WorldWideScience

Sample records for reduce icpp high-level

  1. Scoping studies to reduce ICPP high-level radioactive waste volumes for final disposal

    International Nuclear Information System (INIS)

    Knecht, D.A.; Berreth, J.R.; Chipman, N.A.; Cole, H.S.; Geczi, L.S.; Kerr, W.B.; Staples, B.A.

    1985-08-01

    This report presents the results of scoping studies carried out to determine the feasibility of the following candidate options to reduce high-level waste volume: (1) low-fluoride, low-volume glass, (2) glass-ceramic and ceramic, (3) Modified Zirflex, (4) inerts removal by neutralization, and (5) modified Fluorinel processes. The results of the scoping studies show that the glass-ceramic/ceramic waste forms and neutralization process with potential HLW volume reductions ranging from 60 to 80% appear feasible, based on laboratory-scale tests. The presently used Fluorinel process modified by reducing HF usage also appears to be feasible and could result in up to a 10% potential volume reduction. If the current process start-up tests verify the practicality, reduced HF usage will be implemented. The low-volume glass and Modified Zirflex processes may also be feasible, based on laboratory tests, but would require significantly more process development and/or modifications and could result in only a 20 to 30% potential volume reduction. Based on these scoping studies, it is recommended that (1) the glass-ceramic/ceramic and neutralization processes be developed further, (2) reduced HF use for the Modified Fluorinel process be implemented as soon as practical and other options reducing chemical usage for criticality control be evaluated, (3) basic development for the glass process be continued as a back-up technology, and (4) laboratory-scale radioactive fuel dissolution testing for the Modified Zirflex process be completed with further process development discontinued unless needed in the future

  2. Analysis of environmental effects from disposal of solidified ICPP high-level wastes

    International Nuclear Information System (INIS)

    Chipman, N.A.; Simpson, G.G.; Lawroski, H.; Rodger, W.A.; Frendberg, R.L.

    1979-01-01

    This work is part of a comprehensive study to assess possible environmental impacts from six different options for managing high-level defense wastes generated at the ICPP. Only radiological consequences are considered in this report; population doses to those within 80 km of ICPP were estimated for time periods up to 100 million years. The population dose to future generations from any option is insignificant compared with that from natural background radiation: less than 1 cancer death in 1,000 years compared with 20,000 cancer deaths from natural background radiation. 16 tables

  3. Durability, mechanical, and thermal properties of experimental glass-ceramic forms for immobilizing ICPP high level waste

    International Nuclear Information System (INIS)

    Vinjamuri, K.

    1990-01-01

    The high-level liquid waste generated at the Idaho Chemical Processing Plant (ICPP) is routinely solidified into granular calcined high-level waste (HLW) and stored onsite. Research is being conducted at the ICPP on methods of immobilizing the HLW, including developing a durable glass-ceramic form which has the potential to significantly reduce the final waste volume by up to 60% compared to a glass form. Simulated, pilot plant, non-radioactive, calcines similar to the composition of the calcined HLW and glass forming additives are used to produce experimental glass-ceramic forms. The objective of the research reported in this paper is to study the impact of ground calcine particle size on durability and mechanical and thermal properties of experimental glass-ceramic forms

  4. Pyrochemical separation of radioactive components from inert materials in ICPP high-level calcined waste

    International Nuclear Information System (INIS)

    Del Debbio, J.A.; Nelson, L.O.; Todd, T.A.

    1995-05-01

    Since 1963, calcination of aqueous wastes from reprocessing of DOE-owned spent nuclear fuels has resulted in the accumulation of approximately 3800 m 3 of high-level waste (HLW) at the Idaho Chemical Processing Plant (ICPP). The waste is in the form of a granular solid called calcine and is stored on site in stainless steel bins which are encased in concrete. Due to the leachability of 137 Cs and 90 Sr and possibly other radioactive components, the calcine is not suitable for final disposal. Hence, a process to immobilize calcine in glass is being developed. Since radioactive components represent less than 1 wt % of the calcine, separation of actinides and fission products from inert components is being considered to reduce the volume of HLW requiring final disposal. Current estimates indicate that compared to direct vitrification, a volume reduction factor of 10 could result in significant cost savings. Aqueous processes, which involve calcine dissolution in nitric acid followed by separation of actinide and fission products by solvent extraction and ion exchange methods, are being developed. Pyrochemical separation methods, which generate small volumes of aqueous wastes and do not require calcine dissolution, have been evaluated as alternatives to aqueous processes. This report describes three proposed pyrochemical flowsheets and presents the results of experimental studies conducted to evaluate their feasibility. The information presented is a consolidation of three reports, which should be consulted for experimental details

  5. Preparation of plutonium waste forms with ICPP calcined high-level waste

    Energy Technology Data Exchange (ETDEWEB)

    Staples, B.A.; Knecht, D.A. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States); O`Holleran, T.P. [Argonne National Lab.-West, Idaho Falls, ID (United States)] [and others

    1997-05-01

    Glass and glass-ceramic forms developed for the immobilization of calcined high-level wastes generated by Idaho Chemical Processing Plant (ICPP) fuel reprocessing activities have been investigated for ability to immobilize plutonium and to simultaneously incorporate calcined waste as an anti-proliferation barrier. Within the forms investigated, crystallization of host phases result in an increased loading of plutonium as well as its incorporation into potentially more durable phases than the glass. The host phases were initially formed and characterized with cerium (Ce{sup +4}) as a surrogate for plutonium (Pu{sup +4}) and samarium as a neutron absorber for criticality control. Verification of the surrogate testing results were then performed replacing cerium with plutonium. All testing was performed with surrogate calcined high-level waste. The results of these tests indicated that a potentially useful host phase, based on zirconia, can be formed either by devitrification or solid state reaction in the glass studied. This phase incorporates plutonium as well as samarium and the calcined waste becomes part of the matrix. Its ease of formation makes it potentially useful in excess plutonium dispositioning. Other durable host phases for plutonium and samarium, including zirconolite and zircon have been formed from zirconia or alumina calcine through cold press-sintering techniques and hot isostatic pressing. Host phase formation experiments conducted through vitrification or by cold press-sintering techniques are described and the results discussed. Recommendations are given for future work that extends the results of this study.

  6. Preparation of plutonium waste forms with ICPP calcined high-level waste

    International Nuclear Information System (INIS)

    Staples, B.A.; Knecht, D.A.; O'Holleran, T.P.

    1997-05-01

    Glass and glass-ceramic forms developed for the immobilization of calcined high-level wastes generated by Idaho Chemical Processing Plant (ICPP) fuel reprocessing activities have been investigated for ability to immobilize plutonium and to simultaneously incorporate calcined waste as an anti-proliferation barrier. Within the forms investigated, crystallization of host phases result in an increased loading of plutonium as well as its incorporation into potentially more durable phases than the glass. The host phases were initially formed and characterized with cerium (Ce +4 ) as a surrogate for plutonium (Pu +4 ) and samarium as a neutron absorber for criticality control. Verification of the surrogate testing results were then performed replacing cerium with plutonium. All testing was performed with surrogate calcined high-level waste. The results of these tests indicated that a potentially useful host phase, based on zirconia, can be formed either by devitrification or solid state reaction in the glass studied. This phase incorporates plutonium as well as samarium and the calcined waste becomes part of the matrix. Its ease of formation makes it potentially useful in excess plutonium dispositioning. Other durable host phases for plutonium and samarium, including zirconolite and zircon have been formed from zirconia or alumina calcine through cold press-sintering techniques and hot isostatic pressing. Host phase formation experiments conducted through vitrification or by cold press-sintering techniques are described and the results discussed. Recommendations are given for future work that extends the results of this study

  7. Seismic analysis of the ICPP high level liquid waste tanks and vaults

    International Nuclear Information System (INIS)

    Uldrich, E.D.; Malik, L.E.

    1991-01-01

    Two buried, closely spaced, reinforced concrete vaults founded on base rock were evaluated for gravity and safe shutdown earthquake loads. These vaults enclose steel tanks used to store high level radioactive liquid waste. Detailed 3-dimensional finite element models were used for state-of-the-art structure-soil-structure interaction (SSSI) analyses. Three soil dynamic property profiles were used to address soil variability. Vault accelerations are not significantly affected by the variability of soil dynamic properties. Lower bound soil properties yield maximum member forces and moments. Demands on the side closer to the other vault due to horizontal motions are lower due to SSSI effects. Combined gravity and seismic demand on the vault force resisting system was calculated. The vaults were qualified, using member capacities based on current design codes

  8. New ICPP portal monitor

    International Nuclear Information System (INIS)

    Georgeson, M.A.; Nichols, C.E.

    1981-04-01

    A large area gas filled proportional-detector portal monitor mounted in a swinging door frame has been designed and developed at the Idaho Chemical Processing Plant (ICPP). This monitor extends the sensitivity and speed of personnel contamination detection to levels equal to or exceeding that obtained using hand-held portable survey techniques. The new monitor has state-of-the-art electronics which result in rapid response, and use statistical principles in the alarm logic to reduce or eliminate spurious alarms. In addition, the evaluation of this instrument indicates that it will detect small enough quantities of U-235 in shielded containers to meet current special nuclear materials (SNM) detection standards. Simultaneous detection of very low level contamination and small quantities of SNM results in a monitor particularly useful for nuclear installations

  9. High level waste (HLW) steam reducing station evaluation

    International Nuclear Information System (INIS)

    Gannon, R.E.

    1993-01-01

    Existing pressure equipment in High Level Waste does not have a documented technical baseline. Based on preliminary reviews, the existing equipment seems to be based on system required capacity instead of system capability. A planned approach to establish a technical baseline began September 1992 and used the Works Management System preventive maintenance schedule. Several issues with relief valves being undersized on steam reducing stations created a need to determine the risk of maintaining the steam in service. An Action Plan was developed to evaluate relief valves that did not have technical baselines and provided a path forward for continued operation. Based on Action Plan WER-HLE-931042, the steam systems will remain in service while the designs are being developed and implemented

  10. ICPP radiological and toxicological sabotage analysis

    International Nuclear Information System (INIS)

    Kubiak, V.R.; Mortensen, F.G.

    1995-01-01

    In June of 1993, the Department of Energy (DOE) issued Notice 5630.3A, open-quotes Protection of Departmental Facilities Against Radiological and Toxicological Sabotage,close quotes which states that all significant radiological and toxicological hazards at Department facilities must be examined for potential sabotage. This analysis has been completed at the Idaho Chemical Processing Plant (ICPP). The ICPP radiological and toxicological hazards include spent government and commercial fuels, Special Nuclear Materials (SNM), high-level liquid wastes, high-level solid wastes, and process and decontamination chemicals. The analysis effort included identification and assessment of quantities of hazardous materials present at the facility; identification and ranking of hazardous material targets; development of worst case scenarios detailing possible sabotage actions and hazard releases; performance of vulnerability assessments using table top and computer methodologies on credible threat targets; evaluation of potential risks to the public, workers, and the environment; evaluation of sabotage risk reduction options; and selection of cost effective prevention and mitigation options

  11. ICPP custom dissolver explosion recovery

    International Nuclear Information System (INIS)

    Demmer, R.; Hawk, R.

    1992-01-01

    This paper discusses the recovery from the February 9, 1991, small scale explosion in a custom processing dissolver at the Idaho Chemical Processing Plant (ICPP) a Department of Energy facility at the Idaho National Engineering Laboratory. The custom processing facility is a limited production area designed to recover unirradiated uranium fuel. A small amount of the nuclear material received and stored at the ICPP is unique and incompatible with the major head end dissolution processes. Custom processing is a small scale dissolution facility for processing these materials in an economical fashion in the CPP-627 hot chemistry laboratory. Two glass dissolvers were contained in a large walk in hood area. Utilities for dissolution and connections to the major ICPP uranium separation facility were provided. The fuel processing operations during this campaign involved dissolving uranium metal, uranium oxides, and uranium/fissium alloy in nitric acid

  12. ICPP water inventory study project summary report

    International Nuclear Information System (INIS)

    Richards, B.T.

    1994-01-01

    The Idaho Chemical Processing Plant (ICPP) Water inventory Study was initiated in September 1993 with the formation of a joint working group consisting of representatives from DOE-ID, State of Idaho INEL Oversight Program, US Geological Survey, and INEL employees to investigate three issues that had been identified by the INEL Oversight Program at ICPP: (1) the water inventory imbalance at ICPP, (2) the source of water infiltrating into the Tank Farm vault sumps, and (3) the source of water providing potential recharge to perched water bodies underlying ICPP. These issues suggested that water was being lost from the ICPP distribution system. The INEL Oversight Program was concerned that the unaccounted for water at ICPP could be spreading contaminants that have been released over the past 40 years of operations of ICPP, possibly to the Snake River Plain Aquifer. This report summarizes the findings of each of the component investigations that were undertaken to resolve each of the three issues. Concerns about the risk of spreading contaminants will be resolved as part of the Remedial Investigation/Feasibility Study being undertaken at ICPP in compliance with the Federal Facility Agreement and Consent Order between DOE-H), EPA, and the State of Idaho. This report will be a key input to that study

  13. Pelleted waste form for high-level ICPP wastes

    International Nuclear Information System (INIS)

    Lamb, K.M.; Priebe, S.J.; Cole, H.S.; Taki, B.D.

    1979-01-01

    Simulated zirconia type calcined waste is pelletized on a 41-cm dia disc pelletizer using 5% bentonite, 2% metakaolin, and 2% boric acid as a solid binder and 7M phosphoric plus 4M nitric acid as a liquid binder. After heat treatment at 800 0 C for 2 hours, the pellets are impact resistant and have a leach resistance of 10 -4 g/cm 2 /day, based on Soxhlet leaching for 100 hours at 95 0 C with distilled water. An integrated pilot plant is being fabricated to verify the process. 1 figure, 4 tables

  14. Pelleted waste form for high-level ICPP wastes

    International Nuclear Information System (INIS)

    Lamb, K.M.; Priebe, S.J.; Cole, H.S.; Taki, B.d.

    1979-01-01

    Simulated zirconia-type calcined waste is pelletized on a 41-cm diameter disc pelletizer using 5% bentonite, 2% metakaolin, and 2% boric acid as a solid binder and 7M phosphoric plus 4M nitric acid as a liquid binder. After heat treatment at 800 0 C for 2 hours the pellets are impact resistant and have a leach resistance of 10 -4 g/cm 2 . day, based on Soxhlet leaching for 100 hours at 95 0 C with distilled water. An integrated pilot plant is being fabricated to verify the process. 1 figure, 4 tables

  15. ICPP water inventory study progress report

    International Nuclear Information System (INIS)

    Richards, B.T.

    1993-05-01

    Recent data from the Idaho Chemical Processing Plant (ICPP) indicate that water is entering the sumps located in the bottom of Tank Firm Vaults in quantities that exceed expected levels. In addition, perched water body(s) exist beneath the northern portion of the ICPP. Questions have been raised concerning the origin of water entering the Tank Farm sumps and the recharge sources for the perched water bodies. Therefore, in an effort to determine the source of water, a project has been initiated to identify the source of water for Tank Farm sumps and the perched water bodies. In addition, an accurate water balance for the ICPP will be developed. The purpose of this report is to present the specific results and conclusions for the ICPP water balance portion of the study. In addition, the status of the other activities being conducted as part of study, along with the associated action plans, is provided

  16. ICPP water inventory study progress report

    Energy Technology Data Exchange (ETDEWEB)

    Richards, B.T.

    1993-05-01

    Recent data from the Idaho Chemical Processing Plant (ICPP) indicate that water is entering the sumps located in the bottom of Tank Firm Vaults in quantities that exceed expected levels. In addition, perched water body(s) exist beneath the northern portion of the ICPP. Questions have been raised concerning the origin of water entering the Tank Farm sumps and the recharge sources for the perched water bodies. Therefore, in an effort to determine the source of water, a project has been initiated to identify the source of water for Tank Farm sumps and the perched water bodies. In addition, an accurate water balance for the ICPP will be developed. The purpose of this report is to present the specific results and conclusions for the ICPP water balance portion of the study. In addition, the status of the other activities being conducted as part of study, along with the associated action plans, is provided.

  17. Analysis of ICPP tank farm infiltration

    International Nuclear Information System (INIS)

    Richards, B.T.

    1993-10-01

    This report addresses water seeping into underground vaults which contain high-level liquid waste (HLLW) storage tanks at the Idaho Chemical Processing Plant (ICPP). Each of the vaults contains from one to three sumps. The original purpose of the sumps was to serve as a backup leak detection system for release of HLLW from the storage tanks. However, water seeps into most of the vaults, filling the sumps, and defeating their purpose as a leak detection system. Leak detection for the HLLW storage tanks is based on measuring the level of liquid inside the tank. The source of water leaking into the vaults was raised as a concern by the State of Idaho INEL Oversight Group because this source could also be leaching contaminants released to soil in the vicinity of the tank farm and transporting contaminants to the aquifer. This report evaluates information concerning patterns of seepage into vault sumps, the chemistry of water in sumps, and water balances for the tank farm to determine the sources of water seeping into the vaults

  18. Reduced interhemispheric interaction in non-autistic individuals with normal but high levels of autism traits.

    Science.gov (United States)

    O'Keefe, Natalie; Lindell, Annukka K

    2013-11-01

    People with autism spectrum disorder (ASD) show superior performance for tasks requiring detail-focused processing. Atypical neural connectivity and reduced interhemispheric communication are posited to underlie this cognitive advantage. Given recent conceptualization of autism as a continuum, we sought to investigate whether people with normal but high levels of autism like traits (AQ) also exhibit reduced hemispheric interaction. Sixty right-handed participants completed the AQ questionnaire (Baron-Cohen, Wheelwright, Skinner, Martin, & Clubley, 2001) and a lateralised letter matching task that assessed unilateral and bilateral performance in response to simple (physical) and complex (identity) matches. Whereas people with low self-rated AQ scores showed a bilateral advantage for the more complex task, indicating normal interhemispheric interaction, people in the high AQ group failed to show a bilateral gain for the computationally demanding stimuli. This finding of disrupted interhemispheric interaction converges with a dimensional conceptualisation of ASD, suggesting that the structural anomalies of ASD extend to non-autistic individuals with high levels of autism traits. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Using electrochemical separation to reduce the volume of high-level nuclear waste

    International Nuclear Information System (INIS)

    Slater, S.A.; Gay, E.C.

    1998-01-01

    Argonne National Laboratory (ANL) has developed an electrochemical separation technique called electrorefining that will treat a variety of metallic spent nuclear fuel and reduce the volume of high-level nuclear waste that requires disposal. As part of that effort, ANL has developed a high throughput electrorefiner (HTER) that has a transport rate approximately three times faster than electrorefiners previously developed at ANL. This higher rate is due to the higher electrode surface area, a shorter transport path, and more efficient mixing, which leads to smaller boundary layers about the electrodes. This higher throughput makes electrorefining an attractive option in treating Department of Energy spent nuclear fuels. Experiments have been done to characterize the HTER, and a simulant metallic fuel has been successfully treated. The HTER design and experimental results is discussed

  20. Snack intake is reduced using an implicit, high-level construal cue.

    Science.gov (United States)

    Price, Menna; Higgs, Suzanne; Lee, Michelle

    2016-08-01

    Priming a high level construal has been shown to enhance self-control and reduce preference for indulgent food. Subtle visual cues have been shown to enhance the effects of a priming procedure. The current study therefore examined the combined impact of construal level and a visual cue reminder on the consumption of energy-dense snacks. A student and community-based adult sample with a wide age and body mass index (BMI) range (N = 176) were randomly assigned to a high or low construal condition in which a novel symbol was embedded. Afterward participants completed a taste test of ad libitum snack foods in the presence or absence of the symbol. The high (vs. the low) construal level prime successfully generated more abstract responses (p snacks in the presence of a visual cue-reminder. This may be a practical technique for reducing overeating and has the potential to be extended to other unhealthy behaviors. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  1. TRUEX partitioning from radioactive ICPP sodium bearing waste

    International Nuclear Information System (INIS)

    Herbst, R.S.; Brewer, K.N.; Tranter, T.J.; Todd, T.A.

    1995-03-01

    The Idaho Chemical Processing Plant (ICPP) located at the Idaho National Engineering Laboratory in Southeast Idaho is currently evaluating several treatment technologies applicable to waste streams generated over several decades of-nuclear fuel reprocessing. Liquid sodium bearing waste (SBW), generated primarily during decontamination activities, is one of the waste streams of interest. The TRansUranic EXtraction (TRUEX) process developed at Argonne National Laboratory is currently being evaluated to separate the actinides from SBW. On a mass basis, the amount of the radioactive species in SBW are low relative to inert matrix components. Thus, the advantage of separations is a dramatic decrease in resulting volumes of high activity waste (HAW) which must be dispositioned. Numerous studies conducted at the ICPP indicate the applicability of the TRUEX process has been demonstrated; however, these studies relied on a simulated SBW surrogate for the real waste. Consequently, a series of batch contacts were performed on samples of radioactive ICPP SBW taken from tank WM-185 to verify that actual waste would behave similarly to the simulated waste. The test results with SBW from tank WM-185 indicate the TRUEX solvent effectively extracts the actinides from the samples of actual waste. Gross alpha radioactivity, attributed predominantly to Pu and Am, was reduced from 3.14E+04 dps/mL to 1.46 dps/mL in three successive batch contacts with fresh TRUEX solvent. This reduction corresponds to a decontamination factor of DF = 20,000 or 99.995% removal of the gross a activity in the feed. The TRUEX solvent also extracted the matrix components Zr, Fe, and Hg to an appreciable extent (D Zr > 10, D Fe ∼ 2, D Hg ∼6). Iron co-extracted with the actinides can be successfully scrubbed from the organic with 0.2 M HNO 3 . Mercury can be selectively partitioned from the actinides with either sodium carbonate or nitric acid (≥ 5 M HNO 3 ) solutions

  2. Potential dispositioning flowsheets for ICPP SNF and wastes

    Energy Technology Data Exchange (ETDEWEB)

    Olson, A.L. [ed.; Anderson, P.A.; Bendixsen, C.L. [and others

    1995-11-01

    The Idaho Chemical Processing Plant (ICPP), located at the Idaho National Laboratory (INEL), has reprocessed irradiated nuclear fuels for the US Department of Energy (DOE) since 1953. This activity resulted mainly in the recovery of uranium and the management of the resulting wastes. The acidic radioactive high-level liquid waste was routinely stored in stainless steel tanks and then calcined to form a dry granular solid. The calcine is stored in stainless steel bins that are housed in underground concrete vaults. In April 1992, the DOE discontinued the practice of reprocessing irradiated nuclear fuels. This decision has left a legacy of 1.8 million gallons of radioactive liquid wastes (1.5 million gallons of radioactive sodium-bearing liquid wastes and 0.3 million gallons of high-level liquid waste), 3800 cubic meters of calcine waste, and 289 metric tons of heavy metal within unprocessed spent nuclear fuel (SNF) left in inventory at the ICPP. The nation`s radioactive waste policy has been established by the Nuclear Waste Policy Act (NWPA), which requires the final disposal of SNF and radioactive waste in accordance with US Environmental Protection Agency (EPA) and Nuclear Regulatory Commission (NRC) standards. In accordance with these regulations and other legal agreements between the State of Idaho and the DOE, the DOE must, among other requirements, (1) complete a final Environmental Impact Statement by April 30, 1995, (2) evaluate and test sodium-bearing waste pre-treatment technologies, (3) select the sodium-bearing and calcine waste pre-treatment technology, if necessary, by June 1, 1995, and (4) select a technology for converting calcined waste into an appropriate disposal form by June 1, 1995.

  3. Potential dispositioning flowsheets for ICPP SNF and wastes

    International Nuclear Information System (INIS)

    Olson, A.L.; Anderson, P.A.; Bendixsen, C.L.

    1995-11-01

    The Idaho Chemical Processing Plant (ICPP), located at the Idaho National Laboratory (INEL), has reprocessed irradiated nuclear fuels for the US Department of Energy (DOE) since 1953. This activity resulted mainly in the recovery of uranium and the management of the resulting wastes. The acidic radioactive high-level liquid waste was routinely stored in stainless steel tanks and then calcined to form a dry granular solid. The calcine is stored in stainless steel bins that are housed in underground concrete vaults. In April 1992, the DOE discontinued the practice of reprocessing irradiated nuclear fuels. This decision has left a legacy of 1.8 million gallons of radioactive liquid wastes (1.5 million gallons of radioactive sodium-bearing liquid wastes and 0.3 million gallons of high-level liquid waste), 3800 cubic meters of calcine waste, and 289 metric tons of heavy metal within unprocessed spent nuclear fuel (SNF) left in inventory at the ICPP. The nation's radioactive waste policy has been established by the Nuclear Waste Policy Act (NWPA), which requires the final disposal of SNF and radioactive waste in accordance with US Environmental Protection Agency (EPA) and Nuclear Regulatory Commission (NRC) standards. In accordance with these regulations and other legal agreements between the State of Idaho and the DOE, the DOE must, among other requirements, (1) complete a final Environmental Impact Statement by April 30, 1995, (2) evaluate and test sodium-bearing waste pre-treatment technologies, (3) select the sodium-bearing and calcine waste pre-treatment technology, if necessary, by June 1, 1995, and (4) select a technology for converting calcined waste into an appropriate disposal form by June 1, 1995

  4. Exposure to organic solvents used in dry cleaning reduces low and high level visual function.

    Directory of Open Access Journals (Sweden)

    Ingrid Astrid Jiménez Barbosa

    significantly higher and almost double than that obtained from non dry-cleaners. However, reaction time performance on both parallel and serial visual search was not different between dry cleaners and non dry-cleaners.Exposure to occupational levels of organic solvents is associated with neurotoxicity which is in turn associated with both low level deficits (such as the perception of contrast and discrimination of colour and high level visual deficits such as the perception of global form and motion, but not visual search performance. The latter finding indicates that the deficits in visual function are unlikely to be due to changes in general cognitive performance.

  5. Analysis of high-level radioactive slurries as a method to reduce DWPF turnaround times

    International Nuclear Information System (INIS)

    Coleman, C.J.; Bibler, N.E.; Ferrara, D.M.; Hay, M.S.

    1996-01-01

    Analysis of Defense Waste Processing Facility (DWPF) samples as slurries rather than as dried or vitrified samples is an effective way to reduce sample turnaround times. Slurries can be dissolved with a mixture of concentrated acids to yield solutions for elemental analysis by inductively coupled plasma-atomic emission spectroscopy (ICP-AES). Slurry analyses can be performed in eight hours, whereas analyses of vitrified samples require up to 40 hours to complete. Analyses of melter feed samples consisting of the DWPF borosilicate frit and either simulated or actual DWPF radioactive sludge were typically within a range of 3--5% of the predicted value based on the relative amounts of sludge and frit added to the slurry. The results indicate that the slurry analysis approach yields analytical accuracy and precision competitive with those obtained from analyses of vitrified samples. Slurry analyses offer a viable alternative to analyses of solid samples as a simple way to reduce analytical turnaround times

  6. REDUCING THE IMPACT OF RADIATION FACTORS IN AREAS WITH HIGH LEVEL OF RISK

    Directory of Open Access Journals (Sweden)

    D. A. Zaredinov

    2015-01-01

    Full Text Available The article is devoted to the modern problems of radioecology. The study reveals the problems of radioecological situation in some regions of the Republic of Uzbekistan. The main attention of the authors is paid to the ecologically hazardous objects in the uranium mining industry. The characteristics of wastes from uranium mining and stages of development of the mining industry are described. The historical background of the accumulation of the wastes in dumps, the ore-bearing rocks, and other off-balance ores is given. The practical experience and directions radio-ecological safety are generalized, achieving improvements of the environmental quality in areas with high risk. In conclusion, the authors recommend carrying out some measures to reduce an impact of the radiation factor on human health and to stabilize the radioecological situation at the studied regions.

  7. Reducing the likelihood of future human activities that could affect geologic high-level waste repositories

    International Nuclear Information System (INIS)

    1984-05-01

    The disposal of radioactive wastes in deep geologic formations provides a means of isolating the waste from people until the radioactivity has decayed to safe levels. However, isolating people from the wastes is a different problem, since we do not know what the future condition of society will be. The Human Interference Task Force was convened by the US Department of Energy to determine whether reasonable means exist (or could be developed) to reduce the likelihood of future human unintentionally intruding on radioactive waste isolation systems. The task force concluded that significant reductions in the likelihood of human interference could be achieved, for perhaps thousands of years into the future, if appropriate steps are taken to communicate the existence of the repository. Consequently, for two years the task force directed most of its study toward the area of long-term communication. Methods are discussed for achieving long-term communication by using permanent markers and widely disseminated records, with various steps taken to provide multiple levels of protection against loss, destruction, and major language/societal changes. Also developed is the concept of a universal symbol to denote Caution - Biohazardous Waste Buried Here. If used for the thousands of non-radioactive biohazardous waste sites in this country alone, a symbol could transcend generations and language changes, thereby vastly improving the likelihood of successful isolation of all buried biohazardous wastes

  8. Reducing the likelihood of future human activities that could affect geologic high-level waste repositories

    Energy Technology Data Exchange (ETDEWEB)

    1984-05-01

    The disposal of radioactive wastes in deep geologic formations provides a means of isolating the waste from people until the radioactivity has decayed to safe levels. However, isolating people from the wastes is a different problem, since we do not know what the future condition of society will be. The Human Interference Task Force was convened by the US Department of Energy to determine whether reasonable means exist (or could be developed) to reduce the likelihood of future human unintentionally intruding on radioactive waste isolation systems. The task force concluded that significant reductions in the likelihood of human interference could be achieved, for perhaps thousands of years into the future, if appropriate steps are taken to communicate the existence of the repository. Consequently, for two years the task force directed most of its study toward the area of long-term communication. Methods are discussed for achieving long-term communication by using permanent markers and widely disseminated records, with various steps taken to provide multiple levels of protection against loss, destruction, and major language/societal changes. Also developed is the concept of a universal symbol to denote Caution - Biohazardous Waste Buried Here. If used for the thousands of non-radioactive biohazardous waste sites in this country alone, a symbol could transcend generations and language changes, thereby vastly improving the likelihood of successful isolation of all buried biohazardous wastes.

  9. ICPP [Idaho Chemical Processing Plant] environmental monitoring report, CY-1988

    International Nuclear Information System (INIS)

    Krivanek, K.R.

    1989-08-01

    Summarized in this report are the data collected through Environmental Monitoring programs conducted at the Idaho Chemical Processing Plant (ICPP) by the Environmental Engineering (EE) Section of the Nuclear and Industrial Safety (N and IS) Department. The ICPP is responsible for complying with all applicable Federal, State, Local and DOE Rules, Regulations and Orders. Radiological effluent and emissions are regulated by the DOE. The Environmental Protection Agency (EPA) regulates all nonradiological waste resulting from the ICPP operations including all airborne, liquid, and solid waste. The EE subsection completed a Quality Assurance (QA) Plan for Environmental Monitoring activities during the third quarter of 1986. QA activities have resulted in the ICPP's implementation of the Environmental Protection Agency rules and guidelines pertaining to the collection, analyses, and reporting of environmentally related samples. Where no approved methods for analyses existed for radionuclides, currently used methods were submitted for the EPA approval. 33 figs., 14 tabs

  10. Chemical analysis quality assurance at the ICPP

    International Nuclear Information System (INIS)

    Hand, R.L.

    1990-01-01

    This document discusses the chemical analysis quality assurance program at the ICPP which involves records management, analytical methods quality control, analysis procedures and training and qualification. Since 1979, the major portion of the quality assurance program has been implemented on a central analytical computer system. The individual features provided by the system are storage, retrieval, and search capabilities over all general request and sample analysis information, automatic method selection for all process streams, automation of all method calculations, automatic assignment of bias and precision estimates at all analysis levels, with-method-use requalification, untrained or unqualified analyst method lockout, statistical testing of all process stream results for replicate agreement, automatic testing of process results against pre- established operating, safety, or failure limits at varying confidence levels, and automatic transfer and report of all analysis data plus all statistical testing to the Production Department

  11. High levels of vitamin D in relation to reduced risk of schizophrenia with elevated C-reactive protein.

    Science.gov (United States)

    Zhu, Dao-min; Liu, Yong; Zhang, Ai-guo; Chu, Zhao-xue; Wu, Qing; Li, Hui; Ge, Jin-fang; Dong, Yi; Zhu, Peng

    2015-08-30

    There is growing evidence on the novel role of vitamin D in reducing inflammation. This study aimed to examine the hypothesis that vitamin D is inversely associated with C-reactive protein (CRP) in patients with schizophrenia, and high levels of vitamin D may be linked to reduced risk of schizophrenia with elevated CRP. Ninety-three patients with schizophrenia and 93 family-matched controls were recruited in this cross-sectional study. Plasma concentrations of CRP and 25-hydroxyvitamin D [25(OH)D] were measured using commercial kits. Information about demographic characteristics and clinic data were obtained by interviews or medical records. Mean levels of CRP and 25(OH)D were 43.3% higher and 26.7% lower for patients compared to controls, respectively. 25(OH)D were inversely associated with CRP in the patients, but not in the controls. The proportions of patients significantly increased with increasing quartiles of CRP, while significantly decreased with increasing quartiles of 25(OH)D. Among individuals with high CRP, participants with high 25(OH)D have significantly lower proportion (adjusted OR =0.217, 95% CI 0.063, 0.751) of schizophrenia compared to those with low 25(OH)D. The evidence suggested that high levels of vitamin D may be linked to reduced risk of schizophrenia with elevated CRP. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  12. Major features of immunesenescence, including reduced thymic output, are ameliorated by high levels of physical activity in adulthood.

    Science.gov (United States)

    Duggal, Niharika Arora; Pollock, Ross D; Lazarus, Norman R; Harridge, Stephen; Lord, Janet M

    2018-04-01

    It is widely accepted that aging is accompanied by remodelling of the immune system including thymic atrophy and increased frequency of senescent T cells, leading to immune compromise. However, physical activity, which influences immunity but declines dramatically with age, is not considered in this literature. We assessed immune profiles in 125 adults (55-79 years) who had maintained a high level of physical activity (cycling) for much of their adult lives, 75 age-matched older adults and 55 young adults not involved in regular exercise. The frequency of naïve T cells and recent thymic emigrants (RTE) were both higher in cyclists compared with inactive elders, and RTE frequency in cyclists was no different to young adults. Compared with their less active counterparts, the cyclists had significantly higher serum levels of the thymoprotective cytokine IL-7 and lower IL-6, which promotes thymic atrophy. Cyclists also showed additional evidence of reduced immunesenescence, namely lower Th17 polarization and higher B regulatory cell frequency than inactive elders. Physical activity did not protect against all aspects of immunesenescence: CD28 -ve CD57 +ve senescent CD8 T-cell frequency did not differ between cyclists and inactive elders. We conclude that many features of immunesenescence may be driven by reduced physical activity with age. © 2018 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  13. ICPP tank farm closure study. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Spaulding, B.C.; Gavalya, R.A.; Dahlmeir, M.M. [and others

    1998-02-01

    The disposition of INEEL radioactive wastes is now under a Settlement Agreement between the DOE and the State of Idaho. The Settlement Agreement requires that existing liquid sodium bearing waste (SBW), and other liquid waste inventories be treated by December 31, 2012. This agreement also requires that all HLW, including calcined waste, be disposed or made road ready to ship from the INEEL by 2035. Sodium bearing waste (SBW) is produced from decontamination operations and HLW from reprocessing of SNF. SBW and HLW are radioactive and hazardous mixed waste; the radioactive constituents are regulated by DOE and the hazardous constituents are regulated by the Resource Conservation and Recovery Act (RCRA). Calcined waste, a dry granular material, is produced in the New Waste Calcining Facility (NWCF). Two primary waste tank storage locations exist at the ICPP: Tank Farm Facility (TFF) and the Calcined Solids Storage Facility (CSSF). The TFF has the following underground storage tanks: four 18,400-gallon tanks (WM 100-102, WL 101); four 30,000-gallon tanks (WM 103-106); and eleven 300,000+ gallon tanks. This includes nine 300,000-gallon tanks (WM 182-190) and two 318,000 gallon tanks (WM 180-181). This study analyzes the closure and subsequent use of the eleven 300,000+ gallon tanks. The 18,400 and 30,000-gallon tanks were not included in the work scope and will be closed as a separate activity. This study was conducted to support the HLW Environmental Impact Statement (EIS) waste separations options and addresses closure of the 300,000-gallon liquid waste storage tanks and subsequent tank void uses. A figure provides a diagram estimating how the TFF could be used as part of the separations options. Other possible TFF uses are also discussed in this study.

  14. ICPP tank farm closure study. Volume 1

    International Nuclear Information System (INIS)

    Spaulding, B.C.; Gavalya, R.A.; Dahlmeir, M.M.

    1998-02-01

    The disposition of INEEL radioactive wastes is now under a Settlement Agreement between the DOE and the State of Idaho. The Settlement Agreement requires that existing liquid sodium bearing waste (SBW), and other liquid waste inventories be treated by December 31, 2012. This agreement also requires that all HLW, including calcined waste, be disposed or made road ready to ship from the INEEL by 2035. Sodium bearing waste (SBW) is produced from decontamination operations and HLW from reprocessing of SNF. SBW and HLW are radioactive and hazardous mixed waste; the radioactive constituents are regulated by DOE and the hazardous constituents are regulated by the Resource Conservation and Recovery Act (RCRA). Calcined waste, a dry granular material, is produced in the New Waste Calcining Facility (NWCF). Two primary waste tank storage locations exist at the ICPP: Tank Farm Facility (TFF) and the Calcined Solids Storage Facility (CSSF). The TFF has the following underground storage tanks: four 18,400-gallon tanks (WM 100-102, WL 101); four 30,000-gallon tanks (WM 103-106); and eleven 300,000+ gallon tanks. This includes nine 300,000-gallon tanks (WM 182-190) and two 318,000 gallon tanks (WM 180-181). This study analyzes the closure and subsequent use of the eleven 300,000+ gallon tanks. The 18,400 and 30,000-gallon tanks were not included in the work scope and will be closed as a separate activity. This study was conducted to support the HLW Environmental Impact Statement (EIS) waste separations options and addresses closure of the 300,000-gallon liquid waste storage tanks and subsequent tank void uses. A figure provides a diagram estimating how the TFF could be used as part of the separations options. Other possible TFF uses are also discussed in this study

  15. Polyphase ceramic and glass-ceramic forms for immobilizing ICPP high-level nuclear waste

    International Nuclear Information System (INIS)

    Harker, A.B.; Flintoff, J.F.

    1984-01-01

    Polyphase ceramic and glass-ceramic forms have been consolidated from simulated Idaho Chemical Processing Plant wastes by hot isostatic pressing calcined waste and chemical additives by 1000 0 C or less. The ceramic forms can contain over 70 wt% waste with densities ranging from 3.5 to 3.85 g/cm 3 , depending upon the formulation. Major phases are CaF 2 , CaZrTi 207 , CaTiO 3 , monoclinic ZrO 2 , and amorphous intergranular material. The relative fraction of the phases is a function of the chemical additives (TiO 2 , CaO, and SiO 2 ) and consolidation temperature. Zirconolite, the major actinide host, makes the ceramic forms extremely leach resistant for the actinide simulant U 238 . The amorphous phase controls the leach performance for Sr and Cs which is improved by the addition of SiO 2 . Glass-ceramic forms were also consolidated by HIP at waste loadings of 30 to 70 wt% with densities of 2.73 to 3.1 g/cm 3 using Exxon 127 borosilicate glass frit. The glass-ceramic forms contain crystalline CaF 2 , Al 203 , and ZrSi 04 (zircon) in a glass matrix. Natural mineral zircon is a stable host for 4+ valent actinides. 17 references, 3 figures, 5 tables

  16. Pyrochemical processing of Idaho Chemical Processing Plant (ICPP) High Level Waste (HLW) calcine

    International Nuclear Information System (INIS)

    Bronson, M.C.; Ebbinghaus, B.B.; Riley, D.C.; Nelson, L.; Del Debbio, J.

    1994-01-01

    Inertial force damping control by micromanipulator modulation is proposed to suppress the vibrations of a micro/macro-manipulator system. The proposed controller, developed using classical control theory, is added to the existing control system. The proposed controller uses real-time measurements of macro-manipulator flexibility to adjust the motion of the micro manipulator to counteract structural vibrations. Experimental studies using an existing micro/macro flexible link manipulator testbed demonstrate the effectiveness of the proposed approach to suppression of vibrations in the macro/micro-manipulator system using micromanipulator-based inertial active damping control

  17. Increasing Safety and Reducing Environmental Damage Risk from Aging High-Level Radioactive Waste Tanks - 2005 Report

    International Nuclear Information System (INIS)

    Eric D. Steffler; Eric D. Steffler; Mark M. Rashid; Frank A. McClintock; Richard L Williamson; Mili Selimotic

    2005-01-01

    Cracks of various shapes and sizes exist in large high-level waste (HLW) tanks at several DOE sites. There is justifiable concern that these cracks could grow to become unstable causing a substantial release of liquid contaminants to the environment. Accurate prediction of crack growth behavior in the tanks, especially during accident scenarios, is not possible with existing analysis methodologies. This research project responds to this problem by developing an improved ability to predict crack growth in material-structure combinations that are ductile. This new model not only addresses the problem for these tanks, but also has applicability to any crack in any ductile structure. This report summarizes work progress through the fourth quarter of FY-05 (year 1 of a second 3-year funding period)

  18. Fast learning of simple perceptual discriminations reduces brain activation in working memory and in high-level auditory regions.

    Science.gov (United States)

    Daikhin, Luba; Ahissar, Merav

    2015-07-01

    Introducing simple stimulus regularities facilitates learning of both simple and complex tasks. This facilitation may reflect an implicit change in the strategies used to solve the task when successful predictions regarding incoming stimuli can be formed. We studied the modifications in brain activity associated with fast perceptual learning based on regularity detection. We administered a two-tone frequency discrimination task and measured brain activation (fMRI) under two conditions: with and without a repeated reference tone. Although participants could not explicitly tell the difference between these two conditions, the introduced regularity affected both performance and the pattern of brain activation. The "No-Reference" condition induced a larger activation in frontoparietal areas known to be part of the working memory network. However, only the condition with a reference showed fast learning, which was accompanied by a reduction of activity in two regions: the left intraparietal area, involved in stimulus retention, and the posterior superior-temporal area, involved in representing auditory regularities. We propose that this joint reduction reflects a reduction in the need for online storage of the compared tones. We further suggest that this change reflects an implicit strategic shift "backwards" from reliance mainly on working memory networks in the "No-Reference" condition to increased reliance on detected regularities stored in high-level auditory networks.

  19. Low salinity and high-level UV-B radiation reduce single-cell activity in antarctic sea ice bacteria.

    Science.gov (United States)

    Martin, Andrew; Hall, Julie; Ryan, Ken

    2009-12-01

    Experiments simulating the sea ice cycle were conducted by exposing microbes from Antarctic fast ice to saline and irradiance regimens associated with the freeze-thaw process. In contrast to hypersaline conditions (ice formation), the simulated release of bacteria into hyposaline seawater combined with rapid exposure to increased UV-B radiation significantly reduced metabolic activity.

  20. Environmental evaluation of alternatives for long-term management of Defense high-level radioactive wastes at the Idaho Chemical Processing Plant

    Energy Technology Data Exchange (ETDEWEB)

    1982-09-01

    The U.S. Department of Energy (DOE) is considering the selection of a strategy for the long-term management of the defense high-level wastes at the Idaho Chemical Processing Plant (ICPP). This report describes the environmental impacts of alternative strategies. These alternative strategies include leaving the calcine in its present form at the Idaho National Engineering Laboratory (INEL), or retrieving and modifying the calcine to a more durable waste form and disposing of it either at the INEL or in an offsite repository. This report addresses only the alternatives for a program to manage the high-level waste generated at the ICPP. 24 figures, 60 tables.

  1. Environmental evaluation of alternatives for long-term management of Defense high-level radioactive wastes at the Idaho Chemical Processing Plant

    International Nuclear Information System (INIS)

    1982-09-01

    The U.S. Department of Energy (DOE) is considering the selection of a strategy for the long-term management of the defense high-level wastes at the Idaho Chemical Processing Plant (ICPP). This report describes the environmental impacts of alternative strategies. These alternative strategies include leaving the calcine in its present form at the Idaho National Engineering Laboratory (INEL), or retrieving and modifying the calcine to a more durable waste form and disposing of it either at the INEL or in an offsite repository. This report addresses only the alternatives for a program to manage the high-level waste generated at the ICPP. 24 figures, 60 tables

  2. Pyrochemical treatment of Idaho Chemical Processing Plant high-level waste calcine

    International Nuclear Information System (INIS)

    Todd, T.A.; DelDebbio, J.A.; Nelson, L.O.; Sharpsten, M.R.

    1993-01-01

    The Idaho Chemical Processing Plant (ICPP), located at the Idaho National Engineering Laboratory (INEL), has reprocessed irradiated nuclear fuels for the US Department of Energy (DOE) since 1951 to recover uranium, krypton-85, and isolated fission products for interim treatment and immobilization. The acidic radioactive high-level liquid waste (HLLW) is routinely stored in stainless steel tanks and then, since 1963, calcined to form a dry granular solid. The resulting high-level waste (HLW) calcine is stored in seismically hardened stainless steel bins that are housed in underground concrete vaults. A research and development program has been established to determine the feasibility of treating ICPP HLW calcine using pyrochemical technology.This technology is described

  3. ICPP Tank Farm planning through 2012

    International Nuclear Information System (INIS)

    Palmer, W.B.; Millet, C.B.; Staiger, M.D.; Ward, F.S.

    1998-01-01

    Historically, liquid high-level waste (HLW) generated at the Idaho Chemical Processing Plant has been stored in the Tank Farm after which it is calcined with the calcine being stored in stainless steel bins. Following the curtailment of spent nuclear fuel reprocessing in 1992, the HLW treatment methods were re-evaluated to establish a path forward for producing a final waste form from the liquid sodium bearing wastes (SBW) and the HLW calcine. Projections for significant improvements in waste generation, waste blending and evaporation, and calcination were incorporated into the Tank Farm modeling. This optimized modeling shows that all of the SBW can be calcined by the end of 2012 as required by the Idaho Settlement Agreement. This Tank Farm plan discusses the use of each of the eleven HLW tanks and shows that two tanks can be emptied, allowing them to be Resource Conservation and Recovery Act closed by 2006. In addition, it describes the construction of each tank and vault, gives the chemical concentrations of the contents of each tank, based on historical input and some sampling, and discusses the regulatory drivers important to Tank Farm operation. It also discusses new waste generation, the computer model used for the Tank Farm planning, the operating schedule for each tank, and the schedule for when each tank will be empty and closed

  4. High-level iron mitigates fusaricidin-induced membrane damage and reduces membrane fluidity leading to enhanced drug resistance in Bacillus subtilis.

    Science.gov (United States)

    Yu, Wen-Bang; Ye, Bang-Ce

    2016-05-01

    Fusaricidins are a class of cyclic lipopeptide antibiotics that have strong antifungal activities against plant pathogenic fungi and excellent bactericidal activities against Gram-positive bacteria. The mechanism through which fusaricidin exerts its action is not yet entirely clear. To investigate the mode of action of fusaricidin, we determined the physiological and transcriptional responses of Bacillus subtilis to fusaricidin treatment by using a systems-level approach. Our data show that fusaricidin rapidly induced the expression of σ(W) regulon and caused membrane damage in B. subtilis. We further demonstrated that ferric ions play multiple roles in the action of fusaricidin on B. subtilis. Iron deprivation blocked the formation of hydroxyl radical in the cells and significantly inhibited the bactericidal activity of fusaricidin. Conversely, high levels of iron (>2 mM) repressed the expression of BkdR regulon, resulting in a smaller cellular pool of branched-chain precursors for iso- and anteiso-branched fatty acids, which in turn led to a decrease in the proportion of branched-chain fatty acids in the membrane of B. subtilis. This change in membrane composition reduced its bilayer fluidity and increased its resistance to antimicrobial agents. In conclusion, our experiments uncovered some novel interactions and a synergism between cellular iron levels and drug resistance in Gram-positive bacteria. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Westinghouse Idaho Nuclear Company, Inc. (WINCO) CAD activities at the Idaho Chemical Processing Plant (ICPP) (Idaho Engineering Laboratory)

    International Nuclear Information System (INIS)

    Jensen, B.

    1989-01-01

    June 1985 -- The drafting manager obtained approval to implement a cad system at the ICPP. He formed a committee to evaluate the various cad systems and recommend a system that would most benefit the ICPP. A ''PC'' (personal computer) based system using Autocad software was recommended in lieu of the much more expensive main frame based systems

  6. Remote ignitability analysis of high-level radioactive waste

    International Nuclear Information System (INIS)

    Lundholm, C.W.; Morgan, J.M.; Shurtliff, R.M.; Trejo, L.E.

    1992-09-01

    The Idaho Chemical Processing Plant (ICPP), was used to reprocess nuclear fuel from government owned reactors to recover the unused uranium-235. These processes generated highly radioactive liquid wastes which are stored in large underground tanks prior to being calcined into a granular solid. The Resource Conservation and Recovery Act (RCRA) and state/federal clean air statutes require waste characterization of these high level radioactive wastes for regulatory permitting and waste treatment purposes. The determination of the characteristic of ignitability is part of the required analyses prior to calcination and waste treatment. To perform this analysis in a radiologically safe manner, a remoted instrument was needed. The remote ignitability Method and Instrument will meet the 60 deg. C. requirement as prescribed for the ignitability in method 1020 of SW-846. The method for remote use will be equivalent to method 1020 of SW-846

  7. Physical property parameter set for modeling ICPP aqueous wastes with ASPEN electrolyte NRTL model

    International Nuclear Information System (INIS)

    Schindler, R.E.

    1996-09-01

    The aqueous waste evaporators at the Idaho Chemical Processing Plant (ICPP) are being modeled using ASPEN software. The ASPEN software calculates chemical and vapor-liquid equilibria with activity coefficients calculated using the electrolyte Non-Random Two Liquid (NRTL) model for local excess Gibbs free energies of interactions between ions and molecules in solution. The use of the electrolyte NRTL model requires the determination of empirical parameters for the excess Gibbs free energies of the interactions between species in solution. This report covers the development of a set parameters, from literature data, for the use of the electrolyte NRTL model with the major solutes in the ICPP aqueous wastes

  8. Seismic scoping evaluation of high level liquid waste tank vaults at the Idaho Chemical Processing Plant

    International Nuclear Information System (INIS)

    Hashimoto, P.S.; Uldrich, E.D.; McGee, W.D.

    1991-01-01

    A seismic scoping evaluation of buried vaults enclosing high level liquid waste storage tanks at the Idaho Chemical Processing Plant has been performed. The objective of this evaluation was to scope out which of the vaults could be demonstrated to be seismically adequate against the Safe Shutdown Earthquake (SSE). Using approximate analytical methods, earthquake experience data, and engineering judgement, this study determined that one vault configuration would be expected to meet ICPP seismic design criteria, one would not be considered seismically adequate against the SSE, and one could be shown to be seismically adequate against the SSE using nonlinear analysis

  9. Abstracts of 13th International Congress on Plasma Physics (ICPP 2006). Published in 2 volumes

    International Nuclear Information System (INIS)

    Anon

    2006-01-01

    This report contains the presentation on the 13-th International Congress on Plasma Physics (ICPP 2006). Five main topics are covered: fundamental problems of plasma physics; fusion plasmas; plasmas in astrophysics and space physics; plasmas in applications and technologies; complex plasmas

  10. Abstracts of 13th International Congress on Plasma Physics (ICPP 2006). Published in 2 volumes

    Energy Technology Data Exchange (ETDEWEB)

    Anon,

    2006-07-01

    This report contains the presentation on the 13-th International Congress on Plasma Physics (ICPP 2006). Five main topics are covered: fundamental problems of plasma physics; fusion plasmas; plasmas in astrophysics and space physics; plasmas in applications and technologies; complex plasmas.

  11. Web technology in the separation of strontium and cesium from INEL-ICPP radioactive acid waste (WM-185)

    International Nuclear Information System (INIS)

    Bray, L.A.; Brown, G.N.

    1995-01-01

    Strontium and cesium were successfully removed from radioactive acidic waste (WM-185) at the Idaho National Engineering Laboratory, Idaho Chemical Processing Plant (ICPP), with web technology from 3M and IBC Advanced Technologies, Inc. (IBC). A technical team from Pacific Northwest Laboratory, ICPP, 3M and IBC conducted a very successful series of experiments from August 15 through 18, 1994. The ICPP, Remote Analytical Laboratory, Idaho Falls, Idaho, provided the hot cell facilities and staff to complete these milestone experiments. The actual waste experiments duplicated the initial 'cold' simulated waste results and confirmed the selective removal provided by ligand-particle web technology

  12. High-level verification

    CERN Document Server

    Lerner, Sorin; Kundu, Sudipta

    2011-01-01

    Given the growing size and heterogeneity of Systems on Chip (SOC), the design process from initial specification to chip fabrication has become increasingly complex. This growing complexity provides incentive for designers to use high-level languages such as C, SystemC, and SystemVerilog for system-level design. While a major goal of these high-level languages is to enable verification at a higher level of abstraction, allowing early exploration of system-level designs, the focus so far for validation purposes has been on traditional testing techniques such as random testing and scenario-based

  13. General Algorithm (High level)

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. General Algorithm (High level). Iteratively. Use Tightness Property to remove points of P1,..,Pi. Use random sampling to get a Random Sample (of enough points) from the next largest cluster, Pi+1. Use the Random Sampling Procedure to approximate ci+1 using the ...

  14. ALICE High Level Trigger

    CERN Multimedia

    Alt, T

    2013-01-01

    The ALICE High Level Trigger (HLT) is a computing farm designed and build for the real-time, online processing of the raw data produced by the ALICE detectors. Events are fully reconstructed from the raw data, analyzed and compressed. The analysis summary together with the compressed data and a trigger decision is sent to the DAQ. In addition the reconstruction of the events allows for on-line monitoring of physical observables and this information is provided to the Data Quality Monitor (DQM). The HLT can process event rates of up to 2 kHz for proton-proton and 200 Hz for Pb-Pb central collisions.

  15. Idaho Chemical Processing Plant (ICPP) injection well: Operations history and hydrochemical inventory of the waste stream

    International Nuclear Information System (INIS)

    Fromm, J.; McCurry, M.; Hackett, W.; Welhan, J.

    1994-01-01

    Department of Energy (DOE), United States Geological Survey (USGS), and Idaho Chemical Processing Plant (ICPP) documents were searched for information regarding service disposal operations, and the chemical characteristics and volumes of the service waste emplaced in, and above, the Eastern Snake River Plain aquifer (ESRP) from 1953-1992. A summary database has been developed which synthesizes available, but dispersed, information. This assembled data records spatial, volumetric and chemical input patterns which will help establish the initial contaminant water characteristics required in computer modeling, aid in interpreting the monitoring well network hydrochemical information, and contribute to a better understanding of contaminant transport in the aquifer near the ICPP. Gaps and uncertainties in the input record are also identified with respect to time and type. 39 refs., 5 figs., 5 tabs

  16. Evaluation and selection of aqueous-based technology for partitioning radionuclides from ICPP calcine

    International Nuclear Information System (INIS)

    Olson, A.L.; Schulz, W.W.; Burchfield, L.A.; Carlson, C.D.; Swanson, J.L.; Thompson, M.C.

    1993-02-01

    Early in 1993 Westinghouse Idaho Nuclear Company (WINCO) chartered a Panel of Nuclear Separations Experts. The purpose of this Panel was to assist WINCO scientists and engineers in selecting, evaluating, and ranking candidate aqueous-based processes and technologies for potential use in partitioning selected radionuclides from nitric acid solutions of retrieved Idaho Chemical Processing Plant (ICPP) calcine. Radionuclides of interest are all transuranium elements, 90 Sr, 99 Tc, 129 I, and 137 Cs. The six man Panel met for 4 days (February 16--19, 1993) on the campus of the Idaho State University in Pocatello, Idaho. Principal topics addressed included: Available radionuclide removal technology; applicability of separations technology and processes to ICPP calcine; and potential integrated radionuclide partitioning schemes. This report, prepared from contributions from all Panel members, presents a comprehensive account of the proceedings and significant findings of the February, 1993 meeting in Pocatello

  17. Conceptual design report for the ICPP spent nuclear fuel dry storage project

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    The conceptual design is presented for a facility to transfer spent nuclear fuel from shipping casks to dry storage containers, and to safely store those containers at ICPP at INEL. The spent fuels to be handled at the new facility are identified and overall design and operating criteria established. Physical configuration of the facility and the systems used to handle the SNF are described. Detailed cost estimate for design and construction of the facility is presented.

  18. ICPP - a collision probability module for the AUS neutronics code system

    International Nuclear Information System (INIS)

    Robinson, G.S.

    1985-10-01

    The isotropic collision probability program (ICPP) is a module of the AUS neutronics code system which calculates first flight collision probabilities for neutrons in one-dimensional geometries and in clusters of rods. Neutron sources, including scattering, are assumed to be isotropic and to be spatially flat within each mesh interval. The module solves the multigroup collision probability equations for eigenvalue or fixed source problems

  19. Properties of radioactive calcine retrieved from the second calcined solids storage facility at ICPP

    International Nuclear Information System (INIS)

    Staples, B.A.; Pomiak, G.S.; Wade, E.L.

    1979-03-01

    The chemical and physical properties of radioactive alumina and zirconia calcine samples retrieved from the storage bins at ICPP were measured. Chemical properties measured include chemical composition, crystalline structure, and radiochemical composition. The physical properties measured and reported include density, size distribution, relative attrition, solubility in 8 M HNO 3 , thermal stability, and flow characteristics. The chemical and physical properties of the retrieved calcine after the 10 to 12 years of storage are very similar to freshly prepared simulated calcine

  20. High level nuclear wastes

    International Nuclear Information System (INIS)

    Lopez Perez, B.

    1987-01-01

    The transformations involved in the nuclear fuels during the burn-up at the power nuclear reactors for burn-up levels of 33.000 MWd/th are considered. Graphs and data on the radioactivity variation with the cooling time and heat power of the irradiated fuel are presented. Likewise, the cycle of the fuel in light water reactors is presented and the alternatives for the nuclear waste management are discussed. A brief description of the management of the spent fuel as a high level nuclear waste is shown, explaining the reprocessing and giving data about the fission products and their radioactivities, which must be considered on the vitrification processes. On the final storage of the nuclear waste into depth geological burials, both alternatives are coincident. The countries supporting the reprocessing are indicated and the Spanish programm defined in the Plan Energetico Nacional (PEN) is shortly reviewed. (author) 8 figs., 4 tabs

  1. RPython high-level synthesis

    Science.gov (United States)

    Cieszewski, Radoslaw; Linczuk, Maciej

    2016-09-01

    The development of FPGA technology and the increasing complexity of applications in recent decades have forced compilers to move to higher abstraction levels. Compilers interprets an algorithmic description of a desired behavior written in High-Level Languages (HLLs) and translate it to Hardware Description Languages (HDLs). This paper presents a RPython based High-Level synthesis (HLS) compiler. The compiler get the configuration parameters and map RPython program to VHDL. Then, VHDL code can be used to program FPGA chips. In comparison of other technologies usage, FPGAs have the potential to achieve far greater performance than software as a result of omitting the fetch-decode-execute operations of General Purpose Processors (GPUs), and introduce more parallel computation. This can be exploited by utilizing many resources at the same time. Creating parallel algorithms computed with FPGAs in pure HDL is difficult and time consuming. Implementation time can be greatly reduced with High-Level Synthesis compiler. This article describes design methodologies and tools, implementation and first results of created VHDL backend for RPython compiler.

  2. ICPP injection well alternative project, Idaho National Engineering Laboratory. Final report

    International Nuclear Information System (INIS)

    1980-10-01

    The Idaho Chemical Processing Plant (ICPP) portion of the Idaho National Engineering Laboratory (INEL) has been obtaining water needed for its operations from the Snake River aquifer, which occupies the entire region underlying the site. Most of this water has been used for cooling operating equipment, while a small portion has found various process uses. After passing through the ICPP process area, these waters are then returned to the aquifer. A small portion (about 1%) of the returned stream contains measurable amounts of radioactivity derived from the miscellaneous process users. This report and the recommendations contained herein are based upon stream flows projected for 1985 as supplied by DOE for the ICPP. 26 different alternatives for handling cooling water, chemical, and low level radioactive water disposal are examined. These cases are considered from technical, environmental, safety, and economic points of view. The level of detail is sufficient to eliminate non-viable cases, and to identify those which offer improvements over present practice. The Environmental/Safety Risk Factors were evaluated on a qualitative comparison basis only. Before a recommended improvement is incorporated into the waste disposal system, a conceptual design study should be made which would evaluate all those secondary effects and environmental factors that, by the very nature of the screening process, this study has not provided. Certain synergistic combinations have been noted and are discussed. This report does note whether the operations considered are in regulatory compliance, or are likely to be capable of providing lasting improvement to the waste water system. Qualitative comparisons were made between the various alternatives to confirm their relationship with applicable standards

  3. ICPP tank farm closure study. Volume 2: Engineering design files

    International Nuclear Information System (INIS)

    1998-02-01

    Volume 2 contains the following topical sections: Tank farm heel flushing/pH adjustment; Grouting experiments for immobilization of tank farm heel; Savannah River high level waste tank 20 closure; Tank farm closure information; Clean closure of tank farm; Remediation issues; Remote demolition techniques; Decision concerning EIS for debris treatment facility; CERCLA/RCRA issues; Area of contamination determination; Containment building of debris treatment facility; Double containment issues; Characterization costs; Packaging and disposal options for the waste resulting from the total removal of the tank farm; Take-off calculations for the total removal of soils and structures at the tank farm; Vessel off-gas systems; Jet-grouted polymer and subsurface walls; Exposure calculations for total removal of tank farm; Recommended instrumentation during retrieval operations; High level waste tank concrete encasement evaluation; Recommended heavy equipment and sizing equipment for total removal activities; Tank buoyancy constraints; Grout and concrete formulas for tank heel solidification; Tank heel pH requirements; Tank cooling water; Evaluation of conservatism of vehicle loading on vaults; Typical vault dimensions and approximately tank and vault void volumes; Radiological concerns for temporary vessel off-gas system; Flushing calculations for tank heels; Grout lift depth analysis; Decontamination solution for waste transfer piping; Grout lift determination for filling tank and vault voids; sprung structure vendor data; Grout flow properties through a 2--4 inch pipe; Tank farm load limitations; NRC low level waste grout; Project data sheet calculations; Dose rates for tank farm closure tasks; Exposure and shielding calculations for grout lines; TFF radionuclide release rates; Documentation of the clean closure of a system with listed waste discharge; and Documentation of the ORNL method of radionuclide concentrations in tanks

  4. ICPP tank farm closure study. Volume 2: Engineering design files

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-02-01

    Volume 2 contains the following topical sections: Tank farm heel flushing/pH adjustment; Grouting experiments for immobilization of tank farm heel; Savannah River high level waste tank 20 closure; Tank farm closure information; Clean closure of tank farm; Remediation issues; Remote demolition techniques; Decision concerning EIS for debris treatment facility; CERCLA/RCRA issues; Area of contamination determination; Containment building of debris treatment facility; Double containment issues; Characterization costs; Packaging and disposal options for the waste resulting from the total removal of the tank farm; Take-off calculations for the total removal of soils and structures at the tank farm; Vessel off-gas systems; Jet-grouted polymer and subsurface walls; Exposure calculations for total removal of tank farm; Recommended instrumentation during retrieval operations; High level waste tank concrete encasement evaluation; Recommended heavy equipment and sizing equipment for total removal activities; Tank buoyancy constraints; Grout and concrete formulas for tank heel solidification; Tank heel pH requirements; Tank cooling water; Evaluation of conservatism of vehicle loading on vaults; Typical vault dimensions and approximately tank and vault void volumes; Radiological concerns for temporary vessel off-gas system; Flushing calculations for tank heels; Grout lift depth analysis; Decontamination solution for waste transfer piping; Grout lift determination for filling tank and vault voids; sprung structure vendor data; Grout flow properties through a 2--4 inch pipe; Tank farm load limitations; NRC low level waste grout; Project data sheet calculations; Dose rates for tank farm closure tasks; Exposure and shielding calculations for grout lines; TFF radionuclide release rates; Documentation of the clean closure of a system with listed waste discharge; and Documentation of the ORNL method of radionuclide concentrations in tanks.

