WorldWideScience

Sample records for reduce platelet adhesion

  1. Reduced platelet adhesion and improved corrosion resistance of superhydrophobic TiO₂-nanotube-coated 316L stainless steel.

    Science.gov (United States)

    Huang, Qiaoling; Yang, Yun; Hu, Ronggang; Lin, Changjian; Sun, Lan; Vogler, Erwin A

    2015-01-01

    Superhydrophilic and superhydrophobic TiO2 nanotube (TNT) arrays were fabricated on 316L stainless steel (SS) to improve corrosion resistance and hemocompatibility of SS. Vertically-aligned superhydrophilic amorphous TNTs were fabricated on SS by electrochemical anodization of Ti films deposited on SS. Calcination was carried out to induce anatase phase (superhydrophilic), and fluorosilanization was used to convert superhydrophilicity to superhydrophobicity. The morphology, structure and surface wettability of the samples were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and contact angle goniometry. The effects of surface wettability on corrosion resistance and platelet adhesion were investigated. The results showed that crystalline phase (anatase vs. amorphous) and wettability strongly affected corrosion resistance and platelet adhesion. The superhydrophilic amorphous TNTs failed to protect SS from corrosion whereas superhydrophobic amorphous TNTs slightly improved corrosion resistance of SS. Both superhydrophilic and superhydrophobic anatase TNTs significantly improved corrosion resistance of SS. The superhydrophilic amorphous TNTs minimized platelet adhesion and activation whereas superhydrophilic anatase TNTs activated the formation of fibrin network. On the contrary, both superhydrophobic TNTs (superhydrophobic amorphous TNTs and superhydrophobic anatase TNTs) reduced platelet adhesion significantly and improved corrosion resistance regardless of crystalline phase. Superhydrophobic anatase TNTs coating on SS surface offers the opportunity for the application of SS as a promising permanent biomaterial in blood contacting biomedical devices, where both reducing platelets adhesion/activation and improving corrosion resistance can be effectively combined. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. An engineered micropattern to reduce bacterial colonization, platelet adhesion and fibrin sheath formation for improved biocompatibility of central venous catheters

    National Research Council Canada - National Science Library

    May, Rhea M; Magin, Chelsea M; Mann, Ethan E; Drinker, Michael C; Fraser, John C; Siedlecki, Christopher A; Brennan, Anthony B; Reddy, Shravanthi T

    2015-01-01

    .... Surface topographies have shown promise in limiting platelet and bacterial adhesion, so it was hypothesized that an engineered Sharklet micropattern, inspired by shark-skin, may provide a combined...

  3. Flaxseed Prevents Leukocyte and Platelet Adhesion to Endothelial Cells in Experimental Atherosclerosis by Reducing sVCAM-1 and vWF

    Directory of Open Access Journals (Sweden)

    Raluca Ecaterina Haliga

    2013-01-01

    Full Text Available We studied the possible effect of flaxseed to prevent leukocytes and platelets adhesion to endothelial cells and to reduce soluble adhesion molecules (sVCAM-1 and endothelial integrity markers (vWF in ovariectomized rats fed a high-fat diet. Forty-two female Wistar rats were either sham-operated or ovariectomized and randomly assigned for 36 weeks to three different diets: (1 low-fat diet (8% energy as fat; (2 high-fat diet (40% energy as fat, lard based, lard group; (3 high-fat diet enriched with ground flaxseed 15 g/100 g of food (40% energy as fat, lard + flaxseed group. The ovariectomized rats fed with lard + flaxseeds had significantly lower serum concentrations of sVCAM and vWF, reduced platelet adhesiveness, and lower extent of platelet and leukocyte adherence to endothelium in the histological evaluation of the aorta as compared to Ovx + lard group. In our study, high dose of ground flaxseed incorporated to lard-based diet prevented the progression of atherosclerotic lesions in estrogen deficiency rats by decreasing platelet and endothelium reactivity. Assessment of platelet adhesion, serum soluble adhesion molecule sVCAM, and endothelium integrity molecule vWF could be useful to detect the risk for atherosclerotic lesions in estrogen deficiency states and to estimate the effect of flaxseed supplementation.

  4. Platelet adhesion studies on dipyridamole coated polyurethane surfaces

    OpenAIRE

    Aldenhoff Y. B.J.; Koole L. H.

    2003-01-01

    Surface modification of polyurethanes (PUs) by covalent attachment of dipyridamole (Persantinregistered) is known to reduce adherence of blood platelets upon exposure to human platelet rich plasma (PRP). This effect was investigated in further detail. First platelet adhesion under static conditions was studied with four different biomaterial surfaces: untreated PU, PU immobilised with conjugate molecule 1, PU immobilised with conjugate molecule 2, and PU immobilised with conjugate molecule 3....

  5. Platelet-collagen adhesion enhances platelet aggregation induced by binding of VWF to platelets

    Energy Technology Data Exchange (ETDEWEB)

    Laduca, F.M.; Bell, W.R.; Bettigole, R.E. (Johns Hopkins Univ. School of Medicine, Baltimore, MD (USA) State Univ. of New York, Buffalo (USA))

    1987-11-01

    Ristocetin-induced platelet aggregation (RIPA) was evaluated in the presence of platelet-collagen adhesion. RIPA of normal donor platelet-rich plasma (PRP) demonstrated a primary wave of aggregation mediated by the binding of von Willebrand factor (VWF) to platelets and a secondary aggregation wave, due to a platelet-release reaction, initiated by VWF-platelet binding and inhibitable by acetylsalicylic acid (ASA). An enhanced RIPA was observed in PRP samples to which collagen had been previously added. These subthreshold concentrations of collagen, which by themselves were insufficient to induce aggregation, caused measurable platelet-collagen adhesion. Subthreshold collagen did not cause microplatelet aggregation, platelet release of ({sup 3}H)serotonin, or alter the dose-responsive binding of {sup 125}I-labeled VWF to platelets, which occurred with increasing ristocetin concentrations. However, ASA inhibition of the platelet release reaction prevented collagen-enhanced RIPA. These results demonstrate that platelet-collagen adhesion altered the platelet-release reaction induced by the binding of VWF to platelets causing a platelet-release reaction at a level of VWF-platelet binding not normally initiating a secondary aggregation. These findings suggest that platelet-collagen adhesion enhances platelet function mediated by VWF.

  6. 21 CFR 864.6650 - Platelet adhesion test.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Platelet adhesion test. 864.6650 Section 864.6650...) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Manual Hematology Devices § 864.6650 Platelet adhesion test. (a) Identification. A platelet adhesion test is a device used to determine in vitro platelet...

  7. The Relationship between Platelet Adhesion on Surfaces and the Structure versus the Amount of Adsorbed Fibrinogen

    Science.gov (United States)

    Sivaraman, Balakrishnan

    2009-01-01

    While platelet adhesion to biomaterial surfaces is widely recognized to be related to adsorbed fibrinogen (Fg), it has remained controversial whether platelet adhesion is in response to the adsorbed amount or the adsorbed conformation of this protein. To address this issue, we designed a series of platelet adhesion studies to clearly separate these two factors, thus enabling us to definitively determine whether it is the amount or the conformation of adsorbed Fg that mediates platelet response. Fg was adsorbed to a broad range of surface chemistries from a wide range of solution concentrations, with the amount and conformation of adsorbed Fg determined by absorbance and circular dichroism (CD) spectropolarimetry, respectively. Platelet adhesion response was determined by lactate dehydrogenase (LDH) assay and scanning electron microscopy (SEM). Our results show that platelet adhesion is strongly correlated with the degree of adsorption-induced unfolding of Fg (r2 = 0.96) with essentially no correlation with the amount of Fg adsorbed (r2 = 0.04). Platelet receptor inhibitor studies using an RGDS peptide reduced platelet adhesion by only about 50%, and SEM results show that adherent platelets after RGDS blocking were much more rounded with minimal extended filopodia compared with the unblocked platelets. These results provide definitive proof that the conformation of adsorbed Fg is the critical determinant of platelet adhesion, not the amount of Fg adsorbed, with adsorption-induced unfolding potentially exposing two distinctly different types of platelet binding sites in Fg; one that induces platelet adhesion alone and one that induces both platelet adhesion and activation. PMID:19850334

  8. Relation of proteins, platelets, and gas nuclei in adhesion to a synthetic material.

    Science.gov (United States)

    Ward, C A; Stanga, R D; Zingg, W; Herbert, M A

    1977-07-01

    We report the result of exposing silicone rubber to washed pig platelet suspensions that contained on average 0.018 mg of proteins/ml in solutions. This protein content is sufficiently low to reasonably neglect the protein adhesion to the material. On comparing the measured platelet adhesion from the platelet suspensions with that from blood, we find that when the gas nuclei normally present in the surface roughness of the material are removed the number of adhering platelets is the same. Thus, in the absence of the gas nuclei, the proteins in blood plasma play a negligible role in the platelet adhesion. In contrast, when both the gas nuclei and proteins are present, the maximum platelet adhesion was observed. From this and the above observation, it appears the gas nuclei affect one or more of the proteins, and this brings about an increased platelet adhesion. Finally, the platelet adhesion from the platelet suspensions was reduced after the removal of the gas nuclei. Thus the platelets themselves sense the change in the surface resulting from the removal of the gas nuclei.

  9. Dynamic platelet adhesion in patients with an acute coronary syndrome: The effect of antiplatelet therapy.

    Science.gov (United States)

    Tsoumani, Maria E; Tatsidou, Prokopia T; Ntalas, Ioannis V; Goudevenos, John A; Tselepis, Alexandros D

    2016-12-01

    Platelet adhesion and aggregation are key functions leading to thrombus formation. The effect of aspirin, clopidogrel, and ticagrelor on platelet aggregation has been well established, however, there is limited data on the effect of these drugs on platelet adhesion. We therefore evaluated the effect of these drugs on platelet adhesion in acute coronary syndrome (ACS) patients. Citrated blood was collected from 50 ACS patients loaded with 325 mg of aspirin (baseline) and at 5 days after the administration of aspirin 100 mg/day and clopidogrel (600 mg loading dose, 75 mg/day) (n = 26) or ticagrelor (180 mg loading dose, 90 mg × 2/day) (n = 24). High on-treatment platelet reactivity (HTPR) to clopidogrel was estimated by vasodilator stimulated phosphoprotein (VASP) phosphorylation assay. Platelet adhesion to collagen was studied for 6 min under high shear stress and was evaluated using the time to platelet recruitment (TPR), the perimeter and average area of each adherent object, number of adherent objects, and the total percent of surface coverage (SC%). Six ACS patients exhibited HTPR to clopidogrel and excluded from the platelet adhesion assays. TPR and SC% values were similar among patient groups at baseline and controls. However, all other adhesion parameters were different in ACS patients, indicating the formation of more aggregates in regard to controls. At 5 days post-treatment with either clopidogrel or ticagrelor, the TPR values were increased and the SC% values were reduced to a similar extent compared with baseline. However, significant differences were observed in the ticagrelor group in the perimeter, number of adherent objects, and the average area of each adherent object indicating a more potent inhibition of adherence-induced platelet aggregation than clopidogrel. In conclusion, aspirin does not affect platelet adherence to collagen, whereas clopidogrel and ticagrelor inhibit to a similar extent dynamic platelet adhesion at 5 days post-treatment in

  10. Protein adsorption, platelet adhesion, and bacterial adhesion to polyethylene-glycol-textured polyurethane biomaterial surfaces.

    Science.gov (United States)

    Xu, Li-Chong; Siedlecki, Christopher A

    2017-04-01

    Traditional strategies for surface modification to enhance the biocompatibility of biomaterials often focus on a single route utilizing either chemical or physical approaches. This study combines the chemical and physical treatments as applied to poly(urethane urea) (PUU) biomaterials to enhance biocompatibility at the interface for inhibiting platelet-related thrombosis or bacterial adhesion-induced microbial infections. PUU films were first textured with submicron patterns by a soft lithography two-stage replication process, and then were grafted with polyethylene glycol (PEG). A series of biological response experiments including protein adsorption, platelet adhesion/activation, and bacterial adhesion/biofilm formation showed that PEG-grafted submicron textured biomaterial surfaces were resistant to protein adsorption, and greatly increased the efficiency in reducing both platelet adhesion/activation and bacterial adhesion/biofilm formation due to the additive effects of physical topography and grafted PEG. Results suggest that a combination of chemical modification and surface texturing will be more efficient in preventing biomaterial-associated thrombosis and infection of biomaterials. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 668-678, 2017. © 2015 Wiley Periodicals, Inc.

  11. PLATELET ADHESION TO POLYURETHANE UREA UNDER PULSATILE FLOW CONDITIONS

    Science.gov (United States)

    Navitsky, Michael A.; Taylor, Joshua O.; Smith, Alexander B.; Slattery, Margaret J.; Deutsch, Steven; Siedlecki, Christopher A.; Manning, Keefe B.

    2014-01-01

    Platelet adhesion to a polyurethane urea surface is a precursor to thrombus formation within blood-contacting cardiovascular devices, and platelets have been found to adhere strongly to polyurethane surfaces below a shear rate of approximately 500 s−1. The aim of the current work is to determine platelet adhesion properties to the polyurethane urea surface as a function of time varying shear exposure. A rotating disk system is used to study the influence of steady and pulsatile flow conditions (e.g. cardiac inflow and sawtooth waveforms) for platelet adhesion to the biomaterial surface. All experiments retain the same root mean square angular rotation velocity (29.63 rad/s) and waveform period. The disk is rotated in platelet rich bovine plasma for two hours with adhesion quantified by confocal microscopy measurements of immunofluorescently labeled bovine platelets. Platelet adhesion under pulsating flow is found to exponentially decay with increasing shear rate. Adhesion levels are found to depend upon peak platelet flux and shear rate regardless of rotational waveform. In combination with flow measurements, these results may be useful for predicting regions susceptible to thrombus formation within ventricular assist devices. PMID:24721222

  12. Effect of platelet age on adhesiveness to collagen and platelet surface charge

    Energy Technology Data Exchange (ETDEWEB)

    Castellan, R.M.; Steiner, M.

    1976-11-30

    Adhesion to collagen was investigated as a function of platelet age in rat platelets. Platelet adherence was measured using EDTA-containing platelet- rich plasma which was added to preparations of collagen fibers clamped between magnetic stirrers by recording changes in light transmission. The plot of light transmission versus logarithm of time was linear and allowed calculation of a slope factor which related to the rate of adherence. Neither the amount of collagen nor the platelet count were limiting in the test. Young platelet populations (less than or equal to 1 day old) were obtained during the recovery phase from immune induced thrombocytopenia. Old platelet populations were prepared by blocking thrombopoiesis with cyclophosphamide. Young platelets did not differ significantly from randomly aged platelets in this function. The electrophoretic mobility of platelets was not affected by their age.

  13. Platelet inhibition and endothelial cell adhesion on elastin-like polypeptide surface modified materials.

    Science.gov (United States)

    Blit, Patrick H; McClung, W Glenn; Brash, John L; Woodhouse, Kimberly A; Santerre, J Paul

    2011-09-01

    Platelet adhesion and activation are important early markers of biomaterial blood compatibility, while surfaces that promote enhanced endothelial cell adhesion and eNOS expression are strategic targets for long term vascular graft applications. Materials surface modified with fluorinated surface modifiers, containing peptides inspired from elastin cross-linking domains, have been used for the cross-linking of elastin-like polypeptide 4 (ELP4) macromolecules onto polyurethane surfaces. In the present study, ELP4 modified polyurethanes were evaluated in vitro to assess platelet adhesion, microparticle formation and bulk platelet activation following blood-material interactions. Reduced platelet adhesion and bulk platelet activation were observed following contact between reconstituted human blood and the ELP4 materials, relative to the uncoated base polyurethane controls. ELP4 modified materials also promoted endothelial cell adhesion and retention over a period of one week and showed that the endothelial cells exhibited an organized actin cytoskeleton and enhanced endothelial nitric oxide synthase (eNOS) expression relative to the control surfaces. These results indicate that polyurethane elastomers modified with ELP4 covalently bound to fluorinated surface modifiers provide a promising approach for endowing synthetic elastomers with both reduced blood platelet activation properties and enhanced endothelial cell adhesion for potential use in vascular graft applications. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. [Probe into the platelets adhesion to carbonaceous biomaterials].

    Science.gov (United States)

    Li, Bogang; Na, Juanjuan; Yin, Guangfu; Yin, Jie; Zheng, Changqiong

    2004-02-01

    In order to clarify the mechanism of blood coagulation for carbonaceous biomaterials, the plasma rich in platelet was obtaining through the centrifugation of fresh human blood containing anticoagulant. Adhesive tests of platelets to surfaces of DLC, diamond film(DF) and graphite was carried out at 37 degrees C. Then, morphology observation, counting and deformation index calculation of the platelets adhering to surfaces of the three kinds of materials were analyzed by SEM. It has been shown that there is no any platelet on the surface of DLC, but on DF and graphite, a lot of platelets are observed with serious deformation of type III-V. The adhesive amounts of platelet on the surface of graphite are more than those on DF, but deformation index of platelets on the surface of DF is more than that on graphite. Three major conclusions have been obtained through comparative analyses with our previous researches and related literatures: (1) Adhesion, deformation and collection of platelets occurred in succession on material surfaces resulting from protein adsorption are the major mechanism of blood coagulation of carbonaceous materials; (2) Deformation degree of platelets is more important hemocompatibility index than consumption ratio of platelets for carbonaceous materials; (3) The purer the DLC, the better is the hemocompatibility. These conclusions possess important directive function for improving and designing carbonaceous materials used in artificial mechanical heart valves.

  15. Aggregation of human platelets and adhesion of Streptococcus sanguis.

    Science.gov (United States)

    Herzberg, M C; Brintzenhofe, K L; Clawson, C C

    1983-01-01

    Platelet vegetations or thrombi are common findings in subacute bacterial endocarditis. We investigated the hypothesis that human platelets selectively bind or adhere strains of Streptococcus sanguis and Streptococcus mutans and aggregate, as a result, into an in vitro thrombus. Earlier ultrastructural studies suggested that aggregation of platelets over time by Staphylococcus aureus was preceded in order by adhesion and platelet activation. We uncoupled the adhesion step from activation and aggregation in our studies by incubating streptococci with platelet ghosts in a simple, quantitative assay. Adhesion was shown to be mediated by protease-sensitive components on the streptococci and platelet ghosts rather than cell surface carbohydrates or dextrans, plasma components, or divalent cations. The same streptococci were also studied by standard aggregometry techniques. Platelet-rich plasma was activated and aggregated by certain isolates of S. sanguis. Platelet ghosts bound the same strains selectively under Ca2+- and plasma-depleted conditions. Fresh platelets could activate after washing, but Ca2+ had to be restored. Aggregation required fresh platelets in Ca2+-restored plasma and was inducible by washed streptococcal cell walls. These reactions in the binding and aggregometry assays were confirmed by transmission electron microscopy. Surface microfibrils on intact S. sanguis were identified. These appendages appeared to bind S. sanguis to platelets. The selectivity of adhesion of the various S. sanguis strains to platelet ghosts or Ca2+- and plasma-depleted fresh washed platelets was similar for all donors. Thus, the platelet binding site was expressed widely in the population and was unlikely to be an artifact of membrane aging or preparation. Since selective adhesion of S. sanguis to platelets was apparently required for aggregation, it is suggested that functionally defined receptors for ligands on certain strains of S. sanguis may be present on human

  16. Model experiments on platelet adhesion in stagnation point flow.

    Science.gov (United States)

    Wurzinger, L J; Blasberg, P; van de Loecht, M; Suwelack, W; Schmid-Schönbein, H

    1984-01-01

    Experiments with glass models of arterial branchings and bends, perfused with bovine platelet rich plasma (PRP), revealed platelet deposition being strongly dependent on fluid dynamic factors. Predilection sites of platelet deposits are characterized by flow vectors directed against the wall, so-called stagnation point flow. Thus collision of suspended particles with the wall, an absolute prerequisite for adhesion of platelets to surfaces even as thrombogenic as glass, appears mediated by convective forces. The extent of platelet deposition is correlated to the magnitude of flow components normal to the surface as well as to the state of biological activation of the platelets. The latter could be effective by an increase in hydrodynamically effective volume, invariably associated with the platelet shape change reaction to biochemical stimulants like ADP. The effect of altered rheological properties of platelets upon their deposition and of mechanical properties of surfaces was examined in a stagnation point flow chamber. Roughnesses in the order of 5 microns, probably by creating local flow disturbances, significantly enhance platelet adhesion, as compared to a smooth surface of identical chemical composition.

  17. A physical description of the adhesion and aggregation of platelets

    Science.gov (United States)

    Chopard, Bastien; de Sousa, Daniel Ribeiro; Lätt, Jonas; Mountrakis, Lampros; Dubois, Frank; Yourassowsky, Catherine; Van Antwerpen, Pierre; Eker, Omer; Vanhamme, Luc; Perez-Morga, David; Courbebaisse, Guy; Lorenz, Eric; Hoekstra, Alfons G.; Boudjeltia, Karim Zouaoui

    2017-04-01

    The early stages of clot formation in blood vessels involve platelet adhesion-aggregation. Although these mechanisms have been extensively studied, gaps in their understanding still persist. We have performed detailed in vitro experiments, using the well-known Impact-R device, and developed a numerical model to better describe and understand this phenomenon. Unlike previous studies, we took into account the differential role of pre-activated and non-activated platelets, as well as the three-dimensional nature of the aggregation process. Our investigation reveals that blood albumin is a major parameter limiting platelet aggregate formation in our experiment. Simulations are in very good agreement with observations and provide quantitative estimates of the adhesion and aggregation rates that are hard to measure experimentally. They also provide a value of the effective diffusion of platelets in blood subject to the shear rate produced by the Impact-R.

  18. Blood coagulation and platelet adhesion on polyaniline films.

    Science.gov (United States)

    Humpolíček, Petr; Kuceková, Zdenka; Kašpárková, Věra; Pelková, Jana; Modic, Martina; Junkar, Ita; Trchová, Miroslava; Bober, Patrycja; Stejskal, Jaroslav; Lehocký, Marián

    2015-09-01

    Polyaniline is a promising conducting polymer with still increasing application potential in biomedicine. Its surface modification can be an efficient way how to introduce desired functional groups and to control its properties while keeping the bulk characteristics of the material unchanged. The purpose of the study was to synthetize thin films of pristine conducting polyaniline hydrochloride, non-conducting polyaniline base and polyaniline modified with poly(2-acrylamido-2-methyl-1-propanesulfonic acid) (PAMPSA) and investigate chosen parameters of their hemocompatibility. The modification was performed either by introduction of PAMPSA during the synthesis or by reprotonation of polyaniline base. The polyaniline hydrochloride and polyaniline base had no impact on blood coagulation and platelet adhesion. By contrast, the polyaniline reprotonated with PAMPSA completely hindered coagulation thanks to its interaction with coagulation factors Xa, Va and IIa. The significantly lower platelets adhesion was also found on this surface. Moreover, this film maintains its conductivity at pH of 6, which is an improvement in comparison with standard polyaniline hydrochloride losing most of its conductivity at pH of 4. Polyaniline film with PAMPSA introduced during synthesis had an impact on platelet adhesion but not on coagulation. The combined conductivity, anticoagulation activity, low platelet adhesion and improved conductivity at pH closer to physiological, open up new possibilities for application of polyaniline reprotonated by PAMPSA in blood-contacting devices, such as catheters or blood vessel grafts. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. In vitro Endothelialization and Platelet Adhesion on Titaniferous Upgraded Polyether and Polycarbonate Polyurethanes

    Directory of Open Access Journals (Sweden)

    Karla Lehle

    2014-01-01

    Full Text Available Polycarbonateurethanes (PCU and polyetherurethanes (PEU are used for medical devices, however their bio- and haemocompatibility is limited. In this study, the effect of titaniferous upgrading of different polyurethanes on the bio- and haemocompatibility was investigated by endothelial cell (EC adhesion/proliferation and platelet adhesion (scanning electron microscopy, respectively. There was no EC adhesion/proliferation and only minor platelet adhesion on upgraded and pure PCU (Desmopan. PEUs (Texin 985, Tecothane 1085, Elastollan 1180A differed in their cyto- and haemocompatibility. While EC adhesion depended on the type of PEU, any proliferative activity was inhibited. Additional titaniferous upgrading of PEU induced EC proliferation and increased metabolic activity. However, adherent ECs were significantly activated. While Texin was highly thrombotic, only small amounts of platelets adhered onto Tecothane and Elastollan. Additional titaniferous upgrading reduced thrombogenicity of Texin, preserved haemocompatibility of Elastollan, and increased platelet activation/aggregation on Tecothane. In conclusion, none of the PUs was cytocompatible; only titaniferous upgrading allowed EC proliferation and metabolism on PEUs. Haemocompatibility depended on the type of PU.

  20. Extracts from Tribulus species may modulate platelet adhesion by interfering with arachidonic acid metabolism.

    Science.gov (United States)

    Olas, Beata; Hamed, Arafa I; Oleszek, Wieslaw; Stochmal, Anna

    2015-01-01

    The present work was designed to study the effects of crude extracts from Tribulus pterocarpus, T. pentandrus and T. parvispinus on selected biological functions of human blood platelets in vitro. Platelet suspensions were pre-incubated with extracts from aerial parts of T. pterocarpus, T. pentandrus and T. parvispinus, at the final concentrations of 0.5, 5 and 50 µg/ml. Then, for platelet activation thrombin, was used. The effects of crude extracts from T. pterocarpus, T. pentandrus and T. parvispinus on adhesion of blood platelets to collagen were determined by method according to Tuszynski and Murphy. Arachidonic acid metabolism was measured by the level of thiobarbituric acid reactive substances (TBARS). In these studies we also compared the action of tested crude plant extracts with the effects of the polyphenolic fraction isolated from aerial parts of T. pterocarpus, which has antiplatelet and antioxidative properties. The performed assays demonstrated that the tested crude extract from T. pterocarpus and the phenolic fraction from T. pterocarpus might influence the platelet functions in vitro. The inhibitory, concentration-dependent effects of this tested extract and its phenolic fraction on adhesion of resting platelets and thrombin - stimulated platelets to collagen was found. We also observed that the crude extract from T. pterocarpus, like the polyphenolic fraction from T. pterocarpus reduced TBARS production in blood platelets. In the comparative studies, the tested crude extract from T. pterocarpus was not found to be more effective antiplatelet factor, than the polyphenolic fraction from this plant. The results obtained suggest that T. pterocarpus may be a promising source of natural compounds, valuable in the prevention of the enhanced activity of blood platelets in numerous cardiovascular diseases.

  1. A serine-rich glycoprotein of Streptococcus sanguis mediates adhesion to platelets via GPIb.

    Science.gov (United States)

    Plummer, Christopher; Wu, Hui; Kerrigan, Steven W; Meade, Gerardene; Cox, Dermot; Ian Douglas, C W

    2005-04-01

    Streptococcus sanguis is the most common oral bacterium causing infective endocarditis and its ability to adhere to platelets, leading to their activation and aggregation, is thought to be an important virulent factor. Previous work has shown that S. sanguis can bind directly to platelet glycoprotein (GP) Ib but the nature of the adhesin was unknown. Here, we have shown that a high molecular weight glycoprotein of S. sanguis mediates adhesion to glycocalacin. The bacterial glycoprotein was purified from cell extracts by chromatography on GPIb- and wheatgerm agglutinin affinity matrices and its interaction with GPIb was shown to be sialic acid-dependent. We designated the glycoprotein serine-rich protein A (SrpA). An insertional inactivation mutant lacking the SrpA of S. sanguis showed significantly reduced binding to glycocalacin, reduced adherence to platelets and a prolonged lag time to platelet aggregation. In addition, under flow conditions, platelets rolled and subsequently adhered on films of wild-type S. sanguis cells at low shear (50/s) but did not bind to films of the SrpA mutant. Platelets did not bind to wild-type bacterial cells at high shear (1500/s). These findings help to understand the mechanisms by which the organism might colonize platelet-fibrin vegetations.

  2. Platelet PI3Kγ Contributes to Carotid Intima-Media Thickening under Severely Reduced Flow Conditions.

    Directory of Open Access Journals (Sweden)

    Cuiping Wang

    Full Text Available Studies have begun to focus on the emerging function of platelets as immune and inflammatory cells that initiate and accelerate vascular inflammation. Phosphoinositide 3-kinase gamma (PI3Kγ is critically involved in a number of inflammatory and autoimmune diseases. This study aims to investigate the contribution of platelet PI3Kγ to vascular remodeling under flow severely reduced conditions. Mouse partial left carotid artery ligation with adoptive transfer of activated, washed wild-type or PI3Kγ-/- platelets was used as the model. Intima-media area, leukocyte recruitment, and proinflammatory mediator expression were assessed. In vitro PI3Kγ-/- platelets were used to verify the effect of PI3Kγ on platelet activation, interaction with leukocytes, and endothelial cells. Mice injected with activated platelets showed a significant increase in intima-media thickening, recruitment of neutrophils (at 3 d and macrophages (at 21 d, and intercellular adhesion molecule-1, vascular cell adhesion molecule-1, tumor necrosis factor alpha, and interleukin-6 expression (at 3 d in the flow-reduced area. These effects were abrogated by platelet PI3Kγ deficiency. Circulating platelet-leukocyte aggregates were reduced in PI3Kγ-/- mice after partial ligation. In vivo data confirmed that PI3Kγ mediated Adenine di-Phosphate -induced platelet activation through the Akt and p38 MAP kinase signaling pathways. Moreover, platelet PI3Kγ deficiency reduced platelet-leukocyte aggregation and platelet-endothelial cell (EC interaction. These findings indicate that platelet PI3Kγ contributes to platelet-mediated vascular inflammation and carotid intima-media thickening after flow severely reduced. Platelet PI3Kγ may be a new target in the treatment of vascular diseases.

  3. Platelet adhesion on endothelium early after vein grafting mediates leukocyte recruitment and intimal hyperplasia in a murine model.

    Science.gov (United States)

    Tseng, Chi-Nan; Chang, Ya-Ting; Lengquist, Mariette; Kronqvist, Malin; Hedin, Ulf; Eriksson, Einar E

    2015-04-01

    Intimal hyperplasia (IH) is the substrate for accelerated atherosclerosis and limited patency of vein grafts. However, there is still no specific treatment targeting IH following graft surgery. In this study, we used a mouse model of vein grafting to investigate the potential for early intervention with platelet function for later development of graft IH. We transferred the inferior vena cava (IVC) from donor C57BL/6 mice to the carotid artery in recipients using a cuff technique. We found extensive endothelial injury and platelet adhesion one hour following grafting. Adhesion of leukocytes was distinct in areas of platelet adhesion. Platelet and leukocyte adhesion was strongly reduced in mice receiving a function-blocking antibody against the integrin αIIbβ3. This was followed by a reduction of IH one month following grafting. Depletion of platelets using antiserum also reduced IH at later time points. These findings indicate platelets as pivotal to leukocyte recruitment to the wall of vein grafts. In conclusion, the data also highlight early intervention of platelets and inflammation as potential treatment for later formation of IH and accelerated atherosclerosis following bypass surgery.

  4. The adhesion of blood platelets on fibrinogen surface: comparison of two biochemical microplate assays.

    Science.gov (United States)

    Vanícková, Martina; Suttnar, Jirí; Dyr, Jan Evangelista

    2006-11-01

    The biocompatibility of materials is frequently assessed by blood platelet adhesion, since platelet adhesion plays a considerable role in blood interaction with artificial surfaces. Blood platelets adhesion is an essential event in haemostatic and thrombotic processes. The aim of this study was to simultaneously compare simple biochemical assays widely used for evaluation of platelet static adhesion based on the determination of enzymatic activity of either lactate dehydrogenase (LDH) or acid phosphatase (ACP) in lysates of adhered platelets. Adhesion of platelets from platelet-rich plasma and washed platelets activated by either ADP or thrombin on surfaces covered with fibrinogen and well defined fibrin was studied. The results demonstrated that the amounts of adhered platelets estimated by the LDH method were significantly lower as compared with the amount obtained by ACP method. LDH but not ACP release from platelets during adhesion was shown to take place. It suggests that the LDH method should be used rather as an assay of platelet integrity. The ACP method is much more suitable for quantitative determination of platelet adhesion especially in the development and evaluation of haemocompatibility of new biomaterials.

  5. Nanomolar concentrations of adrenaline induce platelet adhesion in vitro.

    Science.gov (United States)

    Eriksson, Andreas C; Whiss, Per A

    2013-01-01

    Adrenaline is a platelet activator having a resting plasma concentration of adrenaline in micromolar concentrations. This makes it difficult to estimate the relevance of in vitro data for the in vivo situation. The aim of this study was to investigate experimental conditions in vitro that could detect platelet effects of adrenaline in nanomolar concentrations. Platelet adhesion to albumin and collagen was evaluated with a static platelet adhesion assay. Our results show that 10 nmol/l adrenaline induced platelet adhesion to albumin in platelet-rich plasma (PRP) prepared at 140 × g, while 100 nmol/l was necessary in order to increase adhesion of platelets prepared at 220 × g. The mean platelet volume was increased after preparation at 140 × g, suggesting that large reactive platelets contributed to the increased adrenaline sensitivity. At optimal Mg(2+)-concentration, adhesion to collagen was increased by 10 nmol/l adrenaline irrespective of centrifugal force applied during PRP preparation. More specifically, we defined two populations where adhesion to collagen was increased by 10 nmol/l adrenaline either upon centrifugation at 140 × g but not 220 × g or vice versa. In some experiments, platelet adhesion to collagen was induced by 3 nmol/l adrenaline, which corresponds to concentrations achieved during stress in vivo. In summary, the static adhesion assay is able to detect platelet activating effects of adrenaline very close to physiological concentrations. This is rare for in vitro assays and motivates further research about adrenergic signalling in platelets.

  6. Diminished adhesion and activation of platelets and neutrophils with CD47 functionalized blood contacting surfaces.

    Science.gov (United States)

    Finley, Matthew J; Rauova, Lubica; Alferiev, Ivan S; Weisel, John W; Levy, Robert J; Stachelek, Stanley J

    2012-08-01

    CD47 is a ubiquitously expressed transmembrane protein that, through signaling mechanisms mediated by signal regulatory protein alpha (SIRPα1), functions as a biological marker of 'self-recognition'. We showed previously that inflammatory cell attachment to polymeric surfaces is inhibited by the attachment of biotinylated recombinant CD47 (CD47B). We test herein the hypothesis that CD47 modified blood conduits can reduce platelet and neutrophil activation under clinically relevant conditions. We appended a poly-lysine tag to the C-terminus of recombinant CD47 (CD47L) allowing for covalent linkage to the polymer. SIRPα1 expression was confirmed in isolated platelets. We then compared biocompatibility between CD47B and CD47L functionalized polyvinyl chloride (PVC) surfaces and unmodified control PVC surfaces. Quantitative and Qualitative analysis of blood cell attachment to CD47B and CD47L surfaces, via scanning electron microscopy, showed strikingly fewer platelets attached to CD47 modified surfaces compared to control. Flow cytometry analysis showed that activation markers for neutrophils (CD62L) and platelets (CD62P) exposed to CD47 modified PVC were equivalent to freshly acquired control blood, while significantly elevated in the unmodified PVC tubing. In addition, ethylene oxide gas sterilization did not inhibit the efficacy of the CD47 modification. In conclusion, CD47 modified PVC inhibits both the adhesion and activation of platelets and neutrophils. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Diminished adhesion and activation of platelets and neutrophils with CD47-functionalized blood contacting surfaces

    Science.gov (United States)

    Finley, Matthew J.; Rauova, Lubica; Alferiev, Ivan S.; Weisel, John W.; Levy, Robert J.; Stachelek, Stanley J.

    2012-01-01

    CD47 is a ubiquitously expressed transmembrane protein that, through signaling mechanisms mediated by signal regulatory protein alpha (SIRPα1), functions as a biological marker of ‘self-recognition’. We showed previously that inflammatory cell attachment to polymeric surfaces is inhibited by the attachment of biotinylated recombinant CD47 (CD47B). We test herein the hypothesis that CD47-modified blood conduits can reduce platelet and neutrophil activation under clinically relevant conditions. We appended a poly-lysine tag to the C-terminus of recombinant CD47 (CD47L) allowing for covalent linkage to the polymer. SIRPα1 expression was confirmed in isolated platelets. We then compared biocompatibility between CD47B and CD47L functionalized polyvinyl chloride (PVC) surfaces and unmodified control PVC surfaces. Quantitative and Qualitative analysis of blood cell attachment to CD47B and CD47L surfaces, via scanning electron microscopy, showed strikingly fewer platelets attached to CD47 modified surfaces compared to control. Flow cytometry analysis showed that activation markers for neutrophils (CD62L) and platelets (CD62P) exposed to CD47 modified PVC were equivalent to freshly acquired control blood, while significantly elevated in the unmodified PVC tubing. In addition, ethylene oxide gas sterilization did not inhibit the efficacy of the CD47 modification. In conclusion, CD47 modified PVC inhibits both the adhesion and activation of platelets and neutrophils. PMID:22613135

  8. Can tissue adhesives and platelet-rich plasma prevent pharyngocutaneous fistula formation?

    Science.gov (United States)

    Eryılmaz, Aylin; Demirci, Buket; Gunel, Ceren; Kacar Doger, Firuzan; Yukselen, Ozden; Kurt Omurlu, Imran; Basal, Yesim; Agdas, Fatih; Basak, Sema

    2016-02-01

    One of the frequently encountered disorders of wound healing following laryngectomy is pharyngocutaneous fistula. However, although studies have been performed with the aim of prevention of pharyngocutaneous fistulae, there are very few studies with tissue adhesives and platelet-rich plasma. In this study, our aim was to investigate the histopathologic changes in wound healing caused by various tissue adhesives and platelet-rich plasma, together with their effects on prevention of pharyngocutaneous fistula. 40 male rats were randomly divided into five groups: control, platelet-rich plasma, fibrin tissue adhesive, protein-based albumin glutaraldehyde and synthetic tissue adhesive groups. The pharyngotomy procedure was performed and was sutured. Except the control group, tissue adhesives and platelet-rich plasma were applied. Then, the skin was sutured. On the seventh day, the rats were sacrificed. The skin was opened and pharyngotomy site was assessed in terms of fistulae. The pharyngeal suture line was evaluated histopathologically by using Ehrlich Hunt scale. Inflammatory infiltration was found to be higher in "platelet-rich plasma" group than "fibrin tissue adhesive" and "synthetic tissue adhesive" groups. The fibroblastic activity of "platelet-rich plasma", "fibrin tissue adhesive" and "protein-based albumin glutaraldehyde" groups was higher than the control group. The positive changes created by platelet-rich plasma and fibrin tissue adhesive at the histopathologic level were found together with no detected fistula. Among the study groups, there was no statistical difference for pharyngeal fistula development. This result may be obtained by the small number of animal experiments. These results shed light on the suggestion that platelet-rich plasma and fibrin tissue adhesive can be used in clinical studies to prevent pharyngocutaneous fistula. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  9. Cellular pathology of atherosclerosis: smooth muscle cells promote adhesion of platelets to cocultured endothelial cells.

    Science.gov (United States)

    Tull, Samantha P; Anderson, Steve I; Hughan, Sascha C; Watson, Steve P; Nash, Gerard B; Rainger, G Ed

    2006-01-06

    Although platelets do not ordinarily bind to endothelial cells (EC), pathological interactions between platelets and arterial EC may contribute to the propagation of atheroma. Previously, in an in vitro model of atherogenesis, where leukocyte adhesion to EC cocultured with smooth muscle cells was greatly enhanced, we also observed attachment of platelets to the EC layer. Developing this system to specifically model platelet adhesion, we show that EC cocultured with smooth muscle cells can bind platelets in a process that is dependent on EC activation by tumor necrosis factor (TNF)-alpha and transforming growth factor (TGF)-beta1. Recapitulating the model using EC alone, we found that a combination of TGF-beta1 and TNF-alpha promoted high levels of platelet adhesion compared with either agent used in isolation. Platelet adhesion was inhibited by antibodies against GPIb-IX-V or alpha(IIb)beta3 integrin, indicating that both receptors are required for stable adhesion. Platelet activation during interaction with the EC was also essential, as treatment with prostacyclin or theophylline abolished stable adhesion. Confocal microscopy of the surface of EC activated with TNF-alpha and TGF-beta1 revealed an extensive matrix of von Willebrand factor that was able to support the adhesion of flowing platelets at wall shear rates below 400 s(-1). Thus, we have demonstrated a novel route of EC activation which is relevant to the atherosclerotic microenvironment. EC activated in this manner would therefore be capable of recruiting platelets in the low-shear environments that commonly exist at points of atheroma formation.

  10. Surfactants reduce platelet-bubble and platelet-platelet binding induced by in vitro air embolism.

    Science.gov (United States)

    Eckmann, David M; Armstead, Stephen C; Mardini, Feras

    2005-12-01

    The effect of gas bubbles on platelet behavior is poorly characterized. The authors assessed platelet-bubble and platelet-platelet binding in platelet-rich plasma in the presence and absence of bubbles and three surface-active compounds. Platelet-rich plasma was prepared from blood drawn from 16 volunteers. Experimental groups were surfactant alone, sparging (microbubble embolization) alone, sparging with surfactant, and neither sparging nor surfactant. The surfactants were Pluronic F-127 (Molecular Probes, Eugene, OR), Perftoran (OJSC SPC Perftoran, Moscow, Russia), and Dow Corning Antifoam 1510US (Dow Corning, Midland, MI). Videomicroscopy images of specimens drawn through rectangular glass microcapillaries on an inverted microscope and Coulter counter measurements were used to assess platelet-bubble and platelet-platelet binding, respectively, in calcium-free and recalcified samples. Histamine-induced and adenosine diphosphate-induced platelet-platelet binding were measured in unsparged samples. Differences between groups were considered significant for P bubbles in sparged, surfactant-free samples. With sparging and surfactant, few platelets adhered to bubbles. Numbers of platelet singlets and multimers not adherent to bubbles were different (P surfactant. No significant platelet-platelet binding occurred in uncalcified, sparged samples, although 20-30 platelets adhered to bubbles. Without sparging, histamine and adenosine diphosphate provoked platelet-platelet binding with and without surfactants present. Sparging causes platelets to bind to air bubbles and each other. Surfactants added before sparging attenuate platelet-bubble and platelet-platelet binding. Surfactants may have a clinical role in attenuating gas embolism-induced platelet-bubble and platelet-platelet binding.

  11. Real-time monitoring of adhesion and aggregation of platelets using thickness shear mode (TSM) sensor.

    Science.gov (United States)

    Ergezen, E; Appel, M; Shah, P; Kresh, J Y; Lec, R M; Wootton, D M

    2007-11-30

    Hemostasis is required to maintain vascular system integrity, but thrombosis, formation of a clot in a blood vessel, is one of the largest causes of morbidity and mortality in the industrialized world. Novel clinical and research tools for characterizing the hemostatic system are of continued interest, and the object of this research is to test the hypothesis that clinically relevant platelet function can be monitored using an electromechanical sensor. A piezoelectric thickness shear mode (TSM) biosensor coated with collagen-I fibers to promote platelet activation and adhesion was developed and tested for sensitivity to detect these primary events. Magnitude and frequency response of the sensor were monitored under static conditions at 37 degrees C, using platelet-rich plasma (PRP), and PRP with adenosine diphosphate (ADP), a clinical aggregation inhibitor (abciximab), or a collagen binding inhibitor. Sensors loaded with PRP exhibited a 3-stage response; no significant change in response for the first 20 min (Stage-1), followed by a larger drop in response (Stage-2) and subsequently, response gradually increased (Stage-3). Exogenous ADP stimulated an immediate Stage-2 response, while abciximab delayed and reduced the magnitude change of Stage-2. In the presence of collagen inhibitor, Stage-2 response was similar to that of control but was delayed by an additional 20 min. The obtained results, supported by epifluorescence and complementary SEM studies, demonstrated the selective sensitivity of TSM electromechanical biosensors to monitor platelet function and inhibition, particularly aggregation.

  12. Dietary α-linolenic acid increases the platelet count in ApoE-/- mice by reducing clearance.

    Science.gov (United States)

    Stivala, Simona; Reiner, Martin F; Lohmann, Christine; Lüscher, Thomas F; Matter, Christian M; Beer, Juerg H

    2013-08-08

    Previously we reported that dietary intake of alpha-linolenic acid (ALA) reduces atherogenesis and inhibits arterial thrombosis. Here, we analyze the substantial increase in platelet count induced by ALA and the mechanisms of reduced platelet clearance. Eight-week-old male apolipoprotein E knockout (ApoE(-/-)) mice were fed a 0.21g% cholesterol diet complemented by either a high- (7.3g%) or low-ALA (0.03g%) content. Platelet counts doubled after 16 weeks of ALA feeding, whereas the bleeding time remained similar. Plasma glycocalicin and glycocalicin index were reduced, while reticulated platelets, thrombopoietin, and bone marrow megakaryocyte colony-forming units remained unchanged. Platelet contents of liver and spleen were substantially reduced, without affecting macrophage function and number. Glycoprotein Ib (GPIb) shedding, exposure of P-selectin, and activated integrin αIIbβ3 upon activation with thrombin were reduced. Dietary ALA increased the platelet count by reducing platelet clearance in the reticulo-endothelial system. The latter appears to be mediated by reduced cleavage of GPIb by tumor necrosis factor-α-converting enzyme and reduced platelet activation/expression of procoagulant signaling. Ex vivo, there was less adhesion of human platelets to von Willebrand factor under high shear conditions after ALA treatment. Thus, ALA may be a promising tool in transfusion medicine and in high turnover/high activation platelet disorders.

  13. Analytical characterization of the role of phospholipids in platelet adhesion and secretion.

    Science.gov (United States)

    Koseoglu, Secil; Meyer, Audrey F; Kim, Donghyuk; Meyer, Ben M; Wang, Yiwen; Dalluge, Joseph J; Haynes, Christy L

    2015-01-06

    The cellular phospholipid membrane plays an important role in cell function and cell-cell communication, but its biocomplexity and dynamic nature presents a challenge for examining cellular uptake of phospholipids and the resultant effects on cell function. Platelets, small anuclear circulating cell bodies that influence a wide variety of physiological functions through their dynamic secretory and adhesion behavior, present an ideal platform for exploring the effects of exogenous phospholipids on membrane phospholipid content and cell function. In this work, a broad range of platelet functions are quantitatively assessed by leveraging a variety of analytical chemistry techniques, including ultraperformance liquid chromatography-tandem electrospray ionization mass spectrometry (UPLC-MS/MS), vasculature-mimicking microfluidic analysis, and single cell carbon-fiber microelectrode amperometry (CFMA). The relative enrichments of phosphatidylserine (PS) and phosphatidylethanolamine (PE) were characterized with UPLC-MS/MS, and the effects of the enrichment of these two phospholipids on both platelet secretory behavior and adhesion were examined. Results show that, in fact, both PS and PE influence platelet adhesion and secretion. PS was enriched dramatically and decreased platelet adhesion as well as secretion from δ-, α-, and lysosomal granules. PE enrichment was moderate and increased secretion from platelet lysosomes. These insights illuminate the critical connection between membrane phospholipid character and platelet behavior, and both the methods and results presented herein are likely translatable to other mammalian cell systems.

  14. Sequential adhesion of platelets and leukocytes from flowing whole blood onto a collagen-coated surface: requirement for a GpVI-binding site in collagen.

    Science.gov (United States)

    Butler, Lynn M; Metson-Scott, Tom; Felix, Jo; Abhyankar, Anita; Rainger, G Ed; Farndale, Richard W; Watson, Stephen P; Nash, Gerard B

    2007-05-01

    The adhesion of leukocytes to immobilised platelets may contribute to inflammatory and thrombotic responses in damaged tissue. To investigate the conditions under which platelets and leukocytes might be deposited together in vessels, we perfused fluorescently-labelled whole blood through glass capillaries coated with various collagen preparations. Video-microscopic observations of the surface showed that platelets formed numerous, individual, rolling and stationary attachments to surfaces coated with acid-soluble, monomeric collagen. However, leukocyte interactions with the deposited platelets were rare. If the blood was washed out, the adherent platelets became more activated, and many rolling adherent leukocytes were observed if a second bolus of blood was perfused over them. This suggested that platelet activation had initially been inadequate to support leukocyte capture. Next, fibrillar collagen was adsorbed to the capillaries to present an ordered array of peptide motifs to platelet receptor glycoprotein (Gp)VI and transduce an activating signal. In this case, platelets were deposited in discrete, stable aggregates and the bound platelets captured many flowing leukocytes. Alternatively, acid-soluble collagen was seeded with collagen-related peptide (CRP) known to contain a GpVI-binding motif. Again, platelet adhesion became stable, and numerous flowing leukocytes were captured. Addition of antibody against GpVI or against P-selectin greatly reduced leukocyte adhesion to the platelets. Thus, in whole blood, platelets binding to exposed collagen need to be activated through GpVI in order to expose sufficient P-selectin to allow efficient capture of flowing leukocytes to take place.

  15. Influenza Virus Infection Induces Platelet-Endothelial Adhesion Which Contributes to Lung Injury.

    Science.gov (United States)

    Sugiyama, Michael G; Gamage, Asela; Zyla, Roman; Armstrong, Susan M; Advani, Suzanne; Advani, Andrew; Wang, Changsen; Lee, Warren L

    2015-12-04

    Lung injury after influenza infection is characterized by increased permeability of the lung microvasculature, culminating in acute respiratory failure. Platelets interact with activated endothelial cells and have been implicated in the pathogenesis of some forms of acute lung injury. Autopsy studies have revealed pulmonary microthrombi after influenza infection, and epidemiological studies suggest that influenza vaccination is protective against pulmonary thromboembolism; however, the effect of influenza infection on platelet-endothelial interactions is unclear. We demonstrate that endothelial infection with both laboratory and clinical strains of influenza virus increased the adhesion of human platelets to primary human lung microvascular endothelial cells. Platelets adhered to infected cells as well as to neighboring cells, suggesting a paracrine effect. Influenza infection caused the upregulation of von Willebrand factor and ICAM-1, but blocking these receptors did not prevent platelet-endothelial adhesion. Instead, platelet adhesion was inhibited by both RGDS peptide and a blocking antibody to platelet integrin α5β1, implicating endothelial fibronectin. Concordantly, lung histology from infected mice revealed viral dose-dependent colocalization of viral nucleoprotein and the endothelial marker PECAM-1, while platelet adhesion and fibronectin deposition also were observed in the lungs of influenza-infected mice. Inhibition of platelets using acetylsalicylic acid significantly improved survival, a finding confirmed using a second antiplatelet agent. Thus, influenza infection induces platelet-lung endothelial adhesion via fibronectin, contributing to mortality from acute lung injury. The inhibition of platelets may constitute a practical adjunctive strategy to the treatment of severe infections with influenza.IMPORTANCE There is growing appreciation of the involvement of the lung endothelium in the pathogenesis of severe infections with influenza virus. We have

  16. Differences of platelet adhesion and thrombus activation on amorphous silicon carbide, magnesium alloy, stainless steel, and cobalt chromium stent surfaces.

    Science.gov (United States)

    Hansi, Christopher; Arab, Amina; Rzany, Alexander; Ahrens, Ingo; Bode, Christoph; Hehrlein, Christoph

    2009-03-01

    Coronary stenting is considered to be the gold standard of percutaneous coronary interventions, because stents are able to reduce early and late elastic recoil (negative remodeling) and restenosis in comparison with balloon angioplasty alone. It is known that stent thrombogenicity and neointimal formation are determined by the surface characteristics of the stent platform, electrochemical features of the stent surface, and the degree of degradation after implantation. Metallic stents coated with amorphous silicon carbide and biodegradable stents made of magnesium alloy have been introduced clinically, but there are no data available comparing the biocompatibility of these novel stent materials with conventional stents. We demonstrate simple and reproducible in vitro methods assessing the rate of platelet adhesion and thrombus activation for biocompatibility tests of different stent surfaces. We show that amorphous silicon carbide and magnesium alloy stent surfaces markedly lower the rate of platelet adhesion and platelet/fibrin activation when compared with uncoated stainless steel or cobalt chromium alloy surfaces. Semiconductor materials on the stent surface reduce platelet and fibrin activation by increasing the critical electron gap to greater than 0.9 eV resulting in a lower electron transfer out of the stent material. Passive stent coatings with specific semiconducting properties such as amorphous silicon carbide or magnesium alloy reduce thrombogenicity and may improve biocompatibility of a stent platform.

  17. Surface morphology of platelet adhesion influenced by activators, inhibitors and shear stress

    Science.gov (United States)

    Watson, Melanie Groan

    Platelet activation involves multiple events, one of which is the generation and release of nitric oxide (NO), a platelet aggregation inhibitor. Platelets simultaneously send and receive various agents that promote a positive and negative feedback control system during hemostasis. Although the purpose of platelet-derived NO is not fully understood, NO is known to inhibit platelet recruitment. NO's relatively large diffusion coefficient allows it to diffuse more rapidly than platelet agonists. It may thus be able to inhibit recruitment of platelets near the periphery of a growing thrombus before agonists have substantially accumulated in those regions. Results from two studies in our laboratory differed in the extent to which platelet-derived NO decreased platelet adhesion. Frilot studied the effect of L-arginine (L-A) and NG-Methyl-L-arginine acetate salt (L-NMMA) on platelet adhesion to collagen under static conditions in a Petri dish. Eshaq examined the percent coverage on collagen-coated and fibrinogen-coated microchannels under shear conditions with different levels of L-A and Adenosine Diphosphate (ADP). Frilot's results showed no effect of either L-A or L-NMMA on surface coverage, thrombus size or serotonin release, while Eshaq's results showed a decrease in surface coverage with increased levels of L-A. A possible explanation for these contrasting results is that platelet-derived NO may be more important under flow conditions than under static conditions. For this project, the effects of L-A. ADP and L-NMMA on platelet adhesion were studied at varying shear stresses on protein-coated glass slides. The surface exposed to platelet-rich-plasma in combination with each chemical solution was observed under AFM, FE-SEM and fluorescence microscopy. Quantitative and qualitative comparisons of images obtained with these techniques confirmed the presence of platelets on the protein coatings. AFM images of fibrinogen and collagen-coated slides presented characteristic

  18. Biodegradability and platelets adhesion assessment of magnesium-based alloys using a microfluidic system.

    Directory of Open Access Journals (Sweden)

    Lumei Liu

    Full Text Available Magnesium (Mg-based stents are extensively explored to alleviate atherosclerosis due to their biodegradability and relative hemocompatibility. To ensure the quality, safety and cost-efficacy of bioresorbable scaffolds and full utilization of the material tunability afforded by alloying, it is critical to access degradability and thrombosis potential of Mg-based alloys using improved in vitro models that mimic as closely as possible the in vivo microenvironment. In this study, we investigated biodegradation and initial thrombogenic behavior of Mg-based alloys at the interface between Mg alloys' surface and simulated physiological environment using a microfluidic system. The degradation properties of Mg-based alloys WE43, AZ31, ZWEK-L, and ZWEK-C were evaluated in complete culture medium and their thrombosis potentials in platelet rich plasma, respectively. The results show that 1 physiological shear stress increased the corrosion rate and decreased platelets adhesion rate as compared to static immersion; 2 secondary phases and impurities in material composition induced galvanic corrosion, resulting in higher corrosion resistance and platelet adhesion rate; 3 Mg-based alloys with higher corrosion rate showed higher platelets adhesion rate. We conclude that a microfluidic-based in vitro system allows evaluation of biodegradation behaviors and platelets responses of Mg-based alloys under specific shear stress, and degradability is related to platelets adhesion.

  19. Aspirin treatment reduces platelet resistance to deformation.

    Science.gov (United States)

    Burris, S M; Smith, C M; Rao, G H; White, J G

    1987-01-01

    The present investigation has evaluated the influence of aspirin, its constituents, and other nonsteroidal anti-inflammatory agents on the resistance of human platelets to aspiration into micropipettes. Aspirin increased the length of platelet extensions into the micropipette over the entire negative tension range of 0.04 to 0.40 dynes/cm after exposure to the drug in vitro or after ingestion of the agent. Other cyclooxygenase inhibitors, ibuprofen and indomethacin, did not increase platelet deformability. The influence of aspirin was mimicked to some degree by high concentrations of salicylic acid, but acetylation of platelets with acetic anhydride had little influence on platelet deformability. Incubation of platelets with both salicylic acid and acetic anhydride had no more effect than salicylic acid alone. Benzoic acid, chemically similar to salicylic acid, had a minimal effect. The studies demonstrate that aspirin makes platelets more deformable, while components of the drug or other nonsteroidal antiinflammatory agents and cyclooxygenase inhibitors do not have the same influence on resistance to deformation.

  20. Comparison of microscopic methods for evaluating platelet adhesion to biomaterial surfaces.

    Science.gov (United States)

    Okrój, Wiesława; Walkowiak-Przybyło, Magdalena; Rośniak-Bak, Kinga; Klimek, Leszek; Walkowiak, Bogdan

    2009-01-01

    Microscopic methods usable for sample surface imaging and subsequent qualitative and quantitative evaluation of platelet adhesion to the surface of the biomaterial studied were compared. It was shown, making use of the samples of medical steel (AISI 316L), that such tools as surface imaging with scanning electron microscopy (SEM), glutaraldehyde induced fluorescence technique (GIFT) and metallurgical microscopy (MM) are equivalent in evaluating surface platelet adhesion. The importance of biological variability of blood samples for a proper result assessment and the necessity of using internal standards were also considered.

  1. Computational analysis of platelet adhesion and aggregation under stagnation point flow conditions.

    Science.gov (United States)

    Reininger, C B; Lasser, R; Rumitz, M; Böger, C; Schweiberer, L

    1999-01-01

    The clinical relevance of platelet function assessment with stagnation point flow adhesio-aggregometry (SPAA) has been verified. Quantitative analysis of platelet adhesion and aggregation is possible by means of mathematical analysis of the dark-field, light intensity curves (growth curves) obtained during the SPAA experiment. We present a computational procedure for evaluating these curves, which was necessitated by, and is based on, actual clinical application. A qualitative growth curve classification, corresponding to a basic and distinct pattern of platelet deposition and characteristic of a regularly occurring clinical state is also presented.

  2. Deposition of fibrinogen on the surface of in vitro thrombi prevents platelet adhesion.

    Science.gov (United States)

    Owaynat, Hadil; Yermolenko, Ivan S; Turaga, Ramya; Lishko, Valeryi K; Sheller, Michael R; Ugarova, Tatiana P

    2015-12-01

    The initial accumulation of platelets after vessel injury is followed by thrombin-mediated generation of fibrin which is deposited around the plug. While numerous in vitro studies have shown that fibrin is highly adhesive for platelets, the surface of experimental thrombi in vivo contains very few platelets suggesting the existence of natural anti-adhesive mechanisms protecting stabilized thrombi from platelet accumulation and continuous thrombus propagation. We previously showed that adsorption of fibrinogen on pure fibrin clots results in the formation of a nonadhesive matrix, highlighting a possible role of this process in surface-mediated control of thrombus growth. However, the deposition of fibrinogen on the surface of blood clots has not been examined. In this study, we investigated the presence of intact fibrinogen on the surface of fibrin-rich thrombi generated from flowing blood and determined whether deposited fibrinogen is nonadhesive for platelets. Stabilized fibrin-rich thrombi were generated using a flow chamber and the time that platelets spend on the surface of thrombi was determined by video recording. The presence of fibrinogen and fibrin on the surface of thrombi was analyzed by confocal microscopy using specific antibodies. Examination of the spatial distribution of two proteins revealed the presence of intact fibrinogen on the surface of stabilized thrombi. By manipulating the surface of thrombi to display either fibrin or intact fibrinogen, we found that platelets adhere to fibrin- but not to fibrinogen-coated thrombi. These results indicate that the fibrinogen matrix assembled on the outer layer of stabilized in vitro thrombi protects them from platelet adhesion. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. High Fat Diet Induces Adhesion of Platelets to Endothelium in Two Models of Dyslipidemia

    Science.gov (United States)

    Gonzalez, Jaime; Donoso, Wendy; Díaz, Natalia; Albornoz, María Eliana; Huilcaman, Ricardo; Morales, Erik

    2014-01-01

    Cardiovascular diseases (CVD) represent about 30% of all global deaths. It is currently accepted that, in the atherogenic process, platelets play an important role, contributing to endothelial activation and modulation of the inflammatory phenomenon, promoting the beginning and formation of lesions and their subsequent thrombotic complications. The objective of the present work was to study using immunohistochemistry, the presence of platelets, monocytes/macrophages, and cell adhesion molecules (CD61, CD163, and CD54), in two stages of the atheromatous process. CF-1 mice fed a fat diet were used to obtain early stages of atheromatous process, denominated early stage of atherosclerosis, and ApoE−/− mice fed a fat diet were used to observe advanced stages of atherosclerosis. The CF-1 mice model presented immunostaining on endothelial surface for all three markers studied; the advanced atherosclerosis model in ApoE−/− mice also presented granular immunostaining on lesion thickness, for the same markers. These results suggest that platelets participate in atheromatous process from early stages to advance d stages. High fat diet induces adhesion of platelets to endothelial cells in vivo. These findings support studying the participation of platelets in the formation of atheromatous plate. PMID:25328689

  4. Platelet adhesion and plasma protein adsorption control of collagen surfaces by He{sup +} ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Kurotobi, K. E-mail: kurotobi@postman.riken.go.jp; Suzuki, Y.; Nakajima, H.; Suzuki, H.; Iwaki, M

    2003-05-01

    He{sup +} ion implanted collagen-coated tubes with a fluence of 1 x 10{sup 14} ions/cm{sup 2} were exhibited antithrombogenicity. To investigate the mechanisms of antithrombogenicity of these samples, plasma protein adsorption assay and platelet adhesion experiments were performed. The adsorption of fibrinogen (Fg) and von Willebrand factor (vWf) was minimum on the He{sup +} ion implanted collagen with a fluence of 1 x 10{sup 14} ions/cm{sup 2}. Platelet adhesion (using platelet rich plasma) was inhibited on the He{sup +} ion implanted collagen with a fluence of 1 x 10{sup 14} ions/cm{sup 2} and was accelerated on the untreated collagen and ion implanted collagen with fluences of 1 x 10{sup 13}, 1 x 10{sup 15} and 1 x 10{sup 16} ions/cm{sup 2}. Platelet activation with washed platelets was observed on untreated collagen and He{sup +} ion implanted collagen with a fluence of 1 x 10{sup 14} ions/cm{sup 2} and was inhibited with fluences of 1 x 10{sup 13}, 1 x 10{sup 15} and 1 x 10{sup 16} ions/cm{sup 2}. Generally, platelets can react with a specific ligand inside the collagen (GFOGER sequence). The results of platelets adhesion experiments using washed platelets indicated that there were no ligands such as GFOGER on the He{sup +} ion implanted collagen over a fluence of 1 x 10{sup 13} ions/cm{sup 2}. On the 1 x 10{sup 14} ions/cm{sup 2} implanted collagen, no platelet activation was observed due to the influence of plasma proteins. >From the above, it is concluded that the decrease of adsorbed Fg and vWf caused the antithrombogenicity of He{sup +} ion implanted collagen with a fluence of 1 x 10{sup 14} ions/cm{sup 2} and that plasma protein adsorption took an important role repairing the graft surface.

  5. A dynamic flow-chamber-based adhesion assay to assess canine platelet-matrix interactions in vitro.

    Science.gov (United States)

    Ferkau, Annika; Ecklebe, Silke; Jahn, Kira; Calmer, Simone; Theilmeier, Gregor; Mischke, Reinhard

    2013-06-01

    Dynamic adhesion assays allow the examination of platelet dysfunction and drug effects on platelet function. The purpose of the study was to optimize several parameters such as type and concentration of collagen, wall shear stress, and the concentration of the platelet-activating agonist in a new biochip perfusion chamber for the study of canine platelets. After fluorescent staining of platelets, citrated blood of 10 healthy dogs was perfused through the flow chamber coated with different concentrations of canine or bovine skin collagen. Wall shear stress ranged from 14 to 60 dynes/cm(2). Protease-activating receptor 4 (PAR 4) agonist was used for platelet activation. After perfusion, platelet attachment to the collagen matrix was quantified based on fluorescent imaging. Total platelet covered area and average size of platelet covered areas were measured by planimetry. Canine platelet adhesion was supported by ≥ 200 μg/mL canine collagen, but not bovine skin collagen. Consistent results were obtained with a wall shear stress of 14 dynes/cm(2), whereas higher wall shear stress resulted in increased variability. Platelet activation with PAR 4 agonist increased the total platelet covered area and the average size of platelet covered areas. This study indicates the need to carefully select collagen type and concentration to assess canine thrombus formation in a dynamic flow chamber. The established method should be a useful tool to determine changes in platelet-matrix interactions as an indicator of platelet activation or platelet dysfunction in dogs. © 2013 American Society for Veterinary Clinical Pathology.

  6. Platelet activation, adhesion, inflammation, and aggregation potential are altered in the presence of electronic cigarette extracts of variable nicotine concentrations.

    Science.gov (United States)

    Hom, Sarah; Chen, Li; Wang, Tony; Ghebrehiwet, Berhane; Yin, Wei; Rubenstein, David A

    2016-11-01

    Tobacco smoke extracts prepared from both mainstream and sidestream smoking have been associated with heightened platelet activation, aggregation, adhesion, and inflammation. Conversely, it has been shown that pure nicotine inhibits similar platelet functions. In this work, we 1) evaluated the effects of e-cigarette extracts on platelet activities and 2) elucidated the differences between the nicotine-dependent and non-nicotine dependent (e.g. fine particulate matter or toxic compounds) effects of tobacco and e-cigarette products on platelet activities. To accomplish these goals, platelets from healthy volunteers (n = 50) were exposed to tobacco smoke extracts, e-cigarette vapor extracts, and pure nicotine and changes in platelet activation, adhesion, aggregation, and inflammation were evaluated, using optical aggregation, flow cytometry, and ELISA methods. Interestingly, the exposure of platelets to e-vapor extracts induced a significant up-regulation in the expression of the pro-inflammatory gC1qR and cC1qR and induced a marked increase in the deposition of C3b as compared with traditional tobacco smoke extracts. Similarly, platelet activation, as measured by a prothrombinase based assay, and platelet aggregation were also significantly enhanced after exposure to e-vapor extracts. Finally, platelet adhesion potential toward fibrinogen, von Willebrand factor, and other platelets was also enhanced after exposure to e-cigarette vapor extracts. In the presence of pure nicotine, platelet functions were observed to be inhibited, which further suggests that other constituents of tobacco smoke and electronic vapor can antagonize platelet functions, however, the presence of nicotine in extracts somewhat perpetuated the platelet functional changes in a dose-dependent manner.

  7. Depression is associated with an increase in the expression of the platelet adhesion receptor glycoprotein Ib.

    Science.gov (United States)

    Walsh, Marie-Thérèse; Dinan, Timothy G; Condren, Rita M; Ryan, Martina; Kenny, Dermot

    2002-05-17

    There is a significant association between cardiovascular disease and depression. Previous studies have documented changes in platelets in depression. It is unknown if depression causes functional changes in platelet surface receptors. Therefore, we analyzed (1) the surface expression of glycoprotein (GP)Ib and the integrin receptor alpha(IIb)beta(IIIa), receptors involved in platelet adhesion and aggregation, (2) CD62 (P-selectin) and CD63, integral granule proteins translocated during platelet activation, (3) platelet aggregation in response to ADP and (4) plasma levels of glycocalicin and von Willebrand factor (vWF), in depressed patients compared to healthy volunteers. Fifteen depressed patients with a Hamilton depression score of at least 22 and fifteen control subjects were studied. Platelets were assessed for surface expression levels of GPIb, alpha(IIb)beta(IIIa), CD62 and CD63 by flow cytometry. Genomic DNA was isolated to investigate a recently described polymorphism in the 5' untranslated region of the GPIbalpha gene. The number of GPIb receptors was significantly increased on the surface of platelets from patients with depression compared to control subjects. Surface expression of CD62 was also significantly increased in the depressed patients versus control subjects. There was no significant difference between depressed patients and healthy volunteers in the surface expression of alpha(IIb)beta(IIIa) or CD63, or in glycocalicin or vWF plasma concentration, or ADP-induced aggregation. There was no difference in allele frequency of the Kozak region polymorphism of the GPIbalpha gene, which can affect GPIb expression. The results of this study demonstrate that the number of GPIb receptors on platelets are increased in depression and suggest a novel risk factor for thrombosis in patients with depression.

  8. Grafting of phosphorylcholine functional groups on polycarbonate urethane surface for resisting platelet adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Bin [School of Chemical Engineering and Technology, Tianjin University, Weijin Road 92, Tianjin 300072 (China); Feng, Yakai, E-mail: yakaifeng@hotmail.com [School of Chemical Engineering and Technology, Tianjin University, Weijin Road 92, Tianjin 300072 (China); Tianjin University-Helmholtz-Zentrum Geesthacht, Joint Laboratory for Biomaterials and Regenerative Medicine, Weijin Road 92, 300072 Tianjin (China); Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Weijin Road 92, Tianjin 300072 (China); Lu, Jian; Zhang, Li; Zhao, Miao; Shi, Changcan; Khan, Musammir [School of Chemical Engineering and Technology, Tianjin University, Weijin Road 92, Tianjin 300072 (China); Guo, Jintang [School of Chemical Engineering and Technology, Tianjin University, Weijin Road 92, Tianjin 300072 (China); Tianjin University-Helmholtz-Zentrum Geesthacht, Joint Laboratory for Biomaterials and Regenerative Medicine, Weijin Road 92, 300072 Tianjin (China)

    2013-07-01

    In order to improve the resistance of platelet adhesion on material surface, 2-methacryloyloxyethyl phosphorylcholine (MPC) was grafted onto polycarbonate urethane (PCU) surface via Michael reaction to create biomimetic structure. After introducing primary amine groups via coupling tris(2-aminoethyl)amine (TAEA) onto the polymer surface, the double bond of MPC reacted with the amino group to obtain MPC modified PCU. The modified surface was characterized by Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS). The results verified that MPC was grafted onto PCU surface by Michael reaction method. The MPC grafted PCU surface had a low water contact angle and a high water uptake. This means that the hydrophilic PC functional groups improved the surface hydrophilicity significantly. In addition, surface morphology of MPC grafted PCU film was imaged by atomic force microscope (AFM). The results showed that the grafted surface was rougher than the blank PCU surface. In addition, platelet adhesion study was evaluated by scanning electron microscopy (SEM) observation. The PCU films after treated with platelet-rich plasma demonstrated that much fewer platelets adhered to the MPC-grafted PCU surface than to the blank PCU surface. The antithrombogenicity of the MPC-grafted PCU surface was determined by the activated partial thromboplastin time (APTT). The result suggested that the MPC modified PCU may have potential application as biomaterials in blood-contacting and some subcutaneously implanted devices. - Highlights: • MPC was successfully grafted onto polycarbonate urethane surface via Michael reaction. • High concentration of PC functional groups on the surface via TAEA molecule • Biomimetic surface modification • The modified surface showed high hydrophilicity and anti-platelet adhesion.

  9. Multiple integrin-ligand interactions synergize in shear-resistant platelet adhesion at sites of arterial injury in vivo

    DEFF Research Database (Denmark)

    Grüner, Sabine; Prostredna, Miroslava; Schulte, Valerie

    2003-01-01

    Damage to the integrity of the vessel wall results in exposure of the subendothelial extracellular matrix (ECM), which triggers integrin-dependent adhesion and aggregation of platelets. The role of platelet beta1 integrins in these processes remains mostly undefined. Here, we demonstrate by intra...

  10. Association of severe malaria outcomes with platelet-mediated clumping and adhesion to a novel host receptor.

    Directory of Open Access Journals (Sweden)

    Alfredo Mayor

    Full Text Available INTRODUCTION: Severe malaria has been attributed partly to the sequestration of Plasmodium falciparum-infected erythrocytes (IEs in the microvasculature of vital host organs. Identification of P. falciparum cytoadherence phenotypes that are associated with severe malaria may lead to the development of novel strategies against life-threatening malaria. METHODS AND FINDINGS: Forty-six P. falciparum isolates from Mozambican children under 5 years of age with severe malaria (cases were examined and compared to 46 isolates from sex and age matched Mozambican children with uncomplicated malaria (controls. Cytoadherence properties such as platelet-mediated clumping, rosetting and adhesion to purified receptors (CD36, ICAM1 and gC1qR, were compared between these matched pairs by non-parametric tests. The most common clinical presentation associated with severe malaria was prostration. Compared to matched controls, prevalence of platelet-mediated clumping was higher in cases (P = .019, in children presenting with prostration (P = .049 and in children with severe anaemia (P = .025. Prevalence of rosetting and gC1qR adhesion were also higher in isolates from cases with severe anemia and multiple seizures, respectively (P = .045 in both cases, than in controls. CONCLUSIONS: These data indicate a role for platelet-mediated clumping, rosetting and adhesion to gC1qR in the pathogenesis of severe malaria. Inhibition of these cytoadherence phenotypes may reduce the occurrence or improve the prognosis of severe malaria outcomes.

  11. In-vitro measurement and modelling of shear-induced platelet margination and adhesion in channel flows

    Science.gov (United States)

    Qi, Qin M.; Oglesby, Irene; Cowman, Jonathan; Ricco, Antonio J.; Kenny, Dermot; Shaqfeh, Eric S. G.

    2017-11-01

    Blood coagulation is initiated by GPIb and GPIIbIIIa receptors on the platelet surface binding with von Willebrand factors tethered on the vascular wall. This process occurs much faster in the presence of flow shear than in the quiescent fluid. First of all, the near-wall platelet concentration in flowing blood increases significantly. This phenomenon, commonly referred to as platelet margination, is due to shear-induced hydrodynamic interactions between red blood cells and platelets. Flow shear also manifests itself in affecting the reaction kinetics of receptor-ligand binding. The breaking and formation of multiple bonds on the platelet surface result in the translocating motion of platelets rolling close to the vascular wall. To date, a fundamental understanding of how fluid mechanics relate the bond-level kinetics to the platelet-level dynamics is very limited. In this talk, we investigate platelet adhesion under physiological shear rates using both microfluidic experiments and multi-scale modeling. Our model, (based on existing single molecule measurements and hydrodynamics of blood at zero Reynolds number) shows good agreement with experimental results. We discuss the roles of red blood cell volume fraction (hematocrit), shear rate, receptor densities in the dynamics of platelet adhesion. These findings also provide implications for how platelet defects and abnormal flow conditions influence hemostasis and thrombosis.

  12. Impaired platelet adhesion to lysed fibrin, whereas neutrophil adhesion remains intact under conditions of flow

    NARCIS (Netherlands)

    Remijn, Jasper A.; da Costa Martins, Paula; Ijsseldijk, Martin J. W.; Sixma, Jan J.; de Groot, Philip G.; Zwaginga, Jaap J.

    2006-01-01

    Vessel wall injury induces the formation of a haemostatic plug. Restoration of vascular integrity should involve cessation of further platelet and fibrin deposition and subsequent removal of these thrombi by both the fibrinolytic system and proteases delivered by infiltrating inflammatory cells. We

  13. Association of membrane/lipid rafts with the platelet cytoskeleton and the caveolin PY14: participation in the adhesion process.

    Science.gov (United States)

    Cerecedo, Doris; Martínez-Vieyra, Ivette; Maldonado-García, Deneb; Hernández-González, Enrique; Winder, Steve J

    2015-11-01

    Platelets are the most prominent elements of blood tissue involved in hemostasis at sites of blood vessel injury. Platelet cytoskeleton is responsible for their shape modifications observed during activation and adhesion to the substratum; therefore the interactions between cytoskeleton and plasma membrane are critical to modulate blood platelet functions. Several cytoskeletal components and binding partners, as well as enzymes that regulate the cytoskeleton, localize to membrane/lipid rafts (MLR) and regulate lateral diffusion of membrane proteins and lipids. Resting, thrombin-activated, and adherent human platelets were processed for biochemical studies including western-blot and immunprecipitation assays and confocal analysis were performed to characterize the interaction of MLR with the main cytoskeleton elements and β-dystroglycan as well as with the association of caveolin-1 PY14 with focal adhesion proteins. We transfected a megakaryoblast cell line (Meg-01) to deplete β-dystroglycan, subsequent to their differentiation to the platelet progenitors. Our data showed a direct interaction of the MLR with cytoskeleton to regulate platelet shape, while an association of caveolin-1 PY14 with vinculin is needed to establish focal adhesions, which are modulated for β-dystroglycan. In conclusion, caveolin-1 PY14 in association with platelet cytoskeleton participate in focal adhesions dynamics. © 2015 Wiley Periodicals, Inc.

  14. In vitro studies of platelet adhesion, activation, and protein adsorption on curcumin-eluting biodegradable stent materials.

