NRB). However, it is not well publicized that nitrate reduction by NRB can cause Microbiologically Influenced Corrosion (MIC) because nitrate reduction coupled with iron oxidation is thermodynamically favorable. NRB benefits bioenergetically from this redox reaction under biocatalysis. This work showed that the Bacillus licheniformis biofilm, when grown as an NRB biofilm, caused a 14.5 μm maximum pit depth and 0.89 mg/cm 2 normalized weight loss against C1018 carbon steel in one-week lab tests

  3. Development of a process to reduce the uranium concentration of liquid radioactive waste

    International Nuclear Information System (INIS)

    Fuentealba Toro, Edgardo David

    2015-01-01

    The purpose of radioactive waste management is to prevent the discharge of waste into the biosphere, a function carried out in Chile by the Chilean Nuclear Energy Commission (CCHEN), which stores around 500 [L] of these organic and inorganic waste in cans coming from research of Universities and CCHEN' laboratories. Within the inorganic liquid waste are concentrations of Uranyl salts with sulfates, chlorides and phosphates. The purpose of this work is to develop at laboratory level a process to concentrate and precipitate uranium salts (Sulfate and Uranyl Chloride) present in radioactive liquid effluents, because in the case of these very long period wastes in liquid state, the most widely used processes are aimed at concentrating or extracting radioactive compounds through separation processes, for their conditioning and final storage under conditions whose radiological risk is minimized. The selected process is liquid-liquid extraction, being evaluated solvents such as benzene and kerosene with the following extractants: tri-n-octylphosphine oxide (TOPO), di-2-ethylhexyl phosphoric acid (DEHPA) and Cyanex© 923. To determine the extraction conditions, which allow to reduce the concentration of uranium to values lower than 10 ppm, the extractant concentration was modified from 0.05 to 0.41 [M] with solvent volume / residue (VO/VA) ratios of 0.2 to 0.5, at an initial concentration of 8,446 [gU/L] and subsequent precipitation of uranium extracted by a reaction with ammonium carbonate. From these experimental tests the maximum extraction conditions were determined. To the generated effluents, a second stage of extraction was necessary in order to reduce its concentration below 10 [mg / L]. The experimental tests allowed to reduce the concentration under 2.5 [mgU/L], equivalent to 99.97% extraction efficiency. The tests with Cyanex© 923 in replacement of the TOPO, allowed to obtain similar results and even better in some cases, due to the fact that final

  4. Regional cooperation to reduce the safety and security risks of Orphan radioactive sources

    International Nuclear Information System (INIS)

    Howard, Geoffrey; Hacker, Celia; Murray, Allan; Romallosa, Kristine; Caseria, Estrella; Africa del Castillo, Lorena

    2008-01-01

    ANSTO's Regional Security of Radioactive Sources (RSRS) Project, in cooperation with the Philippine Nuclear Research Institute (PNRI), has initiated a program to reduce the safety and security risks of orphan radioactive sources in the Philippines. Collaborative work commenced in February 2006 during the Regional Orphan Source Search and Methods Workshop, co-hosted by ANSTO and the US National Nuclear Security Administration. Further professional development activities have occurred following requests by PNRI to ANSTO to support improvements in PNRI's capability and training programs to use a range of radiation survey equipment and on the planning and methods for conducting orphan source searches. The activities, methods and outcomes of the PNRI-ANSTO cooperative program are described, including: i.) Delivering a training workshop which incorporates use of source search and nuclide identification equipment and search methodology; and train-the-trainer techniques for effective development and delivery of custom designed training in the Philippines; ii.) Support and peer review of course work on Orphan Source Search Equipment and Methodology developed by PNRI Fellows; iii.) Supporting the delivery of the inaugural National Training Workshop on Orphan Source Search hosted by PNRI in the Philippines; iv.) Partnering in searching for orphan sources in Luzon, Philippines, in May 2007. The methods employed during these international cooperation activities are establishing a new model of regional engagement that emphasises sustainability of outcomes for safety and security of radioactive sources. (author)

  5. A critical review of measures to reduce radioactive doses from drinking water and consumption of freshwater foodstuffs

    International Nuclear Information System (INIS)

    Smith, J.T.; Voitsekhovitch, O.V.; Haakanson, L.; Hilton, J.

    2001-01-01

    Following a radioactive fallout event, there are a number of possible intervention measures to reduce radioactive doses to the public via the surface water pathway. We have critically reviewed the options available to decision-makers in the event of radioactive contamination of surface waters. We believe that the most effective and viable measures to reduce radioactivity in drinking water are those which operate at the water treatment and distribution stage. Intervention measures to reduce concentrations of radioactivity in rivers and reservoirs are expected to be much less viable and efficient at reducing doses via the drinking water pathway. Bans on consumption of freshwater fish can be effective, but there are few viable measures to reduce radioactivity in fish prior to the preparation stage. Lake liming and biomanipulation have been found to be ineffective for radiocaesium, although the addition of potassium to lakewaters appears promising in some situations. Lake liming may be effective in reducing radiostrontium in fish, though this has not, to our knowledge, been tested. De-boning fish contaminated by strontium is probably the most effective food preparation measure, but salting and freezing can also reduce radiocaesium concentrations in fish. The provision of accurate information to the public is highlighted as a key element of countermeasure implementation

  6. Reducing the potential for conflict between proponents and the public regarding the risks entailed by radioactive waste management facilities

    International Nuclear Information System (INIS)

    Rogers, B.G.

    1984-01-01

    Sources of potential conflict between proponents and the public regarding the risks entailed by radioactive waste management facilities are identified and analyzed. Programs and policies are suggested that could reduce conflict over the siting and operation of such facilities

  7. The roles of the micro-organisms and chromium content in the corrosion of iron-chromium steels in the presence of sulfate-reducing bacteria

    International Nuclear Information System (INIS)

    Ferrante, V.

    1991-09-01

    If it is widely accepted that the presence of sulfate-reducing bacteria can increase the aqueous corrosion of steels, the induced mechanisms are still not definitively established. The aim of this work is to specify the roles, for corrosion, of the presence of bacteria (D. Vulgaris) in one part and of chemical parameters as the composition of the material and the accumulation of sulfides in another part. The use of experimental techniques coming from microbiology, electrochemistry or chemical analysis has revealed the interdependence which exists between the bacteria and the material, and the importance of the steel composition towards the adhesion of microorganisms and the generalized corrosion. The bacteria and the dissolved sulfides do not seem to influence remarkably the generalized corrosion. Nevertheless, the alterations of the surface state they induce could be the cause of localized corrosion phenomena. (O.M.)

  8. The roles of the micro-organisms and chromium content in the corrosion of iron-chromium steels in the presence of sulfate-reducing bacteria

    International Nuclear Information System (INIS)

    Ferrante, V.

    1991-12-01

    Although the ability of sulfate-reducing bacteria to enhance the corrosion of steel is now widely accepted, the actual processes involved in such phenomena are still discussed. This work is dedicated to the study of the exact roles played in corrosion processes firstly, by the presence of D. vulgaris cells and, secondly, by chemical factors such as the material composition and the accumulation of sulfide ions in the solution. The use of microbiological, electrochemical and analytical experimental techniques lead to results that show the interdependence of the bacteria and the material as well as the importance of the steel composition in the adhesion of the micro-organisms and the general corrosion rates. The bacteria cells and dissolved sulfide ions do not markedly influence the general corrosion rates. They however induce surface state modifications that can result in localized corrosion phenomena

  9. Influence of sulphate-reducing bacteria on environmental parameters and marine corrosion behavior of Q235 steel in aerobic conditions

    International Nuclear Information System (INIS)

    Wan Yi; Zhang Dun; Liu Huaiqun; Li Yongjuan; Hou Baorong

    2010-01-01

    The growth cycle of sulphate-reducing bacteria (SRB), Desulfovibrio caledoniensis, and the effect of SRB on the environmental parameters and corrosion behavior of Q235 steel during a growth cycle in aerobic (air- and O 2 -saturated culture solutions) and anaerobic (N 2 - saturated culture solutions) conditions were investigated. Oxygen dissolved in the culture solutions induced slow growth and fast decay of SRB. The growth process of SRB under anaerobic and aerobic conditions influenced sulphide anion concentration (C s 2- ), pH, and conductivity (κ). The values of C s 2- and κ under aerobic conditions were lower than those under anaerobic conditions, and the pH values increased from O 2 - to air- to N 2 -saturated culture solutions. Aerobic conditions induced the open circuit potential (E OC ) to shift in the positive direction after the stationary phase of SRB growth. The charge transfer resistance (R ct ) increased quickly during the exponential growth phase, almost maintained stability during the stationary phase, and decreased after the stationary phase in all three conditions, and the impedance magnitude decreased from O 2 - to air- to N 2 -saturated culture solutions. The biofilms induced by SRB were observed by scanning electron microscopy (SEM) under aerobic and anaerobic conditions, and energy dispersive spectroscopy (EDS) was performed in abiotic and SRB-containing systems to distinguish the corrosion products. The reasons for the effects of SRB on the environmental parameters and corrosion behavior of carbon steel are discussed.

  10. Archaeological analogs and corrosion

    International Nuclear Information System (INIS)

    David, D.

    2008-01-01

    In the framework of the high level and long life radioactive wastes disposal deep underground, the ANDRA built a research program on the material corrosion. In particular they aim to design containers for a very long time storage. Laboratory experiments are in progress and can be completed by the analysis of metallic archaeological objects and their corrosion after hundred years. (A.L.B.)

  11. Analysis of high-level radioactive slurries as a method to reduce DWPF turnaround times

    International Nuclear Information System (INIS)

    Coleman, C.J.; Bibler, N.E.; Ferrara, D.M.; Hay, M.S.

    1996-01-01

    Analysis of Defense Waste Processing Facility (DWPF) samples as slurries rather than as dried or vitrified samples is an effective way to reduce sample turnaround times. Slurries can be dissolved with a mixture of concentrated acids to yield solutions for elemental analysis by inductively coupled plasma-atomic emission spectroscopy (ICP-AES). Slurry analyses can be performed in eight hours, whereas analyses of vitrified samples require up to 40 hours to complete. Analyses of melter feed samples consisting of the DWPF borosilicate frit and either simulated or actual DWPF radioactive sludge were typically within a range of 3--5% of the predicted value based on the relative amounts of sludge and frit added to the slurry. The results indicate that the slurry analysis approach yields analytical accuracy and precision competitive with those obtained from analyses of vitrified samples. Slurry analyses offer a viable alternative to analyses of solid samples as a simple way to reduce analytical turnaround times

  12. Electron transfer mediators accelerated the microbiologically influence corrosion against carbon steel by nitrate reducing Pseudomonas aeruginosa biofilm.

    Science.gov (United States)

    Jia, Ru; Yang, Dongqing; Xu, Dake; Gu, Tingyue

    2017-12-01

    Electron transfer is a rate-limiting step in microbiologically influenced corrosion (MIC) caused by microbes that utilize extracellular electrons. Cross-cell wall electron transfer is necessary to transport the electrons released from extracellular iron oxidation into the cytoplasm of cells. Electron transfer mediators were found to accelerate the MIC caused by sulfate reducing bacteria. However, there is no publication in the literature showing the effect of electron transfer mediators on MIC caused by nitrate reducing bacteria (NRB). This work demonstrated that the corrosion of anaerobic Pseudomonas aeruginosa (PAO1) grown as a nitrate reducing bacterium biofilm on C1018 carbon steel was enhanced by two electron transfer mediators, riboflavin and flavin adenine dinucleotide (FAD) separately during a 7-day incubation period. The addition of either 10ppm (w/w) (26.6μM) riboflavin or 10ppm (12.7μM) FAD did not increase planktonic cell counts, but they increased the maximum pit depth on carbon steel coupons considerably from 17.5μm to 24.4μm and 25.0μm, respectively. Riboflavin and FAD also increased the specific weight loss of carbon steel from 2.06mg/cm 2 to 2.34mg/cm 2 and 2.61mg/cm 2 , respectively. Linear polarization resistance, electrochemical impedance spectroscopy and potentiodynamic polarization curves all corroborated the pitting and weight loss data. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Deposition of radioactive corrosion products on the internal surfaces of tube elements in gaseous phase of dissociating system N2O4 reversible 2NO2 reversible 2NO+O2

    International Nuclear Information System (INIS)

    Gol'tsev, V.P.; Dolgov, V.M.; Katanaev, A.O.

    1979-01-01

    Analysis of experimental data, obtained as a result of γ-scanning of tube element samples of loop assembling with dissociating coolant contacting with N 2 O 4 gaseous phase is presented. Radioactive depositions are differentiated on fixed and unfixed ones by the method of radiochemical analysis. The data obtained have made it possible to establish the analytical form of radioactive element distribution functions along the piping length. It is noted, that relative quantities of radioactive isotopes, existing in fixed and unfixed depositions vary with temperature. The fraction of soluble forms of corrosion radioactive products in unfixed depositions increases both with the decrease of temperature and after passing of radioactive impurity through the zone of liquid coolant

  14. Physicochemical changes of cements by ground water corrosion in radioactive waste storage; Evolucion fisicoquimica de los cementos por corrosion de aguas subterraneas en un almacen de desechos radioactivos

    Energy Technology Data Exchange (ETDEWEB)

    Contreras R, A.; Badillo A, V. E.; Robles P, E. F. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Nava E, N. [Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas No. 152, Col. San Bartolo Atepehuacan, 07730 Mexico D. F. (Mexico)], e-mail: aida.contreras@inin.gob.mx

    2009-10-15

    Knowing that the behavior of cementations materials based on known hydraulic cement binder is determined essentially by the physical and chemical transformation of cement paste (water + cement) that is, the present study is essentially about the cement paste evolution in contact with aqueous solutions since one of principal risks in systems security are the ground and surface waters, which contribute to alteration of various barriers and represent the main route of radionuclides transport. In this research, cements were hydrated with different relations cement-aqueous solution to different times. The pastes were analyzed by different solid observation techniques XRD and Moessbauer with the purpose of identify phases that form when are in contact with aqueous solutions of similar composition to ground water. The results show a definitive influence of chemical nature of aqueous solution as it encourages the formation of new phases like hydrated calcium silicates, which are the main phases responsible of radionuclides retention in a radioactive waste storage. (Author)

  15. Development of experimental method to simulate the corrosion products in the primary system of nuclear power plant

    International Nuclear Information System (INIS)

    Kim, Sang Hyun; Kim, In Sup; Jang, Chang Heui

    2005-01-01

    Corrosion products are recognized as one of the major sources of occupational radiation exposure for nuclear power plant workers. Numerous studies have been conducted on the primary water chemistry to reduce the amount of crud in the primary circuit to avoid the radioactivity build-up in the plant. However, experiments with crud are restricted in laboratory because the crud is highly radioactive material. The objective of this study is to develop the simulating method of corrosion product in nuclear power plant

  16. Galvanic corrosion of copper-cast iron couples in relation to the Swedish radioactive waste canister concept

    International Nuclear Information System (INIS)

    Smart, N.R.; Fennell, P.A.H.; Rance, A.P.; Werme, L.O.

    2004-01-01

    To ensure the safe encapsulation of spent nuclear fuel rods for geological disposal, SKB are considering using the Copper-Iron Canister, which consists of an outer copper canister and an inner cast iron container. The canister will be placed into boreholes in the bedrock of a geologic repository and surrounded by bentonite clay. In the unlikely event of the outer copper canister being breached, water could enter the annulus between the inner and outer canister and at points of contact between the two metals there would be a possibility of galvanic interactions. To study this effect, copper-cast iron galvanic couples were set up in a number of different environments representing possible conditions in the SKB repository. The tests investigated two artificial pore-waters and a bentonite slurry, under aerated and deaerated conditions, at 30 deg. C and 50 deg. C. The currents passing between the coupled electrodes and the potential of the couples were monitored for several months. In addition, some bimetallic crevice specimens based on the multi-crevice assembly (MCA) design were used to simulate the situation where the copper canister will be in direct contact with the cast iron inner vessel. The effect of growing an oxide film on the surface of the cast iron prior to coupling it with copper was also investigated. The electrochemical results are presented graphically in the form of electrode potentials and galvanic corrosion currents as a function of time. The galvanic currents in aerated conditions were much higher than in deaerated conditions. For example, at 30 deg. C, galvanic corrosion rates as low as 0.02 μm/year were observed for iron in groundwater after de-aeration, but of the order of 100 μm/year for the cast iron at 50 deg. C in the presence of oxygen. The galvanic currents were generally higher at 50 deg. C than at 30 deg. C. None of the MCA specimens exhibited any signs of crevice corrosion under deaerated conditions. It will be shown that in deaerated

  17. Reducing logistical barriers to radioactive soil remediation after the Fukushima No. 1 nuclear power plant accident

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, K., E-mail: keizo.ishii@qse.tohoku.ac.jp [Research Center for Remediation Engineering of Living Environments Contaminated with Radioisotopes, Department of Quantum Science and Energy Engineering, Tohoku University, 6-6 Aza-Aoba, Aramaki, Aoba-ku, Sendai 980-8579 (Japan); Terakawa, A.; Matsuyama, S.; Kikuchi, Y.; Fujishiro, F.; Ishizaki, A.; Osada, N.; Arai, H.; Sugai, H.; Takahashi, H.; Nagakubo, K.; Sakurada, T. [Research Center for Remediation Engineering of Living Environments Contaminated with Radioisotopes, Department of Quantum Science and Energy Engineering, Tohoku University, 6-6 Aza-Aoba, Aramaki, Aoba-ku, Sendai 980-8579 (Japan); Yamazaki, H.; Kim, S. [Cyclotron and Radioisotope Center, Tohoku University, 6-3 Aza-Aoba, Aramaki, Aoba-ku, Sendai 980-8578 (Japan)

    2014-01-01

    We present an updated assessment of soil contamination due to the nuclear accident at the Fukushima No. 1 nuclear power plant on 11 March 2011. A safe limit for the spatial dose rate (micro-Sv/h) of gamma rays from {sup 134,137}Cs has been established in this work. Based on this value, the highly contaminated region within Fukushima Prefecture that must be decontaminated could be defined. Moreover, a conceptual model for the chemical speciation that occurred during the accident has been delineated. The compound model Cs{sub 2}CO{sub 3} was found to be meaningful and practical (non-radioactive) to simulate contamination in our decontamination experiments. Finally, we explain the mechanism of action of our soil remediation technique, which effectively reduces the total volume of contaminated soil by isolating the highly Cs-adsorptive clay fraction. The adsorption of non-radioactive Cs atoms on clay particles with diameters <25 μm were analyzed using micro-particle-induced X-ray emission (PIXE)

  18. Control of molten salt corrosion of reduced activation steel for fusion applications by metallic beryllium

    International Nuclear Information System (INIS)

    Calderoni, P.; Sharpe, P.; Nishimura, H.; Terai, T.

    2007-01-01

    Full text of publication follows: In 2001 the INL started a research program as a part of the 2. Japan/US Program on Irradiation Tests for Fusion Energy Research (JUPITER-II collaboration) aimed at the characterization of the 2LiF-BeF2 (Flibe) molten salt as a breeder and coolant material for fusion applications. A key objective of the work was to demonstrate chemical compatibility between Flibe and potential fusion structural materials once suitable fluoride potential control methods are established. A series of tests performed at INL demonstrated that this can be achieved by contacting the salt with metallic beryllium, and the results have been published in recent years. A further step was to expose two specimens of low activation ferritic/martensitic steel 9Cr-2W JLF-1 to static corrosion tests that include an active corrosion agent (hydrofluoric gas) and fluoride potential control (metallic Be) at 530 C, and the results of the tests are presented in this paper. The specimen and a beryllium rod were simultaneously immersed in the molten salt through gas tight fittings mounted on risers extending from the top lid of the test vessel; the beryllium rod was extracted after 5 hours, while the sample was left in the salt for 250 hours during which salt samples were withdrawn from the melt at fixed intervals. A diagnostic system based on the measurement of reacting HF through on-line titration was coupled with the analysis of metallic components in the salt samples that were dissolved and analyzed using inductively coupled plasma atomic emission spectroscopy (ICP-AES). Impurity levels of oxygen, nitrogen and carbon were determined from pieces of the solidified melt using Leco analytical systems. The results confirmed the expected correlation of the HF recovery with the concentration of metallic elements dissolved in the salt because of specimen corrosion. The metals concentration falls below the detectable limit when the beryllium rod is inserted and increases when the

  19. Investigations on reducing microbiologically-influenced corrosion of aluminum by using super-hydrophobic surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Liu Tao, E-mail: liutao@shmtu.edu.c [Institute of Marine Materials Science and Engineering, Shanghai Maritime University, Shanghai 201306 (China); Dong Lihua; Liu Tong; Yin Yansheng [Institute of Marine Materials Science and Engineering, Shanghai Maritime University, Shanghai 201306 (China)

    2010-07-15

    Electrochemical impedance spectroscopy, potentiodynamic polarization and scanning electron microscopy were carried out to determine the effect of super-hydrophobic surfaces on the marine bacterium Vibrio natriegens (V. natriegens) adhesion. Four different samples were prepared in order to investigate the anti-biocorrosion mechanism of super-hydrophobic surfaces. Potentiodynamic polarization suggested that the V. natriegens attached on the surface mainly enhanced the reaction kinetics of the anodic reaction and accelerated the dissolution of aluminum. EIS results were interpreted with different equivalent circuits to model the physicoelectric characteristics of the electrode/biofilm/solution interface. The results showed that neither anodization nor chemical modification could decrease the bacterial adhesion and corrosion rate individually. V. natriegens showed only weak attachment to the super-hydrophobic surface, and the biocorrosion mechanism was closely associated with surface energy and surface topography.

  20. Investigations on reducing microbiologically-influenced corrosion of aluminum by using super-hydrophobic surfaces

    International Nuclear Information System (INIS)

    Liu Tao; Dong Lihua; Liu Tong; Yin Yansheng

    2010-01-01

    Electrochemical impedance spectroscopy, potentiodynamic polarization and scanning electron microscopy were carried out to determine the effect of super-hydrophobic surfaces on the marine bacterium Vibrio natriegens (V. natriegens) adhesion. Four different samples were prepared in order to investigate the anti-biocorrosion mechanism of super-hydrophobic surfaces. Potentiodynamic polarization suggested that the V. natriegens attached on the surface mainly enhanced the reaction kinetics of the anodic reaction and accelerated the dissolution of aluminum. EIS results were interpreted with different equivalent circuits to model the physicoelectric characteristics of the electrode/biofilm/solution interface. The results showed that neither anodization nor chemical modification could decrease the bacterial adhesion and corrosion rate individually. V. natriegens showed only weak attachment to the super-hydrophobic surface, and the biocorrosion mechanism was closely associated with surface energy and surface topography.

  1. Scoping studies to reduce ICPP high-level radioactive waste volumes for final disposal

    International Nuclear Information System (INIS)

    Knecht, D.A.; Berreth, J.R.; Chipman, N.A.; Cole, H.S.; Geczi, L.S.; Kerr, W.B.; Staples, B.A.

    1985-08-01

    This report presents the results of scoping studies carried out to determine the feasibility of the following candidate options to reduce high-level waste volume: (1) low-fluoride, low-volume glass, (2) glass-ceramic and ceramic, (3) Modified Zirflex, (4) inerts removal by neutralization, and (5) modified Fluorinel processes. The results of the scoping studies show that the glass-ceramic/ceramic waste forms and neutralization process with potential HLW volume reductions ranging from 60 to 80% appear feasible, based on laboratory-scale tests. The presently used Fluorinel process modified by reducing HF usage also appears to be feasible and could result in up to a 10% potential volume reduction. If the current process start-up tests verify the practicality, reduced HF usage will be implemented. The low-volume glass and Modified Zirflex processes may also be feasible, based on laboratory tests, but would require significantly more process development and/or modifications and could result in only a 20 to 30% potential volume reduction. Based on these scoping studies, it is recommended that (1) the glass-ceramic/ceramic and neutralization processes be developed further, (2) reduced HF use for the Modified Fluorinel process be implemented as soon as practical and other options reducing chemical usage for criticality control be evaluated, (3) basic development for the glass process be continued as a back-up technology, and (4) laboratory-scale radioactive fuel dissolution testing for the Modified Zirflex process be completed with further process development discontinued unless needed in the future

  2. An attempt to reduce radioactivity for energy-dispersive x-ray analysis

    International Nuclear Information System (INIS)

    Hamada, S.

    1992-01-01

    The object of this work is to develop a specimen preparation technique which reduces the intensity of radioactivity of a neutron-irradiated materials for microchemical analysis by analytical electron microscope (AEM) with energy dispersive X-ray spectroscopy (EDXS). A composite specimen preparation technique for the AEM was developed using unirradiated materials. The technique reduced the mass of material from a dummy irradiated specimen by more than a factor of 100. A 1-mm diam. disk was punched from a dummy irradiated 3-mm diam. transmission electron microscope (TEM) disk. The 1-mm disk was then pressed into a hole previously punched at the center of a second 3 mm diam. disk creating a composite disk. The composite disk was electropolished using a twin jet Tenupol until the thickness of the center of the composite was about 100 μm. Approximately 100 μm of nickel plating was then deposited on the surface of the thinned composite. Standard electropolishing by Tenupol unit was performed on the nickel-plated composite specimen and the composite specimen was examined by TEM

  3. Corrosion fatigue studies on F82H mod. martensitic steel in reducing water coolant environments

    Energy Technology Data Exchange (ETDEWEB)

    Maday, M F; Masci, A [ENEA, Casaccia (Italy). Centro Ricerche Energia

    1998-03-01

    Load-controlled low cycle fatigue tests have been carried out on F82H martensitic steel in 240degC oxygen-free water with and without dissolved hydrogen, in order to simulate realistic coolant boundary conditions to be approached in DEMO. It was found that water independently of its hydrogen content, determined the same fatigue life reduction compared to the base-line air results. Water cracks exhibited in their first propagation stages similar fracture morphologies which were completely missing on the air cracks, and were attributed to the action of an environment related component. Lowering frequency gave rise to an increase in F82H fatigue lifetimes without any change in cracking mode in air, and to fatigue life reduction by microvoid coalescence alone in water. The data were discussed in terms of (i) frequency dependent concurrent processes for crack initiation and (ii) frequency-dependent competitive mechanisms for crack propagation induced by cathodic hydrogen from F82H corrosion. (author)

  4. High temperature corrosion in a biomass-fired power boiler : Reducing furnace wall corrosion in a waste wood-fired power plant with advanced steam data

    OpenAIRE

    Alipour, Yousef

    2013-01-01

    The use of waste (or recycled) wood as a fuel in heat and power stations is becoming more widespread in Sweden (and Europe), because it is CO2 neutral with a lower cost than forest fuel. However, it is a heterogeneous fuel with a high amount of chlorine, alkali and heavy metals which causes more corrosion than fossil fuels or forest fuel. A part of the boiler which is subjected to a high corrosion risk is the furnace wall (or waterwall) which is formed of tubes welded together. Waterwalls are...

  5. Studies on the effects of sulphate-reducing bacteria on mild carbon-steel relevant to radioactive waste disposal in the UK

    International Nuclear Information System (INIS)

    Philp, J.C.; Christofi, N.; Taylor, K.J.; West, J.M.

    1987-01-01

    Sulphate-reducing bacteria (SRB) have been used to determine their maximum effect on mild carbon-steel (BS4360 grade 43A) of relevance to waste disposal. Batch (static) and continuous culture studies were carried out and corrosion effects monitored by measuring weight loss and pitting. Results show that corrosion increases linearly with increased ferrous iron concentrations. Maximum corrosion was obtained in continuous culture where the organisms were maintained in the exponential phase of growth. Corrosion by SRB has been monitored in model systems mimicking low groundwater flow, deep rock formations in which steel coupons were subjected to a synthetic granitic water/bentonite environment with or without microorganisms. At termination of the experiment corrosion in the presence of SRB was almost three times higher than in their absence. (author)

  6. Effect of zinc injection on BWR fuel cladding corrosion. Pt. 1. Study on an accelerated corrosion condition to evaluate corrosion resistance of zircaloy-2 fuel cladding

    International Nuclear Information System (INIS)

    Kawamura, Hirotaka; Kanbe, Hiromu; Furuya, Masahiro

    2002-01-01

    Japanese BWR utilities have a plan to apply zinc injection to the primary coolant in order to reduce radioactivity accumulation on the structure. Prior to applying the zinc injection to BWR plants, it is necessary to evaluate the effect of zinc injection on corrosion resistance of fuel cladding. The objective of this report was to examine the accelerated corrosion condition for evaluation of BWR fuel cladding corrosion resistance under non-irradiated conditions, as the first step of a zinc injection evaluation study. A heat transfer corrosion test facility, in which a two phase flow condition could be achieved, was designed and constructed. The effects of heat flux, void fraction and solution temperature on BWR fuel cladding corrosion resistance were quantitatively investigated. The main findings were as follows. (1) In situ measurements using high speed camera and a void sensor together with one dimensional two phase flow analysis results showed that a two phase flow simulated BWR core condition can be obtained in the corrosion test facility. (2) The heat transfer corrosion test results showed that the thickness of the zirconium oxide layer increased with increasing solution temperature and was independent of heat flux and void fraction. The corrosion accelerating factor was about 2.5 times in the case of a temperature increase from 288degC to 350degC. (author)

  7. Corrosion and corrosion control

    International Nuclear Information System (INIS)

    Khanna, A.S.; Totlani, M.K.

    1995-01-01

    Corrosion has always been associated with structures, plants, installations and equipment exposed to aggressive environments. It effects economy, safety and product reliability. Monitoring of component corrosion has thus become an essential requirement for the plant health and safety. Protection methods such as appropriate coatings, cathodic protection and use of inhibitors have become essential design parameters. High temperature corrosion, especially hot corrosion, is still a difficult concept to accommodate in corrosion allowance; there is a lack of harmonized system of performance testing of materials at high temperatures. In order to discuss and deliberate on these aspects, National Association for Corrosion Engineers International organised a National Conference on Corrosion and its Control in Bombay during November 28-30, 1995. This volume contains papers presented at the symposium. Paper relevant to INIS is indexed separately. refs., figs., tabs

  8. Dictionary corrosion and corrosion control

    International Nuclear Information System (INIS)

    1985-01-01

    This dictionary has 13000 entries in both languages. Keywords and extensive accompanying information simplify the choice of word for the user. The following topics are covered: Theoretical principles of corrosion; Corrosion of the metals and alloys most frequently used in engineering. Types of corrosion - (chemical-, electro-chemical, biological corrosion); forms of corrosion (superficial, pitting, selective, intercrystalline and stress corrosion; vibrational corrosion cracking); erosion and cavitation. Methods of corrosion control (material selection, temporary corrosion protection media, paint and plastics coatings, electro-chemical coatings, corrosion prevention by treatment of the corrosive media); Corrosion testing methods. (orig./HP) [de

  9. Potential for erosion corrosion of SRS high level waste tanks

    International Nuclear Information System (INIS)

    Zapp, P.E.

    1994-01-01

    SRS high-level radioactive waste tanks will not experience erosion corrosion to any significant degree during slurry pump operations. Erosion corrosion in carbon steel structures at reported pump discharge velocities is dominated by electrochemical (corrosion) processes. Interruption of those processes, as by the addition of corrosion inhibitors, sharply reduces the rate of metal loss from erosion corrosion. The well-inhibited SRS waste tanks have a near-zero general corrosion rate, and therefore will be essentially immune to erosion corrosion. The experimental data on carbon steel erosion corrosion most relevant to SRS operations was obtained at the Hanford Site on simulated Purex waste. A metal loss rate of 2.4 mils per year was measured at a temperature of 102 C and a slurry velocity comparable to calculated SRS slurry velocities on ground specimens of the same carbon steel used in SRS waste tanks. Based on these data and the much lower expected temperatures, the metal loss rate of SRS tanks under waste removal and processing conditions should be insignificant, i.e. less than 1 mil per year

  10. Archaeological analogs and corrosion; Analogues archeologiques et corrosion

    Energy Technology Data Exchange (ETDEWEB)

    David, D

    2008-07-01

    In the framework of the high level and long life radioactive wastes disposal deep underground, the ANDRA built a research program on the material corrosion. In particular they aim to design containers for a very long time storage. Laboratory experiments are in progress and can be completed by the analysis of metallic archaeological objects and their corrosion after hundred years. (A.L.B.)

  11. Radiation-induced corrosion of stellite-6

    International Nuclear Information System (INIS)

    Behazin, M.; Wren, J.C.

    2012-09-01

    Stellite-6 is a Co-based (58%) alloy that is used for components that require high wear-resistance, such as valve facings and ball bearings in nuclear reactors. In the reactor core, stable 59 Co can be neutron activated by absorption of a neutron to become the radioactive isotope, 60 Co. The 60 Co that is created constitutes a safety hazard for plant workers who have to perform maintenance on the reactor. One of the operational and safety issues in a nuclear reactor is the potential corrosion of Co-based alloys and the introduction of dissolved Co ions into the reactor core. While the corrosion of Stellite-6 has been studied its corrosion behaviour with ionizing radiation present has not been well established. Corrosion kinetics depend on both the aqueous redox conditions and the physical and chemical nature of the alloy surface. The high radiation fields present in a reactor core will cause water to decompose to a range of redox-active species (both highly oxidizing (e.g., ·OH, H 2 O 2 ) and highly reducing (e.g., ·eaq - , ·O 2 - )). These species can significantly influence corrosion kinetics. The effect of γ-radiation on the corrosion of Stellite-6 at pH 10.6 was investigated at temperatures ≤ 150 deg. C. Since the corrosion rate depends strongly on the type of oxide that is present on the material surface, the focus of this corrosion study was to establish the mechanism by which radiolysis affects the nature of the oxide that is present on Stellite-6. The results show that γ-radiation (at a dose rate of 5.5 kGy.h -1 ) increases the corrosion potential on Stellite-6 from -0.7 VSCE to 0.12 VSCE . The corrosion potential without irradiation present is in a potential range where oxidation is limited to the formation of a Co (OH) 2 and CoCr 2 O 4 outer oxide layer on a pre-existing Cr 2 O 3 film. The corrosion potential with irradiation is in a potential range where further oxidation of Co (OH) 2 to CoOOH also occurs. However, since CoOOH is less soluble than

  12. Suppression of aqueous corrosion of La(Fe0.88Si0.12)13 by reducing dissolved oxygen concentration for high-performance magnetic refrigeration

    International Nuclear Information System (INIS)

    Fujieda, S.; Fukamichi, K.; Suzuki, S.

    2014-01-01

    Highlights: • The aqueous corrosion of La(Fe 0.88 Si 0.12 ) 13 and its suppression were investigated. • The lattice expansion after immersion was caused by the hydrogen absorption. • The itinerant-electron metamagnetic transition became indistinct after immersion. • The aqueous corrosion was suppressed by reducing the dissolved oxygen concentration. - Abstract: The itinerant-electron metamagnetic transition of La(Fe 0.88 Si 0.12 ) 13 becomes indistinct after immersion in distilled-water containing about 8 ppm of the dissolved oxygen (DO) concentration because of aqueous corrosion. However, the aqueous corrosion of La(Fe 0.88 Si 0.12 ) 13 is significantly suppressed by reducing the DO concentration. Thus, isothermal magnetic entropy change after immersion for 30 days in deaerated distilled-water with a DO concentration less than 0.1 ppm is larger than that after immersion for 5 days in distilled-water containing about 8 ppm of the DO concentration. Consequently, the reduction of the DO concentration is effective for preservation of the excellent magnetocaloric effects of La(Fe 0.88 Si 0.12 ) 13 in an aqueous solution, which is a promising heat transfer fluid of room-temperature magnetic refrigeration

  13. Electrochemical study of bio-corrosion mechanisms at the carbon steel interface in presence of iron-reducing and hydrogenotrophic bacteria in the nuclear waste disposal context

    International Nuclear Information System (INIS)

    Leite-de-Souza-Moreira, Rebeca

    2013-01-01

    The safety of deep geological repository for nuclear waste is a very important and topical matter especially for the nuclear industry. Such as nuclear fuel the high level waste have to be stored for time frames of millions of years in metallic containers. Typically these containers should be placed in deep geological clay formations 500 metres underground. Corrosion processes, will take place after the re-saturation of the geological medium and under the prevalent anoxic conditions may lead to the generation of hydrogen. This gas accumulates in clay environment through the years and eventually becomes hazardous for steel containers. In the particular environment of geological repositories does not provide much biodegradable substances. This is the reason that hydrogen represents a new suitable energy source for hydrogenotrophic bacteria. Thereby formed bacterial bio-films on the containers may contribute to a process of fast decay of the steel, the so called bio-corrosion. The aim of this study is to characterize the electrochemical interfaces in order to obtain the mechanisms of bio-corrosion of carbon steels in presence of iron reducing and hydrogenotrophic bacterium Shewanella oneideinsis. The products of corrosion processes, namely hydrogen and iron (III) oxides are used as electron donor and acceptor, respectively. The amount of hydrogen consumed by Shewanella could be estimated with 10"-"4 mol s"-"1 using Scanning Electrochemical Microscopy (SECM) techniques. The influence of the local hydrogen generation was evaluated via chrono-amperometry. When hydrogen was locally generated above a carbon steel substrate an accelerated corrosion process can be observed. Eventually, using Local Electrochemical Impedance Spectroscopy (LEIS) techniques, the mechanism of the generalised corrosion process was demonstrated. (author)

  14. Strategies to reduce illicit uses of radioactive materials. The Ethiopian perspective

    International Nuclear Information System (INIS)

    Gebeyehu Wolde, G.

    2001-01-01

    Full text: The illicit uses of radioactive sources can impose a direct danger to public health and safety. A number of cases worldwide have resulted in ionizing radiation exposures to individuals. Although the incident of illicit trafficking is greatly influenced by the national system of protection of radioactive materials at their use and storage location this alone may not ensure an absolute guarantee against such occurrence. The challenges of preventing illicit uses of radioactive sources and activities are more complex in the face of more integrated global economic environment. The national system of control, the cross border involvement, multiplicity of participants in the supply to end-use chain, diversity of systems and instruments are factors contributing to this complexity. Smooth interplay and overall systemic effectiveness of the national system of regulatory control, the strategic coordination of responsible parties and the systemic tie of such bodies, the efficiency of information flow and the pattern of know-how and training is what ensure the effectiveness of preventing, detecting and responding to any illicit activities and trafficking of radioactive sources. In Ethiopia, the attempts/incidents of illegal use were so far limited. However, the possibility of such occurrence cannot be ruled out and due attention should be paid as the activity is complex and is a global problem of general concern. Therefore, in addressing these issues the following strategies are believed appropriate in Ethiopia's perspective for preventing and controlling illicit uses and trafficking of radioactive materials: Strengthening the national system of control and protection including boarder controlling; Achieving effective coordination within and among regulators, law enforcement bodies and customs; Developing and maintaining effective system of information handling and flow; Training of principally responsible parties in the prevention, detection and response to illicit

  15. Strategies to reduce illicit uses of radioactive materials (the Ethiopian perspective)

    International Nuclear Information System (INIS)

    Gebeyehu, G.

    2002-01-01

    Full text: The illicit uses of radioactive sources can impose a direct danger to public health and safety. A number of cases worldwide have resulted in ionizing radiation exposures to individuals. Although the incident of illicit trafficking is greatly influenced by the national system of protection of radioactive materials at their use and storage location this alone may not ensure an absolute guarantee against such occurrence. The challenges of preventing illicit use of radioactive sources and activities are more complex in the face of more integrated global economic environment. The national system of control, the cross border involvement, multiplicity of participants in the supply to end-use chain, diversity of systems and instruments are factors contributing to this complexity. Smooth interplay and overall systemic effectiveness of the national system of regulatory control, the strategic coordination of responsible parties and the systemic tie of such bodies, the efficiency of information flow and the pattern of know-how and training is what ensure the effectiveness of preventing, detecting and responding to any illicit activities and trafficking of radioactive sources. In Ethiopia, the attempts /incidents of illegal use were so far limited. However, the possibility of such occurrence cannot be ruled out and due attention should be paid as the activity is complex and is global problem of general concern. Therefore, in addressing these issues the following strategies are believed appropriate in Ethiopia's perspective for preventing and controlling illicit of use and trafficking of radioactive materials. Strengthening the national system of control and protection including boarder controlling; achieving effective coordination within and among regulators, law enforcement bodies and customs; developing and maintaining effective system of information handling and flow; training of principally responsible parties in the prevention, detection and response to illicit

  16. The radionuclides of primary coolant in HANARO and the recent activities performed to reduce the radioactivity or reactor pool water

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Minjin [HANARO Research Reactor Centre, Korea Atomic Energy Research Inst., Taejon (Korea, Republic of)

    1998-10-01

    In HANARO reactor, there have been activities to identify the principal radionuclides and to quantify them under the normal operation. The purposes of such activities were to establish the measure by which we can reduce the radioactivity of the reactor pool water and detect, in early stage, the abnormal symptoms due to the leakage of radioactive materials from the irradiation sample or the damage of the nuclear fuel, etc. The typical radionuclides produced by the activation of reactor coolant are N{sup 16} and Ar{sup 41}. The radionuclides produced by the activation of the core structural material consist of Na{sup 24}, Mn{sup 56}, and W{sup 187}. Of the various radionuclides, governing the radiation level at the pool surface are Na{sup 24}, Ar{sup 41}, Mn{sup 58}, and W{sup 187}. By establishing the hot water layer system on the pool surface, we expected that the radionuclides such as Ar{sup 41} and Mn{sup 56} whose half-life are relatively short could be removed to a certain extent. Since the content of radioactivity of Na{sup 24} occupies about 60% of the total radioactivity, we assumed that the total radiation level would be greatly reduced if we could decrease the radiation level of Na{sup 24}. However the actual radiation level has not been reduced as much as we expected. Therefore, some experiments have been carried out to find the actual causes afterwards. What we learned through the experiments are that any disturbance in reactor pool water layer causes increase of the pool surface radiation level and even if we maintain the hot water layer well, reactor shutdown will be very much likely to happen once the hot water layer is disturbed. (author)

  17. Inhibiting mild steel corrosion from sulfate-reducing bacteria using antimicrobial-producing biofilms in Three-Mile-Island process water.

    Science.gov (United States)

    Zuo, R; Ornek, D; Syrett, B C; Green, R M; Hsu, C-H; Mansfeld, F B; Wood, T K

    2004-04-01

    Biofilms were used to produce gramicidin S (a cyclic decapeptide) to inhibit corrosion-causing, sulfate-reducing bacteria (SRB). In laboratory studies these biofilms protected mild steel 1010 continuously from corrosion in the aggressive, cooling service water of the AmerGen Three-Mile-Island (TMI) nuclear plant, which was augmented with reference SRB. The growth of both reference SRB (Gram-positive Desulfosporosinus orientis and Gram-negative Desulfovibrio vulgaris) was shown to be inhibited by supernatants of the gramicidin-S-producing bacteria as well as by purified gramicidin S. Electrochemical impedance spectroscopy and mass loss measurements showed that the protective biofilms decreased the corrosion rate of mild steel by 2- to 10-fold when challenged with the natural SRB of the TMI process water supplemented with D. orientis or D. vulgaris. The relative corrosion inhibition efficiency was 50-90% in continuous reactors, compared to a biofilm control which did not produce the antimicrobial gramicidin S. Scanning electron microscope and reactor images also revealed that SRB attack was thwarted by protective biofilms that secrete gramicidin S. A consortium of beneficial bacteria (GGPST consortium, producing gramicidin S and other antimicrobials) also protected the mild steel.

  18. Accelerated low water corrosion of carbon steel in the presence of a biofilm harbouring sulphate-reducing and sulphur-oxidising bacteria recovered from a marine sediment

    Energy Technology Data Exchange (ETDEWEB)

    Beech, Iwona B. [Applied Microbiology and Electrochemistry Group, University of Portsmouth, St. Michael' s Building, White Swan Road, Portsmouth PO1 2DT (United Kingdom)], E-mail: iwona.beech@port.ac.uk; Campbell, Sheelagh A. [Applied Microbiology and Electrochemistry Group, University of Portsmouth, St. Michael' s Building, White Swan Road, Portsmouth PO1 2DT (United Kingdom)

    2008-12-01

    Investigations were undertaken to elucidate causes of accelerated low water corrosion (ALWC) of steel piling in a harbour in Southern England. Visual inspection revealed features characteristic of ALWC such as the presence of poorly adherent, thick corrosion products of varying morphology, often seen as large blisters randomly located on sections of the structure at the low water mark. Upon the removal of blisters, a bright surface covered with shallow pits was exposed. Representative samples of the corrosion products were collected from the structure and water and sediment specimens were retrieved from selected areas in the harbour for microbiological, chemical and microscopy testing. In the laboratory, field samples were enriched to detect and enumerate communities of sulphur-oxidising bacteria (SOB) and sulphate-reducing bacteria (SRB). Biofilms, comprising SRB and SOB populations isolated from a sediment sample were grown under static conditions on surfaces of electrodes manufactured from steel piling material. Linear polarisation resistance (LPR) measurements revealed that the corrosion rate of steel with biofilms (0.518 mm y{sup -1}) was higher than that recorded in sterile seawater alone (0.054 mm y{sup -1}) and in sterile seawater to which nutrient was added (0.218 mm y{sup -1}). Scanning electron microscopy (SEM) imaging demonstrated enhanced pitting under biofilms. The results of our investigation revealed for the first time that the attack on steel piling in the presence of sediment SRB and SOB populations was characteristic of ALWC.