  5. High-level-waste immobilization

    International Nuclear Information System (INIS)

    Crandall, J.L.

    1982-01-01

    Analysis of risks, environmental effects, process feasibility, and costs for disposal of immobilized high-level wastes in geologic repositories indicates that the disposal system safety has a low sensitivity to the choice of the waste disposal form

  6. Optimizing High Level Waste Disposal

    International Nuclear Information System (INIS)

    Dirk Gombert

    2005-01-01

    If society is ever to reap the potential benefits of nuclear energy, technologists must close the fuel-cycle completely. A closed cycle equates to a continued supply of fuel and safe reactors, but also reliable and comprehensive closure of waste issues. High level waste (HLW) disposal in borosilicate glass (BSG) is based on 1970s era evaluations. This host matrix is very adaptable to sequestering a wide variety of radionuclides found in raffinates from spent fuel reprocessing. However, it is now known that the current system is far from optimal for disposal of the diverse HLW streams, and proven alternatives are available to reduce costs by billions of dollars. The basis for HLW disposal should be reassessed to consider extensive waste form and process technology research and development efforts, which have been conducted by the United States Department of Energy (USDOE), international agencies and the private sector. Matching the waste form to the waste chemistry and using currently available technology could increase the waste content in waste forms to 50% or more and double processing rates. Optimization of the HLW disposal system would accelerate HLW disposition and increase repository capacity. This does not necessarily require developing new waste forms, the emphasis should be on qualifying existing matrices to demonstrate protection equal to or better than the baseline glass performance. Also, this proposed effort does not necessarily require developing new technology concepts. The emphasis is on demonstrating existing technology that is clearly better (reliability, productivity, cost) than current technology, and justifying its use in future facilities or retrofitted facilities. Higher waste processing and disposal efficiency can be realized by performing the engineering analyses and trade-studies necessary to select the most efficient methods for processing the full spectrum of wastes across the nuclear complex. This paper will describe technologies being

  7. Concentrations and compositions of colloidal particles in groundwater near the ICPP, Idaho National Laboratory, Idaho

    International Nuclear Information System (INIS)

    Estes, M.; McCurry, M.

    1994-01-01

    The presence of colloidal material is being investigated in groundwater near the ICPP to determine whether the concentrations and chemical compositions are suitable to have an impact on the transport of Sr-90. Colloids are proposed as a viable transport mechanism, and may have an influence on the chemical trends observed in three wells near the ICPP. Ultrafiltration of groundwater samples has been performed on difFerent intervals in USGS wells 45, 46, and Site 14, has provided filtrate samples, for analyses by ICP-MS, and filters for analyses by SEM/EDS. Preliminary results indicate that concentrations of colloids are from 2.1-0.8 ppm for the >0.45 μm size fraction, and 2.3-9.8 ppm for the <0.45 μm size fractions. Compositions consist of calcite, silicic acid, ferrihydrite, clay, and possibly dolomite. Calcium was shown to have the largest contribution from both EDS and ICP-MS. Magnesium and silicon were also found to filter out in large concentrations. Iron and aluminum are minor constituents of the colloidal mass and contain concentrations of <10ppb and <1ppb, respectively. These results indicate that if colloids are going to have a major impact on contaminant migration then the coprecipitation of Sr-90 with calcite and dolomite would have to be a sorption mechanism. Sorption onto Fe and Al colloids probably does not have a major impact because of the low concentrations. Clay colloids were noted to be relatively abundant and may also have an impact on Sr-90 migration, due to the exchange of Sr with other cations in the clay structure. 14 refs., 4 figs., 2 tabs

  8. PAIRWISE BLENDING OF HIGH LEVEL WASTE

    International Nuclear Information System (INIS)

    CERTA, P.J.

    2006-01-01

    The primary objective of this study is to demonstrate a mission scenario that uses pairwise and incidental blending of high level waste (HLW) to reduce the total mass of HLW glass. Secondary objectives include understanding how recent refinements to the tank waste inventory and solubility assumptions affect the mass of HLW glass and how logistical constraints may affect the efficacy of HLW blending

  9. High Level Radioactive Waste Management

    International Nuclear Information System (INIS)

    1991-01-01

    The proceedings of the second annual international conference on High Level Radioactive Waste Management, held on April 28--May 3, 1991, Las Vegas, Nevada, provides information on the current technical issue related to international high level radioactive waste management activities and how they relate to society as a whole. Besides discussing such technical topics as the best form of the waste, the integrity of storage containers, design and construction of a repository, the broader social aspects of these issues are explored in papers on such subjects as conformance to regulations, transportation safety, and public education. By providing this wider perspective of high level radioactive waste management, it becomes apparent that the various disciplines involved in this field are interrelated and that they should work to integrate their waste management activities. Individual records are processed separately for the data bases

  10. High-level Petri Nets

    DEFF Research Database (Denmark)

    various journals and collections. As a result, much of this knowledge is not readily available to people who may be interested in using high-level nets. Within the Petri net community this problem has been discussed many times, and as an outcome this book has been compiled. The book contains reprints...... of some of the most important papers on the application and theory of high-level Petri nets. In this way it makes the relevant literature more available. It is our hope that the book will be a useful source of information and that, e.g., it can be used in the organization of Petri net courses. To make......High-level Petri nets are now widely used in both theoretical analysis and practical modelling of concurrent systems. The main reason for the success of this class of net models is that they make it possible to obtain much more succinct and manageable descriptions than can be obtained by means...

  11. High-Level Radioactive Waste.

    Science.gov (United States)

    Hayden, Howard C.

    1995-01-01

    Presents a method to calculate the amount of high-level radioactive waste by taking into consideration the following factors: the fission process that yields the waste, identification of the waste, the energy required to run a 1-GWe plant for one year, and the uranium mass required to produce that energy. Briefly discusses waste disposal and…

  12. High-level radioactive wastes

    International Nuclear Information System (INIS)

    Grissom, M.C.

    1982-10-01

    This bibliography contains 812 citations on high-level radioactive wastes included in the Department of Energy's Energy Data Base from January 1981 through July 1982. These citations are to research reports, journal articles, books, patents, theses, and conference papers from worldwide sources. Five indexes are provided: Corporate Author, Personal Author, Subject, Contract Number, and Report Number

  13. Long-term high-level waste technology. Composite quarterly technical report: April-June 1981

    International Nuclear Information System (INIS)

    Cornman, W.R.

    1981-12-01

    This series of reports summarizes research and development studies on the immobilization of high-level wastes from the chemical reprocessing of nuclear reactor fuels. The reports are grouped under the following tasks: (1) program management and support; (2) waste preparation; (3) waste fixation; and (4) final handling. Some of the highlights are: leaching properties were obtained for titanate and tailored ceramic materials being developed at ICPP to immobilize zirconia calcine; comparative leach tests, hot-cell tests, and process evaluations were conducted of waste form alternatives to borosilicate glass for the immobilization of SRP high-level wastes, experiments were run at ANL to qualify neutron activation analysis and radioactive tracers for measuring leach rates from simulated waste glasses; comparative leach test samples of SYNROC D were prepared, characterized, and tested at LLNL; encapsulation of glass marbles with lead or lead alloys was demonstrated on an engineering scale at PNL; a canister for reference Commercial HLW was designed at PNL; a study of the optimization of salt-crete was completed at SRL; a risk assessment showed that an investment for tornado dampers in the interim storage building of the DWPF is unjustified

  14. Selective partitioning of mercury from co-extracted actinides in a simulated acidic ICPP waste stream

    International Nuclear Information System (INIS)

    Brewer, K.N.; Herbst, R.S.; Tranter, T.J.

    1995-01-01

    The TRUEX process is being evaluated at the Idaho Chemical Processing Plant (ICPP) as a means to partition the actinides from acidic sodium-bearing waste (SBW). The mercury content of this waste averages 1 g/l. Because the chemistry of mercury has not been extensively evaluated in the TRUEX process, mercury was singled out as an element of interest. Radioactive mercury, 203 Hg, was spiked into a simulated solution of SBW containing 1 g/l mercury. Successive extraction batch contacts with the mercury spiked waste simulant and successive scrubbing and stripping batch contacts of the mercury loaded TRUEX solvent (0.2 M CMPO-1.4 M TBP in dodecane) show that mercury will extract into and strip from the solvent. The extraction distribution coefficient for mercury, as HgCl 2 from SBW having a nitric acid concentration of 1.4 M and a chloride concentration of 0.035 M was found to be 3. The stripping distribution coefficient was found to be 0.5 with 5 M HNO 3 and 0.077 with 0.25 M Na 2 CO 3 . An experimental flowsheet was designed from the batch contact tests and tested counter-currently using 5.5 cm centrifugal contactors. Results from the counter-current test show that mercury can be removed from the acidic mixed SBW simulant and recovered separately from the actinides

  15. Removing high-level contaminants

    International Nuclear Information System (INIS)

    Wallace, Paula

    2013-01-01

    Full text: Using biomimicry, an Australian cleantech innovation making inroads intoChinas's industrial sector offers multiple benefits to miners and processors in Australia. Stephen Shelley, the executive chairman of Creative Water Technology (CWT), was on hand at a recent trade show to explain how his Melbourne company has developed world-class techniques in zero liquid discharge and fractional crystallization of minerals to apply to a wide range of water treatment and recycling applications. “Most existing technologies operate with high energy distillation, filters or biological processing. CWT's appliance uses a low temperature, thermal distillation process known as adiabatic recovery to desalinate, dewater and/or recycle highly saline and highly contaminated waste water,” said Shelley. The technology has been specifically designed to handle the high levels of contaminant that alternative technologies struggle to process, with proven water quality results for feed water samples with TDS levels over 300,000ppm converted to clean water with less than 20ppm. Comparatively, reverse osmosis struggles to process contaminant levels over 70,000ppm effectively. “CWT is able to reclaim up to 97% clean usable water and up to 100% of the contaminants contained in the feed water,” said Shelley, adding that soluble and insoluble contaminants are separately extracted and dried for sale or re-use. In industrial applications CWT has successfully processed feed water with contaminant levels over 650,000 mg/1- without the use of chemicals. “The technology would be suitable for companies in oil exploration and production, mining, smelting, biofuels, textiles and the agricultural and food production sectors,” said Shelley. When compared to a conventional desalination plant, the CWT system is able to capture the value in the brine that most plants discard, not only from the salt but the additional water it contains. “If you recover those two commodities... then you

  16. High-Level Waste Melter Study Report

    Energy Technology Data Exchange (ETDEWEB)

    Perez, Joseph M.; Bickford, Dennis F.; Day, Delbert E.; Kim, Dong-Sang; Lambert, Steven L.; Marra, Sharon L.; Peeler, David K.; Strachan, Denis M.; Triplett, Mark B.; Vienna, John D.; Wittman, Richard S.

    2001-07-13

    At the Hanford Site in Richland, Washington, the path to site cleanup involves vitrification of the majority of the wastes that currently reside in large underground tanks. A Joule-heated glass melter is the equipment of choice for vitrifying the high-level fraction of these wastes. Even though this technology has general national and international acceptance, opportunities may exist to improve or change the technology to reduce the enormous cost of accomplishing the mission of site cleanup. Consequently, the U.S. Department of Energy requested the staff of the Tanks Focus Area to review immobilization technologies, waste forms, and modifications to requirements for solidification of the high-level waste fraction at Hanford to determine what aspects could affect cost reductions with reasonable long-term risk. The results of this study are summarized in this report.

  17. Development of the SREX process for the treatment of ICPP liquid wastes

    International Nuclear Information System (INIS)

    Wood, D.J.; Law, J.D.; Garn, T.G.; Tillotson, R.D.; Tullock, P.A.; Todd, T.A.

    1997-10-01

    The removal of 90 Sr from actual and simulated wastes at the Idaho Chemical Processing Plant (ICPP) at the Idaho National Engineering and Environmental Laboratory (INEEL) has been demonstrated with the SREX process. This solvent extraction process employs the extractant 4',4'(5') di-(t-butylcyclohexano)-18-crown-6 in 1-octanol or a mixture of tributyl phosphate and a hydrocarbon diluent called Isopar L reg-sign. Process flowsheets have been designed for testing in countercurrent experiments with centrifugal contractors. The flowsheets have been designed using batch contract solvent extraction methods. The extraction of Sr as well as other interfering ions has been studied. The effect of various parameters including nitric acid dependence, extractant concentration dependence, hydronium ion concentration, and interferent concentrations upon the extraction efficiency of the process has been evaluated. The radiolysis of the SREX solvent has also been investigated as a function of absorbed gamma radiation. The extraction efficiency of the solvent has been shown to be only slightly dependent upon absorbed dose in the range 0--1,000 kGy. The decontamination of actual sodium-bearing waste and dissolved calcine solutions has been accomplished in batch contact flowsheets. Decontamination factors as high as 10E3 have been obtained with sequential batch contacts. Flowsheets have been developed to accomplish decontamination of the liquid wastes with respect to 90 Sr as well as the removal of Pb and Hg. Pb may be partitioned from the Sr fraction in a separate stripping procedure using ammonium citrate. This work has led to the formulation of countercurrent flowsheets which have been tested in centrifugal contractors with actual waste and reported in the document INEEL/EXT-97-00832

  18. Analysis of ICPP fuel storage rack inner tie and corner tie substructures

    Energy Technology Data Exchange (ETDEWEB)

    Nitzel, M.E.; Rahl, R.G.

    1996-01-01

    Finite element models were developed and analyses performed for the tie plate, inner tie block assembly, and corner tie block assembly of a 25 port fuel rack assembly designed for installation in Pool 1 of Building 666 at the Idaho Chemical Processing Plant. These models were specifically developed to investigate the adequacy of certain welds joining components of the fuel storage rack assembly. The work scope for the task was limited to an investigation of the stress levels in the subject subassemblies when subjected to seismic loads. Structural acceptance criteria used for the elastic calculations performed were as found in the overall rack design report as issued by the rack`s designer, Holtec International. Structural acceptance criteria used for the plastic calculations performed as part of this effort were as defined in Subsection NF and Appendix F of the ASME Boiler & Pressure Vessel Code. The results of the analyses will also apply to the 30 port fuel storage rack design that is also scheduled for installation in Pool 1 of ICPP 666. The results obtained from the analyses performed for this task indicate that the welds joining the inner tie block and corner tie block to the surrounding rack structure meet the acceptance criteria. Further, the structural members (plates and blocks) were also found to be within the allowable stress limits established by the acceptance criteria. The separate analysis performed on the inner tie plate confirmed the structural adequacy for both the inner tie plate, corner tie plate, and tie block bolts. The analysis results verified that the inner tie and corner tie block should be capable of transferring the expected seismic load without structural failure.

  19. Service Oriented Architecture for High Level Applications

    International Nuclear Information System (INIS)

    Chu, P.

    2012-01-01

    Standalone high level applications often suffer from poor performance and reliability due to lengthy initialization, heavy computation and rapid graphical update. Service-oriented architecture (SOA) is trying to separate the initialization and computation from applications and to distribute such work to various service providers. Heavy computation such as beam tracking will be done periodically on a dedicated server and data will be available to client applications at all time. Industrial standard service architecture can help to improve the performance, reliability and maintainability of the service. Robustness will also be improved by reducing the complexity of individual client applications.

  20. Process for solidifying high-level nuclear waste

    Science.gov (United States)

    Ross, Wayne A.

    1978-01-01

    The addition of a small amount of reducing agent to a mixture of a high-level radioactive waste calcine and glass frit before the mixture is melted will produce a more homogeneous glass which is leach-resistant and suitable for long-term storage of high-level radioactive waste products.

  1. FY-97 operations of the pilot-scale glass melter to vitrify simulated ICPP high activity sodium-bearing waste

    International Nuclear Information System (INIS)

    Musick, C.A.

    1997-11-01

    A 3.5 liter refractory-lined joule-heated glass melter was built to test the applicability of electric melting to vitrify simulated high activity waste (HAW). The HAW streams result from dissolution and separation of Idaho Chemical Processing Plant (ICPP) calcines and/or radioactive liquid waste. Pilot scale melter operations will establish selection criteria needed to evaluate the application of joule heating to immobilize ICPP high activity waste streams. The melter was fabricated with K-3 refractory walls and Inconel 690 electrodes. It is designed to be continuously operated at 1,150 C with a maximum glass output rate of 10 lbs/hr. The first set of tests were completed using surrogate HAW-sodium bearing waste (SBW). The melter operated for 57 hours and was shut down due to excessive melt temperatures resulting in low glass viscosity (< 30 Poise). Due to the high melt temperature and low viscosity the molten glass breached the melt chamber. The melter has been dismantled and examined to identify required process improvement areas and successes of the first melter run. The melter has been redesigned and is currently being fabricated for the second run, which is scheduled to begin in December 1997

  2. The ALICE Dimuon Spectrometer High Level Trigger

    CERN Document Server

    Becker, B; Cicalo, Corrado; Das, Indranil; de Vaux, Gareth; Fearick, Roger; Lindenstruth, Volker; Marras, Davide; Sanyal, Abhijit; Siddhanta, Sabyasachi; Staley, Florent; Steinbeck, Timm; Szostak, Artur; Usai, Gianluca; Vilakazi, Zeblon

    2009-01-01

    The ALICE Dimuon Spectrometer High Level Trigger (dHLT) is an on-line processing stage whose primary function is to select interesting events that contain distinct physics signals from heavy resonance decays such as J/psi and Gamma particles, amidst unwanted background events. It forms part of the High Level Trigger of the ALICE experiment, whose goal is to reduce the large data rate of about 25 GB/s from the ALICE detectors by an order of magnitude, without loosing interesting physics events. The dHLT has been implemented as a software trigger within a high performance and fault tolerant data transportation framework, which is run on a large cluster of commodity compute nodes. To reach the required processing speeds, the system is built as a concurrent system with a hierarchy of processing steps. The main algorithms perform partial event reconstruction, starting with hit reconstruction on the level of the raw data received from the spectrometer. Then a tracking algorithm finds track candidates from the recon...

  3. Technetium Chemistry in High-Level Waste

    International Nuclear Information System (INIS)

    Hess, Nancy J.

    2006-01-01

    Tc contamination is found within the DOE complex at those sites whose mission involved extraction of plutonium from irradiated uranium fuel or isotopic enrichment of uranium. At the Hanford Site, chemical separations and extraction processes generated large amounts of high level and transuranic wastes that are currently stored in underground tanks. The waste from these extraction processes is currently stored in underground High Level Waste (HLW) tanks. However, the chemistry of the HLW in any given tank is greatly complicated by repeated efforts to reduce volume and recover isotopes. These processes ultimately resulted in mixing of waste streams from different processes. As a result, the chemistry and the fate of Tc in HLW tanks are not well understood. This lack of understanding has been made evident in the failed efforts to leach Tc from sludge and to remove Tc from supernatants prior to immobilization. Although recent interest in Tc chemistry has shifted from pretreatment chemistry to waste residuals, both needs are served by a fundamental understanding of Tc chemistry

  4. The CMS High Level Trigger System

    CERN Document Server

    Afaq, A; Bauer, G; Biery, K; Boyer, V; Branson, J; Brett, A; Cano, E; Carboni, A; Cheung, H; Ciganek, M; Cittolin, S; Dagenhart, W; Erhan, S; Gigi, D; Glege, F; Gómez-Reino, Robert; Gulmini, M; Gutiérrez-Mlot, E; Gutleber, J; Jacobs, C; Kim, J C; Klute, M; Kowalkowski, J; Lipeles, E; Lopez-Perez, Juan Antonio; Maron, G; Meijers, F; Meschi, E; Moser, R; Murray, S; Oh, A; Orsini, L; Paus, C; Petrucci, A; Pieri, M; Pollet, L; Rácz, A; Sakulin, H; Sani, M; Schieferdecker, P; Schwick, C; Sexton-Kennedy, E; Sumorok, K; Suzuki, I; Tsirigkas, D; Varela, J

    2007-01-01

    The CMS Data Acquisition (DAQ) System relies on a purely software driven High Level Trigger (HLT) to reduce the full Level-1 accept rate of 100 kHz to approximately 100 Hz for archiving and later offline analysis. The HLT operates on the full information of events assembled by an event builder collecting detector data from the CMS front-end systems. The HLT software consists of a sequence of reconstruction and filtering modules executed on a farm of O(1000) CPUs built from commodity hardware. This paper presents the architecture of the CMS HLT, which integrates the CMS reconstruction framework in the online environment. The mechanisms to configure, control, and monitor the Filter Farm and the procedures to validate the filtering code within the DAQ environment are described.

  5. Ramifications of defining high-level waste

    International Nuclear Information System (INIS)

    Wood, D.E.; Campbell, M.H.; Shupe, M.W.

    1987-01-01

    The Nuclear Regulatory Commission (NRC) is considering rule making to provide a concentration-based definition of high-level waste (HLW) under authority derived from the Nuclear Waste Policy Act (NWPA) of 1982 and the Low Level Waste Policy Amendments Act of 1985. The Department of Energy (DOE), which has the responsibility to dispose of certain kinds of commercial waste, is supporting development of a risk-based classification system by the Oak Ridge National Laboratory to assist in developing and implementing the NRC rule. The system is two dimensional, with the axes based on the phrases highly radioactive and requires permanent isolation in the definition of HLW in the NWPA. Defining HLW will reduce the ambiguity in the present source-based definition by providing concentration limits to establish which materials are to be called HLW. The system allows the possibility of greater-confinement disposal for some wastes which do not require the degree of isolation provided by a repository. The definition of HLW will provide a firm basis for waste processing options which involve partitioning of waste into a high-activity stream for repository disposal, and a low-activity stream for disposal elsewhere. Several possible classification systems have been derived and the characteristics of each are discussed. The Defense High Level Waste Technology Lead Office at DOE - Richland Operations Office, supported by Rockwell Hanford Operations, has coordinated reviews of the ORNL work by a technical peer review group and other DOE offices. The reviews produced several recommendations and identified several issues to be addressed in the NRC rule making. 10 references, 3 figures

  6. High-level language computer architecture

    CERN Document Server

    Chu, Yaohan

    1975-01-01

    High-Level Language Computer Architecture offers a tutorial on high-level language computer architecture, including von Neumann architecture and syntax-oriented architecture as well as direct and indirect execution architecture. Design concepts of Japanese-language data processing systems are discussed, along with the architecture of stack machines and the SYMBOL computer system. The conceptual design of a direct high-level language processor is also described.Comprised of seven chapters, this book first presents a classification of high-level language computer architecture according to the pr

  7. Other-than-high-level waste

    International Nuclear Information System (INIS)

    Bray, G.R.

    1976-01-01

    The main emphasis of the work in the area of partitioning transuranic elements from waste has been in the area of high-level liquid waste. But there are ''other-than-high-level wastes'' generated by the back end of the nuclear fuel cycle that are both large in volume and contaminated with significant quantities of transuranic elements. The combined volume of these other wastes is approximately 50 times that of the solidified high-level waste. These other wastes also contain up to 75% of the transuranic elements associated with waste generated by the back end of the fuel cycle. Therefore, any detailed evaluation of partitioning as a viable waste management option must address both high-level wastes and ''other-than-high-level wastes.''

  8. SIGWX Charts - High Level Significant Weather

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — High level significant weather (SIGWX) forecasts are provided for the en-route portion of international flights. NOAA's National Weather Service Aviation Center...

  9. Recovering method for high level radioactive material

    International Nuclear Information System (INIS)

    Fukui, Toshiki

    1998-01-01

    Offgas filters such as of nuclear fuel reprocessing facilities and waste control facilities are burnt, and the burnt ash is melted by heating, and then the molten ashes are brought into contact with a molten metal having a low boiling point to transfer the high level radioactive materials in the molten ash to the molten metal. Then, only the molten metal is evaporated and solidified by drying, and residual high level radioactive materials are recovered. According to this method, the high level radioactive materials in the molten ashes are transferred to the molten metal and separated by the difference of the distribution rate of the molten ash and the molten metal. Subsequently, the molten metal to which the high level radioactive materials are transferred is heated to a temperature higher than the boiling point so that only the molten metal is evaporated and dried to be removed, and residual high level radioactive materials are recovered easily. On the other hand, the molten ash from which the high level radioactive material is removed can be discarded as ordinary industrial wastes as they are. (T.M.)

  10. EAP high-level product architecture

    DEFF Research Database (Denmark)

    Guðlaugsson, Tómas Vignir; Mortensen, Niels Henrik; Sarban, Rahimullah

    2013-01-01

    EAP technology has the potential to be used in a wide range of applications. This poses the challenge to the EAP component manufacturers to develop components for a wide variety of products. Danfoss Polypower A/S is developing an EAP technology platform, which can form the basis for a variety...... of EAP technology products while keeping complexity under control. High level product architecture has been developed for the mechanical part of EAP transducers, as the foundation for platform development. A generic description of an EAP transducer forms the core of the high level product architecture...... the function of the EAP transducers to be changed, by basing the EAP transducers on a different combination of organ alternatives. A model providing an overview of the high level product architecture has been developed to support daily development and cooperation across development teams. The platform approach...

  11. High-Level Application Framework for LCLS

    Energy Technology Data Exchange (ETDEWEB)

    Chu, P; Chevtsov, S.; Fairley, D.; Larrieu, C.; Rock, J.; Rogind, D.; White, G.; Zalazny, M.; /SLAC

    2008-04-22

    A framework for high level accelerator application software is being developed for the Linac Coherent Light Source (LCLS). The framework is based on plug-in technology developed by an open source project, Eclipse. Many existing functionalities provided by Eclipse are available to high-level applications written within this framework. The framework also contains static data storage configuration and dynamic data connectivity. Because the framework is Eclipse-based, it is highly compatible with any other Eclipse plug-ins. The entire infrastructure of the software framework will be presented. Planned applications and plug-ins based on the framework are also presented.

  12. Treatment technologies for non-high-level wastes (USA)

    International Nuclear Information System (INIS)

    Cooley, C.R.; Clark, D.E.

    1976-06-01

    Non-high-level waste arising from operations at nuclear reactors, fuel fabrication facilities, and reprocessing facilities can be treated using one of several technical alternatives prior to storage. Each alternative and the associated experience and status of development are summarized. The technology for treating non-high-level wastes is generally available for industrial use. Improved techniques applicable to the commercial nuclear fuel cycle are being developed and demonstrated to reduce the volume of waste and to immobilize it for storage. 36 figures, 59 references

  13. The management of high-level radioactive wastes

    International Nuclear Information System (INIS)

    Lennemann, Wm.L.

    1979-01-01

    The definition of high-level radioactive wastes is given. The following aspects of high-level radioactive wastes' management are discussed: fuel reprocessing and high-level waste; storage of high-level liquid waste; solidification of high-level waste; interim storage of solidified high-level waste; disposal of high-level waste; disposal of irradiated fuel elements as a waste

  14. The ATLAS High-Level Calorimeter Trigger in Run-2

    CERN Document Server

    Wiglesworth, Craig; The ATLAS collaboration

    2018-01-01

    The ATLAS Experiment uses a two-level triggering system to identify and record collision events containing a wide variety of physics signatures. It reduces the event rate from the bunch-crossing rate of 40 MHz to an average recording rate of 1 kHz, whilst maintaining high efficiency for interesting collision events. It is composed of an initial hardware-based level-1 trigger followed by a software-based high-level trigger. A central component of the high-level trigger is the calorimeter trigger. This is responsible for processing data from the electromagnetic and hadronic calorimeters in order to identify electrons, photons, taus, jets and missing transverse energy. In this talk I will present the performance of the high-level calorimeter trigger in Run-2, noting the improvements that have been made in response to the challenges of operating at high luminosity.

  15. High-level radioactive wastes. Supplement 1

    International Nuclear Information System (INIS)

    McLaren, L.H.

    1984-09-01

    This bibliography contains information on high-level radioactive wastes included in the Department of Energy's Energy Data Base from August 1982 through December 1983. These citations are to research reports, journal articles, books, patents, theses, and conference papers from worldwide sources. Five indexes, each preceded by a brief description, are provided: Corporate Author, Personal Author, Subject, Contract Number, and Report Number. 1452 citations

  16. Materials for high-level waste containment

    International Nuclear Information System (INIS)

    Marsh, G.P.

    1982-01-01

    The function of the high-level radioactive waste container in storage and of a container/overpack combination in disposal is considered. The consequent properties required from potential fabrication materials are discussed. The strategy adopted in selecting containment materials and the experimental programme underway to evaluate them are described. (U.K.)

  17. Current high-level waste solidification technology

    International Nuclear Information System (INIS)

    Bonner, W.F.; Ross, W.A.

    1976-01-01

    Technology has been developed in the U.S. and abroad for solidification of high-level waste from nuclear power production. Several processes have been demonstrated with actual radioactive waste and are now being prepared for use in the commercial nuclear industry. Conversion of the waste to a glass form is favored because of its high degree of nondispersibility and safety

  18. Timing of High-level Waste Disposal

    International Nuclear Information System (INIS)

    2008-01-01

    This study identifies key factors influencing the timing of high-level waste (HLW) disposal and examines how social acceptability, technical soundness, environmental responsibility and economic feasibility impact on national strategies for HLW management and disposal. Based on case study analyses, it also presents the strategic approaches adopted in a number of national policies to address public concerns and civil society requirements regarding long-term stewardship of high-level radioactive waste. The findings and conclusions of the study confirm the importance of informing all stakeholders and involving them in the decision-making process in order to implement HLW disposal strategies successfully. This study will be of considerable interest to nuclear energy policy makers and analysts as well as to experts in the area of radioactive waste management and disposal. (author)

  19. Disposal of high-level radioactive waste

    International Nuclear Information System (INIS)

    Glasby, G.P.

    1977-01-01

    Although controversy surrounding the possible introduction of nuclear power into New Zealand has raised many points including radiation hazards, reactor safety, capital costs, sources of uranium and earthquake risks on the one hand versus energy conservation and alternative sources of energy on the other, one problem remains paramount and is of global significance - the storage and dumping of the high-level radioactive wastes of the reactor core. The generation of abundant supplies of energy now in return for the storage of these long-lived highly radioactive wastes has been dubbed the so-called Faustian bargain. This article discusses the growth of the nuclear industry and its implications to high-level waste disposal particularly in the deep-sea bed. (auth.)

  20. High-level radioactive wastes. Supplement 1

    Energy Technology Data Exchange (ETDEWEB)

    McLaren, L.H. (ed.)

    1984-09-01

    This bibliography contains information on high-level radioactive wastes included in the Department of Energy's Energy Data Base from August 1982 through December 1983. These citations are to research reports, journal articles, books, patents, theses, and conference papers from worldwide sources. Five indexes, each preceded by a brief description, are provided: Corporate Author, Personal Author, Subject, Contract Number, and Report Number. 1452 citations.

  1. Decommissioning high-level waste surface facilities

    International Nuclear Information System (INIS)

    1978-04-01

    The protective storage, entombment and dismantlement options of decommissioning a High-Level Waste Surface Facility (HLWSF) was investigated. A reference conceptual design for the facility was developed based on the designs of similar facilities. State-of-the-art decommissioning technologies were identified. Program plans and cost estimates for decommissioning the reference conceptual designs were developed. Good engineering design concepts were on the basis of this work identified

  2. High-level waste processing and disposal

    International Nuclear Information System (INIS)

    Crandall, J.L.; Krause, H.; Sombret, C.; Uematsu, K.

    1984-01-01

    The national high-level waste disposal plans for France, the Federal Republic of Germany, Japan, and the United States are covered. Three conclusions are reached. The first conclusion is that an excellent technology already exists for high-level waste disposal. With appropriate packaging, spent fuel seems to be an acceptable waste form. Borosilicate glass reprocessing waste forms are well understood, in production in France, and scheduled for production in the next few years in a number of other countries. For final disposal, a number of candidate geological repository sites have been identified and several demonstration sites opened. The second conclusion is that adequate financing and a legal basis for waste disposal are in place in most countries. Costs of high-level waste disposal will probably add about 5 to 10% to the costs of nuclear electric power. The third conclusion is less optimistic. Political problems remain formidable in highly conservative regulations, in qualifying a final disposal site, and in securing acceptable transport routes

  3. Cermets for high level waste containment

    International Nuclear Information System (INIS)

    Aaron, W.S.; Quinby, T.C.; Kobisk, E.H.

    1978-01-01

    Cermet materials are currently under investigation as an alternate for the primary containment of high level wastes. The cermet in this study is an iron--nickel base metal matrix containing uniformly dispersed, micron-size fission product oxides, aluminosilicates, and titanates. Cermets possess high thermal conductivity, and typical waste loading of 70 wt % with volume reduction factors of 2 to 200 and low processing volatility losses have been realized. Preliminary leach studies indicate a leach resistance comparable to other candidate waste forms; however, more quantitative data are required. Actual waste studies have begun on NFS Acid Thorex, SRP dried sludge and fresh, unneutralized SRP process wastes

  4. Python based high-level synthesis compiler

    Science.gov (United States)

    Cieszewski, Radosław; Pozniak, Krzysztof; Romaniuk, Ryszard

    2014-11-01

    This paper presents a python based High-Level synthesis (HLS) compiler. The compiler interprets an algorithmic description of a desired behavior written in Python and map it to VHDL. FPGA combines many benefits of both software and ASIC implementations. Like software, the mapped circuit is flexible, and can be reconfigured over the lifetime of the system. FPGAs therefore have the potential to achieve far greater performance than software as a result of bypassing the fetch-decode-execute operations of traditional processors, and possibly exploiting a greater level of parallelism. Creating parallel programs implemented in FPGAs is not trivial. This article describes design, implementation and first results of created Python based compiler.

  5. The CMS High-Level Trigger

    International Nuclear Information System (INIS)

    Covarelli, R.

    2009-01-01

    At the startup of the LHC, the CMS data acquisition is expected to be able to sustain an event readout rate of up to 100 kHz from the Level-1 trigger. These events will be read into a large processor farm which will run the 'High-Level Trigger'(HLT) selection algorithms and will output a rate of about 150 Hz for permanent data storage. In this report HLT performances are shown for selections based on muons, electrons, photons, jets, missing transverse energy, τ leptons and b quarks: expected efficiencies, background rates and CPU time consumption are reported as well as relaxation criteria foreseen for a LHC startup instantaneous luminosity.

  6. The CMS High-Level Trigger

    CERN Document Server

    Covarelli, Roberto

    2009-01-01

    At the startup of the LHC, the CMS data acquisition is expected to be able to sustain an event readout rate of up to 100 kHz from the Level-1 trigger. These events will be read into a large processor farm which will run the "High-Level Trigger" (HLT) selection algorithms and will output a rate of about 150 Hz for permanent data storage. In this report HLT performances are shown for selections based on muons, electrons, photons, jets, missing transverse energy, tau leptons and b quarks: expected efficiencies, background rates and CPU time consumption are reported as well as relaxation criteria foreseen for a LHC startup instantaneous luminosity.

  7. The CMS High-Level Trigger

    Science.gov (United States)

    Covarelli, R.

    2009-12-01

    At the startup of the LHC, the CMS data acquisition is expected to be able to sustain an event readout rate of up to 100 kHz from the Level-1 trigger. These events will be read into a large processor farm which will run the "High-Level Trigger" (HLT) selection algorithms and will output a rate of about 150 Hz for permanent data storage. In this report HLT performances are shown for selections based on muons, electrons, photons, jets, missing transverse energy, τ leptons and b quarks: expected efficiencies, background rates and CPU time consumption are reported as well as relaxation criteria foreseen for a LHC startup instantaneous luminosity.

  8. Processing vessel for high level radioactive wastes

    International Nuclear Information System (INIS)

    Maekawa, Hiromichi

    1998-01-01

    Upon transferring an overpack having canisters containing high level radioactive wastes sealed therein and burying it into an underground processing hole, an outer shell vessel comprising a steel plate to be fit and contained in the processing hole is formed. A bury-back layer made of dug earth and sand which had been discharged upon forming the processing hole is formed on the inner circumferential wall of the outer shell vessel. A buffer layer having a predetermined thickness is formed on the inner side of the bury-back layer, and the overpack is contained in the hollow portion surrounded by the layer. The opened upper portion of the hollow portion is covered with the buffer layer and the bury-back layer. Since the processing vessel having a shielding performance previously formed on the ground, the state of packing can be observed. In addition, since an operator can directly operates upon transportation and burying of the high level radioactive wastes, remote control is no more necessary. (T.M.)

  9. The ARES High-level Intermediate Representation

    Energy Technology Data Exchange (ETDEWEB)

    Moss, Nicholas David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-03

    The LLVM intermediate representation (IR) lacks semantic constructs for depicting common high-performance operations such as parallel and concurrent execution, communication and synchronization. Currently, representing such semantics in LLVM requires either extending the intermediate form (a signi cant undertaking) or the use of ad hoc indirect means such as encoding them as intrinsics and/or the use of metadata constructs. In this paper we discuss a work in progress to explore the design and implementation of a new compilation stage and associated high-level intermediate form that is placed between the abstract syntax tree and when it is lowered to LLVM's IR. This highlevel representation is a superset of LLVM IR and supports the direct representation of these common parallel computing constructs along with the infrastructure for supporting analysis and transformation passes on this representation.

  10. CAMAC and high-level-languages

    International Nuclear Information System (INIS)

    Degenhardt, K.H.

    1976-05-01

    A proposal for easy programming of CAMAC systems with high-level-languages (FORTRAN, RTL/2, etc.) and interpreters (BASIC, MUMTI, etc.) using a few subroutines and a LAM driver is presented. The subroutines and the LAM driver are implemented for PDP11/RSX-11M and for the CAMAC controllers DEC CA11A (branch controller), BORER type 1533A (single crate controller) and DEC CA11F (single crate controller). Mixed parallel/serial CAMAC systems employing KINETIC SYSTEMS serial driver mod. 3992 and serial crate controllers mod. 3950 are implemented for all mentioned parallel controllers, too. DMA transfers from or to CAMAC modules using non-processor-request controllers (BORER type 1542, DEC CA11FN) are available. (orig.) [de

  11. National high-level waste systems analysis

    International Nuclear Information System (INIS)

    Kristofferson, K.; O'Holleran, T.P.

    1996-01-01

    Previously, no mechanism existed that provided a systematic, interrelated view or national perspective of all high-level waste treatment and storage systems that the US Department of Energy manages. The impacts of budgetary constraints and repository availability on storage and treatment must be assessed against existing and pending negotiated milestones for their impact on the overall HLW system. This assessment can give DOE a complex-wide view of the availability of waste treatment and help project the time required to prepare HLW for disposal. Facilities, throughputs, schedules, and milestones were modeled to ascertain the treatment and storage systems resource requirements at the Hanford Site, Savannah River Site, Idaho National Engineering Laboratory, and West Valley Demonstration Project. The impacts of various treatment system availabilities on schedule and throughput were compared to repository readiness to determine the prudent application of resources. To assess the various impacts, the model was exercised against a number of plausible scenarios as discussed in this paper

  12. International high-level radioactive waste repositories

    International Nuclear Information System (INIS)

    Lin, W.

    1996-01-01

    Although nuclear technologies benefit everyone, the associated nuclear wastes are a widespread and rapidly growing problem. Nuclear power plants are in operation in 25 countries, and are under construction in others. Developing countries are hungry for electricity to promote economic growth; industrialized countries are eager to export nuclear technologies and equipment. These two ingredients, combined with the rapid shrinkage of worldwide fossil fuel reserves, will increase the utilization of nuclear power. All countries utilizing nuclear power produce at least a few tens of tons of spent fuel per year. That spent fuel (and reprocessing products, if any) constitutes high-level nuclear waste. Toxicity, long half-life, and immunity to chemical degradation make such waste an almost permanent threat to human beings. This report discusses the advantages of utilizing repositories for disposal of nuclear wastes

  13. Intergenerational ethics of high level radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Kunihiko [Nagoya Univ., Graduate School of Engineering, Nagoya, Aichi (Japan); Nasu, Akiko; Maruyama, Yoshihiro [Shibaura Inst. of Tech., Tokyo (Japan)

    2003-03-01

    The validity of intergenerational ethics on the geological disposal of high level radioactive waste originating from nuclear power plants was studied. The result of the study on geological disposal technology showed that the current method of disposal can be judged to be scientifically reliable for several hundred years and the radioactivity level will be less than one tenth of the tolerable amount after 1,000 years or more. This implies that the consideration of intergenerational ethics of geological disposal is meaningless. Ethics developed in western society states that the consent of people in the future is necessary if the disposal has influence on them. Moreover, the ethics depends on generally accepted ideas in western society and preconceptions based on racism and sexism. The irrationality becomes clearer by comparing the dangers of the exhaustion of natural resources and pollution from harmful substances in a recycling society. (author)

  14. Management of high level radioactive waste

    International Nuclear Information System (INIS)

    Redon, A.; Mamelle, J.; Chambon, M.

    1977-01-01

    The world wide needs in reprocessing will reach the value of 10.000 t/y of irradiated fuels, in the mid of the 80's. Several countries will have planned, in their nuclear programme, the construction of reprocessing plants with a 1500 t/y capacity, corresponding to 50.000 MWe installed. At such a level, the solidification of the radioactive waste will become imperative. For this reason, all efforts, in France, have been directed towards the realization of industrial plants able of solidifying the fission products as a glassy material. The advantages of this decision, and the reasons for it are presented. The continuing development work, and the conditions and methods of storing the high-level wastes prior to solidification, and of the interim storage (for thermal decay) and the ultimate disposal after solidification are described [fr

  15. Intergenerational ethics of high level radioactive waste

    International Nuclear Information System (INIS)

    Takeda, Kunihiko; Nasu, Akiko; Maruyama, Yoshihiro

    2003-01-01

    The validity of intergenerational ethics on the geological disposal of high level radioactive waste originating from nuclear power plants was studied. The result of the study on geological disposal technology showed that the current method of disposal can be judged to be scientifically reliable for several hundred years and the radioactivity level will be less than one tenth of the tolerable amount after 1,000 years or more. This implies that the consideration of intergenerational ethics of geological disposal is meaningless. Ethics developed in western society states that the consent of people in the future is necessary if the disposal has influence on them. Moreover, the ethics depends on generally accepted ideas in western society and preconceptions based on racism and sexism. The irrationality becomes clearer by comparing the dangers of the exhaustion of natural resources and pollution from harmful substances in a recycling society. (author)

  16. High-level waste processing and disposal

    International Nuclear Information System (INIS)

    Crandall, J.L.; Krause, H.; Sombret, C.; Uematsu, K.

    1984-11-01

    Without reprocessing, spent LWR fuel itself is generally considered an acceptable waste form. With reprocessing, borosilicate glass canisters, have now gained general acceptance for waste immobilization. The current first choice for disposal is emplacement in an engineered structure in a mined cavern at a depth of 500-1000 meters. A variety of rock types are being investigated including basalt, clay, granite, salt, shale, and volcanic tuff. This paper gives specific coverage to the national high level waste disposal plans for France, the Federal Republic of Germany, Japan and the United States. The French nuclear program assumes prompt reprocessing of its spent fuels, and France has already constructed the AVM. Two larger borosilicate glass plants are planned for a new French reprocessing plant at La Hague. France plans to hold the glass canisters in near-surface storage for a forty to sixty year cooling period and then to place them into a mined repository. The FRG and Japan also plan reprocessing for their LWR fuels. Both are currently having some fuel reprocessed by France, but both are also planning reprocessing plants which will include waste vitrification facilities. West Germany is now constructing the PAMELA Plant at Mol, Belgium to vitrify high level reprocessing wastes at the shutdown Eurochemic Plant. Japan is now operating a vitrification mockup test facility and plans a pilot plant facility at the Tokai reprocessing plant by 1990. Both countries have active geologic repository programs. The United State program assumes little LWR fuel reprocessing and is thus primarily aimed at direct disposal of spent fuel into mined repositories. However, the US have two borosilicate glass plants under construction to vitrify existing reprocessing wastes

  17. The high level vibration test program

    International Nuclear Information System (INIS)

    Hofmayer, C.H.; Curreri, J.R.; Park, Y.J.; Kato, W.Y.; Kawakami, S.

    1989-01-01

    As part of cooperative agreements between the US and Japan, tests have been performed on the seismic vibration table at the Tadotsu Engineering Laboratory of Nuclear Power Engineering Test Center (NUPEC) in Japan. The objective of the test program was to use the NUPEC vibration table to drive large diameter nuclear power piping to substantial plastic strain with an earthquake excitation and to compare the results with state-of-the-art analysis of the problem. The test model was subjected to a maximum acceleration well beyond what nuclear power plants are designed to withstand. A modified earthquake excitation was applied and the excitation level was increased carefully to minimize the cumulative fatigue damage due to the intermediate level excitations. Since the piping was pressurized, and the high level earthquake excitation was repeated several times, it was possible to investigate the effects of ratchetting and fatigue as well. Elastic and inelastic seismic response behavior of the test model was measured in a number of test runs with an increasing excitation input level up to the limit of the vibration table. In the maximum input condition, large dynamic plastic strains were obtained in the piping. Crack initiation was detected following the second maximum excitation run. Crack growth was carefully monitored during the next two additional maximum excitation runs. The final test resulted in a maximum crack depth of approximately 94% of the wall thickness. The HLVT (high level vibration test) program has enhanced understanding of the behavior of piping systems under severe earthquake loading. As in other tests to failure of piping components, it has demonstrated significant seismic margin in nuclear power plant piping

  18. Storage of High Level Nuclear Waste in Germany

    Directory of Open Access Journals (Sweden)

    Dietmar P. F. Möller

    2007-01-01

    Full Text Available Nuclear energy is very often used to generate electricity. But first the energy must be released from atoms what can be done in two ways: nuclear fusion and nuclear fission. Nuclear power plants use nuclear fission to produce electrical energy. The electrical energy generated in nuclear power plants does not produce polluting combustion gases but a renewable energy, an important fact that could play a key role helping to reduce global greenhouse gas emissions and tackling global warming especially as the electricity energy demand rises in the years ahead. This could be assumed as an ideal win-win situation, but the reverse site of the medal is that the production of high-level nuclear waste outweighs this advantage. Hence the paper attempt to highlight the possible state-of-art concepts for the safe and sustaining storage of high-level nuclear waste in Germany.

  19. Risk comparison of different treatment and disposal strategies of high level liquid radioactive waste

    International Nuclear Information System (INIS)

    Fang Dong

    1997-01-01

    The risk of different treatment and disposal strategies of high level liquid radioactive waste from spent fuel reprocessing is estimated and compared. The conclusions obtained are that risk difference from these strategies is very small and high level liquid waste can be reduced to middle and low level waste, if the decontamination factor for 99 Tc is large enough, which is the largest risk contributor in the high level radioactive waste from spent fuel reprocessing. It is also shown that the risk of high level radioactive waste could be reduced by the technical strategy of combining partitioning and transmutation

  20. High level waste fixation in cermet form

    International Nuclear Information System (INIS)

    Kobisk, E.H.; Aaron, W.S.; Quinby, T.C.; Ramey, D.W.

    1981-01-01

    Commercial and defense high level waste fixation in cermet form is being studied by personnel of the Isotopes Research Materials Laboratory, Solid State Division (ORNL). As a corollary to earlier research and development in forming high density ceramic and cermet rods, disks, and other shapes using separated isotopes, similar chemical and physical processing methods have been applied to synthetic and real waste fixation. Generally, experimental products resulting from this approach have shown physical and chemical characteristics which are deemed suitable for long-term storage, shipping, corrosive environments, high temperature environments, high waste loading, decay heat dissipation, and radiation damage. Although leach tests are not conclusive, what little comparative data are available show cermet to withstand hydrothermal conditions in water and brine solutions. The Soxhlet leach test, using radioactive cesium as a tracer, showed that leaching of cermet was about X100 less than that of 78 to 68 glass. Using essentially uncooled, untreated waste, cermet fixation was found to accommodate up to 75% waste loading and yet, because of its high thermal conductivity, a monolith of 0.6 m diameter and 3.3 m-length would have only a maximum centerline temperature of 29 K above the ambient value

  1. Tracking at High Level Trigger in CMS

    CERN Document Server

    Tosi, Mia

    2016-01-01

    The trigger systems of the LHC detectors play a crucial role in determining the physics capabili- ties of the experiments. A reduction of several orders of magnitude of the event rate is needed to reach values compatible with detector readout, offline storage and analysis capability. The CMS experiment has been designed with a two-level trigger system: the Level-1 Trigger (L1T), implemented on custom-designed electronics, and the High Level Trigger (HLT), a stream- lined version of the CMS offline reconstruction software running on a computer farm. A software trigger system requires a trade-off between the complexity of the algorithms, the sustainable out- put rate, and the selection efficiency. With the computing power available during the 2012 data taking the maximum reconstruction time at HLT was about 200 ms per event, at the nominal L1T rate of 100 kHz. Track reconstruction algorithms are widely used in the HLT, for the reconstruction of the physics objects as well as in the identification of b-jets and ...

  2. Performance of the CMS High Level Trigger

    CERN Document Server

    Perrotta, Andrea

    2015-01-01

    The CMS experiment has been designed with a 2-level trigger system. The first level is implemented using custom-designed electronics. The second level is the so-called High Level Trigger (HLT), a streamlined version of the CMS offline reconstruction software running on a computer farm. For Run II of the Large Hadron Collider, the increases in center-of-mass energy and luminosity will raise the event rate to a level challenging for the HLT algorithms. The increase in the number of interactions per bunch crossing, on average 25 in 2012, and expected to be around 40 in Run II, will be an additional complication. We present here the expected performance of the main triggers that will be used during the 2015 data taking campaign, paying particular attention to the new approaches that have been developed to cope with the challenges of the new run. This includes improvements in HLT electron and photon reconstruction as well as better performing muon triggers. We will also present the performance of the improved trac...

  3. Vitrification of high-level liquid wastes

    International Nuclear Information System (INIS)

    Varani, J.L.; Petraitis, E.J.; Vazquez, Antonio.

    1987-01-01

    High-level radioactive liquid wastes produced in the fuel elements reprocessing require, for their disposal, a preliminary treatment by which, through a series of engineering barriers, the dispersion into the biosphere is delayed by 10 000 years. Four groups of compounds are distinguished among a great variety of final products and methods of elaboration. From these, the borosilicate glasses were chosen. Vitrification experiences were made at a laboratory scale with simulated radioactive wastes, employing different compositions of borosilicate glass. The installations are described. A series of tests were carried out on four basic formulae using always the same methodology, consisting of a dry mixture of the vitreous matrix's products and a dry simulated mixture. Several quality tests of the glasses were made 1: Behaviour in leaching following the DIN 12 111 standard; 2: Mechanical resistance; parameters related with the facility of the different glasses for increasing their surface were studied; 3: Degree of devitrification: it is shown that devitrification turns the glasses containing radioactive wastes easily leachable. From all the glasses tested, the composition SiO 2 , Al 2 O 3 , B 2 O 3 , Na 2 O, CaO shows the best retention characteristics. (M.E.L.) [es

  4. Ocean disposal of high level radioactive waste

    International Nuclear Information System (INIS)

    1983-01-01

    This study confirms, subject to limitations of current knowledge, the engineering feasibility of free fall penetrators for High Level Radioactive Waste disposal in deep ocean seabed sediments. Restricted sediment property information is presently the principal bar to an unqualified statement of feasibility. A 10m minimum embedment and a 500 year engineered barrier waste containment life are identified as appropriate basic penetrator design criteria at this stage. A range of designs are considered in which the length, weight and cross section of the penetrator are varied. Penetrators from 3m to 20m long and 2t to 100t in weight constructed of material types and thicknesses to give a 500 year containment life are evaluated. The report concludes that the greatest degree of confidence is associated with performance predictions for 75 to 200 mm thick soft iron and welded joints. A range of lengths and capacities from a 3m long single waste canister penetrator to a 20m long 12 canister design are identified as meriting further study. Estimated embedment depths for this range of penetrator designs lie between 12m and 90m. Alternative manufacture, transport and launch operations are assessed and recommendations are made. (author)

  5. Vitrification of high level wastes in France

    International Nuclear Information System (INIS)

    Sombret, C.

    1984-02-01

    A brief historical background of the research and development work conducted in France over 25 years is first presented. Then, the papers deals with the vitrification at (1) the UP1 reprocessing plant (Marcoule) and (2) the UP2 and UP3 reprocessing plants (La Hague). 1) The properties of glass required for high-level radioactive waste vitrification are recalled. The vitrification process and facility of Marcoule are presented. (2) The average characteristics (chemical composition, activity) of LWR fission product solution are given. The glass formulations developed to solidify LWR waste solution must meet the same requirements as those used in the UP1 facility at Marcoule. Three important aspects must be considered with respect to the glass fabrication process: corrosiveness of the molten glass with regard to metals, viscosity of the molten glass, and, volatization during glass fabrication. The glass properties required in view of interim storage and long-term disposal are then largely developed. Two identical vitrification facilities are planned for the site: T7, to process the UP2 throughput, and T7 for the UP3 plant. A prototype unit was built and operated at Marcoule

  6. High-level nuclear waste disposal

    International Nuclear Information System (INIS)

    Burkholder, H.C.

    1985-01-01

    The meeting was timely because many countries had begun their site selection processes and their engineering designs were becoming well-defined. The technology of nuclear waste disposal was maturing, and the institutional issues arising from the implementation of that technology were being confronted. Accordingly, the program was structured to consider both the technical and institutional aspects of the subject. The meeting started with a review of the status of the disposal programs in eight countries and three international nuclear waste management organizations. These invited presentations allowed listeners to understand the similarities and differences among the various national approaches to solving this very international problem. Then seven invited presentations describing nuclear waste disposal from different perspectives were made. These included: legal and judicial, electric utility, state governor, ethical, and technical perspectives. These invited presentations uncovered several issues that may need to be resolved before high-level nuclear wastes can be emplaced in a geologic repository in the United States. Finally, there were sixty-six contributed technical presentations organized in ten sessions around six general topics: site characterization and selection, repository design and in-situ testing, package design and testing, disposal system performance, disposal and storage system cost, and disposal in the overall waste management system context. These contributed presentations provided listeners with the results of recent applied RandD in each of the subject areas

  7. CMS High Level Trigger Timing Measurements

    International Nuclear Information System (INIS)

    Richardson, Clint

    2015-01-01

    The two-level trigger system employed by CMS consists of the Level 1 (L1) Trigger, which is implemented using custom-built electronics, and the High Level Trigger (HLT), a farm of commercial CPUs running a streamlined version of the offline CMS reconstruction software. The operational L1 output rate of 100 kHz, together with the number of CPUs in the HLT farm, imposes a fundamental constraint on the amount of time available for the HLT to process events. Exceeding this limit impacts the experiment's ability to collect data efficiently. Hence, there is a critical need to characterize the performance of the HLT farm as well as the algorithms run prior to start up in order to ensure optimal data taking. Additional complications arise from the fact that the HLT farm consists of multiple generations of hardware and there can be subtleties in machine performance. We present our methods of measuring the timing performance of the CMS HLT, including the challenges of making such measurements. Results for the performance of various Intel Xeon architectures from 2009-2014 and different data taking scenarios are also presented. (paper)

  8. Decontamination of high-level waste canisters

    International Nuclear Information System (INIS)

    Nesbitt, J.F.; Slate, S.C.; Fetrow, L.K.

    1980-12-01

    This report presents evaluations of several methods for the in-process decontamination of metallic canisters containing any one of a number of solidified high-level waste (HLW) forms. The use of steam-water, steam, abrasive blasting, electropolishing, liquid honing, vibratory finishing and soaking have been tested or evaluated as potential techniques to decontaminate the outer surfaces of HLW canisters. Either these techniques have been tested or available literature has been examined to assess their applicability to the decontamination of HLW canisters. Electropolishing has been found to be the most thorough method to remove radionuclides and other foreign material that may be deposited on or in the outer surface of a canister during any of the HLW processes. Steam or steam-water spraying techniques may be adequate for some applications but fail to remove all contaminated forms that could be present in some of the HLW processes. Liquid honing and abrasive blasting remove contamination and foreign material very quickly and effectively from small areas and components although these blasting techniques tend to disperse the material removed from the cleaned surfaces. Vibratory finishing is very capable of removing the bulk of contamination and foreign matter from a variety of materials. However, special vibratory finishing equipment would have to be designed and adapted for a remote process. Soaking techniques take long periods of time and may not remove all of the smearable contamination. If soaking involves pickling baths that use corrosive agents, these agents may cause erosion of grain boundaries that results in rough surfaces

  9. DEFENSE HIGH LEVEL WASTE GLASS DEGRADATION

    International Nuclear Information System (INIS)

    Ebert, W.

    2001-01-01

    The purpose of this Analysis/Model Report (AMR) is to document the analyses that were done to develop models for radionuclide release from high-level waste (HLW) glass dissolution that can be integrated into performance assessment (PA) calculations conducted to support site recommendation and license application for the Yucca Mountain site. This report was developed in accordance with the ''Technical Work Plan for Waste Form Degradation Process Model Report for SR'' (CRWMS M andO 2000a). It specifically addresses the item, ''Defense High Level Waste Glass Degradation'', of the product technical work plan. The AP-3.15Q Attachment 1 screening criteria determines the importance for its intended use of the HLW glass model derived herein to be in the category ''Other Factors for the Postclosure Safety Case-Waste Form Performance'', and thus indicates that this factor does not contribute significantly to the postclosure safety strategy. Because the release of radionuclides from the glass will depend on the prior dissolution of the glass, the dissolution rate of the glass imposes an upper bound on the radionuclide release rate. The approach taken to provide a bound for the radionuclide release is to develop models that can be used to calculate the dissolution rate of waste glass when contacted by water in the disposal site. The release rate of a particular radionuclide can then be calculated by multiplying the glass dissolution rate by the mass fraction of that radionuclide in the glass and by the surface area of glass contacted by water. The scope includes consideration of the three modes by which water may contact waste glass in the disposal system: contact by humid air, dripping water, and immersion. The models for glass dissolution under these contact modes are all based on the rate expression for aqueous dissolution of borosilicate glasses. The mechanism and rate expression for aqueous dissolution are adequately understood; the analyses in this AMR were conducted to

  10. High-level radioactive waste management

    International Nuclear Information System (INIS)

    Schneider, K.J.; Liikala, R.C.

    1974-01-01

    High-level radioactive waste in the U.S. will be converted to an encapsulated solid and shipped to a Federal repository for retrievable storage for extended periods. Meanwhile the development of concepts for ultimate disposal of the waste which the Federal Government would manage is being actively pursued. A number of promising concepts have been proposed, for which there is high confidence that one or more will be suitable for long-term, ultimate disposal. Initial evaluations of technical (or theoretical) feasibility for the various waste disposal concepts show that in the broad category, (i.e., geologic, seabed, ice sheet, extraterrestrial, and transmutation) all meet the criteria for judging feasibility, though a few alternatives within these categories do not. Preliminary cost estimates show that, although many millions of dollars may be required, the cost for even the most exotic concepts is small relative to the total cost of electric power generation. For example, the cost estimates for terrestrial disposal concepts are less than 1 percent of the total generating costs. The cost for actinide transmutation is estimated at around 1 percent of generation costs, while actinide element disposal in space is less than 5 percent of generating costs. Thus neither technical feasibility nor cost seems to be a no-go factor in selecting a waste management system. The seabed, ice sheet, and space disposal concepts face international policy constraints. The information being developed currently in safety, environmental concern, and public response will be important factors in determining which concepts appear most promising for further development

  11. FPGA Co-processor for the ALICE High Level Trigger

    CERN Document Server

    Grastveit, G.; Lindenstruth, V.; Loizides, C.; Roehrich, D.; Skaali, B.; Steinbeck, T.; Stock, R.; Tilsner, H.; Ullaland, K.; Vestbo, A.; Vik, T.