    Science.gov (United States)

    Pan, C J; Shao, Z Y; Tang, J J; Wang, J; Huang, N

    2007-09-01

    A major complication of coronary stenting is in-stent restenosis (ISR) due to thrombus formation. We hypothesized that locally released curcumin from coronary stent surface would inhibit ISR due to thrombus formation because of antithrombosis of curcumin. In the present work, curcumin-eluting polylactic acid-co-glycolic acid (PLGA) films were fabricated and their properties in vitro were investigated. The in vitro platelet adhesion and activation, as well as protein adsorption on curcumin-loading PLGA films were investigated to evaluate the blood compatibility of curcumin-eluting films. The structure of curcumin-eluting PLGA film and control was examined by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy indicating that the peaks of curcumin did not shift in curcumin-eluting films. The results of contact angle and surface free energy indicated that loading curcumin in PLGA would make PLGA become more hydrophilic, which contributed to the increase of polar fraction of surface free energy. With the increase of curcumin in films, platelets adhering to the curcumin-eluting films decreased significantly. The number of activation platelets decreased after incorporating curcumin in PLGA films. Loading curcumin in PLGA film can markedly reduce the fibrinogen adsorption. All results indicated that incorporating curcumin in PLGA film can improve the blood compatibility of PLGA films. It can be used to fabricate drug-eluting stent to prevent thrombosis formation.

  15. Methylglyoxal induces platelet hyperaggregation and reduces thrombus stability by activating PKC and inhibiting PI3K/Akt pathway.

    Directory of Open Access Journals (Sweden)

    Karin Hadas

    Full Text Available Diabetes is characterized by a dysregulation of glucose homeostasis and platelets from patients with diabetes are known to be hyper-reactive and contribute to the accelerated development of vascular diseases. Since many of the deleterious effects of glucose have been attributed to its metabolite methylgyloxal (MG rather than to hyperglycemia itself, the aim of the present study was to characterize the effects of MG on platelet function. Washed human platelets were pre-incubated for 15 min with MG and platelet aggregation, adhesion on matrix-coated slides and signaling (Western blot were assessed ex vivo. In vivo, the effect of MG on thrombus formation was determined using the FeCl3-induced carotid artery injury model. MG potentiated thrombin-induced platelet aggregation and dense granule release, but inhibited platelet spreading on fibronectin and collagen. In vivo, MG accelerated thrombus formation but decreased thrombus stability. At the molecular level, MG increased intracellular Ca(2+ and activated classical PKCs at the same time as inhibiting PI3K/Akt and the β3-integrin outside-in signaling. In conclusion, these findings indicate that the enhanced MG concentration measured in diabetic patients can directly contribute to the platelet dysfunction associated with diabetes characterized by hyperaggregability and reduced thrombus stability.

  16. Adhesion and activation of platelets from subjects with coronary artery disease and apparently healthy individuals on biomaterials.

    Science.gov (United States)

    Braune, S; Groß, M; Walter, M; Zhou, S; Dietze, S; Rutschow, S; Lendlein, A; Tschöpe, C; Jung, F

    2016-01-01

    On the basis of the clinical studies in patients with coronary artery disease (CAD) presenting an increased percentage of activated platelets, we hypothesized that hemocompatibility testing utilizing platelets from healthy individuals may result in an underestimation of the materials' thrombogenicity. Therefore, we investigated the interaction of polymer-based biomaterials with platelets from CAD patients in comparison to platelets from apparently healthy individuals. In vitro static thrombogenicity tests revealed that adherent platelet densities and total platelet covered areas were significantly increased for the low (polydimethylsiloxane, PDMS) and medium (Collagen) thrombogenic surfaces in the CAD group compared to the healthy subjects group. The area per single platelet-indicating the spreading and activation of the platelets-was markedly increased on PDMS treated with PRP from CAD subjects. This could not be observed for collagen or polytetrafluoroethylene (PTFE). For the latter material, platelet adhesion and surface coverage did not differ between the two groups. Irrespective of the substrate, the variability of these parameters was increased for CAD patients compared to healthy subjects. This indicates a higher reactivity of platelets from CAD patients compared to the healthy individuals. Our results revealed, for the first time, that utilizing platelets from apparently healthy donors bears the risk of underestimating the thrombogenicity of polymer-based biomaterials. © 2015 Wiley Periodicals, Inc.

  17. Comparative evaluation of the role of the adhesion molecule CD177 in neutrophil interactions with platelets and endothelium.

    Science.gov (United States)

    Pliyev, Boris K; Menshikov, Mikhail

    2012-09-01

    Neutrophil-specific glycoprotein CD177 is expressed on a subset of human neutrophils and has been shown to be a counter-receptor for platelet endothelial cell adhesion molecule-1 (PECAM-1, CD31). Previous studies have demonstrated that the interaction of CD177 with endothelial PECAM-1 supports neutrophil transendothelial migration resulting in preferential transmigration of the CD177-expressing neutrophil subset. As PECAM-1 is also abundantly expressed on platelets, we addressed a follow-up suggestion that CD177/PECAM-1 adhesive interaction may mediate platelet-neutrophil interactions and CD177-positive neutrophils may have a competitive advantage over CD177-negative neutrophils in binding platelets. Here, we report that CD177-positive and CD177-negative neutrophils do not differ significantly in their capacity to form platelet-neutrophil conjugates as assayed in whole blood and in mixed preparations of isolated platelets and neutrophils. Under flow conditions, neither platelet nor neutrophil activation resulted in preferential binding of platelets to CD177-expressing neutrophils. Furthermore, no significant difference was found in the ability of both neutrophil subsets to adhere to and migrate across surface-adherent activated platelets, whereas predominantly CD177-positive neutrophils migrated across HUVEC monolayers. In addition, we demonstrated that S(536) N dimorphism of PECAM-1, which affects CD177/PECAM-1 interaction, did not influence the equal capacity of the two neutrophil subsets to interact with platelets but influenced significantly the transendothelial migration of CD177-expressing neutrophils. Thus, CD177/PECAM-1 adhesive interaction, while contributing to neutrophil-endothelial cell interaction in neutrophil transendothelial migration, does not contribute to or is redundant in platelet-neutrophil interactions. © 2012 John Wiley & Sons A/S.

  18. Biodegradable electrospun nanofibers coated with platelet-rich plasma for cell adhesion and proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Diaz-Gomez, Luis [Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Santiago de Compostela, 15872 Santiago de Compostela (Spain); Instituto de Ortopedia y Banco de Tejidos Musculoesqueléticos, Universidad de Santiago de Compostela, 15872 Santiago de Compostela (Spain); Alvarez-Lorenzo, Carmen, E-mail: carmen.alvarez.lorenzo@usc.es [Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Santiago de Compostela, 15872 Santiago de Compostela (Spain); Concheiro, Angel [Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Santiago de Compostela, 15872 Santiago de Compostela (Spain); Silva, Maite [Instituto de Ortopedia y Banco de Tejidos Musculoesqueléticos, Universidad de Santiago de Compostela, 15872 Santiago de Compostela (Spain); Dominguez, Fernando [Fundación Publica Galega de Medicina Xenómica, Santiago de Compostela (Spain); Sheikh, Faheem A.; Cantu, Travis; Desai, Raj; Garcia, Vanessa L. [Department of Chemistry, University of Texas Pan American, Edinburg, TX 78541 (United States); Macossay, Javier, E-mail: jmacossay@utpa.edu [Department of Chemistry, University of Texas Pan American, Edinburg, TX 78541 (United States)

    2014-07-01

    Biodegradable electrospun poly(ε-caprolactone) (PCL) scaffolds were coated with platelet-rich plasma (PRP) to improve cell adhesion and proliferation. PRP was obtained from human buffy coat, and tested on human adipose-derived mesenchymal stem cells (MSCs) to confirm cell proliferation and cytocompatibility. Then, PRP was adsorbed on the PCL scaffolds via lyophilization, which resulted in a uniform sponge-like coating of 2.85 (S.D. 0.14) mg/mg. The scaffolds were evaluated regarding mechanical properties (Young's modulus, tensile stress and tensile strain), sustained release of total protein and growth factors (PDGF-BB, TGF-β1 and VEGF), and hemocompatibility. MSC seeded on the PRP–PCL nanofibers showed an increased adhesion and proliferation compared to pristine PCL fibers. Moreover, the adsorbed PRP enabled angiogenesis features observed as neovascularization in a chicken chorioallantoic membrane (CAM) model. Overall, these results suggest that PRP–PCL scaffolds hold promise for tissue regeneration applications. - Highlights: • Platelet-rich plasma (PRP) can be adsorbed on electrospun fibers via lyophilization. • PRP coating enhanced mesenchymal stem cell adhesion and proliferation on scaffolds. • PRP-coated scaffolds showed sustained release of growth factors. • Adsorbed PRP provided angiogenic features. • PRP-poly(ε-caprolactone) scaffolds hold promise for tissue regeneration applications.

  19. Dabigatran reduces thrombin-induced platelet aggregation and activation in a dose-dependent manner

    DEFF Research Database (Denmark)

    Vinholt, Pernille Just; Nielsen, Christian; Söderström, Anna Cecilia

    2017-01-01

    Dabigatran is an oral anticoagulant and a reversible inhibitor of thrombin. Further, dabigatran might affect platelet function through a direct effect on platelet thrombin receptors. The aim was to investigate the effect of dabigatran on platelet activation and platelet aggregation. Healthy donor...... platelet activation and platelet thrombin receptor expression (SPAN-12 and WEDE-15 expression). Agonists were thrombin, thrombin receptor-activating peptide, protease-activated receptor-4 agonist, collagen, collagen-related peptide, arachidonic acid, and adenosine diphosphate. All concentrations...... of dabigatran fully inhibited platelet aggregation for thrombin up to 2 IU/mL, while dabigatran did not affect platelet aggregation by other agonists. Platelet activation (percentage of platelets positive for activated GPIIb/IIIa, CD63, P-selectin) was reduced after thrombin stimulation in samples...

  20. Adhesion of blood platelets under flow to wettability gradient polyethylene surfaces made in a shielded gas plasma

    NARCIS (Netherlands)

    Spijker, HT; Busscher, HJ; Graaff, R; van Oeveren, W; Bos, R.R.M.

    2002-01-01

    Adhesion and activation of platelets are important steps in the thrombosis of blood after contact with a biomaterial surface and are governed, in part, by the wettability of the surface. Since most implanted devices are in contact with blood under flow conditions, it is important to study the effect

  1. platelets

    Directory of Open Access Journals (Sweden)

    Joanna Saluk

    2014-04-01

    Full Text Available Platelets are the smallest, depleted of nucleus blood cells which contain a typical cellular organelles including the mitochondria, so that have active metabolism. Platelets possess the highly organized cytoskeleton, specific secretory granules and unique membrane receptors system responsible for their high reactivity. The key role of blood platelets is to maintain normal hemostasis, but they also play important roles in inflammation, immune processes and the cancer progression. The anucleated, small platelets occur in representatives of all clusters of mammals, so it seems to be an adaptation feature. In other vertebrates similar hemostatic functions are played by large nucleated platelets, which are much more weakly reactive. Small, reactive platelets, appearing in the evolution of mammals, allowed the formation of clots faster and slower blood loss in case of injury, but also increased the risk of thromboembolic and cardiovascular diseases. Daily the human body forms about 1x1011 platelets, which are produced by a process of differentiation, maturation and fragmentation of the cytoplasm of mature megakaryocytes. The emergence of platelets is the final stage of megakaryocyte differentiation and is followed by formation of the direct precursors called proplatelets. The anucleated platelets are regarded as terminally differentiated cells, which are not capable of further cell division. However, despite the absence of a nucleus, in blood platelets the synthesis and transcription of mitochondrial DNA and protein synthesis occurring on the basis of mRNA from megakaryocytes has been confirmed. However, recent studies published in 2012 show that the platelets are capable not only of the process of protein synthesis, but also of generation of new cells, which are functionally and structurally similar to the parent platelets.

  2. Pathogen-Reduced, Extended Platelet Storage in Platelet Additive Solution (PAS)

    Science.gov (United States)

    2016-10-01

    evaluated, as a potentially preferred product for battlefield polytrauma. This was once standard-of-care in transfusion medicine , but was abandoned...Sound Blood Center, led by Dr. Sherrill J. Slichter, have extensive experience in studying platelet biology and transfusion medicine . Dr. Slichter’s...unit Platelet Concentration   Volume   Platelet yield   Blood Gases (pH and pCO2, PO2, HC03)   Glucose and Lactate   P-selectin

  3. MMA/MPEOMA/VSA copolymer as a novel blood-compatible material: ex vivo platelet adhesion study.

    Science.gov (United States)

    Lee, Jin Ho; Oh, Se Heang; Kim, Won Gon

    2004-02-01

    MMA/MPEOMA/VSA copolymers with both pendant polyethylene oxide (PEO) side chains and negatively chargeable side groups were synthesized by random copolymerization of methyl methacrylate (MMA), methoxy PEO monomethacrylate (MPEOMA; PEO mol. wt, 1000), and vinyl sulfonic acid sodium salt (VSA) monomers with different monomer composition to evaluate their blood compatibility. MMA/MPEOMA copolymer (with PEO side chains) and MMA/VSA copolymer (with negatively chargeable side groups) were also synthesized for the comparison purpose. The synthesized copolymers were coated onto polyurethane (PU) tubes (inner diameter, 4.6 mm) by a spin coating. The platelet adhesion of the MMA/MPEOMA/VSA copolymer-coated tube surfaces was compared with that of tube surface coated with MMA/MPEOMA or MMA/VSA copolymer with similar MPEOMA or VSA composition, using an ex vivo canine arterio-artery shunt method. The platelet adhesion was evaluated by radioactivity counting of technetium (99mTc)-labeled platelets adhered on the surfaces after 30 and 120 min of blood circulation. The MMA/MPEOMA/VSA copolymer (monomer molar ratio 9/0.5/0.5 or 8/1/1) was better in preventing platelet adhesion on the surface than the MMA/MPEOMA or MMA/VSA copolymer with similar MPEOMA or VSA composition, probably owing to the combined effects of highly mobile, hydrophilic PEO side chains and negatively charged VSA side groups.

  4. Reduced platelet activation and platelet aggregation in patients with alcoholic liver cirrhosis

    DEFF Research Database (Denmark)

    Vinholt, Pernille Just; Hvas, Anne-Mette; Nielsen, Christian

    2017-01-01

    Results from previous studies regarding platelet function in liver cirrhosis are discordant. The aim was to investigate platelet activation and platelet aggregation in patients with alcoholic liver cirrhosis. We included 27 patients with alcoholic liver cirrhosis and 22 healthy individuals...... adenosine diphosphate, thrombin receptor-activating peptide, arachidonic acid, collagen, and collagen-related peptide. Patients had lower median platelet count than healthy individuals, 125 × 10(9)/L (interquartile range [IQR] 90-185) versus 240 × 10(9) (IQR 204-285), p ... in stimulated samples were lower in patients versus healthy individuals, e.g., after collagen-related peptide stimulation, the median percentage of platelets positive for activated glycoprotein IIb/IIIa was 85% (IQR 70-94) in patients versus 97% (IQR 94-99) in healthy individuals, p

  5. Use of fibrin adhesive to reduce post-surgical adhesion reformation in rabbits.

    Science.gov (United States)

    Osada, H; Minai, M; Yoshida, T; Satoh, K

    1999-01-01

    Following surgery on fallopian tubes, the development of adhesions is a natural consequence of wound healing and may result in infertility. Using a rabbit model, we evaluated the anti-adhesive properties of a sponge-like equine collagen sheet (TachoComb), which is coated on one side with human fibrinogen and bovine thrombin. TachoComb is applied by affixing the sheet over the area of perforation or bleeding and acts as a haemostatic agent, capable of sealing perforations to prevent leakage. In our rabbit model, adhesions were induced by mechanical and chemical irritants during laparotomy. After a 1-month recovery period, adhesions were lysed using microsurgical techniques and TachoComb, or physiological saline applied. Evaluation of adhesion reformation was determined after a minimum of 10 days. TachoComb significantly reduced the area of adhesion reformation compared with rabbits treated using physiological saline only. Our study demonstrated that TachoComb is effective not only as a haemostatic agent, but is also capable of reducing adhesion reformation.

  6. Passive heat stress reduces circulating endothelial and platelet microparticles.

    Science.gov (United States)

    Bain, Anthony R; Ainslie, Philip N; Bammert, Tyler D; Hijmans, Jamie G; Sekhon, Mypinder; Hoiland, Ryan L; Flück, Daniela; Donnelly, Joseph; DeSouza, Christopher A

    2017-06-01

    What is the central question of this study? Does passive heat stress of +2°C oesophageal temperature change concentrations of circulating arterial endothelial- and platelet-derived microparticles in healthy adults? What is the main finding and its importance? Concentrations of circulating endothelial- and platelet-derived microparticles were markedly decreased in heat stress. Reductions in circulating microparticles might indicate favourable vascular changes associated with non-pathological hyperthermia. Interest in circulating endothelial- and platelet-derived microparticles (EMPs and PMPs, respectively) has increased because of their potential pathogenic role in vascular disease and as biomarkers for vascular health. Hyperthermia is commonly associated with a pro-inflammatory stress but might also provide vascular protection when the temperature elevation is non-pathological. Circulating microparticles might contribute to the cellular adjustments and resultant vascular impacts of hyperthermia. Here, we determined whether circulating concentrations of arterial EMPs and PMPs are altered by passive heat stress (+2°C oesophageal temperature). Ten healthy young men (age 23 ± 3 years) completed the study. Hyperthermia was achieved by circulating ∼49°C water through a water-perfused suit that covered the entire body except the hands, feet and head. Arterial (radial) blood samples were obtained immediately before heating (normothermia) and in hyperthermia. The mean ± SD oesophageal temperature in normothermia was 37.2 ± 0.1°C and in hyperthermia 39.1 ± 0.1°C. Concentrations of circulating EMPs and PMPs were markedly decreased in hyperthermia. Activation-derived EMPs were reduced by ∼30% (mean ± SD; from 61 ± 8 to 43 ± 7 microparticles μl -1 ; P microparticles μl -1 ; P microparticles μl -1 ). These beneficial reductions in circulating EMPs and PMPs in response to a 2°C increase in core temperature might partly underlie the

  7. Extended Storage of Pathogen-Reduced Platelet Concentrates (PRECON)

    Science.gov (United States)

    2016-10-01

    plasma or plasma only suspended, 10 – 20 day stored unit Platelet Concentration   Volume   Platelet yield   Blood Gases (pH and pCO2, PO2...refrigerated storage. New England Journal of Medicine 1969;280, 1094. 4. Slichter SJ, Fitzpatrick L, Jones MK, Pellham E, Bailey SL, Gettinger. In Vivo

  8. Adhesion of ADP-activated platelets to intact endothelium under stagnation point flow in vitro is mediated by the integrin alphaIIbeta3.

    Science.gov (United States)

    Reininger, A J; Korndörfer, M A; Wurzinger, L J

    1998-05-01

    As we demonstrated earlier, platelets adhere to intact endothelium provided they are activated and convectively transported against the endothelial surface. To identify the platelet receptors involved we superfused cultured endothelium with activated platelet rich plasma (PRP) by means of the Stagnation Point Flow Adhesio- Aggregometer while blocking various platelet receptors. Inhibition was performed with the tetrapeptide RGDS, the non-peptide Ro-43-8857, or a monoclonal antibody directed against integrin alphaIIbeta3. Platelet deposition was video-recorded and quantified by image analysis. Infusion of RGDS or Ro-43-8857 into ADP-stimulated PRP completely prevented adhesion as well as subsequent aggregation. Interrupting the inhibitor infusion while ADP stimulation persisted, prompted adhesion and aggregation, demonstrating the reversibility of the inhibition. Platelet adhesion was irreversibly blocked by preincubation of the PRP with the moab against alphaIIbeta3. Its specific binding was confirmed by immunoelectron microscopy. Our results suggest that platelet adhesion to intact endothelium is mediated via platelet integrin alphaIIbeta3.

  9. Evaluation of surgical anti-adhesion products to reduce postsurgical intra-abdominal adhesion formation in a rat model.

    Directory of Open Access Journals (Sweden)

    Long-Xiang Lin

    Full Text Available Adhesions frequently occur after abdominal surgery. Many anti-adhesion products have been used in clinic. However, the evidences are short for surgeons to reasonably choose the suitable anti-adhesion produces in clinical practice. This study provided such evidence by comparing the efficiency of five products to prevent abdominal adhesion formation in a rat model.Fifty-six Sprague-Dawley rats were randomly divided into seven groups: sham-operation group, adhesion group, and five product groups (n = 8. The abdomens of rats were opened. The injuries were created on abdominal wall and cecum in the adhesion and product groups. The wounds on abdominal wall and cecum of rats in the adhesion group were not treated before the abdomens were closed. The wounds on abdominal wall and cecum of rats in the product groups were covered with anti-adhesion product: polylactic acid (PLA film, Seprafilm®, medical polyethylene glycol berberine liquid (PEG, medical sodium hyaluronate gel (HA, or medical chitosan (Chitosan. Fourteen days after surgery, the adhesions were evaluated by incidence, severity, adhesion area on abdominal wall and adhesion breaking strength.The application of PLA film and Seprafilm® significantly reduced the incidence, severity, adhesion area and breaking strength of cecum-abdomen adhesion (P0.05. The statistical significances in the incidence and severity of abdomen-adipose adhesion between adhesion group and the product groups were not achieved. However, Seprafilm® was more effective to reduce abdomen-adipose adhesion than PLA film. Furthermore, it was found that the products tested in this study did not effectively reduce cecum-adipose adhesion. The application of PEG could result in abdomen-small intestine adhesion.Based on the results of this study, the preference order of anti-adhesion products used to reduce postsurgical intra-abdominal adhesion formation is Seprafilm > PLA >> HA > Chitosan > PEG.

  10. Extended Storage of Pathogen-Reduced Platelet Concentrates

    Science.gov (United States)

    2017-12-01

    after death . The term “cadaver” does not include portions of an individual person, such as organs, tissue or blood, that were removed while the...stored in either plasma alone (Plasma, black circles and downward triangles), or in a 65% platelet additive solution, 35% plasma mixture (Intersol... black squares, or Isoplate, black , upward triangles). A, Platelets were stored for three days at 4ºC. Results are shown as percentage of pre-storage

  11. Platelet-derived chemokines CXC chemokine ligand (CXCL)7, connective tissue-activating peptide III, and CXCL4 differentially affect and cross-regulate neutrophil adhesion and transendothelial migration.

    Science.gov (United States)

    Schenk, Birgit I; Petersen, Frank; Flad, Hans-Dieter; Brandt, Ernst

    2002-09-01

    In this study, we have examined the major platelet-derived CXC chemokines connective tissue-activating peptide III (CTAP-III), its truncation product neutrophil-activating peptide 2 (CXC chemokine ligand 7 (CXCL7)), as well as the structurally related platelet factor 4 (CXCL4) for their impact on neutrophil adhesion to and transmigration through unstimulated vascular endothelium. Using monolayers of cultured HUVEC, we found all three chemokines to promote neutrophil adhesion, while only CXCL7 induced transmigration. Induction of cell adhesion following exposure to CTAP-III, a molecule to date described to lack neutrophil-stimulating capacity, depended on proteolytical conversion of the inactive chemokine into CXCL7 by neutrophils. This was evident from experiments in which inhibition of the CTAP-III-processing protease and simultaneous blockade of the CXCL7 high affinity receptor CXCR-2 led to complete abrogation of CTAP-III-mediated neutrophil adhesion. CXCL4 at substimulatory dosages modulated CTAP-III- as well as CXCL7-induced adhesion. Although cell adhesion following exposure to CTAP-III was drastically reduced, CXCL7-mediated adhesion underwent significant enhancement. Transendothelial migration of neutrophils in response to CXCL7 or IL-8 (CXCL8) was subject to modulation by CTAP-III, but not CXCL4, as seen by drastic desensitization of the migratory response of neutrophils pre-exposed to CTAP-III, which was paralleled by selective down-modulation of CXCR-2. Altogether our results demonstrate that there exist multiple interactions between platelet-derived chemokines in the regulation of neutrophil adhesion and transendothelial migration.

  12. Perspectives on the use of biomaterials to store platelets for transfusion.

    Science.gov (United States)

    Farrugia, Brooke L; Chandrasekar, Keerthana; Johnson, Lacey; Whitelock, John M; Marks, Denese C; Irving, David O; Lord, Megan S

    2016-06-27

    Platelets are routinely stored enabling transfusions for a range of conditions. While the current platelet storage bags, composed of either polyvinylchloride or polyolefin, are well-established, the storage of platelets in these bags beyond 7 days reduces platelet viability below clinically usable levels. New materials and coatings that promote platelet respiration while not supporting platelet adhesion or activation have started to emerge, with the potential to enable platelet storage beyond 7 days. This review focuses on the literature describing currently used biomaterials for platelet storage and emerging materials that are showing promise for improving platelet storage.

  13. Utilization of star-shaped polymer architecture in the creation of high-density polymer brush coatings for the prevention of platelet and bacteria adhesion.

    Science.gov (United States)

    Totani, Masayasu; Ando, Tsuyoshi; Terada, Kayo; Terashima, Takaya; Kim, Ill Yong; Ohtsuki, Chikara; Xi, Chuanwu; Kuroda, Kenichi; Tanihara, Masao

    2014-09-01

    We demonstrate utilization of star-shaped polymers as high-density polymer brush coatings and their effectiveness to inhibit the adhesion of platelets and bacteria. Star polymers consisting of poly(2-hydroxyethyl methacrylate) (PHEMA) and/or poly(methyl methacrylate) (PMMA), were synthesized using living radical polymerization with a ruthenium catalyst. The polymer coatings were prepared by simple drop casting of the polymer solution onto poly(ethylene terephthalate) (PET) surfaces and then dried. Among the star polymers prepared in this study, the PHEMA star polymer (star-PHEMA) and the PHEMA/PMMA (mol. ratio of 71/29) heteroarm star polymer (star-H71M29) coatings showed the highest percentage of inhibition against platelet adhesion (78-88% relative to noncoated PET surface) and Escherichia coli (94-97%). These coatings also showed anti-adhesion activity against platelets after incubation in Dulbecco's phosphate buffered saline or surfactant solution for 7 days. In addition, the PMMA component of the star polymers increased the scratch resistance of the coating. These results indicate that the star-polymer architecture provides high polymer chain density on PET surfaces to prevent adhesion of platelets and bacteria, as well as coating stability and physical durability to prevent exposure of bare PET surfaces. The star polymers provide a simple and effective approach to preparing anti-adhesion polymer coatings on biomedical materials against the adhesion of platelets and bacteria.

  14. Utilization of star-shaped polymer architecture in the creation of high-density polymer brush coatings for the prevention of platelet and bacteria adhesion

    Science.gov (United States)

    Totani, Masayasu; Terada, Kayo; Terashima, Takaya; Kim, Ill Yong; Ohtsuki, Chikara; Xi, Chuanwu; Tanihara, Masao

    2014-01-01

    We demonstrate utilization of star-shaped polymers as high-density polymer brush coatings and their effectiveness to inhibit the adhesion of platelets and bacteria. Star polymers consisting of poly(2-hydroxyethyl methacrylate) (PHEMA) and/or poly(methyl methacrylate) (PMMA), were synthesized using living radical polymerization with a ruthenium catalyst. The polymer coatings were prepared by simple drop casting of the polymer solution onto poly(ethylene terephthalate) (PET) surfaces and then dried. Among the star polymers prepared in this study, the PHEMA star polymer (star-PHEMA) and the PHEMA/PMMA (mol. ratio of 71/29) heteroarm star polymer (star-H71M29) coatings showed the highest percentage of inhibition against platelet adhesion (78–88% relative to noncoated PET surface) and Escherichia coli (94–97%). These coatings also showed anti-adhesion activity against platelets after incubation in Dulbecco's phosphate buffered saline or surfactant solution for 7 days. In addition, the PMMA component of the star polymers increased the scratch resistance of the coating. These results indicate that the star-polymer architecture provides high polymer chain density on PET surfaces to prevent adhesion of platelets and bacteria, as well as coating stability and physical durability to prevent exposure of bare PET surfaces. The star polymers provide a simple and effective approach to preparing anti-adhesion polymer coatings on biomedical materials against the adhesion of platelets and bacteria. PMID:25485105

  15. Patients with previous definite stent thrombosis have a larger fraction of immature platelets and a reduced antiplatelet effect of aspirin

    DEFF Research Database (Denmark)

    Würtz, Morten; Grove, Erik; Wulff, Lise Nielsen

    Objectives This study sought to evaluate the platelet response to aspirin and the immature platelet fraction in patients with previous stent thrombosis (ST). Background ST is a potentially fatal complication of coronary stenting. A reduced platelet response to aspirin increases the risk of cardio......Objectives This study sought to evaluate the platelet response to aspirin and the immature platelet fraction in patients with previous stent thrombosis (ST). Background ST is a potentially fatal complication of coronary stenting. A reduced platelet response to aspirin increases the risk...

  16. Extended Storage of Pathogen Reduced Platelet Concentrates (PRECON)

    Science.gov (United States)

    2015-10-01

    subject; abstinence, intrauterine contraception devices, hormonal methods, barrier methods or history of sterilization. Exclusion Criteria Healthy...studies involving radioisotopes within the contemporaneous calendar-year. • Taken aspirin , non-steroidal anti-inflammatory, or other platelet affecting...screening will be performed including completion of a study specific health history questionnaire, check of vital signs and a blood draw to obtain a

  17. In vitro cell culture, platelet adhesion tests and in vivo implant tests of plasma-polymerized para-xylene films

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Chia-Man [Department of Surgery, Taichung Veterans General Hospital, Taiwan, ROC (China); National Yang-Ming University, Taipei, Taiwan, ROC (China); Yeh, Chou-Ming, E-mail: cmchou4301@gmail.com [Taichung Hospital, Department of Health, Executive Yuan, Taiwan, ROC (China); Chung, Chi-Jen [Department of Dental Technology and Materials Science, Central Taiwan University of Science and Technology, Taiwan, ROC (China); He, Ju-Liang [Department of Materials Science and Engineering, Feng Chia University, Taiwan, ROC (China)

    2013-09-01

    Plasma-polymerized para-xylene (PPX) was developed in a previous study by adjusting the process parameters: pulse frequency of the power supply (ω{sub p}) and para-xylene monomer flow rate (f{sub p}). All the obtained PPX films exhibit an amorphous structure and present hydrophobicity (water contact angle ranging from 98.5° to 121.1°), higher film growth rate and good fibroblast cell proliferation. In this study, in vitro tests (fibroblast cell compatibility and platelet adhesion) and an in vivo animal study were performed by using PPX deposited industrial-grade silicone sheets (IGS) and compared with medical-grade silicone ones (MS), which were commonly manufactured into catheters or drainage tubes in clinical use. The results reveal that PPX deposited at high ω{sub p} or high f{sub p}, in comparison with MS, exhibit better cell proliferation and clearly shows less cell adhesion regardless of ω{sub p} and f{sub p}. PPX also exhibit a comparatively lower level of platelet adhesion than MS. In the animal study, PPX-coated IGS result in similar local tissue responses at 3, 7 and 28 days (short-term) and 84 days (long-term) after subcutaneous implantation the abdominal wall of rodents compared with respective responses to MS. These results suggest that PPX-coated industrial-grade silicone is one alternative to high cost medical-grade silicone.

  18. Non-fouling biomaterials based on blends of polyethylene oxide copolymers and polyurethane: simultaneous measurement of platelet adhesion and fibrinogen adsorption from flowing whole blood.

    Science.gov (United States)

    Tan, J; McClung, W G; Brash, J L

    2013-01-01

    Measurements of platelet adhesion and fibrinogen adsorption from flowing whole blood to a series of polyethylene oxide (PEO)-based materials were carried out. A unique experimental design was used in which both quantities were measured in the same experiment. The materials consisted of a polyurethane (PU) as a matrix into which various triblock copolymers of general structure PEO-PU-PEO were blended; the PU block was the same in all materials but the PEO blocks ranged in molecular weight from 550 to 5000. Platelets were isolated from fresh human blood and labeled with (51)Cr; purified fibrinogen was labeled with (125)I. A whole blood preparation containing these labeled species was used for the adhesion/adsorption studies. The surfaces were exposed to the flowing blood in a cone and plate device at a wall shear rate of 300 s(-1). It was found that both platelet adhesion and fibrinogen adsorption decreased with increasing copolymer content in the blends and with decreasing PEO block size for a given copolymer content. The block size effect was due probably to higher PEO surface coverage for the lower molecular weight blocks. Fibrinogen adsorption and platelet adhesion were linearly and strongly correlated. The best performing materials showed very low fibrinogen adsorption of the order of 25 ng/cm(2), and correspondingly low platelet densities around 10,000 per cm(2), i.e. fractional platelet coverage in the vicinity of 0.2%.

  19. Tissue-engineered endothelial cell layers on surface-modified Ti for inhibiting in vitro platelet adhesion

    Directory of Open Access Journals (Sweden)

    Xiupeng Wang, Fupo He, Xia Li, Atsuo Ito, Yu Sogo, Osamu Maruyama, Ryo Kosaka and Jiandong Ye

    2013-01-01

    Full Text Available A tissue-engineered endothelial layer was prepared by culturing endothelial cells on a fibroblast growth factor-2 (FGF-2–l-ascorbic acid phosphate magnesium salt n-hydrate (AsMg–apatite (Ap coated titanium plate. The FGF-2–AsMg–Ap coated Ti plate was prepared by immersing a Ti plate in supersaturated calcium phosphate solutions supplemented with FGF-2 and AsMg. The FGF-2–AsMg–Ap layer on the Ti plate accelerated proliferation of human umbilical vein endothelial cells (HUVECs, and showed slightly higher, but not statistically significant, nitric oxide release from HUVECs than on as-prepared Ti. The endothelial layer maintained proper function of the endothelial cells and markedly inhibited in vitro platelet adhesion. The tissue-engineered endothelial layer formed on the FGF-2–AsMg–Ap layer is promising for ameliorating platelet activation and thrombus formation on cardiovascular implants.

  20. Platelet-mediated mesenchymal stem cells homing to the lung reduces monocrotaline-induced rat pulmonary hypertension.

    Science.gov (United States)

    Jiang, Lei; Song, Xing Hui; Liu, Pu; Zeng, Chun Lai; Huang, Zhang Sen; Zhu, Lin Jing; Jiang, Yang Zi; Ouyang, Hong Wei; Hu, Hu

    2012-01-01

    Bone marrow mesenchymal stem cell (BM-MSC) transplantation has been suggested to be a promising method for the treatment of pulmonary arterial hypertension (PAH), a fatal disease currently without effective preventive/therapeutic strategies. However, the detailed mechanisms underlying BM-MSC therapy are largely unknown. We designed the present study to test the hypothesis that circulating platelets facilitate BM-MSC homing to the lung vasculature in a rat model of PAH induced by monocrotalin (MCT). A single subcutaneous administration of MCT induced a marked rise in right ventricular systolic pressure (RVSP) and the weight ratio of right to left ventricle plus septum (RV/LV+S) 3 weeks after injection. The injection of MSCs via tail vein 3 days after MCT significantly reduced the increase of RVSP and RV/LV+S. The fluorescence-labeled MSCs injected into the PAH rat circulation were found mostly distributed in the lungs, particularly on the pulmonary vascular wall, whereas cell homing was abolished by an anti-P-selectin antibody and the GPIIb/IIIa inhibitor tirofiban. Furthermore, using an in vitro flow chamber, we demonstrated that MSC adhesion to the major extracellular matrix collagen was facilitated by platelets and their P-selectin and GPIIb/IIIa. Therefore, the current study suggested that platelet-mediated MSC homing prevented the aggravation of MCT-induced rat PAH, via P-selectin and GPIIb/IIIa-mediated mechanisms.

  1. Influence of abciximab on the adhesion of platelets on a shielded plasma gradient prepared on polyethylene

    NARCIS (Netherlands)

    Spijker, HT; Busscher, HJ; van Oeveren, W

    2002-01-01

    Introduction: Thrombotic effects of biomaterial implants are mediated merely through activation of the platelet glycoprotein IIb-Illa (GpIIb-IIIa) receptor. Consequently, platelet GpIIb-IIIa receptor inhibitors are successfully used during stent implantation procedures to prevent thrombosis.

  2. Bone Marrow-Derived Mesenchymal Stromal Cells Enhanced by Platelet-Rich Plasma Maintain Adhesion to Scaffolds in Arthroscopic Simulation.

    Science.gov (United States)

    Hoberman, Alexander R; Cirino, Carl; McCarthy, Mary Beth; Cote, Mark P; Pauzenberger, Leo; Beitzel, Knut; Mazzocca, Augustus D; Dyrna, Felix

    2017-11-13

    To assess the response of bone marrow-derived mesenchymal stromal cells (bMSCs) enhanced by platelet-rich plasma (PRP) in the setting of a normal human tendon (NHT), a demineralized bone matrix (DBM), and a fibrin scaffold (FS) with simulated arthroscopic mechanical washout stress. Bone marrow was aspirated from the humeral head and concentrated. BMSCs were counted, plated, and grown to confluence. Cells were seeded onto 3 different scaffolds: (1) NHT, (2) DBM, and (3) FS. Each scaffold was treated with a combination of (+)/(-) PRP and (+)/(-) arthroscopic washout simulation. A period of 60 minutes was allotted before arthroscopic washout. Adhesion, proliferation, and differentiation assays were performed to assess cellular activity in each condition. Significant differences were seen in mesenchymal stromal cell adhesion, proliferation, and differentiation among the scaffolds. DBM and FS showed superior results to NHT for cell adhesion, proliferation, and differentiation. PRP significantly enhanced cellular adhesion, proliferation, and differentiation. Arthroscopic simulation did not significantly decrease bMSC adhesion. We found that the type of scaffold impacts bMSCs' behavior. Both scaffolds (DBM and FS) were superior to NHT. The use of an arthroscopic simulator did not significantly decrease the adhesion of bMSCs to the scaffolds nor did it decrease their biologic differentiation potential. In addition, PRP enhanced cellular adhesion, proliferation, and differentiation. Improved healing after tendon repair can lead to better clinical outcomes. BMSCs are attractive for enhancing healing given their accessibility and regenerative potential. Application of bMSCs using scaffolds as cell carriers relies on arthroscopic feasibility. Copyright © 2017 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  3. Reduced platelet-mediated and enhanced leukocyte-mediated fibrinolysis in experimentally induced diabetes in rats

    Energy Technology Data Exchange (ETDEWEB)

    Winocour, P.D.; Colwell, J.A.

    1985-05-01

    Studies of fibrinolytic activity in diabetes mellitus have produced conflicting results. This may be a result of methodologic insensitivity or of variable contributions of the different blood components to whole blood fibrinolysis. To explore these two possibilities, the authors used a sensitive solid-phase radiometric assay to examine the fibrinolytic activity of whole blood, platelet-rich plasma, leukocytes, and platelet- and leukocyte-poor plasma prepared from control rats and rats with streptozocin-induced diabetes at various times after induction of diabetes. Fibrinolytic activity of whole blood from diabetic rats after 7 days was significantly reduced, and remained reduced after longer durations of diabetes up to 28 days. Platelet-rich plasma from diabetic rats had decreased fibrinolytic activity, which followed the same time course of changes as in whole blood. The platelet contribution to whole blood fibrinolysis was further reduced in vivo after 14 days of diabetes by a reduced whole blood platelet count. In contrast, fibrinolytic activity of leukocytes from diabetic rats became enhanced after 7 days of diabetes. After 49 days of diabetes, the whole blood leukocyte count was reduced, and in vivo would offset the enhanced activity. Plasma fibrinolytic activity was small compared with that of whole blood and was unaltered in diabetic rats. The authors conclude that altered platelet function contributes to decreased fibrinolytic activity of whole blood in diabetic rats, and that this may be partially offset by enhanced leukocyte-mediated fibrinolysis.

  4. Platelet Endothelial Cell Adhesion Molecule-1 Gene Polymorphisms are Associated with Coronary Artery Lesions in the Chronic Stage of Kawasaki Disease.

    Science.gov (United States)

    Lu, Wen-Hsien; Huang, Sin-Jhih; Yuh, Yeong-Seng; Hsieh, Kai-Sheng; Tang, Chia-Wan; Liou, Huei-Han; Ger, Luo-Ping

    2017-05-01

    Kawasaki disease is the most common cause of pediatric acquired heart disease. The role of platelet endothelial cell adhesion molecule-1 in the inflammatory process has been documented. To date, no report has investigated the relationship between coronary artery lesions of Kawasaki disease and platelet endothelial cell adhesion molecule-1 polymorphisms. A total of 114 Kawasaki disease children with coronary artery lesions and 185 Kawasaki disease children without coronary artery lesions were recruited in this study. The TaqMan assay was conducted to identify the genotype in this case-control study. In three single nucleotide polymorphisms (Leu125Val, Ser563Asn, and Arg670Gly) of platelet endothelial cell adhesion molecule-1, we found that the Leu-Ser-Arg haplotype was associated with a significantly increased risk for coronary artery lesions in the chronic stage (odds ratio 3.05, 95% confidence interval 1.06-8.80, p = 0.039), but not for coronary artery lesions in the acute stage. Analysis based on the diplotypes of platelet endothelial cell adhesion molecule-1 also showed that Kawasaki disease with one or two alleles of Leu-Ser-Arg had a significantly increased risk of chronic coronary artery lesions (odds ratio 3.38, 95% confidence interval 1.11-10.28, p = 0.032) and had increased platelet counts after Kawasaki disease was diagnosed, as compared to those with other diplotypes. The haplotype of platelet endothelial cell adhesion molecule-1 Leu-Ser-Arg might be associated with the increased platelet counts and the following risk of chronic coronary artery lesions in a dominant manner in Kawasaki disease.

  5. Platelet dysfunction and inhibition of multiple electrode platelet aggregometry caused by penicillin

    Directory of Open Access Journals (Sweden)

    von Beckerath Nicolas

    2010-07-01

    Full Text Available Abstract Beta-lactam antibiotics, e.g. penicillin, may inhibit platelet function and lead to reduced response in light transmission aggregometry and adhesion. However, influence on platelet function tests more commonly used in clinical practice, such as multiple electrode platelet aggregometry (MEA, have not been described so far. We report a case of a patient with local streptococcus infection. Treatment with penicillin resulted in mild bleeding tendency after 3 days. While coagulation parameters were normal, assessment of platelet function by MEA revealed strong platelet inhibition of both ADP and arachidonic acid induced platelet aggregation comparable to normal responders to antiplatelet therapy. Change of antibiotic regime resulted in recovery of platelet function. Thus, penicillin therapy may impact on platelet function and consecutively commonly used platelet function assays, e.g. MEA.

  6. A serine-rich glycoprotein of Streptococcus sanguis mediates adhesion to platelets via GPIb

    National Research Council Canada - National Science Library

    Plummer Christopher; Wu Hui; Kerrigan Steven W; Meade Gerardene; Cox Dermot; Ian Douglas C. W

    2005-01-01

    Summary Streptococcus sanguis is the most common oral bacterium causing infective endocarditis and its ability to adhere to platelets, leading to their activation and aggregation, is thought to be an...

  7. 21 CFR 872.5580 - Oral rinse to reduce the adhesion of dental plaque.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Oral rinse to reduce the adhesion of dental plaque... adhesion of dental plaque. (a) Identification. The device is assigned the generic name oral rinse to reduce the adhesion of dental plaque and is identified as a device intended to reduce the presence of...

  8. MEK Inhibitors, Novel Anti-Adhesive Molecules, Reduce Sickle Red Blood Cell Adhesion In Vitro and In Vivo, and Vasoocclusion In Vivo

    Science.gov (United States)

    Zennadi, Rahima

    2014-01-01

    In sickle cell disease, sickle erythrocyte (SSRBC) interacts with endothelial cells, leukocytes, and platelets, and activates coagulation and inflammation, promoting vessel obstruction, which leads to serious life-threatening complications, including acute painful crises and irreversible damage to multiple organs. The mitogen-activated protein kinase, ERK1/2, is abnormally activated in SSRBCs. However, the therapeutic potential of SSRBC ERK1/2 inactivation has never been investigated. I tested four different inhibitors of MEK1/2 (MEK), the kinase that activates ERK1/2, in a model of human SSRBC adhesion to TNFα-activated endothelial cells (ECs). SSRBC MEK inhibition abrogated adhesion to non-activated and TNFα-activated ECs to levels below baseline SSRBC adhesion to non-activated ECs in vitro. SSRBC MEK inhibition also prevented SSRBCs from activating naïve neutrophils to adhere to endothelium. To determine the effect of MEK inhibitors on SSRBC adherence in vivo, sham-treated or MEK inhibitor-treated SSRBCs were infused to nude mice previously treated with TNFα. Sham-treated SSRBCs displayed marked adhesion and occlusion of enflamed vessels, both small and large. However, SSRBC treatment with MEK inhibitors ex vivo showed poor SSRBC adhesion to enflamed vessels with no visible vasoocclusion in vivo. In addition, MEK inhibitor treatment of SSRBCs reduced SSRBC organ trapping and increased the number of SSRBCs circulating in bloodstream. Thus, these data suggest that SSRBC ERK1/2 plays potentially a critical role in sickle pathogenesis, and that MEK inhibitors may represent a valuable intervention for acute sickle cell crises. PMID:25330306

  9. Platelet-independent adhesion of calcium-loaded erythrocytes to von Willebrand factor

    NARCIS (Netherlands)

    Smeets, M.W.J. (Michel W.J.); R. Bierings (Ruben); Meems, H. (Henriet); F.P.J. Mul (F. P J); D. Geerts (Dirk); A.P.J. Vlaar (Alexander); J. Voorberg (Jan); P.L. Hordijk (Peter )

    2017-01-01

    textabstractAdhesion of erythrocytes to endothelial cells lining the vascular wall can cause vaso-occlusive events that impair blood flow which in turn may result in ischemia and tissue damage. Adhesion of erythrocytes to vascular endothelial cells has been described in multiple hemolytic disorders,

  10. Functional groups grafted nonwoven fabrics for blood filtration-The effects of functional groups and wettability on the adhesion of leukocyte and platelet

    Science.gov (United States)

    Yang, Chao; Cao, Ye; Sun, Kang; Liu, Jiaxin; Wang, Hong

    2011-01-01

    In this work, the effects of grafted functional groups and surface wettability on the adhesion of leukocyte and platelet were investigated by the method of blood filtration. The filter materials, poly(butylene terephthalate) nonwoven fabrics bearing different functional groups including hydroxyl (OH), carboxyl (COOH), sulfonic acid group (SO3H) and zwitterionic sulfobetaine group (⊕N((CH3)2)(CH2)3SO3⊖) with controllable wettability were prepared by UV radiation grafting vinyl monomers with these functional groups. Our results emphasized that both surface functional groups and surface wettability had significant effects on the adhesion of leukocyte and platelet. In the case of filter materials with the same wettability, leukocytes adhering to filter materials decreased in the order: the surface bearing OH only > the surface bearing both OH and COOH > the surface bearing sulfobetaine group > the surface bearing SO3H, while platelets adhering to filter materials decreased as the following order: the surface bearing SO3H > the surface bearing both OH and COOH > the surface bearing OH only > the surface bearing sulfobetaine group. As the wettability of filter materials increased, both leukocyte and platelet adhesion to filter materials declined, except that leukocyte adhesion to the surface bearing OH only remained unchanged.

  11. Functional groups grafted nonwoven fabrics for blood filtration-The effects of functional groups and wettability on the adhesion of leukocyte and platelet

    Energy Technology Data Exchange (ETDEWEB)

    Yang Chao [State Key Lab of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); Cao Ye [Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu 610081 (China); Sun Kang, E-mail: ksun@sjtu.edu.cn [State Key Lab of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); Liu Jiaxin; Wang Hong [Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu 610081 (China)

    2011-01-15

    In this work, the effects of grafted functional groups and surface wettability on the adhesion of leukocyte and platelet were investigated by the method of blood filtration. The filter materials, poly(butylene terephthalate) nonwoven fabrics bearing different functional groups including hydroxyl (OH), carboxyl (COOH), sulfonic acid group (SO{sub 3}H) and zwitterionic sulfobetaine group ({sup +}N((CH{sub 3}){sub 2})(CH{sub 2}){sub 3}SO{sub 3}{sup Circled-Minus }) with controllable wettability were prepared by UV radiation grafting vinyl monomers with these functional groups. Our results emphasized that both surface functional groups and surface wettability had significant effects on the adhesion of leukocyte and platelet. In the case of filter materials with the same wettability, leukocytes adhering to filter materials decreased in the order: the surface bearing OH only > the surface bearing both OH and COOH > the surface bearing sulfobetaine group > the surface bearing SO{sub 3}H, while platelets adhering to filter materials decreased as the following order: the surface bearing SO{sub 3}H > the surface bearing both OH and COOH > the surface bearing OH only > the surface bearing sulfobetaine group. As the wettability of filter materials increased, both leukocyte and platelet adhesion to filter materials declined, except that leukocyte adhesion to the surface bearing OH only remained unchanged.

  12. Reduced platelet hyperreactivity and platelet-monocyte aggregation in HIV-infected individuals receiving a raltegravir-based regimen

    NARCIS (Netherlands)

    Tunjungputri, R.N.; Ven, A.J. van der; Schonsberg, A.; Mathan, T.S.M.; Koopmans, P.P.; Roest, M.; Fijnheer, R.; Groot, P.G. de; Mast, Q. de

    2014-01-01

    OBJECTIVE: Platelets are key cells in atherosclerosis and acute cardiovascular events. Platelet hyperreactivity and increased platelet-monocyte aggregation (PMA) are found in HIV-infected patients and may contribute to the excess cardiovascular risk. The integrase inhibitor raltegravir (RAL) has

  13. The Roles of Platelet GPIIb/IIIa and αvβ3 Integrins during HeLa Cells Adhesion, Migration, and Invasion to Monolayer Endothelium under Static and Dynamic Shear Flow

    Directory of Open Access Journals (Sweden)

    Yiyao Liu

    2009-01-01

    Full Text Available During their passage through the circulatory system, tumor cells undergo extensive interactions with various host cells including endothelial cells and platelets. Mechanisms mediating tumor cell adhesion, migration, and metastasis to vessel wall under flow condition are largely unknown. The aim of this study was to investigate the potential roles of GPIIb/IIIa and αvβ3 integrins underlying the HeLa-endothelium interaction in static and dynamic flow conditions. HeLa cell migration and invasion were studied by using Millicell cell culture insert system. The numbers of transmigrated or invaded HeLa cells significantly increased by thrombin-activated platelets and reduced by eptifibatide, a platelet inhibitor. Meanwhile, RGDWE peptides, a specific inhibitor of αvβ3 integrin, also inhibited HeLa cell transmigration. Interestingly, the presence of endothelial cells had significant effect on HeLa cell migration regardless of static or cocultured flow condition. The adhesion capability of HeLa cells to endothelial monolayer was also significantly affected by GPIIb/IIIa and αvβ3 integrins. The arrested HeLa cells increased nearly 5-fold in the presence of thrombin-activated platelets at shear stress condition (1.84 dyn/cm2 exposure for 1 hour than the control (static. Our findings showed that GPIIb/IIIa and αvβ3 integrins are important mediators in the pathology of cervical cancer and provide a molecular basis for the future therapy, and the efficient antitumor benefit should target multiple receptors on tumor cells and platelets.

  14. Fabricating bio-inspired micro/nano-particles by polydopamine coating and surface interactions with blood platelets

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Wei [Jiangsu Provincial Key Lab for Interventional Medical Devices, Huaiyin Institute of Technology, Huaian 223003 (China); State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Shi, Qiang, E-mail: shiqiang@ciac.ac.cn [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Hou, Jianwen; Gao, Jian; Li, Chunming; Jin, Jing; Shi, Hengchong [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Yin, Jinghua, E-mail: yinjh@ciac.ac.cn [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China)

    2015-10-01

    Graphical abstract: The particles or particle aggregations activate the blood platelets and provide the physical adhesive sites for platelets adhesion. - Highlights: • Particles with varied sizes and surface properties were fabricated by facile polydopamine (PDA) coating on polystyrene microsphere. • The direct interaction between PDA particles and blood platelets was qualitatively investigated. • The knowledge on platelet–particle interactions provided the basic principle to select biocompatible micro/nano-particles in biomedical field. - Abstract: Although bio-inspired polydopamine (PDA) micro/nano-particles show great promise for biomedical applications, the knowledge on the interactions between micro/nano-particles and platelets is still lacking. Here, we fabricate PDA-coated micro/nano-particles and investigate the platelet–particle surface interactions. Our strategy takes the advantage of facile PDA coating on polystyrene (PS) microsphere to fabricate particles with varied sizes and surface properties, and the chemical reactivity of PDA layers to immobilize fibrinogen and bovine serum albumin to manipulate platelet activation and adhesion. We demonstrate that PS particles activate the platelets in the size-dependent manner, but PDA nanoparticles have slight effect on platelet activation; PS particles promote platelet adhesion while PDA particles reduce platelet adhesion on the patterned surface; Particles interact with platelets through activating the glycoprotein integrin receptor of platelets and providing physical sites for initial platelet adhesion. Our work sheds new light on the interaction between platelets and particles, which provides the basic principle to select biocompatible micro/nano-particles in biomedical field.

  15. Preparation of SiO{sub 2}/TiO{sub 2} and TiO{sub 2}/TiO{sub 2} micropattern and their effects on platelet adhesion and endothelial cell regulation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jing-an [Key Laboratory for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Yang, Ping, E-mail: yangping8@263.net [Key Laboratory for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Zhang, Kun; Ren, Hui-lan; Huang, Nan [Key Laboratory for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China)

    2013-07-15

    Highlights: ► The parallel micro-stripes of SiO{sub 2}/TiO{sub 2} and TiO{sub 2}/TiO{sub 2} are successfully prepared. ► The SiO{sub 2}/TiO{sub 2} patterns can reduce platelet adhesion and aggregation. ► The patterns can effectively regulate the adhesion, proliferation and shape of ECs. -- Abstract: TiO{sub 2} films were applied on blood contact biomaterials for its excellent biocompatibility. The topological structure of the biomaterial surfaces have a significant impact on cell adhesion, spreading and proliferation. Thus, it is anticipated that the combination of TiO{sub 2} film deposition and surface micro-patterning will provide a potential application for cardiovascular implants materials. In this work, TiO{sub 2}/TiO{sub 2} and SiO{sub 2}/TiO{sub 2} micro-groove/ridge stripes on Si (100) were prepared by photolithography, wet etching and unbalanced magnetron sputtering (UBMS). Their surface morphology, chemical composition and wettability were investigated. The crystal structure of TiO{sub 2} films was characterised by X-ray diffraction (XRD). Platelet adhesion on the SiO{sub 2}/TiO{sub 2} and TiO{sub 2}/TiO{sub 2} surfaces was tested, and the morphology and behaviour of endothelial cells cultured on the micropatterned surfaces were observed. It was proved that the SiO{sub 2}/TiO{sub 2} pattern could reduce platelet adhesion and aggregation compared with TiO{sub 2}/TiO{sub 2} pattern, endothelial cells grew along the micro-stripes and their behaviour could be effectively regulated by micropatterned surface. So, it is suggested that the micropatterned SiO{sub 2}/TiO{sub 2} surface can contribute more bio-compatible function of regulating and coordinating the behaviour of endothelial cells and platelets.

  16. Adhesions

    Science.gov (United States)

    Adhesions are bands of scar-like tissue. Normally, internal tissues and organs have slippery surfaces so they can shift easily as the body moves. Adhesions cause tissues and organs to stick together. They ...

  17. Reducing Seal Adhesion in Low Impact Docking Systems

    Science.gov (United States)

    Banks, Bruce A.; Miller, Sharon K.

    2010-01-01

    Silicone elastomers, used in seals for airlocks or other sealing surfaces in space, are sticky in their as-received condition. Because of the sticking, a greater force may be needed to separate the mating surfaces. If the adhesion is sufficiently high, a sudden unpredicted movement of the spacecraft during undocking, vibration, or uneven release could pull off the seal, resulting in a damage that would have to be repaired before another docking. The damaged seal can result in significant gas leakage and possibly in a catastrophic mishap impacting the safety of the crew. It is also possible that a compromised seal could result in a delayed but sudden gas leak that could put the crew at unexpected risk. This is especially of concern for androgynous seals, which have identical mating surfaces on both sides for interchangeability and redundancy. Such seals typically have elastomer-on-elastomer sealing surfaces. To reduce sticking, one could use release agents such as powders and lubricants, but these can be easily removed and transferred to other surfaces, causing uneven sealing and contamination. Modification of the elastomer surface to make a more slippery and less sticky surface that is integral with the bulk elastomer would be more desirable.

  18. Osteopontin adsorption to Gram-positive cells reduces adhesion forces and attachment to surfaces under flow

    DEFF Research Database (Denmark)

    Kristensen, M F; Zeng, G; Neu, T R

    2017-01-01

    caries or medical device-related infections. It further investigated if OPN's effect on adhesion is caused by blocking the accessibility of glycoconjugates on bacterial surfaces. Bacterial adhesion was determined in a shear-controlled flow cell system in the presence of different concentrations of OPN......-accessibility to glycoconjugates was found. OPN reduces the adhesion and adhesion force/energy of a variety of bacteria and has a potential therapeutic use for biofilm control. OPN acts upon bacterial adhesion without blocking cell surface glycoconjugates....

  19. Osteopontin reduces the adhesion force of dental bacteria without blocking bacterial cell surface glycoconjugates

    DEFF Research Database (Denmark)

    Kristensen, Mathilde Frost; Zeng, Guanghong; Neu, Thomas R.

    2017-01-01

    The bovine milk protein osteopontin (OPN) has been shown to reduce the adhesion of oral bacteria to saliva-coated surfaces, which reduces biofilm formation and may contribute to caries control. We now quantified the effect of OPN (Lacprodan OPN-10) treatment on the adhesion force of Lactobacillus...

  20. The role of platelet-endothelial cell adhesion molecule-1 in atheroma formation varies depending on the site-specific hemodynamic environment.

    Science.gov (United States)

    Harrison, Matthew; Smith, Emily; Ross, Ewan; Krams, Robert; Segers, Dolf; Buckley, Christopher D; Nash, Gerard B; Rainger, G Ed

    2013-04-01

    Polymorphisms in the platelet-endothelial cell adhesion molecule (PECAM-1)-1 gene are linked to increased risk of coronary artery disease. Because PECAM-1 has been demonstrated to form a mechanosensory complex that can modulate inflammatory responses in murine arterial endothelial cells, we hypothesized that PECAM-1 contributes to atherogenesis in a shear-dependent and site-specific manner. ApoE(-/-) mice that were wild-type, heterozygous, or deficient in PECAM-1 were placed on a high-fat diet. Detailed analysis of the aorta at sites with differing hemodynamics revealed that PECAM-1-deficient mice had reduced disease in areas of disturbed flow, whereas plaque burden was increased in areas of steady, laminar flow. In concordance with these observations, bone marrow chimera experiments revealed that hematopoietic PECAM-1 resulted in accelerated atheroma formation in areas of laminar and disturbed flow, however endothelial PECAM-1 moderated disease progression in areas of high sheer stress. Moreover, using shear stress-modifying carotid cuffs, PECAM-1 was shown to promote macrophage recruitment into lesions developing in areas of low shear stress. PECAM-1 on bone marrow cells is proatherogenic irrespective of the hemodynamic environment, however endothelial cell PECAM-1 is antiatherogenic in high shear environments. Thus, targeting this pathway therapeutically would require a cell-type and context-specific strategy.

  1. Epigallocatechin gallate reduces human monocyte mobility and adhesion in vitro.

    Science.gov (United States)

    Melgarejo, Esther; Medina, Miguel Angel; Sánchez-Jiménez, Francisca; Urdiales, José Luis

    2009-12-01

    Monocytes/macrophages are an important population of immune inflammatory cells that have diverse effector functions in which their mobility and adhesion play a very relevant role. Epigallocatechin gallate (EGCG), a major component of green tea, has been reported to have anti-allergic and anti-inflammatory activities, but its effects on monocytes remain to be determined. Here we investigated the effects of EGCG on the migration and adhesion of monocytes. We used a human monocyte cell line (THP-1) to analyse the effects of treatment with EGCG under non-cytotoxic conditions on the expression levels of the monocyte chemotactic protein-1 (MCP-1) and of the MCP-1 receptor (CCR2) and on the activation of beta1 integrin. A functional validation was carried out by evaluating the inhibitory effect of EGCG on monocyte adhesiveness and migration in vitro. Treatment of THP-1 cells with EGCG decreased MCP-1 and CCR2 gene expression, together with MCP-1 secretion and CCR2 expression at the cell surface. EGCG also inhibited beta1 integrin activation. The effects on these molecular targets were in agreement with the EGCG-induced inhibition of THP-1 migration in response to MCP-1 and adhesion to fibronectin. Under our experimental conditions, EGCG treatment inhibited the migration and adhesion of monocytes. These inhibitory effects of EGCG on monocyte function should be considered as a promising new anti-inflammatory response with a potential therapeutic role in the treatment of inflammation-dependent diseases.

  2. Adhesion of food-borne bacteria to stainless steel is reduced by food conditioning films

    DEFF Research Database (Denmark)

    Bernbom, Nete; Ng, Yin; Jorgensen, R.L.

    2009-01-01

    also decreases adhesion of other food-relevant bacteria. The manipulation of adhesion was not attributable to growth inhibitory effects. Chemical analysis revealed that the stainless steels were covered by homogenous layers of adsorbed proteins. The presence of tropomyocin was indicated by appearance......Preconditioning of stainless steel with aqueous cod muscle extract significantly impedes subsequent bacterial adhesion most likely due to repelling effects of fish tropomyosin. The purpose of this study was to determine if other food conditioning films decrease or enhance bacterial adhesion....... It is a common perception that food materials facilitate bacterial adhesion to surfaces; however, this study demonstrates that aqueous coatings of food origin may actually reduce bacterial adhesion. Compounds from food extracts may potentially be used as nontoxic coatings to reduce bacterial attachment to inert...

  3. Fermented soya bean (tempe) extracts reduce adhesion of enterotoxigenic Escherichia coli to intestinal epithelial cells.

    Science.gov (United States)

    Roubos-van den Hil, P J; Nout, M J R; Beumer, R R; van der Meulen, J; Zwietering, M H

    2009-03-01

    This study aimed to investigate the effect of processed soya bean, during the successive stages of tempe fermentation and different fermentation times, on adhesion of enterotoxigenic Escherichia coli (ETEC) K88 to intestinal brush border cells as well as Caco-2 intestinal epithelial cells; and to clarify the mechanism of action. Tempe was prepared at controlled laboratory scale using Rhizopus microsporus var. microsporus as the inoculum. Extracts of raw, soaked and cooked soya beans reduced ETEC adhesion to brush border cells by 40%. Tempe extracts reduced adhesion by 80% or more. ETEC adhesion to Caco-2 cells reduced by 50% in the presence of tempe extracts. ETEC K88 bacteria were found to interact with soya bean extracts, and this may contribute to the observed decrease of ETEC adhesion to intestinal epithelial cells. Fermented soya beans (tempe) reduce the adhesion of ETEC to intestinal epithelial cells of pig and human origin. This reduced adhesion is caused by an interaction between ETEC K88 bacteria and soya bean compounds. The results strengthen previous observations on the anti-diarrhoeal effect of tempe. This effect indicates that soya-derived compounds may reduce adhesion of ETEC to intestinal cells in pigs as well as in humans and prevent against diarrhoeal diseases.

  4. Effect of thermal aging on the tensile bond strength at reduced areas of seven current adhesives.

    Science.gov (United States)

    Baracco, Bruno; Fuentes, M Victoria; Garrido, Miguel A; González-López, Santiago; Ceballos, Laura

    2013-07-01

    The purpose of this study was to determine the micro-tensile bond strength (MTBS) to dentin of seven adhesive systems (total and self-etch adhesives) after 24 h and 5,000 thermocycles. Dentin surfaces of human third molars were exposed and bonded with two total-etch adhesives (Adper Scotchbond 1 XT and XP Bond), two two-step self-etch adhesives (Adper Scotchbond SE and Filtek Silorane Adhesive System) and three one-step self-etch adhesives (G-Bond, Xeno V and Bond Force). All adhesive systems were applied following manufacturers' instructions. Composite buildups were constructed and the bonded teeth were then stored in water (24 h, 37 °C) or thermocycled (5,000 cycles) before being sectioned and submitted to MTBS test. Two-way ANOVA and subsequent comparison tests were applied at α = 0.05. Characteristic de-bonded specimens were analyzed using scanning electron microscopy (SEM). After 24 h water storage, MTBS values were highest with XP Bond, Adper Scotchbond 1 XT, Filtek Silorane Adhesive System and Adper Scotchbond SE and lowest with the one-step self-etch adhesives Bond Force, Xeno V and G-Bond. After thermocycling, MTBS values were highest with XP Bond, followed by Filtek Silorane Adhesive System, Adper Scotchbond SE and Adper Scotchbond 1 XT and lowest with the one-step self-etch adhesives Bond Force, Xeno V and G-Bond. Thermal aging induced a significant decrease in MTBS values with all adhesives tested. The resistance of resin-dentin bonds to thermal-aging degradation was material dependent. One-step self-etch adhesives obtained the lowest MTBS results after both aging treatments, and their adhesive capacity was significantly reduced after thermocycling.

  5. Grander system: a new technology to reduce surface tension of adhesive systems in dentistry.

    Science.gov (United States)

    Gonçalves, Sérgio Eduardo de Paiva; Cruz, Nilson; Brayner, Ricardo; Huhtala, Maria Filomena Rocha Lima; Borges, Alessandra Bühler; Barcellos, Daphne Câmara

    2014-01-01

    Reduced surface tension of liquids results in higher surface wetting ability and diffusivity by the substrate. The objective of this study was to evaluate the influence of the Grander Technology in reducing the surface tension of adhesive systems. Two adhesive systems (self-etch and total-etch) were modified by physical contact with the Grander system Flexible unit to revitalize water, for 48 h. Surface tension of adhesive systems and water in normal and grander-modified conditions was measured with a goniometer. The results showed a reduction of surface tension for all conditions grander-modified between 3-15%. Grander Technology was effective in reducing the surface tension of the Single Bond and Clearfil SE Bond adhesive systems. Clinical significance. Grander technology was employed to restructure the molecular structure of water-based adhesive systems, which can increase their wetness capacity and therefore ensure a greater diffusibility.

  6. Hyperbaric oxygen treatment reduces neutrophil-endothelial adhesion in chronic wound conditions through S-nitrosation.

    Science.gov (United States)

    Kendall, Alexandra C; Whatmore, Jacqueline L; Winyard, Paul G; Smerdon, Gary R; Eggleton, Paul

    2013-01-01

    Hyperbaric oxygen (HBO) therapy is an effective treatment for diabetic chronic wounds. HBO reduces inflammation and accelerates wound healing, by mechanisms that remain unclear. Here we examined a mechanism by which HBO may reduce neutrophil recruitment, through changes in endothelial and neutrophil adhesion molecule expression and function. Human umbilical vein endothelial cells and neutrophils were exposed to selected chronic wound conditions, comprising hypoxia in the presence of lipopolysaccharide and tumor necrosis factor-alpha, and then treated with HBO. We observed neutrophil adhesion to endothelial cells following treatment with chronic wound conditions, which was reversed by HBO treatment. This was partly explained by reduced expression of endothelial intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 by HBO. No changes in neutrophil adhesion molecule expression (CD18, CD11b, CD62L, CD31) were observed following HBO treatment. However, HBO decreased hydrogen peroxide generation by neutrophils, and induced nitrous oxide-related protein modifications. The transnitrosating agent S-nitroso-L-cysteine ethyl ester (600 μM) also reduced neutrophil adhesion to human umbilical vein endothelial cell monolayers, and the iNOS inhibitor 1400 W (10 μM) and HgCl2, which promotes the decomposition of S-nitrosothiols (1 mM), reversed the effect of HBO, suggesting that S-nitrosation may inhibit neutrophil-endothelial cell adhesion. This study indicates that HBO could reduce inflammation in wounds through reduced neutrophil recruitment, mediated by S-nitrosation. © 2013 by the Wound Healing Society.

  7. Reduced immunohistochemical expression of adhesion molecules in vitiligo skin biopsies.

    Science.gov (United States)

    Reichert Faria, Adriane; Jung, Juliana Elizabeth; Silva de Castro, Caio César; de Noronha, Lucia

    2017-03-01

    Because defects in adhesion impairment seem to be involved in the etiopathogenesis of vitiligo, this study aimed to compare the immunohistochemical expression of several adhesion molecules in the epidermis of vitiligo and non lesional vitiligo skin. Sixty-six specimens of lesional and non lesional skin from 33 volunteers with vitiligo were evaluated by immunohistochemistry using anti-beta-catenin, anti-E-cadherin, anti-laminin, anti-beta1 integrin, anti-collagen IV, anti-ICAM-1 and anti-VCAM-1 antibodies. Biopsies of vitiligo skin demonstrated a significant reduction in the expression of laminin and integrin. The average value of the immunohistochemically positive reaction area of the vitiligo specimens was 3053.2μm2, compared with the observed value of 3431.8μm2 in non vitiligo skin (p=0.003) for laminin. The immuno-positive area was 7174.6μm2 (vitiligo) and 8966.7μm2 (non lesional skin) for integrin (p=0.042). A reduction in ICAM-1 and VCAM-1 expression in the basal layer of the epidermis in vitiligo samples was also observed (p=0.001 and pvitiligo and non lesional skin. Our results suggest that an impairment in adhesion exists in vitiligo skin, which is supported by the diminished immunohistochemical expression of laminin, beta1 integrin, ICAM-1 and VCAM-1. Copyright © 2017 Elsevier GmbH. All rights reserved.

  8. Preliminary Investigation of the Dissolution Behavior, Cytocompatibility, Effects of Fibrinogen Conformation and Platelet Adhesion for Radiopaque Embolic Particles

    Directory of Open Access Journals (Sweden)

    Daniel Boyd

    2013-07-01

    Full Text Available Experimental embolic particles based on a novel zinc-silicate glass system have been biologically evaluated for potential consideration in transcatheter arterial embolization procedures. In addition to controlling the cytotoxicity and haemocompatibility for such embolic particles, its glass structure may mediate specific responses via dissolution in the physiological environment. In a 120 h in-vitro dissolution study, ion release levels for silicon (Si4+, sodium (Na+, calcium (Ca2+, zinc (Zn2+, titanium (Ti4+, lanthanum (La3+, strontium (Sr2+, and magnesium (Mg2+, were found to range from 0.04 to 5.41 ppm, 0.27–2.28 ppm, 2.32–8.47 ppm, 0.16–0.20 ppm, 0.12–2.15 ppm, 0.16–0.49 ppm and 0.01–0.12 ppm, respectively for the series of glass compositions evaluated. Initial release of Zn2+ (1.93–10.40 ppm was only evident after 120 h. All compositions showed levels of cell viabilities ranging from 61.31 ± 4.33% to 153.7 ± 1.25% at 25%–100% serial extract dilutions. The conformational state of fibrinogen, known to induce thrombi, indicated that no changes were induced with respect of the materials dissolution by-products. Furthermore, the best-in-class experimental composition showed equivalency to contour PVA in terms of inducing platelet adhesion. The data generated here provides requisite evidence to continue to in-vivo pre-clinical evaluation using the best-in-class experimental composition evaluated.

  9. Preliminary investigation of the dissolution behavior, cytocompatibility, effects of fibrinogen conformation and platelet adhesion for radiopaque embolic particles.

    Science.gov (United States)

    Kehoe, Sharon; Tremblay, Marie-Laurence; Coughlan, Aisling; Towler, Mark R; Rainey, Jan K; Abraham, Robert J; Boyd, Daniel

    2013-07-10

    Experimental embolic particles based on a novel zinc-silicate glass system have been biologically evaluated for potential consideration in transcatheter arterial embolization procedures. In addition to controlling the cytotoxicity and haemocompatibility for such embolic particles, its glass structure may mediate specific responses via dissolution in the physiological environment. In a 120 h in-vitro dissolution study, ion release levels for silicon (Si4+), sodium (Na+), calcium (Ca2+), zinc (Zn2+), titanium (Ti4+), lanthanum (La3+), strontium (Sr2+), and magnesium (Mg2+), were found to range from 0.04 to 5.41 ppm, 0.27-2.28 ppm, 2.32-8.47 ppm, 0.16-0.20 ppm, 0.12-2.15 ppm, 0.16-0.49 ppm and 0.01-0.12 ppm, respectively for the series of glass compositions evaluated. Initial release of Zn2+ (1.93-10.40 ppm) was only evident after 120 h. All compositions showed levels of cell viabilities ranging from 61.31 ± 4.33% to 153.7 ± 1.25% at 25%-100% serial extract dilutions. The conformational state of fibrinogen, known to induce thrombi, indicated that no changes were induced with respect of the materials dissolution by-products. Furthermore, the best-in-class experimental composition showed equivalency to contour PVA in terms of inducing platelet adhesion. The data generated here provides requisite evidence to continue to in-vivo pre-clinical evaluation using the best-in-class experimental composition evaluated.

  10. Impact of selective platelet inhibition in reducing cardiovascular risk - role of vorapaxar

    Directory of Open Access Journals (Sweden)

    Cheng JWM

    2016-06-01

    Full Text Available Judy WM Cheng Department of Pharmacy Practice, MCPHS University, Boston, MA, USA Abstract: This article reviews the pharmacology, clinical efficacy, and safety of vorapaxar in reducing cardiovascular risk. Vorapaxar is a tricyclic himbacine-derived reversible inhibitor of platelet surface protease activator receptor-1, which prevents thrombin from activating platelets. Two Phase III clinical trials and multiple subanalyses from the two trials with vorapaxar have been published. In patients with recent acute coronary syndrome, vorapaxar, when added to standard therapy, did not reduce the composite cardiovascular end point. In contrary, in a study of secondary prevention for patients with cardiovascular diseases, vorapaxar reduced the risk of cardiovascular death or ischemic events (myocardial infarction, stroke in patients with stable atherosclerosis who were receiving standard therapy. Vorapaxar is approved in the US for use with aspirin and/or clopidogrel in the secondary prevention of thrombogenic cardiovascular events in stable patients with peripheral arterial disease or a history of myocardial infarction. Vorapaxar increases risk of bleeding and is contraindicated in patients with previous cerebrovascular events. It is essential to balance individual patient’s bleeding risk to any further cardiovascular benefits that they may get. Future investigation is also needed to evaluate use of vorapaxar with newer antiplatelet agents such as ticagrelor and cangrelor, as well as its role as monotherapy. Keywords: vorapaxar, protease activator receptor-1 antagonist, atherosclerotic disease

  11. [Effect of lovastatin on adhesive and aggregation function of platelets in patients with arterial hypertension and dislipidemia].

    Science.gov (United States)

    Medvedev, I N; Skoriatina, I A

    2010-01-01

    The aim of the study was to evaluate efficiency of correction of lipid profile disturbances and platelet dysfunction by lovastatin in patients with arterial hypertension and dyslipidemia. Lovastatin was given to 29 patients for 4 months. The main parameters measured included dynamics of blood lipid profile, lipid peroxidation in plasma and platelets, antioxidative protection of blood fluid and platelets, platelet activity. t-Students test was used to assess statistical significance of the results. It was shown that lovastatin has beneficial effect on dyslipoproteidemia and peroxidation syndrome. Moreover, it normalizes intraplatelet regulatory mechanisms and inhibits enhanced platelet activity. Effects of lovastatin in patients with arterial hypertension and dyslipidemia persist under conditions of long-term therapy.

  12. Reducing composite restoration polymerization shrinkage stress through resin modified glass-ionomer based adhesives.

    Science.gov (United States)

    Naoum, S J; Mutzelburg, P R; Shumack, T G; Thode, Djg; Martin, F E; Ellakwa, A E

    2015-12-01

    The aim of this study was to determine whether employing resin modified glass-ionomer based adhesives can reduce polymerization contraction stress generated at the interface of restorative composite adhesive systems. Five resin based adhesives (G Bond, Optibond-All-in-One, Optibond-Solo, Optibond-XTR and Scotchbond-Universal) and two resin modified glass-ionomer based adhesives (Riva Bond-LC, Fuji Bond-LC) were analysed. Each adhesive was applied to bond restorative composite Filtek-Z250 to opposing acrylic rods secured within a universal testing machine. Stress developed at the interface of each adhesive-restorative composite system (n = 5) was calculated at 5-minute intervals over 6 hours. The resin based adhesive-restorative composite systems (RBA-RCS) demonstrated similar interface stress profiles over 6 hours; initial rapid contraction stress development (0-300 seconds) followed by continued contraction stress development ≤0.02MPa/s (300 seconds - 6 hours). The interface stress profile of the resin modified glass-ionomer based adhesive-restorative composite systems (RMGIBA-RCS) differed substantially to the RBA-RCS in several ways. Firstly, during 0-300 seconds the rate of contraction stress development at the interface of the RMGIBA-RCS was significantly (p glass-ionomer based adhesives can significantly reduce the magnitude and rate of polymerization contraction stress developed at the interface of adhesive-restorative composite systems. © 2015 Australian Dental Association.