  19. Accelerated low water corrosion of carbon steel in the presence of a biofilm harbouring sulphate-reducing and sulphur-oxidising bacteria recovered from a marine sediment

    International Nuclear Information System (INIS)

    Beech, Iwona B.; Campbell, Sheelagh A.

    2008-01-01

    Investigations were undertaken to elucidate causes of accelerated low water corrosion (ALWC) of steel piling in a harbour in Southern England. Visual inspection revealed features characteristic of ALWC such as the presence of poorly adherent, thick corrosion products of varying morphology, often seen as large blisters randomly located on sections of the structure at the low water mark. Upon the removal of blisters, a bright surface covered with shallow pits was exposed. Representative samples of the corrosion products were collected from the structure and water and sediment specimens were retrieved from selected areas in the harbour for microbiological, chemical and microscopy testing. In the laboratory, field samples were enriched to detect and enumerate communities of sulphur-oxidising bacteria (SOB) and sulphate-reducing bacteria (SRB). Biofilms, comprising SRB and SOB populations isolated from a sediment sample were grown under static conditions on surfaces of electrodes manufactured from steel piling material. Linear polarisation resistance (LPR) measurements revealed that the corrosion rate of steel with biofilms (0.518 mm y -1 ) was higher than that recorded in sterile seawater alone (0.054 mm y -1 ) and in sterile seawater to which nutrient was added (0.218 mm y -1 ). Scanning electron microscopy (SEM) imaging demonstrated enhanced pitting under biofilms. The results of our investigation revealed for the first time that the attack on steel piling in the presence of sediment SRB and SOB populations was characteristic of ALWC

  20. Resource consequences of reducing disposal of radioactive waste to the environment

    International Nuclear Information System (INIS)

    Johnson, L.F.

    1988-01-01

    This paper considers some of the terms and definitions used in the optimisation of radioactive waste processing and looks at the background regulatory requirements and BNFL's own policy on waste management. It considers recent plants brought into operation and the impact that they have had on the discharge of low level radioactive effluent to the Irish Sea, and notes future plants to be installed at Sellafield. Plant improvements aimed at making further reductions of operator or public exposure will then be considered and the possible impact of the recent NRPB guidelines will be looked at against BNFL's overall policy on waste management. Finally, to bring the environmental impact of the Sellafield discharges into some perspective, consideration will be given to collective doses from other sources of radiation in the UK. (author)

  1. Reducing Uncontrolled Radioactive Sources through Tracking and Training: US Environmental Protection Agency Initiatives

    Energy Technology Data Exchange (ETDEWEB)

    Kopsick, D.A., E-mail: kopsick.deborah@epa.gov [US Environmental Protection Agency, Washington, DC (United States)

    2011-07-15

    The international metal processing industries are very concerned about the importation of scrap metal contaminated with radioactive materials. When radioactive sources fall out of regulatory control, improper handling can cause serious injury and death. There is no one way to address this problem and various US governmental and industry entities have developed radiation source control programmes that function within their authorities. The US Environmental Protection Agency's (EPA) mission is to protect public health and the environment. To ensure this protection, EPA's approach to orphan sources in scrap metal has focused on regaining control of lost sources and preventing future losses. EPA has accomplished this through a number of avenues including training development, product stewardship, identification of non-radiation source alternatives, physical tagging of sources, field testing of innovative radiation detection instrumentation and development of international best practices. In order to achieve its goal of enhanced control on contaminated scrap metal and orphaned radioactive sources, EPA has forged alliances with the metals industry, other Federal agencies, state governments and the IAEA. (author)

  2. Radioactive battery

    International Nuclear Information System (INIS)

    Deaton, R.L.; Silver, G.L.

    1975-01-01

    A radioactive battery is described that is comprised of a container housing an electrolyte, two electrodes immersed in the electrolyte and insoluble radioactive material disposed adjacent one electrode. Insoluble radioactive material of different intensity of radioactivity may be disposed adjacent the second electrode. If hydrobromic acid is used as the electrolyte, Br 2 will be generated by the radioactivity and is reduced at the cathode: Br 2 + 2e = 2 Br - . At the anode Br - is oxidized: 2Br - = Br 2 + 2e. (U.S.)

  3. Diversity and Composition of Sulfate-Reducing Microbial Communities Based on Genomic DNA and RNA Transcription in Production Water of High Temperature and Corrosive Oil Reservoir

    Directory of Open Access Journals (Sweden)

    Xiao-Xiao Li

    2017-06-01

    Full Text Available Deep subsurface petroleum reservoir ecosystems harbor a high diversity of microorganisms, and microbial influenced corrosion is a major problem for the petroleum industry. Here, we used high-throughput sequencing to explore the microbial communities based on genomic 16S rDNA and metabolically active 16S rRNA analyses of production water samples with different extents of corrosion from a high-temperature oil reservoir. Results showed that Desulfotignum and Roseovarius were the most abundant genera in both genomic and active bacterial communities of all the samples. Both genomic and active archaeal communities were mainly composed of Archaeoglobus and Methanolobus. Within both bacteria and archaea, the active and genomic communities were compositionally distinct from one another across the different oil wells (bacteria p = 0.002; archaea p = 0.01. In addition, the sulfate-reducing microorganisms (SRMs were specifically assessed by Sanger sequencing of functional genes aprA and dsrA encoding the enzymes adenosine-5′-phosphosulfate reductase and dissimilatory sulfite reductase, respectively. Functional gene analysis indicated that potentially active Archaeoglobus, Desulfotignum, Desulfovibrio, and Thermodesulforhabdus were frequently detected, with Archaeoglobus as the most abundant and active sulfate-reducing group. Canonical correspondence analysis revealed that the SRM communities in petroleum reservoir system were closely related to pH of the production water and sulfate concentration. This study highlights the importance of distinguishing the metabolically active microorganisms from the genomic community and extends our knowledge on the active SRM communities in corrosive petroleum reservoirs.

  4. Diversity and Composition of Sulfate-Reducing Microbial Communities Based on Genomic DNA and RNA Transcription in Production Water of High Temperature and Corrosive Oil Reservoir

    Science.gov (United States)

    Li, Xiao-Xiao; Liu, Jin-Feng; Zhou, Lei; Mbadinga, Serge M.; Yang, Shi-Zhong; Gu, Ji-Dong; Mu, Bo-Zhong

    2017-01-01

    Deep subsurface petroleum reservoir ecosystems harbor a high diversity of microorganisms, and microbial influenced corrosion is a major problem for the petroleum industry. Here, we used high-throughput sequencing to explore the microbial communities based on genomic 16S rDNA and metabolically active 16S rRNA analyses of production water samples with different extents of corrosion from a high-temperature oil reservoir. Results showed that Desulfotignum and Roseovarius were the most abundant genera in both genomic and active bacterial communities of all the samples. Both genomic and active archaeal communities were mainly composed of Archaeoglobus and Methanolobus. Within both bacteria and archaea, the active and genomic communities were compositionally distinct from one another across the different oil wells (bacteria p = 0.002; archaea p = 0.01). In addition, the sulfate-reducing microorganisms (SRMs) were specifically assessed by Sanger sequencing of functional genes aprA and dsrA encoding the enzymes adenosine-5′-phosphosulfate reductase and dissimilatory sulfite reductase, respectively. Functional gene analysis indicated that potentially active Archaeoglobus, Desulfotignum, Desulfovibrio, and Thermodesulforhabdus were frequently detected, with Archaeoglobus as the most abundant and active sulfate-reducing group. Canonical correspondence analysis revealed that the SRM communities in petroleum reservoir system were closely related to pH of the production water and sulfate concentration. This study highlights the importance of distinguishing the metabolically active microorganisms from the genomic community and extends our knowledge on the active SRM communities in corrosive petroleum reservoirs. PMID:28638372

  5. Effects of two main metabolites of sulphate-reducing bacteria on the corrosion of Q235 steels in 3.5 wt.% NaCl media

    International Nuclear Information System (INIS)

    Bao, Qi; Zhang, Dun; Lv, Dandan; Wang, Peng

    2012-01-01

    Highlights: ► Extracellular polymeric substances have been isolated from a batch culture of sulphate-reducing bacteria successfully. ► Sulphide and extracellular polymeric substances have triggered distinct electrochemical characteristics. ► ATR-IR analysis has confirmed the Fe 2+ -complexing capability of extracellular polymeric substances. ► In situ AFM results show extracellular polymeric substances can form a densely packed film on Q235 steels. ► The adsorbed extracellular polymeric substances film has protected the Q235 steels to a certain degree. - Abstract: The electrochemical corrosion behaviour of Q235 steels in 3.5 wt.% NaCl solutions with sulphide and extracellular polymeric substances (EPS), the two main metabolites of sulphate-reducing bacteria, was separately investigated through potentiodynamic polarisation and electrochemical impedance spectroscopy. Either sulphide or EPS increased the anodic current density by nearly one order of magnitude and negatively shifted the corrosion potential. The effects of EPS at the initial stage of corrosion may be ascribed to the Fe 2+ -complexing capability and the quickly adsorbed film. Moreover, the feeble protective effect of EPS after 16 d of immersion was observed through scanning electron microscopy.

  6. Monitoring Microbially Influenced Corrosion

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel

    and diffusional effects and unreliable corrosion rates, when biofilm and ferrous sulphide corrosion products cover the steel surface. Corrosion rates can be overestimated by a factor of 10 to 100 by electrochemical techniques. Weight loss coupons and ER are recommended as necessary basic monitoring techniques......Abstract Microbially influenced corrosion (MIC) of carbon steel may occur in media with microbiological activity of especially sulphate-reducing bacteria (SRB). The applicability and reliability of a number of corrosion monitoring techniques for monitoring MIC has been evaluated in experiments....... EIS might be used for detection of MIC as the appearance of very large capacitances can be attributed to the combined ferrous sulphide and biofilm formation. Capacitance correlates directly with sulphide concentration in sterile sulphide media. Keywords: Corrosion monitoring, carbon steel, MIC, SRB...

  7. Manufacturing and test of a low cost polypropylene bag to reduce the radioactive gas released by a radiopharmaceutical production facility

    Energy Technology Data Exchange (ETDEWEB)

    Tavares, Jose Carlos Freitas; Lacerda, Marco Aurelio de Sousa, E-mail: jcft@cdtn.b, E-mail: masl@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (SEPRA/ CDTN/CNEN-MG) Belo Horizonte, MG (Brazil). Servico de Protecao Radiologica; Nascimento, Leonardo Tafas Constantino do; Silva, Juliana Batista da, E-mail: ltcn@cdtn.b, E-mail: silvajb@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (SECPRA/ CDTN/CNEN-MG) Belo Horizonte, MG (Brazil). Secao de Producao de Radiofarmacos

    2011-07-01

    The main objective of this work was to evaluate the efficiency of a plastic gas storage bag to reduce the radioactive gas released by the chimney of a radiopharmaceutical production facility during the 2-[{sup 18}F]fluoro-2- deoxy-D-glucose ({sup 18}FDG) synthesis. The studied facility was the Development Centre of Nuclear Technology (CDTN/CNEN) in Belo Horizonte, Brazil. The bag was manufactured utilizing foils of polypropylene of 360 x 550 x 0.16 mm and disposable components of the cassette of the synthesizer. Two synthesis of {sup 18}FDG were done using the same hot cell and synthesizer to evaluate the efficiency of the bag. The manufactured bag was put in the gas exit of the synthesizer and the activity reported by the online radiation monitoring system in the first synthesis. These results were compared to the activity released in a synthesis performed without the bag. We observed when the bag was used the amount released was about 0.2% in 270 minutes. The second synthesis was performed without the bag, about 7,1% of the input activity was released by the exhaust of the facility in the same time interval. The bag presented a very good efficiency in the reducing of the radioactive gas released by the chimney of the radiopharmaceutical production facility. (author)

  8. Manufacturing and test of a low cost polypropylene bag to reduce the radioactive gas released by a radiopharmaceutical production facility

    International Nuclear Information System (INIS)

    Tavares, Jose Carlos Freitas; Lacerda, Marco Aurelio de Sousa; Nascimento, Leonardo Tafas Constantino do; Silva, Juliana Batista da

    2011-01-01

    The main objective of this work was to evaluate the efficiency of a plastic gas storage bag to reduce the radioactive gas released by the chimney of a radiopharmaceutical production facility during the 2-[ 18 F]fluoro-2- deoxy-D-glucose ( 18 FDG) synthesis. The studied facility was the Development Centre of Nuclear Technology (CDTN/CNEN) in Belo Horizonte, Brazil. The bag was manufactured utilizing foils of polypropylene of 360 x 550 x 0.16 mm and disposable components of the cassette of the synthesizer. Two synthesis of 18 FDG were done using the same hot cell and synthesizer to evaluate the efficiency of the bag. The manufactured bag was put in the gas exit of the synthesizer and the activity reported by the online radiation monitoring system in the first synthesis. These results were compared to the activity released in a synthesis performed without the bag. We observed when the bag was used the amount released was about 0.2% in 270 minutes. The second synthesis was performed without the bag, about 7,1% of the input activity was released by the exhaust of the facility in the same time interval. The bag presented a very good efficiency in the reducing of the radioactive gas released by the chimney of the radiopharmaceutical production facility. (author)

  9. The incineration of radioactive waste

    International Nuclear Information System (INIS)

    Thegerstroem, C.

    1980-03-01

    In this study, made on contract for the Swedish Nuclear Power Inspectorate, different methods for incineration of radioactive wastes are reviewed. Operation experiences and methods under development are also discussed. The aim of incineration of radioactive wastes is to reduce the volume and weight of the wastes. Waste categories most commonly treated by incineration are burnable solid low level wastes like trash wastes consisting of plastic, paper, protective clothing, isolating material etc. Primarily, techniques for the incineration of this type of waste are described but incineration of other types of low level wastes like oil or solvents and medium level wastes like ion-exchange resins is also briefly discussed. The report contains tables with condensed data on incineration plants in different countries. Problems encountered, experiences and new developments are reviewed. The most important problems in incineration of radioactive wastes have been plugging and corrosion of offgas systems, due to incomplete combustion of combustion of materials like rubber and PVC giving rise to corrosive gases, combined with inadequate materials of construction in heat-exchangers, channels and filter housings. (author)

  10. Corrosion cracking

    International Nuclear Information System (INIS)

    Goel, V.S.

    1985-01-01

    This book presents the papers given at a conference on alloy corrosion cracking. Topics considered at the conference included the effect of niobium addition on intergranular stress corrosion cracking, corrosion-fatigue cracking in fossil-fueled-boilers, fracture toughness, fracture modes, hydrogen-induced thresholds, electrochemical and hydrogen permeation studies, the effect of seawater on fatigue crack propagation of wells for offshore structures, the corrosion fatigue of carbon steels in seawater, and stress corrosion cracking and the mechanical strength of alloy 600

  11. Mobile evaporator corrosion test results

    International Nuclear Information System (INIS)

    Rozeveld, A.; Chamberlain, D.B.

    1997-05-01

    Laboratory corrosion tests were conducted on eight candidates to select a durable and cost-effective alloy for use in mobile evaporators to process radioactive waste solutions. Based on an extensive literature survey of corrosion data, three stainless steel alloys (304L, 316L, AL-6XN), four nickel-based alloys (825, 625, 690, G-30), and titanium were selected for testing. The corrosion tests included vapor phase, liquid junction (interface), liquid immersion, and crevice corrosion tests on plain and welded samples of candidate materials. Tests were conducted at 80 degrees C for 45 days in two different test solutions: a nitric acid solution. to simulate evaporator conditions during the processing of the cesium ion-exchange eluant and a highly alkaline sodium hydroxide solution to simulate the composition of Tank 241-AW-101 during evaporation. All of the alloys exhibited excellent corrosion resistance in the alkaline test solution. Corrosion rates were very low and localized corrosion was not observed. Results from the nitric acid tests showed that only 316L stainless steel did not meet our performance criteria. The 316L welded interface and crevice specimens had rates of 22.2 mpy and 21.8 mpy, respectively, which exceeds the maximum corrosion rate of 20 mpy. The other welded samples had about the same corrosion resistance as the plain samples. None of the welded samples showed preferential weld or heat-affected zone (HAZ) attack. Vapor corrosion was negligible for all alloys. All of the alloys except 316L exhibited either open-quotes satisfactoryclose quotes (2-20 mpy) or open-quotes excellentclose quotes (<2 mpy) corrosion resistance as defined by National Association of Corrosion Engineers. However, many of the alloys experienced intergranular corrosion in the nitric acid test solution, which could indicate a susceptibility to stress corrosion cracking (SCC) in this environment

  12. Electrochemical studies of the corrosion behavior of a low-carbon steel in aqueous chloride solutions simulating accident conditions of radioactive waste disposal

    International Nuclear Information System (INIS)

    Farvaque-Bera, A.M.; Leistikow, S.

    1991-01-01

    The fine-grained structural steel DIN W.Nr. 1.0566 was exposed to various sulfate and chloride-containing aqueous solutions, the latter ones simulating the potential accidental environment of water intrusion into a salt mine. By electrochemical measurements in salt brines, the following results were achieved: (1) The corrosion rate is highly dependent on salt brine composition, pH and temperature. (2) Active metal dissolution led to formation of shallow pits as surface corrosion phenomenon. Thus, the application of electrochemical techniques - under non-polarized as well as under potentiodynamic conditions - proved to be suitable for fast qualitative testing of the influence of various environmental parameters on steel corrosion. (orig.)

  13. Development of a Simple Radioactive marker System to Reduce Positioning Errors in Radiation Treatment

    International Nuclear Information System (INIS)

    William H. Miller; Dr. Jatinder Palta

    2007-01-01

    The objective of this research is to implement an inexpensive, quick and simple monitor that provides an accurate indication of proper patient position during the treatment of cancer by external beam X-ray radiation and also checks for any significant changes in patient anatomy. It is believed that this system will significantly reduce the treatment margin, provide an additional, independent quality assurance check of positioning accuracy prior to all treatments and reduce the probability of misadministration of therapeutic dose

  14. Corrosion engineering

    Energy Technology Data Exchange (ETDEWEB)

    Fontana, M.G.

    1986-01-01

    This book emphasizes the engineering approach to handling corrosion. It presents corrosion data by corrosives or environments rather than by materials. It discusses the corrosion engineering of noble metals, ''exotic'' metals, non-metallics, coatings, mechanical properties, and corrosion testing, as well as modern concepts. New sections have been added on fracture mechanics, laser alloying, nuclear waste isolation, solar energy, geothermal energy, and the Statue of Liberty. Special isocorrosion charts, developed by the author, are introduced as a quick way to look at candidates for a particular corrosive.

  15. Comparative study in the induced corrosion by sulfate reducing microorganisms, in a stainless steel 304L sensitized and a carbon steel API X65

    International Nuclear Information System (INIS)

    Diaz S, A.; Gonzalez F, E.; Arganis J, C.; Luna C, P.; Carapia M, L.

    2004-01-01

    In spite of the operational experience related with the presence of the phenomenon of microbiological corrosion (MIC) in industrial components, it was not but until the decade of the 80 s when the nuclear industry recognized its influence in some systems of Nuclear Generating Power plants. At the moment, diverse studies that have tried to explain the generation mechanism of this phenomenon exist; however, they are even important queries that to solve, especially those related with the particularities of the affected metallic substrates. Presently work, the electrochemical behavior of samples of stainless steel AISI 304L sensitized is evaluated and the carbon steel APIX65, before the action of sulfate reducing microorganisms low the same experimental conditions; found that for the APIX65 the presence of this type of bacteria promoted the formation of a stable biofilm that allowed the maintenance of the microorganisms that damaged the material in isolated places where stings were generated; while in the AISI 304L, it was not detected damage associated to the inoculated media. The techniques of Resistance to the Polarization and Tafel Extrapolation, allowed the calculation of the speed of uniform corrosion, parameter that doesn't seem to be influenced by the presence of the microorganisms; while that noise electrochemical it distinguished in real time, the effect of the sulfate reducing in the steel APIX65. (Author)

  16. Air corrosion in storing

    International Nuclear Information System (INIS)

    Mazaudier, F.; Feron, D.; Baklouti, M.; Midoux, N.

    2001-01-01

    The air corrosiveness of a radioactive waste package has been estimated in a store inside which the environmental conditions are supposed to be rather close to the outside ones. It is expressed according to the ISO 9223 standard, from the humidification value and the amounts of sulfur dioxide and chlorine ions. A computer code has been perfected too; the thermal behaviour of the package can then been determined. (O.M.)

  17. Review on stress corrosion and corrosion fatigue failure of centrifugal compressor impeller

    Science.gov (United States)

    Sun, Jiao; Chen, Songying; Qu, Yanpeng; Li, Jianfeng

    2015-03-01

    Corrosion failure, especially stress corrosion cracking and corrosion fatigue, is the main cause of centrifugal compressor impeller failure. And it is concealed and destructive. This paper summarizes the main theories of stress corrosion cracking and corrosion fatigue and its latest developments, and it also points out that existing stress corrosion cracking theories can be reduced to the anodic dissolution (AD), the hydrogen-induced cracking (HIC), and the combined AD and HIC mechanisms. The corrosion behavior and the mechanism of corrosion fatigue in the crack propagation stage are similar to stress corrosion cracking. The effects of stress ratio, loading frequency, and corrosive medium on the corrosion fatigue crack propagation rate are analyzed and summarized. The corrosion behavior and the mechanism of stress corrosion cracking and corrosion fatigue in corrosive environments, which contain sulfide, chlorides, and carbonate, are analyzed. The working environments of the centrifugal compressor impeller show the behavior and the mechanism of stress corrosion cracking and corrosion fatigue in different corrosive environments. The current research methods for centrifugal compressor impeller corrosion failure are analyzed. Physical analysis, numerical simulation, and the fluid-structure interaction method play an increasingly important role in the research on impeller deformation and stress distribution caused by the joint action of aerodynamic load and centrifugal load.

  18. Pilot scale ion exchange column study for reducing radioactivity discharges to environment

    International Nuclear Information System (INIS)

    Kore, S.G.; Yadav, V.K.; Sonar, N.L.; Valsala, T.P.; Narayan, J.; Sharma, S.P.; Chattopadhyay, S.; Dani, U.; Vishwaraj, I.

    2013-01-01

    Low level liquid waste (LLW) is generated during operation of Tarapur Atomic Power Station (TAPS). Chemical co-precipitation is the treatment method used for decontamination of this waste with respect to radionuclide prior to discharge to environment. Further polishing of effluent from the treated LLW was planned using ion exchange column to reduce the discharges to the environment In view of this ion exchange column study was carried out in the laboratory using in-house prepared cobalt ferrocyanide (COFC) based composite resin. Based on the encouraging results obtained in the lab studies, pilot scale study was carried out in the plant. Decontamination factor (DF) of 14-15 was obtained with respect to Cs isotopes and overall DF of 2-5 was obtained with respect to gross beta activity. (author)

  19. Improvement of passive shielding to reduce background components to determinate radioactivity at low energy gamma rays

    Energy Technology Data Exchange (ETDEWEB)

    Thanh, Tran Thien [VNUHCM-Univ. of Science, Ho Chi Minh City (Viet Nam). Dept. of Nuclear Engineering Physics; Ton Duc Thang Univ., Ho Chi Minh City (Viet Nam). Div. of Nuclear Physics; Loan, T.T.H.; Nhon, M.V.; Tao, C.V. [VNUHCM-Univ. of Science, Ho Chi Minh City (Viet Nam). Dept. of Nuclear Engineering Physics

    2014-06-15

    This paper describes a new system that has the ability to reduce background components to apply for environmental studies. This system uses gamma spectrometry with semi-empirical self-absorption correction and practical method for routine measurements of the mass activity radionuclides at low energy such as {sup 210}Pb (46.5 keV), {sup 234}Th (63.3 keV) and {sup 226}Ra (186.2 keV). The reliability and precision of proficiency test must pass for final scores all the analytical determinations of received ''acceptable'' for all radionuclides. Our work shows an experiment developed for the calculation of self-absorption correction in that case that the sample's chemical composition is unknown.

  20. Corrosion of alloy 22 in phosphate ions effect and chloride containing solutions

    International Nuclear Information System (INIS)

    Carranza, Ricardo M.

    2009-01-01

    Alloy 22 belongs to Ni-Cr-Mo family. This alloy resists the most aggressive environments for industrial applications, in oxidizing as well as reducing conditions, because exhibits an excellent uniform and localized corrosion resistance in aqueous solution. Because of its outstanding corrosion resistant, this alloy is one of the candidate to be considered for the outer shell of the canister that would contain high level radioactive nuclear wastes in a geological repository. The aim of this work is to study ion phosphate influence over Alloy 22 corrosion behavior under aggressive conditions, such as high temperature and high ion chloride concentration, where this material might be susceptible to crevice corrosion. Two different types of samples were used: cylinder specimens for uniform corrosion behavior studies and Prismatic Crevice Assembly (PCA) specimens for localized corrosion studies. Electrochemical tests were performed in deaerated aqueous solution of 1 M NaCl and 1 M NaCl with different phosphate additions at 90 C degrees and pH near neutral. The anodic film and corrosion products obtained were studied by SEM/EDS. Cyclic Potentiodynamic Polarization (CPP) curves obtained for uniform corrosion studies, showed an increase of the passivity range in phosphate containing solutions. The passive current value was 1 μA/cm 2 approximately in all the tests. PCA electrochemical tests, that combined a CPP with a potentiostatic polarization step for 2 hours in between the forward and reverse scan, showed crevice corrosion development in some cases. The repassivation potential value, determined by the intersection of the forward and the reverse scan, increased with phosphate addition. A complete crevice corrosion inhibition effect was found for phosphate concentration higher than 0.3 M. These results indicate that the passivity potential range depend on phosphate presence and might be related with the incorporation of the anion in the passive film. Results of the tests

  1. Reducing the potential for migration of radioactive waste: Aqueous thermal degradation of the chelating agent disodium EDTA

    International Nuclear Information System (INIS)

    Boles, J.S.; Ritchie, K.; Crerar, D.A.

    1987-01-01

    Ethylenediaminetetraacetic acid (EDTA), a common component of cleaning solutions used for decontamination of radioactive equipment, has been associated with increased migration of radionuclides into local groundwaters at some radwaste disposal sites. It has been proposed that predisposal thermal degradation of EDTA-containing aqueous solutions may reduce the potential for chelate-enhanced mobilization of radionuclides at these sites. Aqueous thermal degradation experiments with disodium EDTA have shown that the compound degrades rapidly at 200 0 C with an activation energy of 114.3 +- 7.87 kJ/mol, and forms the decomposition product methyliminodiacetic acid (MIDA). A comparison of the values for stability constants of transition metal and actinide complexes with EDTA, MIDA, and two other reported degradation products, indicates that the chelating efficiency of the degradation products is 6 to 22 orders of magnitude lower than that of EDTA at 25 0 C. It is concluded that aqueous thermal degradation should significantly reduce the overall chelating efficiency of EDTA-containing solutions

  2. Antimicrobial action and anti-corrosion effect against sulfate reducing bacteria by lemongrass (Cymbopogon citratus) essential oil and its major component, the citral.

    Science.gov (United States)

    Korenblum, Elisa; Regina de Vasconcelos Goulart, Fátima; de Almeida Rodrigues, Igor; Abreu, Fernanda; Lins, Ulysses; Alves, Péricles Barreto; Blank, Arie Fitzgerald; Valoni, Erika; Sebastián, Gina V; Alviano, Daniela Sales; Alviano, Celuta Sales; Seldin, Lucy

    2013-08-10

    The anti-corrosion effect and the antimicrobial activity of lemongrass essential oil (LEO) against the planktonic and sessile growth of a sulfate reducing bacterium (SRB) were evaluated. Minimum inhibitory concentration (MIC) of LEO and its major component, the citral, was 0.17 mg ml-1. In addition, both LEO and citral showed an immediate killing effect against SRB in liquid medium, suggesting that citral is responsible for the antimicrobial activity of LEO against SRB. Transmission electron microscopy revealed that the MIC of LEO caused discernible cell membrane alterations and formed electron-dense inclusions. Neither biofilm formation nor corrosion was observed on carbon steel coupons after LEO treatment. LEO was effective for the control of the planktonic and sessile SRB growth and for the protection of carbon steel coupons against biocorrosion. The application of LEO as a potential biocide for SRB growth control in petroleum reservoirs and, consequently, for souring prevention, and/or as a coating protection against biocorrosion is of great interest for the petroleum industries.

  3. Antimicrobial action and anti-corrosion effect against sulfate reducing bacteria by lemongrass (Cymbopogon citratus) essential oil and its major component, the citral

    Science.gov (United States)

    2013-01-01

    The anti-corrosion effect and the antimicrobial activity of lemongrass essential oil (LEO) against the planktonic and sessile growth of a sulfate reducing bacterium (SRB) were evaluated. Minimum inhibitory concentration (MIC) of LEO and its major component, the citral, was 0.17 mg ml-1. In addition, both LEO and citral showed an immediate killing effect against SRB in liquid medium, suggesting that citral is responsible for the antimicrobial activity of LEO against SRB. Transmission electron microscopy revealed that the MIC of LEO caused discernible cell membrane alterations and formed electron-dense inclusions. Neither biofilm formation nor corrosion was observed on carbon steel coupons after LEO treatment. LEO was effective for the control of the planktonic and sessile SRB growth and for the protection of carbon steel coupons against biocorrosion. The application of LEO as a potential biocide for SRB growth control in petroleum reservoirs and, consequently, for souring prevention, and/or as a coating protection against biocorrosion is of great interest for the petroleum industries. PMID:23938023

  4. Reprocessing and clearance as ways for reducing radioactive waste from fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Rocco, P.; Zucchetti, M. [Energetics Dept., Polytechnic of Turin (Italy); Zucchetti, M. [European Commission, JRC, Institute for Advanced Material, Ispra, Vatican City State, Holy See (Italy)

    1998-07-01

    The irradiated material chosen to investigate this concept is V-4Cr-4Ti, used as in-vessel structural material of PM-1, one of the three reactor models of SEAFP-2 assessments. The analysis performed deserves the following comments: in general, the modified concentrations of the parent isotopes have been assumed equal to the actual detection limits of the concerned elements. The nuclides investigated are those having the higher activities in the irradiated alloy (dominant nuclides). The contribution to the clearance index of other nuclides, present in the irradiated alloy and not yet examined should also be assessed. Even having reduced the concentrations of the impurities to the very low levels hypothesized, the ratios (A/L{sub c}){sub m} of some nuclides are too great. Beside K-42 and Ar-42, deriving from titanium, this happens for nuclides deriving from niobium, silver, nickel, copper, strontium. Hence the clearance index of the modified alloy is greater than the unity and clearance conditions are not achieved. Additional purification process have to be envisaged after the irradiation, with an elemental dilution of the noxious nuclides and then performing a purification process. As an example, it is found from table 2 that the sum of the ratios (A/L{sub c}){sub m} of Nb-93m, Nb-91 and Nb-94, nuclides deriving from a concentration of 2 x 10{sup -2} ppm of niobium, is 7.75. An addition of 5/10 ppm of natural niobium to the molten irradiated material and a further purification of niobium to levels near to the initial one could achieve a 100-fold reduction of the ratios (A/L{sub c}){sub m}. 10000 t of V-4Cr4Ti, representing the total amount (maintenance + decommissioning) arising from the in vessel structures of a power reactor should be reprocessed with 100 kg of niobium, in the highly conservative hypothesis that all material is irradiated in first wall conditions. The secondary waste arising from the purification processes would not exceed a few ton which could be

  5. Stainless steel waste containers: an assessment of the probability of stress corrosion cracking

    International Nuclear Information System (INIS)

    Wanklyn, J.N.; Naish, C.C.

    1991-06-01

    The paper summarises information obtained from the literature and discussions held with corrosion experts from universities and industry, relevant to the possibility that stainless steel radioactive waste containers containing low level and intermediate level radioactive waste (LLW and ILW) could, when buried in concrete, suffer one or more of the forms of stress corrosion cracking (SCC). Stress corrosion cracking is caused by the simultaneous and synergistic action of a corrosive environment and stress. The initiation and propagation of SCC depend on a number of factors being present, namely a certain level of stress, an environment which will cause cracking and a susceptible metal or alloy. Generally the susceptibility of a metal or alloy to SCC increases as its strength level increases. The susceptibility in a specific environment will depend on: solution concentration, pH, temperature, and electrochemical potential of the metal/alloy. It is concluded that alkaline stress corrosion cracking is unlikely to occur under even the worst case conditions, that chloride stress corrosion cracking is a distinct possibility at the higher end of the temperature range (25-80 o C) and that stress corrosion related to sensitization of the steel will not be a problem for the majority of container material which is less than 5 mm in cross section. Thicker section material could become sensitized leading to a local problem in these areas. Contact with metals that are electrochemically more negative in corrosion potential is likely to reduce the incidence of SCC, at least locally. Measurement of repassivation potentials and rest potentials in solutions of relevant composition would provide a firmer prediction of the extent to which a high pH could reduce the likelihood of SCC caused by chlorides. (author)

  6. Method of disposing radioactive wastes

    International Nuclear Information System (INIS)

    Isozaki, Kei.

    1983-01-01

    Purpose : To enable safety ocean disposal of radioactive wastes by decreasing the leaching rate of radioactive nucleides, improving the quick-curing nature and increasing the durability. Method : A mixture comprising 2 - 20 parts by weight of alkali metal hydroxide and 100 parts by weight of finely powdered aqueous slags from a blast furnace is added to radioactive wastes to solidify them. In the case of medium or low level radioactive wastes, the solidification agent is added by 200 parts by weight to 100 parts by weight of the wastes and, in the case of high level wastes, the solidification agent is added in such an amount that the wastes occupy about 20% by weight in the total of the wastes and the solidification agent. Sodium hydroxide used as the alkali metal hydroxide is partially replaced with sodium carbonate, a water-reducing agent such as lignin sulfonate is added to improve the fluidity and suppress the leaching rate and the wastes are solidified in a drum can. In this way, corrosions of the vessel can be suppressed by the alkaline nature and the compression strength, heat stability and the like of the product also become excellent. (Sekiya, K.)

  7. Corrosion protection and control using nanomaterials

    CERN Document Server

    Cook, R

    2012-01-01

    This book covers the use of nanomaterials to prevent corrosion. The first section deals with the fundamentals of corrosion prevention using nanomaterials. Part two includes a series of case studies and applications of nanomaterials for corrosion control.$bCorrosion is an expensive and potentially dangerous problem in many industries. The potential application of different nanostructured materials in corrosion protection, prevention and control is a subject of increasing interest. Corrosion protection and control using nanomaterials explores the potential use of nanotechnology in corrosion control. The book is divided into two parts. Part one looks at the fundamentals of corrosion behaviour and the manufacture of nanocrystalline materials. Chapters discuss the impact of nanotechnology in reducing corrosion cost, and investigate the influence of various factors including thermodynamics, kinetics and grain size on the corrosion behaviour of nanocrystalline materials. There are also chapters on electrodeposition ...

  8. Process for ultimate storage of radioactive fission products

    International Nuclear Information System (INIS)

    Baukal, W.; Gruenthaler, K.H.; Neumann, K.

    1980-01-01

    In order to exclude cracking in the cooling phase during sealing of radioactive oxidic fission products in glass melts, metallic filling elements - e.g. wires, tissues - are proposed to be incorporated in the mould before the glass melt is poured in. Especially nickel alloys with corrosion proof surface layers, e.g. titanium nitride, silicon carbide, silicon nitride, aluminium oxide, suit best. These elements reduce thermal stresses and effect high thermal conductance towards the mould wall. (UWI) [de

  9. Corrosion '98: 53. annual conference and exposition, proceedings

    International Nuclear Information System (INIS)

    Anon.

    1998-01-01

    This conference was divided into the following sections: Corrosion in Gas Treating; Problems and Solutions in Commercial Building Water Systems; Green Corrosion/Scale Inhibitors; Atmospheric Corrosion; AIRPOL Update/98; Rubber Lining--Answers to Many Problems; Interference Problems; Environmental Assisted Cracking: Fundamental Research and Industrial Applications; Corrosion in Nuclear Systems; New Developments in Scale and Deposit Control; Corrosion and Corrosion Protection in the Transportation Industries; What's All the Noise About--Electrochemical That Is; Refining Industry Corrosion; Corrosion Problems in Military Hardware: Case Histories, Fixes and Lessons Learned; Cathodic Protection Test Methods and Instrumentation for Underground and On-grade Pipelines and Tanks; Recent Developments in Volatile Corrosion Inhibitors; Corrosion in Supercritical Fluids; Microbiologically Influenced Corrosion; Advances in Understanding and Controlling CO 2 Corrosion; Managing Corrosion with Plastics; Material Developments for Use in Exploration and Production Environments; Corrosion in Cold Regions; The Effect of Downsizing and Outsourcing on Cooling System Monitoring and Control Practices; New Developments in Mechanical and Chemical Industrial Cleaning; Mineral Scale Deposit Control in Oilfield Related Operations; Biocides in Cooling Water; Corrosion and Corrosion Control of Reinforced Concrete Structures; Materials Performance for Fossil Energy Conversion Systems; Marine corrosion; Thermal Spray--Coating and Corrosion Control; Flow Effects on Corrosion in Oil and Gas Production; Corrosion Measurement Technologies; Internal Pipeline Monitoring--Corrosion Monitoring, Intelligent Pigging and Leak Detection; Cathodic Protection in Natural Waters; Corrosion in Radioactive Liquid Waste Systems; On-line Hydrogen Permeation Monitoring Equipment and Techniques, State of the Art; Water Reuse and Recovery; Performance of Materials in High Temperature Environments; Advances in Motor

  10. Corrosion engineering in nuclear power industry

    International Nuclear Information System (INIS)

    Prazak, M.; Tlamsa, J.; Jirousova, D.; Silber, K.

    1990-01-01

    Corrosion problems in nuclear power industry are discussed from the point of view of anticorrosion measures, whose aim is not only increasing the lifetime of the equipment but, first of all, securing ecological safety. A brief description is given of causes of corrosion damage that occurred at Czechoslovak nuclear power plants and which could have been prevented. These involve the corrosion of large-volume radioactive waste tanks made of the CSN 17247 steel and of waste piping of an ion exchange station made of the same material, a crack in a steam generator collector, contamination of primary circuit water with iron, and corrosion of CrNi corrosion-resistant steel in a spent fuel store. It is concluded that if a sufficient insight into the corrosion relationships exists and a reasonable volume of data is available concerning the corrosion state during the nuclear facility performance, the required safety can be achieved without adopting extremely costly anticorrosion measures. (Z.M.)

  11. New technologies - new corrosion problems

    International Nuclear Information System (INIS)

    Heitz, E.

    1994-01-01

    Adequate resistance of materials to corrosion is equally important for classical and for new technologies. This article considers the economic consequences of corrosion damage and, in addition to the long-known GNP orientation, presents a new approach to the estimation of the costs of corrosion and corrosion protection via maintenance and especially corrosion-related maintenance. The significance of ''high-tech'', ''medium-tech'' and ''low-tech'' material and corrosion problems is assessed. Selected examples taken from new technologies in the areas of power engineering, environmental engineering, chemical engineering, and biotechnology demonstrate the great significance of the problems. It is concluded that corrosion research and corrosion prevention technology will never come to an end but will constantly face new problems. Two technologies are of particular interest since they focus attention on new methods of investigation: microelectronics and final disposal of radioactive wastes. The article closes by considering the importance of the transfer of experience and technology. Since the manufacturs and operators of machines and plant do not generally have access to the very latest knowledge, they should be kept informed through advisory services, experimental studies, databases, and further education. (orig.) [de

  12. Surface Analysis of Marine Sulphate-Reducing Bacteria Exo polymers on Steel During Bio corrosion Using X-ray Photoelectron Spectroscopy

    International Nuclear Information System (INIS)

    Fathul Karim Sahrani; Madzlan Abd. Aziz; Zaharah Ibrahim; Adibah Yahya

    2008-01-01

    The aim of this study was to determine the surface chemistry during bio corrosion process on growth and on the production of exo polymeric substances (EPS) in batch cultures of mix-strains of marine sulphate-reducing bacteria (SRB) isolated from Malaysian Shipyard and Engineering Harbours, Pasir Gudang. The EPS and precipitates were analyzed by x-ray photoelectron spectroscopy (XPS). The XPS results indicate that Fe(2p 3/2 ) spectrum for iron sulphide can be fitted with Fe(II) and Fe(III) components, both corresponding to Fe-S bond types. The absence of oxide oxygen in the O(1s) spectrum and Fe(III)-O bond types in the Fe(2p 3/2 ) spectrum supports the conclusion that iron sulphides are composed of both ferric and ferrous iron coordinated with mono sulphide and disulphide. (author)

  13. Low corrosive chemical decontamination method using pH control. 1. Basic system

    International Nuclear Information System (INIS)

    Nagase, Makoto; Ishida, Kazushige; Uetake, Naohito; Anazawa, Kazumi; Nakamura, Fumito; Yoshikawa, Hiroo; Tamagawa, Tadashi; Furukawa, Kiyoharu

    2001-01-01

    A new low corrosive decontamination method was developed which uses both oxalic acid and hydrazine as the reducing agent and potassium permanganate as the oxidizing agent. Less corrosion of structural materials during the decontamination is realized by pH control of the reducing agent. The pH of 2.5, attained by adding hydrazine to oxalic acid, was the optimum pH for maintaining a high decontamination effect and lowering the corrosion at the same time. As this reducing agent can be decomposed into carbon dioxide, nitrogen and water by using a catalyst column with hydrogen peroxide, the amount of secondary radioactive waste is small. These good features were demonstrated through actual plant decontamination tasks. (author)

  14. Porous three-dimensional reduced graphene oxide merged with WO3 for efficient removal of radioactive strontium

    Science.gov (United States)

    Mu, Wanjun; Yu, Qianghong; Hu, rui; Li, Xingliang; Wei, Hongyuan; Jian, Yuan

    2017-11-01

    A simple hydrothermal method was used to prepare 3D nanostructured composite adsorbents of reduced graphene oxide (RGO) and WO3 (RGO/WO3). The analysis results suggest that it possesses a mesoporous 3D structure, in which WO3 nanorods are uniformly loaded on the surface of the RGO. Combining the benefits of GO and WO3, the composites exhibit a higher adsorption capacity for removing Sr2+ from aqueous solutions over a wide pH range (4-11). Adsorption isotherms show that the data fit the Langmuir isotherms well (R > 0.99), and the maximum adsorption capacity of 149.56 mg g-1 was achieved, much higher than that for GO, WO3 and other similar adsorbents. Sr2+ adsorption on RGO/WO3 reached equilibrium within 200 min. The fast adsorption and high adsorption rate of RGO/WO3 are mostly attributable to the plentiful adsorption sites provided by the dispersed WO3 nanoparticles on the RGO surface. Furthermore, the existence of Na+ ions has no obvious effect on the removal of Sr2+ ions by RGO/WO3, and RGO/WO3 adsorbent can be repeated at least 5 times without significant loss of adsorption capacity by adsorption-desorption experiment. Thus, RGO/WO3 shows the potential ability for removal of 90Sr from radioactive wastewater.

  15. Rail base corrosion and cracking prevention

    Science.gov (United States)

    2014-07-01

    Rail base corrosion combined with fatigue or damage can significantly reduce rail life. Studies were done to examine the relative contribution of damage, corrosion, and fatigue on rail life. The combined effects can be separated into constituent fact...

  16. Some principles of service life calculation of reinforcements and in situ corrosion monitoring by sensors in the radioactive waste containers of El Cabril disposal (Spain)

    International Nuclear Information System (INIS)

    Andrade, C.; Martinez, I.; Castellote, M.; Zuloaga, P.