    2003-01-01

    The High Level Trigger (HLT) of the ALICE experiment requires massive parallel computing. One of the main tasks of the HLT system is two-dimensional cluster finding on raw data of the Time Projection Chamber (TPC), which is the main data source of ALICE. To reduce the number of computing nodes needed in the HLT farm, FPGAs, which are an intrinsic part of the system, will be utilized for this task. VHDL code implementing the Fast Cluster Finder algorithm, has been written, a testbed for functional verification of the code has been developed, and the code has been synthesized

  12. Effect of aluminum and silicon reactants and process parameters on glass-ceramic waste form characteristics for immobilization of high-level fluorinel-sodium calcined waste

    International Nuclear Information System (INIS)

    Vinjamuri, K.

    1993-06-01

    In this report, the effects of aluminum and silicon reactants, process soak time and the initial calcine particle size on glass-ceramic waste form characteristics for immobilization of the high-level fluorinel-sodium calcined waste stored at the Idaho Chemical Processing Plant (ICPP) are investigated. The waste form characteristics include density, total and normalized elemental leach rates, and microstructure. Glass-ceramic waste forms were prepared by hot isostatically pressing (HIPing) a pre-compacted mixture of pilot plant fluorinel-sodium calcine, Al, and Si metal powders at 1050 degrees C, 20,000 psi for 4 hours. One of the formulations with 2 wt % Al was HIPed for 4, 8, 16 and 24 hours at the same temperature and pressure. The calcine particle size range include as calcined particle size smaller than 600 μm (finer than -30 mesh, or 215 μm Mass Median Diameter, MMD) and 180 μm (finer than 80 mesh, or 49 μm MMD)

  13. Low Power Design with High-Level Power Estimation and Power-Aware Synthesis

    CERN Document Server

    Ahuja, Sumit; Shukla, Sandeep Kumar

    2012-01-01

    Low-power ASIC/FPGA based designs are important due to the need for extended battery life, reduced form factor, and lower packaging and cooling costs for electronic devices. These products require fast turnaround time because of the increasing demand for handheld electronic devices such as cell-phones, PDAs and high performance machines for data centers. To achieve short time to market, design flows must facilitate a much shortened time-to-product requirement. High-level modeling, architectural exploration and direct synthesis of design from high level description enable this design process. This book presents novel research techniques, algorithms,methodologies and experimental results for high level power estimation and power aware high-level synthesis. Readers will learn to apply such techniques to enable design flows resulting in shorter time to market and successful low power ASIC/FPGA design. Integrates power estimation and reduction for high level synthesis, with low-power, high-level design; Shows spec...

  14. High-Level Language Production in Parkinson's Disease: A Review

    Directory of Open Access Journals (Sweden)

    Lori J. P. Altmann

    2011-01-01

    Full Text Available This paper discusses impairments of high-level, complex language production in Parkinson's disease (PD, defined as sentence and discourse production, and situates these impairments within the framework of current psycholinguistic theories of language production. The paper comprises three major sections, an overview of the effects of PD on the brain and cognition, a review of the literature on language production in PD, and a discussion of the stages of the language production process that are impaired in PD. Overall, the literature converges on a few common characteristics of language production in PD: reduced information content, impaired grammaticality, disrupted fluency, and reduced syntactic complexity. Many studies also document the strong impact of differences in cognitive ability on language production. Based on the data, PD affects all stages of language production including conceptualization and functional and positional processing. Furthermore, impairments at all stages appear to be exacerbated by impairments in cognitive abilities.

  15. High-Level Synthesis: Productivity, Performance, and Software Constraints

    Directory of Open Access Journals (Sweden)

    Yun Liang

    2012-01-01

    Full Text Available FPGAs are an attractive platform for applications with high computation demand and low energy consumption requirements. However, design effort for FPGA implementations remains high—often an order of magnitude larger than design effort using high-level languages. Instead of this time-consuming process, high-level synthesis (HLS tools generate hardware implementations from algorithm descriptions in languages such as C/C++ and SystemC. Such tools reduce design effort: high-level descriptions are more compact and less error prone. HLS tools promise hardware development abstracted from software designer knowledge of the implementation platform. In this paper, we present an unbiased study of the performance, usability and productivity of HLS using AutoPilot (a state-of-the-art HLS tool. In particular, we first evaluate AutoPilot using the popular embedded benchmark kernels. Then, to evaluate the suitability of HLS on real-world applications, we perform a case study of stereo matching, an active area of computer vision research that uses techniques also common for image denoising, image retrieval, feature matching, and face recognition. Based on our study, we provide insights on current limitations of mapping general-purpose software to hardware using HLS and some future directions for HLS tool development. We also offer several guidelines for hardware-friendly software design. For popular embedded benchmark kernels, the designs produced by HLS achieve 4X to 126X speedup over the software version. The stereo matching algorithms achieve between 3.5X and 67.9X speedup over software (but still less than manual RTL design with a fivefold reduction in design effort versus manual RTL design.

  16. Space augmentation of military high-level waste disposal

    International Nuclear Information System (INIS)

    English, T.; Lees, L.; Divita, E.

    1979-01-01

    Space disposal of selected components of military high-level waste (HLW) is considered. This disposal option offers the promise of eliminating the long-lived radionuclides in military HLW from the earth. A space mission which meets the dual requirements of long-term orbital stability and a maximum of one space shuttle launch per week over a period of 20-40 years, is a heliocentric orbit about halfway between the orbits of earth and Venus. Space disposal of high-level radioactive waste is characterized by long-term predicability and short-term uncertainties which must be reduced to acceptably low levels. For example, failure of either the Orbit Transfer Vehicle after leaving low earth orbit, or the storable propellant stage failure at perihelion would leave the nuclear waste package in an unplanned and potentially unstable orbit. Since potential earth reencounter and subsequent burn-up in the earth's atmosphere is unacceptable, a deep space rendezvous, docking, and retrieval capability must be developed

  17. Radiolytic gas formation in high-level liquid waste solutions

    International Nuclear Information System (INIS)

    Brodda, B.-G.; Dix, Siegfried; Merz, E.R.

    1989-01-01

    High-level fission product waste solutions originating from the first-cycle raffinate stream of spent fast breeder reactor fuel reprocessing have been investigated gas chromatographically for their radiolytic and chemical gas production. The solutions showed considerable formation of hydrogen, carbon dioxide and dinitrogen oxide, whereas atmospheric oxygen was consumed completely within a short time. In particular, carbon dioxide resulted from the radiolytic degradation of entrained organic solvent. After nearly complete degradation of the organic solvent, the influence of hydrazine and nitrogen dioxide on hydrogen formation was investigated. Hydrazinium hydroxide led to the formation of dinitrogen oxide and nitrogen. After 60 d, the concentration of dinitrogen oxide had reduced to zero, whereas the amount of nitrogen formed had reached a maximum. This may be explained by simultaneous chemical and radiolytic reactions leading to the formation of dinitrogen oxide and nitrogen and photolytic fission of dinitrogen oxide. Addition of sodium nitrite resulted in the rapid formation of dinitrogen oxide. The rate of hydrogen production was not changed significantly after the addition of hydrazine or nitrite. The results indicate that under normal operating conditions no dangerous hydrogen radiolysis yields should develop in the course of reprocessing and high-level liquid waste tank storage. Organic entrainment may lead to enhanced radiolytic decomposition and thus to considerable hydrogen production rates and pressure build-up in closed systems. (author)

  18. Vision in high-level football officials.

    Science.gov (United States)

    Baptista, António Manuel Gonçalves; Serra, Pedro M; McAlinden, Colm; Barrett, Brendan T

    2017-01-01

    Officiating in football depends, at least to some extent, upon adequate visual function. However, there is no vision standard for football officiating and the nature of the relationship between officiating performance and level of vision is unknown. As a first step in characterising this relationship, we report on the clinically-measured vision and on the perceived level of vision in elite-level, Portuguese football officials. Seventy-one referees (R) and assistant referees (AR) participated in the study, representing 92% of the total population of elite level football officials in Portugal in the 2013/2014 season. Nine of the 22 Rs (40.9%) and ten of the 49 ARs (20.4%) were international-level. Information about visual history was also gathered. Perceived vision was assessed using the preference-values-assigned-to-global-visual-status (PVVS) and the Quality-of-Vision (QoV) questionnaire. Standard clinical vision measures (including visual acuity, contrast sensitivity and stereopsis) were gathered in a subset (n = 44, 62%) of the participants. Data were analysed according to the type (R/AR) and level (international/national) of official, and Bonferroni corrections were applied to reduce the risk of type I errors. Adopting criterion for statistical significance of pfootball officials were similar to published normative values for young, adult populations and similar between R and AR. Clinically-measured vision did not differ according to officiating level. Visual acuity measured with and without a pinhole disc indicated that around one quarter of participants may be capable of better vision when officiating, as evidenced by better acuity (≥1 line of letters) using the pinhole. Amongst the clinical visual tests we used, we did not find evidence for above-average performance in elite-level football officials. Although the impact of uncorrected mild to moderate refractive error upon officiating performance is unknown, with a greater uptake of eye examinations, visual

  19. Heat transfer in high-level waste management

    International Nuclear Information System (INIS)

    Dickey, B.R.; Hogg, G.W.

    1979-01-01

    Heat transfer in the storage of high-level liquid wastes, calcining of radioactive wastes, and storage of solidified wastes are discussed. Processing and storage experience at the Idaho Chemical Processing Plant are summarized for defense high-level wastes; heat transfer in power reactor high-level waste processing and storage is also discussed

  20. Vision in high-level football officials.

    Directory of Open Access Journals (Sweden)

    António Manuel Gonçalves Baptista

    Full Text Available Officiating in football depends, at least to some extent, upon adequate visual function. However, there is no vision standard for football officiating and the nature of the relationship between officiating performance and level of vision is unknown. As a first step in characterising this relationship, we report on the clinically-measured vision and on the perceived level of vision in elite-level, Portuguese football officials. Seventy-one referees (R and assistant referees (AR participated in the study, representing 92% of the total population of elite level football officials in Portugal in the 2013/2014 season. Nine of the 22 Rs (40.9% and ten of the 49 ARs (20.4% were international-level. Information about visual history was also gathered. Perceived vision was assessed using the preference-values-assigned-to-global-visual-status (PVVS and the Quality-of-Vision (QoV questionnaire. Standard clinical vision measures (including visual acuity, contrast sensitivity and stereopsis were gathered in a subset (n = 44, 62% of the participants. Data were analysed according to the type (R/AR and level (international/national of official, and Bonferroni corrections were applied to reduce the risk of type I errors. Adopting criterion for statistical significance of p<0.01, PVVS scores did not differ between R and AR (p = 0.88, or between national- and international-level officials (p = 0.66. Similarly, QoV scores did not differ between R and AR in frequency (p = 0.50, severity (p = 0.71 or bothersomeness (p = 0.81 of symptoms, or between international-level vs national-level officials for frequency (p = 0.03 or bothersomeness (p = 0.07 of symptoms. However, international-level officials reported less severe symptoms than their national-level counterparts (p<0.01. Overall, 18.3% of officials had either never had an eye examination or if they had, it was more than 3 years previously. Regarding refractive correction, 4.2% had undergone refractive surgery and

  1. High-level waste description, inventory and hazard

    International Nuclear Information System (INIS)

    Crandall, J.; Hennelly, E.J.; McElroy, J.L.

    1983-01-01

    High-level nuclear waste (HLW), including its origin, is described and the current differences in definitions discussed. Quantities of defense and commercial radioactive HLW, both volume and curie content, are given. Current waste handling, which is interimin nature, is described for the several sites. The HLW hazard is defined by the times during which various radionuclides are the dominant contributors. The hazard is also compared to that of the ore. Using ICRP-2, which is the legal reference in the US, the hazard of the waste reduces to a level equal to the ore in about 300 years. The disposal plans are summarized and it is shown that regulatory requirements will probably govern disposal operations in such a conservative manner that the risk (product of hazard times probability of release) may well be lower than for any other wastes in existence or perhaps lower than those for any other human endeavor

  2. High Level Information Fusion (HLIF) with nested fusion loops

    Science.gov (United States)

    Woodley, Robert; Gosnell, Michael; Fischer, Amber

    2013-05-01

    Situation modeling and threat prediction require higher levels of data fusion in order to provide actionable information. Beyond the sensor data and sources the analyst has access to, the use of out-sourced and re-sourced data is becoming common. Through the years, some common frameworks have emerged for dealing with information fusion—perhaps the most ubiquitous being the JDL Data Fusion Group and their initial 4-level data fusion model. Since these initial developments, numerous models of information fusion have emerged, hoping to better capture the human-centric process of data analyses within a machine-centric framework. 21st Century Systems, Inc. has developed Fusion with Uncertainty Reasoning using Nested Assessment Characterizer Elements (FURNACE) to address challenges of high level information fusion and handle bias, ambiguity, and uncertainty (BAU) for Situation Modeling, Threat Modeling, and Threat Prediction. It combines JDL fusion levels with nested fusion loops and state-of-the-art data reasoning. Initial research has shown that FURNACE is able to reduce BAU and improve the fusion process by allowing high level information fusion (HLIF) to affect lower levels without the double counting of information or other biasing issues. The initial FURNACE project was focused on the underlying algorithms to produce a fusion system able to handle BAU and repurposed data in a cohesive manner. FURNACE supports analyst's efforts to develop situation models, threat models, and threat predictions to increase situational awareness of the battlespace. FURNACE will not only revolutionize the military intelligence realm, but also benefit the larger homeland defense, law enforcement, and business intelligence markets.

  3. An optimal retrieval, processing, and blending strategy for immobilization of Hanford high-level tank waste

    International Nuclear Information System (INIS)

    Hoza, M.

    1996-01-01

    Hanford tank waste will be separated into high-level and low-level portions; each portion will then be vitrified (other waste forms are also being considered for low-level waste) to produce a stable glass form for disposal. Because of the wide variability in the tank waste compositions, blending is being considered as a way to reduce the number of distinct compositions that must be vitrified and to minimize the resultant volume of vitrified waste. Three years of computational glass formulation and blending studies have demonstrated that blending of the high-level waste before vitrification can reduce the volume of high-level waste glass required by as much as 50 percent. This level of reduction would be obtained if all the high-level waste were blended together (Total Blend) prior to vitrification, requiring the retrieval and pretreatment of all tank waste before high-level vitrification was started. This paper will present an overall processing strategy that should be able to match the blending performance of the Total Blend and be more logistically feasible. The strategy includes retrieving, pretreating, blending and vitrifying Hanford tank waste. This strategy utilizes blending both before and after pretreatment. Similar wastes are blended before pretreatment, so as not to dilute species targeted for removal. The high-level portions of these pretreated early blends are then selectively blended to produce a small number of high-level vitrification feed streams

  4. Preliminary estimates of cost savings for defense high level waste vitrification options

    International Nuclear Information System (INIS)

    Merrill, R.A.; Chapman, C.C.

    1993-09-01

    The potential for realizing cost savings in the disposal of defense high-level waste through process and design modificatins has been considered. Proposed modifications range from simple changes in the canister design to development of an advanced melter capable of processing glass with a higher waste loading. Preliminary calculations estimate the total disposal cost (not including capital or operating costs) for defense high-level waste to be about $7.9 billion dollars for the reference conditions described in this paper, while projected savings resulting from the proposed process and design changes could reduce the disposal cost of defense high-level waste by up to $5.2 billion

  5. Patients subject to high levels of coercion: staff's understanding.

    Science.gov (United States)

    Bowers, Len; Wright, Steve; Stewart, Duncan

    2014-05-01

    Measures to keep staff and patients safe (containment) frequently involve coercion. A small proportion of patients is subject to a large proportion of containment use. To reduce the use of containment, we need a better understanding of the circumstances in which it is used and the understandings of patients and staff. Two sweeps were made of all the wards, spread over four hospital sites, in one large London mental health organization to identify patients who had been subject to high levels of containment in the previous two weeks. Data were then extracted from their case notes about their past history, current problem behaviours, and how they were understood by the patients involved and the staff. Nurses and consultant psychiatrists were interviewed to supplement the information from the case records. Twenty-six heterogeneous patients were identified, with many ages, genders, diagnoses, and psychiatric specialities represented. The main problem behaviours giving rise to containment use were violence and self-harm. The roots of the problem behaviours were to be found in severe psychiatric symptoms, cognitive difficulties, personality traits, and the implementation of the internal structure of the ward by staff. Staff's range and depth of understandings was limited and did not include functional analysis, defence mechanisms, specific cognitive assessment, and other potential frameworks. There is a need for more in-depth assessment and understanding of patients' problems, which may lead to additional ways to reduce containment use.

  6. Evaluation of radionuclide concentrations in high-level radioactive wastes

    International Nuclear Information System (INIS)

    Fehringer, D.J.

    1985-10-01

    This report describes a possible approach for development of a numerical definition of the term ''high-level radioactive waste.'' Five wastes are identified which are recognized as being high-level wastes under current, non-numerical definitions. The constituents of these wastes are examined and the most hazardous component radionuclides are identified. This report suggests that other wastes with similar concentrations of these radionuclides could also be defined as high-level wastes. 15 refs., 9 figs., 4 tabs

  7. Generation of Efficient High-Level Hardware Code from Dataflow Programs

    OpenAIRE

    Siret , Nicolas; Wipliez , Matthieu; Nezan , Jean François; Palumbo , Francesca

    2012-01-01

    High-level synthesis (HLS) aims at reducing the time-to-market by providing an automated design process that interprets and compiles high-level abstraction programs into hardware. However, HLS tools still face limitations regarding the performance of the generated code, due to the difficulties of compiling input imperative languages into efficient hardware code. Moreover the hardware code generated by the HLS tools is usually target-dependant and at a low level of abstraction (i.e. gate-level...

  8. Mercury extraction by the TRUEX process solvent. II. Selective partitioning of mercury from co-extracted actinides in a simulated acidic ICPP waste stream

    International Nuclear Information System (INIS)

    Brewer, K.N.; Herbst, R.S.; Tranter, T.J.; Todd, T.A.

    1995-01-01

    The TRUEX process is being evaluated at the Idaho Chemical Processing Plant (ICPP) as a means to partition the actinides from acidic sodium-bearing waste (SBW). The mercury content of this waste averages 1 g/l. Because the chemistry of mercury has not been extensively evaluated in the TRUEX process, mercury was singled out as an element of interest. Radioactive mercury, 203 Hg, was spiked into a simulated solution of SBW containing 1 g/l mercury. Successive extraction batch contacts with the mercury spiked waste and successive scrubbing and stripping batch contacts of the mercury loaded TRUEX solvent (0.2 M CMPO-1.4 M TBP in dodecane) show that mercury will extract into and strip from the solvent. The extraction distribution coefficient for mercury, as HgCl 2 , from SBW having a nitric acid concentration of 1.4 M and a chloride concentration of 0.035 M was found to be 3. The stripping distribution coefficient was found to be 0.5 with 5 M HNO 3 and 0.077 with 0.25 M Na 2 CO 3 . Because experiments described here show that mercury can be extracted from SBW and stripped from the solvent, a process has been developed to partition mercury from the actinides in SBW. 10 refs., 3 figs., 10 tabs

  9. DOUBLE SHELL TANK INTEGRITY PROJECT HIGH LEVEL WASTE CHEMISTRY OPTIMIZATION

    International Nuclear Information System (INIS)

    WASHENFELDER DJ

    2008-01-01

    The U.S. Department of Energy's Office (DOE) of River Protection (ORP) has a continuing program for chemical optimization to better characterize corrosion behavior of High-Level Waste (HLW). The DOE controls the chemistry in its HLW to minimize the propensity of localized corrosion, such as pitting, and stress corrosion cracking (SCC) in nitrate-containing solutions. By improving the control of localized corrosion and SCC, the ORP can increase the life of the Double-Shell Tank (DST) carbon steel structural components and reduce overall mission costs. The carbon steel tanks at the Hanford Site are critical to the mission of safely managing stored HLW until it can be treated for disposal. The DOE has historically used additions of sodium hydroxide to retard corrosion processes in HLW tanks. This also increases the amount of waste to be treated. The reactions with carbon dioxide from the air and solid chemical species in the tank continually deplete the hydroxide ion concentration, which then requires continued additions. The DOE can reduce overall costs for caustic addition and treatment of waste, and more effectively utilize waste storage capacity by minimizing these chemical additions. Hydroxide addition is a means to control localized and stress corrosion cracking in carbon steel by providing a passive environment. The exact mechanism that causes nitrate to drive the corrosion process is not yet clear. The SCC is less of a concern in the newer stress relieved double shell tanks due to reduced residual stress. The optimization of waste chemistry will further reduce the propensity for SCC. The corrosion testing performed to optimize waste chemistry included cyclic potentiodynamic volarization studies. slow strain rate tests. and stress intensity factor/crack growth rate determinations. Laboratory experimental evidence suggests that nitrite is a highly effective:inhibitor for pitting and SCC in alkaline nitrate environments. Revision of the corrosion control

  10. 40 CFR 227.30 - High-level radioactive waste.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false High-level radioactive waste. 227.30...-level radioactive waste. High-level radioactive waste means the aqueous waste resulting from the operation of the first cycle solvent extraction system, or equivalent, and the concentrated waste from...

  11. Discovery of high-level tasks in the operating room

    NARCIS (Netherlands)

    Bouarfa, L.; Jonker, P.P.; Dankelman, J.

    2010-01-01

    Recognizing and understanding surgical high-level tasks from sensor readings is important for surgical workflow analysis. Surgical high-level task recognition is also a challenging task in ubiquitous computing because of the inherent uncertainty of sensor data and the complexity of the operating

  12. Characteristics of solidified high-level waste products

    International Nuclear Information System (INIS)

    1979-01-01

    The object of the report is to contribute to the establishment of a data bank for future preparation of codes of practice and standards for the management of high-level wastes. The work currently in progress on measuring the properties of solidified high-level wastes is being studied

  13. Multi-threading in the ATLAS High-Level Trigger

    CERN Document Server

    Barton, Adam Edward; The ATLAS collaboration

    2018-01-01

    Over the next decade of LHC data-taking the instantaneous luminosity will reach up 7.5 times the design value with over 200 interactions per bunch-crossing and will pose unprecedented challenges for the ATLAS trigger system. With the evolution of the CPU market to many-core systems, both the ATLAS offline reconstruction and High-Level Trigger (HLT) software will have to transition from a multi-process to a multithreaded processing paradigm in order not to exhaust the available physical memory of a typical compute node. The new multithreaded ATLAS software framework, AthenaMT, has been designed from the ground up to support both the offline and online use-cases with the aim to further harmonize the offline and trigger algorithms. The latter is crucial both in terms of maintenance effort and to guarantee the high trigger efficiency and rejection factors needed for the next two decades of data-taking. We report on an HLT prototype in which the need for HLT­specific components has been reduced to a minimum while...

  14. Strategic lessons in high-level waste management planning

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, Neil

    1999-07-01

    This presentation discusses some issues in the planning and execution of high-level waste (HLW) disposal. The topics are (1) Initial considerations, (2) Issues in structuring a programme, (3) Disposal concepts, (4) Geological environments, (5) Site selection and characterisation, (6) Waste transport, (7) Performance assessment methodology and application, (8) Some key issues. The options for spent fuel management can give rise to a variety of different wastes. The quantity of waste arising will affect the volume of rock required for deposition, both with respect to rock integrity and requirements for heat dissipation. A repository must not be considered in isolation from the rest of the waste management programme. The repository development plan should be supported by a schedule of activities and related funding mechanisms, implying a long-term commitment in policy terms, and should include a corresponding legal and regulatory framework. The idea that disposed waste might be retrieved by future generations for processing under new technology is discussed. Safeguards requirements on fissile material within spent fuel or any other wastes imply indefinite control. Disposal concepts include the geological environment and the engineered barrier system within it. Site selection involves several steps: regional-scale characterisation, local characterisation, hydrological studies, etc. Key issues are retrieval vs. safeguards, optimisation of repository design, reducing long programme timescales, international collaboration.

  15. The Software Architecture of the LHCb High Level Trigger

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    The LHCb experiment is a spectrometer dedicated to the study of heavy flavor at the LHC. The rate of proton-proton collisions at the LHC is 15 MHz, but disk space limitations mean that only 3 kHz can be written to tape for offline processing. For this reason the LHCb data acquisition system -- trigger -- plays a key role in selecting signal events and rejecting background. In contrast to previous experiments at hadron colliders like for example CDF or D0, the bulk of the LHCb trigger is implemented in software and deployed on a farm of 20k parallel processing nodes. This system, called the High Level Trigger (HLT) is responsible for reducing the rate from the maximum at which the detector can be read out, 1.1 MHz, to the 3 kHz which can be processed offline,and has 20 ms in which to process and accept/reject each event. In order to minimize systematic uncertainties, the HLT was designed from the outset to reuse the offline reconstruction and selection code, and is based around multiple independent and redunda...

  16. Control of high level radioactive waste-glass melters

    International Nuclear Information System (INIS)

    Bickford, D.F.; Choi, A.S.

    1991-01-01

    Slurry Fed Melters (SFM) are being developed in the United States, Europe and Japan for the conversion of high-level radioactive waste to borosilicate glass for permanent disposal. The high transition metal, noble metal, nitrate, organic, and sulfate contents of these wastes lead to unique melter redox control requirements. Pilot waste-glass melter operations have indicated the possibility of nickel sulfide or noble-metal fission-product accumulation on melter floors, which can lead to distortion of electric heating patterns, and decrease melter life. Sulfide formation is prevented by control of the redox chemistry of the melter feed. The redox state of waste-glass melters is determined by balance between the reducing potential of organic compounds in the feed, and the oxidizing potential of gases above the melt, and nitrates and polyvalent elements in the waste. Semiquantitative models predicting limitations of organic content have been developed based on crucible testing. Computerized thermodynamic computations are being developed to predict the sequence and products of redox reactions and is assessing process variations. Continuous melter test results have been compared to improved computer staged-thermodynamic-models of redox behavior. Feed chemistry control to prevent sulfide and moderate noble metal accumulations are discussed. 17 refs., 3 figs

  17. Potential for erosion corrosion of SRS high level waste tanks

    International Nuclear Information System (INIS)

    Zapp, P.E.

    1994-01-01

    SRS high-level radioactive waste tanks will not experience erosion corrosion to any significant degree during slurry pump operations. Erosion corrosion in carbon steel structures at reported pump discharge velocities is dominated by electrochemical (corrosion) processes. Interruption of those processes, as by the addition of corrosion inhibitors, sharply reduces the rate of metal loss from erosion corrosion. The well-inhibited SRS waste tanks have a near-zero general corrosion rate, and therefore will be essentially immune to erosion corrosion. The experimental data on carbon steel erosion corrosion most relevant to SRS operations was obtained at the Hanford Site on simulated Purex waste. A metal loss rate of 2.4 mils per year was measured at a temperature of 102 C and a slurry velocity comparable to calculated SRS slurry velocities on ground specimens of the same carbon steel used in SRS waste tanks. Based on these data and the much lower expected temperatures, the metal loss rate of SRS tanks under waste removal and processing conditions should be insignificant, i.e. less than 1 mil per year

  18. Strategic lessons in high-level waste management planning

    International Nuclear Information System (INIS)

    Chapman, Neil

    1999-01-01

    This presentation discusses some issues in the planning and execution of high-level waste (HLW) disposal. The topics are (1) Initial considerations, (2) Issues in structuring a programme, (3) Disposal concepts, (4) Geological environments, (5) Site selection and characterisation, (6) Waste transport, (7) Performance assessment methodology and application, (8) Some key issues. The options for spent fuel management can give rise to a variety of different wastes. The quantity of waste arising will affect the volume of rock required for deposition, both with respect to rock integrity and requirements for heat dissipation. A repository must not be considered in isolation from the rest of the waste management programme. The repository development plan should be supported by a schedule of activities and related funding mechanisms, implying a long-term commitment in policy terms, and should include a corresponding legal and regulatory framework. The idea that disposed waste might be retrieved by future generations for processing under new technology is discussed. Safeguards requirements on fissile material within spent fuel or any other wastes imply indefinite control. Disposal concepts include the geological environment and the engineered barrier system within it. Site selection involves several steps: regional-scale characterisation, local characterisation, hydrological studies, etc. Key issues are retrieval vs. safeguards, optimisation of repository design, reducing long programme timescales, international collaboration

  19. CEMENTITIOUS GROUT FOR CLOSING SRS HIGH LEVEL WASTE TANKS - #12315

    Energy Technology Data Exchange (ETDEWEB)

    Langton, C.; Burns, H.; Stefanko, D.

    2012-01-10

    In 1997, the first two United States Department of Energy (US DOE) high level waste tanks (Tanks 17-F and 20-F: Type IV, single shell tanks) were taken out of service (permanently closed) at the Savannah River Site (SRS). In 2012, the DOE plans to remove from service two additional Savannah River Site (SRS) Type IV high-level waste tanks, Tanks 18-F and 19-F. These tanks were constructed in the late 1950's and received low-heat waste and do not contain cooling coils. Operational closure of Tanks 18-F and 19-F is intended to be consistent with the applicable requirements of the Resource Conservation and Recovery Act (RCRA) and the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and will be performed in accordance with South Carolina Department of Health and Environmental Control (SCDHEC). The closure will physically stabilize two 4.92E+04 cubic meter (1.3 E+06 gallon) carbon steel tanks and isolate and stabilize any residual contaminants left in the tanks. The closure will also fill, physically stabilize and isolate ancillary equipment abandoned in the tanks. A Performance Assessment (PA) has been developed to assess the long-term fate and transport of residual contamination in the environment resulting from the operational closure of the F-Area Tank Farm (FTF) waste tanks. Next generation flowable, zero-bleed cementitious grouts were designed, tested, and specified for closing Tanks 18-F and 19-F and for filling the abandoned equipment. Fill requirements were developed for both the tank and equipment grouts. All grout formulations were required to be alkaline with a pH of 12.4 and chemically reduction potential (Eh) of -200 to -400 to stabilize selected potential contaminants of concern. This was achieved by including Portland cement and Grade 100 slag in the mixes, respectively. Ingredients and proportions of cementitious reagents were selected and adjusted, respectively, to support the mass placement strategy developed by

  20. PLUTONIUM/HIGH-LEVEL VITRIFIED WASTE BDBE DOSE CALCULATION

    International Nuclear Information System (INIS)

    D.C. Richardson

    2003-01-01

    In accordance with the Nuclear Waste Policy Amendments Act of 1987, Yucca Mountain was designated as the site to be investigated as a potential repository for the disposal of high-level radioactive waste. The Yucca Mountain site is an undeveloped area located on the southwestern edge of the Nevada Test Site (NTS), about 100 miles northwest of Las Vegas. The site currently lacks rail service or an existing right-of-way. If the Yucca Mountain site is found suitable for the repository, rail service is desirable to the Office of Civilian Waste Management (OCRWM) Program because of the potential of rail transportation to reduce costs and to reduce the number of shipments relative to highway transportation. A Preliminary Rail Access Study evaluated 13 potential rail spur options. Alternative routes within the major options were also developed. Each of these options was then evaluated for potential land use conflicts and access to regional rail carriers. Three potential routes having few land use conflicts and having access to regional carriers were recommended for further investigation. Figure 1-1 shows these three routes. The Jean route is estimated to be about 120 miles long, the Carlin route to be about 365 miles long, and Caliente route to be about 365 miles long. The remaining ten routes continue to be monitored and should any of the present conflicts change, a re-evaluation of that route will be made. Complete details of the evaluation of the 13 routes can be found in the previous study. The DOE has not identified any preferred route and recognizes that the transportation issues need a full and open treatment under the National Environmental Policy Act. The issue of transportation will be included in public hearings to support development of the Environmental Impact Statement (EIS) proceedings for either the Monitored Retrievable Storage Facility or the Yucca Mountain Project or both

  1. PLUTONIUM/HIGH-LEVEL VITRIFIED WASTE BDBE DOSE CALCULATION

    Energy Technology Data Exchange (ETDEWEB)

    D.C. Richardson

    2003-03-19

    In accordance with the Nuclear Waste Policy Amendments Act of 1987, Yucca Mountain was designated as the site to be investigated as a potential repository for the disposal of high-level radioactive waste. The Yucca Mountain site is an undeveloped area located on the southwestern edge of the Nevada Test Site (NTS), about 100 miles northwest of Las Vegas. The site currently lacks rail service or an existing right-of-way. If the Yucca Mountain site is found suitable for the repository, rail service is desirable to the Office of Civilian Waste Management (OCRWM) Program because of the potential of rail transportation to reduce costs and to reduce the number of shipments relative to highway transportation. A Preliminary Rail Access Study evaluated 13 potential rail spur options. Alternative routes within the major options were also developed. Each of these options was then evaluated for potential land use conflicts and access to regional rail carriers. Three potential routes having few land use conflicts and having access to regional carriers were recommended for further investigation. Figure 1-1 shows these three routes. The Jean route is estimated to be about 120 miles long, the Carlin route to be about 365 miles long, and Caliente route to be about 365 miles long. The remaining ten routes continue to be monitored and should any of the present conflicts change, a re-evaluation of that route will be made. Complete details of the evaluation of the 13 routes can be found in the previous study. The DOE has not identified any preferred route and recognizes that the transportation issues need a full and open treatment under the National Environmental Policy Act. The issue of transportation will be included in public hearings to support development of the Environmental Impact Statement (EIS) proceedings for either the Monitored Retrievable Storage Facility or the Yucca Mountain Project or both.

  2. High-level waste immobilization program: an overview

    International Nuclear Information System (INIS)

    Bonner, W.R.

    1979-09-01

    The High-Level Waste Immobilization Program is providing technology to allow safe, affordable immobilization and disposal of nuclear waste. Waste forms and processes are being developed on a schedule consistent with national needs for immobilization of high-level wastes stored at Savannah River, Hanford, Idaho National Engineering Laboratory, and West Valley, New York. This technology is directly applicable to high-level wastes from potential reprocessing of spent nuclear fuel. The program is removing one more obstacle previously seen as a potential restriction on the use and further development of nuclear power, and is thus meeting a critical technological need within the national objective of energy independence

  3. National high-level waste systems analysis report

    Energy Technology Data Exchange (ETDEWEB)

    Kristofferson, K.; Oholleran, T.P.; Powell, R.H.

    1995-09-01

    This report documents the assessment of budgetary impacts, constraints, and repository availability on the storage and treatment of high-level waste and on both existing and pending negotiated milestones. The impacts of the availabilities of various treatment systems on schedule and throughput at four Department of Energy sites are compared to repository readiness in order to determine the prudent application of resources. The information modeled for each of these sites is integrated with a single national model. The report suggests a high-level-waste model that offers a national perspective on all high-level waste treatment and storage systems managed by the Department of Energy.

  4. National high-level waste systems analysis report

    International Nuclear Information System (INIS)

    Kristofferson, K.; Oholleran, T.P.; Powell, R.H.

    1995-09-01

    This report documents the assessment of budgetary impacts, constraints, and repository availability on the storage and treatment of high-level waste and on both existing and pending negotiated milestones. The impacts of the availabilities of various treatment systems on schedule and throughput at four Department of Energy sites are compared to repository readiness in order to determine the prudent application of resources. The information modeled for each of these sites is integrated with a single national model. The report suggests a high-level-waste model that offers a national perspective on all high-level waste treatment and storage systems managed by the Department of Energy

  5. Handling and storage of conditioned high-level wastes

    International Nuclear Information System (INIS)

    1983-01-01

    This report deals with certain aspects of the management of one of the most important wastes, i.e. the handling and storage of conditioned (immobilized and packaged) high-level waste from the reprocessing of spent nuclear fuel and, although much of the material presented here is based on information concerning high-level waste from reprocessing LWR fuel, the principles, as well as many of the details involved, are applicable to all fuel types. The report provides illustrative background material on the arising and characteristics of high-level wastes and, qualitatively, their requirements for conditioning. The report introduces the principles important in conditioned high-level waste storage and describes the types of equipment and facilities, used or studied, for handling and storage of such waste. Finally, it discusses the safety and economic aspects that are considered in the design and operation of handling and storage facilities

  6. Technical career opportunities in high-level radioactive waste management

    International Nuclear Information System (INIS)

    1993-01-01

    Technical career opportunities in high-level radioactive waste management are briefly described in the areas of: Hydrology; geology; biological sciences; mathematics; engineering; heavy equipment operation; and skilled labor and crafts

  7. Long-term high-level waste technology program

    International Nuclear Information System (INIS)

    1980-04-01

    The Department of Energy (DOE) is conducting a comprehensive program to isolate all US nuclear wastes from the human environment. The DOE Office of Nuclear Energy - Waste (NEW) has full responsibility for managing the high-level wastes resulting from defense activities and additional responsiblity for providing the technology to manage existing commercial high-level wastes and any that may be generated in one of several alternative fuel cycles. Responsibilities of the Three Divisions of DOE-NEW are shown. This strategy document presents the research and development plan of the Division of Waste Products for long-term immobilization of the high-level radioactive wastes resulting from chemical processing of nuclear reactor fuels and targets. These high-level wastes contain more than 99% of the residual radionuclides produced in the fuels and targets during reactor operations. They include essentially all the fission products and most of the actinides that were not recovered for use

  8. Glasses used for the high level radioactive wastes storage

    International Nuclear Information System (INIS)

    Sombret, C.

    1983-06-01

    High level radioactive wastes generated by the reprocessing of spent fuels is an important concern in the conditioning of radioactive wastes. This paper deals with the status of the knowledge about glasses used for the treatment of these liquids [fr

  9. Handling and storage of conditioned high-level wastes

    International Nuclear Information System (INIS)

    Heafield, W.

    1984-01-01

    This paper deals with certain aspects of the management of one of the most important radioactive wastes arising from the nuclear fuel cycle, i.e. the handling and storage of conditioned high-level wastes. The paper is based on an IAEA report of the same title published during 1983 in the Technical Reports Series. The paper provides illustrative background material on the characteristics of high-level wastes and, qualitatively, their requirements for conditioning. The principles important in the storage of high-level wastes are reviewed in conjunction with the radiological and socio-political considerations involved. Four fundamentally different storage concepts are described with reference to published information and the safety aspects of particular storage concepts are discussed. Finally, overall conclusions are presented which confirm the availability of technology for constructing and operating conditioned high-level waste storage facilities for periods of at least several decades. (author)

  10. Development of melt compositions for sulphate bearing high level waste

    International Nuclear Information System (INIS)

    Jahagirdar, P.B.; Wattal, P.K.

    1997-09-01

    The report deals with the development and characterization of vitreous matrices for sulphate bearing high level waste. Studies were conducted in sodium borosilicate and lead borosilicate systems with the introduction of CaO, BaO, MgO etc. Lead borosilicate system was found to be compatible with sulphate bearing high level wastes. Detailed product evaluation carried on selected formulations is also described. (author)

  11. Properties and characteristics of high-level waste glass

    International Nuclear Information System (INIS)

    Ross, W.A.

    1977-01-01

    This paper has briefly reviewed many of the characteristics and properties of high-level waste glasses. From this review, it can be noted that glass has many desirable properties for solidification of high-level wastes. The most important of these include: (1) its low leach rate; (2) the ability to tolerate large changes in waste composition; (3) the tolerance of anticipated storage temperatures; (4) its low surface area even after thermal shock or impact

  12. High-Level Waste System Process Interface Description

    International Nuclear Information System (INIS)

    D'Entremont, P.D.

    1999-01-01

    The High-Level Waste System is a set of six different processes interconnected by pipelines. These processes function as one large treatment plant that receives, stores, and treats high-level wastes from various generators at SRS and converts them into forms suitable for final disposal. The three major forms are borosilicate glass, which will be eventually disposed of in a Federal Repository, Saltstone to be buried on site, and treated water effluent that is released to the environment

  13. Advanced High-Level Waste Glass Research and Development Plan

    Energy Technology Data Exchange (ETDEWEB)

    Peeler, David K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Vienna, John D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Schweiger, Michael J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fox, Kevin M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-07-01

    The U.S. Department of Energy Office of River Protection (ORP) has implemented an integrated program to increase the loading of Hanford tank wastes in glass while meeting melter lifetime expectancies and process, regulatory, and product quality requirements. The integrated ORP program is focused on providing a technical, science-based foundation from which key decisions can be made regarding the successful operation of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) facilities. The fundamental data stemming from this program will support development of advanced glass formulations, key process control models, and tactical processing strategies to ensure safe and successful operations for both the low-activity waste (LAW) and high-level waste (HLW) vitrification facilities with an appreciation toward reducing overall mission life. The purpose of this advanced HLW glass research and development plan is to identify the near-, mid-, and longer-term research and development activities required to develop and validate advanced HLW glasses and their associated models to support facility operations at WTP, including both direct feed and full pretreatment flowsheets. This plan also integrates technical support of facility operations and waste qualification activities to show the interdependence of these activities with the advanced waste glass (AWG) program to support the full WTP mission. Figure ES-1 shows these key ORP programmatic activities and their interfaces with both WTP facility operations and qualification needs. The plan is a living document that will be updated to reflect key advancements and mission strategy changes. The research outlined here is motivated by the potential for substantial economic benefits (e.g., significant increases in waste throughput and reductions in glass volumes) that will be realized when advancements in glass formulation continue and models supporting facility operations are implemented. Developing and applying advanced

  14. Deep borehole disposal of high-level radioactive waste.

    Energy Technology Data Exchange (ETDEWEB)

    Stein, Joshua S.; Freeze, Geoffrey A.; Brady, Patrick Vane; Swift, Peter N.; Rechard, Robert Paul; Arnold, Bill Walter; Kanney, Joseph F.; Bauer, Stephen J.

    2009-07-01

    Preliminary evaluation of deep borehole disposal of high-level radioactive waste and spent nuclear fuel indicates the potential for excellent long-term safety performance at costs competitive with mined repositories. Significant fluid flow through basement rock is prevented, in part, by low permeabilities, poorly connected transport pathways, and overburden self-sealing. Deep fluids also resist vertical movement because they are density stratified. Thermal hydrologic calculations estimate the thermal pulse from emplaced waste to be small (less than 20 C at 10 meters from the borehole, for less than a few hundred years), and to result in maximum total vertical fluid movement of {approx}100 m. Reducing conditions will sharply limit solubilities of most dose-critical radionuclides at depth, and high ionic strengths of deep fluids will prevent colloidal transport. For the bounding analysis of this report, waste is envisioned to be emplaced as fuel assemblies stacked inside drill casing that are lowered, and emplaced using off-the-shelf oilfield and geothermal drilling techniques, into the lower 1-2 km portion of a vertical borehole {approx}45 cm in diameter and 3-5 km deep, followed by borehole sealing. Deep borehole disposal of radioactive waste in the United States would require modifications to the Nuclear Waste Policy Act and to applicable regulatory standards for long-term performance set by the US Environmental Protection Agency (40 CFR part 191) and US Nuclear Regulatory Commission (10 CFR part 60). The performance analysis described here is based on the assumption that long-term standards for deep borehole disposal would be identical in the key regards to those prescribed for existing repositories (40 CFR part 197 and 10 CFR part 63).

  15. High level secretion of cellobiohydrolases by Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Ahlgren Simon

    2011-09-01

    Full Text Available Abstract Background The main technological impediment to widespread utilization of lignocellulose for the production of fuels and chemicals is the lack of low-cost technologies to overcome its recalcitrance. Organisms that hydrolyze lignocellulose and produce a valuable product such as ethanol at a high rate and titer could significantly reduce the costs of biomass conversion technologies, and will allow separate conversion steps to be combined in a consolidated bioprocess (CBP. Development of Saccharomyces cerevisiae for CBP requires the high level secretion of cellulases, particularly cellobiohydrolases. Results We expressed various cellobiohydrolases to identify enzymes that were efficiently secreted by S. cerevisiae. For enhanced cellulose hydrolysis, we engineered bimodular derivatives of a well secreted enzyme that naturally lacks the carbohydrate-binding module, and constructed strains expressing combinations of cbh1 and cbh2 genes. Though there was significant variability in the enzyme levels produced, up to approximately 0.3 g/L CBH1 and approximately 1 g/L CBH2 could be produced in high cell density fermentations. Furthermore, we could show activation of the unfolded protein response as a result of cellobiohydrolase production. Finally, we report fermentation of microcrystalline cellulose (Avicel™ to ethanol by CBH-producing S. cerevisiae strains with the addition of beta-glucosidase. Conclusions Gene or protein specific features and compatibility with the host are important for efficient cellobiohydrolase secretion in yeast. The present work demonstrated that production of both CBH1 and CBH2 could be improved to levels where the barrier to CBH sufficiency in the hydrolysis of cellulose was overcome.

  16. High-Level Waste Systems Plan. Revision 7 (U)

    International Nuclear Information System (INIS)

    Brooke, J.N.; Gregory, M.V.; Paul, P.; Taylor, G.; Wise, F.E.; Davis, N.R.; Wells, M.N.

    1996-10-01

    This revision of the High-Level Waste (HLW) System Plan aligns SRS HLW program planning with the DOE Savannah River (DOE-SR) Ten Year Plan (QC-96-0005, Draft 8/6), which was issued in July 1996. The objective of the Ten Year Plan is to complete cleanup at most nuclear sites within the next ten years. The two key principles of the Ten Year Plan are to accelerate the reduction of the most urgent risks to human health and the environment and to reduce mortgage costs. Accordingly, this System Plan describes the HLW program that will remove HLW from all 24 old-style tanks, and close 20 of those tanks, by 2006 with vitrification of all HLW by 2018. To achieve these goals, the DWPF canister production rate is projected to climb to 300 canisters per year starting in FY06, and remain at that rate through the end of the program in FY18, (Compare that to past System Plans, in which DWPF production peaked at 200 canisters per year, and the program did not complete until 2026.) An additional $247M (FY98 dollars) must be made available as requested over the ten year planning period, including a one-time $10M to enhance Late Wash attainment. If appropriate resources are made available, facility attainment issues are resolved and regulatory support is sufficient, then completion of the HLW program in 2018 would achieve a $3.3 billion cost savings to DOE, versus the cost of completing the program in 2026. Facility status information is current as of October 31, 1996

  17. Overview: Defense high-level waste technology program

    International Nuclear Information System (INIS)

    Shupe, M.W.; Turner, D.A.

    1987-01-01

    Defense high-level waste generated by atomic energy defense activities is stored on an interim basis at three U.S. Department of Energy (DOE) operating locations; the Savannah River Plant in South Carolina, the Hanford Site in Washington, and the Idaho National Engineering Laboratory in Idaho. Responsibility for the permanent disposal of this waste resides with DOE's Office of Defense Waste and Transportation Management. The objective of the Defense High-Level Wast Technology Program is to develop the technology for ending interim storage and achieving permanent disposal of all U.S. defense high-level waste. New and readily retrievable high-level waste are immobilized for disposal in a geologic repository. Other high-level waste will be stabilized in-place if, after completion of the National Environmental Policy Act (NEPA) process, it is determined, on a site-specific basis, that this option is safe, cost effective and environmentally sound. The immediate program focus is on implementing the waste disposal strategy selected in compliance with the NEPA process at Savannah River, while continuing progress toward development of final waste disposal strategies at Hanford and Idaho. This paper presents an overview of the technology development program which supports these waste management activities and an assessment of the impact that recent and anticipated legal and institutional developments are expected to have on the program

  18. Managing the nation's commercial high-level radioactive waste

    International Nuclear Information System (INIS)

    1985-03-01

    This report presents the findings and conclusions of OTA's analysis of Federal policy for the management of commercial high-level radioactive waste. It represents a major update and expansion of the Analysis presented to Congress in our summary report, Managing Commercial High-Level Radioactive Waste, published in April of 1982 (NWPA). This new report is intended to contribute to the implementation of NWPA, and in particular to Congressional review of three major documents that DOE will submit to the 99th Congress: a Mission Plan for the waste management program; a monitored retrievable storage (MRS) proposal; and a report on mechanisms for financing and managing the waste program. The assessment was originally focused on the ocean disposal of nuclear waste. OTA later broadened the study to include all aspects of high-level waste disposal. The major findings of the original analysis were published in OTA's 1982 summary report

  19. Techniques for the solidification of high-level wastes

    International Nuclear Information System (INIS)

    1977-01-01

    The problem of the long-term management of the high-level wastes from the reprocessing of irradiated nuclear fuel is receiving world-wide attention. While the majority of the waste solutions from the reprocessing of commercial fuels are currently being stored in stainless-steel tanks, increasing effort is being devoted to developing technology for the conversion of these wastes into solids. A number of full-scale solidification facilities are expected to come into operation in the next decade. The object of this report is to survey and compare all the work currently in progress on the techniques available for the solidification of high-level wastes. It will examine the high-level liquid wastes arising from the various processes currently under development or in operation, the advantages and disadvantages of each process for different types and quantities of waste solutions, the stages of development, the scale-up potential and flexibility of the processes

  20. Spent fuel and high-level radioactive waste storage

    International Nuclear Information System (INIS)

    Trigerman, S.

    1988-06-01

    The subject of spent fuel and high-level radioactive waste storage, is bibliographically reviewed. The review shows that in the majority of the countries, spent fuels and high-level radioactive wastes are planned to be stored for tens of years. Sites for final disposal of high-level radioactive wastes have not yet been found. A first final disposal facility is expected to come into operation in the United States of America by the year 2010. Other final disposal facilities are expected to come into operation in Germany, Sweden, Switzerland and Japan by the year 2020. Meanwhile , stress is placed upon the 'dry storage' method which is carried out successfully in a number of countries (Britain and France). In the United States of America spent fuels are stored in water pools while the 'dry storage' method is still being investigated. (Author)

  1. Production and properties of solidified high-level waste

    International Nuclear Information System (INIS)

    Brodersen, K.

    1980-08-01

    Available information on production and properties of solidified high-level waste are presented. The review includes literature up to the end of 1979. The feasibility of production of various types of solidified high-level wast is investigated. The main emphasis is on borosilicate glass but other options are also mentioned. The expected long-term behaviour of the materials are discussed on the basis of available results from laboratory experiments. Examples of the use of the information in safety analysis of disposal in salt formations are given. The work has been made on behalf of the Danish utilities investigation of the possibilities of disposal of high-level waste in salt domes in Jutland. (author)

  2. High level radioactive waste management facility design criteria

    International Nuclear Information System (INIS)

    Sheikh, N.A.; Salaymeh, S.R.

    1993-01-01

    This paper discusses the engineering systems for the structural design of the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS). At the DWPF, high level radioactive liquids will be mixed with glass particles and heated in a melter. This molten glass will then be poured into stainless steel canisters where it will harden. This process will transform the high level waste into a more stable, manageable substance. This paper discuss the structural design requirements for this unique one of a kind facility. A special emphasis will be concentrated on the design criteria pertaining to earthquake, wind and tornado, and flooding

  3. Development of technical information database for high level waste disposal

    International Nuclear Information System (INIS)

    Kudo, Koji; Takada, Susumu; Kawanishi, Motoi

    2005-01-01

    A concept design of the high level waste disposal information database and the disposal technologies information database are explained. The high level waste disposal information database contains information on technologies, waste, management and rules, R and D, each step of disposal site selection, characteristics of sites, demonstration of disposal technology, design of disposal site, application for disposal permit, construction of disposal site, operation and closing. Construction of the disposal technologies information system and the geological disposal technologies information system is described. The screen image of the geological disposal technologies information system is shown. User is able to search the full text retrieval and attribute retrieval in the image. (S.Y. )

  4. High-Level Waste (HLW) Feed Process Control Strategy

    International Nuclear Information System (INIS)

    STAEHR, T.W.

    2000-01-01

    The primary purpose of this document is to describe the overall process control strategy for monitoring and controlling the functions associated with the Phase 1B high-level waste feed delivery. This document provides the basis for process monitoring and control functions and requirements needed throughput the double-shell tank system during Phase 1 high-level waste feed delivery. This document is intended to be used by (1) the developers of the future Process Control Plan and (2) the developers of the monitoring and control system

  5. Final report on cermet high-level waste forms

    International Nuclear Information System (INIS)

    Kobisk, E.H.; Quinby, T.C.; Aaron, W.S.

    1981-08-01

    Cermets are being developed as an alternate method for the fixation of defense and commercial high level radioactive waste in a terminal disposal form. Following initial feasibility assessments of this waste form, consisting of ceramic particles dispersed in an iron-nickel base alloy, significantly improved processing methods were developed. The characterization of cermets has continued through property determinations on samples prepared by various methods from a variety of simulated and actual high-level wastes. This report describes the status of development of the cermet waste form as it has evolved since 1977. 6 tables, 18 figures

  6. Managing the high level waste nuclear regulatory commission licensing process

    International Nuclear Information System (INIS)

    Baskin, K.P.

    1992-01-01

    This paper reports that the process for obtaining Nuclear Regulatory Commission permits for the high level waste storage facility is basically the same process commercial nuclear power plants followed to obtain construction permits and operating licenses for their facilities. Therefore, the experience from licensing commercial reactors can be applied to the high level waste facility. Proper management of the licensing process will be the key to the successful project. The management of the licensing process was categorized into four areas as follows: responsibility, organization, communication and documentation. Drawing on experience from nuclear power plant licensing and basic management principles, the management requirement for successfully accomplishing the project goals are discussed

  7. High-level trigger system for the LHC ALICE experiment

    CERN Document Server

    Bramm, R; Lien, J A; Lindenstruth, V; Loizides, C; Röhrich, D; Skaali, B; Steinbeck, T M; Stock, Reinhard; Ullaland, K; Vestbø, A S; Wiebalck, A

    2003-01-01

    The central detectors of the ALICE experiment at LHC will produce a data size of up to 75 MB/event at an event rate less than approximately equals 200 Hz resulting in a data rate of similar to 15 GB/s. Online processing of the data is necessary in order to select interesting (sub)events ("High Level Trigger"), or to compress data efficiently by modeling techniques. Processing this data requires a massive parallel computing system (High Level Trigger System). The system will consist of a farm of clustered SMP-nodes based on off- the-shelf PCs connected with a high bandwidth low latency network.

  8. High-level radioactive waste disposal type and theoretical analyses

    International Nuclear Information System (INIS)

    Lu Yingfa; Wu Yanchun; Luo Xianqi; Cui Yujun

    2006-01-01

    Study of high-level radioactive waste disposal is necessary for the nuclear electrical development; the determination of nuclear waste depository type is one of importance safety. Based on the high-level radioactive disposal type, the relative research subjects are proposed, then the fundamental research characteristics of nuclear waste disposition, for instance: mechanical and hydraulic properties of rock mass, saturated and unsaturated seepage, chemical behaviors, behavior of special soil, and gas behavior, etc. are introduced, the relative coupling equations are suggested, and a one dimensional result is proposed. (authors)

  9. Evaluation of solidified high-level waste forms

    International Nuclear Information System (INIS)

    1981-01-01

    One of the objectives of the IAEA waste management programme is to coordinate and promote development of improved technology for the safe management of radioactive wastes. The Agency accomplished this objective specifically through sponsoring Coordinated Research Programmes on the ''Evaluation of Solidified High Level Waste Products'' in 1977. The primary objectives of this programme are to review and disseminate information on the properties of solidified high-level waste forms, to provide a mechanism for analysis and comparison of results from different institutes, and to help coordinate future plans and actions. This report is a summary compilation of the key information disseminated at the second meeting of this programme

  10. Aeon: Synthesizing Scheduling Algorithms from High-Level Models

    Science.gov (United States)

    Monette, Jean-Noël; Deville, Yves; van Hentenryck, Pascal

    This paper describes the aeon system whose aim is to synthesize scheduling algorithms from high-level models. A eon, which is entirely written in comet, receives as input a high-level model for a scheduling application which is then analyzed to generate a dedicated scheduling algorithm exploiting the structure of the model. A eon provides a variety of synthesizers for generating complete or heuristic algorithms. Moreover, synthesizers are compositional, making it possible to generate complex hybrid algorithms naturally. Preliminary experimental results indicate that this approach may be competitive with state-of-the-art search algorithms.

  11. Sterilization, high-level disinfection, and environmental cleaning.

    Science.gov (United States)

    Rutala, William A; Weber, David J

    2011-03-01

    Failure to perform proper disinfection and sterilization of medical devices may lead to introduction of pathogens, resulting in infection. New techniques have been developed for achieving high-level disinfection and adequate environmental cleanliness. This article examines new technologies for sterilization and high-level disinfection of critical and semicritical items, respectively, and because semicritical items carry the greatest risk of infection, the authors discuss reprocessing semicritical items such as endoscopes and automated endoscope reprocessors, endocavitary probes, prostate biopsy probes, tonometers, laryngoscopes, and infrared coagulation devices. In addition, current issues and practices associated with environmental cleaning are reviewed. Copyright © 2011. Published by Elsevier Inc.

  12. The Savannah River Site Replacement High Level Radioactive Waste Evaporator Project

    International Nuclear Information System (INIS)

    Presgrove, S.B.

    1992-01-01

    The Replacement High Level Waste Evaporator Project was conceived in 1985 to reduce the volume of the high level radioactive waste Process of the high level waste has been accomplished up to this time using Bent Tube type evaporators and therefore, that type evaporator was selected for this project. The Title I Design of the project was 70% completed in late 1990. The Department of Energy at that time hired an independent consulting firm to perform a complete review of the project. The DOE placed a STOP ORDER on purchasing the evaporator in January 1991. Essentially, no construction was to be done on this project until all findings and concerns dealing with the type and design of the evaporator are resolved. This report addresses two aspects of the DOE design review; (1) Comparing the Bent Tube Evaporator with the Forced Circulation Evaporator, (2) The design portion of the DOE Project Review - concentrated on the mechanical design properties of the evaporator. 1 ref

  13. Licensing information needs for a high-level waste repository

    International Nuclear Information System (INIS)

    Wright, R.J.; Greeves, J.T.; Logsdon, M.J.

    1985-01-01

    The information needs for licensing findings during the development of a repository for high-level waste (HLW) are described. In particular, attention is given to the information and needs to demonstrate, for construction authorization purposes: repository constructibility, waste retrievability, waste containment, and waste isolation

  14. Site suitability criteria for solidified high level waste repositories

    International Nuclear Information System (INIS)

    Heckman, R.A.; Holdsworth, T.; Towse, D.F.

    1979-01-01

    Activities devoted to development of regulations, criteria, and standards for storage of solidified high-level radioactive wastes are reported. The work is summarized in sections on site suitability regulations, risk calculations, geological models, aquifer models, human usage model, climatology model, and repository characteristics. Proposed additional analytical work is also summarized

  15. Answers to your questions on high-level nuclear waste

    International Nuclear Information System (INIS)

    1987-11-01

    This booklet contains answers to frequently asked questions about high-level nuclear wastes. Written for the layperson, the document contains basic information on the hazards of radiation, the Nuclear Waste Management Program, the proposed geologic repository, the proposed monitored retrievable storage facility, risk assessment, and public participation in the program

  16. The ATLAS Data Acquisition and High Level Trigger system

    International Nuclear Information System (INIS)

    2016-01-01

    This paper describes the data acquisition and high level trigger system of the ATLAS experiment at the Large Hadron Collider at CERN, as deployed during Run 1. Data flow as well as control, configuration and monitoring aspects are addressed. An overview of the functionality of the system and of its performance is presented and design choices are discussed.

  17. Extending Java for High-Level Web Service Construction

    DEFF Research Database (Denmark)

    Christensen, Aske Simon; Møller, Anders; Schwartzbach, Michael Ignatieff

    2003-01-01

    We incorporate innovations from the project into the Java language to provide high-level features for Web service programming. The resulting language, JWIG, contains an advanced session model and a flexible mechanism for dynamic construction of XML documents, in particular XHTML. To support program...

  18. High-Level Overview of Data Needs for RE Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, Anthony

    2016-12-22

    This presentation provides a high level overview of analysis topics and associated data needs. Types of renewable energy analysis are grouped into two buckets: First, analysis for renewable energy potential, and second, analysis for other goals. Data requirements are similar but and they build upon one another.

  19. High-Level waste process and product data annotated bibliography

    International Nuclear Information System (INIS)

    Stegen, G.E.

    1996-01-01

    The objective of this document is to provide information on available issued documents that will assist interested parties in finding available data on high-level waste and transuranic waste feed compositions, properties, behavior in candidate processing operations, and behavior on candidate product glasses made from those wastes. This initial compilation is only a partial list of available references

  20. High-level radioactive waste repositories site selection plan

    International Nuclear Information System (INIS)

    Castanon, A.; Recreo, F.

    1985-01-01

    A general vision of the high level nuclear waste (HLNW) and/or nuclear spent fuel facilities site selection processes is given, according to the main international nuclear safety regulatory organisms quidelines and the experience from those countries which have reached a larger development of their national nuclear programs. (author)

  1. High-level waste-form-product performance evaluation

    International Nuclear Information System (INIS)

    Bernadzikowski, T.A.; Allender, J.S.; Stone, J.A.; Gordon, D.E.; Gould, T.H. Jr.; Westberry, C.F. III.

    1982-01-01

    Seven candidate waste forms were evaluated for immobilization and geologic disposal of high-level radioactive wastes. The waste forms were compared on the basis of leach resistance, mechanical stability, and waste loading. All forms performed well at leaching temperatures of 40, 90, and 150 0 C. Ceramic forms ranked highest, followed by glasses, a metal matrix form, and concrete. 11 tables

  2. High level waste canister emplacement and retrieval concepts study

    International Nuclear Information System (INIS)

    1975-09-01

    Several concepts are described for the interim (20 to 30 years) storage of canisters containing high level waste, cladding waste, and intermediate level-TRU wastes. It includes requirements, ground rules and assumptions for the entire storage pilot plant. Concepts are generally evaluated and the most promising are selected for additional work. Follow-on recommendations are made

  3. An emergency management demonstrator using the high level architecture

    International Nuclear Information System (INIS)

    Williams, R.J.

    1996-12-01

    This paper addresses the issues of simulation interoperability within the emergency management training context. A prototype implementation in Java of a subset of the High Level Architecture (HLA) is described. The use of Web Browsers to provide graphical user interfaces to HLA is also investigated. (au)

  4. High-level manpower movement and Japan's foreign aid.

    Science.gov (United States)

    Furuya, K

    1992-01-01

    "Japan's technical assistance programs to Asian countries are summarized. Movements of high-level manpower accompanying direct foreign investments by private enterprise are also reviewed. Proposals for increased human resources development include education and training of foreigners in Japan as well as the training of Japanese aid experts and the development of networks for information exchange." excerpt

  5. Reachability Trees for High-level Petri Nets

    DEFF Research Database (Denmark)

    Jensen, Kurt; Jensen, Arne M.; Jepsen, Leif Obel

    1986-01-01

    the necessary analysis methods. In other papers it is shown how to generalize the concept of place- and transition invariants from place/transition nets to high-level Petri nets. Our present paper contributes to this with a generalization of reachability trees, which is one of the other important analysis...