  13. Influence of nitriding atmosphere on the modification of surface titanium with focus on the behavior of blood platelets adhesion; Influencia da atmosfera nitretante na modificacao de superficies de titanio com enfase no comportamento de adesao de plaquetas sanguineas

    Energy Technology Data Exchange (ETDEWEB)

    Vitoriano, J.O.; Alves, C. [Universidade Federal Rural do Semi-Arido (UFERSA), RN (Brazil); Braz, D.C.; Camara, R.B.G.; Rocha, H.A.O., E-mail: clodomiro.jr@hotmail.com [Universidade Federal do Rio Grande do Norte (UFRN), RN (Brazil)

    2014-07-01

    The present study aimed to analyze the influence of surface modification of titanium on the adhesion of blood platelets, through techniques of adhesion and morphological analyzes. Discs of titanium grade II received different surface treatments with plasma of Ar + N{sub 2} + H{sub 2} and Ar + H{sub 2}, forming two experimental groups including only polished samples used as standard. Before and after treatment the samples were characterized according to topography, crystalline structure and wettability, using atomic force microscopy, X-ray diffraction, Raman spectroscopy and testing of sessile drop, respectively. Platelet rich plasma (PRP) was applied on the modified surfaces in a culture plates. Images obtained by electron microscopy of adhered platelets were analyzed to verify the behavior of platelets in the different experimental conditions. (author)

  14. Hypertonic saline impedes tumor cell-endothelial cell interaction by reducing adhesion molecule and laminin expression.

    LENUS (Irish Health Repository)

    Shields, Conor J

    2012-02-03

    BACKGROUND: Hypertonic saline infusion dampens inflammatory responses and suppresses neutrophil-endothelial interaction by reducing adhesion molecule expression. This study tested the hypothesis that hypertonic saline attenuates tumor cell adhesion to the endothelium through a similar mechanism. METHODS: Human colon cancer cells (LS174T) were transfected with green fluorescent protein and exposed to lipopolysaccharide, tumor necrosis factor-alpha, and interleukin-6 under hypertonic and isotonic conditions for 1 and 4 hours. Confluent human umbilical vein endothelial cells were similarly exposed. Cellular apoptosis and expression of adhesion molecules and laminin were measured by flow cytometry. Tumor cell adhesion to endothelium and laminin was assessed with fluorescence microscopy. Data are represented as mean +\\/- standard error of mean, and an ANOVA test was performed to gauge statistical significance, with P <.05 considered significant. RESULTS: Hypertonic exposure significantly reduced tumor cell adhesion despite the presence of the perioperative cell stressors (42 +\\/- 2.9 vs 172.5 +\\/- 12.4, P <.05), attenuated tumor cell beta-1 integrin (14.43 vs 23.84, P <.05), and endothelial cell laminin expression (22.78 +\\/- 2.2 vs 33.74 +\\/- 2.4, P <.05), but did not significantly alter cell viability. CONCLUSION: Hypertonic saline significantly attenuates tumor cell adhesion to endothelium by inhibiting adhesion molecule and laminin expression. This may halt the metastatic behavior of tumor cells shed at surgery.

  15. DEVELOPMENT OF ABSORBENT POLYMER MATERIALS FOR REDUCING ADHESION AND SKIN FRICTION OF UNDERGROUND STRUCTURES

    Science.gov (United States)

    Okamoto, Koichi; Umezaki, Takeo; Hattori, Akira

    Pulling out steel sheet pile often harmfully deforms neighboring ground because of adhesion and skin friction between the pile and the ground. Steel H piles used in soil cement retaining walls could hinder additional construction and therefore should be removed. However, they usually are not removed due to high adhesion. To solve these problems, we developed new paint and sheet absorbent polymer materials for reducing the adhesion and skin friction. The performance of the materials was discussed and the effectiveness was confirmed through a series of laboratory tests and field tests.

  16. Antioxidants change platelet responses to various stimulating events

    Science.gov (United States)

    Sobotková, Alžběta; Mášová-Chrastinová, Leona; Suttnar, Jiří; Štikarová, Jana; Májek, Pavel; Reicheltová, Zuzana; Kotlín, Roman; Weisel, John W.; Malý, Martin; Dyr, Jan E.

    2010-01-01

    The role of platelets in hemostasis may be influenced by alteration of the platelet redox state—the presence of antioxidants and the formation of reactive oxygen and nitrogen species. We investigated the effects of two antioxidants, resveratrol and trolox, on platelet activation. Trolox and resveratrol inhibited aggregation of washed platelets and platelet-rich plasma activated by ADP, collagen, and thrombin receptor-activating peptide. Resveratrol was a more effective agent in reducing platelet static and dynamic adhesion in comparison with trolox. The antioxidant capacity of resveratrol was, however, the same as that of trolox. After incubation of platelets with antioxidants, the resveratrol intraplatelet concentration was about five times lower than the intracellular concentration of trolox. Although both antioxidants comparably lowered hydroxyl radical and malondialdehyde production in platelets stimulated with collagen, TxB2 levels were decreased by resveratrol much more effectively than by trolox. Cyclooxygenase 1 was inhibited by resveratrol and not by trolox. Our data indicate that antioxidants, apart from nonspecific redox or radical-quenching mechanisms, inhibit platelet activation also by specific interaction with target proteins. The results also show the importance of studying platelet activation under conditions of real blood flow in contact with reactive surfaces, e.g., using dynamic adhesion experiments. PMID:19766712

  17. A membrane slurry reduces postoperative adhesions in rat models of abdominal surgery.

    Science.gov (United States)

    Greenawalt, Keith E; Colt, M Jude; Corazzini, Rubina L; Krauth, Megan C; Holmdahl, Lena

    2011-06-01

    Sodium hyaluronate and carboxymethylcellulose (HA-CMC) membrane is an effective barrier material for limiting postoperative adhesions, but can be difficult to apply in certain situations due to its physical properties. We tested whether HA-CMC membrane hydrated in saline (slurry) is an effective alternative to HA-CMC membrane for preventing surgical adhesions in rat models of abdominal surgery. All studies were performed in rat cecal abrasion or sidewall defect models of adhesion formation. Adhesions were examined 7 d after surgery. In separate studies, the effects of variations in slurry composition, volume, and site of application on anti-adhesive properties were studied and compared with untreated controls. Finally, the effectiveness of HA-CMC membrane slurry for preventing adhesions was compared with that of conventional HA-CMC membrane. Application of HA-CMC membrane slurry to traumatized tissue resulted in a significant reduction in the incidence of adhesions compared with untreated controls in both rat surgery models. Slurry was equally effective when applied in low and high film-to-volume formulations, but had minimal effect when applied in a small volume or at a location distal to the injury. Comparison of HA-CMC membrane slurry and conventional HA-CMC membrane indicated similar efficacy for reducing postoperative adhesions. In rat models of abdominal surgery, HA-CMC membrane slurry reduced postoperative adhesion formation and may be an effective alternative for HA-CMC membrane in situations where its use is limited by its physical properties. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Activated platelets enhance IL-10 secretion and reduce TNF-α secretion by monocytes

    DEFF Research Database (Denmark)

    Gudbrandsdottir, Sif; Hasselbalch, Hans C; Nielsen, Claus H

    2013-01-01

    ), Escherichia coli LPS, or intact Porphyromonas gingivalis. Addition of platelets activated by thrombin-receptor-activating peptide enhanced IL-10 production induced by LPS (p ....05), and P. gingivalis (p IL-10 and TNF-α production were observed on addition of platelet supernatant to mononuclear cells, whereas addition of recombinant soluble CD40L mimicked the effects on IL-10...... production. Moreover, Ab-mediated blockade of CD40L counteracted the effect of platelets and platelet supernatants on TNF-α production. Monocytes separated into two populations with respect to IL-10 production induced by TG; the high-secreting fraction increased from 0.8 to 2.1% (p

  19. Altering FAK-paxillin interactions reduces adhesion, migration and invasion processes.

    Directory of Open Access Journals (Sweden)

    Thérèse B Deramaudt

    Full Text Available Focal adhesion kinase (FAK plays an important role in signal transduction pathways initiated at sites of integrin-mediated cell adhesion to the extracellular matrix. Thus, FAK is involved in many aspects of the metastatic process including adhesion, migration and invasion. Recently, several small molecule inhibitors which target FAK catalytic activity have been developed by pharmaceutical companies. The current study was aimed at addressing whether inhibiting FAK targeting to focal adhesions (FA represents an efficient alternative strategy to inhibit FAK downstream pathways. Using a mutagenesis approach to alter the targeting domain of FAK, we constructed a FAK mutant that fails to bind paxillin. Inhibiting FAK-paxillin interactions led to a complete loss of FAK localization at FAs together with reduced phosphorylation of FAK and FAK targets such as paxillin and p130Cas. This in turn resulted in altered FA dynamics and inhibition of cell adhesion, migration and invasion. Moreover, the migration properties of cells expressing the FAK mutant were reduced as compared to FAK-/- cells. This was correlated with a decrease in both phospho-Src and phospho-p130Cas levels at FAs. We conclude that targeting FAK-paxillin interactions is an efficient strategy to reduce FAK signalling and thus may represent a target for the development of new FAK inhibitors.

  20. Covalent Attachment of Poly(ethylene glycol) to Surfaces, Critical for Reducing Bacterial Adhesion

    DEFF Research Database (Denmark)

    Kingshott, Peter; Wei, Jiang; Bagge, Dorthe

    2003-01-01

    The effects of different poly(ethylene glycol) (PEG) attachment strategies upon the adhesion of a Gram-negative bacteria (Pseudomonas sp.) was tested. PEG was covalently immobilized, at the lower critical solution temperature of PEG, to a layer of branched poly(ethylenimine) (PEI). PEI was both...... on both substrates, as judged by X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry (ToF-SIMS). Also, ToF-SIMS imaging showed that both substrates were chemically uniform after each surface modification step. Thus, the two surfaces differ only in the mode of attachment...... of PEI to the substrate. In bacterial adhesion experiments, the optimal SS-PEG surface was not capable of reducing the number of adherent Pseudomonas sp. when compared to the controls. However, the PET-PEG surface reduced the level of adhesion by between 2 and 4 orders of magnitude for up to 5 h. ToF-SIMS...

  1. Material-induced tissue factor expression but not CD11b upregulation depends on the presence of platelets.

    Science.gov (United States)

    Gorbet, M B; Sefton, M V

    2003-12-01

    Biomaterials activate leukocytes as well as platelets when exposed to blood. One feature of leukocyte activation at least at times beyond a few hours is tissue factor expression, contributing to a procoagulant state. We show here that platelet activation and specifically platelet-monocyte aggregate formation appears to be a precondition for tissue factor expression. Material-induced Tissue Factor (TF) expression by isolated leukocytes (6 x 10(6) cells/mL) resuspended in increasing concentrations of platelets in plasma was elevated when the platelet concentration was 50 x 10(6) platelets/mL or more; at lower platelet concentrations (1-25 x 10(6). cells/mL) the TF expression remained at background levels. On the other hand, significant CD11b upregulation was observed on leukocytes, in bulk and adherent to beads, at all platelet concentrations. This platelet effect on material-induced TF expression appeared to be mediated by the formation of platelet-monocyte aggregates. Anti-P-selectin, which blocked the association between platelets and leukocytes, reduced monocyte adhesion and material-induced TF expression for bulk monocytes. Anti-GPIIb/IIIa, a GPIIb/IIIa platelet antagonist, also reduced monocyte adhesion and material-induced TF expression in the bulk, most likely due to its inhibiting effect on the formation of platelet-monocyte aggregates, secondary to platelet activation. However, the antibody-associated reductions for bulk leukocytes (mainly neutrophils) were small and incomplete. Similar levels of TF expression, in the bulk, were observed with both polystyrene (PS), a strong platelet activator, and polyethylene glycol-modified PEG (PS-PEG), a mild platelet activator. The role of platelets in material-induced TF expression appears to be mediated in part via the formation of platelet-monocyte aggregates, although other mechanisms are likely also involved. Copyright 2003 Wiley Periodicals, Inc. J Biomed Mater Res 67A: 792-800, 2003

  2. Multilink stent promotes less platelet and leukocyte adhesion than a traditional stainless steel stent : An in vitro experimental study

    NARCIS (Netherlands)

    Amoroso, G; van Boven, AJ; Volkers, C; Crijns, HJGM; van Oeveren, W

    Background: Platelet and Leukocyte deposition onto metallic struts can be a crucial factor in the outcome of a coronary stenting procedure. By means of an in vitro, closed-loop circulation model, me aimed to assess blood-stent interaction patterns for a new stainless steel stent (MultiLink, Guidant

  3. Role of focal adhesion tyrosine kinases in GPVI-dependent platelet activation and reactive oxygen species formation.

    Directory of Open Access Journals (Sweden)

    Naadiya Carrim

    Full Text Available We have previously shown the presence of a TRAF4/p47phox/Hic5/Pyk2 complex associated with the platelet collagen receptor, GPVI, consistent with a potential role of this complex in GPVI-dependent ROS formation. In other cell systems, NOX-dependent ROS formation is facilitated by Pyk2, which along with its closely related homologue FAK are known to be activated and phosphorylated downstream of ligand binding to GPVI.To evaluate the relative roles of Pyk2 and FAK in GPVI-dependent ROS formation and to determine their location within the GPVI signaling pathway.Human and mouse washed platelets (from WT or Pyk2 KO mice were pre-treated with pharmacological inhibitors targeting FAK or Pyk2 (PF-228 and Tyrphostin A9, respectively and stimulated with the GPVI-specific agonist, CRP. FAK, but not Pyk2, was found to be essential for GPVI-dependent ROS production and aggregation. Subsequent human platelet studies with PF-228 confirmed FAK is essential for GPVI-mediated phosphatidylserine exposure, α-granule secretion (P-selectin (CD62P surface expression and integrin αIIbβ3 activation. To determine the precise location of FAK within the GPVI pathway, we analyzed the effect of PF-228 inhibition in CRP-stimulated platelets in conjunction with immunoprecipitation and pulldown analysis to show that FAK is downstream of Lyn, Spleen tyrosine kinase (Syk, PI3-K and Bruton's tyrosine kinase (Btk and upstream of Rac1, PLCγ2, Ca2+ release, PKC, Hic-5, NOX1 and αIIbβ3 activation.Overall, these data suggest a novel role for FAK in GPVI-dependent ROS formation and platelet activation and elucidate a proximal signaling role for FAK within the GPVI pathway.

  4. Method of defining rational parameters for excavator buckets vibrating devices in order to reduce soil adhesion

    Science.gov (United States)

    Zenkov, S. A.

    2017-10-01

    The article describes the method of defining rational parameters for excavator buckets vibrating devices in order to reduce soil adhesion under various operating conditions. The method includes limits formation, calculating geometric parameters of curved mold concentrator for excavator buckets with magnetostriction vibration exciters; calculating parameters of acoustic influence equipment; calculating power demand of equipment, defining adhesive forces of soil to buckets with given values of external factors; defining equipment operation mode (turn-on frequency, exposure time). Suggested method enables one to define required parameters of vibrating equipment to excavator buckets during the design phase.

  5. Adhesion, activation, and aggregation of blood platelets and biofilm formation on the surfaces of titanium alloys Ti6Al4V and Ti6Al7Nb.

    Science.gov (United States)

    Walkowiak-Przybyło, M; Klimek, L; Okrój, W; Jakubowski, W; Chwiłka, M; Czajka, A; Walkowiak, B

    2012-03-01

    Titanium alloys are still on the top list of fundamental materials intended for dental, orthopedics, neurological, and cardiovascular implantations. Recently, a special attention has been paid to vanadium-free titanium alloy, Ti6Al7Nb, that seems to represent higher biocompatibility than traditional Ti6Al4V alloy. Surprisingly, these data are not thoroughly elaborated in the literature; particularly there is a lack of comparative experiments conducted simultaneously and at the same conditions. Our study fills these shortcomings in the field of blood contact and microbiological colonization. To observe platelets adhesion and biofilm formation on the surfaces of compared titanium alloys, fluorescence microscope Olympus GX71 and scanning electron microscope HITACHI S-3000N were used. Additionally, flow cytometry analysis of platelets aggregation and activation in the whole blood after contact with sample surface, as an essential tool for biomaterial thrombocompatibility assessment, was proposed. As a result of our study it was demonstrated that polished surfaces of Ti6Al7Nb and Ti6Al4V alloys after contact with whole citrated blood and E. coli bacterial cells exhibit a considerable difference. Overall, it was established that Ti6Al4V has distinct tendency to higher thrombogenicity, more excessive bacterial biofilm formation and notable cytotoxic properties in comparison to Ti6Al7Nb. However, we suggest these studies should be extended for other types of cells and biological objects. Copyright © 2012 Wiley Periodicals, Inc.

  6. Synthetic RGD peptides derived from the adhesive domains of snake-venom proteins: evaluation as inhibitors of platelet aggregation.

    Science.gov (United States)

    Lu, X; Deadman, J J; Williams, J A; Kakkar, V V; Rahman, S

    1993-01-01

    Synthetic peptides based on the RGD domains of the potent platelet aggregation inhibitors kistrin and dendroaspin were generated. The 13-amino-acid peptides were synthesized as dicysteinyl linear and disulphide cyclic forms. In platelet-aggregation studies, the cyclic peptides showed 3-fold better inhibition than their linear equivalents and approx. 100-fold greater potency than synthetic linear RGDS peptides derived from fibronectin. An amino acid substitution, Asp10-->Ala, in the kistrin-based peptide gave a 4-fold decrease in potency in the linear peptide, but produced a 2-fold elevation in the inhibitory activity of the cyclic form, generating a peptide of potency comparable with that of the parent protein. PMID:8250845

  7. Hakai reduces cell-substratum adhesion and increases epithelial cell invasion

    Directory of Open Access Journals (Sweden)

    Rodríguez-Rigueiro Teresa

    2011-11-01

    Full Text Available Abstract Background The dynamic regulation of cell-cell adhesions is crucial for developmental processes, including tissue formation, differentiation and motility. Adherens junctions are important components of the junctional complex between cells and are necessary for maintaining cell homeostasis and normal tissue architecture. E-cadherin is the prototype and best-characterized protein member of adherens junctions in mammalian epithelial cells. Regarded as a tumour suppressor, E-cadherin loss is associated with poor prognosis in carcinoma. The E3 ubiquitin-ligase Hakai was the first reported posttranslational regulator of the E-cadherin complex. Hakai specifically targetted E-cadherin for internalization and degradation and thereby lowered epithelial cell-cell contact. Hakai was also implicated in controlling proliferation, and promoted cancer-related gene expression by increasing the binding of RNA-binding protein PSF to RNAs encoding oncogenic proteins. We sought to investigate the possible implication of Hakai in cell-substratum adhesions and invasion in epithelial cells. Methods Parental MDCK cells and MDCK cells stably overexpressing Hakai were used to analyse cell-substratum adhesion and invasion capabilities. Western blot and immunofluoresecence analyses were performed to assess the roles of Paxillin, FAK and Vinculin in cell-substratum adhesion. The role of the proteasome in controlling cell-substratum adhesion was studied using two proteasome inhibitors, lactacystin and MG132. To study the molecular mechanisms controlling Paxillin expression, MDCK cells expressing E-cadherin shRNA in a tetracycline-inducible manner was employed. Results Here, we present evidence that implicate Hakai in reducing cell-substratum adhesion and increasing epithelial cell invasion, two hallmark features of cancer progression and metastasis. Paxillin, an important protein component of the cell-matrix adhesion, was completely absent from focal adhesions and

  8. Change in platelet endothelial cell adhesion molecule-1 immunoreactivity in the dentate gyrus in gerbils fed a folate-deficient diet.

    Science.gov (United States)

    Yoo, Ki-Yeon; Hwang, In Koo; Kim, Young Sup; Kwon, Dae Young; Won, Moo Ho

    2008-02-01

    Folate deficiency increases stroke risk. We examined whether folate deficiency affects platelet endothelial cell adhesion molecule-1 (PECAM-1), which is an immunoglobulin-associated cell adhesion molecule and mediates the final common pathway of neutrophil transendothelial migration, in blood vessels in the gerbil dentate gyrus after transient forebrain ischemia. Gerbils were exposed to a folic acid-deficient diet (FAD) for 3 months and then subjected to common carotid artery occlusion for 5 min. In the control diet (CD)- and FAD-treated sham-operated groups, weak PECAM-1 immunoreactivity was detected in the blood vessels located in the dentate gyrus. PECAM-1 immunoreactivity in both groups was increased by 4 days after ischemic insult. PECAM-1 immunoreactivity in the FAD-treated group was twice as high that in the CD-treated-sham-operated group 4 days after ischemic insult. Western blot analyses showed that the change patterns in PECAM-1 protein levels in the dentate gyrus in both groups after ischemic insult were similar to changes in PECAM-1 immunohistochemistry in the ischemic dentate gyrus. Our results suggest that folate deficiency enhances PECAM-1 in the dentate gyrus induced by transient ischemia.

  9. Effect of Desmopressin in Reducing Bleeding after Cardiac Surgery in Patients Receiving Anti-Platelet Agents

    Directory of Open Access Journals (Sweden)

    Kamran Shadvar

    2016-07-01

    Full Text Available Background: Severe bleeding is an important cause of morbidity and mortality in cardiac surgery using the cardiopulmonary bypass (CPB pump. Desmopressin, a synthetic analogue of vasopressin, is used to prevent postoperative bleeding in patients with renal insufficiency. The aim of the present study was to evaluate the effect of desmopressin in reducing blood loss after cardiac surgery in patients receiving antiplatelet drugs. Methods: In this prospective clinical trial, 40 patients undergoing coronary artery bypass grafting (CABG surgery with CPB, aged over 18 years, and on antiplatelet therapy for a week before surgery were divided in two groups. Case and control groups received nasal desmopressin spray and nasal normal saline spray, respectively. Patient vital signs, blood loss, administration of blood products, prescription drugs to improve the coagulation status, serum and whole intake and output of patients, need for a second surgery to control the bleeding, remaining sternum open, mortality due to bleeding, duration of intensive care unit (ICU stay and mechanical ventilation were recorded. Results: In the case and control groups there were no differences in duration of operation, mechanical ventilation and length of ICU stay. There was no significant difference in terms of postoperative bleeding and intake of blood products between two groups (P>0.05. Reoperation due to bleeding in the case and control groups was observed in 3 (15%, and 1 (5% patient(s, respectively (P=0.3. Conclusion: Desmopressin has no significant effect on reducing the amount of bleeding after cardiac surgery in patients receiving anti-platelet agents.   Keywords: CABG; cardio pulmonary bypass pump; hemorrhage; desmopressin

  10. Inhibition of STAT3 phosphorylation by sulforaphane reduces adhesion molecule expression in vascular endothelial cell.

    Science.gov (United States)

    Cho, Young S; Kim, Chan H; Ha, Tae S; Ahn, Hee Y

    2015-11-18

    Intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1) play key roles in the initiation of vascular inflammation. In this study, we explored whether sulforaphane, a dietary phytochemical, can inhibit the expression of ICAM-1 and VCAM-1 in human umbilical vein endothelial cells (HUVEC) stimulated with lipopolysaccharide (LPS), and the mechanisms involved. Sulforaphane prevented the LPS-mediated increase in ICAM-1 and VCAM-1 expression, (P < 0.01) in HUVEC. Sulforaphane also prevented the LPS-mediated increase in the phosphorylation of signal transducer and activator of transcription 3 (STAT3) (P < 0.01). Stattic, a STAT3 inhibitor, reduced the LPS-induced expression of ICAM-1 and VCAM-1, and STAT3 phosphorylation (P < 0.01). STAT3 small interfering RNA treatment reduced the LPS-induced expression of ICAM-1, VCAM-1, and STAT3 (P < 0.01). Sulforaphane reduced LPS-mediated THP-1 monocyte adhesion to HUVEC (P < 0.01). In C57BL/6 mice, injection of LPS increased aortic ICAM-1 and VCAM-1 expression, and this effect was prevented by sulforaphane. These data provide insight into the mechanism through which sulforaphane partly reduces the expression of ICAM-1 and VCAM-1 on the vascular wall by inhibiting STAT3 phosphorylation.

  11. Supporting roles of platelet thrombospondin-1 and CD36 in thrombus formation on collagen.

    Science.gov (United States)

    Kuijpers, Marijke J E; de Witt, Susanne; Nergiz-Unal, Reyhan; van Kruchten, Roger; Korporaal, Suzanne J A; Verhamme, Peter; Febbraio, Maria; Tjwa, Marc; Voshol, Peter J; Hoylaerts, Marc F; Cosemans, Judith M E M; Heemskerk, Johan W M

    2014-06-01

    Platelets abundantly express the membrane receptor CD36 and store its ligand thrombospondin-1 (TSP1) in the α-granules. We investigated whether released TSP1 can support platelet adhesion and thrombus formation via interaction with CD36. Mouse platelets deficient in CD36 showed reduced adhesion to TSP1 and subsequent phosphatidylserine expression. Deficiency in either CD36 or TSP1 resulted in markedly increased dissolution of thrombi formed on collagen, although thrombus buildup was unchanged. In mesenteric vessels in vivo, deficiency in CD36 prolonged the time to occlusion and enhanced embolization, which was in agreement with earlier observations in TSP1-deficient mice. Thrombi formed using wild-type blood stained positively for secreted TSP1. Releasate from wild-type but not from TSP1-deficient platelets enhanced platelet activation, phosphatidylserine expression, and thrombus formation on collagen. The enhancement was dependent on CD36 because it was without effect on thrombus formation by CD36-deficient platelets. These results demonstrate an anchoring role of platelet-released TSP1 via CD36 in platelet adhesion and collagen-dependent thrombus stabilization. Thus, the TSP1-CD36 tandem is another platelet ligand-receptor axis contributing to the maintenance of a stable thrombus. © 2014 American Heart Association, Inc.

  12. Bovicin HC5 and nisin reduce Staphylococcus aureus adhesion to polystyrene and change the hydrophobicity profile and Gibbs free energy of adhesion.

    Science.gov (United States)

    Pimentel-Filho, Natan de Jesus; Martins, Mayra Carla de Freitas; Nogueira, Guilherme Bicalho; Mantovani, Hilário Cuquetto; Vanetti, Maria Cristina Dantas

    2014-11-03

    Staphylococcus aureus is an opportunistic pathogen often multidrug-resistant that not only causes a variety of human diseases, but also is able to survive on biotic and abiotic surfaces through biofilm communities. The best way to inhibit biofilm establishment is to prevent cell adhesion. In the present study, subinhibitory concentrations of the bacteriocins bovicin HC5 and nisin were tested for their capability to interfere with the adhesion of S. aureus to polystyrene. Subinhibitory dosages of the bacteriocins reduced cell adhesion and this occurred probably due to changes in the hydrophobicity of the bacterial cell and polystyrene surfaces. After treatment with bovicin HC5 and nisin, the surfaces became more hydrophilic and the free energy of adhesion (∆G(adhesion)) between bacteria and the polystyrene surface was unfavorable. The transcriptional level of selected genes was assessed by RT-qPCR approach, revealing that the bacteriocins affected the expression of some important biofilm associated genes (icaD, fnbA, and clfB) and rnaIII, which is involved in the quorum sensing mechanism. The conditioning of food-contact surfaces with bacteriocins can be an innovative and powerful strategy to prevent biofilms in the food industry. The results are relevant for food safety as they indicate that bovicin HC5 and nisin can inhibit bacterial adhesion and consequent biofilm establishment, since cell adhesion precedes biofilm formation. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Efficacy of autologous leukocyte-reduced platelet-rich plasma therapy for patellar tendinopathy in a rat treadmill model

    Science.gov (United States)

    Yoshida, Mamoru; Funasaki, Hiroki; Marumo, Keishi

    2016-01-01

    Summary Background An autologous platelet-rich plasma (PRP) therapy has currently been applied for the tendinopathy; however, its efficacy and an optimal platelets concentration in PRP were uncertain. We analyzed them in an animal model prepared using a repetitive running exercise. Methods We made the tendinopathy rat model of patellar tendon using a rodent treadmill machine. Rats with tendinopathy were injected with leukocyte-reduced PRP at the platelets concentration of 1.0×106/μL (P10 group), PRP at the platelets concentration of 5.0×105/μL (P5 group) or normal saline (control group) into the space between the patellar tendon and the fat pad bilaterally or were multiply dry-needled at the tibial insertion site (MN group) at once. To assess the pain-reliving effect, the spontaneous locomotor activities at night (12 h) were measured every day. Histological sections of the patellar tendon stained with hematoxylineosin or prepared by TdT-mediated dUTP nick end labeling were microscopically analyzed. Results The numbers of spontaneous locomotor activities in the P10 group were significantly larger than those in the P5, MN or control groups and they recovered up to a healthy level. On histologic examinations, the numbers of microtears, laminations, or apoptotic cells in the patellar tendons in the P10 or P5 groups were significantly lower than those in the MN or control groups, although no significant differences were observed between the P10 and P5 groups. Conclusions The injections of an autologous leukocyte-reduced PRP were effective for pain relief and for partial restoration of the patellar tendon in the tendinopathy rat model. The injections of a PRP at the platelets concentration of 1.0×106/μL completely relieved the pain and were more effective than those at the platelets concentration of 5.0×105/μL whereas there was no difference for the effect of histological restoration or apoptosis inhibition between them. PMID:27900294

  14. Platelet function changes as monitored by cone and plate(let) analyzer during beating heart surgery.

    Science.gov (United States)

    Gerrah, Rabin; Snir, Eitan; Brill, Alex; Varon, David

    2004-01-01

    Off-pump coronary artery bypass (OPCAB) is believed to reduce cardiopulmonary bypass (CPB)-related complications, including platelet damage. A hypercoagulable state instead of coagulopathy has been reported following OPCAB surgeries due to CPB. Whether platelet function is changed when the injurious effect of CPB is eliminated was investigated. Platelet function was determined with the cone and plate(let) analyzer (CPA) method. The 2 parameters, average size (AS) and surface coverage (SC) of platelet aggregates, were measured with the CPA method to assess platelet aggregation and adhesion. These parameters were evaluated, and their values were compared at several stages of OPCAB surgery. The correlations of postoperative bleeding with platelet function at different stages of the surgery and with other factors, such as platelet count, hematocrit, and transfusions, were studied. Both AS and SC increased during several stages of the operation, and postoperative values (mean +/- SD) were significantly higher than preoperative values (30.4 +/- 8.1 microm 2 versus 23.3 +/- 6.9 microm 2 for AS [ P =.02] and 7.6% +/- 3.6% versus 5.2% +/- 1.8% for SC [ P =.04]). The mean total bleeding volume was 875 micro 415 mL. Preoperative AS and SC were the only parameters significantly ( P =.01) and linearly ( r = 0.7) related to postoperative bleeding. An increased platelet function, as determined by the CPA method, is found following OPCAB surgery. This phenomenon is probably at least partially responsible for the thrombogenic state after OPCAB surgery. Lack of platelet injury attributed to CPB may divert the system toward a more thrombogenic state. Preoperative platelet function, as evaluated by the CPA method, is an independent risk factor determining postoperative bleeding.

  15. Constitutive activation of BMP signalling abrogates experimental metastasis of OVCA429 cells via reduced cell adhesion

    Directory of Open Access Journals (Sweden)

    Shepherd Trevor G

    2010-02-01

    Full Text Available Abstract Background Activation of bone morphogenetic protein (BMP4 signalling in human ovarian cancer cells induces a number of phenotypic changes in vitro, including altered cell morphology, adhesion, motility and invasion, relative to normal human ovarian surface epithelial cells. From these in vitro analyses, we had hypothesized that active BMP signalling promotes the metastatic potential of ovarian cancer. Methods To test this directly, we engineered OVCA429 human ovarian cancer cells possessing doxycycline-inducible expression of a constitutively-active mutant BMP receptor, ALK3QD, and administered these cells to immunocompromised mice. Further characterization was performed in vitro to address the role of activated BMP signalling on the EOC phenotype, with particular emphasis on epithelial-mesenchymal transition (EMT and cell adhesion. Results Unexpectedly, doxycycline-induced ALK3QD expression in OVCA429 cells reduced tumour implantation on peritoneal surfaces and ascites formation when xenografted into immunocompromised mice by intraperitoneal injection. To determine the potential mechanisms controlling this in vivo observation, we followed with several cell culture experiments. Doxycycline-induced ALK3QD expression enhanced the refractile, spindle-shaped morphology of cultured OVCA429 cells eliciting an EMT-like response. Using in vitro wound healing assays, we observed that ALK3QD-expressing cells migrated with long, cytoplasmic projections extending into the wound space. The phenotypic alterations of ALK3QD-expressing cells correlated with changes in specific gene expression patterns of EMT, including increased Snail and Slug and reduced E-cadherin mRNA expression. In addition, ALK3QD signalling reduced β1- and β3-integrin expression, critical molecules involved in ovarian cancer cell adhesion. The combination of reduced E-cadherin and β-integrin expression correlates directly with the reduced EOC cell cohesion in spheroids and

  16. Proanthocyanidins, from Ribes nigrum leaves, reduce endothelial adhesion molecules ICAM-1 and VCAM-1

    Science.gov (United States)

    Garbacki, N; Kinet, M; Nusgens, B; Desmecht, D; Damas, J

    2005-01-01

    Background The effects of proanthocyanidins (PACs), isolated from blackcurrant (Ribes nigrum L.) leaves, on neutrophil accumulation during inflammatory processes were investigated in vivo and in vitro. Methods In vivo studies were performed using carrageenin-induced pleurisy in rats pre-treated with PACs. Exudate volume and PMNs accumulation were measured. Leukocyte cell adhesion molecules (LFA-1, Mac-1 and VLA-4) mobilization in circulating granulocytes were analysed by flow cytometry and endothelial cell adhesion molecules (ICAM-1 and VCAM-1) were detected by immunohistochemistry on lung sections. In vitro studies were conducted on endothelial LT2 cells, stimulated with TNF-α, to evaluate ICAM-1, IL-8 and VEGF mRNA expression upon PACs treatment. Data sets were examined by one-way analysis of variance (ANOVA) followed by a Scheffe post-hoc test. Results Pretreatment of the animals with PACs (10, 30 and 60 mg/kg) inhibited dose-dependently carrageenin-induced pleurisy in rats by reducing pleural exudate formation and PMNs infliltration. Leukocyte cell adhesion molecules mobilization was not down-regulated on granulocytes by PACs. Immunohistochemistry on lung sections showed a decreased production of endothelial cell adhesion molecules. In vitro experiments demonstrated that PACs were able to significantly inhibit ICAM-1 but not IL-8 and VEGF165 mRNA expression. Moreover, VEGF121 mRNA expression was dose-dependently enhanced. Conclusion This study provides evidence to support the anti-inflammatory activity of proanthocyanidins is related to an inhibition of leukocyte infiltration which can be explained at least in part by a down-regulation of endothelial adhesion molecules, ICAM-1 and VCAM-1 and that these compounds are capable of modulating TNF-α-induced VEGF transcription. PMID:16091140

  17. Proanthocyanidins, from Ribes nigrum leaves, reduce endothelial adhesion molecules ICAM-1 and VCAM-1

    Directory of Open Access Journals (Sweden)

    Desmecht D

    2005-08-01

    Full Text Available Abstract Background The effects of proanthocyanidins (PACs, isolated from blackcurrant (Ribes nigrum L. leaves, on neutrophil accumulation during inflammatory processes were investigated in vivo and in vitro. Methods In vivo studies were performed using carrageenin-induced pleurisy in rats pre-treated with PACs. Exudate volume and PMNs accumulation were measured. Leukocyte cell adhesion molecules (LFA-1, Mac-1 and VLA-4 mobilization in circulating granulocytes were analysed by flow cytometry and endothelial cell adhesion molecules (ICAM-1 and VCAM-1 were detected by immunohistochemistry on lung sections. In vitro studies were conducted on endothelial LT2 cells, stimulated with TNF-α, to evaluate ICAM-1, IL-8 and VEGF mRNA expression upon PACs treatment. Data sets were examined by one-way analysis of variance (ANOVA followed by a Scheffe post-hoc test. Results Pretreatment of the animals with PACs (10, 30 and 60 mg/kg inhibited dose-dependently carrageenin-induced pleurisy in rats by reducing pleural exudate formation and PMNs infliltration. Leukocyte cell adhesion molecules mobilization was not down-regulated on granulocytes by PACs. Immunohistochemistry on lung sections showed a decreased production of endothelial cell adhesion molecules. In vitro experiments demonstrated that PACs were able to significantly inhibit ICAM-1 but not IL-8 and VEGF165 mRNA expression. Moreover, VEGF121 mRNA expression was dose-dependently enhanced. Conclusion This study provides evidence to support the anti-inflammatory activity of proanthocyanidins is related to an inhibition of leukocyte infiltration which can be explained at least in part by a down-regulation of endothelial adhesion molecules, ICAM-1 and VCAM-1 and that these compounds are capable of modulating TNF-α-induced VEGF transcription.

  18. Hippophae rhamnoides L. Fruits Reduce the Oxidative Stress in Human Blood Platelets and Plasma

    Directory of Open Access Journals (Sweden)

    Beata Olas

    2016-01-01

    Full Text Available Effects of the phenolic fraction from Hippophae rhamnoides fruits on the production of thiobarbituric acid reactive substances (TBARS, a marker of lipid peroxidation and the generation of superoxide anion (O2-∙ in human blood platelets (resting platelets and platelets stimulated by a strong physiological agonist, thrombin were studied in vitro. We also examined antioxidant properties of this fraction against human plasma lipid peroxidation and protein carbonylation induced by a strong biological oxidant, hydrogen peroxide (H2O2 or H2O2/Fe (a donor of hydroxyl radicals. The tested fraction of H. rhamnoides (0.5– 50 µg/mL; the incubation time: 15 and 60 min inhibited lipid peroxidation induced by H2O2 or H2O2/Fe. The H. rhamnoides phenolic fraction inhibited not only plasma lipid peroxidation, but also plasma protein carbonylation stimulated by H2O2 or H2O2/Fe. Moreover, the level of O2-∙ in platelets significantly decreased. In comparative experiments, the H. rhamnoides fraction was a more effective antioxidant than aronia extract or grape seed extract (at the highest tested concentration, 50 µg/mL. The obtained results suggest that H. rhamnoides fruits may be a new, promising source of natural compounds with antioxidant and antiplatelet activity beneficial not only for healthy people, but also for those with oxidative stress-associated diseases.

  19. Associations of combined polymorphisms of the platelet membrane glycoproteins Ia and IIIa and the platelet-endothelial cell adhesion molecule-1 and P-Selectin genes with IVF implantation failures.

    Science.gov (United States)

    Vlachadis, Nikolaos; Tsamadias, Vasileios; Vrachnis, Nikolaos; Kaparos, Georgios; Vitoratos, Nikolaos; Kouskouni, Evaggelia; Economou, Emmanuel

    2017-04-01

    The aim of the study was to investigate the combined impact of the genetic heterogeneity of the glycoproteins Ia (GpIa) and IIIa (GpIIIa) and the platelet-endothelial cell adhesion molecule-1 (PECAM-1) and P-Selectin genes on IVF embryo transfer implantation failures (IVF-ET failures). Sixty nulligravida women with previous IVF-ET failures and 60 fertile controls were genotyped for the GpIa-C807T, GpIIIa-PlA1/PA2, PECAM-1-C373G (Leu125Val) and P-Selectin-A37674C (Thr715Pro) polymorphisms by pyrosequencing. Compared with wild-type combined homozygotes, carriers of combinations of risk alleles in two gene loci were at significantly increased risk for IVF-ET failure, whereas carriers of the combination of GpIa-807T, GpIIIa-PlA2 and PECAM-1-373G alleles had OR = 52.50 (95%CI: 4.05-680.95, p IVF-ET failures especially for younger women and provided a genetic risk score with good diagnostic accuracy in the prediction of IVF-ET failures.

  20. Adhesion of Blood Plasma Proteins and Platelet-rich Plasma on l-Valine-Based Poly(ester urea).

    Science.gov (United States)

    Childers, Erin P; Peterson, Gregory I; Ellenberger, Alex B; Domino, Karen; Seifert, Gabrielle V; Becker, Matthew L

    2016-10-10

    The competitive absorption of blood plasma components including fibrinogen (FG), bovine serum albumin (BSA), and platelet-rich plasma (PRP) on l-valine-based poly(ester urea) (PEU) surfaces were investigated. Using four different PEU polymers, possessing compositionally dependent trends in thermal, mechanical, and critical surface tension measurements, water uptake studies were carried out to determine in vitro behavior of the materials. Quartz crystal microbalance (QCM) measurements were used to quantify the adsorption characteristics of PRP onto PEU thin films by coating the surfaces initially with FG or BSA. Pretreatment of the PEU surfaces with FG inhibited the adsorption of PRP and BSA decreased the absorption 4-fold. In vitro studies demonstrated that cells cultured on l-valine-based PEU thin films allowed attachment and spreading of rat aortic cells. These measurements will be critical toward efforts to use this new class of materials in blood-contacting biomaterials applications.

  1. Abrogation of junctional adhesion molecule-A expression induces cell apoptosis and reduces breast cancer progression.

    Directory of Open Access Journals (Sweden)

    Masato Murakami

    Full Text Available Intercellular junctions promote homotypic cell to cell adhesion and transfer intracellular signals which control cell growth and apoptosis. Junctional adhesion molecule-A (JAM-A is a transmembrane immunoglobulin located at tight junctions of normal epithelial cells of mammary ducts and glands. In the present paper we show that JAM-A acts as a survival factor for mammary carcinoma cells. JAM-A null mice expressing Polyoma Middle T under MMTV promoter develop significantly smaller mammary tumors than JAM-A positive mice. Angiogenesis and inflammatory or immune infiltrate were not statistically modified in absence of JAM-A but tumor cell apoptosis was significantly increased. Tumor cells isolated from JAM-A null mice or 4T1 cells incubated with JAM-A blocking antibodies showed reduced growth and increased apoptosis which paralleled altered junctional architecture and adhesive function. In a breast cancer clinical data set, tissue microarray data show that JAM-A expression correlates with poor prognosis. Gene expression analysis of mouse tumor samples showed a correlation between genes enriched in human G3 tumors and genes over expressed in JAM-A +/+ mammary tumors. Conversely, genes enriched in G1 human tumors correlate with genes overexpressed in JAM-A-/- tumors. We conclude that down regulation of JAM-A reduces tumor aggressive behavior by increasing cell susceptibility to apoptosis. JAM-A may be considered a negative prognostic factor and a potential therapeutic target.

  2. Patients with previous definite stent thrombosis have a reduced antiplatelet effect of aspirin and a larger fraction of immature platelets

    DEFF Research Database (Denmark)

    Würtz, Morten; Grove, Erik; Wulff, Lise Nielsen

    2010-01-01

    This study sought to evaluate the platelet response to aspirin and the immature platelet fraction in patients with previous stent thrombosis (ST).......This study sought to evaluate the platelet response to aspirin and the immature platelet fraction in patients with previous stent thrombosis (ST)....

  3. Performance and durability tests of smart icephobic coatings to reduce ice adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Janjua, Zaid A.; Turnbull, Barbara [Faculty of Engineering, University of Nottingham (United Kingdom); Choy, Kwang-Leong; Pandis, Christos [Institute for Materials Discovery, University College London (UCL) (United Kingdom); Liu, Junpeng; Hou, Xianghui; Choi, Kwing-So [Faculty of Engineering, University of Nottingham (United Kingdom)

    2017-06-15

    Highlights: • Repeated ice adhesion and removal occurs on nanocoatings. • Icephobicity of nanocoatings reduces with each test cycle. • Adhesion strength linked to contact angle hysteresis in Gaussian fit. • Icephobicity not linked to hydrophobicity. - Abstract: The accretion of ice can cause damage in applications ranging from power lines and shipping decks, to wind turbines and rail infrastructure. In particular on aircraft, it can change aerodynamic characteristics, greatly affecting the flight safety. Commercial aircraft are therefore required to be equipped with de-icing devices, such as heating mats over the wings. The application of icephobic coatings near the leading edge of a wing can in theory reduce the high power requirements of heating mats, which melt ice that forms there. Such coatings are effective in preventing the accretion of runback ice, formed from airborne supercooled droplets, or the water that the heating mats generate as it is sheared back over the wing's upper surface. However, the durability and the practicality of applying them over a large wing surface have been prohibitive factors in deploying this technology so far. Here, we evaluated the ice adhesion strength of four non-conductive coatings and seven thermally conductive coatings by shearing ice samples from coated plates by spinning them in a centrifuge device. The durability of the coating performance was also assessed by repeating the tests, each time regrowing ice samples on the previously-used coatings. Contact angle parameters of each coating were tested for each test to determine influence on ice adhesion strength. The results indicate that contact angle hysteresis is a crucial parameter in determining icephobicity of a coating and hydrophobicity is not necessarily linked to icephobicity.

  4. Measurement of platelet aggregation, independently of patient platelet count

    DEFF Research Database (Denmark)

    Vinholt, P J; Frederiksen, H; Hvas, A-M

    2017-01-01

    Essentials •Platelet function may influence bleeding risk in thrombocytopenia, but useful tests are needed. •A flow cytometric platelet aggregation test independent of the patient platelet count was made. •Platelet aggregation was reduced in thrombocytopenic patients with hematological cancer....... •High platelet aggregation ruled out bleeding tendency in thrombocytopenic patients. Summary Background Methods for testing platelet aggregation in thrombocytopenia are lacking. Objective To establish a flow-cytometric test of in vitro platelet aggregation independently of the patient's platelet count...

  5. Reducing the incompatibility between two-step adhesives and resin composite luting cements.

    Science.gov (United States)

    Garcia, Eugenio Jose; Reis, Alessandra; Arana-Correa, Beatriz Elena; Sepúlveda-Navarro, Wilmer Fabian; Higashi, Cristian; Gomes, João Carlos; Loguercio, Alessandro D

    2010-10-01

    To determine whether the adverse interaction between a two-step/acidic etch-and-rinse adhesive (One-Step Plus [OS], Bisco) and chemically cured resin luting cement [Variolink II, Ivoclar Vivadent] can improve adhesive coupling by reducing the dentin permeability with an oxalate desensitizer (BisBlock, Bisco). After exposing dentin on the occlusal surfaces of human third molars, bonding was performed on either oxalate treated (BB) or nontreated (NB) demineralized dentin. A resin luting cement was placed in the format of a crown following the light-curing mode (only with the base syringe [LC]) or the chemically curing mode (mixture of base and catalyst syringes [CC]). The activation of the LC or CC cements was either immediately [IM], meaning soon after the placement of LC and the initial set of CC cement (5 min), or after a delay of 20 min [DP] for both modes of polymerization. Five teeth were assigned to each experimental condition. Teeth were sectioned to obtain sticks with a cross-sectional area of 0.95 mm2, which were tested using the microtensile bond strength test soon after the specified periods of polymerization. The bond strength values of each adhesive were analyzed by three-way repeated measures ANOVA and Tukey's tests (α = 0.05). Fractographic analysis of the specimens was performed using SEM. The delayed polymerization (for both LC and CC cements) produced low bond strength values compared to IM activation. When the BB was employed, the bond strength values of the CC cement was approximately doubled, while the BB did not affect the bond strength of the LC cement. Bond strength values of LC cements were higher than CC. The use of BB significantly improved the bond strength of CC cement only. The morphological observations confirmed the bond strength results. A myriad of voids could be detected in the luting cement side when BB was not applied, except for the immediately light-cured group. The use of an oxalate desensitizer (BisBlock) reduced the

  6. Engagement of αIIbβ3 (GPIIb/IIIa) with ανβ3 integrin mediates interaction of melanoma cells with platelets: a connection to hematogenous metastasis.

    Science.gov (United States)

    Lonsdorf, Anke S; Krämer, Björn F; Fahrleitner, Manuela; Schönberger, Tanja; Gnerlich, Stephan; Ring, Sabine; Gehring, Sarah; Schneider, Stefan W; Kruhlak, Michael J; Meuth, Sven G; Nieswandt, Bernhard; Gawaz, Meinrad; Enk, Alexander H; Langer, Harald F

    2012-01-13

    A mutual relationship exists between metastasizing tumor cells and components of the coagulation cascade. The exact mechanisms as to how platelets influence blood-borne metastasis, however, remain poorly understood. Here, we used murine B16 melanoma cells to observe functional aspects of how platelets contribute to the process of hematogenous metastasis. We found that platelets interfere with a distinct step of the metastasis cascade, as they promote adhesion of melanoma cells to the endothelium in vitro under shear conditions. Constitutively active platelet receptor GPIIb/IIIa (integrin αIIbβ3) expressed on Chinese hamster ovary cells promoted melanoma cell adhesion in the presence of fibrinogen, whereas blocking antibodies to aνβ3 integrin on melanoma cells or to GPIIb/IIIa significantly reduced melanoma cell adhesion to platelets. Furthermore, using intravital microscopy, we observed functional platelet-melanoma cell interactions, as platelet depletion resulted in significantly reduced melanoma cell adhesion to the injured vascular wall in vivo. Using a mouse model of hematogenous metastasis to the lung, we observed decreased metastasis of B16 melanoma cells to the lung by treatment with a mAb blocking the aν subunit of aνβ3 integrin. This effect was significantly reduced when platelets were depleted in vivo. Thus, the engagement of GPIIb/IIIa with aνβ3 integrin interaction mediates tumor cell-platelet interactions and highlights how this interaction is involved in hematogenous tumor metastasis.

  7. Platelet hemostasis in patients with metabolic syndrome and type 2 diabetes mellitus: cGMP- and NO-dependent mechanisms in the insulin-mediated platelet aggregation

    Directory of Open Access Journals (Sweden)

    Tatiana E Suslova

    2015-01-01

    Full Text Available Patients with metabolic syndrome (MetS and type 2 diabetes mellitus (T2DM have high risk of microcirculation complications and microangiopathies. An increase in thrombogenic risk is associated with platelet hyperaggregation, hypercoagulation, and hyperfibrinolysis. Factors leading to platelet activation in MetS and T2DM comprise insulin resistance, hyperglycemia, non-enzymatic glycosylation, oxidative stress, and inflammation. This review discusses the role of nitric oxide (NO in the regulation of platelet adhesion and aggregation processes. Nitric oxide is synthesized both in endotheliocytes, smooth muscle cells, macrophages, and platelets. Modification of platelet NO-synthase (NOS activity in MetS patients can play a central role in the manifestation of platelet hyperactivation. Metabolic changes, accompanying T2DM, can lead to an abnormal NOS expression and activity in platelets. Hyperhomocysteinemia, often accompanying T2DM, is a risk factor for cardiovascular accidents. Homocysteine can reduce NO production by platelets. This review provides data on the insulin effects in platelets. Decrease in a number and sensitivity of the insulin receptors on platelets in T2DM can cause platelet hyperactivation. Various intracellular mechanisms of anti-aggregating insulin effects are discussed. Anti-aggregating effects of insulin are mediated by a NO-induced elevation of cGMP and upregulation of cAMP- and cGMP-dependent pathways. The review presents data suggesting an ability of platelets to synthesize humoral factors stimulating thrombogenesis and inflammation. Proinflammatory cytokines are considered as markers of T2DM and cardiovascular complications and are involved in the development of dyslipidemia and insulin resistance. The article provides an evaluation of NO-mediated signaling pathway in the effects of cytokines on platelet aggregation. The effects of the proinflammatory cytokines on functional activity of platelets are demonstrated.

  8. Folic acid deficiency increases delayed neuronal death, DNA damage, platelet endothelial cell adhesion molecule-1 immunoreactivity, and gliosis in the hippocampus after transient cerebral ischemia.

    Science.gov (United States)

    Hwang, In Koo; Yoo, Ki-Yeon; Suh, Hong-Won; Kim, Young Sup; Kwon, Dae Young; Kwon, Young-Guen; Yoo, Jun-Hyun; Won, Moo-Ho

    2008-07-01

    Folic acid deficiency increases stroke risk. In the present study, we examined whether folic acid deficiency enhances neuronal damage and gliosis via oxidative stress in the gerbil hippocampus after transient forebrain ischemia. Animals were exposed to a folic acid-deficient diet (FAD) for 3 months and then subjected to occlusion of both common carotid arteries for 5 min. Exposure to an FAD increased plasma homocysteine levels by five- to eightfold compared with those of animals fed with a control diet (CD). In CD-treated animals, most neurons were dead in the hippocampal CA1 region 4 days after ischemia/reperfusion, whereas, in FAD-treated animals, this occurred 3 days after ischemia/reperfusion. Immunostaining for 8-hydroxy-2'-deoxyguanosine (8-OHdG) was performed to examine DNA damage in CA1 neurons in both groups after ischemia, and it was found that 8-OHdG immunoreactivity in both FAD and CD groups peaked at 12 hr after reperfusion, although the immunoreactivity in the FAD group was much greater than that in the CD group. Platelet endothelial cell adhesion molecule-1 (PECAM-1; a final mediator of neutrophil transendothelial migration) immunoreactivity in both groups increased with time after ischemia/reperfusion: Its immunoreactivity in the FAD group was much higher than that in the CD group 3 days after ischemia/reperfusion. In addition, reactive gliosis in the ischemic CA1 region increased with time after ischemia in both groups, but astrocytosis and microgliosis in the FAD group were more severe than in the CD group at all times after ischemia. Our results suggest that folic acid deficiency enhances neuronal damage induced by ischemia. 2008 Wiley-Liss, Inc.

  9. Complement Activation Alters Platelet Function

    Science.gov (United States)

    2014-10-01

    been shown to participate directly in the immune response through interaction with vascular endothelium , with antigen presenting cells (APC) and...Syk inhibition decreases platelet lodging in the lungs indicating Syk is integral in platelet sequestration and organ damage. Crossing B6.lpr...adhesive phenotype: role of PAF in spatially regulating neutrophil adhesion and spreading. Blood 110:1879-1886. 7. Lapchak, P.H., A. Ioannou, P. Rani

  10. Performance and durability tests of smart icephobic coatings to reduce ice adhesion

    Science.gov (United States)

    Janjua, Zaid A.; Turnbull, Barbara; Choy, Kwang-Leong; Pandis, Christos; Liu, Junpeng; Hou, Xianghui; Choi, Kwing-So

    2017-06-01

    The accretion of ice can cause damage in applications ranging from power lines and shipping decks, to wind turbines and rail infrastructure. In particular on aircraft, it can change aerodynamic characteristics, greatly affecting the flight safety. Commercial aircraft are therefore required to be equipped with de-icing devices, such as heating mats over the wings. The application of icephobic coatings near the leading edge of a wing can in theory reduce the high power requirements of heating mats, which melt ice that forms there. Such coatings are effective in preventing the accretion of runback ice, formed from airborne supercooled droplets, or the water that the heating mats generate as it is sheared back over the wing's upper surface. However, the durability and the practicality of applying them over a large wing surface have been prohibitive factors in deploying this technology so far. Here, we evaluated the ice adhesion strength of four non-conductive coatings and seven thermally conductive coatings by shearing ice samples from coated plates by spinning them in a centrifuge device. The durability of the coating performance was also assessed by repeating the tests, each time regrowing ice samples on the previously-used coatings. Contact angle parameters of each coating were tested for each test to determine influence on ice adhesion strength. The results indicate that contact angle hysteresis is a crucial parameter in determining icephobicity of a coating and hydrophobicity is not necessarily linked to icephobicity.

  11. Inner Leaf Gel of Aloe striata Induces Adhesion-Reducing Morphological Hyphal Aberrations

    Directory of Open Access Journals (Sweden)

    Gloria Wada

    2018-02-01

    Full Text Available Fungi, particularly molds that are cosmopolitan in soils, are frequent etiologic agents of opportunistic mycoses. Members of the Fusarium solani and Fusarium oxysporum species complexes are the most commonly implicated etiologic agents of opportunistic fusarial infections in mammals, while Paecilomyces variotii is one of the most frequently encountered Paecilomyces species in human infections. Prevention and treatment of these mycoses are problematic because available antimycotics are limited and often have toxic side effects. Popular folk medicines, such as the inner leaf gel from Aloe spp., offer potential sources for novel antimycotic compounds. To screen for antifungal properties of Aloe striata, we treated conidia of three strains each of F. solani, F. oxysporum, and P. variotii with homogenized and filtered inner leaf gel. Exposure to gel homogenates caused minimal inhibition of conidial germination in tested strains. However, it significantly increased the frequency of hyphal aberrations characterized by increased hyphal diameters that resulted in intervals of non-parallel cell walls. Non-parallel cell walls ostensibly reduce total hyphal surface area available for adhesion. We found a significant decrease in the ability of aberrated P. variotii hyphae to remain adhered to microscope slides after repeated washing with reverse osmosis water. Our results suggest that treatment with A. striata contributes to a decrease in the adhesion frequency of tested P. variotii strains.

  12. Alpha-tocopherol and BAY 11-7082 reduce vascular cell adhesion molecule in human aortic endothelial cells.

    Science.gov (United States)

    Catalán, Ursula; Fernández-Castillejo, Sara; Pons, Laia; Heras, Mercedes; Aragonés, Gemma; Anglès, Neus; Morelló, Jose-Ramon; Solà, Rosa

    2012-01-01

    In endothelial dysfunction, vascular cell adhesion molecule-1 (VCAM-1), E-selectin and intercellular adhesion molecule-1 (ICAM-1) expression (collectively termed cell adhesion molecules; CAMs) increase at sites of atherosclerosis and are stimulated by proinflammatory cytokines such as tumor necrosis factor-α (TNF-α). We evaluated the effect of alpha-tocopherol (AT; 10-150 µM) and BAY 11-7082 (BAY; 0.1 or 1 µM) on CAMs mRNA expression as well as their protein in soluble release form (sCAMs) in human aortic endothelial cells (HAECs) activated by TNF-α (1 or 10 ng/ml). Also, we determined the extent of lymphocyte adhesion to activated HAECs. BAY reduced VCAM-1, E-selectin and ICAM-1 mRNA expression by 30, 30 and 10%, respectively. Furthermore, protein reduction of sVCAM-1 by 70%, sE-selectin by 51% and sICAM-1 by 25% compared to HAECs stimulated by TNF-α was observed (p adhesion to human Jurkat T lymphocytes was higher compared to nonactivated HAECs (p adhesion (p cell adhesion, while AT selectively inhibits VCAM-1; both induce endothelial dysfunction improvement. Copyright © 2012 S. Karger AG, Basel.

  13. Clopidogrel, a platelet P2Y12 receptor inhibitor, reduces vascular inflammation and angiotensin II induced-abdominal aortic aneurysm progression.

    Directory of Open Access Journals (Sweden)

    Ou Liu

    Full Text Available Medial degeneration and inflammation are features of abdominal aortic aneurysms (AAAs. However, the early inflammatory event initiating aneurysm formation remains to be identified. Activated platelets release abundant proinflammatory cytokines and are involved in initial inflammation in various vascular diseases. We investigated the role of platelets in progression of AAA in vivo and in vitro. Histological studies of tissues of patients with AAA revealed that the number of platelets was increased in aneurysm sites along with the increased infiltration of T lymphocytes and augmented angiogenesis. In a murine model of AAA, apolipoprotein E-knockout mice infused with 1,000 ng/kg/min angiotensin II, treatment with clopidogrel, an inhibitor of platelets, significantly suppressed aneurysm formation (47% decrease, P<0.05. The clopidogrel also suppressed changes in aortic expansion, elastic lamina degradation and inflammatory cytokine expression. Moreover, the infiltration of macrophages and production of matrix metalloproteinases (MMPs were also significantly reduced by clopidogrel treatment. In vitro incubation of macrophages with isolated platelets stimulated MMP activity by 45%. These results demonstrate a critical role for platelets in vascular inflammation and AAA progression.

  14. Relational Motives Reduce Attentional Adhesion to Attractive Alternatives in Heterosexual University Students in China.

    Science.gov (United States)

    Zhang, Qiuli; Maner, Jon K; Xu, Yin; Zheng, Yong

    2017-02-01

    In heterosexual individuals, attention is automatically captured by physically attractive members of the opposite sex. Although helpful for selecting new mates, attention to attractive relationship alternatives can threaten satisfaction with and commitment to an existing romantic relationship. The current study tested the hypothesis that although a mating prime would increase selective attention to attractive opposite-sex targets (relative to less attractive targets) among single participants, this effect would be reduced among people already committed to a long-term romantic partner. Consistent with hypotheses, whereas single participants responded to a mating prime with greater attentional adhesion to physically attractive opposite-sex targets (relative to less attractive targets), participants in a committed romantic relationship showed no such effect. These findings extend previous research suggesting the presence of relationship maintenance mechanisms that operate at early stages of social cognition.

  15. Phospholipids reduce gastric cancer cell adhesion to extracellular matrix in vitro

    Directory of Open Access Journals (Sweden)

    Jansen Petra

    2004-12-01

    Full Text Available Abstract Background Nidation of floating tumour cells initiates peritoneal carcinosis and limits prognosis of gastro-intestinal tumours. Adhesion of tumour cells to extracellular matrix components is a pivotal step in developing peritoneal dissemination of intraabdominal malignancies. Since phospholipids efficaciously prevented peritoneal adhesion formation in numerous animal studies we investigated their capacity to reduce adhesions of gastric cancer cells to extracellular matrix components (ECM. Methods Human gastric cancer cells (NUGC-4, Japanese Cancer Research Resources Bank, Tokyo, Japan were used in this study. Microtiter plates were coated with collagen IV (coll, laminin (ln and fibronectin (fn. Non-specific protein binding of the coated wells was blocked by adding 1% (w/v BSA (4°C, 12 h and rinsing the wells with Hepes buffer. 50.000 tumour cells in 100 μl medium were seeded into each well. Beside the controls, phospholipids were added in concentrations of 0.05, 0.1, 0.5, 0.75 and 1.0/100 μl medium. After an incubation interval of 30 min, attached cells were fixed and stained with 0.1% (w/v crystal violet. The dye was resuspended with 50 μl of 0.2% (v/v Triton X-100 per well and colour yields were then measured by an ELISA reader at 590 nm. Optical density (OD showed a linear relationship to the amount of cells and was corrected for dying of BSA/polystyrene without cells. Results The attachment of gastric cancer cells to collagen IV, laminin, and fibronectin could be significantly reduced up to 53% by phospholipid concentrations of 0.5 mg/100 μl and higher. Conclusion These results, within the scope of additional experimental studies on mice and rats which showed a significant reduction of peritoneal carcinosis, demonstrated the capacity of phospholipids in controlling abdominal nidation of tumour cells to ECM components. Lipid emulsions may be a beneficial adjunct in surgery of gastrointestinal malignancies.

  16. Serratia marcescens strains implicated in adverse transfusion reactions form biofilms in platelet concentrates and demonstrate reduced detection by automated culture.

    Science.gov (United States)

    Greco-Stewart, V S; Brown, E E; Parr, C; Kalab, M; Jacobs, M R; Yomtovian, R A; Ramírez-Arcos, S M

    2012-04-01

    Serratia marcescens is a gram-negative bacterium that has been implicated in adverse transfusion reactions associated with contaminated platelet concentrates. The aim of this study was to investigate whether the ability of S. marcescens to form surface-attached aggregates (biofilms) could account for contaminated platelet units being missed during screening by the BacT/ALERT automated culture system. Seven S. marcescens strains, including biofilm-positive and biofilm-negative control strains and five isolates recovered from contaminated platelet concentrates, were grown in enriched Luria-Bertani medium and in platelets. Biofilm formation was examined by staining assay, dislodging experiments and scanning electron microscopy. Clinical strains were also analysed for their ability to evade detection by the BacT/ALERT system. All strains exhibited similar growth in medium and platelets. While only the biofilm-positive control strain formed biofilms in medium, this strain and three clinical isolates associated with transfusion reactions formed biofilms in platelet concentrates. The other two clinical strains, which had been captured during platelet screening by BacT/ALERT, failed to form biofilms in platelets. Biofilm-forming clinical isolates were approximately three times (Pmarcescens strains associated with transfusion reactions form biofilms under platelet storage conditions, and initial biofilm formation correlates with missed detection of contaminated platelet concentrates by the BacT/ALERT system. © 2011 The Author(s). Vox Sanguinis © 2011 International Society of Blood Transfusion.

  17. Loss of olfactory cell adhesion molecule reduces the synchrony of mitral cell activity in olfactory glomeruli.

    Science.gov (United States)

    Borisovska, Maria; McGinley, Matthew J; Bensen, AeSoon; Westbrook, Gary L

    2011-04-15

    Odours generate activity in olfactory receptor neurons, whose axons contact the dendritic tufts of mitral cells within olfactory bulb glomeruli. These axodendritic synapses are anatomically separated from dendrodendritic synapses within each glomerulus. Mitral cells within a glomerulus show highly synchronized activity as assessed with whole-cell recording from pairs of mitral cells. We examined glomerular activity in mice lacking the olfactory cell adhesion molecule (OCAM). Glomeruli in mice lacking OCAM show a redistribution of synaptic subcompartments, but the total area occupied by axonal inputs was similar to wild-type mice. Stimulation of olfactory nerve bundles showed that excitatory synaptic input to mitral cells as well as dendrodendritic inhibition was unaffected in the knockout. However, correlated spiking in mitral cells was significantly reduced, as was electrical coupling between apical dendrites. To analyse slow network dynamics we induced slow oscillations with a glutamate uptake blocker. Evoked and spontaneous slow oscillations in mitral cells and external tufted cells were broader and had multiple peaks in OCAM knockout mice, indicating that synchrony of slow glomerular activity was also reduced. To assess the degree of shared activity between mitral cells under physiological conditions, we analysed spontaneous sub-threshold voltage oscillations using coherence analysis. Coherent activity was markedly reduced in cells from OCAM knockout mice across a broad range of frequencies consistent with a decrease in tightly time-locked activity. We suggest that synchronous activity within each glomerulus is dependent on segregation of synaptic subcompartments.

  18. Environment-friendly adhesives for surface bonding of wood-based flooring using natural tannin to reduce formaldehyde and TVOC emission.

    Science.gov (United States)

    Kim, Sumin

    2009-01-01

    The objective of this research was to develop environment-friendly adhesives for face fancy veneer bonding of engineered flooring using the natural tannin form bark in the wood. The natural wattle tannin adhesive were used to replace UF resin in the formaldehyde-based resin system in order to reduce formaldehyde and volatile organic compound (VOC) emissions from the adhesives used between plywoods and fancy veneers. PVAc was added to the natural tannin adhesive to increase viscosity of tannin adhesive for surface bonding. For tannin/PVAc hybrid adhesives, 5%, 10%, 20% and 30% of PVAc to the natural tannin adhesives were added. tannin/PVAc hybrid adhesives showed better bonding than the commercial natural tannin adhesive with a higher level of wood penetration. The initial adhesion strength was sufficient to be maintained within the optimum initial tack range. The standard formaldehyde emission test (desiccator method), field and laboratory emission cell (FLEC) and VOC analyzer were used to determine the formaldehyde and VOC emissions from engineered flooring bonded with commercial the natural tannin adhesive and tannin/PVAc hybrid adhesives. By desiccator method and FLEC, the formaldehyde emission level of each adhesive showed the similar tendency. All adhesives satisfied the E(1) grade (below 1.5 mg/L) and E(0) grade (below 0.5 mg/L) with UV coating. VOC emission results by FLEC and VOC analyzer were different with the formaldehyde emission results. TVOC emission was slightly increased as adding PVAc.

  19. Fibrinogen matrix deposited on the surface of biomaterials acts as a natural anti-adhesive coating.

    Science.gov (United States)

    Safiullin, Roman; Christenson, Wayne; Owaynat, Hadil; Yermolenko, Ivan S; Kadirov, Marsil K; Ros, Robert; Ugarova, Tatiana P

    2015-10-01

    Adsorption of fibrinogen on the luminal surface of biomaterials is a critical early event during the interaction of blood with implanted vascular graft prostheses which determines their thrombogenicity. We have recently identified a nanoscale process by which fibrinogen modifies the adhesive properties of various surfaces for platelets and leukocytes. In particular, adsorption of fibrinogen at low density promotes cell adhesion while its adsorption at high density results in the formation of an extensible multilayer matrix, which dramatically reduces cell adhesion. It remains unknown whether deposition of fibrinogen on the surface of vascular graft materials produces this anti-adhesive effect. Using atomic force spectroscopy, single cell force spectroscopy, and standard adhesion assays with platelets and leukocytes, we have characterized the adhesive and physical properties of the contemporary biomaterials, before and after coating with fibrinogen. We found that uncoated PET, PTFE and ePTFE exhibited high adhesion forces developed between the AFM tip or cells and the surfaces. Adsorption of fibrinogen at the increasing concentrations progressively reduced adhesion forces, and at ≥2 μg/ml all surfaces were virtually nonadhesive. Standard adhesion assays performed with platelets and leukocytes confirmed this dependence. These results provide a better understanding of the molecular events underlying thrombogenicity of vascular grafts. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Osteopontin adsorption to Gram-positive cells reduces adhesion forces and attachment to surfaces under flow

    OpenAIRE

    Kristensen, M. F.; G. Zeng; T. R. Neu; Meyer, Rikke L.; Baelum, V.; Schlafer, S.

    2017-01-01

    ABSTRACT The bovine milk protein osteopontin (OPN) may be an efficient means to prevent bacterial adhesion to dental tissues and control biofilm formation. This study sought to determine to what extent OPN impacts adhesion forces and surface attachment of different bacterial strains involved in dental caries or medical device–related infections. It further investigated if OPN’s effect on adhesion is caused by blocking the accessibility of glycoconjugates on bacterial surfaces. Bacterial adhes...

  1. Leukocyte-Reduced Platelet-Rich Plasma Treatment of Basal Thumb Arthritis: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Markus Loibl

    2016-01-01

    Full Text Available A positive effect of intra-articular platelet-rich plasma (PRP injection has been discussed for osteoarthritic joint conditions in the last years. The purpose of this study was to evaluate PRP injection into the trapeziometacarpal (TMC joint. We report about ten patients with TMC joint osteoarthritis (OA that were treated with 2 intra-articular PRP injections 4 weeks apart. PRP was produced using the Double Syringe System (Arthrex Inc., Naples, Florida, USA. A total volume of 1.47±0.25 mL PRP was injected at the first injection and 1.5±0.41 mL at the second injection, depending on the volume capacity of the joint. Patients were evaluated using VAS, strength measures, and the Mayo Wrist score and DASH score after 3 and 6 months. VAS significantly decreased from 6.2±1.6 to 5.4±2.2 at six-month follow-up (P<0.05. The DASH score was unaffected; however, the Mayo Wrist score significantly improved from 46.5±18.6 to 67.5±19.0 at six-month follow-up (P=0.05. Grip was unaffected, whereas pinch declined from 6.02±2.99 to 3.96±1.77 at six-month follow-up (P<0.05. We did not observe adverse events after the injection of PRP, except one occurrence of a palmar wrist ganglion, which resolved without treatment. PRP injection for symptomatic TMC OA is a reasonable therapeutic option in early stages TMC OA and can be performed with little to no morbidity.

  2. Novel aspects of platelet aggregation

    Directory of Open Access Journals (Sweden)

    Roka-Moya Y. M.

    2014-01-01

    Full Text Available The platelet aggregation is an important process, which is critical for the hemostatic plug formation and thrombosis. Recent studies have shown that the platelet aggregation is more complex and dynamic than it was previously thought. There are several mechanisms that can initiate the platelet aggregation and each of them operates under specific conditions in vivo. At the same time, the influence of certain plasma proteins on this process should be considered. This review intends to summarize the recent data concerning the adhesive molecules and their receptors, which provide the platelet aggregation under different conditions.

  3. Does maintaining a bottle of adhesive without the lid significantly reduce the solvent content?

    Science.gov (United States)

    Santana, Márcia Luciana Carregosa; Sousa Júnior, José Aginaldo de; Leal, Pollyana Caldeira; Faria-e-Silva, André Luis

    2014-01-01

    This study aimed to evaluate the effect of maintaining a bottle of adhesive without its lid on the solvent loss of the etch-and-rinse adhesive systems. Three 2-step etch-and-rinse adhesives with different solvents (acetone, ethanol or butanol) were used in this study. Drops of each adhesive were placed on an analytical balance and the adhesive mass was recorded until equilibrium was achieved (no significant mass alteration within time). The solvent content of each adhesive and evaporation rate of solvents were measured (n=3). Two bottles of each adhesive were weighted. The bottles were maintained without their lids for 8 h in a stove at 37 ºC, after which the mass loss was measured. Based on mass alteration of drops, acetone-based adhesive showed the highest solvent content (46.5%, CI 95%: 35.8-54.7) and evaporation rate (1.11 %/s, CI95%: 0.63-1.60), whereas ethanol-based adhesive had the lowest values (10.1%, CI95%: 4.3-16.0; 0.03 %/s CI95%: 0.01-0.05). However, none of the adhesives bottles exhibited significant mass loss after sitting for 8 h without their lids (% from initial content; acetone - 96.5, CI 95%: 91.8-101.5; ethanol - 99.4, CI 95%: 98.4-100.4; and butanol - 99.3, CI 95%: 98.1-100.5). In conclusion, maintaining the adhesive bottle without lid did not induce significant solvent loss, irrespective the concentration and evaporation rate of solvent.

  4. γ-Oryzanol reduces adhesion molecule expression in vascular endothelial cells via suppression of nuclear factor-κB activation.

    Science.gov (United States)

    Sakai, Satoshi; Murata, Takahisa; Tsubosaka, Yoshiki; Ushio, Hideki; Hori, Masatoshi; Ozaki, Hiroshi

    2012-04-04

    γ-Oryzanol (γ-ORZ) is a mixture of phytosteryl ferulates purified from rice bran oil. In this study, we examined whether γ-ORZ represents a suppressive effect on the lipopolysaccharide (LPS)-induced adhesion molecule expression on vascular endothelium. Treatment with LPS elevated the mRNA expression of vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), and E-selectin in bovine aortic endothelial cells (BAECs). Pretreatment with γ-ORZ dose-dependently decreased the LPS-mediated expression of these genes. Western blotting also revealed that pretreatment with γ-ORZ dose-dependently inhibited LPS-induced VCAM-1 expression in human umbilical vein endothelial cells. Consistently, pretreatment with γ-ORZ dose-dependently reduced LPS-induced U937 monocyte adhesion to BAECs. In immunofluorescence, LPS caused nuclear factor-κB (NF-κB) nuclear translocation in 40% of BAECs, which indicates NF-κB activation. Pretreatment with γ-ORZ, as well as its components (cycloartenyl ferulate, ferulic acid, or cycloartenol), dose-dependently inhibited LPS-mediated NF-κB activation. Collectively, our results suggested that γ-ORZ reduced LPS-mediated adhesion molecule expression through NF-κB inhibition in vascular endothelium.

  5. A neural cell adhesion molecule-derived peptide reduces neuropathological signs and cognitive impairment induced by Abeta25-35

    DEFF Research Database (Denmark)

    Klementiev, B; Novikova, T; Novitskaya, V

    2007-01-01

    death and brain atrophy in response to Abeta25-35. Finally, the Abeta25-35-administration led to a reduced short-term memory as determined by the social recognition test. A synthetic peptide termed FGL derived from the neural cell adhesion molecule (NCAM) was able to prevent or, if already manifest...

  6. Mesothelium regeneration on acellular bovine pericardia loaded with an angiogenic agent (ginsenoside Rg1) successfully reduces postsurgical pericardial adhesions.

    Science.gov (United States)

    Chang, Yen; Lai, Po-Hong; Wang, Chung-Chi; Chen, Sung-Ching; Chang, Wei-Chun; Sung, Hsing-Wen

    2006-10-01

    Our objective was to reduce postsurgical pericardial adhesions with porous acellular bovine pericardia loaded with ginsenoside Rg1, an angiogenic agent isolated from Panax ginseng (the Acellular/Rg1 patch). The acellular/Rg1 patch was used as a substitute to repair a defect created in the pericardium of a rabbit model. A commercially available expanded polytetrafluoroethylene patch, the cellular pericardium (the cellular patch), and the acellular pericardium without loading Rg1 (the acellular patch) were used as controls. The implanted samples were retrieved at 1 and 3 months after surgery (n = 5 per group at each time point). It was found that each side of the implanted patch could be remesothelialized provided that regeneration of neo-tissue fibrils occurred initially on its surfaces. Because remesothelialization did not take place on the surfaces of the expanded polytetrafluoroethylene and cellular patches, moderate to severe adhesions to the lung and epicardium were clearly observed. As compared with the cellular patch, the acellular patch significantly reduced postsurgical pericardial adhesions, especially on its lung side, as a result of remesothelialization. In the presence of Rg1, a faster remesothelialization was observed on each side of the acellular/Rg1 patch. Therefore, the acellular/Rg1 patch was free of any adhesions to the lung; however, there was still a filmy adhesion to the epicardium observed in 3 of the 5 studied animals at 3 months after surgery, due to incomplete remesothelialization. The acellular/Rg1 patch effectively repaired pericardial defects in rabbits and successfully reduced the formation of pericardial adhesions.