    2006-01-01

    Reinforced concrete is the most usual material used in engineered barriers in low-level nuclear waste disposal facilities. The record of modern concrete is no longer than about 100 years. During this time, it has been noticed that the material gives a good performance in many environments, however several chemical aggressive species in water, soil or the atmosphere may react with the cement mineralogical phases and perturb its integrity. El Cabril repository has a design life objective of longer than 300 years and therefore, these structures should maintain their main characteristics during this target service life. The potential aggressive conditions that the cement-based materials can suffer have been identified to be: carbonation, water permeation (leaching) and reinforcement corrosion. More unlikely may be the biological attack. Chlorides are not in the environment but they are inside the drums as part of analytical wastes. Vaults and containers are made of a very similar concrete composition while the mortar is specifically designed to be pumpable, with low hydration heat, low shrinkage and of low permeability. In this paper results of concrete characteristics are given as well as the monitoring of the behaviour of reinforcement corrosion parameters from 1995 on the same environmental conditions of the actual waste. This monitoring has been made in a buried structure with embedded sensors. The effect of temperature is commented

  17. Removal efficiency of radioactive cesium and iodine ions by a flow-type apparatus designed for electrochemically reduced water production.

    Directory of Open Access Journals (Sweden)

    Takeki Hamasaki

    Full Text Available The Fukushima Daiichi Nuclear Power Plant accident on March 11, 2011 attracted people's attention, with anxiety over possible radiation hazards. Immediate and long-term concerns are around protection from external and internal exposure by the liberated radionuclides. In particular, residents living in the affected regions are most concerned about ingesting contaminated foodstuffs, including drinking water. Efficient removal of radionuclides from rainwater and drinking water has been reported using several pot-type filtration devices. A currently used flow-type test apparatus is expected to simultaneously provide radionuclide elimination prior to ingestion and protection from internal exposure by accidental ingestion of radionuclides through the use of a micro-carbon carboxymethyl cartridge unit and an electrochemically reduced water production unit, respectively. However, the removability of radionuclides from contaminated tap water has not been tested to date. Thus, the current research was undertaken to assess the capability of the apparatus to remove radionuclides from artificially contaminated tap water. The results presented here demonstrate that the apparatus can reduce radioactivity levels to below the detection limit in applied tap water containing either 300 Bq/kg of 137Cs or 150 Bq/kg of 125I. The apparatus had a removal efficiency of over 90% for all concentration ranges of radio-cesium and -iodine tested. The results showing efficient radionuclide removability, together with previous studies on molecular hydrogen and platinum nanoparticles as reactive oxygen species scavengers, strongly suggest that the test apparatus has the potential to offer maximum safety against radionuclide-contaminated foodstuffs, including drinking water.

  18. Radioactive waste removing device

    International Nuclear Information System (INIS)

    Sakai, Takuhiko.

    1982-01-01

    Purpose: To cleanup primary coolants for LMFBR type reactors by magnetically generating a high speed rotational flow in the flow of liquid metal, and adsorbing radioactive corrosion products and fission products onto capturing material of a complicated shape. Constitution: Three-phase AC coils for generating a rotational magnetic field are provided to the outside of a container through which liquid sodium is passed to thereby generate a high speed rotational stream in the liquid sodium flowing into the container. A radioactive substance capturing material made of a metal plate such as of nickel and stainless steel in the corrugated shape with shape edges is secured within a flow channel. Magnetic field at a great slope is generated in the flow channel by the capturing material to adsorb radioactive corrosion products and fission products present in the liquid sodium onto the capturing material and removing therefrom. This enables to capture the ferri-magnetic impurities by adsorption. (Moriyama, K.)

  19. A Theoretical Model for Metal Corrosion Degradation

    Directory of Open Access Journals (Sweden)

    David V. Svintradze

    2010-01-01

    Full Text Available Many aluminum and stainless steel alloys contain thin oxide layers on the metal surface which greatly reduce the corrosion rate. Pitting corrosion, a result of localized breakdown of such films, results in accelerated dissolution of the underlying metal through pits. Many researchers have studied pitting corrosion for several decades and the exact governing equation for corrosion pit degradation has not been obtained. In this study, the governing equation for corrosion degradation due to pitting corrosion behavior was derived from solid-state physics and some solutions and simulations are presented and discussed.

  20. Corrosion Engineering.

    Science.gov (United States)

    White, Charles V.

    A description is provided for a Corrosion and Corrosion Control course offered in the Continuing Engineering Education Program at the General Motors Institute (GMI). GMI is a small cooperative engineering school of approximately 2,000 students who alternate between six-week periods of academic study and six weeks of related work experience in…

  1. Method of storing radioactive wastes

    International Nuclear Information System (INIS)

    Adachi, Toshio; Hiratake, Susumu.

    1980-01-01

    Purpose: To reduce the radiation doses externally irradiated from treated radioactive waste and also reduce the separation of radioactive nuclide due to external environmental factors such as air, water or the like. Method: Radioactive waste adhered with radioactive nuclide to solid material is molten to mix and submerge the radioactive nuclide adhered to the surface of the solid material into molten material. Then, the radioactive nuclide thus mixed is solidified to store the waste in solidified state. (Aizawa, K.)

  2. Corrosion behavior of carbon steel exposed for long time to an inoculation medium of sulfate-reducing bacteria; Ryusan`en kangenkin ga seisokusuru baichi ni chokikan shinshinshita tansoko no fushoku kyodo

    Energy Technology Data Exchange (ETDEWEB)

    Baba, F.; Suzuki, T. [Ajinomoto Co. Inc., Kawasaki (Japan). Technology and Engineering Lab.; Seo, M. [Hokkaido Univ., Sapporo (Japan). Graduate School of Engineering

    1996-10-15

    In this paper, carbon steel was exposed more than six weeks to an inoculation medium of the sulfate-reducing bacteria in which the Fe{sup 2+} concentration was adjusted to a fixed value, the corrosion behavior of carbon steel was investigated by measuring the weight change and surface analysis using EPMA. As a result, the conclusions were obtained as follows: in the case of the medium with high Fe{sup 2+} concentration, the corrosion rate reached a maximum. In this case, the corrosion rate was suppressed to be low during the exposure for up to three weeks, and was increased above four weeks. The corrosion rate became 0.06 mm year{sup -1} by extrapolating the weight loss during the exposure up to six weeks. This value was higher than the average corrosion rate of carbon steel in a neutral solution with deaeration. It was shown from the analysis results using the EPMA that the FeS scale area covered on the surface of carbon steel would act as a cathode, and the other area would act as an anode. The formation of a scale effectively acting as a cathode depended on the exposure time and the formation of FeS in the medium. 15 refs., 10 figs., 1 tab.

  3. The reactivity of clay materials in a context of metallic corrosion: application to disposal of radioactive wastes in deep argillaceous formations; Reactivite des materiaux argileux dans un contexte de corrosion metallique: application au stockage des dechets radioactifs en site argileux

    Energy Technology Data Exchange (ETDEWEB)

    Perronnet, M

    2004-10-15

    In order to confine radioactive wastes in deep settings, it is envisaged to use some natural clay materials and bentonites. Their stability when in contact with metallic iron, main component of the canisters, is studied. These studies show that the reactivity of such materials is mainly controlled by those of their di-octahedral smectites and kaolinites. On the contrary, the presence of sulfides stops the Fe(0)-clays reaction. The kind of reaction products depends on the quantity of available metallic iron. When pH is over 7, the Fe(0) is oxidized consecutive to a physical contact with the oxidant agents of the smectite (H{sup +}, OH{sup -} et Fe{sup 3+}). This reaction is favored by the heterogeneities of the lateral surfaces of the smectite, which then describes a micro-environments in which some serpentines grow up if the iron supply is sufficient. Such new-crystallization imply a decrease of the confinement properties of the clay barrier. (author)

  4. Isotopic techniques in radioactive waste disposal site evaluation: a method for reducing uncertainties I. T, T/3He, 4He, 14C, 36Cl

    International Nuclear Information System (INIS)

    Muller, A.B.

    1981-01-01

    This paper introduces five of the isotopic techniques which can help reduce uncertainties associated with the assessment of radioactive waste disposal sites. The basic principles and practical considerations of these best known techniques have been presented, showing how much additional site specific information can be acquired at little cost or consequence to containment efficiency. These methods, and the more experimental methods appearing in the figure but not discussed here, should be considered in any detailed site characterization, data collection and analysis

  5. The reactivity of clay materials in a context of metallic corrosion: application to disposal of radioactive wastes in deep argillaceous formations

    International Nuclear Information System (INIS)

    Perronnet, M.

    2004-10-01

    In order to confine radioactive wastes in deep settings, it is envisaged to use some natural clay materials and bentonites. Their stability when in contact with metallic iron, main component of the canisters, is studied. These studies show that the reactivity of such materials is mainly controlled by those of their di-octahedral smectites and kaolinites. On the contrary, the presence of sulfides stops the Fe(0)-clays reaction. The kind of reaction products depends on the quantity of available metallic iron. When pH is over 7, the Fe(0) is oxidized consecutive to a physical contact with the oxidant agents of the smectite (H + , OH - et Fe 3+ ). This reaction is favored by the heterogeneities of the lateral surfaces of the smectite, which then describes a micro-environments in which some serpentines grow up if the iron supply is sufficient. Such new-crystallization imply a decrease of the confinement properties of the clay barrier. (author)

  6. Erosion–corrosion and corrosion properties of DLC coated low temperature Erosion–corrosion and corrosion properties of DLC coated low temperature

    DEFF Research Database (Denmark)

    Jellesen, Morten Stendahl; Christiansen, Thomas; Hilbert, Lisbeth Rischel

    2009-01-01

    of AISI 316 as substrate for DLC coatings are investigated. Corrosion and erosion–corrosion measurements were carried out on low temperature nitrided stainless steel AISI 316 and on low temperature nitrided stainless steel AISI 316 with a top layer of DLC. The combination of DLC and low temperature...... nitriding dramatically reduces the amount of erosion–corrosion of stainless steel under impingement of particles in a corrosive medium....

  7. Corrosion of high purity copper as engineering barrier in deep geological repositories

    International Nuclear Information System (INIS)

    Ochoa, Maité; Rodríguez Martín, A.; Farina Silvia, B.

    2013-01-01

    Pure copper with oxygen content below 5 ppm (to minimize segregation at grain boundaries) and doped with phosphorus (to increase creep resistance) is the chosen material for the corrosion-resistant barrier of the High Level Radioactive 2 Wastecontainers in the Swedish and Finnish repository models. These models include the construction of the repository below the water table, which is a reducing environment in which copper has excellent resistance to general and localized corrosion in aqueous electrolytes. The aim of this work is contribute to determine the durability of the material, given that deep geological repositories of HLW are designed to ensure the protection of the environment for periods of hundreds of thousands years. As a first step in a more general analysis the effects of chloride, one of the main aggressive species of corrosion, are evaluated. To this purpose corrosion potential was determined and anodic polarization curves were performed in deaerated solutions varying the chloride concentration between 0.01 and 1M and the temperature between 30 and 90°C. Several electrochemical techniques were used: the evolution of corrosion potential was measured, anodic polarization curves were obtained and electrochemical impedance tests were performed. The analysis was complemented with microscopic observations of the type of corrosive attack, as well as determinations of the eventual corrosion products formed using Energy-Dispersive X-ray Analysis (EDS). Results show that the corrosion potential decreases with the increase of temperature and with the increase of chloride concentration. A correlation of the corrosion potential as a function of temperature and chloride concentration was obtained, with the purpose of making predictions in variable conditions.The current density increases both with temperature and with chloride concentration. A pitting potential is observed in certain conditions. (author)

  8. Microbiologically induced corrosion

    International Nuclear Information System (INIS)

    Stein, A.A.

    1988-01-01

    Biological attack is a problem that can affect all metallic materials in a variety of environments and systems. In the power industry, corrosion studies have focused on condensers and service water systems where slime, barnacles, clams, and other macro-organisms are easily detected. Efforts have been made to eliminate the effect of these organisms through the use of chlorination, backflushing, organic coating, or thermal shock. The objective is to maintain component performance by eliminating biofouling and reducing metallic corrosion. Recently, corrosion of power plant components by micro-organisms (bacteria) has been identified even in very clean systems. A system's first exposure to microbiologically induced corrosion (MIC) occurs during its first exposure to an aqueous environment, such as during hydrotest or wet layup. Corrosion of buried pipelines by sulfate-reducing bacteria has been studied by the petrochemical industry for years. This paper discusses various methods of diagnosing, monitoring, and controlling MIC in a variety of systems, as well as indicates areas where further study is needed

  9. Suppression of aqueous corrosion of La(Fe{sub 0.88}Si{sub 0.12}){sub 13} by reducing dissolved oxygen concentration for high-performance magnetic refrigeration

    Energy Technology Data Exchange (ETDEWEB)

    Fujieda, S., E-mail: fujieda@tagen.tohoku.ac.jp; Fukamichi, K.; Suzuki, S.

    2014-07-05

    Highlights: • The aqueous corrosion of La(Fe{sub 0.88}Si{sub 0.12}){sub 13} and its suppression were investigated. • The lattice expansion after immersion was caused by the hydrogen absorption. • The itinerant-electron metamagnetic transition became indistinct after immersion. • The aqueous corrosion was suppressed by reducing the dissolved oxygen concentration. - Abstract: The itinerant-electron metamagnetic transition of La(Fe{sub 0.88}Si{sub 0.12}){sub 13} becomes indistinct after immersion in distilled-water containing about 8 ppm of the dissolved oxygen (DO) concentration because of aqueous corrosion. However, the aqueous corrosion of La(Fe{sub 0.88}Si{sub 0.12}){sub 13} is significantly suppressed by reducing the DO concentration. Thus, isothermal magnetic entropy change after immersion for 30 days in deaerated distilled-water with a DO concentration less than 0.1 ppm is larger than that after immersion for 5 days in distilled-water containing about 8 ppm of the DO concentration. Consequently, the reduction of the DO concentration is effective for preservation of the excellent magnetocaloric effects of La(Fe{sub 0.88}Si{sub 0.12}){sub 13} in an aqueous solution, which is a promising heat transfer fluid of room-temperature magnetic refrigeration.

  10. Contribution to the study of the role of sulfate-reducing bacteria in bio-corrosion phenomenon; Contribution a l'etude du role des bacteries sulfato-reductrices dans les phenomenes de biocorrosion

    Energy Technology Data Exchange (ETDEWEB)

    Chatelus, C

    1987-11-15

    By their metabolic activities of hydrogen consumption and of sulfides production, the sulfate-reducing bacteria are the main bacteria responsible of the metallic corrosion phenomena in the absence of oxygen. A physiological and enzymatic study of some Desulfovibrio has contributed to the understanding of the role of these bacteria in the anaerobic bio-corrosion phenomena. Desulfovibrio (D.) vulgaris in organic medium, after having oxidized the lactate, consumes the hydrogen formed by the electrochemical reaction of iron dissolution. The Desulfovibrio can be responsible either of a corrosion by a direct contact with the metal in using the H{sub 2} layer formed at its surface, (bacteria are then adsorbed at the surface because of an iron sulfide crystalline lattice), or of a distant corrosion in consuming the dissolved or gaseous hydrogen. As their hydrogenases can be stable in time independently of the cellular structure (D. vulparis) and active at high temperatures (to 70 C - 75 C) (D. baculatus), these bacteria can act in conditions incompatible with the viability of cells but compatible with the enzymatic expression. A study in terms of temperature has shown that inside the mesophilic group of the Desulfovibrio, the behaviour towards this parameter is specific to each bacteria, that accounts for the permanent presence of the representatives of this population in sites where the temperature variations are important. A change of some degrees Celsius can induce modifications in the yields of bacteria growth and by a consequence in variations in the corrosion intensity. Moreover, sulfate D. multispirans can reduce with specific velocities of different growth, the nitrate, the nitrite and the fumarate. Some sulfato-reducing could then adapt themselves to the variations of concentrations in electron acceptors and metabolize the oxidized substances used as biocides too. The choice of an electron acceptor rather than another do not depend uniquely of the specificity of

  11. Contribution to the study of the role of sulfate-reducing bacteria in bio-corrosion phenomenon; Contribution a l'etude du role des bacteries sulfato-reductrices dans les phenomenes de biocorrosion

    Energy Technology Data Exchange (ETDEWEB)

    Chatelus, C

    1987-11-15

    By their metabolic activities of hydrogen consumption and of sulfides production, the sulfate-reducing bacteria are the main bacteria responsible of the metallic corrosion phenomena in the absence of oxygen. A physiological and enzymatic study of some Desulfovibrio has contributed to the understanding of the role of these bacteria in the anaerobic bio-corrosion phenomena. Desulfovibrio (D.) vulgaris in organic medium, after having oxidized the lactate, consumes the hydrogen formed by the electrochemical reaction of iron dissolution. The Desulfovibrio can be responsible either of a corrosion by a direct contact with the metal in using the H{sub 2} layer formed at its surface, (bacteria are then adsorbed at the surface because of an iron sulfide crystalline lattice), or of a distant corrosion in consuming the dissolved or gaseous hydrogen. As their hydrogenases can be stable in time independently of the cellular structure (D. vulparis) and active at high temperatures (to 70 C - 75 C) (D. baculatus), these bacteria can act in conditions incompatible with the viability of cells but compatible with the enzymatic expression. A study in terms of temperature has shown that inside the mesophilic group of the Desulfovibrio, the behaviour towards this parameter is specific to each bacteria, that accounts for the permanent presence of the representatives of this population in sites where the temperature variations are important. A change of some degrees Celsius can induce modifications in the yields of bacteria growth and by a consequence in variations in the corrosion intensity. Moreover, sulfate D. multispirans can reduce with specific velocities of different growth, the nitrate, the nitrite and the fumarate. Some sulfato-reducing could then adapt themselves to the variations of concentrations in electron acceptors and metabolize the oxidized substances used as biocides too. The choice of an electron acceptor rather than another do not depend uniquely of the specificity of

  12. Development of Advanced In-Situ Techniques for Chemistry Monitoring and Corrosion Mitigation in SCWO Environments

    International Nuclear Information System (INIS)

    Macdonald, D. D.; Lvov, S. N.

    2000-01-01

    This project is developing sensing technologies and corrosion monitoring techniques for use in super critical water oxidation (SCWO) systems to reduce the volume of mixed low-level nuclear waste by oxidizing organic components in a closed cycle system where CO2 and other gaseous oxides are produced, leaving the radioactive elements concentrated in ash. The technique uses water at supercritical temperatures under highly oxidized conditions by maintaining a high fugacity of molecular oxygen in the system, which causes high corrosion rates of even the most corrosive resistant reactor materials. This project significantly addresses the high corrosion shortcoming through development of (a) advanced electrodes and sensors for in situ potentiometric monitoring of pH in high subcritical and supercritical aqueous solutions, (b) an approach for evaluating the association constants for 1-1 aqueous electrolytes using a flow-through electrochemical thermocell; (c) an electrochemical noise sensor for the in situ measurement of corrosion rate in subcritical and supercritical aqueous systems; (d) a model for estimating the effect of pressure on reaction rates, including corrosion reactions, in high subcritical and supercritical aqueous systems. The project achieved all objectives, except for installing some of the sensors into a fully operating SCWO system

  13. Development of Advanced In-Situ Techniques for Chemistry Monitoring and Corrosion Mitigation in SCWO Environments

    Energy Technology Data Exchange (ETDEWEB)

    Macdonald, D. D.; Lvov, S. N.

    2000-03-31

    This project is developing sensing technologies and corrosion monitoring techniques for use in super critical water oxidation (SCWO) systems to reduce the volume of mixed low-level nuclear waste by oxidizing organic components in a closed cycle system where CO2 and other gaseous oxides are produced, leaving the radioactive elements concentrated in ash. The technique uses water at supercritical temperatures under highly oxidized conditions by maintaining a high fugacity of molecular oxygen in the system, which causes high corrosion rates of even the most corrosive resistant reactor materials. This project significantly addresses the high corrosion shortcoming through development of (a) advanced electrodes and sensors for in situ potentiometric monitoring of pH in high subcritical and supercritical aqueous solutions, (b) an approach for evaluating the association constants for 1-1 aqueous electrolytes using a flow-through electrochemical thermocell; (c) an electrochemical noise sensor for the in situ measurement of corrosion rate in subcritical and supercritical aqueous systems; (d) a model for estimating the effect of pressure on reaction rates, including corrosion reactions, in high subcritical and supercritical aqueous systems. The project achieved all objectives, except for installing some of the sensors into a fully operating SCWO system.

  14. System for corrosion monitoring in pipeline applying fuzzy logic mathematics

    Science.gov (United States)

    Kuzyakov, O. N.; Kolosova, A. L.; Andreeva, M. A.

    2018-05-01

    A list of factors influencing corrosion rate on the external side of underground pipeline is determined. Principles of constructing a corrosion monitoring system are described; the system performance algorithm and program are elaborated. A comparative analysis of methods for calculating corrosion rate is undertaken. Fuzzy logic mathematics is applied to reduce calculations while considering a wider range of corrosion factors.

  15. The influence of introduced micro-organisms on corrosion of repository construction materials

    International Nuclear Information System (INIS)

    West, J.M.

    1985-01-01

    The work described in this report forms part of a wider project on the role of geomicrobiology in radioactive waste containment. This has established the presence of microbes in relevant geological formations including several groups of significance to waste containment. Microbial groups demonstrated have included those which could influence deterioration of repository structural materials, eg. sulphate reducing bacteria (SRB). This report describes work carried out to assess this role. More specifically the objectives of this phase of the project are: identification of suitable microbial isolates; to ascertain the growth characteristics of the isolates; to develop and construct experimental cells for use in corrosion rate tests; and to conduct preliminary short term experiments in static conditions designed to assess corrosion rates of mild steel in an ideal growth environment for SRB. Using information gained from these experiments to initiate long term corrosion experiments of steel in an SRB inoculated bentonite simulating near-field conditions in a backfill/canister system. (author)

  16. TREATMENT TANK CORROSION STUDIES FOR THE ENHANCED CHEMICAL CLEANING PROCESS

    Energy Technology Data Exchange (ETDEWEB)

    Wiersma, B.

    2011-08-24

    Radioactive waste is stored in high level waste tanks on the Savannah River Site (SRS). Savannah River Remediation (SRR) is aggressively seeking to close the non-compliant Type I and II waste tanks. The removal of sludge (i.e., metal oxide) heels from the tank is the final stage in the waste removal process. The Enhanced Chemical Cleaning (ECC) process is being developed and investigated by SRR to aid in Savannah River Site (SRS) High-Level Waste (HLW) as an option for sludge heel removal. Corrosion rate data for carbon steel exposed to the ECC treatment tank environment was obtained to evaluate the degree of corrosion that occurs. These tests were also designed to determine the effect of various environmental variables such as temperature, agitation and sludge slurry type on the corrosion behavior of carbon steel. Coupon tests were performed to estimate the corrosion rate during the ECC process, as well as determine any susceptibility to localized corrosion. Electrochemical studies were performed to develop a better understanding of the corrosion mechanism. The tests were performed in 1 wt.% and 2.5 wt.% oxalic acid with HM and PUREX sludge simulants. The following results and conclusions were made based on this testing: (1) In 1 wt.% oxalic acid with a sludge simulant, carbon steel corroded at a rate of less than 25 mpy within the temperature and agitation levels of the test. No susceptibility to localized corrosion was observed. (2) In 2.5 wt.% oxalic acid with a sludge simulant, the carbon steel corrosion rates ranged between 15 and 88 mpy. The most severe corrosion was observed at 75 C in the HM/2.5 wt.% oxalic acid simulant. Pitting and general corrosion increased with the agitation level at this condition. No pitting and lower general corrosion rates were observed with the PUREX/2.5 wt.% oxalic acid simulant. The electrochemical and coupon tests both indicated that carbon steel is more susceptible to localized corrosion in the HM/oxalic acid environment than

  17. Treatment Tank Corrosion Studies For The Enhanced Chemical Cleaning Process

    International Nuclear Information System (INIS)

    Wiersma, B.

    2011-01-01

    Radioactive waste is stored in high level waste tanks on the Savannah River Site (SRS). Savannah River Remediation (SRR) is aggressively seeking to close the non-compliant Type I and II waste tanks. The removal of sludge (i.e., metal oxide) heels from the tank is the final stage in the waste removal process. The Enhanced Chemical Cleaning (ECC) process is being developed and investigated by SRR to aid in Savannah River Site (SRS) High-Level Waste (HLW) as an option for sludge heel removal. Corrosion rate data for carbon steel exposed to the ECC treatment tank environment was obtained to evaluate the degree of corrosion that occurs. These tests were also designed to determine the effect of various environmental variables such as temperature, agitation and sludge slurry type on the corrosion behavior of carbon steel. Coupon tests were performed to estimate the corrosion rate during the ECC process, as well as determine any susceptibility to localized corrosion. Electrochemical studies were performed to develop a better understanding of the corrosion mechanism. The tests were performed in 1 wt.% and 2.5 wt.% oxalic acid with HM and PUREX sludge simulants. The following results and conclusions were made based on this testing: (1) In 1 wt.% oxalic acid with a sludge simulant, carbon steel corroded at a rate of less than 25 mpy within the temperature and agitation levels of the test. No susceptibility to localized corrosion was observed. (2) In 2.5 wt.% oxalic acid with a sludge simulant, the carbon steel corrosion rates ranged between 15 and 88 mpy. The most severe corrosion was observed at 75 C in the HM/2.5 wt.% oxalic acid simulant. Pitting and general corrosion increased with the agitation level at this condition. No pitting and lower general corrosion rates were observed with the PUREX/2.5 wt.% oxalic acid simulant. The electrochemical and coupon tests both indicated that carbon steel is more susceptible to localized corrosion in the HM/oxalic acid environment than

  18. Dry corrosion prediction of radioactive waste containers in long term interim storage: mechanisms of low temperature oxidation of pure iron and numerical simulation of an oxide scale growth

    International Nuclear Information System (INIS)

    Bertrand, N.

    2006-10-01

    In the framework of research on long term behaviour of radioactive waste containers, this work consists on the one hand in the study of low temperature oxidation of iron and on the other hand in the development of a numerical model of oxide scale growth. Isothermal oxidation experiments are performed on pure iron at 300 and 400 C in dry and humid air at atmospheric pressure. Oxide scales formed in these conditions are characterized. They are composed of a duplex magnetite scale under a thin hematite scale. The inner layer of the duplex scale is thinner than the outer one. Both are composed of columnar grains, that are smaller in the inner part. The outer hematite layer is made of very small equiaxed grains. Markers and tracers experiments show that a part of the scale grows at metal/oxide interface thanks to short-circuits diffusion of oxygen. A model for iron oxide scale growth at low temperature is then deduced. Besides this experimental study, the numerical model EKINOX (Estimation Kinetics Oxidation) is developed. It allows to simulate the growth of an oxide scale controlled by mixed mechanisms, such as anionic and cationic vacancies diffusion through the scale, as well as metal transfer at metal/oxide interface. It is based on the calculation of concentration profiles of chemical species and also point defects in the oxide scale and in the substrate. This numerical model does not use the classical quasi-steady-state approximation and calculates the future of cationic vacancies at metal/oxide interface. Indeed, these point defects can either be eliminated by interface motion or injected in the substrate, where they can be annihilated, considering sinks as the climb of dislocations. Hence, the influence of substrate cold-work can be investigated. The EKINOX model is validated in the conditions of Wagner's theory and is confronted with experimental results by its application to the case of high temperature oxidation of nickel. (author)

  19. Low-activation Mn-Cr austenitic stainless steel with further reduced content of long-lived radioactive elements

    Energy Technology Data Exchange (ETDEWEB)

    Onozuka, M.; Saida, T.; Hirai, S. [Mitsubishi Heavy Ind. Ltd., Yokohama (Japan); Kusuhashi, M.; Sato, I.; Hatakeyama, T. [The Japan Steel Works Ltd., Chatsu-machi 4, Muroran 051-8505 (Japan)

    1998-06-01

    Low-activation austenitic stainless steel based on Mn-Cr non-magnetic steels has been developed. The alloying elements of long-life activation, such as Ni, Mo and Co, were eliminated and substituted with Mn along with an addition of N. A Mn-Cr austenitic stainless steel, 24.5Mn-13.5Cr-0.02C-0.2N, has been developed successfully. Examined material properties, including mechanical, thermal and magnetic properties, as well as weldability and characteristics of corrosion resistance, are presented. It was found that the alloy has excellent material properties virtually equivalent to those of 316SS. In this study, the applicability of the Schaeffler, DeLong and Hull constitution diagrams for the stainless steels with low Ni and high Mn contents was also examined. The boundary conditions distinguishing the single austenite phase from the others have been identified for the Mn-Cr steels. (orig.) 22 refs.

  20. Low-activation Mn Cr austenitic stainless steel with further reduced content of long-lived radioactive elements

    Science.gov (United States)

    Onozuka, Masanori; Saida, Tomikane; Hirai, Shouzou; Kusuhashi, Mikio; Sato, Ikuo; Hatakeyama, Tsuyoshi

    1998-06-01

    Low-activation austenitic stainless steel based on Mn-Cr non-magnetic steels has been developed. The alloying elements of long-life activation, such as Ni, Mo and Co, were eliminated and substituted with Mn along with an addition of N. A Mn-Cr austenitic stainless steel, 24.5Mn-13.5Cr-0.02C-0.2N, has been developed successfully. Examined material properties, including mechanical, thermal and magnetic properties, as well as weldability and characteristics of corrosion resistance, are presented. It was found that the alloy has excellent material properties virtually equivalent to those of 316SS. In this study, the applicability of the Schaeffler, DeLong and Hull constitution diagrams for the stainless steels with low Ni and high Mn contents was also examined. The boundary conditions distinguishing the single austenite phase from the others have been identified for the Mn-Cr steels.

  1. Corrosion in airframes

    OpenAIRE

    PETROVIC ZORAN C.

    2016-01-01

    The introductory chapter provides a brief reference to the issue of corrosion and corrosion damage to aircraft structures. Depending on the nature and dimensions of this non uniformity, three different categories of corrosion are defined: uniform, selective and localized corrosion. The following chapters present the forms of corrosion that can occur in three defined categories of corrosion. Conditions that cause certain types of corrosion in various corrosive environments are discussed. Examp...

  2. Development of corrosion testing equipment under heat transfer and irradiation conditions to evaluate corrosion resistance of materials used in acid recovery evaporator. Contract research

    International Nuclear Information System (INIS)

    Motooka, Takafumi; Numata, Masami; Kiuchi, Kiyoshi

    2002-01-01

    We have been evaluated the safety for corrosion of various metals applied to acid recovery evaporators by the mock-up tests using small scaled equipment and the reference tests in laboratories with small specimens. These tests have been conducted under-radioactive environment. The environment in practical reprocessing plants has many radioactive species. Therefore, the effect of irradiation on corrosion should be evaluated in detail. In this study, we have developed the corrosion testing equipment, which is employed to simulate environments in the acid recovery evaporators. This report describes the specification of corrosion testing equipment and the results of primary, reference and hot tests. Using the equipment, the corrosion test under heat transfer and irradiation conditions have been carried out for 930 hours in safety. It is expectable that useful corrosion test data in radioactive environment are accumulated with this equipment in future, and help the adequate choice of corrosion test condition in laboratories. (author)

  3. A STUDY OF CORROSION AND STRESS CORROSION CRACKING OF CARBON STEEL NUCLEAR WASTE STORAGE TANKS

    International Nuclear Information System (INIS)

    BOOMER, K.D.

    2007-01-01

    The Hanford reservation Tank Farms in Washington State has 177 underground storage tanks that contain approximately 50 million gallons of liquid legacy radioactive waste from cold war plutonium production. These tanks will continue to store waste until it is treated and disposed. These nuclear wastes were converted to highly alkaline pH wastes to protect the carbon steel storage tanks from corrosion. However, the carbon steel is still susceptible to localized corrosion and stress corrosion cracking. The waste chemistry varies from tank to tank, and contains various combinations of hydroxide, nitrate, nitrite, chloride, carbonate, aluminate and other species. The effect of each of these species and any synergistic effects on localized corrosion and stress corrosion cracking of carbon steel have been investigated with electrochemical polarization, slow strain rate, and crack growth rate testing. The effect of solution chemistry, pH, temperature and applied potential are all considered and their role in the corrosion behavior will be discussed

  4. Reducing the global threat of radiological terrorism in Central Asia and Caucus regions. The global threat reduction initiative approach to radioactive source security

    International Nuclear Information System (INIS)

    Smith, E.

    2010-01-01

    The security of radioactive sources is of worldwide concern, due to their wide use in civilian commerce and the potentially devastating effects of their misuse. In cooperation with host countries and international partners, the Global Threat Reduction Initiative has utilized a proven process for providing technical and financial assistance to protect radioactive sources in diverse uses and unique circumstances at hundreds of sites worldwide. The mission of the Department of Energy, National Nuclear Security Administration's program includes reducing the risk posed by vulnerable radiological materials that could be used in a Radioactive Dispersal Device). The program's objectives are to identify, consolidate, secure, and/or dispose of high-activity radiological materials to prevent their theft and malicious use. The Global Threat Reduction Initiative Program's scope is global, with projects in over 100 countries at more than 755 radiological sites, including industrial, medical and commercial facilities. In addition to working bilaterally, the Program works closely with the International Atomic Energy Agency (IAEA) and other partner countries. (author)

  5. DPC materials and corrosion environments.

    Energy Technology Data Exchange (ETDEWEB)

    Ilgen, Anastasia Gennadyevna; Bryan, Charles R.; Teich-McGoldrick, Stephanie; Hardin, Ernest

    2014-10-01

    After an exposition of the materials used in DPCs and the factors controlling material corrosion in disposal environments, a survey is given of the corrosion rates, mechanisms, and products for commonly used stainless steels. Research needs are then identified for predicting stability of DPC materials in disposal environments. Stainless steel corrosion rates may be low enough to sustain DPC basket structural integrity for performance periods of as long as 10,000 years, especially in reducing conditions. Uncertainties include basket component design, disposal environment conditions, and the in-package chemical environment including any localized effects from radiolysis. Prospective disposal overpack materials exist for most disposal environments, including both corrosion allowance and corrosion resistant materials. Whereas the behavior of corrosion allowance materials is understood for a wide range of corrosion environments, demonstrating corrosion resistance could be more technically challenging and require environment-specific testing. A preliminary screening of the existing inventory of DPCs and other types of canisters is described, according to the type of closure, whether they can be readily transported, and what types of materials are used in basket construction.

  6. Incineration of radioactive waste

    International Nuclear Information System (INIS)

    Caramelle, D.; Florestan, J.; Waldura, C.

    1990-01-01

    This paper reports that one of the methods used to reduce the volume of radioactive wastes is incineration. Incineration also allows combustible organic wastes to be transformed into inert matter that is stable from the physico-chemical viewpoint and ready to be conditioned for long-term stockage. The quality of the ashes obtained (low carbon content) depends on the efficiency of combustion. A good level of efficiency requires a combustion yield higher than 99% at the furnace door. Removal efficiency is defined as the relation between the CO 2 /CO + CO 2 concentrations multiplied by 100. This implies a CO concentration of the order of a few vpm. However, the gases produced by an incineration facility can represent a danger for the environment especially if toxic or corrosive gases (HCL,NO x ,SO 2 , hydrocarbons...) are given off. The gaseous effluents must therefore be checked after purification before they are released into the atmosphere. The CO and CO 2 measurement gives us the removal efficiency value. This value can also be measured in situ at the door of the combustion chamber. Infrared spectrometry is used for the various measurements: Fourier transform infrared spectrometry for the off-gases, and diode laser spectrometry for combustion

  7. Radioactive substance separation systems

    International Nuclear Information System (INIS)

    Sakai, Takuhiko.

    1981-01-01

    Purpose: To enable separation of fission products, radioactive corrosion products and the likes in primary coolants with no requirement for the replacement of separation system during plant service life, by providing protruded magnetic pole plates in a liquid metal flow channel to thereby form slopes magnetic fields. Constitution: A plurality of magnetic pole plates are disposed vertically in a comb-like arrangement so as not to contact with each other along the direction of flow in a rectangular primary coolant pipeway at the exit of the reactor core in an LMFBR type reactor. Large magnetic poles are provided to the upper and lower sides of the pipeway and coils are wound on the side opposed to the pipeway. When electrical current is supplied to the coils, the magnetic pole is magnetized intensely and thus the magnetic pole plates are also magnetized intensely and thus the magnetic pole plates are also magnetized intensely to form large gradient in the magnetic fields between the upper and lower magnetic plates, whereby ferromagnetic and ferrimagnetic fission products and radioactive corrosion products in the coolants are intensely adsorbed and not detached by the flow of the coolants. Accordingly, the fission products and the radioactive corrosion products can surely be removed with no requirement for the exchange of separation system during plant service life. (Horiuchi, T.)

  8. Corrosion inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, A O

    1965-12-29

    An acid corrosion-inhibiting composition consists essentially of a sugar, and an alkali metal salt selected from the group consisting of iodides and bromides. The weight ratio of the sugar to the alkali metal salt is between 2:1 and about 20,000:1. Also, a corrosion- inhibited phosphoric acid composition comprising at least about 20 wt% of phosphoric acid and between about 0.1 wt% and about 10 wt% of molasses, and between about 0.0005 wt% and about 1 wt% of potassium iodide. The weight ratio of molasses to iodide is greater than about 2:1. (11 claims)

  9. Corrosion Cost and Corrosion Map of Korea - Based on the Data from 2005 to 2010

    International Nuclear Information System (INIS)

    Kim, Y. S.; Lim, H. K.; Kim, J. J.; Hwang, W. S.; Park, Y. S.

    2011-01-01

    Corrosion of metallic materials occurs by the reaction with corrosive environment such as atmosphere, marine, soil, urban, high temperature etc. In general, reduction of thickness and cracking and degradation are resulted from corrosion. Corrosion in all industrial facilities and infrastructure causes large economic losses as well as a large number of accidents. Economic loss by corrosion has been reported to be nearly 1-6% of GNP or GDP. In order to reduce corrosion damage of industrial facilities, corrosion map as well as a systematic investigation of the loss of corrosion in each industrial sector is needed. The Corrosion Science Society of Korea in collaboration with 15 universities and institutes has started to survey on the cost of corrosion and corrosion map of Korea since 2005. This work presents the results of the survey on cost of corrosion by Uhlig, Hoar, and input-output methods, and the evaluation of atmospheric corrosion rate of carbon steel, weathering steel, galvanized steel, copper, and aluminum in Korea. The total corrosion cost was estimated in terms of the percentage of the GDP of industry sectors and the total GDP of Korea. According to the result of Input/output method, corrosion cost of Korea was calculated as 2.9% to GDP (2005). Time of wetness was shown to be categories 3 to 4 in all exposure areas. A definite seasonal difference was observed in Korea. In summer and fall, time of wetness was higher than in other seasons. Because of short exposure period (12 months), significant corrosion trends depending upon materials and exposure corrosion environments were not revealed even though increased mass loss and decreased corrosion rate by exposure time

  10. Are underground clay disposal conditions favorable for microbial activity and bio-corrosion?

    Energy Technology Data Exchange (ETDEWEB)

    Libert, M.; Kerber-Schuetz, M.; Bildstein, O. [CEA, DEN/DTN/SMTM/LMTE, bat. 307, 13108 Saint Paul Lez Durance Cedex (France); Esnault, L. [ECOGEOSAFE, Technopole de l' Environnement Arbois- Mediterranee, BP 90027 Aix en Provence (France)

    2013-07-01

    The French concept for geological disposal of high-level radioactive waste is based on a multi-barrier system including metallic containers confined in a clay-stone layer. The main alteration vector is water coming from the host rock and triggering corrosion of metallic components. Despite extreme conditions, microorganisms can adapt and survive in these environments. Anoxic corrosion of metallic containers and water radiolysis produce H{sub 2}, which potentially represents an abundant energetic source for microbial development, especially in this type of environment containing low amounts of biodegradable organic matter. Moreover, formation of Fe(III)-bearing corrosion products such as magnetite (Fe{sub 3}O{sub 4}) can provide electron acceptors for microbial development. Therefore, bio-corrosion studies are needed in order to investigate the activity of hydrogenotrophic bacteria able to reduce sulphates or Fe(III) from iron oxides (passive layer). These studies help in evaluating such microbial impacts on the long-term stability of metallic components involved in radioactive waste disposal. (authors)

  11. Radioactive waste management

    International Nuclear Information System (INIS)

    Blomek, D.

    1980-01-01

    The prospects of nuclear power development in the USA up to 2000 and the problems of the fuel cycle high-level radioactive waste processing and storage are considered. The problems of liquid and solidified radioactive waste transportation and their disposal in salt deposits and other geologic formations are discussed. It is pointed out that the main part of the high-level radioactive wastes are produced at spent fuel reprocessing plants in the form of complex aqueous mixtures. These mixtures contain the decay products of about 35 isotopes which are the nuclear fuel fission products, about 18 actinides and their daughter products as well as corrosion products of fuel cans and structural materials and chemical reagents added in the process of fuel reprocessing. The high-level radioactive waste management includes the liquid waste cooling which is necessary for the short and middle living isotope decay, separation of some most dangerous components from the waste mixture, waste solidification, their storage and disposal. The conclusion is drawn that the seccessful solution of the high-level radioactive waste management problem will permit to solve the problem of the fuel cycle radioactive waste management as a whole. The salt deposits, shales and clays are the most suitable for radioactive waste disposal [ru

  12. Natural analogues of nuclear waste glass corrosion

    International Nuclear Information System (INIS)

    Abrajano, T.A. Jr.; Ebert, W.L.; Luo, J.S.

    1999-01-01

    This report reviews and summarizes studies performed to characterize the products and processes involved in the corrosion of natural glasses. Studies are also reviewed and evaluated on how well the corrosion of natural glasses in natural environments serves as an analogue for the corrosion of high-level radioactive waste glasses in an engineered geologic disposal system. A wide range of natural and experimental corrosion studies has been performed on three major groups of natural glasses: tektite, obsidian, and basalt. Studies of the corrosion of natural glass attempt to characterize both the nature of alteration products and the reaction kinetics. Information available on natural glass was then compared to corresponding information on the corrosion of nuclear waste glasses, specifically to resolve two key questions: (1) whether one or more natural glasses behave similarly to nuclear waste glasses in laboratory tests, and (2) how these similarities can be used to support projections of the long-term corrosion of nuclear waste glasses. The corrosion behavior of basaltic glasses was most similar to that of nuclear waste glasses, but the corrosion of tektite and obsidian glasses involves certain processes that also occur during the corrosion of nuclear waste glasses. The reactions and processes that control basalt glass dissolution are similar to those that are important in nuclear waste glass dissolution. The key reaction of the overall corrosion mechanism is network hydrolysis, which eventually breaks down the glass network structure that remains after the initial ion-exchange and diffusion processes. This review also highlights some unresolved issues related to the application of an analogue approach to predicting long-term behavior of nuclear waste glass corrosion, such as discrepancies between experimental and field-based estimates of kinetic parameters for basaltic glasses

  13. Natural analogues of nuclear waste glass corrosion.

    Energy Technology Data Exchange (ETDEWEB)

    Abrajano, T.A. Jr.; Ebert, W.L.; Luo, J.S.

    1999-01-06

    This report reviews and summarizes studies performed to characterize the products and processes involved in the corrosion of natural glasses. Studies are also reviewed and evaluated on how well the corrosion of natural glasses in natural environments serves as an analogue for the corrosion of high-level radioactive waste glasses in an engineered geologic disposal system. A wide range of natural and experimental corrosion studies has been performed on three major groups of natural glasses: tektite, obsidian, and basalt. Studies of the corrosion of natural glass attempt to characterize both the nature of alteration products and the reaction kinetics. Information available on natural glass was then compared to corresponding information on the corrosion of nuclear waste glasses, specifically to resolve two key questions: (1) whether one or more natural glasses behave similarly to nuclear waste glasses in laboratory tests, and (2) how these similarities can be used to support projections of the long-term corrosion of nuclear waste glasses. The corrosion behavior of basaltic glasses was most similar to that of nuclear waste glasses, but the corrosion of tektite and obsidian glasses involves certain processes that also occur during the corrosion of nuclear waste glasses. The reactions and processes that control basalt glass dissolution are similar to those that are important in nuclear waste glass dissolution. The key reaction of the overall corrosion mechanism is network hydrolysis, which eventually breaks down the glass network structure that remains after the initial ion-exchange and diffusion processes. This review also highlights some unresolved issues related to the application of an analogue approach to predicting long-term behavior of nuclear waste glass corrosion, such as discrepancies between experimental and field-based estimates of kinetic parameters for basaltic glasses.

  14. Treating radioactive effluent

    International Nuclear Information System (INIS)

    Kirkham, I.A.