  6. High-level lipase production by Aspergillus candidus URM 5611 ...

    African Journals Online (AJOL)

    The current study evaluated lipase production by Aspergillus candidus URM 5611 through solid state fermentation (SSF) by using almond bran licuri as a new substrate. The microorganism produced high levels of the enzyme (395.105 U gds-1), thus surpassing those previously reported in the literature. The variable ...

  7. High level of CA 125 due to large endometrioma.

    Science.gov (United States)

    Phupong, Vorapong; Chen, Orawan; Ultchaswadi, Pornthip

    2004-09-01

    CA 125 is a tumor-associated antigen. Its high levels are usually associated with ovarian malignancies, whereas smaller increases in the levels were associated with benign gynecologic conditions. The authors report a high level of CA 125 in a case of large ovarian endometrioma. A 45-year-old nulliparous Thai woman, presented with an increase of her abdominal girth for 7 months. Transabdominal ultrasonogram demonstrated a large ovarian cyst and multiple small leiomyoma uteri, and serum CA 125 level was 1,006 U/ml. The preoperative diagnosis was ovarian cancer with leiomyoma uteri. Exploratory laparotomy was performed. There were a large right ovarian endometrioma, small left ovarian endometrioma and multiple small leiomyoma. Total abdominal hysterectomy and bilateral salpingo-oophorectomy was performed and histopathology confirmed the diagnosis of endometrioma and leiomyoma. The serum CA 125 level declined to non-detectable at the 4th week. She was well at discharge and throughout her 4th week follow-up period Although a very high level of CA 125 is associated with a malignant process, it can also be found in benign conditions such as a large endometrioma. The case emphasizes the association of high levels of CA 125 with benign gynecologic conditions.

  8. The 2011 United Nations High-Level Meeting on Non ...

    African Journals Online (AJOL)

    The 2011 United Nations High-Level Meeting on Non- Communicable Diseases: The Africa agenda calls for a 5-by-5 approach. ... The Political Declaration issued at the meeting focused the attention of world leaders and the global health community on the prevention and control of noncommunicable diseases (NCDs).

  9. High-Level Waste Vitrification Facility Feasibility Study

    International Nuclear Information System (INIS)

    D. A. Lopez

    1999-01-01

    A ''Settlement Agreement'' between the Department of Energy and the State of Idaho mandates that all radioactive high-level waste now stored at the Idaho Nuclear Technology and Engineering Center will be treated so that it is ready to be moved out of Idaho for disposal by a compliance date of 2035. This report investigates vitrification treatment of the high-level waste in a High-Level Waste Vitrification Facility based on the assumption that no more New Waste Calcining Facility campaigns will be conducted after June 2000. Under this option, the sodium-bearing waste remaining in the Idaho Nuclear Technology and Engineering Center Tank Farm, and newly generated liquid waste produced between now and the start of 2013, will be processed using a different option, such as a Cesium Ion Exchange Facility. The cesium-saturated waste from this other option will be sent to the Calcine Solids Storage Facilities to be mixed with existing calcine. The calcine and cesium-saturated waste will be processed in the High-Level Waste Vitrification Facility by the end of calendar year 2035. In addition, the High-Level Waste Vitrification Facility will process all newly-generated liquid waste produced between 2013 and the end of 2035. Vitrification of this waste is an acceptable treatment method for complying with the Settlement Agreement. This method involves vitrifying the waste and pouring it into stainless-steel canisters that will be ready for shipment out of Idaho to a disposal facility by 2035. These canisters will be stored at the Idaho National Engineering and Environmental Laboratory until they are sent to a national geologic repository. The operating period for vitrification treatment will be from the end of 2015 through 2035

  10. High-Level Waste Vitrification Facility Feasibility Study

    Energy Technology Data Exchange (ETDEWEB)

    D. A. Lopez

    1999-08-01

    A ''Settlement Agreement'' between the Department of Energy and the State of Idaho mandates that all radioactive high-level waste now stored at the Idaho Nuclear Technology and Engineering Center will be treated so that it is ready to be moved out of Idaho for disposal by a compliance date of 2035. This report investigates vitrification treatment of the high-level waste in a High-Level Waste Vitrification Facility based on the assumption that no more New Waste Calcining Facility campaigns will be conducted after June 2000. Under this option, the sodium-bearing waste remaining in the Idaho Nuclear Technology and Engineering Center Tank Farm, and newly generated liquid waste produced between now and the start of 2013, will be processed using a different option, such as a Cesium Ion Exchange Facility. The cesium-saturated waste from this other option will be sent to the Calcine Solids Storage Facilities to be mixed with existing calcine. The calcine and cesium-saturated waste will be processed in the High-Level Waste Vitrification Facility by the end of calendar year 2035. In addition, the High-Level Waste Vitrification Facility will process all newly-generated liquid waste produced between 2013 and the end of 2035. Vitrification of this waste is an acceptable treatment method for complying with the Settlement Agreement. This method involves vitrifying the waste and pouring it into stainless-steel canisters that will be ready for shipment out of Idaho to a disposal facility by 2035. These canisters will be stored at the Idaho National Engineering and Environmental Laboratory until they are sent to a national geologic repository. The operating period for vitrification treatment will be from the end of 2015 through 2035.

  11. Study on high-level waste geological disposal metadata model

    International Nuclear Information System (INIS)

    Ding Xiaobin; Wang Changhong; Zhu Hehua; Li Xiaojun

    2008-01-01

    This paper expatiated the concept of metadata and its researches within china and abroad, then explain why start the study on the metadata model of high-level nuclear waste deep geological disposal project. As reference to GML, the author first set up DML under the framework of digital underground space engineering. Based on DML, a standardized metadata employed in high-level nuclear waste deep geological disposal project is presented. Then, a Metadata Model with the utilization of internet is put forward. With the standardized data and CSW services, this model may solve the problem in the data sharing and exchanging of different data form A metadata editor is build up in order to search and maintain metadata based on this model. (authors)

  12. In-situ nitrite analysis in high level waste tanks

    International Nuclear Information System (INIS)

    O'Rourke, P.E.; Prather, W.S.; Livingston, R.R.

    1992-01-01

    The Savannah River Site produces special nuclear materials used in the defense of the United States. Most of the processes at SRS are primarily chemical separations and purifications. In-situ chemical analyses help improve the safety, efficiency and quality of these operations. One area where in situ fiberoptic spectroscopy can have a great impact is the management of high level radioactive waste. High level radioactive waste at SRS is stored in more than 50 large waste tanks. The waste exists as a slurry of nitrate salts and metal hydroxides at pH's higher than 10. Sodium Nitrite is added to the tanks as a corrosion inhibitor. In-situ fiberoptic probes are being developed to measure the nitrate, nitrite and hydroxide concentrations in both liquid and solid fractions. Nitrite levels can be measured between 0.01M and 1M in a 1mm pathlength optical cell

  13. Glass-solidification method for high level radioactive liquid waste

    International Nuclear Information System (INIS)

    Kawamura, Kazuhiro; Kometani, Masayuki; Sasage, Ken-ichi.

    1996-01-01

    High level liquid wastes are removed with precipitates mainly comprising Mo and Zr, thereafter, the high level liquid wastes are mixed with a glass raw material comprising a composition having a B 2 O 3 /SiO 2 ratio of not less than 0.41, a ZnO/Li 2 O ratio of not less than 1.00, and an Al 2 O 3 /Li 2 O ratio of not less than 2.58, and they are melted and solidified into glass-solidification products. The liquid waste content in the glass-solidification products can be increased up to about 45% by using the glass raw material having such a predetermined composition. In addition, deposition of a yellow phase does not occur, and a leaching rate identical with that in a conventional case can be maintained. (T.M.)

  14. Nondestructive examination of DOE high-level waste storage tanks

    International Nuclear Information System (INIS)

    Bush, S.; Bandyopadhyay, K.; Kassir, M.; Mather, B.; Shewmon, P.; Streicher, M.; Thompson, B.; van Rooyen, D.; Weeks, J.

    1995-01-01

    A number of DOE sites have buried tanks containing high-level waste. Tanks of particular interest am double-shell inside concrete cylinders. A program has been developed for the inservice inspection of the primary tank containing high-level waste (HLW), for testing of transfer lines and for the inspection of the concrete containment where possible. Emphasis is placed on the ultrasonic examination of selected areas of the primary tank, coupled with a leak-detection system capable of detecting small leaks through the wall of the primary tank. The NDE program is modelled after ASME Section XI in many respects, particularly with respects to the sampling protocol. Selected testing of concrete is planned to determine if there has been any significant degradation. The most probable failure mechanisms are corrosion-related so that the examination program gives major emphasis to possible locations for corrosion attack

  15. Evaluation and selection of candidate high-level waste forms

    International Nuclear Information System (INIS)

    1982-03-01

    Seven candidate waste forms being developed under the direction of the Department of Energy's National High-Level Waste (HLW) Technology Program, were evaluated as potential media for the immobilization and geologic disposal of high-level nuclear wastes. The evaluation combined preliminary waste form evaluations conducted at DOE defense waste-sites and independent laboratories, peer review assessments, a product performance evaluation, and a processability analysis. Based on the combined results of these four inputs, two of the seven forms, borosilicate glass and a titanate based ceramic, SYNROC, were selected as the reference and alternative forms for continued development and evaluation in the National HLW Program. Both the glass and ceramic forms are viable candidates for use at each of the DOE defense waste-sites; they are also potential candidates for immobilization of commercial reprocessing wastes. This report describes the waste form screening process, and discusses each of the four major inputs considered in the selection of the two forms

  16. Radiation transport in high-level waste form

    International Nuclear Information System (INIS)

    Arakali, V.S.; Barnes, S.M.

    1992-01-01

    The waste form selected for vitrifying high-level nuclear waste stored in underground tanks at West Valley, NY is borosilicate glass. The maximum radiation level at the surface of a canister filled with the high-level waste form is prescribed by repository design criteria for handling and disposition of the vitrified waste. This paper presents an evaluation of the radiation transport characteristics for the vitreous waste form expected to be produced at West Valley and the resulting neutron and gamma dose rates. The maximum gamma and neutron dose rates are estimated to be less than 7500 R/h and 10 mRem/h respectively at the surface of a West Valley canister filled with borosilicate waste glass

  17. Multipurpose optimization models for high level waste vitrification

    International Nuclear Information System (INIS)

    Hoza, M.

    1994-08-01

    Optimal Waste Loading (OWL) models have been developed as multipurpose tools for high-level waste studies for the Tank Waste Remediation Program at Hanford. Using nonlinear programming techniques, these models maximize the waste loading of the vitrified waste and optimize the glass formers composition such that the glass produced has the appropriate properties within the melter, and the resultant vitrified waste form meets the requirements for disposal. The OWL model can be used for a single waste stream or for blended streams. The models can determine optimal continuous blends or optimal discrete blends of a number of different wastes. The OWL models have been used to identify the most restrictive constraints, to evaluate prospective waste pretreatment methods, to formulate and evaluate blending strategies, and to determine the impacts of variability in the wastes. The OWL models will be used to aid in the design of frits and the maximize the waste in the glass for High-Level Waste (HLW) vitrification

  18. Chromosome Aberration on High Level Background Natural Radiation Areas

    International Nuclear Information System (INIS)

    Yanti-Lusiyanti; Zubaidah-Alatas

    2001-01-01

    When the body is irradiated, all cells can suffer cytogenetic damage that can be seen as structural damage of chromosome in the lymphocytes. People no matter where they live in world are exposed to background radiation from natural sources both internal and external such as cosmic radiation, terrestrial radiation, cosmogenic radiation radon and thoron. Level of area natural ionizing radiation is varies depending on the altitude, the soil or rock conditions, particular food chains and the building materials and construction features. Level of normal areas of background exposure is annual effective dose 2.4 mSv and the high level areas of background exposure 20 mSv. This paper discuses the frequency of aberration chromosome especially dysenteries in several countries having high level radiation background. It seems that frequency of chromosome aberrations increase, generally with the increase of age of the people and the accumulated dose received. (author)

  19. FPGA based compute nodes for high level triggering in PANDA

    International Nuclear Information System (INIS)

    Kuehn, W; Gilardi, C; Kirschner, D; Lang, J; Lange, S; Liu, M; Perez, T; Yang, S; Schmitt, L; Jin, D; Li, L; Liu, Z; Lu, Y; Wang, Q; Wei, S; Xu, H; Zhao, D; Korcyl, K; Otwinowski, J T; Salabura, P

    2008-01-01

    PANDA is a new universal detector for antiproton physics at the HESR facility at FAIR/GSI. The PANDA data acquisition system has to handle interaction rates of the order of 10 7 /s and data rates of several 100 Gb/s. FPGA based compute nodes with multi-Gb/s bandwidth capability using the ATCA architecture are designed to handle tasks such as event building, feature extraction and high level trigger processing. Data connectivity is provided via optical links as well as multiple Gb Ethernet ports. The boards will support trigger algorithms such us pattern recognition for RICH detectors, EM shower analysis, fast tracking algorithms and global event characterization. Besides VHDL, high level C-like hardware description languages will be considered to implement the firmware

  20. Safety of geologic disposal of high level radioactive waste

    International Nuclear Information System (INIS)

    Zaitsu, Tomohisa; Ishiguro, Katsuhiko; Masuda, Sumio

    1992-01-01

    This article introduces current concepts of geologic disposal of high level radioactive waste and its safety. High level radioactive waste is physically stabilized by solidifying it in a glass form. Characteristics of deep geologic layer are presented from the viewpoint of geologic disposal. Reconstruction of multi-barrier system receives much attention to secure the safety of geologic disposal. It is important to research performance assessment of multi-barrier system for preventing dissolution or transfer of radionuclides into the ground water. Physical and chemical modeling for the performance assessment is outlined in the following terms: (1) chemical property of deep ground water, (2) geochemical modeling of artificial barrier spatial water, (3) hydrology of deep ground water, (4) hydrology of the inside of artificial barrier, and (5) modeling of radionuclide transfer from artificial barrier. (N.K.)

  1. Development of high-level waste solidification technology 1

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Joon Hyung; Kim, Hwan Young; Kim, In Tae [and others

    1999-02-01

    Spent nuclear fuel contains useful nuclides as valuable resource materials for energy, heat and catalyst. High-level wastes (HLW) are expected to be generated from the R and D activities and reuse processes. It is necessary to develop vitrification or advanced solidification technologies for the safe long-term management of high level wastes. As a first step to establish HLW vitrification technology, characterization of HLWs that would arise at KAERI site, glass melting experiments with a lab-scale high frequency induction melter, and fabrication and property evaluation of base-glass made of used HEPA filter media and additives were performed. Basic study on the fabrication and characterization of candidate ceramic waste form (Synroc) was also carried out. These HLW solidification technologies would be directly useful for carrying out the R and Ds on the nuclear fuel cycle and waste management. (author). 70 refs., 29 tabs., 35 figs.

  2. QSPIN: A High Level Java API for Quantum Computing Experimentation

    Science.gov (United States)

    Barth, Tim

    2017-01-01

    QSPIN is a high level Java language API for experimentation in QC models used in the calculation of Ising spin glass ground states and related quadratic unconstrained binary optimization (QUBO) problems. The Java API is intended to facilitate research in advanced QC algorithms such as hybrid quantum-classical solvers, automatic selection of constraint and optimization parameters, and techniques for the correction and mitigation of model and solution errors. QSPIN includes high level solver objects tailored to the D-Wave quantum annealing architecture that implement hybrid quantum-classical algorithms [Booth et al.] for solving large problems on small quantum devices, elimination of variables via roof duality, and classical computing optimization methods such as GPU accelerated simulated annealing and tabu search for comparison. A test suite of documented NP-complete applications ranging from graph coloring, covering, and partitioning to integer programming and scheduling are provided to demonstrate current capabilities.

  3. Leaching behavior of simulated high-level waste glass

    International Nuclear Information System (INIS)

    Kamizono, Hiroshi

    1987-03-01

    The author's work in the study on the leaching behavior of simulated high-level waste (HLW) glass were summarized. The subjects described are (1) leach rates at high temperatures, (2) effects of cracks on leach rates, (3) effects of flow rate on leach rates, and (4) an in-situ burial test in natural groundwater. In the following section, the leach rates obtained by various experiments were summarized and discussed. (author)

  4. The tracking of high level waste shipments-TRANSCOM system

    International Nuclear Information System (INIS)

    Johnson, P.E.; Joy, D.S.; Pope, R.B.

    1995-01-01

    The TRANSCOM (transportation tracking and communication) system is the U.S. Department of Energy's (DOE's) real-time system for tracking shipments of spent fuel, high-level wastes, and other high-visibility shipments of radioactive material. The TRANSCOM system has been operational since 1988. The system was used during FY1993 to track almost 100 shipments within the US.DOE complex, and it is accessed weekly by 10 to 20 users

  5. High-level Component Interfaces for Collaborative Development: A Proposal

    Directory of Open Access Journals (Sweden)

    Thomas Marlowe

    2009-12-01

    Full Text Available Software development has rapidly moved toward collaborative development models where multiple partners collaborate in creating and evolving software intensive systems or components of sophisticated ubiquitous socio-technical-ecosystems. In this paper we extend the concept of software interface to a flexible high-level interface as means for accommodating change and localizing, controlling and managing the exchange of knowledge and functional, behavioral, quality, project and business related information between the partners and between the developed components.

  6. Mixing Processes in High-Level Waste Tanks - Final Report

    International Nuclear Information System (INIS)

    Peterson, P.F.

    1999-01-01

    The mixing processes in large, complex enclosures using one-dimensional differential equations, with transport in free and wall jets is modeled using standard integral techniques. With this goal in mind, we have constructed a simple, computationally efficient numerical tool, the Berkeley Mechanistic Mixing Model, which can be used to predict the transient evolution of fuel and oxygen concentrations in DOE high-level waste tanks following loss of ventilation, and validate the model against a series of experiments

  7. Status of the French nuclear high level waste disposal

    International Nuclear Information System (INIS)

    Sombret, C.

    1985-09-01

    French research on high level waste processing has led to the development of industrial vitrification facilities. Borosilicate glass is still being investigated for its long-term storage properties, since it is itself a component of the containment system. The other constituents of this system, the engineered barriers, are also being actively investigated. The geological barrier is now being assessed using a methodology applicable to various types of geological formations, and final site qualification should be possible before the end of 1992

  8. Soil-structure interaction effects on high level waste tanks

    International Nuclear Information System (INIS)

    Miller, C.A.; Costantino, C.J.; Heymsfeld, E.

    1991-01-01

    High Level Waste Tanks consist of steel tanks located in concrete vaults which are usually completely embedded in the soil. Many of these tanks are old and were designed to seismic standards which are not compatible with current requirements. The objective if this paper is to develop simple methods of modeling SSI effects for such structures and to obtain solutions for a range of parameters that can be used to identify significant aspects of the problem

  9. High-level neutron coincidence counter (HLNCC): users' manual

    International Nuclear Information System (INIS)

    Krick, M.S.; Menlove, H.O.

    1979-06-01

    This manual describes the portable High-Level Neutron Coincidence Counter (HLNCC) developed at the Los Alamos Scientific Laboratory (LASL) for the assay of plutonium, particularly by inspectors of the International Atomic Energy Agency (IAEA). The counter is designed for the measurement of the effective 240 Pu mass in plutonium samples which may have a high plutonium content. The following topics are discussed: principle of operation, description of the system, operating procedures, and applications

  10. Development of cermets for high-level radioactive waste fixation

    International Nuclear Information System (INIS)

    Aaron, W.S.; Quinby, T.C.; Kobisk, E.H.

    1979-01-01

    A method is currently under development for the solidification and fixation of commercial and defense high-level radioactive wastes in the form of ceramic particles encapsulated by metal, i.e., a cermet. The chemical and physical processing techniques which have been developed and the properties of the resulting cermet bodies are described in this paper. These cermets have the advantages of high thermal conductivity and low leach rates

  11. Research on high level radioactive waste repository seismic design criteria

    International Nuclear Information System (INIS)

    Jing Xu

    2012-01-01

    Review seismic hazard analysis principle and method in site suitable assessment process of Yucca Mountain Project, and seismic design criteria and seismic design basis in primary design process. Demonstrated spatial character of seismic hazard by calculated regional seismic hazard map. Contrasted different level seismic design basis to show their differences and relation. Discussed seismic design criteria for preclosure phrase of high level waste repository and preference goal under beyond design basis ground motion. (author)

  12. The tracking of high level waste shipments - TRANSCOM system

    International Nuclear Information System (INIS)

    Johnson, P.E.; Joy, D.S.; Pope, R.B.; Thomas, T.M.; Lester, P.B.

    1994-01-01

    The TRANSCOM (transportation tracking and communication) system is the US Department of Energy's (DOE's) real-time system for tracking shipments of spent fuel, high-level wastes, and other high-visibility shipments of radioactive material. The TRANSCOM system has been operational since 1988. The system was used during FY 1993 to track almost 100 shipments within the US DOE complex, and it is accessed weekly by 10 to 20 users

  13. A High Level Model of a Conscious Embodied Agent

    Czech Academy of Sciences Publication Activity Database

    Wiedermann, Jiří

    2010-01-01

    Roč. 2, č. 3 (2010), s. 62-78 ISSN 1942-9045 R&D Projects: GA ČR GAP202/10/1333 Institutional research plan: CEZ:AV0Z10300504 Keywords : embodied agent * internal world models * higher cognitive function Subject RIV: IN - Informatics, Computer Science http://www.igi-global.com/article/high-level-model-conscious-embodied/46147

  14. Apparatus for Crossflow Filtration Testing of High Level Waste Samples

    International Nuclear Information System (INIS)

    Nash, C.

    1998-05-01

    Remotely-operated experimental apparatuses for verifying crossflow filtration of high level nuclear waste have been constructed at the Savannah River Site (SRS). These units have been used to demonstrate filtration processes at the Savannah River Site, Oak Ridge National Laboratory, the Idaho National Engineering and Environmental Laboratory, and Pacific Northwest National Laboratory. The current work covers the design considerations for experimentation as well as providing results from testing at SRS

  15. Production and utilization of high level and long duration shocks

    International Nuclear Information System (INIS)

    Labrot, R.

    1978-01-01

    In order to verify the behaviour of equipments under extreme environmental conditions (propulsion, falls, impacts...), it is necessary to create 'high level and long duration shocks'. For these shocks, the velocity variation ΔV, which is equal to the area under the accelerogram γ (t), can reach several hundred meters per second. These velocity variations cannot be performed via classical free fall shock machine (ΔV [fr

  16. Solidification of Savannah River Plant high level waste

    International Nuclear Information System (INIS)

    Maher, R.; Shafranek, L.F.; Kelley, J.A.; Zeyfang, R.W.

    1981-11-01

    Authorization for construction of the Defense Waste Processing Facility (DWPF) is expected in FY 83. The optimum time for stage 2 authorization is about three years later. Detailed design and construction will require approximately five years for stage 1, with stage 2 construction completed about two to three years later. Production of canisters of waste glass would begin in 1988, and the existing backlog of high level waste sludge stored at SRP would be worked off by about the year 2000. Stage 2 operation could begin in 1990. The technology and engineering are ready for construction and eventual operation of the DWPF for immobilizing high level radioactive waste at Savannah River Plant (SRP). Proceeding with this project will provide the public, and the leadership of this country, with a crucial demonstration that a major quantity of existing high level nuclear wastes can be safely and permanently immobilized. Early demonstration will both expedite and facilitate rational decision making on this aspect of the nuclear program. Delay in providing these facilities will result in significant DOE expenditures at SRP for new tanks just for continued temporary storage of wastes, and would probably result in dissipation of the intellectual and planning momentum that has built up in developing the project

  17. Evaluation of conditioned high-level waste forms

    International Nuclear Information System (INIS)

    Mendel, J.E.; Turcotte, R.P.; Chikalla, T.D.; Hench, L.L.

    1983-01-01

    The evaluation of conditioned high-level waste forms requires an understanding of radiation and thermal effects, mechanical properties, volatility, and chemical durability. As a result of nuclear waste research and development programs in many countries, a good understanding of these factors is available for borosilicate glass containing high-level waste. The IAEA through its coordinated research program has contributed to this understanding. Methods used in the evaluation of conditioned high-level waste forms are reviewed. In the US, this evaluation has been facilitated by the definition of standard test methods by the Materials Characterization Center (MCC), which was established by the Department of Energy (DOE) in 1979. The DOE has also established a 20-member Materials Review Board to peer-review the activities of the MCC. In addition to comparing waste forms, testing must be done to evaluate the behavior of waste forms in geologic repositories. Such testing is complex; accelerated tests are required to predict expected behavior for thousands of years. The tests must be multicomponent tests to ensure that all potential interactions between waste form, canister/overpack and corrosion products, backfill, intruding ground water and the repository rock, are accounted for. An overview of the status of such multicomponent testing is presented

  18. High level cognitive information processing in neural networks

    Science.gov (United States)

    Barnden, John A.; Fields, Christopher A.

    1992-01-01

    Two related research efforts were addressed: (1) high-level connectionist cognitive modeling; and (2) local neural circuit modeling. The goals of the first effort were to develop connectionist models of high-level cognitive processes such as problem solving or natural language understanding, and to understand the computational requirements of such models. The goals of the second effort were to develop biologically-realistic model of local neural circuits, and to understand the computational behavior of such models. In keeping with the nature of NASA's Innovative Research Program, all the work conducted under the grant was highly innovative. For instance, the following ideas, all summarized, are contributions to the study of connectionist/neural networks: (1) the temporal-winner-take-all, relative-position encoding, and pattern-similarity association techniques; (2) the importation of logical combinators into connection; (3) the use of analogy-based reasoning as a bridge across the gap between the traditional symbolic paradigm and the connectionist paradigm; and (4) the application of connectionism to the domain of belief representation/reasoning. The work on local neural circuit modeling also departs significantly from the work of related researchers. In particular, its concentration on low-level neural phenomena that could support high-level cognitive processing is unusual within the area of biological local circuit modeling, and also serves to expand the horizons of the artificial neural net field.

  19. Handbook of high-level radioactive waste transportation

    International Nuclear Information System (INIS)

    Sattler, L.R.

    1992-10-01

    The High-Level Radioactive Waste Transportation Handbook serves as a reference to which state officials and members of the general public may turn for information on radioactive waste transportation and on the federal government's system for transporting this waste under the Civilian Radioactive Waste Management Program. The Handbook condenses and updates information contained in the Midwestern High-Level Radioactive Waste Transportation Primer. It is intended primarily to assist legislators who, in the future, may be called upon to enact legislation pertaining to the transportation of radioactive waste through their jurisdictions. The Handbook is divided into two sections. The first section places the federal government's program for transporting radioactive waste in context. It provides background information on nuclear waste production in the United States and traces the emergence of federal policy for disposing of radioactive waste. The second section covers the history of radioactive waste transportation; summarizes major pieces of legislation pertaining to the transportation of radioactive waste; and provides an overview of the radioactive waste transportation program developed by the US Department of Energy (DOE). To supplement this information, a summary of pertinent federal and state legislation and a glossary of terms are included as appendices, as is a list of publications produced by the Midwestern Office of The Council of State Governments (CSG-MW) as part of the Midwestern High-Level Radioactive Waste Transportation Project

  20. Overview of high-level waste management accomplishments

    International Nuclear Information System (INIS)

    Lawroski, H.; Berreth, J.R.; Freeby, W.A.

    1980-01-01

    Storage of power reactor spent fuel is necessary at present because of the lack of reprocessing operations particularly in the U.S. By considering the above solidification and storage scenario, there is more than reasonable assurance that acceptable, stable, low heat generation rate, solidified waste can be produced, and safely disposed. The public perception of no waste disposal solutions is being exploited by detractors of nuclear power application. The inability to even point to one overall system demonstration lends credibility to the negative assertions. By delaying the gathering of on-line information to qualify repository sites, and to implement a demonstration, the actions of the nuclear power detractors are self serving in that they can continue to point out there is no demonstration of satisfactory high-level waste disposal. By maintaining the liquid and solidified high-level waste in secure above ground storage until acceptable decay heat generation rates are achieved, by producing a compatible, high integrity, solid waste form, by providing a second or even third barrier as a compound container and by inserting the enclosed waste form in a qualified repository with spacing to assure moderately low temperature disposal conditions, there appears to be no technical reason for not progressing further with the disposal of high-level wastes and needed implementation of the complete nuclear power fuel cycle

  1. Final disposal of high levels waste and spent nuclear fuel

    International Nuclear Information System (INIS)

    Gelin, R.

    1984-05-01

    Foreign and international activities on the final disposal of high-level waste and spent nuclear fuel have been reviewed. A considerable research effort is devoted to development of acceptable disposal options. The different technical concepts presently under study are described in the report. Numerous studies have been made in many countries of the potential risks to future generations from radioactive wastes in underground disposal repositories. In the report the safety assessment studies and existing performance criteria for geological disposal are briefly discussed. The studies that are being made in Canada, the United States, France and Switzerland are the most interesting for Sweden as these countries also are considering disposal into crystalline rocks. The overall time-tables in different countries for realisation of the final disposal are rather similar. Normally actual large-scale disposal operations for high-level wastes are not foreseen until after year 2000. In the United States the Congress recently passed the important Nuclear Waste Policy Act. It gives a rather firm timetable for site-selection and construction of nuclear waste disposal facilities. According to this act the first repository for disposal of commercial high-level waste must be in operation not later than in January 1998. (Author)

  2. High-Level Development of Multiserver Online Games

    Directory of Open Access Journals (Sweden)

    Frank Glinka

    2008-01-01

    Full Text Available Multiplayer online games with support for high user numbers must provide mechanisms to support an increasing amount of players by using additional resources. This paper provides a comprehensive analysis of the practically proven multiserver distribution mechanisms, zoning, instancing, and replication, and the tasks for the game developer implied by them. We propose a novel, high-level development approach which integrates the three distribution mechanisms seamlessly in today's online games. As a possible base for this high-level approach, we describe the real-time framework (RTF middleware system which liberates the developer from low-level tasks and allows him to stay at high level of design abstraction. We explain how RTF supports the implementation of single-server online games and how RTF allows to incorporate the three multiserver distribution mechanisms during the development process. Finally, we describe briefly how RTF provides manageability and maintenance functionality for online games in a grid context with dynamic resource allocation scenarios.

  3. High level radioactive wastes: Considerations on final disposal

    International Nuclear Information System (INIS)

    Ciallella, Norberto R.

    2000-01-01

    When at the beginnings of the decade of the 80 the National Commission on Atomic Energy (CNEA) in Argentina decided to study the destination of the high level radioactive wastes, was began many investigations, analysis and multidisciplinary evaluations that be origin to a study of characteristics never before carried out in Argentina. For the first time in the country was faced the study of an environmental eventual problem, several decades before that the problem was presented. The elimination of the high level radioactive wastes in the technological aspects was taken in advance, avoiding to transfer the problems to the future generations. The decision was based, not only in technical evaluations but also in ethical premises, since it was considered that the future generations may enjoy the benefits of the nuclear energy and not should be solve the problem. The CNEA in Argentina in 1980 decided to begin a feasibility study and preliminary engineering project for the construction of the final disposal of high level radioactive wastes

  4. Standards for high level waste disposal: A sustainability perspective

    International Nuclear Information System (INIS)

    Dougherty, W.W.; Powers, V.; Johnson, F.X.; Cornland, D.

    1999-01-01

    Spent reactor fuel from commercial power stations contains high levels of plutonium, other fissionable actinides, and fission products, all of which pose serious challenges for permanent disposal because of the very long half-lives of some isotopes. The 'nuclear nations' have agreed on the use of permanent geologic repositories for the ultimate disposal of high-level nuclear waste. However, it is premature to claim that a geologic repository offers permanent isolation from the biosphere, given high levels of uncertainty, nascent risk assessment frameworks for the time periods considered, and serious intergenerational equity issues. Many have argued for a broader consideration of disposal options that include extended monitored retrievable storage and accelerator-driven transmutation of wastes. In this paper we discuss and compare these three options relative to standards that emerge from the application of sustainable development principles, namely long-lasting technical viability, intergenerational equity, rational resource allocation, and rights of future intervention. We conclude that in order to maximise the autonomy of future generations, it is imperative to leave future options more open than does permanent disposal

  5. Materials Science of High-Level Nuclear Waste Immobilization

    International Nuclear Information System (INIS)

    Weber, William J.; Navrotsky, Alexandra; Stefanovsky, S. V.; Vance, E. R.; Vernaz, Etienne Y.

    2009-01-01

    With the increasing demand for the development of more nuclear power comes the responsibility to address the technical challenges of immobilizing high-level nuclear wastes in stable solid forms for interim storage or disposition in geologic repositories. The immobilization of high-level nuclear wastes has been an active area of research and development for over 50 years. Borosilicate glasses and complex ceramic composites have been developed to meet many technical challenges and current needs, although regulatory issues, which vary widely from country to country, have yet to be resolved. Cooperative international programs to develop advanced proliferation-resistant nuclear technologies to close the nuclear fuel cycle and increase the efficiency of nuclear energy production might create new separation waste streams that could demand new concepts and materials for nuclear waste immobilization. This article reviews the current state-of-the-art understanding regarding the materials science of glasses and ceramics for the immobilization of high-level nuclear waste and excess nuclear materials and discusses approaches to address new waste streams

  6. The immobilization of High Level Waste Into Glass

    International Nuclear Information System (INIS)

    Aisyah; Martono, H.

    1998-01-01

    High level liquid waste is generated from the first step extraction in the nuclear fuel reprocessing. The waste is immobilized with boro-silicate glass. A certain composition of glass is needed for a certain type of waste, so that the properties of waste glass would meet the requirement either for further process or for disposal. The effect of waste loading on either density, thermal expansion, softening point and leaching rate has been studied. The composition of the high level liquid waste has been determined by ORIGEN 2 and the result has been used to prepare simulated high level waste. The waste loading in the waste glass has been set to be 19.48; 22.32; 25.27; and 26.59 weight percent. The result shows that increasing the waste loading has resulted in the higher density with no thermal expansion and softening point significant change. The increase in the waste loading increase that leaching rate. The properties of the waste glass in this research have not shown any deviation from the standard waste glass properties

  7. High-level waste management technology program plan

    International Nuclear Information System (INIS)

    Harmon, H.D.

    1995-01-01

    The purpose of this plan is to document the integrated technology program plan for the Savannah River Site (SRS) High-Level Waste (HLW) Management System. The mission of the SRS HLW System is to receive and store SRS high-level wastes in a see and environmentally sound, and to convert these wastes into forms suitable for final disposal. These final disposal forms are borosilicate glass to be sent to the Federal Repository, Saltstone grout to be disposed of on site, and treated waste water to be released to the environment via a permitted outfall. Thus, the technology development activities described herein are those activities required to enable successful accomplishment of this mission. The technology program is based on specific needs of the SRS HLW System and organized following the systems engineering level 3 functions. Technology needs for each level 3 function are listed as reference, enhancements, and alternatives. Finally, FY-95 funding, deliverables, and schedules are s in Chapter IV with details on the specific tasks that are funded in FY-95 provided in Appendix A. The information in this report represents the vision of activities as defined at the beginning of the fiscal year. Depending on emergent issues, funding changes, and other factors, programs and milestones may be adjusted during the fiscal year. The FY-95 SRS HLW technology program strongly emphasizes startup support for the Defense Waste Processing Facility and In-Tank Precipitation. Closure of technical issues associated with these operations has been given highest priority. Consequently, efforts on longer term enhancements and alternatives are receiving minimal funding. However, High-Level Waste Management is committed to participation in the national Radioactive Waste Tank Remediation Technology Focus Area. 4 refs., 5 figs., 9 tabs

  8. High-level waste management technology program plan

    Energy Technology Data Exchange (ETDEWEB)

    Harmon, H.D.

    1995-01-01

    The purpose of this plan is to document the integrated technology program plan for the Savannah River Site (SRS) High-Level Waste (HLW) Management System. The mission of the SRS HLW System is to receive and store SRS high-level wastes in a see and environmentally sound, and to convert these wastes into forms suitable for final disposal. These final disposal forms are borosilicate glass to be sent to the Federal Repository, Saltstone grout to be disposed of on site, and treated waste water to be released to the environment via a permitted outfall. Thus, the technology development activities described herein are those activities required to enable successful accomplishment of this mission. The technology program is based on specific needs of the SRS HLW System and organized following the systems engineering level 3 functions. Technology needs for each level 3 function are listed as reference, enhancements, and alternatives. Finally, FY-95 funding, deliverables, and schedules are s in Chapter IV with details on the specific tasks that are funded in FY-95 provided in Appendix A. The information in this report represents the vision of activities as defined at the beginning of the fiscal year. Depending on emergent issues, funding changes, and other factors, programs and milestones may be adjusted during the fiscal year. The FY-95 SRS HLW technology program strongly emphasizes startup support for the Defense Waste Processing Facility and In-Tank Precipitation. Closure of technical issues associated with these operations has been given highest priority. Consequently, efforts on longer term enhancements and alternatives are receiving minimal funding. However, High-Level Waste Management is committed to participation in the national Radioactive Waste Tank Remediation Technology Focus Area. 4 refs., 5 figs., 9 tabs.

  9. Defense High Level Waste Disposal Container System Description Document

    International Nuclear Information System (INIS)

    Pettit, N. E.

    2001-01-01

    The Defense High Level Waste Disposal Container System supports the confinement and isolation of waste within the Engineered Barrier System of the Monitored Geologic Repository (MGR). Disposal containers are loaded and sealed in the surface waste handling facilities, transferred to the underground through the accesses using a rail mounted transporter, and emplaced in emplacement drifts. The defense high level waste (HLW) disposal container provides long-term confinement of the commercial HLW and defense HLW (including immobilized plutonium waste forms [IPWF]) placed within disposable canisters, and withstands the loading, transfer, emplacement, and retrieval loads and environments. US Department of Energy (DOE)-owned spent nuclear fuel (SNF) in disposable canisters may also be placed in a defense HLW disposal container along with commercial HLW waste forms, which is known as co-disposal. The Defense High Level Waste Disposal Container System provides containment of waste for a designated period of time, and limits radionuclide release. The disposal container/waste package maintains the waste in a designated configuration, withstands maximum handling and rockfall loads, limits the individual canister temperatures after emplacement, resists corrosion in the expected handling and repository environments, and provides containment of waste in the event of an accident. Defense HLW disposal containers for HLW disposal will hold up to five HLW canisters. Defense HLW disposal containers for co-disposal will hold up to five HLW canisters arranged in a ring and one DOE SNF canister inserted in the center and/or one or more DOE SNF canisters displacing a HLW canister in the ring. Defense HLW disposal containers also will hold two Multi-Canister Overpacks (MCOs) and two HLW canisters in one disposal container. The disposal container will include outer and inner cylinders, outer and inner cylinder lids, and may include a canister guide. An exterior label will provide a means by

  10. The IAEA's high level radioactive waste management programme

    International Nuclear Information System (INIS)

    Saire, D.E.

    1994-01-01

    This paper presents the different activities that are performed under the International Atomic Energy Agency's (IAEA) high level radioactive waste management programme. The Agency's programme is composed of five main activities (information exchange, international safety standards, R ampersand D activities, advisory services and special projects) which are described in the paper. Special emphasis is placed on the RADioactive WAste Safety Standards (RADWASS) programme which was implemented in 1991 to document international consensus that exists on the safe management of radioactive waste. The paper also raises the question about the need for regional repositories to serve certain countries that do not have the resources or infrastructure to construct a national repository

  11. The ATLAS high level trigger region of interest builder

    International Nuclear Information System (INIS)

    Blair, R.; Dawson, J.; Drake, G.; Haberichter, W.; Schlereth, J.; Zhang, J.; Ermoline, Y.; Pope, B.; Aboline, M.; High Energy Physics; Michigan State Univ.

    2008-01-01

    This article describes the design, testing and production of the ATLAS Region of Interest Builder (RoIB). This device acts as an interface between the Level 1 trigger and the high level trigger (HLT) farm for the ATLAS LHC detector. It distributes all of the Level 1 data for a subset of events to a small number of (16 or less) individual commodity processors. These processors in turn provide this information to the HLT. This allows the HLT to use the Level 1 information to narrow data requests to areas of the detector where Level 1 has identified interesting objects

  12. Managing the nation's commercial high-level radioactive waste

    International Nuclear Information System (INIS)

    1985-03-01

    This report presents the findings and conclusions of OTA's analysis of Federal policy for the management of commercial high-level radioactive waste. It is intended to contribute to the implementation of Nuclear Waste Policy Act of 1982 (NWPA). The major conclusion of that review is that NWPA provides sufficient authority for developing and operating a waste management system based on disposal in geologic repositories. Substantial new authority for other facilities will not be required unless major unexpected problems with geologic disposal are encountered. OTA also concludes that DOE's Draft Mission Plan published in 1984 falls short of its potential for enhancing the credibility and acceptability of the waste management program

  13. Corrosion and failure processes in high-level waste tanks

    International Nuclear Information System (INIS)

    Mahidhara, R.K.; Elleman, T.S.; Murty, K.L.

    1992-11-01

    A large amount of radioactive waste has been stored safely at the Savannah River and Hanford sites over the past 46 years. The aim of this report is to review the experimental corrosion studies at Savannah River and Hanford with the intention of identifying the types and rates of corrosion encountered and indicate how these data contribute to tank failure predictions. The compositions of the High-Level Wastes, mild steels used in the construction of the waste tanks and degradation-modes particularly stress corrosion cracking and pitting are discussed. Current concerns at the Hanford Site are highlighted

  14. Global tracker for the ALICE high level trigger

    International Nuclear Information System (INIS)

    Vik, Thomas

    2006-01-01

    This thesis deals with two main topics. The first is the implementation and testing of a Kalman filter algorithm in the HLT (High Level Trigger) reconstruction code. This will perform the global tracking in the HLT, that is merging tracklets and hits from the different sub-detectors in the central barrel detector. The second topic is a trigger mode of the HLT which uses the global tracking of particles through the TRD (Transition Radiation Detector), TPC (Time Projection Chamber) and the ITS (Inner Tracking System): The dielectron trigger. Global tracking: The Kalman filter algorithm has been introduced to the HLT tracking scheme. (Author)

  15. Market Designs for High Levels of Variable Generation: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Milligan, M.; Holttinen, H.; Kiviluoma, J.; Orths, A.; Lynch, M.; Soder, L.

    2014-10-01

    Variable renewable generation is increasing in penetration in modern power systems, leading to higher variability in the supply and price of electricity as well as lower average spot prices. This raises new challenges, particularly in ensuring sufficient capacity and flexibility from conventional technologies. Because the fixed costs and lifetimes of electricity generation investments are significant, designing markets and regulations that ensure the efficient integration of renewable generation is a significant challenge. This papers reviews the state of play of market designs for high levels of variable generation in the United States and Europe and considers new developments in both regions.

  16. The high level and long lived radioactive wastes

    International Nuclear Information System (INIS)

    2005-01-01

    This report presents the main conclusions of 15 years of researches managed by the CEA. This report is the preliminary version of the 2005 final report. It presents the main conclusions of the actions on the axis 1 and 3 of the law of the 30 December 1991. The synthesis report on the axis 1 concerns results obtained on the long lived radionuclides separation and transmutation in high level and long lived radioactive wastes. the synthesis report on the axis 3 presents results obtained by the processes of conditioning and of ground and underground long term storage. (A.L.B.)

  17. High level waste at Hanford: Potential for waste loading maximization

    International Nuclear Information System (INIS)

    Hrma, P.R.; Bailey, A.W.

    1995-09-01

    The loading of Hanford nuclear waste in borosilicate glass is limited by phase-related phenomena, such as crystallization or formation of immiscible liquids, and by breakdown of the glass structure because of an excessive concentration of modifiers. The phase-related phenomena cause both processing and product quality problems. The deterioration of product durability determines the ultimate waste loading limit if all processing problems are resolved. Concrete examples and mass-balance based calculations show that a substantial potential exists for increasing waste loading of high-level wastes that contain a large fraction of refractory components

  18. Solidification of Savannah River Plant high-level waste

    International Nuclear Information System (INIS)

    Maher, R.; Shafranek, L.F.; Stevens, W.R. III.

    1983-01-01

    The Department of Energy, in accord with recommendations from the Du Pont Company, has started construction of a Defense Waste Processing Facility (DWPF) at the Savannah River Plant. The facility should be completed by the end of 1988, and full-scale operation should begin in 1990. This facility will immobilize in borosilicate glass the large quantity of high-level radioactive waste now stored at the plant plus the waste to be generated from continued chemical reprocessing operations. The existing wastes at the Savannah River Plant will be completely converted by about 2010. 21 figures

  19. A critically educated public explores high level radioactive waste management

    International Nuclear Information System (INIS)

    Blum, J.E.

    1994-01-01

    It is vital to the citizens of Nevada that they and their children are given an opportunity to explore all sides of the characterization of Yucca Mountain as a potential repository site for spent nuclear fuel. The state-wide, national and international implications demand a reasoned and complete approach to this issue, which has become emotionally and irrationally charged and fueled by incomplete perception and information. The purpose of this paper is to provide curriculum suggestions and recommend concomitant policy developments that will lead to the implementation of a Critical Thinking (CT) approach to High Level Radioactive Waste Management

  20. Treatment of High-Level Waste Arising from Pyrochemical Processes

    International Nuclear Information System (INIS)

    Lizin, A.A.; Kormilitsyn, M.V.; Osipenko, A.G.; Tomilin, S.V.; Lavrinovich, Yu.G.

    2013-01-01

    JSC “SSC RIAR” has been performing research and development activities in support of closed fuel cycle of fast reactor since the middle of 1960s. Fuel cycle involves fabrication and reprocessing of spent nuclear fuel (SNF) using pyrochemical methods of reprocessing in molten alkali metal chlorides. At present pyrochemical methods of SNF reprocessing in molten chlorides has reached such a level in their development that makes it possible to compare their competitiveness with classic aqueous methods. Their comparative advantage lies in high safety, compactness, high protectability as to nonproliferation of nuclear materials, and reduction of high level waste volume

  1. Development and evaluation of candidate high-level waste forms

    International Nuclear Information System (INIS)

    Bernadzikowski, T.A.

    1981-01-01

    Some seventeen candidate waste forms have been investigated under US Department of Energy programs as potential media for the immobilization and geologic disposal of the high-level radioactive wastes (HLW) resulting from chemical processing of nuclear reactor fuels and targets. Two of these HLW forms were selected at the end of fiscal year (FY) 1981 for intensive development if FY 1982 to 1983. Borosilicate glass was continued as the reference form. A crystalline ceramic waste form, SYNROC, was selected for further product formulation and process development as the alternative to borosilicate glass. This paper describes the bases on which this decision was made

  2. High-level waste canister envelope study: structural analysis

    International Nuclear Information System (INIS)

    1977-11-01

    The structural integrity of waste canisters, fabricated from standard weight Type 304L stainless steel pipe, was analyzed for sizes ranging from 8 to 24 in. diameter and 10 to 16 feet long under normal, abnormal, and improbable life cycle loading conditions. The canisters are assumed to be filled with vitrified high-level nuclear waste, stored temporarily at a fuel reprocessing plant, and then transported for storage in an underground salt bed or other geologic storage. In each of the three impact conditions studies, the resulting impact force is far greater than the elastic limit capacity of the material. Recommendations are made for further study

  3. Cermet high level waste forms: a pregress report

    International Nuclear Information System (INIS)

    Aaron, W.S.; Quinby, T.C.; Kobisk, E.H.

    1978-06-01

    The fixation of high level radioactive waste from both commercial and DOE defense sources as cermets is currently under study. This waste form consists of a continuous iron-nickel base metal matrix containing small particles of fission product oxides. Preliminary evaluations of cermets fabricated from a variety of simulated wastes indicate they possess properties providing advantages over other waste forms presently being considered, namely thermal conductivity, waste loading levels, and leach resistance. This report describes the progress of this effort, to date, since its initiation in 1977

  4. Characterizing speed-independence of high-level designs

    DEFF Research Database (Denmark)

    Kishinevsky, Michael; Staunstrup, Jørgen

    1994-01-01

    This paper characterizes the speed-independence of high-level designs. The characterization is a condition on the design description ensuring that the behavior of the design is independent of the speeds of its components. The behavior of a circuit is modeled as a transition system, that allows data...... types, and internal as well as external non-determinism. This makes it possible to verify the speed-independence of a design without providing an explicit realization of the environment. The verification can be done mechanically. A number of experimental designs have been verified including a speed-independent...

  5. High-level neutron coincidence counter maintenance manual

    International Nuclear Information System (INIS)

    Swansen, J.; Collinsworth, P.

    1983-05-01

    High-level neutron coincidence counter operational (field) calibration and usage is well known. This manual makes explicit basic (shop) check-out, calibration, and testing of new units and is a guide for repair of failed in-service units. Operational criteria for the major electronic functions are detailed, as are adjustments and calibration procedures, and recurrent mechanical/electromechanical problems are addressed. Some system tests are included for quality assurance. Data on nonstandard large-scale integrated (circuit) components and a schematic set are also included

  6. High level trigger system for the ALICE experiment

    International Nuclear Information System (INIS)

    Frankenfeld, U.; Roehrich, D.; Ullaland, K.; Vestabo, A.; Helstrup, H.; Lien, J.; Lindenstruth, V.; Schulz, M.; Steinbeck, T.; Wiebalck, A.; Skaali, B.

    2001-01-01

    The ALICE experiment at the Large Hadron Collider (LHC) at CERN will detect up to 20,000 particles in a single Pb-Pb event resulting in a data rate of ∼75 MByte/event. The event rate is limited by the bandwidth of the data storage system. Higher rates are possible by selecting interesting events and subevents (High Level trigger) or compressing the data efficiently with modeling techniques. Both require a fast parallel pattern recognition. One possible solution to process the detector data at such rates is a farm of clustered SMP nodes, based on off-the-shelf PCs, and connected by a high bandwidth, low latency network

  7. Spanish high level radioactive waste management system issues

    International Nuclear Information System (INIS)

    Espejo, J.M.; Beceiro, A.R.

    1992-01-01

    The Empresa Nacional de Residuos Radiactivos, S.A. (ENRESA) has been limited liability company to be responsible for the management of all kind of radioactive wastes in Spain. This paper provides an overview of the strategy and main lines of action stated in the third General Radioactive Waste Plan, currently in force, for the management of spent nuclear fuel and high - level wastes, as well as an outline of the main related projects, either being developed or foreseen. Aspects concerning the organizational structure, the economic and financing system and the international cooperation are also included

  8. Spanish high level radioactive waste management system issues

    International Nuclear Information System (INIS)

    Ulibarri, A.; Veganzones, A.

    1993-01-01

    The Empresa Nacional de Residuous Radiactivos, S.A. (ENRESA) was set up in 1984 as a state-owned limited liability company to be responsible for the management of all kinds of radioactive wastes in Spain. This paper provides an overview of the strategy and main lines of action stated in the third General Radioactive Waste Plan, currently in force, for the management of spent nuclear fuel and high-level wastes, as well as an outline of the main related projects, either being developed or foreseen. Aspects concerning the organizational structure, the economic and financing system and the international co-operational are also included

  9. A high-level product representation for automatic design reasoning

    Energy Technology Data Exchange (ETDEWEB)

    Kroll, E.; Qamar, Z.; Mohammad, R. [Texas A and M Univ., College Station, TX (United States). Mechanical Engineering Dept.

    1994-12-31

    A high-level product representation has been developed and implemented, using features for part description and mating conditions between features for the relationships among parts. The underlying ideas are that features are necessary for effective design representation; that spatial and functional relationships among parts of an assembly are best expressed through mating conditions; that assembly features of a part may, at times, be different from its manufacturing features; and that a good representation should be natural, intelligent, comprehensive, and integrated with a visual display. Some new mating conditions have been defined and classified. Several problems concerning the use of features with mating conditions are discussed.

  10. High-level nuclear waste disposal: Ethical considerations

    International Nuclear Information System (INIS)

    Maxey, M.N.

    1985-01-01

    Popular skepticism about, and moral objections to, recent legislation providing for the management and permanent disposal of high-level radioactive wastes have derived their credibility from two major sources: government procrastination in enacting waste disposal program, reinforcing public perceptions of their unprecedented danger and the inflated rhetoric and pretensions to professional omnicompetence of influential scientists with nuclear expertise. Ethical considerations not only can but must provide a mediating framework for the resolution of such a polarized political controversy. Implicit in moral objections to proposals for permanent nuclear waste disposal are concerns about three ethical principles: fairness to individuals, equitable protection among diverse social groups, and informed consent through due process and participation

  11. Very-high-level neutral-beam control system

    International Nuclear Information System (INIS)

    Elischer, V.; Jacobson, V.; Theil, E.

    1981-10-01

    As increasing numbers of neutral beams are added to fusion machines, their operation can consume a significant fraction of a facility's total resources. LBL has developed a very high level control system that allows a neutral beam injector to be treated as a black box with just 2 controls: one to set the beam power and one to set the pulse duration. This 2 knob view allows simple operation and provides a natural base for implementing even higher level controls such as automatic source conditioning

  12. High-level wastes: DOE names three sites for characterization

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    DOE announced in May 1986 that there will be there site characterization studies made to determine suitability for a high-level radioactive waste repository. The studies will include several test drillings to the proposed disposal depths. Yucca Mountain, Nevada; Deaf Smith Country, Texas, and Hanford, Washington were identified as the study sites, and further studies for a second repository site in the East were postponed. The affected states all filed suits in federal circuit courts because they were given no advance warning of the announcement of their selection or the decision to suspend work on a second repository. Criticisms of the selection process include the narrowing or DOE options

  13. High-level neutron coincidence counter maintenance manual

    Energy Technology Data Exchange (ETDEWEB)

    Swansen, J.; Collinsworth, P.

    1983-05-01

    High-level neutron coincidence counter operational (field) calibration and usage is well known. This manual makes explicit basic (shop) check-out, calibration, and testing of new units and is a guide for repair of failed in-service units. Operational criteria for the major electronic functions are detailed, as are adjustments and calibration procedures, and recurrent mechanical/electromechanical problems are addressed. Some system tests are included for quality assurance. Data on nonstandard large-scale integrated (circuit) components and a schematic set are also included.

  14. Ionization chamber for measurements of high-level tritium gas

    International Nuclear Information System (INIS)

    Carstens, D.H.W.; David, W.R.

    1980-01-01

    The construction and calibration of a simple ionization-chamber apparatus for measurement of high level tritium gas is described. The apparatus uses an easily constructed but rugged chamber containing the unknown gas and an inexpensive digital multimeter for measuring the ion current. The equipment after calibration is suitable for measuring 0.01 to 100% tritium gas in hydrogen-helium mixes with an accuracy of a few percent. At both the high and low limits of measurements deviations from the predicted theoretical current are observed. These are briefly discussed

  15. Safe disposal of high-level radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    Ringwood, A E [Australian National Univ., Canberra. Research School of Earth Sciences

    1980-10-01

    Current strategies in most countries favour the immobilisation of high-level radioactive wastes in borosilicate glasses, and their burial in large, centralised, mined repositories. Strong public opposition has been encountered because of concerns over safety and socio-political issues. The author develops a new disposal strategy, based on immobilisation of wastes in an extremely resistant ceramic, SYNROC, combined with burial in an array of widely dispersed, very deep drill holes. It is demonstrated that the difficulties encountered by conventional disposal strategies can be overcome by this new approach.

  16. Multi-threaded algorithms for GPGPU in the ATLAS High Level Trigger

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00212700; The ATLAS collaboration

    2017-01-01

    General purpose Graphics Processor Units (GPGPU) are being evaluated for possible future inclusion in an upgraded ATLAS High Level Trigger farm. We have developed a demonstrator including GPGPU implementations of Inner Detector and Muon tracking and Calorimeter clustering within the ATLAS software framework. ATLAS is a general purpose particle physics experiment located on the LHC collider at CERN. The ATLAS Trigger system consists of two levels, with Level-1 implemented in hardware and the High Level Trigger implemented in software running on a farm of commodity CPU. The High Level Trigger reduces the trigger rate from the 100 kHz Level-1 acceptance rate to 1.5 kHz for recording, requiring an average per-event processing time of ∼ 250 ms for this task. The selection in the high level trigger is based on reconstructing tracks in the Inner Detector and Muon Spectrometer and clusters of energy deposited in the Calorimeter. Performing this reconstruction within the available farm resources presents a significa...

  17. On risk assessment of high level radioactive waste disposal

    International Nuclear Information System (INIS)

    Smith, C.F.; Kastenberg, W.E.

    1976-01-01

    One of the major concerns with the continued growth of the nuclear power industry is the production of the high level radioactive wastes. The risks associated with the disposal of these wastes derives from the potential for release of radioactive materials into the environment. The development of a methodology for risk analysis is carried out. The methodology suggested involves the probabilistic analysis of a general accident consequence distribution. In this analysis, the frequency aspect of the distribution is treated separately from the normalized probability function. In the final stage of the analysis, the frequency and probability characteristics of the distribution are recombined to provide an estimate of the risk. The characterization of the radioactive source term is accomplished using the ORIGEN computer code. Calculations are carried out for various reactor types and fuel cycles, and the overall waste hazard for a projected 35 year nuclear power program is determined. An index of relative nuclide hazard appropriate to problems involving the management of high level radioactive wastes is developed. As an illustration of the methodology, risk analyses are made for two proposed methods for waste management: extraterrestrial disposal and interim surface storage. The results of these analyses indicate that, within the assumptions used, the risks of these management schemes are small compared with natural background radiation doses. (Auth.)

  18. Engineering materials for high level radioactive waste repository

    International Nuclear Information System (INIS)

    Wen Zhijian

    2009-01-01

    Radioactive wastes can arise from a wide range of human activities and have different physical and chemical forms with various radioactivity. The high level radioactive wastes (HLW)are characterized by nuclides of very high initial radioactivity, large thermal emissivity and the long life-term. The HLW disposal is highly concerned by the scientists and the public in the world. At present, the deep geological disposal is regarded as the most reasonable and effective way to safely dispose high-level radioactive wastes in the world. The conceptual model of HLW geological disposal in China is based on a multi-barrier system that combines an isolating geological environment with an engineering barrier system(EBS). The engineering materials in EBS include the vitrified HLW, canister, overpack, buffer materials and backfill materials. Referring to progress in the world, this paper presents the function, the requirement for material selection and design, and main scientific projects of R and D of engineering materials in HLW repository. (authors)

  19. High level waste forms: glass marbles and thermal spray coatings

    International Nuclear Information System (INIS)

    Treat, R.L.; Oma, K.H.; Slate, S.C.

    1982-01-01

    A process that converts high-level waste to glass marbles and then coats the marbles has been developed at Pacific Northwest Laboratory (PNL) under sponsorship of the US Department of Energy. The process consists of a joule-heated glass melter, a marble-making device based on a patent issued to Corning Glass Works, and a coating system that includes a plasma spray coater and a marble tumbler. The process was developed under the Alternative Waste Forms Program which strived to improve upon monolithic glass for immobilizing high-level wastes. Coated glass marbles were found to be more leach-resistant, and the marbles, before coating were found to be very homogeneous, highly impact resistant, and conductive to encapsulation in a metal matric for improved heat transfer and containment. Marbles are also ideally suited for quality assurance and recycling. However, the marble process is more complex, and marbles require a larger number of canisters for waste containment and have a higher surface area than do glass monoliths

  20. High level waste management in Asia: R and D perspectives

    International Nuclear Information System (INIS)

    Deokattey, Sangeeta; Bhanumurthy, K.