  7. Local administration of Trolox, a vitamin E analog, reduced tendon adhesion in a chicken model of flexor digitorum profundus tendon injury

    OpenAIRE

    Lee, Yuk Wa; Fu, Sai Chuen; Mok, Tsui Yu; Chan, Kai Ming; Hung, Leung Kim

    2016-01-01

    Background: Hand flexor tendon injuries are compromised with tendon adhesion. Tendon adhesion forms between flexor tendon and tendon sheath, reduces the range of motion of fingers, and affects their function. Oxidative stress is increased in flexor tendon after injury and might play a role in tendon adhesion formation. Trolox (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid), a water-soluble analog of vitamin E, is antioxidative. Trolox reduced oxidative stress and the expression of fi...

  8. A ZnO-doped adhesive reduced collagen degradation favouring dentine remineralization

    National Research Council Canada - National Science Library

    Toledano, Manuel; Yamauti, Monica; Ruiz-Requena, María Estrella; Osorio, Raquel

    2012-01-01

    The objective of the study was to determine the efficacy of a ZnO-doped etch and rinse adhesive in decreasing MMPs-mediated collagen degradation at the resin-dentine hybrid layer, and increasing bonding stability...

  9. Ex vivo human platelet aggregation induced by decompression during reduced barometric pressure, hydrostatic, and hydrodynamic (Bernoulli) effect.

    Science.gov (United States)

    Murayama, M

    1984-03-01

    Decompression of human platelet-rich plasma (PRP) in siliconized glass or plastic to 380 mm Hg for 3 hours at 38 degrees C produced platelet aggregation independent of pO2. Aggregation also took place when PRP was compressed to 8,000 PSI and then decompressed slowly to one atmosphere (14.7 PSI) without gas bubble formation. Platelets also aggregated when plasma was decompressed hydrodynamically (Bernoulli effect) at room temperature. It was also found that the drugs piracetam (2-oxypyrolidine acetamide) and pentoxifylline (1-(5-oxohexyl)-theobromine) at 0.5 and 1.0 mM prevent thrombocyte aggregation. Implications for mountain sickness are discussed.

  10. Metformin and atorvastatin reduce adhesion formation in a rat uterine horn model.

    Science.gov (United States)

    Yilmaz, Bulent; Aksakal, Orhan; Gungor, Tayfun; Sirvan, Levent; Sut, Necdet; Kelekci, Sefa; Soysal, Sunullah; Mollamahmutoglu, Leyla

    2009-03-01

    The aim of the present study was to determine whether atorvastatin and metformin are effective in preventing adhesions in a rat uterine horn model. A total of 40 non-pregnant, female Wistar albino rats, weighing 180-210 g, were used as a model for post-operative adhesion formation. The rats were randomized into four groups after seven standard lesions were inflicted in each uterine horn and lower abdominal sidewall using bipolar cauterization. The rats were given atorvastatin 2.5 mg/kg/day, p.o. (10 rats), atorvastatin 30 mg/kg/day, p.o. (10 rats), metformin 50 mg/kg/day, p.o. (10 rats) and no treatment was applied in the control group (10 rats). The animals were killed 2 weeks later and adhesions were scored both clinically and pathologically by authors blinded to groups. One rat in the control group died before the end of the 2 week period. Total clinical adhesion scores regarding extent, severity and degree of adhesions and histopathological findings including inflammation and fibrosis were significantly lower in the metformin (P < 0.001 and P < 0.01, respectively) and atorvastatin 30 mg/kg/day (P < 0.001 and P < 0.01, respectively) groups when compared with control group. Metformin and atorvastatin are both effective for prevention of adhesion formation in a rat uterine horn model.

  11. Autologous leukocyte-reduced platelet-rich plasma therapy for Achilles tendinopathy induced by collagenase in a rabbit model

    Science.gov (United States)

    González, Juan C.; López, Catalina; Álvarez, María E.; Pérez, Jorge E.; Carmona, Jorge U.

    2016-01-01

    Leukocyte-reduced platelet-rich plasma (LR-PRP) is a therapy for tendinopathy of the Achilles tendon (TAT); however, there is scarce information regarding LR-PRP effects in rabbit models of TAT. We compared, at 4 and 12 weeks (w), the LR-PRP and placebo (PBS) effects on ultrasonography, histology and relative gene expression of collagen types I (COL1A1) and III (COL3A1) and vascular endothelial growth factor (VEGF) in 24 rabbits with TAT induced by collagenase. The rabbits (treated with both treatments) were euthanatised after either 4 or 12 w. A healthy group (HG (n = 6)) was included. At 4 and 12 w, the LR-PRP group had a no statistically different histology score to the HG. At w 4, the COL1A1 expression was significantly higher in the LR-PRP group when compared to HG, and the expression of COL3A1from both LR-PRP and PBS-treated tendons was significantly higher when compared to the HG. At w 12, the expression of COL3A1 remained significantly higher in the PBS group in comparison to the LR-PRP group and the HG. At w 4, the LR-PRP group presented a significantly higher expression of VEGF when compared to the PBS group and the HG. In conclusion, LR-PRP treatment showed regenerative properties in rabbits with TAT. PMID:26781753

  12. Adhesion molecule L1 binds to amyloid beta and reduces Alzheimer's disease pathology in mice.

    Science.gov (United States)

    Djogo, Nevena; Jakovcevski, Igor; Müller, Christian; Lee, Hyun Joon; Xu, Jin-Chong; Jakovcevski, Mira; Kügler, Sebastian; Loers, Gabriele; Schachner, Melitta

    2013-08-01

    Alzheimer's disease (AD) is a devastating neurodegenerative disorder and the most common cause of elderly dementia. In an effort to contribute to the potential of molecular approaches to reduce degenerative processes we have tested the possibility that the neural adhesion molecule L1 ameliorates some characteristic cellular and molecular parameters associated with the disease in a mouse model of AD. Three-month-old mice overexpressing mutated forms of amyloid precursor protein and presenilin-1 under the control of a neuron-specific promoter received an injection of adeno-associated virus encoding the neuronal isoform of full-length L1 (AAV-L1) or, as negative control, green fluorescent protein (AAV-GFP) into the hippocampus and occipital cortex. Four months after virus injection, the mice were analyzed for histological and biochemical parameters of AD. AAV-L1 injection decreased the Aβ plaque load, levels of Aβ42, Aβ42/40 ratio and astrogliosis compared with AAV-GFP controls. AAV-L1 injected mice also had increased densities of inhibitory synaptic terminals on pyramidal cells in the hippocampus when compared with AAV-GFP controls. Numbers of microglial cells/macrophages were similar in both groups, but numbers of microglial cells/macrophages per plaque were increased in AAV-L1 injected mice. To probe for a molecular mechanism that may underlie these effects, we analyzed whether L1 would directly and specifically interact with Aβ. In a label-free binding assay, concentration dependent binding of the extracellular domain of L1, but not of the close homolog of L1 to Aβ40 and Aβ42 was seen, with the fibronectin type III homologous repeats 1-3 of L1 mediating this effect. Aggregation of Aβ42 in vitro was reduced in the presence of the extracellular domain of L1. The combined observations indicate that L1, when overexpressed in neurons and glia, reduces several histopathological hallmarks of AD in mice, possibly by reduction of Aβ aggregation. L1 thus appears to

  13. Carbohydrate Coating Reduces Adhesion of Biofilm-Forming Bacillus subtilis to Gold Surfaces

    Science.gov (United States)

    Kesel, S.; Mader, A.; Seeberger, P. H.; Lieleg, O.

    2014-01-01

    The growth of bacterial biofilms in pipes and food tanks causes severe problems in industry. Biofilms growing on medical implants or catheters are of great concern, as they can cause serious infections and decrease the functionality of the medical device. The prevention of bacterial adhesion—the first step in colonization and biofilm formation—is therefore very important. Current research comprises alterations in surface properties, the prevention of adhesin biosynthesis, inhibition with receptor analogs, or the development of anti-adhesive vaccines. We present a new approach that allows us to study bacterial adhesion with high sensitivity in real-time while testing several different surfaces in parallel. Using the cantilever-array technique we demonstrate that coating of gold surfaces with mono- or disaccharides results in a reduction of the bacterial adhesion of the biofilm-forming bacterium Bacillus subtilis NCIB 3610 to these gold surfaces. This reduction in bacterial adhesion is independent of the studied carbohydrate. Using several mutant strains, we investigate the underlying molecular interactions, and our results suggest that adhesion to gold surfaces is mediated by thiol groups present in proteins of the bacterial cell membrane or biofilm matrix proteins expressed at low levels by the wild-type strain. Furthermore, our data indicate that the adhesion of B. subtilis NCIB 3610 to carbohydrate-coated gold surfaces is facilitated by interactions between carbohydrates installed on the cantilever gold surface and an exopolysaccharide expressed by this strain. Understanding general and specific contributions of molecular interactions mediating bacterial adhesion will enable its prevention in the future. PMID:25038098

  14. Expression of adhesion molecules on CD34+ cells: CD34+ L-selectin+ cells predict a rapid platelet recovery after peripheral blood stem cell transplantation

    NARCIS (Netherlands)

    Dercksen, M. W.; Gerritsen, W. R.; Rodenhuis, S.; Dirkson, M. K.; Slaper-Cortenbach, I. C.; Schaasberg, W. P.; Pinedo, H. M.; von dem Borne, A. E.; van der Schoot, C. E.

    1995-01-01

    Adhesion molecules play a role in the migration of hematopoietic progenitor cells and regulation of hematopoiesis. To study whether the mobilization process is associated with changes in expression of adhesion molecules, the expression of CD31, CD44, L-selectin, sialyl Lewisx, beta 1 integrins very

  15. Thrombosis is reduced by inhibition of COX-1, but unaffected by inhibition of COX-2, in an acute model of platelet activation in the mouse.

    Directory of Open Access Journals (Sweden)

    Paul C Armstrong

    Full Text Available Clinical use of selective inhibitors of cyclooxygenase (COX-2 appears associated with increased risk of thrombotic events. This is often hypothesised to reflect reduction in anti-thrombotic prostanoids, notably PGI(2, formed by COX-2 present within endothelial cells. However, whether COX-2 is actually expressed to any significant extent within endothelial cells is controversial. Here we have tested the effects of acute inhibition of COX on platelet reactivity using a functional in vivo approach in mice.A non-lethal model of platelet-driven thromboembolism in the mouse was used to assess the effects of aspirin (7 days orally as control diclofenac (1 mg.kg(-1, i.v. and parecoxib (0.5 mg.kg(-1, i.v. on thrombus formation induced by collagen or the thromboxane (TX A(2-mimetic, U46619. The COX inhibitory profiles of the drugs were confirmed in mouse tissues ex vivo. Collagen and U46619 caused in vivo thrombus formation with the former, but not latter, sensitive to oral dosing with aspirin. Diclofenac inhibited COX-1 and COX-2 ex vivo and reduced thrombus formation in response to collagen, but not U46619. Parecoxib inhibited only COX-2 and had no effect upon thrombus formation caused by either agonist.Inhibition of COX-1 by diclofenac or aspirin reduced thrombus formation induced by collagen, which is partly dependent upon platelet-derived TXA(2, but not that induced by U46619, which is independent of platelet TXA(2. These results are consistent with the model demonstrating the effects of COX-1 inhibition in platelets, but provide no support for the hypothesis that acute inhibition of COX-2 in the circulation increases thrombosis.

  16. Effect of anticoagulants on the protein corona-induced reduced drug carrier adhesion efficiency in human blood flow.

    Science.gov (United States)

    Sobczynski, Daniel J; Eniola-Adefeso, Omolola

    2017-01-15

    Plasma proteins rapidly coat the surfaces of particulate drug carriers to form a protein corona upon their injection into the bloodstream. The high presence of immunoglobulins in the corona formed on poly(lactic-co-glycolic acid) (PLGA) vascular-targeted carrier (VTC) surfaces was recently shown to negatively impact their adhesion to activated endothelial cells (aECs) in vitro. Here, we characterized the influence of anticoagulants, or their absence, on the binding efficiency of VTCs of various materials via modulation of their protein corona. Specifically, we evaluated the adhesion of PLGA, poly(lactic acid) (PLA), polycaprolactone (PCL), silica, and polystyrene VTCs to aECs in heparinized, citrated, and non-anticoagulated (serum and whole) blood flows relative to buffer control. Particle adhesion is substantially reduced in non-anticoagulated blood flows regardless of the material type while only moderate to minimal reduction is observed for VTCs in anticoagulant-containing blood flow depending on the anticoagulant and material type. The substantial reduction in VTC adhesion in blood flows was linked to a high presence of immunoglobulin-sized proteins in the VTC corona via SDS-PAGE analysis. Of all the materials evaluated, PLGA was the most sensitive to plasma protein effects while PCL was the most resistant, suggesting particle hydrophobicity is a critical component of the observed negative plasma protein effects. Overall, this work demonstrates that anticoagulant positively alters the effect of plasma proteins in prescribing VTC adhesion to aECs in human blood flow, which has implication in the use of in vitro blood flow assays for functional evaluation of VTCs for in vivo use. This study addresses the impact of anticoagulant on altering the extent of the previously observed protein corona-induced adhesion reduction of vascular-targeted drug carriers in human blood flows. Specifically, serum blood flow (no anticoagulant) magnifies the negative effect of the

  17. Bile acid receptor TGR5 agonism induces NO production and reduces monocyte adhesion in vascular endothelial cells.

    Science.gov (United States)

    Kida, Taiki; Tsubosaka, Yoshiki; Hori, Masatoshi; Ozaki, Hiroshi; Murata, Takahisa

    2013-07-01

    TGR5 is a G-protein-coupled receptor for bile acids. So far, little is known about the function of TGR5 in vascular endothelial cells. In bovine aortic endothelial cells, treatment with a bile acid having a high affinity to TGR5, taurolithocholic acid (TLCA), significantly increased NO production. This effect was abolished by small interfering RNA-mediated depletion of TGR5. TLCA-induced NO production was also observed in human umbilical vein endothelial cells measured via intracellular cGMP accumulation. TLCA increased endothelial NO synthase(ser1177) phosphorylation in human umbilical vein endothelial cells. This response was accompanied by increased Akt(ser473) phosphorylation and intracellular Ca(2+). Inhibition of these signals significantly decreased TLCA-induced NO production. We next examined whether TGR5-mediated NO production affects inflammatory responses of endothelial cells. In human umbilical vein endothelial cells, TLCA significantly reduced tumor necrosis factor-α-induced adhesion of monocytes, vascular cell adhesion molecule-1 expression, and activation of nuclear factor-κB. TLCA also inhibited lipopolysaccharide-induced monocyte adhesion to mesenteric venules in vivo. These inhibitory effects of TLCA were abrogated by NO synthase inhibition. TGR5 agonism induces NO production via Akt activation and intracellular Ca(2+) increase in vascular endothelial cells, and this function inhibits monocyte adhesion in response to inflammatory stimuli.

  18. Cigarette smoking reduces platelet reactivity independently of clopidogrel treatment in patients with non-ST elevation acute coronary syndromes.

    Science.gov (United States)

    Crimi, Gabriele; Somaschini, Alberto; Cattaneo, Marco; Angiolillo, Dominick J; Piscione, Federico; Palmerini, Tullio; De Servi, Stefano

    2017-12-05

    Smokers receiving clopidogrel show a lower residual platelet reactivity than non-smokers, a phenomenon generally ascribed to smoking-induced increased production of clopidogrel active metabolite, but also associated with the high hemoglobin levels of smokers, which decreases platelet reactivity in tests that measure platelet function in whole blood. We evaluated the impact of cigarette smoking and of hemoglobin levels on platelet reactivity index (PRI) measured by the vasodilator-stimulated phosphoprotein phosphorylation (VASP-P) assay in whole blood samples from patients with non-ST elevation acute coronary syndrome (NSTE-ACS) undergoing percutaneous coronary interventions, both before and after clopidogrel administration. PRI was measured in 718 clopidogrel-naïve NSTE-ACS patients, both before and 1 month after treatment with clopidogrel (75 mg daily). Smokers (n = 347, 48%) had significantly lower mean PRI levels at both baseline (57.7 ± 24.1 vs. 64.8 ± 19.8, p 15), the β coefficient of smoke on PRI was -8.51 [-11.90 to -5.11, p clopidogrel-treated smokers have lower platelet reactivity, measured by the VASP-P assay, compared to clopidogrel-treated non-smokers. However, smokers had lower platelet reactivity already before receiving clopidogrel treatment, suggesting that smoke affects platelet reactivity independently of its potential effect on the pharmacokinetics of clopidogrel. Our data also indicate that such an effect is not mediated by increased hemoglobin levels.

  19. Fermented soya bean (tempe) extracts reduce adhesion of enterotoxigenic Escherichia coli to intestinal epithelial cells

    NARCIS (Netherlands)

    Roubos-van den Hil, P.J.; Nout, M.J.R.; Beumer, R.R.; Meulen, van der J.; Zwietering, M.H.

    2009-01-01

    Aims: This study aimed to investigate the effect of processed soya bean, during the successive stages of tempe fermentation and different fermentation times, on adhesion of enterotoxigenic Escherichia coli (ETEC) K88 to intestinal brush border cells as well as Caco-2 intestinal epithelial cells; and

  20. Salmonella enterica serovar Typhimurium adhesion and cytotoxicity during epithelial cell stress is reduced by Lactobacillus rhamnosus GG

    Directory of Open Access Journals (Sweden)

    Burkholder Kristin M

    2009-07-01

    Full Text Available Abstract Background Physiological stressors may alter susceptibility of the host intestinal epithelium to infection by enteric pathogens. In the current study, cytotoxic effect, adhesion and invasion of Salmonella enterica serovar Typhimurium (S. Typhimurium to Caco-2 cells exposed to thermal stress (41°C, 1 h was investigated. Probiotic bacteria have been shown to reduce interaction of pathogens with the epithelium under non-stress conditions and may have a significant effect on epithelial viability during infection; however, probiotic effect on pathogen interaction with epithelial cells under physiological stress is not known. Therefore, we investigated the influence of Lactobacillus rhamnosus GG and Lactobacillus gasseri on Salmonella adhesion and Salmonella-induced cytotoxicity of Caco-2 cells subjected to thermal stress. Results Thermal stress increased the cytotoxic effect of both S. Typhimurium (P = 0.0001 and nonpathogenic E. coli K12 (P = 0.004 to Caco-2 cells, and resulted in greater susceptibility of cell monolayers to S. Typhimurium adhesion (P = 0.001. Thermal stress had no significant impact on inflammatory cytokines released by Caco-2 cells, although exposure to S. Typhimurium resulted in greater than 80% increase in production of IL-6 and IL-8. Blocking S. Typhimurium with anti-ShdA antibody prior to exposure of Salmonella decreased adhesion (P = 0.01 to non-stressed and thermal-stressed Caco-2 cells. Pre-exposure of Caco-2 cells to L. rhamnosus GG significantly reduced Salmonella-induced cytotoxicity (P = 0.001 and Salmonella adhesion (P = 0.001 to Caco-2 cells during thermal stress, while L. gasseri had no effect. Conclusion Results suggest that thermal stress increases susceptibility of intestinal epithelial Caco-2 cells to Salmonella adhesion, and increases the cytotoxic effect of Salmonella during infection. Use of L. rhamnosus GG as a probiotic may reduce the severity of infection during epithelial cell stress. Mechanisms

  1. Platelet mimicry

    DEFF Research Database (Denmark)

    Moghimi, Seyed Moein; Hunter, Alan Christy; Peer, Dan

    2016-01-01

    Here we critically examine whether coating of nanoparticles with platelet membranes can truly disguise them against recognition by elements of the innate immune system. We further assess whether the "cloaking technology" can sufficiently equip nanoparticles with platelet-mimicking functionalities...

  2. Expression, purification, and analysis of three recombinant ECD disintegrins (r-colombistatins) from P-III class snake venom metalloproteinases affecting platelet aggregation and SK-MEL-28 cell adhesion.

    Science.gov (United States)

    Suntravat, Montamas; Helmke, Thomas J; Atphaisit, Chairat; Cuevas, Esteban; Lucena, Sara E; Uzcátegui, Nestor L; Sánchez, Elda E; Rodriguez-Acosta, Alexis

    2016-11-01

    Crotalid venoms are rich sources of components that affect the hemostatic system. Snake venom metalloproteinases are zinc-dependent enzymes responsible for hemorrhage that also interfere with hemostasis. The disintegrin domain is a part of snake venom metalloproteinases, which involves the binding of integrin receptors. Integrins play an essential role in cancer survival and invasion, and they have been major targets for drug development and design. Both native and recombinant disintegrins have been widely investigated for their anti-cancer activities in biological systems as well as in vitro and in vivo systems. Here, three new cDNAs encoding ECD disintegrin-like domains of metalloproteinase precursor sequences obtained from a Venezuelan mapanare (Bothrops colombiensis) venom gland cDNA library have been cloned. Three different N- and C-terminal truncated ECD disintegrin-like domains of metalloproteinases named colombistatins 2, 3, and 4 were amplified by PCR, cloned into a pGEX-4T-1 vector, expressed in Escherichia coli BL21, and tested for inhibition of platelet aggregation and inhibition of adhesion of human skin melanoma (SK-Mel-28) cancer cell lines on collagen I. Purified recombinant colombistatins 2, 3, and 4 were able to inhibit ristocetin- and collagen-induced platelet aggregation. r-Colombistatins 2 showed the most potent inhibiting SK-Mel-28 cancer cells adhesion to collagen. These results suggest that colombistatins may have utility in the development of therapeutic tools in the treatment of melanoma cancers and also thrombotic diseases. Copyright © 2016. Published by Elsevier Ltd.

  3. Defect of glucosyltransferases reduces platelet aggregation activity of Streptococcus mutans: analysis of clinical strains isolated from oral cavities.

    Science.gov (United States)

    Taniguchi, N; Nakano, K; Nomura, R; Naka, S; Kojima, A; Matsumoto, M; Ooshima, T

    2010-06-01

    Streptococcus mutans is a major pathogen of dental caries and occasionally isolated from the blood of patients with infective endocarditis, though the association of its cell-surface glucosyltransferases (GTFB, GTFC, and GTFD) with pathogenicity for infective endocarditis remains to be elucidated. In this study, we investigated the contribution of S. mutans GTFs to platelet aggregation and analysed GTF expression profiles in a large number of clinical oral isolates. The platelet aggregation properties of GTF-defective isogenic mutant strains constructed from S. mutans reference strain MT8148 were evaluated using whole blood and platelet-rich plasma (PRP) taken from mice, as well as human PRP. In addition, GTF expression profiles for 396 S. mutans strains isolated from the oral cavities of 396 subjects were analysed by western blotting using antisera specific for each GTF. The platelet aggregation activities of the GTF-defective isogenic mutants were significantly lower than that of MT8148 when added to a large number of cells. Western blotting revealed no strains without GTF expression, though six strains had alterations of GTFB and GTFC as compared to MT8148. PCR analyses indicated that the gtfB-gtfC region length was approximately 4.5 kb shorter in those strains as compared to MT8148. These were designated as "GTFBC-fusion" strains and they demonstrated lower levels of platelet aggregation. Our findings indicate that GTFs are associated with platelet aggregation. Although the clinical detection frequency of S. mutans strains with altered expressions is extremely low, GTFBC-fusion strains have activities similar to GTF-defective mutant strains. Copyright 2010 Elsevier Ltd. All rights reserved.

  4. Leukocyte-Reduced Platelet-Rich Plasma Alters Protein Expression of Adipose Tissue-Derived Mesenchymal Stem Cells.

    Science.gov (United States)

    Loibl, Markus; Lang, Siegmund; Hanke, Alexander; Herrmann, Marietta; Huber, Michaela; Brockhoff, Gero; Klein, Silvan; Nerlich, Michael; Angele, Peter; Prantl, Lukas; Gehmert, Sebastian

    2016-08-01

    Application of platelet-rich plasma and stem cells has become important in regenerative medicine. Recent literature supports the use of platelet-rich plasma as a cell culture media supplement to stimulate proliferation of adipose tissue-derived mesenchymal stem cells. The underlying mechanism of proliferation stimulation by platelet-rich plasma has not been investigated so far. Adipose tissue-derived mesenchymal stem cells were cultured in α-minimal essential medium supplemented with platelet-rich plasma or fetal calf serum. Cell proliferation was assessed with cell cycle kinetics using flow cytometric analyses after 48 hours. Differences in proteome expression of the adipose tissue-derived mesenchymal stem cells were analyzed using a reverse-phase protein array to quantify 214 proteins. Complementary Ingenuity Pathways Analysis and gene set enrichment analysis were performed using protein data, and confirmed by Western blot analysis. A higher percentage of adipose tissue-derived mesenchymal stem cells in the S phase in the presence of platelet-rich plasma advocates the proliferation stimulation. Ingenuity Pathways Analysis and gene set enrichment analysis confirm the involvement of the selected proteins in the process of cell growth and proliferation. Ingenuity Pathways Analysis revealed a participation in the top-ranked canonical pathways PI3K/AKT, PTEN, ILK, and IGF-1. Gene set enrichment analysis identified the authors' protein set as being part of significantly regulated protein sets with the focus on cell cycle, metabolism, and the Kyoto Encyclopedia of Genes and Genomes transforming growth factor-β signaling pathway. The present study provides evidence that platelet-rich plasma stimulates proliferation and induces a unique change in the proteomic profile of adipose tissue-derived mesenchymal stem cells. The interpretation of altered expression of regulatory proteins represents a step forward toward achieving good manufacturing practice-compliant criteria

  5. Platelet CD40 Mediates Leukocyte Recruitment and Neointima Formation after Arterial Denudation Injury in Atherosclerosis-Prone Mice.

    Science.gov (United States)

    Jin, Rong; Xiao, Adam Y; Song, Zifang; Yu, Shiyong; Li, Jarvis; Cui, Mei-Zhen; Li, Guohong

    2018-01-01

    The role of platelets in the development of thrombosis and abrupt closure after angioplasty is well recognized. However, the direct impact of platelets on neointima formation after arterial injury remains undetermined. Herein, we show that neointima formation after carotid artery wire injury reduces markedly in CD40-/- apolipoprotein E-deficient (apoE-/-) mice but only slightly in CD40 ligand-/-apoE-/- mice, compared with apoE-/- mice. Wild-type and CD40-deficient platelets were isolated from blood of apoE-/- and CD40-/-apoE-/- mice, respectively. The i.v. injection of thrombin-activated platelets into CD40-/-apoE-/- mice was performed every 5 days, starting at 2 days before wire injury. Injection of wild-type platelets promoted neointima formation, which was associated with increased inflammation by stimulating leukocyte recruitment via up-regulation of circulating platelet surface P-selectin expression and the formation of platelet-leukocyte aggregates. It was also associated with further promoting the luminal deposition of platelet-derived regulated on activation normal T cell expressed and secreted/chemokine (C-C motif) ligand 5 and expression of monocyte chemoattractant protein-1 and vascular cell adhesion molecule 1 in wire-injured carotid arteries. Remarkably, all these inflammatory actions by activated platelets were abrogated by lack of CD40 on injected platelets. Moreover, injection of wild-type platelets inhibited endothelial recovery in wire-injured carotid arteries, but this effect was also abrogated by lack of CD40 on injected platelets. Results suggest that platelet CD40 plays a pivotal role in neointima formation after arterial injury and might represent an attractive target to prevent restenosis after vascular interventions. Copyright © 2018 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  6. Zinc-ion implanted and deposited titanium surfaces reduce adhesion of Streptococccus mutans

    Energy Technology Data Exchange (ETDEWEB)

    Xu Juan, E-mail: doctorxue@126.com [Implant Center, School of Stomatology Jilin University, Changchun, Jilin (China) and Stomatological Hospital, Urumqi, Xinjiang (China); Ding Gang [Department of Stomatology, Yidu Central Hospital, Weifang, Shandong (China); Capital Medical University School of Stomatology, Beijing (China); Li Jinlu; Yang Shenhui; Fang Bisong [Capital Medical University School of Stomatology, Beijing (China); Sun Hongchen, E-mail: hcsun@jlu.edu.cn [Implant Center, School of Stomatology Jilin University, Changchun, Jilin (China); Zhou Yanmin, E-mail: zhouym62@126.com [Implant Center, School of Stomatology Jilin University, Changchun, Jilin (China)

    2010-10-01

    While titanium (Ti) is a commonly used dental implant material with advantageous biocompatible and mechanical properties, native Ti surfaces do not have the ability to prevent bacterial colonization. The objective of this study was to evaluate the chemical composition and bacterial adhesive properties of zinc (Zn) ion implanted and deposited Ti surfaces (Zn-PIIID-Ti) as potential dental implant materials. Surfaces of pure Ti (cp-Ti) were modified with increasing concentrations of Zn using plasma immersion ion implantation and deposition (PIIID), and elemental surface compositions were characterized by X-ray photoelectron spectrometry (XPS). To evaluate bacterial responses, Streptococcus mutans were seeded onto the modifiedTi surfaces for 48 h and subsequently observed by scanning electron microscopy. Relative numbers of bacteria on each surface were assessed by collecting the adhered bacteria, reculturing and counting colony forming units after 48 h on bacterial grade plates. Ti, oxygen and carbon elements were detected on all surfaces by XPS. Increased Zn signals were detected on Zn-PIIID-Ti surfaces, correlating with an increase of Zn-deposition time. Substantial numbers of S. mutans adhered to cp-Ti samples, whereas bacterial adhesion on Zn-PIIID-Ti surfaces signficantly decreased as the Zn concentration increased (p < 0.01). In conclusion, PIIID can successfully introduce Zn onto a Ti surface, forming a modified surface layer bearing Zn ions that consequently deter adhesion of S. mutans, a common bacterium in the oral environment.

  7. Platelet serotonin promotes the recruitment of neutrophils to sites of acute inflammation in mice

    Science.gov (United States)

    Suidan, Georgette L.; Demers, Melanie; Herr, Nadine; Carbo, Carla; Brill, Alexander; Cifuni, Stephen M.; Mauler, Maximilian; Cicko, Sanja; Bader, Michael; Idzko, Marco; Bode, Christoph

    2013-01-01

    The majority of peripheral serotonin is stored in platelets, which secrete it on activation. Serotonin releases Weibel-Palade bodies (WPBs) and we asked whether absence of platelet serotonin affects neutrophil recruitment in inflammatory responses. Tryptophan hydroxylase (Tph)1–deficient mice, lacking non-neuronal serotonin, showed mild leukocytosis compared with wild-type (WT), primarily driven by an elevated neutrophil count. Despite this, 50% fewer leukocytes rolled on unstimulated mesenteric venous endothelium of Tph1−/− mice. The velocity of rolling leukocytes was higher in Tph1−/− mice, indicating fewer selectin-mediated interactions with endothelium. Stimulation of endothelium with histamine, a secretagogue of WPBs, or injection of serotonin normalized the rolling in Tph1−/− mice. Diminished rolling in Tph1−/− mice resulted in reduced firm adhesion of leukocytes after lipopolysaccharide treatment. Blocking platelet serotonin uptake with fluoxetine in WT mice reduced serum serotonin by > 80% and similarly reduced leukocyte rolling and adhesion. Four hours after inflammatory stimulation, neutrophil extravasation into lung, peritoneum, and skin wounds was reduced in Tph1−/− mice, whereas in vitro neutrophil chemotaxis was independent of serotonin. Survival of lipopolysaccharide-induced endotoxic shock was improved in Tph1−/− mice. In conclusion, platelet serotonin promotes the recruitment of neutrophils in acute inflammation, supporting an important role for platelet serotonin in innate immunity. PMID:23243271

  8. Study of the water structure in poly(methyl methacrylate-block-2-hydroxyethyl methacrylate) and its relationship to platelet adhesion on the copolymer surface.

    Science.gov (United States)

    Mochizuki, Akira; Namiki, Takahiro; Nishimori, Yusuke; Ogawa, Haruki

    2015-01-01

    The water structure and platelet compatibility of poly(methyl methacrylate (MMA)-block-2-hydroxyethyl methacrylate (HEMA)) were investigated. The molecular weight (Mn) of the polyHEMA segment was kept constant (average: 9600), while the Mn of the polyMMA segment was varied from 1340 to 7390. The equilibrium water content of the copolymers was found to be mainly governed by the HEMA content. The water structure in the copolymers was characterized in terms of the amounts of non-freezing and freezing water (abbreviated as Wnf and Wfz, respectively) using differential scanning calorimetry. It was found that the Wnf for the copolymers were higher than those estimated from the Wnf for the HEMA and MMA homopolymers and that the amount of excess non-freezing water depended on the polyMMA segment length. In addition, X-ray diffraction analysis revealed that some of the copolymers had cold-crystallizable water. These facts suggested that the polyMMA segments were involved in determining the water structures in the copolymers. Furthermore, the platelet compatibility of the copolymers was improved as compared to that of the HEMA homopolymer. It was therefore concluded that the platelet compatibility of the copolymer was related to the amount of excess non-freezing water.

  9. A pilot study to assess the hemostatic function of pathogen-reduced platelets in patients with thrombocytopenia

    DEFF Research Database (Denmark)

    Johansson, Pär I; Simonsen, Anne Catrine; Brown, Peter de Nully

    2013-01-01

    Platelet (PLT) support is critical to the care of patients with thrombocytopenia, but allogeneic transfusions carry risk. Pathogen reduction mitigates some transfusion risks, but effects on PLT function remain a concern. This clinical pilot study assessed the effect of pathogen reduction technology...

  10. Dietary Nitrate Supplementation Reduces Circulating Platelet-Derived Extracellular Vesicles in Coronary Artery Disease Patients on Clopidogrel Therapy: A Randomised, Double-Blind, Placebo-Controlled Study.

    Science.gov (United States)

    Burnley-Hall, Nicholas; Abdul, Fairoz; Androshchuk, Vitaliy; Morris, Keith; Ossei-Gerning, Nick; Anderson, Richard; Rees, D Aled; James, Philip E

    2018-01-01

    Extracellular vesicles (EVs) are implicated in the pathogenesis of cardiovascular disease (CVD). Specifically, platelet-derived EVs are highly pro-coagulant, promoting thrombin generation and fibrin clot formation. Nitrate supplementation exerts beneficial effects in CVD, via an increase in nitric oxide (NO) bioavailability. Clopidogrel is capable of producing NO-donating compounds, such as S-nitrosothiols (RSNO) in the presence of nitrite and low pH. The aim of this study was to assess the effect of nitrate supplementation with versus without clopidogrel therapy on circulating EVs in coronary artery disease (CAD) patients. In this randomized, double-blind, placebo-controlled study, CAD patients with (n = 10) or without (n = 10) clopidogrel therapy received a dietary nitrate supplement (SiS nitrate gel) or identical placebo. NO metabolites and platelet activation were measured using ozone-based chemiluminescence and multiple electrode aggregometry. EV concentration and origin were determined using nanoparticle tracking analysis and time-resolved fluorescence. Following nitrate supplementation, plasma RSNO was elevated (4.7 ± 0.8 vs 0.2 ± 0.5 nM) and thrombin-receptor mediated platelet aggregation was reduced (-19.9 ± 6.0 vs 4.0 ± 6.4 U) only in the clopidogrel group compared with placebo. Circulating EVs were significantly reduced in this group (-1.183e11 ± 3.15e10 vs -9.93e9 ± 1.84e10 EVs/mL), specifically the proportion of CD41+ EVs (-2,120 ± 728 vs 235 ± 436 RFU [relative fluorescence unit]) compared with placebo. In vitro experiments demonstrated clopidogrel-SNO can reduce platelet-EV directly (6.209e10 ± 4.074e9 vs 3.94e11 ±  1.91e10 EVs/mL). In conclusion, nitrate supplementation reduces platelet-derived EVs in CAD patients on clopidogrel therapy, increasing patient responsiveness to clopidogrel. Nitrate supplementation may represent a novel approach to moderating the risk of thrombus formation in

  11. A novel bioabsorbable pericardial membrane substitute to reduce postoperative pericardial adhesions in a rabbit model.

    Science.gov (United States)

    Chen, Zerui; Zheng, Jilin; Zhang, Jiajia; Li, Shoujun

    2015-11-01

    In paediatric cardiac surgery, reoperations remain challenging since the injury and the formation of dense adhesions before reoperations can be life-threatening to the heart, bypass conduits or great vessels. To prevent the formation of dense adhesions, a variety of different types of pericardial membrane substitute have been employed. However, due to peel formation, calcification and infection, the routine application of these pericardial membrane substitute has not been achieved clinically. A novel bioabsorbable membrane has been developed from polylactic acid (PLA) to overcome these drawbacks. The purpose of this study was to assess the biosafety and the effectiveness of PLA membrane as a new bioabsorbable pericardial membrane substitute after pericardium replacement in a rabbit model. A total of 33 rabbits underwent abrasion on the surface of the heart through right thoracotomy and were divided into a PLA membrane group (n = 17) and a control group (n = 16). Biosafety was assessed by comparing pre- and postoperative liver/kidney function and C-reactive protein levels. Subsequently, at 4 and 12 weeks postoperatively, the degree of reabsorption of the membrane and the intensity of adhesions were macroscopically assessed, followed by a microscopic evaluation for histological changes. Samples of the regenerated fibrous membranes that were harvested 12 weeks after implantation were used to perform immunostaining for cytokeratin and human bone marrow endothelial cell-1 (HBME-1). The PLA membrane group exhibited a little inflammatory response (P > 0.05) and liver/kidney dysfunction (P > 0.05). The PLA membrane was mostly absorbed by 12 weeks with the replacement of loosely adherent tissue. Moderate adhesions were found between the pericardial membrane substitute and the epicardium at the 4-week postoperative inspection. After 12 weeks postoperatively, the adhesions were found to have resolved completely. The composite score, which combined the histological findings of

  12. Femtosecond laser surface texturing of titanium as a method to reduce the adhesion of Staphylococcus aureus and biofilm formation

    Energy Technology Data Exchange (ETDEWEB)

    Cunha, Alexandre [Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal); Bordeaux University, Institute of Chemistry & Biology of Membranes & Nanoobjects (CBMN UMR 5248, CNRS), European Institute of Chemistry and Biology, 2 Rue Robert Escarpit, 33607 Pessac (France); Elie, Anne-Marie [Bordeaux University, CBMN UMR 5248, CNRS, Bordeaux Science Agro, 1 Rue du G. de Gaulle, 33170 Gradignan (France); Plawinski, Laurent [Bordeaux University, Institute of Chemistry & Biology of Membranes & Nanoobjects (CBMN UMR 5248, CNRS), European Institute of Chemistry and Biology, 2 Rue Robert Escarpit, 33607 Pessac (France); Serro, Ana Paula [Instituto Superior Técnico, Universidade de Lisboa, CQE-Centro de Química Estrutural, Av. Rovisco Pais 1, 1049-001 Lisbon (Portugal); Botelho do Rego, Ana Maria [Instituto Superior Técnico, Universidade de Lisboa, CQFM-Centro de Química-Física Molecular and Institute of Nanoscience and Nanotechnology - IN, Av. Rovisco Pais 1, 1049-001 Lisbon (Portugal); Almeida, Amélia [Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal); Urdaci, Maria C. [Bordeaux University, CBMN UMR 5248, CNRS, Bordeaux Science Agro, 1 Rue du G. de Gaulle, 33170 Gradignan (France); Durrieu, Marie-Christine [Bordeaux University, Institute of Chemistry & Biology of Membranes & Nanoobjects (CBMN UMR 5248, CNRS), European Institute of Chemistry and Biology, 2 Rue Robert Escarpit, 33607 Pessac (France); Vilar, Rui, E-mail: rui.vilar@tecnico.ulisboa.pt [Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal)

    2016-01-01

    Graphical abstract: - Highlights: • The short-term adhesion of Staphylococcus aureus onto femtosecond laser textured surfaces of titanium was investigated. • The laser textured surfaces consist of laser-induced periodic surface structures (LIPSS) and nanopillars. • The laser treatment enhances the hydrophilicity and the surface free energy of the material. • The laser treatment reduces significantly the adhesion of S. aureus and biofilm formation. • Femtosecond laser surface texturing of titanium is a simple and promising method for endowing dental and orthopedic implants with antibacterial properties. - Abstract: The aim of the present work was to investigate the possibility of using femtosecond laser surface texturing as a method to reduce the colonization of Grade 2 Titanium alloy surfaces by Staphylococcus aureus and the subsequent formation of biofilm. The laser treatments were carried out with a Yb:KYW chirped-pulse-regenerative amplification laser system with a central wavelength of 1030 nm and a pulse duration of 500 fs. Two types of surface textures, consisting of laser-induced periodic surface structures (LIPSS) and nanopillars, were produced. The topography, chemical composition and phase constitution of these surfaces were investigated by atomic force microscopy, scanning electron microscopy, X-ray photoelectron spectroscopy, micro-Raman spectroscopy, and X-ray diffraction. Surface wettability was assessed by the sessile drop method using water and diiodomethane as testing liquids. The response of S. aureus put into contact with the laser treated surfaces in controlled conditions was investigated by epifluorescence microscopy and scanning electron microscopy 48 h after cell seeding. The results achieved show that the laser treatment reduces significantly the bacterial adhesion to the surface as well as biofilm formation as compared to a reference polished surfaces and suggest that femtosecond laser texturing is a simple and promising method

  13. Anhydride-functional silane immobilized onto titanium surfaces induces osteoblast cell differentiation and reduces bacterial adhesion and biofilm formation

    Energy Technology Data Exchange (ETDEWEB)

    Godoy-Gallardo, Maria, E-mail: maria.godoy.gallardo@upc.edu [Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgy, Technical University of Catalonia (UPC), ETSEIB, Av. Diagonal 647, 08028 Barcelona (Spain); Centre for Research in NanoEngineering (CRNE) — UPC, C/ Pascual i Vila 15, 08028 Barcelona (Spain); Guillem-Marti, Jordi, E-mail: jordi.guillem.marti@upc.edu [Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgy, Technical University of Catalonia (UPC), ETSEIB, Av. Diagonal 647, 08028 Barcelona (Spain); Centre for Research in NanoEngineering (CRNE) — UPC, C/ Pascual i Vila 15, 08028 Barcelona (Spain); Sevilla, Pablo, E-mail: psevilla@euss.es [Department of Mechanics, Escola Universitària Salesiana de Sarrià (EUSS), C/ Passeig de Sant Bosco, 42, 08017 Barcelona (Spain); Manero, José M., E-mail: jose.maria.manero@upc.edu [Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgy, Technical University of Catalonia (UPC), ETSEIB, Av. Diagonal 647, 08028 Barcelona (Spain); Centre for Research in NanoEngineering (CRNE) — UPC, C/ Pascual i Vila 15, 08028 Barcelona (Spain); Gil, Francisco J., E-mail: francesc.xavier.gil@upc.edu [Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgy, Technical University of Catalonia (UPC), ETSEIB, Av. Diagonal 647, 08028 Barcelona (Spain); Centre for Research in NanoEngineering (CRNE) — UPC, C/ Pascual i Vila 15, 08028 Barcelona (Spain); and others

    2016-02-01

    Bacterial infection in dental implants along with osseointegration failure usually leads to loss of the device. Bioactive molecules with antibacterial properties can be attached to titanium surfaces with anchoring molecules such as silanes, preventing biofilm formation and improving osseointegration. Properties of silanes as molecular binders have been thoroughly studied, but research on the biological effects of these coatings is scarce. The aim of the present study was to determine the in vitro cell response and antibacterial effects of triethoxysilypropyl succinic anhydride (TESPSA) silane anchored on titanium surfaces. X-ray photoelectron spectroscopy confirmed a successful silanization. The silanized surfaces showed no cytotoxic effects. Gene expression analyses of Sarcoma Osteogenic (SaOS-2) osteoblast-like cells cultured on TESPSA silanized surfaces reported a remarkable increase of biochemical markers related to induction of osteoblastic cell differentiation. A manifest decrease of bacterial adhesion and biofilm formation at early stages was observed on treated substrates, while favoring cell adhesion and spreading in bacteria–cell co-cultures. Surfaces treated with TESPSA could enhance a biological sealing on implant surfaces against bacteria colonization of underlying tissues. Furthermore, it can be an effective anchoring platform of biomolecules on titanium surfaces with improved osteoblastic differentiation and antibacterial properties. - Highlights: • TESPSA silane induces osteoblast differentiation. • TESPSA reduces bacterial adhesion and biofilm formation. • TESPSA is a promising anchoring platform of biomolecules onto titanium.

  14. Investigation of platelet responses and clotting characteristics of in situ albumin binding surfaces.

    Science.gov (United States)

    Guha Thakurta, Sanjukta; Miller, Robert; Subramanian, Anuradha

    2012-01-01

    The response of biomaterial surfaces when exposed to blood is in part dependent upon the nature and composition of the adsorbed layer of proteins. Surfaces passivated with albumin have been shown to reduce platelet adhesion and activation. In an attempt to develop surfaces that can selectively and specifically bind albumin, silicon-based surfaces were functionalized with linear peptides and chemical ligands that displayed an affinity for albumin. Peptide functionalized surfaces were observed to preferentially bind albumin when compared to human immunoglobulin and human fibrinogen, which possess low densities of surface adsorbed platelets. The platelet morphology was noted to be discoid on the peptide modified surface. Both the unmodified control and SCL functionalized surfaces had high densities of surface adhered platelets with spread out morphology. The peptide and SCL functionalized surfaces were noted to have no impact on PTT and PT clotting times, indicating that the extrinsic and intrinsic pathways were unperturbed by the surfaces generated.

  15. Chlorella 11-Peptide Inhibits the Production of Macrophage-Induced Adhesion Molecules and Reduces Endothelin-1 Expression and Endothelial Permeability

    Science.gov (United States)

    Shih, Mei Fen; Chen, Lih Chi; Cherng, Jong Yuh

    2013-01-01

    The inflammation process in large vessels involves the up-regulation of vascular adhesion molecules such as endothelial cell selectin (E-selectin), intercellular cell adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) which are also known as the markers of atherosclerosis. We have reported that Chlorella 11-peptide exhibited effective anti-inflammatory effects. This peptide with an amino sequence Val-Glu-Cys-Tyr-Gly-Pro-Asn-Arg-Pro-Gln-Phe was further examined for its potential in preventing atherosclerosis in this study. In particular, the roles of Chlorella 11-peptide in lowering the production of vascular adhesion molecules, monocyte chemoattractant protein (MCP-1) and expression of endothelin-1 (ET-1) from endothelia (SVEC4-10 cells) were studied. The production of E-selectin, ICAM-1, VCAM-1 and MCP-1 in SVEC4-10 cells was measured with ELISA. The mRNA expression of ET-1 was analyzed by RT-PCR and agarose gel. Results showed that Chlorella 11-peptide significantly suppressed the levels of E-selectin, ICAM, VCAM, MCP-1 as well as ET-1 gene expression. The inhibition of ICAM-1 and VCAM-1 production by Chlorella 11-peptide was reversed in the presence of protein kinase A inhibitor (H89) which suggests that the cAMP pathway was involved in the inhibitory cause of the peptide. In addition, this peptide was shown to reduce the extent of increased intercellular permeability induced by combination of 50% of lipopolysaccharide (LPS)-activated RAW 264.7 cells medium and 50% normal SEVC cell culture medium (referred to as 50% RAW-conditioned medium). These data demonstrate that Chlorella 11-peptide is a promising biomolecule in preventing chronic inflammatory-related vascular diseases. PMID:24129228

  16. A Chinese Herbal Preparation Containing Radix Salviae Miltiorrhizae, Radix Notoginseng and Borneolum Syntheticum Reduces Circulating Adhesion Molecules

    Directory of Open Access Journals (Sweden)

    Kylie A. O’Brien

    2011-01-01

    Full Text Available Circulating adhesion molecules (CAMs, surface proteins expressed in the vascular endothelium, have emerged as risk factors for cardiovascular disease (CVD. CAMs are involved in intercellular communication that are believed to play a role in atherosclerosis. A Chinese medicine, the “Dantonic Pill” (DP (also known as the “Cardiotonic Pill”, containing three Chinese herbal material medica, Radix Salviae Miltiorrhizae, Radix Notoginseng and Borneolum Syntheticum, has been used in China for the prevention and management of CVD. Previous laboratory and animal studies have suggested that this preparation reduces both atherogenesis and adhesion molecule expression. A parallel double blind randomized placebo-controlled study was conducted to assess the effects of the DP on three species of CAM (intercellular cell adhesion molecule-1 (ICAM-1, vascular cell adhesion molecule-1 and endothelial cell selectin (E-selectin in participants with mild-moderate hypercholesterolemia. Secondary endpoints included biochemical and hematological variables and clinical effects. Forty participants were randomized to either treatment or control for 12 weeks. Treatment with DP was associated with a statistically significant decrease in ICAM-1 (9% decrease, P = .03 and E-Selectin (15% decrease, P = .004. There was no significant change in renal function tests, liver function tests, glucose, lipids or C-reactive protein levels and clinical adverse effects did not differ between the active and the control groups. There were no relevant changes in participants receiving placebo. These results suggest that this herbal medicine may contribute to the development of a novel approach to cardiovascular risk reduction.

  17. Silencing HIF-1α reduces the adhesion and secretion functions of acute leukemia hBMSCs

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Dong-Feng [Department of Hematology, XinQiao Hospital, Third Military Medical University, ChongQing (China); Liu, Ting [Department of Ophthalmology, DaPing Hospital, Third Military Medical University, ChongQing (China); Chang, Cheng; Zhang, Xi; Liang, Xue; Chen, Xing-Hua; Kong, Pei-Yan [Department of Hematology, XinQiao Hospital, Third Military Medical University, ChongQing (China)

    2012-06-29

    Hypoxia inducible factor-1α (HIF-1α) is an important transcription factor, which plays a critical role in the formation of solid tumor and its microenvironment. The objective of the present study was to evaluate the expression and function of HIF-1α in human leukemia bone marrow stromal cells (BMSCs) and to identify the downstream targets of HIF-1α. HIF-1α expression was detected at both the RNA and protein levels using real-time PCR and immunohistochemistry, respectively. Vascular endothelial growth factor (VEGF) and stromal cell-derived factor-1α (SDF-1α) were detected in stromal cells by enzyme-linked immunosorbent assay. HIF-1α was blocked by constructing the lentiviral RNAi vector system and infecting the BMSCs. The Jurkat cell/BMSC co-cultured system was constructed by putting the two cells into the same suitable cultured media and conditions. Cell adhesion and secretion functions of stromal cells were evaluated after transfection with the lentiviral RNAi vector of HIF-1α. Increased HIF-1α mRNA and protein was detected in the nucleus of the acute myeloblastic and acute lymphoblastic leukemia compared with normal BMSCs. The lentiviral RANi vector for HIF-1α was successfully constructed and was applied to block the expression of HIF-1α. When HIF-1α of BMSCs was blocked, the expression of VEGF and SDF-1α secreted by stromal cells was decreased. When HIF-1α was blocked, the co-cultured Jurkat cell's adhesion and migration functions were also decreased. Taken together, these results suggest that HIF-1α acts as an important transcription factor and can significantly affect the secretion and adhesion functions of leukemia BMSCs.

  18. Silencing HIF-1α reduces the adhesion and secretion functions of acute leukemia hBMSCs

    Directory of Open Access Journals (Sweden)

    Zeng Dong-Feng

    2012-10-01

    Full Text Available Hypoxia inducible factor-1α (HIF-1α is an important transcription factor, which plays a critical role in the formation of solid tumor and its microenviroment. The objective of the present study was to evaluate the expression and function of HIF-1α in human leukemia bone marrow stromal cells (BMSCs and to identify the downstream targets of HIF-1α. HIF-1α expression was detected at both the RNA and protein levels using real-time PCR and immunohistochemistry, respectively. Vascular endothelial growth factor (VEGF and stromal cell-derived factor-1α (SDF-1α were detected in stromal cells by enzyme-linked immunosorbent assay. HIF-1α was blocked by constructing the lentiviral RNAi vector system and infecting the BMSCs. The Jurkat cell/BMSC co-cultured system was constructed by putting the two cells into the same suitable cultured media and conditions. Cell adhesion and secretion functions of stromal cells were evaluated after transfection with the lentiviral RNAi vector of HIF-1α. Increased HIF-1α mRNA and protein was detected in the nucleus of the acute myeloblastic and acute lymphoblastic leukemia compared with normal BMSCs. The lentiviral RANi vector for HIF-1α was successfully constructed and was applied to block the expression of HIF-1α. When HIF-1α of BMSCs was blocked, the expression of VEGF and SDF-1 secreted by stromal cells were decreased. When HIF-1α was blocked, the co-cultured Jurkat cell’s adhesion and migration functions were also decreased. Taken together, these results suggest that HIF-1α acts as an important transcription factor and can significantly affect the secretion and adhesion functions of leukemia BMSCs.

  19. Using ImageJ for the quantitative analysis of flow-based adhesion assays in real-time under physiologic flow conditions.

    Science.gov (United States)

    Meyer dos Santos, Sascha; Klinkhardt, Ute; Schneppenheim, Reinhard; Harder, Sebastian

    2010-01-01

    This article intends to close the gap between the abundance of regular articles focusing on adhesive mechanisms of cells in a flow field and purely technical reports confined to the description of newly developed algorithms, not yet ready to be used by users without programming skills. A simple and robust method is presented for analysing raw videomicroscopic data of flow-based adhesion assays using the freely available public domain software ImageJ. We describe in detail the image processing routines used to rapidly and reliably evaluate the number of adherent and translocating platelets in videomicroscopic recordings. The depicted procedures were exemplified by analysing platelet interaction with immobilized von Willebrand factor and fibrinogen in flowing blood under physiological wall shear rates. Neutralizing GPIbalpha function reduced shear-dependent platelet translocation on von Willebrand factor and abolished firm platelet adhesion. Abciximab, Tirofiban and Eptifibatide completely inhibited GPIIb/IIIa-dependent stable platelet deposition on fibrinogen. The presented method to analyse videomicroscopic recordings from flow-based adhesion assays offers the advantage of providing a simple and reliable way to quantify flow-based adhesion assays, which is completely based on ImageJ and can easily be applied to study adhesion mechanisms of cells in non-fluorescent modes without the need to deviate from the presented protocol.

  20. Mechanism study of endothelial protection and inhibits platelet activation of low molecular weight fucoidan from Laminaria japonica

    Science.gov (United States)

    Chen, Anjin; Zhang, Fang; Shi, Jie; Zhao, Xue; Yan, Meixing

    2016-10-01

    Several studies have indicated that fucoidan fractions with low molecular weight and different sulfate content from Laminaria japonica could inhibit the activation of platelets directly by reducing the platelet aggregation. To explore the direct effect of LMW fucoidan on the platelet system furthermore and examine the possible mechanism, the endothelial protection and inhibits platelet activation effects of two LMW fucoidan were investigated. In the present study, Endothelial injury model of rats was made by injection of adrenaline (0.4 mg kg-1) and human umbilical vein endothelial cells were cultured. vWF level was be investigated in vivo and in vitro as an important index of endothelial injury. LMW fucoidan could significantly reduce vWF level in vascular endothelial injury rats and also significantly reduce vWF level in vitro. The number of EMPs was be detected as another important index of endothelial injury. The results showed that LMW fucoidan reduced EMPs stimulated by tumor necrosis factor. In this study, it was found that by inhibiting platelet adhesion, LMW fucoidan played a role in anti-thrombosis and the specific mechanism of action is to inhibit the flow of extracellular Ca2+. All in a word, LMW fucoidan could inhibit the activation of platelets indirectly by reducing the concentration of EMPs and vWF, at the same time; LMW fucoidan inhibited the activation of platelets directly by inhibiting the flow of extracellular Ca2+.

  1. Vesicular monoamine transporter 2 mRNA levels are reduced in platelets from patients with Parkinson's disease.

    Science.gov (United States)

    Sala, Gessica; Brighina, Laura; Saracchi, Enrico; Fermi, Silvia; Riva, Chiara; Carrozza, Veronica; Pirovano, Marta; Ferrarese, Carlo

    2010-09-01

    Despite advances in neuroimaging, the diagnosis of idiopathic Parkinson's disease (PD) remains clinical. The identification of biological markers for an early diagnosis is of great interest to start a neuroprotective therapy aimed at slowing, blocking or reversing the disease progression. Vesicular monoamine transporter 2 (VMAT2) sequesters cytoplasmic dopamine into synaptic vesicles for storage and release. Thus, VMAT2 impairment can regulate intra- and extracellular dopamine levels, influencing oxidative stress and neuronal death. Because in vivo imaging studies have demonstrated a VMAT2 reduction in PD patients greater than would be explained by neuronal loss alone, as an exploratory study we assessed VMAT2 mRNA and protein levels in platelets from 39 PD patients, 39 healthy subjects and 10 patients with vascular parkinsonism (VP) to identify a possible peripheral biomarker for PD. A significant reduction (p platelets. Although further studies in a greater number of cases are needed to confirm our data, the reduction in VMAT2 mRNA in platelets from PD patients suggests the existence of a systemic impairment of this transporter possibly contributing to PD pathology.

  2. Human β-Defensin 3 Reduces TNF-α-Induced Inflammation and Monocyte Adhesion in Human Umbilical Vein Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Tianying Bian

    2017-01-01

    Full Text Available The aim of this study was to investigate the role of human β-defensin 3 (hBD3 in the initiation stage of atherosclerosis with human umbilical vein endothelial cells (HUVECs triggered by tumor necrosis factor- (TNF- α. The effects of hBD3 on TNF-α-induced endothelial injury and inflammatory response were evaluated. Our data revealed that first, hBD3 reduced the production of interleukin-6 (IL-6, IL-8, monocyte chemoattractant protein-1 (MCP-1, and macrophage migration inhibitory factor (MIF in HUVECs in a dose-dependent manner. In addition, hBD3 significantly prevented intracellular reactive oxygen species (ROS production by HUVECs. Second, western blot analysis demonstrated that hBD3 dose-dependently suppressed the protein levels of intracellular adhesion molecule-1 (ICAM-1 and vascular cell adhesion molecule-1 (VCAM-1 in TNF-α-induced HUVECs. As a result, hBD3 inhibited monocyte adhesion to TNF-α-treated endothelial cells. Additionally, hBD3 suppressed TNF-α-induced F-actin reorganization in HUVECs. Third, hBD3 markedly inhibited NF-κB activation by decreasing the phosphorylation of IKK-α/β, IκB, and p65 subunit within 30 min. Moreover, the phosphorylation of p38 and c-Jun N-terminal protein kinase (JNK in the mitogen-activated protein kinase (MAPK pathway were also inhibited by hBD3 in HUVECs. In conclusion, hBD3 exerts anti-inflammatory and antioxidative effects in endothelial cells in response to TNF-α by inhibiting NF-κB and MAPK signaling.

  3. Natural pomegranate juice reduces inflammation, muscle damage and increase platelets blood levels in active healthy Tunisian aged men

    Directory of Open Access Journals (Sweden)

    Ammar Achraf

    2018-03-01

    Paired simple t-test showed a significant difference between PLA and POMj supplementation effects on systolic blood pressure (SAP, creatinine (CRE, hematological and muscle damage parameters and C-reactive protein (CRP (p < 0.01 with lower values using POMj. Similarly, a significant differences were shown for platelets PLT (p < 0.01 with higher values using POMj supplementation. POMj rich in polyphenols seems to have a power anti-inflammatory effect and to be an effective treatment for patients who suffer from the thrombocyto-penia disease. Therefore, aged populations are advised to add natural POMj to their daily nutrition behavior.

  4. Blood platelets in the progression of Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Nina S Gowert

    Full Text Available Alzheimer's disease (AD is characterized by neurotoxic amyloid-ß plaque formation in brain parenchyma and cerebral blood vessels known as cerebral amyloid angiopathy (CAA. Besides CAA, AD is strongly related to vascular diseases such as stroke and atherosclerosis. Cerebrovascular dysfunction occurs in AD patients leading to alterations in blood flow that might play an important role in AD pathology with neuronal loss and memory deficits. Platelets are the major players in hemostasis and thrombosis, but are also involved in neuroinflammatory diseases like AD. For many years, platelets were accepted as peripheral model to study the pathophysiology of AD because platelets display the enzymatic activities to generate amyloid-ß (Aß peptides. In addition, platelets are considered to be a biomarker for early diagnosis of AD. Effects of Aß peptides on platelets and the impact of platelets in the progression of AD remained, however, ill-defined. The present study explored the cellular mechanisms triggered by Aß in platelets. Treatment of platelets with Aß led to platelet activation and enhanced generation of reactive oxygen species (ROS and membrane scrambling, suggesting enhanced platelet apoptosis. More important, platelets modulate soluble Aß into fibrillar structures that were absorbed by apoptotic but not vital platelets. This together with enhanced platelet adhesion under flow ex vivo and in vivo and platelet accumulation at amyloid deposits of cerebral vessels of AD transgenic mice suggested that platelets are major contributors of CAA inducing platelet thrombus formation at vascular amyloid plaques leading to vessel occlusion critical for cerebrovascular events like stroke.

  5. Bioinspired design of a ridging shovel with anti-adhesive and drag reducing

    Directory of Open Access Journals (Sweden)

    Zhijun Zhang

    2015-03-01

    Full Text Available Learning from the microstructure of the convex (concave and ridging (triangle and arc-shaped shapes of fresh lotus leaves and shark skin, bionic ridging shovels was designed with the characteristics of adhesion and resistance reduction. Ten ridging shovel models were established, and the interaction process with the soil by ANSYS is discussed. Stress analysis results showed that the bionic ridging shovel was more obvious in visbreaking and in the resistance reduction effect. An indoor soil bin experiment with the bionic ridging shovel and the prototype ridging shovel was operated as follows: the ridging resistance of the three types of ridging shovel was tested under the condition of two soil moistures (18.61% and 20.9% and three different ridging speeds (0.68, 0.87, and 1.11 m/s. In this article, the structure, the mechanism, and their relationship to the functions are discussed. The results of this study will be useful in practical application in the field of agricultural machinery toward practical use and industrialization.

  6. Calpain Activator Dibucaine Induces Platelet Apoptosis

    Directory of Open Access Journals (Sweden)

    Jun Liu

    2011-03-01

    Full Text Available Calcium-dependent calpains are a family of cysteine proteases that have been demonstrated to play key roles in both platelet glycoprotein Ibα shedding and platelet activation and altered calpain activity is associated with thrombotic thrombocytopenic purpura. Calpain activators induce apoptosis in several types of nucleated cells. However, it is not clear whether calpain activators induce platelet apoptosis. Here we show that the calpain activator dibucaine induced several platelet apoptotic events including depolarization of the mitochondrial inner transmembrane potential, up-regulation of Bax and Bak, down-regulation of Bcl-2 and Bcl-XL, caspase-3 activation and phosphatidylserine exposure. Platelet apoptosis elicited by dibucaine was not affected by the broad spectrum metalloproteinase inhibitor GM6001. Furthermore, dibucaine did not induce platelet activation as detected by P-selectin expression and PAC-1 binding. However, platelet aggregation induced by ristocetin or α-thrombin, platelet adhesion and spreading on von Willebrand factor were significantly inhibited in platelets treated with dibucaine. Taken together, these data indicate that dibucaine induces platelet apoptosis and platelet dysfunction.

  7. Single-step separation of platelets from whole blood coupled with digital quantification by interfacial platelet cytometry (iPC).

    Science.gov (United States)

    Basabe-Desmonts, L; Ramstrom, S; Meade, G; O'Neill, S; Riaz, A; Lee, L P; Ricco, A J; Kenny, D

    2010-09-21

    We report the efficient single-step separation of individual platelets from unprocessed whole blood, enabling digital quantification of platelet function using interfacial platelet cytometry (iPC) on a chip. iPC is accomplished by the precision micropatterning of platelet-specific protein surfaces on solid substrates. By separating platelets from whole blood using specific binding to protein spots of a defined size, iPC implements a simple incubate-and-rinse approach, without sample preparation, that enables (1) the study of platelets in the physiological situation of interaction with a protein surface, (2) the choice of the number of platelets bound on each protein spot, from one to many, (3) control of the platelet-platelet distance, including the possibility to study noninteracting single platelets, (4) digital quantification (counting) of platelet adhesion to selected protein matrices, enabling statistical characterization of platelet subpopulations from meaningfully large numbers of single platelets, (5) the study of platelet receptor expression and spatial distribution, and (6) a detailed study of the morphology of isolated single platelets at activation levels that can be manipulated. To date, we have demonstrated 1-4 of the above list. Platelets were separated from whole blood using iPC with fibrinogen, von Willebrand factor (VWF), and anti-CD42b antibody printed "spots" ranging from a fraction of one to several platelet diameters (2-24 μm). The number of platelets captured per spot depends strongly on the protein matrix and the surface area of the spot, together with the platelet volume, morphology, and activation state. Blood samples from healthy donors, a May-Hegglin-anomaly patient, and a Glanzmann's Thrombasthenia patient were analyzed via iPC to confirm the specificity of the interaction between protein matrices and platelets. For example, the results indicate that platelets interact with fibrinogen spots only through the fibrinogen receptor (

  8. Synthesis and characterization of a lubricin mimic (mLub) to reduce friction and adhesion on the articular cartilage surface.

    Science.gov (United States)

    Lawrence, Alexandra; Xu, Xin; Bible, Melissa D; Calve, Sarah; Neu, Corey P; Panitch, Alyssa

    2015-12-01

    The lubricating proteoglycan, lubricin, facilitates the remarkable low friction and wear properties of articular cartilage in the synovial joints of the body. Lubricin lines the joint surfaces and plays a protective role as a boundary lubricant in sliding contact; decreased expression of lubricin is associated with cartilage degradation and the pathogenesis of osteoarthritis. An unmet need for early osteoarthritis treatment is the development of therapeutic molecules that mimic lubricin function and yet are also resistant to enzymatic degradation common in the damaged joint. Here, we engineered a lubricin mimic (mLub) that is less susceptible to enzymatic degradation and binds to the articular surface to reduce friction. mLub was synthesized using a chondroitin sulfate backbone with type II collagen and hyaluronic acid (HA) binding peptides to promote interaction with the articular surface and synovial fluid constituents. In vitro and in vivo characterization confirmed the binding ability of mLub to isolated type II collagen and HA, and to the cartilage surface. Following trypsin treatment to the cartilage surface, application of mLub, in combination with purified or commercially available hyaluronan, reduced the coefficient of friction, and adhesion, to control levels as assessed over macro-to micro-scales by rheometry and atomic force microscopy. In vivo studies demonstrate an mLub residency time of less than 1 week. Enhanced lubrication by mLub reduces surface friction and adhesion, which may suppress the progression of degradation and cartilage loss in the joint. mLub therefore shows potential for treatment in early osteoarthritis following injury. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Contribution of blood platelets to vascular pathology in Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Zhang W

    2013-11-01

    Full Text Available Wei Zhang,1,2 Wei Huang,1 Fang Jing11Department of Pharmacology, Institutes for Advanced Interdisciplinary Research, East China Normal University, Shanghai, People's Republic of China; 2Shanghai Engineering Research Center of Molecular Therapy and Pharmaceutical Innovation, Shanghai, People's Republic of ChinaAbstract: Cerebral amyloid angiopathy (CAA is a critical factor in the pathogenesis of Alzheimer's disease (AD. In the clinical setting, nearly 98% AD patients have CAA, and 75% of these patients are rated as severe CAA. It is characterized by the deposition of the β-amyloid peptide (mainly Aβ40 in the walls of cerebral vessels, which induces the degeneration of vessel wall components, reduces cerebral blood flow, and aggravates cognitive decline. Platelets are anuclear cell fragments from bone marrow megakaryocytes and their function in hemostasis and thrombosis has long been recognized. Recently, increasing evidence suggests that platelet activation can also mediate the onset and development of CAA. First, platelet activation and adhesion to a vessel wall is the initial step of vascular injury. Activated platelets contribute to more than 90% circulating Aß (mainly Aβ1-40, which in turn activates platelets and results in the vicious cycle of Aβ overproduction in damaged vessel. Second, the uncontrolled activation of platelets leads to a chronic inflammatory reaction by secretion of chemokines (eg, platelet factor 4 [PF4], regulated upon activation normal T-cell expressed and presumably secreted [RANTES], and macrophage inflammatory protein [MIP-1α], interleukins (IL-1 β, IL-7, and IL-8, prostaglandins, and CD40 ligand (CD40L. The interaction of these biological response modulators with platelets, endothelial cells, and leukocytes establishes a localized inflammatory response that contributes to CAA formation. Finally, activated platelets are the upholder of fibrin clots, which are structurally abnormal and resistant to degradation

  10. Platelet compatible blood filtration fabrics using a phosphorylcholine polymer having high surface mobility.

    Science.gov (United States)

    Iwasaki, Yasuhiko; Yamasaki, Akira; Ishihara, Kazuhiko

    2003-09-01

    To obtain a novel polymer for coating on blood filtration devices, which can reduce platelet adhesion and activation when the polymer is in contact with blood under a dry condition, a phosphorylcholine polymer with high mobility of the polymer side chain was designed. The polymer possesses 2-methacryloyloxyethoxyethyl phosphorylcholine unit (PMEO2B) having a diethylene oxide chain between the phosphorylcholine group and the backbone. The surface density of the phosphorylcholine groups and their orientation under aqueous conditions were analyzed with an X-ray photoelectron spectroscope. On the PMEO2B surface, the surface density of phosphorylcholine groups was much higher than that of the theoretical value even when the surface was in air atmosphere. The period for equilibrating the surface of PMEO2B by hydration was shorter than that of the 2-methacryloyloxyethyl phosphorylcholine polymer (PMB). The mobility of the polymer chain with hydration was remarkably improved with the addition of a diethylene oxide chain as a bridging unit. The platelet activation and adhesion were evaluated using a non-woven fabric made from poly(ethylene terephthalate) fibers and that coated with these phosphorylcholine polymers. Even when the platelets were passed through the PMEO2B-coated fabric without prehydration, the activity of the platelets eluted was similar to that of native platelets. Moreover, adherent cells were not observed on the fabric. On the other hand, the platelets adhered to the PET fabric and to that coated with PMB. Based on these results, we concluded that the higher mobility of the polymer chain is very important to reduce interactions with platelets.

  11. Glycomacropeptide Reduces Intestinal Epithelial Cell Barrier Dysfunction and Adhesion of Entero-Hemorrhagic and Entero-Pathogenic Escherichia coli in Vitro

    Directory of Open Access Journals (Sweden)

    Shane Feeney

    2017-10-01

    Full Text Available In recent years, the potential of glycosylated food components to positively influence health has received considerable attention. Milk is a rich source of biologically active glycoconjugates which are associated with antimicrobial, immunomodulatory, anti-adhesion, anti-inflammatory and prebiotic properties. Glycomacropeptide (GMP is the C-terminal portion of kappa-casein that is released from whey during cheese-making by the action of chymosin. Many of the biological properties associated with GMP, such as anti-adhesion, have been linked with the carbohydrate portion of the protein. In this study, we investigated the ability of GMP to inhibit the adhesion of a variety of pathogenic Escherichia coli strains to HT-29 and Caco-2 intestinal cell lines, given the importance of E. coli in causing bacterial gastroenteritis. GMP significantly reduced pathogen adhesion, albeit with a high degree of species specificity toward enteropathogenic E. coli (EPEC strains O125:H32 and O111:H2 and enterohemorrhagic E. coli (EHEC strain 12900 O157:H7. The anti-adhesive effect resulted from the interaction of GMP with the E. coli cells and was also dependent on GMP concentration. Pre-incubation of intestinal Caco-2 cells with GMP reduced pathogen translocation as represented by a decrease in transepithelial electrical resistance (TEER. Thus, GMP is an effective in-vitro inhibitor of adhesion and epithelial injury caused by E. coli and may have potential as a biofunctional ingredient in foods to improve gastrointestinal health.

  12. Effect of Reduced Phosphoric Acid Pre-etching Times 
on Enamel Surface Characteristics and Shear Fatigue Strength Using Universal Adhesives.

    Science.gov (United States)

    Tsujimoto, Akimasa; Fischer, Nicholas; Barkmeier, Wayne; Baruth, Andrew; Takamizawa, Toshiki; Latta, Mark; Miyazaki, Masashi

    2017-01-01

    To examine the effect of reduced phosphoric acid pre-etching times on enamel fatigue bond strength of universal adhesives and surface characteristics by using atomic force microscopy (AFM). Three universal adhesives were used in this study (Clearfil Universal Bond [C], G-Premio Bond [GP], Scotchbond Universal Adhesive [SU]). Four pre-etching groups were employed: enamel pre-etched with phosphoric acid and immediately rinsed with an air-water spray, and enamel pre-etched with phosphoric acid for 5, 10, or 15 s. Ground enamel was used as the control group. For the initial bond strength test, 15 specimens per etching group for each adhesive were used. For the shear fatigue test, 20 specimens per etching group for each adhesive were loaded using a sine wave at a frequency of 20 Hz for 50,000 cycles or until failure occurred. Initial shear bond strengths and fatigue shear strengths of composite adhesively bonded to ground and pre-etched enamel were determined. AFM observations of ground and pre-etched enamel were also conducted, and surface roughness as well as surface area were evaluated. The initial shear bond strengths and fatigue shear strengths of the universal adhesives in the pre-etched groups were significantly higher than those of the control group, and were not influenced by the pre-etching time. Significantly higher surface roughness and surface area of enamel surfaces in pre-etched groups were observed compared with those in the control group. While the surface area was not significantly influenced by etching time, surface roughness of the enamel surfaces in the pre-etched groups significantly increased with pre-etching time. The results of this in vitro study suggest that reduced phosphoric acid pre-etching times do not impair the fatigue bond strength of universal adhesives. Although fatigue bond strength and surface area were not influenced by phosphoric-acid etching times, surface roughness increased with increasing etching time.

  13. LABORATORY EVALUATION OF NONSTICK COATINGS TO REDUCE INK ADHESION TO PRINTING PRESS COMPONENTS

    Science.gov (United States)

    The report gives results of a project to identify surface coatings or preparations that might reduce and/or eliminate the need for solvent cleaning of ink-feed-system components of printing equipment. The study was designed to provide qualitative, but not quantitative, results. T...

  14. Effect of aspirin and dipyridamole on the interaction of human platelets with sub-endothelium: studies using citrated and native blood.

    Science.gov (United States)

    Weiss, H J; Turitto, V T; Vicic, W J; Baumgartner, H R

    1981-04-30

    The effect of aspirin and dipyridamole ingestion on the interaction of platelets with the subendothelium was studied using both citrated blood and directly sampled (native) blood. After obtained control studies, normal human subjects ingested 0.6 g of aspirin, 150 mg of dipyridamole, or a placebo and studies were repeated 1 1/2 hrs later. Subjects continued on placebo, aspirin (0.6 g b.i.d.) or dipyridamole (100 mg q.i.d.) for 6 days and studies were obtained 1 1/2 hrs after the last dose. Blood was circulated through an annular chamber on whose inner core were mounted everted segments of de-endothelialized rabbit aorta. The wall shear rate was 2,600 sec(-1). Surface coverage with adherent platelets and platelet thrombi, as well as several parameters of thrombus dimensions, were evaluated morphometrically. Aspirin ingestion markedly reduced platelet thrombi in citrated blood,--but had a much lesser inhibitory effective in native blood. Platelet adhesion was unaffected in native blood, in contrast to previous findings in which a lower shear rate (800 sec (-1)) was used. Ingestion of dipyridamole did not inhibit platelet adhesion or thrombi in either citrated or native blood. The studies indicated that, with the flow conditions used, aspirin is a relatively weak inhibitor of platelet thrombus formation in directly sampled human blood.

  15. Platelet Donation

    Science.gov (United States)

    ... body. I imagined the faces of many different strangers, taking time out of their day… their jobs… ... thing to do for another human being. A stranger. Someone’s platelets made their way to Phil that ...