    1981-01-01

    In the treatment of radioactive effluent it is known to produce a floc being a suspension of precipitates carrying radioactive species in a mother liquor containing dissolved non-radioactive salts. It is also known and accepted practice to encapsulate the floc in a solid matrix by treatment with bitumen, cement and the like. In the present invention the floc is washed with water prior to encapsulation in the solid matrix whereby to displace the mother liquor containing the dissolved non-radioactive salts. This serves to reduce the final amount of solidified radioactive waste with consequent advantages in the storage and disposal thereof. (author)

  15. Corrosion inhibitors

    International Nuclear Information System (INIS)

    El Ashry, El Sayed H.; El Nemr, Ahmed; Esawy, Sami A.; Ragab, Safaa

    2006-01-01

    The corrosion inhibition efficiencies of some triazole, oxadiazole and thiadiazole derivatives for steel in presence of acidic medium have been studied by using AM1, PM3, MINDO/3 and MNDO semi-empirical SCF molecular orbital methods. Geometric structures, total negative charge on the molecule (TNC), highest occupied molecular energy level (E HOMO ), lowest unoccupied molecular energy level (E LUMO ), core-core repulsion (CCR), dipole moment (μ) and linear solvation energy terms, molecular volume (V i ) and dipolar-polarization (π *), were correlated to corrosion inhibition efficiency. Four equations were proposed to calculate corrosion inhibition efficiency. The agreement with the experimental data was found to be satisfactory; the standard deviations between the calculated and experimental results ranged between ±0.03 and ±4.18. The inhibition efficiency was closely related to orbital energies (E HOMO and E LUMO ) and μ. The correlation between quantum parameters and experimental inhibition efficiency has been validated by single point calculations for the semi-empirical AM1 structures using B3LYP/6-31G** as a higher level of theory. The proposed equations were applied to predict the corrosion inhibition efficiency of some related structures to select molecules of possible activity from a presumable library of compounds

  16. Desirable levels of exchangeable K and Ca and their concentration in the soil solution to reduce uptake of radioactive Cs by rice plants

    International Nuclear Information System (INIS)

    Sekimoto, Hitoshi; Yamada, Takashi; Hotsuki, Tomoe; Matsuzaki, Akio; Mimura, Tetsuro

    2014-01-01

    K in the soil solution can control the uptake of radioactive Cs by rice plants, but this control is not accomplished only by K; it is affected by other ionic species. It is therefore important to investigate uptake of radioactive Cs from the perspective of the concentration of major cations such as Ca in the soil solution and the levels of exchangeable cations in the soil. To clarify the effects of K and Ca in the soil solution and of the levels of soil exchangeable cations to prevent uptake of radioactive Cs, we conducted a pot experiment and field experiments in a paddy soil in 2011 and 2012. To reduce the uptake of radioactive Cs, it was necessary to achieve a K concentration in the soil solution of 0.5 mmol L"-"1, and a Ca concentration higher than 2 mmol L"-"1 based on the results of the pot experiment. In addition, we obtained the desirable levels of exchangeable cations and the cation exchange capacity (CEC) in the soil from previous reports and the results of our field experiments. On this basis, we propose the following threshold levels for exchangeable cations and CEC in the soil as a standard: 0.53 K cmol_c kg"-"1, 18.0 Ca cmol_c kg"-"1, 2.0 Mg cmol_c kg"-"1, i.e. 25 mg K_2O 100 g"-"1, 505 mg CaO 100 g"-"1, 40 Mg O mg 100 g"-"1, and a CEC of 30 cmol_c kg"-"1. Converting these values into the corresponding levels in the soil solution, we obtained concentrations of 0.71 mmol K L"-"1, 4.22 mmol Ca L"-"1, and 1.35 mmol Mg L"-"1. These levels are within the improving standard for fertility of paddy soils in Japan. Consequently, it will be necessary to improve the fertility of paddy soils to control the uptake of radioactive Cs by rice plants. (author)

  17. Considerations for reduction of gas generation in a low-level radioactive waste repository

    International Nuclear Information System (INIS)

    Cho, Chan Hee; Son, Jung Kwon; Lee, Myung Chan; Song, Myung Jae

    1997-01-01

    In a low-level radioactive waste repository, H 2 , CO 2 , and CH 4 will be generated principally by the coupled processes of metal corrosion and microbial degradation of cellulosic waste. The metal corrosion model incorporates a three-stage process encompassing aerobic and anaerobic corrosion regimes; the microbial degradation model simulates the activities of eight different microbial populations, which are maintained as functions both of pH and of the concentrations of particular chemical species. A prediction is made for gas concentrations and generation rates over an assessment period of ten thousand years in a radioactive waste repository. The results suggest that H 2 is the principal gas generated within the radioactive waste cavern. The generation rates of CO 2 and CH 4 are likely to be insignificant by comparison with H 2 . Therefore, an effective way to decrease gas generation in a radioactive waste repository seems to be to reduce metal content since the generation rate of H 2 is most sensitive to the concentration of steel

  18. A mechanism for corrosion product deposition on the carbon steel piping in the residual heat removal system of BWRs

    International Nuclear Information System (INIS)

    Aizawa, Motohiro; Chiba, Yoshinori; Hosokawa, Hideyuki; Ohsumi, Katsumi; Uchida, Shunsuke; Ishizawa, Noboru

    2002-01-01

    The dose rate of the residual heat removal (RHR) piping has been considered to be caused by accumulation of insoluble (crud) radioactive corrosion products on carbon steel surfaces. Soft shutdown procedures (i.e., plant shutdown with moderate coolant temperature reduction rate) used to be applied to reduce crud radioactivity release from the fuel surface, but these are no longer used because of the need for shorter plant shutdown times. In order to apply other suitable countermeasures to reduce RHR dose rate, assessment of plant data, experiments on deposition of crud and ion species on carbon steel, and mass balance evaluation of radioactive corrosion products based on plant and laboratory data were carried out and the following findings were made. (1) Deposits of ion species on carbon steel surfaces of the RHR piping was much more numerous than for crud. (2) Ion species accumulation behavior on RHR piping, which is temperature dependent, can be evaluated with the calculation model used for the dehydration reaction of corrosion products generated during the wet lay-up period. (3) Deposition amounts could be reduced to 1/2.5 when the starting RHR system operation temperature was lowered from 155degC to 120degC. (author)

  19. Underground pipeline corrosion

    CERN Document Server

    Orazem, Mark

    2014-01-01

    Underground pipelines transporting liquid petroleum products and natural gas are critical components of civil infrastructure, making corrosion prevention an essential part of asset-protection strategy. Underground Pipeline Corrosion provides a basic understanding of the problems associated with corrosion detection and mitigation, and of the state of the art in corrosion prevention. The topics covered in part one include: basic principles for corrosion in underground pipelines, AC-induced corrosion of underground pipelines, significance of corrosion in onshore oil and gas pipelines, n

  20. Protecting solar collector systems from corrosion

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    The main cause of the reduced life of a solar heating system is corrosion of the exterior parts and the internal components. This report outlines ways of reducing the cost of solar heating by reducing the corrosion in solar heating systems, and hence increasing the system's service life. Mechanisms for corrosion are discussed: these include galvanic corrosion and crevice corrosion. Means of minimizing corrosion at the design stage are then described. Such methods, when designing the solar collector, involve ensuring proper drainage of exterior water; eliminating situations where moisture, dirt and pollutants may collect; preventing condensation inside the collector; using proper gaskets and sealants at appropriate places; and selecting optimum materials and coatings. Interior corrosion can be minimized at the design stage by choosing a good heat transfer fluid and corrosion inhibitor, in the case of systems where liquids are used; ensuring a low enough flow rate to avoid erosion; designing the system to avoid crevices; and avoiding situations where galvanic corrosion could occur. Other procedures are given for minimizing corrosion in the construction and operation of solar heating systems. 7 figs., 7 tabs.

  1. Storage container for radioactive wastes

    International Nuclear Information System (INIS)

    Catalayoud, L.; Gerard, M.

    1990-01-01

    Tightness, shock resistance and corrosion resistance of containers for storage of radioactive wastes it obtained by complete fabrication with concrete reinforced with metal fibers. This material is used for molding the cask, the cover and the joint connecting both parts. Dovetail grooves are provided on the cask and the cover for the closure [fr

  2. Corrosion/95 conference papers

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    The papers in this conference represent the latest technological advances in corrosion control and prevention. The following subject areas are covered: cathodic protection in natural waters; materials for fossil fuel combustion and conversion systems; modern problems in atmospheric corrosion; innovative ideas for controlling the decaying infrastructure; deposits and their effects on corrosion in industry; volatile high temperature and non aqueous corrosion inhibitors; corrosion of light-weight and precoated metals for automotive application; refining industry corrosion; corrosion in pulp and paper industry; arctic/cold weather corrosion; materials selection for waste incinerators and associated equipment; corrosion measurement technology; environmental cracking of materials; advancing technology in the coating industry; corrosion in gas treating; green inhibition; recent advances in corrosion control of rail equipment; velocity effects and erosion corrosion in oil and gas production; marine corrosion; corrosion of materials in nuclear systems; underground corrosion control; corrosion in potable and industrial water systems in buildings and its impact on environmental compliance; deposit related boiler tube failures; boiler systems monitoring and control; recent developments and experiences in reactive metals; microbiologically influenced corrosion; corrosion and corrosion control for steel reinforced concrete; international symposium on the use of 12 and 13 Cr stainless steels in oil and gas production environments; subsea corrosion /erosion monitoring in production facilities; fiberglass reinforced pipe and tubulars in oilfield service; corrosion control technology in power transmission and distribution; mechanisms and methods of scale and deposit control; closing the loop -- results oriented cooling system monitoring and control; and minimization of aqueous discharge

  3. Corrosion in seawater systems

    International Nuclear Information System (INIS)

    Henrikson, S.

    1988-01-01

    Highly alloyed stainless steels have been exposed to natural chlorinated and chlorine-free seawater at 35 deg. C. Simulated tube-tubesheet joints, weld joints and galvanic couples with titanium, 90/10 CuNi and NiAl bronze were tested and evaluated for corrosion. The corrosion rates of various anode materials - zinc, aluminium and soft iron - were also determined. Finally the risk of hydrogen embrittlement of tubes of ferritic stainless steels and titanium as a consequence of cathodic protection was studied. An attempt was also made to explain the cracking mechanism of the ferritic steels by means of transmission electron microscopy. One important conclusion of the project is that chlorinated seawater is considerably more corrosive to stainless steels than chlorine-free water, whereas chlorination reduces the rate of galvanic corrosion of copper materials coupled to stainless steels. Hydrogen embrittlement of ferritic stainless steels and titanium as a consequence of cathodic protection of carbon steel or cast iron in the same structure can be avoided by strict potentiostatic control of the applied potential. (author)

  4. Corrosion resistance testing of high-boron-content stainless steels

    International Nuclear Information System (INIS)

    Petrman, I.; Safek, V.

    1994-01-01

    Boron steels, i.e. stainless steels with boron contents of 0.2 to 2.25 wt.%, are employed in nuclear engineering for the manufacture of baskets or wells in which radioactive fissile materials are stored, mostly spent nuclear fuel elements. The resistance of such steels to intergranular corrosion and uniform corrosion was examined in the Strauss solution and in boric acid; the dependence of the corrosion rate of the steels on their chemical composition was investigated, and their resistance was compared with that of AISI 304 type steel. Corrosion resistance tests in actual conditions of ''wet'' compact storage (demineralized water or a weak boric acid solution) gave evidence that boron steels undergo nearly no uniform corrosion and, as electrochemical measurements indicated, match standard corrosion-resistant steels. Corrosion resistance was confirmed to decrease slightly with increasing boron content and to increase somewhat with increasing molybdenum content. (Z.S.). 3 tabs., 4 figs., 7 refs

  5. Improvement of Corrosion Inhibitors of Primary and Secondary Closed Cooling Water System

    International Nuclear Information System (INIS)

    Choi, Byung Seon; Kim, K. M.; Kim, K. H.

    2010-08-01

    In nuclear power plants, the Closed Cooling Water (CCW) system provide cooling to both safety-related and non-safety-related heat exchange equipment. Various chemicals are used to mitigate corrosion, fouling, and microbiological growth in the CCW systems. In nuclear plants, these inhibitors have included chromates, nitrites, molybdates, hydrazine, and silicate. In the case of the CCW of some domestic nuclear power plants, there is during the overhaul period, a saturation of ion exchange resin caused by an inhibitor which has high conductivity for an increase in radiation exposure and radioactive waste. The objective of this study is to evaluate the corrosion behavior of structural materials with various corrosion inhibitors. In the present study, more than 50 ppm hydrazine concentration is needed to reduce the corrosion rate of carbon steel to satisfy the CCW operational guidelines. However, if hydrazine is continuously injected into the CCW system, the critical concentration of hydrazine will be lower. Hydrazine might be an alternative corrosion inhibitor for nitrite in the CCW system of nuclear power plant

  6. Evaluation of Nitrate and Nitrite Reduction Kinetics Related to Liquid-Air-Interface Corrosion

    International Nuclear Information System (INIS)

    Li, Xiaoji; Gui, F.; Cong, Hongbo; Brossia, C.S.; Frankel, G.S.

    2014-01-01

    Liquid-air interface (LAI) corrosion has been a concern for causing leaks in the carbon steel tanks used for holding high-level radioactive liquid waste. To assist in understanding the mechanism of LAI corrosion, the kinetics of nitrate and nitrite reduction reactions were investigated electrochemically. Cyclic voltammetry and cathodic polarization measurements indicated that the nitrite reduction reaction exhibited faster kinetics than the nitrate reduction reaction at higher cathodic overpotential. However, the primary reduction reaction at the open circuit potential under aerated conditions was the oxygen reduction reaction. The reduction of residual oxygen was also the dominant cathodic reaction at open circuit potential in deaerated conditions. Moreover, the kinetics of oxygen reduction on steel electrodes were significantly influenced by the sample immersion conditions (partial vs. full) for aerated liquid nuclear waste simulants, but not for deaerated conditions. Lastly, the gaseous products formed during LAI corrosion were analyzed using the gas detector tube method and gas chromatography-mass spectrometry and found to contain NH 3 , NO 2 and NO. However, the results suggested that these products were caused by the local acidification generated by the hydrolysis of cations after LAI corrosion underwent extensive propagation, instead of being directly reduced in alkaline conditions. Thus, the results in this work showed that the kinetics of nitrate and nitrite reduction could not generate a salt concentration cell in the meniscus region to cause LAI corrosion

  7. Corrosion and indices of operating reliability of steam-water circuits of foreign NPP

    International Nuclear Information System (INIS)

    Martynova, O.I.

    1983-01-01

    Corrosion failures in circuits of foreign NPPs are considered. According to American statistics there are more corrosion failures in two-circuit NPPs than in NPPs with one circuit. Steam generators mostly suffer from ''corrosion denting''. Lately pitting corrosion becomes a potentially serious problem. Steam generator vertical tubes are maiply subjected to this corrosion type. Attention is drawn to intercrystalline corrosion. The causes of corrosion are described. The problem of optimization of structural materials is discussed to reduce corrosion failures as well as other methods of decreasing corrosion failures. Organization of nondestructive testing, increased requirements to water and steam purity are of great importance

  8. Aircraft Corrosion

    Science.gov (United States)

    1981-08-01

    attribud au choix de traitements et de rev~tements spproprids. Au contrairo, dens d’sutros structures des corrosions iirportsntea se sont msnifestdes...au traitement . micaniqus qui provoque une compression de surface - h1l’spplication i1’une double protection comportant oxydation snodique et...chlore mais dans une proportion semblable b cells d’une eau de vil)e ; - lea solides, d’aprbs lea analyses chimique et criatallographique, paraissaiont

  9. The evolution of carbon-14 and tritium containing gases in a radioactive waste repository

    International Nuclear Information System (INIS)

    Jefferies, N.L.

    1990-04-01

    The principal processes which well lead to the formation of gases in a repository containing low- and intermediate-level radioactive waste have been identified as corrosion, microbiological activity and radiolysis. The largest contribution to gas production is from hydrogen, generated from anaerobic corrosion of metallic components of the waste. Substitution of the active isotopes carbon-14 and hydrogen-3 (tritium) into the bulk gases, H 2 CO 2 and CH 4 may result in a radiological hazard to man. The purpose of this paper is to assess the mechanisms by which C-14 and tritium in solid low- and intermediate-level wastes are partitioned into gases reduced by corrosion and microbial processes. (author)

  10. Processing and Pre-Treatment of Solid Radioactive Waste

    Energy Technology Data Exchange (ETDEWEB)

    Cerre, P. [Service de Controle des Radiations et de Genie Radioactif, Commissariat a L' Energie Atomique, Saclay (France)

    1960-07-01

    As solid radioactive waste varies in form, dimensions and volume, the Atomic Energy Commission first of all reduces the volume by breaking up and compressing the waste. Since the temporary storage of such waste is always attended by the risk of contamination, an efficient packing system has been devised and adopted. This consists of embedding the waste in the heart of a specially-designed block of concrete possessing the following characteristics: Great strength Maximum insolubility Resistance to corrosion Maximum imperviousness Protection against radiation. It is thus quite safe to store these blocks with a view to final dumping. (author)

  11. Radioactive Decay

    Science.gov (United States)

    Radioactive decay is the emission of energy in the form of ionizing radiation. Example decay chains illustrate how radioactive atoms can go through many transformations as they become stable and no longer radioactive.

  12. Corrosion Testing Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Corrosion Testing Facility is part of the Army Corrosion Office (ACO). It is a fully functional atmospheric exposure site, called the Corrosion Instrumented Test...

  13. Iron/argillite interactions in radioactive waste disposal context: Oxidising transient and bacterial activities influence

    International Nuclear Information System (INIS)

    Chautard, Camille; Dauzeres, Alexandre; Maillet, Anais

    2014-01-01

    The design of a high-level radioactive waste (HLW) disposal facility developed by Andra (2005) in France involves emplacing metallic materials (containers, overpacks, liner) into a geological argillaceous formation. During the operational phase, ventilation of handling drifts will keep oxidising conditions at the front of disposal tunnels. Therefore, an oxidising transient may take place in parts of these tunnels in the post-closure phase possibly over several years. During this transient period, the environment of the disposal cell will evolve towards reducing and saturated conditions close to the equilibrium state of the original underground argillaceous formation. Moreover, high temperature conditions above 50 deg. C may be encountered in this environment over a few hundred years. Uniform corrosion represents the main type of degradation of metallic materials for the long term. The oxidising transient will be characterised by high corrosion rates (e.g. localised corrosion) due to the presence of oxygen whereas during the following anoxic stage, the main alteration factor will originate from the pore water associated with lower corrosion rates. In any case, metallic materials corrosion will lead to the release of aqueous iron, which may induce alteration of the favourable confining properties of the clayey materials. In this context, reactive pathways related to the metal corrosion under oxidising conditions and then followed by reducing conditions remain to be further understood (evolution of pH, redox and influence of temperature). Furthermore, some other significant issues remain open, in particular the dissolution/precipitation processes, the argillite perturbation extent and the effects of these transformations on the confining properties of materials. The presence of micro-organisms in deep argillaceous environment and the introduction of new bacterial species in the repository during the operational phase raise the question of their survival under real

  14. Corrosion technology. V. 1

    International Nuclear Information System (INIS)

    Khan, I.H.

    1989-01-01

    This book has been produced for dissemination of information on corrosion technology, corrosion hazards and its control. Chapter one of this book presents an overall view of the subject and chapter 2-5 deals with electrochemical basics, types of corrosion, pourbaix diagrams and form of corrosion. The author explains polarization/kinetics of corrosion, passivity, aqueous corrosion and corrosion testing and monitoring in 6-11 chapters. The author hopes it will provide incentive to all those interested in the corrosion technology. (A.B.)

  15. Corrosion/94 conference papers

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    The approximately 500 papers from this conference are divided into the following sections: Rail transit systems--stray current corrosion problems and control; Total quality in the coatings industry; Deterioration mechanisms of alloys at high temperatures--prevention and remediation; Research needs and new developments in oxygen scavengers; Computers in corrosion control--knowledge based system; Corrosion and corrosivity sensors; Corrosion and corrosion control of steel reinforced concrete structures; Microbiologically influenced corrosion; Practical applications in mitigating CO 2 corrosion; Mineral scale deposit control in oilfield-related operations; Corrosion of materials in nuclear systems; Testing nonmetallics for life prediction; Refinery industry corrosion; Underground corrosion control; Mechanisms and applications of deposit and scale control additives; Corrosion in power transmission and distribution systems; Corrosion inhibitor testing and field application in oil and gas systems; Decontamination technology; Ozone in cooling water applications, testing, and mechanisms; Corrosion of water and sewage treatment, collection, and distribution systems; Environmental cracking of materials; Metallurgy of oil and gas field equipment; Corrosion measurement technology; Duplex stainless steels in the chemical process industries; Corrosion in the pulp and paper industry; Advances in cooling water treatment; Marine corrosion; Performance of materials in environments applicable to fossil energy systems; Environmental degradation of and methods of protection for military and aerospace materials; Rail equipment corrosion; Cathodic protection in natural waters; Characterization of air pollution control system environments; and Deposit-related problems in industrial boilers. Papers have been processed separately for inclusion on the data base

  16. Current status of studies on nodular corrosion

    International Nuclear Information System (INIS)

    Yasuda, Takayoshi; Kawasaki, Satoru; Echigoya, Hironori; Kinoshita, Yutaka; Kubota, Hiroyuki; Konishi, Takao; Yamanaka, Tuneyasu.

    1993-01-01

    The studies on nodular corrosion formed on the outer surface of BWR fuel cladding tubes were reviewed. Main factors affecting the corrosion behavior were material and environmental conditions and combined effect. The effects of such material conditions as fabrication process, alloy elements, texture and surface treatment and environmental factors as neutron irradiation, thermo-hydrodynamic, water chemistry, purity of the coolant and contact with foreign metals on the corrosion phenomena were surveyed. Out-of-reactor corrosion test methods and models for the corrosion mechanism were also reviewed. Suppression of the accumulated annealing temperature during tube reduction process improved the nodular corrosion resistance of Zircaloys. Improved resistance for the nodular corrosion was reported for the unirradiated Zircaloys with some additives. Detailed irradiation test under the BWR conditions is needed to confirm the trend. Concerning the environmental factors, boiling on the cladding surface due to heat flux reduces the nodular corrosion susceptibility, while oxidizing radical generated from dissolved oxygen accelerates the corrosion. Concerning corrosion mechanisms, importance of such phenomena as the depleted zone of alloying elements in zirconium matrix, reduction of H + to H 2 in oxide layer, electrochemical property of precipitates, crystallographic anisotropy of oxidation rates were revealed. (author) 59 refs

  17. Study of the accumulation and distribution of the radioactivity in the cooling circuit of the BOR-60 reactor

    International Nuclear Information System (INIS)

    Kizin, V.D.; Konyashov, V.V.; Lisitsyn, E.S.; Polyakov, V.I.; Chechetkin, Yu.V.

    1976-04-01

    The results of measurements of the radioactivity of the coolant and the deposits in the primary circuit of the BOR-60 reactor during its five years of operation are discussed. The values calculated for the exposure dose rate from the piping system and the contribution of the γ-radiation from the corrosion and fission product nuclides are given. The efficiency of coolant draining from the pipes in reducing the dose rate is estimated. (orig.) [de

  18. Task E container corrosion studies: Annual report

    International Nuclear Information System (INIS)

    Bunnell, L.R.; Doremus, L.A.; Topping, J.B.; Duncan, D.R.

    1994-06-01

    The Pacific Northwest Laboratory is conducting the Solid Waste Technology Support Program (SWTSP) for Westinghouse Hanford Company (WHC). Task E is the Container Corrosion Study Portion of the SWTSP that will perform testing to provide defensible data on the corrosion of low-carbon steel, as used in drums to contain chemical and radioactive wastes at the Hanford Site. A second objective of Task E is to provide and test practical alternative materials that have higher corrosion resistance than low-carbon steel. The scope of work for fiscal year (FY) 1993 included initial testing of mild steel specimens buried in Hanford soils or exposed to atmospheric corrosion in metal storage sheds. During FY 1993, progress was made in three areas of Task E. First, exposure of test materials began at the Soil Corrosion Test Site where low-carbon steel specimens were placed in the soil in five test shafts at depths of 9 m (30 ft). Second, the corrosion measurement of low-carbon steel in the soil of two solid waste trenches continued. The total exposure time is ∼ 500 days. Third, an atmospheric corrosion test of low-carbon steel was put initiated in a metal shed (Building 2401-W) in the 200 West Area. This annual report describes the Task E efforts and provides a current status

  19. Environmental radioactivity 1996

    International Nuclear Information System (INIS)

    1997-01-01

    Environmental Radioactivity in New Zealand and Rarotonga : annual report 1996 was published in May this year. The 1996 environmental radioactivity monitoring programme included, as usual, measurements in New Zealand and the Cook Islands of atmospheric, deposited and dairy product radioactivity. The environment in the New Zealand and Cook Island regions has now virtually returned to the situation in the 'pre-nuclear' era. The contination of monitoring, although at a reduced level of intensity, is basically to ensure that any change from the present state, due to any source of radioactivity does not go undetected or unquestioned. (author)

  20. Using radioactivity

    International Nuclear Information System (INIS)

    1982-10-01

    The leaflet discusses the following: radioactivity; radioisotopes; uses of ionising radiations; radioactivity from (a) naturally occurring radioactive elements, and (b) artificially produced radioisotopes; uses of radioactivity in medicine, (a) clinical diagnostic, (b) therapeutic (c) sterilization of medical equipment and materials; environmental uses as tracers; industrial applications, e.g. tracers and radiography; ensuring safety. (U.K.)

  1. Radioactive aerosols

    International Nuclear Information System (INIS)

    Chamberlain, A.C.

    1991-01-01

    Radon. Fission product aerosols. Radioiodine. Tritium. Plutonium. Mass transfer of radioactive vapours and aerosols. Studies with radioactive particles and human subjects. Index. This paper explores the environmental and health aspects of radioactive aerosols. Covers radioactive nuclides of potential concern to public health and applications to the study of boundary layer transport. Contains bibliographic references. Suitable for environmental chemistry collections in academic and research libraries

  2. Electrochemical and corrosion properties of carbon steel in simulated geological disposal environments

    International Nuclear Information System (INIS)

    Sugimoto, Katsuhisa

    2011-01-01

    This paper reviews electrochemical and corrosion studies on the application of carbon steel to an overpack container, which is used for the geological disposal of radioactive wastes. Deaerated alkaline Na 2 SO 4 -NaHCO 3 - NaCl solutions and bentonite soaked with the solutions are used as simulated geological disposal environments. Electrochemical studies show the corrosion of the steel in an early stage is the activation control. Corrosion rates are controlled by the composition of the solutions, alloying elements, and the structure of the steel. The rates decrease with time due to the formation of FeCO 3 (siderite) film on the steel. Immersion corrosion tests show general corrosion morphology. Average corrosion rates of long duration have been evaluated. Clear proofs of the initiation of localized corrosion, such as pitting, crevice corrosion, hydrogen embrittlement and stress-corrosion cracking, have not been reported. (author)

  3. Wind tunnel tests of biodegradable fugitive dust suppressants being considered to reduce soil erosion by wind at radioactive waste construction sites

    International Nuclear Information System (INIS)

    Ligotke, M.W.; Dennis, G.W.; Bushaw, L.L.

    1993-10-01

    Wind tunnel tests were performed of three fugitive dust control agents derived from potato and sugar beet products. These materials are being considered for use as dust suppressants to reduce the potential for transport of radioactive materials by wind from radioactive waste construction and remediation sites. Soil and dust control agent type, solution concentrations, application quantities, aging (or drying) conditions, surface disturbance, and wind and saltating sand eolian erosive stresses were selected and controlled to simulate application and exposure of excavated soil surfaces in the field. A description of the tests, results, conclusions, and recommendations are presented in this report. The results of this study indicate that all three dust control agents can protect exposed soil surfaces from extreme eolian stresses. It is also clear that the interaction and performance of each agent with various soil types may differ dramatically. Thus, soils similar to that received from ML should be best protected by high concentration (∼2.5%) solutions of potato starch at low water application levels (∼1 to 2 L/m 2 ). Because the effectiveness of PS on this soil type is degraded after a moderate amount of simulated rainfall, other options or additives should be considered if surfaces are to be protected for long intervals or during periods of intermittent rainfall and hot, windy conditions. On the other hand, XDCA should be considered when excavating sandy soils. It should be noted, however, that because the Hanford soil test results are based on a small number of tests, it would be prudent to perform additional tests prior to selecting a fugitive dust control agent for use at the Hanford Site. While fermented potato waste was not the best fixative used on either soil, it did perform reasonably well on both soil types (better than XDCA on Idaho soil and better than PS on Hanford soil)

  4. Metabolism of sulfate-reducing bacteria and corrosion behavior of carbon steel in the continuous culturing medium; Renzoku baiyo baichichu ni okeru ryusan`en kangen no taisha to tansoko no fushoku kyodo

    Energy Technology Data Exchange (ETDEWEB)

    Baba, F.; Suzuki, T. [Ajinomoto Co. Inc., Tokyo (Japan); Seo, M. [Hokkaido University, Sapporo (Japan)

    1997-08-25

    Investigations were made on metabolism of sulfate-reducing bacteria and corrosion behavior of carbon steel in the continuous culturing medium. Sulfate-reducing bacteria were cultured for 50 days by supplying the culturing medium prepared to a prescribed chemical composition (containing Fe {sup 2+} at 0.01 mol/kg) at a rate of 10 cm {sup 3}/h, and drawing them out at the same rate. Test carbon steel pieces were immersed into this culturing medium. As a result, the following matters were clarified: the number of bacteria is maintained at more than 10 {sup 10}/cm{sup 3} after several days since inauguration of the immersion, with the bacteria stably producing H2S and FeS until the culturing is finished; comma-shaped bacteria which move actively and rod-shaped bacteria which do not move very actively exist in the culturing medium; a black film has been produced on surface of the test pieces throughout the culturing period, and satin-like corrosion was found underneath the surface; and weight increase of this film and weight decrease of the lower layer progress as the time lapses (the weight decrease of the lower layer has reached 40 mg/cm{sup 2} in 50 days). 28 refs., 8 figs., 1 tab.

  5. Modelling aqueous corrosion of nuclear waste phosphate glass

    Energy Technology Data Exchange (ETDEWEB)

    Poluektov, Pavel P.; Schmidt, Olga V.; Kascheev, Vladimir A. [Bochvar All-Russian Scientific Research Institute for Inorganic Materials (VNIINM), Moscow (Russian Federation); Ojovan, Michael I., E-mail: m.ojovan@sheffield.ac.uk [Immobilisation Science Laboratory, Department of Materials Science and Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD (United Kingdom)

    2017-02-15

    A model is presented on nuclear sodium alumina phosphate (NAP) glass aqueous corrosion accounting for dissolution of radioactive glass and formation of corrosion products surface layer on the glass contacting ground water of a disposal environment. Modelling is used to process available experimental data demonstrating the generic inhibiting role of corrosion products on the NAP glass surface. - Highlights: • The radionuclides yield is determined by the transport from the glass through the surface corrosion layer. • Formation of the surface layer is due to the dissolution of the glass network and the formation of insoluble compounds. • The model proposed accounts for glass dissolution, formation of corrosion layer, specie diffusion and chemical reactions. • Analytical solutions are found for corrosion layer growth rate and glass components component leaching rates.

  6. Italian experience on the processing of solid radioactive wastes

    International Nuclear Information System (INIS)

    Costa, A.; De Angelis, G.

    1989-12-01

    Experimental work is under way in Italy for treatment and conditioning of different types of solid radioactive wastes. The following wastes are taken into account in this paper: Magnox fuel element debris, solid compactable wastes, radiation sources and contaminated carcasses. The metallic debris, consisting of Magnox splitters and braces, are conditioned, after drying and separation of corrosion products, by means of a two component epoxy system (base product + hardener). Solid compactable wastes are reduced in volume by using a press. The resulting pellets are transferred to a final container and conditioned with a cement mortar of a suitable consistency. As to the radiation sources, mainly contained in lightning-rods, gas detectors and radioactive thickness gauges, the encapsulation in a cementitious grout is a common practice for their incorporation. Early experiments, with satisfactory results, have also been conducted for the cementation of contaminated carcasses. (author)

  7. Comparative study in the induced corrosion by sulfate reducing microorganisms, in a stainless steel 304L sensitized and a carbon steel API X65; Estudio comparativo de la corrosion inducida por microorganismos sulfatorreductores, en un acero inoxidable 304L sensibilizado y un acero al carbono API X65

    Energy Technology Data Exchange (ETDEWEB)

    Diaz S, A.; Gonzalez F, E.; Arganis J, C.; Luna C, P.; Carapia M, L. [ININ, Carretera Mexico-Toluca Km. 36.5, 52045 Estado de Mexico (Mexico)]. e-mail: ads@nuclear.inin.mx

    2004-07-01

    In spite of the operational experience related with the presence of the phenomenon of microbiological corrosion (MIC) in industrial components, it was not but until the decade of the 80 s when the nuclear industry recognized its influence in some systems of Nuclear Generating Power plants. At the moment, diverse studies that have tried to explain the generation mechanism of this phenomenon exist; however, they are even important queries that to solve, especially those related with the particularities of the affected metallic substrates. Presently work, the electrochemical behavior of samples of stainless steel AISI 304L sensitized is evaluated and the carbon steel APIX65, before the action of sulfate reducing microorganisms low the same experimental conditions; found that for the APIX65 the presence of this type of bacteria promoted the formation of a stable biofilm that allowed the maintenance of the microorganisms that damaged the material in isolated places where stings were generated; while in the AISI 304L, it was not detected damage associated to the inoculated media. The techniques of Resistance to the Polarization and Tafel Extrapolation, allowed the calculation of the speed of uniform corrosion, parameter that doesn't seem to be influenced by the presence of the microorganisms; while that noise electrochemical it distinguished in real time, the effect of the sulfate reducing in the steel APIX65. (Author)

  8. Role and efforts of T3C in corrosion economics

    International Nuclear Information System (INIS)

    Perrigo, L.D.; Appleman, B.R.; Pamer, R.I.; Thompson, J.L.

    1979-11-01

    The basic purpose of T3C activity is to show how to acquire specific corrosion cost information so that overall costs for doing business can be reduced. The scope of T3C is to accumulate data, appraise methods, develop recommended practices, promote knowledge and communicate relative to the economic evaluation of corrosion and counter corrosion techniques

  9. Radioactive wastes of Nuclear Industry

    International Nuclear Information System (INIS)

    1995-01-01

    This conference studies the radioactive waste of nuclear industry. Nine articles and presentations are exposed here; the action of the direction of nuclear installations safety, the improvement of industrial proceedings to reduce the waste volume, the packaging of radioactive waste, the safety of radioactive waste disposal and environmental impact studies, a presentation of waste coming from nuclear power plants, the new waste management policy, the international panorama of radioactive waste management, the international transport of radioactive waste, finally an economic analysis of the treatment and ultimate storage of radioactive waste. (N.C.)

  10. Aqueous radioactive waste bituminization

    International Nuclear Information System (INIS)

    Williamson, A.S.

    1980-08-01

    The bituminzation of decontamination and ion exchange resin stripping wastes with four grades of asphalt was investigated to determine the effects of asphalt type on the properties of the final products. All waste forms deformed readily under light loads indicating they would flow if not restrained. It was observed in all cases that product leaching rates increased as the hardness of the asphalt used to treat the waste increased. If bituminization is adopted for any Ontario Hydro aqueous radioactive wastes they should be treated with soft asphalt to obtain optimum leaching resistance and mechanical stability during interim storage should be provided by a corrosion resistant container

  11. Exposure testing of fasteners in preservative treated wood: Gravimetric corrosion rates and corrosion product analyses

    Energy Technology Data Exchange (ETDEWEB)

    Zelinka, Samuel L., E-mail: szelinka@fs.fed.u [USDA Forest Products Laboratory, One Gifford Pinchot Drive, Madison, WI 53726 (United States); Sichel, Rebecca J. [College of Engineering, University of Wisconsin, Madison, WI 53706 (United States); Stone, Donald S. [Department of Materials Science and Engineering, College of Engineering, University of Wisconsin, Madison, WI 53706 (United States)

    2010-12-15

    Research highlights: {yields} The composition of the corrosion products was similar for the nail head and shank. {yields} Reduced copper was not detected on any of the fasteners. {yields} Measured corrosion rates were between 1 and 35 {mu}m year{sup -1}. - Abstract: Research was conducted to determine the corrosion rates of metals in preservative treated wood and also understand the mechanism of metal corrosion in treated wood. Steel and hot-dip galvanized steel fasteners were embedded in wood treated with one of six preservative treatments and exposed to 27 {sup o}C at 100% relative humidity for 1 year. The corrosion rate was determined gravimetrically and the corrosion products were analyzed with scanning electron microscopy, energy dispersive X-ray spectroscopy, and X-ray diffraction. Although the accepted mechanism of corrosion in treated wood involves the reduction of cupric ions from the wood preservative, no reduced copper was found on the corrosion surfaces. The galvanized corrosion products contained sulfates, whereas the steel corrosion products consisted of iron oxides and hydroxides. The possible implications and limitations of this research on fasteners used in building applications are discussed.

  12. Overpack for processing radioactive waste

    International Nuclear Information System (INIS)

    Asano, Hidekazu.

    1997-01-01

    A glass solidification material in which radioactive wastes are sealed and solidified in glass is covered by an inner layer vessel made of corrosion resistant materials, and the outer side thereof is covered with an outer layer vessel made of a reinforced material. The inner layer vessel made of corrosion materials comprises corrosion materials such as titanium, copper, stainless steel and nickel based alloy, and the outer layer vessel made of a reinforced material comprises a reinforced material such as carbon steel. If it is constituted by using carbon steel having a thickness as much as of from 50 to 200mm, it is durable sufficiently under ground of about 1000m. Although the outer layer vessel made of the reinforced material is corroded by oxidation by oxygen contained in underwater after lapse of time of several years, it is endurable sufficiently to initial oxidative corrosion by determined the thickness to 50mm or more, and after oxygen is consumed, reductive corrosion with extremely slow progressing speed begins. Since the inner vessel made of the corrosion resistant material is formed, the lifetime is extended, and the glass solidification materials can be confined stably for a long period of time. (N.H.)

  13. Accelerated Corrosion Testing

    Science.gov (United States)

    1982-12-01

    Treaty Organization, Brussels, 1971), p. 449. 14. D. 0. Sprowls, T. J. Summerson, G. M. Ugianski, S. G. Epstein, and H. L. Craig , Jr., in Stress...National Association of Corrosion Engineers Houston, TX, 1972). 22. H. L. Craig , Jr. (ed.), Stress Corrosion-New Approaches, ASTM-STP- 610 (American...62. M. Hishida and H. Nakada, Corrosion 33 (11) 403 (1977). b3. D. C. Deegan and B. E. Wilde, Corrosion 34 (6), 19 (1978). 64. S. Orman, Corrosion Sci

  14. Corrosion behaviour of non-ferrous metals in sea water

    Energy Technology Data Exchange (ETDEWEB)

    Birn, Jerzy; Skalski, Igor [Ship Design and Research Centre, Al. Rzeczypospolitej 8, 80-369 Gdansk (Poland)

    2004-07-01

    The most typical kinds of corrosion of brasses are selective corrosion (dezincification) and stress corrosion. Prevention against these kinds of corrosion lies in application of arsenic alloy addition and appropriate heat treatment removing internal stresses as well as in maintaining the arsenic and phosphorus contents on a proper level. The most typical corrosion of cupronickels is the local corrosion. Selective corrosion occurs less often and corrosion cracking caused by stress corrosion in sea water does not usually occur. Crevice corrosion is found especially in places of an heterogeneous oxidation of the surface under inorganic deposits or under bio-film. Common corrosive phenomena for brasses and cupronickels are the effects caused by sea water flow and most often the impingement attack. Alloy additions improve resistance to the action of intensive sea water flow but situation in this field requires further improvement, especially if the cheaper kinds of alloys are concerned. Contaminants of sea water such as ammonia and hydrogen sulphide are also the cause of common corrosion processes for all copper alloys. Corrosion of copper alloys may be caused also by sulphate reducing bacteria (SRB). Galvanic corrosion caused by a contact with titanium alloys e.g. in plate heat exchangers may cause corrosion of both kinds copper alloys. Bronzes belong to copper alloys of the highest corrosion resistance. Failures that sometimes occur are caused most often by the cavitation erosion, by an incorrect chemical composition of alloys or at last by their inadequate structure. The main problems of aluminium alloys service in sea water are following phenomena: local corrosion (pitting and crevice corrosion), galvanic corrosion, exfoliation and corrosion in the presence of OH- ions. The cause of local corrosion are caused by presence of passive film on the alloy's surface and presence of chlorides in sea water which are able to damage the passive film. Galvanic corrosion is

  15. Corrosion behavior of 2205 duplex stainless steel.

    Science.gov (United States)

    Platt, J A; Guzman, A; Zuccari, A; Thornburg, D W; Rhodes, B F; Oshida, Y; Moore, B K

    1997-07-01

    The corrosion of 2205 duplex stainless steel was compared with that of AISI type 316L stainless steel. The 2205 stainless steel is a potential orthodontic bracket material with low nickel content (4 to 6 wt%), whereas the 316L stainless steel (nickel content: 10 to 14 wt%) is a currently used bracket material. Both stainless steels were subjected to electrochemical and immersion (crevice) corrosion tests in 37 degrees C, 0.9 wt% sodium chloride solution. Electrochemical testing indicates that 2205 has a longer passivation range than 316L. The corrosion rate of 2205 was 0.416 MPY (milli-inch per year), whereas 316L exhibited 0.647 MPY. When 2205 was coupled to 316L with equal surface area ratio, the corrosion rate of 2205 reduced to 0.260 MPY, indicating that 316L stainless steel behaved like a sacrificial anode. When 316L is coupled with NiTi, TMA, or stainless steel arch wire and was subjected to the immersion corrosion test, it was found that 316L suffered from crevice corrosion. On the other hand, 2205 stainless steel did not show any localized crevice corrosion, although the surface of 2205 was covered with corrosion products, formed when coupled to NiTi and stainless steel wires. This study indicates that considering corrosion resistance, 2205 duplex stainless steel is an improved alternative to 316L for orthodontic bracket fabrication when used in conjunction with titanium, its alloys, or stainless steel arch wires.

  16. Activity of corrosion products in pool type reactors with ascending flow in the core

    International Nuclear Information System (INIS)

    Andrade e Silva, Graciete S. de; Queiroz Bogado Leite, Sergio de

    1995-01-01

    A model for the activity of corrosion products in the water of a pool type reactor with ascending flow is presented. The problem is described by a set of coupled differential equations relating the radioisotope concentrations in the core and pool circuits and taking into account two types of radioactive sources: i) those from radioactive species formed in the fuel cladding, control elements, reflector, etc, and afterwards released to the primary stream by corrosion (named reactor sources) and ii) those formed from non radioactive isotopes entering the primary stream by corrosion of the circuit components and being activated when passing through the core (named circuit sources). (author). 6 refs, 3 figs, 4 tabs

  17. Electrochemical noise based corrosion monitoring: FY 2001 final report

    International Nuclear Information System (INIS)

    EDGAR, C.