    2010-01-01

    The present work is an attempt to provide an overview, about the status of R and D and current trends in high level radioactive waste management, particularly in Asian countries. The INIS database (for the period 1976 to 2010) was selected for this purpose, as this is the most authoritative global source of information, in the area of Nuclear Science and Technology. Appropriate query formulations on the database, resulted in the retrieval of 4322 unique bibliographic records. Using the content analysis method (which is both a qualitative as well as a quantitative research method), all the records were analyzed. Part One of the analysis details Scientometric R and D indicators, such as the countries and the institutions involved in R and D, the types of publications, and programmes and projects related to High Level Waste management. Part Two is a subject-based analysis, grouped under the following broad categories: I. Waste Processing 1. Partitioning and transmutation (including ADS) II. Waste Immobilization 1. Glass waste forms and 2. Crystalline ceramics and other waste forms III. Waste Disposal 1. Performance assessment and safety evaluation studies 2. Geohydrological studies a. Site selection and characterization, b. In situ underground experiments, c. Rock mechanical characterization 3. Deep geological repositories a. Sorption, migration and groundwater chemistry b. Engineered barrier systems and IV. Waste Packaging Materials. The results of this analysis are summarized in the study. (author)

  1. Spent Fuel and High-Level Radioactive Waste Transportation Report

    International Nuclear Information System (INIS)

    1992-03-01

    This publication is intended to provide its readers with an introduction to the issues surrounding the subject of transportation of spent nuclear fuel and high-level radioactive waste, especially as those issues impact the southern region of the United States. It was originally issued by SSEB in July 1987 as the Spent Nuclear Fuel and High-Level Radioactive Waste Transportation Primer, a document patterned on work performed by the Western Interstate Energy Board and designed as a ''comprehensive overview of the issues.'' This work differs from that earlier effort in that it is designed for the educated layman with little or no background in nuclear waste Issues. In addition. this document is not a comprehensive examination of nuclear waste issues but should instead serve as a general introduction to the subject. Owing to changes in the nuclear waste management system, program activities by the US Department of Energy and other federal agencies and developing technologies, much of this information is dated quickly. While this report uses the most recent data available, readers should keep in mind that some of the material is subject to rapid change. SSEB plans periodic updates in the future to account for changes in the program. Replacement pages will be supplied to all parties in receipt of this publication provided they remain on the SSEB mailing list

  2. Midwestern High-Level Radioactive Waste Transportation Project

    International Nuclear Information System (INIS)

    1993-01-01

    On February 17,1989, the Midwestern Office of The Council of State Governments and the US Department of Energy entered into a cooperative agreement authorizing the initiation of the Midwestern High-Level Radioactive Waste Transportation Project. The transportation project continued to receive funding from DOE through amendments to the original cooperative agreement, with December 31, 1993, marking the end of the initial 5-year period. This progress report reflects the work completed by the Midwestern Office from February 17,1989, through December 31,1993. In accordance with the scopes of work governing the period covered by this report, the Midwestern Office of The Council of State Governments has worked closely with the Midwestern High-Level Radioactive Waste Committee. Project staff have facilitated all eight of the committee's meetings and have represented the committee at meetings of DOE's Transportation Coordination Group (TCG) and Transportation External Coordination Working Group (TEC/WG). Staff have also prepared and submitted comments on DOE activities on behalf of the committee. In addition to working with the committee, project staff have prepared and distributed 20 reports, including some revised reports (see Attachment 1). Staff have also developed a library of reference materials for the benefit of committee members, state officials, and other interested parties. To publicize the library, and to make it more accessible to potential users, project staff have prepared and distributed regular notices of resource availability

  3. Hip Arthroscopy in High-Level Baseball Players.

    Science.gov (United States)

    Byrd, J W Thomas; Jones, Kay S

    2015-08-01

    To report the results of hip arthroscopy among high-level baseball players as recorded by outcome scores and return to baseball. All patients undergoing hip arthroscopy were prospectively assessed with the modified Harris Hip Score. On review of all procedures performed over a 12-year period, 44 hips were identified among 41 intercollegiate or professional baseball players who had achieved 2-year follow-up. Among the 41 players, follow-up averaged 45 months (range, 24 to 120 months), with a mean age of 23 years (range, 18 to 34 years). There were 23 collegiate (1 bilateral) and 18 professional (2 bilateral) baseball players, including 10 Major League Baseball players. Of the 8 Major League Baseball pitchers, 6 (75%) also underwent ulnar collateral ligament elbow surgery. Improvement in the modified Harris Hip Score averaged 13 points (from 81 points preoperatively to 94 points postoperatively); a paired-samples t test determined that this mean improvement of 13 points was statistically significant (P arthroscopy. This study supports the idea that arthroscopic treatment for a variety of hip pathologies in high-level baseball players provides a successful return to sport and improvement in functional outcome scores. Level IV, therapeutic case series. Copyright © 2015 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  4. Immobilisation of high level nuclear reactor wastes in SYNROC

    Energy Technology Data Exchange (ETDEWEB)

    Ringwood, A E; Kesson, S E; Ware, N G; Hibberson, W; Major, A [Australian National Univ., Canberra. Inst. of Advanced Studies

    1979-03-15

    It is stated that the elements occurring in high-level nuclear reactor wastes can be safely immobilised by incorporating them within the crystal lattices of the constituent minerals of a synthetic rock (SYNROC). The preferred form of SYNROC can accept up to 20% of high level waste calcine to form dilute solid solutions. The constituent minerals, or close structural analogues, have survived in a wide range of geochemical environments for periods of 20 to 2,000 Myr whilst immobilising the same elements present in nuclear wastes. SYNROC is unaffected by leaching for 24 hours in pure water or 10 wt % NaCl solution at high temperatures and pressure whereas borosilicate glasses completely decompose in a few hours in much less severe hydrothermal conditions. The combination of these leaching results with the geological evidence of long-term stability indicates that SYNROC would be vastly superior to glass in its capacity to safely immobilise nuclear wastes, when buried in a suitable geological repository. A dense, compact, mechanically strong form of SYNROC suitable for geological disposal can be produced by a process as economical as that which incorporates radioactive waste in borosilicate glasses.

  5. Risk communication system for high level radioactive waste disposal

    International Nuclear Information System (INIS)

    Kugo, Akihide; Uda, Akinobu; Shimoda, Hirosi; Yoshikawa, Hidekazu; Ito, Kyoko; Wakabayashi, Yasunaga

    2005-01-01

    In order to gain a better understanding and acceptance of the task of implementing high level radioactive waste disposal, a study on new communication system about social risk information has been initiated by noticing the rapid expansion of Internet in the society. First, text mining method was introduced to identify the core public interest, examining public comments on the technical report of high level radioactive waste disposal. Then we designed the dialog-mode contents based on the theory of norm activation by Schwartz. Finally, the discussion board was mounted on the web site. By constructing such web communication system which includes knowledge base contents, introspective contents, and interactive discussion board, we conducted the experiment for verifying the principles such as that the basic technical knowledge and trust, and social ethics are indispensable in this process to close the perception gap between nuclear specialists and the general public. The participants of the experiment increased their interest in the topics with which they were not familiar and actively posted their opinions on the BBS. The dialog-mode contents were significantly more effective than the knowledge-based contents in promoting introspection that brought people into a greater awareness of problems such as social dilemma. (author)

  6. Design concepts of definitive disposal for high level radioactive wastes

    International Nuclear Information System (INIS)

    Badillo A, V.E.; Alonso V, G.

    2007-01-01

    It is excessively known the importance about finding a solution for the handling and disposition of radioactive waste of all level. However, the polemic is centered in the administration of high level radioactive waste and the worn out fuel, forgetting that the more important volumes of waste its are generated in the categories of low level wastes or of very low level. Depending on the waste that will be confined and of the costs, several technological modalities of definitive disposition exist, in function of the depth of the confinement. The concept of deep geologic storage, technological option proposed more than 40 years ago, it is a concept of isolation of waste of long half life placed in a deep underground installation dug in geologic formations that are characterized by their high stability and their low flow of underground water. In the last decades, they have registered countless progresses in technical and scientific aspects of the geologic storage, making it a reliable technical solution supported with many years of scientific work carried out by numerous institutions in the entire world. In this work the design concepts that apply some countries for the high level waste disposal that its liberate heat are revised and the different geologic formations that have been considered for the storage of this type of wastes. (Author)

  7. Spent fuel and high-level radioactive waste transportation report

    Energy Technology Data Exchange (ETDEWEB)

    1989-11-01

    This publication is intended to provide its readers with an introduction to the issues surrounding the subject of transportation of spent nuclear fuel and high-level radioactive waste, especially as those issues impact the southern region of the United States. It was originally issued by the Southern States Energy Board (SSEB) in July 1987 as the Spent Nuclear Fuel and High-Level Radioactive Waste Transportation Primer, a document patterned on work performed by the Western Interstate Energy Board and designed as a ``comprehensive overview of the issues.`` This work differs from that earlier effort in that it is designed for the educated layman with little or no background in nuclear waste issues. In addition, this document is not a comprehensive examination of nuclear waste issues but should instead serve as a general introduction to the subject. Owing to changes in the nuclear waste management system, program activities by the US Department of Energy and other federal agencies and developing technologies, much of this information is dated quickly. While this report uses the most recent data available, readers should keep in mind that some of the material is subject to rapid change. SSEB plans periodic updates in the future to account for changes in the program. Replacement pages sew be supplied to all parties in receipt of this publication provided they remain on the SSEB mailing list.

  8. Disposal of high level and intermediate level radioactive wastes

    International Nuclear Information System (INIS)

    Flowers, R.H.

    1991-01-01

    The waste products from the nuclear industry are relatively small in volume. Apart from a few minor gaseous and liquid waste streams, containing readily dispersible elements of low radiotoxicity, all these products are processed into stable solid packages for disposal in underground repositories. Because the volumes are small, and because radioactive wastes are latecomers on the industrial scene, a whole new industry with a world-wide technological infrastructure has grown up alongside the nuclear power industry to carry out the waste processing and disposal to very high standards. Some of the technical approaches used, and the Regulatory controls which have been developed, will undoubtedly find application in the future to the management of non-radioactive toxic wastes. The repository site outlined would contain even high-level radioactive wastes and spent fuels being contained without significant radiation dose rates to the public. Water pathway dose rates are likely to be lowest for vitrified high-level wastes with spent PWR fuel and intermediate level wastes being somewhat higher. (author)

  9. Spent fuel and high-level radioactive waste transportation report

    International Nuclear Information System (INIS)

    1989-11-01

    This publication is intended to provide its readers with an introduction to the issues surrounding the subject of transportation of spent nuclear fuel and high-level radioactive waste, especially as those issues impact the southern region of the United States. It was originally issued by the Southern States Energy Board (SSEB) in July 1987 as the Spent Nuclear Fuel and High-Level Radioactive Waste Transportation Primer, a document patterned on work performed by the Western Interstate Energy Board and designed as a ''comprehensive overview of the issues.'' This work differs from that earlier effort in that it is designed for the educated layman with little or no background in nuclear waste issues. In addition, this document is not a comprehensive examination of nuclear waste issues but should instead serve as a general introduction to the subject. Owing to changes in the nuclear waste management system, program activities by the US Department of Energy and other federal agencies and developing technologies, much of this information is dated quickly. While this report uses the most recent data available, readers should keep in mind that some of the material is subject to rapid change. SSEB plans periodic updates in the future to account for changes in the program. Replacement pages sew be supplied to all parties in receipt of this publication provided they remain on the SSEB mailing list

  10. Spent fuel and high-level radioactive waste transportation report

    International Nuclear Information System (INIS)

    1990-11-01

    This publication is intended to provide its readers with an introduction to the issues surrounding the subject of transportation of spent nuclear fuel and high-level radioactive waste, especially as those issues impact the southern region of the United States. It was originally issued by the Southern States Energy Board (SSEB) in July 1987 as the Spent Nuclear Fuel and High-Level Radioactive Waste Transportation Primer, a document patterned on work performed by the Western Interstate Energy Board and designed as a ''comprehensive overview of the issues.'' This work differs from that earlier effort in that it is designed for the educated layman with little or no background in nuclear waste issues. In addition, this document is not a comprehensive examination of nuclear waste issues but should instead serve as a general introduction to the subject. Owing to changes in the nuclear waste management system, program activities by the US Department of Energy and other federal agencies and developing technologies, much of this information is dated quickly. While this report uses the most recent data available, readers should keep in mind that some of the material is subject to rapid change. SSEB plans periodic updates in the future to account for changes in the program. Replacement pages will be supplied to all parties in receipt of this publication provided they remain on the SSEB mailing list

  11. The principal radionuclides in high level radioactive waste management

    International Nuclear Information System (INIS)

    Mulyanto

    1998-01-01

    The principal radionuclides in high level radioactive waste management. The selection of the principal radionuclides in the high level waste (HLW) management was developed in order to improve the disposal scenario of HLW. In this study the unified criteria for selection of the principal radionuclides were proposed as; (1) the value of hazard index estimated by annual limit of intake (ALI) for long-term tendency,(2) the relative dose factor related to adsorbed migration rate transferred by ground water, and (3) heat generation in the repository. From this study it can be concluded that the principal radionuclides in the HLW management were minor actinide (MA=Np, Am, Cm, etc), Tc, I, Cs and Sr, based on the unified basic criteria introduced in this study. The remaining short-lived fission product (SLFPs), after the selected nuclides are removed, should be immobilized and solidified in a glass matrix. Potential risk due to the remaining SLFPs can be lower than that of uranium ore after about 300 year. (author)

  12. Risk assessments for the disposal of high level radioactive wastes

    International Nuclear Information System (INIS)

    Smith, C.F.

    1975-01-01

    The risks associated with the disposal of high level wastes derive from the potential for release of radioactive materials into the environment. The assessment of these risks requires a methodology for risk analysis, an identification of the radioactive sources, and a method by which to express the relative hazard of the various radionuclides that comprise the high level waste. The development of a methodology for risk analysis is carried out after a review of previous work in the area of probabilistic risk assessment. The methodology suggested involves the probabilistic analysis of a general accident consequence distribution. In this analysis, the frequency aspect of the distribution is treated separately from the normalized probability function. At the final stage of the analysis, the frequency and probability characteristics of the distribution are recombined to provide an estimate of the risk. The characterization of the radioactive source term is accomplished using the ORIGEN computer code. Calculations are carried out for various reactor types and fuel cycles, and the overall waste hazard for a projected thirty-five year nuclear power program is determined

  13. Permitting plan for the high-level waste interim storage

    International Nuclear Information System (INIS)

    Deffenbaugh, M.L.

    1997-01-01

    This document addresses the environmental permitting requirements for the transportation and interim storage of solidified high-level waste (HLW) produced during Phase 1 of the Hanford Site privatization effort. Solidified HLW consists of canisters containing vitrified HLW (glass) and containers that hold cesium separated during low-level waste pretreatment. The glass canisters and cesium containers will be transported to the Canister Storage Building (CSB) in a U.S. Department of Energy (DOE)-provided transportation cask via diesel-powered tractor trailer. Tri-Party Agreement (TPA) Milestone M-90 establishes a new major milestone, and associated interim milestones and target dates, governing acquisition and/or modification of facilities necessary for: (1) interim storage of Tank Waste Remediation Systems (TWRS) immobilized HLW (IHLW) and other canistered high-level waste forms; and (2) interim storage and disposal of TWRS immobilized low-activity tank waste (ILAW). An environmental requirements checklist and narrative was developed to identify the permitting path forward for the HLW interim storage (HLWIS) project (See Appendix B). This permitting plan will follow the permitting logic developed in that checklist

  14. Interaction of cementitious materials with high-level waste

    International Nuclear Information System (INIS)

    Lemmens, Karel; Cachoir, Christelle; Ferrand, Karine; Mennecart, Thierry; Gielen, Ben; Vercauter, Regina

    2012-01-01

    Document available in abstract form only: Since a few years, the Belgian agency for radioactive waste (ONDRAF/NIRAS) has selected the Supercontainer design with an Ordinary Portland Cement (OPC) buffer as the reference design for geological disposal of High-Level Waste (HLW) and Spent Fuel (SF) in the Boom Clay formation. The Boom Clay beneath the Mol-Dessel nuclear zone is a reference methodological site for supporting R and D. Compared to the previous bentonite based reference design, described in detail in the final SAFIR 2 report, the supercontainer will provide a highly alkaline chemical environment allowing the passivation of the surface of the overpack and the inhibition of its corrosion. The Supercontainer will contribute to the containment of radionuclides, but it will also have an effect on the retardation of radionuclide release from the waste and it will retard the migration of the released radionuclides. In the Supercontainer design, the canisters of HLW or SF will be enclosed by a 30 mm thick carbon steel overpack and a concrete buffer about 700 mm thick. The overpack will prevent contact with the (cementitious) pore water during the thermal phase. On the other hand, once the overpack will be locally perforated, the high pH of the incoming water may have an impact on the lifetime of the vitrified waste or spent fuel. The behaviour of these waste forms in disposal conditions has been studied for several decades, but the vast majority of published data is related to the interaction with backfill or host rock materials at near-neutral pH. Very few studies have been reported for alkaline media, at pH >11. Hence, a research programme including new experiments, was started at the Belgian Nuclear Research Centre (SCK.CEN) and at INE (FZK) to assess the rate at which the radionuclides are released by the vitrified waste and spent fuel in such an environment. The presence of concrete will have an impact on the behaviour of the vitrified HLW and spent fuel. For

  15. Hanford long-term high-level waste management program overview

    International Nuclear Information System (INIS)

    Reep, I.E.

    1978-05-01

    The objective is the long-term disposition of the defense high-level radioactive waste which will remain upon completion of the interim waste management program in the mid-1980s, plus any additional high-level defense waste resulting from the future operation of N Reactor and the Purex Plant. The high-level radioactive waste which will exist in the mid-1980s and is addressed by this plan consists of approximately 3,300,000 ft 3 of damp salt cake stored in single-shell and double-shell waste tanks, 1,500,000 ft 3 of damp sludge stored in single-shell and double-shell waste tanks, 11,000,000 gallons of residual liquor stored in double-shell waste tanks, 3,000,000 gallons of liquid wastes stored in double-shell waste tanks awaiting solidification, and 2,900 capsules of 90 SR and 137 Cs compounds stored in water basins. Final quantities of waste may be 5 to 10% greater, depending on the future operation of N Reactor and the Purex Plant and the application of waste treatment techniques currently under study to reduce the inventory of residual liquor. In this report, the high-level radioactive waste addressed by this plan is briefly described, the major alternatives and strategies for long-term waste management are discussed, and a description of the long-term high-level waste management program is presented. Separate plans are being prepared for the long-term management of radioactive wastes which exist in other forms. 14 figures

  16. Reduction and resource recycling of high-level radioactive wastes through nuclear transmutation with PHITS code

    International Nuclear Information System (INIS)

    Fujita, Reiko

    2017-01-01

    In the ImPACT program of the Cabinet Office, programs are underway to reduce long-lived fission products (LLFP) contained in high-level radioactive waste through nuclear transmutation, or to recycle/utilize useful nuclear species. This paper outlines this program and describes recent achievements. This program consists of five projects: (1) separation/recovery technology, (2) acquisition of nuclear transmutation data, (3) nuclear reaction theory model and simulation, (4) novel nuclear reaction control and development of elemental technology, and (5) discussions on process concept. The project (1) develops a technology for dissolving vitrified solid, a technology for recovering LLFP from high-level waste liquid, and a technology for separating odd and even lasers. Project (2) acquires the new nuclear reaction data of Pd-107, Zr-93, Se-79, and Cs-135 using RIKEN's RIBF or JAEA's J-PARC. Project (3) improves new nuclear reaction theory and structural model using the nuclear reaction data measured in (2), improves/upgrades nuclear reaction simulation code PHITS, and proposes a promising nuclear transmutation pathway. Project (4) develops an accelerator that realizes the proposed transmutation route and its elemental technology. Project (5) performs the conceptual design of the process to realize (1) to (4), and constructs the scenario of reducing/utilizing high-level radioactive waste to realize this design. (A.O.)

  17. Safe immobilization of high-level nuclear reactor wastes

    International Nuclear Information System (INIS)

    Ringwood, A.; Kesson, S.; Ware, N.; Hibberson, W.; Major, A.

    1979-01-01

    The advantages and disadvantages of methods of immobilizing high-level radioactive wastes are discussed. Problems include the devitrification of glasses and the occurrence of radiation damage. An alternative method of radioctive waste immobilization is described in which the waste is incorporated in the constituent minerals of a synthetic rock, Synroc. Synroc is immune from devitrification and is composed of phases which possess crystal structures identical to those of minerals which are known to have retained radioactive elements in geological environments at elevated pressures and tempertures for long periods. The composition and mineralogy of Synroc is given and the process of immobilizing wastes in Synroc is described. Accelerated leaching tests at elevated pressures and temperatures are also described

  18. Reprogrammable Controller Design From High-Level Specification

    Directory of Open Access Journals (Sweden)

    M. Benmohammed

    2003-10-01

    Full Text Available Existing techniques in high-level synthesis mostly assume a simple controller architecture model in the form of a single FSM. However, in reality more complex controller architectures are often used. On the other hand, in the case of programmable processors, the controller architecture is largely defined by the available control-flow instructions in the instruction set. With the wider acceptance of behavioral synthesis, the application of these methods for the design of programmable controllers is of fundamental importance in embedded system technology. This paper describes an important extension of an existing architectural synthesis system targeting the generation of ASIP reprogrammable architectures. The designer can then generate both style of architecture, hardwired and programmable, using the same synthesis system and can quickly evaluate the trade-offs of hardware decisions.

  19. Tree-indexed processes: a high level crossing analysis

    Directory of Open Access Journals (Sweden)

    Mark Kelbert

    2003-01-01

    Full Text Available Consider a branching diffusion process on R1 starting at the origin. Take a high level u>0 and count the number R(u,n of branches reaching u by generation n. Let Fk,n(u be the probability P(R(u,n

  20. Midwestern High-Level Radioactive Waste Transportation Project

    International Nuclear Information System (INIS)

    Dantoin, T.S.

    1990-12-01

    For more than half a century, the Council of State Governments has served as a common ground for the states of the nation. The Council is a nonprofit, state-supported and -directed service organization that provides research and resources, identifies trends, supplies answers and creates a network for legislative, executive and judicial branch representatives. This List of Available Resources was prepared with the support of the US Department of Energy, Cooperative Agreement No. DE-FC02-89CH10402. However, any opinions, findings, conclusions, or recommendations expressed herein are those of the author(s) and do not necessarily reflect the views of DOE. The purpose of the agreement, and reports issued pursuant to it, is to identify and analyze regional issues pertaining to the transportation of high-level radioactive waste and to inform Midwestern state officials with respect to technical issues and regulatory concerns related to waste transportation

  1. Thermal characteristics of rocks for high-level waste repository

    International Nuclear Information System (INIS)

    Shimooka, Kenji; Ishizaki, Kanjiro; Okamoto, Masamichi; Kumata, Masahiro; Araki, Kunio; Amano, Hiroshi

    1980-12-01

    Heat released by the radioactive decay of high-level waste in an underground repository causes a long term thermal disturbance in the surrounding rock mass. Several rocks constituting geological formations in Japan were gathered and specific heat, thermal conductivity, thermal expansion coefficient and compressive strength were measured. Thermal analysis and chemical analysis were also carried out. It was found that volcanic rocks, i.e. Andesite and Basalt had the most favorable thermal characteristics up to around 1000 0 C and plutonic rock, i.e. Granite had also favorable characteristics under 573 0 C, transition temperature of quartz. Other igneous rocks, i.e. Rhyolite and Propylite had a problem of decomposition at around 500 0 C. Sedimentary rocks, i.e. Zeolite, Tuff, Sandstone and Diatomite were less favorable because of their decomposition, low thermal conductivity and large thermal expansion coefficient. (author)

  2. High level radioactive waste vitrification process equipment component testing

    International Nuclear Information System (INIS)

    Siemens, D.H.; Heath, W.O.; Larson, D.E.; Craig, S.N.; Berger, D.N.; Goles, R.W.

    1985-04-01

    Remote operability and maintainability of vitrification equipment were assessed under shielded-cell conditions. The equipment tested will be applied to immobilize high-level and transuranic liquid waste slurries that resulted from plutonium production for defense weapons. Equipment tested included: a turntable for handling waste canisters under the melter; a removable discharge cone in the melter overflow section; a thermocouple jumper that extends into a shielded cell; remote instrument and electrical connectors; remote, mechanical, and heat transfer aspects of the melter glass overflow section; a reamer to clean out plugged nozzles in the melter top; a closed circuit camera to view the melter interior; and a device to retrieve samples of the glass product. A test was also conducted to evaluate liquid metals for use in a liquid metal sealing system

  3. Separation processes for high-level radioactive waste treatment

    International Nuclear Information System (INIS)

    Sutherland, D.G.

    1992-11-01

    During World War II, production of nuclear materials in the United States for national defense, high-level waste (HLW) was generated as a byproduct. Since that time, further quantities of HLW radionuclides have been generated by continued nuclear materials production, research, and the commercial nuclear power program. In this paper HLW is defined as the highly radioactive material resulting from the processing of spent nuclear fuel. The HLW is the liquid waste generated during the recovery of uranium and plutonium in a fuel processing plant that generally contains more than 99% of the nonvolatile fission products produced during reactor operation. Since this paper deals with waste separation processes, spent reactor fuel elements that have not been dissolved and further processed are excluded

  4. Powder technological vitrification of simulated high-level waste

    International Nuclear Information System (INIS)

    Gahlert, S.

    1988-03-01

    High-level waste simulate from the reprocessing of light water reactor and fast breeder fuel was vitrified by powder technology. After denitration with formaldehyde, the simulated HLW is mixed with glass frit and simultaneously dried in an oil-heated mixer. After 'in-can calcination' for at least 24 hours at 850 or 950 K (depending on the type of waste and glass), the mixture is hot-pressed in-can for several hours at 920 or 1020 K respectively, at pressures between 0.4 and 1.0 MPa. The technology has been demonstrated inactively up to diameters of 30 cm. Leach resistance is significantly enhanced when compared to common borosilicate glasses by the utilization of glasses with higher silicon and aluminium content and lower sodium content. (orig.) [de

  5. Fluidized bed system for calcination of high level radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Pande, D P; Prasad, T L; Yadgiri, N K; Theyyunni, T K [Process Engineering and Systems Development Division, Bhabha Atomic Research Centre, Mumbai (India)

    1994-06-01

    During the operation of nuclear facilities significant quantities of radiochemical liquid effluents of different concentrations and varying chemical compositions are generated. These effluents contain activated radionuclides, corrosion products and fission products. The advantage of feeding the waste in solid form into the vitrifying equipment are multifold. Efforts are therefore made in many countries to calcine the high level waste, and obtain waste in the oxide form before the same is mixed with glass forming additives and fed into the melter unit. An experimental rig for fluidized bed calcination is constructed for carrying out the detailed investigation of this process, in order to adopt the same for plant scale application. To achieve better gas-solid contact and avoid raining down of solids, a distributor of bubble cap type was designed. A review of existing experience at various laboratories and design of new experimental facility for development of calciners are given. (author). 11 refs., 5 figs.

  6. FADO 2. 0: A high level tagging language

    Energy Technology Data Exchange (ETDEWEB)

    Werner, C.M.L. (European Organization for Nuclear Research, Geneva (Switzerland). EP-Div.); Pimenta, M.; Varela, J. (LIP, Lisbon (Portugal)); Souza, J. (Rio de Janeiro Univ. (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia)

    1989-12-01

    FADO 2.0 is a high level language, developed in the context of the 4th level trigger of the DELPHI data acquisition project at CERN, that provides a simple and concise way to define physics criteria for event tagging. Its syntax is based on mathematical logic and set theory, as it was found the most appropriate framework to describe the properties of single HEP events. The language is one of the components of the FADO tagging system. The system also implements implicitly a mechanism to selectively reconstruct the event data that are needed to fulfil the physics criteria, following the speed requirements of the online data-acquisition system. A complete programming environment is now under development, which will include a syntax directed editor, and incremental compiler, a debugger and a configurer. This last tool can be used to transport the system into the context of other HEP applications, namely offline event selection and filtering. (orig.).

  7. Intermittent Testing and Training for High-Level Football Players

    DEFF Research Database (Denmark)

    Ingebrigtsen, Jørgen

    Football is the most popular sport in the world, played by over 400 million men and women. In addition to the wide range of sport-specific technical and tactical skills needed, several physical components have been shown to be necessary to perform at a high level. The present PhD thesis is based...... on four articles that focus on physical testing and training for elite and sub-elite football players.The first article (Study I) aims to identify and establish aerobic capacities and anthropometric characteristics of elite female football players with the use of laboratory tests, and to examine whether...... systematic differences between the playing positions can be detected. Lately, field tests have become more frequently used in football than the laboratory tests used in Study I. Study II therefore aims to assess the validity of one of them, the Yo-Yo Intermittent Recovery test level 2 (Yo-Yo IR2). Along...

  8. Electropolishing decontamination system for high-level waste canisters

    International Nuclear Information System (INIS)

    Larson, D.E.; Berger, D.N.; Allen, R.P.; Bryan, G.H.; Place, B.G.

    1988-10-01

    As part of a US Department of Energy (DOE) project agreement with the Federal Ministry for Research and Technology (BMFT) in the Federal Republic of Germany (FRG). The Nuclear Waste Treatment Program at the Pacific Northwest Laboratory (PNL) is preparing 30 radioactive canisters containing borosilicate glass for use in high-level waste repository related tests at the Asse Salt Mine. After filling, the canisters will be welded closed and decontaminated in preparation for shipping to the FRG. Electropolishing was selected as the primary decontamination approach, and an electropolishing system with associated canister inspection equipment has been designed and fabricated for installation in a large hot cell. This remote electropolishing system, which is currently undergoing preliminary testing, is described in this report. 3 refs., 3 figs., 1 tab

  9. A high-level language for rule-based modelling.

    Science.gov (United States)

    Pedersen, Michael; Phillips, Andrew; Plotkin, Gordon D

    2015-01-01

    Rule-based languages such as Kappa excel in their support for handling the combinatorial complexities prevalent in many biological systems, including signalling pathways. But Kappa provides little structure for organising rules, and large models can therefore be hard to read and maintain. This paper introduces a high-level, modular extension of Kappa called LBS-κ. We demonstrate the constructs of the language through examples and three case studies: a chemotaxis switch ring, a MAPK cascade, and an insulin signalling pathway. We then provide a formal definition of LBS-κ through an abstract syntax and a translation to plain Kappa. The translation is implemented in a compiler tool which is available as a web application. We finally demonstrate how to increase the expressivity of LBS-κ through embedded scripts in a general-purpose programming language, a technique which we view as generally applicable to other domain specific languages.

  10. Glass formulation for phase 1 high-level waste vitrification

    International Nuclear Information System (INIS)

    Vienna, J.D.; Hrma, P.R.

    1996-04-01

    The purpose of this study is to provide potential glass formulations for prospective Phase 1 High-Level Waste (HLW) vitrification at Hanford. The results reported here will be used to aid in developing a Phase 1 HLW vitrification request for proposal (RFP) and facilitate the evaluation of ensuing proposals. The following factors were considered in the glass formulation effort: impact on total glass volume of requiring the vendor to process each of the tank compositions independently versus as a blend; effects of imposing typical values of B 2 O 3 content and waste loading in HLW borosilicate glasses as restrictions on the vendors (according to WAPS 1995, the typical values are 5--10 wt% B 2 O 3 and 20--40 wt% waste oxide loading); impacts of restricting the processing temperature to 1,150 C on eventual glass volume; and effects of caustic washing on any of the selected tank wastes relative to glass volume

  11. Using the CMS high level trigger as a cloud resource

    International Nuclear Information System (INIS)

    Colling, David; Huffman, Adam; Bauer, Daniela; McCrae, Alison; Cinquilli, Mattia; Gowdy, Stephen; Coarasa, Jose Antonio; Ozga, Wojciech; Chaze, Olivier; Lahiff, Andrew; Grandi, Claudio; Tiradani, Anthony; Sgaravatto, Massimo

    2014-01-01

    The CMS High Level Trigger is a compute farm of more than 10,000 cores. During data taking this resource is heavily used and is an integral part of the experiment's triggering system. However, outside of data taking periods this resource is largely unused. We describe why CMS wants to use the HLT as a cloud resource (outside of data taking periods) and how this has been achieved. In doing this we have turned a single-use cluster into an agile resource for CMS production computing. While we are able to use the HLT as a production cloud resource, there is still considerable further work that CMS needs to carry out before this resource can be used with the desired agility. This report, therefore, represents a snapshot of this activity at the time of CHEP 2013.

  12. Transmutation of high-level radioactive waste - Perspectives

    CERN Document Server

    Junghans, Arnd; Grosse, Eckart; Hannaske, Roland; Kögler, Toni; Massarczyk, Ralf; Schwengner, Ronald; Wagner, Andreas

    2014-01-01

    In a fast neutron spectrum essentially all long-lived actinides (e.g. Plutonium) undergo fission and thus can be transmuted into generally short lived fission products. Innovative nuclear reactor concepts e.g. accelerator driven systems (ADS) are currently in development that foresee a closed fuel cycle. The majority of the fissile nuclides (uranium, plutonium) shall be used for power generation and only fission products will be put into final disposal that needs to last for a historical time scale of only 1000 years. For the transmutation of high-level radioactive waste a lot of research and development is still required. One aspect is the precise knowledge of nuclear data for reactions with fast neutrons. Nuclear reactions relevant for transmutation are being investigated in the framework of the european project ERINDA. First results from the new neutron time-of-flight facility nELBE at Helmholtz-Zentrum Dresden-Rossendorf will be presented.

  13. A comparison of high-level waste form characteristics

    International Nuclear Information System (INIS)

    Salmon, R.; Notz, K.J.

    1991-01-01

    The US DOE is responsible for the eventual disposal in a repository of spent fuels, high-level waste (HLW) and other radioactive wastes that may require long-term isolation. This includes light-water reactor (LWR) spent fuel and immobilized HLW as the two major sources, plus other forms including non-LWR spent fuels and miscellaneous sources (such as activated metals in the Greater-Than-Class-C category). The Characteristics Data Base, sponsored by DOE's Office of Civilian Radioactive Waste Management (OCRWM), was created to systematically tabulate the technical characteristics of these materials. Data are presented here on the immobilized HLW forms that are expected to be produced between now and 2020

  14. Conceptual process for conversion of high level waste to glass

    International Nuclear Information System (INIS)

    1975-01-01

    During a ten-year period highly radioactive wastes amounting to 22 million gallons of salt cake and 5 million gallons of wet sludge are to be converted to 1.2 million gallons of glass and 24 million gallons of decontaminated salt cake and placed in the new storage facilities which will provide high assurance of containment with minimal reliance on maintenance and surveillance. The glass will contain nearly all of the radioactivity in a form that is highly resistant to leaching and dispersion. The salt cake will contain a small amount of residual radioactivity. The process is shown in Figure 1 and the facilities may be arranged in seven modules to accomplish seven tasks, (1) remove wastes from tanks, (2) separate sludge and salt, (3) decontaminate salt, (4) solidify and package sludge and 137 Cs, (5) solidify and package decontaminated salt, (6) store high level waste, and (7) store decontaminated salt cake

  15. Coupled processes in NRC high-level waste research

    International Nuclear Information System (INIS)

    Costanzi, F.A.

    1987-01-01

    The author discusses NRC research effort in support of evaluating license applications for disposal of nuclear waste and for promulgating regulations and issuing guidance documents on nuclear waste management. In order to do this they fund research activities at a number of laboratories, academic institutions, and commercial organizations. One of our research efforts is the coupled processes study. This paper discusses interest in coupled processes and describes the target areas of research efforts over the next few years. The specific research activities relate to the performance objectives of NRC's high-level waste (HLW) regulation and the U.S. Environmental Protection Agency (EPA) HLW standard. The general objective of the research program is to ensure the NRC has a sufficient independent technical base to make sound regulatory decisions

  16. Monitoring of geological repositories for high level radioactive waste

    International Nuclear Information System (INIS)

    2001-04-01

    Geological repositories for disposal of high level radioactive waste are designed to provide isolation of the waste from human environment for many thousands of years. This report discusses the possible purposes for monitoring geological repositories at the different stages of a repository programme, the use that may be made of the information obtained and the techniques that might be applied. This report focuses on the different objectives that monitoring might have at various stages of a programme, from the initiation of work on a candidate site, to the period after repository closure. Each objective may require somewhat different types of information, or may use the same information in different ways. Having evaluated monitoring requirements, the report concludes with a brief evaluation of available monitoring techniques

  17. The development of a high level radioactive waste management strategy

    International Nuclear Information System (INIS)

    Beale, H.

    1979-11-01

    The management of high level radioactive waste, from the removal of spent fuel from reactors to final disposal of vitrified waste, involves a complex choice of operational variables which interact one with another. If the various operations are designed and developed in isolation it will almost certainly lead to suboptimal choice. Management of highly active waste should therefore be viewed as a complete system and analysed in such a way that account is taken of the interactions between the various operations. This system must have clearly defined and agreed objectives as well as criteria against which performance can be judged. A thorough analysis of the system will provide a framework within which the necessary research and development can be carried out in a co-ordinated fashion and lead to an optimised strategy for managing highly active wastes. (author)

  18. Engineering-scale vitrification of commercial high-level waste

    International Nuclear Information System (INIS)

    Bonner, W.F.; Bjorklund, W.J.; Hanson, M.S.; Knowlton, D.E.

    1980-04-01

    To date, technology for immobilizing commercial high-level waste (HLW) has been extensively developed, and two major demonstration projects have been completed, the Waste Solidification Engineering Prototypes (WSEP) Program and the Nuclear Waste Vitrification Project (NWVP). The feasibility of radioactive waste solidification was demonstrated in the WSEP program between 1966 and 1970 (McElroy et al. 1972) using simulated power-reactor waste composed of nonradioactive chemicals and HLW from spent, Hanford reactor fuel. Thirty-three engineering-scale canisters of solidified HLW were produced during the operations. In early 79, the NWVP demonstrated the vitrification of HLW from the processing of actual commercial nuclear fuel. This program consisted of two parts, (1) waste preparation and (2) vitrification by spray calcination and in-can melting. This report presents results from the NWVP

  19. The ALICE High Level Trigger: status and plans

    CERN Document Server

    Krzewicki, Mikolaj; Gorbunov, Sergey; Breitner, Timo; Lehrbach, Johannes; Lindenstruth, Volker; Berzano, Dario

    2015-01-01

    The ALICE High Level Trigger (HLT) is an online reconstruction, triggering and data compression system used in the ALICE experiment at CERN. Unique among the LHC experiments, it extensively uses modern coprocessor technologies like general purpose graphic processing units (GPGPU) and field programmable gate arrays (FPGA) in the data flow. Realtime data compression is performed using a cluster finder algorithm implemented on FPGA boards. These data, instead of raw clusters, are used in the subsequent processing and storage, resulting in a compression factor of around 4. Track finding is performed using a cellular automaton and a Kalman filter algorithm on GPGPU hardware, where both CUDA and OpenCL technologies can be used interchangeably. The ALICE upgrade requires further development of online concepts to include detector calibration and stronger data compression. The current HLT farm will be used as a test bed for online calibration and both synchronous and asynchronous processing frameworks already before t...

  20. High-level radioactive-waste-disposal investigations in Texas

    International Nuclear Information System (INIS)

    Smith, R.D.

    1983-01-01

    The Texas Energy and Natural Resources Advisory Council (TENRAC) was designated in 1980 to coordinate the interaction between the State of Texas and the federal government relating to the high-level radioactive waste disposal issue. This report was prepared to summarize the many aspects of that issue with particular emphasis on the activities in Texas. The report is intended to provide a comprehensive introduction for individuals with little or no previous exposure to the issue and to provide a broader perspective for those individuals who have addressed specific aspects of the issue but have not had the opportunity to study it in a broader context. Following the introduction, contents of this report are as follows: (1) general status of major repository siting investigations in the US; (2) detailed review of Texas studies; (3) possible facilities to be sited in Texas; (4) current Texas policy; (5) federal regulations; and (6) federal legislation. 9 figures, 2 tables

  1. Conductivity of alanine solution for high level dosimetry

    International Nuclear Information System (INIS)

    Wieser, A.; Figel, M.; Regulla, D.F.

    1993-01-01

    The amino acid alanine is well known as a dosimetric detector material for high level dosimetry. Its application is based on the formation of radicals by ionising radiation. The free radicals are earlier detected by electron spin resonance (ESR) spectroscopy or chemically after dissolving the irradiated samples. Of all these methods the ESR/alanine system is the most advanced and is suggested for reference dosimetry. At present, however, the high cost of the system is a serious handicap for a large scale routine application in radiation plants. In this study the variation of electrical conductivity of L-alanine solution with applied dose is investigated in the range from 0.5-200 kGy. The conductivity was measured with a 50 MHz RF oscillator. This readout method is uncomplicated and may be suitable for routine application. The experiments were performed with L-alanine solution in glass ampoules. (Author)

  2. Geology of high-level nuclear waste disposal

    International Nuclear Information System (INIS)

    Roxburgh, I.S.

    1988-01-01

    The concept of geological disposal is set out by describing the major rock types in terms of their ability to isolate high-level nuclear waste. The advantages and problems posed by particular rock formations are explored and the design and construction of geological repositories is considered, along with the methods used to estimate their safety. It gives special consideration to the use of sea-covered rock and sediment as well as the on-land situation. Throughout the book the various principles and problems inherent in geological disposal are explained and illustrated by reference to a multitude of European and North American case studies, backed up by a large number of tables, figures and an extensive bibliography

  3. High-level waste tank farm set point document

    International Nuclear Information System (INIS)

    Anthony, J.A. III.

    1995-01-01

    Setpoints for nuclear safety-related instrumentation are required for actions determined by the design authorization basis. Minimum requirements need to be established for assuring that setpoints are established and held within specified limits. This document establishes the controlling methodology for changing setpoints of all classifications. The instrumentation under consideration involve the transfer, storage, and volume reduction of radioactive liquid waste in the F- and H-Area High-Level Radioactive Waste Tank Farms. The setpoint document will encompass the PROCESS AREA listed in the Safety Analysis Report (SAR) (DPSTSA-200-10 Sup 18) which includes the diversion box HDB-8 facility. In addition to the PROCESS AREAS listed in the SAR, Building 299-H and the Effluent Transfer Facility (ETF) are also included in the scope

  4. High-level waste tank farm set point document

    Energy Technology Data Exchange (ETDEWEB)

    Anthony, J.A. III

    1995-01-15

    Setpoints for nuclear safety-related instrumentation are required for actions determined by the design authorization basis. Minimum requirements need to be established for assuring that setpoints are established and held within specified limits. This document establishes the controlling methodology for changing setpoints of all classifications. The instrumentation under consideration involve the transfer, storage, and volume reduction of radioactive liquid waste in the F- and H-Area High-Level Radioactive Waste Tank Farms. The setpoint document will encompass the PROCESS AREA listed in the Safety Analysis Report (SAR) (DPSTSA-200-10 Sup 18) which includes the diversion box HDB-8 facility. In addition to the PROCESS AREAS listed in the SAR, Building 299-H and the Effluent Transfer Facility (ETF) are also included in the scope.

  5. Risk assessment methodology for Hanford high-level waste tanks

    International Nuclear Information System (INIS)

    Bott, T.F.; Mac Farlane, D.R.; Stack, D.W.; Kindinger, J.

    1992-01-01

    A methodology is presented for applying Probabilistic Safety Assessment techniques to quantification of the health risks posed by the high-level waste (HLW) underground tanks at the Department of Energy's Hanford reservation. This methodology includes hazard screening development of a list of potential accident initiators, systems fault trees development and quantification, definition of source terms for various release categories, and estimation of health consequences from the releases. Both airborne and liquid pathway releases to the environment, arising from aerosol and spill/leak releases from the tanks, are included in the release categories. The proposed methodology is intended to be applied to a representative subset of the total of 177 tanks, thereby providing a baseline risk profile for the HLW tank farm that can be used for setting clean-up/remediation priorities. Some preliminary results are presented for Tank 101-SY

  6. High-level radioactive waste glass and storage canister design

    International Nuclear Information System (INIS)

    Slate, S.C.; Ross, W.A.

    1979-01-01

    Management of high-level radioactive wastes is a primary concern in nuclear operations today. The main objective in managing these wastes is to convert them into a solid, durable form which is then isolated from man. A description is given of the design and evaluation of this waste form. The waste form has two main components: the solidified waste and the storage canister. The solid waste form discussed in this study is glass. Waste glasses have been designed to be inert to water attack, physically rugged, low in volatility, and stable over time. Two glass-making processes are under development at PNL. The storage canister is being designed to provide high-integrity containment for solidified wastes from processing to terminal storage. An outline is given of the steps in canister design: material selection, stress and thermal analyses, quality verification, and postfill processing. Examples are given of results obtained from actual nonradioactive demonstration tests. 14 refs

  7. Supervision of the ATLAS High Level Trigger System

    CERN Document Server

    Wheeler, S.; Meessen, C.; Qian, Z.; Touchard, F.; Negri, France A.; Zobernig, H.; CHEP 2003 Computing in High Energy Physics; Negri, France A.

    2003-01-01

    The ATLAS High Level Trigger (HLT) system provides software-based event selection after the initial LVL1 hardware trigger. It is composed of two stages, the LVL2 trigger and the Event Filter. The HLT is implemented as software tasks running on large processor farms. An essential part of the HLT is the supervision system, which is responsible for configuring, coordinating, controlling and monitoring the many hundreds of processes running in the HLT. A prototype implementation of the supervision system, using tools from the ATLAS Online Software system is presented. Results from scalability tests are also presented where the supervision system was shown to be capable of controlling over 1000 HLT processes running on 230 nodes.

  8. National high-level waste systems analysis plan

    International Nuclear Information System (INIS)

    Kristofferson, K.; Oholleran, T.P.; Powell, R.H.; Thiel, E.C.

    1995-05-01

    This document details the development of modeling capabilities that can provide a system-wide view of all US Department of Energy (DOE) high-level waste (HLW) treatment and storage systems. This model can assess the impact of budget constraints on storage and treatment system schedules and throughput. These impacts can then be assessed against existing and pending milestones to determine the impact to the overall HLW system. A nation-wide view of waste treatment availability will help project the time required to prepare HLW for disposal. The impacts of the availability of various treatment systems and throughput can be compared to repository readiness to determine the prudent application of resources or the need to renegotiate milestones

  9. Immobilization of high-level wastes into sintered glass: 1

    International Nuclear Information System (INIS)

    Russo, D.O.; Messi de Bernasconi, N.; Audero, M.A.

    1987-01-01

    In order to immobilize the high-level radioactive wastes from fuel elements reprocessing, borosilicate glass was adopted. Sintering experiments are described with the variety VG 98/12 (SiO 2 , TiO 2 , Al 2 O 3 , B 2 O 3 , MgO, CaO and Na 2 O) (which does not present devitrification problems) mixed with simulated calcinated wastes. The hot pressing line (sintering under pressure) was explored in two variants 1: In can; 2: In graphite matrix with sintered pellet extraction. With scanning electron microscopy it is observed that the simulated wastes do not disolve in the vitreous matrix, but they remain dispersed in the same. The results obtained point out that the leaching velocities are independent from the density and from the matrix type employed, as well as from the fact that the wastes do no dissolve in the matrix. (M.E.L.) [es

  10. Managing the nation's commercial high-level radioactive waste

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    This study presents the findings and conclusions of OTA's analysis of Federal policy for the management of commercial high-level radioactive waste. Broad in scope and balanced in approach, its coverage extends from technological and organizational questions to political ramifications...the environmental impact of building repositories...and even dealing with Indian tribes affected by repository site selection and development. Emphasis is on workable strategies for implementing the National Waste Policy Act of 1982, including a mission plan for the program...a monitored retrievable storage proposal...and a report on mechanisms for financing and managing the program. Nine appendicies are included. They furnish additional data on such topics as policymaking, history, and the system issues resolved in NWPA

  11. Vitrification of high-level radioactive and hazardous wastes

    International Nuclear Information System (INIS)

    Lutze, W.

    1993-12-01

    The main objective is to summarize work conducted on glasses as waste forms for high-level radioactive fission product solutions up to the late 1980's (section I and II). Section III addresses the question, whether waste forms designed for the immobilization of radioactive residues can be used for the same purpose for hazardous wastes. Of particular interest are those types of hazardous wastes, e.g., fly ashes from municipal combustion plants, easy to convert into glasses or ceramic materials. A large number of base glass compositions has been studied to vitrify waste from reprocessing but only borosilicate glasses with melting temperatures between 1100 C and 1200 C and very good hydrolytic stability is used today. (orig./HP) [de

  12. Managing commercial high-level radioactive waste: summary

    International Nuclear Information System (INIS)

    1982-04-01

    This summary presents the findings and conclusions of OTA's analysis of Federal policy for the management of commercial high-level radioactive waste - an issue that has been debated over the last decade and that now appears to be moving toward major congressional action. After more than 20 years of commercial nuclear power, the Federal Government has yet to develop a broadly supported policy for fulfilling its legal responsibility for the final isolation of high-level radioactive waste. OTA's study concludes that until such a policy is adopted in law, there is a substantial risk that the false starts, shifts of policy, and fluctuating support that have plagued the final isolation program in the past will continue. The continued lack of final isolation facilities has raised two key problems that underlie debates about radioactive waste policy. First, some question the continued use of nuclear power until it is shown that safe final isolation for the resulting wastes can and will be accomplished, and argue that the failure to develop final isolation facilities is evidence that it may be an insoluble problem. Second, because there are no reprocessing facilities or federal waste isolation facilities to accept spent fuel, existing reactors are running out of spent fuel storage space, and by 1986 some may face a risk of shutting down for some period. Most of the 72,000 metric tons of spent fuel expected to be generated by the year 2000 will still be in temporary storage at that time. While it is possible that utilities could provide all necessary additional storage at reactor sites before existing basins are filled, some supplemental storage may be needed if there are delays in their efforts

  13. Managing the nation's commercial high-level radioactive waste

    International Nuclear Information System (INIS)

    Cotton, T.

    1985-01-01

    With the passage of the Nuclear Waste Policy Act of 1982 (NWPA), Congress for the first time established in law a comprehensive Federal policy for commercial high-level radioactive waste management, including interim storage and permanent disposal. NWPA provides sufficient authority for developing and operating a high-level radioactive waste management system based on disposal in mined geologic repositories. Authorization for other types of waste facilities will not be required unless major problems with geologic disposal are discovered, and studies to date have identified no insurmountable technical obstacles to developing geologic repositories. The NWPA requires the Department of Energy (DOE) to submit to Congress three key documents: (1) a Mission Plan, containing both a waste management plan with a schedule for transferring waste to Federal facilities and an implementation program for choosing sites and developing technologies to carry out that plan; (2) a monitored retrievable storage (MRS) proposal, to include a site-specific design for a long-term federal storage facility, an evaluation of whether such an MRS facility is needed and feasible, and an analysis of how an MRS facility would be integrated with the repository program if authorized by Congress; and (3) a study of alternative institutional mechanisms for financing and managing the radioactive waste system, including the option of establishing an independent waste management organization outside of DOE. The Mission Plan and the report on alternative institutional mechanisms were submitted to the 99th US Congress in 1985. The MRS proposal is to be submitted in early 1986. Each of these documents is discussed following an overview of the Nuclear Waste Policy Act of 1982

  14. High-level waste melter alternatives assessment report

    Energy Technology Data Exchange (ETDEWEB)

    Calmus, R.B.

    1995-02-01

    This document describes the Tank Waste Remediation System (TWRS) High-Level Waste (HLW) Program`s (hereafter referred to as HLW Program) Melter Candidate Assessment Activity performed in fiscal year (FY) 1994. The mission of the TWRS Program is to store, treat, and immobilize highly radioactive Hanford Site waste (current and future tank waste and encapsulated strontium and cesium isotopic sources) in an environmentally sound, safe, and cost-effective manner. The goal of the HLW Program is to immobilize the HLW fraction of pretreated tank waste into a vitrified product suitable for interim onsite storage and eventual offsite disposal at a geologic repository. Preparation of the encapsulated strontium and cesium isotopic sources for final disposal is also included in the HLW Program. As a result of trade studies performed in 1992 and 1993, processes planned for pretreatment of tank wastes were modified substantially because of increasing estimates of the quantity of high-level and transuranic tank waste remaining after pretreatment. This resulted in substantial increases in needed vitrification plant capacity compared to the capacity of original Hanford Waste Vitrification Plant (HWVP). The required capacity has not been finalized, but is expected to be four to eight times that of the HWVP design. The increased capacity requirements for the HLW vitrification plant`s melter prompted the assessment of candidate high-capacity HLW melter technologies to determine the most viable candidates and the required development and testing (D and T) focus required to select the Hanford Site HLW vitrification plant melter system. An assessment process was developed in early 1994. This document describes the assessment team, roles of team members, the phased assessment process and results, resulting recommendations, and the implementation strategy.

  15. High-level waste program integration within the DOE complex

    International Nuclear Information System (INIS)

    Valentine, J.H.; Malone, K.; Schaus, P.S.

    1998-03-01

    Eleven major Department of Energy (DOE) site contractors were chartered by the Assistant Secretary to use a systems engineering approach to develop and evaluate technically defensible cost savings opportunities across the complex. Known as the complex-wide Environmental Management Integration (EMI), this process evaluated all the major DOE waste streams including high level waste (HLW). Across the DOE complex, this waste stream has the highest life cycle cost and is scheduled to take until at least 2035 before all HLW is processed for disposal. Technical contract experts from the four DOE sites that manage high level waste participated in the integration analysis: Hanford, Savannah River Site (SRS), Idaho National Engineering and Environmental Laboratory (INEEL), and West Valley Demonstration Project (WVDP). In addition, subject matter experts from the Yucca Mountain Project and the Tanks Focus Area participated in the analysis. Also, departmental representatives from the US Department of Energy Headquarters (DOE-HQ) monitored the analysis and results. Workouts were held throughout the year to develop recommendations to achieve a complex-wide integrated program. From this effort, the HLW Environmental Management (EM) Team identified a set of programmatic and technical opportunities that could result in potential cost savings and avoidance in excess of $18 billion and an accelerated completion of the HLW mission by seven years. The cost savings, schedule improvements, and volume reduction are attributed to a multifaceted HLW treatment disposal strategy which involves waste pretreatment, standardized waste matrices, risk-based retrieval, early development and deployment of a shipping system for glass canisters, and reasonable, low cost tank closure

  16. High-level radioactive waste in Canada. Background paper

    International Nuclear Information System (INIS)

    Fawcett, R.

    1993-11-01

    The disposal of radioactive waste is one of the most challenging environmental problems facing Canada today. Since the Second World War, when Canadian scientists first started to investigate nuclear reactions, there has been a steady accumulation of such waste. Research reactors built in the early postwar years produced small amounts of radioactive material but the volume grew steadily as the nuclear power reactors constructed during the 1960s and 1970s began to spawn used fuel bundles. Although this radioactive refuse has been safely stored for the short term, no permanent disposal system has yet been fully developed and implemented. Canada is not alone in this regard. A large number of countries use nuclear power reactors but none has yet put in place a method for the long-term disposal of the radioactive waste. Scientists and engineers throughout the world are investigating different possibilities; however, enormous difficulties remain. In Canada, used fuel bundles from nuclear reactors are defined as high-level waste; all other waste created at different stages in the nuclear fuel cycle is classified as low-level. Although disposal of low-level waste is an important issue, it is a more tractable problem than the disposal of high-level waste, on which this paper will concentrate. The paper discusses the nuclear fuel waste management program in Canada, where a long-term disposal plan has been under development by scientists and engineers over the past 15 years, but will not be completed for some time. Also discussed are responses to the program by parliamentary committees and aboriginal and environmental groups, and the work in the area being conducted in other countries. (author). 1 tab

  17. High-level waste melter alternatives assessment report

    International Nuclear Information System (INIS)

    Calmus, R.B.

    1995-02-01

    This document describes the Tank Waste Remediation System (TWRS) High-Level Waste (HLW) Program's (hereafter referred to as HLW Program) Melter Candidate Assessment Activity performed in fiscal year (FY) 1994. The mission of the TWRS Program is to store, treat, and immobilize highly radioactive Hanford Site waste (current and future tank waste and encapsulated strontium and cesium isotopic sources) in an environmentally sound, safe, and cost-effective manner. The goal of the HLW Program is to immobilize the HLW fraction of pretreated tank waste into a vitrified product suitable for interim onsite storage and eventual offsite disposal at a geologic repository. Preparation of the encapsulated strontium and cesium isotopic sources for final disposal is also included in the HLW Program. As a result of trade studies performed in 1992 and 1993, processes planned for pretreatment of tank wastes were modified substantially because of increasing estimates of the quantity of high-level and transuranic tank waste remaining after pretreatment. This resulted in substantial increases in needed vitrification plant capacity compared to the capacity of original Hanford Waste Vitrification Plant (HWVP). The required capacity has not been finalized, but is expected to be four to eight times that of the HWVP design. The increased capacity requirements for the HLW vitrification plant's melter prompted the assessment of candidate high-capacity HLW melter technologies to determine the most viable candidates and the required development and testing (D and T) focus required to select the Hanford Site HLW vitrification plant melter system. An assessment process was developed in early 1994. This document describes the assessment team, roles of team members, the phased assessment process and results, resulting recommendations, and the implementation strategy

  18. High-level radioactive waste in Canada. Background paper

    Energy Technology Data Exchange (ETDEWEB)

    Fawcett, R [Library of Parliament, Ottawa, ON (Canada). Science and Technology Div.

    1993-11-01

    The disposal of radioactive waste is one of the most challenging environmental problems facing Canada today. Since the Second World War, when Canadian scientists first started to investigate nuclear reactions, there has been a steady accumulation of such waste. Research reactors built in the early postwar years produced small amounts of radioactive material but the volume grew steadily as the nuclear power reactors constructed during the 1960s and 1970s began to spawn used fuel bundles. Although this radioactive refuse has been safely stored for the short term, no permanent disposal system has yet been fully developed and implemented. Canada is not alone in this regard. A large number of countries use nuclear power reactors but none has yet put in place a method for the long-term disposal of the radioactive waste. Scientists and engineers throughout the world are investigating different possibilities; however, enormous difficulties remain. In Canada, used fuel bundles from nuclear reactors are defined as high-level waste; all other waste created at different stages in the nuclear fuel cycle is classified as low-level. Although disposal of low-level waste is an important issue, it is a more tractable problem than the disposal of high-level waste, on which this paper will concentrate. The paper discusses the nuclear fuel waste management program in Canada, where a long-term disposal plan has been under development by scientists and engineers over the past 15 years, but will not be completed for some time. Also discussed are responses to the program by parliamentary committees and aboriginal and environmental groups, and the work in the area being conducted in other countries. (author). 1 tab.

  19. ICPP custom dissolver explosion recovery

    International Nuclear Information System (INIS)

    Demmer, R.; Hawk, R.

    1992-01-01

    This report discusses the recovery from the February 9, 1991 small scale explosion in a custom processing dissolver at the Idaho Chemical Processing Plant. Custom processing is a small scale dissolution facility which processes nuclear material in an economical fashion. The material dissolved in this facility was uranium metal, uranium oxides, and uranium/fissium alloy in nitric acid. The paper explained the release of fission material, and the decontamination and recovery of the fuel material. The safety and protection procedures were also discussed. Also described was the chemical analysis which was used to speculate the most probable cause of the explosion. (MB)

  20. Transferring knowledge about high-level waste repositories: An ethical consideration

    International Nuclear Information System (INIS)

    Berndes, S.; Kornwachs, K.

    1996-01-01

    The purpose of this paper is to present requirements to Information and Documentation Systems for high-level waste repositories from an ethical point of view. A structured synopsis of ethical arguments used by experts from Europe and America is presented. On the one hand the review suggests to reinforce the obligation to transfer knowledge about high level waste repositories. This obligation is reduced on the other hand by the objection that ethical obligations are dependent on the difference between our and future civilizations. This reflection results in proposing a list of well-balanced ethical arguments. Then a method is presented which shows how scenarios of possible future civilizations for different time horizons and related ethical arguments are used to justify requirements to the Information and Documentation System

  1. Development of High-Level Safety Requirements for a Pyroprocessing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Seok Jun; Jo, Woo Jin; You, Gil Sung; Choung, Won Myung; Lee, Ho Hee; Kim, Hyun Min; Jeon, Hong Rae; Ku, Jeong Hoe; Lee, Hyo Jik [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    Korea Atomic Energy Research Institute (KAERI) has been developing a pyroproceesing technology to reduce the waste volume and recycle some elements. The pyroprocessing includes several treatment processes which are related with not only radiological and physical but also chemical and electrochemical properties. Thus, it is of importance to establish safety design requirements considering all the aspects of those properties for a reliable pyroprocessing facility. In this study, high-level requirements are presented in terms of not only radiation protection, nuclear criticality, fire protection, and seismic safety but also confinement and chemical safety for the unique characteristics of a pyroprocessing facility. Several high-level safety design requirements such as radiation protection, nuclear criticality, fire protection, seismic, confinement, and chemical processing were presented for a pyroprocessing facility. The requirements must fulfill domestic and international safety technology standards for a nuclear facility. Furthermore, additional requirements should be considered for the unique electrochemical treatments in a pyroprocessing facility.

  2. Removal of actinides from high-level wastes generated in the reprocessing of commercial fuels

    International Nuclear Information System (INIS)

    Bond, W.D.; Leuze, R.E.

    1975-09-01

    Progress is reported on a technical feasibility study of removing the very long-lived actinides (uranium, neptunium, plutonium, americium, and curium) from high-level wastes generated in the commercial reprocessing of spent nuclear fuels. The study was directed primarily at wastes from the reprocessing of light water reactor (LWR) fuels and specifically to developing satisfactory methods for reducing the actinide content of these wastes to values that would make 1000-year-decayed waste comparable in radiological toxicity to natural uranium ore deposits. Although studies are not complete, results thus far indicate the most promising concept for actinide removal includes both improved recovery of actinides in conventional fuel reprocessing and secondary processing of the high-level wastes. Secondary processing will be necessary for the removal of americium and curium and perhaps some residual plutonium. Laboratory-scale studies of separations methods that appear most promising are reported and conceptual flowsheets are discussed. (U.S.)