  16. Femtosecond laser surface texturing of titanium as a method to reduce the adhesion of Staphylococcus aureus and biofilm formation

    Science.gov (United States)

    Cunha, Alexandre; Elie, Anne-Marie; Plawinski, Laurent; Serro, Ana Paula; Botelho do Rego, Ana Maria; Almeida, Amélia; Urdaci, Maria C.; Durrieu, Marie-Christine; Vilar, Rui

    2016-01-01

    The aim of the present work was to investigate the possibility of using femtosecond laser surface texturing as a method to reduce the colonization of Grade 2 Titanium alloy surfaces by Staphylococcus aureus and the subsequent formation of biofilm. The laser treatments were carried out with a Yb:KYW chirped-pulse-regenerative amplification laser system with a central wavelength of 1030 nm and a pulse duration of 500 fs. Two types of surface textures, consisting of laser-induced periodic surface structures (LIPSS) and nanopillars, were produced. The topography, chemical composition and phase constitution of these surfaces were investigated by atomic force microscopy, scanning electron microscopy, X-ray photoelectron spectroscopy, micro-Raman spectroscopy, and X-ray diffraction. Surface wettability was assessed by the sessile drop method using water and diiodomethane as testing liquids. The response of S. aureus put into contact with the laser treated surfaces in controlled conditions was investigated by epifluorescence microscopy and scanning electron microscopy 48 h after cell seeding. The results achieved show that the laser treatment reduces significantly the bacterial adhesion to the surface as well as biofilm formation as compared to a reference polished surfaces and suggest that femtosecond laser texturing is a simple and promising method for endowing dental and orthopedic titanium implants with antibacterial properties, reducing the risk of implant-associated infections without requiring immobilized antibacterial substances, nanoparticles or coatings.

  17. On the Adhesive JKR Contact and Rolling Models for Reduced Particle Stiffness Discrete Element Simulations

    DEFF Research Database (Denmark)

    Hærvig, Jakob; Kleinhans, Ulrich; Wieland, Christoph

    2017-01-01

    Johnson-Kendall-Roberts (JKR) model by Johnson et al. [1] should be modified as γmod = γ (Emod/E)2/5. Using this relation, the stick/rebound threshold remains the same but the collision process takes place over a longer time period, which allows for a higher time step size. When rolling motion......,mod = −4FC (a/a0)3/2ξ. Furthermore, as the particle stiffness is reduced from E to Emod, the time period for collisions (or oscillations when particles stick upon impact) Δtcol is found to vary as Δtcol,mod = Δtcol(E/Emod)2/5. As the collision duration and the collision time step size are directly related......, this criterion can be used to estimate how much the time step size can be changed when a reduced particle stiffness is introduced. Introducing particles with a reduced particle stiffness has some limitations when strong external forces are acting to break-up formed agglomerates or re-entrain particles deposited...

  18. Reducing adhesion force by means of atomic layer deposition of ZnO films with nanoscale surface roughness.

    Science.gov (United States)

    Chai, Zhimin; Liu, Yuhong; Lu, Xinchun; He, Dannong

    2014-03-12

    Adhesion is a big concern for the design of Si-based microelectromechanical devices. A ZnO film with nanoscale surface roughness is a promising candidate to decrease adhesion as the protective coating. In this study, the adhesion force of ZnO films prepared by atomic layer deposition (ALD) on a Si (100) substrate was studied. The root-mean-square (RMS) roughness of the ZnO films was in the range of 0.7-4.28 nm, and the contact angle of water was in the range of 85-88°. The adhesion force was measured by atomic force microscopy (AFM) at both low (12%) and high (60%) relative humidities. The results show that the adhesion force decreases as the surface roughness increases. A low adhesion force at high RMS roughness is attributed to the large asperities on the film, and a large adhesion force at high humidity is attributed to the large capillary force. The experimental adhesion force was compared to the force calculated using the Rabinovich model. Although the theoretical value underestimates the experimental value, the proportion of the two components of the adhesion force is clearly shown. At the low humidity, the van der Waals force component differs not greatly with the capillary force component, while at the high humidity, the capillary force component becomes dominant.

  19. Platelet signaling-a primer.

    Science.gov (United States)

    Goggs, Robert; Poole, Alastair W

    2012-02-01

    To review the receptors and signal transduction pathways involved in platelet plug formation and to highlight links between platelets, leukocytes, endothelium, and the coagulation system. Original studies, review articles, and book chapters in the human and veterinary medical fields. Platelets express numerous surface receptors. Critical among these are glycoprotein VI, the glycoprotein Ib-IX-V complex, integrin α(IIb) β(3) , and the G-protein-coupled receptors for thrombin, ADP, and thromboxane. Activation of these receptors leads to various important functional events, in particular activation of the principal adhesion receptor α(IIb) β(3) . Integrin activation allows binding of ligands such as fibrinogen, mediating platelet-platelet interaction in the process of aggregation. Signals activated by these receptors also couple to 3 other important functional events, secretion of granule contents, change in cell shape through cytoskeletal rearrangement, and procoagulant membrane expression. These processes generate a stable thrombus to limit blood loss and promote restoration of endothelial integrity. Improvements in our understanding of how platelets operate through their signaling networks are critical for diagnosis of unusual primary hemostatic disorders and for rational antithrombotic drug design. © Veterinary Emergency and Critical Care Society 2012.

  20. Bionic Design for Reducing Adhesive Resistance of the Ridger Inspired by a Boar's Head

    Science.gov (United States)

    Li, Jianqiao; Yan, Yunpeng; Chirende, Benard; Wu, Xuejiao; Wang, Zhaoliang

    2017-01-01

    The main feature of the boar's head used to root around for food is the front part, which is similar to the ridger in terms of function, load, and environment. In this paper, the boar's head was selected as the biological prototype for developing a new ridger. The point cloud of the head was captured by a 3D scanner, and then, the head surface was reconstructed using 3D coordinates. The characteristic curves of the front part of the boar's head were extracted, and then, five cross-sectional curves and one vertical section curve were fitted. Based on the fitted curves, five kinds of bionic ridgers were designed. The penetrating resistances of the bionic ridgers and traditional ridger were tested at different speeds in an indoor soil bin. The test results showed that bionic ridger B had the best penetrating resistance reduction ratio of 16.67% at 4.2 km/h velocity. In order to further evaluate the performance of the best bionic ridger (bionic ridger B), both the bionic ridger and traditional ridger were tested in a field under the same working conditions. The field results indicate that the bionic ridger reduces penetrating resistance by 6.91% compared to the traditional ridger, and the test results validate that the bionic ridger has an effect on reducing penetrating resistance. PMID:28757796

  1. Bionic Design for Reducing Adhesive Resistance of the Ridger Inspired by a Boar’s Head

    Directory of Open Access Journals (Sweden)

    Jianqiao Li

    2017-01-01

    Full Text Available The main feature of the boar’s head used to root around for food is the front part, which is similar to the ridger in terms of function, load, and environment. In this paper, the boar’s head was selected as the biological prototype for developing a new ridger. The point cloud of the head was captured by a 3D scanner, and then, the head surface was reconstructed using 3D coordinates. The characteristic curves of the front part of the boar’s head were extracted, and then, five cross-sectional curves and one vertical section curve were fitted. Based on the fitted curves, five kinds of bionic ridgers were designed. The penetrating resistances of the bionic ridgers and traditional ridger were tested at different speeds in an indoor soil bin. The test results showed that bionic ridger B had the best penetrating resistance reduction ratio of 16.67% at 4.2 km/h velocity. In order to further evaluate the performance of the best bionic ridger (bionic ridger B, both the bionic ridger and traditional ridger were tested in a field under the same working conditions. The field results indicate that the bionic ridger reduces penetrating resistance by 6.91% compared to the traditional ridger, and the test results validate that the bionic ridger has an effect on reducing penetrating resistance.

  2. Staphylococcus epidermidis adhesion on hydrophobic and hydrophilic textured biomaterial surfaces.

    Science.gov (United States)

    Xu, Li-Chong; Siedlecki, Christopher A

    2014-06-01

    It is of great interest to use nano- or micro-structured surfaces to inhibit microbial adhesion and biofilm formation and thereby to prevent biomaterial-associated infection, without modification of the surface chemistry or bulk properties of the materials and without use of the drugs. Our previous study showed that a submicron textured polyurethane surface can inhibit staphylococcal bacterial adhesion and biofilm formation. To further understand the effect of the geometry of textures on bacterial adhesion as well as the underlying mechanism, in this study, submicron and micron textured polyurethane surfaces featuring ordered arrays of pillars were fabricated and modified to have different wettabilities. All the textured surfaces were originally hydrophobic and showed significant reductions in Staphylococcus epidermidis RP62A adhesion in phosphate buffered saline or 25% platelet poor plasma solutions under shear, as compared to smooth surfaces. After being subjected to an air glow discharge plasma treatment, all polyurethane surfaces were modified to hydrophilic, and reductions in bacterial adhesion on surfaces were subsequently found to be dependent on the size of the patterns. The submicron patterned surfaces reduced bacterial adhesion, while the micron patterned surfaces led to increased bacterial adhesion. The extracellular polymeric substances (EPS) from the S. epidermidis cell surfaces were extracted and purified, and were coated on a glass colloidal surface so that the adhesion force and separation energy in interactions of the EPS and the surface could be measured by colloidal probe atomic force microscopy. These results were consistent with the bacterial adhesion observations. Overall, the data suggest that the increased surface hydrophobicity and the decreased availability of the contact area contributes to a reduction in bacterial adhesion to the hydrophobic textured surfaces, while the availability of the contact area is the primary determinant factor

  3. The CXCR1/2 ligand NAP-2 promotes directed intravascular leukocyte migration through platelet thrombi.

    Science.gov (United States)

    Ghasemzadeh, Mehran; Kaplan, Zane S; Alwis, Imala; Schoenwaelder, Simone M; Ashworth, Katrina J; Westein, Erik; Hosseini, Ehteramolsadat; Salem, Hatem H; Slattery, Robyn; McColl, Shaun R; Hickey, Michael J; Ruggeri, Zaverio M; Yuan, Yuping; Jackson, Shaun P

    2013-05-30

    Thrombosis promotes leukocyte infiltration into inflamed tissues, leading to organ injury in a broad range of diseases; however, the mechanisms by which thrombi guide leukocytes to sites of vascular injury remain ill-defined. Using mouse models of endothelial injury (traumatic or ischemia reperfusion), we demonstrate a distinct process of leukocyte recruitment, termed "directed intravascular migration," specifically mediated by platelet thrombi. Single adherent platelets and platelet aggregates stimulated leukocyte shape change at sites of endothelial injury; however, only thrombi were capable of inducing directed intravascular leukocyte migration. Leukocyte recruitment and migration induced by platelet thrombi occurred most prominently in veins but could also occur in arteries following ischemia-reperfusion injury. In vitro studies demonstrated a major role for platelet-derived NAP-2 (CXCL-7) and its CXCR1/2 receptor in regulating leukocyte polarization and motility. In vivo studies demonstrated the presence of an NAP-2 chemotactic gradient within the thrombus body. Pharmacologic blockade of CXCR1/2 as well as genetic deletion of NAP-2 markedly reduced leukocyte shape change and intrathrombus migration. These studies define a distinct process of leukocyte migration that is initiated by homotypic adhesive interactions between platelets, leading to the development of an NAP-2 chemotactic gradient within the thrombus body that guides leukocytes to sites of vascular injury.

  4. The CXCR1/2 ligand NAP-2 promotes directed intravascular leukocyte migration through platelet thrombi

    Science.gov (United States)

    Ghasemzadeh, Mehran; Kaplan, Zane S.; Alwis, Imala; Schoenwaelder, Simone M.; Ashworth, Katrina J.; Westein, Erik; Hosseini, Ehteramolsadat; Salem, Hatem H.; Slattery, Robyn; McColl, Shaun R.; Hickey, Michael J.; Ruggeri, Zaverio M.; Yuan, Yuping

    2013-01-01

    Thrombosis promotes leukocyte infiltration into inflamed tissues, leading to organ injury in a broad range of diseases; however, the mechanisms by which thrombi guide leukocytes to sites of vascular injury remain ill-defined. Using mouse models of endothelial injury (traumatic or ischemia reperfusion), we demonstrate a distinct process of leukocyte recruitment, termed “directed intravascular migration,” specifically mediated by platelet thrombi. Single adherent platelets and platelet aggregates stimulated leukocyte shape change at sites of endothelial injury; however, only thrombi were capable of inducing directed intravascular leukocyte migration. Leukocyte recruitment and migration induced by platelet thrombi occurred most prominently in veins but could also occur in arteries following ischemia-reperfusion injury. In vitro studies demonstrated a major role for platelet-derived NAP-2 (CXCL-7) and its CXCR1/2 receptor in regulating leukocyte polarization and motility. In vivo studies demonstrated the presence of an NAP-2 chemotactic gradient within the thrombus body. Pharmacologic blockade of CXCR1/2 as well as genetic deletion of NAP-2 markedly reduced leukocyte shape change and intrathrombus migration. These studies define a distinct process of leukocyte migration that is initiated by homotypic adhesive interactions between platelets, leading to the development of an NAP-2 chemotactic gradient within the thrombus body that guides leukocytes to sites of vascular injury. PMID:23550035

  5. The macromolecular architecture of platelet-derived microparticles.

    Science.gov (United States)

    Tamir, Adi; Sorrentino, Simona; Motahedeh, Sarah; Shai, Ela; Dubrovsky, Anna; Dahan, Idit; Eibauer, Matthias; Studt, Jan-Dirk; Sapra, K Tanuj; Varon, David; Medalia, Ohad

    2016-03-01

    Platelets are essential for hemostasis and wound healing. They are involved in fundamental processes of vascular biology such as angiogenesis, tissue regeneration, and tumor metastasis. Upon activation, platelets shed small plasma membrane vesicles termed platelet-derived microparticles (PMPs). PMPs include functional cell adhesion machinery that comprises transmembrane receptors (most abundant are the αIIbβ3 integrins), cytoskeletal systems and a large variety of adapter and signaling molecules. Glanzmann thrombasthenia (GT) is a condition characterized by platelets that are deficient of the integrin αIIbβ3 heterodimer. Here, we use cryo-electron tomography (cryo-ET) to study the structural organization of PMPs (in both healthy and GT patients), especially the cytoskeleton organization and receptor architecture. PMPs purified from GT patients show a significantly altered cytoskeletal organization, characterized by a reduced number of filaments present, compared to the healthy control. Furthermore, our results show that incubating healthy PMPs with manganese ions (Mn(2+)), in the presence of fibrinogen, induces a major conformational change of integrin receptors, whereas thrombin activation yields a moderate response. These results provide the first insights into the native molecular organization of PMPs. Copyright © 2016. Published by Elsevier Inc.

  6. Platelet Function Tests

    Science.gov (United States)

    ... Patient Resources For Health Professionals Subscribe Search Platelet Function Tests Send Us Your Feedback Choose Topic At ... Also Known As Platelet Aggregation Studies PFT Platelet Function Assay PFA Formal Name Platelet Function Tests This ...

  7. Platelet antibodies blood test

    Science.gov (United States)

    This blood test shows if you have antibodies against platelets in your blood. Platelets are a part of the blood ... Chernecky CC, Berger BJ. Platelet antibody - blood. In: Chernecky ... caused by platelet destruction, hypersplenism, or hemodilution. ...

  8. Femtosecond laser-induced microstructures on Ti substrates for reduced cell adhesion

    Science.gov (United States)

    Heitz, J.; Plamadeala, C.; Muck, M.; Armbruster, O.; Baumgartner, W.; Weth, A.; Steinwender, C.; Blessberger, H.; Kellermair, J.; Kirner, S. V.; Krüger, J.; Bonse, J.; Guntner, A. S.; Hassel, A. W.

    2017-12-01

    Miniaturized pacemakers with a surface consisting of a Ti alloy may have to be removed after several years from their implantation site in the heart and shall, therefore, not be completely overgrown by cells or tissue. A method to avoid this may be to create at the surface by laser-ablation self-organized sharp conical spikes, which provide too little surface for cells (i.e., fibroblasts) to grow on. For this purpose, Ti-alloy substrates were irradiated in the air by 790 nm Ti:sapphire femtosecond laser pulses at fluences above the ablation threshold. The laser irradiation resulted in pronounced microstructure formation with hierarchical surface morphologies. Murine fibroblasts were seeded onto the laser-patterned surface and the coverage by cells was evaluated after 3-21 days of cultivation by means of scanning electron microscopy. Compared to flat surfaces, the cell density on the microstructures was significantly lower, the coverage was incomplete, and the cells had a clearly different morphology. The best results regarding suppression of cell growth were obtained on spike structures which were additionally electrochemically oxidized under acidic conditions. Cell cultivation with additional shear stress could reduce further the number of adherent cells.

  9. MAPKs (ERK1/2, p38) and AKT can be phosphorylated by shear stress independently of platelet endothelial cell adhesion molecule-1 (CD31) in vascular endothelial cells.

    Science.gov (United States)

    Sumpio, Bauer E; Yun, Sangseob; Cordova, Alfredo C; Haga, Masae; Zhang, Jin; Koh, Yongbok; Madri, Joseph A

    2005-03-25

    PECAM-1 (CD31) is a member of the Ig superfamily of cell adhesion molecules and is expressed on endothelial cells (EC) as several circulating blood elements including platelets, polymorphonuclear leukocytes, monocytes, and lymphocytes. PECAM-1 tyrosine phosphorylation has been observed following mechanical stimulation of EC but its role in mechanosensing is still incompletely understood. The aim of this study was to investigate the involvement of PECAM-1 in signaling cascades in response to fluid shear stress (SS) in vascular ECs. PECAM-1-deficient (KO) and PECAM-reconstituted murine microvascular ECs, 50 and 100% confluent bovine aortic EC (BAEC), and human umbilical vein EC (HUVEC) transfected with antisense PECAM-1 oligonucleotides were exposed to oscillatory SS (14 dynes/cm2) for 0, 5, 10, 30 or 60 min. The tyrosine phosphorylation level of PECAM-1 immunoprecipitated from SS-stimulated PECAM-reconstituted, but not PECAM-1-KO, murine ECs increased. Although PECAM-1 was phosphorylated in 100% confluent BAEC and HUVEC, its phosphorylation level in 50% confluent BAECs or HUVEC was not detected by SS. Likewise PECAM-1 phosphorylation was robust in the wild type and scrambled-transfected HUVEC but not in the PECAM-1 antisense-HUVEC. ERK(1/2), p38 MAPK, and AKT were activated by SS in all cell types tested, including the PECAM-1-KO murine ECs, 50% confluent BAECs, and HUVEC transfected with antisense PECAM-1. This suggests that PECAM-1 may not function as a major mechanoreceptor for activation of MAPK and AKT in ECs and that there are likely to be other mechanoreceptors in ECs functioning to detect shear stress and trigger intercellular signals.

  10. Platelet-derived growth factor BB promotes the migration of bone marrow-derived mesenchymal stem cells towards C6 glioma and up-regulates the expression of intracellular adhesion molecule-1.

    Science.gov (United States)

    Cheng, Peng; Gao, Zhi-Qiang; Liu, Yun-Hui; Xue, Yi-Xue

    2009-02-13

    Recent studies have indicated that bone marrow-derived mesenchymal stem cells (BMSCs) have the capacity of migrating towards gliomas. However, few data are available about the molecular mechanism responsible for this migratory capacity. The aim of our study was to investigate the role of platelet-derived growth factor BB (PDGFBB) in the migration of BMSCs towards C6 glioma and evaluate the effect of PDGFBB on the migrating capacity and intercellular adhesion molecule-1 (ICAM-1) expression of BMSCs. The chemokinetic activity of BMSCs in response to C6 glioma-conditioned medium and recombinant rat PDGFBB was analyzed by in vitro migration assay. The effect of PDGFBB on the expression of ICAM-1 was evaluated by reverse transcription-polymerase chain reaction (RT-PCR) and immunofluorescence. Our data showed that C6 glioma-conditioned medium significantly increased the migration of BMSCs, which could be partially blocked by a PDGFBB neutralizing antibody. Recombinant rat PDGFBB enhanced the migration of BMSCs in a concentration-dependent way from 5 to 50ng/ml. Moreover, RT-PCR and immunofluorescence showed that 12h of 20ng/ml PDGFBB incubation could up-regulate the ICAM-1 expression of BMSCs. Our data also revealed that SB203580, an inhibitor of p38 mitogen-activated protein kinase (MAPK), significantly decreased the PDGFBB-induced migration and ICAM-1 expression of BMSCs. These results demonstrate that PDGFBB contributes to the migration of BMSCs towards C6 glioma and up-regulates the expression of ICAM-1, and that p38MAPK is an important signaling molecule correlating with the signal transduction of PDGFBB-induced migration and ICAM-1 expression of BMSCs.

  11. Platelets: pleiotropic roles in atherogenesis and atherothrombosis.

    Science.gov (United States)

    Linden, Matthew D; Jackson, Denise E

    2010-11-01

    Platelets are small, anucleate blood elements of critical importance in cardiovascular disease. The ability of platelets to activate and aggregate to form blood clots in response to endothelial injury, such as plaque rupture, is well established. These cells are therefore important contributors to ischaemia in atherothrombosis, and antiplatelet therapy is effective for this reason. However, growing evidence suggests that platelets are also important mediators of inflammation and play a central role in atherogenesis itself. Interactions between activated platelets, leukocytes and endothelial cells trigger autocrine and paracrine activation signals, resulting in leukocyte recruitment at and into the vascular wall. Direct physical interaction may contribute also, through platelet adhesion molecules assisting localization of monocytes to the site of atherogenesis and platelet granule release contributing to the chronic inflammatory milieu which leads to foam cell development and accelerated atherogenesis. Recent studies have shown that antiplatelet therapy in animal models of accelerated atherogenesis can lead to decreased plaque size and improve plaque stability. This review examines the complexity of platelet function and the nature of interactions between activated platelets, leukocytes and endothelial cells. We focus on the growing body of evidence that platelets play a critical role in atherogenesis and contribute to progression of atherosclerosis. Copyright © 2010 Elsevier Ltd. All rights reserved.

  12. Haemocompatibility testing of biomaterials using human platelets.

    Science.gov (United States)

    Jung, F; Braune, S; Lendlein, A

    2013-01-01

    Cardiovascular implants are increasingly important in regenerative medicine. To improve the safety and function of blood-contacting implants a major need exists for new polymer-based biomaterials that avoid adverse reactions, particularly thrombotic events. This review is aimed to summarize the multi-stepped and interlinked processes leading to a thrombus growth on body foreign surfaces: protein adsorption, platelet adhesion accompanied by activation and spreading and the release of substances of various organelles activating other neighboured platelets (and the plasmatic coagulation) leading to the formation of a plug of platelets and, finally, to a thrombus.

  13. Platelet interaction with activated endothelium: mechanistic insights from microfluidics.

    Science.gov (United States)

    Coenen, Daniëlle M; Mastenbroek, Tom G; Cosemans, Judith M E M

    2017-10-10

    Traditionally, in vitro flow chamber experiments and in vivo arterial thrombosis studies have been proven to be of vital importance to elucidate the mechanisms of platelet thrombus formation after vessel wall injury. In recent years, it has become clear that platelets also act as modulators of inflammatory processes, such as atherosclerosis. A key element herein is the complex crosstalk between platelets, the coagulation system, leukocytes and the activated endothelium. This review provides insight into the platelet-endothelial interface, based on in vitro flow chamber studies and cross referenced with in vivo thrombosis studies. The main mechanisms of platelet interaction with the activated endothelium encompass i) platelet rolling via interaction of platelet glycoprotein Ib-IX-V with endothelial-released von Willebrand factor with a supporting role for the P-selectin - P-selectin glycoprotein ligand 1 axis, followed by ii) firm platelet adhesion to the endothelium via interaction of platelet αIIbβ3 with endothelial αvβ3 and intercellular adhesion molecule 1, and iii) a stimulatory role for thrombin, the thrombospondin-1 - CD36 axis and cyclooxygenase 1 in subsequent platelet activation and stable thrombus formation. In addition, the molecular mechanisms underlying the stimulatory effect of platelets on leukocyte transendothelial migration, a key mediator of atheroprogression, are discussed. Throughout the review emphasis is placed on recommendations for setting up, reporting, interpreting and comparing endothelial-lined flow chamber studies and on suggestions for future studies. Copyright © 2017 American Society of Hematology.

  14. Differential support of cell adhesion and growth by copolymers of polyurethane with hyaluronic acid.

    Science.gov (United States)

    Ruiz, Amaliris; Flanagan, Claire E; Masters, Kristyn S

    2013-10-01

    Mechanical mismatch, along with inadequate hemocompatibility and endothelialization, contribute to the high failure rate of many synthetic vascular grafts. However, due to the dueling nature of these requirements (i.e., inhibiting platelet adhesion frequently means inhibiting endothelial cell (EC) adhesion), the creation of materials that simultaneously satisfy the mechanical and biological design criteria needed for small diameter vascular grafts has been an elusive goal. In this work, we demonstrate the ability of polyurethane (PU) containing hyaluronic acid (HA) in its backbone structure to reduce protein adsorption, platelet and bacterial adhesion, and fibroblast and macrophage proliferation while allowing the retention of both ECs and vascular-appropriate mechanics. Irrespective of HA molecular weight (MW), PU-HA materials selectively supported the growth of ECs relative to fibroblasts, reduced platelet adhesion, and performed comparably to negative controls with respect to bactericidal activity. The extent of EC growth on the PU-HA materials did differ with HA MW, with a lower HA MW yielding improved EC growth in both two-dimensional (2-D) films and 3-D electrospun fibrous scaffolds. These findings illustrate that HA incorporated into the backbone of a synthetic polymer structure can retain bioactivity, with subtle differences in HA MW significantly impacting the physical and biological properties of the biomaterial; in particular, PU modified with low-MW HA appears promising for vascular graft applications. Copyright © 2013 Wiley Periodicals, Inc., a Wiley Company.

  15. Effects of the platelet-activating factor (PAF) on selected quality parameters of cryopreserved bull semen (AI) with reduced sperm motility.

    Science.gov (United States)

    Lecewicz, M; Kordan, W; Majewska, A; Kamiński, S; Dziekońska, A; Mietelska, K

    2016-01-01

    The aim of the study was to determine the effects of platelet-activating factor (PAF) on selected quality parameters of cryopreserved bull semen with reduced sperm motility used for artificial insemination. The aim of experiment 1 was to identify the optimal concentration of the phospholipid able to preserve sperm viability. Cryopreserved semen was treated with different PAF concentrations: 1×10(-5) M, 1×10(-6) M, 1×10(-7) M, 1×10(-8) M and 1×10(-9) M. The experiment demonstrated that PAF at concentration 1×10(-9) M increased most the sperm viability parameters (motility parameters, plasma membrane integrity and mitochondrial function) after 120 min of incubation of thawed semen at 37°C. Cryopreserved bull semen with reduced sperm motility (below 70%) was supplemented with PAF in a concentration of 1×10(-9) M. A statistically significant increase in sperm motility, percentage of linear motile spermatozoa and VSL value was observed after 120 min incubation of sperm with 1×10(-9) M PAF. Sperm supplementation with PAF also had positive effects on plasma membrane integrity and percentage of spermatozoa with preserved mitochondrial transmembrane potential, but the differences were not statistically significant. The results indicated positive effects of PAF supplementation at a concentration of 1×10(-9) M on the selected sperm quality parameters in cryopreserved bull semen with reduced motility.

  16. Effect of construction of TiO2 nanotubes on platelet behaviors: Structure-property relationships.

    Science.gov (United States)

    Huang, Qiaoling; Yang, Yun; Zheng, Dajiang; Song, Ran; Zhang, Yanmei; Jiang, Pinliang; Vogler, Erwin A; Lin, Changjian

    2017-03-15

    Blood compatibility of TiO2 nanotubes (TNTs) has been assessed in rabbit platelet-rich plasma (PRP), which combines activation of both blood plasma coagulation and platelets. We find that (i) amorphous TiO2 nanotubes (TNTs) with relatively larger outer diameters led to reduced platelet adhesion/activation, (ii) TNTs with relatively smaller outer diameters in a predominately rutile phase also inhibited platelet adhesion and activation, and (iii) a pervasive fibrin network formed on larger outer diameter TNTs in a predominately anatase phase. Thus, this study suggests that combined effect of crystalline phase and surface chemistry controls blood-contact behavior of TNTs. A more comprehensive mechanism is proposed for understanding hemocompatibility of TiO2 which might prove helpful as a guide to prospective design of TiO2-based biomaterials. To realize optimal design and construction of biomaterials with desired properties for blood contact materials, a comprehensive understanding of structure-property relationships is required. In the existing literature, TiO2 nanotube has been reported to be a good candidate for biomedical applications. However, it is noticeable that the blood compatibility of TiO2 nanotubes (TNTs) remains obscure or even inconsistent in the previously published works. The inconsistency could derive from different research protocols, material properties or blood sources. Thus, a thorough investigation of the effect of surface properties on blood compatibility is crucial to the development of titanium based materials. In this paper, we explored the effect of surface properties on the response of platelet-rich plasma, especially surface morphology, chemistry, wettability and crystalline phase. The results indicated that crystalline phase was a dominant factor in platelet behaviors. Reduced adhesion and activation of platelets were observed on amorphous and rutile dominated TNTs, whereas anatase dominated TNTs activated the formation of fibrin network

  17. Cross-talk between cell adhesion molecules regulates the migration velocity of neutrophils.

    Science.gov (United States)

    Rainger, G E; Buckley, C; Simmons, D L; Nash, G B

    1997-05-01

    Although the adhesive mechanisms underlying the capture and immobilization of circulating neutrophils in inflamed blood vessels have been well described, factors controlling the subsequent migration of neutrophils over and through the blood vessel endothelium are poorly understood. Directional rearrangement of the actin cytoskeleton within the neutrophil, along with modulation of integrin-mediated adhesion, are necessary for neutrophil migration. Signals from chemotactic agents and from the adhesive substrate may regulate these processes, but little is known about their relative importance or their mode of integration. We examined the kinetics of neutrophil migration after formyl tripeptide or platelet-activating factor was perfused over neutrophils that were already rolling on the adhesion molecule P-selectin, which was presented either on the surface of immobilized platelets or in purified form coated on glass capillaries. Upon activation, neutrophils stopped rolling, spread and began to migrate; each of these processes was dependent on beta2 integrin (CD11b/CD18). The rate of migration increased over a period of about 8 minutes and was modulated directly by both the P-selectin and the CD31 surface receptors. Antibody blockade of either CD31 or P-selectin on platelets resulted in a reduction in the velocity of migration, and simultaneous blockade of both receptors reduced velocity further. Purified CD31 and P-selectin (but not a control adhesion molecule, ICAM-1) increased migration velocity in a concentration-dependent and additive manner that reconstituted the migratory behaviour observed on platelets. These studies show that binding of ligands to CD31 and/or P-selectin modifies the rate of integrin-supported neutrophil migration. This novel example of 'cross-talk' between surface receptors suggests that cell adhesion molecules might generally transduce accessory signals between adjacent cells to modify their migratory responses to chemotactic signals.

  18. Effect of temperature on platelet adherence.

    Science.gov (United States)

    Braune, S; Fröhlich, G M; Lendlein, A; Jung, F

    2016-01-01

    Thrombogenicity is one of the main parameters tested in vitro to evaluate the hemocompatibility of artificial surfaces. While the influence of the temperature on platelet aggregation has been addressed by several studies, the temperature influence on the adherence of platelets to body foreign surfaces as an important aspect of biomedical device handling has not yet been explored. Therefore, we analyzed the influence of two typically applied incubation-temperatures (22°C and 37°C) on the adhesion of platelets to biomaterials. Thrombogenicity of three different polymers - medical grade poly(dimethyl siloxane) (PDMS), polytetrafluoroethylene (PTFE) and polyethylene terephthalate (PET) - were studied in an in vitro static test. Platelet adhesion was studied with stringently characterized blood from apparently healthy subjects. Collection of whole blood and preparation of platelet rich plasma (PRP) was carried out at room temperature (22°C). PRP was incubated with the polymers either at 22°C or 37°C. Surface adherent platelets were fixed, fluorescently labelled and assessed by an image-based approach. Differences in the density of adherent platelets after incubation at 22°C and 37°C occurred on PDMS and PET. Similar levels of adherent platelets were observed on the very thrombogenic PTFE. The covered surface areas per single platelet were analyzed to measure the state of platelet activation and revealed no differences between the two incubation temperatures for any of the analyzed polymers. Irrespective of the observed differences between the low and medium thrombogenic PDMS and PET and the higher variability at 22°C, the thrombogenicity of the three investigated polymers was evaluated being comparable at both incubation temperatures.

  19. Manufacturing Process Changes and Reduced Skin Irritations of an Adhesive Patch Used for Continuous Glucose Monitoring Devices.

    Science.gov (United States)

    Gisin, Vitaliy; Chan, Anna; Welsh, John B

    2017-10-01

    Adhesives used for continuous glucose monitoring (CGM) devices can cause skin irritations, which sometimes lead to abandonment of the therapy. A previous sensor manufacturing process involved two separate adhesives-one applied to the skin-facing surface of the fabric patch, and a second, ethyl cyanoacrylate-based adhesive, which secured the plastic transmitter housing to the superficial side of the patch. Our current process for attaching the transmitter housing to the fabric patch uses heatstaking, wherein the housing is heated and pressed against the patch with a specialized assembly apparatus. Heatstaking simplifies the sensor assembly process and obviates the need for the second adhesive, which may lead to lower risk of skin irritation(s) in some patients.

  20. Doxorubicin-induced vascular toxicity--targeting potential pathways may reduce procoagulant activity.

    Directory of Open Access Journals (Sweden)

    Irit Ben Aharon

    Full Text Available Previous study in mice using real-time intravital imaging revealed an acute deleterious effect of doxorubicin (DXR on the gonadal vasculature, as a prototype of an end-organ, manifested by a reduction in blood flow and disintegration of the vessel wall. We hypothesized that this pattern may represent the formation of microthrombi. We aimed to further characterize the effect of DXR on platelets' activity and interaction with endothelial cells (EC and to examine potential protectants to reduce DXR acute effect on the blood flow.The effect of DXR on platelet adhesion and aggregation were studied in vitro. For in vivo studies, mice were injected with either low molecular weight heparin (LMWH; Enoxaparin or with eptifibatide (Integrilin(© prior to DXR treatment. Testicular arterial blood flow was examined in real-time by pulse wave Doppler ultrasound.Platelet treatment with DXR did not affect platelet adhesion to a thrombogenic surface but significantly decreased ADP-induced platelet aggregation by up to 40% (p<0.001. However, there was a significant increase in GPIIbIIIa-mediated platelet adhesion to DXR-exposed endothelial cells (EC; 5.7-fold; p<0.001 reflecting the toxic effect of DXR on EC. The testicular arterial blood flow was preserved in mice pre-treated with LMWH or eptifibatide prior to DXR (P<0.01.DXR-induced acute vascular toxicity may involve increased platelet-EC adhesion leading to EC-bound microthrombi formation resulting in compromised blood flow. Anti-platelet/anti-coagulant agents are effective in reducing the detrimental effect of DXR on the vasculature and thus may serve as potential protectants to lessen this critical toxicity.

  1. A High-Throughput Mechanofluidic Screening Platform for Investigating Tumor Cell Adhesion During Metastasis†

    Science.gov (United States)

    Spencer, A.; Spruell, C.; Nandi, S.; Wong, M.; Crexiell, M.; Baker, A. B.

    2015-01-01

    The metastatic spread of cancer is a major barrier to effective and curative therapies for cancer. During metastasis, tumor cells intravasate into the vascular system, survive in the shear forces and immunological environment of the circulation, and then extravasate into secondary tumor sites. Biophysical forces are potent regulators of cancer biology and are key in many of the steps of metastasis. In particular, the adhesion of circulating cells is highly dependent upon competing forces between cell adhesion receptors and the shear stresses due to fluid flow. Conventional in vitro assays for drug development and the mechanistic study of metastasis are often carried out in the absence of fluidic forces and, consequently, are poorly representative of the true biology of metastasis. Here, we present a novel high-throughput approach to studying cell adhesion under flow that uses a multi-well, mechanofluidic flow system to interrogate adhesion of cancer cell to endothelial cells, extracellular matrix and platelets under physiological shear stresses. We use this system to identify pathways and compounds that can potentially be used to inhibit cancer adhesion under flow by screening anti-inflammatory compounds, integrin inhibitors and a kinase inhibitor library. In particular, we identify several small molecule inhibitors of FLT-3 and AKT that are potent inhibitors of cancer cell adhesion to endothelial cells and platelets under flow. In addition, we found that many kinase inhibitors lead to increased adhesion of cancer cells in flow-based but not static assays. This finding suggests that even compounds that reduce cell proliferation might also enhance cancer cell adhesion during metastasis. Overall, our results validate a novel platform for investigating the mechanisms of cell adhesion under biophysical flow conditions and identify several potential inhibitors of cancer cell adhesion during metastasis. PMID:26584160

  2. Antioxidants change platelet responses to various stimulating events

    OpenAIRE

    Sobotková, Alžběta; Mášová-Chrastinová, Leona; Suttnar, Jiří; Štikarová, Jana; Májek, Pavel; Reicheltová, Zuzana; Kotlín, Roman; Weisel, John W.; Malý, Martin; Jan E. Dyr

    2009-01-01

    The role of platelets in hemostasis may be influenced by alteration of the platelet redox state—the presence of antioxidants and the formation of reactive oxygen and nitrogen species. We investigated the effects of two antioxidants, resveratrol and trolox, on platelet activation. Trolox and resveratrol inhibited aggregation of washed platelets and platelet-rich plasma activated by ADP, collagen, and thrombin receptor-activating peptide. Resveratrol was a more effective agent in reducing plate...

  3. Platelet indices in SGA newborns.

    Science.gov (United States)

    Wasiluk, A; Dabrowska, M; Osada, J; Jasinska, E; Laudanski, T; Redzko, S

    2011-01-01

    The current study objective was to compare blood platelet indices in full-term small-for-gestational-age newborns (SGA) and full-term appropriate-for-gestational-age newborns (AGA). We introduced to our study 61 SGA newborns (31 females and 30 males) and 70 eutrophic infants (32 females and 38 males). The SGA newborns were divided into two groups: those weighing less than the 5th centile: 35 infants (16 females and 19 males) and those between the 5th and 10th centiles: 26 infants (15 females and 11 males). Platelet indices were estimated in blood samples collected from the umbilical artery. SGA demonstrated a decreased count of blood platelets (238×103/μ) as compared with AGA (286×103/μL), p=0.0001. Platelet hematocrit (PTC) also showed differences in both groups (SGA=0.19% vs. AGA=0.22%; p=0.0005). Mean platelet volume (MPV) was higher in SGA (8.25fl) as compared with AGA (7.84fl); p=0.008. Large platelet count (LPLT) was higher in AGA 6.26% vs. SGA=4.75%; p=0.01. Platelet distribution width (PDW) was found to be nearly the same (SGA=47%, AGA=46%). PDW was higher in SGA newborns SGA infants between the 5th and 10th centiles (52%); p=0.008. A decreased blood platelet count, platelet hematocrit and large metabolically active platelet count, which in addition to reduced synthesis and excessive consumption of coagulation factors in states of hiperclotting is characteristic of IUGR, enhances the possibility of bleeding complications and increases the risk of infections. From a clinical point of view, it is important to take into consideration the degree of intrauterine hypotrophy during the evaluation of hemostatic disorders.

  4. Platelet extracellular vesicles induce a pro-inflammatory smooth muscle cell phenotype.

    Science.gov (United States)

    Vajen, Tanja; Benedikter, Birke J; Heinzmann, Alexandra C A; Vasina, Elena M; Henskens, Yvonne; Parsons, Martin; Maguire, Patricia B; Stassen, Frank R; Heemskerk, Johan W M; Schurgers, Leon J; Koenen, Rory R

    2017-01-01

    Extracellular vesicles (EVs) are mediators of cell communication during health and disease, and abundantly released by platelets upon activation or during ageing. Platelet EVs exert modulatory effects on immune and vascular cells. Platelet EVs may modulate the function of vascular smooth muscle cells (SMC). Platelet EVs were isolated from platelet-rich plasma and incubated with SMC in order to assess binding, proliferation, migration and pro-inflammatory phenotype of the cells. Platelet EVs firmly bound to resting SMC through the platelet integrin αIIbβ3, while binding also occurred in a CX3CL1-CX3CR1-dependent manner after cytokine stimulation. Platelet EVs increased SMC migration comparable to platelet derived growth factor or platelet factor 4 and induced SMC proliferation, which relied on CD40- and P-selectin interactions. Flow-resistant monocyte adhesion to platelet EV-treated SMC was increased compared with resting SMC. Again, this adhesion depended on integrin αIIbβ3 and P-selectin, and to a lesser extent on CD40 and CX3CR1. Treatment of SMC with platelet EVs induced interleukin 6 secretion. Finally, platelet EVs induced a synthetic SMC morphology and decreased calponin expression. Collectively, these data indicate that platelet EVs exert a strong immunomodulatory activity on SMC. In particular, platelet EVs induce a switch towards a pro-inflammatory phenotype, stimulating vascular remodelling.

  5. Multiple alterations of platelet functions dominated by increased secretion in mice lacking Cdc42 in platelets

    DEFF Research Database (Denmark)

    Pleines, Irina; Eckly, Anita; Elvers, Margitta

    2010-01-01

    Platelet activation at sites of vascular injury is crucial for hemostasis, but it may also cause myocardial infarction or stroke. Cytoskeletal reorganization is essential for platelet activation and secretion. The small GTPase Cdc42 has been implicated as an important mediator of filopodia...... formation and exocytosis in various cell types, but its exact function in platelets is not established. Here, we show that the megakaryocyte/platelet-specific loss of Cdc42 leads to mild thrombocytopenia and a small increase in platelet size in mice. Unexpectedly, Cdc42-deficient platelets were able to form...... normally shaped filopodia and spread fully on fibrinogen upon activation, whereas filopodia formation upon selective induction of GPIb signaling was reduced compared with wild-type platelets. Furthermore, Cdc42-deficient platelets showed enhanced secretion of alpha granules, a higher adenosine diphosphate...

  6. Platelet transfusion.

    Science.gov (United States)

    1998-01-01

    The statement printed below was agreed at a consensus conference on platelet transfusion organised by the Royal College of Physicians of Edinburgh and held in Edinburgh in November 1997. We publish this statement at the request of the organising committee to bring it to the attention of physicians who do not read the haematological literature. The statement will also appear in the British Journal of Haematology in 1998 with the scientific evidence upon which it is based.

  7. Neonatal thrombocytopenia and platelets transfusion

    Directory of Open Access Journals (Sweden)

    Anil K Gupta

    2012-01-01

    Full Text Available Background: Neonates often develop thrombocytopenia at some time during hospital stay. Platelet transfusion are frequently given to them and are likely to result in unnecessary transfusion. Material and Methods: Thus, we analyzed thrombocytopenia in neonates, its prevalence, and relationship if any, between clinical condition and platelet transfusion in neonates, which would have been helpful in developing guidelines and/or protocols for platelet transfusion (and reducing the donor exposure in neonates. Results: A total of 870 neonates who were admitted in Neonatal Intensive Care Unit (NICU with various morbidities had platelets count done; of these, 146 (16.7% neonate revealed thrombocytopenia. Discussion: Low birth weight babies (P 0.009 and babies born with mother having hypertension (P 0.04 showed significant thrombocytopenia. Neonates with intrauterine growth retardation (IUGR diagnosed during antenatal screening showed lower platelet count (P 0.022. Neonates having associated illness, such as sepsis, gastrointestinal, and respiratory problems, and on vasopressor drugs were found to be associated with low platelet count. Conclusion: In our study, 16.40% of thrombocytopenic neonates required platelet transfusion either alone or with other blood component during their stay in NICU.

  8. Sphingosine-1-phosphate reduces adhesion of malignant mammary tumor cells MDA-MB-231 to microvessel walls by protecting endothelial surface glycocalyx.

    Science.gov (United States)

    Zhang, L; Zeng, M; Fu, B M

    2017-04-29

    Sphingosine-1-phosphate (S1P) is a sphingolipid in plasma that plays a critical role in cardiovascular and immune systems. Endothelial surface glycocalyx (ESG) decorating the inner wall of blood vessels is a regulator of multiple vascular functions. To test the hypothesis that S1P can reduce tumor cell adhesion to microvessel walls by protecting the ESG, we quantified the ESG and MDA-MB-231 tumor cell adhesion in the presence and absence of 1μM S1P, and in the presence of the matrix metalloproteinase (MMP) inhibitor in post-capillary venules of rat mesentery. We also measured the microvessel permeability to albumin as an indicator for the microvessel wall integrity. In the absence of S1P, ESG was ~10% of that in the presence of S1P, whereas adherent tumor cells and the permeability to albumin and were ~3.5-fold (after 30 min adhesion) and ~7.7-fold that in the presence of S1P, respectively. In the presence of the MMP inhibitor, the results are similar to those in the presence of S1P. Our results conform to the hypothesis that protecting ESG by S1P inhibits MDA-MB-231 tumor cell adhesion to the microvessel wall.

  9. The Anti-Atherosclerotic Effect of Naringin Is Associated with Reduced Expressions of Cell Adhesion Molecules and Chemokines through NF-κB Pathway

    Directory of Open Access Journals (Sweden)

    Tun-Pin Hsueh

    2016-02-01

    Full Text Available Naringin has been reported to have an anti-atherosclerosis effect but the underlying mechanism is not fully understood. The aim of this study is to investigate the impact of naringin on the TNF-α-induced expressions of cell adhesion molecules, chemokines and NF-κB signaling pathway in human umbilical vein endothelial cells (HUVECs. The experiments revealed that naringin, at concentrations without cytotoxicity, dose-dependently inhibited the adhesion of THP-1 monocytes to the TNF-α-stimulated HUVECs. The TNF-α-induced expressions of cell adhesion molecules, including VCAM-1, ICAM-1 and E-selectin, at both the mRNA and protein levels, were significantly suppressed by naringin in a dose dependent manner. In addition, the TNF-α-induced mRNA and protein levels of chemokines, including fractalkine/CX3CL1, MCP-1 and RANTES, were also reduced by naringin. Naringin significantly inhibited TNF-α-induced nuclear translocation of NF-κB, which resulted from the inhibited phosphorylation of IKKα/β, IκB-α and NF-κB. Altogether, we proposed that naringin modulated TNF-α-induced expressions of cell adhesion molecules and chemokines through the inhibition of TNF-α-induced activation of IKK/NF-κB signaling pathway to exert the anti-atherosclerotic effect.

  10. Mammary gland-specific ablation of focal adhesion kinase reduces the incidence of p53-mediated mammary tumour formation.

    NARCIS (Netherlands)

    Miltenburg, van M.H.; Nimwegen, van M.J.; Tijdens, R.B.; Lalai, R.A.; Kuiper, R.; Klarenbeek, S.; Schouten, P.C.; Vries, de A.; Jonkers, J.M.M.; Water, van de B.

    2014-01-01

    BACKGROUND Elevated expression of focal adhesion kinase (FAK) occurs in numerous human cancers including colon-, cervix- and breast cancer. Although several studies have implicated FAK in mammary tumour formation induced by ectopic oncogene expression, evidence supporting a role for FAK in

  11. Platelet receptor polymorphisms do not influence Staphylococcus aureus–platelet interactions or infective endocarditis

    Science.gov (United States)

    Daga, Shruti; Shepherd, James G.; Callaghan, J. Garreth S.; Hung, Rachel K.Y.; Dawson, Dana K.; Padfield, Gareth J.; Hey, Shi Y.; Cartwright, Robyn A.; Newby, David E.; Fitzgerald, J. Ross

    2011-01-01

    Cardiac vegetations result from bacterium–platelet adherence, activation and aggregation, and are associated with increased morbidity and mortality in infective endocarditis. The GPIIb/IIIa and FcγRIIa platelet receptors play a central role in platelet adhesion, activation and aggregation induced by endocarditis pathogens such as Staphylococcus aureus, but the influence of known polymorphisms of these receptors on the pathogenesis of infective endocarditis is unknown. We determined the GPIIIa platelet antigen PlA1/A2 and FcγRIIa H131R genotype of healthy volunteers (n = 160) and patients with infective endocarditis (n = 40), and investigated the influence of these polymorphisms on clinical outcome in infective endocarditis and S. aureus–platelet interactions in vitro. Platelet receptor genotype did not correlate with development of infective endocarditis, vegetation characteristics on echocardiogram or the composite clinical end-point of embolism, heart failure, need for surgery or mortality (P > 0.05 for all), even though patients with the GPIIIa PlA1/A1 genotype had increased in vivo platelet activation (P = 0.001). Furthermore, neither GPIIIa PlA1/A2 nor FcγRIIa H131R genotype influenced S. aureus-induced platelet adhesion, activation or aggregation in vitro (P > 0.05). Taken together, our data suggest that the GPIIIa and FcγRIIa platelet receptor polymorphisms do not influence S. aureus–platelet interactions in vitro or the clinical course of infective endocarditis. PMID:21044892

  12. Silk biomaterials functionalized with recombinant domain V of human perlecan modulate endothelial cell and platelet interactions for vascular applications.

    Science.gov (United States)

    Rnjak-Kovacina, Jelena; Tang, Fengying; Whitelock, John M; Lord, Megan S

    2016-12-01

    Modulation of endothelial cell and platelet interactions is an essential feature of vascular materials. Silk biomaterials were functionalized with recombinantly expressed domain V of human perlecan, an essential vascular proteoglycan involved in vasculogenesis, angiogenesis and wound healing, using passive adsorption or covalent cross-linking via carbodiimide chemistry. The orientation of domain V on the surface of silk biomaterials was modulated by the immobilization technique and glycosaminoglycan chains played an essential role in the proteoglycan presentation on the material surface. Covalent immobilization supported improved integrin binding site presentation to endothelial cells compared to passive adsorption in the presence of glycosaminoglycan chains, but removal of glycosaminoglycan chains resulted in reduced integrin site availability and thus cell binding. Silk biomaterials covalently functionalized with domain V supported endothelial cell adhesion, spreading and proliferation and were anti-adhesive for platelets, making them promising surfaces for the development of the next-generation vascular grafts. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. ARQ 092, an orally-available, selective AKT inhibitor, attenuates neutrophil-platelet interactions in sickle cell disease.

    Science.gov (United States)

    Kim, Kyungho; Li, Jing; Barazia, Andrew; Tseng, Alan; Youn, Seock-Won; Abbadessa, Giovanni; Yu, Yi; Schwartz, Brian; Andrews, Robert K; Gordeuk, Victor R; Cho, Jaehyung

    2017-02-01

    Previous studies identified the Ser/Thr protein kinase, AKT, as a therapeutic target in thrombo-inflammatory diseases. Here we report that specific inhibition of AKT with ARQ 092, an orally-available AKT inhibitor currently in phase Ib clinical trials as an anti-cancer drug, attenuates the adhesive function of neutrophils and platelets from sickle cell disease patients in vitro and cell-cell interactions in a mouse model of sickle cell disease. Studies using neutrophils and platelets isolated from sickle cell disease patients revealed that treatment with 50-500 nM ARQ 092 significantly blocks αMβ2 integrin function in neutrophils and reduces P-selectin exposure and glycoprotein Ib/IX/V-mediated agglutination in platelets. Treatment of isolated platelets and neutrophils with ARQ 092 inhibited heterotypic cell-cell aggregation under shear conditions. Intravital microscopic studies demonstrated that short-term oral administration of ARQ 092 or hydroxyurea, a major therapy for sickle cell disease, diminishes heterotypic cell-cell interactions in venules of sickle cell disease mice challenged with tumor necrosis factor-α. Co-administration of hydroxyurea and ARQ 092 further reduced the adhesive function of neutrophils in venules and neutrophil transmigration into alveoli, inhibited expression of E-selectin and intercellular adhesion molecule-1 in cremaster vessels, and improved survival in these mice. Ex vivo studies in sickle cell disease mice suggested that co-administration of hydroxyurea and ARQ 092 efficiently blocks neutrophil and platelet activation and that the beneficial effect of hydroxyurea results from nitric oxide production. Our results provide important evidence that ARQ 092 could be a novel drug for the prevention and treatment of acute vaso-occlusive complications in patients with sickle cell disease. Copyright© Ferrata Storti Foundation.

  14. Magnolol reduced TNF-α-induced vascular cell adhesion molecule-1 expression in endothelial cells via JNK/p38 and NF-κB signaling pathways.

    Science.gov (United States)

    Liang, Chan-Jung; Lee, Chiang-Wen; Sung, Hsin-Ching; Chen, Yung-Hsiang; Wang, Shu-Huei; Wu, Pei-Jhen; Chiang, Yao-Chang; Tsai, Jaw-Shiun; Wu, Chau-Chung; Li, Chi-Yuan; Chen, Yuh-Lien

    2014-01-01

    Expression of cell adhesion molecules by the endothelium and the attachment of leukocytes to these cells play major roles in inflammation and cardiovascular disorders. Magnolol, a major active component of Magnolia officinalis, has antioxidative and anti-inflammatory properties. In the present study, the effects of magnolol on the expression of vascular cell adhesion molecule-1 (VCAM-1) in human aortic endothelial cells (HAECs) and the related mechanisms were investigated. TNF-α induced VCAM-1 protein expression and mRNA stability were significantly decreased in HAECs pre-treated with magnolol. Magnolol significantly reduced the phosphorylation of ERK, JNK, and p38 in TNF-α-treated HAECs. The decrease in VCAM-1 expression in response to TNF-α treatment was affected by JNK and p38 inhibitors, not by an ERK inhibitor. Magnolol also attenuates NF-κB activation and the translocation of HuR (an RNA binding protein) in TNF-α-stimulated HAECs. The VCAM-1 expression was weaker in the aortas of TNF-α-treated apo-E deficient mice with magnolol treatment. These data demonstrate that magnolol inhibits TNF-α-induced JNK/p38 phosphorylation, HuR translocation, NF-κB activation, and thereby suppresses VCAM-1 expression resulting in reduced leukocyte adhesion. Taken together, these results suggest that magnolol has an anti-inflammatory property and may play an important role in the prevention of atherosclerosis and inflammatory responses.

  15. The administration of a loading dose of aspirin to patients presenting with acute myocardial infarction while receiving chronic aspirin treatment reduces thromboxane A2-dependent platelet reactivity.

    Science.gov (United States)

    Santos, Maria Teresa; Madrid, Isabel; Moscardo, Antonio; Latorre, Ana M; Bonastre, Juan; Ruano, Miguel; Valles, Juana

    2014-01-01

    Abstract The optimal dose of aspirin for patients presenting with acute myocardial infarction (AMI) while receiving chronic aspirin therapy has not been clearly established. We evaluated whether continued treatment with 100 mg of aspirin or a loading dose (200-500 mg) influences thromboxane A2 (TX) suppression or platelet reactivity. Sixty-four consecutive patients with AMI and 98 healthy subjects (82 aspirin-free and 16 receiving 100 mg daily for a week) were evaluated. Treatment was at the discretion of the attending physician. Collagen (1 µg/ml)-induced TX synthesis, (14)C-serotonin-release, platelet aggregation, and the PFA-100 assay were evaluated. The platelet TX synthesis of patients receiving a loading dose of aspirin was sixfold lower than that of patients receiving 100 mg of aspirin (psynthesis (aspirin-free subjects) revealed that 8% of the patients treated with loading doses had a poor response (aspirin to patients with AMI during existing chronic aspirin treatment induced greater reductions in platelet TX synthesis and TX-dependent platelet reactivity than the continued treatment alone.

  16. Effects of Physical (Inactivity on Platelet Function

    Directory of Open Access Journals (Sweden)

    Stefan Heber

    2015-01-01

    Full Text Available As platelet activation is closely related to the liberation of growth factors and inflammatory mediators, platelets play a central role in the development of CVD. Virtually all cardiovascular risk factors favor platelet hyperreactivity and, accordingly, also physical (inactivity affects platelet function. Within this paper, we will summarize and discuss the current knowledge on the impact of acute and habitual exercise on platelet function. Although there are apparent discrepancies regarding the reported effects of acute, strenuous exercise on platelet activation, a deeper analysis of the available literature reveals that the applied exercise intensity and the subjects’ cardiorespiratory fitness represent critical determinants for the observed effects. Consideration of these factors leads to the summary that (i acute, strenuous exercise can lead to platelet activation, (ii regular physical activity and/or physical fitness diminish or prevent platelet activation in response to acute exercise, and (iii habitual physical activity and/or physical fitness also favorably modulate platelet function at physical rest. Notably, these effects of exercise on platelet function show obvious similarities to the well-recognized relation between exercise and the risk for cardiovascular events where vigorous exercise transiently increases the risk for myocardial infarction and a physically active lifestyle dramatically reduces cardiovascular mortality.

  17. Human platelets frozen with glycerol in liquid nitrogen: biological and clinical aspects.

    Science.gov (United States)

    Herve, P; Potron, G; Droule, C; Beduchaud, M P; Masse, M; Coffe, C; Bosset, J F; Peters, A

    1981-01-01

    Platelets were frozen using glycerol (3% in plasma) as a cryoprotective agent, a rapid cooling rate, and liquid nitrogen for storage. The cryopreserved platelets were thawed at 42 C and infused without washing. The results indicate that the quality of the thawed platelets is equivalent to platelets stored for 24 to 48 hours at room temperature. The availability of HLA phenotyped leukocyte poor platelets can reduce the frequency of sensitization to strong antigens and provide clinically effective platelets for alloimmunized patients.

  18. Sulforaphane reduces vascular inflammation in mice and prevents TNF-α-induced monocyte adhesion to primary endothelial cells through interfering with the NF-κB pathway.

    Science.gov (United States)

    Nallasamy, Palanisamy; Si, Hongwei; Babu, Pon Velayutham Anandh; Pan, Dengke; Fu, Yu; Brooke, Elizabeth A S; Shah, Halley; Zhen, Wei; Zhu, Hong; Liu, Dongmin; Li, Yunbo; Jia, Zhenquan

    2014-08-01

    Sulforaphane, a naturally occurring isothiocyanate present in cruciferous vegetables, has received wide attention for its potential to improve vascular function in vitro. However, its effect in vivo and the molecular mechanism of sulforaphane at physiological concentrations remain unclear. Here, we report that a sulforaphane concentration as low as 0.5 μM significantly inhibited tumor necrosis factor-α (TNF-α)-induced adhesion of monocytes to human umbilical vein endothelial cells, a key event in the pathogenesis of atherosclerosis both in static and under flow conditions. Such physiological concentrations of sulforaphane also significantly suppressed TNF-α-induced production of monocyte chemotactic protein-1 and adhesion molecules including soluble vascular adhesion molecule-1 and soluble E-selectin, key mediators in the regulation of enhanced endothelial cell-monocyte interaction. Furthermore, sulforaphane inhibited TNF-α-induced nuclear factor (NF)-κB transcriptional activity, Inhibitor of NF-κB alpha (IκBα) degradation and subsequent NF-κB p65 nuclear translocation in endothelial cells, suggesting that sulforaphane can inhibit inflammation by suppressing NF-κB signaling. In an animal study, sulforaphane (300 ppm) in a mouse diet significantly abolished TNF-α-increased ex vivo monocyte adhesion and circulating adhesion molecules and chemokines in C57BL/6 mice. Histology showed that sulforaphane treatment significantly prevented the eruption of endothelial lining in the intima layer of the aorta and preserved elastin fibers' delicate organization, as shown by Verhoeff-van Gieson staining. Immunohistochemistry studies showed that sulforaphane treatment also reduced vascular adhesion molecule-1 and monocyte-derived F4/80-positive macrophages in the aorta of TNF-α-treated mice. In conclusion, sulforaphane at physiological concentrations protects against TNF-α-induced vascular endothelial inflammation, in both in vitro and in vivo models. This anti

  19. Force-activatable biosensor enables single platelet force mapping directly by fluorescence imaging.

    Science.gov (United States)

    Wang, Yongliang; LeVine, Dana N; Gannon, Margaret; Zhao, Yuanchang; Sarkar, Anwesha; Hoch, Bailey; Wang, Xuefeng

    2018-02-15

    Integrin-transmitted cellular forces are critical for platelet adhesion, activation, aggregation and contraction during hemostasis and thrombosis. Measuring and mapping single platelet forces are desired in both research and clinical applications. Conventional force-to-strain based cell traction force microscopies have low resolution which is not ideal for cellular force mapping in small platelets. To enable platelet force mapping with submicron resolution, we developed a force-activatable biosensor named integrative tension sensor (ITS) which directly converts molecular tensions to fluorescent signals, therefore enabling cellular force mapping directly by fluorescence imaging. With ITS, we mapped cellular forces in single platelets at 0.4µm resolution. We found that platelet force distribution has strong polarization which is sensitive to treatment with the anti-platelet drug tirofiban, suggesting that the ITS force map can report anti-platelet drug efficacy. The ITS also calibrated integrin molecular tensions in platelets and revealed two distinct tension levels: 12-54 piconewton (nominal values) tensions generated during platelet adhesion and tensions above 54 piconewton generated during platelet contraction. Overall, the ITS is a powerful biosensor for the study of platelet mechanobiology, and holds great potential in antithrombotic drug development and assessing platelet activity in health and disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Treatment with tanshinone IIA suppresses disruption of the blood-brain barrier and reduces expression of adhesion molecules and chemokines in experimental autoimmune encephalomyelitis.

    Science.gov (United States)

    Yang, Xue; Yan, Jun; Feng, Juan

    2016-01-15

    Tanshinone IIA (TSIIA), one of the major bioactive components of the traditional Chinese herb Salvia miltiorrhiza, has been reported to have both anti-inflammatory and immunoregulatory effects. The effect of treatment with TSIIA in multiple sclerosis, an autoimmune inflammatory neurodegenerative disease, however, remains poorly understood. In the present study, experimental autoimmune encephalomyelitis (EAE), a classical experimental model of MS, was used to investigate the therapeutic effect of TSIIA. TSIIA attenuated motor dysfunction and improved inflammation and demyelination associated with EAE in a dose-dependent manner. TSIIA also significantly reduced the levels of glial fibrillary acidic protein (GFAP) and ionized calcium-binding adapter molecule-1 (Iba-1), and protected the integrity of the blood-brain barrier (BBB) by increasing the expression of critical endothelial tight junction (TJ) proteins. TSIIA also inhibited the expression of some adhesion molecules and chemokines, which are considered to be critical for adhesion of immune cells and migration across the BBB. TSIIA was thus shown to be effective in the treatment of EAE through preventing the infiltration of immune cells into the CNS, strengthening the integrity of the BBB and decreasing the numbers of adhesion molecules and chemokines. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Enhanced platelet MRP4 expression and correlation with platelet function in patients under chronic aspirin treatment.

    Science.gov (United States)

    Massimi, Isabella; Lotti, Lavinia Vittoria; Temperilli, Flavia; Mancone, Massimo; Sardella, Gennaro; Calcagno, Simone; Turriziani, Ombretta; Frati, Luigi; Pulcinelli, Fabio M

    2016-11-30

    Platelet multidrug resistance protein4 (MRP4)-overexpression has a role in reducing aspirin action. Aspirin in vivo treatment enhances platelet MRP4 expression and MRP4 mediated transport inhibition reduces platelet function and delays thrombus formation. The aim of our work was to verify whether MRP4 expression is enhanced in platelets obtained from patients under chronic aspirin treatment and whether it correlates with residual platelet reactivity. We evaluated changes on mRNA and protein-MRP4 expression and platelet aggregation in four populations: healthy volunteers (HV), aspirin-free control population (CTR), patients who started the treatment less than one month ago (ASAaspirinated patients who started the treatment more than two months ago (ASA>2 months patients). In platelets obtained from ASA>2 months patients, it was found a statistically significant MRP4 enhancement of both mRNA and protein expression compared to HV, CTR and ASA2 months patients that present high levels of platelet MRP4, have higher serum TxB2 levels and collagen-induced platelet aggregation compared to patient with low levels of MRP4 in platelets. In addition collagen induced platelet aggregation is higher in in vitro aspirinated platelets obtained from patients with high levels of MRP4 patients compared to those obtained from patients with low MRP4 levels. We can assert that, in patients under chronic aspirin treatment, platelets that present high MRP4 levels have an increase of residual platelet reactivity, which is due in part to incomplete COX-1 inhibition, and in part to COX-1-independent mechanism.

  2. Platelet CD40L mediates thrombotic and inflammatory processes in atherosclerosis

    Science.gov (United States)

    Lievens, Dirk; Zernecke, Alma; Seijkens, Tom; Soehnlein, Oliver; Beckers, Linda; Munnix, Imke C. A.; Wijnands, Erwin; Goossens, Pieter; van Kruchten, Roger; Thevissen, Larissa; Boon, Louis; Flavell, Richard A.; Noelle, Randolph J.; Gerdes, Norbert; Biessen, Erik A.; Daemen, Mat J. A. P.; Heemskerk, Johan W. M.; Weber, Christian

    2010-01-01

    CD40 ligand (CD40L), identified as a costimulatory molecule expressed on T cells, is also expressed and functional on platelets. We investigated the thrombotic and inflammatory contributions of platelet CD40L in atherosclerosis. Although CD40L-deficient (Cd40l−/−) platelets exhibited impaired platelet aggregation and thrombus stability, the effects of platelet CD40L on inflammatory processes in atherosclerosis were more remarkable. Repeated injections of activated Cd40l−/− platelets into Apoe−/− mice strongly decreased both platelet and leukocyte adhesion to the endothelium and decreased plasma CCL2 levels compared with wild-type platelets. Moreover, Cd40l−/− platelets failed to form proinflammatory platelet-leukocyte aggregates. Expression of CD40L on platelets was required for platelet-induced atherosclerosis as injection of Cd40l−/− platelets in contrast to Cd40l+/+ platelets did not promote lesion formation. Remarkably, injection of Cd40l+/+, but not Cd40l−/−, platelets transiently decreased the amount of regulatory T cells (Tregs) in blood and spleen. Depletion of Tregs in mice injected with activated Cd40l−/− platelets abrogated the athero-protective effect, indicating that CD40L on platelets mediates the reduction of Tregs leading to accelerated atherosclerosis. We conclude that platelet CD40L plays a pivotal role in atherosclerosis, not only by affecting platelet-platelet interactions but especially by activating leukocytes, thereby increasing platelet-leukocyte and leukocyte-endothelium interactions. PMID:20705757

  3. Cystamine immobilization on TiO{sub 2} film surfaces and the influence on inhibition of collagen-induced platelet activation

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Yujuan [Key Lab. of Advanced Technology for Materials of Chinese Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Weng Yajun, E-mail: wengyj7032@sohu.com [Key Lab. of Advanced Technology for Materials of Chinese Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Zhang Liping; Jing Fengjuan; Huang Nan [Key Lab. of Advanced Technology for Materials of Chinese Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Chen Junying, E-mail: chenjy@263.net [Key Lab. of Advanced Technology for Materials of Chinese Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China)

    2011-12-15

    Poor haemocompatibility is a main issue of artificial cardiovascular materials in clinical application. Nitric oxide (NO), produced by vascular endothelial cells, is a well known inhibitor of platelet adhesion and activation. Thus, NO-releasing biomaterials are beneficial for improving haemocompatibility of blood-contacting biomedical devices. In this paper, a novel method was developed for enhancement of haemocompatibility by exploiting endogenous NO donors. TiO{sub 2} films were firstly synthesized on Si (1 0 0) wafers via unbalanced magnetron sputtering technology, and then polydopamine was grafted on TiO{sub 2} films and used as a linker for further immobilization of cystamine. The obtained surfaces were characterized by scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) analysis. NO generation is evaluated by saville-griess reagents, and it shows that cystamine immobilized samples are able to catalytically generate NO by decomposing endogenous S-nitrosothiols (RSNO). In vitro platelet adhesion results reveal that cystamine modified surfaces can inhibit collagen-induced platelet activation. ELISA analysis reveals that cGMP in platelets obviously increases on cystamine immobilized surface, which suggests the reducing of platelet activation is through NO/cGMP signal channel. It can be concluded that cystamine immobilized surface shows better blood compatibility by catalyzing NO release from the endogenous NO donor. It may be a promising method for improvement of haemocompatibility of blood-contacting implants.

  4. Elaboration of highly hydrophobic polymeric surface — a potential strategy to reduce the adhesion of pathogenic bacteria?

    Energy Technology Data Exchange (ETDEWEB)

    Poncin-Epaillard, F., E-mail: fabienne.poncin-epaillard@univ-lemans.fr [Institut des Molécules et Matériaux du Mans (IMMM), département Polymères, Colloïdes et Interfaces, UMR CNRS 6283 Université LUNAM, av. O. Messiaen, 72085 Le Mans (France); Herry, J.M. [INRA-AgroParisTech, UMR 1319 MICALIS, équipe B2HM, 25 avenue de la République, 91300 Massy (France); Marmey, P.; Legeay, G. [CTTM, 20 rue Thalès de Milet 72000 Le Mans (France); Debarnot, D. [Institut des Molécules et Matériaux du Mans (IMMM), département Polymères, Colloïdes et Interfaces, UMR CNRS 6283 Université LUNAM, av. O. Messiaen, 72085 Le Mans (France); Bellon-Fontaine, M.N. [INRA-AgroParisTech, UMR 1319 MICALIS, équipe B2HM, 25 avenue de la République, 91300 Massy (France)

    2013-04-01

    Different polymeric surfaces have been modified in order to reach a high hydrophobic character, indeed the superhydrophobicity property. For this purpose, polypropylene and polystyrene have been treated by RF or μwaves CF{sub 4} plasma with different volumes, the results were compared according to the density of injected power. The effect of pretreatment such as mechanical abrasion or plasma activation was also studied. The modified surfaces were shown as hydrophobic, or even superhydrophobic depending of defects density. They were characterized by measurement of wettability and roughness at different scales, i.e. macroscopic, mesoscopic and atomic. It has been shown that a homogeneous surface at the macroscopic scale could be heterogeneous at lower mesoscopic scale. This was associated with the crystallinity of the material. The bioadhesion tests were performed with Gram positive and negative pathogenic strains: Listeria monocytogenes, Pseudomonas aeruginosa and Hafnia alvei. They have demonstrated an antibacterial efficiency of very hydrophobic and amorphous PS treated for all strains tested and a strain-dependent efficiency with modified PP surface being very heterogeneous at the mesoscopic scale. Thus, these biological results pointed out not only the respective role of the surface chemistry and topography in bacterial adhesion, but also the dependence on the peaks and valley distribution at bacteria dimension scale. Highlights: ► Simple, eco-friendly modification of polymers leading to highly hydrophobic property ► Plasma treatment inducing surface fluorination and roughness ► Study of non-adhesion of different types of bacteria onto such polymeric surfaces ► Dependence of their non-adhesion on surface topography whatever their characteristics.

  5. Intra-articular Injections of Platelet-Rich Plasma Releasate Reduce Pain and Synovial Inflammation in a Mouse Model of Osteoarthritis.

    Science.gov (United States)

    Khatab, Sohrab; van Buul, Gerben M; Kops, Nicole; Bastiaansen-Jenniskens, Yvonne M; Bos, P Koen; Verhaar, Jan A; van Osch, Gerjo J

    2018-01-01

    Osteoarthritis (OA) is a degenerative joint disease leading to pain and disability for which no curative treatment exists. A promising biological treatment for OA is intra-articular administration of platelet-rich plasma (PRP). PRP injections in OA joints can relieve pain, although the exact working mechanism is unclear. To examine the effects of PRP releasate (PRPr) on pain, cartilage damage, and synovial inflammation in a mouse OA model. Controlled laboratory study. OA was induced unilaterally in the knees of male mice (n = 36) by 2 intra-articular injections of collagenase at days -7 and -5. At day 0, pain was measured by registering weight distribution on the hindlimbs, after which mice were randomly divided into 2 groups. Mice received 3 intra-articular injections of PRP or saline in the affected knee. Seven mice per group were euthanized at day 5 for assessment of early synovial inflammation and cartilage damage. Pain in the remaining mice was registered for a total of 3 weeks. These mice were euthanized at day 21 for assessment of cartilage damage and synovial inflammation on histological evaluation. Antibodies against iNOS, CD163, and CD206 were used to identify different subtypes of macrophages in the synovial membrane. Mice in the PRPr group increased the distribution of weight on the affected joint in 2 consecutive weeks after the start of the treatment ( P < .05), whereas mice in the saline group did not. At day 21, PRPr-injected knees had a thinner synovial membrane ( P < .05) and a trend toward less cartilage damage in the lateral joint compartment ( P = .053) than saline-injected knees. OA knees treated with saline showed less anti-inflammatory (CD206+ and CD163+) cells at day 5 than healthy knees, an observation that was not made in the PRPr-treated group. A higher level of pain at day 7 was associated with a thicker synovial membrane at day 21. The presence of CD206+ cells was negatively associated with synovial membrane thickness. In a murine OA

  6. Electrospun Gelatin–Chondroitin Sulfate Scaffolds Loaded with Platelet Lysate Promote Immature Cardiomyocyte Proliferation

    Directory of Open Access Journals (Sweden)

    Francesca Saporito

    2018-02-01

    Full Text Available The aim of the present work was the development of heart patches based on gelatin (G and chondroitin sulfate (CS to be used as implants to improve heart recovery after corrective surgery for critical congenital heart defects (CHD. Patches were prepared by means of electrospinning to obtain nanofibrous scaffolds and they were loaded with platelet lysate (PL as a source of growth factors to further enhance the repair process. Scaffolds were characterized for morphology and mechanical properties and for the capability to support in vitro adhesion and proliferation of dermal fibroblasts in order to assess the system’s general biocompatibility. Adhesion and proliferation of endothelial cells and cardiac cells (cardiomyocytes and cardiac fibroblasts from rat fetuses onto PL-loaded patches was evaluated. Patches presented good elasticity and high stiffness suitable for in vivo adaptation to heart contraction. CS improved adhesion and proliferation of dermal fibroblasts, as proof of their biocompatibility. Moreover, they enhanced the adhesion and proliferation of endothelial cells, a crucial mediator of cardiac repair. Cell adhesion and proliferation could be related to elastic properties, which could favor cell motility. The presence of platelet lysate and CS was crucial for the adhesion and proliferation of cardiac cells and, in particular, of cardiomyocytes: G/CS scaffold embedded with PL appeared to selectively promote proliferation in cardiomyocytes but not cardiac fibroblasts. In conclusion, G/CS scaffold seems to be a promising system to assist myocardial-repair processes in young patient, preserving cardiomyocyte viability and preventing cardiac fibroblast proliferation, likely reducing subsequent uncontrolled collagen deposition by fibroblasts following repair.

  7. Platelet-rich plasma reduces skin flap inflammatory cells infiltration and improves survival rates through induction of angiogenesis: An experiment in rabbits.

    Science.gov (United States)

    Wang, Biao; Geng, Qiuhua; Hu, Junling; Shao, Jianchuan; Ruan, Jing; Zheng, Jiansheng

    2016-08-01

    This study was conducted to evaluate the effects of platelet-rich plasma (PRP) on flap survival in an experimental rabbit model. Symmetrical rectangular dorsal cutaneous flaps (8 × 2 cm) were elevated in 15 rabbits. The rabbits were randomly divided into a 3-day group (n = 5), a 7-day group (n = 5), and a 14-day group (n = 5). Either side of the dorsum was selected for injection of PRP into the flap basal surface, while the other side received an equal volume of saline as a control. The flaps were immediately sutured back, after which the flap survival was measured and histology specimens were collected at 3, 7, and 14 days. Platelet-rich plasma significantly improved flap survival rates of the PRP side flaps relative to the control in the 3-day (74.4% ± 4.7% vs 65.8% ± 6.8%; p platelet-rich plasma side flap vs the blank control side flap. Platelet-rich plasma (PRP) promotes the survival of random rabbit flaps and, therefore, represents a promising treatment to prevent skin flap necrosis in reconstructive and plastic surgery.

  8. Development of a Glycosaminoglycan Derived, Selectin Targeting Anti-Adhesive Coating to Treat Endothelial Cell Dysfunction

    Directory of Open Access Journals (Sweden)

    James R. Wodicka

    2017-03-01

    Full Text Available Endothelial cell (EC dysfunction is associated with many disease states including deep vein thrombosis (DVT, chronic kidney disease, sepsis and diabetes. Loss of the glycocalyx, a thin glycosaminoglycan (GAG-rich layer on the EC surface, is a key feature of endothelial dysfunction and increases exposure of EC adhesion molecules such as selectins, which are involved in platelet binding to ECs. Once bound, platelets cause thrombus formation and an increased inflammatory response. We have developed a GAG derived, selectin targeting anti-adhesive coating (termed EC-SEAL consisting of a dermatan sulfate backbone and multiple selectin-binding peptides designed to bind to inflamed endothelium and prevent platelet binding to create a more quiescent endothelial state. Multiple EC-SEAL variants were evaluated and the lead variant was found to preferentially bind to selectin-expressing ECs and smooth muscle cells (SMCs and inhibit platelet binding and activation in a dose-dependent manner. In an in vivo model of DVT, treatment with the lead variant resulted in reduced thrombus formation. These results indicate that EC-SEAL has promise as a potential therapeutic in the treatment of endothelial dysfunction.

  9. Efficacy of Hyaluronic Acid/Carboxymethyl Cellulose-Based Bioresorbable Membranes in Reducing Perihepatic Adhesion Formation: A Prospective Cohort Study.