    2001-01-01

    Underground storage tanks made of mild steel are used to contain radioactive waste generated by plutonium production at the Hanford Site. Corrosion of the walls of these tanks is a major issue. Corrosion monitoring and control are currently provided at the Hanford Site through a waste chemistry sampling and analysis program. In this process, tank waste is sampled, analyzed and compared to a selection of laboratory exposures of coupons in simulated waste. Tank wall corrosion is inferred by matching measured tank chemistries to the results of the laboratory simulant testing. This method is expensive, time consuming, and does not yield real-time data. Corrosion can be monitored through coupon exposure studies and a variety of electrochemical techniques. A small number of these techniques have been tried at Hanford and elsewhere within the DOE complex to determine the corrosivity of nuclear waste stored in underground tanks [1]. Coupon exposure programs, linear polarization resistance (LPR), and electrical resistance techniques have all been tried with limited degrees of success. These techniques are most effective for monitoring uniform corrosion, but are not well suited for early detection of localized forms of corrosion such as pitting and stress corrosion cracking (SCC). Pitting and SCC have been identified as the most likely modes of corrosion failure for Hanford Double Shell Tanks (DST'S) [2-3]. Over the last 20 years, a new corrosion monitoring system has shown promise in detecting localized corrosion and measuring uniform corrosion rates in process industries [4-20]. The system measures electrochemical noise (EN) generated by corrosion. The term EN is used to describe low frequency fluctuations in current and voltage associated with corrosion. In their most basic form, EN-based corrosion monitoring systems monitor and record fluctuations in current and voltage over time from electrodes immersed in an environment of interest. Laboratory studies and field

  18. Long Term Corrosion/Degradation Test Six Year Results

    Energy Technology Data Exchange (ETDEWEB)

    M. K. Adler Flitton; C. W. Bishop; M. E. Delwiche; T. S. Yoder

    2004-09-01

    The Subsurface Disposal Area (SDA) of the Radioactive Waste Management Complex (RWMC) located at the Idaho National Engineering and Environmental Laboratory (INEEL) contains neutron-activated metals from non-fuel, nuclear reactor core components. The Long-Term Corrosion/Degradation (LTCD) Test is designed to obtain site-specific corrosion rates to support efforts to more accurately estimate the transfer of activated elements to the environment. The test is using two proven, industry-standard methods—direct corrosion testing using metal coupons, and monitored corrosion testing using electrical/resistance probes—to determine corrosion rates for various metal alloys generally representing the metals of interest buried at the SDA, including Type 304L stainless steel, Type 316L stainless steel, Inconel 718, Beryllium S200F, Aluminum 6061, Zircaloy-4, low-carbon steel, and Ferralium 255. In the direct testing, metal coupons are retrieved for corrosion evaluation after having been buried in SDA backfill soil and exposed to natural SDA environmental conditions for times ranging from one year to as many as 32 years, depending on research needs and funding availability. In the monitored testing, electrical/resistance probes buried in SDA backfill soil will provide corrosion data for the duration of the test or until the probes fail. This report provides an update describing the current status of the test and documents results to date. Data from the one-year and three-year results are also included, for comparison and evaluation of trends. In the six-year results, most metals being tested showed extremely low measurable rates of general corrosion. For Type 304L stainless steel, Type 316L stainless steel, Inconel 718, and Ferralium 255, corrosion rates fell in the range of “no reportable” to 0.0002 mils per year (MPY). Corrosion rates for Zircaloy-4 ranged from no measurable corrosion to 0.0001 MPY. These rates are two orders of magnitude lower than those specified in

  19. Improvements in zirconium alloy corrosion resistance

    International Nuclear Information System (INIS)

    Kilp, G.R.; Thornburg, D.R.; Comstock, R.J.

    1990-01-01

    The corrosion rates of a series of Zircaloy 4 and Zr-Nb alloys were evaluated in long-term (exceeding 500 days in some cases) autoclave tests. The testing was done at various conditions including 633 K (680 F) water, 633 K (650 F) water, 633 k (680 F) lithiated water (70 PPM/0.01 molal lithium), and 673 K (750 F) steam. Materials evaluated are from the following three groups: (1) standard Zircaloy 4; (2) Zircaloy 4 with tightened controls on chemistry limits and heat-treatment history; and (3) Zr-Nb alloys. To optimize the corrosion resistance of the Zircaloy 4 material, the effects of specific chemistry controls (tighter limits on nitrogen, oxygen, silicon, carbon and tin) were evaluated. Also the effects of the thermal history, as measured by integrated annealing of ''A'' time were determined. The ''A'' times ranged from 0.1x10 -18 (h) to 46x10 -18 (h). A material referred to as ''Improved Zircaloy 4'', having optimized chemistry and ''A'' time levels for reduced corrosion, has been developed and tested. This material has a reduced and more uniform corrosion rate compared to the prior Zircaloy 4 material. Alternative alloys were also evaluated for potential improvement in cladding corrosion resistance. ZIRLO TM material was chosen for development and has been included in the long-term corrosion testing. Demonstration fuel assemblies using ZIRLO cladding are now operating in a commercial reactor. The results for the various test conditions and compositions are reported and the relative corrosion characteristics summarized. Based on the BR-3 data, there is a ranking correspondence between in-reactor corrosion and autoclave testing in lithiated water. In particular, the ZIRLO material has significantly improved relative corrosion resistance in the lithiated water tests. Reduced Zircaloy-4 corrosion rates are also obtained from the tighter controls on the chemistry (specifically lower tin, nitrogen, and carbon; higher silicon; and reduced oxygen variability) and ''A

  20. CORROSION RATE OF STEELS DX51D AND S220GD IN DIFFERENT CORROSION ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    Alina Crina CIUBOTARIU

    2016-06-01

    Full Text Available Corrosion in the marine environment is an important issue because the costs causes by marine corrosion increased year upon year. It is necessary a correctly approach to materials selection, protection and corrosion control to reduce this burden of wasted materials, wasted energy and wasted money. Many different types of corrosion attack can be observed to structures, ships and other equipment used in sea water service. Shipping containers are exposed to various corrosive mediums like as airborne salt, industrial pollutants, rain and saltwater. Transport damage during loading onto and unloading off trucks, train beds and ships breaches the paint coating which further contributes to corrosion. The result is shortened container life and high costs for container repair or replacement. The paper intends to evaluate, by gravimetric method, the corrosion rate and corrosion penetration rate of two types of carbon steel DX51D and S220GD. Carbon steel DX51D and hot-dip galvanized steel S220GD are used in marine and industrial applications for buildings cargo vessels, container ships and oil tankers. For testing it was used different corrosive environments: 5% NaOH solution; 5% HCL solution and 0.5M NaCl solution. The samples were immersed in 400mL of testing solution for exposure period of 28 days. Periodically at 3 days, 7 days, 14 days, 21 days and 28 days was measured de mass loss and evaluate the corrosion rate and corrosion stability coefficient. The steel DX51D was stable in 5% NaOH solution for 28 days, the values of corrosion stability coefficient was 7 after 3 days and 6 after 28 days of immersion in corrosive medium. In 5% HCL solution steels DX51D and S220GD was completely corroded in 21 days with a corrosion stability coefficient equal with 9 for 7 days and 8 for 21 days of immersion in corrosive solution. It was observed a good resistance for 3 days in 0.5M NaCl solution with a corrosion stability coefficient equal with 5, but after that

  1. Corrosion/96 conference papers

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    Topics covered by this conference include: cathodic protection in natural waters; cleaning and repassivation of building HVAC systems; worldwide opportunities in flue gas desulfurization; advancements in materials technology for use in oil and gas service; fossil fuel combustion and conversion; technology of corrosion inhibitors; computers in corrosion control--modeling and information processing; recent experiences and advances of austenitic alloys; managing corrosion with plastics; corrosion measurement technology; corrosion inhibitors for concrete; refining industry; advances in corrosion control for rail and tank trailer equipment; CO 2 corrosion--mechanisms and control; microbiologically influenced corrosion; corrosion in nuclear systems; role of corrosion in boiler failures; effects of water reuse on monitoring and control technology in cooling water applications; methods and mechanisms of scale and deposit control; corrosion detection in petroleum production lines; underground corrosion control; environmental cracking--relating laboratory results and field behavior; corrosion control in reinforced concrete structures; corrosion and its control in aerospace and military hardware; injection and process addition facilities; progress reports on the results of reinspection of deaerators inspected or repaired per RP0590 criteria; near 100% volume solids coating technology and application methods; materials performance in high temperature environments containing halides; impact of toxicity studies on use of corrosion/scale inhibitors; mineral scale deposit control in oilfield related operations; corrosion in gas treating; marine corrosion; cold climate corrosion; corrosion in the pulp and paper industry; gaseous chlorine alternatives in cooling water systems; practical applications of ozone in recirculating cooling water systems; and water reuse in industry. Over 400 papers from this conference have been processed separately for inclusion on the data base

  2. Corrosion behavior of Si-enriched steels for nuclear applications in liquid lead–bismuth

    Energy Technology Data Exchange (ETDEWEB)

    Kurata, Yuji, E-mail: kurata.yuji@jaea.go.jp [Japan Atomic Energy Agency, Tokai-mura, Ibaraki-ken 319-1195 (Japan)

    2013-06-15

    Highlights: ► The corrosion behavior of Si-enriched steels in liquid lead–bismuth was studied. ► The corrosion tests were conducted at the two controlled oxygen levels. ► The Si addition reduces the scale thickness under the high oxygen condition. ► The Si addition has no significant effect under the low oxygen condition. -- Abstract: The corrosion behavior of Si-enriched steels in liquid lead–bismuth was studied in order to develop accelerator driven systems for transmutation of long-lived radioactive wastes and lead–bismuth cooled fast reactors. The corrosion tests of 316SS, Si-enriched 316SS, Mod.9Cr–1Mo steel (T91) and Si-enriched T91 were conducted at 550 °C in liquid lead–bismuth at the two controlled oxygen levels. Both the additions of 2.5 wt.% Si to 316SS and 1.5 wt.% Si to T91 had the effect of reducing the thickness of oxide layer in liquid lead–bismuth at the high oxygen concentration (2.5 × 10{sup −5} wt.%). Although the Si addition to 316SS reduced the depth of ferritization caused by Ni dissolution in liquid lead–bismuth at the low oxygen concentration (4.4 × 10{sup −8} wt.%), it could not suppress the ferritization and the penetration of Pb and Bi completely. The Si addition to T91 did not have the effect of preventing the penetration of Pb and Bi in the liquid lead–bismuth at the low oxygen concentration. The oxide scales formed on both Si-enriched steels did not have sufficient corrosion resistance under the low oxygen condition.

  3. Residual stresses and stress corrosion effects in cast steel nuclear waste overpacks

    International Nuclear Information System (INIS)

    Attinger, R.O.; Mercier, O.; Knecht, B.; Rosselet, A.; Simpson, J.P.

    1991-01-01

    In the concepts for final disposal of high-level radioactive waste in Switzerland, one engineered barrier consists of an overpack made out of cast steel GS-40. Whenever tensile stresses are expected in the overpack, the issue of stress corrosion cracking must be expected. A low-strength steel was chosen to minimize potential problems associated with stress corrosion cracking. A series of measurements on stress corrosion cracking under the conditions as expected in the repository confirmed that the corrosion allowance of 50 mm used for the design of the reference overpack is sufficient over the 1000 years design lifetime. Tensile stresses are introduced by the welding process when the overpack is closed. For a multipass welding, the evolution of deformations, strains and stresses were determined in a finite-element calculation. Assuming an elastic-plastic material behavior without creep, the residual stresses are high; considering creep would reduce them. A series of creep tests revealed that the initial creep rate is important for cast steel already at 400deg C. (orig.)

  4. Radioactive source

    International Nuclear Information System (INIS)

    Drabkina, L.E.; Mazurek, V.; Myascedov, D.N.; Prokhorov, P.; Kachalov, V.A.; Ziv, D.M.

    1976-01-01

    A radioactive layer in a radioactive source is sealed by the application of a sealing layer on the radioactive layer. The sealing layer can consist of a film of oxide of titanium, tin, zirconium, aluminum, or chromium. Preferably, the sealing layer is pure titanium dioxide. The radioactive layer is embedded in a finish enamel which, in turn, is on a priming enamel which surrounds a substrate

  5. Actions to reduce radioactive emissions: prevention of containment failure by flooding Containment and Reactor Cavity; Acciones para la reduccion de emisiones radiactivas: prevencion del fallo de la Contencion mediante la inundacion de la Contencion y de la Cavidad del Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Fornos Herrando, J.

    2013-07-01

    The reactor cavity of Asco and Vandellos II is dry type, thus a severe accident leading to vessel failure might potentially end up resulting in the loss of containment integrity, depending on the viability to cool the molten core. Therefore, significant radioactive emissions could be released to outside. In the framework of Fukushima Stress Tests, ANAV has analyzed the convenience of carrying out different actions to prevent failure of the containment integrity in order to reduce radioactive emissions. The aim of this paper is to present and describe the main phenomenological aspects associated with two of these actions: containment flooding and reactor cavity flooding.

  6. A new corrosion monitoring technique

    International Nuclear Information System (INIS)

    Brown, Gerald K.

    2000-01-01

    Internal Corrosion Monitoring has relied upon 5 basic techniques. Little improvement in performance has been achieved in any of these. Many newer internal corrosion monitoring techniques have proved of little value in the field although some have instances of success in the laboratory. Industry has many high value hydrocarbon applications requiring corrosion rate monitoring for real-time problem solving and control. The high value of assets and the cost of asset replacement makes it necessary to practice cost effective process and corrosion control with sensitivity beyond the 5 basic techniques. This new metal loss technology offers this sensitivity. Traditional metal loss technology today provides either high sensitivity with short life, or conversely, long life but with substantially reduced sensitivity. The new metal loss technology offers an improved working life of sensors without significantly compromising performance. The paper discusses the limitations of existing on-line technologies and describes the performance of a new technology. This new metal loss technology was introduced at NACE Corrosion 99'. Since that time several field projects have been completed or are ongoing. This paper will discuss the new metal loss technology and report on some of the data that has been obtained.(author)

  7. Hanford transuranic storage corrosion review

    International Nuclear Information System (INIS)

    Nelson, J.L.; Divine, J.R.

    1980-12-01

    The rate of atmospheric corrosion of the transuranic (TRU) waste drums at the US Department of Energy's Hanford Project, near Richland, Washington, was evaluated by Pacific Northwest Laboratory (PNL). The rate of corrosion is principally contingent upon the effects of humidity, airborne pollutants, and temperature. Results of the study indicate that actual penetration of barrels due to atmospheric corrosion will probably not occur within the 20-year specified recovery period. Several other US burial sites were surveyed, and it appears that there is sufficient uncertainty in the available data to prevent a clearcut statement of the corrosion rate at a specific site. Laboratory and site tests are recommended before any definite conclusions can be made. The corrosion potential at the Hanford TRU waste site could be reduced by a combination of changes in drum materials (for example, using galvanized barrels instead of the currently used mild steel barrels), environmental exposure conditions (for example, covering the barrels in one of numerous possible ways), and storage conditions

  8. Radioactivity metrology

    International Nuclear Information System (INIS)

    Legrand, J.

    1979-01-01

    Some aspects of the radioactivity metrology are reviewed. Radioactivity primary references; absolute methods of radioactivity measurements used in the Laboratoire de Metrologie des Rayonnements Ionisants; relative measurement methods; traceability through international comparisons and interlaboratory tests; production and distribution of secondary standards [fr

  9. Radioactive wastes

    International Nuclear Information System (INIS)

    Teillac, J.

    1988-01-01

    This study of general interest is an evaluation of the safety of radioactive waste management and consequently the preservation of the environment for the protection of man against ionizing radiations. The following topics were developed: radiation effects on man; radioactive waste inventory; radioactive waste processing, disposal and storage; the present state and future prospects [fr

  10. Corrosion behavior of corrosion resistant alloys in stimulation acids

    Energy Technology Data Exchange (ETDEWEB)

    Cheldi, Tiziana [ENI E and P Division, 20097 San Donato Milanese Milano (Italy); Piccolo, Eugenio Lo; Scoppio, Lucrezia [Centro Sviluppo Materiali, via Castel Romano 100, 00128 Rome (Italy)

    2004-07-01

    some superficial cracks at the highest test temperature (140 deg. C), which may have been environmentally induced. A sensible increment of general corrosion was observed in the test with spent mud acid when the pH was reduced from 5 to 4 and 3.5, respectively. (authors)

  11. Impact of microbial activity on the radioactive waste disposal: long term prediction of biocorrosion processes.

    Science.gov (United States)

    Libert, Marie; Schütz, Marta Kerber; Esnault, Loïc; Féron, Damien; Bildstein, Olivier

    2014-06-01

    This study emphasizes different experimental approaches and provides perspectives to apprehend biocorrosion phenomena in the specific disposal environment by investigating microbial activity with regard to the modification of corrosion rate, which in turn can have an impact on the safety of radioactive waste geological disposal. It is found that iron-reducing bacteria are able to use corrosion products such as iron oxides and "dihydrogen" as new energy sources, especially in the disposal environment which contains low amounts of organic matter. Moreover, in the case of sulphate-reducing bacteria, the results show that mixed aerobic and anaerobic conditions are the most hazardous for stainless steel materials, a situation which is likely to occur in the early stage of a geological disposal. Finally, an integrated methodological approach is applied to validate the understanding of the complex processes and to design experiments aiming at the acquisition of kinetic data used in long term predictive modelling of biocorrosion processes. © 2013.

  12. Corrosion and deposition behaviour of 60Co and 54Mn in the SNR mockup loop for the primary sodium system

    International Nuclear Information System (INIS)

    Menken, G.; Reichel, H.

    1976-01-01

    The SNR corrosion mockup loop, simulating the SNR primary system is described. The influence of hydraulic conditions and temperature on the deposition behaviour is studied. γ-spectroscopy measurements at the pipe-work and removable samples allowed to determine the distribution of radioactive corrosion products in the loop and by-pass system. The release rate of Mn 54 could be reduced by a factor of 3 by decreasing the cold trap temperature from 165 0 C to 105 0 C while the Co 60 release rate could be reduced by a factor of 14, respectively. High temperature loop sections (873K) representing 13% of the loop surface absorbed 50-60% of the released Co 60 and only 8 - 18% of the Mn 54. The cold trap absorbed not more than 1% of the Co 60 and 10% of the Mn 54 inventory. (author)

  13. Electrochemical evaluation of under-deposit corrosion and its inhibition using the wire beam electrode method

    Energy Technology Data Exchange (ETDEWEB)

    Tan Yongjun, E-mail: yj.tan@curtin.edu.a [Western Australian Corrosion Research Group, Department of Chemistry, Curtin University, GPO Box U1987, Perth (Australia); Fwu, Young; Bhardwaj, Kriti [Western Australian Corrosion Research Group, Department of Chemistry, Curtin University, GPO Box U1987, Perth (Australia)

    2011-04-15

    Research highlights: A new experiment method for evaluating under-deposit corrosion and its inhibitors. Under-deposit corrosion did not occur in a CO{sub 2} saturated pure brine solution. Inhibitor imidazoline addition and O{sub 2} contamination initiated under-deposit corrosion. Inhibitor imidazoline reduced general corrosion but enhanced localised corrosion. - Abstract: A new experimental method has been applied to evaluate under-deposit corrosion and its inhibition by means of an electrochemically integrated multi-electrode array, namely the wire beam electrode (WBE). Maps showing galvanic current and corrosion potential distributions were measured from a WBE surface that was partially covered by sand. Under-deposit corrosion did not occur during the exposure of the WBE to carbon dioxide saturated brine under ambient temperature. The introduction of corrosion inhibitor imidazoline and oxygen into the brine was found to significantly affect the patterns and rates of corrosion, leading to the initiation of under-deposit corrosion over the WBE.

  14. Passive Corrosion Behavior of Alloy 22

    International Nuclear Information System (INIS)

    R.B. Rebak; J.H. Payer

    2006-01-01

    Alloy 22 (NO6022) was designed to stand the most aggressive industrial applications, including both reducing and oxidizing acids. Even in the most aggressive environments, if the temperature is lower than 150 F (66 C) Alloy 22 would remain in the passive state having particularly low corrosion rates. In multi-ionic solutions that may simulate the behavior of concentrated ground water, even at near boiling temperatures, the corrosion rate of Alloy 22 is only a few nano-meters per year because the alloy is in the complete passive state. The corrosion rate of passive Alloy 22 decreases as the time increases. Immersion corrosion testing also show that the newer generation of Ni-Cr-Mo alloys may offer a better corrosion resistance than Alloy 22 only in some highly aggressive conditions such as in hot acids

  15. Management of Radioactive Wastes

    International Nuclear Information System (INIS)

    Tchokosa, P.

    2010-01-01

    Management of Radioactive Wastes is to protect workers and the public from the radiological risk associated with radioactive waste for the present and future. It application of the principles to the management of waste generated in a radioisotope uses in the industry. Any material that contains or is contaminated with radionuclides at concentrations or radioactivity levels greater than ‘exempt quantities’ established by the competent regulatory authorities and for which no further use is foreseen or intended. Origin of the Radioactive Waste includes Uranium and Thorium mining and milling, nuclear fuel cycle operations, Operation of Nuclear power station, Decontamination and decommissioning of nuclear facilities and Institutional uses of isotopes. There are types of radioactive waste: Low-level Waste (LLW) and High-level Waste. The Management Options for Radioactive Waste Depends on Form, Activity, Concentration and half-lives of the radioactive waste, Storage and disposal methods will vary according to the following; the radionuclides present, and their concentration, and radio toxicity. The contamination results basically from: Contact between radioactive materials and any surface especially during handling. And it may occur in the solid, liquid or gas state. Decontamination is any process that will either reduce or completely remove the amount of radionuclides from a contaminated surface

  16. Decontaminating method for radioactive contaminant

    International Nuclear Information System (INIS)

    Suzuki, Ken-ichi.

    1994-01-01

    After decontamination of radioactive contaminates with d-limonene, a radioactive material separating agent not compatible with liquid wastes caused by decontamination is added to the liquid wastes. Then after stirring, they are stood still to be separated into two phases, and the radioactive materials in the liquid waste phase caused by decontamination are transferred to the phase of the radioactive material separating agent. With such procedures, they can satisfactorily be separated into two phases of d-limonene and the radioactive material separating agent. Further, d-limonene remaining after the separation can be used again as a decontaminating agent for radioactive contaminates. Therefore, the amount of d-limonene to be used can be reduced, to lower the cost for cleaning, thereby enabling to reduce the amount of radioactive wastes formed. (T.M.)

  17. Monitoring Corrosion of Steel Bars in Reinforced Concrete Structures

    Science.gov (United States)

    Verma, Sanjeev Kumar; Bhadauria, Sudhir Singh; Akhtar, Saleem

    2014-01-01

    Corrosion of steel bars embedded in reinforced concrete (RC) structures reduces the service life and durability of structures causing early failure of structure, which costs significantly for inspection and maintenance of deteriorating structures. Hence, monitoring of reinforcement corrosion is of significant importance for preventing premature failure of structures. This paper attempts to present the importance of monitoring reinforcement corrosion and describes the different methods for evaluating the corrosion state of RC structures, especially hal-cell potential (HCP) method. This paper also presents few techniques to protect concrete from corrosion. PMID:24558346

  18. Monitoring corrosion of steel bars in reinforced concrete structures.

    Science.gov (United States)

    Verma, Sanjeev Kumar; Bhadauria, Sudhir Singh; Akhtar, Saleem

    2014-01-01

    Corrosion of steel bars embedded in reinforced concrete (RC) structures reduces the service life and durability of structures causing early failure of structure, which costs significantly for inspection and maintenance of deteriorating structures. Hence, monitoring of reinforcement corrosion is of significant importance for preventing premature failure of structures. This paper attempts to present the importance of monitoring reinforcement corrosion and describes the different methods for evaluating the corrosion state of RC structures, especially hal-cell potential (HCP) method. This paper also presents few techniques to protect concrete from corrosion.

  19. Corrosion of copper alloys in sulphide containing district heting systems

    DEFF Research Database (Denmark)

    Thorarinsdottir, R.I.; Maahn, Ernst Emanuel

    1999-01-01

    Copper and some copper alloys are prone to corrosion in sulphide containing geothermal water analogous to corrosion observed in district heating systems containing sulphide due to sulphate reducing bacteria. In order to study the corrosion of copper alloys under practical conditions a test...... was carried out at four sites in the Reykjavik District Heating System. The geothermal water chemistry is different at each site. The corrosion rate and the amount and chemical composition of deposits on weight loss coupons of six different copper alloys are described after exposure of 12 and 18 months......, respectively. Some major differences in scaling composition and the degree of corrosion attack are observed between alloys and water types....

  20. Monitoring Corrosion of Steel Bars in Reinforced Concrete Structures

    Directory of Open Access Journals (Sweden)

    Sanjeev Kumar Verma

    2014-01-01

    Full Text Available Corrosion of steel bars embedded in reinforced concrete (RC structures reduces the service life and durability of structures causing early failure of structure, which costs significantly for inspection and maintenance of deteriorating structures. Hence, monitoring of reinforcement corrosion is of significant importance for preventing premature failure of structures. This paper attempts to present the importance of monitoring reinforcement corrosion and describes the different methods for evaluating the corrosion state of RC structures, especially hal-cell potential (HCP method. This paper also presents few techniques to protect concrete from corrosion.

  1. Launch Pad Coatings for Smart Corrosion Control

    Science.gov (United States)

    Calle, Luz M.; Hintze, Paul E.; Bucherl, Cori N.; Li, Wenyan; Buhrow, Jerry W.; Curran, Jerome P.; Whitten, Mary C.

    2010-01-01

    Corrosion is the degradation of a material as a result of its interaction with the environment. The environment at the KSC launch pads has been documented by ASM International (formerly American Society for Metals) as the most corrosive in the US. The 70 tons of highly corrosive hydrochloric acid that are generated by the solid rocket boosters during a launch exacerbate the corrosiveness of the environment at the pads. Numerous failures at the pads are caused by the pitting of stainless steels, rebar corrosion, and the degradation of concrete. Corrosion control of launch pad structures relies on the use of coatings selected from the qualified products list (QPL) of the NASA Standard 5008A for Protective Coating of Carbon Steel, Stainless Steel, and Aluminum on Launch Structures, Facilities, and Ground Support Equipment. This standard was developed to establish uniform engineering practices and methods and to ensure the inclusion of essential criteria in the coating of ground support equipment (GSE) and facilities used by or for NASA. This standard is applicable to GSE and facilities that support space vehicle or payload programs or projects and to critical facilities at all NASA locations worldwide. Environmental regulation changes have dramatically reduced the production, handling, use, and availability of conventional protective coatings for application to KSC launch structures and ground support equipment. Current attrition rate of qualified KSC coatings will drastically limit the number of commercial off the shelf (COTS) products available for the Constellation Program (CxP) ground operations (GO). CxP GO identified corrosion detection and control technologies as a critical, initial capability technology need for ground processing of Ares I and Ares V to meet Constellation Architecture Requirements Document (CARD) CxP 70000 operability requirements for reduced ground processing complexity, streamlined integrated testing, and operations phase affordability

  2. Waste Tank Corrosion Program at Savannah River Site

    International Nuclear Information System (INIS)

    Chandler, J.R.; Hsu, T.C.; Hobbs, D.T.; Iyer, N.C.; Marra, J.E.; Zapp, P.E.

    1993-01-01

    The Savannah River Site (SRS) has approximately 30 million gallons of high level radioactive waste stored in 51 underground tanks. SRS has maintained an active corrosion research and corrosion control and monitoring program throughout the operating history of SRS nuclear waste storage tanks. This program is largely responsible for the successful waste storage experience at SRS. The program has consisted of extensive monitoring of the tanks and surrounding environment for evidence of leaks, extensive research to understand the potential corrosion processes, and development and implementation of corrosion chemistry control. Current issues associated with waste tank corrosion are primarily focused on waste processing operations and are being addressed by a number of active programs and initiatives

  3. Corrosion and failure processes in high-level waste tanks

    International Nuclear Information System (INIS)

    Mahidhara, R.K.; Elleman, T.S.; Murty, K.L.

    1992-11-01

    A large amount of radioactive waste has been stored safely at the Savannah River and Hanford sites over the past 46 years. The aim of this report is to review the experimental corrosion studies at Savannah River and Hanford with the intention of identifying the types and rates of corrosion encountered and indicate how these data contribute to tank failure predictions. The compositions of the High-Level Wastes, mild steels used in the construction of the waste tanks and degradation-modes particularly stress corrosion cracking and pitting are discussed. Current concerns at the Hanford Site are highlighted

  4. Catastrophes caused by corrosion

    OpenAIRE

    PETROVIC ZORAN C.

    2016-01-01

    For many years, huge attention has been paid to the problem of corrosion damage and destruction of metallic materials. Experience shows that failures due to corrosion problems are very important, and statistics at the world level shows that the damage resulting from the effects of various forms of corrosion is substantial and that, for example, in industrialized countries it reaches 4-5% of national incomes. Significant funds are determined annually for the prevention and control of corrosion...

  5. Modelling of Corrosion Cracks

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    Modelling of corrosion cracking of reinforced concrete structures is complicated as a great number of uncertain factors are involved. To get a reliable modelling a physical and mechanical understanding of the process behind corrosion in needed.......Modelling of corrosion cracking of reinforced concrete structures is complicated as a great number of uncertain factors are involved. To get a reliable modelling a physical and mechanical understanding of the process behind corrosion in needed....

  6. Time-dependent radioactivity distribution in MAFF

    International Nuclear Information System (INIS)

    Nebel, F.; Zech, E.; Faestermann, T.; Kruecken, R.; Maier-Komor, P.; Assmann, W.; Szerypo, J.; Gross, M.; Kester, O.; Thirolf, P.G.; Groetzschel, R.

    2006-01-01

    The Munich Accelerator for Fission Fragments is planned to be installed at the FRM II in Garching. It will operate a uranium-carbide-loaded graphite matrix as a target for neutron-induced fission. The radioactive reaction fragments leave the ion source as both, atoms and ions. For radiation safety it is imperative to have a basic understanding of the fragment distribution within the beam line. Atoms leaving the graphite matrix will spread like a gas and stick to surfaces depending on their species. A probabilistic Monte-Carlo approach is used to predict the surface coating of internal surfaces of the beam line for all fission nuclides. To decrease calculation time, the problem is reduced to two dimensions with the surface areas being a measure for the probability, that they are hit by a particle. The program is completely time dependent to implement radioactive decay. Ions leaving the fission ion source are transported by electrostatic means towards the mass pre-separator, a low-resolution dipole magnet with a complex slit system in the focal plane. All unwanted ions are stopped at the slits, resulting in a high level of radioactive contamination. While it is advantageous for shielding purposes to have the majority of the contamination in one point, precautions must be taken to ensure that it stays that way. Material corrosion caused by sputtering will release previously implanted radionuclides. To reduce this effect, different methods are under investigation, one of which is changing the slit geometry. The considered designs will be described and experimental results will be shown

  7. Erosion-corrosion

    International Nuclear Information System (INIS)

    Aghili, B.

    1999-05-01

    A literature study on erosion-corrosion of pipings in the nuclear industry was performed. Occurred incidents are reviewed, and the mechanism driving the erosion-corrosion is described. Factors that influence the effect in negative or positive direction are treated, as well as programs for control and inspection. Finally, examples of failures from databases on erosion-corrosion are given in an attachment

  8. Microbiological corrosion of metals

    International Nuclear Information System (INIS)

    Vladislavlev, V.V.

    1992-01-01

    Problems is considered of development of the microbiological corrosion of the NPP equipment. The main attention is paid to the selective character of microbiological corrosion in zones of welded joints of austenitic steels. It is noted that the presence of technological defects promotes growth of corrosional damages. Methods for microbiological corrosion protection are discussed

  9. Management of Reinforcement Corrosion

    DEFF Research Database (Denmark)

    Küter, André; Geiker, Mette Rica; Møller, Per

    Reinforcement corrosion is the most important cause for deterioration of reinforced concrete structures, both with regard to costs and consequences. Thermodynamically consistent descriptions of corrosion mechanisms are expected to allow the development of innovative concepts for the management...... of reinforcement corrosion....

  10. Active Waste Materials Corrosion and Decontamination Tests

    International Nuclear Information System (INIS)

    Danielson, M.J.; Elmore, M.R.; Pitman, S.G.

    2000-01-01

    Stainless steel alloys, 304L and 316L, were corrosion tested in representative radioactive samples of three actual Hanford tank waste solutions (Tanks AW-101, C-104, AN-107). Both the 304L and 316L exhibited good corrosion performance when immersed in boiling waste solutions. The maximum general corrosion rate was 0.015 mm/y (0.60 mils per year). Generally, the 304L had a slightly higher rate than the 316L. No localized attack was observed after 122 days of testing in the liquid phase, liquid/vapor phase, or vapor phase. Radioactive plate-out decontamination tests indicated that a 24-hour exposure to 1 und M HNO 3 could remove about 99% of the radioactive components in the metal film when exposed to the C-104 and AN-107 solutions. The decontamination results are less certain for the AW-101 solution, since the initial contamination readings exceeded the capacity of the meter used for this test

  11. Sellafield (release of radioactivity)

    Energy Technology Data Exchange (ETDEWEB)

    Cunningham, J; Goodlad, A; Morris, M

    1986-02-06

    A government statement is reported, about the release of plutonium nitrate at the Sellafield site of British Nuclear Fuels plc on 5 February 1986. Matters raised included: details of accident; personnel monitoring; whether radioactive material was released from the site; need for public acceptance of BNFL activities; whether plant should be closed; need to reduce level of radioactive effluent; number of incidents at the plant.

  12. Research activities at nuclear research institute in water chemistry and corrosion

    International Nuclear Information System (INIS)

    Kysela, Jan

    2000-01-01

    Research activities at Nuclear Research Institute Rez (NRI) are presented. They are based on former heavy water reactor program and now on pressurized reactors VVER types which are operated on Czech republic. There is LVR-15 research reactor operated in NRI. The reactor and its experimental facilities is utilized for water chemistry and corrosion studies. NRI services for power plants involve water chemistry optimalization, radioactivity build-up, fuel corrosion and structural materials corrosion tests. (author)

  13. Corrosion of metallic materials. Dry corrosion, aqueous corrosion and corrosion by liquid metal, methods of protection

    International Nuclear Information System (INIS)

    Helie, Max

    2015-01-01

    This book is based on a course on materials given in an engineering school. The author first gives an overview of metallurgy issues: metallic materials (pure metals, metallic alloys), defects of crystal lattices (point defects, linear defects or dislocations), equilibrium diagrams, steels and cast, thermal processing of steels, stainless steels, aluminium and its alloys, copper and its alloys. The second part addresses the properties and characterization of surfaces and interfaces: singularity of a metal surface, surface energy of a metal, energy of grain boundaries, adsorption at a material surface, metal-electrolyte interface, surface oxide-electrolyte interface, techniques of surface analysis. The third chapter addresses the electrochemical aspects of corrosion: description of the corrosion phenomenon, free enthalpy of a compound and free enthalpy of a reaction, case of dry corrosion (thermodynamic aspect, Ellingham diagram, oxidation mechanisms, experimental study, macroscopic modelling), case of aqueous corrosion (electrochemical thermodynamics and kinetics, experimental determination of corrosion rate). The fourth part addresses the different forms of aqueous corrosion: generalized corrosion (atmospheric corrosion, mechanisms and tests), localized corrosion (galvanic, pitting, cracking, intergranular, erosion and cavitation), particular cases of stress cracking (stress corrosion, fatigue-corrosion, embrittlement by hydrogen), and bi-corrosion (of non alloyed steels, of stainless steels, and of aluminium and copper alloys). The sixth chapter addresses the struggle and the protection against aqueous corrosion: methods of prevention, scope of use of main alloys, geometry-based protection of pieces, use of corrosion inhibitors, use of organic or metallic coatings, electrochemical protection. The last chapter proposes an overview of corrosion types in industrial practices: in the automotive industry, in the oil industry, in the aircraft industry, and in the

  14. Prevention of stress corrosion cracking in nuclear waste storage tanks

    International Nuclear Information System (INIS)

    Ondrejcin, R.S.

    1983-01-01

    At the Savannah River Plant, stress corrosion of carbon steel storage tanks containing alkaline nitrate radioactive waste is prevented by stress relief and specification of limits on waste composition and temperature. Actual cases of cracking have occurred in the primary steel shell of tanks designed and built before 1960 and were attributed to a combination of high residual stresses from fabrication welding and aggressiveness of fresh wastes from the reactor fuel reprocessing plants. The fresh wastes have the highest concentration of nitrate, which has been shown to be the cracking agent. Also, as the waste solutions age and are reduced in volume by evaporation of water, nitrite and hydroxide ions become more concentrated and inhibit stress corrosion. Thus, by providing a heel of aged evaporated waste in tanks that receive fresh wastes, concentrations of the inhibitor ions are maintained within specific ranges to protect against nitrate cracking. The concentration and temperature range limits to prevent cracking were determined by a series of statistically designed experiments

  15. Corrosion control in electric power plants

    International Nuclear Information System (INIS)

    Syrett, B.C.

    1992-01-01

    This paper reports that corrosion of components in power plants costs the US electric power utility industry billions of dollars each year. Through the Electric Power Research Institute's (EPRI) research and development, several approaches have been developed to reduce these huge costs. They include improved materials selection procedures, coatings, cathodic protection, inhibitors, removal of aggressive species from the environment, and on-line corrosion monitoring. In addition, as part of an on-going technology transfer effort, EPRI is developing databases and expert systems that will help utilities obtain corrosion information and guide them in materials selection and failure analysis

  16. Sealing method and sealing device for radioactive waste containing vessel

    International Nuclear Information System (INIS)

    Ishiwatari, Koji; Otsuki, Akira

    1998-01-01

    A radioactive waste-containing body is hoisted down into a strong-material vessel opened upwardly, and a strong-material lid is hoisted down to the opening of the strong-material-vessel and welded. The strong material vessel is hoisted up and loaded on a corrosion resistant-material bottom plate placed horizontally. A corrosion resistant-material vessel having one opening end and having a corrosion resistant-material flange on the other end and previously agreed with the strong material-vessel main body is hoisted up by a hoisting device having an inserting device so that the opening of the corrosion resistant vessel is directed downwardly. The corrosion resistant vessel is press-fitted to the outside of the strong material-vessel by the inserting device while being heated by a preheater to shrink. Subsequently, the lower end of the corrosion resistant-material vessel and the corrosion resistant-material bottom plate are welded to constitute a corrosion resistant-material vessel. Then, the radioactive waste containing body can be sealed in a sealing vessel comprising the strong-material vessel and the corrosion resistant-material vessel. (N.H.)

  17. Remote measurement of corrosion using ultrasonic techniques

    International Nuclear Information System (INIS)

    Garcia, K.M.; Porter, A.M.

    1995-02-01

    Supercritical water oxidation (SCWO) technology has the potential of meeting the US Department of Energy's treatment requirements for mixed radioactive waste. A major technical constraint of the SCWO process is corrosion. Safe operation of a pilot plant requires monitoring of the corrosion rate of the materials of construction. A method is needed for measurement of the corrosion rate taking place during operation. One approach is to directly measure the change in wall thickness or growth of oxide layer at critical points in the SCWO process. In FY-93, a brief survey of the industry was performed to evaluate nondestructive evaluation (NDE) methods for remote corrosion monitoring in supercritical vessels. As a result of this survey, it was determined that ultrasonic testing (UT) methods would be the most cost-effective and suitable method of achieving this. Therefore, the objective for FY-94 was to prove the feasibility of using UT to monitor corrosion of supercritical vessels remotely during operation without removal of the insulation

  18. New radioactivities

    International Nuclear Information System (INIS)

    Greiner, W.; Sandulescu, A.

    1996-01-01

    Some atomic nuclei reorganize their structure by ejection of big protons and neutrons aggregates. The observation of these new radioactivities specifies the theories of the nuclear dynamics. (authors)

  19. Radioactive materials

    International Nuclear Information System (INIS)

    Sugiura, Yoshio; Shimizu, Makoto.

    1975-01-01

    The problems of radioactivity in the ocean with marine life are various. Activities in this field, especially the measurements of the radioactivity in sea water and marine life are described. The works first started in Japan concerning nuclear weapon tests. Then the port call to Japan by U.S. nuclear-powered naval ships began. On the other hand, nuclear power generation is advancing with its discharge of warm water. The radioactive pollution of sea water, and hence the contamination of marine life are now major problems. Surveys of the sea areas concerned and study of the radioactivity intake by fishes and others are carried out extensively in Japan. (Mori, K.)

  20. Radioactivity Handbook

    International Nuclear Information System (INIS)

    Firestone, R.B.; Browne, E.

    1985-01-01

    The Radioactivity Handbook will be published in 1985. This handbook is intended primarily for applied users of nuclear data. It will contain recommended radiation data for all radioactive isotopes. Pages from the Radioactivity Handbook for A = 221 are shown as examples. These have been produced from the LBL Isotopes Project extended ENDSF data-base. The skeleton schemes have been manually updated from the Table of Isotopes and the tabular data are prepared using UNIX with a phototypesetter. Some of the features of the Radioactivity Handbook are discussed here

  1. Localized Corrosion Behavior of Type 304SS with a Silica Layer Under Atmospheric Corrosion Environments

    International Nuclear Information System (INIS)

    E. Tada; G.S. Frankel

    2006-01-01

    The U.S. Department of Energy (DOE) has proposed a potential repository for spent nuclear fuel and high-level radioactive waste at the Yucca Mountain site in Nevada. [I] The temperature could be high on the waste packages, and it is possible that dripping water or humidity could interact with rock dust particulate to form a thin electrolyte layer with concentrated ionic species. Under these conditions, it is possible that highly corrosion-resistant alloys (CRAs) used as packages to dispose the nuclear waste could suffer localized corrosion. Therefore, to better understand long-term corrosion performance of CRAs in the repository, it is important to investigate localized corrosion under a simulated repository environment. We measured open circuit potential (OCP) and galvanic current (i g ) for silica-coated Type 304SS during drying of salt solutions under controlled RH environments to clarify the effect of silica layer as a dust layer simulant on localized corrosion under atmospheric environments. Type 304SS was used as a relatively susceptible model CRA instead of the much more corrosion resistant alloys, such as Alloy 22, that are being considered as, waste package materials

  2. Fighting corrosion in India

    Energy Technology Data Exchange (ETDEWEB)

    Rajagopalan, K S; Rangaswamy, N S

    1979-03-01

    A survey covers the cost of corrosion in India; methods of preventing corrosion in industrial plants; some case histories, including the prevention of corrosion in pipes through which fuels are pumped to storage and the stress-corrosion cracking of evaporators in fertilizer plants; estimates of the increase in demand in 1979-89 for anticorrosion products and processes developed by the Central Electrochemical Research Institute (CECRI) at Karaikudi, India; industries that may face corrosion problems requiring assistance from CECRI, including the light and heavy engineering structural, and transport industries and the chemical industry; and some areas identified for major efforts, including the establishment of a Corrosion Advisory Board with regional centers and the expansion of the Tropical Corrosion Testing Station at Mandapam Camp, Tamil Nadu.

  3. On-line corrosion monitoring in district heating systems

    DEFF Research Database (Denmark)

    Richter, Sonja; Thorarinsdottir, R.I.; Hilbert, Lisbeth Rischel

    2004-01-01

    ), Electrochemical Noise (EN) and Zero Resistance Ammetry (ZRA). Electrochemical Resistance (ER) has also been used to measure corrosion. The method traditionally only measures corrosion off-line but with newly developed high-sensitive ER technique developed by MetriCorr in Denmark, on-line monitoring is possible...... complicates the chemistry of the environment. Hydrogen sulphide is present in geothermal systems and can be formed as a by-product of sulphate-reducing-bacteria (SRB). The application of electrochemical methods makes on-line monitoring possible. These methods include: Linear Polarization Resistance (LPR....... In order to assess both general corrosion and localized corrosion, it is necessary to apply more than one monitoring technique simultaneously, ZRA or EN for measuring localized corrosion and LPR or ER for measuring general corrosion rate. The advantage of monitoring localized corrosion is indisputable...

  4. Monitoring Techniques for Microbially Influenced Corrosion of Carbon Steel

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel

    2000-01-01

    corrosion rates, when biofilm and corrosion products cover the steel surface. However, EIS might be used for detection of MIC. EN is a suitable technique to characterise the type of corrosion attack, but is unsuitable for corrosion rate estimation. The concentric electrodes galvanic probe arrangement......Abstract Monitoring Techniques for Microbially Influenced Corrosion of Carbon Steel Microbially influenced corrosion (MIC) of carbon steel may occur in media with microbiological activity of especially sulphate-reducing bacteria, e.g. on pipelines buried in soil and on marine structures. MIC...... of carbon steel must be monitored on-line in order to provide an efficient protection and control the corrosion. A number of monitoring techniques is industrially used today, and the applicability and reliability of these for monitoring MIC is evaluated. Coupons and ER are recommended as necessary basic...

  5. Removal of corrosion products of construction materials in heat carrier

    International Nuclear Information System (INIS)

    1975-01-01

    A review of reported data has been made on the removal of structural material corrosion products into the heat-carrying agent of power reactors. The corrosion rate, and at the same time, removal of corrosion products into the heat-carrying agent (water) decreases with time. Thus, for example, the corrosion rate of carbon steel in boiling water at 250 deg C and O 2 concentration of 0.1 mg/1 after 3000 hr is 0.083 g/m 2 . day; after 9000 hr the corrosion rate has been reduced 2.5 times. Under static conditions the transfer rate of corrosion products into water has been smaller than in the stream and also depends on time. The corrosion rate of carbon steel under nuclear plant operating conditions is almost an order higher over that of steel Kh18N10T

  6. Colloids from the aqueous corrosion of uranium nuclear fuel

    Science.gov (United States)

    Kaminski, M. D.; Dimitrijevic, N. M.; Mertz, C. J.; Goldberg, M. M.