  3. Defense High Level Waste Disposal Container System Description Document

    International Nuclear Information System (INIS)

    2000-01-01

    The Defense High Level Waste Disposal Container System supports the confinement and isolation of waste within the Engineered Barrier System of the Monitored Geologic Repository (MGR). Disposal containers are loaded and sealed in the surface waste handling facilities, transferred to the underground through the accesses using a rail mounted transporter, and emplaced in emplacement drifts. The defense high level waste (HLW) disposal container provides long-term confinement of the commercial HLW and defense HLW (including immobilized plutonium waste forms (IPWF)) placed within disposable canisters, and withstands the loading, transfer, emplacement, and retrieval loads and environments. U.S. Department of Energy (DOE)-owned spent nuclear fuel (SNF) in disposable canisters may also be placed in a defense HLW disposal container along with commercial HLW waste forms, which is known as 'co-disposal'. The Defense High Level Waste Disposal Container System provides containment of waste for a designated period of time, and limits radionuclide release. The disposal container/waste package maintains the waste in a designated configuration, withstands maximum handling and rockfall loads, limits the individual canister temperatures after emplacement, resists corrosion in the expected handling and repository environments, and provides containment of waste in the event of an accident. Defense HLW disposal containers for HLW disposal will hold up to five HLW canisters. Defense HLW disposal containers for co-disposal will hold up to five HLW canisters arranged in a ring and one DOE SNF canister in the ring. Defense HLW disposal containers also will hold two Multi-Canister Overpacks (MCOs) and two HLW canisters in one disposal container. The disposal container will include outer and inner cylinders, outer and inner cylinder lids, and may include a canister guide. An exterior label will provide a means by which to identify the disposal container and its contents. Different materials

  4. Thermo-aeraulics of high level waste storage facilities

    International Nuclear Information System (INIS)

    Lagrave, Herve; Gaillard, Jean-Philippe; Laurent, Franck; Ranc, Guillaume; Duret, Bernard

    2006-01-01

    This paper discusses the research undertaken in response to axis 3 of the 1991 radioactive waste management act, and possible solutions concerning the processes under consideration for conditioning and long-term interim storage of long-lived radioactive waste. The notion of 'long-term' is evaluated with respect to the usual operating lifetime of a basic nuclear installation, about 50 years. In this context, 'long-term' is defined on a secular time scale: the lifetime of the facility could be as long as 300 years. The waste package taken into account is characterized notably by its high thermal power release. Studies were carried out in dedicated facilities for vitrified waste and for spent UOX and MOX fuel. The latter are not considered as wastes, owing to the value of the reusable material they contain. Three primary objectives have guided the design of these long-term interim storage facilities: - ensure radionuclide containment at all times; - permit retrieval of the containers at any time; - minimize surveillance; - maintenance costs. The CEA has also investigated surface and subsurface facilities. It was decided to work on generic sites with a reasonable set of parameters values that should be applicable at most sites in France. All the studies and demonstrations to date lead to the conclusion that long-term interim storage is technically feasible. The paper addresses the following items: - Long-term interim storage concepts for high-level waste; - Design principles and options for the interim storage facilities; - General architecture; - Research topics, Storage facility ventilation, Dimensioning of the facility; - Thermo-aeraulics of a surface interim storage facility; - VALIDA surface loop, VALIDA single container test campaign, Continuation of the VALIDA program; - Thermo-aeraulics of a network of subsurface interim storage galleries; - SIGAL subsurface loop; - PROMETHEE subsurface loop; - Temperature behaviour of the concrete structures; - GALATEE

  5. Thermo-aeraulics of high level waste storage facilities

    Energy Technology Data Exchange (ETDEWEB)

    Lagrave, Herve; Gaillard, Jean-Philippe; Laurent, Franck; Ranc, Guillaume [CEA/Valrho, B.P. 17171, F-30207 Bagnols-sur-Ceze (France); Duret, Bernard [CEA Grenoble, 17 rue des Martyrs, 38054 Grenoble cedex 9 (France)

    2006-07-01

    This paper discusses the research undertaken in response to axis 3 of the 1991 radioactive waste management act, and possible solutions concerning the processes under consideration for conditioning and long-term interim storage of long-lived radioactive waste. The notion of 'long-term' is evaluated with respect to the usual operating lifetime of a basic nuclear installation, about 50 years. In this context, 'long-term' is defined on a secular time scale: the lifetime of the facility could be as long as 300 years. The waste package taken into account is characterized notably by its high thermal power release. Studies were carried out in dedicated facilities for vitrified waste and for spent UOX and MOX fuel. The latter are not considered as wastes, owing to the value of the reusable material they contain. Three primary objectives have guided the design of these long-term interim storage facilities: - ensure radionuclide containment at all times; - permit retrieval of the containers at any time; - minimize surveillance; - maintenance costs. The CEA has also investigated surface and subsurface facilities. It was decided to work on generic sites with a reasonable set of parameters values that should be applicable at most sites in France. All the studies and demonstrations to date lead to the conclusion that long-term interim storage is technically feasible. The paper addresses the following items: - Long-term interim storage concepts for high-level waste; - Design principles and options for the interim storage facilities; - General architecture; - Research topics, Storage facility ventilation, Dimensioning of the facility; - Thermo-aeraulics of a surface interim storage facility; - VALIDA surface loop, VALIDA single container test campaign, Continuation of the VALIDA program; - Thermo-aeraulics of a network of subsurface interim storage galleries; - SIGAL subsurface loop; - PROMETHEE subsurface loop; - Temperature behaviour of the concrete

  6. Atmospheric Pressure Effect of Retained Gas in High Level Waste

    International Nuclear Information System (INIS)

    Weber, A.H.

    1999-01-01

    Isolated high level waste tanks in H-Area have unexplained changes in waste-level which have been attributed to environmental effects including pressure, temperature, and relative humidity. Previous studies at SRS have considered waste-level changes from causes not including the presence of gas in the salt cake. This study was undertaken to determine the effect of atmospheric pressure on gas in the salt cake and resultant changes in the supernate level of Tank 41H, and to model that effect if possible. A simple theory has been developed to account for changes in the supernate level in a high level waste tank containing damp salt cake as the response of trapped gases to changes in the ambient pressure. The gas is modeled as an ideal gas retained as bubbles within the interstitial spaces in the salt cake and distributed uniformly throughout the tank. The model does not account for consistent long term increases or decreases in the tank level. Any such trend in the tank level is attributed to changes in the liquid content in the tank (from condensation, evaporation, etc.) and is removed from the data prior to the void estimation. Short term fluctuations in the tank level are explained as the response of the entrained gas volume to changes in the ambient pressure. The model uses the response of the tank level to pressure changes to estimate an average void fraction for the time period of interest. This estimate of the void is then used to predict the expected level response. The theory was applied to three separate time periods of the level data for tank 41H as follows: (1) May 3, 1993 through August 3, 1993, (2) January 23, 1994 through April 21, 1994, and (3) June 4, 1994 through August 24, 1994. A strong correlation was found between fluctuations in the tank level and variations in the ambient pressure. This correlation is a clear marker of the presence of entrained gases in the tank. From model calculations, an average void fraction of 11 percent was estimated to

  7. Spent nuclear fuel project high-level information management plan

    Energy Technology Data Exchange (ETDEWEB)

    Main, G.C.

    1996-09-13

    This document presents the results of the Spent Nuclear Fuel Project (SNFP) Information Management Planning Project (IMPP), a short-term project that identified information management (IM) issues and opportunities within the SNFP and outlined a high-level plan to address them. This high-level plan for the SNMFP IM focuses on specific examples from within the SNFP. The plan`s recommendations can be characterized in several ways. Some recommendations address specific challenges that the SNFP faces. Others form the basis for making smooth transitions in several important IM areas. Still others identify areas where further study and planning are indicated. The team`s knowledge of developments in the IM industry and at the Hanford Site were crucial in deciding where to recommend that the SNFP act and where they should wait for Site plans to be made. Because of the fast pace of the SNFP and demands on SNFP staff, input and interaction were primarily between the IMPP team and members of the SNFP Information Management Steering Committee (IMSC). Key input to the IMPP came from a workshop where IMSC members and their delegates developed a set of draft IM principles. These principles, described in Section 2, became the foundation for the recommendations found in the transition plan outlined in Section 5. Availability of SNFP staff was limited, so project documents were used as a basis for much of the work. The team, realizing that the status of the project and the environment are continually changing, tried to keep abreast of major developments since those documents were generated. To the extent possible, the information contained in this document is current as of the end of fiscal year (FY) 1995. Programs and organizations on the Hanford Site as a whole are trying to maximize their return on IM investments. They are coordinating IM activities and trying to leverage existing capabilities. However, the SNFP cannot just rely on Sitewide activities to meet its IM requirements

  8. Nutritional strategies of high level natural bodybuilders during competition preparation.

    Science.gov (United States)

    Chappell, A J; Simper, T; Barker, M E

    2018-01-01

    Competitive bodybuilders employ a combination of resistance training, cardiovascular exercise, calorie reduction, supplementation regimes and peaking strategies in order to lose fat mass and maintain fat free mass. Although recommendations exist for contest preparation, applied research is limited and data on the contest preparation regimes of bodybuilders are restricted to case studies or small cohorts. Moreover, the influence of different nutritional strategies on competitive outcome is unknown. Fifty-one competitors (35 male and 16 female) volunteered to take part in this project. The British Natural Bodybuilding Federation (BNBF) runs an annual national competition for high level bodybuilders; competitors must qualify by winning at a qualifying events or may be invited at the judge's discretion. Competitors are subject to stringent drug testing and have to undergo a polygraph test. Study of this cohort provides an opportunity to examine the dietary practices of high level natural bodybuilders. We report the results of a cross-sectional study of bodybuilders competing at the BNBF finals. Volunteers completed a 34-item questionnaire assessing diet at three time points. At each time point participants recorded food intake over a 24-h period in grams and/or portions. Competitors were categorised according to contest placing. A "placed" competitor finished in the top 5, and a "Non-placed" (DNP) competitor finished outside the top 5. Nutrient analysis was performed using Nutritics software. Repeated measures ANOVA and effect sizes (Cohen's d ) were used to test if nutrient intake changed over time and if placing was associated with intake. Mean preparation time for a competitor was 22 ± 9 weeks. Nutrient intake of bodybuilders reflected a high-protein, high-carbohydrate, low-fat diet. Total carbohydrate, protein and fat intakes decreased over time in both male and female cohorts ( P  preparation (5.1 vs 3.7 g/kg BW) than DNP competitors ( d  = 1.02, 95% CI

  9. High-level PC-based laser system modeling

    Science.gov (United States)

    Taylor, Michael S.

    1991-05-01

    Since the inception of the Strategic Defense Initiative (SDI) there have been a multitude of comparison studies done in an attempt to evaluate the effectiveness and relative sizes of complementary, and sometimes competitive, laser weapon systems. It became more and more apparent that what the systems analyst needed was not only a fast, but a cost effective way to perform high-level trade studies. In the present investigation, a general procedure is presented for the development of PC-based algorithmic systems models for laser systems. This procedure points out all of the major issues that should be addressed in the design and development of such a model. Issues addressed include defining the problem to be modeled, defining a strategy for development, and finally, effective use of the model once developed. Being a general procedure, it will allow a systems analyst to develop a model to meet specific needs. To illustrate this method of model development, a description of the Strategic Defense Simulation - Design To (SDS-DT) model developed and used by Science Applications International Corporation (SAIC) is presented. SDS-DT is a menu-driven, fast executing, PC-based program that can be used to either calculate performance, weight, volume, and cost values for a particular design or, alternatively, to run parametrics on particular system parameters to perhaps optimize a design.

  10. THE HIGH LEVEL ACCESSION DIALOGUE FOR MACEDONIA: ADVANTAGES AND DISADVANTAGES

    Directory of Open Access Journals (Sweden)

    Mladen Karadjoski

    2015-04-01

    Full Text Available One of the strategic goals for the Republic of Macedonia is membership in the European Union. At the end of 2011, the Commission launched a so-called High Level Accession Dialogue for Macedonia, with a possibility to start the negotiations after the fulfillment of the Dialogue goals and benchmarks. For these reasons, the main goal of this paper will be to give an answer of the dilemma whether the Accession Dialogue for Macedonia is an accelerator of the entrance in the European Union, or is just a sophisticated tool for delay of the start of the negotiations for final accession. The expected results will correspond with the future EU plans for Macedonia, but also for the other Western Balkan countries, i.e. we will try to examine whether these countries have a realistic perspective for entrance in the European Union, or they are just a “declarative décor” for the vocabulary of the Brussels diplomats and member countries representatives. That will help to determine i.e. to try to predict the next steps of these countries, connected with the European integration, regardless of the actual constellation in the European Union concerning the Enlargement policy. The descriptive method, content analyses method, comparative method, but also the inductive and deductive methods will be used in this paper.

  11. The CMS High Level Trigger System: Experience and Future Development

    CERN Document Server

    Bauer, Gerry; Bowen, Matthew; Branson, James G; Bukowiec, Sebastian; Cittolin, Sergio; Coarasa, J A; Deldicque, Christian; Dobson, Marc; Dupont, Aymeric; Erhan, Samim; Flossdorf, Alexander; Gigi, Dominique; Glege, Frank; Gomez-Reino, R; Hartl, Christian; Hegeman, Jeroen; Holzner, André; Y L Hwong; Masetti, Lorenzo; Meijers, Frans; Meschi, Emilio; Mommsen, R K; O'Dell, Vivian; Orsini, Luciano; Paus, Christoph; Petrucci, Andrea; Pieri, Marco; Polese, Giovanni; Racz, Attila; Raginel, Olivier; Sakulin, Hannes; Sani, Matteo; Schwick, Christoph; Shpakov, Dennis; Simon, M; Spataru, A C; Sumorok, Konstanty

    2012-01-01

    The CMS experiment at the LHC features a two-level trigger system. Events accepted by the first level trigger, at a maximum rate of 100 kHz, are read out by the Data Acquisition system (DAQ), and subsequently assembled in memory in a farm of computers running a software high-level trigger (HLT), which selects interesting events for offline storage and analysis at a rate of order few hundred Hz. The HLT algorithms consist of sequences of offline-style reconstruction and filtering modules, executed on a farm of 0(10000) CPU cores built from commodity hardware. Experience from the operation of the HLT system in the collider run 2010/2011 is reported. The current architecture of the CMS HLT, its integration with the CMS reconstruction framework and the CMS DAQ, are discussed in the light of future development. The possible short- and medium-term evolution of the HLT software infrastructure to support extensions of the HLT computing power, and to address remaining performance and maintenance issues, are discussed.

  12. The ATLAS High Level Trigger Infrastructure, Performance and Future Developments

    CERN Document Server

    The ATLAS collaboration

    2009-01-01

    The ATLAS High Level Trigger (HLT) is a distributed real-time software system that performs the final online selection of events produced during proton-proton collisions at the Large Hadron Collider (LHC). It is designed as a two-stage event filter running on a farm of commodity PC hardware. Currently the system consists of about 850 multi-core processing nodes that will be extended incrementally following the increasing luminosity of the LHC to about 2000 nodes depending on the evolution of the processor technology. Due to the complexity and similarity of the algorithms a large fraction of the software is shared between the online and offline event reconstruction. The HLT Infrastructure serves as the interface between the two domains and provides common services for the trigger algorithms. The consequences of this design choice will be discussed and experiences from the operation of the ATLAS HLT during cosmic ray data taking and first beam in 2008 will be presented. Since the event processing time at the HL...

  13. Studies of ATM for ATLAS high-level triggers

    CERN Document Server

    Bystrický, J; Huet, M; Le Dû, P; Mandjavidze, I D

    2001-01-01

    This paper presents some of the conclusions of our studies on asynchronous transfer mode (ATM) and fast Ethernet in the ATLAS level-2 trigger pilot project. We describe the general concept and principles of our data-collection and event-building scheme that could be transposed to various experiments in high-energy and nuclear physics. To validate the approach in view of ATLAS high-level triggers, we assembled a testbed composed of up to 48 computers linked by a 7.5-Gbit/s ATM switch. This modular switch is used as a single entity or is split into several smaller interconnected switches. This allows study of how to construct a large network from smaller units. Alternatively, the ATM network can be replaced by fast Ethernet. We detail the operation of the system and present series of performance measurements made with event-building traffic pattern. We extrapolate these results to show how today's commercial networking components could be used to build a 1000-port network adequate for ATLAS needs. Lastly, we li...

  14. Linear devices in combined high-level radiation environments

    International Nuclear Information System (INIS)

    van Vonno, N.W.

    1987-01-01

    The design of precision analog integrated circuits for use in combined high-level radiation environments has traditionally been on a full-custom basis. The use of semicustom design methods has become prevalent in digital devices, with standard cell libraries and gate arrays readily available from multiple vendors. This paper addresses the application of semicustom design techniques to analog parts. In all cases the emphasis is on bipolar technology, since this provides an optimal combination of precision and radiation hardness. A mixed mode analog/digital (A/D) cell family for implementing semicustom designs is described, together with the fabrication process used. Specific processing and design methods are used to provide circuit hardness against neutron, total gamma dose, and transient gamma environments. Semicustom mixed analog/digital design is seen as an appropriate methodology for implementation of medium-performance mixed mode functions for radiation-hardened applications. This leads to trade-offs in process complexity and performance. Full custom design remains necessary for demanding applications such as high-speed A/D conversion and associated sample/hold functions. An A/D cell family optimized for hardness is described, together with the bipolar process used to implement it

  15. Underground excavation methods for a high-level waste repository

    International Nuclear Information System (INIS)

    Peshel, J.; Gupta, D.; Nataraja, M.

    1990-01-01

    This paper reports on rock excavation methods for a High-Level Waste repository that should be selected to limit the potential for creating preferential pathways for groundwater to travel to the waste packages or for radionuclides to migrate to the accessible environment. The use of water and other foreign substances should be controlled so that the repository performance is not compromised. The excavated openings should remain stable so that operations can be carried out safely and the retrievability option maintained. As per the current conceptual designs presented by the Department of Energy, the exploratory shaft facility becomes a part of the repository if the Yucca Mountain site is found suitable for repository development. Therefore, the methods of constructing the underground openings should be compatible with the performance requirements for the repository. Also, the degree of damage to the rock surrounding the openings and the extent of the damage zone should not preclude adequate site characterization. The ESf construction and operation should be compatible with the site data gathering activities, such as geological, thermomechanical, hydrological and geochemical testing

  16. Disposition of actinides released from high-level waste glass

    International Nuclear Information System (INIS)

    Ebert, W.L.; Bates, J.K.; Buck, E.C.; Gong, M.; Wolf, S.F.

    1994-01-01

    The disposition of actinide elements released from high-level waste glasses into a tuff groundwater in laboratory tests at 90 degrees C at various glass surface area/leachant volume ratios (S/V) between dissolved, suspended, and sorbed fractions has been measured. While the maximum release of actinides is controlled by the corrosion rate of the glass matrix, their solubility and sorption behavior affects the amounts present in potentially mobile phases. Actinide solubilities are affected by the solution pH and the presence of complexants released from the glass, such as sulfate, phosphate, and chloride, radiolytic products, such as nitrate and nitrite, and carbonate. Sorption onto inorganic colloids formed during lass corrosion may increase the amounts of actinides in solution, although subsequent sedimentation of these colloids under static conditions leads to a significant reduction in the amount of actinides in solution. The solution chemistry and observed actinide behavior depend on the S/V of the test. Tests at high S/V lead to higher pH values, greater complexant concentrations, and generate colloids more quickly than tests at low S/V. The S/V also affects the rate of glass corrosion

  17. Auto Detection For High Level Water Content For Oil Well

    Science.gov (United States)

    Janier, Josefina Barnachea; Jumaludin, Zainul Arifin B.

    2010-06-01

    Auto detection of high level water content for oil well is a system that measures the percentage of water in crude oil. This paper aims to discuss an auto detection system for measuring the content of water level in crude oil which is applicable for offshore and onshore oil operations. Data regarding water level content from wells can be determined by using automation thus, well with high water level can be determined immediately whether to be closed or not from operations. Theoretically the system measures the percentage of two- fluid mixture where the fluids have different electrical conductivities which are water and crude oil. The system made use of grid sensor which is a grid pattern like of horizontal and vertical wires. When water occupies the space at the intersection of vertical and horizontal wires, an electrical signal is detected which proved that water completed the circuit path in the system. The electrical signals are counted whereas the percentage of water is determined from the total electrical signals detected over electrical signals provided. Simulation of the system using the MultiSIM showed that the system provided the desired result.

  18. Glass formulation for phase 1 high-level waste vitrification

    Energy Technology Data Exchange (ETDEWEB)

    Vienna, J.D.; Hrma, P.R.

    1996-04-01

    The purpose of this study is to provide potential glass formulations for prospective Phase 1 High-Level Waste (HLW) vitrification at Hanford. The results reported here will be used to aid in developing a Phase 1 HLW vitrification request for proposal (RFP) and facilitate the evaluation of ensuing proposals. The following factors were considered in the glass formulation effort: impact on total glass volume of requiring the vendor to process each of the tank compositions independently versus as a blend; effects of imposing typical values of B{sub 2}O{sub 3} content and waste loading in HLW borosilicate glasses as restrictions on the vendors (according to WAPS 1995, the typical values are 5--10 wt% B{sub 2}O{sub 3} and 20--40 wt% waste oxide loading); impacts of restricting the processing temperature to 1,150 C on eventual glass volume; and effects of caustic washing on any of the selected tank wastes relative to glass volume.

  19. Why consider subseabed disposal of high-level nuclear waste

    International Nuclear Information System (INIS)

    Heath, G.R.; Hollister, C.D.; Anderson, D.R.; Leinen, M.

    1980-01-01

    Large areas of the deep seabed warrant assessment as potential disposal sites for high-level radioactive waste because: (1) they are far from seismically and tectonically active lithospheric plate boundaries; (2) they are far from active or young volcanos; (3) they contain thick layers of very uniform fine-grained clays; (4) they are devoid of natural resources likely to be exploited in the forseeable future; (5) the geologic and oceanographic processes governing the deposition of sediments in such areas are well understood, and are remarkably insensitive to past oceanographic and climatic changes; and (6) sedmentary records of tens of millions of years of slow, uninterrupted deposition of fine grained clay support predictions of the future stability of such sites. Data accumulated to date on the permeability, ion-retardation properties, and mechanical strength of pelagic clay sediments indicate that they can act as a primary barrier to the escape of buried nuclides. Work in progress should determine within the current decade whether subseabed disposal is environmentally acceptable and technically feasible, as well as address the legal, political and social issues raised by this new concept

  20. Defense High-Level Waste Leaching Mechanisms Program. Final report

    International Nuclear Information System (INIS)

    Mendel, J.E.

    1984-08-01

    The Defense High-Level Waste Leaching Mechanisms Program brought six major US laboratories together for three years of cooperative research. The participants reached a consensus that solubility of the leached glass species, particularly solubility in the altered surface layer, is the dominant factor controlling the leaching behavior of defense waste glass in a system in which the flow of leachant is constrained, as it will be in a deep geologic repository. Also, once the surface of waste glass is contacted by ground water, the kinetics of establishing solubility control are relatively rapid. The concentrations of leached species reach saturation, or steady-state concentrations, within a few months to a year at 70 to 90 0 C. Thus, reaction kinetics, which were the main subject of earlier leaching mechanisms studies, are now shown to assume much less importance. The dominance of solubility means that the leach rate is, in fact, directly proportional to ground water flow rate. Doubling the flow rate doubles the effective leach rate. This relationship is expected to obtain in most, if not all, repository situations

  1. Evaluation of a high-level waste radiological maintenance facility

    International Nuclear Information System (INIS)

    Collins, K.J.

    1998-01-01

    The Savannah River Site''s (SRS) Defense Waste Processing Facility (DWPF) near Aiken, SC is the nation''s first and world''s largest high level waste vitrification facility. DWPF began, operations in March 1996 to process radioactive waste, consisting of a matrixed predominantly 137 Cs precipitate and a predominately 90 Sr and alpha emitting sludge, into boro-silicate glass for long term storage. Presently, DWPF is processing only sludge waste and is preparing to process a combination of sludge and precipitate waste. During precipitate operations, canister dose rates are expected to exceed 10 Sv hr -1 (1000 rem hr -1 ). In sludge-only operations, canister contact gamma dose rates are approximately 15 mSv hr -1 (1500 mrem hr -1 ). Transferable contamination levels have been greater than 10 mSv hr -1 (100 cm 2 ) -1 for beta-gamma emitters and into the millions of Bq (100 cm 2 ) -1 for the alpha emitting radionuclides. This paper presents an evaluation of the radiological maintenance areas and their ability to support radiological work

  2. High-Level Performance Modeling of SAR Systems

    Science.gov (United States)

    Chen, Curtis

    2006-01-01

    SAUSAGE (Still Another Utility for SAR Analysis that s General and Extensible) is a computer program for modeling (see figure) the performance of synthetic- aperture radar (SAR) or interferometric synthetic-aperture radar (InSAR or IFSAR) systems. The user is assumed to be familiar with the basic principles of SAR imaging and interferometry. Given design parameters (e.g., altitude, power, and bandwidth) that characterize a radar system, the software predicts various performance metrics (e.g., signal-to-noise ratio and resolution). SAUSAGE is intended to be a general software tool for quick, high-level evaluation of radar designs; it is not meant to capture all the subtleties, nuances, and particulars of specific systems. SAUSAGE was written to facilitate the exploration of engineering tradeoffs within the multidimensional space of design parameters. Typically, this space is examined through an iterative process of adjusting the values of the design parameters and examining the effects of the adjustments on the overall performance of the system at each iteration. The software is designed to be modular and extensible to enable consideration of a variety of operating modes and antenna beam patterns, including, for example, strip-map and spotlight SAR acquisitions, polarimetry, burst modes, and squinted geometries.

  3. Options for the disposal of high-level radioactive waste

    International Nuclear Information System (INIS)

    Mitchell, N.T.; Laughton, A.S.; Webb, G.A.M.

    1977-01-01

    The management of radioactive waste within the fuel cycle, especially the high-level wastes from reprocessing of nuclear fuel, is currently a matter of particular concern. In the short term (meaning a timescale of tens of years) management by engineered storage is considered to provide a satisfactory solution. Beyond this, however, the two main alternative options which are considered in the paper are: (a) disposal by burial into geologic formations on land; and (b) disposal by emplacement into or onto the seabed. Status of our present knowledge on the land and seabed disposal options is reviewed together with an assessment of the extent to which their reliability and safety can be judged on presently available information. Further information is needed on the environmental behaviour of radioactivity in the form of solidified waste in both situations in order to provide a more complete, scientific assessment. Work done so far has clarified the areas where further research is most needed - for instance modelling of the environmental transfer processes associated with the seabed option. This is discussed together with an indication of the research programmes which are now being pursued

  4. High-level water purifying technology. Kodo josui shori gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Tsugura, H; Tsukiashi, K [Meidensha Corp., Tokyo (Japan)

    1993-07-01

    Research and development have been carried out on a high-level water purifying system using ozone and activated charcoals to supply drinking water free of carcinogenic matters and odors. This system comprises a system to utilize ozone by using silent discharge and oxygen enriching device, and a living organism/activated charcoal treatment system. The latter system utilizes living organisms deposited on activated charcoal surfaces to remove polluting substances including ammonia. The treatment experimenting equipment comprises an ozone generating system, an ozone treating column, an activated charcoal treating column, an ozone/activated charcoal control device, and a water amount and quality measuring system. An experiment was carried out using an experimental plant with a capacity of 20 m[sup 3]/day on water taken from the sedimentation process at an actual water purifying plant. As a result, trihalomethane formation potential was removed at about 40% in the ozone treatment, and at 70% in the whole treatment combining the ozone and living organism/activated charcoal treatments. For parameterization of palatability of water, a method is being studied that utilizes nuclear magnetic resonance to investigate degrees of water cluster. The method is regarded promising. 1 ref., 4 figs.

  5. NOx AND HETEROGENEITY EFFECTS IN HIGH LEVEL WASTE (HLW)

    International Nuclear Information System (INIS)

    Meisel, Dan; Camaioni, Donald M.; Orlando, Thom

    2000-01-01

    We summarize contributions from our EMSP supported research to several field operations of the Office of Environmental Management (EM). In particular we emphasize its impact on safety programs at the Hanford and other EM sites where storage, maintenance and handling of HLW is a major mission. In recent years we were engaged in coordinated efforts to understand the chemistry initiated by radiation in HLW. Three projects of the EMSP (''The NOx System in Nuclear Waste,'' ''Mechanisms and Kinetics of Organic Aging in High Level Nuclear Wastes, D. Camaioni--PI'' and ''Interfacial Radiolysis Effects in Tanks Waste, T. Orlando--PI'') were involved in that effort, which included a team at Argonne, later moved to the University of Notre Dame, and two teams at the Pacific Northwest National Laboratory. Much effort was invested in integrating the results of the scientific studies into the engineering operations via coordination meetings and participation in various stages of the resolution of some of the outstanding safety issues at the sites. However, in this Abstract we summarize the effort at Notre Dame

  6. The disposal of high-level radioactive waste. Vol. 1

    International Nuclear Information System (INIS)

    Parker, F.L.; Broshears, R.E.; Pasztor, J.

    1984-01-01

    The Beijer Institute received request from the Swedish Board for Spent Nuclear Fuel (Naemnden for Anvaent Kaernbraensle - NAK) to undertake an international review of the major programmes which were currently making arrangements for the future disposal of high-level radioactive wastes and spent nuclear fuel. The request was accepted, a detailed proposal was worked out and agreed to by NAK, for a critical technical review which concentrated on the following three main tasks: 1. a 'state-of-the-art' review of selected ongoing disposal programmes, both national and international; 2. an assessment of the scientific and technical controversies involved, and 3. recommendations for further research in this field. This review work was to be built on a survey of the available technical literature which was to serve as a basis for a series of detailed interviews, consultations and discussions with scientific and technical experts in Japan, Canada, USA, Belgium, Federal Republic of Germany, France, Switzerland and the United Kingdom. This first volume contains: disposal options; review of the state-of-the-art (international activities, national programs); analysis of waste disposal systems. (orig./HP)

  7. Synroc - a multiphase ceramic for high level nuclear waste immobilisation

    International Nuclear Information System (INIS)

    Reeve, K.D.; Vance, E.R.; Hart, K.P.; Smith, K.L.; Lumpkin, G.R.; Mercer, D.J.

    1992-01-01

    Many natural minerals - particularly titanates - are very durable geochemically, having survived for millions of years with very little alteration. Moreover, some of these minerals have quantitatively retained radioactive elements and their daughter products over this time. The Synroc concept mimics nature by providing an all-titanate synthetic mineral phase assemblage to immobilise high level waste (HLW) from nuclear fuel reprocessing operations for safe geological disposal. In principle, many chemically hazardous inorganic wastes arising from industry could also be immobilised in highly durable ceramics and disposed of geologically, but in practice the cost structure of most industries is such that lower cost waste management solutions - for example, the development of reusable by-products or the use of cements rather than ceramics - have to be devised. In many thousands of aqueous leach tests at ANSTO, mostly at 70-90 deg C, Synroc has been shown to be exceptionally durable. The emphases of the recent ANSTO program have been on tailoring of the Synroc composition to varying HLW compositions, leach testing of Synroc containing radioactive transuranic actinides, study of leaching mechanisms by SEM and TEM, and the development and costing of a conceptual fully active Synroc fabrication plant design. A summary of recent results on these topics will be presented. 29 refs., 4 figs

  8. Hanford high-level waste melter system evaluation data packages

    International Nuclear Information System (INIS)

    Elliott, M.L.; Shafer, P.J.; Lamar, D.A.; Merrill, R.A.; Grunewald, W.; Roth, G.; Tobie, W.

    1996-03-01

    The Tank Waste Remediation System is selecting a reference melter system for the Hanford High-Level Waste vitrification plant. A melter evaluation was conducted in FY 1994 to narrow down the long list of potential melter technologies to a few for testing. A formal evaluation was performed by a Melter Selection Working Group (MSWG), which met in June and August 1994. At the June meeting, MSWG evaluated 15 technologies and selected six for more thorough evaluation at the Aug. meeting. All 6 were variations of joule-heated or induction-heated melters. Between the June and August meetings, Hanford site staff and consultants compiled data packages for each of the six melter technologies as well as variants of the baseline technologies. Information was solicited from melter candidate vendors to supplement existing information. This document contains the data packages compiled to provide background information to MSWG in support of the evaluation of the six technologies. (A separate evaluation was performed by Fluor Daniel, Inc. to identify balance of plant impacts if a given melter system was selected.)

  9. Canadian high-level radioactive waste management system issues

    International Nuclear Information System (INIS)

    Allan, C.J.; Gray, B.R.

    1992-01-01

    In Canada responsibility for the management of radioactive wastes rests with the producer of those wastes. This fundamental principle applies to such diverse wastes as uranium mine and mill tailings, low-level wastes from universities and hospitals, wastes produced at nuclear research establishments, and wastes produced at nuclear generating stations. The federal government has accepted responsibility for historical wastes for which the original producer can no longer be held accountable. Management of radioactive wastes is subject to the regulatory control of the Atomic Energy Control Board, the federal agency responsible for regulating the nuclear industry. In this paper the authors summarize the current situation concerning the management of high level (used nuclear fuel) wastes. In 1981 the two governments also announced that selection of a disposal site would not proceed, and responsibility for site selection and operation would not be assigned until the Concept for used fuel disposal had been reviewed and assessed. Thus the concept assessment is generic rather than site specific. The Concept that has been developed has been designed to conform with safety and performance criteria established by the Atomic Energy Control Board. It is based on burial deep in plutonic rock of the Canadian Shield, using a multi-barrier approach with a series of engineered and natural barriers: these include the waste form, container, buffer and backfill, and the host rock

  10. Psychological stress in high level sailors during competition

    Directory of Open Access Journals (Sweden)

    Luciana Segato

    2010-09-01

    Full Text Available The purpose of this work was to investigate the psychological stress present in elite sailors in a competition. Based on a descriptive field research, 31 elite sailors volunteered to participate. They answered the Perceived Stress Scale (Cohen & Williamson, 1988 and also specific questions on self-control, sources and strategies of coping. Data were analyzed by using descriptive and inferential (Student t test and Pearson's correlation statistics. These athletes revealed low and moderate scores (M = 20.00, DP = 6.83 of stress originated from both intrinsic (ship troubles, team disorders and extrinsic (study, working and training, family and financial problems sources. The group reported good stress control during competition through the use of cognitive (avoidance and somatic (listening music, resting/sleeping, talk to friends strategies. It is important that sailors are able to control and cope with high levels of psychological stress and to understand how to proceed when under unstable and unexpected situations that arise during competition.

  11. Psychological stress in high level sailors during competition

    Directory of Open Access Journals (Sweden)

    L. Segato

    2010-01-01

    Full Text Available The purpose of this work was to investigate the psychological stress present in elite sailors in a competition. Based on a descriptive field research, 31 elite sailors volunteered to participate. They answered the Perceived Stress Scale (Cohen & Williamson, 1988 and also specific questions on self-control, sources and strategies of coping. Data were analyzed by using descriptive and inferential (Student t test and Pearson's correlation statistics. These athletes revealed low and moderate scores (M = 20.00, DP = 6.83 of stress originated from both intrinsic (ship troubles, team disorders and extrinsic (study, working and training, family and financial problems sources. The group reported good stress control during competition through the use of cognitive (avoidance and somatic (listening music, resting/sleeping, talk to friends strategies. It is important that sailors are able to control and cope with high levels of psychological stress and to understand how to proceed when under unstable and unexpected situations that arise during competition.

  12. Automated generation of partial Markov chain from high level descriptions

    International Nuclear Information System (INIS)

    Brameret, P.-A.; Rauzy, A.; Roussel, J.-M.

    2015-01-01

    We propose an algorithm to generate partial Markov chains from high level implicit descriptions, namely AltaRica models. This algorithm relies on two components. First, a variation on Dijkstra's algorithm to compute shortest paths in a graph. Second, the definition of a notion of distance to select which states must be kept and which can be safely discarded. The proposed method solves two problems at once. First, it avoids a manual construction of Markov chains, which is both tedious and error prone. Second, up the price of acceptable approximations, it makes it possible to push back dramatically the exponential blow-up of the size of the resulting chains. We report experimental results that show the efficiency of the proposed approach. - Highlights: • We generate Markov chains from a higher level safety modeling language (AltaRica). • We use a variation on Dijkstra's algorithm to generate partial Markov chains. • Hence we solve two problems: the first problem is the tedious manual construction of Markov chains. • The second problem is the blow-up of the size of the chains, at the cost of decent approximations. • The experimental results highlight the efficiency of the method

  13. Safety of geological disposal of high-level waste

    International Nuclear Information System (INIS)

    Ohe, Toshiaki; Tsukamoto, Masaki

    1989-01-01

    This paper represents an analysis of barrier performance of high-level waste disposal. Advantages of a multi-barrier system in repository are checked through experiments and simulations; thermal restriction, glass-leaching, and nuclide migration in both buffer materials and surrounding rock media. The temperature distribution in a repository is calculated with TRUMP code, then the pit interval is determined according to the temperature criteria of compacted bentonite. The simulation code for glass corrosion, STRAG, is developed on the basis of the experimental findings of the JSS project in which the actual radioactive glass fabricated CEA/Marcoule was used. STRAG is then verified through agreements of the simulated and measured values. Nuclide migration in compacted bentonite is calculated by SWIFT code, and the results show the bentonite capability for retention of nuclides released from waste glass. Migration of cesium isotope in rock is also examined with the small granite core samples, of which results suggest that bulk-granite except for fractures is expected as a porous media. (author)

  14. ATW system impact on high-level waste

    International Nuclear Information System (INIS)

    Arthur, E.D.

    1992-01-01

    This report discusses the Accelerator Transmutation of Waste (ATW) concept which aims at destruction of key long-lived radionuclides in high-level nuclear waste (HLW), both fission products and actinides. This focus makes it different from most other transmutation concepts which concentrate primarily on actinide burning. The ATW system uses an accelerator-driven, sub-critical assembly to create an intense thermal neutron environment for radionuclide transmutation. This feature allows rapid transmutation under low-inventory system conditions, which in turn, has a direct impact on the size of chemical separations and materials handling components of the system. Inventories in ATW are factors of eight to thirty times smaller than reactor systems of equivalent thermal power. Chemical separations systems are relatively small in scale and can be optimized to achieve high decontamination factors and minimized waste streams. The low-inventory feature also directly impacts material amounts remaining in the system at its end of life. In addition to its low-inventory operation, the accelerator-driven neutron source features of ATW are key to providing a sufficient level of neutrons to allow transmutation of long-lived fission products

  15. Site suitability criteria for solidified high level waste repositories

    International Nuclear Information System (INIS)

    Heckman, R.A.; Holdsworth, T.; Isherwood, D.; Towse, D.F.; Dayem, N.L.

    1979-01-01

    The NRC is developing a framework of regulations, criteria, and standards. Lawrence Livermore Laboratory provides broad technical support to the NRC for developing this regulatory framework, part of which involves site suitability criteria for solidified high-level wastes (SHLW). Both the regulatory framework and the technical base on which it rests have evolved in time. This document is the second report of the technical support project. It was issued as a draft working paper for a programmatic review held at LLL from August 16 to 18, 1977. It was printed and distributed solely as a briefing document on preliminary methodology and initial findings for the purpose of critical review by those in attendance. These briefing documents are being reprinted now in their original formats as UCID-series reports for the sake of the historical record. Analysis results have evolved as both the models and data base have changed. As a result, the methodology, models, and data base in this document are severely outmoded

  16. Concentration of High Level Radioactive Liquid Waste. Basic data acquisition

    Energy Technology Data Exchange (ETDEWEB)

    Juvenelle, A.; Masson, M.; Garrido, M.H. [DEN/VRH/DRCP/SCPS/LPCP, BP 17171 - 30207 Bagnols sur Ceze Cedex (France)

    2008-07-01

    Full text of publication follows: In order to enhance its knowledge about the concentration of high level liquid waste (HLLW) from the nuclear fuel reprocessing process, a program of studies was defined by Cea. In a large field of acidity, it proposes to characterize the concentrated solution and the obtained precipitates versus the concentration factor. Four steps are considered: quantification of the salting-out effect on the concentrate acidity, acquisition of solubility data, precipitates characterisation versus the concentration factor through aging tests and concentration experimentation starting from simulated fission products solutions. The first results, reported here, connect the acidity of the concentrated solution to the concentration factor and allow us to precise the field of acidity (4 to 12 N) for the next experiments. In this field, solubility data of various elements (Ba, Sr, Zr...) are separately measured at room temperature, in nitric acid in a first time, then in the presence of various species present in medium (TBP, PO{sub 4}{sup 3-}). The reactions between these various elements are then investigated (formation of insoluble mixed compounds) by following the concentration cations in solution and characterising the precipitates. (authors)

  17. Defense High-Level Waste Leaching Mechanisms Program. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Mendel, J.E. (compiler)

    1984-08-01

    The Defense High-Level Waste Leaching Mechanisms Program brought six major US laboratories together for three years of cooperative research. The participants reached a consensus that solubility of the leached glass species, particularly solubility in the altered surface layer, is the dominant factor controlling the leaching behavior of defense waste glass in a system in which the flow of leachant is constrained, as it will be in a deep geologic repository. Also, once the surface of waste glass is contacted by ground water, the kinetics of establishing solubility control are relatively rapid. The concentrations of leached species reach saturation, or steady-state concentrations, within a few months to a year at 70 to 90/sup 0/C. Thus, reaction kinetics, which were the main subject of earlier leaching mechanisms studies, are now shown to assume much less importance. The dominance of solubility means that the leach rate is, in fact, directly proportional to ground water flow rate. Doubling the flow rate doubles the effective leach rate. This relationship is expected to obtain in most, if not all, repository situations.

  18. High level bacterial contamination of secondary school students' mobile phones.

    Science.gov (United States)

    Kõljalg, Siiri; Mändar, Rando; Sõber, Tiina; Rööp, Tiiu; Mändar, Reet

    2017-06-01

    While contamination of mobile phones in the hospital has been found to be common in several studies, little information about bacterial abundance on phones used in the community is available. Our aim was to quantitatively determine the bacterial contamination of secondary school students' mobile phones. Altogether 27 mobile phones were studied. The contact plate method and microbial identification using MALDI-TOF mass spectrometer were used for culture studies. Quantitative PCR reaction for detection of universal 16S rRNA, Enterococcus faecalis 16S rRNA and Escherichia coli allantoin permease were performed, and the presence of tetracycline ( tet A, tet B, tet M), erythromycin ( erm B) and sulphonamide ( sul 1) resistance genes was assessed. We found a high median bacterial count on secondary school students' mobile phones (10.5 CFU/cm 2 ) and a median of 17,032 bacterial 16S rRNA gene copies per phone. Potentially pathogenic microbes ( Staphylococcus aureus , Acinetobacter spp. , Pseudomonas spp., Bacillus cereus and Neisseria flavescens ) were found among dominant microbes more often on phones with higher percentage of E. faecalis in total bacterial 16S rRNA. No differences in contamination level or dominating bacterial species between phone owner's gender and between phone types (touch screen/keypad) were found. No antibiotic resistance genes were detected on mobile phone surfaces. Quantitative study methods revealed high level bacterial contamination of secondary school students' mobile phones.

  19. The IFR pyroprocessing for high-level waste minimization

    International Nuclear Information System (INIS)

    Laidler, J.J.

    1993-01-01

    The process developed for the recycle of integral fast reactor (IFR) spent fuel utilizes a combination of pyrometallurgical and electrochemical methods and has been termed pyroprocessing. The process has been operated at full scale with simulated spent fuel using nonradioactive fission product elements. A comprehensive demonstration of the pyroprocessing of irradiated IFR fuel will begin later this year. Pyroprocessing involves the anodic dissolution of all the constituent elements of the IFR spent fuel and controlled electrotransport (electrorefining) to separate the actinide elements from the fission products present in the spent fuel. The process be applied to the processing of spent light water reactor (LWR) fuel as well, requiring only the addition of a reduction step to convert the LWR fuel as well, requiring only the addition of a reduction step to convert the LWR oxide fuel to metallic form and a separation step to separate uranium from the transuranic (TRU) elements. The TRU elements are then recovered by electroefining in the same manner as the actinides from the IFR high-level wastes arising from pyroprocessing are virtually free of actinides, and the volume of the wastes is minimized by the intrinsic characteristics of the processing of the processing method

  20. High-level fluorescence labeling of gram-positive pathogens.

    Directory of Open Access Journals (Sweden)

    Simone Aymanns

    Full Text Available Fluorescence labeling of bacterial pathogens has a broad range of interesting applications including the observation of living bacteria within host cells. We constructed a novel vector based on the E. coli streptococcal shuttle plasmid pAT28 that can propagate in numerous bacterial species from different genera. The plasmid harbors a promoterless copy of the green fluorescent variant gene egfp under the control of the CAMP-factor gene (cfb promoter of Streptococcus agalactiae and was designated pBSU101. Upon transfer of the plasmid into streptococci, the bacteria show a distinct and easily detectable fluorescence using a standard fluorescence microscope and quantification by FACS-analysis demonstrated values that were 10-50 times increased over the respective controls. To assess the suitability of the construct for high efficiency fluorescence labeling in different gram-positive pathogens, numerous species were transformed. We successfully labeled Streptococcus pyogenes, Streptococcus agalactiae, Streptococcus dysgalactiae subsp. equisimilis, Enterococcus faecalis, Enterococcus faecium, Streptococcus mutans, Streptococcus anginosus and Staphylococcus aureus strains utilizing the EGFP reporter plasmid pBSU101. In all of these species the presence of the cfb promoter construct resulted in high-level EGFP expression that could be further increased by growing the streptococcal and enterococcal cultures under high oxygen conditions through continuous aeration.

  1. Control of high-level radioactive waste-glass melters

    International Nuclear Information System (INIS)

    Bickford, D.F.; Coleman, C.J.

    1990-01-01

    The Defense Waste Processing Facility (DWPF) will immobilize Savannah River Site High Level Waste as a durable borosilicate glass for permanent disposal in a repository. The DWPF will be controlled based on glass composition. The following discussion is a preliminary analysis of the capability of the laboratory methods that can be used to control the glass composition, and the relationships between glass durability and glass properties important to glass melting. The glass durability and processing properties will be controlled by controlling the chemical composition of the glass. The glass composition will be controlled by control of the melter feed transferred from the Slurry Mix Evaporator (SME) to the Melter Feed Tank (MFT). During cold runs, tests will be conducted to demonstrate the chemical equivalence of glass sampled from the pour stream and glass removed from cooled canisters. In similar tests, the compositions of glass produced from slurries sampled from the SME and MFT will be compared to final product glass to determine the statistical relationships between melter feed and glass product. The total error is the combination of those associated with homogeneity in the SME or MFT, sampling, preparation of samples for analysis, instrument calibration, analysis, and the composition/property model. This study investigated the sensitivity of estimation of property data to the combination of variations from sampling through analysis. In this or a similar manner, the need for routine glass product sampling will be minimized, and glass product characteristics will be assured before the melter feed is committed to the melter

  2. Multiple Word-Length High-Level Synthesis

    Directory of Open Access Journals (Sweden)

    Coussy Philippe

    2008-01-01

    Full Text Available Abstract Digital signal processing (DSP applications are nowadays widely used and their complexity is ever growing. The design of dedicated hardware accelerators is thus still needed in system-on-chip and embedded systems. Realistic hardware implementation requires first to convert the floating-point data of the initial specification into arbitrary length data (finite-precision while keeping an acceptable computation accuracy. Next, an optimized hardware architecture has to be designed. Considering uniform bit-width specification allows to use traditional automated design flow. However, it leads to oversized design. On the other hand, considering non uniform bit-width specification allows to get a smaller circuit but requires complex design tasks. In this paper, we propose an approach that inputs a C/C++ specification. The design flow, based on high-level synthesis (HLS techniques, automatically generates a potentially pipeline RTL architecture described in VHDL. Both bitaccurate integer and fixed-point data types can be used in the input specification. The generated architecture uses components (operator, register, etc. that have different widths. The design constraints are the clock period and the throughput of the application. The proposed approach considers data word-length information in all the synthesis steps by using dedicated algorithms. We show in this paper the effectiveness of the proposed approach through several design experiments in the DSP domain.

  3. Multiple Word-Length High-Level Synthesis

    Directory of Open Access Journals (Sweden)

    Dominique Heller

    2008-09-01

    Full Text Available Digital signal processing (DSP applications are nowadays widely used and their complexity is ever growing. The design of dedicated hardware accelerators is thus still needed in system-on-chip and embedded systems. Realistic hardware implementation requires first to convert the floating-point data of the initial specification into arbitrary length data (finite-precision while keeping an acceptable computation accuracy. Next, an optimized hardware architecture has to be designed. Considering uniform bit-width specification allows to use traditional automated design flow. However, it leads to oversized design. On the other hand, considering non uniform bit-width specification allows to get a smaller circuit but requires complex design tasks. In this paper, we propose an approach that inputs a C/C++ specification. The design flow, based on high-level synthesis (HLS techniques, automatically generates a potentially pipeline RTL architecture described in VHDL. Both bitaccurate integer and fixed-point data types can be used in the input specification. The generated architecture uses components (operator, register, etc. that have different widths. The design constraints are the clock period and the throughput of the application. The proposed approach considers data word-length information in all the synthesis steps by using dedicated algorithms. We show in this paper the effectiveness of the proposed approach through several design experiments in the DSP domain.

  4. Application of SYNROC to high-level defense wastes

    International Nuclear Information System (INIS)

    Tewhey, J.D.; Hoenig, C.L.; Newkirk, H.W.; Rozsa, R.B.; Coles, D.G.; Ryerson, F.J.

    1981-01-01

    The SYNROC method for immobilization of high-level nuclear reactor wastes is currently being applied to US defense wastes in tank storage at Savannah River, South Carolina. The minerals zirconolite, perovskite, and hollandite are used in SYNROC D formulations to immobilize fission products and actinides that comprise up to 10% of defense waste sludges and coexisting solutions. Additional phase in SYNROC D are nepheline, the host phase for sodium; and spinel, the host for excess aluminum and iron. Up to 70 wt % of calcined sludge can be incorporated with 30 wt % of SYNROC additives to produce a waste form consisting of 10% nepheline, 30% spinel, and approximately 20% each of the radioactive waste-bearing phases. Urea coprecipitation and spray drying/calcining methods have been used in the laboratory to produce homogeneous, reactive ceramic powders. Hot pressing and sintering at temperatures from 1000 to 1100 0 C result in waste form products with greater than 97% of theoretical density. Hot isostatic pressing has recently been implemented as a processing alternative. Characterization of waste-form mineralogy has been done by means of XRD, SEM, and electron microprobe. Leaching of SYNROC D samples is currently being carried out. Assessment of radiation damage effects and physical properties of SYNROC D will commence in FY81

  5. PLUTONIUM/HIGH-LEVEL VITRIFIED WASTE BDBE DOSE CALCULATION

    Energy Technology Data Exchange (ETDEWEB)

    J.A. Ziegler

    2000-11-20

    The purpose of this calculation is to provide a dose consequence analysis of high-level waste (HLW) consisting of plutonium immobilized in vitrified HLW to be handled at the proposed Monitored Geologic Repository at Yucca Mountain for a beyond design basis event (BDBE) under expected conditions using best estimate values for each calculation parameter. In addition to the dose calculation, a plutonium respirable particle size for dose calculation use is derived. The current concept for this waste form is plutonium disks enclosed in cans immobilized in canisters of vitrified HLW (i.e., glass). The plutonium inventory at risk used for this calculation is selected from Plutonium Immobilization Project Input for Yucca Mountain Total Systems Performance Assessment (Shaw 1999). The BDBE examined in this calculation is a nonmechanistic initiating event and the sequence of events that follow to cause a radiological release. This analysis will provide the radiological releases and dose consequences for a postulated BDBE. Results may be considered in other analyses to determine or modify the safety classification and quality assurance level of repository structures, systems, and components. This calculation uses best available technical information because the BDBE frequency is very low (i.e., less than 1.0E-6 events/year) and is not required for License Application for the Monitored Geologic Repository. The results of this calculation will not be used as part of a licensing or design basis.

  6. Salt removal from tanks containing high-level radioactive waste

    International Nuclear Information System (INIS)

    Kiser, D.L.

    1981-01-01

    At the Savannah River Plant (SRP), there are 23 waste storage tanks containing high-level radioactive wastes that are to be retired. These tanks contain about 23 million liters of salt and about 10 million liters of sludge, that are to be relocated to new Type III, fully stress-relieved tanks with complete secondary containment. About 19 million liters of salt cake are to be dissolved. Steam jet circulators were originally proposed for the salt dissolution program. However, use of steam jet circulators raised the temperature of the tank contents and caused operating problems. These included increased corrosion risk and required long cooldown periods prior to transfer. Alternative dissolution concepts were investigated. Examination of mechanisms affecting salt dissolution showed that the ability of fresh water to contact the cake surface was the most significant factor influencing dissolution rate. Density driven and mechanical agitation techniques were developed on a bench scale and then were demonstrated in an actual waste tank. Actual waste tank demonstrations were in good agreement with bench-scale experiments at 1/85 scale. The density driven method utilizes simple equipment, but leaves a cake heel in the tank and is hindered by the presence of sludge or Zeolite in the salt cake. Mechanical agitation overcomes the problems found with both steam jet circulators and the density driven technique and is the best method for future waste tank salt removal

  7. High-level radioactive waste fixation in sintered vitreous matrix

    International Nuclear Information System (INIS)

    Russo, D.O.; Messi de Bernasconi, N.; Audero, M.A.

    1987-01-01

    The safe storage of high-level wastes from fuel elements reprocessing includes, as a first step, the fixation of the same in materials having a good resistance to the leaching in aqueous medium, such as borosilicate glass. As an alternative to the usual method of the molten glasses, a procedure for the sintering of a powdered glass and waste mixture at lower temperatures (600-700 deg C) has been developed, which minimizes the volatilization of active compounds during the process. Two glasses matrices of different composition and characteristics were used, to which the simulated wastes were added in the ratio of a 10% in weight of oxides. Two sintering techniques were employed 1: cold pressing and further sintering; 2: hot pressing and sintering under pressure. The densities were measured, the microstructure of the samples was analyzed and leaching essays were made in distilled water. The pellet's microstructure was observed by means of optical microscopy, by reflection in polished samples and by transparency in thin slices. The presence of crystalline compounds was analyzed by means of x rays and electron microprobe. The results have shown the convenience to continue with hot pressing essays, because a denser product with a higher resistance to the leaching is thus obtained. (M.E.L.) [es

  8. High level natural radiation areas with special regard to Ramsar

    International Nuclear Information System (INIS)

    Sohrabi, M.

    1993-01-01

    The studies of high level natural radiation areas (HLNRAs) around the world are of great importance for determination of risks due to long-term low-level whole body exposures of public. Many areas of the world possess HLNRAs the number of which depends on the criteria defined. Detailed radiological studies have been carried out in some HLNRAs the results of which have been reported at least in three international conferences. Among the HLNRAs, Ramsar has so far the highest level of natural radiation in some areas where radiological studies have been of concern. A program was established for Ramsar and its HLNRAs to study indoor and outdoor gamma exposures and external and internal doses of the inhabitants, 226 Ra content of public water supplies and hot springs, of food stuffs, etc., 222 Rn levels measured in 473 rooms of near 350 houses, 16 schools and 89 rooms and many locations of old and new Ramsar Hotels in different seasons, cytogenetic effects on inhabitants of Talesh Mahalleh, the highest radiation area, compared to that of a control area and radiological parameters of a house with a high potential for internal and external exposures of the inhabitants. It was concluded that the epidemiological studies in a number of countries did not show any evidence of increased health detriment in HLNRAs compared to control groups. In this paper, the conclusions drawn from studies in some HLNRAs around the world in particular Ramsar are discussed. (author). 20 refs, 2 figs, 1 tab

  9. Decay rates of resonance states at high level density

    International Nuclear Information System (INIS)

    Persson, E.; Technische Univ. Dresden; Gorin, T.; Technische Univ. Dresden; Rotter, I.; Technische Univ. Dresden

    1996-05-01

    The time dependent Schroedinger equation of an open quantum mechanical system is solved by using the stationary bi-orthogonal eigenfunctions of the non-Hermitean time independent Hamilton operator. We calculate the decay rates at low and high level density in two different formalism. The rates are, generally, time dependent and oscillate around an average value due to the non-orthogonality of the wavefunctions. The decay law is studied disregarding the oscillations. In the one-channel case, it is proportional to t -b with b∼3/2 in all cases considered, including the critical region of overlapping where the non-orthogonality of the wavefunctions is large. Starting from the shell model, we get b∼2 for 2 and 4 open decay channels and all coupling strengths to the continuum. When the closed system is described by a random matrix, b∼1+K/2 for K=2 and 4 channels. This law holds in a limited time interval. The distribution of the widths is different in the two models when more than one channel are open. This leads to the different exponents b in the power law. Our calculations are performed with 190 and 130 states, respectively, most of them in the critical region. The theoretical results should be proven experimentally by measuring the time behaviour of de-excitation of a realistic quantum system. (orig.)

  10. Why consider subseabed disposal of high-level nuclear wastes

    International Nuclear Information System (INIS)

    Heath, G.R.; Hollister, C.D.; Anderson, D.R.; Leinen, M.

    1983-01-01

    There exist large areas of the deep seabed that warrant assessment as potential disposal sites for high-level radioactive wastes because (1) they are far from seismically and tectonically active lithospheric plate boundaries; (2) they are far from active or young volcanoes; (3) they contain thick layers of very uniform fine-grained clays; (4) they are devoid of natural resources likely to be exploited in the foreseeable future; (5) the geologic and oceanographic processes governing the deposition of sediments in such areas are well understood, and have been remarkably insensitive to past oceanic and climatic changes; and (6) sedimentary records of tens of millions of years of slow, uninterrupted deposition of fine-grained clay support predictions of the future stability of such sites. Data accumulated to date on the permeability, ion-retardation properties, and mechanical strength of pelagic clayey sediments indicate that they can act as a primary barrier to the escape of buried radionuclides. Work in progress should determine within the current decade whether subseabed disposal is environmentally acceptable and technically feasible, as well as address the legal, political, and social issues raised by this new concept

  11. A readout buffer prototype for ATLAS high-level triggers

    CERN Document Server

    Calvet, D; Huet, M; Le Dû, P; Mandjavidze, I D; Mur, M

    2001-01-01

    Readout buffers are critical components in the dataflow chain of the ATLAS trigger/data-acquisition system. At up to 75 kHz, after each Level-1 trigger accept signal, these devices receive and store digitized data from groups of front-end electronic channels. Several readout buffers are grouped to form a readout buffer complex that acts as a data server for the high-level trigger selection algorithms and for the final data-collection system. This paper describes a functional prototype of a readout buffer based on a custom-made PCI mezzanine card that is designed to accept input data at up to 160 MB /s, to store up to 8 MB of data, and to distribute data chunks at the desired request rate. We describe the hardware of the card that is based on an Intel 1960 processor and complex programmable logic devices. We present the integration of several of these cards in a readout buffer complex. We measure various performance figures and discuss to which extent these can fulfil ATLAS needs. (5 refs).

  12. Testing of high-level waste forms under repository conditions

    International Nuclear Information System (INIS)

    Mc Menamin, T.

    1989-01-01

    The workshop on testing of high-level waste forms under repository conditions was held on 17 to 21 October 1988 in Cadarache, France, and sponsored by the Commission of the European Communities (CEC), the Commissariat a l'energie atomique (CEA) and the Savannah River Laboratory (US DOE). Participants included representatives from Australia, Belgium, Denmark, France, Germany, Italy, Japan, the Netherlands, Sweden, Switzerland, The United Kingdom and the United States. The first part of the conference featured a workshop on in situ testing of simulated nuclear waste forms and proposed package components, with an emphasis on the materials interface interactions tests (MIIT). MIIT is a sevent-part programme that involves field testing of 15 glass and waste form systems supplied by seven countries, along with potential canister and overpack materials as well as geologic samples, in the salt geology at the Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico, USA. This effort is still in progress and these proceedings document studies and findings obtained thus far. The second part of the meeting emphasized multinational experimental studies and results derived from repository systems simulation tests (RSST), which were performed in granite, clay and salt environments

  13. High Level Rule Modeling Language for Airline Crew Pairing

    Science.gov (United States)

    Mutlu, Erdal; Birbil, Ş. Ilker; Bülbül, Kerem; Yenigün, Hüsnü

    2011-09-01

    The crew pairing problem is an airline optimization problem where a set of least costly pairings (consecutive flights to be flown by a single crew) that covers every flight in a given flight network is sought. A pairing is defined by using a very complex set of feasibility rules imposed by international and national regulatory agencies, and also by the airline itself. The cost of a pairing is also defined by using complicated rules. When an optimization engine generates a sequence of flights from a given flight network, it has to check all these feasibility rules to ensure whether the sequence forms a valid pairing. Likewise, the engine needs to calculate the cost of the pairing by using certain rules. However, the rules used for checking the feasibility and calculating the costs are usually not static. Furthermore, the airline companies carry out what-if-type analyses through testing several alternate scenarios in each planning period. Therefore, embedding the implementation of feasibility checking and cost calculation rules into the source code of the optimization engine is not a practical approach. In this work, a high level language called ARUS is introduced for describing the feasibility and cost calculation rules. A compiler for ARUS is also implemented in this work to generate a dynamic link library to be used by crew pairing optimization engines.

  14. Immobilization of high-level wastes into sintered glass: 2

    International Nuclear Information System (INIS)

    Bevilacqua, A.M.; Russo, D.O.; Messi de Bernasconi, N.; Audero, M.A.

    1987-01-01

    High level radioactive wastes are immobilized into borosilicate glasses. Experiences with the variety VG 98/12 (SiO 2 , TiO 2 , Al 2 O 3 , B 2 O 3 , MgO, CaO, Na 2 O) are described. The pressing was performed in a matrix of 12.7 mm diameter, the walls of which were lubricated with sterotex dissolved in Cl 4 C. The sintering was made in an horizontal electric furnace in air atmosphere at temperatures between 500 and 600 deg C. It was observed that the maximum density occurs at 605 deg C. Comparing both the hot and the cold pressing process, it is concluded that: 1) In spite of requiring more complex equipment the hot pressing process has the advantage that lower pressures are applied, with the consequent obtainment of waste blocks with larger diameters, and 2) it is advisable that pressing process should be performed in the definitive can. (M.E.L.) [es

  15. Potential host media for a high-level waste repository

    Energy Technology Data Exchange (ETDEWEB)

    Hustrulid, W

    1982-01-01

    Earlier studies of burial of radioactive wastes in geologic repositories had concentrated on salt formations for well-publicized reasons. However, under the Carter administration, significant changes were made in the US nuclear waste management program. Changes which were made were: (1) expansion of the number of rock types under consideration; (2) adoption of the multiple-barrier approach to waste containment; (3) additional requirements for waste retrieval; and (4) new criteria proposed by the Nuclear Regulatory Commission for the isolation of high-level waste in geologic repositories. Results of the studies of different types of rocks as repository sites are summarized herein. It is concluded that each generic rock type has certain advantages and disadvantages when considered from various aspects of the waste disposal problem and that characteristics of rocks are so varied that a most favorable or least favorable rock type cannot be easily identified. This lack of definitive characteristics of rocks makes site selection and good engineering barriers very important for containment of the wastes. (BLM)

  16. The Savannah River Site Replacement High Level Radioactive Waste Evaporator Project

    International Nuclear Information System (INIS)

    Brock Presgrove, S.