    Science.gov (United States)

    Shimizu, Atsushi; Hasegawa, Kiyoshi; Masuda, Koichi; Omichi, Kiyohiko; Miyata, Akinori; Kokudo, Norihiro

    2017-05-12

    Perihepatic adhesions induced by hepatectomy make the subsequent repeat hepatectomy technically demanding. The aim of this study was to verify the effect of hyaluronic acid/carboxymethyl cellulose-based bioresorbable membrane (HA membrane) in preventing posthepatectomy adhesion formation by focusing on the ease of the adhesiolysis in subsequent hepatectomy for recurrent tumors. A total of 201 patients who underwent hepatectomy using HA membrane were prospectively followed-up for 3 years. Thirty of the 201 patients underwent a repeat hepatectomy for recurrence. The operative data of 85 cases of repeat hepatectomy, the primary hepatectomy of which had been performed without the use of HA membrane, served as the historical control data. The primary endpoint was the time interval between the skin incision and the start of hepatic parenchymal transection (the preparation time) including adhesiolysis. Secondary endpoints were blood loss during the operation, incidence of postoperative complications, and the biochemical data. The median preparation time (183 vs. 228 min; p = 0.027) and total operation time (374 vs. 439 min; p = 0.041) were significantly shorter in the HA membrane group than in the control group. Use of HA membranes during hepatectomy enabled significant shortening of the adhesiolysis time during the sequential hepatectomy performed for recurrent tumors. © 2017 S. Karger AG, Basel.

  10. Ibuprofen inhibits adhesiveness of monocytes to endothelium and reduces cellular oxidative stress in smokers and non-smokers.

    Science.gov (United States)

    Zapolska-Downar, D; Naruszewicz, M; Zapolski-Downar, A; Markiewski, M; Bukowska, H; Millo, B

    2000-11-01

    Cigarette smoking is a major risk factor in atherosclerosis and a useful model from which to study chronic inflammation. We compared monocyte function, lipid profiles and inflammatory markers in smokers and non-smokers, before and after oral ibuprofen intake. The adhesion of freshly isolated monocytes to native and tumour necrosis factor alpha (TNFalpha) stimulated human umbilical vein endothelial cells (HUVEC), as well as superoxide anion (O2-) levels and hydrogen peroxide (H2O2) production in resting and phorbol myristate acetate (PMA) stimulated monocytes were determined. A group of nine smokers without any other coronary risk factor was compared with an age-matched group of 9 non-smokers. Tests were performed before and after a two-week course of oral ibuprofen (600 mg day-1). In smokers before ibuprofen, monocyte adhesion to native and TNFalpha-stimulated HUVEC was increased (P levels in native and PMA-stimulated monocytes (P smokers and non-smokers (P levels in smokers (P non-smokers (P level of triglycerides in smokers (P levels in smokers and non-smokers.

  11. Anhydride-functional silane immobilized onto titanium surfaces induces osteoblast cell differentiation and reduces bacterial adhesion and biofilm formation.

    Science.gov (United States)

    Godoy-Gallardo, Maria; Guillem-Marti, Jordi; Sevilla, Pablo; Manero, José M; Gil, Francisco J; Rodriguez, Daniel

    2016-02-01

    Bacterial infection in dental implants along with osseointegration failure usually leads to loss of the device. Bioactive molecules with antibacterial properties can be attached to titanium surfaces with anchoring molecules such as silanes, preventing biofilm formation and improving osseointegration. Properties of silanes as molecular binders have been thoroughly studied, but research on the biological effects of these coatings is scarce. The aim of the present study was to determine the in vitro cell response and antibacterial effects of triethoxysilypropyl succinic anhydride (TESPSA) silane anchored on titanium surfaces. X-ray photoelectron spectroscopy confirmed a successful silanization. The silanized surfaces showed no cytotoxic effects. Gene expression analyses of Sarcoma Osteogenic (SaOS-2) osteoblast-like cells cultured on TESPSA silanized surfaces reported a remarkable increase of biochemical markers related to induction of osteoblastic cell differentiation. A manifest decrease of bacterial adhesion and biofilm formation at early stages was observed on treated substrates, while favoring cell adhesion and spreading in bacteria-cell co-cultures. Surfaces treated with TESPSA could enhance a biological sealing on implant surfaces against bacteria colonization of underlying tissues. Furthermore, it can be an effective anchoring platform of biomolecules on titanium surfaces with improved osteoblastic differentiation and antibacterial properties. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Purification and preliminary characterization of the glycoprotein Ib complex in the human platelet membrane.

    Science.gov (United States)

    Berndt, M C; Gregory, C; Kabral, A; Zola, H; Fournier, D; Castaldi, P A

    1985-09-16

    Human platelet glycoprotein Ib (GP Ib) is a major integral membrane protein that has been identified as the platelet-binding site mediating the factor VIII/von Willebrand-factor-dependent adhesion of platelets to vascular subendothelium. Recent evidence suggests that GP Ib is normally complexed with another platelet membrane protein, GP IX. In this study, human platelet plasma membranes were selectively solubilized with a buffer containing 0.1% (v/v) Triton X-100. The GP Ib complex (GP Ib plus GP IX) was purified to homogeneity in approximately 30% yield by immunoaffinity chromatography of the membrane extract using the anti-(glycoprotein Ib complex) murine monoclonal antibody, WM 23, coupled to agarose. GP Ib and GP IX were subsequently isolated as purified components by immunoaffinity chromatography of the GP Ib complex using a second anti-(glycoprotein Ib complex) monoclonal antibody, FMC 25, coupled to agarose. As assessed by dodecyl sulphate/polyacrylamide gel electrophoresis, purified GP Ib was identical to the molecule on intact platelets and had an apparent relative molecular mass of 170 000 under nonreducing conditions and 135 000 (alpha subunit) and 25 000 (beta subunit) under reducing conditions. GP IX had an apparent Mr of 22 000 under both nonreducing and reducing conditions. Purified Gb Ib complex and GP Ib inhibited the ristocetin-mediated, human factor VIII/von Willebrand-factor-dependent and bovine factor VIII/von Willebrand-factor-dependent agglutination of washed human platelets suggesting the proteins had been isolated in functionally active form. GP Ib alpha had a similar amino acid composition to that previously reported for its proteolytic degradation product, glycocalicin. The amino acid compositions of GP Ib beta and GP IX were similar but showed marked differences in the levels of glutamic acid, alanine, histidine and arginine. The N-termini of GP Ib alpha and GP IX were blocked; GP Ib beta had the N-terminal sequence, Ile-Pro-Ala-Pro-. On

  13. Glycoprotein Ibalpha signalling in platelet apoptosis and clearance

    NARCIS (Netherlands)

    van der Wal, E.

    2010-01-01

    Storage of platelets at low temperature reduces bacterial growth and might better preserve the haemostatic function of platelets than current procedures. Incubation at 0C is known to expose ?-N-acetyl-D-glucosamine-residues on glycoprotein (GP)Ibalpha inducing receptor-clustering and platelet

  14. The relation between oxidative stress and adhesion molecules in ...

    African Journals Online (AJOL)

    EL-HAKIM

    P-selectin is found in the storage granules of resting platelets as well as in the weibel–palade bodies of endothelial cells. After endothelial or platelet activation ..... in the regulation of actin binding proteins and adhesion molecules expressed on the endothelial cell membrane. In the present study MDA level was positively.

  15. The efficacy of a hyaluronate-carboxymethylcellulose bioresorbable membrane that reduces postoperative adhesions is increased by the intra-operative co-administration of a neurokinin 1 receptor antagonist in a rat model.

    Science.gov (United States)

    Lim, Rizal; Stucchi, Arthur F; Morrill, Jonathan M; Reed, Karen L; Lynch, Ryan; Becker, James M

    2010-11-01

    Bioresorbable membranes composed of hyaluronic acid and carboxymethylcellulose (HA/CMC) are the most effective method to prevent intra-abdominal adhesions; however, their efficacy may be limited to the site of application. Previous studies in our laboratory have shown that the intraperitoneal administration of a neurokinin-1 receptor antagonist (NK-1RA) reduces adhesions; however, the co-administration of HA/CMC plus an NK-1RA has not been studied. Adhesions were induced in rats by creating ischemic buttons on the peritoneum. Rats received NK-1RA, HA/CMC, HA/CMC+NK-1RA or saline intraperitoneally at surgery. The HA/CMC was applied either bilaterally over all ischemic buttons or unilaterally over half the ischemic buttons. Animals were sacrificed and adhesions quantified at 7 days. Peritoneal fluid was collected at 24 hours to measure peritoneal tissue plasminogen activator (tPA) activity using a bioassay. The bilateral placement of HA/CMC alone reduced adhesions by 62% (P CMC+ NK-1RA decreased adhesions by 86% (P CMC or NK-1RA alone. Unilateral application of HA/CMC resulted in a 41% decrease (P CMC+NK-1RA reduced adhesions by nearly 75% (P CMC application compared with HA/CMC + saline, and by 45% (P CMC and the NK-1RA alone as well as HA/CMC+NK-1RA increased peritoneal tPA activity by 124%, 432%, and 192%, respectively (P CMC plus NK-1RA not only increases the efficacy of the membrane at the site of application, but significantly reduces adhesions formation at distal unprotected sites. This combination may represent an emerging concept in more effective adhesion prevention throughout the peritoneum. Copyright © 2010 Mosby, Inc. All rights reserved.

  16. Serotonergic mechanisms enhance platelet-mediated thrombogenicity.

    Science.gov (United States)

    Galan, Ana M; Lopez-Vilchez, Irene; Diaz-Ricart, Maribel; Navalon, Fulgencio; Gomez, Esther; Gasto, Cristobal; Escolar, Gines

    2009-09-01

    Although it is generally acknowledged that serotonin (5-HT) is a weak agonist for human platelets, recent information suggests an association between serotonergic mechanisms and cardiovascular risk. We investigated the action of 5-HT on adhesive, cohesive and procoagulant properties of human platelets. Impact of 5-HT on whole blood coagulation and thrombin generation was measured by modified thromboelastometry (TEM) and specific fluorogenic assays. We evaluated the effects of 5-HT on thrombus formation in an in-vitro model of thrombosis using human flowing blood. In platelet-rich plasma (PRP), 5-HT favoured the expression of CD62-P, and procoagulant molecules on platelet membranes. These effects were potentiated in the presence of Ca(++) and/or ADP. Incubation with 5-HT accelerated clotting times and augmented clot strength in whole blood TEM, and enhanced thrombin generation in PRP. In perfusion studies, 5-HT significantly increased fibrin deposition at low shear (300s(-1)) and enhanced platelet thrombus formation on the damaged vascular surface at high shear (1,200s(-1)). Selective inhibition of serotonin reuptake (SSRI) attenuated effects of 5-HT on platelet activation and downregulated the prothrombotic tendencies observed in the previous experimental conditions. In general, reductions of thrombogenic patterns observed with SSRI were more evident under shear conditions (aggregation and perfusion systems) and less evident under steady conditions (TEM and thrombin generation assays). In conclusion, 5-HT is not a weak agonist for human platelets; instead it accentuates platelet activation, potentiates procoagulant responses on human blood and increases thrombogenesis on damaged vascular surfaces. The remarkable antithrombotic actions achieved through SSRI deserve further mechanistic and clinical investigations.

  17. Quantification of adherent platelets on polymer-based biomaterials. Comparison of colorimetric and microscopic assessment.

    Science.gov (United States)

    Braune, S; Zhou, S; Groth, B; Jung, F

    2015-01-01

    Platelet adhesion to artificial surfaces is one of the most important indicators for the thrombogenicity of implant materials. Currently, a variety of enzyme activity-based colorimetric assays or microscopy-based techniques are commonly in use to assess this characteristic. Studies about how data of colorimetric assays correlate with the image-based quantification of adherent platelets are scarce. To address this question, the present study compared two colorimetric assays (lactate dehydrogenase (LDH) and acid phosphatase (ACP)) with an image-based quantification of the density of platelets adhering on polymer-based biomaterial surfaces. Tri-sodium citrated whole blood was collected from apparently healthy subjects and platelet rich plasma (PRP) was prepared according to a standardized protocol. An in vitro static thrombogenicity test was applied to study platelet adhesion from PRP adjusted to 50,000 platelets per μL on three different polymers: medical grade polytetrafluoroethylene (PTFE), silicone and polyethylene terephthalate (PET). For the direct image-based approach, surface adherent platelets were fixed, fluorescently labelled and microscopically visualized. The image-based determination of platelet densities provided reference values for the comparison with data of the colorimetric assays. Correlation between standard platelet concentrations and ACP/LDH absorbance measurements were analysed to estimate accuracy and association of both parameters. ACP and LDH release from resting and ADP-stimulated platelets was studied to estimate how platelet activation influences colorimetric assay results. The density of adherent platelets ranged from 15,693 ± 2,487 platelets·mm-2 (PTFE) to 423 ± 99 platelets·mm-2 (silicone) and 4,621 ± 1,427 platelets·mm-2 (PET) and differed significantly between the three polymers (ANOVA: p platelet densities ranged between r = 0.93 (LDH, p platelet standards with different concentrations corresponded well to an ideal

  18. Adhesive Categories

    DEFF Research Database (Denmark)

    Lack, Stephen; Sobocinski, Pawel

    2003-01-01

    We introduce adhesive categories, which are categories with structure ensuring that pushouts along monomorphisms are well-behaved. Many types of graphical structures used in computer science are shown to be examples of adhesive categories. Double-pushout graph rewriting generalises well...... to rewriting on arbitrary adhesive categories....

  19. Adhesive Categories

    DEFF Research Database (Denmark)

    Lack, Stephen; Sobocinski, Pawel

    2004-01-01

    We introduce adhesive categories, which are categories with structure ensuring that pushouts along monomorphisms are well-behaved. Many types of graphical structures used in computer science are shown to be examples of adhesive categories. Double-pushout graph rewriting generalises well...... to rewriting on arbitrary adhesive categories....

  20. A novel type 3 secretion system effector, YspI of Yersinia enterocolitica, induces cell paralysis by reducing total focal adhesion kinase

    National Research Council Canada - National Science Library

    LeGrand, Karen; Matsumoto, Hiroyuki; Young, Glenn M

    2015-01-01

    ...   B iovar 1 B , that inhibits host cell motility. The action of YspI comes about through its specific interaction with focal adhesion kinase, FAK , which is a fulcrum of focal adhesion complexes for controlling cellular motility...

  1. Switchable Adhesion in Vacuum Using Bio-Inspired Dry Adhesives.

    Science.gov (United States)

    Purtov, Julia; Frensemeier, Mareike; Kroner, Elmar

    2015-11-04

    Suction based attachment systems for pick and place handling of fragile objects like glass plates or optical lenses are energy-consuming and noisy and fail at reduced air pressure, which is essential, e.g., in chemical and physical vapor deposition processes. Recently, an alternative approach toward reversible adhesion of sensitive objects based on bioinspired dry adhesive structures has emerged. There, the switching in adhesion is achieved by a reversible buckling of adhesive pillar structures. In this study, we demonstrate that these adhesives are capable of switching adhesion not only in ambient air conditions but also in vacuum. Our bioinspired patterned adhesive with an area of 1 cm(2) provided an adhesion force of 2.6 N ± 0.2 N in air, which was reduced to 1.9 N ± 0.2 N if measured in vacuum. Detachment was induced by buckling of the structures due to a high compressive preload and occurred, independent of air pressure, at approximately 0.9 N ± 0.1 N. The switch in adhesion was observed at a compressive preload between 5.6 and 6.0 N and was independent of air pressure. The difference between maximum adhesion force and adhesion force after buckling gives a reasonable window of operation for pick and place processes. High reversibility of the switching behavior is shown over 50 cycles in air and in vacuum, making the bioinspired switchable adhesive applicable for handling operations of fragile objects.

  2. Structure and function of platelet receptors initiating blood clotting.

    Science.gov (United States)

    Gardiner, Elizabeth E; Andrews, Robert K

    2014-01-01

    At the clinical level, recent studies reveal the link between coagulation and other pathophysiological processes, including platelet activation, inflammation, cancer, the immune response, and/or infectious diseases. These links are likely to underpin the coagulopathy associated with risk factors for venous thromboembolic (VTE) and deep vein thrombosis (DVT). At the molecular level, the interactions between platelet-specific receptors and coagulation factors could help explain coagulopathy associated with aberrant platelet function, as well as revealing new approaches targeting platelet receptors in diagnosis or treatment of VTE or DVT. Glycoprotein (GP)Ibα, the major ligand-binding subunit of the platelet GPIb-IX-V complex, that binds the adhesive ligand, von Willebrand factor (VWF), is co-associated with the platelet-specific collagen receptor, GPVI. The GPIb-IX-V/GPVI adheso-signaling complex not only initiates platelet activation and aggregation (thrombus formation) in response to vascular injury or disease but GPIbα also regulates coagulation through a specific interaction with thrombin and other coagulation factors. Here, we discuss the structure and function of key platelet receptors involved in thrombus formation and coagulation in health and disease, with a particular focus on platelet GPIbα.

  3. Prevention of bacterial adhesion

    DEFF Research Database (Denmark)

    Klemm, Per; Vejborg, Rebecca Munk; Hancock, Viktoria

    2010-01-01

    Management of bacterial infections is becoming increasingly difficult due to the emergence and increasing prevalence of bacterial pathogens that are resistant to available antibiotics. Conventional antibiotics generally kill bacteria by interfering with vital cellular functions, an approach...... that imposes selection pressure for resistant bacteria. New approaches are urgently needed. Targeting bacterial virulence functions directly is an attractive alternative. An obvious target is bacterial adhesion. Bacterial adhesion to surfaces is the first step in colonization, invasion, and biofilm formation....... As such, adhesion represents the Achilles heel of crucial pathogenic functions. It follows that interference with adhesion can reduce bacterial virulence. Here, we illustrate this important topic with examples of techniques being developed that can inhibit bacterial adhesion. Some of these will become...

  4. SILENCING THE NUCLEOCYTOPLASMIC O-GLCNAC TRANSFERASE REDUCES PROLIFERATION, ADHESION AND MIGRATION OF CANCER AND FETAL HUMAN COLON CELL LINES

    Directory of Open Access Journals (Sweden)

    AGATA eSTEENACKERS

    2016-05-01

    Full Text Available The post-translational modification of proteins by O-linked β-N-acetylglucosamine (O-GlcNAc is regulated by a unique couple of enzymes. O-GlcNAc transferase (OGT transfers the GlcNAc residue from UDP-GlcNAc, the final product of the hexosamine biosynthetic pathway (HBP, whereas O-GlcNAcase (OGA removes it. This study and others show that OGT and O-GlcNAcylation levels are increased in cancer cell lines. In that context we studied the effect of OGT silencing in the colon cancer cell lines HT29 and HCT116 and the primary colon cell line CCD841CoN. Herein we report that OGT silencing diminished proliferation, in vitro cell survival and adhesion of primary and cancer cell lines. SiOGT dramatically de-creased HT29 and CCD841CoN migration, CCD841CoN harboring high capabilities of mi-gration in Boyden chamber system when compared to HT29 and HCT116. The expression levels of actin and tubulin were unaffected by OGT knockdown but siOGT seemed to disor-ganize microfilament, microtubule and vinculin networks in CCD841CoN. While cancer cell lines harbor higher levels of OGT and O-GlcNAcylation to fulfill their proliferative and migra-tory properties, in agreement with their higher consumption of HBP main substrates glucose and glutamine, our data demonstrate that OGT expression is not only necessary for the biolog-ical properties of cancer cell lines but also for normal cells.

  5. Platelet Count and Plateletcrit

    African Journals Online (AJOL)

    Aim: To determine whether platelet count, plateletcrit (PCT), mean platelet volume (MPV) and platelet distribution width. (PDW) and their ratios can predict mortality in hospitalised children. Methods: Children who died during hospital stay were the cases. Controls were age matched children admitted contempora- neously.

  6. Vesiculation of platelets during in vitro aging.

    Science.gov (United States)

    Bode, A P; Orton, S M; Frye, M J; Udis, B J

    1991-02-15

    Membranous microparticles (MP) appearing in the supernatant plasma of stored platelet concentrates (PC) were analyzed by flow cytometry. Two populations of MP were arbitrarily delineated by light scatter as larger or smaller than 0.5 micron fluorescent beads. An estimate of MP concentration was obtained by adding a known amount of fluorescent beads to each sample before analysis of a set number of counts on the flow cytometer. The addition of platelet activation inhibitors (prostaglandin E-1, theophylline, and aprotinin) to the anticoagulant during preparation of PC combined with a reduction in surface area of the storage container caused approximately a 40% reduction in the number of MP appearing during storage relative to donor-matched controls. In addition, the inhibited concentrates had 84% less platelet factor 3 (PF3) activity in the supernatant and 61% less released lactic dehydrogenase. A reduction in surface area of the container in the controls partially offset these differences. A significant correlation was found (rs = .748) between PF3 levels and the concentration of larger MP. The inhibitors did not reduce the small number of MP found in stored platelet-poor plasma. Surface antigen analysis showed that the majority of MP in PC were platelet-derived; most were positive for glycoprotein (GP) IIbIIIa (73%) and/or for GPIb (43% to 46%). We conclude that procoagulant MP are released from platelets during storage as a result of platelet activation augmented by interaction of platelets with the bag wall.

  7. Drug-Free Platelets Can Act as Seeds for Aggregate Formation During Antiplatelet Therapy

    Science.gov (United States)

    Hoefer, Thomas; Armstrong, Paul C.; Finsterbusch, Michaela; Chan, Melissa V.; Kirkby, Nicholas S.

    2015-01-01

    Objective— Reduced antiplatelet drug efficacy occurs in conditions of increased platelet turnover, associated with increased proportions of drug-free, that is, uninhibited, platelets. Here, we detail mechanisms by which drug-free platelets promote platelet aggregation in the face of standard antiplatelet therapy. Approach and Results— To model standard antiplatelet therapy, platelets were treated in vitro with aspirin, the P2Y12 receptor blocker prasugrel active metabolite, or aspirin plus prasugrel active metabolite. Different proportions of uninhibited platelets were then introduced. Light transmission aggregometry analysis demonstrated clear positive associations between proportions of drug-free platelets and percentage platelet aggregation in response to a range of platelet agonists. Using differential platelet labeling coupled with advanced flow cytometry and confocal imaging we found aggregates formed in mixtures of aspirin-inhibited platelets together with drug-free platelets were characterized by intermingled platelet populations. This distribution is in accordance with the ability of drug-free platelets to generate thromboxane A2 and so drive secondary platelet activation. Conversely, aggregates formed in mixtures of prasugrel active metabolite–inhibited or aspirin plus prasugrel active metabolite–inhibited platelets together with drug-free platelets were characterized by distinct cores of drug-free platelets. This distribution is consistent with the ability of drug-free platelets to respond to the secondary activator ADP. Conclusions— These experiments are the first to image the interactions of inhibited and uninhibited platelets in the formation of platelet aggregates. They demonstrate that a general population of platelets can contain subpopulations that respond strikingly differently to overall stimulation of the population and so act as the seed for platelet aggregation. PMID:26272940

  8. Potent arylsulfonamide inhibitors of tumor necrosis factor-alpha converting enzyme able to reduce activated leukocyte cell adhesion molecule shedding in cancer cell models.

    Science.gov (United States)

    Nuti, Elisa; Casalini, Francesca; Avramova, Stanislava I; Santamaria, Salvatore; Fabbi, Marina; Ferrini, Silvano; Marinelli, Luciana; La Pietra, Valeria; Limongelli, Vittorio; Novellino, Ettore; Cercignani, Giovanni; Orlandini, Elisabetta; Nencetti, Susanna; Rossello, Armando

    2010-03-25

    Activated leukocyte cell adhesion molecule (ALCAM) plays a relevant role in tumor biology and progression. Our previous studies showed that ALCAM is expressed at the surface of epithelial ovarian cancer (EOC) cells and is released in a soluble form by ADAM-17-mediated shedding. This process is relevant to EOC cell motility and invasiveness, which is reduced by nonspecific inhibitors of ADAM-17. For this reason, ADAM-17 may represent a new useful target in anticancer therapy. Herein, we report the synthesis and biological evaluation of new ADAM-17 inhibitors containing an arylsulfonamidic scaffold. Among the new potential inhibitors, two very promising compounds 17 and 18 were discovered, with a nanomolar activity for ADAM-17 isolated enzyme. These compounds proved to be also the most potent in inhibiting soluble ALCAM release in cancer cells, showing a nanomolar activity on A2774 and SKOV3 cell lines.

  9. Polyphenols enhance platelet nitric oxide by inhibiting protein kinase C-dependent NADPH oxidase activation: effect on platelet recruitment.

    Science.gov (United States)

    Pignatelli, P; Di Santo, S; Buchetti, B; Sanguigni, V; Brunelli, A; Violi, F

    2006-06-01

    Several studies demonstrated an inverse association between polyphenol intake and cardiovascular events. Platelet recruitment is an important phase of platelet activation at the site of vascular injury, but it has never been investigated whether polyphenols influence platelet recruitment. The aim of the study was to analyze in vitro whether two polyphenols, quercetin and catechin, were able to affect platelet recruitment. Platelet recruitment was reduced by NO donors and by NADPH oxidase inhibitors and was enhanced by L-NAME, an inhibitor of NO synthase. Quercetin and catechin, but not single polyphenol, significantly inhibited platelet recruitment in a concentration-dependent fashion. The formation of superoxide anion was significantly inhibited in platelets incubated with quercetin and catechin but was unaffected by a single polyphenol. Incubation of platelets with quercetin and catechin resulted in inhibition of PKC and NADPH oxidase activation. Treatment of platelets with quercetin and catechin resulted in an increase of NO and also down-regulated the expression of GpIIb/IIIa glycoprotein. This study shows that the polyphenols quercetin and catechin synergistically act in reducing platelet recruitment via inhibition of PKC-dependent NADPH oxidase activation. This effect, resulting in NO-mediated platelet glycoprotein GpIIb/IIIa down-regulation, could provide a novel mechanism through which polyphenols reduce cardiovascular disease.

  10. Evaluation of a Platelet Function Analyser (PFA-100) in patients with a bleeding tendency

    NARCIS (Netherlands)

    Wuillemin, Walter A.; Gasser, K. atherina M.; Zeerleder, Sacha S.; Lämmle, Bernhard

    2002-01-01

    To investigate pre-analytical variables and the diagnostic performance of the platelet function analyser (PFA-100), a new device to test primary haemostasis in vitro by simulating platelet adhesion and aggregation under high shear stress. Venous whole citrated blood is aspirated through a capillary

  11. Corrosion, haemocompatibility and bacterial adhesion behaviour of ...

    Indian Academy of Sciences (India)

    Bacterial adhesion, haemocompatibility and corrosion behaviour of TiZrN coating were examined in order to evaluate the coating's compatibility for ideal implant. Results revealed that TiZrN coatings exhibited less bacterial attachment against Staphylococcus aureus and Escherichia coli bacteria, negligible platelets ...

  12. Rhesus monkey platelets

    Energy Technology Data Exchange (ETDEWEB)

    Harbury, C.B.

    1986-03-01

    The purpose of this abstract is to describe the adenine nucleotide metabolism of Rhesus monkey platelets. Nucleotides are labelled with /sup 14/C-adenine and extracted with EDTA-ethanol (EE) and perchlorate (P). Total platelet ATP and ADP (TATP, TADP) is measured in the Holmsen Luciferase assay, and expressed in nanomoles/10/sup 8/ platelets. TR=TATP/TADP. Human platelets release 70% of their TADP, with a ratio of released ATP/ADP of 0.7. Rhesus platelets release 82% of their TADP, with a ratio of released ATP/ADP of 0.33. Thus, monkey platelets contain more ADP than human platelets. Thin layer chromatography of EE gives a metabolic ratio of 11 in human platelets and 10.5 in monkey platelets. Perchlorate extracts metabolic and actin bound ADP. The human and monkey platelets ratios were 5, indicating they contain the same proportion of actin. Thus, the extra ADP contained in monkey platelets is located in the secretory granules.

  13. Nattokinase improves blood flow by inhibiting platelet aggregation and thrombus formation

    OpenAIRE

    Jang, Ja-Young; Kim, Tae-Su; Cai, Jingmei; Kim, Jihyun; Kim, Youngeun; Shin, Kyungha; Kim, Kwang Sei; Park, Sung Kyeong; Lee, Sung-Pyo; Choi, Ehn-Kyoung; Rhee, Man Hee; Kim, Yun-Bae

    2013-01-01

    The effects of nattokinase on the in vitro platelet aggregation and in vivo thrombosis were investigated in comparison with aspirin. Rabbit platelet-rich plasma was incubated with nattokinase and aggregation inducers collagen and thrombin, and the platelet aggregation rate was analyzed. Nattokinase significantly inhibited both the collagen- and thrombin-induced platelet aggregations. Nattokinase also reduced thromboxane B2 formation from collagen-activated platelets in a concentration-depende...

  14. The effect of sorafenib in postoperative adhesion formation in a rat uterine horn model.

    Science.gov (United States)

    Boztosun, A; Ozer, H; Altun, A; Kiliçkap, S; Gulturk, S; Müderris, I I; Yanik, A

    2012-01-01

    Postoperative adhesions are a serious problem. In this study, we aimed to observe the effects of sorafenib in postoperative adhesions and, to examine the effects of sorafenib on tissue levels of vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF). Twenty female Wistar albino rats were randomized into two equal groups; sorafenib group (sorafenib treated) and control group; then all rats underwent laparotomy. Adhesions were developed by scalping on the anti-mesenteric surfaces of the right uterine horns. After 14 days, adhesions were investigated by using macroscopic, histopathological and immunohistochemical (for VEGF and PDGF) methods. The sorafenib group had lower scores of total adhesions [1 (0-2.5) vs 1.5 (1-4); p: 0.037], staining of VEGF [1 (0-1) vs 1 (1-3); p: 0.029] and PDGF [1 (0-2) vs 2 (1-3); p: 0.006], and vascular proliferation [1 (0-2) vs 2 (1-3); p: 0.038] than the control group. The findings of the present study show that sorafenib, a tyrosine kinase inhibitor, significantly reduced postoperative adhesion formation. This effect may be explained by inhibition of VEGF, PDGF, and thus vascular proliferation.

  15. PAS or plasma for storage of platelets? A concise review.

    Science.gov (United States)

    van der Meer, P F

    2016-10-01

    Platelet additive solutions (PASs) are becoming increasingly popular for storage of platelets, and PAS is steadily replacing plasma as the storage medium of platelets. PASs are electrolyte solutions intended for storage of platelets, and they are used to modulate the quality of the platelets by adding specific ingredients. All currently available PASs contain acetate. Acetate reduces the amount of glucose that is oxidised into lactic acid and thereby prevents the lowering of pH, which decreases platelet quality. Furthermore, the oxidation of acetate leads to the production of bicarbonate, which serves as buffer. The presence of potassium and magnesium in PAS prevents the lowering of pH and reduces the degree of spontaneous activation of the platelets during storage. In the hospital, platelets stored in PAS result in about half of the number of allergic transfusion reactions as compared with platelets in plasma. Recovery and survival after transfusion, as well as corrected count increments, are at least as good for platelets in PAS as for plasma, and recent data suggest they may even be better. Therefore, with the current generation of PASs, PAS should be preferred over the use of plasma for the storage of platelet concentrates. © 2016 British Blood Transfusion Society.

  16. Chondrogenic Priming at Reduced Cell Density Enhances Cartilage Adhesion of Equine Allogeneic MSCs - a Loading Sensitive Phenomenon in an Organ Culture Study with 180 Explants

    Directory of Open Access Journals (Sweden)

    Jan H. Spaas

    2015-09-01

    Full Text Available Background: Clinical results of regenerative treatments for osteoarthritis are becoming increasingly significant. However, several questions remain unanswered concerning mesenchymal stem cell (MSC adhesion and incorporation into cartilage. Methods: To this end, peripheral blood (PB MSCs were chondrogenically induced and/or stimulated with pulsed electromagnetic fields (PEMFs for a brief period of time just sufficient to prime differentiation. In an organ culture study, PKH26 labelled MSCs were added at two different cell densities (0.5 x106 vs 1.0 x106. In total, 180 explants of six horses (30 per horse were divided into five groups: no lesion (i, lesion alone (ii, lesion with naïve MSCs (iii, lesion with chondrogenically-induced MSCs (iv and lesion with chondrogenically-induced and PEMF-stimulated MSCs (v. Half of the explants were mechanically loaded and compared with the unloaded equivalents. Within each circumstance, six explants were histologically evaluated at different time points (day 1, 5 and 14. Results: COMP expression was selectively increased by chondrogenic induction (p = 0.0488. PEMF stimulation (1mT for 10 minutes further augmented COL II expression over induced values (p = 0.0405. On the other hand, MSC markers remained constant over time after induction, indicating a largely predifferentiated state. In the unloaded group, MSCs adhered to the surface in 92.6% of the explants and penetrated into 40.7% of the lesions. On the other hand, physiological loading significantly reduced surface adherence (1.9% and lesion filling (3.7% in all the different conditions (p Conclusion: The present study demonstrates that primed chondrogenic induction of MSCs at a lower cell density without loading results in significantly enhanced and homogenous MSC adhesion and incorporation into equine cartilage.

  17. Influence of erythrocyte aggregation on radial migration of platelet-sized spherical particles in shear flow.

    Science.gov (United States)

    Guilbert, Cyrille; Chayer, Boris; Allard, Louise; Yu, François T H; Cloutier, Guy

    2017-08-16

    Blood platelets when activated are involved in the mechanisms of hemostasis and thrombosis, and their migration toward injured vascular endothelium necessitates interaction with red blood cells (RBCs). Rheology co-factors such as a high hematocrit and a high shear rate are known to promote platelet mass transport toward the vessel wall. Hemodynamic conditions promoting RBC aggregation may also favor platelet migration, particularly in the venous system at low shear rates. The aim of this study was to confirm experimentally the impact of RBC aggregation on platelet-sized micro particle migration in a Couette flow apparatus. Biotin coated micro particles were mixed with saline or blood with different aggregation tendencies, at two shear rates of 2 and 10s(-1) and three hematocrits ranging from 20 to 60%. Streptavidin membranes were respectively positioned on the Couette static and rotating cylinders upon which the number of adhered fluorescent particles was quantified. The platelet-sized particle adhesion on both walls was progressively enhanced by increasing the hematocrit (p<0.001), reducing the shear rate (p<0.001), and rising the aggregation of RBCs (p<0.001). Particle count was minimum on the stationary cylinder when suspended in saline at 2s(-1) (57±33), and maximum on the rotating cylinder at 60% hematocrit, 2s(-1) and the maximum dextran-induced RBC aggregation (2840±152). This fundamental study is confirming recent hypotheses on the role of RBC aggregation on venous thrombosis, and may guide molecular imaging protocols requiring injecting active labeled micro particles in the venous flow system to probe human diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Mussel adhesion - essential footwork.

    Science.gov (United States)

    Waite, J Herbert

    2017-02-15

    Robust adhesion to wet, salt-encrusted, corroded and slimy surfaces has been an essential adaptation in the life histories of sessile marine organisms for hundreds of millions of years, but it remains a major impasse for technology. Mussel adhesion has served as one of many model systems providing a fundamental understanding of what is required for attachment to wet surfaces. Most polymer engineers have focused on the use of 3,4-dihydroxyphenyl-l-alanine (Dopa), a peculiar but abundant catecholic amino acid in mussel adhesive proteins. The premise of this Review is that although Dopa does have the potential for diverse cohesive and adhesive interactions, these will be difficult to achieve in synthetic homologs without a deeper knowledge of mussel biology; that is, how, at different length and time scales, mussels regulate the reactivity of their adhesive proteins. To deposit adhesive proteins onto target surfaces, the mussel foot creates an insulated reaction chamber with extreme reaction conditions such as low pH, low ionic strength and high reducing poise. These conditions enable adhesive proteins to undergo controlled fluid-fluid phase separation, surface adsorption and spreading, microstructure formation and, finally, solidification. © 2017. Published by The Company of Biologists Ltd.

  19. Cellular Adhesion and Adhesion Molecules

    OpenAIRE

    SELLER, Zerrin

    2014-01-01

    In recent years, cell adhesion and cell adhesion molecules have been shown to be important for many normal biological processes, including embryonic cell migration, immune system functions and wound healing. It has also been shown that they contribute to the pathogenesis of a large number of common human disorders, such as rheumatoid arthritis and tumor cell metastasis in cancer. In this review, the basic mechanisms of cellular adhesion and the structural and functional features of adhes...

  20. The in vitro effect of eptifibatide, a glycoprotein IIb/IIIa antagonist, on various responses of porcine blood platelets.

    Science.gov (United States)

    Ciborowski, Michał; Tomasiak, Marian

    2009-01-01

    The current study systematically evaluates the in vitro effect of eptifibatide, a GPIIb/IIIa blocker, on various responses of porcine platelets evoked by principal physiological stimulators. Eptifibatide at concentrations up to 40 mg/mL did not affect the calcium signal produced by thrombin, partly reduced the procoagulant response evoked by collagen, and strongly inhibited (IC50 approximately 11 mg/mL) adhesion of these cells to fibrinogen coated surfaces. Eptifibatide in a concentration-dependent manner reduced ADP, collagen, and thrombin-induced platelet aggregation (IC50 = 16-27 mg/mL), dense granule secretion (IC50 = 22-31 mg/mL) and lysosome secretion (IC50 = 25-50 mg/mL). Substantial (up to 30-40%) collagen or thrombin-evoked platelet aggregation still occurred at high (52 mg/mL) eptifibatide concentrations. Direct comparison of the susceptibility of platelet aggregation and dense granule secretion to the inhibitory action of eptifibatide indicates that aggregation is appreciably more sensitive than secretion. Eptifibatide (8 mg/mL) added together with a low (70 ng/mL) concentration of bivalirudin (a direct thrombin inhibitor) effectively (approximately 90%) reduced platelet aggregation induced by thrombin (0.2 U/mL). Based on these results, eptifibatide is not expected to reduce efficiently thrombus formation initiated by rapid local production of large amounts of thrombin. One practical consequence of our in vitro studies is the suggestion that the anti-thrombotic efficacy of eptifibatide, especially in preventing acute thrombotic events, may be largely improved by its combination with direct thrombin inhibitors.

  1. Peritoneal adhesions after laparoscopic gastrointestinal surgery

    OpenAIRE

    Mais, Valerio

    2014-01-01

    Although laparoscopy has the potential to reduce peritoneal trauma and post-operative peritoneal adhesion formation, only one randomized controlled trial and a few comparative retrospective clinical studies have addressed this issue. Laparoscopy reduces de novo adhesion formation but has no efficacy in reducing adhesion reformation after adhesiolysis. Moreover, several studies have suggested that the reduction of de novo post-operative adhesions does not seem to have a significant clinical im...

  2. Bacterial adhesion

    NARCIS (Netherlands)

    Loosdrecht, van M.C.M.

    1988-01-01

    As mentioned in the introduction of this thesis bacterial adhesion has been studied from a variety of (mostly practice oriented) starting points. This has resulted in a range of widely divergent approaches. In order to elucidate general principles in bacterial adhesion phenomena, we felt it

  3. Denture Adhesives

    Science.gov (United States)

    ... Devices Home Medical Devices Products and Medical Procedures Dental Devices Denture Adhesives Share Tweet Linkedin Pin it More sharing options ... Manufacturers (February 23, 2011) (PDF - 22KB) More in Dental Devices Denture Adhesives Multiple-Use Dental Dispenser Devices Dental Amalgam About ...

  4. FTY720 and two novel butterfly derivatives exert a general anti-inflammatory potential by reducing immune cell adhesion to endothelial cells through activation of S1P(3) and phosphoinositide 3-kinase.

    Science.gov (United States)

    Imeri, Faik; Blanchard, Olivier; Jenni, Aurelio; Schwalm, Stephanie; Wünsche, Christin; Zivkovic, Aleksandra; Stark, Holger; Pfeilschifter, Josef; Huwiler, Andrea

    2015-12-01

    Sphingosine-1-phosphate (S1P) is a key lipid regulator of a variety of cellular responses including cell proliferation and survival, cell migration, and inflammatory reactions. Here, we investigated the effect of S1P receptor activation on immune cell adhesion to endothelial cells under inflammatory conditions. We show that S1P reduces both tumor necrosis factor (TNF)-α- and lipopolysaccharide (LPS)-stimulated adhesion of Jurkat and U937 cells to an endothelial monolayer. The reducing effect of S1P was reversed by the S1P1+3 antagonist VPC23019 but not by the S1P1 antagonist W146. Additionally, knockdown of S1P3, but not S1P1, by short hairpin RNA (shRNA) abolished the reducing effect of S1P, suggesting the involvement of S1P3. A suppression of immune cell adhesion was also seen with the immunomodulatory drug FTY720 and two novel butterfly derivatives ST-968 and ST-1071. On the molecular level, S1P and all FTY720 derivatives reduced the mRNA expression of LPS- and TNF-α-induced adhesion molecules including ICAM-1, VCAM-1, E-selectin, and CD44 which was reversed by the PI3K inhibitor LY294002, but not by the MEK inhibitor U0126.In summary, our data demonstrate a novel molecular mechanism by which S1P, FTY720, and two novel butterfly derivatives acted anti-inflammatory that is by suppressing gene transcription of various endothelial adhesion molecules and thereby preventing adhesion of immune cells to endothelial cells and subsequent extravasation.

  5. Ginkgo biloba extract reduces high-glucose-induced endothelial reactive oxygen species generation and cell adhesion molecule expression by enhancing HO-1 expression via Akt/eNOS and p38 MAP kinase pathways.

    Science.gov (United States)

    Tsai, Hsiao-Ya; Huang, Po-Hsun; Lin, Feng-Yen; Chen, Jia-Shiong; Lin, Shing-Jong; Chen, Jaw-Wen

    2013-03-12

    Hyperglycemia is one of the major risk factors leading to vascular complications in clinical diabetes mellitus. Ginkgo biloba extract (GBE), an antioxidant herbal medicine, possesses anti-inflammatory effects. We examined whether GBE can reduce high glucose-induced endothelial adhesiveness to monocytes, an in vitro sign mimicking in vivo early atherogenesis, through selective regulation of heme oxygenase (HO)-1 expression. Human aortic endothelial cells (HAECs) were cultured with normal glucose or high glucose (25 mM) for 4 days and subsequently combined with GBE (EGb761, Dr. Willmar Schwabe, Karlsruhe, Germany) treatment in the last 18 h of the 4-day period. The endothelial reactive oxygen species (ROS) generation, adhesion molecule expression and the adhesiveness to monocytes were examined. The specific signal pathways such as HO-1 were also examined. High glucose increased ROS generation, adhesion molecule expression and the adhesiveness to monocytes in HAECs. These high glucose-induced phenomena could be suppressed by GBE (100 μg/ml)-induced HO-1 expression in a dose-dependent and time-dependent manner. In addition, jun N-terminal kinases inhibitor or phosphoinositide 3 kinase inhibitor could reduce GBE-induced HO-1 expression. Furthermore, HO-1 inhibitor, HO-1 siRNA, endothelial nitric oxide synthase (eNOS) siRNA, or nuclear factor erythroid 2-related factor (Nrf) 2 siRNA blocked the cytoprotective effects of GBE. Meanwhile, p38/mitogen-activated protein kinase (MAPK) inhibitor could also reduce the effects of GBE on HO-1 induction. GBE could reduce high glucose-induced endothelial adhesion via enhancing HO-1 expression through the Akt/eNOS and p38/MAPK pathways. Our findings suggest a potential strategy targeting on HO-1 induction by GBE for endothelial protection in the presence of high glucose such as that in diabetes mellitus. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Platelet alloimmunization after transfusion

    DEFF Research Database (Denmark)

    Taaning, E; Simonsen, A C; Hjelms, E

    1997-01-01

    BACKGROUND AND OBJECTIVES: The frequency of platelet-specific antibodies after one series of blood transfusions has not been reported, and in multiply transfused patients is controversial. MATERIALS AND METHODS: We studied the frequency of alloimmunization against platelet antigens in 117 patients...... who received a single series of blood transfusions. They received mostly saline-adenine-glucose+mannitol red blood cell components (poor in leukocytes and platelets) in connection with cardiac surgery. Platelet-specific antibodies were detected with the platelet ELISA and the monoclonal...... immunization. CONCLUSION: There was a low incidence of platelet-specific antibodies after one series of blood transfusions in this group of patients. This is similar to the results of some previous studies in multiply transfused patients, but not with those of others who found a higher incidence....

  7. Purified galactooligosaccharide, derived from a mixture produced by the enzymic activity of Bifidobacterium bifidum, reduces Salmonella enterica serovar Typhimurium adhesion and invasion in vitro and in vivo.

    Science.gov (United States)

    Searle, Laura E J; Cooley, William A; Jones, Gareth; Nunez, Alejandro; Crudgington, Bentley; Weyer, Ute; Dugdale, Alexandra H; Tzortzis, George; Collins, James W; Woodward, Martin J; La Ragione, Roberto M

    2010-12-01

    The prebiotic Bimuno(®) is a mixture containing galactooligosaccharides (GOSs), produced by the galactosyltransferase activity of Bifidobacterium bifidum NCIMB 41171 using lactose as the substrate. Previous in vivo and in vitro studies demonstrating the efficacy of Bimuno(®) in reducing Salmonella enterica serovar Typhimurium (S. Typhimurium) colonization did not ascertain whether or not the protective effects could be attributed to the prebiotic component GOS. Here we wished to test the hypothesis that GOS, derived from Bimuno(®), may confer the direct anti-invasive and protective effects of Bimuno(®). In this study the efficacy of Bimuno(®), a basal solution of Bimuno(®) without GOS [which contained glucose, galactose, lactose, maltodextrin and gum arabic in the same relative proportions (w/w) as they are found in Bimuno(®)] and purified GOS to reduce S. Typhimurium adhesion and invasion was assessed using a series of in vitro and in vivo models. The novel use of three dimensionally cultured HT-29-16E cells to study prebiotics in vitro demonstrated that the presence of ∼ 5 mg Bimuno(®) ml(-1) or ∼ 2.5 mg GOS ml(-1) significantly reduced the invasion of S. Typhimurium (SL1344nal(r)) (PBimuno(®) or GOS prevented the adherence or invasion of S. Typhimurium to enterocytes, and thus reduced its associated pathology. This protection appeared to correlate with significant reductions in the neutral and acidic mucins detected in goblet cells, possibly as a consequence of stimulating the cells to secrete the mucin into the lumen. In all assays, Bimuno(®) without GOS conferred no such protection, indicating that the basal solution confers no protective effects against S. Typhimurium. Collectively, the studies presented here clearly indicate that the protective effects conferred by Bimuno(®) can be attributed to GOS.

  8. Changes in platelet functional parameters and CD62 P expression ...

    African Journals Online (AJOL)

    EB

    5-6, the risk of operation is low; Grade B, 7-9, the risk of operation is higher than Grade A; Grade C, e”10, the risk .... of BPC reflects the generation and decay of platelets. MPV reflects the metabolization of bone marrow ... more powerful adhesive capacity, and more bleeding. They found that MPV and CD62P were higher in.

  9. Mean platelet volume and mean platelet volume/platelet count ratio ...

    African Journals Online (AJOL)

    Mean platelet volume and mean platelet volume/platelet count ratio as a risk stratification tool in the assessment of severity of acute ischemic stroke. ... The mean platelet volume (MPV) is a laboratory marker associated with platelet function and activity. Increased MPV in thromboembolic disease is reflected as an important ...

  10. Serglycin proteoglycan deletion induces defects in platelet aggregation and thrombus formation in mice

    Science.gov (United States)

    Woulfe, Donna S.; Lilliendahl, Joanne Klimas; August, Shelley; Rauova, Lubica; Kowalska, M. Anna; Åbrink, Magnus; Pejler, Gunnar; White, James G.

    2008-01-01

    Serglycin (SG), the hematopoietic cell secretory granule proteoglycan, is crucial for storage of specific secretory proteins in mast cells, neutrophils, and cytotoxic T lymphocytes. We addressed the role of SG in platelets using SG−/− mice. Wild-type (WT) but not SG−/− platelets contained chondroitin sulfate proteoglycans. Electron microscopy revealed normal α-granule structure in SG−/− platelets. However, SG−/− platelets and megakaryocytes contained unusual scroll-like membranous inclusions, and SG−/− megakaryocytes showed extensive emperipolesis of neutrophils. SG−/− platelets had reduced ability to aggregate in response to low concentrations of collagen or PAR4 thrombin receptor agonist AYPGKF, and reduced fibrinogen binding after AYPGKF, but aggregated normally to ADP. 3H-serotonin and ATP secretion were greatly reduced in SG−/− platelets. The α-granule proteins platelet factor 4, β-thromboglobulin, and platelet-derived growth factor were profoundly reduced in SG−/− platelets. Exposure of P-selectin and αIIb after thrombin treatment was similar in WT and SG−/− platelets. SG−/− mice exhibited reduced carotid artery thrombus formation after exposure to FeCl3. This study demonstrates that SG is crucial for platelet function and thrombus formation. We propose that SG−/− platelet function deficiencies are related to inadequate packaging and secretion of selected α-granule proteins and reduced secretion of dense granule contents critical for platelet activation. PMID:18094327

  11. Leukocyte accumulation promoting fibrin deposition is mediated in vivo by P-selectin on adherent platelets.

    Science.gov (United States)

    Palabrica, T; Lobb, R; Furie, B C; Aronovitz, M; Benjamin, C; Hsu, Y M; Sajer, S A; Furie, B

    1992-10-29

    The glycoprotein P-selectin is a cell adhesion molecule of stimulated platelets and endothelial cells, which mediates the interaction of these cells with neutrophils and monocytes. It is a membrane component of cell storage granules, and is a member of the selectin family which includes E-selectin and L-selectin. P-selectin recognizes both lineage-specific carbohydrate ligands on monocytes and neutrophils, including the Lewis x antigen, sialic acid, and a protein component. In inflammation and thrombosis, P-selectin may mediate the interaction of leukocytes with platelets bound in the region of tissue injury and with stimulated endothelium. To evaluate the role of P-selectin in platelet-leukocyte adhesion in vivo, the accumulation of leukocytes within an experimental thrombus was explored in an arteriovenous shunt model in baboons. A Dacron graft implanted within an arteriovenous shunt is thrombogenic, accumulating platelets and fibrin within its lumen. These bound platelets express P-selectin. Here we show that antibody inhibition of leukocyte binding to P-selectin expressed on platelets immobilized on the graft blocks leukocyte accumulation and inhibits the deposition of fibrin within the thrombus. These results indicate that P-selectin is an important adhesion molecule on platelets, mediating platelet-leukocyte binding in vivo, that the presence of leukocytes in thrombi is mediated by P-selectin, and that these leukocytes promote fibrin deposition.

  12. Doxycycline reduces the migration of tuberous sclerosis complex-2 null cells - effects on RhoA-GTPase and focal adhesion kinase.

    Science.gov (United States)

    Ng, Ho Yin; Oliver, Brian Gregory George; Burgess, Janette Kay; Krymskaya, Vera P; Black, Judith Lee; Moir, Lyn M

    2015-11-01

    Lymphangioleiomyomatosis (LAM) is associated with dysfunction of the tuberous sclerosis complex (TSC) leading to enhanced cell proliferation and migration. This study aims to examine whether doxycycline, a tetracycline antibiotic, can inhibit the enhanced migration of TSC2-deficient cells, identify signalling pathways through which doxycycline works and to assess the effectiveness of combining doxycycline with rapamycin (mammalian target of rapamycin complex 1 inhibitor) in controlling cell migration, proliferation and wound closure. TSC2-positive and TSC2-negative mouse embryonic fibroblasts (MEF), 323-TSC2-positive and 323-TSC2-null MEF and Eker rat uterine leiomyoma (ELT3) cells were treated with doxycycline or rapamycin alone, or in combination. Migration, wound closure and proliferation were assessed using a transwell migration assay, time-lapse microscopy and manual cell counts respectively. RhoA-GTPase activity, phosphorylation of p70S6 kinase (p70S6K) and focal adhesion kinase (FAK) in TSC2-negative MEF treated with doxycycline were examined using ELISA and immunoblotting techniques. The enhanced migration of TSC2-null cells was reduced by doxycycline at concentrations as low as 20 pM, while the rate of wound closure was reduced at 2-59 μM. Doxycycline decreased RhoA-GTPase activity and phosphorylation of FAK in these cells but had no effect on the phosphorylation of p70S6K, ERK1/2 or AKT. Combining doxycycline with rapamycin significantly reduced the rate of wound closure at lower concentrations than achieved with either drug alone. This study shows that doxycycline inhibits TSC2-null cell migration. Thus doxycycline has potential as an anti-migratory agent in the treatment of diseases with TSC2 dysfunction. © 2015 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  13. Multiple injections of leukoreduced platelet rich plasma reduce pain and functional impairment in a canine model of ACL and meniscal deficiency.

    Science.gov (United States)

    Cook, James L; Smith, Patrick A; Bozynski, Chantelle C; Kuroki, Keiichi; Cook, Cristi R; Stoker, Aaron M; Pfeiffer, Ferris M

    2016-04-01

    Platelet rich plasma (PRP) is used to treat many musculoskeletal disorders. We used a canine model to determine the effects of multiple intra-articular injections of leukoreduced PRP (ACP) on anterior cruciate ligament healing, meniscal healing, and progression of osteoarthritis (OA). With Animal Care and Use Committee (ACUC) approval, 12 dogs underwent partial ACL transection and meniscal release in one knee. At weeks 1, 2, 3, 6, and 8 after insult, dogs were treated with intra-articular injections (2 ml) of either ACP (n = 6) or saline (n = 6). Dogs were assessed over 6 months to determine comfortable range of motion (CROM), lameness, pain, effusion, kinetics, and radiographic and arthroscopic assessments. At 6-month endpoint, dogs were assessed for ACL material properties and histopathology. Saline-treated dogs had significantly (p knees showed moderate to severe synovitis, further ACL disruption, and medial compartment cartilage loss, and ACP-treated knees showed evidence of ACL repair and less severe synovitis. ACL material properties in ACP-treated knees were closer to normal than in saline-treated knees, however, the differences were not statistically significant. ACL histopathology was significantly (pknees compared to saline-treated knees. Five intra-articular injections of leukoreduced PRP had beneficial effects for ACL healing, improved range of motion, decreased pain, and improved limb function for up to 6 months in this model. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  14. Met117 oxidation leads to enhanced flexibility of cardiovascular biomarker- lipoprotein- associated phospholipase A2 and reduced substrate binding affinity with platelet-activating factor.

    Science.gov (United States)

    Gurung, Arun Bahadur; Bhattacharjee, Atanu

    2018-02-07

    Human Lipoprotein-associated phospholipase A2 (Lp-PLA2) is an important biomarker for cardiovascular diseases and a therapeutically important drug target against Atherosclerosis. It has the ability to hydrolyze various oxidized low density lipoproteins (LDL) and generates potent pro-inflammatory signaling molecules. Both physiological and non-physiological oxidants have been reported to inhibit Lp-PLA2 activity. The mechanism of the enzyme inhibition due to oxidation of surface exposed Met117 at the structural level is not clearly understood. In the present work, molecular dynamics (MD) simulation and Essential dynamics (ED) has been used in tandem with molecular docking approach to understand the structural alteration in Lp-PLA2 upon Met117 oxidation. Further, the binding of substrate, Platelet-activating factor (PAF) with the wild type and oxidized form have also been investigated. Our results showed that Met117 oxidation caused enhanced flexibility and decreased compactness in oxidized state. PAF binding interaction with oxidized protein was mediated only through hydrophobic interactions. MD simulation studies revealed that the oxidized protein failed to firmly bind PAF. Our present findings will help understand the mechanism of Lp-PLA2 inhibition under oxidative stress. Copyright © 2018. Published by Elsevier B.V.

  15. Mechanism of platelet functional changes and effects of anti-platelet agents on in vivo hemostasis under different gravity conditions.

    Science.gov (United States)

    Li, Suping; Shi, Quanwei; Liu, Guanglei; Zhang, Weilin; Wang, Zhicheng; Wang, Yuedan; Dai, Kesheng

    2010-05-01

    Serious thrombotic and hemorrhagic problems or even fatalities evoked by either microgravity or hypergravity occur commonly in the world. We recently reported that platelet functions are inhibited in microgravity environments and activated under high-G conditions, which reveals the pathogenesis for gravity change-related hemorrhagic and thrombotic diseases. However, the mechanisms of platelet functional variations under different gravity conditions remain unclear. In this study we show that the amount of filamin A coimmunoprecipitated with GPIbalpha was enhanced in platelets exposed to modeled microgravity and, in contrast, was reduced in 8 G-exposed platelets. Hypergravity induced actin filament formation and redistribution, whereas actin filaments were reduced in platelets treated with modeled microgravity. Furthermore, intracellular Ca2+ levels were elevated by hypergravity. Pretreatment of platelets with the cell-permeable Ca2+ chelator BAPTA-AM had no effect on cytoskeleton reorganization induced by hypergravity but significantly reduced platelet aggregation induced by ristocetin/hypergravity. Two anti-platelet agents, aspirin and tirofiban, effectively reversed the shortened tail bleeding time and reduced the death rate of mice exposed to hypergravity. Furthermore, the increased P-selectin surface expression was obviously reduced in platelets from mice treated with aspirin/hypergravity compared with those from mice treated with hypergravity alone. These data suggest that the actin cytoskeleton reorganization and intracellular Ca2+ level play key roles in the regulation of platelet functions in different gravitational environments. The results with anti-platelet agents not only further confirm the activation of platelets in vivo but also suggest a therapeutic potential for hypergravity-induced thrombotic diseases.

  16. Single Cell Force Spectroscopy for Quantification of Cellular Adhesion on Surfaces

    Science.gov (United States)

    Christenson, Wayne B.

    Cell adhesion is an important aspect of many biological processes. The atomic force microscope (AFM) has made it possible to quantify the forces involved in cellular adhesion using a technique called single cell force spectroscopy (SCFS). AFM based SCFS offers versatile control over experimental conditions for probing directly the interaction between specific cell types and specific proteins, surfaces, or other cells. Transmembrane integrins are the primary proteins involved in cellular adhesion to the extra cellular matix (ECM). One of the chief integrins involved in the adhesion of leukocyte cells is alpha Mbeta2 (Mac-1). The experiments in this dissertation quantify the adhesion of Mac-1 expressing human embryonic kidney (HEK Mac-1), platelets, and neutrophils cells on substrates with different concentrations of fibrinogen and on fibrin gels and multi-layered fibrinogen coated fibrin gels. It was shown that multi-layered fibrinogen reduces the adhesion force of these cells considerably. A novel method was developed as part of this research combining total internal reflection microscopy (TIRFM) with SCFS allowing for optical microscopy of HEK Mac-1 cells interacting with bovine serum albumin (BSA) coated glass after interacting with multi-layered fibrinogen. HEK Mac-1 cells are able to remove fibrinogen molecules from the multi-layered fibrinogen matrix. An analysis methodology for quantifying the kinetic parameters of integrin-ligand interactions from SCFS experiments is proposed, and the kinetic parameters of the Mac-1 fibrinogen bond are quantified. Additional SCFS experiments quantify the adhesion of macrophages and HEK Mac-1 cells on functionalized glass surfaces and normal glass surfaces. Both cell types show highest adhesion on a novel functionalized glass surface that was prepared to induce macrophage fusion. These experiments demonstrate the versatility of AFM based SCFS, and how it can be applied to address many questions in cellular biology offering

  17. Targeting of type I protein kinase A to lipid rafts is required for platelet inhibition by the 3',5'-cyclic adenosine monophosphate-signaling pathway.

    Science.gov (United States)

    Raslan, Z; Magwenzi, S; Aburima, A; Taskén, K; Naseem, K M

    2015-09-01

    Platelet adhesion to von Willebrand factor (VWF) is modulated by 3',5'-cyclic adenosine monophosphate (cAMP) signaling through protein kinase A (PKA)-mediated phosphorylation of glycoprotein (GP)Ibβ. A-kinase anchoring proteins (AKAPs) are proposed to control the localization and substrate specificity of individual PKA isoforms. However, the role of PKA isoforms in regulating the phosphorylation of GPIbβ and platelet response to VWF is unknown. We wished to determine the role of PKA isoforms in the phosphorylation of GPIbβ and platelet activation by VWF as a model for exploring the selective partitioning of cAMP signaling in platelets. The two isoforms of PKA in platelets, type I (PKA-I) and type II (PKA-II), were differentially localized, with a small pool of PKA-I found in lipid rafts. Using a combination of Far Western blotting, immunoprecipitation, proximity ligation assay and cAMP pull-down we identified moesin as an AKAP that potentially localizes PKA-I to rafts. Introduction of cell-permeable anchoring disruptor peptide, RI anchoring disruptor (RIAD-Arg11 ), to block PKA-I/AKAP interactions, uncoupled PKA-RI from moesin, displaced PKA-RI from rafts and reduced kinase activity in rafts. Examination of GPIbβ demonstrated that it was phosphorylated in response to low concentrations of PGI2 in a PKA-dependent manner and occurred primarily in lipid raft fractions. RIAD-Arg11 caused a significant reduction in raft-localized phosphoGPIbβ and diminished the ability of PGI2 to regulate VWF-mediated aggregation and thrombus formation in vitro. We propose that PKA-I-specific AKAPs in platelets, including moesin, organize a selective localization of PKA-I required for phosphorylation of GPIbβ and contribute to inhibition of platelet VWF interactions. © 2015 International Society on Thrombosis and Haemostasis.

  18. Chondrogenic Priming at Reduced Cell Density Enhances Cartilage Adhesion of Equine Allogeneic MSCs - a Loading Sensitive Phenomenon in an Organ Culture Study with 180 Explants.

    Science.gov (United States)

    Spaas, Jan H; Broeckx, Sarah Y; Chiers, Koen; Ferguson, Stephen J; Casarosa, Marco; Van Bruaene, Nathalie; Forsyth, Ramses; Duchateau, Luc; Franco-Obregón, Alfredo; Wuertz-Kozak, Karin

    2015-01-01

    Clinical results of regenerative treatments for osteoarthritis are becoming increasingly significant. However, several questions remain UNANSWERED concerning mesenchymal stem cell (MSC) adhesion and incorporation into cartilage. To this end, peripheral blood (PB) MSCs were chondrogenically induced and/or stimulated with pulsed electromagnetic fields (PEMFs) for a brief period of time just sufficient to prime differentiation. In an organ culture study, PKH26 labelled MSCs were added at two different cell densities (0.5 x106 vs 1.0 x106). In total, 180 explants of six horses (30 per horse) were divided into five groups: no lesion (i), lesion alone (ii), lesion with naïve MSCs (iii), lesion with chondrogenically-induced MSCs (iv) and lesion with chondrogenically-induced and PEMF-stimulated MSCs (v). Half of the explants were mechanically loaded and compared with the unloaded equivalents. Within each circumstance, six explants were histologically evaluated at different time points (day 1, 5 and 14). COMP expression was selectively increased by chondrogenic induction (p = 0.0488). PEMF stimulation (1mT for 10 minutes) further augmented COL II expression over induced values (p = 0.0405). On the other hand, MSC markers remained constant over time after induction, indicating a largely predifferentiated state. In the unloaded group, MSCs adhered to the surface in 92.6% of the explants and penetrated into 40.7% of the lesions. On the other hand, physiological loading significantly reduced surface adherence (1.9%) and lesion filling (3.7%) in all the different conditions (p < 0.0001). Remarkably, homogenous cell distribution was characteristic for chondrogenic induced MSCs (+/- PEMFs), whereas clump formation occurred in 39% of uninduced MSC treated cartilage explants. Finally, unloaded explants seeded with a moderately low density of MSCs exhibited greater lesion filling (p = 0.0022) and surface adherence (p = 0.0161) than explants seeded with higher densities of MSCs. In

  19. Flavanols and Platelet Reactivity

    Directory of Open Access Journals (Sweden)

    Debra A. Pearson

    2005-01-01

    Full Text Available Platelet activity and platelet-endothelial cell interactions are important in the acute development of thrombosis, as well as in the pathogenesis of cardiovascular disease. An increasing number of foods have been reported to have platelet-inhibitory actions, and research with a number of flavanol-rich foods, including, grape juice, cocoa and chocolate, suggests that these foods may provide some protection against thrombosis. In the present report, we review a series of in vivo studies on the effects of flavanol-rich cocoa and chocolate on platelet activation and platelet-dependent primary hemostasis. Consumption of flavanol-rich cocoa inhibited several measures of platelet activity including, epinephrine- and ADP-induced glycoprotein (GP IIb/IIIa and P-Selectin expression, platelet microparticle formation, and epinephrine-collagen and ADP-collagen induced primary hemostasis. The epinephrine-induced inhibitory effects on GP IIb/IIIa and primary hemostasis were similar to, though less robust than those associated with the use of low dose (81 mg aspirin. These data, coupled with information from other studies, support the concept that flavanols present in cocoa and chocolate can modulate platelet function through a multitude of pathways.

  20. Platelet activation and aggregation

    DEFF Research Database (Denmark)

    Jensen, Maria Sander; Larsen, O H; Christiansen, Kirsten

    2013-01-01

    This study introduces a new laboratory model of whole blood platelet aggregation stimulated by endogenously generated thrombin, and explores this aspect in haemophilia A in which impaired thrombin generation is a major hallmark. The method was established to measure platelet aggregation initiated...

  1. Platelet receptors for the Streptococcus sanguis adhesin and aggregation-associated antigens are distinguished by anti-idiotypical monoclonal antibodies.

    Science.gov (United States)

    Gong, K; Wen, D Y; Ouyang, T; Rao, A T; Herzberg, M C

    1995-09-01

    Platelets aggregate in response to an adhesin and the platelet aggregation-associated protein (PAAP) expressed on the cell surfaces of certain strains of Streptococcus sanguis. We sought to identify the corresponding PAAP receptor and accessory adhesin binding sites on platelets. Since the adhesion(s) of S. sanguis for platelets has not been characterized, an anti-idiotype (anti-id) murine monoclonal antibody (MAb2) strategy was developed. First, MAb1s that distinguished the adhesin and PAAP antigens on the surface of S. sanguis I 133-79 were selected. Fab fragments of MAb1.2 (immunoglobulin G2b [IgG2b]; 70 pmol) reacted with 5 x 10(7) cells of S. sanguis to completely inhibit the aggregation of human platelets in plasma. Under similar conditions, MAb1.1 (IgG1) inhibited the adhesion of S. sanguis cells to platelets by a maximum of 34%, with a comparatively small effect on platelet aggregation. Together, these two MAb1s inhibited S. sanguis-platelet adhesion by 63%. In Western immunoblots, both MAb1s reacted with S. sanguis 133-79 87- and 150-kDa surface proteins and MAb1.2 also reacted with purified type I collagen. The hybridomas producing MAb1.1 and MAb1.2 were then injected into BALB/c mice. Enlarged spleens were harvested, and a panel of MAb2 hybridomas was prepared. To identify anti-ids against the specific MAb1s, the MAb2 panel was screened by enzyme-linked immunosorbent assay for reaction with rabbit polyclonal IgG antibodies against the 87- and 150-kDa antigens. The reactions between the specific rabbit antibodies and anti-ids were inhibited by the 87- and 150-kDa antigens. When preincubated with platelets, MAb2.1 (counterpart of MAb1.1) inhibited adhesion to platelets maximally by 46% and MAb2.2 (anti-MAb1.2) inhibited adhesion to platelets maximally by 35%. Together, both MAb2s inhibited the adhesion of S. sanguis to platelets by 81%. MAb2.2 also inhibited induction of platelet aggregation. MAb2.2 immunoprecipitated a biotinylated platelet membrane

  2. Platelets of patients with chronic kidney disease demonstrate deficient platelet reactivity in vitro

    Directory of Open Access Journals (Sweden)

    van Bladel Esther R

    2012-09-01

    Full Text Available Abstract Background In patients with chronic kidney disease studies focusing on platelet function and properties often are non-conclusive whereas only few studies use functional platelet tests. In this study we evaluated a recently developed functional flow cytometry based assay for the analysis of platelet function in chronic kidney disease. Methods Platelet reactivity was measured using flow cytometric analysis. Platelets in whole blood were triggered with different concentrations of agonists (TRAP, ADP, CRP. Platelet activation was quantified with staining for P-selectin, measuring the mean fluorescence intensity. Area under the curve and the concentration of half-maximal response were determined. Results We studied 23 patients with chronic kidney disease (9 patients with cardiorenal failure and 14 patients with end stage renal disease and 19 healthy controls. Expression of P-selectin on the platelet surface measured as mean fluorescence intensity was significantly less in chronic kidney disease patients compared to controls after maximal stimulation with TRAP (9.7 (7.9-10.8 vs. 11.4 (9.2-12.2, P = 0.032, ADP (1.6 (1.2-2.1 vs. 2.6 (1.9-3.5, P = 0.002 and CRP (9.2 (8.5-10.8 vs. 11.5 (9.5-12.9, P = 0.004. Also the area under the curve was significantly different. There was no significant difference in half-maximal response between both groups. Conclusion In this study we found that patients with chronic kidney disease show reduced platelet reactivity in response of ADP, TRAP and CRP compared to controls. These results contribute to our understanding of the aberrant platelet function observed in patients with chronic kidney disease and emphasize the significance of using functional whole blood platelet activation assays.

  3. Glu- and Lys-forms of plasminogen differentially affect phosphatidylserine exposure on the platelet surface

    Directory of Open Access Journals (Sweden)

    D. D. Zhernossekov

    2017-04-01

    Full Text Available Plasminogen/plasmin system is known for its ability to support hemostatic balance of blood. However, plasminogen may be considered as an adhesive ligand and in this way could affect the functioning of blood cells. We showed that exogenous Lys-plasminogen, but not its Glu-form, inhibited platelet aggregation and suppressed platelet α-granule secretion. The aim of this work was to investigate the influence of Glu- and Lys-form of plasminogen on the formation of platelet procoagulant surface using phosphatidylserine exposure as a marker. Human platelets were obtained from human platelet-rich plasma (donors were healthy volunteers, men aged 30-40 years by gel-filtration on Sepharose 2B. Phosphatidylserine exposure on the platelet surface was evaluated by flow cytometry with FITC-conjugated annexin A5. Glu- and Lys-plasminogen have different impact on the platelet functioning. Exogenous Lys-plasminogen has no significant effect on phosphatidylserine exposure, while Glu-plasminogen increases phosphatidylserine exposure on the surface of thrombin- and collagen-activated human platelets. Glu-plasminogen can be considered as a co-stimulator of agonist-induced platelet secretion and procoagulant surface formation. Meanwhile effects of Lys-plasminogen are probably directed at platelet-platelet interactions and not related to agonist-stimulated pro-apoptotic changes. The observed different effects of Glu- and Lys-plasminogen on phosphatidylserine exposure can be explained by their structural peculiarities.

  4. Platelet function in dogs

    DEFF Research Database (Denmark)

    Nielsen, Line A.; Zois, Nora Elisabeth; Pedersen, Henrik D.

    2007-01-01

    Background: Clinical studies investigating platelet function in dogs have had conflicting results that may be caused by normal physiologic variation in platelet response to agonists. Objectives: The objective of this study was to investigate platelet function in clinically healthy dogs of 4...... different breeds by whole-blood aggregometry and with a point-of-care platelet function analyzer (PFA-100), and to evaluate the effect of acetylsalicylic acid (ASA) administration on the results from both methods. Methods: Forty-five clinically healthy dogs (12 Cavalier King Charles Spaniels [CKCS], 12...... applied. However, the importance of these breed differences remains to be investigated. The PFA-100 method with Col + Epi as agonists, and ADP-induced platelet aggregation appear to be sensitive to ASA in dogs....

  5. Platelet-activating factor induces histamine release from human skin mast cells in vivo, which is reduced by local nerve blockade.

    Science.gov (United States)

    Petersen, L J; Church, M K; Skov, P S

    1997-05-01

    Intradermal injection of platelet-activating factor (PAF) causes wheal and flare reactions, which are inhibited by antihistamines. However, PAF does not release histamine from human dispersed skin mast cells in vitro. The purpose of this study was to investigate the extent and possible mechanisms of PAF-induced histamine release in human skin in vivo with the use of dermal microdialysis. Hollow dialysis fibers were inserted into the upper dermis in forearm skin and each fiber was perfused with Krebs-Ringer bicarbonate solution at a rate of 3.0 microliters/min. PAF (4.5 to 36 mumol/L), lyso-PAF (36 mumol/L), vehicle (negative control), and codeine 750 or 250 mumol/L (positive control) were injected intradermally above separate fibers. Dialysate was collected in 2-minute fractions for 20 minutes and histamine analyzed spectrofluorometrically. PAF, but not lyso-PAF, caused statistically significant dose-related histamine release and wheal and flare reactions. Intradermal mepivacaine administration significantly abrogated flare reactions by PAF and codeine and inhibited histamine release and wheal reactions by PAF but not by codeine. Long-term topical capsaicin administration inhibited histamine release and wheal reactions by PAF but not by codeine. It inhibited flare reactions induced by both compounds. PAF did not release histamine from blood basophils. These data suggest that PAF induced histamine release from mast cells in intact human skin indirectly via neurogenic activation. Further, on the intradermal injection of PAF histamine release and the skin responses, the wheal and the flare, are differentially regulated by neurogenic components.

  6. Platelet aggregation monitoring with a newly developed quartz crystal microbalance system as an alternative to optical platelet aggregometry.

    Science.gov (United States)

    Sinn, Stefan; Müller, Lothar; Drechsel, Hartmut; Wandel, Michael; Northoff, Hinnak; Ziemer, Gerhard; Wendel, Hans P; Gehring, Frank K

    2010-11-01

    The objective of this study was to establish a new test system for the monitoring of platelet aggregation during extracorporeal circulation (ECC) procedures. Even though extensive progress has been made in improving the haemocompatibility of extracorporeal circulation devices, activation of blood coagulation, blood platelets and inflammatory responses are still undesired outcomes of cardiopulmonary bypass. This study deals with an approach towards a platelet aggregation measuring system using a newly developed quartz crystal microbalance (QCM) system. Since QCM is a rarely used technique in the field of blood analytics, the challenge was to transfer the well established methods of aggregometry to the new test system. In a QCM system, either bare gold or fibrinogen-coated sensors were incubated with ADP or arachidonic acid (AA) stimulated platelet rich plasma. For negative controls the GPIIb/IIIa inhibitory antibody abciximab (Reopro®) was used as an inhibitor of platelet aggregation. During incubation, the frequency shifts of the sensors were recorded. The results gained from the QCM system were compared to results gained by optical platelet aggregometry (born aggregometry). For additional visualization of platelet adhesion to the sensor surfaces, fluorescent microscopy and scanning electron microscopy were used. The QCM sensor was able to detect platelet aggregation in both uncoated and fibrinogen coated sensors. The measuring curves of aggregation measurements and controls were clearly distinguishable from each other in terms of frequency shifts and kinetics. For aggregation measurements and inhibited controls the therapeutic diagnosis of platelet function is identical between aggregometer and QCM data. In future, QCM based measuring devices may become an alternative to established point of care methods for rapid bedside testing of platelet aggregation.

  7. Progress in bio-manufacture of platelets for transfusion.

    Science.gov (United States)

    Heazlewood, Shen Y; Nilsson, Susan K; Cartledge, Kellie; Be, Cheang Ly; Vinson, Andrew; Gel, Murat; Haylock, David N

    2017-11-01

    Blood transfusion services face an ever-increasing demand for donor platelets to meet clinical needs. Whilst strategies for increasing platelet storage life and improving the efficiency of donor platelet collection are important, in the longer term, platelets generated by bio-manufacturing processes will be required to meet demands. Production of sufficient numbers of in vitro-derived platelets for transfusion represents a significant bioengineering challenge. In this review, we highlight recent progress in this area of research and outline the main technical and biological obstacles that need to be met before this becomes feasible and economic. A critical consideration is assurance of the functional properties of these cells as compared to their fresh, donor collected, counterparts. We contend that platelet-like particles and in vitro-derived platelets that phenotypically resemble fresh platelets must deliver the same functions as these cells upon transfusion. We also note recent progress with immortalized megakaryocyte progenitor cell lines, molecular strategies for reducing expression of HLA Class I to generate universal donor platelets and the move to early clinical studies with in vitro-derived platelets.

  8. Role of Siglec-7 in apoptosis in human platelets.

    Directory of Open Access Journals (Sweden)

    Kim Anh Nguyen

    Full Text Available Platelets participate in tissue repair and innate immune responses. Sialic acid-binding immunoglobulin-like lectins (Siglecs are well-characterized I-type lectins, which control apoptosis.We characterized the expression of Siglec-7 in human platelets isolated from healthy volunteers using flow cytometry and confocal microscopy. Siglec-7 is primarily expressed on α granular membranes and colocalized with CD62P. Siglec-7 expression was increased upon platelet activation and correlated closely with CD62P expression. Cross-linking Siglec-7 with its ligand, ganglioside, resulted in platelet apoptosis without any significant effects on activation, aggregation, cell morphology by electron microscopy analysis or secretion. We show that ganglioside triggered four key pathways leading to apoptosis in human platelets: (i mitochondrial inner transmembrane potential (ΔΨm depolarization; (ii elevated expression of pro-apoptotic Bax and Bak proteins with reduced expression of anti-apoptotic Bcl-2 protein; (iii phosphatidylserine exposure and (iv, microparticle formation. Inhibition of NAPDH oxidase, PI3K, or PKC rescued platelets from apoptosis induced by Siglec-7 recruitment, suggesting that the platelet receptors P2Y1 and GPIIbIIIa are essential for ganglioside-induced platelet apoptosis.The present work characterizes the role of Siglec-7 and platelet receptors in regulating apoptosis and death. Because some platelet pathology involves apoptosis (idiopathic thrombocytopenic purpura and possibly storage lesions, Siglec-7 might be a molecular target for therapeutic intervention/prevention.