    2005-12-01

    Colloids may enhance the subsurface transport of radionuclides and potentially compromise the long-term safe operation of the proposed radioactive waste repository at Yucca Mountain. Little data is available on colloid formation for the many different waste forms expected to be buried in the repository. This work expands the sparse database on colloids formed during the corrosion of metallic uranium nuclear fuel. We characterized spherical UO 2 and nickel-rich montmorilonite smectite-clay colloids formed during the corrosion of uranium metal fuel under bathtub conditions at 90 °C. Iron and chromium oxides and calcium carbonate colloids were present but were a minor population. The estimated upper concentration of the UO 2 and clays was 4 × 10 11 and 7 × 10 11-3 × 10 12 particles/L, respectively. However, oxygen eventually oxidized the UO 2 colloids, forming long filaments of weeksite K 2(UO 2) 2Si 6O 15 · 4H 2O that settled from solution, reducing the UO 2 colloid population and leaving predominantly clay colloids. The smectite colloids were not affected by oxygen. Plutonium was not directly observed within the UO 2 colloids but partitioned completely to the colloid size fraction. The plutonium concentration in the colloidal fraction was slightly higher than the value used in the viability assessment model, and does not change in concentration with exposure to oxygen. This paper provides conclusive evidence for single-phase radioactive colloids composed of UO 2. However, its impact on repository safety is probably small since oxygen and silica availability will oxidize and effectively precipitate the UO 2 colloids from concentrated solutions.

  7. Electrochemical probing of high-level radioactive waste tanks containing washed sludge and precipitates

    International Nuclear Information System (INIS)

    Bickford, D.F.; Congdon, J.W.; Oblath, S.B.

    1986-12-01

    At the US Department of Energy's Savannah River Plant, corrosion of carbon steel storage tanks containing alkaline, high-level radioactive waste is controlled by specification of limits on waste composition and temperature. Processes for the preparation of waste for final disposal will result in waste with low corrosion inhibitor concentrations and, in some cases, high aromatic organic concentrations, neither of which are characteristic of previous operations. Laboratory tests, conducted to determine minimum corrosion inhibitor levels indicated pitting of carbon steel near the waterline for proposed storage conditions. In situ electrochemical measurements of full-scale radioactive process demonstrations have been conducted to assess the validity of laboratory tests. Probes included pH, Eh (potential relative to a standard hydrogen electrode), tank potential, and alloy coupons. In situ results are compared to those of the laboratory tests, with particular regard given to simulated solution composition. Transition metal hydroxide sludge contains strong passivating species for carbon steel. Washed precipitate contains organic species that lower solution pH and tend to reduce passivating films, requiring higher inhibitor concentrations than the 0.01 molar nitrite required for reactor fuel reprocessing wastes. Periodic agitation, to keep the organic phase suspended, or cathodic protection are possible alternatives to higher nitrite inhibitor concentrations

  8. Mechanical damage due to corrosion of parts of pump technology and valves of LWR power installations

    International Nuclear Information System (INIS)

    Hron, J.; Krumpl, M.

    1986-01-01

    Two types are described of uneven corrosion of austenitic chromium-nickel steel: pitting and slit corrosion. The occurrence of slit corrosion is typical of parts of pumping technology and valves. The corrosion damage of austenitic chromium-nickel steels spreads as intergranular, transgranular or mixed corrosion. In nuclear power facilities with LWR's, intergranular corrosion is due to chlorides and sulphur compounds while transgranular corrosion is due to the presence of dissolved oxygen and chlorides. In mechanically stressed parts, stress corrosion takes place. The recommended procedures are discussed of reducing the corrosion-mechanical damage of pumping equipment of light water reactors during design, production and assembly. During the service of the equipment, corrosion cracks are detected using nondestructive methods and surface cracks are repaired by grinding and welding. (E.S.)

  9. Study on transition behavior of corrosion related environment near disposal site

    International Nuclear Information System (INIS)

    Masuda, K.; Nakanishi, T.; Kato, O.; Wada, R.

    2005-01-01

    Full text of publication follows: Disposal vessels are desired to stand for a certain period of time to stabilize radioactive wastes containing heat-generating substances. Besides, in case of wastes containing irradiated metal, which is a source of long-lived 14 C, long-term capability to enclose such long-life species is desired to the vessels. Since endurance of vessels is very affected by surrounding environment, evaluation of long-term environmental transition is important. In this study, we focused on the behavior of red-ox conditions and pH by reactive transport modeling in order to obtain fundamental knowledge about long-term transition of corrosion-related environment around metal vessels or metal-containing radioactive wastes. A two-dimensional reactive transport simulation was applied to a modeled repository site with engineering barrier system including cement and bentonite, etc., in consideration of following chemical models: - The metal corrosion rate was modeled to consider its effect on red-ox conditions. - The corrosion rate of carbon steel was modeled as kinetic reaction rate of production of ferrous ion and electrons as a function of pH and oxygen concentration, based on the experimental results observed under highly-controlled reducing conditions (1). - Formation of corrosion products was modeled by solubility products of iron oxides, such as magnetite, according to analytical results by in-situ XPS (2). - Cement composition and its reaction with groundwater were modeled by chemical equilibrium of primary and secondary minerals, for example, calcium silicates with several C/S ratios to consider the long-term transition of pH with cement degradations. According to the simulation results, the variation of red-ox conditions and pH around the disposal vessels has been estimated. Main component of cement composition slowly changes to calcium silicate having lower C/S ratios, resulting in decrease of pH. Although it depends on the bentonite efficiency

  10. Radioactivity. Centenary of radioactivity discovery

    International Nuclear Information System (INIS)

    Charpak, G.; Tubiana, M.; Bimbot, R.

    1997-01-01

    This small booklet was edited for the occasion of the exhibitions of the celebration of the centenary of radioactivity discovery which took place in various locations in France from 1996 to 1998. It recalls some basic knowledge concerning radioactivity and its applications: history of discovery, atoms and isotopes, radiations, measurement of ionizing radiations, natural and artificial radioactivity, isotope dating and labelling, radiotherapy, nuclear power and reactors, fission and fusion, nuclear wastes, dosimetry, effects and radioprotection. (J.S.)

  11. Erosion corrosion in wet steam

    International Nuclear Information System (INIS)

    Tavast, J.

    1988-03-01

    The effect of different remedies against erosion corrosion in wet steam has been studied in Barsebaeck 1. Accessible steam systems were inspected in 1984, 1985 and 1986. The effect of hydrogen peroxide injection of the transport of corrosion products in the condensate and feed water systems has also been followed through chemical analyses. The most important results of the project are: - Low alloy chromium steels with a chromium content of 1-2% have shown excellent resistance to erosion corrosion in wet steam. - A thermally sprayed coating has shown good resistance to erosion corrosion in wet steam. In a few areas with restricted accessibility minor attacks have been found. A thermally sprayed aluminium oxide coating has given poor results. - Large areas in the moisture separator/reheater and in steam extraction no. 3 have been passivated by injection of 20 ppb hydrogen peroxide to the high pressure steam. In other inspected systems no significant effect was found. Measurements of the wall thickness in steam extraction no. 3 showed a reduced rate of attack. - The injection of 20 ppb hydrogen peroxide has not resulted in any significant reduction of the iron level result is contrary to that of earlier tests. An increase to 40 ppb resulted in a slight decrease of the iron level. - None of the feared disadvantages with hydrogen peroxide injection has been observed. The chromium and cobalt levels did not increase during the injection. Neither did the lifetime of the precoat condensate filters decrease. (author)

  12. Operational improvement to the flue gas cleaning system in radioactive waste incineration facilities

    International Nuclear Information System (INIS)

    Zheng Bowen; Li Xiaohai; Wang Peiyi

    2012-01-01

    After years of operation, some problems, such as corrosion and waste water treatment, have been found in the first domestic whole-scale radioactive waste incineration facility. According to the origin of the problems, the flue gas cleaning system has been optimized and improved in terms of technical process, material and structure. It improves the operational stability, extends the equipment life-time, and also reduces the amount of secondary waste. In addition, as major sources of problems, waste management, operational experiences and information exchange deserve more attention. (authors)

  13. Performace Of Multi-Probe Corrosion Monitoring Systems At The Hanford Site

    International Nuclear Information System (INIS)

    Carothers, K.D.; Boomer, K.D.; Anda, V.S.; Dahl, M.M.; Edgemon, G.L.

    2010-01-01

    Between 2007 and 2009, several different multi-probe corrosion monitoring systems were designed and installed in high-level nuclear waste tanks at the U.S. Department of Energy's Hanford Site in WaShington State. The probe systems are being monitored to ensure waste tanks operate in regions that minimize localized corrosion (i.e., pitting) and stress corrosion cracking. The corrosion monitoring systems have been installed in wastes with different chemistry types. An ongoing effort during the same time period has generated non-radioactive simulants that are tested in the laboratory to establish baseline corrosion monitoring system performance and characterize data to allow interpretation of readings from the multiple corrosion monitoring systems. Data collection from these monitoring systems has reached the point where the results allow comparison with the laboratory testing. This paper presents analytical results from the corrosion monitoring system development program.

  14. The Proposed Yucca Mountain Repository From A Corrosion Perspective

    International Nuclear Information System (INIS)

    J.H. Payer

    2005-01-01

    Corrosion is a primary determinant of waste package performance at the proposed Yucca Mountain Repository and will control the delay time for radionuclide transport from the waste package. Corrosion is the most probable and most likely degradation process that will determine when packages will be penetrated and the shape, size, and distribution of those penetrations. The general issues in corrosion science, materials science and electrochemistry are well defined, and the knowledge base is substantial for understanding corrosion processes. In this paper, the Yucca Mountain Repository is viewed from a corrosion perspective. A major component of the long-term strategy for safe disposal of nuclear waste at the Yucca Mountain Repository is first to completely isolate the radionuclides in the waste packages for long times and to greatly retard the egress and transport of radionuclides from penetrated packages. Therefore, long-lived waste packages are important. The corrosion resistance of the waste package outer canister is reviewed, and a framework for the analysis of localized corrosion processes is presented. An overview is presented of the Materials Performance targeted thrust of the U.S. Department of Energy/Office of Civilian Radioactive Waste Management's Office of Science and Technology and International. The thrust program strives for increased scientific understanding, enhanced process models and advanced technologies for corrosion control

  15. Corrosion principles and surface modification

    International Nuclear Information System (INIS)

    Kruger, J.

    1982-01-01

    This chapter examines the important strategies provided by the newer ideas of corrosion science and engineering that surface modification techniques must utilize to help prevent corrosion, especially the most damaging kind of aqueous corrosion, localized corrosion. Provides a brief introduction to the principles underlying the phenomenon of corrosion in order to use them to discuss surface modification strategies to combat corrosion. Discusses the electrochemistry of corrosion; the thermodynamics of corrosion; the kinetics of corrosion; thermodynamic strategies; and kinetic strategies (formation of more protective passive films; resistance to breakdown; ductility; repassivation)

  16. Enhancing corrosion resistance of reinforced concrete structures with hybrid fiber reinforced concrete

    International Nuclear Information System (INIS)

    Blunt, J.; Jen, G.; Ostertag, C.P.

    2015-01-01

    Highlights: • Reinforced concrete beams were subjected to cyclic flexural loading. • Hybrid fiber reinforced composites were effective in reducing corrosion rates. • Crack resistance due to fibers increased corrosion resistance of steel rebar. • Galvanic corrosion measurements underestimated corrosion rates. • Polarization resistance measurements predicted mass loss more accurately. - Abstract: Service loads well below the yield strength of steel reinforcing bars lead to cracking of reinforced concrete. This paper investigates whether the crack resistance of Hybrid Fiber Reinforced Concrete (HyFRC) reduces the corrosion rate of steel reinforcing bars in concrete after cyclic flexural loading. The reinforcing bars were extracted to examine their surface for corrosion and compare microcell and macrocell corrosion mass loss estimates against direct gravimetric measurements. A delay in corrosion initiation and lower active corrosion rates were observed in the HyFRC beam specimens when compared to reinforced specimens containing plain concrete matrices cycled at the same flexural load

  17. Conditioning of radioactive aluminium generated by the VVR-S Nuclear Reactor Decommissioning Laboratory Inactive Tests

    International Nuclear Information System (INIS)

    Nicu, M.; Ionascu, L.; Turcau, C.; Dragolici, F.; Rotarescu, G.

    2015-01-01

    Aluminium is a reactive amphoteric metal, readily forming a protective oxide layer on contact with air or water. However, as the oxides are amphoteric, aluminium is not resistant to corrosion in acidic and alkaline conditions, because the protective films dissolve. As a consequence radioactive waste containing bulk aluminium alloys can not be embedded in Ordinary Portland Cement (OPC). A potential encapsulating material for the radioactive aluminium is potassium magnesium phosphate (MKP). This paper presents the characterization results obtained from analyzing the potential magnesium phosphate formulations and assesses its potential to reduce the corrosion of aluminium. A series of experiments have been performed. The main conclusions of the paper are as follows. First, the pH values of magnesium phosphate formulation investigated increased gradually over the test duration, with pH measurement ranging from 8.1 - 9.1, indicating lower values compared with the reference composite OPC (pH ∼ 13). The reduction of pH is an important controlling factor for the corrosion of aluminium. Secondly, according to XRD, the hardened magnesium phosphate matrix is polycrystalline and the main reaction product of magnesium phosphate cement formulations was confirmed as MgKPO 4 -6H 2 O, which was found to dominate the crystalline phase composition. Thirdly, the compressive strengths obtained for magnesium phosphate matrices investigated are included in the accepted limits for the embedding matrix with cement (above 5 N/mm 2 ). And fourthly, the corrosion of metallic aluminium in magnesium phosphate matrix is markedly reduced in comparison with the composite OPC

  18. General Atomic's radioactive gas recovery system

    International Nuclear Information System (INIS)

    Mahn, J.A.; Perry, C.A.

    1975-01-01

    General Atomic Company has developed a Radioactive Gas Recovery System for the HTGR which separates, for purposes of retention, the radioactive components from the non-radioactive reactor plant waste gases. This provides the capability for reducing to an insignificant level the amount of radioactivity released from the gas waste system to the atmosphere--a most significant improvement in reducing total activity release to the environment. (U.S.)

  19. Radioactive waste isolation in salt: Peer review of the Office of Nuclear Waste Isolation's draft report on a multifactor test design to investigate uniform corrosion of low-carbon steel

    Energy Technology Data Exchange (ETDEWEB)

    Paddock, R.A.; Lerman, A.; Ditmars, J.D.; Macdonald, D.D.; Peerenboom, J.P.; Was, G.S.; Harrison, W.

    1987-01-01

    This report documents Argonne National Laboratory's review of an internal technical memorandum prepared by Battelle Memorial Institute's Office of Nuclear Waste Isolation (ONWI) entitled Multifactor Test Design to Investigate Uniform Corrosion of Low-Carbon Steel in a Nuclear Waste Salt Repository Environment. The several major areas of concern identified by peer review panelists are important to the credibility of the test design proposed in the memorandum and are to adequately addressed there. These areas of concern, along with specific recommendations to improve their treatment, are discussed in detail in Sec. 2 of this report. The twenty recommendations, which were abstracted from those discussions, are presented essentially in the order in which they are introduced in Sec. 2.

  20. Radioactive waste isolation in salt: Peer review of the Office of Nuclear Waste Isolation's draft report on a multifactor test design to investigate uniform corrosion of low-carbon steel

    International Nuclear Information System (INIS)

    Paddock, R.A.; Lerman, A.; Ditmars, J.D.; Macdonald, D.D.; Peerenboom, J.P.; Was, G.S.; Harrison, W.

    1987-01-01

    This report documents Argonne National Laboratory's review of an internal technical memorandum prepared by Battelle Memorial Institute's Office of Nuclear Waste Isolation (ONWI) entitled Multifactor Test Design to Investigate Uniform Corrosion of Low-Carbon Steel in a Nuclear Waste Salt Repository Environment. The several major areas of concern identified by peer review panelists are important to the credibility of the test design proposed in the memorandum and are to adequately addressed there. These areas of concern, along with specific recommendations to improve their treatment, are discussed in detail in Sec. 2 of this report. The twenty recommendations, which were abstracted from those discussions, are presented essentially in the order in which they are introduced in Sec. 2

  1. Microbially induced corrosion of carbon steel in deep groundwater environment

    Directory of Open Access Journals (Sweden)

    Pauliina eRajala

    2015-07-01

    Full Text Available The metallic low and intermediate level radioactive waste generally consists of carbon steel and stainless steels. The corrosion rate of carbon steel in deep groundwater is typically low, unless the water is very acidic or microbial activity in the environment is high. Therefore, the assessment of microbially induced corrosion of carbon steel in deep bedrock environment has become important for evaluating the safety of disposal of radioactive waste. Here we studied the corrosion inducing ability of indigenous microbial community from a deep bedrock aquifer. Carbon steel coupons were exposed to anoxic groundwater from repository site 100 m depth (Olkiluoto, Finland for periods of three and eight months. The experiments were conducted at both in situ temperature and room temperature to investigate the response of microbial population to elevated temperature. Our results demonstrate that microorganisms from the deep bedrock aquifer benefit from carbon steel introduced to the nutrient poor anoxic deep groundwater environment. In the groundwater incubated with carbon steel the planktonic microbial community was more diverse and 100-fold more abundant compared to the environment without carbon steel. The betaproteobacteria were the most dominant bacterial class in all samples where carbon steel was present, whereas in groundwater incubated without carbon steel the microbial community had clearly less diversity. Microorganisms induced pitting corrosion and were found to cluster inside the corrosion pits. Temperature had an effect on the species composition of microbial community and also affected the corrosion deposits layer formed on the surface of carbon steel.

  2. Status of Database for Electrochemical Noise Based Corrosion Monitoring

    International Nuclear Information System (INIS)

    EDGEMON, G.L.

    1999-01-01

    Underground storage tanks made of mild steel are used to contain radioactive waste generated by plutonium production at the Hanford Site. Corrosion of the walls of these tanks is a major issue. Corrosion-related failure of waste tank walls could lead to the leakage of radioactive contaminants to the soil and groundwater. It is essential to monitor corrosion conditions of the tank walls to determine tank integrity and ensure safe waste storage until retrieval and final waste disposal can be accomplished. Corrosion monitoring/control is currently provided at the Hanford Site through a waste chemistry sampling and analysis program. In this process, tank waste is sampled, analyzed and compared to a selection of laboratory exposures of coupons in simulated waste. Tank wall corrosion is inferred by matching measured tank chemistries to the results of the laboratory simulant testing. This method is expensive, time consuming, and does not yield real-time data. A project to improve the Hanford Site's corrosion monitoring strategy was started in 1995

  3. SRB seawater corrosion project

    Science.gov (United States)

    Bozack, M. J.

    1991-01-01

    The corrosion behavior of 2219 aluminum when exposed to seawater was characterized. Controlled corrosion experiments at three different temperatures (30, 60 and 100 C) and two different environments (seawater and 3.5 percent salt solution) were designed to elucidate the initial stages in the corrosion process. It was found that 2219 aluminum is an active catalytic surface for growth of Al2O3, NaCl, and MgO. Formation of Al2O3 is favored at lower temperatures, while MgO is favored at higher temperatures. Visible corrosion products are formed within 30 minutes after seawater exposure. Corrosion characteristics in 3.5 percent salt solution are different than corrosion in seawater. Techniques utilized were: (1) scanning electron microscopy, (2) energy dispersive x-ray spectroscopy, and (3) Auger electron spectroscopy.

  4. Steamgenerators corrosion monitoring and chemical cleanings

    International Nuclear Information System (INIS)

    Otchenashev, G.

    2001-01-01

    One of the most important secondary side water chemistry objectives is optimization of chemistry conditions to reduce materials corrosion and their products transport into steam generators. Corrosion products (mainly iron and copper oxides) can form deposits on the SG's tubes and essentially decrease their operating resource. The transport of corrosion products by the constant flowrate of feed and blowdown water depends only on their content in these streams. All the internal surfaces (walls, collectors, tubes) were covered with the tough deposit firmly connected with the surface. Corrosion under this deposit was not detected. In some places sludge unconnected with the surface was detected. The lower tubes are located the more unconnected sludge was detected. On SG bottom near the hatch the sludge thickness was about 3 cm. (R.P.)

  5. Multibarrier system preventing migration of radionuclides from radioactive waste repository

    Directory of Open Access Journals (Sweden)

    Olszewska Wioleta

    2015-09-01

    Full Text Available Safety of radioactive waste repositories operation is associated with a multibarrier system designed and constructed to isolate and contain the waste from the biosphere. Each of radioactive waste repositories is equipped with system of barriers, which reduces the possibility of release of radionuclides from the storage site. Safety systems may differ from each other depending on the type of repository. They consist of the natural geological barrier provided by host rocks of the repository and its surroundings, and an engineered barrier system (EBS. The EBS may itself comprise a variety of sub-systems or components, such as waste forms, canisters, buffers, backfills, seals and plugs. The EBS plays a major role in providing the required disposal system performance. It is assumed that the metal canisters and system of barriers adequately isolate waste from the biosphere. The evaluation of the multibarrier system is carried out after detailed tests to determine its parameters, and after analysis including mathematical modeling of migration of contaminants. To provide an assurance of safety of radioactive waste repository multibarrier system, detailed long term safety assessments are developed. Usually they comprise modeling of EBS stability, corrosion rate and radionuclide migration in near field in geosphere and biosphere. The principal goal of radionuclide migration modeling is assessment of the radionuclides release paths and rate from the repository, radionuclides concentration in geosphere in time and human exposure to ionizing radiation

  6. Treatment of radioactive silts and soils with organic materials

    International Nuclear Information System (INIS)

    Sobolev, I.A.; Barinov, A.S.; Dmitriev, S.A.; Lifanov, F.A.; Varlakov, A.P.; Karlin, S.V.

    1997-01-01

    Moscow SIA RADON is developing the ''Clinker'' method to treat radioactive silts and grounds. The ''Clinker'' method consists of radioactive silt (ground) mixed with lime and other components. This mixture is calcined at 800 to 1000 o C. The product is ground to a surface area size of 2500 to 4500 cm 2 /g, mixed with water at a water-to-cement ratio not less than 0.25, and aged to form a solid monolith. The ''Clinker'' method was compared to the traditional cementation methods. The ''Clinker'' method reduces the final volume and enhance the strength characteristics of the final product. The ''Clinker'' cement compound has higher hardening rate. Preliminary data show that it has higher cold resistance, sulfate and leaching corrosion durability in comparison to one prepared by the traditional cementation method. The range of applicability of the ''Clinker'' method is increased by the possibility of treating materials containing up to 80% (mass) of organic materials, such as turf, flora and fauna decomposition products, and manmade material, including natural materials, such as petroleum products and polymers. In addition, the ''Clinker'' method does not require expensive waste binders, i.e., cement. The ''Clinker'' cement can be used for cementation of other radioactive waste. (author)

  7. Radioactive waste disposal: testing and control for setting of plugging and sealing materials in reduced scale models, in boreholes or in shaft excavations

    International Nuclear Information System (INIS)

    1991-01-01

    In the case of an underground disposal of radioactive waste, the free space between the storage containers and the rock embedment must be backfilled in order to restore both mechanical and thermal continuity of the dug out material and to form a physico-chemical barrier against the diffusion into the subsoil of the radionucleides which may be released by the possible failure of a container. The aim of this research program is to formulate a hydraulic binder based sealing material, whose rheological properties at fresh state allow an easy placing and whose mechanical and physico-chemical properties at hardened state guarantee the effectiveness of the impervious barrier. A first part, done in laboratory, pointed out the formulations to be tested on scale models. These models simulate a storage in vertical shafts (high level radioactive waste) and in galleries (medium level radioactive waste), show the efficiency of placing techniques and the behaviour of the sealing submitted to the heat generated by the waste. The sorptive mortar PETRISOL, patented by SOLETANCHE, brings over a solution meeting not only the technical requirements but also the public expectations as far as environmental protection is concerned. 13 figs.; 14 tabs

  8. Corrosion control. 2. ed.

    International Nuclear Information System (INIS)

    Bradford, S.A.

    2001-01-01

    The purpose of this text is to train engineers and technologists not just to understand corrosion but to control it. Materials selection, coatings, chemical inhibitors, cathodic and anodic protection, and equipment design are covered in separate chapters. High-temperature oxidation is discussed in the final two chapters ne on oxidation theory and one on controlling oxidation by alloying and with coatings. This book treats corrosion and high-temperature oxidation separately. Corrosion is divided into three groups: (1) chemical dissolution including uniform attack, (2) electrochemical corrosion from either metallurgical or environmental cells, and (3) stress-assisted corrosion. Corrosion is logically grouped according to mechanisms rather than arbitrarily separated into different types of corrosion as if they were unrelated. For those university students and industry personnel who approach corrosion theory very hesitantly, this text will present the electrochemical reactions responsible for corrosion summed up in only five simple half-cell reactions. When these are combined on a polarization diagram, which is also explained in detail, the electrochemical processes become obvious. For those who want a text stripped bare of electrochemical theory, several noted sections can be omitted without loss of continuity. However, the author has presented the material in such a manner that these sections are not beyond the abilities of any high school graduate who is interested in technology

  9. Coatings and Corrosion Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Purpose: The mission of the Coatings and Corrosion Laboratory is to develop and analyze the effectiveness of innovative coatings test procedures while evaluating the...

  10. Deposition and incorporation of corrosion product to primary coolant suppressing method

    International Nuclear Information System (INIS)

    Tsuzuki, Yasuo; Hasegawa, Naoyoshi; Fujioka, Tsunaaki.

    1992-01-01

    In a PWR type nuclear power plant, the concentration of dissolved nitrogen in primary coolants is increased by controlling the nitrogen partial pressure in a volume controlling tank gas phase portion or addition of water in a primary system water supply tank containing dissolved nitrogen to a primary system. Then ammonium is formed by a reaction with hydrogen dissolved in the primary coolants in the field of radiation rays, to control the concentration of ammonium in the coolants within a range from 0.5 to 3.5 ppm, and operate the power plant. As a result, deposition and incorporation of corrosion products to the structural materials of the primary system equipments during plant operation (pH 6.8 to 8.0) are suppressed. In other words, deposition of particulate corrosion products on the surface of fuel cladding tubes and the inner surface of pipelines in the primary system main equipments is prevented and incorporation of ionic radioactive corrosion products to the oxide membranes on the inner surface of the pipelines of the primary system main equipments is suppressed, to greatly reduce the radiation dose rate of the primary system pipelines. Thus, operator's radiation exposure can be decreased upon shut down of the plant. (N.H.)

  11. Radioactive liquid containing vessel

    International Nuclear Information System (INIS)

    Sakurada, Tetsuo; Kawamura, Hironobu.

    1993-01-01

    Cooling jackets are coiled around the outer circumference of a container vessel, and the outer circumference thereof is covered with a surrounding plate. A liquid of good conductivity (for example, water) is filled between the cooling jackets and the surrounding plate. A radioactive liquid is supplied to the container vessel passing through a supply pipe and discharged passing through a discharge pipe. Cooling water at high pressure is passed through the cooling water jackets in order to remove the heat generated from the radioactive liquid. Since cooling water at high pressure is thus passed through the coiled pipes, the wall thickness of the container vessel and the cooling water jackets can be reduced, thereby enabling to reduce the cost. Further, even if the radioactive liquid is leaked, there is no worry of contaminating cooling water, to prevent contamination. (I.N.)

  12. Reduced ash related operational problems (slagging, bed agglomeration, corrosion and fouling) by co-combustion biomass with peat; Minskade askrelaterade driftsproblem (belaeggning, slaggning, hoegtemperatur-korrosion, baeddagglomerering) genom inblandning av torv i biobraenslen

    Energy Technology Data Exchange (ETDEWEB)

    Oehman, Marcus; Boman, Christoffer; Erhardsson, Thomas; Gilbe, Ram; Pommer, Linda; Bostroem, Dan; Nordin, Anders; Samuelsson, Robert; Burvall, Jan

    2006-12-15

    Combustion studies were performed in both a fluidized bed (5 kW) and in an under-feed pellets burner (20 kW) to elucidate the responsible mechanisms for the positive effects on ash related operational problems (i.e. slagging, fouling, corrosion and bed agglomeration) during co-combustion of several problematic biomass with peat. Three typical carex-containing Swedish peat samples with differences in e.g. silicon-, calcium- and sulfur contents were co-fired with logging residues, willow and straw in proportions corresponding to 15-40 weight %d.s. Mixing of corresponding 20 wt-% of peat significantly reduced the bed agglomeration tendencies for all fuels. The fuel specific agglomeration temperature were increased by 150-170 deg C when adding peat to the straw fuel and approximately 70-100 deg C when adding peat to the logging residue- and the willow fuel. The increased level of calcium in the inner bed particle layer caused by the added reactive calcium from the peat and/or removing alkali in the gas phase to a less reactive particular form via sorption and/or reaction with reactive peat ash (containing calcium, silica etc.) during which larger particles (>1{mu}m) are formed where collected potassium is present in a less reactive form, is considered to be the dominated reason for the increased agglomeration temperatures during combustion of logging residues and willow. During straw combustion, the ash forming matter were found as individual ash sticky particles in the bed. The iron, sulphur and calcium content of these individual ash particles were significantly increased when adding peat to the fuel mix thereby decreasing the stickiness of these particles i.e. reducing the agglomeration tendencies. Adding peat to the relatively silicon-poor fuels (willow and logging residues) resulted in higher slagging tendencies, especially when the relative silicon rich peat fuel (Brunnskoelen) was used. However, when co-combusting peat with the relatively silicon and potassium

  13. Pitting corrosion of copper. Further model studies

    International Nuclear Information System (INIS)

    Taxen, C.

    2002-08-01

    The work presented in this report is a continuation and expansion of a previous study. The aim of the work is to provide background information about pitting corrosion of copper for a safety analysis of copper canisters for final deposition of radioactive waste. A mathematical model for the propagation of corrosion pits is used to estimate the conditions required for stationary propagation of a localised anodic corrosion process. The model uses equilibrium data for copper and its corrosion products and parameters for the aqueous mass transport of dissolved species. In the present work we have, in the model, used a more extensive set of aqueous and solid compounds and equilibrium data from a different source. The potential dependence of pitting in waters with different compositions is studied in greater detail. More waters have been studied and single parameter variations in the composition of the water have been studied over wider ranges of concentration. The conclusions drawn in the previous study are not contradicted by the present results. However, the combined effect of potential and water composition on the possibility of pitting corrosion is more complex than was realised. In the previous study we found what seemed to be a continuous aggravation of a pitting situation by increasing potentials. The present results indicate that pitting corrosion can take place only over a certain potential range and that there is an upper potential limit for pitting as well as a lower. A sensitivity analysis indicates that the model gives meaningful predictions of the minimum pitting potential also when relatively large errors in the input parameters are allowed for

  14. TRU drum corrosion task team report

    Energy Technology Data Exchange (ETDEWEB)

    Kooda, K.E.; Lavery, C.A.; Zeek, D.P.

    1996-05-01

    During routine inspections in March 1996, transuranic (TRU) waste drums stored at the Radioactive Waste Management Complex (RWMC) were found with pinholes and leaking fluid. These drums were overpacked, and further inspection discovered over 200 drums with similar corrosion. A task team was assigned to investigate the problem with four specific objectives: to identify any other drums in RWMC TRU storage with pinhole corrosion; to evaluate the adequacy of the RWMC inspection process; to determine the precise mechanism(s) generating the pinhole drum corrosion; and to assess the implications of this event for WIPP certifiability of waste drums. The task team investigations analyzed the source of the pinholes to be Hcl-induced localized pitting corrosion. Hcl formation is directly related to the polychlorinated hydrocarbon volatile organic compounds (VOCs) in the waste. Most of the drums showing pinhole corrosion are from Content Code-003 (CC-003) because they contain the highest amounts of polychlorinated VOCs as determined by headspace gas analysis. CC-001 drums represent the only other content code with a significant number of pinhole corrosion drums because their headspace gas VOC content, although significantly less than CC-003, is far greater than that of the other content codes. The exact mechanisms of Hcl formation could not be determined, but radiolytic and reductive dechlorination and direct reduction of halocarbons were analyzed as the likely operable reactions. The team considered the entire range of feasible options, ranked and prioritized the alternatives, and recommended the optimal solution that maximizes protection of worker and public safety while minimizing impacts on RWMC and TRU program operations.

  15. TRU drum corrosion task team report

    International Nuclear Information System (INIS)

    Kooda, K.E.; Lavery, C.A.; Zeek, D.P.

    1996-05-01

    During routine inspections in March 1996, transuranic (TRU) waste drums stored at the Radioactive Waste Management Complex (RWMC) were found with pinholes and leaking fluid. These drums were overpacked, and further inspection discovered over 200 drums with similar corrosion. A task team was assigned to investigate the problem with four specific objectives: to identify any other drums in RWMC TRU storage with pinhole corrosion; to evaluate the adequacy of the RWMC inspection process; to determine the precise mechanism(s) generating the pinhole drum corrosion; and to assess the implications of this event for WIPP certifiability of waste drums. The task team investigations analyzed the source of the pinholes to be Hcl-induced localized pitting corrosion. Hcl formation is directly related to the polychlorinated hydrocarbon volatile organic compounds (VOCs) in the waste. Most of the drums showing pinhole corrosion are from Content Code-003 (CC-003) because they contain the highest amounts of polychlorinated VOCs as determined by headspace gas analysis. CC-001 drums represent the only other content code with a significant number of pinhole corrosion drums because their headspace gas VOC content, although significantly less than CC-003, is far greater than that of the other content codes. The exact mechanisms of Hcl formation could not be determined, but radiolytic and reductive dechlorination and direct reduction of halocarbons were analyzed as the likely operable reactions. The team considered the entire range of feasible options, ranked and prioritized the alternatives, and recommended the optimal solution that maximizes protection of worker and public safety while minimizing impacts on RWMC and TRU program operations

  16. Corrosion in the oil industry

    Energy Technology Data Exchange (ETDEWEB)

    Brondel, D [Sedco Forex, Montrouge (France); Edwards, R [Schlumberger Well Services, Columbus, OH (United States); Hayman, A [Etudes et Productions Schlumberger, Clamart (France); Hill, D [Schlumberger Dowell, Tulsa, OK (United States); Mehta, S [Schlumberger Dowell, St. Austell (United Kingdom); Semerad, T [Mobil Oil Indonesia, Inc., Sumatra (Indonesia)

    1994-04-01

    Corrosion costs the oil industry billions of dollars a year, a fact that makes the role of the corrosion engineer an increasingly important one. Attention is paid to how corrosion affects every aspect of exploration and production, from offshore rigs to casing. Also the role of corrosion agents such as drilling and production fluids is reviewed. Methods of control and techniques to monitor corrosion are discussed, along with an explanation of the chemical causes of corrosion. 21 figs., 32 refs.

  17. Simulated Radioactivity

    Science.gov (United States)

    Boettler, James L.

    1972-01-01

    Describes the errors in the sugar-cube experiment related to radioactivity as described in Project Physics course. The discussion considers some of the steps overlooked in the experiment and generalizes the theory beyond the sugar-cube stage. (PS)

  18. Concentrating Radioactivity

    Science.gov (United States)

    Herrmann, Richard A.

    1974-01-01

    By concentrating radioactivity contained on luminous dials, a teacher can make a high reading source for classroom experiments on radiation. The preparation of the source and its uses are described. (DT)

  19. Radioactivity of long-lived nuclides in the primary circuit of the reactor BOR-60 during operation with defective fuel elements

    International Nuclear Information System (INIS)

    Gryazev, V.M.; Kizin, V.D.; Lisitsyn, E.S.; Polyakov, V.I.; Chechetkin, Y.V.

    1978-06-01

    The summarized results of measurements of the enrichment and distribution of radioactive nuclides from corrosion and of fission products during the four years of operation of BOR-60, including a longer period of operation with detective fuel elements in the core, are presented. It is shown that for operation with approximately 1% leaking fuel rods radiation exposure becomes worse manily because of release and enrichment of cesium isotopes in the coolant. Of the other fission products, the largest contribution to the dose rate in pipework and components is given by 140 Ba / 140 La and 95 Nb. On operation with 0.1 to 0.2% of leaking fuel rods, this contribution is comparable to that of the corrosion products 60 Co and 54 Mn. The radioactivity of corrosion products in the circuit has not increased within the last three years and was about one order of magnitude lower than the theoretical values. The corrosion and fission products are nonuniformly distributed over the circuit. Concentration of 95 Nb and 60 Co in the pipe for 'cold' sodium is larger by a factor of 2 - 5 and of 140 Ba and 54 Mn by a factor of 10-20 than in the pipes for 'hot' sodium. Most of the cobalt was found to deposit in the heat exchanges. The effectiveness of emptying the pipes from coolant in order to reduce the dose sate is assessed. (orig.) [de

  20. Radioactive wastes

    International Nuclear Information System (INIS)

    Grass, F.

    1982-01-01

    Following a definition of the term 'radioactive waste', including a discussion of possible criteria allowing a delimitation of low-level radioactive against inactive wastes, present techniques of handling high-level, intermediate-level and low-level wastes are described. The factors relevant for the establishment of definitive disposals for high-level wastes are discussed in some detail. Finally, the waste management organization currently operative in Austria is described. (G.G.)

  1. Radioactive pollution

    International Nuclear Information System (INIS)

    Steiner, R.

    1987-01-01

    In the wake of the Chernobyl reactor accident on April 26, 1986, many individual values for radioactivity in the air, in foodstuffs and in the soil were measured and published. Prof. Dr. Rolf Steiner, Wiesbaden, the author of this paper, evaluated the host of data - mostly official pollution data -, drew conclusions regarding the radioactivity actually released at Chernobyl, and used the data to test the calculation model adotped by the Radiation Protection Ordinance. (orig./RB) [de

  2. Hanford double shell tank corrosion monitoring instrument tree prototype

    International Nuclear Information System (INIS)

    Nelson, J.L.; Edgemon, G.L.; Ohl, P.C.

    1995-11-01

    High-level nuclear wastes at the Hanford site are stored underground in carbon steel double-shell and single-shell tanks (DSTs and SSTs). The installation of a prototype corrosion monitoring instrument tree into DST 241-A-101 was completed in December 1995. The instrument tree has the ability to detect and discriminate between uniform corrosion, pitting, and stress corrosion cracking (SCC) through the use of electrochemical noise measurements and a unique stressed element, three-electrode probe. The tree itself is constructed of AISI 304L stainless steel (UNS S30403), with probes in the vapor space, vapor/liquid interface and liquid. Successful development of these trees will allow their application to single shell tanks and the transfer of technology to other US Department of Energy (DOE) sites. Keywords: Hanford, radioactive waste, high-level waste tanks, electrochemical noise, probes, double-shell tanks, single-shell tanks, corrosion

  3. Disposal facility for radioactive wastes

    International Nuclear Information System (INIS)

    Utsunomiya, Toru.

    1985-01-01

    Purpose: To remove heat generated from radioactive wastes thereby prevent the working circumstances from being worsened in a disposal-facility for radioactive wastes. Constitution: The disposal-facility comprises a plurality of holes dug out into the ground inside a tunnel excavated for the storage of radioactive wastes. After placing radioactive wastes into the shafts, re-filling materials are directly filled with a purpose of reducing the dosage. Further, a plurality of heat pipes are inserted into the holes and embedded within the re-filling materials so as to gather heat from the radioactive wastes. The heat pipes are connected to a heat exchanger disposed within the tunnel. As a result, heating of the solidified radioactive wastes itself or the containing vessel to high temperature can be avoided, as well as thermal degradation of the re-filling materials and the worsening in the working circumstance within the tunnel can be overcome. (Moriyama, K.)

  4. Research and development activities at INE concerning corrosion of final repository container materials

    International Nuclear Information System (INIS)

    Kienzler, Bernhard

    2017-01-01

    The present work provides a historical overview of the research and development activities carried out at the (Nuclear) Research Center Karlsruhe (today KIT) since the beginning of the 1980s on the corrosion of materials which might be suitable for construction of containers for highly radioactive wastes. The report relates almost exclusively to the work performed by Dr. Emmanuel Smailos, who elaborated the corrosion of various materials at the Institute for Nuclear Waste Disposal (INE). The requirements for the containers and materials, which were subject to changes in time, are presented. The changes were strongly influenced by the changed perception of the use of nuclear energy. The selection of the materials under investigations, the boundary conditions for the corrosion experiments and the analytical methods are described. Results of the corrosion of the materials such as finegrained steel, Hastelloy C4, nodular cast iron, titanium-palladium and copper or copper-nickel alloys in typical salt solutions are summarized. The findings of special investigations, e.g. corrosion under irradiation or the influence of sulfide on the corrosion rates are shown. For construction of disposal canisters, experiments were conducted to determine the contact corrosion, the influence of the hydrogen embrittlement of Ti-Pd and fine-grained steels on the corrosion behavior as well as the corrosion behavior of welding and the influence of different welding processes with the resulting heat-affected zones on the corrosion behavior. The work was contributed to several European research programs and was well recognized in the USA. Investigations on the corrosion of steels in non-saline solutions and corrosion under interim storage conditions as well as under the expected conditions of the Konrad repository for low-level radioactive wastes are also described. In addition, the experiments on ceramic materials are presented and the results of the corrosion of Al 2 O 3 and ZrO 2 ceramics

  5. Corrosion of porous silicon in tetramethylammonium hydroxide solution

    International Nuclear Information System (INIS)

    Lai, Chuan; Li, Xue-Ming; Zou, Li-Ke; Chen, Qiang; Xie, Bin; Li, Yu-Lian; Li, Xiao-Lin; Tao, Zhi

    2014-01-01

    Highlights: • The corrosion of porous silicon in (CH 3 ) 4 NOH solution was studied. • The residue of corrosion products was a mixture of [(CH 3 ) 4 N] 2 SiO 3 and SiO 2 . • The effect factors for porous silicon corrosion were elaborately investigated. • The additive of ethanol in (CH 3 ) 4 NOH solution could reduce the corrosion rate. • The 1.0 M (CH 3 ) 4 NOH could act as an applicable and novel corrosion solution. - Abstract: Corrosion of porous silicon in tetramethylammonium hydroxide (TMAH) solution was studied using weight loss measurements and scanning electron microscope. The effects of temperature, concentration of TMAH and volume ratio of ethanol in 1.0 M TMAH on corrosion rate and corrosion time were elaborately investigated. The residue of corrosion products were characterized as a mixture of [(CH 3 ) 4 N] 2 SiO 3 and SiO 2 . A comparative test among TMAH, KOH and NaOH illustrated that the 1.0 M TMAH could act as an applicable and novel corrosion solution to remove porous silicon layer for determining the porosity of porous silicon

  6. Corrosion of barrier materials in seawater environments

    International Nuclear Information System (INIS)

    Heiser, J.H.; Soo, P.

    1995-07-01

    A brief review has been carried out on the performance of barrier materials for low-level radioactive wastes in seawater environments. The environments include those for shallower coastal waters as well as the deep ocean (down to 3800 m). The review is mainly focused on metallic materials since they are the most common for seawater service and they have the largest data base. Information from the literature is usually pertinent to shallower coastal locations, but there is a valuable source of corrosion data obtained from several studies of metallic specimens exposed to ocean-bed conditions. In addition, the corrosion of carbon steel barriers has been evaluated for actual waste containers that were retrieved from previously-used disposal sites in the Atlantic and Pacific Oceans. Of the metallic materials studied, carbon steel showed the least corrosion resistance. Failure by non-uniform attack in a typical waste container could occur in as little as 25 y in some ocean environments ' Penetration by local attack, such as pitting and crevice corrosion resistance was also observed for more expensive materials such as low-alloy steels, stainless steels, titanium alloys, zirconium alloys, copper alloys, nickel alloys, aluminum alloys, and lead alloys

  7. Radii of radioactive nuclei

    International Nuclear Information System (INIS)

    Mittig, W.; Plagnol, E.; Schutz, Y.

    1989-11-01

    A new simple direct method for the measurement of the total reaction cross section (σ R ) for several light radioactive nuclei (A≤40) is developed. From that, the reduced strong absorption radii (r o 2 ) are obtained. A comparison is made with data obtained by other techniques. A strong isospin dependence of the nuclear radii is observed. (L.C.) [pt

  8. Corrosion of candidate materials in Lake Rotokawa geothermal exposure

    Energy Technology Data Exchange (ETDEWEB)

    Estill, J.C.; McCright, R.D.