    1992-01-01

    The Replacement High Level Waste Evaporator Project was conceived in 1985 to reduce the volume of the high level radioactive waste currently stored at the DOE Savannah River Site Tank Farm. Process of the high level waste has been accomplished up to this time using Bent Tube type evaporators and therefore, that type evaporator was selected for this project. The Title I Design of the project was 70% completed in late 1990. The Department of Energy at that time hired an independent consulting firm to perform a complete review of the project. The DOE placed a STOP ORDER on purchasing the evaporator in January 1991. Essentially, no construction was to be done on the project until all findings and concerns dealing with the type and design of the evaporator are resolved. This report addresses two aspects of the DOE design review: Comparing the Bent Tube Evaporator with the Forced Circulation Evaporator; The design portion of the DOE Project Review - concentrated on the mechanical design properties of the evaporator. (author)

  17. Multi-Threaded Algorithms for GPGPU in the ATLAS High Level Trigger

    Science.gov (United States)

    Conde Muíño, P.; ATLAS Collaboration

    2017-10-01

    General purpose Graphics Processor Units (GPGPU) are being evaluated for possible future inclusion in an upgraded ATLAS High Level Trigger farm. We have developed a demonstrator including GPGPU implementations of Inner Detector and Muon tracking and Calorimeter clustering within the ATLAS software framework. ATLAS is a general purpose particle physics experiment located on the LHC collider at CERN. The ATLAS Trigger system consists of two levels, with Level-1 implemented in hardware and the High Level Trigger implemented in software running on a farm of commodity CPU. The High Level Trigger reduces the trigger rate from the 100 kHz Level-1 acceptance rate to 1.5 kHz for recording, requiring an average per-event processing time of ∼ 250 ms for this task. The selection in the high level trigger is based on reconstructing tracks in the Inner Detector and Muon Spectrometer and clusters of energy deposited in the Calorimeter. Performing this reconstruction within the available farm resources presents a significant challenge that will increase significantly with future LHC upgrades. During the LHC data taking period starting in 2021, luminosity will reach up to three times the original design value. Luminosity will increase further to 7.5 times the design value in 2026 following LHC and ATLAS upgrades. Corresponding improvements in the speed of the reconstruction code will be needed to provide the required trigger selection power within affordable computing resources. Key factors determining the potential benefit of including GPGPU as part of the HLT processor farm are: the relative speed of the CPU and GPGPU algorithm implementations; the relative execution times of the GPGPU algorithms and serial code remaining on the CPU; the number of GPGPU required, and the relative financial cost of the selected GPGPU. We give a brief overview of the algorithms implemented and present new measurements that compare the performance of various configurations exploiting GPGPU cards.

  18. Process Design Concepts for Stabilization of High Level Waste Calcine

    Energy Technology Data Exchange (ETDEWEB)

    T. R. Thomas; A. K. Herbst

    2005-06-01

    The current baseline assumption is that packaging ¡§as is¡¨ and direct disposal of high level waste (HLW) calcine in a Monitored Geologic Repository will be allowed. The fall back position is to develop a stabilized waste form for the HLW calcine, that will meet repository waste acceptance criteria currently in place, in case regulatory initiatives are unsuccessful. A decision between direct disposal or a stabilization alternative is anticipated by June 2006. The purposes of this Engineering Design File (EDF) are to provide a pre-conceptual design on three low temperature processes under development for stabilization of high level waste calcine (i.e., the grout, hydroceramic grout, and iron phosphate ceramic processes) and to support a down selection among the three candidates. The key assumptions for the pre-conceptual design assessment are that a) a waste treatment plant would operate over eight years for 200 days a year, b) a design processing rate of 3.67 m3/day or 4670 kg/day of HLW calcine would be needed, and c) the performance of waste form would remove the HLW calcine from the hazardous waste category, and d) the waste form loadings would range from about 21-25 wt% calcine. The conclusions of this EDF study are that: (a) To date, the grout formulation appears to be the best candidate stabilizer among the three being tested for HLW calcine and appears to be the easiest to mix, pour, and cure. (b) Only minor differences would exist between the process steps of the grout and hydroceramic grout stabilization processes. If temperature control of the mixer at about 80„aC is required, it would add a major level of complexity to the iron phosphate stabilization process. (c) It is too early in the development program to determine which stabilizer will produce the minimum amount of stabilized waste form for the entire HLW inventory, but the volume is assumed to be within the range of 12,250 to 14,470 m3. (d) The stacked vessel height of the hot process vessels

  19. High-level waste issues and resolutions document

    International Nuclear Information System (INIS)

    1994-05-01

    The High-Level Waste (HLW) Issues and Resolutions Document recognizes US Department of Energy (DOE) complex-wide HLW issues and offers potential corrective actions for resolving these issues. Westinghouse Management and Operations (M ampersand O) Contractors are effectively managing HLW for the Department of Energy at four sites: Idaho National Engineering Laboratory (INEL), Savannah River Site (SRS), West Valley Demonstration Project (WVDP), and Hanford Reservation. Each site is at varying stages of processing HLW into a more manageable form. This HLW Issues and Resolutions Document identifies five primary issues that must be resolved in order to reach the long-term objective of HLW repository disposal. As the current M ampersand O contractor at DOE's most difficult waste problem sites, Westinghouse recognizes that they have the responsibility to help solve some of the complexes' HLW problems in a cost effective manner by encouraging the M ampersand Os to work together by sharing expertise, eliminating duplicate efforts, and sharing best practices. Pending an action plan, Westinghouse M ampersand Os will take the initiative on those corrective actions identified as the responsibility of an M ampersand O. This document captures issues important to the management of HLW. The proposed resolutions contained within this document set the framework for the M ampersand Os and DOE work cooperatively to develop an action plan to solve some of the major complex-wide problems. Dialogue will continue between the M ampersand Os, DOE, and other regulatory agencies to work jointly toward the goal of storing, treating, and immobilizing HLW for disposal in an environmentally sound, safe, and cost effective manner

  20. Material chemistry challenges in vitrification of high level radioactive waste

    International Nuclear Information System (INIS)

    Kaushik, C.P.

    2008-01-01

    Full text: Nuclear technology with an affective environmental management plan and focused attention on safety measures is a much cleaner source of electricity generation as compared to other sources. With this perspective, India has undertaken nuclear energy program to share substantial part of future need of power. Safe containment and isolation of nuclear waste from human environment is an indispensable part of this programme. Majority of radioactivity in the entire nuclear fuel cycle is high level radioactive liquid waste (HLW), which is getting generated during reprocessing of spent nuclear fuels. A three stage strategy for management of HLW has been adopted in India. This involves (i) immobilization of waste oxides in stable and inert solid matrices, (ii) interim retrievable storage of the conditioned waste product under continuous cooling and (iii) disposal in deep geological formation. Borosilicate glass matrix has been adopted in India for immobilization of HLW. Material issue are very important during the entire process of waste immobilization. Performance of the materials used in nuclear waste management determines its safety/hazards. Material chemistry therefore has a significant bearing on immobilization science and its technological development for management of HLW. The choice of suitable waste form to deploy for nuclear waste immobilization is difficult decision and the durability of the conditioned product is not the sole criterion. In any immobilization process, where radioactive materials are involved, the process and operational conditions play an important role in final selection of a suitable glass formulation. In remotely operated vitrification process, study of chemistry of materials like glass, melter, materials of construction of other equipment under high temperature and hostile corrosive condition assume significance for safe and un-interrupted vitrification of radioactive to ensure its isolation waste from human environment. The present

  1. Review of high-level waste form properties. [146 bibliographies

    Energy Technology Data Exchange (ETDEWEB)

    Rusin, J.M.

    1980-12-01

    This report is a review of waste form options for the immobilization of high-level-liquid wastes from the nuclear fuel cycle. This review covers the status of international research and development on waste forms as of May 1979. Although the emphasis in this report is on waste form properties, process parameters are discussed where they may affect final waste form properties. A summary table is provided listing properties of various nuclear waste form options. It is concluded that proposed waste forms have properties falling within a relatively narrow range. In regard to crystalline versus glass waste forms, the conclusion is that either glass of crystalline materials can be shown to have some advantage when a single property is considered; however, at this date no single waste form offers optimum properties over the entire range of characteristics investigated. A long-term effort has been applied to the development of glass and calcine waste forms. Several additional waste forms have enough promise to warrant continued research and development to bring their state of development up to that of glass and calcine. Synthetic minerals, the multibarrier approach with coated particles in a metal matrix, and high pressure-high temperature ceramics offer potential advantages and need further study. Although this report discusses waste form properties, the total waste management system should be considered in the final selection of a waste form option. Canister design, canister materials, overpacks, engineered barriers, and repository characteristics, as well as the waste form, affect the overall performance of a waste management system. These parameters were not considered in this comparison.

  2. High levels of serum hyaluronic acid in adults with dermatomyositis

    Directory of Open Access Journals (Sweden)

    Alana Ausciutti Victorino

    2015-04-01

    Full Text Available Background / objectives. Hyaluronic acid (HA is rarely described in dermatomyositis (DM. Thus, we determined any clinical association of serum levels of hyaluronic acid (HA in patients with dermatomyositis (DM. Materials and Methods. This cross-sectional single-center analysis 75 DM and 75 healthy individuals, during the period from January 2012 to July 2013. An anti-HA antibody assay was performed using specific ELISA/EIA kits, according to the manufacturer’s protocol. Results. The patients with DM and control subjects had comparable demographic distributions (p>0.05. The median time duration between disease diagnosis and initial symptoms was 6.0 [3.0-12.0] months, with a median DM disease duration of 4.0 [1.0-7.0] years. The median level of serum HA was significantly increased in patients with DM compared to the control group [329.0 (80.0-958.0 vs. 133.0 (30.0-262.0 ng/mL, respectively; p0.05. Serum HA also did not correlate with gender, ethnicity, auto-antibodies or drug use (p>0.05, but did correlate with cutaneous features, such as photosensitivity (p=0.001, “shawl” sign (p=0.018, “V-neck” sign (p=0.005 and cuticular hypertrophy (p=0.014. Conclusions. A high level of serum AH was observed in DM compared to healthy individuals. In DM, HA did not correlate to demographic, auto-antibodies and therapy parameters. However, HA correlated specifically with some cutaneous features, suggesting that this glycosaminoglycan could be involved in modulating cutaneous inflammation in this population. More studies are necessary to understand the correlation between AH and patients with DM.

  3. High-level Waste Long-term management technology development

    International Nuclear Information System (INIS)

    Choi, Jong Won; Kang, C. H.; Ko, Y. K.

    2012-02-01

    The purpose of this project is to develop a long-term management system(A-KRS) which deals with spent fuels from domestic nuclear power stations, HLW from advanced fuel cycle and other wastes that are not admitted to LILW disposal site. Also, this project demonstrate the feasibility and reliability of the key technologies applied in the A-KRS by evaluating them under in-situ condition such as underground research laboratory and provide important information to establish the safety assessment and long-term management plan. To develop the technologies for the high level radioactive wastes disposal, demonstrate their reliability under in-situ condition and establish safety assessment of disposal system, The major objects of this project are the following: Ο An advanced disposal system including waste containers for HLW from advanced fuel cycle and pyroprocess has been developed. Ο Quantitative assessment tools for long-term safety and performance assessment of a radwaste disposal system has been developed. Ο Hydrological and geochemical investigation and interpretation methods has been developed to evaluate deep geological environments. Ο The THMC characteristics of the engineered barrier system and near-field has been evaluated by in-situ experiments. Ο The migration and retardation of radionuclides and colloid materials in a deep geological environment has been investigated. The results from this project will provide important information to show HLW disposal plan safe and reliable. The knowledge from this project can also contribute to environmental conservation by applying them to the field of oil and gas industries to store their wastes safe

  4. A mammalianized synthetic nitroreductase gene for high-level expression

    International Nuclear Information System (INIS)

    Grohmann, Maik; Paulmann, Nils; Fleischhauer, Sebastian; Vowinckel, Jakob; Priller, Josef; Walther, Diego J

    2009-01-01

    The nitroreductase/5-(azaridin-1-yl)-2,4-dinitrobenzamide (NTR/CB1954) enzyme/prodrug system is considered as a promising candidate for anti-cancer strategies by gene-directed enzyme prodrug therapy (GDEPT) and has recently entered clinical trials. It requires the genetic modification of tumor cells to express the E. coli enzyme nitroreductase that bioactivates the prodrug CB1954 to a powerful cytotoxin. This metabolite causes apoptotic cell death by DNA interstrand crosslinking. Enhancing the enzymatic NTR activity for CB1954 should improve the therapeutical potential of this enzyme-prodrug combination in cancer gene therapy. We performed de novo synthesis of the bacterial nitroreductase gene adapting codon usage to mammalian preferences. The synthetic gene was investigated for its expression efficacy and ability to sensitize mammalian cells to CB1954 using western blotting analysis and cytotoxicity assays. In our study, we detected cytoplasmic protein aggregates by expressing GFP-tagged NTR in COS-7 cells, suggesting an impaired translation by divergent codon usage between prokaryotes and eukaryotes. Therefore, we generated a synthetic variant of the nitroreductase gene, called ntro, adapted for high-level expression in mammalian cells. A total of 144 silent base substitutions were made within the bacterial ntr gene to change its codon usage to mammalian preferences. The codon-optimized ntro either tagged to gfp or c-myc showed higher expression levels in mammalian cell lines. Furthermore, the ntro rendered several cell lines ten times more sensitive to the prodrug CB1954 and also resulted in an improved bystander effect. Our results show that codon optimization overcomes expression limitations of the bacterial ntr gene in mammalian cells, thereby improving the NTR/CB1954 system at translational level for cancer gene therapy in humans

  5. Review of high-level waste form properties

    International Nuclear Information System (INIS)

    Rusin, J.M.

    1980-12-01

    This report is a review of waste form options for the immobilization of high-level-liquid wastes from the nuclear fuel cycle. This review covers the status of international research and development on waste forms as of May 1979. Although the emphasis in this report is on waste form properties, process parameters are discussed where they may affect final waste form properties. A summary table is provided listing properties of various nuclear waste form options. It is concluded that proposed waste forms have properties falling within a relatively narrow range. In regard to crystalline versus glass waste forms, the conclusion is that either glass of crystalline materials can be shown to have some advantage when a single property is considered; however, at this date no single waste form offers optimum properties over the entire range of characteristics investigated. A long-term effort has been applied to the development of glass and calcine waste forms. Several additional waste forms have enough promise to warrant continued research and development to bring their state of development up to that of glass and calcine. Synthetic minerals, the multibarrier approach with coated particles in a metal matrix, and high pressure-high temperature ceramics offer potential advantages and need further study. Although this report discusses waste form properties, the total waste management system should be considered in the final selection of a waste form option. Canister design, canister materials, overpacks, engineered barriers, and repository characteristics, as well as the waste form, affect the overall performance of a waste management system. These parameters were not considered in this comparison

  6. Solidification of high-level radioactive wastes. Final report

    International Nuclear Information System (INIS)

    1979-06-01

    A panel on waste solidification was formed at the request of the Nuclear Regulatory Commission to study the scientific and technological problems associated with the conversion of liquid and semiliquid high-level radioactive wastes into a stable form suitable for transportation and disposition. Conclusions reached and recommendations made are as follows. Many solid forms described in this report could meet standards as stringent as those currently applied to the handling, storage, and transportation of spent fuel assemblies. Solid waste forms should be selected only in the context of the total radioactive waste management system. Many solid forms are likely to be satisfactory for use in an appropriately designed system, The current United States policy of deferring the reprocessing of commercial reactor fuel provides additional time for R and D solidification technology for this class of wastes. Defense wastes which are relatively low in radioactivity and thermal power density can best be solidified by low-temperature processes. For solidification of fresh commercial wastes that are high in specific activity and thermal power density, the Panel recommends that, in addition to glass, the use of fully-crystalline ceramics and metal-matrix forms be actively considered. Preliminary analysis of the characteristics of spent fuel pins indicates that they may be eligible for consideration as a waste form. Because the differences in potential health hazards to the public resulting from the use of various solid form and disposal options are likely to be small, the Panel concludes that cost, reliability, and health hazards to operating personnel will be major considerations in choosing among the options that can meet safety requiremens. The Panel recommends that responsibility for all radioactive waste management operations (including solidification R and D) should be centralized

  7. The precautionary principle and high-level nuclear waste policy

    International Nuclear Information System (INIS)

    Frishman, S.

    1999-01-01

    The 'Precautionary Principle' has grown from the broadening observation that there is compelling evidence that damage to humans and the world-wide environment is of such a magnitude and seriousness that new principles for conducting human activities are necessary. One of the various statements of the Precautionary Principle is: when an activity raises threats of harm to human health or the environment, precautionary measures should be taken even if some cause and effect relationships are not fully established scientifically. The use of a precautionary principle was a significant recommendation emerging from the 1992 United Nations Conference on Environment and Development, held in Rio de Janeiro, Brazil, and it is gaining acceptance in discussions ranging from global warming to activities that affect the marine environment, and far beyond. In the US high-level nuclear waste policy, there is a growing trend on the part of geologic repository proponents and regulators to shift the required safety evaluation from a deterministic analysis of natural and engineered barriers and their interactions to risk assessments and total system waste containment and isolation performance assessment. This is largely a result of the realisation that scientific 'proof' of safety cannot be demonstrated to the level repository proponents have led the American public to expect. Therefore, they are now developing other methods in an attempt to effectively lower the repository safety expectations of the public. Implicit in this shift in demonstration of 'proof' is that levels of uncertainty far larger than those generally taken as scientifically acceptable must be accepted in repository safety, simply because greater certainty is either too costly, in time and money, or impossible to achieve at the potential Yucca Mountain repository site. In the context of the Precautionary Principle, the repository proponent must bear the burden of providing 'Acceptable' proof, established by an open

  8. Lumbar disc herniation at high levels : MRI and clinical findings

    International Nuclear Information System (INIS)

    Paek, Chung Ho; Kwon, Soon Tae; Lee, Jun Kyu; Ahn, Jae Sung; Lee, Hwan Do; Chung, Yon Su; Jeong, Ki Ho; Cho, Jun Sik

    1999-01-01

    To assess the frequency, location, associated MR findings, and clinical symptoms of the high level lumbar disc herniation(HLDH). A total of 1076 patients with lunbar disc herniation were retrospectively reviewed. MR images of 41 of these with HLDH(T12-L1, L1-2, L2-3) were analysed in terms of frequency, location, and associated MR findings, and correlated with clinical symptoms of HLDH. The prevalence of HLDH was 3.8%(41/1076). HLDH was located at T12-L1 level in four patients(10%), at L1-2 level in 14(34%), at L2-3 level in 21(51%), and at both L1-2 and L2-3 levels in two. The age of patients ranged from 20 to 72 years (mean, 44), and there were 26 men and 16 women. In 11(27%), whose mean age was 32 years, isolated disc herniation was limited to these high lumbar segments. The remaining 30 patients had HLDH associated with variable involvement of the lower lumbar segments. Associated lesions were as follow : lower level disc herniation(14 patients, 34%); apophyseal ring fracture(8 patients, 19%); Schmorl's node and spondylolisthesis (each 6 patients, each 14%); spondylolysis(3 patients, 7%); and retrolisthesis(2 patients, 5%). In 20 patients(49%) with HLDH(n=41), there was a previous history of trauma. Patients with HLDH showed a relatively high incidence of associated coexisting abnormalities such as lower lumbar disc herniation, apophyseal ring fracture, Schmorl's node, spondylolysis, and retrolisthesis. In about half of all patients with HLDH there was a previous history of trauma. The mean age of patients with isolated HLDH was lower; clinical symptoms of the condition were relatively nonspecific and their incidence was low

  9. Lumbar disc herniation at high levels : MRI and clinical findings

    Energy Technology Data Exchange (ETDEWEB)

    Paek, Chung Ho; Kwon, Soon Tae; Lee, Jun Kyu; Ahn, Jae Sung; Lee, Hwan Do; Chung, Yon Su; Jeong, Ki Ho; Cho, Jun Sik [Chungnam National Univ. College of Medicine, Taejon (Korea, Republic of)

    1999-04-01

    To assess the frequency, location, associated MR findings, and clinical symptoms of the high level lumbar disc herniation(HLDH). A total of 1076 patients with lunbar disc herniation were retrospectively reviewed. MR images of 41 of these with HLDH(T12-L1, L1-2, L2-3) were analysed in terms of frequency, location, and associated MR findings, and correlated with clinical symptoms of HLDH. The prevalence of HLDH was 3.8%(41/1076). HLDH was located at T12-L1 level in four patients(10%), at L1-2 level in 14(34%), at L2-3 level in 21(51%), and at both L1-2 and L2-3 levels in two. The age of patients ranged from 20 to 72 years (mean, 44), and there were 26 men and 16 women. In 11(27%), whose mean age was 32 years, isolated disc herniation was limited to these high lumbar segments. The remaining 30 patients had HLDH associated with variable involvement of the lower lumbar segments. Associated lesions were as follow : lower level disc herniation(14 patients, 34%); apophyseal ring fracture(8 patients, 19%); Schmorl's node and spondylolisthesis (each 6 patients, each 14%); spondylolysis(3 patients, 7%); and retrolisthesis(2 patients, 5%). In 20 patients(49%) with HLDH(n=41), there was a previous history of trauma. Patients with HLDH showed a relatively high incidence of associated coexisting abnormalities such as lower lumbar disc herniation, apophyseal ring fracture, Schmorl's node, spondylolysis, and retrolisthesis. In about half of all patients with HLDH there was a previous history of trauma. The mean age of patients with isolated HLDH was lower; clinical symptoms of the condition were relatively nonspecific and their incidence was low.

  10. Idaho National Engineering Laboratory High-Level Waste Roadmap

    International Nuclear Information System (INIS)

    1993-08-01

    The Idaho National Engineering Laboratory (INEL) High-Level Waste (HLW) Roadmap takes a strategic look at the entire HLW life-cycle starting with generation, through interim storage, treatment and processing, transportation, and on to final disposal. The roadmap is an issue-based planning approach that compares ''where we are now'' to ''where we want and need to be.'' The INEL has been effectively managing HLW for the last 30 years. Calcining operations are continuing to turn liquid HLW into a more manageable form. Although this document recognizes problems concerning HLW at the INEL, there is no imminent risk to the public or environment. By analyzing the INEL current business operations, pertinent laws and regulations, and committed milestones, the INEL HLW Roadmap has identified eight key issues existing at the INEL that must be resolved in order to reach long-term objectives. These issues are as follows: A. The US Department of Energy (DOE) needs a consistent policy for HLW generation, handling, treatment, storage, and disposal. B. The capability for final disposal of HLW does not exist. C. Adequate processes have not been developed or implemented for immobilization and disposal of INEL HLW. D. HLW storage at the INEL is not adequate in terms of capacity and regulatory requirements. E. Waste streams are generated with limited consideration for waste minimization. F. HLW is not adequately characterized for disposal nor, in some cases, for storage. G. Research and development of all process options for INEL HLW treatment and disposal are not being adequately pursued due to resource limitations. H. HLW transportation methods are not selected or implemented. A root-cause analysis uncovered the underlying causes of each of these issues

  11. High-level radioactive waste disposal in the deep ocean

    International Nuclear Information System (INIS)

    Hill, H.W.

    1977-01-01

    A joint programme has begun between the Fisheries Laboratory, Lowestoft and the Institute of Oceanographic Sciences, Wormley to study the dispersion of radioactivity in the deep ocean arising from the possible dumping of high level waste on the sea bed in vitrified-glass form which would permit slow leakage over a long term scale. The programme consists firstly of the development of a simple diffusion/advection model for the dispersion of radioactivity in a closed and finite ocean, which overcomes many of the criticisms of the earlier model proposed by Webb and Morley. Preliminary results from this new model are comparable to those of the Webb-Morley model for radio isotopes with half-lives of 10-300 years but are considerably more restrictive outside this range, particularly for those which are much longer-lived. The second part of the programme, towards which the emphasis is directed, concerns the field programme planned to measure the advection and diffusion parameters in the deeper layers of the ocean to provide realistic input parameters to the model and increase our fundamental understanding of the environment in which the radioactive materials may be released. The first cruises of the programme will take place in late 1976 and involve deep current meter deployments and float dispersion experiments around the present NEA dump site with some sediment sampling, so that adsorption experiments can be started on typical deep sea sediments. The programme will expand the number of long-term deep moored stations over the next five years and include further float experiments, CTD profiling, and other physical oceanography. In the second half of the 5-year programme, attempts will be made to measure diffusion parameters in the deeper layers of the ocean using radioactive tracers

  12. The high-level neutron coincidence counter (HLNCC) family of detectors

    International Nuclear Information System (INIS)

    Ramalho, A.; Dahn, E.; Selleck, E.; Kupryashkin, V.; Dubreuil, A.

    1983-01-01

    A description of a group of detectors based on The High-Level Neutron Coincidence Counter (HLNCC) concept is presented. Experience in their utilization is summarized and the procedures followed in calibration and data treatment are described. Advantages of the use of this variety of detectors in simplifying the NDA verifications, reducing the interference with facility operators, and increasing the effectiveness of the inspectors' work are stressed. Likewise, remaining problems such as the need for a vigorous programme directed at achieving the best independent calibrations are emphasized. (author)

  13. Mineral-modeled ceramics for long-term storage of high-level nuclear wastes

    International Nuclear Information System (INIS)

    Vance, E.R.

    1980-01-01

    Over the past ten years, Penn State's Materials Research Laboratory has done extensive work on mineral-modeled ceramics for high-level nuclear waste storage. These ceramics are composed of several mineral analogues that form a monolithic polycrystalline aggregate. Mineral-modeling can be made in a similar fashion to nuclear waste glasses, and their naturally occurring analogues are known to last millions, and even billions, of years in hot, wet conditions. It is believed that such ceramics could reduce dispersal of radionuclides by leaching to a minimum

  14. Microwave energy for post-calcination treatment of high-level nuclear wastes

    International Nuclear Information System (INIS)

    Gombert, D.; Priebe, S.J.; Berreth, J.R.

    1980-01-01

    High-level radioactive wastes generated from nuclear fuel reprocessing require treatment for effective long-term storage. Heating by microwave energy is explored in processing of two possible waste forms: (1) drying of a pelleted form of calcined waste; and (2) vitrification of calcined waste. It is shown that residence times for these processes can be greatly reduced when using microwave energy rather than conventional heating sources, without affecting product properties. Compounds in the waste and in the glass frit additives couple very well with the 2.45 GHz microwave field so that no special microwave absorbers are necessary

  15. Validation of the Performance of High-level Waste Disposal System

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Won Jin; Park, J. H.; Lee, J. O. (and others)

    2007-06-15

    The experimental researches to validate the integrity and safety of high-level waste disposal system were carried out. The studies on the construction of KURT, and the site rock characteristics were conducted. Thermal-hydro-mechanical behavior of engineered barrier system was investigated using the engineering-scale test facility. The migration and retardation of radionuclide through the rock fracture under anaerobic and reducing condition were studied. The distribution coefficients of radionuclides onto granite, the rock matrix diffusion coefficients, and the gap and grain boundary inventories of spent fuel were measured.

  16. Status of technology for isolating high-level radioactive wastes in geologic repositories

    International Nuclear Information System (INIS)

    Klingsberg, C.; Duguid, J.

    1980-10-01

    This report attempts to summarize the status of scientific and technological knowledge relevant to long-term isolation of high-level and transuranic wastes in a mined geologic repository. It also identifies and evaluates needed information and identifies topics in which work is under way or needed to reduce uncertainties. The major findings and conclusions on the following topics are presented: importance of the systems approach; prospects for successful isolation of wastes; need for site-specific investigations; human activities in the future; importance of modelling; disposal of transuranic wastes; status of technology of isolation barriers, performance assessment, site selection and characterization, and potential host rocks

  17. Recovery of Cs from high level radioactive waste

    International Nuclear Information System (INIS)

    Kumar, Amar; Kaushik, C.P.; Raj, K.; Varshney, Lalit

    2008-01-01

    Separation of Cs + from HLW restricts the personal radiation exposure during the vitrification and prevents thermal deformation of conditioned waste matrix during storage because of the high calorific power of 134 Cs (13.18 W/g) and 137 Cs (0.417 W/g) which would markedly reduce the storage cost. Separation will also reduce its volatility during vitrification and extent of migration from the vitrified mass in repository. In addition 137 Cs has enormous applications as radiation sources in food preservation, sterilization of medical products, brachy therapy, blood irradiation, hygienization of sewage sludge etc. The use of 137 Cs (T 1/2 = 30 years) in place of 60 Co (T 1/2 = 5.2 years) will also reduce the shielding requirement and frequency of source replenishment which will ease the handling/transportation of radioactive source

  18. Actinides and fission products partitioning from high level liquid waste

    International Nuclear Information System (INIS)

    Yamaura, Mitiko

    1999-01-01

    The presence of small amount of mixed actinides and long-lived heat generators fission products as 137 Cs and 90 Sr are the major problems for safety handling and disposal of high level nuclear wastes. In this work, actinides and fission products partitioning process, as an alternative process for waste treatment is proposed. First of all, ammonium phosphotungstate (PWA), a selective inorganic exchanger for cesium separation was chosen and a new procedure for synthesizing PWA into the organic resin was developed. An strong anionic resin loaded with tungstate or phosphotungstate anion enables the precipitation of PWA directly in the resinous structure by adding the ammonium nitrate in acid medium (R-PWA). Parameters as W/P ratio, pH, reactants, temperature and aging were studied. The R-PWA obtained by using phosphotungstate solution prepared with W/P=9.6, 9 hours digestion time at 94-106 deg C and 4 to 5 months aging time showed the best capacity for cesium retention. On the other hand, Sr separation was performed by technique of extraction chromatography, using DH18C6 impregnated on XAD7 resin as stationary phase. Sr is selectively extracted from acid solution and >99% was recovered from loaded column using distilled water as eluent. Concerning to actinides separations, two extraction chromatographic columns were used. In the first one, TBP(XAD7) column, U and Pu were extracted and its separations were carried-out using HNO 3 and hydroxylamine nitrate + HNO 3 as eluent. In the second one, CMP0-TBP(XAD7) column, the actinides were retained on the column and the separations were done by using (NH 4 ) 2 C 2 O 4 , DTPA, HNO 3 and HCl as eluent. The behavior of some fission products were also verified in both columns. Based on the obtained data, actinides and fission products Cs and Sr partitioning process, using TBP(XAD7) and CMP0-TBP(XAD7) columns for actinides separation, R-PWA column for cesium retention and DH18C6(XAD7) column for Sr isolation was performed

  19. Incorporation of high-level nuclear waste in gel spheres

    International Nuclear Information System (INIS)

    Robinson, S.M.; Arnold, W.D.; Bond, W.D.; Angelini, P.; Stinton, D.P.

    1981-01-01

    Waste sludge is incorporated in gel spheres by the method of internal gelation. Gel spheres containing up to 90 wt % waste have been produced from defense and commercial wastes. A generic cesium-bearing waste form has been developed. Pyrolytic carbon and SiC coatings reduce the leachability of all tested articles to the detection limits

  20. Significance of high level test data in piping design

    International Nuclear Information System (INIS)

    McLean, J.L.; Bitner, J.L.

    1991-01-01

    During the 1980's the piping technical community in the U.S. initiated a series of research activities aimed at reducing the conservatism inherent in nuclear piping design. One of these activities was directed at the application of the ASME Code rules to the design of piping subjected to dynamic loads. This paper surveys the test data obtained from three groups in the U.S. and none in the U.K., and correlates the findings as they relate to the failure modes of piping subjected to seismic loads. The failure modes experienced as the result of testing at dynamic loads significantly in excess of anticipated loads specified for any of the ASME Code service levels are discussed. A recommendation is presented for modifying the Code piping rules to reduce the conservatism inherent in seismic design

  1. Crystallization in high-level waste glass: A review of glass theory and noteworthy literature

    Energy Technology Data Exchange (ETDEWEB)

    Christian, J. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-08-18

    There is a fundamental need to continue research aimed at understanding nepheline and spinel crystal formation in high-level waste (HLW) glass. Specifically, the formation of nepheline solids (K/NaAlSiO4) during slow cooling of HLW glass can reduce the chemical durability of the glass, which can cause a decrease in the overall durability of the glass waste form. The accumulation of spinel solids ((Fe, Ni, Mn, Zn)(Fe, Cr)2O4), while not detrimental to glass durability, can cause an array of processing problems inside HLW glass melters. In this review, the fundamental differences between glass and solid-crystals are explained using kinetic, thermodynamic, and viscosity arguments, and several highlights of glass-crystallization research, as it pertains to high-level waste vitrification, are described. In terms of mitigating spinel in the melter and both spinel and nepheline formation in the canister, the complexity of HLW glass and the intricate interplay between thermal, chemical, and kinetic factors further complicates this understanding. However, new experiments seeking to elucidate the contributing factors of crystal nucleation and growth in waste glass, and the compilation of data from older experiments, may go a long way towards helping to achieve higher waste loadings while developing more efficient processing strategies. Higher waste loadings and more efficient processing strategies will reduce the overall HLW Hanford Tank Waste Treatment and Immobilization Plant (WTP) vitrification facilities mission life.

  2. Fracturing of simulated high-level waste glass in canisters

    International Nuclear Information System (INIS)

    Peters, R.D.; Slate, S.C.

    1981-09-01

    Waste-glass castings generated from engineering-scale developmental processes at the Pacific Northwest Laboratory are generally found to have significant levels of cracks. The causes and extent of fracturing in full-scale canisters of waste glass as a result of cooling and accidental impact are discussed. Although the effects of cracking on waste-form performance in a repository are not well understood, cracks in waste forms can potentially increase leaching surface area. If cracks are minimized or absent in the waste-glass canisters, the potential for radionuclide release from the canister package can be reduced. Additional work on the effects of cracks on leaching of glass is needed. In addition to investigating the extent of fracturing of glass in waste-glass canisters, methods to reduce cracking by controlling cooling conditions were explored. Overall, the study shows that the extent of glass cracking in full-scale, passively-cooled, continuous melting-produced canisters is strongly dependent on the cooling rate. This observation agrees with results of previously reported Pacific Northwest Laboratory experiments on bench-scale annealed canisters. Thus, the cause of cracking is principally bulk thermal stresses. Fracture damage resulting from shearing at the glass/metal interface also contributes to cracking, more so in stainless steel canisters than in carbon steel canisters. This effect can be reduced or eliminated with a graphite coating applied to the inside of the canister. Thermal fracturing can be controlled by using a fixed amount of insulation for filling and cooling of canisters. In order to maintain production rates, a small amount of additional facility space is needed to accomodate slow-cooling canisters. Alternatively, faster cooling can be achieved using the multi-staged approach. Additional development is needed before this approach can be used on full-scale (60-cm) canisters

  3. Performance of evaporators in high level radioactive chemical waste service

    International Nuclear Information System (INIS)

    Jenkins, C.F.

    1997-01-01

    Chemical processing of nuclear fuels and targets at Savannah River Site resulted in generation of millions of gallons of liquid wastes. The wastes were further processed to reduce volume and allow for extended temporary storage of a more concentrated material. Waste evaporators have been a central point for waste reduction for many years. Currently, the transfer and processing of the concentrated wastes for permanent storage requires dilution and results in generation of significant quantities of additional liquid wastes. A new round of volume reduction is required to fit existing storage capacity and to allow for removal of older vessels from service. Evaporator design, performance and repairs are discussed in this report

  4. Multi-threading in the ATLAS High-Level Trigger

    CERN Document Server

    Barton, Adam Edward; The ATLAS collaboration

    2017-01-01

    Over the next decade of LHC data-taking the instantaneous luminosity will reach up 7.5 times the design value with over 200 interactions per bunch-crossing and will pose unprecedented challenges for the ATLAS trigger system. We report on an HLT prototype in which the need for HLT­specific components has been reduced to a minimum while retaining the key aspects of trigger functionality including regional reconstruction and early event rejection. We report on the first experience of migrating trigger algorithms to this new framework and present the next steps towards a full implementation of the ATLAS trigger within AthenaMT.

  5. Corrosion issues in high-level nuclear waste containers

    Science.gov (United States)

    Asl, Samin Sharifi

    In this dissertation different aspects of corrosion and electrochemistry of copper, candidate canister material in Scandinavian high-level nuclear waste disposal program, including the thermodynamics and kinetics of the reactions that are predicted to occur in the practical system have been studied. A comprehensive thermodynamic study of copper in contact with granitic groundwater of the type and composition that is expected in the Forsmark repository in Sweden has been performed. Our primary objective was to ascertain whether copper would exist in the thermodynamically immune state in the repository, in which case corrosion could not occur and the issue of corrosion in the assessment of the storage technology would be moot. In spite of the fact that metallic copper has been found to exist for geological times in granitic geological formations, copper is well-known to be activated from the immune state to corrode by specific species that may exist in the environment. The principal activator of copper is known to be sulfur in its various forms, including sulfide (H2S, HS-, S2-), polysulfide (H2Sx, HSx -, Sx 2-), poly sulfur thiosulfate ( SxO3 2-), and polythionates (SxO6 2-). A comprehensive study of this aspect of copper chemistry has never been reported, and yet an understanding of this issue is vital for assessing whether copper is a suitable material for fabricating canisters for the disposal of HLNW. Our study identifies and explores those species that activate copper; these species include sulfur-containing entities as well as other, non-sulfur species that may be present in the repository. The effects of temperature, solution pH, and hydrogen pressure on the kinetics of the hydrogen electrode reaction (HER) on copper in borate buffer solution have been studied by means of steady-state polarization measurements, including electrochemical impedance spectroscopy (EIS). In order to obtain electrokinetic parameters, such as the exchange current density and the

  6. High-level waste repository-induced effects

    Energy Technology Data Exchange (ETDEWEB)

    Leupin, O.X.; Marschall, P.; Johnson, L.; Cloet, V.; Schneider, J. [National Cooperative for the Disposal of Radioactive Waste (NAGRA), Wettingen (Switzerland); Smith, P. [Safety Assessment Management Ltd, Henley-On-Thames, Oxfordshire (United Kingdom); Savage, D. [Savage Earth Associates Ltd, Bournemouth, Dorset (United Kingdom); Senger, R. [Intera Inc., Ennetbaden (Switzerland)

    2016-10-15

    This status report aims at describing and assessing the interactions of the radioactive waste emplaced in a high-level waste (HLW) repository with the engineered materials and the Opalinus Clay host rock. The Opalinus Clay has a thickness of about 100 m in the proposed siting regions. Among other things the results are used to steer the RD and D programme of NAGRA. The repository-induced effects considered in this report are of the following broad types: - Thermal effects: i.e. effects on the host rock and engineered barriers arising principally from the heat generated by the waste. - Rock-mechanical effects: i.e. effects arising from the mechanical disturbance to the rock caused by the excavation of the emplacement rooms and other underground structures. - Hydraulic and gas-related effects: i.e. the effects of repository resaturation and of gas generation, e.g. due to the corrosion of metals within the repository, on the host rock and engineered barriers. - Chemical effects: i.e. chemical interactions between the waste, the engineered materials and the host rock, with a focus on chemical effects of the waste and engineered materials on the host rock. The assessment of the repository-induced effects shows that detrimental chemical and mechanical impacts are largely confined to the rock immediately adjacent to the excavations, thermal impacts are controllable by limiting the heat load and gas effects are limited by ensuring acceptably low gas production rates and by the natural tendency of the gas to escape along the excavations and the excavation damaged zone (EDZ) rather than through the undisturbed rock. Specific measures that are part of the current reference design are discussed in relation to their significance with respect to repository-induced effects. The SF/HLW emplacement rooms (emplacement drifts) are designed, constructed, operated and finally backfilled in such a way that formation of excavation damaged zones is limited. Specifically this is achieved

  7. High-level waste repository-induced effects

    International Nuclear Information System (INIS)

    Leupin, O.X.; Marschall, P.; Johnson, L.; Cloet, V.; Schneider, J.; Smith, P.; Savage, D.; Senger, R.

    2016-10-01

    This status report aims at describing and assessing the interactions of the radioactive waste emplaced in a high-level waste (HLW) repository with the engineered materials and the Opalinus Clay host rock. The Opalinus Clay has a thickness of about 100 m in the proposed siting regions. Among other things the results are used to steer the RD and D programme of NAGRA. The repository-induced effects considered in this report are of the following broad types: - Thermal effects: i.e. effects on the host rock and engineered barriers arising principally from the heat generated by the waste. - Rock-mechanical effects: i.e. effects arising from the mechanical disturbance to the rock caused by the excavation of the emplacement rooms and other underground structures. - Hydraulic and gas-related effects: i.e. the effects of repository resaturation and of gas generation, e.g. due to the corrosion of metals within the repository, on the host rock and engineered barriers. - Chemical effects: i.e. chemical interactions between the waste, the engineered materials and the host rock, with a focus on chemical effects of the waste and engineered materials on the host rock. The assessment of the repository-induced effects shows that detrimental chemical and mechanical impacts are largely confined to the rock immediately adjacent to the excavations, thermal impacts are controllable by limiting the heat load and gas effects are limited by ensuring acceptably low gas production rates and by the natural tendency of the gas to escape along the excavations and the excavation damaged zone (EDZ) rather than through the undisturbed rock. Specific measures that are part of the current reference design are discussed in relation to their significance with respect to repository-induced effects. The SF/HLW emplacement rooms (emplacement drifts) are designed, constructed, operated and finally backfilled in such a way that formation of excavation damaged zones is limited. Specifically this is achieved

  8. Thermal analysis of a ventilated high-level waste repository

    International Nuclear Information System (INIS)

    1977-04-01

    The cooling response of a single ventilated storage room in an unventilated array of rooms is examined. Calculations show that ventilation provides a thermal sink in the heated system inducing temperature gradients in the formation different from the unventilated case. An asymptotic cool-down limit exists for the storage room temperature; this minimum temperature depends on inlet air temperature, ventilation flow rate, and convective heat transfer coefficient. For inlet air at 75 0 F and 50,000 cfm and a heat transfer coefficient of 0.8 Btu h- 0 F-ft 2 , the limit is about 100 0 F. A storage room sealed for 5 years will achieve temperatures of approximately 180 0 F, and approximately 4 months would be required in order to cool the storage room floor to a temperature of 120 0 F with a flow rate of 50,000 cfm at an inlet air temperature of 75 0 F, assuming a convective heat transfer coefficient of 0.8 Btu/h- 0 F-ft 2 . Two months would be needed to cool the exhaust air to 120 0 F. For large air flow rates, the cooling time is independent of the flow rate. Increasing the storage room surface area by 25% over the baseline model depresses the cool-down temperatures by only 4 0 F and decreases cooling times by 20%. Modifications in canister design or width have virtually no effect on the cooling, but placing the waste deeper beneath the storage rooms and/or using longer canisters can lower the operating temperatures and cooling times. Reducing the canisters from 3.5 kW power density for 10-year-old waste (108.5 kW/acre) to 2.0 kW/canister (62 kW/acre) reduces cooling temperatures by more than 20 0 F and reduces cooling times to a few weeks or less. The cooling times are nearly independent of the conductivity of the geologic formation. The temperature increase in the air brought from the surface down the supply shaft to the storage room level is about 5 to 7 F 0 per 1000 feet. Temperature increases in regionsshould not be seriously restricted 30 or more feet away

  9. Experimental and analytical study for demonstration program on shielding of casks for high-level wastes

    International Nuclear Information System (INIS)

    Ueki, K.; Nakazawa, M.; Hattorl, S.; Ozaki, S.; Tamaki, H.; Kadotani, H.; Ishizuka, T.; Ishikawa, S.

    1993-01-01

    The following remarks were obtained from the experiment and the DOT 3.5 and the MCNP analyses on the gamma ray and the neutron dose equivalent rates in the cask of interest. 1. The cask has thinner neutron shielding parts around the trunnions. Significant neutrons streaming around the trunnion parts was observed which was also cleared by the MCNP analysis for the 252 Cf source experiment. Accordingly, detailed neutron streaming calculations are required to evaluate the dose levels around the trunnions when loading the vitrified high-level wastes. 2. The room-scattered obstructive neutrons, mainly originating from the neutrons penetrating around the trunnions, at the top and the bottom of the cask are reduced significantly by preparing the water tank at the top and the water layer at the bottom. Therefore, a more accurate experiment is to be carried out in the future shielding experiment especially for neutrons. However, because the water tank and the layer do not exist in the actual high-level wastes transport cask, the experiment without the water tank and layer are not dispensable to demonstrate the transport conditions of the actual cask, too. 3. The gamma-ray and the neutron dose equivalent rate distributions obtained from the DOT 3.5 and the MCNP calculations, respectively, agreed closely with the measured values in the cask areas of interest. Accordingly, the DOT 3.5 code and the MCNP code with the NESX estimator can be employed not only for the shielding analysis of the future experiments, but also for making a safety analysis report of high-level wastes transport casks. (J.P.N.)

  10. Partitioning and recovery of neptunium from high level waste streams of PUREX origin using 30% TBP

    International Nuclear Information System (INIS)

    Mathur, J.N.; Murali, M.S.; Balarama Krishna, M.V.; Iyer, R.H.; Chitnis, R.R.; Wattal, P.K.; Theyyunni, T.K.; Ramanujam, A.; Dhami, P.S.; Gopalakrishnan, V.

    1995-01-01

    237 Np is one of the longest-lived nuclides among the actinides present in the high level waste solutions of reprocessing origin. Its separation, recovery and transmutation can reduce the problem of long term storage of the vitrified waste to a great extent. With this objective, the present work was initiated to study the extraction of neptunium into TBP under the conditions relevant to high level waste, along with uranium and plutonium by oxidising it to hexavalent state using potassium dichromate and subsequently recovering it by selective stripping. Three types of simulated HLW solutions namely sulphate bearing (SB), with an acidity of ∼ 0.3 M and non-sulphate wastes originating from the reprocessing of fuels from pressurised heavy water reactor (PHWR) and fast breeder reactor (FBR) with acidities of 3.0 M HNO 3 were employed in these studies. The extraction of U(VI), Np(VI) and Pu(VI) was very high for PHWR- and FBR-HLW solutions, whereas for the SB-HLW solution, these values were less but reasonably high. Quantitative recovery of neptunium and plutonium was achieved using a stripping solution containing 0.1 M H 2 O 2 and 0.01 M ascorbic acid at an acidity of 2.0 M. Since, cerium present in the waste solutions is expected to undergo oxidation in presence of K 2 Cr 2 O 7 , its extraction behaviour was also studied under similar conditions. Based on the results, a scheme was formulated for the recovery of neptunium along with plutonium and was successfully applied to actual high level waste solution originating from the reprocessing of research reactor fuels. (author). 19 refs., 2 figs., 17 tabs

  11. Reference design and operations for deep borehole disposal of high-level radioactive waste

    International Nuclear Information System (INIS)

    Herrick, Courtney Grant; Brady, Patrick Vane; Pye, Steven; Arnold, Bill Walter; Finger, John Travis; Bauer, Stephen J.

    2011-01-01

    A reference design and operational procedures for the disposal of high-level radioactive waste in deep boreholes have been developed and documented. The design and operations are feasible with currently available technology and meet existing safety and anticipated regulatory requirements. Objectives of the reference design include providing a baseline for more detailed technical analyses of system performance and serving as a basis for comparing design alternatives. Numerous factors suggest that deep borehole disposal of high-level radioactive waste is inherently safe. Several lines of evidence indicate that groundwater at depths of several kilometers in continental crystalline basement rocks has long residence times and low velocity. High salinity fluids have limited potential for vertical flow because of density stratification and prevent colloidal transport of radionuclides. Geochemically reducing conditions in the deep subsurface limit the solubility and enhance the retardation of key radionuclides. A non-technical advantage that the deep borehole concept may offer over a repository concept is that of facilitating incremental construction and loading at multiple perhaps regional locations. The disposal borehole would be drilled to a depth of 5,000 m using a telescoping design and would be logged and tested prior to waste emplacement. Waste canisters would be constructed of carbon steel, sealed by welds, and connected into canister strings with high-strength connections. Waste canister strings of about 200 m length would be emplaced in the lower 2,000 m of the fully cased borehole and be separated by bridge and cement plugs. Sealing of the upper part of the borehole would be done with a series of compacted bentonite seals, cement plugs, cement seals, cement plus crushed rock backfill, and bridge plugs. Elements of the reference design meet technical requirements defined in the study. Testing and operational safety assurance requirements are also defined. Overall

  12. Reference design and operations for deep borehole disposal of high-level radioactive waste.

    Energy Technology Data Exchange (ETDEWEB)

    Herrick, Courtney Grant; Brady, Patrick Vane; Pye, Steven; Arnold, Bill Walter; Finger, John Travis; Bauer, Stephen J.

    2011-10-01

    A reference design and operational procedures for the disposal of high-level radioactive waste in deep boreholes have been developed and documented. The design and operations are feasible with currently available technology and meet existing safety and anticipated regulatory requirements. Objectives of the reference design include providing a baseline for more detailed technical analyses of system performance and serving as a basis for comparing design alternatives. Numerous factors suggest that deep borehole disposal of high-level radioactive waste is inherently safe. Several lines of evidence indicate that groundwater at depths of several kilometers in continental crystalline basement rocks has long residence times and low velocity. High salinity fluids have limited potential for vertical flow because of density stratification and prevent colloidal transport of radionuclides. Geochemically reducing conditions in the deep subsurface limit the solubility and enhance the retardation of key radionuclides. A non-technical advantage that the deep borehole concept may offer over a repository concept is that of facilitating incremental construction and loading at multiple perhaps regional locations. The disposal borehole would be drilled to a depth of 5,000 m using a telescoping design and would be logged and tested prior to waste emplacement. Waste canisters would be constructed of carbon steel, sealed by welds, and connected into canister strings with high-strength connections. Waste canister strings of about 200 m length would be emplaced in the lower 2,000 m of the fully cased borehole and be separated by bridge and cement plugs. Sealing of the upper part of the borehole would be done with a series of compacted bentonite seals, cement plugs, cement seals, cement plus crushed rock backfill, and bridge plugs. Elements of the reference design meet technical requirements defined in the study. Testing and operational safety assurance requirements are also defined. Overall

  13. Site investigations for final disposal of high-level nuclear waste

    International Nuclear Information System (INIS)

    Aeikaes, T.; Laine, T.

    1982-12-01

    Research concerning disposal of high-level nuclear waste of the Industrial Power Company Ltd has focused on deep underground disposal in Finnish precambrian bedrock. The present target is to have a repository for high-level waste in operation by 2020. Selection of the repository site is based on site investigations. In addition to geosciences, selection of appropriate site includes many branches of studies; engineering, safety analysis, ecology, transport, demography etc. The investigations required for site selection for high-level waste have been arranged in a sequence of four phases. The aim of the phases is that investigations become more and more detailed as the selection process continues. Phase I of the investigations is the characterization of potential areas. This comprises establishment of criteria for site selection and identification of areas that meet selection criteria. Objective of these studies is to determine areas for phase II field investigations. The studies are largely made by reviewing existing data and remote-sensing techniques. Phase II field investigations will be undertaken between 1986-1992. The number of potential candidates for repository site is reduced to few preferred areas by preceeding generic study. The site selection process culminates in phase III in site confirmation studies carried out at 2...3 most suitable sites during 1992-2010. This is then followed by phase IV, which comprises very detailed investigations at the selected site. An alternative for these investigations is to undertake them by using pilot shaft and drifts. Active development is taking place in all phases concerning investigation methods, criteria, parameters, data processing and modelling. The applicability of the various investigation methods and techniques is tested in a deep borehole in phase I. The co-operation with countries with similar geological conditions makes it possible to compare results obtained by different techniques

  14. Experiment planning using high-level component models at W7-X

    International Nuclear Information System (INIS)

    Lewerentz, Marc; Spring, Anett; Bluhm, Torsten; Heimann, Peter; Hennig, Christine; Kühner, Georg; Kroiss, Hugo; Krom, Johannes G.; Laqua, Heike; Maier, Josef; Riemann, Heike; Schacht, Jörg; Werner, Andreas; Zilker, Manfred

    2012-01-01

    Highlights: ► Introduction of models for an abstract description of fusion experiments. ► Component models support creating feasible experiment programs at planning time. ► Component models contain knowledge about physical and technical constraints. ► Generated views on models allow to present crucial information. - Abstract: The superconducting stellarator Wendelstein 7-X (W7-X) is a fusion device, which is capable of steady state operation. Furthermore W7-X is a very complex technical system. To cope with these requirements a modular and strongly hierarchical component-based control and data acquisition system has been designed. The behavior of W7-X is characterized by thousands of technical parameters of the participating components. The intended sequential change of those parameters during an experiment is defined in an experiment program. Planning such an experiment program is a crucial and complex task. To reduce the complexity an abstract, more physics-oriented high-level layer has been introduced earlier. The so-called high-level (physics) parameters are used to encapsulate technical details. This contribution will focus on the extension of this layer to a high-level component model. It completely describes the behavior of a component for a certain period of time. It allows not only defining simple value ranges but also complex dependencies between physics parameters. This can be: dependencies within components, dependencies between components or temporal dependencies. Component models can now be analyzed to generate various views of an experiment. A first implementation of such an analyze process is already finished. A graphical preview of a planned discharge can be generated from a chronological sequence of component models. This allows physicists to survey complex planned experiment programs at a glance.

  15. Reevaluation of Vitrified High-Level Waste Form Criteria for Potential Cost Savings at the Defense Waste Processing Facility - 13598

    Energy Technology Data Exchange (ETDEWEB)

    Ray, J.W. [Savannah River Remediation (United States); Marra, S.L.; Herman, C.C. [Savannah River National Laboratory, Savannah River Site, Aiken, SC 29808 (United States)

    2013-07-01

    At the Savannah River Site (SRS) the Defense Waste Processing Facility (DWPF) has been immobilizing SRS's radioactive high level waste (HLW) sludge into a durable borosilicate glass since 1996. Currently the DWPF has poured over 3,500 canisters, all of which are compliant with the U. S. Department of Energy's (DOE) Waste Acceptance Product Specifications for Vitrified High-Level Waste Forms (WAPS) and therefore ready to be shipped to a federal geologic repository for permanent disposal. Due to DOE petitioning to withdraw the Yucca Mountain License Application (LA) from the Nuclear Regulatory Commission (NRC) in 2010 and thus no clear disposal path for SRS canistered waste forms, there are opportunities for cost savings with future canister production at DWPF and other DOE producer sites by reevaluating high-level waste form requirements and compliance strategies and reducing/eliminating those that will not negatively impact the quality of the canistered waste form. (authors)

  16. Reevaluation Of Vitrified High-Level Waste Form Criteria For Potential Cost Savings At The Defense Waste Processing Facility

    International Nuclear Information System (INIS)

    Ray, J. W.; Marra, S. L.; Herman, C. C.

    2013-01-01

    At the Savannah River Site (SRS) the Defense Waste Processing Facility (DWPF) has been immobilizing SRS's radioactive high level waste (HLW) sludge into a durable borosilicate glass since 1996. Currently the DWPF has poured over 3,500 canisters, all of which are compliant with the U. S. Department of Energy's (DOE) Waste Acceptance Product Specifications for Vitrified High-Level Waste Forms (WAPS) and therefore ready to be shipped to a federal geologic repository for permanent disposal. Due to DOE petitioning to withdraw the Yucca Mountain License Application (LA) from the Nuclear Regulatory Commission (NRC) in 2010 and thus no clear disposal path for SRS canistered waste forms, there are opportunities for cost savings with future canister production at DWPF and other DOE producer sites by reevaluating high-level waste form requirements and compliance strategies and reducing/eliminating those that will not negatively impact the quality of the canistered waste form

  17. Remedial measures against high levels of radioisotopes in aquatic ecosystems

    International Nuclear Information System (INIS)

    Voitsekhovitch, O.; Haakanson, L.

    2000-01-01

    This Annex has been prepared within the framework of the Aquatic Working Group of the co-ordinated Research Programme on Validation of the Environmental Model Predictions (VAMP). The main objectives of this Annex are: (1) To provide an outline of a broad set of remedial measures and strategies tested and suggested for aquatic systems to speed up the recovery after the nuclear accident at Chernobyl in April 1986. This Report covers case studies from rivers and lakes and includes results from field and laboratory experiments, as well as measures directed at reducing radioisotopes in food by different food preparation procedures in the home. (2) To provide results from selected case studies, focusing on general, strategic results rather than site-specific details. (3) To provide conclusions which specifically address practical matters concerning how to select remedial measures in different situations, how to avoid inefficient measures, and to suggest important areas for future research. (4) To provide an analysis of the concept of lake sensitivity using both empirical and modelled data. One and the same fallout may give rise to very different radionuclide concentrations in water and biota depending on the characteristics of the lake and its catchment

  18. Operational experience with the ALICE High Level Trigger

    Science.gov (United States)

    Szostak, Artur

    2012-12-01

    The ALICE HLT is a dedicated real-time system for online event reconstruction and triggering. Its main goal is to reduce the raw data volume read from the detectors by an order of magnitude, to fit within the available data acquisition bandwidth. This is accomplished by a combination of data compression and triggering. When HLT is enabled, data is recorded only for events selected by HLT. The combination of both approaches allows for flexible data reduction strategies. Event reconstruction places a high computational load on HLT. Thus, a large dedicated computing cluster is required, comprising 248 machines, all interconnected with InfiniBand. Running a large system like HLT in production mode proves to be a challenge. During the 2010 pp and Pb-Pb data-taking period, many problems were experienced that led to a sub-optimal operational efficiency. Lessons were learned and certain crucial changes were made to the architecture and software in preparation for the 2011 Pb-Pb run, in which HLT had a vital role performing data compression for ALICE's largest detector, the TPC. An overview of the status of the HLT and experience from the 2010/2011 production runs are presented. Emphasis is given to the overall performance, showing an improved efficiency and stability in 2011 compared to 2010, attributed to the significant improvements made to the system. Further opportunities for improvement are identified and discussed.

  19. Operational experience with the ALICE High Level Trigger

    International Nuclear Information System (INIS)

    Szostak, Artur

    2012-01-01

    The ALICE HLT is a dedicated real-time system for online event reconstruction and triggering. Its main goal is to reduce the raw data volume read from the detectors by an order of magnitude, to fit within the available data acquisition bandwidth. This is accomplished by a combination of data compression and triggering. When HLT is enabled, data is recorded only for events selected by HLT. The combination of both approaches allows for flexible data reduction strategies. Event reconstruction places a high computational load on HLT. Thus, a large dedicated computing cluster is required, comprising 248 machines, all interconnected with InfiniBand. Running a large system like HLT in production mode proves to be a challenge. During the 2010 pp and Pb-Pb data-taking period, many problems were experienced that led to a sub-optimal operational efficiency. Lessons were learned and certain crucial changes were made to the architecture and software in preparation for the 2011 Pb-Pb run, in which HLT had a vital role performing data compression for ALICE's largest detector, the TPC. An overview of the status of the HLT and experience from the 2010/2011 production runs are presented. Emphasis is given to the overall performance, showing an improved efficiency and stability in 2011 compared to 2010, attributed to the significant improvements made to the system. Further opportunities for improvement are identified and discussed.

  20. High-level managers' considerations for RFID adoption in hospitals: an empirical study in Taiwan.

    Science.gov (United States)

    Lai, Hui-Min; Lin, I-Chun; Tseng, Ling-Tzu

    2014-02-01

    Prior researches have indicated that an appropriate adoption of information technology (IT) can help hospitals significantly improve services and operations. Radio Frequency Identification (RFID) is believed to be the next generation innovation technology for automatic data collection and asset/people tracking. Based on the Technology-Organization-Environment (TOE) framework, this study investigated high-level managers' considerations for RFID adoption in hospitals. This research reviewed literature related IT adoption in business and followed the results of a preliminary survey with 37 practical experts in hospitals to theorize a model for the RFID adoption in hospitals. Through a field survey of 102 hospitals and hypotheses testing, this research identified key factors influencing RFID adoption. Follow-up in-depth interviews with three high-level managers of IS department from three case hospitals respectively also presented an insight into the decision of RFID's adoption. Based on the research findings, cost, ubiquity, compatibility, security and privacy risk, top management support, hospital scale, financial readiness and government policy were concluded to be the key factors influencing RFID adoption in hospitals. For practitioners, this study provided a comprehensive overview of government policies able to promote the technology, while helping the RFID solution providers understand how to reduce the IT barriers in order to enhance hospitals' willingness to adopt RFID.

  1. Crystallization in high-level waste glass: A review of glass theory and noteworthy literature

    Energy Technology Data Exchange (ETDEWEB)

    Christian, J. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-08-01

    There is a fundamental need to continue research aimed at understanding nepheline and spinel crystal formation in high-level waste (HLW) glass. Specifically, the formation of nepheline solids (K/NaAlSiO₄) during slow cooling of HLW glass can reduce the chemical durability of the glass, which can cause a decrease in the overall durability of the glass waste form. The accumulation of spinel solids ((Fe, Ni, Mn, Zn)(Fe,Cr)₂O₄), while not detrimental to glass durability, can cause an array of processing problems inside of HLW glass melters. In this review, the fundamental differences between glass and solid-crystals are explained using kinetic, thermodynamic, and viscosity arguments, and several highlights of glass-crystallization research, as it pertains to high-level waste vitrification, are described. In terms of mitigating spinel in the melter and both spinel and nepheline formation in the canister, the complexity of HLW glass and the intricate interplay between thermal, chemical, and kinetic factors further complicates this understanding. However, new experiments seeking to elucidate the contributing factors of crystal nucleation and growth in waste glass, and the compilation of data from older experiments, may go a long way towards helping to achieve higher waste loadings while developing more efficient processing strategies.

  2. Health and environmental risk-related impacts of actinide burning on high-level waste disposal

    International Nuclear Information System (INIS)

    Forsberg, C.W.

    1992-05-01

    The potential health and environmental risk-related impacts of actinide burning for high-level waste disposal were evaluated. Actinide burning, also called waste partitioning-transmutation, is an advanced method for radioactive waste management based on the idea of destroying the most toxic components in the waste. It consists of two steps: (1) selective removal of the most toxic radionuclides from high-level/spent fuel waste and (2) conversion of those radionuclides into less toxic radioactive materials and/or stable elements. Risk, as used in this report, is defined as the probability of a failure times its consequence. Actinide burning has two potential health and environmental impacts on waste management. Risks and the magnitude of high-consequence repository failure scenarios are decreased by inventory reduction of the long-term radioactivity in the repository. (What does not exist cannot create risk or uncertainty.) Risk may also be reduced by the changes in the waste characteristics, resulting from selection of waste forms after processing, that are superior to spent fuel and which lower the potential of transport of radionuclides from waste form to accessible environment. There are no negative health or environmental impacts to the repository from actinide burning; however, there may be such impacts elsewhere in the fuel cycle

  3. Policy Requirements and Factors of High-Level Radioactive Waste Management

    International Nuclear Information System (INIS)

    Lee, Kang Myoung; Jeong, J. Y.; Ha, K. M.