  9. Platelet Function Tests: Preanalytical Variables, Clinical Utility, Advantages, and Disadvantages.

    Science.gov (United States)

    Hvas, Anne-Mette; Grove, Erik Lerkevang

    2017-01-01

    Platelet function tests are mainly used in the diagnostic work-up of platelet disorders. During the last decade, the additional use of platelet function tests to evaluate the effect of antiplatelet therapy has also emerged in an attempt to identify patients with an increased risk of arterial thrombosis. Furthermore, platelet function tests are increasingly used to measure residual effect of antiplatelet therapy prior to surgery with the aim of reducing the risk of bleeding. To a limited extend, platelet function tests are also used to evaluate hyperaggregability as a potential marker of a prothrombotic state outside the setting of antiplatelet therapy. This multifaceted use of platelet function tests and the development of simpler point-of-care tests with narrower application have increased the use of platelet function testing and also facilitated the use of platelet function tests outside the highly specialized laboratories. The present chapter describes the preanalytical variables, which should be taken into account when planning platelet function testing. Also, the most widely used platelet function tests are introduced, and their clinical utility and their relative advantages and disadvantages are discussed.

  10. Genetic engineering of platelets to neutralize circulating tumor cells.

    Science.gov (United States)

    Li, Jiahe; Sharkey, Charles C; Wun, Brittany; Liesveld, Jane L; King, Michael R

    2016-04-28

    Mounting experimental evidence demonstrates that platelets support cancer metastasis. Within the circulatory system, platelets guard circulating tumor cells (CTCs) from immune elimination and promote their arrest at the endothelium, supporting CTC extravasation into secondary sites. Neutralization of CTCs in blood circulation can potentially attenuate metastases to distant organs. Therefore, extensive studies have explored the blockade of platelet-CTC interactions as an anti-metastatic strategy. Such an intervention approach, however, may cause bleeding disorders since the platelet-CTC interactions inherently rely on the blood coagulation cascade including platelet activation. On the other hand, platelets have been genetically engineered to correct inherited bleeding disorders in both animal models and human clinical trials. In this study, inspired by the physical association between platelets and CTCs, platelets were genetically modified to express surface-bound tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), a cytokine known to induce apoptosis specifically in tumor cells. The TRAIL-expressing platelets were demonstrated to kill cancer cells in vitro and significantly reduce metastases in a mouse model of prostate cancer metastasis. Our results suggest that using platelets to produce and deliver cancer-specific therapeutics can provide a Trojan-horse strategy of neutralizing CTCs to attenuate metastasis. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Platelet microvesicles in health and disease.

    Science.gov (United States)

    Melki, Imene; Tessandier, Nicolas; Zufferey, Anne; Boilard, Eric

    2017-05-01

    Interest in cell-derived extracellular vesicles and their physiological and pathological implications is constantly growing. Microvesicles, also known as microparticles, are small extracellular vesicles released by cells in response to activation or apoptosis. Among the different microvesicles present in the blood of healthy individuals, platelet-derived microvesicles (PMVs) are the most abundant. Their characterization has revealed a heterogeneous cargo that includes a set of adhesion molecules. Similarly to platelets, PMVs are also involved in thrombosis through support of the coagulation cascade. The levels of circulatory PMVs are altered during several disease manifestations such as coagulation disorders, rheumatoid arthritis, systemic lupus erythematosus, cancers, cardiovascular diseases, and infections, pointing to their potential contribution to disease and their development as a biomarker. This review highlights recent findings in the field of PMV research and addresses their contribution to both healthy and diseased states.

  12. Platelet Rich Plasma and Knee Surgery

    Directory of Open Access Journals (Sweden)

    Mikel Sánchez

    2014-01-01

    Full Text Available In orthopaedic surgery and sports medicine, the knee joint has traditionally been considered the workhorse. The reconstruction of every damaged element in this joint is crucial in achieving the surgeon’s goal to restore the knee function and prevent degeneration towards osteoarthritis. In the last fifteen years, the field of regenerative medicine is witnessing a boost of autologous blood-derived platelet rich plasma products (PRPs application to effectively mimic and accelerate the tissue healing process. The scientific rationale behind PRPs is the delivery of growth factors, cytokines, and adhesive proteins present in platelets and plasma, as well as other biologically active proteins conveyed by the plasma such as fibrinogen, prothrombin, and fibronectin; with this biological engineering approach, new perspectives in knee surgery were opened. This work describes the use of PRP to construct and repair every single anatomical structure involved in knee surgery, detailing the process conducted in ligament, meniscal, and chondral surgery.

  13. Platelet Rich Plasma and Knee Surgery

    Science.gov (United States)

    Sánchez, Mikel; Sánchez, Pello; Orive, Gorka; Anitua, Eduardo; Padilla, Sabino

    2014-01-01

    In orthopaedic surgery and sports medicine, the knee joint has traditionally been considered the workhorse. The reconstruction of every damaged element in this joint is crucial in achieving the surgeon's goal to restore the knee function and prevent degeneration towards osteoarthritis. In the last fifteen years, the field of regenerative medicine is witnessing a boost of autologous blood-derived platelet rich plasma products (PRPs) application to effectively mimic and accelerate the tissue healing process. The scientific rationale behind PRPs is the delivery of growth factors, cytokines, and adhesive proteins present in platelets and plasma, as well as other biologically active proteins conveyed by the plasma such as fibrinogen, prothrombin, and fibronectin; with this biological engineering approach, new perspectives in knee surgery were opened. This work describes the use of PRP to construct and repair every single anatomical structure involved in knee surgery, detailing the process conducted in ligament, meniscal, and chondral surgery. PMID:25302310

  14. Thromboelastometric and platelet responses to silk biomaterials

    Science.gov (United States)

    Kundu, Banani; Schlimp, Christoph J.; Nürnberger, Sylvia; Redl, Heinz; Kundu, S. C.

    2014-01-01

    Silkworm's silk is natural biopolymer with unique properties including mechanical robustness, all aqueous base processing and ease in fabrication into different multifunctional templates. Additionally, the nonmulberry silks have cell adhesion promoting tri-peptide (RGD) sequences, which make it an immensely potential platform for regenerative medicine. The compatibility of nonmulberry silk with human blood is still elusive; thereby, restricts its further application as implants. The present study, therefore, evaluate the haematocompatibility of silk biomaterials in terms of platelet interaction after exposure to nonmulberry silk of Antheraea mylitta using thromboelastometry (ROTEM). The mulberry silk of Bombyx mori and clinically used Uni-Graft W biomaterial serve as references. Shortened clotting time, clot formation times as well as enhanced clot strength indicate the platelet mediated activation of blood coagulation cascade by tested biomaterials; which is comparable to controls. PMID:24824624

  15. Platelet counts and mean platelet volume amongst elderly Nigerians ...

    African Journals Online (AJOL)

    determining reference values of Platelet Counts, Mean Platelet Volume and the relationship between the Platelet Count and Mean Platelet Volume. These parameters were determined from 400 healthy elderly subjects comprising 210 males and 190 females. with a mean age of 69.4±7.9 years . 400 young adults were used ...

  16. Inert tube coatings as a method to reduce deposit adhesion on superheaters; Inerta tubytbelaeggningar som metod att minska paaslagens vidhaeftning paa oeverhettare

    Energy Technology Data Exchange (ETDEWEB)

    Almark, Matts; Staalenheim, Annika; Henderson, Pamela

    2007-12-15

    In many biofuel and waste fired boilers there are significant deposit related problems. The fouling of the superheaters and other heat transfer surfaces reduces the heat transfer, which leads to increased flue gas temperatures, or might block the entire flue gas channel in extreme cases. An increasing share of waste and refuse derived fuels as well as the use of new types of biomass have led to increased problems with deposit formation. In order to minimize the formation of deposits and to maintain low flue gas temperatures the superheaters are subjected to frequent soot blowing, which in turn may lead to increased material loss of the tubes. The purpose of this project is to try to show that tube surfaces that may be regarded as inert have a 'non-stick' effect and that the fouling is reduced when the deposits do not react with the tube surface layer, and the adhesive force of the deposits are reduced. Nickel based alloy Sanicro 63, which forms a nickel oxide surface layer, and Kanthal APM, which forms an aluminum oxide surface layer, are compared with 15Mo3, a common superheater steels forming iron oxide and Sanicro 28, a stainless steel which forms iron and chromium oxides. Applied coatings are also tested, welded Alloy 625 and sprayed Kanthal APM, in order to investigate how ht application method interferes with the results from the pure material. A ceramic coating material that is claimed to give good results in waste and coal fired boilers is also tested. Tests with cooled probes, on which the tested materials are mounted, are performed in two different boilers, Haendeloe P14 representing waste fired boilers with fouling issues related to chlorine and heavy metals, and Myllykoski K7 representing a forest industry with non-corrosive sulfate containing deposits. The results show that a tube surface of a nickel-based alloy can reduce the formation of chlorine rich, partly melted deposits. No effect was shown on the dry, chlorine-free deposits. The

  17. Flavanol metabolites reduce monocyte adhesion to endothelial cells through modulation of expression of genes via p38-MAPK and p65-Nf-kB pathways.

    Science.gov (United States)

    Claude, Sylvain; Boby, Celine; Rodriguez-Mateos, Ana; Spencer, Jeremy P E; Gérard, Nicolas; Morand, Christine; Milenkovic, Dragan

    2014-05-01

    Consumption of flavanol-rich foods is associated with an improvement in endothelial function. However, the specific biologically active flavanol metabolites involved in this benefit, as well as their molecular mechanisms of action have not been identified. The aim of this work was to examine the effect of plasma flavanol metabolites on adhesion of monocytes to TNF-α-activated endothelial cells and identify potential underlying mechanisms. 4'-O-methyl(-)-epicatechin, 4'-O-methyl(-)-epicatechin-7-β-d-glucuronide, and (-)-epicatechin-4'-sulfate decreased the adhesion of monocytes to endothelial cells at physiologically relevant concentrations, from 0.2 to 1 μM. Transcriptomic studies showed that each of the flavanol metabolites affected the expression of different genes in endothelial cells. However, these genes are involved in the cellular processes that control adhesion and migration of monocytes to vascular endothelium, most notably those regulating cell adhesion, cell-cell junctions, focal adhesion, and cytoskeleton remodeling. Gene expression profiles obtained suggest lower monocyte recruitment, in agreement with results from cell adhesion assays. The nutrigenomic effect of metabolites seems to be mediated through their capacity to modulate phosphorylation of p65 and p38 cell-signaling proteins. Our study provides findings into the molecular mechanisms by which plasma flavanol metabolites could be efficient to preserve vascular endothelium integrity in nutritionally relevant conditions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Technetium-99m labeled 50H. 19 antibody fragments: interaction of the antibody with platelets

    Energy Technology Data Exchange (ETDEWEB)

    Valone, F.H.; Stricker, R.B.; Zamora, P.O.; Shah, V.O.; Mann, P.L.

    1988-01-01

    The monoclonal antibody 50H.19 recognized three antigens (Msub(tau) = 31-, 40-, 45-K) on normal and thromboasthenic platelets, but only one (Msub(tau) = 31-K) on Bernard-Soulier platelets. The intact antibody and its F(ab')/sub 2/ fragments, had direct platelet-aggregating activity, and induced the platelet release reaction. The intact antibody potentiated platelet aggregation induced by platelet-activating factor or thrombin. Additions of indomethacin did not inhibit aggregation: addition of PGI/sub 2/, or a calcium channel blocker completely inhibited aggregation. A reduced amount of platelet-aggregating activity was observed with antibody fragments prepared for labeling with sup(99m)Tc by pre-exposure to stannous ions, and herein used in biodistribution studies and elsewhere in thrombus imaging studies. Antibody fragments radiolabeled with sup(99m)Tc bound to isolated platelets and to clots containing platelets.

  19. Platelet transfusion—the new immunology of an old therapy

    Directory of Open Access Journals (Sweden)

    Moritz eStolla

    2015-02-01

    Full Text Available Platelet transfusion has been a vital therapeutic approach in patients with hematologic malignancies for close to half a century. Randomized trials show that prophylactic platelet transfusions mitigate bleeding in patients with acute myeloid leukemia. However, even with prophylactic transfusions, as many as 75% of patients experience hemorrhage. While platelet transfusion efficacy is modest, questions and concerns have arisen about the risks of platelet transfusion therapy. The acknowledged serious risks of platelet transfusion include viral transmission, bacterial sepsis, and acute lung injury. Less serious adverse effects include allergic and non-hemolytic febrile reactions. Rare hemolytic reactions have occurred due to a common policy of transfusing without regard to ABO type. In the last decade or so, new concerns have arisen; platelet derived lipids are implicated in transfusion related acute lung injury after transfusion. With the recognition that platelets are immune cells came the discoveries that supernatant IL-6, IL-27 sCD40L, and OX40L are closely linked to febrile reactions and sCD40L with acute lung injury. Platelet transfusions are pro-inflammatory, and may be pro-thrombotic. Anti-A and anti-B can bind to incompatible recipient or donor platelets and soluble antigens, impair hemostasis and thus increase bleeding. Finally, stored platelet supernatants contain biological mediators such as VEGF and TGF-β1 that may compromise the host versus tumor response. This is particularly of concern in patients receiving many platelet transfusions, as for acute leukemia. New evidence suggests that removing stored supernatant will improve clinical outcomes.This new view of platelets as pro-inflammatory and immunomodulatory agents suggests that innovative approaches to improving platelet storage and pre-transfusion manipulations to reduce toxicity could substantially improve the efficacy and safety of this long employed therapy.

  20. Platelet recruitment to venous stent thrombi.

    Science.gov (United States)

    McBane, Robert D; Karnicki, Krzysztof; Wysokinski, Waldemar E

    2013-11-01

    Thrombosis following venous stent placement is a morbid clinical outcome. Whether to target platelets or coagulation factors for venous stent thromboprophylaxis remains unclear. We sought to determine whether integrin α(IIb)β3 antagonism with lamifiban would inhibit platelet recruitment to venous stent thrombosis. Anti-thrombotic efficacy was compared between venous and arterial circulations. Pigs received either lamifiban (0.2 mg/kg bolus plus 0.2 mg/kg/h infusion; n = 6) or saline (n = 12). Carotid arteries were crush injured and then harvested 30 min later to provide an assessment of antithrombotic efficacy in the arterial circulation. Iliac venous stents were then deployed and thrombi allowed to propagate for 2 h before harvesting. Platelet deposition was measured by scintillation detection of autologous (111)In-platelets. Venous thrombi were quantified by weight and compared to platelet, Von Willebrand factor (VWF) and fibrinogen content. Arterial platelet deposition (×10(6)/cm(2)) was reduced >80% by lamifiban (398 ± 437) compared to controls (1,540 ± 883; p thrombi occurs in part through the integrin α(IIb)β3 receptor. Unlike arterial thrombosis, inhibition of this receptor is insufficient to prevent venous stent thrombosis.

  1. Oral streptococci and cardiovascular disease: searching for the platelet aggregation-associated protein gene and mechanisms of Streptococcus sanguis-induced thrombosis.

    Science.gov (United States)

    Herzberg, Mark C; Nobbs, Angela; Tao, Lin; Kilic, Ali; Beckman, Eric; Khammanivong, Ali; Zhang, Yongshu

    2005-11-01

    Pathogenic mechanisms in infective endocarditis, disseminated intravascular coagulation, and cardiovascular events involve the aggregation of platelets into thrombi. Attendant infection by oral bacteria contributes to these diseases. We have been studying how certain oral streptococci induce platelet aggregation in vitro and in vivo. Streptococcus sanguis expresses a platelet aggregation-associated protein (PAAP), which contributes little to adhesion to platelets. When specific antibodies or peptides block PAAP, S. sanguis fails to induce platelet aggregation in vitro or in vivo. We used subtractive hybridization to identify the gene encoding for PAAP. After subtraction of strain L50 (platelet aggregation-negative), four strain 133-79 specific sequences were characterized. Sequence agg4 encoded a putative collagen-binding protein (CbpA), which was predicted to contain two PAAP collagen-like octapeptide sequences. S. sanguis CbpA- mutants were constructed and tested for induction of platelet aggregation in vitro. Platelet aggregation was substantially inhibited when compared to the wild-type using platelet-rich plasma from the principal donor, but adhesion was unaffected. Other donor platelets responded normally to the CbpA- strain, suggesting additional mechanisms of response to S. sanguis. In contrast, CshA- and methionine sulfoxide reductase-negative (MsrA-) strains neither adhered nor induced platelet aggregation. CbpA was suggested to contribute to site 2 interactions in our two-site model of platelet aggregation in response to S. sanguis. Platelet polymorphisms were suggested to contribute to the thrombogenic potential of S. sanguis.

  2. DEVELOPMENT OF STRUCTURAL ADHESIVES,

    Science.gov (United States)

    Contents: (A) Structural adhesives for metals; development of better adhesives; development of heat resistance adhesives; development of room...temperature setting adhesives; recent investigations of metal-bonding adhesives; development of production processes and design criteria for metal adhesives... development of non-destructive inspection methods for adhesive bonded structures. (B) European papers; British developments in the field of

  3. Aerobic exercise training lowers platelet reactivity and improves platelet sensitivity to prostacyclin in pre- and postmenopausal women

    DEFF Research Database (Denmark)

    Lundberg Slingsby, Martina Helena; Nyberg, Michael Permin; Egelund, Jon

    2017-01-01

    .7 (52.5-55.0) years old, participated in an intervention study: 3-month high-intensity supervised aerobic spinning-cycle training (1hr, x3/week). Basal platelet reactivity was analyzed in platelet rich plasma from venous blood as agonist-induced %aggregation. In a subgroup of 13 pre- and 14...... exercise in late pre- and recent postmenopausal women by testing basal platelet reactivity and platelet sensitivity to prostacyclin and nitric oxide. METHODS: 25 sedentary, but healthy, late premenopausal and 24 matched recently postmenopausal women, mean (95% confidence interval) 49.1 (48.2-49.9) and 53......-68) versus premenopausal women; 45% (35-55). Exercise training reduced basal platelet reactivity to collagen(1μg/ml) in the premenopausal women only; from 63% (55-71%) to 51% (41-62%). After the training intervention, platelet aggregation was more inhibited by the arterial prostacyclin infusion and the acute...

  4. Model of trauma-induced coagulopathy including hemodilution, fibrinolysis, acidosis, and hypothermia: Impact on blood coagulation and platelet function.

    Science.gov (United States)

    Shenkman, Boris; Budnik, Ivan; Einav, Yulia; Hauschner, Hagit; Andrejchin, Mykhaylo; Martinowitz, Uriel

    2017-02-01

    Trauma-induced coagulopathy (TIC) is commonly seen among patients with severe injury. The dynamic process of TIC is characterized by variability of the features of the disease. A model of TIC was created. Hemodilution was produced by mixing the blood with 40% Tris/saline solution, fibrinolysis by treating the blood with 160 ng/mL tPA, acidosis by adding 1.2 mg/mL lactic acid achieving pH 7.0 to 7.1, and hypothermia by running the assay at 31°C. Intact blood tested at 37°C served as control. Clot formation was evaluated using rotation thromboelastometry. Platelet adhesion and aggregation were assayed at a shear rate of 1800 s using Impact-R device. Clotting time was not affected by any of the TIC constituents used. Clotting initiation was reduced by hemodilution and further reduced by additive hypothermia. The propagation phase of blood clotting was reduced by hemodilution, further reduced by additive hypothermia, and maximally reduced if additionally combined with fibrinolysis. No effect of fibrinolysis on clot propagation was observed at 37°C. Maximum clot firmness was reduced by hemodilution, further reduced by additive fibrinolysis, and maximally reduced if additionally combined with hypothermia. No effect of hypothermia on clot strength was observed in the absence of fibrinolysis. Platelet adhesion (percentage of surface coverage) and aggregation (aggregate size) under flow condition were reduced by hemodilution and further reduced by additive acidosis. Introduction of tPA to diluted blood had no effect on platelet function. The study revealed a differential effect of TIC constituents-hemodilution, hypothermia, fibrinolysis, and acidosis-on clot formation and platelet function. The effect of one factor may influence that of another factor. These data may be helpful to better understand the pathogenesis of TIC and to elaborate an individually tailored treatment strategy. A new model of TIC is created. Contribution of various constituents to pathogenesis of

  5. Pathogen-Reduced, Platelet Additive Solution, Extended Stored Platelets (PREPS)

    Science.gov (United States)

    2015-10-01

    effective’ when self-reported by subject; abstinence, intrauterine contraception devices, hormonal methods, barrier methods or history of sterilization...participated in 4 research studies involving radioisotopes within the contemporaneous calendar-year. • Taken aspirin , non-steroidal anti-inflammatory, or...abbreviated version of blood donor screening will be performed including completion of a study specific health history questionnaire, check of vital signs

  6. Cytokines in platelet concentrates: a comparison of apheresis platelet (haemonetics) and filtered and unfiltered pooled buffy-coat derived platelet concentrates.

    Science.gov (United States)

    Seghatchian, M J; Wadhwa, M; Thorpe, R

    1997-03-01

    Variable degrees of platelet activation, shape changes, microvesiculation and fragmentation may occur during collection, processing and storage of platelet concentrates (PCs), contributing to different rate of platelet storage lesion. Leukocytes contribute to both the frequency of transfusion reactions and the acceleration of the rate of platelet storage lesion hence leukocyte removal of platelet concentrates has been introduced to overcome these problems. However transfusion reaction can still occur with the use of leuko-reduced products and it is not fully elucidated that the rate of storage lesion is equivalent for filtered and unfiltered counter parts. This issue has been addressed in this manuscript comparing the generation of cytokines during storage in PCs derived from pooled buffy coat with the standard apheresis products, with a similar level of leukocyte contamination. The EDTA-induced shape change in platelet was used as an index of platelet functional integrity. In addition IL-8 and TGF beta were used as indicators of filtration process-inducing stimulation of cytokines. Our results clearly indicate that a rapid disc/spheric conversion occurs during storage of buffy-coat derived PC, and while prestorage filtration reduces both IL-8 content immediately after filtration and at the end of platelet shelf life but such a process may lead to slight enhancement of the rate of TGF beta generation indicating that any additional process may have some bearing in stimulation of TGF beta release.

  7. In vivo quantitation of platelet deposition on human peripheral arterial bypass grafts using indium-111-labeled platelets. Effect of dipyridamole and aspirin

    Energy Technology Data Exchange (ETDEWEB)

    Pumphrey, C.W.; Chesebro, J.H.; Dewanjee, M.K.; Wahner, H.W.; Hollier, L.H.; Pairolero, P.C.; Fuster, V.

    1983-03-01

    Indium-111-labeled autologous platelets, injected 48 hours after operation, were used to evaluate the thrombogenicity of prosthetic material and the effect of platelet inhibitor therapy in vivo. Dacron double-velour (Microvel) aortofemoral artery bifurcation grafts were placed in 16 patients and unilateral polytetrafluoroethylene femoropopliteal grafts were placed in 10 patients. Half the patients in each group received platelet inhibitors before operation (dipyridamole, 100 mg 4 times a day) and after operation (dipyridamole, 75 mg, and acetylsalicylic acid, 325 mg 3 times a day); the rest of the patients served as control subjects. Five-minute scintigrams of the graft region were taken with a gamma camera interfaced with a computer 48, 72, and 96 hours after injection of the labeled platelets. Platelet deposition was estimated from the radioactivities of the grafts and expressed as counts per 100 pixels per microcurie injected. Dipyridamole and aspirin therapy significantly reduced the number of platelets deposited on Dacron grafts and prevented platelet accumulation over 3 days. With the small amount of platelet deposition on polytetrafluoroethylene femoropopliteal artery grafts even in control patients, platelet inhibitor therapy had no demonstrable effect on platelet deposition on these grafts. It is concluded that (1) platelet deposition on vascular grafts in vivo can be quantitated by noninvasive methods, and (2) dipyridamole and aspirin therapy reduced platelet deposition on Dacron aortofemoral artery grafts.

  8. Adhesion prevention in gynaecological surgery.

    Science.gov (United States)

    Robertson, Deborah; Lefebvre, Guylaine

    2010-06-01

    surgery needs to be carefully considered in this context. (II-2). 3. Polytetrafluoroethylene (Gore-Tex) barrier is more effective than no barrier or oxidized regenerated cellulose in preventing adhesion formation. (I). 4. Oxidized regenerated cellulose (Interceed) adhesion barrier is associated with a reduced incidence of pelvic adhesion formation at both laparoscopy and laparotomy when complete hemostasis is achieved. Oxidized regenerated cellulose may increase the risk of adhesions if optimal hemostasis is not achieved. (II-2). 5. Chemically modified sodium hyaluronate/carboxymethylcellulose (Seprafilm) is effective in preventing adhesion formation, especially following myomectomies. There is insufficient evidence on the effect of sodium hyaluronate/carboxymethylcellulose on long-term clinical outcomes such as fertility, chronic pelvic pain or small bowel obstruction. (II-2). 6. No adverse effects have been reported with the use of oxidized regenerated cellulose, polytetrafluoroethylene, or sodium hyaluronate/carboxymethylcellulose. (II-1). 7. Various pharmacological agents have been marketed as a means of preventing adhesions. None of these agents are presently available in Canada. There is insufficient evidence for the use of pharmacological agents in preventing adhesions. (III-C). 1. Surgeons should attempt to perform surgical procedures using the least invasive method possible in order to decrease the risk of adhesion formation. (II-1B ). When feasible, for example, a laparoscopic surgical approach is preferable to an abdominal approach, and a vaginal or laparoscopic hysterectomy is preferable to an abdominal hysterectomy. 2. Precautions should be taken at surgery to minimize tissue trauma in order to decrease the risk of postoperative adhesions. These precautions include limiting packing, crushing, and manipulating of tissues to what is strictly required for safe completion of the procedure. (III-B). 3. Surgeons could consider using an adhesion barrier for patients

  9. Platelet-Derived MRP-14 Induces Monocyte Activation in Patients With Symptomatic Peripheral Artery Disease.

    Science.gov (United States)

    Dann, Rebecca; Hadi, Tarik; Montenont, Emilie; Boytard, Ludovic; Alebrahim, Dornaszadat; Feinstein, Jordyn; Allen, Nicole; Simon, Russell; Barone, Krista; Uryu, Kunihiro; Guo, Yu; Rockman, Caron; Ramkhelawon, Bhama; Berger, Jeffrey S

    2018-01-02

    Peripheral artery disease (PAD), a diffuse manifestation of atherothrombosis, is a major cardiovascular threat. Although platelets are primary mediators of atherothrombosis, their role in the pathogenesis of PAD remains unclear. The authors sought to investigate the role of platelets in a cohort of symptomatic PAD. The authors profiled platelet activity, mRNA, and effector roles in patients with symptomatic PAD and in healthy controls. Patients with PAD and carotid artery stenosis were recruited into ongoing studies (NCT02106429 and NCT01897103) investigating platelet activity, platelet RNA, and cardiovascular disease. Platelet RNA sequence profiling mapped a robust up-regulation of myeloid-related protein (MRP)-14 mRNA, a potent calcium binding protein heterodimer, in PAD. Circulating activated platelets were enriched with MRP-14 protein, which augmented the expression of the adhesion mediator, P-selectin, thereby promoting monocyte-platelet aggregates. Electron microscopy confirmed the firm interaction of platelets with monocytes in vitro and colocalization of macrophages with MRP-14 confirmed their cross talk in atherosclerotic manifestations of PAD in vivo. Platelet-derived MRP-14 was channeled to monocytes, thereby fueling their expression of key PAD lesional hallmarks and increasing their directed locomotion, which were both suppressed in the presence of antibody-mediated blockade. Circulating MRP-14 was heightened in the setting of PAD, significantly correlated with PAD severity, and was associated with incident limb events. The authors identified a heightened platelet activity profile and unraveled a novel immunomodulatory effector role of platelet-derived MRP-14 in reprograming monocyte activation in symptomatic PAD. (Platelet Activity in Vascular Surgery and Cardiovascular Events [PACE]; NCT02106429; and Platelet Activity in Vascular Surgery for Thrombosis and Bleeding [PIVOTAL]; NCT01897103). Copyright © 2018 American College of Cardiology Foundation

  10. Congenital platelet function defects

    Science.gov (United States)

    Arnold DM, Patriquin C, Toltl LJ, Nazi I, Smith J, Kelton J. Diseases of platelet number: immune thrombocytopenia, neonatal alloimmune thrombocytopenia, and posttransfusion purpura. In: Hoffman R, Benz EJ ...

  11. Genetic determinants of on-aspirin platelet reactivity: focus on the influence of PEAR1.

    Directory of Open Access Journals (Sweden)

    Morten Würtz

    Full Text Available Platelet aggregation during aspirin treatment displays considerable inter-individual variability. A genetic etiology likely exists, but it remains unclear to what extent genetic polymorphisms determine platelet aggregation in aspirin-treated individuals.To identify platelet-related single nucleotide polymorphisms (SNPs influencing platelet aggregation during aspirin treatment. Furthermore, we explored to what extent changes in cyclooxygenase-1 activity and platelet activation may explain such influence.We included 985 Danish patients with stable coronary artery disease treated with aspirin 75 mg/day mono antiplatelet therapy. Patients were genotyped for 16 common SNPs in platelet-related genes using standard PCR-based methods (TaqMan. Platelet aggregation was evaluated by whole blood platelet aggregometry employing Multiplate Analyzer (agonists: arachidonic acid and collagen and VerifyNow Aspirin. Serum thromboxane B2 was measured to confirm aspirin adherence and was used as a marker of cyclooxygenase-1 activity. Soluble P-selectin was used as marker of platelet activation. Platelet aggregation, cyclooxygenase-1 activity, and platelet activation were compared across genotypes in adjusted analyses.The A-allele of the rs12041331 SNP in the platelet endothelial aggregation receptor-1 (PEAR1 gene was associated with reduced platelet aggregation and increased platelet activation, but not with cyclooxygenase-1 activity. Platelet aggregation was unaffected by the other SNPs analyzed.A common genetic variant in PEAR1 (rs12041331 reproducibly influenced platelet aggregation in aspirin-treated patients with coronary artery disease. The exact biological mechanism remains elusive, but the effect of this polymorphism may be related to changes in platelet activation. Furthermore, 14 SNPs previously suggested to influence aspirin efficacy were not associated with on-aspirin platelet aggregation.ClinicalTrials.gov NCT01383304.

  12. Hydrogen peroxide lowers ATP levels in platelets without altering adenyalte energy charge and platelet function.

    Science.gov (United States)

    Holmsen, H; Robkin, L

    1977-03-10

    H2O2 irreversibly reduced metabolic platelet ATP levels with a corresponding accumulation of hypoxanthine. This process was enhanced by sodium azide or potassium cyanide and by increasing H2O2 concentrations. The adenylate energy charge was unaltered when less than two thirds of the metabolic ATP had disappeared but decreased markedly when more ATP disappeared. Platelet shape change, primary aggregation, dense granule and alpha-granule secretion were unaffected by H2O2-induced lowering of ATP provided that the adenylate energy charge did not fall by more than 5%; at greater adenylate energy charge reduction, platelet functions were inhibited. These results indicate that cell functions depend more on adenyalte energy charge than on the ATP level and expands the applicability of this view from bacterial systems to a mammalian cell, the human platelet.

  13. Pathogen reduction technologies: The pros and cons for platelet transfusion.

    Science.gov (United States)

    Magron, Audrey; Laugier, Jonathan; Provost, Patrick; Boilard, Eric

    2018-01-01

    The transfusion of platelets is essential for diverse pathological conditions associated with thrombocytopenia or platelet disorders. To maintain optimal platelet quality and functions, platelets are stored as platelet concentrates (PCs) at room temperature under continuous agitation-conditions that are permissive for microbial proliferation. In order to reduce these contaminants, pathogen reduction technologies (PRTs) were developed by the pharmaceutical industry and subsequently implemented by blood banks. PRTs rely on chemically induced cross-linking and inactivation of nucleic acids. These technologies were initially introduced for the treatment of plasma and, more recently, for PCs given the absence of a nucleus in platelets. Several studies verified the effectiveness of PRTs to inactivate a broad array of bacteria, viruses, and parasites. However, the safety of PRT-treated platelets has been questioned in other studies, which focused on the impact of PRTs on platelet quality and functions. In this article, we review the literature regarding PRTs, and present the advantages and disadvantages related to their application in platelet transfusion medicine.

  14. Preaggregation reactions of platelets.

    Science.gov (United States)

    Gear, A R

    1981-09-01

    Whether platelet volume increases during the morphological changes preceding aggregation has been investigated. Previous research is controversial; resistive-counting techniques reveal an increase, centrifugal methods do not. Platelets were sized with a computerized, resistive-particle counter before and after incubation with adenosine diphosphate (ADP). Resistive volume increased by 14% (p less than 0.001) in the absence of EDTA, and only 7% in its presence (ADP, 10 micro M). EDTA inhibited platelet volume changes, whether these were shrinking induced by warming or swelling by ADP. Handling of platelets, such as during centrifugation, also caused particle swelling. Particle density decreased after ADP exposure, without release of serotonin, suggesting uptake of water. Platelet shape was experimentally manipulated to test the hypothesis that resistive volume changes stem from artifacts of particle shape. Scanning electron microscopy confirmed that colchicine, chlorpromazine, and a temperature cycle of 0 degrees to 37 degrees all caused extensive alteration from the disc shape. Subsequent exposure to ADP increased resistive volume, and in the case of chlorpromazine, no long pseudopodia were extruded. It is concluded that preaggregation reactions of platelets can be associated with an increase in particle volume, and that earlier research based on centrifugation and the presence of ETA failed to reveal the increase because of inhibitory and apparent swelling effects.

  15. A Phenanthrene Derivative, 5,7-Dimethoxy-1,4-Phenanthrenequinone, Inhibits Cell Adhesion Molecule Expression and Migration in Vascular Endothelial and Smooth Muscle Cells.

    Science.gov (United States)

    Lo, Huey-Ming; Hwang, Tsong-Long; Wu, Wen-Bin

    2017-01-01

    The activation of endothelial cells (ECs) and migration of vascular smooth muscle cells (VSMCs) have played a crucial role in monocyte chemotaxis/adhesion and intima thickening during vascular injury and atherosclerosis, respectively. Several phenanthrenes isolated from plants and natural products have been shown to possess different bioactivities such as anti-platelet aggregation and anti-inflammation. The current study was designated to investigate the effects of a phenanthrene derivative, 5,7-dimethoxy-1,4-phenanthrenequinone (DMPQ), on cell adhesion molecule (CAM) expression in vascular ECs and migration in VSMCs. The DMPQ attenuated monocyte-EC interaction but it did not affect monocyte adhesion to matrix. In parallel, DMPQ reduced tumor necrosis factor-α (TNF-α)-induced intercellular adhesion molecule and vascular CAM expression in ECs. DMPQ compromised TNF-α-induced IκB activation, nuclear factor-kappa B (NF-κB) translocation, and NF-κB-DNA complex formation. Moreover, it affected TNF-α- and hydrogen peroxide (H2O2)-induced reactive oxygen species production and IκB activation. These suggest that DMPQ affects CAM expression by affecting NF-κB signaling. Meanwhile, DMPQ could also inhibit platelet-derived growth factor (PDGF)-induced VSMC migration toward collagen by affecting cellular PDGF signaling, including PDGFRβ, PLCγ, ERK1/2, and Akt phosphorylation. The VSMC adhesion to collagen and collagen-induced focal adhesion kinase activation during cell adhesion were impaired by DMPQ treatment. This study reveals a phenanthrene derivative-DMPQ-with anti-inflammatory and anti-migratory bioactivity toward vascular ECs and SMCs, suggesting its protective effect on vascular injuries. © 2017 S. Karger AG, Basel.

  16. Quantitative analysis of platelet function using stagnation point flow aggregometry. First clinical results.

    Science.gov (United States)

    Reininger, C B; Reininger, A J; Hörmann, A; Steckmeier, B; Schweiberer, L

    1992-01-01

    The clinical consequences of atherosclerosis result from vascular occlusion. The central role of platelet-vessel wall interaction in the initiation and perpetuation of this process is well established. Individual analysis and quantification of two major platelet functions underlying atherosclerosis and thrombosis, i.e. adhesion (platelet-wall interaction) and aggregation (platelet-platelet interaction), would contribute significantly towards elucidation of the mechanisms involved and therefore towards optimization of prophylaxis and therapy. The Stagnation-Point-Flow-Adhesio-Aggregometer (SPAA), in which such an evaluation of platelet function is possible, was thus standardized and its clinical reproducibility and predictive power assessed. Using the SPAA, a morphometric separation of adhesion and aggregation is obtained via dark field micrographs of platelet microthrombi formed during stagnation point flow of platelet rich plasma (PRP). Quantification is achieved via biomathematical evaluation of simultaneously obtained growth curves, whereby the degree of adhesivity and aggregability is reflected in the respective growth rate constants Kpw (%) and Kpp (%). Experiments with the PRP of 36 healthy volunteers were performed and the results compared to those obtained for 32 patients exhibiting angiographically verified peripheral arterial disease (PAD). The control group exhibited values (Kpw) ranging from 0.40% to 1.10% (average Kpw: 0.71 +/- 0.21%). Differences in average Kpw value between the control subgroup over and that under 45 years of age were absent. A spontaneous platelet aggregation was not observed in the controls (Kpp = 0%). The overall intraindividual Kpw variation in 18 volunteers examined 3 times or more ranged from a minimum of 3% to a maximum of 20% of respective Kpw value. The patients were divided into two subgroups: diabetics and nondiabetics. The nondiabetic group demonstrated an average Kpw of 1.56%. In addition, a spontaneous aggregation was

  17. Stretchable, Adhesion-Tunable Dry Adhesive by Surface Wrinkling

    KAUST Repository

    Jeong, Hoon Eui

    2010-02-16

    We introduce a simple yet robust method of fabricating a stretchable, adhesion-tunable dry adhesive by combining replica molding and surface wrinkling. By utilizing a thin, wrinkled polydimethyl siloxane (PDMS) sheet with a thickness of 1 mm with built-in micropillars, active, dynamic control of normal and shear adhesion was achieved. Relatively strong normal (∼10.8 N/cm2) and shear adhesion (∼14.7 N/cm2) forces could be obtained for a fully extended (strained) PDMS sheet (prestrain of∼3%), whereas the forces could be rapidly reduced to nearly zero once the prestrain was released (prestrain of ∼0.5%). Moreover, durability tests demonstrated that the adhesion strength in both the normal and shear directions was maintained over more than 100 cycles of attachment and detachment. © 2010 American Chemical Society.

  18. How overdrying wood reduces its bonding to phenol-formaldehyde adhesives : a critical review of the literature. Part I, Physical responses

    Science.gov (United States)

    Alfred W. Christiansen

    1990-01-01

    This review critically evaluates literature on the ways in which excessive drying (overdrying) inactivates wood surfaces to bonding, primarily for phenolic adhesives. In Part I of a two-part review, three inactivation mechanisms involving physical responses to overdrying are considered: (1) exudation of extractives to the surface, which lowers the wettability or hides...

  19. How overdrying wood reduces its bonding to phenol-formaldehyde adhesives : a critical review of the literature. Part II, Chemical reactions

    Science.gov (United States)

    Alfred W. Christiansen

    1991-01-01

    Literature dealing with the effect of excessive drying (overdrying) on wood surface inactivation to bonding is reviewed in two parts and critically evaluated, primarily for phenolic adhesives. Part 1 of the review, published earlier, covers physical mechanisms that could contribute to surface inactivation. The principal physical mechanism is the migration to the...

  20. Adhesion of liquid droplets to rough surfaces.

    Science.gov (United States)

    Li, Ri; Alizadeh, Azar; Shang, Wen

    2010-10-01

    We study the adhesion of liquid droplets to rough surfaces, focusing on how adhesion changes with surface chemistry and roughness. For hydrophobic surfaces (equilibrium contact angle θ(e)>90°), although increasing surface roughness augments apparent contact angle, it does not necessarily always reduce adhesion. In a domain defined by roughness and equilibrium contact angle, this study identifies regions where adhesion increases or decreases with increasing roughness. The two regions do not border at θ(e)=90°. It is found that making surfaces with low roughness ratio (close to 1) does not reduce adhesion unless the surface material is highly hydrophobic (θ(e)>120°). In other words, to reduce adhesion for existing hydrophobic materials (90°adhesion, the geometry of microstructures should be designed such that wetted fraction decreases with increasing roughness ratio. This study is of particular importance for the design of textured superhydrophobic surfaces.

  1. Expression of surface platelet receptors (CD62P and CD41/61) in horses with recurrent airway obstruction (RAO).

    Science.gov (United States)

    Iwaszko-Simonik, Alicja; Niedzwiedz, Artur; Graczyk, Stanislaw; Slowikowska, Malwina; Pliszczak-Krol, Aleksandra

    2015-03-15

    Recurrent airway obstruction (RAO) is an allergic disease of horses similar to human asthma, which is characterized by airway inflammation and activation of neutrophils, lymphocytes and platelets. Platelet activation and an increase in circulating platelet-leukocyte aggregates may lead to airway remodeling. The aim of this study was to investigate platelet status in RAO-affected horses based on the platelet morphology and platelet surface expression of CD41/61 and CD62P. Ten RAO-affected horses and ten healthy horses were included in this study. Blood samples were obtained to determine the platelet count (PLT), mean platelet volume (MPV) and platelet large cell ratio (P-LCR). Expression of CD62P and CD41/61 was detected by flow cytometry on activated platelets. The median PLT was significantly reduced in horses with RAO compared to the controls. The MPV and the P-LCR values were significantly higher in RAO horses than controls. Expression of CD41/61 on platelets was increased in RAO horses, while CD62P expression was reduced. This study demonstrated the morphological changes in platelets and expression of platelet surface receptors. Despite the decrease of CD62P expression, the observed increased surface expression of CD41/61 on platelets in horses with RAO may contribute to the formation of platelet aggregates in their respiratory system. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Abnormal cytoskeletal assembly in platelets from uremic patients.

    Science.gov (United States)

    Escolar, G; Díaz-Ricart, M; Cases, A; Castillo, R; Ordinas, A; White, J G

    1993-09-01

    The mechanisms involved in the hemostatic abnormality of uremic patients remain obscure. We have explored the response of normal and uremic platelets to surface activation at the ultrastructural level and analyzed changes in the composition of proteins associated with normal and uremic platelet cytoskeletons after stimulation with thrombin (0.01 and 0.1 U/ml). Cytoskeletons were obtained by extraction with Triton X-100, processed by sodium dodecylsulfate-polyacrylamide gel electrophoresis, and the presence of cytoskeletal proteins analyzed by densitometry. Under static conditions, uremic platelets spread with difficulty on formvar-coated grids. The percentage of platelets that spread fully on this polymer surface was statistically reduced compared with that of control platelets (11 +/- 1.4 vs. 21 +/- 1.6; P organization was observed in resting uremic platelets but abnormalities were more evident after thrombin activation. The incorporation of actin into the cytoskeletons of thrombin-stimulated uremic platelets was significantly reduced with respect to controls (6 +/- 3% vs. 29 +/- 5%; P < 0.01 after 0.01 U/ml and 28 +/- 9% vs. 59 +/- 10%; P < 0.05 after 0.1 U/ml). Decreased associations of actin-binding protein (P < 0.01), alpha-actinin (P < 0.05), and tropomyosin (P < 0.05) with the cytoskeletons of uremic platelets were also noted. No difference was observed for the incorporation of myosin into the cytoskeletons of activated uremic platelets. These results suggest functional and biochemical alterations of the platelet cytoskeleton in uremia, which may contribute to the impairment of platelet function observed in uremic patients.

  3. The adherence of platelets to adsorbed albumin by receptor-mediated recognition of binding sites exposed by adsorption-induced unfolding.

    Science.gov (United States)

    Sivaraman, Balakrishnan; Latour, Robert A

    2010-02-01

    Although albumin (Alb) is the most abundant plasma protein, it is considered to be non-adhesive to platelets, as it lacks any known amino acid sequences for binding platelet receptors. Recent studies have suggested that platelets adhere to adsorbed Alb by mechanisms linked to its conformational state. To definitively address this issue we used circular dichroism (CD) spectropolarimetry to characterize the conformation of Alb adsorbed on a broad range of surface chemistries from a wide range of Alb solution concentrations, with platelet adhesion examined using a lactate dehydrogenase (LDH) assay and scanning electron microscopy (SEM). Our results prove that platelets bind to adsorbed Alb through receptor-mediated processes, with binding sites in Alb exposed and/or formed by adsorption-induced protein unfolding. Most importantly, beyond a critical degree of unfolding, the platelet adhesion levels correlated strongly with the adsorption-induced unfolding in Alb. The blockage of Arg-Gly-Asp (RGD) specific platelet receptors using an Arg-Gly-Asp-Ser (RGDS) peptide led to significant inhibition of platelet adhesion to adsorbed Alb, with the extent of inhibition and morphology of adherent platelets being similar for both Alb and Fg. Chemical neutralization of arginine (Arg) residues in the adsorbed Alb layer inhibited platelet-Alb interactions significantly, indicating that Arg residues play a prominent role in mediating platelet adhesion to Alb. These results provide deeper insight into the molecular mechanisms that mediate the interactions of platelets with adsorbed proteins, and how to control these interactions to improve the blood compatibility of biomaterials for cardiovascular applications. (c) 2009 Elsevier Ltd. All rights reserved.

  4. Bacterial Adhesion & Blocking Bacterial Adhesion

    DEFF Research Database (Denmark)

    Vejborg, Rebecca Munk

    2008-01-01

    components. These substances may both mediate and stabilize the bacterial biofilm. Finally, several adhesive structures were examined, and a novel physiological biofilm phenotype in E.coli biofilms was characterized, namely cell chain formation. The autotransporter protein, antigen 43, was implicated...

  5. Clinical uses of radiolabeled platelets

    Energy Technology Data Exchange (ETDEWEB)

    Datz, F.L.; Christian, P.E.; Baker, W.J.

    1985-12-01

    Platelets were first successfully radiolabeled in 1953. At that time, investigators were primarily interested in developing a technique to accurately measure platelet life span in both normal and thrombocytopenic patients. Studies using platelets labeled with /sup 51/Cr have shown shortened platelet survival times in a number of diseases including idiopathic thrombocytopenic purpura, coronary artery disease, and diabetes mellitus. More recently, labels such as /sup 111/In have been developed that allow in vivo imaging of platelets. Indium-111 platelets are being used to better understand the pathophysiology of atherosclerosis, thrombophlebitis, pulmonary embolism and clotting disorders, and to improve the clinical diagnosis of these diseases.

  6. Equid herpesvirus type 1 activates platelets.

    Directory of Open Access Journals (Sweden)

    Tracy Stokol

    Full Text Available Equid herpesvirus type 1 (EHV-1 causes outbreaks of abortion and neurological disease in horses. One of the main causes of these clinical syndromes is thrombosis in placental and spinal cord vessels, however the mechanism for thrombus formation is unknown. Platelets form part of the thrombus and amplify and propagate thrombin generation. Here, we tested the hypothesis that EHV-1 activates platelets. We found that two EHV-1 strains, RacL11 and Ab4 at 0.5 or higher plaque forming unit/cell, activate platelets within 10 minutes, causing α-granule secretion (surface P-selectin expression and platelet microvesiculation (increased small events double positive for CD41 and Annexin V. Microvesiculation was more pronounced with the RacL11 strain. Virus-induced P-selectin expression required plasma and 1.0 mM exogenous calcium. P-selectin expression was abolished and microvesiculation was significantly reduced in factor VII- or X-deficient human plasma. Both P-selectin expression and microvesiculation were re-established in factor VII-deficient human plasma with added purified human factor VIIa (1 nM. A glycoprotein C-deficient mutant of the Ab4 strain activated platelets as effectively as non-mutated Ab4. P-selectin expression was abolished and microvesiculation was significantly reduced by preincubation of virus with a goat polyclonal anti-rabbit tissue factor antibody. Infectious virus could be retrieved from washed EHV-1-exposed platelets, suggesting a direct platelet-virus interaction. Our results indicate that EHV-1 activates equine platelets and that α-granule secretion is a consequence of virus-associated tissue factor triggering factor X activation and thrombin generation. Microvesiculation was only partly tissue factor and thrombin-dependent, suggesting the virus causes microvesiculation through other mechanisms, potentially through direct binding. These findings suggest that EHV-1-induced platelet activation could contribute to the thrombosis

  7. Platelet proteins cause basophil histamine release through an immunoglobulin-dependent mechanism.

    Science.gov (United States)

    Lee, Donna Dong-Young; Muskaj, Igla; Savage, William

    2017-07-01

    A general understanding of allergic transfusion reaction mechanisms remains elusive. Multiple mechanisms have been proposed, but none have been compared experimentally. We used histamine release (HR) from healthy human donor basophils to model allergic transfusion reactions. Platelet component supernatant (plasma), platelet lysate, and manipulated platelet lysates (dialyzed, delipidated, trypsinized, mild heat-inactivated, and ultracentrifuged) were used to characterize allergic stimuli. Immunoglobulin-dependent mechanisms were investigated through cell surface immunoglobulin depletion and ibrutinib signaling inhibition. HR induced by platelet mitochondria was compared with HR by platelet lysate with or without DNase treatment. Robust, dose-responsive HR to platelet lysate was observed in two of eight nulliparous, never-transfused, healthy donors. No HR was observed with plasma. Among manipulated platelet lysates, only trypsin treatment significantly reduced HR (39% reduction; p = 0.008). HR in response to platelet lysate significantly decreased with either cell surface immunoglobulin depletion or ibrutinib pretreatment. Platelet mitochondria induced minimal basophil HR, and DNase treatment did not inhibit platelet lysate-induced HR. Type I immediate hypersensitivity to platelet proteins may be an allergic transfusion reaction mechanism. Prior sensitization to human proteins is not required for basophil responses to platelet proteins. Further study into the relative contributions of hypersensitivity to platelet versus plasma proteins in transfusion is warranted. © 2017 AABB.

  8. Tocotrienols-induced inhibition of platelet thrombus formation and platelet aggregation in stenosed canine coronary arteries

    Directory of Open Access Journals (Sweden)

    Papasian Christopher J

    2011-04-01

    Full Text Available Abstract Background Dietary supplementation with tocotrienols has been shown to decrease the risk of coronary artery disease. Tocotrienols are plant-derived forms of vitamin E, which have potent anti-inflammatory, antioxidant, anticancer, hypocholesterolemic, and neuroprotective properties. Our objective in this study was to determine the extent to which tocotrienols inhibit platelet aggregation and reduce coronary thrombosis, a major risk factor for stroke in humans. The present study was carried out to determine the comparative effects of α-tocopherol, α-tocotrienol, or tocotrienol rich fraction (TRF; a mixture of α- + γ- + δ-tocotrienols on in vivo platelet thrombosis and ex vivo platelet aggregation (PA after intravenous injection in anesthetized dogs, by using a mechanically stenosed circumflex coronary artery model (Folts' cyclic flow model. Results Collagen-induced platelet aggregation (PA in platelet rich plasma (PRP was decreased markedly after treatment with α-tocotrienol (59%; P P P P P Next, pharmacokinetic studies were carried out and tocol levels in canine plasma and platelets were measured. As expected, α-Tocopherol treatment increased levels of total tocopherols in post- vs pre-treatment specimens (57 vs 18 μg/mL in plasma, and 42 vs 10 μg/mL in platelets. However, treatment with α-tocopherol resulted in slightly decreased levels of tocotrienols in post- vs pre-treatment samples (1.4 vs 2.9 μg/mL in plasma and 2.3 vs 2.8 μg/mL in platelets. α-Tocotrienol treatment increased levels of both tocopherols and tocotrienols in post- vs pre-treatment samples (tocopherols, 45 vs 10 μg/mL in plasma and 28 vs 5 μg/mL in platelets; tocotrienols, 2.8 vs 0.9 μg/mL in plasma and 1.28 vs 1.02 μg/mL in platelets. Treatment with tocotrienols (TRF also increased levels of tocopherols and tocotrienols in post- vs pre-treatment samples (tocopherols, 68 vs 20 μg/mL in plasma and 31.4 vs 7.9 μg/mL in platelets; tocotrienols, 8.6 vs 1

  9. A Novel Platelet Activating Factor Receptor Antagonist Reduces Cell Infiltration and Expression of Inflammatory Mediators in Mice Exposed to Desiccating Conditions after PRK

    Directory of Open Access Journals (Sweden)

    Salomon Esquenazi

    2009-01-01

    Results. Confocal microscopy showed an increased number of reflective structures in the corneal epithelium after PRK and exposure to DE in eyes treated with vehicle as compared to eyes treated with LAU-0901. Significant decrease of COX-2 and Arginase I expression and reduced alpha SMA cells was observed after PRK and exposure to DE in eyes treated with LAU-0901. Discussion: Exposure of mice to a DE after PRK increases the epithelial turnover rate. PAF is involved in the inflammatory cell infiltration and expression of inflammatory cytokines that follow PRK under DE.

  10. The role of platelet and endothelial GARP in thrombosis and hemostasis.

    Directory of Open Access Journals (Sweden)

    Elien Vermeersch

    Full Text Available Glycoprotein-A Repetitions Predominant protein (GARP or LRRC32 is present on among others human platelets and endothelial cells. Evidence for its involvement in thrombus formation was suggested by full knockout of GARP in zebrafish.To evaluate the role of GARP in platelet physiology and in thrombus formation using platelet and endothelial conditional GARP knock out mice.Platelet and endothelial specific GARP knockout mice were generated using the Cre-loxP recombination system. The function of platelets without GARP was measured by flow cytometry, spreading analysis and aggregometry using PAR4-activating peptide and collagen related peptide. Additionally, clot retraction and collagen-induced platelet adhesion and aggregation under flow were analyzed. Finally, in vivo tail bleeding time, occlusion time of the mesenteric and carotid artery after FeCl3-induced thrombosis were determined in platelet and endothelial specific GARP knock out mice.Platelet specific GARP knockout mice had normal surface GPIb, GPVI and integrin αIIb glycoprotein expression. Although GARP expression was increased upon platelet activation, platelets without GARP displayed normal agonist induced activation, spreading on fibrinogen and aggregation responses. Furthermore, absence of GARP on platelets did not influence clot retraction and had no impact on thrombus formation on collagen-coated surfaces under flow. In line with this, neither the tail bleeding time nor the occlusion time in the carotid- and mesenteric artery after FeCl3-induced thrombus formation in platelet or endothelial specific GARP knock out mice were affected.Evidence is provided that platelet and endothelial GARP are not important in hemostasis and thrombosis in mice.

  11. Adhesive plasters

    Science.gov (United States)

    Holcombe, Jr., Cressie E.; Swain, Ronald L.; Banker, John G.; Edwards, Charlene C.

    1978-01-01

    Adhesive plaster compositions are provided by treating particles of Y.sub.2 O.sub.3, Eu.sub.2 O.sub.3, Gd.sub.2 O.sub.3 or Nd.sub.2 O.sub.3 with dilute acid solutions. The resulting compositions have been found to spontaneously harden into rigid reticulated masses resembling plaster of Paris. Upon heating, the hardened material is decomposed into the oxide, yet retains the reticulated rigid structure.

  12. Proteins, platelets, and blood coagulation at biomaterial interfaces.

    Science.gov (United States)

    Xu, Li-Chong; Bauer, James W; Siedlecki, Christopher A

    2014-12-01

    Blood coagulation and platelet adhesion remain major impediments to the use of biomaterials in implantable medical devices. There is still significant controversy and question in the field regarding the role that surfaces play in this process. This manuscript addresses this topic area and reports on state of the art in the field. Particular emphasis is placed on the subject of surface engineering and surface measurements that allow for control and observation of surface-mediated biological responses in blood and test solutions. Appropriate use of surface texturing and chemical patterning methodologies allow for reduction of both blood coagulation and platelet adhesion, and new methods of surface interrogation at high resolution allow for measurement of the relevant biological factors. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. The Platelet and Platelet Function Testing in Liver Disease

    NARCIS (Netherlands)

    Hugenholtz, Greg G. C.; Porte, Robert J.; Lisman, Ton

    Patients who have liver disease commonly present with alterations in platelet number and function. Recent data have questioned the contribution of these changes to bleeding complications in these patients. Modern tests of platelet function revealed compensatory mechanisms for the decreased platelet

  14. Mean Platelet Volume (MPV), Platelet Distribution Width (PDW ...

    African Journals Online (AJOL)

    Background: Thrombocytopenia has been shown to predict mortality. We hypothesize that platelet indices may be more useful prognostic indicators. Our study subjects were children one month to 14 years old admitted to our hospital. Aim: To determine whether platelet count, plateletcrit (PCT), mean platelet volume (MPV) ...

  15. Reproducibility of Manual Platelet Estimation Following Automated Low Platelet Counts

    Directory of Open Access Journals (Sweden)

    Zainab S Al-Hosni

    2016-11-01

    Full Text Available Objectives: Manual platelet estimation is one of the methods used when automated platelet estimates are very low. However, the reproducibility of manual platelet estimation has not been adequately studied. We sought to assess the reproducibility of manual platelet estimation following automated low platelet counts and to evaluate the impact of the level of experience of the person counting on the reproducibility of manual platelet estimates. Methods: In this cross-sectional study, peripheral blood films of patients with platelet counts less than 100 × 109/L were retrieved and given to four raters to perform manual platelet estimation independently using a predefined method (average of platelet counts in 10 fields using 100× objective multiplied by 20. Data were analyzed using intraclass correlation coefficient (ICC as a method of reproducibility assessment. Results: The ICC across the four raters was 0.840, indicating excellent agreement. The median difference of the two most experienced raters was 0 (range: -64 to 78. The level of platelet estimate by the least-experienced rater predicted the disagreement (p = 0.037. When assessing the difference between pairs of raters, there was no significant difference in the ICC (p = 0.420. Conclusions: The agreement between different raters using manual platelet estimation was excellent. Further confirmation is necessary, with a prospective study using a gold standard method of platelet counts.

  16. Effects of fluorescent dyes on selectin and integrin-mediated stages of adhesion and migration of flowing leukocytes.

    Science.gov (United States)

    Abbitt, K B; Rainger, G E; Nash, G B

    2000-05-26

    Fluorescent dyes assist visualisation of leukocytes for intravital studies of adhesion or for in vitro studies utilising whole blood. We have used in vitro flow-based assays to investigate the effects of three fluorescent dyes (acridine orange, AO, 5-100 microg/ml; calcein-AM, C-AM, 5-20 microg/ml; rhodamine 6G, R6G, 10-100 microg/ml) on adhesion and migration of isolated neutrophils and mononuclear cells. AO had little effect on the number or velocity of neutrophils rolling on P-selectin presented by a surface coated with platelets. However, AO did cause a dose- and time-dependent conversion of rolling to immobilisation. Pretreatment of neutrophils with an antibody against CD18 prevented this conversion to stationary adhesion, indicating that beta(2) integrins were activated by AO. C-AM had little effect on neutrophil behaviour, but tended to cause some immobilisation at the highest concentration. R6G did not affect the number of neutrophils that bound to the platelet monolayer or the percentage rolling, but the rolling velocity of the neutrophils was increased in a dose-dependent manner. None of the dyes impaired the ability of neutrophils to respond to formyl peptide by converting from rolling to stationary adhesion. Neither C-AM nor R-6G reduced the number of flowing neutrophils or mononuclear cells binding to endothelial cells stimulated with tumour necrosis factor. Interestingly, R-6G inhibited transendothelial migration of mononuclear cells but not neutrophils, while C-AM did not affect transmigration of either cell type. The dose-dependent effects of dyes should be taken into consideration when designing any experimental protocol. AO does not appear to be a suitable dye for adhesion studies. R6G and C-AM can be used at approximately 10 microg/ml (a concentration at which cells can be clearly visualised) although R-6G specifically inhibits the migratory response of mononuclear cells.

  17. Platelet deposition in stagnation point flow: an analytical and computational simulation.

    Science.gov (United States)

    David, T; Thomas, S; Walker, P G

    2001-06-01

    A mathematical and numerical model is developed for the adhesion of platelets in stagnation point flow. The model provides for a correct representation of the axi-symmetric flow and explicitly uses shear rate to characterise not only the convective transport but also the simple surface reaction mechanism used to model platelet adhesion at the wall surface. Excellent agreement exists between the analytical solution and that obtained by the numerical integration of the full Navier--Stokes equations and decoupled conservation of species equations. It has been shown that for a constant wall reaction rate modelling platelet adhesion the maximum platelet flux occurs at the stagnation point streamline. This is in direct contrast to that found in experiment where the maximum platelet deposition occurs at some distance downstream of the stagnation point. However, if the wall reaction rate is chosen to be dependent on the wall shear stress then the analysis shows that the maximum platelet flux occurs downstream of the stagnation point, providing a more realistic model of experimental evidence. The analytical formulation is applicable to a large number of two-dimensional and axi-symmetrical surface reaction flows where the wall shear stress is known a priori.

  18. Role of 14-3-3ζ in Platelet Glycoprotein Ibα-von Willebrand Factor Interaction-Induced Signaling

    Directory of Open Access Journals (Sweden)

    Kesheng Dai

    2012-05-01

    Full Text Available The interaction of platelet glycoprotein (GP Ib-IX with von Willebrand factor (VWF exposed at the injured vessel wall or atherosclerotic plaque rupture initiates platelet transient adhesion to the injured vessel wall, which triggers intracellular signaling cascades leading to platelet activation and thrombus formation. 14-3-3ζ has been verified to regulate the VWF binding function of GPIb-IX by interacting with the cytoplasmic domains of GPIb-IX. However, the data regarding the role of 14-3-3ζ in GPIb-IX-VWF interaction-induced signaling still remain controversial. In the present study, the data indicate that the S609A mutation replacing Ser609 of GPIbα with alanine (S609A significantly prevented the association of 14-3-3ζ with GPIbα before and after the VWF binding to GPIbα. GPIb-IX-VWF interaction-induced activations of Src family kinases and protein kinase C were clearly reduced in S609A mutation. Furthermore, S609A mutation significantly inhibited GPIb-IX-VWF interaction-induced elevation of cytoplasmic Ca2+ levels in flow cytometry analysis. Taken together, these data indicate that the association of 14-3-3ζ with the cytoplasmic domain of GPIbα plays an important role in GPIb-IX-VWF interaction-induced signaling.

  19. Abnormal platelet function in Chediak-Higashi syndrome.

    Science.gov (United States)

    Boxer, G J; Holmsen, H; Robkin, L; Bang, N U; Boxer, L A; Baehner, R L

    1977-04-01

    Platelets in an infant with Chediak-Higashi (C-H) syndrome without bleeding manifestations and not in the accelerated phase showed abnormal function consistent with storage pool disorder as shown by abnormal aggregation, decreased storage capacity and release of [14C]5-HT, low endogenous 5-HT, reduced ATP and ADP with an increased ATP/ADP ratio, increased specific radioactivity of ADP after [14C]adenine labelling, decreased release of adenine nucleotides after stimulation, impaired secretion of acid hydrolases despite normal stores, and decreased calcium content. Incorporation of [14C]adenine into metabolic pool adenine nucleotides was normal. Nucleotide conversion to hypoxanthine in stimulated platelets was mildly impaired. Platelet cyclic-AMP (c-AMP) was initially elevated, but even when c-AMP returned to normal levels after ascorbate treatment, platelet function was not improved. Elevated intracellular c-AMP was not solely responsible for the abnormal platelet function.

  20. Platelets in cancer metastasis: To help the "villain" to do evil.

    Science.gov (United States)

    Li, Nailin

    2016-05-01

    Cancer progress is accompanied by platelet activation and thrombotic complications. Platelets are a dangerous alliance of cancer cells, and are a close engager in multiple processes of cancer metastasis. Platelet adhesion to cancer cells forms a protective cloak that helps cancer cells to escape immune surveillance and natural killer cell-mediated cytolysis. Platelets facilitate tethering and arrest of disseminated cancer cells in the vasculature, enhance invasive potentials and thus extravasation of cancer cells. Moreover, platelets recruit monocytes and granulocytes to the sites of cancer cell arrest, and collaborate with them to establish a pro-metastatic microenvironment and metastatic niches. Platelets also secret a number of growth factors to stimulate cancer cell proliferation, release various angiogenic regulators to regulate tumor angiogenesis and subsequently promote cancer growth and progress. Albeit platelets are helping the "villain" cancer to do evil, the close engagements of platelets in cancer metastasis and progress can be used as the intervention targets for new anti-cancer therapeutic developments. Platelet-targeted anti-cancer strategy may bring in novel anti-cancer treatments that can synergize the therapeutic effects of chemotherapies and surgical treatments of cancer. © 2015 UICC.

  1. Abnormal platelet cytoskeletal assembly in hemodialyzed patients results in deficient tyrosine phosphorylation signaling.

    Science.gov (United States)

    Díaz-Ricart, M; Estebanell, E; Cases, A; Calls, J; López-Pedret, J; Carretero, M; Castillo, R; Ordinas, A; Escolar, G

    2000-05-01

    Uremic patients have a bleeding tendency associated with a platelet dysfunction. We evaluated the impact of a repeated hemodialysis procedure on primary hemostasis by analyzing different aspects of platelet activation in uremic patients. Studies were performed in (1) eight patients with end-stage renal disease before the hemodialysis program was initiated and after initiating hemodialysis treatment, and in (2) eight patients on maintenance hemodialysis who were transferred to continuous ambulatory peritoneal dialysis. Studies included routine platelet aggregations and evaluation of platelet-subendothelium interactions under flow conditions. Contractile proteins and tyrosine phosphorylation associated with the cytoskeleton were analyzed, before and after thrombin activation of platelets, by electrophoresis after Triton X-100 extraction. No changes in the clinical parameters analyzed were observed among the different study groups. Aggregation and platelet adhesion only improved when patients were shifted from hemodialysis to continuous ambulatory peritoneal dialysis (P organization of platelet cytoskeleton, which seems to impair the translocation of signal transduction proteins within platelets compromising the platelet function in uremia.

  2. A Double-Blinded Placebo Randomized Controlled Trial Evaluating Short-term Efficacy of Platelet-Rich Plasma in Reducing Postoperative Pain After Arthroscopic Rotator Cuff Repair: A Pilot Study.

    Science.gov (United States)

    Hak, Alisha; Rajaratnam, Krishan; Ayeni, Olufemi R; Moro, Jaydeep; Peterson, Devin; Sprague, Sheila; Bhandari, Mohit

    2015-01-01

    We aimed to determine whether patients with arthroscopically repaired rotator cuff (RC) tears would have reduced pain and improved function after ultrasound-guided platelet-rich plasma (PRP) injections compared with placebo injection. PRP compared with placebo (saline) was more effective in reducing pain at the site of an RC injury that has undergone arthroscopic repair. Randomized controlled trial. Level 2. We conducted a 2-centered, blinded, randomized controlled trial comparing the level of pain in patients undergoing arthroscopic repair. Patients were randomized to either PRP or saline (placebo). They received 2 ultrasound-guided injections of the randomized product: 1 intraoperatively and 1 at 4 weeks postoperatively. The primary outcome measure was shoulder pain demonstrated using a visual analog scale (VAS) at 6 weeks postoperatively. Secondary outcomes included the EuroQol-5 Dimensions (EQ-5D); the Western Ontario Rotator Cuff Index (WORC); and the Disabilities of the Arm, Shoulder, and Hand Score (DASH), as well as adverse events and revision surgeries. Patients were assessed clinically preoperatively and at 2, 4, and 6 weeks postsurgery. A prespecified interim analysis was conducted after 50% of patients were recruited and followed. We recruited 25 patients when interim power analysis led to an early trial termination. Follow-up was 96%. The mean difference between groups was not statistically significant (-1.81; 95% CI, -4.3 to 1.2; P = 0.16). The EQ-5D, WORC, and DASH scores also did not show significant differences between groups at week 6 (P = 0.5, 0.99, and 0.9, respectively). There were no revision surgeries, and 4 adverse events (3 PRP, 1 saline). There was no statistical difference in outcome measures when augmenting arthroscopically repaired RC tears with PRP. Identifying therapies that improve outcomes in patients with RC tears remains a challenge and deserves ongoing investigation.

  3. Platelets are versatile cells: New discoveries in hemostasis, thrombosis, immune responses, tumor metastasis and beyond.

    Science.gov (United States)

    Xu, Xiaohong Ruby; Zhang, Dan; Oswald, Brigitta Elaine; Carrim, Naadiya; Wang, Xiaozhong; Hou, Yan; Zhang, Qing; Lavalle, Christopher; McKeown, Thomas; Marshall, Alexandra H; Ni, Heyu

    2016-12-01

    Platelets are small anucleate blood cells generated from megakaryocytes in the bone marrow and cleared in the reticuloendothelial system. At the site of vascular injury, platelet adhesion, activation and aggregation constitute the first wave of hemostasis. Blood coagulation, which is initiated by the intrinsic or extrinsic coagulation cascades, is the second wave of hemostasis. Activated platelets can also provide negatively-charged surfaces that harbor coagulation factors and markedly potentiate cell-based thrombin generation. Recently, deposition of plasma fibronectin, and likely other plasma proteins, onto the injured vessel wall has been identified as a new "protein wave of hemostasis" that may occur even earlier than the first wave of hemostasis, platelet accumulation. Although no experimental evidence currently exists, it is conceivable that platelets may also contribute to this protein wave of hemostasis by releasing their granule fibronectin and other proteins that may facilitate fibronectin self- and non-self-assembly on the vessel wall. Thus, platelets may contribute to all three waves of hemostasis and are central players in this critical physiological process to prevent bleeding. Low platelet counts in blood caused by enhanced platelet clearance and/or impaired platelet production are usually associated with hemorrhage. Auto- and allo-immune thrombocytopenias such as idiopathic thrombocytopenic purpura and fetal and neonatal alloimmune thrombocytopenia may cause life-threatening bleeding such as intracranial hemorrhage. When triggered under pathological conditions such as rupture of an atherosclerotic plaque, excessive platelet activation and aggregation may result in thrombosis and vessel occlusion. This may lead to myocardial infarction or ischemic stroke, the major causes of mortality and morbidity worldwide. Platelets are also involved in deep vein thrombosis and thromboembolism, another leading cause of mortality. Although fibrinogen has been

  4. Nitric oxide dysregulation in platelets from patients with advanced Huntington disease.

    Directory of Open Access Journals (Sweden)

    Albino Carrizzo

    Full Text Available Nitric oxide (NO is a biologically active inorganic molecule involved in the regulation of many physiological processes, such as control of blood flow, platelet adhesion, endocrine function, neurotransmission and neuromodulation. In the present study, for the first time, we investigated the modulation of NO signaling in platelets of HD patients. We recruited 55 patients with manifest HD and 28 gender- and age-matched healthy controls. Our data demonstrated that NO-mediated vasorelaxation, when evoked by supernatant from insulin-stimulated HD platelets, gradually worsens along disease course. The defective vasorelaxation seems to stem from a faulty release of NO from platelets of HD patients and, it is associated with impairment of eNOS phosphorylation (Ser(1177 and activity. This study provides important insights about NO metabolism in HD and raises the hypothesis that the decrease of NO in platelets of HD individuals could be a good tool for monitoring advanced stages of the disease.

  5. Platelet Function in Stored Heparinised Autologous Blood Is Not Superior to in Patient Platelet Function during Routine Cardiopulmonary Bypass

    NARCIS (Netherlands)

    Huet, Rolf C. G. Gallandat; de Vries, Adrianus J.; Cernak, Vladimir; Lisman, Ton

    2012-01-01

    Background: In cardiac surgery, cardiopulmonary bypass (CPB) and unfractionated heparin have negative effects on blood platelet function. In acute normovolemic haemodilution autologous unfractionated heparinised blood is stored ex-vivo and retransfused at the end of the procedure to reduce

  6. Graphite oxide platelets functionalized by poly(ionic liquid) brushes and their chemical reduction

    Energy Technology Data Exchange (ETDEWEB)

    Yang Jintao, E-mail: yangjt@zjut.edu.cn; Yan Xiaohui; Chen Feng; Fan Ping; Zhong Mingqiang [College of Chemical Engineering and Materials Science, Zhejiang University of Technology (China)

    2013-01-15

    In this paper, graphite oxide (GO) platelets functionalized by poly(ionic liquid) brushes were prepared by surface-initiated atom transfer radical polymerization (SI-ATRP). The chemical reduction of these functionalized platelets was also investigated. The functionalized platelets and their reduced products were characterized and confirmed by Fourier transform infrared spectroscopy, thermogravimetric analysis, {zeta} potential measurements, four-probe electrical measurements, and high-resolution transmission electron microscopy. Results demonstrated that the poly(ionic liquid) brushes could be grafted from the GO surface by SI-ATRP. The surface charges of the GO platelets surface transformed from negative to positive. Upon reduction by hydrazine, the functionalized platelets were partially reduced, as suggested by the observation that reduced GO exhibits electrical conductivity three magnitudes higher than that of original GO. Although partially reduced GO platelets were not as conductive as reduced GO without functionalization, they can be homogenously dispersed in water due to the presence of poly(ionic liquids) brushes.

  7. Biology of Platelet Purinergic Receptors and Implications for Platelet Heterogeneity

    Directory of Open Access Journals (Sweden)

    Milka Koupenova

    2018-01-01

    Full Text Available Platelets are small anucleated cells present only in mammals. Platelets mediate intravascular hemostatic balance, prevent interstitial bleeding, and have a major role in thrombosis. Activation of platelet purinergic receptors is instrumental in initiation of hemostasis and formation of the hemostatic plug, although this activation process becomes problematic in pathological settings of thrombosis. This review briefly outlines the roles and function of currently known platelet purinergic receptors (P1 and P2 in the setting of hemostasis and thrombosis. Additionally, we discuss recent novel studies on purinergic receptor distribution according to heterogeneous platelet size, and the possible implication of this distribution on hemostatic function.

  8. Platelet transfusion versus standard care after acute stroke due to spontaneous cerebral haemorrhage associated with antiplatelet therapy (PATCH): a randomised, open-label, phase 3 trial

    NARCIS (Netherlands)

    Baharoglu, M. Irem; Cordonnier, Charlotte; Al-Shahi Salman, Rustam; de Gans, Koen; Koopman, Maria M.; Brand, Anneke; Majoie, Charles B.; Beenen, Ludo F.; Marquering, Henk A.; Vermeulen, Marinus; Nederkoorn, Paul J.; de Haan, Rob J.; Roos, Yvo B.; Reitsma, J. B.; Kamphuisen, P. W.; Touzé, E.; Lasne, D.; François, A.; Baharoglu, Irem; Zinkstok, Sanne; Coutinho, Jonathan; Boers, Merel; Geuskens, Ralph; Hart, Groene; Bloodbank, Sanquin; Koopman, Rianne; de Graaf, Reinier; Aerden, Leo; Vermeer, Sarah; Schreuder, Tobien; Schuiling, Wouter; Haag, Den; Bienfait, Henriette; Bakker, Stef; Ziekenhuis, Canisius Wilhelmina; Klijn, Catharina; Bronner, Irene; Ziekenhuis, St Elisabeth; de Kort, Paul; Raaijmakers, Dianne; Visser, Marieke; Ziekenhuis, Catharina; Keizer, Koos; Jansen, Ben; Ziekenhuis, Kruis; van der, Willem; Rooyer, Fergus; Verhey, Hans; Macleod, Mary Joan; Joyson, Anu; Reed, Matthew; Burgess, Seona; Mead, Gillian; Hart, Simon; Muir, Keith; Welch, Angela; Baird, Sally; Smith, Wilma; Huang, Xuya; Moreton, Fiona; Cheripelli, Bharath; El Tawil, Salwa; Baird, Tracey; Duncan, George; Nazir, Fozia; Birschel, Phil; Selvarajah, Johann; Dennis, Martin; Samarasekera, Neshika; Ramsay, Scott; Jackson, Katherine; Ferrigno, Marc; Susen, Sophie; Rossi, Costanza; Dequatre-Ponchelle, Nelly; Bodenant, Marie; Jacquet, Clémence; Oune, Fanny Ben; Ouk, Thavarak; Guégan-Massardier, Evelyne; Ozkul, Ozlem; Fetter, Damien; Duchez, Veronique Le Cam; Soufi, Hicham; Sibon, Igor; Desbruxelles, Sabrina; Renou, Pauline; Ledure, Sylvain; Neau, Philippe; Lamy, Matthias; Timsit, Serge; Viakhireva, Irina; Zuber, Mathieu; Tamazyan, Ruben; Lambert, Claire Join; Alamowitch, Sonia; Favrole, Pascal; Gerotziafas, Grigorios; Mazighi, Mikael; Stapf, Christian; Béjot, Yannick; Giroud, Maurice; Daubail, Benoit; Delpont, Benoit; Resch, Eric

    2016-01-01

    Platelet transfusion after acute spontaneous primary intracerebral haemorrhage in people taking antiplatelet therapy might reduce death or dependence by reducing the extent of the haemorrhage. We aimed to investigate whether platelet transfusion with standard care, compared with standard care alone,

  9. Correlation between Platelet Gelsolin and Platelet Activation Level in Acute Myocardial Infarction Rats and Intervention Effect of Effective Components of Chuanxiong Rhizome and Red Peony Root

    Directory of Open Access Journals (Sweden)

    Yue Liu

    2013-01-01

    Full Text Available The biological role of platelet gelsolin in platelet activation of acute myocardial infarction is not defined. In order to provide a potential new antiplatelet target for Chinese medicine and to elucidate the contribution of Xiongshao capsule, the effective components of Chuanxiong rhizome and red peony root, in this study, we randomly allocated Sprague Dawley rats to left anterior descending coronary artery ligation or sham surgery and different drug prophylaxis as control. We found that gelsolin is highly expressed in platelet rich plasma and lowly expressed in platelet poor plasma, accompanied by the high platelet activation level in model rats; plasma actin filaments and mean fluorescence intensity (MFI of platelet calcium ion increased and plasma vitamin D binding protein decreased in model rats. Xiongshao capsule could inhibit the gelsolin expression in platelet rich plasma and ischemic heart tissue simultaneously and reduce the level of plasma F-actin and MFI of platelet calcium ion. Our study concludes that platelet gelsolin is an important contributor to platelet activation, and platelet gelsolin inhibition may form a novel target for antiplatelet therapy. Xiongshao capsule may be a promising Chinese medicine drug for antiplatelet and aspirin-like cardioprotection effect.