    1995-05-01

    Corrosion rates were determined for CDA 613, CDA 715, A-36 carbon steel, 1020 carbon steel, and Alloy 825 flat coupons which were exposed to geothermal spring water at Paraiki site number 9 near Lake Rotokawa, New Zealand. Qualitative observations of the corrosion performance of Type 304L stainless steel and CDA 102 exposed to the same environment were noted. CDA 715, Alloy 825, 1020 carbon steel, and other alloys are being considered for the materials of construction for high-level radioactive waste containers for the United States civilian radioactive waste disposal program. Alloys CDA 613 and CDA 102 were tested to provide copper-based materials for corrosion performance comparison purposes. A36 was tested to provide a carbon steel baseline material for comparison purposes, and alloy 304L stainless steel was tested to provide an austenitic stainless steel baseline material for comparison purposes. In an effort to gather corrosion data from an environment that is rooted in natural sources of water and rock, samples of some of the proposed container materials were exposed to a geothermal spring environment. At the proposed site at Yucca Mountain, Nevada, currently under consideration for high-level nuclear waste disposal, transient groundwater may come in contact with waste containers over the course of a 10,000-year disposal period. The geothermal springs environment, while extremely more aggressive than the anticipated general environment at Yucca Mountain, Nevada, could have similarities to the environment that arises at selected local sites on a container as a result of crevice corrosion, pitting corrosion, microbiologically influenced corrosion (MIC), or the concentration of the ionic species due to repetitive evaporation or boiling of the groundwater near the containers. The corrosion rates were based on weight loss data obtained after six weeks exposure in a 90{degrees}C, low-pH spring with relatively high concentrations of SO{sub 4}{sup 2-} and Cl{sup -}.

  9. Corrosion analysis in mooring chain links; Analise de corrosao em elos de amarras

    Energy Technology Data Exchange (ETDEWEB)

    Leal, Silvia N.; Pereira, Marcos V. [Pontificia Univ. Catolica do Rio de Janeiro, RJ (Brazil). Dept. de Ciencia dos Materiais e Metalurgia; Costa, Luis C. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas; Motta, Sergio H. [Brasilamarras - Companhia Brasileira de Amarras, Niteroi, RJ (Brazil)

    2004-07-01

    The purpose of this work was to characterize the localized corrosion phenomenon in the weld region of offshore mooring chain links type ORQ. In this sense, a number of chain links were selected after finishing their projected life time without corrosion signs (chains without corrosion) as well as chain links which showed a reduced life time caused by localized corrosion (chains with corrosion). In the sequence, electrochemistry tests evaluated the corrosion susceptibility of the different regions of the weld joint. The results showed that the heat affected zone concerning the chains with corrosion was the anodic region, with high corrosion rate, while the same region on the not corroded chains was the cathodic one, with low corrosion rate. (author)

  10. Corrosion evaluation technology

    International Nuclear Information System (INIS)

    Kim, Uh Chul; Han, Jeong Ho; Nho, Kye Ho; Lee, Eun Hee; Kim, Hong Pyo; Hwang, Seong Sik; Lee, Deok Hyun; Hur, Do Haeng; Kim, Kyung Mo.

    1997-09-01

    A multifrequency ACPD system was assembled which can measure very small crack. Stress corrosion cracking test system with SSRT operating high temperature was installed. Stress corrosion cracking test of newly developed alloy 600 and existing alloy 600 was carried out in steam atmosphere of 400 deg C. No crack was observed in both materials within a test period of 2,000 hrs. Corrosion fatigue test system operating at high temperature was installed in which fatigue crack was measured by CDPD. Lead enhanced the SCC of the Alloy 600 in high temperature water, had a tendency to modify a cracking morphology from intergranular to transgranular. Pit initiation preferentially occurred at Ti-rich carbide. Resistance to pit initiation decreased with increasing temperature up to 300 deg C. Test loop for erosion corrosion was designed and fabricated. Thin layer activation technique was very effective in measuring erosion corrosion. Erosion corrosion of a part of secondary side pipe was evaluated by the Check Family Codes of EPRI. Calculated values of pipe thickness by Check Family Codes coincided with the pipe thickness measured by UT with an error of ± 20%. Literature review on turbine failure showed that failure usually occurred in low pressure turbine rotor disc and causes of failure are stress corrosion cracking and corrosion fatigue. (author). 12 refs., 20 tabs., 77 figs

  11. Aluminum Corrosion and Turbidity

    International Nuclear Information System (INIS)

    Longtin, F.B.

    2003-01-01

    Aluminum corrosion and turbidity formation in reactors correlate with fuel sheath temperature. To further substantiate this correlation, discharged fuel elements from R-3, P-2 and K-2 cycles were examined for extent of corrosion and evidence of breaking off of the oxide film. This report discusses this study

  12. Demystifying Controlling Copper Corrosion

    Science.gov (United States)

    The LCR systematically misses the highest health and corrosion risk sites for copper. Additionally, there are growing concerns for WWTP copper in sludges and discharge levels. There are many corrosion control differences between copper and lead. This talk explains the sometimes c...

  13. Analysis of corrosion products of carbon steel in wet bentonite

    International Nuclear Information System (INIS)

    Osada, Kazuo; Nagano, Tetsushi; Nakayama, Shinichi; Muraoka, Susumu

    1992-02-01

    As a part of evaluation of the long-term durability for the overpack containers for high-level radioactive waste, we have conducted corrosion tests for carbon steel in wet bentonite, a candidate buffer material. The corrosion rates were evaluated by weight difference of carbon steel and corrosion products were analyzed by Fourier transform infrared spectroscopy (FT-IR) and colorimetry. At 40degC, the corrosion rate of carbon steel in wet bentonite was smaller than that in pure water. At 95degC, however, the corrosion rate in wet bentonite was much higher than that in pure water. This high corrosion rate in wet bentonite at 95degC was considered to result from evaporation of moisture in bentonite in contact with the metal. This evaporation led to dryness and then to shrinkage of the bentonite, which generated ununiform contact of the metal with bentonite. Probably, this ununiform contact promoted the local corrosion. The locally corroded parts of specimen in wet bentonite at 95degC were analyzed by Fourier transform infrared microspectroscopy (micro-FT-IR), and lepidocrocite γ-FeO(OH) was found as well as goethite α-FeO(OH). In wet bentonite at 95degC, hematite α-Fe 2 O 3 was identified by means of colorimetry. (author)

  14. Task E container corrosion studies: Annual report. Revision 1

    International Nuclear Information System (INIS)

    Bunnell, L.R.; Doremus, L.A.; Topping, J.B.; Duncan, D.R.

    1994-06-01

    The Pacific Northwest Laboratory is conducting the Solid Waste Technology Support Program (SWTSP) for Westinghouse Hanford Company (WHC). Task E is the Container Corrosion Study Portion of the SWTSP that will perform testing to provide defensible data on the corrosion of low-carbon steel, as used in drums to contain chemical and radioactive wastes at the Hanford Site. A second objective of Task E is to provide and test practical alternative materials that have higher corrosion resistance than low-carbon steel. The scope of work for fiscal year (FY) 1993 included initial testing of mild steel specimens buried in Hanford soils or exposed to atmospheric corrosion in metal storage sheds. During FY 1993, progress was made in three areas of Task E. First, exposure of test materials began at the Soil Corrosion Test Site where low-carbon steel specimens were placed in the soil in five test shafts at depths of 9 m (30 ft). Second, the corrosion measurement of low-carbon steel in the soil of two solid waste trenches continued. The total exposure time is ∼ 500 days. Third, an atmospheric corrosion test of low-carbon steel was initiated in a metal shed (Building 2401-W) in the 200 West Area. This annual report describes the Task E efforts and provides a current status

  15. Corrosion of steel tanks in liquid nuclear wastes

    International Nuclear Information System (INIS)

    Carranza, Ricardo M.; Giordano, Celia M.; Saenz, Eduardo

    2005-01-01

    The objective of this work is to understand how solution chemistry would impact on the corrosion of waste storage steel tanks at the Hanford Site. Future tank waste operations are expected to process wastes that are more dilute with respect to some current corrosion inhibiting waste constituents. Assessment of corrosion damage and of the influence of exposure time and electrolyte composition, using simulated (non-radioactive) wastes, of the double-shell tank wall carbon steel alloys is being conducted in a statistically designed long-term immersion experiment. Corrosion rates at different times of immersion were determined using both weight-loss determinations and electrochemical impedance spectroscopy measurements. Localized corrosion susceptibility was assessed using short-term cyclic potentiodynamic polarization curves. The results presented in this paper correspond to electrochemical and weight-loss measurements of the immersed coupons during the first year of immersion from a two year immersion plan. A good correlation was obtained between electrochemical measurements, weight-loss determinations and visual observations. Very low general corrosion rates ( -1 ) were estimated using EIS measurements, indicating that general corrosion rate of the steel in contact with liquid wastes would no be a cause of tank failure even for these out-of-chemistry limit wastes. (author) [es

  16. The aluminum chemistry and corrosion in alkaline solutions

    International Nuclear Information System (INIS)

    Zhang Jinsuo; Klasky, Marc; Letellier, Bruce C.

    2009-01-01

    Aluminum-alkaline solution systems are very common in engineering applications including nuclear engineering. Consequently, a thorough knowledge of the chemistry of aluminum and susceptibility to corrosion in alkaline solutions is reviewed. The aluminum corrosion mechanism and corrosion rate are examined based on current experimental data. A review of the phase transitions with aging time and change of environment is also performed. Particular attention is given to effect of organic and inorganic ions. As an example, the effect of boron is examined in detail because of the application in nuclear reactor power systems. Methods on how to reduce the corrosion rate of aluminum in alkaline solutions are also highlighted

  17. Control of corrosion in an aqueous nuclear fuel storage basin

    International Nuclear Information System (INIS)

    Zimmerman, C.A.

    1981-01-01

    Observations made during thirty years of experience in operating a nuclear fuel storage basin, used for storing a wide variety of spent nuclear fuels underwater have identified several forms of corrosion such as galvanic, pitting and crevice attack. Examples of some of the forms of corrosion observed and their causes are discussed, along with the measures taken to mitigate the corrosive attack. The paper also describes the procedure used to reduce corrosion by: surveillance of design, selection of materials for application in the basin, and inspection of items in the storage basin

  18. [Estimation of cost-saving for reducing radioactive waste from nuclear medicine facilities by implementing decay in storage (DIS) in Japan].

    Science.gov (United States)

    Kida, Tetsuo; Hiraki, Hitoshi; Yamaguchi, Ichirou; Fujibuchi, Toshioh; Watanabe, Hiroshi

    2012-01-01

    DIS has not yet been implemented in Japan as of 2011. Therefore, even if risk was negligible, medical institutions have to entrust radioactive temporal waste disposal to Japan Radio Isotopes Association (JRIA) in the current situation. To decide whether DIS should be implemented in Japan or not, cost-saving effect of DIS was estimated by comparing the cost that nuclear medical facilities pay. By implementing DIS, the total annual cost for all nuclear medical facilities in Japan is estimated to be decreased to 30 million yen or less from 710 million yen. DIS would save 680 million yen (96%) per year.

  19. Estimation of cost-saving for reducing radioactive waste from nuclear medicine facilities by implementing decay in storage (DIS) in Japan

    International Nuclear Information System (INIS)

    Kida, Tetsuo; Hiraki, Hitoshi; Yamaguchi, Ichirou; Fujibuchi, Toshioh; Watanabe, Hiroshi

    2012-01-01

    DIS has not yet been implemented in Japan as of 2011. Therefore, even if risk was negligible, medical institutions have to entrust radioactive temporal waste disposal to Japan Radio Isotopes Association (JRIA) in the current situation. To decide whether DIS should be implemented in Japan or not, cost-saving effect of DIS was estimated by comparing the cost that nuclear medical facilities pay. By implementing DIS, the total annual cost for all nuclear medical facilities in Japan is estimated to be decreased to 30 million yen or less from 710 million yen. DIS would save 680 million yen (96%) per year. (author)

  20. Erosion and erosion-corrosion

    International Nuclear Information System (INIS)

    Isomoto, Yoshinori

    2008-01-01

    It is very difficult to interpret the technical term of erosion-corrosion' which is sometimes encountered in piping systems of power plants, because of complicated mechanisms and several confusing definitions of erosion-corrosion phenomena. 'FAC (flow accelerated corrosion)' is recently introduced as wall thinning of materials in power plant systems, as a representative of 'erosion-corrosion'. FAC is, however, not necessarily well understood and compared with erosion-corrosion. This paper describes firstly the origin, definition and fundamental understandings of erosion and erosion-corrosion, in order to reconsider and reconfirm the phenomena of erosion, erosion-corrosion and FAC. Next, typical mapping of erosion, corrosion, erosion-corrosion and FAC are introduced in flow velocity and environmental corrosiveness axes. The concept of damage rate in erosion-corrosion is finally discussed, connecting dissolution rate, mass transfer of metal ions in a metal oxide film and film growth. (author)

  1. Exploratory shaft liner corrosion estimate

    International Nuclear Information System (INIS)

    Duncan, D.R.

    1985-10-01

    An estimate of expected corrosion degradation during the 100-year design life of the Exploratory Shaft (ES) is presented. The basis for the estimate is a brief literature survey of corrosion data, in addition to data taken by the Basalt Waste Isolation Project. The scope of the study is expected corrosion environment of the ES, the corrosion modes of general corrosion, pitting and crevice corrosion, dissimilar metal corrosion, and environmentally assisted cracking. The expected internal and external environment of the shaft liner is described in detail and estimated effects of each corrosion mode are given. The maximum amount of general corrosion degradation was estimated to be 70 mils at the exterior and 48 mils at the interior, at the shaft bottom. Corrosion at welds or mechanical joints could be significant, dependent on design. After a final determination of corrosion allowance has been established by the project it will be added to the design criteria. 10 refs., 6 figs., 5 tabs

  2. Corrosion resistance of high-performance materials titanium, tantalum, zirconium

    CERN Document Server

    2012-01-01

    Corrosion resistance is the property of a material to resist corrosion attack in a particular aggressive environment. Although titanium, tantalum and zirconium are not noble metals, they are the best choice whenever high corrosion resistance is required. The exceptionally good corrosion resistance of these high–performance metals and their alloys results from the formation of a very stable, dense, highly adherent, and self–healing protective oxide film on the metal surface. This naturally occurring oxide layer prevents chemical attack of the underlying metal surface. This behavior also means, however, that high corrosion resistance can be expected only under neutral or oxidizing conditions. Under reducing conditions, a lower resistance must be reckoned with. Only very few inorganic and organic substances are able to attack titanium, tantalum or zirconium at ambient temperature. As the extraordinary corrosion resistance is coupled with an excellent formability and weldability these materials are very valua...

  3. Technique for characterizing crevice corrosion under hydrothermal conditions

    International Nuclear Information System (INIS)

    Jain, H.; Ahn, T.M.; Soo, P.

    1983-01-01

    The current/potential results show that the crevice corrosion incubation period for a Grade-12 titanium crevice formed between two Teflon plates is about two days at 150 0 C. Optical and SEM observations show that the corrosion starts as isolated pitting which spreads along the surface as shallow pits. The corrosion conditions change significantly as the TiO 2 corrosion product fills the crevice, and the rate of corrosion may be greatly reduced after several days. The rate of crevice corrosion of commercial purity (Grade-2) titanium under similar consitions is approximately three orders of magnitude higher. In this case, active dissolution of metal starts during the initial heating of the autoclave and the incubation period is negligible

  4. Experiments and models of general corrosion and flow-assisted corrosion of materials in nuclear reactor environments

    Science.gov (United States)

    Cook, William Gordon

    Corrosion and material degradation issues are of concern to all industries. However, the nuclear power industry must conform to more stringent construction, fabrication and operational guidelines due to the perceived additional risk of operating with radioactive components. Thus corrosion and material integrity are of considerable concern for the operators of nuclear power plants and the bodies that govern their operations. In order to keep corrosion low and maintain adequate material integrity, knowledge of the processes that govern the material's breakdown and failure in a given environment are essential. The work presented here details the current understanding of the general corrosion of stainless steel and carbon steel in nuclear reactor primary heat transport systems (PHTS) and examines the mechanisms and possible mitigation techniques for flow-assisted corrosion (FAC) in CANDU outlet feeder pipes. Mechanistic models have been developed based on first principles and a 'solution-pores' mechanism of metal corrosion. The models predict corrosion rates and material transport in the PHTS of a pressurized water reactor (PWR) and the influence of electrochemistry on the corrosion and flow-assisted corrosion of carbon steel in the CANDU outlet feeders. In-situ probes, based on an electrical resistance technique, were developed to measure the real-time corrosion rate of reactor materials in high-temperature water. The probes were used to evaluate the effects of coolant pH and flow on FAC of carbon steel as well as demonstrate of the use of titanium dioxide as a coolant additive to mitigated FAC in CANDU outlet feeder pipes.

  5. A study on Prediction of Radioactive Source-term from the Decommissioning of Domestic NPPs by using CRUDTRAN Code

    Energy Technology Data Exchange (ETDEWEB)

    Song, Jong Soon; Lee, Sang Heon; Cho, Hoon Jo [Department of Nuclear Engineering Chosun University, Gwangju (Korea, Republic of)

    2016-10-15

    For the study, the behavior mechanism of corrosion products in the primary system of the Kori no.1 was analyzed, and the volume of activated corrosion products in the primary system was assessed based on domestic plant data with the CRUDTRAN code used to predict the volume. It is expected that the study would be utilized in predicting radiation exposure of workers performing maintenance and repairs in high radiation areas and in selecting the process of decontaminations and decommissioning in the primary system. It is also expected that in the future it would be used as the baseline data to estimate the volume of radioactive wastes when decommissioning a nuclear plant in the future, which would be an important criterion in setting the level of radioactive wastes used to compute the quantity of radioactive wastes. The results of prediction of the radioactive nuclide inventory in the primary system performed in this study would be used as baseline data for the estimation of the volume of radioactive wastes when decommissioning NPPs in the future. It is also expected that the data would be important criteria used to classify the level of radioactive wastes to calculate the volume. In addition, it is expected that the data would be utilized in reducing radiation exposure of workers in charge of system maintenance and repairing in high radiation zones and also predicting the selection of decontaminations and decommissioning processes in the primary systems. In future researches, it is planned to conduct the source term assessment against other NPP types such as CANDU and OPR-1000, in addition to the Westinghouse type nuclear plants.

  6. Corrosion fatigue of steels

    International Nuclear Information System (INIS)

    Spaehn, H.; Wagner, G.H.

    1976-01-01

    Corrosion fatigue phenomena can be classified into two main groups according to the electrochemical state of the metal surface in the presence of electrolytes: the active and the passive state with an important sub-group of corrosion fatigue in the unstable passive state. The allowable stress for structures exposed to the conjoint action of corrosion and fatigue is influenced by many factors: kind of media, number of cycles, frequency, mean stress, size, notches, loading mode, alloy composition and mechanical strength. A critical literature review shows contradictory results if a classification by the electrochemical surface state is not applied. Case histories and counter measures illustrate the practical importance of corrosion fatigue in many branches of industry as well as the urgent need for a better knowledge about the mutual influence of the phenomena to get rules by which the engineer can appraise the risk of corrosion fatigue. (orig.) [de

  7. Corrosion initiation and propagation in cracked concrete - a literature review

    NARCIS (Netherlands)

    Pacheco, J.; Polder, R.

    2012-01-01

    The major degradation mechanism in civil engineering concrete structures is corrosion of reinforcement due to chloride penetration. Corrosion reduces serviceability and safety due to cracking and spalling of concrete and loss of steel cross section. Recently, service life design has moved from

  8. Corrosion Aggressivenes of Soil Related to the Activity of

    African Journals Online (AJOL)

    naoc

    resulting from attack on the metal by sulphate-reducing bacteria in the soils. KEY WORDS: ... analysis of corrosion products formed on the surfaces of X60 steel coupons buried in ..... publication on the control of biofilm growth in drinking water distribution ... passive film formed on austentic stainless steel AISI. 304, Corrosion ...

  9. Investigation of the effectiveness of structural measures for reducing the radiation exposure of the population in aeras with enhanced natural radioactivity. A measuring campaign in existing buildings

    International Nuclear Information System (INIS)

    Leidner, L.; Urban, M.

    1986-01-01

    For this measuring campaign, buildings of different structural design located close to each other have been selected in an area with enhanced natural radioactivity in order to find out any differences in indoor radioactivity levels that can be attributed to structural design features. The measuring results show that the structural condition of the cellar is the decisive factor determining the radon concentration in a house for the case that the surrounding earth is the main radon source. In houses with an unimpaired concrete cellar flooring, radon concentrations in the ground floor have been found to be lower by a factor of 5-10 than in houses with a natural rock basement. Building materials have been found to have an effect at only comparably low radon concentrations. Expected impacts of structural measures, as e.g. thermal insulation windows, could not be proven (except for some half-timber buildings). The results of this measuring campaign that allow a direct house-to-house comparison do not confirm the relation between gamma dose rate and radon concentration postulated by results of a data collection campaign made in various administrative districts. The effectiveness of given structural variations cannot be proven by measurements in existing houses. This would rather require pin-pointed structural modifications for assessment, which can be done in a building chosen for this purpose. (orig./HP) [de

  10. The corrosion behaviour of galvanized steel in cooling tower water containing a biocide and a corrosion inhibitor.

    Science.gov (United States)

    Minnoş, Bihter; Ilhan-Sungur, Esra; Çotuk, Ayşın; Güngör, Nihal Doğruöz; Cansever, Nurhan

    2013-01-01

    The corrosion behaviour of galvanized steel in cooling tower water containing a biocide and a corrosion inhibitor was investigated over a 10-month period in a hotel. Planktonic and sessile numbers of sulphate reducing bacteria (SRB) and heterotrophic bacteria were monitored. The corrosion rate was determined by the weight loss method. The corrosion products were analyzed by energy dispersive X-ray spectroscopy and X-ray diffraction. A mineralized, heterogeneous biofilm was observed on the coupons. Although a biocide and a corrosion inhibitor were regularly added to the cooling water, the results showed that microorganisms, such as SRB in the mixed species biofilm, caused corrosion of galvanized steel. It was observed that Zn layers on the test coupons were completely depleted after 3 months. The Fe concentrations in the biofilm showed significant correlations with the weight loss and carbohydrate concentration (respectively, p < 0.01 and p < 0.01).

  11. Method for burning radioactive wastes

    International Nuclear Information System (INIS)

    Hattori, Akinori; Tejima, Takaya.

    1987-01-01

    Purpose: To completely process less combustible radioactive wastes with no excess loads on discharge gas processing systems and without causing corrosions to furnace walls. Method: Among combustible radioactive wastes, chlorine-containing less combustible wastes such as chlorine-containing rubbers and vinyl chlorides, and highly heat generating wastes not containing chloride such as polyethylene are selectively packed into packages. While on the other hand, packages of less combustible wastes are charged into a water-cooled jacket type incinerator intermittently while controlling the amount and the interval of charging so that the temperature in the furnace will be kept to lower than 850 deg C for burning treatment. Directly after the completion of the burning, the packed highly heat calorie producing wastes are charged and subjected to combustion treatment. (Yoshihara, H.)

  12. Radioactive substance removing device

    International Nuclear Information System (INIS)

    Takeuchi, Jun; Tayama, Ryuichi; Teruyama, Hidehiko; Hikichi, Takayoshi.

    1992-01-01

    If inert gases are jetted from a jetting device to liquid metals in a capturing vessel, the inert gases are impinged on the inner wall surface of the capturing vessel, to reduce the thickness of a boundary layer as a diffusion region of radioactive materials formed between the inner wall surface of the capturing vessel and the liquid metals. Further, a portion of the boundary layer is peeled off to increase the adsorption amount of radioactive materials by the capturing vessel. When the inert gases are jetted on the inner or outer circumference of the capturing vessel to rotate the capturing vessel, the flow of the liquid metals is formed along with the rotation, and the thickness of the boundary layer is reduced or the boundary layer is peeled off to increase the absorption amount of the radioactive materials. If gas bubbles are formed in the liquid metals by the inert gases, the liquid metals are stirred by the gas bubbles to reduce the thickness of the boundary layer or peel it off, thereby enabling to increase the adsorption amount of the radioactive materials. Since it is not necessary to pass through the rotational member to the wall surface of the vessel, safety and reliability can be improved. (N.H.)

  13. Method of solidifying radioactive waste by plastics

    International Nuclear Information System (INIS)

    Yasumura, Keijiro; Tomita, Toshihide.

    1976-01-01

    Purpose: To prevent leakage of radioactivity by providing corrosion-resistant layer on the inner surface of a waste container for radioactive waste. Constitution: The inner periphery and bottom of a drum can is lined with an non-flammable cloth of such material as asbestos. This drum is filled with a radioactive waste in the form of powder or pellets. Then, a mixture of a liquid plastic monomer and a polymerization starting agent is poured at a normal temperature, and the surface is covered with a non-flammable cloth. The plastic monomer and radioactive waste are permitted to impregnate the non-flammable cloth and are solidified there. Thus, even if the drum can is corroded at the sea bottom after disposal it in the ocean, it is possible to prevent the waste from permeating into the outer sea water because of the presence of the plastic layer on the inside. Styrene is used as the monomer. (Aizawa, K.)

  14. Radioactive wastes

    International Nuclear Information System (INIS)

    Dupuis, M.C.

    2007-01-01

    Managing radioactive wastes used to be a peripheral activity for the French atomic energy commission (Cea). Over the past 40 years, it has become a full-fledged phase in the fuel cycle of producing electricity from the atom. In 2005, the national radioactive waste management agency (ANDRA) presented to the government a comprehensive overview of the results drawn from 15 years of research. This landmark report has received recognition beyond France's borders. By broadening this agency's powers, an act of 28 June 2006 acknowledges the progress made and the quality of the results. It also sets an objective for the coming years: work out solutions for managing all forms of radioactive wastes. The possibility of recovering wastes packages from the disposal site must be assured as it was asked by the government in 1998. The next step will be the official demand for the creation of a geological disposal site in 2016

  15. Automated Methods Of Corrosion Measurements

    DEFF Research Database (Denmark)

    Bech-Nielsen, Gregers; Andersen, Jens Enevold Thaulov; Reeve, John Ch

    1997-01-01

    The chapter describes the following automated measurements: Corrosion Measurements by Titration, Imaging Corrosion by Scanning Probe Microscopy, Critical Pitting Temperature and Application of the Electrochemical Hydrogen Permeation Cell.......The chapter describes the following automated measurements: Corrosion Measurements by Titration, Imaging Corrosion by Scanning Probe Microscopy, Critical Pitting Temperature and Application of the Electrochemical Hydrogen Permeation Cell....

  16. Corrosion evaluation and control of cooling systems of nuclear power plants

    International Nuclear Information System (INIS)

    Kim, U. C.; Sung, K. W.; Na, J. W.

    2002-04-01

    We supplemented a database for evaluation of problems in high temperature corrosion degradation at domestic NPPs, and investigated corrosion mitigation methodologies for modification of water chemistry guidelines and operating conditions for life extension as follows: 1) crevice chemistry evaluation by using CAP code, hide-out return tests in a Crevice Test Apparatus, analysis of water chemistry guideline revision history; 2) analysis on main steam generator tube damages, H 2 -dependent crack propagation rate tests of Alloy 600 CRDM material, SCC test of Ni-based alloy in mid-ranged pH by electrochemical polarization and of reduced sulfur influence by corrosion potential measurement, Pb-and CuO-SCC behavior tests, TiO 2 inhibitor penetration test, SCC evaluation, electrochemical observation; 3) loop tests on erosion-corrosion resistance of piping material with ICr-1/2Mo and 21/4 Cr-1Mo, evaluation of current pH-controlling agents based on thermodynamic analysis of amines; 4) SCC susceptibility and H 2 -embrittlement tests of turbine material(3.5NiCrMoV); 5) analyses of Zn-compound for radioactivity reduction and of hydrolysis equilibrium with adsorption test against resins, CERT tests on PWSCC susceptibility of Alloy 600, evaluation of operation mode-dependent radiation level by using CRUSIM code; 6) solubility calculation of radiolysis products of NH 3 , the pH-controlling agent of small-and medium-sized reactors, temperature estimation for obtaining lowest N 2 solubility and of NH 3 content required for optimum pH control, fatigue crack growth test of SG materials(ASTM Grade 2 Ti)

  17. 219-S CORROSION STUDY

    International Nuclear Information System (INIS)

    DIVINE, J.R.; PARSONS, G.L.

    2008-01-01

    A minor leak was detected in a drain line for Hood 2B located in the 222-S Laboratory. The line transfers radioactive waste, spent analytical standards, and chemicals used in various analytical procedures. Details are in the report provided by David Comstock, 2B NDE June 2008, work package LAB-WO-07-2012. Including the noted leak, the 222-S Laboratory has experienced two drain line leaks in approximately the last two years of operation. As a consequence, CH2M HILL Hanford Group, Inc. (CH2M HILL) requested the support of ChemMet, Ltd., PC (ChemMet) at the Hanford Site 222-S Laboratory. The corrosion expertise from ChemMet was required prior to preparation of a compatibility assessment for the 222-S Laboratory waste transfer system to assure the expected life of the piping system is extended as much as practicable. The system includes piping within the 222-S Laboratory and the 219-S Waste Storage and Transfer Facility and Operations Process. The ChemMet support was required for an assessment by 222-S staff to analyze what improvements to operational activities may be implemented to extend the tank/piping system life. This assessment will include a summary of the various material types, age, and locations throughout the facility. The assessment will also include a discussion of materials that are safe for drain line disposal on a regular basis, materials that are safe for disposal on a case-by-case basis including specific additional requirements such as flushing, neutralization to a specific pH, and materials prohibited from disposal. The assessment shall include adequate information for 222-S Laboratory personnel to make informed decisions in the future disposal of specific material types by discussing types of compatibility of system materials and potential wastes. The assessment is expected to contain some listing of acceptable waste materials but is not anticipated to be a complete or comprehensive list. Finally the assessment will encompass a brief discussion of

  18. Radioactivity measurement

    International Nuclear Information System (INIS)

    Bohme, R.F.; Lazerson, M.M.

    1984-01-01

    A problem with ore sorting arrangements is that radiation is difficult to measure accurately while particles are moving at speed past the detector. This is particulary so when dealing with ores such as gold ores which have weak emissions. A method of measuring radioactive emissions from moving radioactive material includes the steps of shielding the radiation detector(s) so that the angle of acceptance of the receptor surface is restricted, and further shielding the shielded portion of the detector with a second material which is less radiation emissive than the material of the first shield. This second shield is between the first shield and the detector

  19. Detection of corrosion by radiographic techniques

    International Nuclear Information System (INIS)

    Ahmad, M.; Ashraf, M.M.; Khurshid, U.

    2004-01-01

    Radiation processing technologies are playing an increasing role during manufacturing and subsequent use of everyday products. These technologies are now well established and are extensively practiced in industries, to ensure quality and safety of machinery. Corrosion reduces the operational life of the component, its efficiency and helps generate waste. There is an increasing need to detect and characterize the formation of corrosion in industrial components and assemblies at an early stage. Radiation methods and techniques are applied worldwide to examine defects and corrosion-formation in industrial components. For safety and economic reason, appropriate monitoring of the machinery and industrial components would help reduce accidental risks during operation and avoid production-losses. In the present study, X-ray and neutron-radiography techniques were applied for the inspection and evaluation of corrosion in metallic samples for thickness values of the order of 5 mm or less. Relative contrast at various degrees of metal corrosion product loss was computed theoretical and also measured experimentally by applying radiographic techniques. The relative contrast-sensitivity was also measured in two different ways by X-ray and neutron radiography, to compare the visibility of coarse and fine features. Thick metallic areas, free from sealant and variable paint thickness, were imaged with thermal neutrons beam. Low KV X-rays were also applied for imaging corrosion in metallic components. To optimize exposure-time at low KV in X-ray radiography, a medical film/screen combination was used. X-ray radiography approved to be the more promising technique for imaging of corrosion, as compared to neutron radiography. (author)

  20. Detection of corrosion by a radiometric technique

    International Nuclear Information System (INIS)

    Charlton, J.S.; Ross, J.F.

    1975-01-01

    A method is described for the detection and measurement of corrosion in metal tube bundles using a radioisotope technique. The method is stated to be accurate and quick, and dismantling is unnecessary. A radioactive source is inserted into one of the tubes of the bundle and radiation detectors are inserted into the remainder of the tubes, which may be up to six in number with the apparatus described. The radiation absorption by the walls of each pair of tubes is compared with a standard measurement representing a known thickness of the material of the tubes. Simultaneous measurements may be made. Suitable apparatus is described in detail. (U.K.)

  1. Corrosion resistance of tank material for flock storage in the Fukushima Daiichi Nuclear Power Plant

    International Nuclear Information System (INIS)

    Sano, Yuichi; Anbai, Hiromu; Takeuchi, Masayuki; Ogino, Hideki; Koizumi, Kenji

    2014-01-01

    The installation of the storage tank made of SS400 is under planning in the Fukushima Daiichi nuclear power plant for the flock which was generated in the coagulation process for radioactive contaminated water. The flock contains the seawater and has a possibility to make a crevice and local corrosion on the surface of the tank. Air agitation will be applied in the storage tank to prevent the accumulation of the flock and hydrogen generated by radiolysis, which will increase the diffusion of oxygen and the corrosion of SS400. In addition, the effect of radiation from the flock on the corrosion should be considered. In this study, we investigated the corrosion behavior of SS400 in the flock under the aeration-agitation condition with γ-ray irradiation. Based on the flock storage condition announced by Tokyo Electric Power Company (TEPCO), immersion tests were performed with SS400 coupons under several conditions and corrosion rates were estimated by the weight loss of the coupons. After the immersion tests, the surfaces of the coupons were observed by microscopy for evaluating the local corrosion. To evaluate corrosion mechanism in detail, electrochemical tests were also carried out. In all of these tests, the non-radioactive flock as a surrogate and artificial seawater were used. Corrosion rates of SS400 increased significantly with aeration flow rates in the seawater with/without the flock, but this tendency was weaker in the seawater with the flock, especially under the condition where coupons were buried in the flock. The electrochemical tests indicated the suppression of the cathodic reaction, i.e. dissolved oxygen reduction, in the seawater with the flock. The effect of γ-ray irradiation on the corrosion rates was not remarkable under the assumed dose rate. Microscopic analysis of the immersed coupons showed no severe corrosion including local corrosion occurred. The corrosion rate could be decreased effectively by suppressing the dissolved oxygen reduction

  2. Radioactive wastes processing and disposing container

    International Nuclear Information System (INIS)

    Wada, Jiro; Kato, Hiroaki.

    1987-01-01

    Purpose: To obtain a processing and disposing container at low level radioactive wastes, excellent in corrosion and water resistance, as well as impact shock resistance for the retrieval storage over a long period of time. Constitution: The container is constituted with sands and pebbles as aggregates and glass fiber-added unsaturated polyester resins as binders. The container may entirely be formed with such material or only the entire inner surface may be formed with the material as liners. A container having excellent resistance to water, chemicals, freezing or melting, whether impact shock, etc. can be obtained, thereby enabling retrieval storage for radioactive wastes at the optimum low level. (Takahashi, M.)

  3. Corrosion in power industry

    International Nuclear Information System (INIS)

    Ventakeshwarlu, K.S.

    1979-01-01

    A brief account of the problem areas encountered as a result of corrosion in the electrical power industry including nuclear power industry is given and some of the measures contemplated and/or implemented to control corrosion are outlined. The corrosion problems in the steam generators and cladding tubes of the nuclear power plant have an added dimension of radioactivation which leads to contamination and radiation field. Importance of monitoring water quality and controlling water chemistry by addition of chemicals is emphasised. (M.G.B.)

  4. Corrosion of reactor materials

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1963-01-15

    Much operational experience and many experimental results have accumulated in recent years regarding corrosion of reactor materials, particularly since the 1958 Geneva Conference on the Peaceful Uses of Atomic Energy, where these problems were also discussed. It was, felt that a survey and critical appraisal of the results obtained during this period had become necessary and, in response to this need, IAEA organized a Conference on the Corrosion of Reactor Materials at Salzburg, Austria (4-9 June 1962). It covered many of the theoretical, experimental and engineering problems relating to the corrosion phenomena which occur in nuclear reactors as well as in the adjacent circuits

  5. Analysis of Gamma Dose Rate Caused by Corrosion Products inside the Containment Building of Yonngwang Nuclear Power Plant Unit 3 During Shutdown Period

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Wi Ho; Kim, Jae Cheon; Kim, Soon Young; Kim, Jong Kyung [Hanyang Univ., Seoul (Korea, Republic of)

    2005-07-01

    Occupational radiation exposure(ORE) of nuclear power plant(NPP) workers mainly occurs during the shutdown period. Major radioactive sources are the corrosion products released from the reactor coolant system(RCS). The corrosion products consist of circulating crud and deposited crud. Major radioactive corrosion products, {sup 58}Co and {sup 60}Co, are known to contribute approximately more than 70% of the total ORE. In this study, the corrosion products regarding cobalt were evaluated during the shutdown period, and gamma dose rates caused by them were calculated at the main working area inside the containment building of the Yonggwang NPP Unit 3.

  6. Modelling gas generation in radioactive waste repositories

    International Nuclear Information System (INIS)

    Agg, P.J.

    1993-02-01

    In a repository containing low- and intermediate-level waste, gas generation will occur principally by the coupled processes of metal corrosion and microbial degradation of cellulosic waste. This Paper describes a mathematical model design to address gas generation by these mechanisms. The metal corrosion model incorporates a three-stage process encompassing both aerobic and anaerobic corrosion regimes; the microbial degradation model simulates the activities of eight different microbial populations, which are maintained as functions both of pH and of the concentrations of particular chemical species. Gas concentrations have been measured over a period of three years in large-scale drum experiments designed to simulate repository conditions. Model predictions are confirmed against the experimental measurements, and a prediction is then made of gas concentrations and generation rates over an assessment period of one million years in a radioactive waste repository. (author)

  7. Modelling gas generation in radioactive waste repositories

    International Nuclear Information System (INIS)

    Agg, P.J.

    1992-07-01

    In a repository containing low- and intermediate-level waste, gas generation will occur principally by the coupled processes of metal corrosion and microbial degradation of cellulosic waste. This paper describes a mathematical model designed to address gas generation by these mechanisms. The metal corrosion model incorporates a three-stage process encompassing both aerobic and anaerobic corrosion regimes; the microbial degradation model simulates the activities of eight different microbial populations, which are maintained as functions both of pH and of the concentrations of particular chemical species. Gas concentrations have been measured over a period of three years in large-scale drum experiments designed to simulate repository conditions. Model predictions are confirmed against the experimental measurements, and a prediction is then made of gas concentrations and generation rates over an assessment period of one million years in a radioactive waste repository. (Author)

  8. Modelling reinforcement corrosion in concrete

    DEFF Research Database (Denmark)

    Michel, Alexander; Geiker, Mette Rica; Stang, Henrik

    2012-01-01

    A physio-chemical model for the simulation of reinforcement corrosion in concrete struc-tures was developed. The model allows for simulation of initiation and subsequent propaga-tion of reinforcement corrosion. Corrosion is assumed to be initiated once a defined critical chloride threshold......, a numerical example is pre-sented, that illustrates the formation of corrosion cells as well as propagation of corrosion in a reinforced concrete structure....

  9. Corrosion of PWR steam generators

    International Nuclear Information System (INIS)

    Garnsey, R.

    1979-01-01

    Some designs of pressurized water reactor (PWR) steam generators have experienced a variety of corrosion problems which include stress corrosion cracking, tube thinning, pitting, fatigue, erosion-corrosion and support plate corrosion resulting in 'denting'. Large international research programmes have been mounted to investigate the phenomena. The operational experience is reviewed and mechanisms which have been proposed to explain the corrosion damage are presented. The implications for design development and for boiler and feedwater control are discussed. (author)

  10. Modeling of oxygen gas diffusion and consumption during the oxic transient in a disposal cell of radioactive waste

    International Nuclear Information System (INIS)

    De Windt, Laurent; Marsal, François; Corvisier, Jérôme; Pellegrini, Delphine

    2014-01-01

    Highlights: • This paper deals with the geochemistry of underground HLW disposals. • The oxic transient is a key issue in performance assessment (e.g. corrosion, redox). • A reactive transport model is explicitly coupled to gas diffusion and reactivity. • Application to in situ experiment (Tournemire laboratory) and HLW disposal cell. • Extent of the oxidizing/reducing front is investigated by sensitivity analysis. - Abstract: The oxic transient in geological radioactive waste disposals is a key issue for the performance of metallic components that may undergo high corrosion rates under such conditions. A previous study carried out in situ in the argillite formation of Tournemire (France) has suggested that oxic conditions could have lasted several years. In this study, a multiphase reactive transport model is performed with the code HYTEC to analyze the balance between the kinetics of pyrite oxidative dissolution, the kinetics of carbon steel corrosion and oxygen gas diffusion when carbon steel components are emplaced in the geological medium. Two cases were modeled: firstly, the observations made in situ have been reproduced, and the model established was then applied to a disposal cell for high-level waste (HLW) in an argillaceous formation, taking into account carbon steel components and excavated damaged zones (EDZ). In a closed system, modeling leads to a complete and fast consumption of oxygen in both cases. Modeling results are more consistent with the in situ test while considering residual voids between materials and/or a water unsaturated state allowing for oxygen gas diffusion (open conditions). Under similar open conditions and considering ventilation of the handling drifts, a redox contrast occurs between reducing conditions at the back of the disposal cell (with anoxic corrosion of steel and H 2 production) and oxidizing conditions at the front of the cell (with oxic corrosion of steel). The extent of the oxidizing/reducing front in the

  11. Surface treatment and history-dependent corrosion in lead alloys

    International Nuclear Information System (INIS)

    Li Ning; Zhang Jinsuo; Sencer, Bulent H.; Koury, Daniel

    2006-01-01

    In oxygen-controlled lead and lead-bismuth eutectic (LBE), steel corrosion may be strongly history dependent. This is due to the competition between liquid metal dissolution corrosion and oxidation as a 'self-healing' protection barrier. Such effects can be observed from corrosion testing of a variety of surface-treated materials, such as cold working, shot peening, pre-oxidation, etc. Shot peening of austenitic steels produces surface-layer microstructural damages and grain compression, which could contribute to increased Cr migration to the surface and enhance the protection through an impervious oxide. Pre-oxidation under conditions different from operating ones may form more protective oxides, reduce oxygen and metal ion migration through the oxides, and achieve better protection for longer durations. Corrosion and oxidation modeling and analysis reveal the potential for significantly reducing long-term corrosion rates by initial and early-stage conditioning of steels for Pb/LBE services

  12. Surface treatment and history-dependent corrosion in lead alloys

    Energy Technology Data Exchange (ETDEWEB)

    Li Ning [Los Alamos National Laboratory, Los Alamos, NM (United States)]. E-mail: ningli@lanl.gov; Zhang Jinsuo [Los Alamos National Laboratory, Los Alamos, NM (United States); Sencer, Bulent H. [Los Alamos National Laboratory, Los Alamos, NM (United States); Koury, Daniel [University of Nevada, Las Vegas, NV (United States)

    2006-06-23

    In oxygen-controlled lead and lead-bismuth eutectic (LBE), steel corrosion may be strongly history dependent. This is due to the competition between liquid metal dissolution corrosion and oxidation as a 'self-healing' protection barrier. Such effects can be observed from corrosion testing of a variety of surface-treated materials, such as cold working, shot peening, pre-oxidation, etc. Shot peening of austenitic steels produces surface-layer microstructural damages and grain compression, which could contribute to increased Cr migration to the surface and enhance the protection through an impervious oxide. Pre-oxidation under conditions different from operating ones may form more protective oxides, reduce oxygen and metal ion migration through the oxides, and achieve better protection for longer durations. Corrosion and oxidation modeling and analysis reveal the potential for significantly reducing long-term corrosion rates by initial and early-stage conditioning of steels for Pb/LBE services.

  13. Method of processing radioactive wastes

    International Nuclear Information System (INIS)

    Katada, Katsuo.

    1986-01-01

    Purpose: To improve the management for radioactive wastes containers thereby decrease the amount of stored matters by arranging the radioactive wastes containers in the order of their radioactivity levels. Method: The radiation doses of radioactive wastes containers arranged in the storing area before volume-reducing treatment are previously measured by a dosemeter. Then, a classifying machine is actuated to hoist the containers in the order to their radiation levels and the containers are sent out passing through conveyor, surface contamination gage, weight measuring device and switcher to a volume-reducing processing machine. The volume-reduced products are packed each by several units to the storing containers. Thus, the storing containers after stored for a certain period of time can be transferred in an assembled state. (Kawakami, Y.)

  14. Radioactive Waste.

    Science.gov (United States)

    Blaylock, B. G.

    1978-01-01

    Presents a literature review of radioactive waste disposal, covering publications of 1976-77. Some of the studies included are: (1) high-level and long-lived wastes, and (2) release and burial of low-level wastes. A list of 42 references is also presented. (HM)

  15. Radioactivity measurements

    International Nuclear Information System (INIS)

    Schwach, G.

    1986-01-01

    This is an overview of radioactivity monitoring work done in the Austrian Research Centre Seibersdorf in the wake of the Chernobyl accident. It consists of air, rainwater, food and personnel monitoring. Additional services to the public are: information and development of a database and a computer code for predicting future radionuclide concentration in air, soil, water and food. (G.Q.)