    2007-06-01

    Recently, the need of high-level radioactive waste policy including spent fuel management becomes serious due to the rapid increase in oil price, the nationalism of natural resources, and the environmental issues such as Tokyo protocol. Also, the policy should be established urgently to prepare the saturation of on-site storage capacity of spent fuel, the revision of 'Agreement for Cooperation-Concerning Civil Uses of Atomic Energy' between Korea and US, the anxiety for nuclear weapon proliferation, and R and D to reduce the amount of waste to be disposed. In this study, we performed case study of US, Japan, Canada and Finland, which have special laws and plans/roadmaps for high-level waste management, to draw the policy requirements to be considered in HLW management. Also, we reviewed social conflict issues experienced in our society, and summarized the factors affecting the political and social environment. These policy requirements and factors summarized in this study should be considered seriously in the process for public consensus and the policy making regarding HLW management. Finally, the following 4 action items were drawn to manage HLW successfully : - Continuous and systematic R and D activities to obtain reliable management technology - Promoting companies having specialty in HLW management - Nurturing experts and workforce - Drive the public consensus process

  4. The storage of liquid high level waste at BNFL, Sellafield. Addendum to February 2000 report

    International Nuclear Information System (INIS)

    2001-08-01

    On 18 February 2000 the Health and Safety Executive (HSE) published a report on the work of its Nuclear Installations Inspectorate (NIl) in regulating the storage of liquid high level waste at the BNFL Sellafield site. Within the report NIl gave two undertakings. One was to publish an addendum around 1 year later covering its assessment of the new safety case for the storage plant and the second was to publish a further addendum when progress had been made with options studies for reducing the stocks of liquid high level waste (HLW), also referred to as highly active liquor (HAL), to a buffer level. A progress report was published in February 2001 which included a summary of the assessment of the new safety case and NIl's regulatory action to enforce liquid HLW stock reductions. This addendum provides a more detailed update on the position reached based on consideration of BNFL's responses to the recommendations from the February 2000 HLW report since its publication. It embodies the two addenda referred to above integrated into a single document for publication

  5. High-level pullulan production by Aureobasidium pullulans var. melanogenium P16 isolated from mangrove system.

    Science.gov (United States)

    Ma, Zai-Chao; Fu, Wen-Juan; Liu, Guang-Lei; Wang, Zhi-Peng; Chi, Zhen-Ming

    2014-06-01

    After over 100 strains of Aureobasidium spp. isolated from mangrove system were screened for their ability to produce exopolysaccharide (EPS), it was found that Aureobasidium pullulans var. melanogenium P16 strain among them could produce high level of EPS. Under the optimal conditions, 65.3 g/L EPS was produced by the P16 strain within 120 h at flask level. During 10-L batch fermentation, when the medium contained 120.0 g/L sucrose, 67.4 g/L of EPS and 23.1 g/L of cell dry weight in the culture were obtained within 120 h, leaving 0.78 g/L of reducing sugar and 11.4 g/L of total sugar in the fermented medium. It should be stressed that during the fermentation, no melanin was observed. After purification, the purified EPS was confirmed to be pullulan. This is the first time to report that A. pullulans var. melanogenium P16 strain isolated from the mangrove system can produce high level of pullulan.

  6. Platelets retain high levels of active plasminogen activator inhibitor 1.

    Directory of Open Access Journals (Sweden)

    Helén Brogren

    Full Text Available The vascular fibrinolytic system is crucial for spontaneous lysis of blood clots. Plasminogen activator inhibitor 1 (PAI-1, the principal inhibitor of the key fibrinolytic enzyme tissue-type plasminogen activator (tPA, is present in platelets at high concentrations. However, the majority of PAI-1 stored in platelets has been considered to be inactive. Our recent finding (Brogren H, et al. Blood 2004 that PAI-1 de novo synthesized in platelets remained active for over 24 h, suggested that PAI-1 stored in the α-granules might be active to a larger extent than previously reported. To re-evaluate this issue, we performed experiments where the fraction of active PAI-1 was estimated by analyzing the tPA-PAI-1 complex formation. In these experiments platelets were lysed with Triton X-100 in the presence of serial dilutions of tPA and subsequently the tPA-PAI-1 complex was evaluated by Western blot. Also, using a non-immunologic assay, tPA was labeled with (125I, and (125I-tPA and (125I-tPA-PAI-1 was quantified by scintigraphy. Interestingly, both methods demonstrated that the majority (>50% of platelet PAI-1 is active. Further analyses suggested that pre-analytical procedures used in previous studies (sonication or freezing/thawing may have substantially reduced the activity of platelet PAI-1, which has lead to an underestimation of the proportion of active PAI-1. Our in vitro results are more compatible with the role of PAI-1 in clot stabilization as demonstrated in physiological and pathophysiological studies.

  7. Electric Grid Expansion Planning with High Levels of Variable Generation

    Energy Technology Data Exchange (ETDEWEB)

    Hadley, Stanton W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); You, Shutang [Univ. of Tennessee, Knoxville, TN (United States); Shankar, Mallikarjun [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Liu, Yilu [Univ. of Tennessee, Knoxville, TN (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-02-01

    Renewables are taking a large proportion of generation capacity in U.S. power grids. As their randomness has increasing influence on power system operation, it is necessary to consider their impact on system expansion planning. To this end, this project studies the generation and transmission expansion co-optimization problem of the US Eastern Interconnection (EI) power grid with a high wind power penetration rate. In this project, the generation and transmission expansion problem for the EI system is modeled as a mixed-integer programming (MIP) problem. This study analyzed a time series creation method to capture the diversity of load and wind power across balancing regions in the EI system. The obtained time series can be easily introduced into the MIP co-optimization problem and then solved robustly through available MIP solvers. Simulation results show that the proposed time series generation method and the expansion co-optimization model and can improve the expansion result significantly after considering the diversity of wind and load across EI regions. The improved expansion plan that combines generation and transmission will aid system planners and policy makers to maximize the social welfare. This study shows that modelling load and wind variations and diversities across balancing regions will produce significantly different expansion result compared with former studies. For example, if wind is modeled in more details (by increasing the number of wind output levels) so that more wind blocks are considered in expansion planning, transmission expansion will be larger and the expansion timing will be earlier. Regarding generation expansion, more wind scenarios will slightly reduce wind generation expansion in the EI system and increase the expansion of other generation such as gas. Also, adopting detailed wind scenarios will reveal that it may be uneconomic to expand transmission networks for transmitting a large amount of wind power through a long distance

  8. INSTITUTIONALIZING SAFEGUARDS-BY-DESIGN: HIGH-LEVEL FRAMEWORK

    Energy Technology Data Exchange (ETDEWEB)

    Trond Bjornard PhD; Joseph Alexander; Robert Bean; Brian Castle; Scott DeMuth, Ph.D.; Phillip Durst; Michael Ehinger; Prof. Michael Golay, Ph.D.; Kevin Hase, Ph.D.; David J. Hebditch, DPhil; John Hockert, Ph.D.; Bruce Meppen; James Morgan; Jerry Phillips, Ph.D., PE

    2009-02-01

    The application of a Safeguards-by-Design (SBD) process for new nuclear facilities can reduce proliferation risks. A multi-laboratory team was sponsored in Fiscal Year (FY) 2008 to define a SBD process and determine how it could be incorporated into existing facility design and construction processes. The possibility to significantly influence major design features, such as process selection and plant layout, largely ends with the conceptual design step. Therefore SBD’s principal focus must be on the early inclusion of safeguards requirements and the early identification of beneficial design features. The result could help form the basis for a new international norm for integrating safeguards into facility design. This is an interim report describing progress and project status as of the end of FY08. In this effort, SBD is defined as a structured approach to ensure the timely, efficient, and cost-effective integration of international and national safeguards, physical security, and other nonproliferation objectives into the overall design process for a nuclear facility. A key objective is to ensure that security and nonproliferation issues are considered when weighing facility design alternatives. Central to the work completed in FY08 was a study in which a SBD process was developed in the context of the current DOE facility acquisition process. The DOE study enabled the development of a “SBD design loop” that is suitable for use in any facility design process. It is a graded, iterative process that incorporates safeguards concerns throughout the conceptual, preliminary and final design processes. Additionally, a set of proposed design principles for SBD was developed. A “Generic SBD Process” was then developed. Key features of the process include the initiation of safeguards design activities in the pre-conceptual planning phase, early incorporation of safeguards requirements into the project requirements, early appointment of an SBD team, and

  9. INSTITUTIONALIZING SAFEGUARDS-BY-DESIGN: HIGH-LEVEL FRAMEWORK

    International Nuclear Information System (INIS)

    Bjornard, Trond; Alexander, Joseph; Bean, Robert; Castle, Brian; DeMuth, Scott; Durst, Phillip; Ehinger, Michael; Golay, Michael; Hase, Kevin; Hebditch, David J.; Hockert, John; Meppen, Bruce; Morgan, James; Phillips, Jerry

    2009-01-01

    The application of a Safeguards-by-Design (SBD) process for new nuclear facilities can reduce proliferation risks. A multi-laboratory team was sponsored in Fiscal Year (FY) 2008 to define a SBD process and determine how it could be incorporated into existing facility design and construction processes. The possibility to significantly influence major design features, such as process selection and plant layout, largely ends with the conceptual design step. Therefore SBD's principal focus must be on the early inclusion of safeguards requirements and the early identification of beneficial design features. The result could help form the basis for a new international norm for integrating safeguards into facility design. This is an interim report describing progress and project status as of the end of FY08. In this effort, SBD is defined as a structured approach to ensure the timely, efficient, and cost-effective integration of international and national safeguards, physical security, and other nonproliferation objectives into the overall design process for a nuclear facility. A key objective is to ensure that security and nonproliferation issues are considered when weighing facility design alternatives. Central to the work completed in FY08 was a study in which a SBD process was developed in the context of the current DOE facility acquisition process. The DOE study enabled the development of a 'SBD design loop' that is suitable for use in any facility design process. It is a graded, iterative process that incorporates safeguards concerns throughout the conceptual, preliminary and final design processes. Additionally, a set of proposed design principles for SBD was developed. A 'Generic SBD Process' was then developed. Key features of the process include the initiation of safeguards design activities in the pre-conceptual planning phase, early incorporation of safeguards requirements into the project requirements, early appointment of an SBD team, and participation in

  10. Site selection procedure for high level radioactive waste disposal in Bulgaria

    International Nuclear Information System (INIS)

    Evstatiev, D.; Vachev, B.

    1993-01-01

    A combined site selection approach is implemented. Bulgaria's territory has been classified in three categories, presented on a 1:500000 scale map. The number of suitable sites has been reduced to 20 using the method of successive screening. The formulated site selection problem is a typical discrete multi-criteria decision making problem under uncertainty. A 5-level procedure using Expert Choice Rating and relative models is created. It is a part of a common procedure for evaluation and choice of variants for high level radwaste disposal construction. On this basis 7-8 more preferable sites are demonstrated. A new knowledge and information about the relative importance of the criteria and their subsets, about the level of criteria uncertainty and the reliability are gained. It is very useful for planning and managing of the next final stages of the site selection procedure. 7 figs., 8 refs., 4 suppls. (author)

  11. Mathematical modelling of heat production in deep geological repository of high-level nuclear waste

    International Nuclear Information System (INIS)

    Kovanda, O.

    2017-01-01

    Waste produced by nuclear industry requires special handling. Currently, there is a research taking place, focused at possibilities of nuclear waste storage in deep geological repositories, hosted in stable geological environment. The high-level nuclear waste produces significant amount of heat for a long time, which can affect either environment outside of or within the repository in a negative way. Therefore to reduce risks, it is desirable to know the principles of such heat production, which can be achieved using mathematical modeling. This thesis comes up with a general model of heat production-time dependency, dependable on initial composition of the waste. To be able to model real situations, output of this thesis needs to be utilized in an IT solution. (authors)

  12. An Evaluation of the High Level Architecture (HLA) as a Framework for NASA Modeling and Simulation

    Science.gov (United States)

    Reid, Michael R.; Powers, Edward I. (Technical Monitor)

    2000-01-01

    The High Level Architecture (HLA) is a current US Department of Defense and an industry (IEEE-1516) standard architecture for modeling and simulations. It provides a framework and set of functional rules and common interfaces for integrating separate and disparate simulators into a larger simulation. The goal of the HLA is to reduce software costs by facilitating the reuse of simulation components and by providing a runtime infrastructure to manage the simulations. In order to evaluate the applicability of the HLA as a technology for NASA space mission simulations, a Simulations Group at Goddard Space Flight Center (GSFC) conducted a study of the HLA and developed a simple prototype HLA-compliant space mission simulator. This paper summarizes the prototyping effort and discusses the potential usefulness of the HLA in the design and planning of future NASA space missions with a focus on risk mitigation and cost reduction.

  13. The ATLAS trigger: high-level trigger commissioning and operation during early data taking

    International Nuclear Information System (INIS)

    Goncalo, R

    2008-01-01

    The ATLAS experiment is one of the two general-purpose experiments due to start operation soon at the Large Hadron Collider (LHC). The LHC will collide protons at a centre of mass energy of 14 TeV, with a bunch-crossing rate of 40 MHz. The ATLAS three-level trigger will reduce this input rate to match the foreseen offline storage capability of 100-200 Hz. This paper gives an overview of the ATLAS High Level Trigger focusing on the system design and its innovative features. We then present the ATLAS trigger strategy for the initial phase of LHC exploitation. Finally, we report on the valuable experience acquired through in-situ commissioning of the system where simulated events were used to exercise the trigger chain. In particular we show critical quantities such as event processing times, measured in a large-scale HLT farm using a complex trigger menu

  14. Maintenance Free and Sustainable High-Level Control in Cement and Mining Industry

    DEFF Research Database (Denmark)

    Hansen, Ole Fink

    2009-01-01

    High-level control systems have been utilized in the process industry for decades, and also in cement production their use is well established. In comparison to manual control their ability to increase production and quality of end product, while reducing energy consumption and emission, is well...... but nevertheless still require maintenance. For the 10% of the algorithm that is control related, the maintenance issue is to some extent addressed by research topics such as adaptive control, which aim at retuning the parameters of the algorithm to match the changing process. In this project however, it has been...... chosen to focus on the remaining 90% of the algorithm which still require manual modifications to cope with a changed process. Although this issue has gained limited attention from academia so far it is well recognized by the industry. In the process of maintaining an algorithm it has turned out...

  15. The disposal of high level radioactive waste and the need for assessing the radiological impact

    International Nuclear Information System (INIS)

    Johansson, G.; Haegg, C.

    1990-01-01

    Different options for the disposal of high level radioactive waste are being considered in several different countries. When assessing the possible future impact of these disposal concepts, very large uncertainties are associated with the predictions. These uncertainties include scenario representation, conceptual and mathematical modelling, parameter evaluation and finally the interpretation of the results. Some of these uncertainties cannot be eliminated regardless of research efforts, e.g. the evolution of the society and the environment. The paper discusses in general terms to what extent uncertainties in the predictions could be reduced and in the light of this discussion the authors present their point of view regarding the fruitfulness of assessing radiological impact in the far future. (orig.)

  16. A regulatory perspective on design and performance requirements for engineered systems in high-level waste

    International Nuclear Information System (INIS)

    Bernero, R.M.

    1992-01-01

    For engineered systems, this paper gives an overview of some of the current activities at the U.S. Nuclear Regulatory Commission (NRC), with the intent of elucidating how the regulatory process works in the management of high-level waste (HLW). Throughout the waste management cycle, starting with packaging and transportation, and continuing to final closure of a repository, these activities are directed at taking advantage of the prelicensing consultation period, a period in which the NRC, DOE and others can interact in ways that will reduce regulatory, technical and institutional uncertainties, and open the path to development and construction of a deep geologic repository for permanent disposal of HLW. Needed interactions in the HLW program are highlighted. Examples of HLW regulatory activities are given in discussions of a multipurpose-cask concept and of current NRC work on the meaning of the term substantially complete containment

  17. Study on the development of safety regulations for geological disposal of high-level radioactive waste

    International Nuclear Information System (INIS)

    Wei Fangxin

    2012-01-01

    The development of regulations under Regulations on Safety Management of Radioactive Waste has become necessary as the issuance of it. The regulations related to geological disposal of high-level radioactive waste can promote the progress of research and development on geological disposal of high-level radioactive waste in China. This paper has present suggestions on development of regulations on geological disposal of high-level radioactive waste by analyzing development of safety regulations on geological disposal of high-level radioactive waste in foreign countries and problems occurred in China and discussed important issues related to the development of safety regulations on geological disposal of high-level radioactive waste. (author)

  18. The ATLAS trigger high-level trigger commissioning and operation during early data taking

    CERN Document Server

    Goncalo, R

    2008-01-01

    The ATLAS experiment is one of the two general-purpose experiments due to start operation soon at the Large Hadron Collider (LHC). The LHC will collide protons at a centre of mass energy of 14~TeV, with a bunch-crossing rate of 40~MHz. The ATLAS three-level trigger will reduce this input rate to match the foreseen offline storage capability of 100-200~Hz. After the Level 1 trigger, which is implemented in custom hardware, the High-Level Trigger (HLT) further reduces the rate from up to 100~kHz to the offline storage rate while retaining the most interesting physics. The HLT is implemented in software running in commercially available computer farms and consists of Level 2 and Event Filter. To reduce the network data traffic and the processing time to manageable levels, the HLT uses seeded, step-wise reconstruction, aiming at the earliest possible rejection. Data produced during LHC commissioning will be vital for calibrating and aligning sub-detectors, as well as for testing the ATLAS trigger and setting up t...

  19. Multi­-Threaded Algorithms for General purpose Graphics Processor Units in the ATLAS High Level Trigger

    CERN Document Server

    Conde Mui\\~no, Patricia; The ATLAS collaboration

    2016-01-01

    General purpose Graphics Processor Units (GPGPU) are being evaluated for possible future inclusion in an upgraded ATLAS High Level Trigger farm. We have developed a demonstrator including GPGPU implementations of Inner Detector and Muon tracking and Calorimeter clustering within the ATLAS software framework. ATLAS is a general purpose particle physics experiment located on the LHC collider at CERN. The ATLAS Trigger system consists of two levels, with level 1 implemented in hardware and the High Level Trigger implemented in software running on a farm of commodity CPU. The High Level Trigger reduces the trigger rate from the 100 kHz level 1 acceptance rate to 1 kHz for recording, requiring an average per­-event processing time of ~250 ms for this task. The selection in the high level trigger is based on reconstructing tracks in the Inner Detector and Muon Spectrometer and clusters of energy deposited in the Calorimeter. Performing this reconstruction within the available farm resources presents a significant ...

  20. Steam stripping of polycyclic aromatics from simulated high-level radioactive waste

    International Nuclear Information System (INIS)

    Lambert, D.P.; Shah, H.B.; Young, S.R.; Edwards, R.E.; Carter, J.T.

    1992-01-01

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS) will be the United States' first facility to process High Level radioactive Waste (HLW) into a borosilicate glass matrix. The removal of aromatic precipitates by hydrolysis, evaporation, liquid-liquid extraction and decantation will be a key step in the processing of the HLW. This step, titled the Precipitate Hydrolysis Process, has been demonstrated by the Savannah River Technology Center with the Precipitate Hydrolysis Experimental Facility (PHEF). The mission of the PHEF is to demonstrate processing of simulated high level radioactive waste which contains tetraphenylborate precipitates and nitrite. Aqueous washing or nitrite destruction is used to reduce nitrite. Formic acid with a copper catalyst is used to hydrolyze tetraphenylborate (TPB). The primary offgases are benzene, carbon dioxide, nitrous oxide, and nitric oxide. Hydrolysis of TPB in the presence of nitrite results in the production of polycyclic aromatics and aromatic amines (referred as high boiling organics) such as biphenyl, diphenylamine, terphenyls etc. The decanter separates the organic (benzene) and aqueous phase, but the high boiling organic separation is difficult. This paper focuses on the evaluation of the operating strategies, including steam stripping, to maximize the removal of the high boiling organics from the aqueous stream. Two areas were investigated, (1) a stream stripping comparison of the late wash flowsheet to the HAN flowsheet and (2) the extraction performance of the original decanter to the new decanter. The focus of both studies was to minimize the high boiling organic content of the Precipitate Hydrolysis Aqueous (PHA) product in order to minimize downstream impacts caused by organic deposition

  1. Laboratory characterization and vitrification of Hanford radioactive high-level waste

    International Nuclear Information System (INIS)

    Tingey, J.M.; Elliott, M.L.; Larson, D.E.; Morrey, E.V.

    1991-05-01

    Radioactive high-level wastes generated at the Department of Energy's Hanford Site are stored in underground carbon steel tanks. Two double-shell tanks contain neutralized current acid waste (NCAW) from the reprocessing of irradiated nuclear fuel in the Plutonium and Uranium Extraction (PUREX) Plant. The tanks were sampled for characterization and waste immobilization process/product development. The high-level waste generated in PUREX was denitrated with sugar to form current acid waste (CAW). The CAW was ''neutralized'' to a pH of approximately 14 by adding sodium hydroxide to reduce corrosion of the tanks. This ''neutralized'' waste is called Neutralized Current Acid Waste. Both precipitated solids and liquids are stored in the NCAW waste tanks. The NCAW contains small amounts of plutonium and most of the fission products and americium from the irradiated fuel. NCAW also contains stainless steel corrosion products, and iron and sulfate from the ferrous sulfamate reductant used in the PUREX process. The NCAW will be retrieved, pretreated, and immobilized prior to final disposal. Pretreatment consists of water washing the precipitated NCAW solids for sulfate and soluble salts removal as a waste reduction step prior to vitrification. This waste is expected to be the first waste type to be retrieved and vitrified in the Hanford Waste Vitrification Plant (HWVP). A characterization plan was developed that details the processing of the small-volume NCAW samples through retrieval, pretreatment and vitrification process steps. Physical, rheological, chemical, and radiochemical properties were measured throughout these process steps. The results of nonradioactive simulant tests were used to develop appropriate pretreatment and vitrification process steps. The processing and characterization of simulants and actual NCAW tank samples are used to evaluate the operation of these processes. 3 refs., 1 fig., 4 tabs

  2. High-level production of human interleukin-10 fusions in tobacco cell suspension cultures

    Science.gov (United States)

    Kaldis, Angelo; Ahmad, Adil; Reid, Alexandra; McGarvey, Brian; Brandle, Jim; Ma, Shengwu; Jevnikar, Anthony; Kohalmi, Susanne E; Menassa, Rima

    2013-01-01

    The production of pharmaceutical proteins in plants has made much progress in recent years with the development of transient expression systems, transplastomic technology and humanizing glycosylation patterns in plants. However, the first therapeutic proteins approved for administration to humans and animals were made in plant cell suspensions for reasons of containment, rapid scale-up and lack of toxic contaminants. In this study, we have investigated the production of human interleukin-10 (IL-10) in tobacco BY-2 cell suspension and evaluated the effect of an elastin-like polypeptide tag (ELP) and a green fluorescent protein (GFP) tag on IL-10 accumulation. We report the highest accumulation levels of hIL-10 obtained with any stable plant expression system using the ELP fusion strategy. Although IL-10-ELP has cytokine activity, its activity is reduced compared to unfused IL-10, likely caused by interference of ELP with folding of IL-10. Green fluorescent protein has no effect on IL-10 accumulation, but examining the trafficking of IL-10-GFP over the cell culture cycle revealed fluorescence in the vacuole during the stationary phase of the culture growth cycle. Analysis of isolated vacuoles indicated that GFP alone is found in vacuoles, while the full-size fusion remains in the whole-cell extract. This indicates that GFP is cleaved off prior to its trafficking to the vacuole. On the other hand, IL-10-GFP-ELP remains mostly in the ER and accumulates to high levels. Protein bodies were observed at the end of the culture cycle and are thought to arise as a consequence of high levels of accumulation in the ER. PMID:23297698

  3. Near-surface storage facilities for vitrified high-level wastes

    International Nuclear Information System (INIS)

    Kondrat'ev, A.N.; Kulichenko, V.V.; Kryukov, I.I.; Krylova, N.V.; Paramoshkin, V.I.; Strakhov, M.V.

    1980-01-01

    Concurrently with the development of methods for solidifying liquid radioactive wastes, reliable and safe methods for the storage and disposal of solidified wastes are being devised in the USSR and other countries. One of the main factors affecting the choice of storage conditions for solidified wastes originating from the vitrification of high-level liquid wastes from fuel reprocessing plants is the problem of removing the heat produced by radioactive decay. In order to prevent the temperature of solidified wastes from exceeding the maximum permissible level for the material concerned, it is necessary to limit either the capacity of waste containers or the specific heat release of the wastes themselves. In order that disposal of high-level wastes in geological formations should be reliable and economic, solidified wastes undergo interim storage in near-surface storage facilities with engineered cooling systems. The paper demonstrates the relative influences of specific heat release, of the maximum permissible storage temperature for vitrified wastes and of the methods chosen for cooling wastes in order for the dimensions of waste containers to be reduced to the extent required. The effect of concentrating wastes to a given level in the vitrification process on the cost of storage in different types of storage facility is also examined. Calculations were performed for the amount of vitrified wastes produced by a reprocessing plant with a capacity of five tonnes of uranium per 24 hours. Fuel elements from reactors of the water-cooled, water-moderated type are sent for reprocessing after having been held for about two years. The dimensions of the storage facility are calculated on the assumption that it will take five years to fill

  4. A structural model analysis of public opposition to a high-level radioactive waste facility

    International Nuclear Information System (INIS)

    Flynn, J.; Mertz, C.K.; Slovic, P.; Burns, W.

    1991-09-01

    Studies show that most Nevada residents and almost all state officials oppose the proposed high-level radioactive waste repository project at Yucca Mountain. Surveys of the public show that individual citizens view the Yucca Mountain repository as having high risk; nuclear experts, in contrast, believe the risks are very low. Policy analysts have suggested that public risk perceptions may be reduced by better program management, increased trust in the federal government, and increased economic benefits for accepting a repository. The model developed in this study is designed to examine the relationship between public perceptions of risk, trust in risk management, and potential economic impacts of the current repository program using a confirmatory multivariate method known as covariance structure analysis. The results indicate that perceptions of potential economic gains have little relationship to opposition to the repository. On the other hand, risk perceptions and the level of trust in repository management are closely related to each other and to opposition. The impacts of risk perception and trust in management on opposition to the repository result from a combination of their direct influences as well as their indirect influences operating through perceptions that the repository would have serious negative impacts on the state's economy due to stigmatization and reduced tourism

  5. Immobilization of high-level defense waste in a slurry-fed electric glass melter

    International Nuclear Information System (INIS)

    Brouns, R.A.; Mellinger, G.B.; Nelson, T.A.; Oma, K.H.

    1980-11-01

    Scoping studies have been performed at the Pacific Northwest Laboratory related to the direct liquid-feeding of a generic high-level defense waste to a joule-heated ceramic melter. Tests beginning on the laboratory scale and progressing to full-scale operation are reported. Laboratory work identified the need for a reducing agent in the feed to help control the foaming tendencies of the waste glass. These tests also indicated that suspension agents were helpful in reducing the tendency of solids to settle out of the liquid feed. Testing was then moved to a larger pilot-scale melter (designed for approx. 2.5 kg/h) where verification of the flowsheet examined in the lab was accomplished. It was found that the reducing agent controlled foaming and did not result in the precipitation of metals. Pumping problems were encountered when slurries with higher than normal solids content were fed. A demonstration (designed for approx. 50 kg/h) in a full-scale melter was then made with the tested flowsheet; however, the amount of reducing agent had to be increased. In addition, it was found that feed control needed further development; however, steady-state operation was achieved giving encouraging results on process capacities. During steady-state operation, ruthenium losses to the offgas system averaged less than 0.16%, while cesium losses were somewhat higher, ranging from 0.91 to 24% and averaging 13%. Particulate decontamination factors from feed to offgas in the melter ranged from 5 x 10 2 to greater than 10 3 without any filtration or treatment. Approximately 1050 kg of glass was produced from 2900 L of waste at rates up to 40 kg/h

  6. Technologies for recovery of transuranics and immobilization of non-high-level wastes

    International Nuclear Information System (INIS)

    Richardson, G.L.

    1976-06-01

    This paper supplements the preceding Symposium paper on ''Treatment Technologies for Non-High-Level Wastes (U.S.A.)'' by C. R. Cooley and D. E. Clark (HEDL-SA-851), and covers the additional treatment technologies in use and under development for recovering transuranics and immobilizing non-high-level wastes for transportation and storage. Methods used for nondestructive assay (NDA) of TRU elements in non-high-level wastes are also discussed briefly

  7. Requirements for High Level Models Supporting Design Space Exploration in Model-based Systems Engineering

    OpenAIRE

    Haveman, Steven P.; Bonnema, G. Maarten

    2013-01-01

    Most formal models are used in detailed design and focus on a single domain. Few effective approaches exist that can effectively tie these lower level models to a high level system model during design space exploration. This complicates the validation of high level system requirements during detailed design. In this paper, we define requirements for a high level model that is firstly driven by key systems engineering challenges present in industry and secondly connects to several formal and d...

  8. Final repositories for high-level radioactive waste; Endlagerung hochradioaktiver Abfaelle

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-10-15

    The brochure on final repositories for high-level radioactive waste covers the following issues: What is the origin of radioactive wastes? How large are the waste amounts? What is going to happen with the wastes? What is the solution for the Waste disposal? A new site search is started. Safety requirements for the final disposal of high-level radioactive wastes. Comparison of host rocks. Who is responsible and who will pay? Final disposal of high-level radioactive wastes worldwide. Short summary: History of the search for a final repository for high-level radioactive wastes in Germany.

  9. Development of High Level Trigger Software for Belle II at SuperKEKB

    International Nuclear Information System (INIS)

    Lee, S; Itoh, R; Katayama, N; Mineo, S

    2011-01-01

    The Belle collaboration has been trying for 10 years to reveal the mystery of the current matter-dominated universe. However, much more statistics is required to search for New Physics through quantum loops in decays of B mesons. In order to increase the experimental sensitivity, the next generation B-factory, SuperKEKB, is planned. The design luminosity of SuperKEKB is 8 x 10 35 cm −2 s −1 a factor 40 above KEKB's peak luminosity. At this high luminosity, the level 1 trigger of the Belle II experiment will stream events of 300 kB size at a 30 kHz rate. To reduce the data flow to a manageable level, a high-level trigger (HLT) is needed, which will be implemented using the full offline reconstruction on a large scale PC farm. There, physics level event selection is performed, reducing the event rate by ∼ 10 to a few kHz. To execute the reconstruction the HLT uses the offline event processing framework basf2, which has parallel processing capabilities used for multi-core processing and PC clusters. The event data handling in the HLT is totally object oriented utilizing ROOT I/O with a new method of object passing over the UNIX socket connection. Also under consideration is the use of the HLT output as well to reduce the pixel detector event size by only saving hits associated with a track, resulting in an additional data reduction of ∼ 100 for the pixel detector. In this contribution, the design and implementation of the Belle II HLT are presented together with a report of preliminary testing results.

  10. PyGirl: Generating Whole-System VMs from High-Level Prototypes Using PyPy

    Science.gov (United States)

    Bruni, Camillo; Verwaest, Toon

    Virtual machines (VMs) emulating hardware devices are generally implemented in low-level languages for performance reasons. This results in unmaintainable systems that are difficult to understand. In this paper we report on our experience using the PyPy toolchain to improve the portability and reduce the complexity of whole-system VM implementations. As a case study we implement a VM prototype for a Nintendo Game Boy, called PyGirl, in which the high-level model is separated from low-level VM implementation issues. We shed light on the process of refactoring from a low-level VM implementation in Java to a high-level model in RPython. We show that our whole-system VM written with PyPy is significantly less complex than standard implementations, without substantial loss in performance.

  11. Teaching a High-Level Contextualized Mathematics Curriculum to Adult Basic Learners

    Science.gov (United States)

    Showalter, Daniel A.; Wollett, Chelsie; Reynolds, Sharon

    2014-01-01

    This paper reports on the implementation of a high level contextualized mathematics curriculum by 12 adult basic instructors in a midwestern state. The 10-week pilot curriculum embedded high level mathematics in contexts that were familiar to adult learners. Instructors' weekly online posts were coded, and the following themes emerged: (a)…

  12. Alternatives Generation and Analysis for Heat Removal from High Level Waste Tanks

    Energy Technology Data Exchange (ETDEWEB)

    WILLIS, W.L.

    2000-06-15

    This document addresses the preferred combination of design and operational configurations to provide heat removal from high-level waste tanks during Phase 1 waste feed delivery to prevent the waste temperature from exceeding tank safety requirement limits. An interim decision for the preferred method to remove the heat from the high-level waste tanks during waste feed delivery operations is presented herein.

  13. High level language for measurement complex control based on the computer E-100I

    Science.gov (United States)

    Zubkov, B. V.

    1980-01-01

    A high level language was designed to control the process of conducting an experiment using the computer "Elektrinika-1001". Program examples are given to control the measuring and actuating devices. The procedure of including these programs in the suggested high level language is described.

  14. Requirements for high level models supporting design space exploration in model-based systems engineering

    NARCIS (Netherlands)

    Haveman, Steven; Bonnema, Gerrit Maarten

    2013-01-01

    Most formal models are used in detailed design and focus on a single domain. Few effective approaches exist that can effectively tie these lower level models to a high level system model during design space exploration. This complicates the validation of high level system requirements during

  15. Characteristics Data Base: Programmer's guide to the High-Level Waste Data Base

    International Nuclear Information System (INIS)

    Jones, K.E.; Salmon, R.

    1990-08-01

    The High-Level Waste Data Base is a menu-driven PC data base developed as part of OCRWM's technical data base on the characteristics of potential repository wastes, which also includes spent fuel and other materials. This programmer's guide completes the documentation for the High-Level Waste Data Base, the user's guide having been published previously. 3 figs

  16. A framework for the definition of variants of high-level Petri nets

    DEFF Research Database (Denmark)

    Kindler, Ekkart; Petrucci, Laure

    2009-01-01

    with data-type specific issues, which often blocks the view for the really relevant parts. Even worse, supposedly simpler versions of high-level nets often are more difficult to define than high-level nets in general. This paper introduces the concepts and the mathematical tools to ease the definition...

  17. Hi-LAB: A New Measure of Aptitude for High-Level Language Proficiency

    Science.gov (United States)

    Linck, Jared A.; Hughes, Meredith M.; Campbell, Susan G.; Silbert, Noah H.; Tare, Medha; Jackson, Scott R.; Smith, Benjamin K.; Bunting, Michael F.; Doughty, Catherine J.

    2013-01-01

    Few adult second language (L2) learners successfully attain high-level proficiency. Although decades of research on beginning to intermediate stages of L2 learning have identified a number of predictors of the rate of acquisition, little research has examined factors relevant to predicting very high levels of L2 proficiency. The current study,…

  18. Alternatives Generation and Analysis for Heat Removal from High Level Waste Tanks

    International Nuclear Information System (INIS)

    WILLIS, W.L.

    2000-01-01

    This document addresses the preferred combination of design and operational configurations to provide heat removal from high-level waste tanks during Phase 1 waste feed delivery to prevent the waste temperature from exceeding tank safety requirement limits. An interim decision for the preferred method to remove the heat from the high-level waste tanks during waste feed delivery operations is presented herein

  19. Neural Networks Mediating High-Level Mentalizing in Patients With Right Cerebral Hemispheric Gliomas

    Directory of Open Access Journals (Sweden)

    Riho Nakajima

    2018-03-01

    Full Text Available Mentalizing is the ability to understand others’ mental state through external cues. It consists of two networks, namely low-level and high-level metalizing. Although it is an essential function in our daily social life, surgical resection of right cerebral hemisphere disturbs mentalizing processing with high possibility. In the past, little was known about the white matter related to high-level mentalizing, and the conservation of high-level mentalizing during surgery has not been a focus of attention. Therefore, the main purpose of this study was to examine the neural networks underlying high-level mentalizing and then, secondarily, investigate the usefulness of awake surgery in preserving the mentalizing network. A total of 20 patients with glioma localized in the right hemisphere who underwent awake surgery participated in this study. All patients were assigned to two groups: with or without intraoperative assessment of high-level mentalizing. Their high-level mentalizing abilities were assessed before surgery and 1 week and 3 months after surgery. At 3 months after surgery, only patients who received the intraoperative high-level mentalizing test showed the same score as normal healthy volunteers. The tract-based lesion symptom analysis was performed to confirm the severity of damage of associated fibers and high-level mentalizing accuracy. This analysis revealed the superior longitudinal fascicles (SLF III and fronto-striatal tract (FST to be associated with high-level mentalizing processing. Moreover, the voxel-based lesion symptom analysis demonstrated that resection of orbito-frontal cortex (OFC causes persistent mentalizing dysfunction. Our study indicates that damage of the OFC and structural connectivity of the SLF and FST causes the disorder of mentalizing after surgery, and assessing high-level mentalizing during surgery may be useful to preserve these pathways.

  20. Reliable on-line storage in the ALICE High-Level Trigger

    Energy Technology Data Exchange (ETDEWEB)

    Kalcher, Sebastian; Lindenstruth, Volker [Kirchhoff Institute of Physics, University of Heidelberg (Germany)

    2009-07-01

    The on-line disk capacity within large computing clusters such as used in the ALICE High-Level Trigger (HLT) is often not used due to the inherent unreliability of the involved disks. With currently available hard drive capacities the total on-line capacity can be significant when compared to the storage requirements of present high energy physics experiments. In this talk we report on ClusterRAID, a reliable, distributed mass storage system, which allows to harness the (often unused) disk capacities of large cluster installations. The key paradigm of this system is to transform the local hard drive into a reliable device. It provides adjustable fault-tolerance by utilizing sophisticated error-correcting codes. To reduce the costs of coding and decoding operations the use of modern graphics processing units as co-processor has been investigated. Also, the utilization of low overhead, high performance communication networks has been examined. A prototype set up of the system exists within the HLT with 90 TB gross capacity.

  1. Key radionuclides and parameters that determine performance of geologic repositories for high-level radioactive wastes

    International Nuclear Information System (INIS)

    Joonhong Ahn; Atsuyuki Suzuki

    1993-01-01

    This paper presents results of a mathematical analysis for performance of the engineered barriers of high-level radioactive waste repositories. The main body of the mathematical model developed in this study is mass transport of actinides in a bentonite region. In an analysis of actinide transport, radioactive decay chain and effects of low solubilities must be taken into account. In many previous models for mass transport in engineered barriers including radioactive decay chain, however, boundary conditions at the interface between the waste form and the bentonite region cannot be determined flexibly. In some models, solubility-limited boundary condition is assumed for all the members in a chain. In order to investigate what are key radionuclides and parameters that control performance of engineered barriers of a geologic repository, we must evaluate mass transport with the source boundary condition determined by a detailed analysis on mass transfer at the boundary. In this study, we developed a mathematical model, which can determine whether the inner boundary condition is solubility-limited or congruent release, based on a mathematical analysis for mass transfer at the glass dissolution location, and how long the solubility-limited boundary condition applies. Based on the mathematical model, we point out radionuclides and parameters that have primary influences on the performance of a repository, and investigate a reasonable strategy for coupling geologic disposal and partitioning of those key radionuclides from the standpoint of reducing hazard of geologic disposal. (authors). 4 tabs., 2 figs., 8 refs

  2. Fear of failure, psychological stress, and burnout among adolescent athletes competing in high level sport.

    Science.gov (United States)

    Gustafsson, H; Sagar, S S; Stenling, A

    2017-12-01

    The purpose of this study was to investigate fear of failure in highly competitive junior athletes and the association with psychological stress and burnout. In total 258 athletes (152 males and 108 females) ranged in age from 15 to 19 years (M = 17.4 years, SD = 1.08) participated. Athletes competed in variety of sports including both team and individual sports. Results showed in a variable-oriented approach using regression analyses that one dimension, fear of experiencing shame and embarrassment had a statistically significant effect on perceived psychological stress and one dimension of burnout, reduced sense of accomplishment. However, adopting a person-oriented approach using latent class analysis, we found that athletes with high levels of fear failure on all dimensions scored high on burnout. We also found another class with high scores on burnout. These athletes had high scores on the individual-oriented dimensions of fear of failure and low scores on the other oriented fear of failure dimensions. The findings indicate that fear of failure is related to burnout and psychological stress in athletes and that this association is mainly associated with the individual-oriented dimensions of fear of failure. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Diagnostic Systems and Resources utilization of the ATLAS High Level Trigger

    CERN Document Server

    Sidoti, A; The ATLAS collaboration; Ospanov, R

    2010-01-01

    Since the LHC started colliding protons in December 2009, the ATLAS trigger has operated very successfully with a collision rate which has increased by several orders of magnitude. The trigger monitoring and data quality infrastructure was essential to this success. We describe the software tools used to monitor the trigger system performance and assess the overall quality of the trigger selection during collisions running. ATLAS has broad physics goals which require a large number of different active triggers due to complex event topology, requiring quite sophisticated software structures and concepts. The trigger of the ATLAS experiment is built as a three level system. The first level is realized in hardware while the high level triggers (HLT) are software based and run on large PC farms. The trigger reduces the bunch crossing rate of 40 MHz, at design, to an average event rate of about 200 Hz for storage. Since the ATLAS detector is a general purpose detector, the trigger must be sensitive to a large numb...

  4. FPGA-Based Channel Coding Architectures for 5G Wireless Using High-Level Synthesis

    Directory of Open Access Journals (Sweden)

    Swapnil Mhaske

    2017-01-01

    Full Text Available We propose strategies to achieve a high-throughput FPGA architecture for quasi-cyclic low-density parity-check codes based on circulant-1 identity matrix construction. By splitting the node processing operation in the min-sum approximation algorithm, we achieve pipelining in the layered decoding schedule without utilizing additional hardware resources. High-level synthesis compilation is used to design and develop the architecture on the FPGA hardware platform. To validate this architecture, an IEEE 802.11n compliant 608 Mb/s decoder is implemented on the Xilinx Kintex-7 FPGA using the LabVIEW FPGA Compiler in the LabVIEW Communication System Design Suite. Architecture scalability was leveraged to accomplish a 2.48 Gb/s decoder on a single Xilinx Kintex-7 FPGA. Further, we present rapidly prototyped experimentation of an IEEE 802.16 compliant hybrid automatic repeat request system based on the efficient decoder architecture developed. In spite of the mixed nature of data processing—digital signal processing and finite-state machines—LabVIEW FPGA Compiler significantly reduced time to explore the system parameter space and to optimize in terms of error performance and resource utilization. A 4x improvement in the system throughput, relative to a CPU-based implementation, was achieved to measure the error-rate performance of the system over large, realistic data sets using accelerated, in-hardware simulation.

  5. FERRATE TREATMENT FOR REMOVING CHROMIUM FROM HIGH-LEVEL RADIOACTIVE TANK WASTE

    International Nuclear Information System (INIS)

    Sylvester, Paul; Rutherford, Andy; Gonzalez-Martin, Anuncia; Kim, J.; Rapko, Brian M.; Lumetta, Gregg J.

    2000-01-01

    A method has been developed for removing chromium from alkaline high-level radioactive tank waste. Removing chromium from these wastes is critical in reducing the volume of waste requiring expensive immobilization and deep geologic disposition. The method developed is based on the oxidation of insoluble chromium(III) compounds to soluble chromate using ferrate. The tests conducted with a simulated Hanford tank sludge indicate that the chromium removal with ferrate is more efficient at 5 M NaOH than at 3 M NaOH. Chromium removal increases with increasing Fe(VI)/Cr(III) molar ratio, but the chromium removal tends to level out for Fe(VI)/Cr(III) greater than 10. Increasing temperature leads to better chromium removal, but higher temperatures also led to more rapid ferrate decomposition. Tests with radioactive Hanford tank waste generally confirmed the simulant results. In all cases examined, ferrate enhanced the chromium removal, with a typical removal of around 60-70% of the total chromium present in the washed sludge solids. The ferrate leachate solutions did not contain significant concentrations of transuranic elements, so these solutions could be handled as low-activity waste

  6. Prototype of a file-based high-level trigger in CMS

    International Nuclear Information System (INIS)

    Bauer, G; Darlea, G-L; Gomez-Ceballos, G; Bawej, T; Chaze, O; Coarasa, J A; Deldicque, C; Dobson, M; Dupont, A; Gigi, D; Glege, F; Gomez-Reino, R; Hartl, C; Hegeman, J; Masetti, L; Behrens, U; Branson, J; Cittolin, S; Holzner, A; Erhan, S

    2014-01-01

    The DAQ system of the CMS experiment at the LHC is upgraded during the accelerator shutdown in 2013/14. To reduce the interdependency of the DAQ system and the high-level trigger (HLT), we investigate the feasibility of using a file-system-based HLT. Events of ∼1 MB size are built at the level-1 trigger rate of 100 kHz. The events are assembled by ∼50 builder units (BUs). Each BU writes the raw events at ∼2GB/s to a local file system shared with Q(10) filter-unit machines (FUs) running the HLT code. The FUs read the raw data from the file system, select Q(1%) of the events, and write the selected events together with monitoring meta-data back to a disk. This data is then aggregated over several steps and made available for offline reconstruction and online monitoring. We present the challenges, technical choices, and performance figures from the prototyping phase. In addition, the steps to the final system implementation will be discussed.

  7. Ferrate treatment for removing chromium from high-level radioactive tank waste.

    Science.gov (United States)

    Sylvester, P; Rutherford, L A; Gonzalez-Martin, A; Kim, J; Rapko, B M; Lumetta, G J

    2001-01-01

    A method has been developed for removing chromium from alkaline high-level radioactive tank waste. Removing chromium from these wastes is critical in reducing the volume of waste requiring expensive immobilization and deep geologic disposition. The method developed is based on the oxidation of insoluble chromium(III) compounds to soluble chromate using ferrate. This method could be generally applicable to removing chromium from chromium-contaminated solids, when coupled with a subsequent reduction of the separated chromate back to chromium(III). The tests conducted with a simulated Hanford tank sludge indicate that the chromium removal with ferrate is more efficient at 5 M NaOH than at 3 M NaOH. Chromium removal increases with increasing Fe(VI)/Cr(II) molar ratio, but the chromium removal tends to level out for Fe(VI)/ Cr(III) greaterthan 10. Increasingtemperature leadsto better chromium removal, but higher temperatures also led to more rapid ferrate decomposition. Tests with radioactive Hanford tank waste generally confirmed the simulant results. In all cases examined, ferrate enhanced the chromium removal, with a typical removal of around 60-70% of the total chromium present in the washed sludge solids. The ferrate leachate solutions did not contain significant concentrations of transuranic elements, so these solutions could be disposed as low-activity waste.

  8. Design Automation Using Script Languages. High-Level CAD Templates in Non-Parametric Programs

    Science.gov (United States)

    Moreno, R.; Bazán, A. M.

    2017-10-01

    The main purpose of this work is to study the advantages offered by the application of traditional techniques of technical drawing in processes for automation of the design, with non-parametric CAD programs, provided with scripting languages. Given that an example drawing can be solved with traditional step-by-step detailed procedures, is possible to do the same with CAD applications and to generalize it later, incorporating references. In today’s modern CAD applications, there are striking absences of solutions for building engineering: oblique projections (military and cavalier), 3D modelling of complex stairs, roofs, furniture, and so on. The use of geometric references (using variables in script languages) and their incorporation into high-level CAD templates allows the automation of processes. Instead of repeatedly creating similar designs or modifying their data, users should be able to use these templates to generate future variations of the same design. This paper presents the automation process of several complex drawing examples based on CAD script files aided with parametric geometry calculation tools. The proposed method allows us to solve complex geometry designs not currently incorporated in the current CAD applications and to subsequently create other new derivatives without user intervention. Automation in the generation of complex designs not only saves time but also increases the quality of the presentations and reduces the possibility of human errors.

  9. Development of the ATLAS High-Level Trigger Steering and Inclusive Searches for Supersymmetry

    CERN Document Server

    Eifert, T

    2009-01-01

    The presented thesis is divided into two distinct parts. The subject of the first part is the ATLAS high-level trigger (HLT), in particular the development of the HLT Steering, and the trigger user-interface. The second part presents a study of inclusive supersymmetry searches, including a novel background estimation method for the relevant Standard Model (SM) processes. The trigger system of the ATLAS experiment at the Large Hadron Collider (LHC) performs the on-line physics selection in three stages: level-1 (LVL1), level-2 (LVL2), and the event filter (EF). LVL2 and EF together form the HLT. The HLT receives events containing detector data from high-energy proton (or heavy ion) collisions, which pass the LVL1 selection at a maximum rate of 75 kHz. It must reduce this rate to ~200 Hz, while retaining the most interesting physics. The HLT is a software trigger and runs on a large computing farm. At the heart of the HLT is the Steering software. The HLT Steering must reach a decision whether or not to accept ...

  10. ATLAS High-Level Trigger Performance for Calorimeter-Based Algorithms in LHC Run-I

    CERN Document Server

    Mann, A; The ATLAS collaboration

    2013-01-01

    The ATLAS detector operated during the three years of the Run-I of the Large Hadron Collider collecting information on a large number of proton-proton events. One the most important results obtained so far is the discovery of one Higgs boson. More precise measurements of this particle must be performed as well as there are other very important physics topics still to be explored. One of the key components of the ATLAS detector is its trigger system. It is composed of three levels: one (called Level 1 - L1) built on custom hardware and the two others based on software algorithms - called Level 2 (L2) and Event Filter (EF) – altogether referred to as the ATLAS High Level Trigger. The ATLAS trigger is responsible for reducing almost 20 million of collisions per second produced by the accelerator to less than 1000. The L2 operates only in the regions tagged by the first hardware level as containing possible interesting physics while the EF operates in the full detector, normally using offline-like algorithms to...

  11. The ATLAS Data Acquisition and High Level Trigger Systems: Experience and Upgrade Plans

    CERN Document Server

    Hauser, R; The ATLAS collaboration

    2012-01-01

    The ATLAS DAQ/HLT system reduces the Level 1 rate of 75 kHz to a few kHz event build rate after Level 2 and a few hundred Hz out output rate to disk. It has operated with an average data taking efficiency of about 94% during the recent years. The performance has far exceeded the initial requirements, with about 5 kHz event building rate and 500 Hz of output rate in 2012, driven mostly by physics requirements. Several improvements and upgrades are foreseen in the upcoming long shutdowns, both to simplify the existing architecture and improve the performance. On the network side new core switches will be deployed and possible use of 10GBit Ethernet links for critical areas is foreseen. An improved read-out system to replace the existing solution based on PCI is under development. A major evolution of the high level trigger system foresees a merging of the Level 2 and Event Filter functionality on a single node, including the event building. This will represent a big simplification of the existing system, while ...

  12. Systems costs for disposal of Savannah River high-level waste sludge and salt

    International Nuclear Information System (INIS)

    McDonell, W.R.; Goodlett, C.B.

    1984-01-01

    A systems cost model has been developed to support disposal of defense high-level waste sludge and salt generated at the Savannah River Plant. Waste processing activities covered by the model include decontamination of the salt by a precipitation process in the waste storage tanks, incorporation of the sludge and radionuclides removed from the salt into glass in the Defense Waste Processing Facility (DWPF), and, after interim storage, final disposal of the DWPF glass waste canisters in a federal geologic repository. Total costs for processing of waste generated to the year 2000 are estimated to be about $2.9 billion (1984 dollars); incremental unit costs for DWPF and repository disposal activities range from $120,000 to $170,000 per canister depending on DWPF processing schedules. In a representative evaluation of process alternatives, the model is used to demonstrate cost effectiveness of adjustments in the frit content of the waste glass to reduce impacts of wastes generated by the salt decontamination operations. 13 references, 8 tables

  13. Leaching of vitrified high-level-active-waste in a near reality simulated repository system

    International Nuclear Information System (INIS)

    Froeschen, W.; Wolf, G.K.

    1987-01-01

    In the FRG it is planned to vitrify the high level waste from spent fuel reprocessing and to dispose of in a salt-mine. If water penetrates into the repository a highly corrosive brine (Q-brine) will be formed and radioactive material may be leached from the glasses and transported to human environment. The corrosion system of brine, corroded steel containers of the vitrified waste, and waste-glasses was investigated under near reality conditions. Experiments in hydrothermal environment were carried out including gamma radiation of the waste-glasses and ceramic In Can Lining between glasses and metallic containments. Screening experiments by application of external cobalt-gamma-radiation showed no principal changes in leaching behaviour of simulate glasses compared to leaching without radiation. Radiation effects result in pH changes mainly which are diminished by buffer capacity of Q-brine. Lining of steel containments with ceramic fleece does not reduce leaching but retards solution of Mo and Sr into brine. Decreasing of elements Sr, Cs and Mo in the near surface area of the glass and increasing of Zr and Ti has been found to be enhanced considerably in presence of canister corrosion products in Q-brine as well as in NaCl-leaching solution. (orig.) With 13 refs., 22 figs [de

  14. Commissioning of the ATLAS High Level Trigger with single beam and cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Di Mattia, A, E-mail: dimattia@mail.cern.c [Michigan State University - Department of Physics and Astronomy 3218 Biomedical Physical Science - East Lansing, MI 48824-2320 (United States)

    2010-04-01

    ATLAS is one of the two general-purpose detectors at the Large Hadron Collider (LHC). The trigger system is responsible for making the online selection of interesting collision events. At the LHC design luminosity of 10{sup 34} cm{sup -2}s{sup -1} it will need to achieve a rejection factor of the order of 10{sup -7} against random proton-proton interactions, while selecting with high efficiency events that are needed for physics analyses. After a first processing level using custom electronics based on FPGAs and ASICs, the trigger selection is made by software running on two processor farms, containing a total of around two thousand multi-core machines. This system is known as the High Level Trigger (HLT). To reduce the network data traffic and the processing time to manageable levels, the HLT uses seeded, step-wise reconstruction, aiming at the earliest possible rejection of background events. The recent LHC startup and short single-beam run provided a 'stress test' of the system and some initial calibration data. Following this period, ATLAS continued to collect cosmic-ray events for detector alignment and calibration purposes. After giving an overview of the trigger design and its innovative features, this paper focuses on the experience gained from operating the ATLAS trigger with single LHC beams and cosmic-rays.

  15. Commissioning of the ATLAS High Level Trigger with single beam and cosmic rays

    International Nuclear Information System (INIS)

    Di Mattia, A

    2010-01-01

    ATLAS is one of the two general-purpose detectors at the Large Hadron Collider (LHC). The trigger system is responsible for making the online selection of interesting collision events. At the LHC design luminosity of 10 34 cm -2 s -1 it will need to achieve a rejection factor of the order of 10 -7 against random proton-proton interactions, while selecting with high efficiency events that are needed for physics analyses. After a first processing level using custom electronics based on FPGAs and ASICs, the trigger selection is made by software running on two processor farms, containing a total of around two thousand multi-core machines. This system is known as the High Level Trigger (HLT). To reduce the network data traffic and the processing time to manageable levels, the HLT uses seeded, step-wise reconstruction, aiming at the earliest possible rejection of background events. The recent LHC startup and short single-beam run provided a 'stress test' of the system and some initial calibration data. Following this period, ATLAS continued to collect cosmic-ray events for detector alignment and calibration purposes. After giving an overview of the trigger design and its innovative features, this paper focuses on the experience gained from operating the ATLAS trigger with single LHC beams and cosmic-rays.

  16. Electrochemical probing of high-level radioactive waste tanks containing washed sludge and precipitates

    International Nuclear Information System (INIS)

    Bickford, D.F.; Congdon, J.W.; Oblath, S.B.

    1986-12-01

    At the US Department of Energy's Savannah River Plant, corrosion of carbon steel storage tanks containing alkaline, high-level radioactive waste is controlled by specification of limits on waste composition and temperature. Processes for the preparation of waste for final disposal will result in waste with low corrosion inhibitor concentrations and, in some cases, high aromatic organic concentrations, neither of which are characteristic of previous operations. Laboratory tests, conducted to determine minimum corrosion inhibitor levels indicated pitting of carbon steel near the waterline for proposed storage conditions. In situ electrochemical measurements of full-scale radioactive process demonstrations have been conducted to assess the validity of laboratory tests. Probes included pH, Eh (potential relative to a standard hydrogen electrode), tank potential, and alloy coupons. In situ results are compared to those of the laboratory tests, with particular regard given to simulated solution composition. Transition metal hydroxide sludge contains strong passivating species for carbon steel. Washed precipitate contains organic species that lower solution pH and tend to reduce passivating films, requiring higher inhibitor concentrations than the 0.01 molar nitrite required for reactor fuel reprocessing wastes. Periodic agitation, to keep the organic phase suspended, or cathodic protection are possible alternatives to higher nitrite inhibitor concentrations

  17. Geological disposal of high-level radioactive waste and the role of rock engineering

    International Nuclear Information System (INIS)

    Sugihara, Kozo

    2008-01-01

    Japan Atomic Energy Agency (JAEA) and its predecessors have been conducting an extensive geoscientific research program since the 1970's in order to contribute to the formation of a firm scientific and technological basis for the geological disposal of high level radioactive waste in Japan. As a part of this program, in situ experiments have been performed at the Tono Mine in soft sedimentary rocks and at the Kamaishi Mine in hard crystalline rocks. An experiment on excavation disturbance has been one of these experiments and has revealed the extent and properties of the excavation disturbed zone (EDZ) and the applicability of available measurement methods. It is suggested that mechanical excavation and controlled excavation have reduced excavation damage of the rock mass around a drift, although some improvements in the currently available methods for measuring and simulating the EDZ are essential to understand excavation disturbance in more detail. JAEA is now promoting two underground research laboratory projects in Japan; the Mizunami Underground Research Laboratory (MIU) project for crystalline rocks and the Horonobe Underground Research Laboratory (Horonobe URL) project for sedimentary rocks. From a rock mechanical point of view, the major interest in these projects will be paid to failure phenomenon deep underground, rock stress estimation at larger scales and long-term physical stability of underground structure. These projects are open for international collaboration. (author)

  18. Commissioning of the ATLAS high-level trigger with single beam and cosmic rays

    CERN Document Server

    Özcan, V Erkcan

    2010-01-01

    ATLAS is one of the two general-purpose detectors at the Large Hadron Collider (LHC). Using fast reconstruction algorithms, its trigger system needs to efficiently reject a huge rate of background events and still select potentially interesting ones with good efficiency. After a first processing level using custom electronics, the trigger selection is made by software running on two processor farms, designed to have a total of around two thousand multi-core machines. This system is known as the High Level Trigger (HLT). To reduce the network data traffic and the processing time to manageable levels, the HLT uses seeded, step-wise reconstruction, aiming at the earliest possible rejection of background events. The recent LHC startup and short single-beam run provided a "stress test" of the trigger. Following this period, ATLAS continued to collect cosmic-ray events for detector alignment and calibration purposes. These running periods allowed strict tests of the HLT reconstruction and selection algorithms as we...

  19. Preliminary conceptual design of a geological disposal system for high-level wastes from the pyroprocessing of PWR spent fuels

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Heui-Joo, E-mail: hjchoi@kaeri.re.kr [Korea Atomic Energy Research Institute, 1045 Daeduk-Daero, Yuseong, Daejon 305-353 (Korea, Republic of); Lee, Minsoo; Lee, Jong Youl [Korea Atomic Energy Research Institute, 1045 Daeduk-Daero, Yuseong, Daejon 305-353 (Korea, Republic of)

    2011-08-15

    Highlights: > A geological disposal system consists of disposal overpacks, a buffer, and a deposition hole or a disposal tunnel for high-level wastes from a pyroprocessing of PWR spent fuels is proposed. The amount and characteristics of high-level wastes are analyzed based on the material balance of pyroprocessing. > Four kinds of deposition methods, two horizontal and two vertical, are proposed. Thermal design is carried out with ABAQUS program. The spacing between the disposal modules is determined for the peak temperature in buffer not to exceed 100 deg. C. > The effect of the double-layered buffer is compared with the traditional single-layered buffer in terms of disposal density. Also, the effect of cooling time (aging) is illustrated. > All the thermal calculations are represented by comparing the disposal area of PWR spent fuels with the same cooling time. - Abstract: The inventories of spent fuels are linearly dependent on the production of electricity generated by nuclear energy. Pyroprocessing of PWR spent fuels is one of promising technologies which can reduce the volume of spent fuels remarkably. The properties of high-level wastes from the pyroprocessing are totally different from those of spent fuels. A geological disposal system is proposed for the high-level wastes from pyroprocessing of spent fuels. The amount and characteristics of high-level wastes are analyzed based on the material balance of pyroprocessing. Around 665 kg of monazite ceramic wastes are expected from the pyroprocessing of 10 MtU of PWR spent fuels. Decay heat from monazite ceramic wastes is calculated using the ORIGEN-ARP program. Disposal modules consisting of storage cans, overpacks, and a deposition hole or a disposal tunnel are proposed. Four kinds of deposition methods are proposed. Thermal design is carried out with ABAQUS program and geological data obtained from the KAERI Underground Research Tunnel. Through the thermal analysis, the spacing between the disposal modules

  20. The effects of actinide separation on the radiological consequences of geologic disposal of high-level waste

    International Nuclear Information System (INIS)

    Hill, M.D.; White, I.F.; Fleishman, A.B.

    1980-01-01

    It has often been suggested that the potential hazard to man from the disposal of high-level radioactive waste could be reduced by removing a substantial fraction of the actinide elements. In this report the effects of actinide separation on the radiological consequences of one of the disposal options currently under consideration, that of burial in deep geologic formations, are examined. The results show that the potential radiological impact of geologic disposal of high-level waste arises from both long-lived fission products and actinides (and their daughter radionuclides). Neither class of radionuclides is of overriding importance and actinide separation would therefore reduce the radiological impact to only a limited extent and over limited periods. There might be a case for attempting to reduce doses from 237 Np. To achieve this it appears to be necessary to separate both neptunium and its precursor element americium. However, there are major uncertainties in the data needed to predict doses from 237 Np; further research is required to resolve these uncertainties. In addition, consideration should be given to alternative methods of reducing the radiological impact of geologic disposal. The conclusions of this assessment differ considerably from those of similar studies based on the concept of toxicity indices. Use of these indices can lead to incorrect allocation of research and development effort. (author)