  10. Adhesion and Cohesion

    Directory of Open Access Journals (Sweden)

    J. Anthony von Fraunhofer

    2012-01-01

    Full Text Available The phenomena of adhesion and cohesion are reviewed and discussed with particular reference to dentistry. This review considers the forces involved in cohesion and adhesion together with the mechanisms of adhesion and the underlying molecular processes involved in bonding of dissimilar materials. The forces involved in surface tension, surface wetting, chemical adhesion, dispersive adhesion, diffusive adhesion, and mechanical adhesion are reviewed in detail and examples relevant to adhesive dentistry and bonding are given. Substrate surface chemistry and its influence on adhesion, together with the properties of adhesive materials, are evaluated. The underlying mechanisms involved in adhesion failure are covered. The relevance of the adhesion zone and its importance with regard to adhesive dentistry and bonding to enamel and dentin is discussed.

  11. Efficacy and safety of the C-Qur Film Adhesion Barrier for the prevention of surgical adhesions (CLIPEUS Trial): study protocol for a randomized controlled trial

    NARCIS (Netherlands)

    Stommel, M.W.; Strik, C.; Broek, R.P.G ten; Goor, H. van

    2014-01-01

    BACKGROUND: Adhesions develop in over 90% of patients after intra-abdominal surgery. Adhesion barriers are rarely used despite the high morbidity caused by intra-abdominal adhesions. Only one of the currently available adhesion barriers has demonstrated consistent evidence for reducing adhesions in

  12. Platelet transfusion does not improve outcomes in patients with brain injury on antiplatelet therapy.

    Science.gov (United States)

    Holzmacher, Jeremy L; Reynolds, Cassandra; Patel, Mayur; Maluso, Patrick; Holland, Seth; Gamsky, Nathaniel; Moore, Henry; Acquista, Elizabeth; Carrick, Matthew; Amdur, Richard; Hancock, Heather; Metzler, Michael; Dunn, Julie; Sarani, Babak

    2018-01-01

    Platelet dysfunction following traumatic brain injury (TBI) is associated with worse outcomes. The efficacy of platelet transfusion to reverse antiplatelet medication (APM) remains unknown. Thrombelastography platelet mapping (TEG-PM) assesses platelet function. We hypothesize that platelet transfusion can reverse the effects of APM but does not improve outcomes following TBI. An observational study at six US trauma centres was performed. Adult patients on APM with CT evident TBI after blunt injury were enrolled. Demographics, brain CT and TEG-PM results before/after platelet transfusion, length of stay (LOS), and injury severity score (ISS) were abstracted. Sixty six patients were enrolled (89% aspirin, 50% clopidogrel, 23% dual APM) with 23 patients undergoing platelet transfusion. Transfused patients had significantly higher ISS and admission CT scores. Platelet transfusion significantly reduced platelet inhibition due to aspirin (76.0 ± 30.2% to 52.7 ± 31.5%, p clopidogrel-associated inhibition (p = 0.07). Platelet transfusion was associated with longer length of stay (7.8 vs. 3.5 days, p < 0.01), but there were no differences in mortality. Platelet transfusion significantly decreases platelet inhibition due to aspirin but is not associated with change in outcomes in patients on APM following TBI.

  13. Platelet function changes in different cardiac surgery subgroups as evaluated with an innovative technology.

    Science.gov (United States)

    Gerrah, Rabin; Brill, Alex; Varon, David

    2007-07-01

    : During cardiac surgery, platelets undergo substantial changes. The purpose of this study was to assess platelet function and compare these changes between different cardiac operations using an innovative technology. : Perioperative platelet function was evaluated by the Impact test [cone and plate(let) analyzer (CPA)]. The Impact test yields 2 parameters for platelet function: average size (AS, the mean size of the platelet aggregates) and surface coverage (SC, the percentage of the surface covered by the platelet aggregates), which correspond to platelet aggregation and adhesion. The study groups were compared for platelet function results in various surgery stages and correlation with bleeding. : A significant decrease in surface coverage was detected on establishment of cardiopulmonary bypass, with an increase up to preoperative values at the end of the surgery in all groups. In contrast to operations performed on bypass, in patients operated without cardiopulmonary bypass, the postoperative AS and SC were higher than the preoperative values, 30.4 ± 8.1 μmol versus 23.3 ± 6.9 μmol, P = 0.02 in AS, and 7.6 ± 3.6% versus 5.2 ± 1.8%, P = 0.04 in SC. Preoperative AS and SC were the only parameters significantly (P = 0.01) and linearly (r = 0.6) related to postoperative bleeding. : Preoperative platelet function, as evaluated by the CPA, is an independent risk factor determining postoperative bleeding. The off-pump patients presented an increased platelet function at the end of surgery, a finding that can imply a higher risk of thrombosis. The impact test appears to be a useful tool to determine perioperative platelet function and help in prediction of postoperative bleeding.

  14. Mechanisms of xenogeneic baboon platelet aggregation and phagocytosis by porcine liver sinusoidal endothelial cells.

    Directory of Open Access Journals (Sweden)

    Qiang Peng

    endothelial cells efficiently phagocytosed baboon platelets. Blocking vWF and integrin adhesion pathways prevented both aggregation and phagocytosis.

  15. In vitro viability effects on apheresis and buffy-coat derived platelets administered through infusion pumps

    Directory of Open Access Journals (Sweden)

    Sandgren P

    2014-12-01

    Full Text Available Per Sandgren,1,2 Veronica Berggren,3 Carl Westling,1,2 Viveka Stiller1 1Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, 2Department of Laboratory Medicine, Karolinska Institutet, 3Department of Neonatology, Karolinska University Hospital, Stockholm, SwedenBackground: Different infusion pump systems as well as gravity infusion have been widely used in neonatal transfusion. However, the limited number of published studies describing the use of infusion pumps on platelets illustrates the necessity for more robust data.Methods: To evaluate the potential in vitro effects on the cellular, metabolic, functional and phenotypic properties of platelets, we set up a four-arm paired study simultaneously comparing the use of different infusion pumps (Alaris® CC/GP with unexposed platelets. The platelet units (n=8 were either produced by the apheresis technique and suspended in 100% plasma or derived from buffy coats to yield platelet units stored in approximately 30% plasma and 70% SSP+. Fresh and 5-day old platelets were tested.Results: Regardless of the production system or storage time used, no significant differences were observed in glucose and lactate concentration, pH, adenosine triphosphate levels, response to extent of shape change, hypotonic shock response reactivity, and CD62P expression. Similarly, no differences were observed in expression of the conformational epitope on glycoprotein IIb/IIIa, determined using procaspase-activating compound 1, or in the expression of CD42b and platelet-endothelial cell adhesion molecule-1 in a comparison between platelets administered through infusion pumps versus unexposed platelets.Conclusion: Using Alaris CC/GP infusion pumps had no influence on the cellular, functional, and phenotypic in vitro properties of platelets. This fact seems not to be affected by different production systems or storage time.Keywords: platelets, neonatal platelet transfusion

  16. Dissolution of arterial platelet thrombi in vivo with a bifunctional platelet GPIIIa49-66 ligand which specifically targets the platelet thrombus.

    Science.gov (United States)

    Zhang, Wei; Li, Yong-Sheng; Nardi, Michael A; Dang, Suying; Yang, Jing; Ji, Yong; Li, Zongdong; Karpatkin, Simon; Wisniewski, Thomas

    2010-09-30

    Patients with HIV-1 immune-related thrombocytopenia have a unique antibody (Ab) against integrin GPIIIa49-66 capable of inducing oxidative platelet fragmentation via Ab activation of platelet nicotinamide adenine dinucleotide phosphate oxidase and 12-lipoxygenase releasing reactive oxygen species. Using a phage display single-chain antibody (scFv) library, we developed a novel human monoclonal scFv Ab against GPIIIa49-66 (named A11) capable of inducing fragmentation of activated platelets. In this study, we investigated the in vivo use of A11. We show that A11 does not induce significant thrombocytopenia or inhibit platelet function. A11 can prevent the cessation of carotid artery flow produced by induced artery injury and dissolve the induced thrombus 2 hours after cessation of blood flow. In addition, A11 can prevent, as well as ameliorate, murine middle cerebral artery stroke, without thrombocytopenia or brain hemorrhage. To further optimize the antithrombotic activity of A11, we produced a bifunctional A11-plasminogen first kringle agent (SLK), which homes to newly deposited fibrin strands within and surrounding the platelet thrombus, reducing effects on nonactivated circulating platelets. Indeed, SLK is able to completely reopen occluded carotid vessels 4 hours after cessation of blood flow, whereas A11 had no effect at 4 hours. Thus, a new antithrombotic agent was developed for platelet thrombus clearance.

  17. Mean Platelet Volume

    African Journals Online (AJOL)

    Department of Chest Disease, Bolu, Turkey. E-mail: abanttip14@gmail.com. Telephone number: +903742534618. Fax number: +903742534615 effective and should have wide spread acceptance. At present, none of the available diagnostic tests meets all these criteria. The mean platelet volume (MPV) is potentially one of.

  18. Platelet lysate embedded scaffolds for skin regeneration.

    Science.gov (United States)

    Sandri, Giuseppina; Bonferoni, Maria Cristina; Rossi, Silvia; Ferrari, Franca; Mori, Michela; Cervio, Marila; Riva, Federica; Liakos, Ioannis; Athanassiou, Athanassia; Saporito, Francesca; Marini, Lara; Caramella, Carla

    2015-04-01

    The work presents the development of acellular scaffolds extemporaneously embedded with platelet lysate (PL), as an innovative approach in the field of tissue regeneration/reparation. PL embedded scaffolds should have a tridimensional architecture to support cell migration and growth, in order to restore skin integrity. For this reason, chondroitin sulfate (CS) was associated with sodium alginate (SA) to prepare highly porous systems. The developed scaffolds were characterized for chemical stability to γ-radiation, morphology, hydration and mechanical properties. Moreover, the capability of fibroblasts and endothelial cells to populate the scaffold was evaluated by means of proliferation test 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and confocal laser scanning microscopy study. The scaffolds, not altered by sterilization, were characterized by limited swelling and high flexibility, by foam-like structure with bubbles that formed a high surface area and irregular texture suitable for cell adhesion. Cell growth and scaffold population were evident on the bubble surface, where the cells appeared anchored to the scaffold structure. Scaffold network based on CS and SA demonstrated to be an effective support to enhance and to allow fibroblasts and endothelial cells (human umbilical vein endothelial cells, HUVEC) adhesion and proliferation. In particular, it could be hypothesized that cell adhesion was facilitated by the synergic effect of PL and CS. Although further in vivo evaluation is needed, on the basis of in vitro results, PL embedded scaffolds seem promising systems for skin wound healing.

  19. Management of adhesive capsulitis

    Directory of Open Access Journals (Sweden)

    Stupay KL

    2015-08-01

    Full Text Available Kristen L Stupay,1 Andrew S Neviaser2 1Tulane University School of Medicine, New Orleans, LA, USA; 2George Washington University Medical Faculty Associates, Washington, DC, USA Abstract: Adhesive capsulitis of the shoulder is a condition of capsular contracture that reduces both active and passive glenohumeral motion. The cause of adhesive capsulitis is not known but it is strongly associated with endocrine abnormalities such as diabetes. Diverse terminology and the absence of definitive criteria for diagnosis make evaluating treatment modalities difficult. Many treatment methods have been reported, most with some success, but few have been proved to alter the natural course of this disease. Most afflicted patients will achieve acceptable shoulder function without surgery. Those who remain debilitated after 8–12 months are reasonable candidates for invasive treatments. Here, the various treatment methods and the data to support their use are reviewed. Keywords: frozen shoulder, stiff shoulder, periarthritis, painful shoulder 

  20. Comparison of platelet counting technologies in equine platelet concentrates.

    Science.gov (United States)

    O'Shea, Caitlin M; Werre, Stephen R; Dahlgren, Linda A

    2015-04-01

    (1) To compare the performance of 4 platelet counting technologies in equine platelet concentrates and (2) to evaluate the ability of the Magellan platelet rich plasma (PRP) system to concentrate equine platelets. Experimental study to assess method agreement. Adult mixed breed horses (n = 32). Acid citrate dextrose-A anti-coagulated whole blood was collected and PRP produced using the Magellan system according to the manufacturer's instructions. Platelets were quantified using 4 counting methods: optical scatter (Advia 2120), impedance (CellDyn 3700), hand counting, and fluorescent antibody flow cytometry. Platelet concentrations were compared using Passing and Bablok regression analyses and mixed model ANOVA. Significance was set at P CellDyn 3700. Systematic and proportional biases were observed between these 2 automated methods when analyzed by regression analysis of the larger sample size. No bias (systematic or proportional) was observed among any of the other counting methods. Despite the bias detected between the 2 automated systems, there were no significant differences on average among the 4 counting methods evaluated, based on the ANOVA. The Magellan system consistently generated high platelet concentrations as well as higher than expected WBC concentrations. The Magellan system delivered desirably high platelet concentrations; however, WBC concentrations may be unacceptably high for some orthopedic applications. All 4 platelet counting methods tested were equivalent on average and therefore suitable for quantifying platelets in equine PRP used for clinical applications. © Copyright 2014 by The American College of Veterinary Surgeons.

  1. Platelet responses to dynamic biomaterial surfaces with different poly(ethylene glycol) and polyrotaxane molecular architectures constructed on gold substrates.

    Science.gov (United States)

    Kakinoki, Sachiro; Yui, Nobuhiko; Yamaoka, Tetsuji

    2013-11-01

    Four different dynamic biomaterial surfaces with different molecular architectures were prepared using two hydrophilic polymers: poly(ethylene glycol) and polyrotaxanes containing α-cyclodextrin. Either one or both terminals of the poly(ethylene glycol) or polyrotaxanes were immobilized onto a gold substrate via Au-S bonds, resulting in poly(ethylene glycol)-graft, polyrotaxanes-graft, poly(ethylene glycol)-loop, and polyrotaxanes-loop structures. Human platelet adhesion was suppressed more effectively on the graft surfaces than on the loop surfaces for both poly(ethylene glycol) and polyrotaxanes due to the high mobility of graft polymer chains with a free terminal. Moreover, the platelets adhered to the polyrotaxane surfaces much less than the poly(ethylene glycol) surfaces, possibly because of the mobile nature of the α-cyclodextrin molecules that were threaded on the poly(ethylene glycol) chain. Actin filament assembly in adherent platelets was also greatly prevented on the poly(ethylene glycol)/polyrotaxanes-graft surfaces in comparison with the corresponding loop surfaces. A clear correlation between the numbers and areas of adherent platelets on these surfaces suggests that platelet adhesion and activation were dominated by the platelet GPIIb/IIIa-adsorbed fibrinogen interaction. These results indicate that both of the different modes of dynamic features, sliding/rotation of α-cyclodextrin and polymer chain mobility, effectively suppressed platelet adhesion in spite of the similar hydrophilicity. This research affords a novel chemical strategy for designing hemocompatible biomaterial surfaces.

  2. Blood compatibility and adhesion of collagen/heparin multilayers coated on two titanium surfaces by a layer-by-layer technique

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Chau-Chang, E-mail: cchou@mail.ntou.edu.tw [Department of Mechanical and Mechatronic Engineering, National Taiwan Ocean University, No. 2 Pei-Ning Rd., Keelung 202, Taiwan, ROC (China); Center for Marine Mechatronic Systems (CMMS), National Taiwan Ocean University, No. 2 Pei-Ning Rd., Keelung 202, Taiwan, ROC (China); Zeng, Hong-Jhih [Department of Mechanical and Mechatronic Engineering, National Taiwan Ocean University, No. 2 Pei-Ning Rd., Keelung 202, Taiwan, ROC (China); Yeh, Chi-Hsiao [Division of Thoracic and Cardiovascular Surgery, Chang Gung Memorial Hospital, Keelung 204, Taiwan, ROC (China)

    2013-12-31

    This paper investigates the blood compatibility and adhesion of collagen/heparin multilayers coated on cp-Ti substrates with a layer-by-layer self-assembly technique. Two surface polishing processes were used for the titanium samples: one was mechanical polishing (MP) and the other, electropolishing (EP). These samples were pretreated by being immersed in NaOH solution to obtain a negatively charged surface with hydroxyl groups and then positively charged in poly-L-lysine solution. The repeated treatment of the samples by applying heparin and collagen alternately determined the number and thickness of the multilayers. The surface topography, chemical composition, and hydrophilicity of the films were investigated by atomic force microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy, and water contact angle measurement. The study of the adhesion of the multilayer was conducted by a nano-scratch test. The blood compatibility was evaluated by measuring the hemolysis ratio and platelet-covered area in vitro. The uncoated titanium surface was used as the benchmark. The results indicated that the anticoagulation performance of collagen/heparin multilayers on the titanium surface was superior to that of the uncoated titanium surface. The hemolysis ratios of samples with an EP Ti substrate, a relatively rougher one, were essentially lower than those of samples with an MP substrate. The increase in the multilayers' thickness enhanced their adhesion to the Ti substrate. - Highlights: • Coated substrates' platelet-adhesion tests revealed a possible thrombus suppression. • Hemolysis of coated substrates was reduced mainly by substrate's original morphology. • Two coated substrates' hemolysis ratios were reduced by nearly the same percentages. • Adhesion strength of multilayers was proportional to their thicknesses.

  3. Storage of platelets: effects associated with high platelet content in platelet storage containers.

    Science.gov (United States)

    Gulliksson, Hans; Sandgren, Per; Sjödin, Agneta; Hultenby, Kjell

    2012-04-01

    A major problem associated with platelet storage containers is that some platelet units show a dramatic fall in pH, especially above certain platelet contents. The aim of this study was a detailed investigation of the different in vitro effects occurring when the maximum storage capacity of a platelet container is exceeded as compared to normal storage. Buffy coats were combined in large-volume containers to create primary pools to be split into two equal aliquots for the preparation of platelets (450-520×10(9) platelets/unit) in SSP+ for 7-day storage in two containers (test and reference) with different platelet storage capacity (n=8). Exceeding the maximum storage capacity of the test platelet storage container resulted in immediate negative effects on platelet metabolism and energy supply, but also delayed effects on platelet function, activation and disintegration. Our study gives a very clear indication of the effects in different phases associated with exceeding the maximum storage capacity of platelet containers but throw little additional light on the mechanism initiating those negative effects. The problem appears to be complex and further studies in different media using different storage containers will be needed to understand the mechanisms involved.

  4. TO STUDY THE EFFECT OF SCAPULAR MOBILIZATION VERSUS MOBILIZATION WITH MOVEMENT TO REDUCE PAIN AND IMPROVE GLENO-HUMERAL RANGE OF MOTION IN ADHESIVE CAPSULITIS OF SHOULDER: A COMPARATIVE STUDY

    Directory of Open Access Journals (Sweden)

    Lipika Boruah

    2015-10-01

    Full Text Available Background: Joint mobilization is an effective intervention for adhesive capsulitis. Scapular mobilization in shoulder adhesive capsulitis is used to decrease intra articular pressure by increasing mobility of the joint capsule and its surrounding soft tissue that results in a reduction of pain and increase range of motion and shoulder function. At the same time the use of mobilization with movement (MWM for peripheral joints was also used clinically. This technique combines a sustained application of a manual technique ‘gliding’ force to a joint with concurrent physiologic motion of joint, either actively performed by the subject or passively performed by the therapist. So far there is no study which is done on comparison between both of these techniques. The aim of the study is to find out whether the scapular mobilization or mobilization with movement technique improve gleno-humeral range of motion and reduce pain in patients with shoulder adhesive capsulitis. Methods: 50 subjects with adhesive capsulitis were randomly divided in to two groups and one group was treated with mobilization with movement and another group treated with scapular mobilization technique. Each group consist 25 patients. Both groups were given hot packs and pendular exercises as conventional therapy procedures. Treatment was given 5 days a week for 3 weeks. Restricted joint range of motion and severity of pain were measured before and after treatment completion by using goniometer and SPADI pain score respectively. Result: Results of the present study revealed that there was a significant difference in SPADI pain score(%, AROM-GH-Flexion and AROM-GH-External rotation who were treated in group A(MWM with mean being 44.00, 102.24 and 46.08 respectively compared to group B (SM with mean being 54.00, 81.00 and 35.84 in 3 weeks. Comparisons between these three parameters used in two treatment techniques were extremely significant (p= 0.000 for all. Conclusion: On the

  5. Room temperature storage of pooled platelet concentrates in gas-permeable plastic bags for five days.

    Science.gov (United States)

    Rácz, Z; Haskó, F

    1989-01-01

    Pooled platelet concentrates of different platelet count and volume were stored in gas-permeable plastic bags. Adequate oxygen supply kept the glucose consumption and therefore the lactic acid production relatively low. The change of pH seemed to depend largely on the platelet count and on the volume of the concentrate. The in vitro functions showed a decrease together with the adenine nucleotide content. The reduced in vivo viability of stored platelets corresponded to decreased hypotonic stress response, as well as to lowered ATP content. The results suggest that storage of platelets in gas-permeable bags may extend the shelf-life of pooled platelet concentrates, but the actual amount of platelets present should be taken into consideration.

  6. Platelet proteome reveals novel pathways of platelet activation and platelet-mediated immunoregulation in dengue.

    Directory of Open Access Journals (Sweden)

    Monique Ramos de Oliveira Trugilho

    2017-05-01

    Full Text Available Dengue is the most prevalent human arbovirus disease worldwide. Dengue virus (DENV infection causes syndromes varying from self-limiting febrile illness to severe dengue. Although dengue pathophysiology is not completely understood, it is widely accepted that increased inflammation plays important roles in dengue pathogenesis. Platelets are blood cells classically known as effectors of hemostasis which have been increasingly recognized to have major immune and inflammatory activities. Nevertheless, the phenotype and effector functions of platelets in dengue pathogenesis are not completely understood. Here we used quantitative proteomics to investigate the protein content of platelets in clinical samples from patients with dengue compared to platelets from healthy donors. Our assays revealed a set of 252 differentially abundant proteins. In silico analyses associated these proteins with key molecular events including platelet activation and inflammatory responses, and with events not previously attributed to platelets during dengue infection including antigen processing and presentation, proteasome activity, and expression of histones. From these results, we conducted functional assays using samples from a larger cohort of patients and demonstrated evidence for platelet activation indicated by P-selectin (CD62P translocation and secretion of granule-stored chemokines by platelets. In addition, we found evidence that DENV infection triggers HLA class I synthesis and surface expression by a mechanism depending on functional proteasome activity. Furthermore, we demonstrate that cell-free histone H2A released during dengue infection binds to platelets, increasing platelet activation. These findings are consistent with functional importance of HLA class I, proteasome subunits, and histones that we found exclusively in proteome analysis of platelets in samples from dengue patients. Our study provides the first in-depth characterization of the platelet

  7. Platelet proteome reveals novel pathways of platelet activation and platelet-mediated immunoregulation in dengue.

    Science.gov (United States)

    Trugilho, Monique Ramos de Oliveira; Hottz, Eugenio Damaceno; Brunoro, Giselle Villa Flor; Teixeira-Ferreira, André; Carvalho, Paulo Costa; Salazar, Gustavo Adolfo; Zimmerman, Guy A; Bozza, Fernando A; Bozza, Patrícia T; Perales, Jonas

    2017-05-01

    Dengue is the most prevalent human arbovirus disease worldwide. Dengue virus (DENV) infection causes syndromes varying from self-limiting febrile illness to severe dengue. Although dengue pathophysiology is not completely understood, it is widely accepted that increased inflammation plays important roles in dengue pathogenesis. Platelets are blood cells classically known as effectors of hemostasis which have been increasingly recognized to have major immune and inflammatory activities. Nevertheless, the phenotype and effector functions of platelets in dengue pathogenesis are not completely understood. Here we used quantitative proteomics to investigate the protein content of platelets in clinical samples from patients with dengue compared to platelets from healthy donors. Our assays revealed a set of 252 differentially abundant proteins. In silico analyses associated these proteins with key molecular events including platelet activation and inflammatory responses, and with events not previously attributed to platelets during dengue infection including antigen processing and presentation, proteasome activity, and expression of histones. From these results, we conducted functional assays using samples from a larger cohort of patients and demonstrated evidence for platelet activation indicated by P-selectin (CD62P) translocation and secretion of granule-stored chemokines by platelets. In addition, we found evidence that DENV infection triggers HLA class I synthesis and surface expression by a mechanism depending on functional proteasome activity. Furthermore, we demonstrate that cell-free histone H2A released during dengue infection binds to platelets, increasing platelet activation. These findings are consistent with functional importance of HLA class I, proteasome subunits, and histones that we found exclusively in proteome analysis of platelets in samples from dengue patients. Our study provides the first in-depth characterization of the platelet proteome in dengue

  8. Platelets as a Novel Source of Pro-Inflammatory Chemokine CXCL14

    Directory of Open Access Journals (Sweden)

    Alexander Witte

    2017-03-01

    Full Text Available Objective: Platelets are a major source of chemokines. Here, we demonstrate for the first time that platelets express significant amounts of CXCL14 and disclose powerful effects of platelet-derived CXCL14 on monocyte and endothelial migration. Methods: The expression of CXCL14 in platelets and in the supernatant of activated platelets was analysed by immunoblotting, ELISA, and flow cytometry. The effect of platelet-derived CXCL14 on monocyte migration was evaluated using a modified Boyden chamber. The effect of CXCL14 on monocyte phagocytosis was tested by using fluorochrome-labelled E.coli particles. The effect of platelet-derived CXCL14 on endothelial migration was explored by the use of an endothelial scratch assay. Results: Hitherto unrecognized expression of CXCL14 in human and murine platelets was uncovered by immunoblotting. Activation with platelet agonists such as adenosine-di-phosphate (ADP, collagen-related peptide (CRP, or thrombin-receptor activating peptide (TRAP, increased CXCL14 surface expression (flow cytometry and release into the supernatant (immunoblotting, ELISA. Since CXCL14 is known to be chemotactic for CD14+ monocytes, we investigated the chemotactic potential of platelet-derived CXCL14 on human monocytes. Activated platelet supernatant induced monocyte migration, which was counteracted upon neutralization of platelet-derived CXCL14 as compared to IgG control. Blocking of the chemokine receptor CXCR4, but not CXCR7, reduced the number of migratory monocytes towards recombinant CXCL14, suggesting the involvement of CXCR4 in the CXCL14-directed monocyte chemotaxis. Recombinant CXCL14 enhanced the phagocytic uptake of E.coli particles by monocytes. In scratch assays with cultured endothelial cells (HUVECs, platelet-derived CXCL14 counteracted the pro-angiogenic effects of VEGF, supporting its previously recognized angiostatic potential. Conclusions: Platelets are a relevant source of CXCL14. Platelet-derived CXCL14 at the

  9. Development of a New Method for Platelet Function Test and Its Shearing Condition in Microfludic System

    Science.gov (United States)

    Lee, Hoyoon; Kim, Gyehyu; Choi, Seawhan; Shin, Sehyun; Korea University Department of Mechanical Engineering Team

    2015-11-01

    Platelet is a crucial blood cell on hemostasis. As platelet exposed to high shear stress, it can be activated showing morphological and functional changes to stop bleeding. When platelet is abnormal, there is high risk of cardiovascular diseases. Thus, quick and precise assay for platelet function is important in clinical treatment. In this study, we design a microfluidic system, which can test platelet function exposed with the stimulation of shear and agonists. The microfluidic system consists of three parts: 1) a shear mechanism with rotating stirrer; 2) multiple microchannels to flow samples and to stop; 3) camera-interfaced migration distance(MD) analyzing system. When sheared blood is driven by pressure through the microchannel, shear-activated platelets adhere to a collagen-coated surface, causing blood flow to significantly slow and eventually stop. As the micro-stirrer speed increases, MD decreases exponentially at first, but it increases beyond a critical rpm after all. These results are coincident with data measured by FACS flowcytometry. These results imply that the present system could quantitatively measure the degree of activation, aggregation and adhesion of platelets and that blood MD is potent index for measuring the shear-dependence of platelet function.

  10. Platelets are a possible regulator of human endometrial re-epithelialization during menstruation.

    Science.gov (United States)

    Suginami, Koh; Sato, Yukiyasu; Horie, Akihito; Matsumoto, Hisanori; Kyo, Satoru; Araki, Yoshihiko; Konishi, Ikuo; Fujiwara, Hiroshi

    2017-01-01

    The human endometrium periodically breaks down and regenerates. As platelets have been reported to contribute to the tissue remodeling process, we examined the possible involvement of platelets in endometrial regeneration. The distribution of extravasating platelets throughout the menstrual cycle was immunohistochemically examined using human endometrial tissues. EM-E6/E7/hTERT cells, a human endometrial epithelial cell-derived immortalized cell line, were co-cultured with platelets, and the effects of platelets on the epithelialization response of EM-E6/E7/hTERT cells were investigated by attachment and permeability assays, immunohistochemical staining, and Western blot analysis. Immunohistochemical study showed numerous extravasated platelets in the subluminar stroma during the menstrual phase. The platelets promoted the cell-to-matrigel attachment of EM-E6/E7/hTERT cells concomitantly with the phosphorylation of focal adhesion kinase. They also promoted cell-to-cell contact among EM-E6/E7/hTERT cells in parallel with E-cadherin expression. These results indicate the possible involvement of platelets in the endometrial epithelial re-epithelialization process. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Effects of hormones on platelet aggregation.

    Science.gov (United States)

    Farré, Antonio López; Modrego, Javier; Zamorano-León, José J

    2014-04-01

    Platelets and their activation/inhibition mechanisms play a central role in haemostasis. It is well known agonists and antagonists of platelet activation; however, during the last years novel evidences of hormone effects on platelet activation have been reported. Platelet functionality may be modulated by the interaction between different hormones and their platelet receptors, contributing to sex differences in platelet function and even in platelet-mediated vascular damage. It has suggested aspects that apparently are well established should be reviewed. Hormones effects on platelet activity are included among them. This article tries to review knowledge about the involvement of hormones in platelet biology and activity.

  12. Extension of platelet concentrate storage.

    Science.gov (United States)

    Simon, T L; Nelson, E J; Carmen, R; Murphy, S

    1983-01-01

    Extension of the storage time of platelet concentrates in a satellite bag which is part of a new blood bag system was studied by reinfusing autologous 51Cr-labeled platelets into normal volunteers, and measuring postinfusion platelet counts and bleeding times in patients requiring platelet transfusions. This satellite bag, made of polyvinylchloride plasticized with a new agent, was found to protect platelet concentrates against fall of pH better than other containers studied. This protection was felt to be due to the greater gas permeability of the new plastic. Mean in vivo recovery and half-life (greater than 31% and 3.3 days, respectively) of autologous reinfused platelets were satisfactory following 5 days of storage. Following 7 days of storage, mean recovery was 41 percent and half-life was 2.8 days. Peripheral platelet count increments in patients following platelet transfusions with concentrates stored 4 to 7 days in the new plastic were comparable to increments following transfusion of platelets stored 2 to 3 days in the other plastics studied. Bleeding times shortened in three of four patients receiving platelet concentrates stored from 4 to 6 days in the new plastic. Platelet concentrates stored in the new bag at 20 to 24 degrees C with flat-bed or elliptical agitation could be transfused for up to 5 days following phlebotomy with acceptable clinical results. The new plastic container is promising for storage of platelet concentrates for up to 7 days. Due to the higher pH of 50-ml platelet concentrates stored in bags made with the new plastic, the concentrates were superior at any storage interval to those stored in bags made of the other plastics studied.

  13. Chrysanthemum morifolium Ramat. reduces the oxidized LDL-induced expression of intercellular adhesion molecule-1 and E-selectin in human umbilical vein endothelial cells.

    Science.gov (United States)

    Lii, Chong-Kuei; Lei, Yen-Ping; Yao, Hsien-Tsung; Hsieh, Yun-Sheng; Tsai, Chia-Wen; Liu, Kai-Li; Chen, Haw-Wen

    2010-03-02

    The flower of Chrysanthemum morifolium Ramat. (CM) with antioxidant, cardiovascular protective and anti-inflammatory functions, has been widely used in China for hundreds of years as a healthy beverage and medicine. The purpose of the present study is to investigate the effects of HCM (a hot water extract of the flower of Chrysanthemum morifolium Ramat. [CM]), ECM (an ethanol extract of CM), and the abundant flavonoids apigenin and luteolin in CM on the oxidized LDL (oxLDL)-induced expression of ICAM-1 and E-selectin in human umbilical vein endothelial cells (HUVECs). The possible mechanism of these effects was also determined. MTT assay was for cell viability. Western blot was used for ICAM-1 and E-selection protein expression, and for activation of protein kinase B (PKB) and cAMP responsive element binding protein (CREB) proteins. Fluorescence flow cytometry was for ICAM-1 and E-selectin expression on cell surface. DCF-DA flow cytometric assay was used for reactive oxygen species (ROS) production. HCM, ECM, apigenin, and luteolin dose-dependently inhibited ICAM-1 and E-selectin expression and adhesion of HL-60 by oxLDL. HCM, ECM, apigenin, and luteolin reversed the inhibition of phosphorylation of Akt and CREB by oxLDL; however, this reversion was abolished by wortmannin. In addition, wortmannin abrogated the inhibitory effects of CM extracts, apigenin and luteolin on adhesion molecule expression. The ROS scavenging capability of HCM, ECM, apigenin, and luteolin proceeded dose-dependently in the presence of oxLDL. CM is a plant with cardiovascular-protective potential and the inhibitory effects of CM on ICAM-1 and E-selectin expression are, at least partially, attributed to its antioxidant activity and modulation of the PI3K/Akt signaling pathway. Copyright (c) 2010 Elsevier Ireland Ltd. All rights reserved.

  14. Fumaric Acid Esters Do Not Reduce Inflammatory NF-κB/p65 Nuclear Translocation, ICAM-1 Expression and T-Cell Adhesiveness of Human Brain Microvascular Endothelial Cells.

    Science.gov (United States)

    Haarmann, Axel; Nehen, Mathias; Deiß, Annika; Buttmann, Mathias

    2015-08-13

    Dimethyl fumarate (DMF) is approved for disease-modifying treatment of patients with relapsing-remitting multiple sclerosis. Animal experiments suggested that part of its therapeutic effect is due to a reduction of T-cell infiltration of the central nervous system (CNS) by uncertain mechanisms. Here we evaluated whether DMF and its primary metabolite monomethyl fumarate (MMF) modulate pro-inflammatory intracellular signaling and T-cell adhesiveness of nonimmortalized single donor human brain microvascular endothelial cells at low passages. Neither DMF nor MMF at concentrations of 10 or 50 µM blocked the IL-1β-induced nuclear translocation of NF-κB/p65, whereas the higher concentration of DMF inhibited the nuclear entry of p65 in human umbilical vein endothelium cultured in parallel. DMF and MMF also did not alter the IL-1β-stimulated activation of p38 MAPK in brain endothelium. Furthermore, neither DMF nor MMF reduced the basal or IL-1β-inducible expression of ICAM-1. In accordance, both fumaric acid esters did not reduce the adhesion of activated Jurkat T cells to brain endothelium under basal or inflammatory conditions. Therefore, brain endothelial cells probably do not directly mediate a potential blocking effect of fumaric acid esters on the inflammatory infiltration of the CNS by T cells.

  15. Fiscal 2000 survey report. Research on bone-forming dental material capable of reducing plaque adhesion; 2000 nendo shiko fuchaku boshigata hone keisei shika zairyo ni kansuru chosa kenkyu hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Research and development efforts are exerted to produce advanced dental materials equipped with such functions as plaque reduction, bactericidal effect, and early formation of hydroxyapatite (HAP). In the study of fluorine ion implantation for plaque reduction, it is found that in a specimen implanted with fluorine ions the adhesion of carius streptococci is reduced to 1/3-1/10 for the achievement of remarkable improvement. In particular, carious streptococcus multiplication is suppressed when the metal shield layer is replaced with a titanium mesh. For the realization of a thin film formation method for osteoblast multiplication through reforming the material surface in the study of bone-forming dental materials, film formation conditions under which a P/Ca rate which is quite near that of ameloblast are achieved by use of a high frequency magnetron sputtering device. A titanium plate coated with a thus-formed film is annealed for a great increase in its wet contact angle, and then adhesion of bacteria is reduced and an osteoblast multiplication rate is increased by 20% or more, as compared with the case of no treatment in a petri dish. (NEDO)

  16. Fumaric Acid Esters Do Not Reduce Inflammatory NF-κB/p65 Nuclear Translocation, ICAM-1 Expression and T-Cell Adhesiveness of Human Brain Microvascular Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Axel Haarmann

    2015-08-01

    Full Text Available Dimethyl fumarate (DMF is approved for disease-modifying treatment of patients with relapsing-remitting multiple sclerosis. Animal experiments suggested that part of its therapeutic effect is due to a reduction of T-cell infiltration of the central nervous system (CNS by uncertain mechanisms. Here we evaluated whether DMF and its primary metabolite monomethyl fumarate (MMF modulate pro-inflammatory intracellular signaling and T-cell adhesiveness of nonimmortalized single donor human brain microvascular endothelial cells at low passages. Neither DMF nor MMF at concentrations of 10 or 50 µM blocked the IL-1β-induced nuclear translocation of NF-κB/p65, whereas the higher concentration of DMF inhibited the nuclear entry of p65 in human umbilical vein endothelium cultured in parallel. DMF and MMF also did not alter the IL-1β-stimulated activation of p38 MAPK in brain endothelium. Furthermore, neither DMF nor MMF reduced the basal or IL-1β-inducible expression of ICAM-1. In accordance, both fumaric acid esters did not reduce the adhesion of activated Jurkat T cells to brain endothelium under basal or inflammatory conditions. Therefore, brain endothelial cells probably do not directly mediate a potential blocking effect of fumaric acid esters on the inflammatory infiltration of the CNS by T cells.

  17. Storage of apheresis platelet concentrates after manual replacement of >95% of plasma with PAS 5.

    Science.gov (United States)

    Morrison, A; McMillan, L; Radwanski, K; Blatchford, O; Min, K; Petrik, J

    2014-10-01

    Recently, a glucose- and bicarbonate-containing additive solution termed PAS 5 demonstrated acceptable 7-day platelet storage after >95% plasma replacement with PAS on the day of collection (Day 0). In this study, we examined platelet storage in >95% PAS 5 after manual washing of Day 1 apheresis platelets in plasma collected using either the Amicus or Trima plateletpheresis devices. Triple platelet donations in plasma were obtained from Amicus (n = 10) and Trima (n = 10) plateletpheresis devices and stored overnight before being centrifuged and manually processed into three units with the following storage media: 100% plasma, >95% PAS 5 or 65% PAS 5/35% plasma. Platelet units were sampled on Days 1, 5 and 7 of storage using a range of tests recommended by the UK guidelines. The majority of in vitro assay results for platelets in PAS 5 were similar to results in paired 100% plasma platelets (controls). The pH of PAS 5 stored platelet units was above the UK recommended guidelines of 7·4 by Day 5. PAS 5 platelets were no more activated than controls as evidenced by comparable soluble P-selectin levels and CD62p and CD42b expression. PAS 5 platelets also exhibited adhesion and aggregation profiles higher than (Day 1) or comparable to (Days 5 and 7) controls as measured by Impact R. The 7-day in vitro storage parameters investigated were comparable between >95% PAS 5 and 100% plasma platelets derived from both Amicus and Trima plateletpheresis devices, with the exception that lactose dehydrogenase release rate and pH were significantly higher in PAS 5 units. © 2014 International Society of Blood Transfusion.

  18. Hyaluronic acid influence on platelet-induced airway smooth muscle cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Svensson Holm, Ann-Charlotte B., E-mail: ann-charlotte.svensson@liu.se [Division of Drug Research/Pharmacology, Department of Medical and Health Sciences, Faculty of Health Sciences, Linkoeping University, SE-581 85 Linkoeping (Sweden); Experimental Pathology, Department of Clinical and Experimental Medicine, Linkoeping University, SE-581 85 Linkoeping (Sweden); Bengtsson, Torbjoern [Department of Biomedicine, School of Health and Medical Sciences, Oerebro University, SE-70182 Oerebro (Sweden); Grenegard, Magnus; Lindstroem, Eva G. [Division of Drug Research/Pharmacology, Department of Medical and Health Sciences, Faculty of Health Sciences, Linkoeping University, SE-581 85 Linkoeping (Sweden)

    2012-03-10

    Hyaluronic acid (HA) is one of the main components of the extracellular matrix (ECM) and is expressed throughout the body including the lung and mostly in areas surrounding proliferating and migrating cells. Furthermore, platelets have been implicated as important players in the airway remodelling process, e.g. due to their ability to induce airway smooth muscle cell (ASMC) proliferation. The aim of the present study was to investigate the role of HA, the HA-binding surface receptor CD44 and focal adhesion kinase (FAK) in platelet-induced ASMC proliferation. Proliferation of ASMC was measured using the MTS-assay, and we found that the CD44 blocking antibody and the HA synthase inhibitor 4-Methylumbelliferone (4-MU) significantly inhibited platelet-induced ASMC proliferation. The interaction between ASMC and platelets was studied by fluorescent staining of F-actin. In addition, the ability of ASMC to synthesise HA was investigated by fluorescent staining using biotinylated HA-binding protein and a streptavidin conjugate. We observed that ASMC produced HA and that a CD44 blocking antibody and 4-MU significantly inhibited platelet binding to the area surrounding the ASMC. Furthermore, the FAK-inhibitor PF 573228 inhibited platelet-induced ASMC proliferation. Co-culture of ASMC and platelets also resulted in increased phosphorylation of FAK as detected by Western blot analysis. In addition, 4-MU significantly inhibited the increased FAK-phosphorylation. In conclusion, our findings demonstrate that ECM has the ability to influence platelet-induced ASMC proliferation. Specifically, we propose that HA produced by ASMC is recognised by platelet CD44. The platelet/HA interaction is followed by FAK activation and increased proliferation of co-cultured ASMC. We also suggest that the mitogenic effect of platelets represents a potential important and novel mechanism that may contribute to airway remodelling.

  19. Platelet aggregation following trauma

    DEFF Research Database (Denmark)

    Windeløv, Nis A; Sørensen, Anne M; Perner, Anders

    2014-01-01

    We aimed to elucidate platelet function in trauma patients, as it is pivotal for hemostasis yet remains scarcely investigated in this population. We conducted a prospective observational study of platelet aggregation capacity in 213 adult trauma patients on admission to an emergency department (ED......). Inclusion criteria were trauma team activation and arterial cannula insertion on arrival. Blood samples were analyzed by multiple electrode aggregometry initiated by thrombin receptor agonist peptide 6 (TRAP) or collagen using a Multiplate device. Blood was sampled median 65 min after injury; median injury...... severity score (ISS) was 17; 14 (7%) patients received 10 or more units of red blood cells in the ED (massive transfusion); 24 (11%) patients died within 28 days of trauma: 17 due to cerebral injuries, four due to exsanguination, and three from other causes. No significant association was found between...

  20. In vitro and in vivo effects of potassium and magnesium on storage up to 7 days of apheresis platelet concentrates in platelet additive solution.

    Science.gov (United States)

    Diedrich, B; Sandgren, P; Jansson, B; Gulliksson, H; Svensson, L; Shanwell, A

    2008-02-01

    Prolonged storage of platelets up to 7 days provides improved availability, logistical management and decreased wastage. Beside methods of bacterial detection, addition of magnesium and potassium to the platelet storage solution (SSP+) may further improve the quality of platelets with extended storage. Apheresis platelets from 10 donors were divided and stored in two different platelet additive solutions (PAS) (Intersol and SSP+) for a paired comparison. A variety of in vitro platelet function and metabolic assays were performed both on day 1 and after 7 days of storage. For in vivo study, platelets were labelled with either (111)Indium or (51)Chromium after 7 days of storage and were injected into the corresponding donor. Serial blood samples were drawn for recovery and survival measurements. In vitro parameters for SSP+ showed significantly reduced glycolysis (lower glucose consumption and decreased production of lactate), a higher hypotonic shock response (HSR) and the extent of shape change reactivity and a lower degree of platelet activation by means of RANTES (regulated on activation, normal, T cell-expressed, and secreted), CD62p and CD63 expression. Platelet recovery on day 7 was higher for Intersol as compared to SSP+, 65 +/- 11 vs. 53 +/- 13% (P = 0.023), and survival showed no difference 4.2 +/- 1.9 vs. 3.6 +/- 1.4 days. In vitro characteristics of platelets stored in PAS with addition of potassium and magnesium indicated higher quality, but this could not be verified by the in vivo parameters by means of recovery and survival.

  1. Flavonolignans inhibit the arachidonic acid pathway in blood platelets.

    Science.gov (United States)

    Bijak, Michal; Saluk-Bijak, Joanna

    2017-08-10

    Arachidonic acid metabolism by cyclooxygenase (COX) is a major pathway for blood platelets' activation, which is associated with pro-thrombotic platelet activity and the production of pro-inflammatory mediators. Inhibition of COX activity is one of the major means of anti-platelet pharmacotherapy preventing arterial thrombosis and reducing the incidence of cardiovascular events. Recent studies have presented that a silymarin (standardized extract of Milk thistle (Silybum marianum)) can inhibit the COX pathway. Accordingly, the aim of our study was to determine the effects of three major flavonolignans (silybin, silychristin and silydianin) on COX pathway activity in blood platelets. We determined the effect of flavonolignans on arachidonic acid induced blood platelet aggregation, COX pathway metabolites formation, as well as COX activity in platelets. Additionally, we analysed the potential mechanism of this interaction using the bioinformatic ligand docking method. We observed that tested compounds decrease the platelet aggregation level, both thromboxane A2 and malondialdehyde formation, as well as inhibit the COX activity. The strongest effect was observed for silychristin and silybin. In our in silico study we showed that silychristin and silybin have conformations which interact with the active COX site as competitive inhibitors, blocking the possibility of substrate binding. The results obtained from this study clearly present the potential of flavonolignans as novel antiplatelet and anti-inflammatory agents.

  2. Quantitative phase imaging of platelet: assessment of cell morphology and function

    Science.gov (United States)

    Vasilenko, Irina; Vlasova, Elizaveta; Metelin, Vladislav; Agadzhanjan, B.; Lyfenko, R.

    2017-02-01

    It is well known that platelets play a central role in hemostasis and thrombosis, they also mediate tumor cell growth, dissemination and angiogenesis. The purpose of the present experiment was to evaluate living platelet size, function and morphology simultaneously in unactivated and activated states using Phase-Interference Microscope "Cytoscan" (Moscow, Russia). We enrolled 30 healthy volunteers, who had no past history of aeteriosclerosis-related disorders, such as coronary heart disease, cerebrovascular disease, hypertention, diabetes or hyperlipidemia and 30 patients with oropharynx cancer. We observed the optic-geometrical parameters of each isolated living cell and the distribution of platelets by sizes have been analysed to detect the dynamics of cell population heterogeneity. Simultaneously we identified 4 platelet forms that have different morphological features and different parameters of size distribution. We noticed that morphological platelet types correlate with morphometric platelet parameters. The data of polymorphisms of platelet reactivity in tumor progression can be used to improve patient outcomes in the cancer prevention and treatment. Moreover morphometric and functional platelet parameters can serve criteria of the efficiency of the radio- and chemotherapy carried out. In conclusion the computer phase-interference microscope provides rapid and effective analysis of living platelet morphology and function at the same time. The use of the computer phase-interference microscope could be an easy and fast method to check the state of platelets in patients with changed platelet activation and to follow a possible pharmacological therapy to reduce this phenomenon.

  3. Reversal of shortened platelet survival in rats by the antifibrinolytic agent, epsilon aminocaproic acid.

    Science.gov (United States)

    Winocour, P D; Kinlough-Rathbone, R L; Richardson, M; Mustard, J F

    1983-01-01

    Platelet survival in rabbits and rats is shortened by placing indwelling catheters in the aorta; this shortening appears to be at least partly related to the extent of vessel wall injury and platelet interaction with the repeatedly damaged wall. Treatment of rabbit platelets with plasmin and other proteolytic enzymes in vitro shortens their survival when they are returned to the circulation. Because platelets may be exposed to plasmin and other proteolytic enzymes in rabbits and rats with indwelling aortic catheters, we examined the effect of epsilon-aminocaproic acid (EACA) on platelet survival in rats. At a dose of 1 g/kg every 4 h, EACA significantly reduced whole blood fibrinolytic activity and prolonged the shortened platelet survival in rats with indwelling aortic catheters. Mean platelet survival for untreated rats with indwelling aortic catheters was 38.6 +/- 1.9 h, and for rats treated with EACA, 53.8 +/- 3.8 h. Scanning electron microscopy showed that the injured vessel wall of these animals was mainly covered with platelets and fibrin, whereas in control animals that did not receive EACA, the injured surface was mainly covered with platelets and little fibrin was observed. Thus shortened platelet survival during continuous vessel wall injury may result from the local generation of plasmin or the release of proteolytic enzymes at sites where platelets (and possibly leukocytes) interact with the vessel wall. Images PMID:6848557

  4. Normally Oriented Adhesion versus Friction Forces in Bacterial Adhesion to Polymer-Brush Functionalized Surfaces Under Fluid Flow

    NARCIS (Netherlands)

    Swartjes, Jan J. T. M.; Veeregowda, Deepak H.; van der Mei, Henny C.; Busscher, Henk J.; Sharma, Prashant K.

    2014-01-01

    Bacterial adhesion is problematic in many diverse applications. Coatings of hydrophilic polymer chains in a brush configuration reduce bacterial adhesion by orders of magnitude, but not to zero. Here, the mechanism by which polymer-brush functionalized surfaces reduce bacterial adhesion from a

  5. Platelet immunology in fungal infections.

    Science.gov (United States)

    Speth, Cornelia; Rambach, Günter; Lass-Flörl, Cornelia

    2014-10-01

    Up to date, perception of platelets has changed from key players in coagulation to multitaskers within the immune network, connecting its most diverse elements and crucially shaping their interplay with invading pathogens such as fungi. In addition, antimicrobial effector molecules and mechanisms in platelets enable a direct inhibitory effect on fungi, thus completing their immune capacity. To precisely assess the impact of platelets on the course of invasive fungal infections is complicated by some critical parameters. First, there is a fragile balance between protective antimicrobial effects and detrimental reactions that aggravate the fungal pathogenesis. Second, some platelet effects are exerted indirectly by other immune mediators and are thus difficult to quantify. Third, drugs such as antimycotics, antibiotics, or cytostatics, are commonly administered to the patients and might modulate the interplay between platelets and fungi. Our article highlights selected aspects of the complex interactions between platelets and fungi and the relevance of these processes for the pathogenesis of fungal infections.

  6. Rac1 is essential for phospholipase C-gamma2 activation in platelets

    DEFF Research Database (Denmark)

    Pleines, Irina; Elvers, Margitta; Strehl, Amrei

    2008-01-01

    Platelet activation at sites of vascular injury is triggered through different signaling pathways leading to activation of phospholipase (PL) Cbeta or PLCgamma2. Active PLCs trigger Ca(2+) mobilization and entry, which is a prerequisite for adhesion, secretion, and thrombus formation. PLCbeta...

  7. Platelet function in stored heparinised autologous blood is not superior to in patient platelet function during routine cardiopulmonary bypass.

    Directory of Open Access Journals (Sweden)

    Rolf C G Gallandat Huet

    Full Text Available BACKGROUND: In cardiac surgery, cardiopulmonary bypass (CPB and unfractionated heparin have negative effects on blood platelet function. In acute normovolemic haemodilution autologous unfractionated heparinised blood is stored ex-vivo and retransfused at the end of the procedure to reduce (allogeneic transfusion requirements. In this observational study we assessed whether platelet function is better preserved in ex vivo stored autologous blood compared to platelet function in the patient during CPB. METHODOLOGY/PRINCIPAL FINDING: We measured platelet aggregation responses pre-CPB, 5 min after the start of CPB, at the end of CPB, and after unfractionated heparin reversal, using multiple electrode aggregometry (Multiplate® with adenosine diphosphate (ADP, thrombin receptor activating peptide (TRAP and ristocetin activated test cells. We compared blood samples taken from the patient with samples taken from 100 ml ex-vivo stored blood, which we took to mimick blood storage during normovolemic haemodilution. Platelet function declined both in ex-vivo stored blood as well as in blood taken from the patient. At the end of CPB there were no differences in platelet aggregation responses between samples from the ex vivo stored blood and the patient. CONCLUSION/SIGNIFICANCE: Ex vivo preservation of autologous blood in unfractionated heparin does not seem to be profitable to preserve platelet function.

  8. Cyclosporine dosage can be reduced when used in combination with an anti-intercellular adhesion molecule-1 monoclonal antibody in rats undergoing heterotopic heart transplantation.

    Science.gov (United States)

    Harrison, P C; Mainolfi, E; Madwed, J B

    1998-02-01

    Intercellular adhesion molecule-1 (ICAM-1) is believed to play a role in acute rejection of allografted tissues. This molecule is involved in the interaction of T cells with antigen-presenting cells expressed on the vascular endothelium of transplanted organs and is involved in the adhesion of inflammatory cells to this endothelium and their subsequent migration into the underlying tissues. Rat abdominal heterotopic heart transplantation was used to study the role of ICAM-1 in the rejection process. American Cancer Institute rats were used as donors; Lewis rats were used as recipients. Graft survival was monitored daily via donor heart palpation. Nine groups (n = 6/group) were studied: untreated controls; olive oil; cyclosporine at 1.5, 2.75, and 5.0 mg/kg, respectively; R3.1, a control monoclonal antibody; 1A29, a rat anti-ICAM-1 monoclonal antibody, 3 mg/kg administered intraperitoneally; a combination of 1A29 (3 mg/kg) and cyclosporine (1.5 mg/kg); and a combination of 1A29 (3 mg/kg) and cyclosporine (2.75 mg/kg). Mean rejection time was 8.8 +/- 0.6 days for the untreated allografted controls and 9.7 +/- 1.1 days for the olive oil controls. Cyclosporine (1.5, 2.75, and 5.0 mg/kg) showed mean rejection times of 8.5 +/- 0.3, 20.5 +/- 1.9, and 28.8 +/- 3.6 days, respectively. The 1A29 treatment showed a mean rejection time of 9.3 +/- 0.7 days. Combination therapy of 1A29 and cyclosporine at 1.5 or 2.75 mg/kg demonstrated mean rejection times of 17.7 +/- 3.3 and 29.2 +/- 6.7 days, respectively. Thus 1A29 alone does not prolong cardiac allograft survival; however, combination therapy with either a subthreshold or a moderate dose of cyclosporine significantly extends the time to rejection of heterotopically transplanted rat hearts. Although monotherapy with an ICAM-1 antagonist alone may not be beneficial in preventing acute rejection episodes after organ transplantation, combination therapy of an anti-ICAM-1 monoclonal antibody may allow for a reduction in the dose

  9. Binding of Platelets to Lymphocytes: A Potential Anti-Inflammatory Therapy in Rheumatoid Arthritis.

    Science.gov (United States)

    Zamora, Carlos; Cantó, Elisabet; Nieto, Juan C; Bardina, Jorge; Diaz-Torné, Cesar; Moya, Patricia; Magallares, Berta; Ortiz, M Angels; Julià, Germà; Juarez, Candido; Llobet, Josep M; Vidal, Silvia

    2017-04-15

    Soluble factors released from platelets can modulate the immune response of leukocytes. We and others have recently found that T lymphocytes with bound platelets have reduced proliferation and IFN-γ and IL-17 production. Thus, we speculate that if we induce the binding of platelets to lymphocytes, we will be able to regulate the inflammatory response. When we cocultured platelets with lymphocytes at different ratios, we were able to increase the percentage of lymphocytes with bound platelets. The coculture of platelets with lymphocytes in the presence of stimulation decreased the production of IFN-γ and TNF-α, T cell proliferation, and the expression of CD25, PD-L1, and SLAM. However, this coculture increased CD39 expression. All of these effects were dependent on the dose of platelets and operated indistinctly with platelets from different healthy donors. When platelets were cocultured in the same compartment with lymphocytes, we observed less IFN-γ and TNF-α production and T lymphocyte proliferation than in cultures with platelets separated from lymphocytes by a 0.4-μm pore size filter. The binding of platelets to lymphocytes was blocked with anti-P-selectin Abs, and when this occurred we observed higher IFN-γ and TNF-α production than in nonblocked conditions. The cocultures of platelets with synovial fluid cells from rheumatoid arthritis patients reduced inflammatory cytokine production and increased IL-10 production. These results suggest that platelet binding to lymphocytes effectively regulates T lymphocyte function. This mechanism could be easily applied to reduce inflammatory responses. Copyright © 2017 by The American Association of Immunologists, Inc.

  10. Orthobiologics and platelet rich plasma

    National Research Council Canada - National Science Library

    Dhillon, Mandeep S; Behera, Prateek; Patel, Sandeep; Shetty, Vijay

    2014-01-01

    ... in many chronic musculoskeletal ailments. Investigators have published results of laboratory as well as clinical studies, using orthobiologics like platelet rich plasma, stem cells, autologous conditioned serum etc...

  11. Responses of platelets and endothelial cells to heparin/fibronectin complex on titanium: in situ investigation by quartz crystal microbalance with dissipation and immunochemistry.

    Science.gov (United States)

    Li, Guicai; Yang, Ping; Huang, Nan; Ding, Hongyan

    2013-08-01

    Platelet adhesion and endothelialization rates are frequently used to assess the biocompatibility of biomaterials, which are crucial steps for the development of blood-contacting implanted devices. Co-immobilization of heparin and fibronectin (Hep/Fn) on titanium (Ti) surface has been proven to inhibit platelet adhesion and enhance endothelialization in our previous study, however, the interaction mechanisms of platelet and endothelial cell (EC) with biomolecules immobilized surface at the early stage are still not clear. In this study, the adhesion behavior of EC and platelet on biomolecules immobilized surface was evaluated using quartz crystal microbalance with dissipation (QCM-D) in real time and immunofluorescence/optical measurement. And the possible underlying mechanism was probed using immunochemistry. The results showed that EC underwent attachment and spreading process on Hep/Fn (pH 4) immobilized surface similar to that on bare Ti surface, while platelet displayed much larger activation on bare Ti surface than that on Hep/Fn (pH 4) immobilized surface. However, the adhesion behaviors of platelets and EC reflected in Df plots were different. The study brings forth the detailed interaction between heparin and fibronectin and the interaction of EC and platelet with the biomolecules coated surface, which will be helpful for better understanding the interaction mechanism of cell-biomaterials interface and may potentially be useful for the development of new generation of cardiovascular biomaterials. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  12. Isolation of Platelet-Derived Extracellular Vesicles

    NARCIS (Netherlands)

    Aatonen, Maria; Valkonen, Sami; Böing, Anita; Yuana, Yuana; Nieuwland, Rienk; Siljander, Pia

    2017-01-01

    Platelets participate in several physiological functions, including hemostasis, immunity, and development. Additionally, platelets play key roles in arterial thrombosis and cancer progression. Given this plethora of functions, there is a strong interest of the role of platelet-derived

  13. Adhesion in microelectronics

    CERN Document Server

    Mittal, K L

    2014-01-01

    This comprehensive book will provide both fundamental and applied aspects of adhesion pertaining to microelectronics in a single and easily accessible source. Among the topics to be covered include; Various theories or mechanisms of adhesionSurface (physical or chemical) characterization of materials as it pertains to adhesionSurface cleaning as it pertains to adhesionWays to improve adhesionUnraveling of interfacial interactions using an array of pertinent techniquesCharacterization of interfaces / interphasesPolymer-polymer adhesionMetal-polymer adhesion  (metallized polymers)Polymer adhesi

  14. Platelet dynamics during natural and pharmacologically induced torpor and forced hypothermia.

    Directory of Open Access Journals (Sweden)

    Edwin L de Vrij

    Full Text Available Hibernation is an energy-conserving behavior in winter characterized by two phases: torpor and arousal. During torpor, markedly reduced metabolic activity results in inactivity and decreased body temperature. Arousal periods intersperse the torpor bouts and feature increased metabolism and euthermic body temperature. Alterations in physiological parameters, such as suppression of hemostasis, are thought to allow hibernators to survive periods of torpor and arousal without organ injury. While the state of torpor is potentially procoagulant, due to low blood flow, increased viscosity, immobility, hypoxia, and low body temperature, organ injury due to thromboembolism is absent. To investigate platelet dynamics during hibernation, we measured platelet count and function during and after natural torpor, pharmacologically induced torpor and forced hypothermia. Splenectomies were performed to unravel potential storage sites of platelets during torpor. Here we show that decreasing body temperature drives thrombocytopenia during torpor in hamster with maintained functionality of circulating platelets. Interestingly, hamster platelets during torpor do not express P-selectin, but expression is induced by treatment with ADP. Platelet count rapidly restores during arousal and rewarming. Platelet dynamics in hibernation are not affected by splenectomy before or during torpor. Reversible thrombocytopenia was also induced by forced hypothermia in both hibernating (hamster and non-hibernating (rat and mouse species without changing platelet function. Pharmacological torpor induced by injection of 5'-AMP in mice did not induce thrombocytopenia, possibly because 5'-AMP inhibits platelet function. The rapidness of changes in the numbers of circulating platelets, as well as marginal changes in immature platelet fractions upon arousal, strongly suggest that storage-and-release underlies the reversible thrombocytopenia during natural torpor. Possibly, margination of

  15. The role of platelets in the recruitment of leukocytes during vascular disease.

    Science.gov (United States)

    Ed Rainger, G; Chimen, Myriam; Harrison, Matthew J; Yates, Clara M; Harrison, Paul; Watson, Stephen P; Lordkipanidzé, Marie; Nash, Gerard B

    2015-01-01

    Besides their role in the formation of thrombus during haemostasis, it is becoming clear that platelets contribute to a number of other processes within the vasculature. Indeed, the integrated function of the thrombotic and inflammatory systems, which results in platelet-mediated recruitment of leukocytes, is now considered to be of great importance in the propagation, progression and pathogenesis of atherosclerotic disease of the arteries. There are three scenarios by which platelets can interact with leukocytes: (1) during haemostasis, when platelets adhere to and are activated on sub-endothelial matrix proteins exposed by vascular damage and then recruit leukocytes to a growing thrombus. (2) Platelets adhere to and are activated on stimulated endothelial cells and then bridge blood borne leukocytes to the vessel wall and. (3) Adhesion between platelets and leukocytes occurs in the blood leading to formation of heterotypic aggregates prior to contact with endothelial cells. In the following review we will not discuss leukocyte recruitment during haemostasis, as this represents a physiological response to tissue trauma that can progress, at least in its early stages, in the absence of inflammation. Rather we will deal with scenarios 2 and 3, as these pathways of platelet-leukocyte interactions are important during inflammation and in chronic inflammatory diseases such as atherosclerosis. Indeed, these interactions mean that leukocytes possess means of adhesion to the vessel wall under conditions that may not normally be permissive of leukocyte-endothelial cell adhesion, meaning that the disease process may be able to bypass the regulatory pathways which would ordinarily moderate the inflammatory response.

  16. TISSUE-TYPE PLASMINOGEN-ACTIVATOR AND FIBRIN MONOMERS SYNERGISTICALLY CAUSE PLATELET DYSFUNCTION DURING RETRANSFUSION OF SHED BLOOD AFTER CARDIOPULMONARY BYPASS

    NARCIS (Netherlands)

    DEHAAN, J; SCHONBERGER, J; HAAN, J; VANOEVEREN, W; EIJGELAAR, A

    1993-01-01

    Reduced hemostasis and bleeding tendency after cardiopulmonary bypass results from platelet dysfunction induced by the bypass procedure. The causes of this acquired platelet dysfunction are still subject to discussion, although, recently, greater emphasis has been placed on an overstimulated

  17. Association of Adiposity Indices with Platelet Distribution Width and Mean Platelet Volume in Chinese Adults.

    Directory of Open Access Journals (Sweden)

    Jian Hou

    Full Text Available Hypoxia is a prominent characteristic of inflammatory tissue lesions. It can affect platelet function. While mean platelet volume (MPV and platelet distribution width (PDW are sample platelet indices, they may reflect subcinical platelet activation. To investigated associations between adiposity indices and platelet indices, 17327 eligible individuals (7677 males and 9650 females from the Dongfeng-Tongji Cohort Study (DFTJ-Cohort Study, n=27009 were included in this study, except for 9682 individuals with missing data on demographical, lifestyle, physical indicators and diseases relative to PDW and MPV. Associations between adiposity indices including waist circumstance (WC, waist-to-height ratio (WHtR, body mass index (BMI, and MPV or PDW in the participants were analyzed using multiple logistic regressions. There were significantly negative associations between abnormal PDW and WC or WHtR for both sexes (ptrend<0.001 for all, as well as abnormal MPV and WC or WHtR among female participants (ptrend<0.05 for all. In the highest BMI groups, only females with low MPV or PDW were at greater risk for having low MPV (OR=1.33, 95% CI=1.10, 1.62 ptrend<0.001 or PDW (OR=1.34, 95% CI=1.14, 1.58, ptrend<0.001 than those who had low MPV or PDW in the corresponding lowest BMI group. The change of PDW seems more sensitive than MPV to oxidative stress and hypoxia. Associations between reduced PDW and MPV values and WC, WHtR and BMI values in Chinese female adults may help us to further investigate early changes in human body.

  18. Mean Platelet Volume and Platelet Immunofluorescence as Indicators of Platelet Compatibility.

    Science.gov (United States)

    1983-02-23

    2.5 ml of 1.2% EDTA in 0.9% NaCl. The platelet- rich plasm (PRP) was isolated by centrifugation at 280 X g for 5 mimmter. The PRP from all the blood...samples was pooled, and the platelets were concentrated by cpntrifugation at 1000 X g for 10 minutes. The platelet- poor plasma (PPP) was removed and the...to -6.4% 2 shrinking 18. TABLE 2 .60A PLATLET _RLUME OF A+ OR 0+ DONOR PLATELETS TREATED WITH EITHER &U,&06OS S O SRUMNFRN AN AOIMMUNIZED TR

  19. Effects of cancer on platelets.

    Science.gov (United States)

    van Es, Nick; Sturk, Auguste; Middeldorp, Saskia; Nieuwland, Rienk

    2014-06-01

    The main function of circulating platelets is to stop bleeding upon vascular injury by the formation of a hemostatic plug. The presence of cancer results in numerical and functional abnormalities of platelets. Thrombocytosis is commonly observed in cancer patients and is associated with decreased survival. Conversely, thrombocytopenia has been shown to have antimetastatic effects in experimental models. Tumor cells also can induce changes in the platelet activation status, both in direct and indirect manners. Direct tumor cell-induced platelet aggregation enables the formation of a cloak of aggregated platelets around circulating tumor cells (CTCs) that shields them from attacks by the immune system and facilitates metastasis to distant sites. Cancer also can induce platelet activation in various indirect ways. Tumor cells shed small extracellular vesicles that expose the transmembrane protein tissue factor (TF)--the initiator of the extrinsic coagulation cascade. The abundant presence of TF in the circulation of cancer patients can result in local generation of thrombin, the most potent platelet activator. Another pathway of indirect platelet activation is by increased formation of neutrophil extracellular traps in the presence of tumor-secreted granulocyte colony-stimulating factor (G-CSF). Last, tumor cells may regulate the selective secretion of angiogenic proteins from platelet granules, which enables the tumor to stimulate and stabilize the immature neovasculature in the tumor environment. Since there is little doubt that the cancer-induced platelet alterations are beneficial to tumor growth and dissemination, it could be worthwhile to intervene in the underlying mechanisms for anticancer purposes. Antiplatelet and anticoagulant agents that inhibit platelet activation and thrombin generation can potentially slow cancer progression, although the clinical evidence thus far is not unequivocal. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Postprandial platelet aggregation: effects of different meals and glycemic index.

    Science.gov (United States)

    Ahuja, K D K; Thomas, G A; Adams, M J; Ball, M J

    2012-06-01

    Hyperglycaemia is associated with increased platelet aggregation that increases the risk of thrombosis in people with type-2 diabetes and cardiovascular disease. Low glycemic index (GI) meals high in carbohydrate or moderately high in protein have been shown to acutely reduce postprandial excursions of plasma glucose and insulin compared with high carbohydrate high GI meals. However, it is not known whether these differences in glucose and insulin profile also impact on postprandial platelet aggregation. This study aimed to investigate the acute effects of three iso-energetic meals, on measures of postprandial platelet aggregation, in healthy individuals. A randomised cross-over study compared the acute effects of a high GI high carbohydrate (HGI-HC), a low GI high carbohydrate (LGI-HC) and a low GI moderately high in protein and fat (LGI-MPF) meal on postprandial platelet aggregation, glucose, insulin and triglyceride concentrations. Comparisons were made at fasting, 60 and 120 min postprandially. A total of 32 volunteers (mean ± s.d.; age 59.9 ± 11.7 years, BMI 27.1 ± 3.7 kg/m(2)) participated in the study. Results showed significant reductions in maximum platelet aggregation postprandially with nonsignificant differences (all P > 0.29) between the three meals. Glucose and insulin were significantly (both P 0.25) between the three test meals. In healthy individuals platelet aggregation is reduced postprandially but this decrease is similar between meals of different GI that induce different glucose and insulin responses.

  1. Platelet Rich Plasma in Periodontal Therapy

    National Research Council Canada - National Science Library

    S Sathya Priya Eshwar; Dhayanand John Victor; S Sangeetha; PSG Prakash

    2017-01-01

    Keywords: Growth factors, Platelet concentrates, Platelet Rich Plasma, Regenerative medicine, Tissue engineering Introduction The goal of periodontal therapy is to improve periodontal health and thereby...

  2. Silicon-carbide coated coronary stents have low platelet and leukocyte adhesion during platelet activation

    NARCIS (Netherlands)

    Monnink, SHJ; van Boven, AJ; Tigchelaar, [No Value; de Kam, PJ; Crijns, HJGM; van Oeveren, W

    Background: Stent thrombosis and restenosis are of great clinical significance. We constructed a closed loop in vitro heparinized whole human blood circulation model for testing hemocompatibility of coronary stents, This model allows evaluation of human blood activation by blood-stent interaction in

  3. Fast rotating atherectomy catheter tip inhibits platelet aggregation and ATP release: a study using platelet-rich plasma.

    Science.gov (United States)

    Gehani, A A; Latif, A B; Rees, M R

    1998-10-01

    The interaction of atherectomy devices with the arterial wall is the focus of many studies, but their effect on the surrounding blood is largely unknown. This is a detailed investigation on the effects of a rotational atherectomy device with a fast rotating tip on platelet structure and function. Platelet-rich plasma (PRP) was obtained from six volunteers, divided into 5 mL samples, and subjected to the atherectomy tip rotating at 20, 40, or 80 thousand rpm for 30 or 60 seconds. Platelet aggregation to collagen or adenosine diphosphate (ADP) was obtained in all samples by means of a dual-chamber optical aggregometer. The fast rotating catheter tip caused marked inhibition of platelet aggregation to both collagen and ADP. The maximum extent of aggregation was reduced from 85% +/-2.8 in control to 46% +/-4.8 with collagen (pinvestigation.

  4. Quantitation of thrombogenicity of hemodialyzer with technetium-99m and indium-111 labeled platelets

    Energy Technology Data Exchange (ETDEWEB)

    Dewanjee, M.K.; Kapadvanjwala, Mansoor; Ruzius, Kees; Serafini, A.N.; Zilleruelo, G.E.; Sfakianakis, G.N. (Miami Univ., FL (United States). School of Medicine Althin CD-Medical Inc., Miami Lakes, FL (United States))

    1993-07-01

    The platelet thromobogenicity of a hemodialyzer was quantified with [sup 99m]Tc- and [sup 111]In-labeled platelets. The platelets collected from blood of Beagle dogs, Yorkshire pigs and human volunteers were labeled with [sup 111]in-tropolone (detergent-free) and [sup 99m]Tc-HMPAO. Hemodialysis was performed with a hollow-fiber dialyzer (HFD) in a flow-loop, the temperature of which was maintained at 37[sup o]C, with flow-rates of 7, 150 and 270 mL/min; after dialysis, the HFD radioactivity was measured with an ionization chamber and imaged with a [gamma]-camera. The radioactivity of samples of hollow-fibers taken from the top, middle and bottom of the dialyzer was determined with a [gamma]-counter. The mean values of hemodialyzer-adherent platelet radioactivity were calculated for both radionuclides. The canine platelets were found to be more thrombogenic than porcine and human platelets. The adhesivity of porcine platelets to the biomaterial (cellulose-acetate) of the dialyzer approximated that of human platelets. The [sup 99m]Tc label underestimated the thrombus formation (P < 0.01 ). The dynamic processes of thrombosis and embolization from the hemodialyzer resulted in the large standard deviations around the mean values of the adherent thrombus. In spite of this limitation of the dynamic pathology, the quantitation of comparative throbogenicity with [sup 111]In- and [sup 99m]Tc-labeled platelets suggests that both radionuclides could be used for measurement of device-induced thrombogenicity and may provide an estimation of prosthesis-induced thrombogenicity of human platelets from animal studies. (Author).

  5. Glaucocalyxin A inhibits platelet activation and thrombus formation preferentially via GPVI signaling pathway.

    Directory of Open Access Journals (Sweden)

    Wei Li

    Full Text Available Platelets play a pivotal role in atherothrombosis and the antiplatelet agents have been proved to be useful in preventing onset of acute clinical events including myocardial infarction and stroke. Increasing number of natural compounds has been identified to be potential antiplatelet agents. Here we report the antiplatelet effect of glaucocalyxin A (GLA, an ent-diterpenoid that we isolated and purified from the aerial parts of Rabdosia japonica (Burm. f. var. glaucocalyx (Maxim. Hara, and investigate the molecular mechanisms by which GLA inhibits platelet activation and thrombus formation. The effect of GLA on platelet activation was measured using platelets freshly isolated from peripheral blood of healthy donors. Results showed that pretreatment of human platelets with lower concentrations of GLA (0.01 μg/ml, 0.1 μg/ml significantly inhibited platelet aggregation induced by collagen (P<0.001 and CRP (P<0.01, a synthetic GPVI ligand, but not by ADP and U46619. Accordingly, GLA inhibited collagen-stimulated tyrosine phosphorylation of Syk, LAT, and phospholipase Cγ2, the signaling events in collagen receptor GPⅥ pathway. GLA also inhibited platelet p-selectin secretion and integrin activation by convulxin, a GPVI selective ligand. Additionally, GLA was found to inhibit low-dose thrombin-induced platelet activation. Using a flow chamber device, GLA was found to attenuate platelet adhesion on collagen surfaces in high shear condition. In vivo studies showed that GLA administration increased the time for complete occlusion upon vascular injury in mice, but did not extend tail-bleeding time when mice were administered with relatively lower doses of GLA. Therefore, the present results provide the molecular basis for the inhibiti