  16. Long-term storage of compressed radioactive krypton in cylinders

    International Nuclear Information System (INIS)

    Niephaus, D.; Nommensen, O.; Bruecher, H.

    1982-01-01

    The recommendations of the German Radiation Protection Commission necessitate the separation of the radioactive noble gas krypton-85 (Kr-85) produced in large LWR reprocessing plants from the dissolver off-gas. A possible method of removal is a long-term storage of the compressed noble gas above ground in cylinders. The aim of the present study is to develop such a storage concept and evaluate its feasibility under the aspects of safety and cost. After having been filled, the gas cylinders are placed separately into transport racks serving to protect the cylinders. Following this, the cylinders are transferred out of the filling station in a transport cask, conveyed to the storage building and stored there. The storage building protects the gas cylinders against external impacts. The storage cells constitute a second barrier against the release of Kr-85. The heat produced during decay of the Kr-85 in the gas cylinders is carried off by natural convection of the air circulating in the storage cells. To study possible corrosion attack on special steels due to rubidium, experiments were conducted at 200 0 C during test periods up to 3500h. In order to compare properties at elevated temperatures, corrosion experiments were conducted at 500 0 C, which is far above the maximum licensed storage temperature of 200 0 C. Experiments were conducted concerning the adsorption of krypton on various adsorbents, thus reducing the pressure inside the gas cylinder during storage. A cost estimate based on 1980 prices

  17. WASTE PACKAGE CORROSION STUDIES USING SMALL MOCKUP EXPERIMENTS

    International Nuclear Information System (INIS)

    B.E. Anderson; K.B. Helean; C.R. Bryan; P.V. Brady; R.C. Ewing

    2005-01-01

    The corrosion of spent nuclear fuel and subsequent mobilization of radionuclides is of great concern in a geologic repository, particularly if conditions are oxidizing. Corroding A516 steel may offset these transport processes within the proposed waste packages at the Yucca Mountain Repository (YMR) by retaining radionuclides, creating locally reducing conditions, and reducing porosity. Ferrous iron, Fe 2+ , has been shown to reduce UO 2 2+ to UO 2(s) [1], and some ferrous iron-bearing ion-exchange materials adsorb radionuclides and heavy metals [2]. Of particular interest is magnetite, a potential corrosion product that has been shown to remove TcO 4 - from solution [3]. Furthermore, if Fe 2+ minerals, rather than fully oxidized minerals such as goethite, are produced during corrosion, then locally reducing conditions may be present. High electron availability leads to the reduction and subsequent immobilization of problematic dissolved species such as TcO 4 - , NpO 2 + , and UO 2 2+ and can also inhibit corrosion of spent nuclear fuel. Finally, because the molar volume of iron material increases during corrosion due to oxygen and water incorporation, pore space may be significantly reduced over long time periods. The more water is occluded, the bulkier the corrosion products, and the less porosity is available for water and radionuclide transport. The focus of this paper is on the nature of Yucca Mountain waste package steel corrosion products and their effects on local redox state, radionuclide transport, and porosity

  18. Glass containing radioactive nuclear waste

    International Nuclear Information System (INIS)

    Boatner, L.A.; Sales, B.C.

    1985-01-01

    Lead-iron phosphate glasses containing a high level of Fe 2 O 3 for use as a storage medium for high-level-radioactive nuclear waste. By combining lead-iron phosphate glass with various types of simulated high-level nuclear waste, a highly corrosion resistant, homogeneous, easily processed glass can be formed. For corroding solutions at 90 C, with solution pH values in the range between 5 and 9, the corrosion rate of the lead-iron phosphate nuclear waste glass is at least 10 2 to 10 3 times lower than the corrosion rate of a comparable borosilicate nuclear waste glass. The presence of Fe 2 O 3 in forming the lead-iron phosphate glass is critical. Lead-iron phosphate nuclear waste glass can be prepared at temperatures as low as 800 C, since they exhibit very low melt viscosities in the 800 to 1050 C temperature range. These waste-loaded glasses do not readily devitrify at temperatures as high as 550 C and are not adversely affected by large doses of gamma radiation in H 2 O at 135 C. The lead-iron phosphate waste glasses can be prepared with minimal modification of the technology developed for processing borosilicate glass nuclear waste forms. (author)

  19. Disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Dlouhy, Z.

    1982-01-01

    This book provides information on the origin, characteristics and methods of processing of radioactive wastes, as well as the philosophy and practice of their storage and disposal. Chapters are devoted to the following topics: radioactive wastes, characteristics of radioactive wastes, processing liquid and solid radioactive wastes, processing wastes from spent fuel reprocessing, processing gaseous radioactive wastes, fixation of radioactive concentrates, solidification of high-level radioactive wastes, use of radioactive wastes as raw material, radioactive waste disposal, transport of radioactive wastes and economic problems of radioactive wastes disposal. (C.F.)

  20. Corrosion of valve metals

    International Nuclear Information System (INIS)

    Draley, J.E.

    1976-01-01

    A general survey related to the corrosion of valve metals or film-forming metals. The way these metals corrode with some general examples is described. Valve metals form relatively perfect oxide films with little breakdown or leakage when anodized

  1. Corrosion in Electronics

    DEFF Research Database (Denmark)

    Ambat, Rajan; Gudla, Helene Virginie Conseil; Verdingovas, Vadimas

    2017-01-01

    Electronic control units, power modules, and consumer electronics are used today in a wide variety of varying climatic conditions. Varying external climatic conditions of temperature and humidity can cause an uncontrolled local climate inside the device enclosure. Uncontrolled humidity together...... and high density packing combined with the use of several materials, which can undergo electrochemical corrosion in the presence of water film formed due to humidity exposure and bias conditions on the PCBA surface. This article provides a short review of the corrosion reliability issues of electronics due...... to the use of electronics under varying humidity conditions. Important PCBA aspects, which are fundamental to the corrosion cell formation under humid conditions, are discussed. Effect of hygroscopic residues from the process and service and their role in assisting water film build up and corrosion...

  2. Microbiologically Influenced Corrosion

    Science.gov (United States)

    2009-01-01

    species grow as multicel- lular filaments called hyphae forming a mycelium, some fungal species also grow as single cells. Sexual and asexual...reinforced fluorinated 18 MICROBIOLOGICALLY INFLUENCED CORROSION polyimide composites due to hyphae penetration into resin interiors. The

  3. Carbon Dioxide Corrosion:

    DEFF Research Database (Denmark)

    Fosbøl, Philip Loldrup

    2008-01-01

    CO2 corrosion is a general problem in the industry and it is expensive. The focus of this study is an oil gas production related problem. CO2 corrosion is observed in offshore natural gas transportation pipelines. A general overview of the problem is presented in chapter 1. The chemical system...... with the basic thermodynamics of electrolytes in chapter 2, the extension and general description of electrolyte mass transport in chapter 3, and the electrochemical kinetics of corrosion in chapter 4. A literature overview of CO2 corrosion is shown in chapter 5 and possible extensions of the models...... and validated against heat capacity data. The model is also fitted to experimental data produced and shown in chapter 8 for SLE in the Na2CO3-NaHCO3-MEG-H2O system. The application of the above model is shown in chapter 9. Here the thermodynamic correction factors are calculated. These show how the diffusion...

  4. BWR steel containment corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Tan, C.P.; Bagchi, G.

    1996-04-01

    The report describes regulatory actions taken after corrosion was discovered in the drywell at the Oyster Creek Plant and in the torus at the Nine Mile Point 1 Plant. The report describes the causes of corrosion, requirements for monitoring corrosion, and measures to mitigate the corrosive environment for the two plants. The report describes the issuances of generic letters and information notices either to collect information to determine whether the problem is generic or to alert the licensees of similar plants about the existence of such a problem. Implementation of measures to enhance the containment performance under severe accident conditions is discussed. A study by Brookhaven National Laboratory (BNL) of the performance of a degraded containment under severe accident conditions is summarized. The details of the BNL study are in the appendix to the report.

  5. Corrosion Inhibitors for Aluminum.

    Science.gov (United States)

    Muller, Bodo

    1995-01-01

    Describes a simple and reliable test method used to investigate the corrosion-inhibiting effects of various chelating agents on aluminum pigments in aqueous alkaline media. The experiments that are presented require no complicated or expensive electronic equipment. (DDR)

  6. The corrosion behavior of iron and aluminum under waste disposal conditions

    International Nuclear Information System (INIS)

    Fujisawa, R.; Cho, T.; Sugahara, K.; Takizawa, Y.; Hironaga, M.

    1997-01-01

    The generation of hydrogen gas from metallic waste in corrosive disposal environment is an important issue for the safety analysis of low-level radioactive waste disposal facilities in Japan. In particular iron and aluminum are the possibly important elements regarding the gas generation. However, the corrosion behavior of these metals has not been sufficiently investigated under the highly alkaline non-oxidizing disposal conditions yet. The authors studied the corrosion behavior of iron and aluminum under simulated disposal environments. The quantity of hydrogen gas generated from iron was measured in a closed cell under highly alkaline non-oxidizing conditions. The observed corrosion rate of iron in the initial period of immersion was 4 nm/year at 15 C, 20 nm/year at 30 C, and 200 nm/year at 45 C. The activation energy was found to be 100 kJ/mol from Arrhenius plotting of the above corrosion rates. The corrosion behavior of aluminum was studied under an environment simulating conditions in which aluminum was solidified with mortar. In the initial period aluminum corroded rapidly with a corrosion rate of 20 mm/year. However, the corrosion rate decreased with time, and after 1,000 hours the rate reached 0.001 to 0.01 mm/year. Thus the authors obtained data on hydrogen gas generation from iron and aluminum under the disposal environment relevant to the safety analysis of low-level radioactive disposal facilities in Japan

  7. The improvement of Pilot-scale Electrokinetic for Radioactive Soil Decontamination

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hye Min; Kim, Gye Nam; Kim, Wan Suk; Moon, Jai Kwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    Most nuclear facility sites have been contaminated by leakage of radioactive waste-solution due to corrosion of the waste-solution tanks and connection pipes by their long-term operation, set up around underground nuclear facilities. Therefore it was needed that the method to remediate a large volume of radioactive soil should be developed. Until now the soil washing method has studied to remediate soil contaminated with uranium, cobalt, cesium, and so on. But it has a lower removal efficiency of nuclide from soils and generated a large volume of waste-solution. And its application to the soil composed of fine particle is impossible. So, the electrokinetic method has been studied as a new technology for soil remediation recently. In this study, the original electrokinetic equipment of 50L suitable to soil contamination characteristics of Korean nuclear facility sites was manufactured for the remediation of soil contaminated with uranium. During experiment with the original electrokinetic equipment, many metal oxides were generated and were stuck on the cathod plate. Several methods to reduce the generation quantity of metal oxides in the electrokinetic equipment and to take off metal oxides from the cathod plate were improved. The soil with uranium was remediated with the improved electrokinetic equipment. The required time to remediate a radioactive soil to under a clearance concentration level was yielded through demonstration experiment with the improved electrokinetic equipment for its different radioactivity concentration

  8. The improvement of Pilot-scale Electrokinetic for Radioactive Soil Decontamination

    International Nuclear Information System (INIS)

    Park, Hye Min; Kim, Gye Nam; Kim, Wan Suk; Moon, Jai Kwon

    2012-01-01

    Most nuclear facility sites have been contaminated by leakage of radioactive waste-solution due to corrosion of the waste-solution tanks and connection pipes by their long-term operation, set up around underground nuclear facilities. Therefore it was needed that the method to remediate a large volume of radioactive soil should be developed. Until now the soil washing method has studied to remediate soil contaminated with uranium, cobalt, cesium, and so on. But it has a lower removal efficiency of nuclide from soils and generated a large volume of waste-solution. And its application to the soil composed of fine particle is impossible. So, the electrokinetic method has been studied as a new technology for soil remediation recently. In this study, the original electrokinetic equipment of 50L suitable to soil contamination characteristics of Korean nuclear facility sites was manufactured for the remediation of soil contaminated with uranium. During experiment with the original electrokinetic equipment, many metal oxides were generated and were stuck on the cathod plate. Several methods to reduce the generation quantity of metal oxides in the electrokinetic equipment and to take off metal oxides from the cathod plate were improved. The soil with uranium was remediated with the improved electrokinetic equipment. The required time to remediate a radioactive soil to under a clearance concentration level was yielded through demonstration experiment with the improved electrokinetic equipment for its different radioactivity concentration

  9. Radioactive waste management

    International Nuclear Information System (INIS)

    2013-01-01

    This eighth chapter presents the radioactive wastes and waste disposal; classification of radioactive wastes; basis requests of the radioactive waste management; conditions for a radioactive waste disposal; registers and inventories; transport of radioactive wastes from a facility to another and the radioactive waste management plan

  10. Corrosion of beryllium

    International Nuclear Information System (INIS)

    Mueller, J.J.; Adolphson, D.R.

    1987-01-01

    The corrosion behavior of beryllium in aqueous and elevated-temperature oxidizing environments has been extensively studied for early-intended use of beryllium in nuclear reactors and in jet and rocket propulsion systems. Since that time, beryllium has been used as a structural material in les corrosive environments. Its primary applications include gyro systems, mirror and reentry vehicle structures, and aircraft brakes. Only a small amount of information has been published that is directly related to the evaluation of beryllium for service in the less severe or normal atmospheric environments associated with these applications. Despite the lack of published data on the corrosion of beryllium in atmospheric environments, much can be deduced about its corrosion behavior from studies of aqueous corrosion and the experiences of fabricators and users in applying, handling, processing, storing, and shipping beryllium components. The methods of corrosion protection implemented to resist water and high-temperature gaseous environments provide useful information on methods that can be applied to protect beryllium for service in future long-term structural applications

  11. Effects of climate and corrosion on concrete behaviour

    Science.gov (United States)

    Ismail, Mohammad; Egba, Ernest Ituma

    2017-11-01

    Corrosion of steel is a damaging agent that reduces the functional and structural responsibilities of reinforced concrete structures. Accordingly, reinforced concrete members in the environments that are prone to concrete carbonation or chloride attack coupled with high temperature and relative humidity suffer from accelerated corrosion of reinforcing material. Also, literature proves that climate influences corrosion of concrete, and suggests investigation of impact of corrosion on concrete based on climate zone. Therefore, this paper presents the effects of climate and corrosion on concrete behavior, using bond strength of concrete as a case study. Concrete specimens were prepared form concrete mix that was infested with 3.5 kgm-3 of sodium chloride to accelerate corrosion. The specimens were cured sodium chloride solution 3.5% by weight of water for 28 days before placing them in the exposure conditions. Pull-out tests were conducted at time intervals for one year to measure the impact of exposure condition and corrosion on bond strength of concrete. The results show reduction of bond strength of concrete by 32%, 28% and 8% after one year of subjection of the specimens to the unsheltered natural climate, sheltered natural climate, and laboratory ambient environment respectively. The findings indicate that the climate influences corrosion, which reduces the interlocking bond between the reinforcing bar and the adjacent concrete.

  12. Corrosion assessment of refractory materials for high temperature waste vitrification

    International Nuclear Information System (INIS)

    Marra, J.C.; Congdon, J.W.; Kielpinski, A.L.

    1995-01-01

    A variety of vitrification technologies are being evaluated to immobilize radioactive and hazardous wastes following years of nuclear materials production throughout the Department of Energy (DOE) complex. The compositions and physical forms of these wastes are diverse ranging from inorganic sludges to organic liquids to heterogeneous debris. Melt and off-gas products can be very corrosive at the high temperatures required to melt many of these waste streams. Ensuring material durability is required to develop viable treatment processes. Corrosion testing of materials in some of the anticipated severe environments is an important aspect of the materials identification and selection process. Corrosion coupon tests on typical materials used in Joule heated melters were completed using glass compositions with high salt contents. The presence of chloride in the melts caused the most severe attack. In the metal alloys, oxidation was the predominant corrosion mechanism, while in the tested refractory material enhanced dissolution of the refractory into the glass was observed. Corrosion testing of numerous different refractory materials was performed in a plasma vitrification system using a surrogate heterogeneous debris waste. Extensive corrosion was observed in all tested materials

  13. Corrosion of container and infrastructure materials under clay repository conditions

    International Nuclear Information System (INIS)

    Debruyn, W.; Dresselaers, J.; Vermeiren, P.; Kelchtermans, J.; Tas, H.

    1991-01-01

    With regard to the disposal of high-level radioactive waste, it was recommended in a IAEA Technical Committee meeting to perform tests in realistic environments corresponding with normal and accidental conditions, to qualify and apply corrosion monitoring techniques for corrosion evaluation under real repository conditions and to develop corrosion and near-field evolution models. The actual Belgian experimental programme for the qualification of a container for long-term HLW storage in clay formations complies with these recommendations. The emphasis in the programme is indeed on in situ corrosion testing and monitoring and on in situ control of the near-field chemistry. Initial field experiments were performed in a near-surface clay quarry at Terhaegen. Based on a broad laboratory material screening programme and in agreement with the Commission of the European Communities, three reference materials were chosen for extensive in situ overpack testing. Ti/0.2 Pd and Hastelloy C-4 were chosen as reference corrosion resistant materials and a low-carbon steel as corrosion allowance reference material. This report summarizes progress made in the material qualification programme since the CEC contract of 1983-84. 57 Figs.; 15 Tabs.; 18 Refs

  14. Monitoring corrosion rates and localised corrosion in low conductivity water

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel

    2006-01-01

    Monitoring of low corrosion rates and localised corrosion in a media with low conductivity is a challenge. In municipal district heating, quality control may be improved by implementing on-line corrosion monitoring if a suitable technique can be identified to measure both uniform and localised...... corrosion. Electrochemical techniques (LPR, EIS, crevice corrosion current) as well as direct measurement techniques (high-sensitive electrical resistance, weight loss) have been applied in operating plants. Changes in the corrosion processes are best monitored in non-aggressive, low conductivity media...

  15. Corrosion and anticorrosion. Industrial practice

    International Nuclear Information System (INIS)

    Beranger, G.; Mazille, H.

    2002-01-01

    This book comprises 14 chapters written with the collaboration of about 50 French experts of corrosion. It is complementary to another volume entitled 'corrosion of metals and alloys' and published by the same editor. This volume comprises two parts: part 1 presents the basic notions of corrosion phenomena, the properties of surfaces, the electrochemical properties of corrosion etc.. Part 2 describes the most frequent forms of corrosion encountered in industrial environments and corresponding to specific problems of protection: marine environment, atmospheric corrosion, galvanic corrosion, tribo-corrosion, stress corrosion etc.. The first 8 chapters (part 1) treat of the corrosion problems encountered in different industries and processes: oil and gas production, chemical industry, phosphoric acid industry, PWR-type power plants, corrosion of automobile vehicles, civil engineering and buildings, corrosion of biomaterials, non-destructive testing for the monitoring of corrosion. The other chapters (part 2) deal with anticorrosion and protective coatings and means: choice of materials, coatings and surface treatments, thick organic coatings and enamels, paints, corrosion inhibitors and cathodic protection. (J.S.)

  16. Pitting corrosion on a copper canister

    International Nuclear Information System (INIS)

    Hermansson, H.P.; Beverskog, B.

    1996-02-01

    It is demonstrated that normal pitting can occur during oxidizing conditions in the repository. It is also concluded that a new theory for pitting corrosion has to be developed, as the present theory is not in accordance with all practical and experimental observations. A special variant of pitting, based on the growth of sulfide whiskers, is suggested to occur during reducing conditions. However, such a mechanism needs to be demonstrated experimentally. A simple calculational model of canister corrosion was developed based on the results of this study. 69 refs, 3 figs

  17. Radioactive waste

    International Nuclear Information System (INIS)

    Berkhout, F.

    1991-01-01

    Focusing on radioactive waste management and disposal policies in the United Kingdom, Sweden and the Federal Republic of Germany, this book gives a detailed historical account of the policy process in these three countries, and draws out the implications for theory and public policy. This comparative approach underlines how profoundly different the policy process has been in different countries. By comparing the evolution of policy in three countries, fundamental questions about the formation and resolution of technical decisions under uncertainty are clarified. The analysis of nuclear strategy, the politics of nuclear power, and the shifting emphasis of government regulation redefines the issue of radwaste management and sets it at the heat of the current debate about power, the environment and society. The combination of up-to-date technological assessment with an account of the social and political implications of radwaste management makes'Radioactive Waste'particularly useful to students of environmental studies, geography and public administration. (author)

  18. Radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Berkhout, F

    1991-01-01

    Focusing on radioactive waste management and disposal policies in the United Kingdom, Sweden and the Federal Republic of Germany, this book gives a detailed historical account of the policy process in these three countries, and draws out the implications for theory and public policy. This comparative approach underlines how profoundly different the policy process has been in different countries. By comparing the evolution of policy in three countries, fundamental questions about the formation and resolution of technical decisions under uncertainty are clarified. The analysis of nuclear strategy, the politics of nuclear power, and the shifting emphasis of government regulation redefines the issue of radwaste management and sets it at the heat of the current debate about power, the environment and society. The combination of up-to-date technological assessment with an account of the social and political implications of radwaste management makes'Radioactive Waste'particularly useful to students of environmental studies, geography and public administration. (author).

  19. Radioactive transformations

    CERN Document Server

    Rutherford, Ernest

    2012-01-01

    Radioactive Transformations describes Ernest Rutherford's Nobel Prize-winning investigations into the mysteries of radioactive matter. In this historic work, Rutherford outlines the scientific investigations that led to and coincided with his own research--including the work of Wilhelm Rӧntgen, J. J. Thomson, and Marie Curie--and explains in detail the experiments that provided a glimpse at special relativity, quantum mechanics, and other concepts that would shape modern physics. This new edition features a comprehensive introduction by Nobel Laureate Frank Wilczek which engagingly explains how Rutherford's early research led to a better understanding of topics as diverse as the workings of the atom's nucleus, the age of our planet, and the fusion in stars.

  20. Radioactive hazards

    International Nuclear Information System (INIS)

    Gill, J.R.

    1980-01-01

    The use of radioactive substances in hospital laboratories is discussed and the attendant hazards and necessary precautions examined. The new legislation under the Health and Safety at Work Act which, it is proposed, will replace existing legal requirements in the field of health and safety at work by a system of regulations and approved codes of practice designed to maintain or improve the standards of health, safety and welfare already established, is considered with particular reference to protection against ionising radiations. (UK)

  1. Radioactive substances

    International Nuclear Information System (INIS)

    Butler, G.C.; Hyslop, C.

    1980-01-01

    The purpose of this chapter is to show how to assess the detriment resulting from the release of radioactive materials to the environment. The minimum information required for the assessments is given for seven radionuclides of interest from the point of view of environmental contamination. The seven radionuclides are tritium, krypton-85, strontium-90, iodine-131, cesium-137, radium-226 and plutonium-239. Information is given on the radiation doses and the radiation effects on man due to these radioisotopes. (AN)

  2. Radioactive wastes

    International Nuclear Information System (INIS)

    Devarakonda, M.S.; Melvin, J.M.

    1994-01-01

    This paper is part of the Annual Literature Review issue of Water Environment Research. The review attempts to provide a concise summary of important water-related environmental science and engineering literature of the past year, of which 40 separate topics are discussed. On the topic of radioactive wastes, the present paper deals with the following aspects: national programs; waste repositories; mixed wastes; waste processing and decommissioning; environmental occurrence and transport of radionuclides; and remedial actions and treatment. 178 refs

  3. Corrosive wear. Evaluation of wear and corrosive resistant materials; Noetningskorrosion. Utvaerdering av noetnings- och korrosionsbestaendiga material

    Energy Technology Data Exchange (ETDEWEB)

    Persson, H.; Hjertsen, D.; Waara, P.; Prakash, B.; Hardell, J.

    2007-12-15

    With a new purchase of a waste conveyer screw at hand, for the 'A-warehouse' at the combined power and heating plant at E.ON Norrkoeping, the request for improved construction materials was raised. The previous screw required maintenance with very short intervals due to the difficult operation conditions. With the new screw the expectation is to manage 6 months of operation without interruption. The environment for the screw has two main components that sets the demand on the materials, on one hand the corrosive products that comes along and which forms at digestion of the waste and on the other hand the abrasive content in the waste. The term of the mechanism is wear-corrosion and can give considerably higher material loss than the two mechanisms wear and corrosion separately. Combination of a strong corrosive environment together with extensive wear is something that we today have limited knowledge about. The overall objective of the project has been to establish better wear and corrosive resistant construction materials for a waste conveyer screw that will lead to reduced operational disturbance costs. The evaluation has been performed in both controlled laboratory environments and in field tests, which has given us a better understanding of what materials are more suitable in this tough environment and has given us a tool for future predictions of the wear rate of the different material. The new conveyer screw, installed in February 2007 and with which the field test have been performed, has considerably reduced the wear of the construction and the target of 6 month maintenance-free operation is met with this screw for all the evaluated materials. The wear along the screw varies very much and with a clear trend for all the materials to increase towards the feeding direction of the screw. As an example, the wear plate SS2377 (stainless duplex steel) has a useful life at the most affected areas that is calculated to be 1077 days of operation with the

  4. 78 FR 45579 - Request for a License to Import Radioactive Waste

    Science.gov (United States)

    2013-07-29

    ... NUCLEAR REGULATORY COMMISSION Request for a License to Import Radioactive Waste Pursuant to 10 CFR... Technologies, Inc., Class A Up to a maximum Laundering and Canada June 4, 2013, June 5, 2013, radioactive total of 0.074 decontamination IW032. waste consisting TBq (2 Ci) per of protective 11006100 of corrosion...

  5. Corrosion of a carbon steel in simulated liquid nuclear wastes

    International Nuclear Information System (INIS)

    Saenz Gonzalez, Eduardo

    2005-01-01

    This work is part of a collaboration agreement between CNEA (National Atomic Energy Commission of Argentina) and USDOE (Department of Energy of the United States of America), entitled 'Tank Corrosion Chemistry Cooperation', to study the corrosion behavior of carbon steel A537 class 1 in different simulated non-radioactive wastes in order to establish the safety concentration limits of the tank waste chemistry at Hanford site (Richland-US). Liquid high level nuclear wastes are stored in tanks made of carbon steel A537 (ASTM nomenclature) that were designed for a service life of 20 to 50 years. A thickness reduction of some tank walls, due to corrosion processes, was detected at Hanford site, beyond the existing predicted values. Two year long-term immersion tests were started using non radioactive simulated liquid nuclear waste solutions at 40 C degrees. This work extends throughout the first year of immersion. The simulated solutions consist basically in combinations of the 10 most corrosion significant chemical components: 5 main components (NaNO 3 , NaCl, NaF, NaNO 2 and NaOH) at three concentration levels and 5 secondary components at two concentration levels. Measurements of the general corrosion rate with time were performed for carbon steel coupons, both immersed in the solutions and in the vapor phases, using weight loss and electrochemistry impedance spectroscopy techniques. Optic and scanning electron microscopy examination, analysis of U-bend samples and corrosion potential measurements, were also done. Localized corrosion susceptibility (pitting and crevice corrosion) was assessed in isolated short-term tests by means of cyclic potentiodynamic polarization curves. The effect of the simulated waste composition on the corrosion behavior of A537 steel was studied based on statistical analyses. The Surface Response Model could be successfully applied to the statistical analysis of the A537 steel corrosion in the studied solutions. General corrosion was not

  6. Ocean disposal of heat generating radioactive waste

    International Nuclear Information System (INIS)

    1984-12-01

    A study of container designs for heat generating radioactive waste disposal in the deep ocean sediments is presented. The purpose of the container would be to isolate the waste from the environment for a period of 500 to 1000 years. The container designs proposed are based on the use of either corrosion allowance or corrosion resistant metals. Appropriate overpack wall thicknesses are suggested for each design using the results of corrosion studies and experiments but these are necessarily preliminary and data relevant to corrosion in deep ocean sediments remain sparse. It is concluded that the most promising design concept involves a thin titanium alloy overpack in which all internal void spaces are filled with lead or cement grout. In situ temperatures for the sediment adjacent to the emplaced 50 year cooled waste containers are calculated to reach about 260 deg C. The behaviour of the sediments at such a high temperature is not well understood and the possibility of 100 years interim storage is recommended for consideration to allow further cooling. Further corrosion data and sediment thermal studies would be required to fully confirm the engineering feasibility of these designs. (author)

  7. Geological disposal of heat generating radioactive waste

    International Nuclear Information System (INIS)

    1985-02-01

    A study has been made of the requirements and design features for containers to isolate vitrified heat generating radioactive waste from the environment for a period of 500 to 1000 years. The requirements for handling, storing and transporting containers have been identified following a study of disposal operations, and the pressures and temperatures which may possibly be experienced in clay, granite and salt formations have been estimated. A range of possible container designs have been proposed to satisfy the requirements of each of the disposal environments. Alternative design concepts in corrosion resistant or corrosion allowance material have been suggested. Potentially suitable container shell materials have been selected following a review of corrosion studies and although metals have not been specified in detail, titanium alloys and low carbon steels are thought to be appropriate for corrosion resistant and corrosion allowance designs respectively. Performance requirements for container filler materials have been identified and candidate materials assessed. A preliminary container stress analysis has shown the importance of thermal modelling and that if lead is used as a filler it dominates the stress response of the container. Possible methods of manufacturing disposal containers have been assessed and found to be generally feasible. (author)

  8. Radiochemical studies on corrosion products of oral biomaterials

    International Nuclear Information System (INIS)

    Madbouly, H.A.Abdallah

    1998-01-01

    The work given in this thesis deals with a radioactive tracer study of the sorption of the corrosion products of dental amalgams and antimony on human teeth, porcelain and acrylic materials, used as dental restorative material. Sorption was investigated in presence of water and liquids commonly intaken by man; namely tea with or without sugar, soluble coffee ( Nescaffee) with or without sugar and/or milk, red tea (karkadeh or hibiscus) with or without sugar and chicken soup. The radioactive isotopes of Ag, Sn, Zn (amalgam components) and antimony were prepared by their irradiation in the nuclear reactor; 110m Ag, 113 Sn, 65 Zn and 124 Sb were thereby produced. The percent uptake of each studied element was evaluated from the depletion of radioactivity of the corresponding radioactive tracer in the given medium containing a tooth (human or artificial)

  9. Method of solidifying radioactive wastes

    International Nuclear Information System (INIS)

    Fukazawa, Tetsuo; Ootsuka, Masaharu; Uetake, Naoto; Ozawa, Yoshihiro.

    1984-01-01

    Purpose: To prepare radioactive solidified wastes excellent in strength, heat resistance, weather-proof, water resistance, dampproof and low-leaching property. Method: A hardening material reactive with alkali silicates to form less soluble salts is used as a hardener for alkali silicates which are solidification filler for the radioactive wastes, and mixed with cement as a water absorbent and water to solidify the radioactive wastes. The hardening agent includes, for example, CaCO 3 , Ca(ClO 4 ) 2 , CaSiF 6 and CaSiO 3 . Further, in order to reduce the water content in the wastes and reduce the gap ratio in the solidification products, the hardener adding rate, cement adding rate and water content are selected adequately. As the result, solidification products can be prepared with no deposition of easily soluble salts to the surface thereof, with extremely low leaching of radioactive nucleides. (Kamimura, M.)

  10. Reduction of radioactivity produced by nuclear explosives

    Energy Technology Data Exchange (ETDEWEB)

    Lessler, Richard M [Lawrence Radiation Laboratory, University of California, Livermore, CA (United States)

    1970-05-15

    Four main sources contribute to the radioactivity produced by a nuclear explosive: 1. Fission products from the nuclear explosive, 2. Fusion products from the nuclear explosive, 3. Induced radioactivity in the nuclear explosive, 4. Induced radioactivity in the environment. This paper will summarize some of the work done at the Lawrence Radiation Laboratory at Livermore to reduce the radioactivity from these sources to levels acceptable for peaceful applications. Although it is theoretically possible to have no radioactivity produced by nuclear explosives, this goal has not been achieved.

  11. (67/68)Ga-labeling agent that liberates (67/68)Ga-NOTA-methionine by lysosomal proteolysis of parental low molecular weight polypeptides to reduce renal radioactivity levels.

    Science.gov (United States)

    Uehara, Tomoya; Rokugawa, Takemi; Kinoshita, Mai; Nemoto, Souki; Fransisco Lazaro, Guerra Gomez; Hanaoka, Hirofumi; Arano, Yasushi

    2014-11-19

    The renal localization of gallium-67 or gallium-68 ((67/68)Ga)-labeled low molecular weight (LMW) probes such as peptides and antibody fragments constitutes a problem in targeted imaging. Wu et al. previously showed that (67)Ga-labeled S-2-(4-isothiocyanatobenzyl)-1,4,7-triazacyclononane-1,4,7-triacetic acid (SCN-Bz-NOTA)-conjugated methionine ((67)Ga-NOTA-Met) was rapidly excreted from the kidney in urine following lysosomal proteolysis of the parental (67)Ga-NOTA-Bz-SCN-disulfide-stabilized Fv fragment (Bioconjugate Chem., (1997) 8, 365-369). In the present study, a new (67/68)Ga-labeling reagent for LMW probes that liberates (67/68)Ga-NOTA-Met was designed, synthesized, and evaluated using longer-lived (67)Ga in order to reduce renal radioactivity levels. We employed a methionine-isoleucine (MI) dipeptide bond as the cleavable linkage. The amine residue of MI was coupled with SCN-Bz-NOTA for (67)Ga-labeling, while the carboxylic acid residue of MI was derivatized to maleimide for antibody conjugation in order to synthesize NOTA-MI-Mal. A Fab fragment of the anti-Her2 antibody was thiolated with iminothiolane, and NOTA-MI-Mal was conjugated with the antibody fragment by maleimide-thiol chemistry. The Fab fragment was also conjugated with SCN-Bz-NOTA (NOTA-Fab) for comparison. (67)Ga-NOTA-MI-Fab was obtained at radiochemical yields of over 95% and was stable in murine serum for 24 h. In the biodistribution study using normal mice, (67)Ga-NOTA-MI-Fab registered significantly lower renal radioactivity levels from 1 to 6 h postinjection than those of (67)Ga-NOTA-Fab. An analysis of urine samples obtained 6 h after the injection of (67)Ga-NOTA-MI-Fab showed that the majority of radioactivity was excreted as (67)Ga-NOTA-Met. In the biodistribution study using tumor-bearing mice, the tumor to kidney ratios of (67)Ga-NOTA-MI-Fab were 4 times higher (6 h postinjection) than those of (67)Ga-NOTA-Fab. Although further studies including the structure of radiometabolites and

  12. Prevention of nuclear fuel cladding materials corrosion

    International Nuclear Information System (INIS)

    Yang, K.R.; Yang, J.C.; Lee, I.C.; Kang, H.D.; Cho, S.W.; Whang, C.K.

    1983-01-01

    The only way which could be performed by the operator of nuclear power plant to minimizing the degradation of nuclear fuel cladding material is to control the water quality of primary coolant as specified standard conditions which dose not attack the cladding material. If the water quality of reactor coolant does not meet far from the specification, the failure will occure not only cladding material itself but construction material of primary system which contact with the coolant. The corrosion product of system material are circulate through the whole primary system with the coolant and activated by the neutron near the reactor core. The activated corrosion products and fission products which released from fuel rod to the coolant, so called crud, will repeate deposition and redeposition continuously on the fuel rod and construction material surface. As a result we should consider heat transfer problem. In this study following activities were performed; 1. The crud sample was taken from the spent fuel rod surface of Kori unit one and analized for radioactive element and non radioactive chemical species. 2. The failure mode of nuclear fuel cladding material was estimated by the investigation of releasing type of fission products from the fuel rod to the reactor coolant using the iodine isotopes concentration of reactor coolants. 3. A study was carried out on the sipping test results of spent fuel and a discussion was made on the water quality control records through the past three cycle operation period of Kori unit one plant. (Author)

  13. Modelling the behaviour of corrosion products in the primary heat transfer circuits of pressurised water reactors

    International Nuclear Information System (INIS)

    Rodliffe, R.S.; Polley, M.V.; Thornton, E.W.

    1985-05-01

    The redistribution of corrosion products from the primary circuit surfaces of a water reactor can result in increased flow resistance, poorer heat transfer performance, fuel failure and radioactive contamination of circuit surfaces. The environment is generally sufficiently well controlled to ensure that the first three effects are not limiting. The last effect is of particular importance since radioactive corrosion products are major contributors to shutdown fields and since it is necessary to ensure that the radiation exposure of personnel is as low as reasonably achievable. This review focusses attention on the principles which must form the basis for any mechanistic model describing the formation, transport and deposition of radioactive corrosion products. It is relevant to all water reactors in which the primary heat transfer medium is predominantly single-phase water and in which steam is generated in a secondary circuit, i.e. including CANDU pressurised heavy water reactors, Sovient VVERs, etc. (author)

  14. Radioactivity in foodstuffs 1988

    International Nuclear Information System (INIS)

    1989-01-01

    The average radioactivity dose level to which the Norwegian population was exposed through the ingestion of food in 1988 was between 0.10 and 0.15 mSv. This was about the same as in 1987. The radioactivity dose to which individuals with certain special dietary habits (large proportions of freshwater fish and reindeer meat in the diet) were exposed, was, however, up to three times higher in 1988 than in 1987. This was due firstly to the fact that reindeer meat which had been produced prior to the Chernobyl accident was no longer available, and secondly, to dietary advice not being followed as closely as before. The cost-benefit ratio of the measures introduced to reduce radioactivity levels in food, i.e. resources employed compared with the actual reduction in radioactivity levels achieved, has proved to be reasonably satisfactory, both in 1987 and 1988. Action levels and dietary advice remained unchanged in 1988. The present report summarizes results of analyses performed in 1988, and describes the measures introduced concerning various categorites of foods. Measures introduced were, as in 1987, primarily focused on the production of sheep meat (mutton/lamb) and on reindeer farming. 4 figs., 1 tab

  15. Design considerations of fission and corrosion product in primary system of MONJU

    International Nuclear Information System (INIS)

    Yanagisawa, T.; Akagane, K.; Yamamoto, K.; Kawashima, K.

    1976-01-01

    General influence of fission and corrosion products in primary system on MONJU plant design is reviewed. Various research and development works are now in progress to decrease the generation rate, to remove the products more effectively and to develop the methods of evaluation the behaviour of radioactive products. The inventory and distribution of fission and corrosion products in the primary circuit of MONJU are given. The radiation levels on the primary components are estimated to be several roentgens per hour. (author)

  16. Smectite alteration by anaerobic iron corrosion

    International Nuclear Information System (INIS)

    Sanders, D.; Kaufhold, S.; Hassel, A.W.; Dohrmann, R.

    2010-01-01

    Document available in extended abstract form only. The interaction of smectites with corroding steel/iron represents a crucial topic in the estimation of the long term confinement properties of clay barriers for the encasement of steel/iron containers. Especially in case of engineered clay barriers a possible deterioration of favourable smectite properties as response to corrosion could reduce the barrier capacity. The extent of this reduction is unknown, yet. The essential properties of bentonite clays in this context are on the one hand the relatively high swelling pressure together with low hydraulic conductivity, which results from the well known expandability of smectite interlayers in aqueous environments. On the other hand smectites are cation exchangers being able to long term encase radioactive cations in a way that negative charges of silicate layers are compensated by easily exchangeable hydrated cations. Both properties are directly related to the crystal and chemical composition of smectites. The nature of the corrosion of steel canisters in clay barriers will - after a first short aerobic phase - predominantly be anaerobic resulting in the formation of Fe(II) and two equivalents of hydroxide ions. In a set of exposition experiments anaerobic corroding iron in bentonite gels was studied in order to determine alteration of the smectite fraction. During the exposition a green coloration of the bentonite neighbouring to corroding iron was observed. Upon contact to oxygen in a humid state the bentonite turned reddish indicating the oxidation of Fe(II) to Fe(III). This observation is in accordance with reported results indicating the formation of an iron rich smectite. Chemical analysis of the 'green bentonite' reveals an increase of iron fraction e.g. from 3.4% mass to 9.3% mass . The adsorbed iron is predominantly Fe(II) which was proven by chromato-metric titration. The estimated ratio between silicon to increased iron content is Si: Fe ≅ 2

  17. Structural Effects of Reinforced Concrete Beam Due to Corrosion

    Science.gov (United States)

    Noh, Hamidun Mohd; Idris, Nur'ain; Noor, Nurazuwa Md; Sarpin, Norliana; Zainal, Rozlin; Kasim, Narimah

    2018-03-01

    Corrosion of steel in reinforced concrete is one of the main issues among construction stakeholders. The main consequences of steel corrosion include loss of cross section of steel area, generation of expansive pressure which caused cracking of concrete, spalling and delaminating of the concrete cover. Thus, it reduces the bond strength between the steel reinforcing bar and concrete, and deteriorating the strength of the structure. The objective of this study is to investigate the structural effects of corrosion damage on the performance of reinforced concrete beam. A series of corroded reinforced concrete beam with a corrosion rate of 0%, 20% and 40% of rebar corrosion is used in parametric study to assess the influence of different level of corrosion rate to the structural performance. As a result, the used of interface element in the finite element modelling predicted the worst case of corrosion analysis since cracks is induced and generate at this surface. On the other hand, a positive linear relationship was sketched between the increase of expansive pressure and the corrosion rate. Meanwhile, the gradient of the graph is decreased with the increase of steel bar diameter. Furthermore, the analysis shows that there is a significant effect on the load bearing capacity of the structure where the higher corrosion rate generates a higher stress concentration at the mid span of the beam. This study could predict the residual strength of reinforced concrete beam under the corrosion using the finite element analysis. The experimental validation is needed on the next stage to investigate the quantitative relation between the corrosion rate and its influence on the mechanical properties.

  18. A strain-mediated corrosion model for bioabsorbable metallic stents.

    Science.gov (United States)

    Galvin, E; O'Brien, D; Cummins, C; Mac Donald, B J; Lally, C

    2017-06-01

    This paper presents a strain-mediated phenomenological corrosion model, based on the discrete finite element modelling method which was developed for use with the ANSYS Implicit finite element code. The corrosion model was calibrated from experimental data and used to simulate the corrosion performance of a WE43 magnesium alloy stent. The model was found to be capable of predicting the experimentally observed plastic strain-mediated mass loss profile. The non-linear plastic strain model, extrapolated from the experimental data, was also found to adequately capture the corrosion-induced reduction in the radial stiffness of the stent over time. The model developed will help direct future design efforts towards the minimisation of plastic strain during device manufacture, deployment and in-service, in order to reduce corrosion rates and prolong the mechanical integrity of magnesium devices. The need for corrosion models that explore the interaction of strain with corrosion damage has been recognised as one of the current challenges in degradable material modelling (Gastaldi et al., 2011). A finite element based plastic strain-mediated phenomenological corrosion model was developed in this work and was calibrated based on the results of the corrosion experiments. It was found to be capable of predicting the experimentally observed plastic strain-mediated mass loss profile and the corrosion-induced reduction in the radial stiffness of the stent over time. To the author's knowledge, the results presented here represent the first experimental calibration of a plastic strain-mediated corrosion model of a corroding magnesium stent. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  19. Axenic aerobic biofilms inhibit corrosion of copper and aluminum.

    Science.gov (United States)

    Jayaraman, A; Ornek, D; Duarte, D A; Lee, C C; Mansfeld, F B; Wood, T K

    1999-11-01

    The corrosion behavior of unalloyed copper and aluminum alloy 2024 in modified Baar's medium has been studied with continuous reactors using electrochemical impedance spectroscopy. An axenic aerobic biofilm of either Pseudomonas fragi K or Bacillus brevis 18 was able to lessen corrosion as evidenced by a consistent 20-fold increase in the low-frequency impedance value of copper as well as by a consistent four- to seven-fold increase in the polarization resistance of aluminum 2024 after six days exposure compared to sterile controls. This is the first report of axenic aerobic biofilms inhibiting generalized corrosion of copper and aluminum. Addition of the representative sulfate-reducing bacterium (SRB) Desulfovibrio vulgaris (to simulate consortia corrosion behavior) to either the P. fragi K or B. brevis 18 protective biofilm on copper increased the corrosion to that of the sterile control unless antibiotic (ampicillin) was added to inhibit the growth of SRB in the biofilm.

  20. Evaluation of corrosive behavior of SAE 5155 by corrosion environment

    International Nuclear Information System (INIS)

    An, Jae Pil; Park, Keyung Dong

    2005-01-01

    In this study, the influence of shot peening and corrosive condition for corrosion property was investigated on immersed in 3.5% NaCl, 10% HNO 3 + 3% HF, 6% FeCl 3 . The immersion test was performed on two kinds of specimen. The immersion periods was performed 30days. Corrosion potential, weight loss were investigated from experimental results. From test results, the effect of shot peening on the corrosion was evaluated